
M A N N I N G

TJ VanToll
FOREWORD BY Scott González

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery UI in Action

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

jQuery UI in Action

TJ VANTOLL

M A N N I N G
Shelter Island
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Sean Dennis
20 Baldwin Road Technical development editor: Teresa Burger
Shelter Island, NY 11964 Copyeditor: Teresa Wilson

Proofreader: Elizabeth Martin
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617291937
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents
PART 1 MEET JQUERY UI ..1

1 ■ Introducing jQuery UI 3

2 ■ Enhancing UIs with widgets 18

PART 2 JQUERY UI CORE ..41

3 ■ Building complex web forms with jQuery UI 43

4 ■ Enhancing interfaces with layout and utility widgets 77

5 ■ Adding interaction to your interfaces 107

6 ■ Creating rich animations with effects 135

7 ■ Theming and styling applications with jQuery UI 162

PART 3 CUSTOMIZATION AND ADVANCED USAGE183

8 ■ Using the widget factory to build stateful plugins 185

9 ■ Extending widgets with the widget factory 213

10 ■ Preparing your application for production 238

11 ■ Building a flight-search application 259

12 ■ Under the hood of jQuery UI 287
v

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xviii
about the cover illustration xxi

PART 1 MEET JQUERY UI...1

1 Introducing jQuery UI 3
1.1 What is in jQuery UI? 4

1.2 The benefits of using jQuery UI 6
Cohesive and consistent APIs 6 ■ Comprehensive browser support 7
Open source and free to use 7 ■ Thorough documentation 7
Powerful theming mechanism 7 ■ Emphasis on accessibility 8
Stable and maintenance friendly 9

1.3 The limitations of jQuery UI 9
Lack of widgets 9 ■ jQuery UI and mobile devices 10

1.4 Getting started with the library 11
Versions of the library 11 ■ Downloading from the jQuery UI
website 11 ■ Downloading from CDNs 12

1.5 The first example 12
vii

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
1.6 Using an online testing tool 15

1.7 Summary 17

2 Enhancing UIs with widgets 18
2.1 Creating widgets 19

2.2 Customizing widgets with options 20

2.3 Modifying widgets with methods 24
Invoking methods 24 ■ Using option() to modify widgets 27
Using dialogs to edit lists 28

2.4 Responding to widget changes with events 31
Subscribing to widget events 32 ■ Event handlers vs.
callbacks 34 ■ Event parameters 35

2.5 Summary 39

PART 2 JQUERY UI CORE...41

3 Building complex web forms with jQuery UI 43
3.1 The challenges of building modern web forms 44

3.2 Autocomplete: suggesting input options to users 46
Using local data 47 ■ Loading from a remote source 49
Using autocomplete with third-party services and APIs 52

3.3 Button: enhancing native buttons, inputs, and links 55

3.4 Selectmenu: enhancing native <select> elements 59

3.5 Datepicker: selecting dates from a pop-up calendar 62
Parsing and formatting dates 64 ■ Handling date
globalization 67

3.6 Spinner: enhancing native <input> elements to collect
numeric data 69

3.7 Completing the appointment form 71

3.8 HTML5 elements vs. jQuery UI widgets 74

3.9 Summary 76

4 Enhancing interfaces with layout and utility widgets 77
4.1 Accordion: creating toggleable content panels 78

Configuring the accordion widget 79 ■ Adding and removing
panels 81
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
4.2 Tabs: toggling between content areas 82
Loading remote content 83 ■ Loading movie information in a
tabs widget 83

4.3 Menu: creating web menus with semantic markup 88

4.4 Dialog: displaying content in a pop-up container 91

4.5 Progressbar: displaying the progress of a task 94

4.6 Slider: selecting a value using moveable handles 97
Building range sliders 98 ■ Adding a font size range 99

4.7 Tooltip: enhancing native tooltips with a customizable
control 101

Using custom tooltip content 103 ■ Displaying a preview in a
tooltip 104

4.8 Summary 106

5 Adding interaction to your interfaces 107
5.1 Draggable: allowing users to move elements 108

5.2 Droppable: creating containers that accept draggables 110
Building a drag-and-drop game 110 ■ Building a shopping
cart 114

5.3 Sortable: rearranging elements in a list 118
Building connected lists 121 ■ Building a fruit and vegetable
sorting game 121

5.4 Resizable: allowing users to change the size of elements 125
Using custom resize handles 126 ■ Building an appointment
scheduler 127

5.5 Selectable: allowing users to select elements from a group 130

5.6 Creating multidevice interactions: the importance
of touch 132

Why doesn’t jQuery UI support touch events? 132 ■ Introducing
jQuery UI Touch Punch 133

5.7 Summary 134

6 Creating rich animations with effects 135
6.1 Using effects and the effect() method 136

Customizing effects with easings 138 ■ Making visual
associations with the transfer effect 140
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
6.2 Animating visibility changes 142
Building form validation messages 142 ■ Building portlets with
jQuery UI 144

6.3 Using effects with the jQuery UI widgets 147
The show and hide options 147 ■ Showing a message in a
dialog 148

6.4 Animating CSS class name changes 151
Enhancing addClass(), removeClass(), and toggleClass() 151
Building an off-canvas navigation menu for mobile 153

6.5 Effects vs. CSS3 animations and transitions 156
CSS3 transitions vs. the jQuery UI class name methods 156 ■ CSS
animations vs. effects 158

6.6 Summary 161

7 Theming and styling applications with jQuery UI 162
7.1 Using built-in and custom themes 163

7.2 Using the jQuery UI CSS framework to customize
applications 166

Styling widget containers 167 ■ Styling interaction states 168
Styling interaction cues 169 ■ Building a styled confirmation
dialog 172

7.3 Styling with widget class names 174
Building vertical tabs 176 ■ Building a mobile-friendly
datepicker 178 ■ Adding arrows to tooltips with CSS 179

7.4 Summary 181

PART 3 CUSTOMIZATION AND ADVANCED USAGE183

8 Using the widget factory to build stateful plugins 185
8.1 Building a widget 186

Constructing widgets with $.widget() 187 ■ Choosing a
markup structure 189 ■ Overriding _create() to initialize
widgets 190 ■ Making widgets themeable 193 ■ Listening
for events with _on() 195

8.2 Customizing widgets with options, methods, and events 196
Making widgets configurable with options 197 ■ Changing the
widget’s state with methods 200 ■ Triggering widget events with
_trigger() 202
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
8.3 Enabling, disabling, and destroying widgets 205
Enabling and disabling a widget 205 ■ Undoing a widget’s effects
with _destroy() 207

8.4 Summary 212

9 Extending widgets with the widget factory 213
9.1 Building widget extensions 214

Changing existing and adding new options to a widget 214
Redefining widgets with the widget factory 218 ■ Extending a
custom widget 220

9.2 Customizing widgets with extension points 225
Using undocumented extension points 227 ■ Adding your own
extension points 230

9.3 Extending the datepicker widget 231
Building a mobile-friendly datepicker extension 234

9.4 Summary 236

10 Preparing your application for production 238
10.1 The problem with third-party CDNs 239

10.2 Downloading jQuery UI from Download Builder 241

10.3 Managing JavaScript dependencies with AMD 243
Setting up RequireJS for development 245 ■ Loading jQuery UI
components with RequireJS 246

10.4 Building your application’s assets with the optimizer 249
Optimizing JavaScript assets 249 ■ Optimizing CSS
dependencies 251

10.5 Supporting AMD in custom widgets 254

10.6 Summary 257

11 Building a flight-search application 259
11.1 Structuring your application 260

11.2 Collecting user input 261
Building an airport code autocomplete 263 ■ Polyfilling HTML5
inputs with jQuery UI 265 ■ Validating user input with
HTML5 268

11.3 Connecting to a RESTful API 271
Looking up flights with $.ajax() 271 ■ Parsing XML with
jQuery 272
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
11.4 Displaying the results on the screen 274
Storing and resolving templates with RequireJS 276 ■ Showing a
processing indicator while data loads 277

11.5 Adding a responsive design 279

11.6 Preparing the application for production 283

11.7 Getting the optimal performance with almond 284

11.8 Summary 286

12 Under the hood of jQuery UI 287
12.1 Positioning elements with the position utility 287

Building a UI walkthrough with the position utility and dialog
widget 290 ■ Handling collisions elegantly 293 ■ Controlling
the collision detection 295

12.2 Using the utility functionality in jQuery UI Core 297
Generating unique ids 297 ■ Using key code constants 299

12.3 Accessing and managing widget instances 300
Detecting widget instances with :data() 301

12.4 Advanced widget prototype methods and properties 302
A widget’s prototype chain explained 303 ■ Using a widget’s
default element to streamline initialization 305 ■ Supporting
embedded-window use in widgets 307 ■ Displaying elements with
_show() and _hide() 308 ■ Customizing options on the fly 310

12.5 Using autoinitialization to remove boilerplate code 311
How jQuery Mobile’s autoinitialization works 312 ■ jQuery
Mobile’s widget extension 314 ■ Autoinitializing jQuery UI
widgets 315

12.6 Summary 318

appendix A Learning jQuery 319
appendix B How jQuery UI tests jQuery UI 325
appendix C Using jQuery UI with Backbone 332
appendix D Creating decimal, currency, and time pickers with Globalize 337
appendix E Contributing to jQuery UI 343
appendix F Polyfilling HTML5 with jQuery UI 348

index 355
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

foreword
jQuery has taken the web development community by storm. It has done this by build-
ing an API that is approachable for designers and new developers while simultane-
ously providing the power and extensibility desired by the most advanced and
experienced developers. jQuery is easy to learn, easy to extend, and paves over
browser differences, making it the go-to choice for millions of developers.

 jQuery UI takes the same philosophies used to build jQuery and applies them to var-
ious aspects of UI creation. Building elegant interfaces with powerful, customizable
widgets should be just as easy as showing and hiding elements. jQuery UI delivers on this
promise while addressing often ignored issues such as accessibility and extensibility.

 jQuery UI has built a solid base over the past seven years and the number of users is
growing steadily. But the web is evolving at a rapid pace and new JavaScript libraries and
UI toolkits are popping up left and right. Choosing the right tools for your next project
can be quite daunting. jQuery UI in Action shows how to leverage jQuery UI to quickly
build an application or just add an extra touch of interaction on an existing page.

 This book will serve as a fantastic resource for anyone interested in getting started
with jQuery UI. As always, TJ has done a great job of walking through tasks in detail
and pointing out potential pitfalls. TJ’s dedication and desire to help others has been
an invaluable asset, not just to jQuery UI, but to the web development community as a
whole. I’m sure you’ll feel the same way after reading this book.

SCOTT GONZÁLEZ

PROJECT LEAD, JQUERY UI

xiii

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

preface
In 2013 Manning contacted me about writing a book on jQuery UI. Because I had
been an enthusiastic user of the library for five years, and had been a member of the
jQuery team for approximately two years, I had a lot of experience and knowledge
that I wanted to share with the world. I said Yes!

 From the start, I made it clear that I wanted to take a different tack with this book:
rather than reprinting the library’s API documentation in a book, which is something
I think far too many tech books do, I wanted to write about how to use the jQuery UI
components in real-world usage scenarios and applications. I also wanted to tackle the
tough questions for jQuery UI users. Why should you use the jQuery UI datepicker
instead of the native date picker included in HTML5? How do you use jQuery UI on
mobile devices, especially in low bandwidth situations?

 From start to finish the book took about a year and a half to complete, and
although it was an exhausting amount of work, I’m extremely happy with the result.
jQuery UI is a stable library that helps you write robust, accessible, and cross-browser
friendly web applications today. This book represents my attempt to share the knowl-
edge I’ve gained from building countless projects with jQuery UI, and from working
as a member of the jQuery team. I hope you enjoy it.
xv

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
I never thought that I would be writing one of these … I feel like I’m at the Oscars or
something. Although I hate to list specific names, as it will force me to exclude people
I should thank and it’ll be totally awkward the next time I see them, I’ll do it anyway …
otherwise this section would be kind of boring.

 I’ll start with Scott González, who brought me into the jQuery project, walked me
through countless jQuery concepts, and has always been around to help with any
problem I run into. In addition to helping me with all things jQuery UI over the last
few years, Scott also contributed the foreword to this book.

 Next I’ll thank Jörn Zaefferer, whose expertise has made me a better developer
during my time with jQuery UI. I asked Jörn to perform the technical review of this
book because I felt he was the most qualified person for the job (he is the original
author of a good chunk of the jQuery UI source), and I wasn’t disappointed. The
book is unquestionably better because of Jörn.

 The entire jQuery UI team has either directly or indirectly helped make this book
a reality, so I’d also like to thank Kris Borchers, Felix Nagel, Corey Frang, Mike Sherov,
Rafael Xavier, and Alexander Schmitz.

 The people at Manning have been great through the long and arduous process of
writing a technical book. My development editor, Sean Dennis, not only provided
great feedback throughout, but also took care of managing the various tedious pro-
cesses involved in writing and publishing a book. Robin de Jongh was the one who
asked me to write this book and was a great guy to talk to throughout the process.
Without him there would be no book.
xvi

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xvii
 The following peer reviewers also provided invaluable insights, reading the manu-
script a number of times during its development and I’d like to acknowledge them
here: Linda Carver, A. Krishna Chaitanya, Alain Couniot, Jürgen De Commer, Dave
Corun, Cole Davisson, Mark Elston, Peter Empen, Ed Griebel, Al Scherer, Natalia
Stavisky, Philip Taffet, and Gregor Zurowski.

 But without question, the lion’s share of thanks goes to my beautiful and talented
significant other, Trish. In addition to providing desperately needed moral support
throughout the harrowing journey that was the writing of this book, Trish also helped
shape the structure and flow of the chapters with her own development expertise (as
well as her brutally honest criticism). And because she has a wizard-like ability to bend
CSS to her will, she may even have had her hand in the book’s examples directly.

 Thank you, Trisha. I love you.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

about this book
jQuery UI in Action’s primary purpose is to teach you how to use the jQuery UI library
to build rich, user-friendly web applications. The book starts with the basics of creat-
ing and modifying widgets, and moves on to a series of complex examples, such as
building widgets from scratch, optimizing your applications for production, and even
building a complete flight-search application.

 This book assumes that you have basic knowledge of CSS, JavaScript, and jQuery. If
you’re not an expert don’t despair—when intermediate- and advanced-level concepts
are brought up, they’re explained. If you’re finding yourself a bit overwhelmed,
appendix A discusses resources for getting up to speed. On the flip side, if you’re an
expert don’t despair either. You’ll build a number of real-world examples and discuss
advanced aspects of the library throughout the book.

Roadmap
This book is organized into three parts.

 Part 1 provides an introduction to jQuery UI. Chapter 1 introduces the library
itself, with an explanation of what is in the library, what the library does well, and what
it doesn’t do well. Chapter 2 explains the ins and outs of widgets, the core building
blocks of jQuery UI.

 Part 2 walks through the core components of jQuery UI, starting with its widgets.
Chapter 3 introduces the five jQuery UI form widgets, uses them to build a complete
form, and compares the widgets to their HTML5 counterparts. Chapter 4 discusses the
three jQuery UI layout widgets and the four utility widgets. Chapter 5 introduces the
xviii

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xix
five interaction widgets, and uses them to build a series of real-world interfaces, as well
as a few games. Chapter 6 contains a thorough discussion of the jQuery UI effects and
chapter 7 explains everything about jQuery UI themes.

 Part 3 builds upon the core knowledge taught in part 2 to show a series of
advanced topics. Chapter 8 shows how to build your own widgets from scratch, using
the same mechanism jQuery UI uses. Chapter 9 shows how to customize the behavior
of any widget using widget extensions. Chapter 10 teaches how to prepare a jQuery UI
application for production usage, including applying several performance optimiza-
tions. Chapter 11 builds upon all this knowledge to explain how to build a complete
flight-search application. And finally, chapter 12 looks under the hood of the library,
to show the tools that jQuery UI uses to make jQuery UI work.

 There are 6 appendixes. Appendix A covers the best ways to learn jQuery. How
jQuery UI tests its own widgets (jQuery UI tests jQuery UI!) is the focus of appendix B.
Appendix C focuses on using jQuery UI with Backbone. Appendix D is about global-
ization. Ways to contribute to jQuery UI are explained in appendix E, and polyfilling
HTML5 with jQuery UI is touched on in appendix F.

Code conventions
jQuery UI in Action provides copious examples that show how you can make use of each of
the topics covered. Source code in listings or in text appears in a fixed-width font
like this to separate it from ordinary text. In addition, class and method names,
object properties, and other code-related terms and content in text are presented
using the same fixed-width font.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

Getting the source code
You can access the source code for all examples in the book from the publisher’s website
at www.manning.com/jQueryUIinAction. All source code for the project is also hosted at
GitHub, a commercial Git hosting firm, at https://github.com/tjvantoll/jquery-ui-in-
action-demos. We will maintain the current URL via the publisher’s website. The source
is maintained by chapter, so, for example, you can download /source-code/ch06 and
you will have a full copy of the source code up to that point in the book.

Author Online
Purchase of jQuery UI in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/jQueryUIinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/tjvantoll/jquery-ui-in-action-demos
https://github.com/tjvantoll/jquery-ui-in-action-demos
http://www.manning.com/vantoll/
http://www.manning.com/vantoll/
http://www.it-ebooks.info/

ABOUT THIS BOOKxx
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author
TJ VanToll is a developer advocate for Telerik and a jQuery team
member. He has over a decade of web development experience—
specializing in performance and the mobile web. TJ speaks about
his research and experiences at conferences around the world,
and has written for publications such as Smashing Magazine,
HTML5 Rocks, and MSDN Magazine.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of jQuery UI in Action is captioned a “Man from Imotski, Croa-
tia.” The illustration is taken from the reproduction, published in 2006, of a nine-
teenth-century collection of costumes and ethnographic descriptions entitled
Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian, and
the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the
Museum of Antiquity), itself situated in the Roman core of the medieval center of
Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The
book includes finely colored illustrations of figures from different regions of Dalma-
tia, accompanied by descriptions of the costumes and of everyday life.

 Imotski is a small town situated on the northern side of the Biokovo massif in the
Dalmatian hinterland, close to the border of Croatia with Bosnia-Herzogovina. The
man on the cover is wearing an embroidered vest over a white linen shirt and white
woolen trousers, a suede jacket is thrown over his shoulder, and he is carrying a
musket. The rich and colorful embroidery on his costume is typical for this region
of Croatia.

 Dress codes have changed since the nineteenth century, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.
xxi

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE COVER ILLUSTRATIONxxii
 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
illustrations from collections such as this one.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Meet jQuery UI

These first two chapters serve as an introduction to jQuery UI. As you’ll
learn in chapter 1, jQuery UI is a collection of plugins and utilities that build on
jQuery, supported by the jQuery Foundation. You can count on them to be offi-
cially supported and maintained throughout the life of your application.

 In chapter 1 you’ll learn about the library itself—what’s in it, who maintains
it, what it does well, and even what it doesn’t do well.

 In chapter 2 you’ll build on that knowledge to learn the ins and outs of wid-
gets, the core building blocks of jQuery UI. The focus here is on three mecha-
nisms the widget factory provides for customization: options, methods, and
events. Options are configurable properties of widgets, methods let you perform
actions on widgets, and events let you to respond to changes on the widgets.

 What you learn about the library, and about the jQuery UI widgets, will give
you the foundation you need to build more complex interfaces in part 2.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Introducing jQuery UI
Let’s take a trip back to early 2006. The term AJAX had been coined, the second
beta of Internet Explorer 7 was released, and John Resig announced a small library
he called jQuery. jQuery would soon become wildly popular, thanks in part to how
easy it was to extend its core functionality through plugins.

 Months passed, and thousands of plugins were created by the jQuery commu-
nity. Although the abundance of plugins provided variety, they were scattered
around the internet, had inconsistent APIs, and often had little or no documenta-
tion. Because of these problems, the jQuery team wanted to provide an official set
of plugins in a centralized location. In September 2007 they created a new library
with these plugins—jQuery UI.

 From a high level, jQuery UI was, and still is, a collection of plugins and utilities
that build on jQuery. But dig deeper and you find a set of consistent, well-
documented, themeable building blocks to help you create everything from small
websites to highly complex web applications.

This chapter covers
■ What jQuery UI includes
■ Whether jQuery UI is for you
■ How to get started using the library
3

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Introducing jQuery UI
 Unlike jQuery plugins, the plugins and utilities in jQuery UI are supported by the
jQuery Foundation. You can count on them to be officially supported and maintained
throughout the life of your application.

 The stability and ease of use of jQuery UI led to continuous growth in the library’s
popularity. The library is now used in 19% of the top 10,000 sites on the web, and has
been incorporated into WordPress core and Drupal.

 In this book you’ll learn how to use the pieces of jQuery UI to create powerful and
interactive websites and applications. In this chapter you’ll start by taking a thorough
look at what the jQuery UI library is, why you’d want to use it, and how to download
the library and get it up and running. Let’s get started!

1.1 What is in jQuery UI?
The plugins and utilities in jQuery UI are divided into four categories—widgets, inter-
actions, effects, and utilities (the structure of the library is presented in figure 1.1):

■ Widgets are jQuery plugins used to create UI elements such as datepickers and
menus. As of version 1.11, the library has 12 widgets, shown in figure 1.2. The
widgets in jQuery UI adhere to the library’s CSS framework, and therefore have
a consistent look and feel. We’ll cover the jQuery UI widgets in chapters 2, 3,
and 4 and the CSS framework in chapter 7.

■ Interactions are jQuery plugins that give the user the ability to interact with DOM
elements. The draggable interaction allows users to drag elements around the
screen, and the sortable interaction allows users to sort items in a list. We’ll
cover interactions in chapter 5.

■ Effects are a full suite of custom animations and transitions for DOM elements.
They’re built on the animations provided in jQuery Core, and enhance a number
of Core’s methods such as show() and hide(). We’ll cover effects in chapter 6.

■ Utilities are a set of modular tools the library uses internally. The widget factory
is the mechanism all jQuery UI widgets are built with; we’ll cover it in chapters 8
and 9. The position utility provides an easy and precise means of positioning
elements on the screen. We’ll cover position and the rest of the utilities in
jQuery UI in chapter 12.

Who is this book for?
This book assumes that you have basic knowledge of CSS, JavaScript, and jQuery. If
you’re not an expert don’t despair—when intermediate- and advanced-level concepts
are brought up, they’re explained. If you’re finding yourself a bit overwhelmed, appen-
dix A discusses resources for getting up to speed. On the flip side, if you’re an expert
don’t despair either. We’ll build a number of real-world examples and discuss ad-
vanced aspects of the library throughout the book.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

5What is in jQuery UI?
The pieces of jQuery UI work well together, but they were also designed with modular-
ity in mind. Although the widget factory and position utility are heavily used in the
library, they’re also standalone plugins that can be used outside of jQuery UI; their
only dependency is jQuery Core.

 Now that we’ve seen what jQuery UI includes, let’s see what jQuery UI can be used
for, and how it might be a good fit for your next project.

InteractionsWidgets

Effects
Utilities

Autocomplete Button

Accordion

Tooltip

Tabs

Spinner
Slider

Progressbar

Menu

Dialog

Datepicker

Sortable

SelectableResizable

Droppable

Draggable

:focusable

:data

:tabbable

Widget factory

Position

Bounce

Blind

Clip

Color

Drop

Explode

Fade

Fold
HighlightPuffPulsate

Scale

Shake

Size

Slide

Transfer

Selectmenu

Figure 1.1 The pieces of the jQuery UI library, categorized into widgets, interactions, utilities, and effects

Who is jQuery UI?
Development on jQuery UI (as well as all jQuery projects) is coordinated by the jQuery
Foundation—a nonprofit association funded by community contributions of time and
money.

The jQuery UI team is a group of eight individuals (I am one of them) scattered
throughout the world. I became enthralled with jQuery UI after I discovered the amaz-
ing number of things the library could do with a small amount of code. I started sub-
mitting bug fixes and documentation and haven’t looked back.

I hope you become as excited about the library as I am. The jQuery UI project is pri-
marily community and volunteer driven, and there’s always plenty to do!
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Introducing jQuery UI
1.2 The benefits of using jQuery UI
Any website or application that uses jQuery almost certainly has a use for jQuery UI.
jQuery Core is powerful, but it’s a small library that doesn’t do everything you need to
build modern web applications. If you’ve been frustrated by searching the internet
and piecing together jQuery plugins, then jQuery UI provides an appealing alterna-
tive. Let’s look at the advantages of using the library.

1.2.1 Cohesive and consistent APIs

Because jQuery plugins have different authors, they often have wildly inconsistent
APIs. jQuery UI has also faced this problem. The jQuery UI library started as a collec-
tion of popular plugins by numerous authors with a variety of programming styles.
This resulted in years of refactoring to present a consistent API to end users.

Autocomplete

Button

Accordion

Tooltip

Tabs

Spinner

Slider

Progressbar

Menu

Dialog

Datepicker

Selectmenu

Figure 1.2 An exam-
ple of all 12 jQuery UI
widgets. Because of
the jQuery UI CSS
framework, each wid-
get has a consistent
look.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

7The benefits of using jQuery UI
Throughout the process, common patterns emerged and were abstracted into utili-
ties like the widget factory.

 Because jQuery UI provides consistent APIs, users can move from one part of the
library to another without constantly needing to refer to online documentation.

1.2.2 Comprehensive browser support

When using jQuery UI, you can feel confident that your code works in all major brows-
ers. As of version 1.11, jQuery UI supports Internet Explorer versions 7 and up, as well
as the latest two versions of Chrome, Firefox, Safari, and Opera. With jQuery UI, you
write your code once and it runs everywhere.

NOTE Internet Explorer 6 support was dropped in version 1.10 of jQuery UI
due to low global usage. If you still need Internet Explorer 6 support, you can
use version 1.9 of jQuery UI.

1.2.3 Open source and free to use

Everything in jQuery UI is open source. The library’s source files are publicly available
at https://github.com/jquery/jquery-ui. Not only are the source files open source but
the project’s home page and API documentation are as well (see https://github.com/
jquery/jqueryui.com and https://github.com/jquery/api.jqueryui.com, respectively).

 All development is done in the open, and the community is encouraged to partici-
pate. If you find a bug in the library, you can submit a patch for it. If you’re confused
by the documentation, you can ask for clarification. If you find a typo, you can submit
a patch that fixes it. The development of all jQuery projects is community driven, and
contributions are always welcome. For more information on contributing to jQuery,
see appendix E.

 jQuery UI is also free. The use of jQuery UI (and all jQuery projects) is under the
terms of the MIT license. All jQuery projects are free to use in any project (including
commercial ones), as long as the copyright headers are preserved.

1.2.4 Thorough documentation

One of the major pain points with jQuery plugins is the difficulty of finding up-to-date and
accurate documentation. All pieces of jQuery UI are thoroughly and consistently docu-
mented at http://api.jqueryui.com/. By default, the APIs for the latest version are shown,
but previous versions are available as well. For example, http://api.jqueryui.com/1.10/
shows the APIs for 1.10 and http://api.jqueryui.com/1.9/ shows the APIs for 1.9.

1.2.5 Powerful theming mechanism

Another challenge of working with plugins is creating a consistent look. Although
some plugins provide a way to theme the elements they create, the conventions used
are often wildly different. jQuery UI solves this with a CSS framework that all its wid-
gets use; therefore, all widgets look the same out of the box, but you still have the flex-
ibility to create your own custom look and feel.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/
http://api.jqueryui.com/1.10/
http://api.jqueryui.com/1.9/
http://www.it-ebooks.info/

8 CHAPTER 1 Introducing jQuery UI
To make this process easier, the jQuery UI ThemeRoller allows you to visually play with
the widgets’ displays and generate a CSS file with your theme. Not a designer? No wor-
ries. jQuery UI also provides 24 themes you can use or build on top of. ThemeRoller is
available at http://jqueryui.com/themeroller/ and is shown in figure 1.3.

1.2.6 Emphasis on accessibility

Accessibility is an important consideration when building anything for the web, but
making even simple applications accessible to all audiences can be a difficult task.
Documentation is scarce, screen readers can be tricky to test on, and specifications
such as Accessible Rich Internet Applications (ARIA) can be complex and difficult
to understand.

 All jQuery UI widgets are designed with accessibility in mind. You can add widgets
to your site and feel confident that everyone can use them. The jQuery UI widgets are
keyboard accessible, use ARIA roles appropriately, and use proper markup to optimize
user experiences on screen readers.

Configure styles for your
custom theme.

Start with one of jQuery UI’s 24
preconfigured themes.

Download jQuery UI
with your custom theme.

The preview area updates as
styles are changed.

Figure 1.3 Using jQuery UI ThemeRoller, you can configure a custom theme by playing with CSS prop-
erties and seeing their effect on the jQuery UI widgets live.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/draft/
http://www.it-ebooks.info/

9The limitations of jQuery UI
NOTE ARIA is a technical specification published by the World Wide Web
Consortium (W3C). It aims to improve the accessibility of web pages—specifi-
cally pages with dynamic content and UI components. It specifies a number of
HTML attributes that can be applied to elements to help assistive technologies
such as screen readers interpret web pages.

1.2.7 Stable and maintenance friendly

Because jQuery UI is maintained by the jQuery Foundation, the library is updated as
new versions of jQuery Core and browsers are released. Although using the latest ver-
sion of the library is encouraged, the jQuery UI team realizes the difficulty of upgrad-
ing large and complex applications.

 Therefore, two versions of the library are maintained simultaneously. Fixes made
to the latest stable release can be incorporated in the previous legacy release. APIs are
never removed from the library without being deprecated for a full major release.

 To help with upgrading, a detailed guide is published with each major release of the
library. The upgrade guide for 1.11 is at http://jqueryui.com/upgrade-guide/1.11/,
and the upgrade guide for 1.10 is at http://jqueryui.com/upgrade-guide/1.10/.

 A changelog, listing every change—including bug fixes—made to the library in
that release, is also produced. The changelog for 1.11.0 is at http://jqueryui.com/
changelog/1.11.0/, and the changelog for 1.10.4 is at http://jqueryui.com/
changelog/1.10.4.

 Now that you know why you’d want to use jQuery UI, let’s discuss why you might
not want to use the library.

1.3 The limitations of jQuery UI
Although jQuery UI solves a lot of problems, it doesn’t solve everyone’s. The library
receives two main complaints: it doesn’t have enough widgets, and it’s not optimized
for mobile. Let’s deal with each of these.

1.3.1 Lack of widgets

As of version 1.11, jQuery UI has 12 widgets. Although these widgets are in the library
because they solve common UI problems, 12 widgets certainly don’t solve every UI
problem that even a small company encounters.

 Fortunately, you can use jQuery UI alongside community and commercially written
jQuery plugins. Many third-party plugins use portions of jQuery UI, such as the widget
factory and the CSS framework, to provide a consistent API and a consistent theme.

 If you can’t find a widget to meet your needs, it’s easy to build your own with
jQuery UI. We’ll discuss how to build custom widgets using the widget factory in chap-
ter 8.

 Finally, all jQuery UI widgets are built with extensibility in mind. You can make sub-
tle alterations to the library’s widgets or build completely new widgets on top of them
easily. We’ll discuss extending jQuery UI widgets in chapter 9.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jqueryui.com/changelog/1.11.0/
http://jqueryui.com/changelog/1.11.0/
http://jqueryui.com/changelog/1.10.4
http://jqueryui.com/changelog/1.10.4
http://www.it-ebooks.info/

10 CHAPTER 1 Introducing jQuery UI
1.3.2 jQuery UI and mobile devices

The other major complaint about jQuery UI is that the library isn’t optimized for
mobile devices. The primary issues cited are the lack of touch-event support, the dis-
play of the widgets, and the size of the library. Let’s tackle each of these individually:

■ Touch-event support—As of version 1.11, jQuery UI doesn’t natively support touch
events. By default, some widgets and interactions don’t work on mobile brows-
ers such as iOS Safari or Chrome for Android. But a workaround is available
until true support for touch events comes in a future release. We’ll discuss the
issues with touch events, how to get jQuery UI to work with them, and future
plans for true support when we discuss interactions in chapter 5.

■ Display of widgets—The look and feel of jQuery UI widgets are more suited for
desktop browsers than mobile ones. To address this, the jQuery UI team is work-
ing with the jQuery Mobile team to build widgets that look good on all screen
sizes. In the meantime, because all jQuery UI widgets conform to the jQuery UI
CSS framework, it’s easy to adjust the display of all widgets to meet your needs.
We’ll discuss the jQuery UI CSS framework, along with specific mobile consider-
ations, in chapter 7.

■ Size of the library—File size is important for any client-side library, especially on
mobile devices where connection speed can be limited and latency is frequently
high. jQuery UI is a large library with many components, and the full library is a
lot to download. But jQuery UI is modularly written, so it’s easy to create a build
with only the pieces of the library that you need. Although creating a custom
build is important for any site or application, it’s vital if you’re targeting mobile
devices. We’ll discuss custom builds in chapter 10.

If you’re building a site or application that solely targets mobile devices, you should
consider a mobile-centric framework like jQuery Mobile. But if you’re building for
desktop and mobile, you can still get all the benefits of jQuery UI with a few tweaks to
optimize the mobile experience, which we’ll discuss throughout the book.

 Now that we’ve looked at the advantages and limitations of jQuery UI, let’s look at
how to use it.

jQuery UI vs. jQuery Mobile
jQuery Mobile is a UI framework that creates experiences that work on all devices.
Like jQuery UI, jQuery Mobile is a series of widgets and utilities built on jQuery Core.
In fact, jQuery Mobile includes the jQuery UI widget factory and uses it to create all
its widgets.

Because of the similarity in the two frameworks, the teams are working to merge the
common pieces of the projects. The end goal is a single set of widgets that work on
any device. As a first step, jQuery Mobile’s 1.4 release included the jQuery UI tabs
widget. This collaboration continuously improves the mobile device support in jQuery UI.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

11Getting started with the library
1.4 Getting started with the library
You can get a copy of jQuery UI two ways: download the library from http://
jqueryui.com/ or retrieve the files from a content delivery network (CDN). You’ll
learn about each of these options, but first you need to decide what version of the
library to use.

1.4.1 Versions of the library

In this book we’ll cover version 1.11 of jQuery UI. The final position in the version
number (1.11.1, 1.11.2, and so on) is reserved for bug fix releases. Because breaking
changes are never introduced in bug fix releases, you can use any release in the 1.11
series with the examples in this book. The code examples explicitly use 1.11.0, but the
latest bug fix release in the 1.11 series is recommended.

1.4.2 Downloading from the jQuery UI website

The first of the two options is downloading the library from http://jqueryui.com.
There you’ll find the download section shown in figure 1.4.

What’s new in jQuery UI 1.11?
The two main features of jQuery UI 1.11 are a new widget, selectmenu, and complete
Asynchronous Module Definition (AMD) support to use for dependency management.

Selectmenu is an accessible, customizable, and themeable replacement for the na-
tive <select> element. You’ll learn how to use selectmenu, as well as the other wid-
gets jQuery UI provides for building forms, in chapter 3.

AMD allows you to create highly customized builds of jQuery UI so that users download
only the portion of the library that they need. We’ll look at AMD when we discuss custom
builds and preparing the library for production in chapter 10.

Build a custom download
with Download Builder.

Download the full
latest release.

Download the previous
major release.

jQuery Core
dependency.

Figure 1.4 The download prompt
on http://jqueryui.com. You can
download the latest stable or lega-
cy releases of jQuery UI, or visit
Download Builder to create a cus-
tom build.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jqueryui.com/
http://jqueryui.com/
http://www.it-ebooks.info/

12 CHAPTER 1 Introducing jQuery UI
Let’s look at each element of the download prompt:

■ Build a custom download with Download Builder—The Custom Download button
links to the jQuery UI Download Builder. Download Builder allows you to create
a custom build that includes only the portions of the library that you need. This
is ideal for production, as you want users to download only the portions of the
library they need. For development, it’s convenient to have the entire library
available, and therefore you won’t build a custom download for now. You’ll
build a production version of the library in chapter 10.

■ Download the latest release—The quick downloads are links to zip files containing
all the files in the library. The Stable button links to a zip file with the files for
the latest released version.

■ Download the previous major release—The Legacy button links to a zip file with all
the library’s files, but for the previous major version of the library (recall that
two versions are maintained simultaneously).

■ jQuery Core dependency—To aid users in upgrading, jQuery UI maintains compat-
ibility with multiple versions of jQuery Core. Both versions 1.10.x and 1.11.x
can be used with any version of jQuery Core 1.6 or higher.

The zip files downloaded using the Stable or Legacy buttons contain every file you
need, including all dependencies. Although it’s helpful to have all these files when
preparing an application for production, it can be overwhelming when getting
started. There’s an easier way to get the library up and running.

1.4.3 Downloading from CDNs

A content delivery network (CDN) is a network of servers designed to serve files to
users. Using a CDN moves the responsibility of hosting files from your own servers to a
series of external ones. The jQuery Foundation, Google, and Microsoft all provide
CDNs that host jQuery Core as well as jQuery UI. You can find documentation and a
full listing of the libraries each host provides at the following URLs:

■ jQuery—http://code.jquery.com/
■ Google—https://developers.google.com/speed/libraries/devguide
■ Microsoft—http://www.asp.net/ajaxlibrary/cdn.ashx

Because a CDN doesn’t require you to host your own version of jQuery and jQuery UI,
it’s perfect for demos and experimentation. You’ll use CDN versions of the library
throughout this book. Next, you’ll learn how to take these files from a CDN and get
them on a web page.

1.5 The first example
You’ve seen how to download jQuery UI. Now let’s see how you can use it. You need to
build an HTML page that includes jQuery Core, jQuery UI’s CSS, and jQuery UI’s
JavaScript.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

13The first example
 All examples in this book use the same boilerplate HTML using jQuery’s CDN
(http://code.jquery.com) to download all jQuery files. The boilerplate is shown in
the following listing.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>First Demo</title>
 <link rel="stylesheet"
href="http://code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css">
</head>
<body>
 <!—- Your HTML here -->

 <script src="http://code.jquery.com/jquery-1.11.1.js"></script>
 <script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></script>

 <!—- Your JavaScript here -->
</body>
</html>

The placement of the style sheet and scripts is important. Style sheets are placed in
the <head> of the document so that HTML elements in the <body> are styled as they’re
rendered. When style sheets are placed after elements in the <body>, the user may
experience a flash of unstyled content (FOUC). In this case, elements are rendered
without styling, and subsequently enhanced after the style sheet is downloaded and
parsed by the browser.

 Conversely, scripts are placed last in the <body>, after any HTML the page needs.
This is done for two reasons. First, if something were to go wrong with the download,
parsing, or execution of the script, or if the user had JavaScript disabled, the content
of the web page would still be available to the user. Second, because the scripts are
at the end of the page, any JavaScript you write doesn’t depend on whether the DOM
is ready.

 The examples in this book assume that the boilerplate shown in listing 1.1 is in
place, and the <!—Your HTML here --> and <!—Your JavaScript here --> comments
indicate where you insert content. Here’s an example of a jQuery UI datepicker:

<input id="datepicker">
<script>
 $("#datepicker").datepicker();
</script>

Listing 1.1 Boilerplate for examples

An HTML5 doctype. jQuery Core
and UI only support standards

mode. This doctype puts all
browsers in standards mode.

Import version 1.11.0 of
jQuery UI’s style sheet
from jQuery’s CDN.

Import version 1.11.1 of jQuery
Core from jQuery’s CDN.

Import version 1.11.0 of jQuery UI’s
JavaScript from jQuery’s CDN.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Introducing jQuery UI
The following listing shows the example after the datepicker code has been inserted
into the boilerplate.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>First Demo</title>
 <link rel="stylesheet" href="http://code.jquery.com/ui/1.11.0/themes/

smoothness/jquery-ui.css">
</head>
<body>
 <input id="datepicker">

 <script src="http://code.jquery.com/jquery-1.11.1.js"></script>
 <script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></script>

 <script>
 $("#datepicker").datepicker();
 </script>
</body>
</html>

Save this text as a .html file, and open it in
a browser. Give the input focus, and you
see the datepicker shown in figure 1.5.

 That’s it. With one line of HTML and
one line of JavaScript, you have a fully
functional datepicker!

 The full source code for the
examples presented throughout this
book is available for download at
https://github.com/tjvantoll/jquery-ui-
in-action-demos. You don’t have to keep

Listing 1.2 First example: building a datepicker

Waiting for the DOM to be ready
Historically, <script> tags have been placed in the <head> of HTML documents.
When the browser executes these scripts, the <body> isn’t rendered. Therefore,
scripts need to wait for the browser’s DOMContentLoaded event before they can ac-
cess DOM elements. jQuery Core provides a shorthand for doing this:

$(function() {
 // The DOM is now ready.
});

When scripts are placed at the end of the document (before </body>), the wrapping
$(function() {}) is no longer necessary.

Figure 1.5 The first example. A jQuery UI datepicker
opens when the <input> receives focus.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/tjvantoll/jquery-ui-in-action-demos
https://github.com/tjvantoll/jquery-ui-in-action-demos
http://www.it-ebooks.info/

15Using an online testing tool
track of the boilerplate in your head. The datepicker code can be found at chapter01/
01-building-a-datepicker.html.

 But there’s an even easier way to play with jQuery UI—without having to leave your
browser.

1.6 Using an online testing tool
Online testing tools allow you to write HTML, CSS, and JavaScript in the browser and
preview the results live. You can also save examples and get a unique URL you can
save or share with others. You’ll use these tools to set up your boilerplate and save it
in a bookmark.

 JS Bin (http://jsbin.com/), jsFiddle (http://jsfiddle.net), and CodePen (http://
codepen.io/) are examples of these services. Although the core functionality of each
service is roughly the same, each has unique features, and you can play with them to
see which you like best. Let’s look at how to run your datepicker example in jsFiddle.

 Visit http://jsfiddle.net. The pertinent portions of the UI are shown in figure 1.6.

jQuery coding standards
You can write an expression such as $("#datepicker") in JavaScript in several
ways: $('#datepicker'), $("#datepicker"), or $('#datepicker'). jQuery UI
as well all jQuery projects consistently follow jQuery’s JavaScript style guide (http://
contribute.jquery.org/style-guide/js/).

For consistency, this book adheres to the conventions in this guide. Notable conven-
tions include using double quotes for strings ("jQuery" and not 'jQuery') and the
liberal use of spacing—$("#datepicker") and not $("#datepicker"). These are
jQuery’s internal conventions and not requirements of projects using jQuery. If you
prefer single quotes then use them. The most important thing is to be consistent in
your own usage; don’t use single quotes in one function and double quotes in the next.

Run the fiddle to see the
HTML/JS/CSS rendered live.

Save the fiddle for a unique
URL you can bookmark.

Place CSS here.

Place
HTML here.

Add jQuery Core, jQuery
UI’s JS, and jQuery UI’s CSS

from a CDN.

Place JS here.
After the fiddle runs, the result

of the HTML, CSS, and JS input
is rendered here.

Figure 1.6 jsFiddle is an
online testing tool that you
can use to run jQuery UI
code. You place HTML,
CSS, and JavaScript in
their appropriate panes,
and click the Run button to
see the results.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://codepen.io/
http://codepen.io/
http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/style-guide/js/
http://www.it-ebooks.info/

16 CHAPTER 1 Introducing jQuery UI
First, you need to make jQuery and jQuery UI available as external resources. The
URLs you want to use are

■ http://code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css
■ http://code.jquery.com/jquery-1.11.1.js
■ http://code.jquery.com/ui/1.11.0/jquery-ui.js

You can copy and paste these URLs from http://code.jquery.com if you want to avoid
typos or to play with other versions. After you add the resources, save the fiddle. This
saves the current state and gives you a unique URL you can bookmark so you don’t
have to enter the external resources again. After this setup, you can enter HTML,
JavaScript, and CSS. Then, run the example, and the result displays in the Result pane.

 Because the datepicker is one line of HTML and one line of JavaScript, to run the
example in jsFiddle you place those lines in the appropriate panes and run the fiddle.
The result is shown in figure 1.7.

NOTE You can view this example live at http://jsfiddle.net/tj_vantoll/
Eda2W/. If you append /show to the end of a jsFiddle URL (for instance,
http://jsfiddle.net/tj_vantoll/Eda2W/show/), you can view the example out-
side of the jsFiddle UI—it’s the equivalent of looking at just the Result pane.
Finally, if you create a jsFiddle account, you can use http://jsfiddle.net/
draft/ to view the result of last example you ran. Because the draft URL is
short (and bookmarkable), it’s handy for testing on mobile devices.

jsFiddle handles the boilerplate for you so you can concentrate on jQuery UI, making
it a convenient option for playing with the examples provided throughout this book.

Figure 1.7 The datepicker example running in jsFiddle. The jsFiddle interface takes the HTML in the HTML
pane and the JavaScript in the JavaScript pane, runs them, and displays the results in the Result pane.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css
http://jsfiddle.net/tj_vantoll/Eda2W/
http://jsfiddle.net/tj_vantoll/Eda2W/
http://jsfiddle.net/draft/
http://jsfiddle.net/draft/
http://www.it-ebooks.info/

17Summary
1.7 Summary
jQuery UI is a collection of widgets, effects, interactions, and utilities to help you build
powerful websites and applications. jQuery UI is known for its stable, cohesive APIs,
excellent browser support, and comprehensive documentation.

 You can download jQuery UI from http://jqueryui.com or from a CDN. You can
test jQuery UI locally or use an online testing tool such as JS Bin, jsFiddle, or Code-
Pen. You saw how easy it is to build powerful UI elements by creating a datepicker with
one line of HTML and one line of JavaScript.

 In the next chapters, you’ll explore the functionality that the jQuery UI library pro-
vides. You’ll start in chapter 2 with a deeper look at the core components of jQuery UI:
widgets.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing UIs with widgets
A widget, as explained in chapter 1, is a reusable UI component. The 12 UI widgets
in jQuery UI help solve the most common UI problems that web developers run
into. In chapters 3–5, you’ll look at each widget specifically, but first, you’ll learn
how widgets in jQuery UI work, and how to customize their behavior.

 The widgets in jQuery UI are created with the widget factory: a mechanism for
creating powerful, feature-rich jQuery plugins. Because all widgets go through a
single factory, after you learn how one works, you’ll have a good idea of how they all
work. In this chapter we’ll focus on three mechanisms the widget factory provides
for customization: options, methods, and events. Options are configurable proper-
ties of widgets, methods let you perform actions on the widget, and events let you
respond to changes on the widget.

 To begin, let’s see how to create widgets.

This chapter covers
■ Creating widgets using jQuery UI
■ Reading the jQuery UI API documentation
■ Customizing widgets using options, methods,

and events
18

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

19Creating widgets
2.1 Creating widgets
At their core, jQuery UI widgets are jQuery plugins with added functionality to make
them customizable, extensible, and themeable. Whereas most jQuery plugins run
once and are done, widget plugins remember the elements they’re associated with.
You can then customize the widget with options, control it with methods, and respond
to changes on the widget with events.

 How do you create widgets? Because widgets are also jQuery plugins, the syntax to
create them should look familiar. You saw the syntax when you created a datepicker in
chapter 1. Let’s look at that example in more detail:

<input id="datepicker">
<script>
 $("#datepicker").datepicker();
</script>

This example shows the easiest way to create a widget: selecting DOM elements using
jQuery and calling the widget’s plugin method. You can even create widgets on multi-
ple elements at once. This example creates two datepickers:

<input>
<input>
<script>
 $("input").datepicker();
</script>

Because all jQuery UI widgets are also plugins, the same syntax of selecting elements
and calling the plugin can be used to create any of them. Here is how you can create a
dialog widget:

<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog").dialog();
</script>

Run this example, and you see the dialog shown
in figure 2.1.

NOTE If you’re getting an error that “$ is not
defined” or “Object has no method ‘dialog’,”
you aren’t including jQuery and jQuery UI’s
JavaScript files. For details on including
jQuery and jQuery UI’s scripts in these exam-
ples, refer to section 1.5.

Like most jQuery plugins, jQuery UI widget plugins return a jQuery object. The
plugin can then be chained with other jQuery method calls. The following code cre-
ates a dialog and uses jQuery Core’s css() method to change the text color to red:

The DOM element that is
converted to a datepicker.

Selects the <input> element by its
id, and converts it to a widget using
the datepicker plugin method.

Figure 2.1 A jQuery UI dialog widget
created using the dialog() plugin.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2 Enhancing UIs with widgets
<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog")
 .dialog()
 .css("color", "red");
</script>

The ability to build a datepicker or dialog in a few lines of code is powerful, but
chances are you’re going to need more custom behavior than the default widget pro-
vides, such as a title or a different width.

 jQuery UI widgets have options to provide this customization. Let’s take a look at
how to use them.

2.2 Customizing widgets with options
Options are customizable properties of widgets. All options have default values that
are used when no options are explicitly passed. Recall how you instantiated the dialog
in section 2.1:

$("#dialog").dialog();

No options are specified, so the default set is used. Let’s customize these defaults to
build something practical. Suppose you need to display a notification to the user after
a long-running task, such as uploading a series of files, completes.

 The following code creates a new <div> and converts it to a dialog with the title
and buttons options set:

$("<div>Your files have been successfully uploaded.</div>").dialog({
 buttons: {
 "OK": function() {}
 },
 title: "Success"
});

Dynamically creating widgets
In addition to selecting elements on the DOM, you can also dynamically create elements
and convert them to widgets. The following uses jQuery to create a new <input>
element and convert it to a datepicker widget:

$("<input>").datepicker();

Because the newly created element isn’t on the DOM, you need to add it for the widget
to be visible. The following creates a new element, converts it to a datepicker, and
appends it to the <body>:

$("<input>").datepicker().appendTo("body");

The dialog widget is unique because it automatically appends its element to the DOM
upon creation. Therefore, to display a new dialog you can create a new <div> and
call dialog(); it displays automatically:

$("<div>").dialog();
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

21Customizing widgets with options
This dialog is shown in figure 2.2. As this demonstrates, you can specify options by
passing them to the plugin as a JavaScript object.

 What other options can you set? The jQuery UI API documentation lists every
option available for each widget. Figure 2.3 shows a screenshot of the dialog widget’s
options taken from its online documentation at http://api.jqueryui.com/dialog/. In
this section we’ll look at only a few of these options to demonstrate how widget
options work. We’ll take a more thorough look at the dialog widget and its options in
chapter 4.

$("<div>Your files…</div").dialog({
 buttons: {
 "OK": function() {}
 },
 title: "Success"
});

Figure 2.2 A jQuery
UI dialog used to dis-
play a success mes-
sage. The title
option determines the
text in the title bar,
and the buttons op-
tion creates an OK
button.

Figure 2.3 The dialog widget’s documentation at http://api.jqueryui.com/dialog/. The oval
highlights the dialog’s 19 configurable options. Each option is a link that takes you to more de-
tailed information.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Enhancing UIs with widgets
Each link listed in figure 2.3 takes you to a section with documentation on the individ-
ual option, method, or event. Figure 2.4 shows the documentation for the width
option.

 Note the following points:

■ The default value of the width option is 300; this is why all your dialogs have
been 300 pixels wide to this point.

■ The option can be retrieved or changed using the option() method. You’ll
learn how methods work, including the option() method, in the next section.

TIP All options and their default values are accessible at $.ui.[widget-
Name].prototype.options, for example, $.ui.dialog.prototype.options.
You can change these values to alter the defaults that jQuery UI sets. If you
were to run $.ui.dialog.prototype.options.width = 500, any new dialog
instances would default to a width of 500 pixels rather than 300. Existing dia-
log instances wouldn’t be affected.

Let’s add one more option to your notification dialog. Recall that the example uses a
dialog to notify users that their files have finished uploading. Assuming that upload-
ing is a process that could take a while, the user may have moved on to other tasks in
the interface and the default dialog position—the center of the screen—might be an

The name of
the option A description of the option

and what it’s used for

The JavaScript variable type
the option is expecting

The default value used if the
option is not specified

Code examples showing how
to specify the option

Code examples showing how to get and
set the option after initialization

Figure 2.4 Documentation on the dialog widget’s width option from http://api.jqueryui.com/dialog/
#option-width. The documentation gives a description of the option, lists its JavaScript type, its default
value, and gives some examples of how to use it.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/dialog/#option-width
http://api.jqueryui.com/dialog/#option-width
http://www.it-ebooks.info/

23Customizing widgets with options
annoyance. To mitigate this, you can change the position of the dialog with its posi-
tion option. The following code shows the dialog on the bottom-left corner of the
screen:

$("<div>Your files have been successfully uploaded.</div>").dialog({
 buttons: {
 "OK": function() {}
 },
 title: "Success",
 position: {
 my: "left bottom",
 at: "left bottom"
 }
});

You’ll look at the position option more thoroughly in chapter 12, but you can see
that it reads like a normal English sentence: position my left bottom at the left bottom (of
the window).

Experimenting with effects as options
Recall that effects—a suite of animations and transitions for DOM elements—are a
major component of the jQuery UI library. Although you won’t learn about effects until
chapter 6, you can get a preview of the power they provide using dialog’s show and
hide options.

The dialogs you’ve looked at fade in and fade out when they’re shown and hidden.
You can change that using the show and hide options. The following code opens a
dialog with the fade effect and closes with a puff effect:

$("<div>").dialog({ show: "fade", hide: "puff" });

The show and hide options also accept an object for added configuration. This dialog
slowly explodes when it’s closed:

$("#dialog").dialog({
 hide: {
 effect: "explode",
 duration: 2000
 }
});

Try playing with the following effects to see what jQuery UI makes possible. You’ll
take a thorough look at these effects in chapter 6.

■ blind ■ drop ■ fold ■ pulsate ■ size

■ bounce ■ explode ■ highlight ■ scale ■ slide

■ clip ■ fade ■ puff ■ shake
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Enhancing UIs with widgets
You now have a functioning notification dialog positioned in the corner of the screen.
But you still have a major problem with this example: the OK button doesn’t close the
dialog. How can you fix that?

 Although options let you customize a widget on creation, they don’t allow you to
change the widget afterwards. You can’t use an option to close the dialog. You need to
use another feature of jQuery UI widgets: methods.

2.3 Modifying widgets with methods
All widget actions after initialization happen as method calls. Methods query the cur-
rent state of the widget as well as alter it. Options let you set a dialog’s initial height,
width, and title; methods let you change those values, open a dialog, close it, and
destroy it.

 In this section you’ll look at how widget methods are invoked through their plug-
ins. Then, you’ll see how to get and set the values of options using the option()
method.

 As with options, the jQuery UI API documentation lists every method available for
each widget. Figure 2.5 shows the methods available for the dialog widget. We won’t
be covering each method the dialog widget has. We’ll specifically look at close(),
isOpen(), open(), and option().

 Let’s start by looking at how methods are invoked.

2.3.1 Invoking methods

You can invoke a widget method in many ways, but the easiest—and the one the API
documentation uses—is to invoke the method through the widget’s plugin. The fol-
lowing alters your notification dialog to call the dialog’s close() method when the OK

Figure 2.5 The dialog widget’s API documentation with
an oval highlighting the widget’s seven methods. Each
method name is a link to a section with more thorough doc-
umentation.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

25Modifying widgets with methods
button is clicked. Be aware that the syntax can be confusing initially, so don’t be
alarmed if you don’t understand this; we’ll go over what’s happening in detail.

$("<div>Your files have been successfully uploaded.</div>").dialog({
 buttons: {
 "OK": function() {
 $(this).dialog("close");
 }
 },
 ...
});

The dialog’s buttons option works by associating button labels with a function to run
when the button is clicked. The function declared at B runs when the OK button is
clicked. The context of the click handler, this, is set to the dialog’s DOM element.
You use that reference to invoke the close() method C.

 When you pass the name of the method to the plugin as a string, the method is
invoked. This can be confusing as JavaScript methods are typically invoked using (),
that is, dialog.close() rather than dialog("close"). Why would the jQuery UI wid-
gets use this convention?

■ Convenience—A true close function is associated with the widget that you can
retrieve and invoke using (), but it requires multiple lines of code to retrieve
the instance and invoke the method. You’ll look briefly at accessing the widget’s
instance later in this chapter, and then you’ll dig deep into instances in chap-
ters 8 and 12.

■ Ability to affect multiple elements—jQuery’s plugin syntax allows methods to be
invoked on multiple elements at the same time. The following code converts
two <div> elements to dialog widgets, and then opens them both. (The
autoOpen option prevents the dialogs from automatically opening. We’ll discuss
the option in more detail momentarily.)

<div>A</div>
<div>B</div>
<script>
 $("div")
 .dialog({ autoOpen: false })
 .dialog("open");
</script>

■ Chainability—Methods that alter a widget’s state return the original jQuery
object so the call can be chained. Consider the following:

<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog")
 .dialog({ autoOpen: false })
 .dialog("open")
 .css("color", "orange");
</script>

Attaches a click event
handler to the OK buttonBInvokes

the close()
method C

Initializes the dialog
widget on the <div>

Opens the dialog with
the open() method

Invokes the jQuery
Core css() method to

change the color of
the dialog’s text
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Enhancing UIs with widgets
The close() and open() methods return the same jQuery object containing the
<div>, making it possible to chain the calls with other widget methods—and even
jQuery Core methods.

 The close()and open()methods are examples of methods that change the widget.
The other type of method returns information about the widget. Consider dialog’s
isOpen() method:

<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog")
 .dialog()
 .dialog("isOpen");
 </script>

Methods that return information about the widget can’t be chained because they
don’t return jQuery objects. The following results in a JavaScript error because the
JavaScript interpreter attempts to call dialog() on true:

$("#dialog")
 .dialog()
 .dialog("isOpen")
 .dialog("open");

You can determine a method’s return type, and whether the method is chainable, by
looking at the API documentation. Figure 2.6 compares the API documentation of the
isOpen() and open() methods. The open() method is chainable because it returns a
jQuery object; the isOpen() method isn’t.

NOTE Were you confused by the “plugin only” text for the open() method’s
return type in figure 2.6? This indicates that a jQuery object is returned only when
the method is invoked through the plugin, for example dialog("open"). When
open() is invoked on an instance, nothing is returned. You’ll learn about
instances shortly.

Returns true as
dialogs are opened
by default

Returns the
Boolean true

Throws a TypeError
because you can’t
call dialog() on true

non-jQuery return type,
not chainable

jQuery return type,
chainable

Figure 2.6 Comparison of the open() and isOpen() dialog methods. The open() method is chain-
able because it returns a jQuery object; the isOpen() isn’t because it returns a Boolean.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

27Modifying widgets with methods
The methods you’ve looked at—open(), close(), and isOpen()—are specific to the
dialog widget. Although all widgets have unique methods, several methods are common
to all widgets. We’ll look at the most common of these, option(), in the next section.

2.3.2 Using option() to modify widgets

Widget options can be set on initialization by passing an object to the widget’s plugin.
This initializes a dialog with a height of 200:

$("#dialog").dialog({ height: 200 });

The option() method allows you to do two things after the widget has been initialized:
retrieve the value of options (the getter) and set the value of options (the setter).

 To get a specific option, pass its name as a string to the plugin as the second argu-
ment. The following returns the value of the height option:

$("#dialog")
 .dialog({ height: 200 })
 .dialog("option", "height");

To get the values of all the options, call option() with no parameters. It returns an
object with the options as key value pairs:

$("#dialog")
 .dialog()
 .dialog("option");

To invoke the setter version of option(), pass the name of the option as a second
argument, and the value of the option as a third argument. The following sets the dia-
log’s height option to 500:

$("#dialog")
 .dialog()
 .dialog("option", "height", 500);

You can pass an object as the second argument to set multiple options at once. The
following sets the dialog’s height option to 500 and its width option to 500:

$("#dialog")
 .dialog()
 .dialog("option", {
 height: 500,
 width: 500
 });

Options vs. the option() method
The difference between options and the option() method can be confusing. Options
are configurable widget properties. For example, the dialog widget has height,
width, and title options. You use the option() method to get and set the value
of these options.

To clarify the difference, whenever methods are referenced in this book they’re al-
ways suffixed with a set of parentheses. Therefore, close() refers to the widget’s
close method, option() to the widget’s option method, and so forth. The same con-
vention is also followed in the jQuery UI online documentation.

Returns 200
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Enhancing UIs with widgets
The setter form of option()returns a jQuery object, which has two powerful effects: it
allows the setter to be applied to multiple elements, and it allows the setter to be
chained with other jQuery method calls. The following code creates two dialogs, sets
both their heights to 500 pixels, and then changes their text color to red:

<div class="redDialog">One</div>
<div class="redDialog">Two</div>
<script>
 $(".redDialog")
 .dialog()
 .dialog("option", "height", 500)
 .css("color", "red");
</script>

Because the setter form of option() returns the original jQuery object, the css() call
changes the color of both <div> elements.

 Changing options is a common task when dealing with jQuery UI widgets, so it’s
important to understand the syntax of the option() method. Let’s look at an example
of how changing options can be useful.

2.3.3 Using dialogs to edit lists

A common web interface is a list of items that are editable. The dialog widget provides
a convenient means to edit these lists, as it allows you to pop up a form without forcing
the user to navigate to another page. It’s easier to see this type of interface visually.
Figure 2.7 shows a UI with a list of profiles that you’ll build. This list has one require-
ment: the first and last names of all users who aren’t admins can be edited.

Selects both
<div> elements Converts both

<div> elements
to dialog widgets

Sets the
height of

both dialogs
to 500 pixels

Changes the color of
both dialogs to red

Figure 2.7 An edit-
able list of users. Ad-
ministrators such as
Chuck Norris can’t be
edited, but regular us-
ers such as Santa
Claus can be.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

29Modifying widgets with methods
Let’s look at how to build this list, starting with the HTML shown here:

<table>
 <thead>...</thead>
 <tbody>
 <tr>
 <td>1</td>
 <td>TJ</td>
 <td>VanToll</td>
 <td>Yes</td>
 <td>
 <button>Edit</button>
 </td>
 </tr>
 ...
 </tbody>
</table>

<div id="dialog">
 <form>
 <label for="firstName">First Name:</label>
 <input type="text" id="firstName">

 <label for="lastName">Last Name:</label>
 <input type="text" id="lastName">
 </form>
 <p>Administrators cannot be edited.</p>
</div>

NOTE Some code is omitted to conserve space. You can view the full source in
the book’s code samples or online at http://jsfiddle.net/tj_vantoll/tAp93/.

As you can see, the list itself is an HTML <table>. The editing form is also simple,
although it does contain a note that should only display for admin users B. To see
how you enforce this, let’s look at the JavaScript code for this example, shown in the
following listing. Although the code is long, we’ll go over each piece individually.

$("#dialog").dialog({
 autoOpen: false,
 buttons: {
 Update: function() {
 var firstName = $("#firstName").val(),
 lastName = $("#lastName").val(),
 row = $(this).data("editingRow");

 row.find("td").eq(1).text(firstName);
 row.find("td").eq(2).text(lastName);
 $(this).dialog("close"); #2
 },
 Cancel: function() {
 $(this).dialog("close");
 }
 }

Listing 2.1 Building an editable list

Displays only for
administrators

B

Doesn’t automatically
open the dialogB

Updates the table with
the updated names

Closes the
dialogC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Enhancing UIs with widgets

C
d

});

$("table").on("click", "button", function() {
 var row = $(this).parents("tr"),
 firstName = row.find("td").eq(1).text(),
 lastName = row.find("td").eq(2).text(),
 admin = row.find("td").eq(3).text() === "Yes";

 $("#firstName").val(firstName);
 $("#lastName").val(lastName);

 $("#dialog")
 .dialog("option", {
 title: "Editing " + firstName + " " + lastName,
 dialogClass: admin ? "admin" : ""
 })
 .data("editingRow", row)
 .dialog("open");
});

The first thing you do is convert the <div id="dialog"> element to a dialog widget.
Normally, dialogs automatically open when created; but here you don’t want this
because the editing dialog shouldn’t display until the Edit buttons are clicked. Set the
option that controls this behavior, autoOpen, to false B.

 Next, you create Update and Cancel buttons on the dialog with the buttons
option. Both call the close() method C to close the dialog in their click handlers.
The update()method does a little logic to update the list first. We’ll get back to how
that works.

 After the dialog is created, you attach an event handler to the <table> that listens
for clicks on all <button> elements D. Inside the handler, you set the first and last
name <input> values based on the person being edited E. Then, you call the dialog’s
option() method to change two options: title and dialogClass.

 The title change is simple—you build a string with the user’s first and last name F.
The dialogClass option, which controls a CSS class name that’s applied to the dialog,
is trickier. Here, you add an admin-dialog class name only if the user is an admin G.
This gives you a CSS hook to show and hide elements based on whether the user being
edited is an admin. This example uses the following CSS to hide the dialog’s <p> for
regular users and hide the editing form and update buttons for admin users:

.ui-dialog p { display: none; }

.admin-dialog p { display: block; }

.admin-dialog form { display: none; }

.admin-dialog button:first-child { display: none; }

You use jQuery Core’s data() method to store a reference to the <tr> being edited
H. The Update button’s click handler uses this reference to determine which row’s
information to update after changes are made. You call dialog’s open() method to
display the dialog to the user I.

Attaches a click handler
for all buttonsD

Fills the first and
last name <input>
elements

E

hanges the
ialog’s title

F Changes the
dialog’s CSS
class name

G

Stores the row currently
being editedH

Calls the dialog’s
open() methodI
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

31Responding to widget changes with events
 In this example, you used the option() method to change its title and class name
before displaying it. You were able to use a single dialog that you could reuse even
though many different users were being edited.

 You’ve now looked at how to customize widgets with options and how to control them
with methods. Next, you’ll see how you can respond to widget changes with events.

2.4 Responding to widget changes with events
All widgets trigger events that allow you to respond to changes in the widget’s state. Sup-
pose you need to display a message to the user whenever a dialog is closed. Dialog’s
close() method closes a dialog, but it doesn’t let you know when a dialog has been closed.
The close event, however, is triggered every time a dialog is closed, regardless of whether
it’s closed by a script or a user action such as clicking the Close button.

 You can subscribe to events in two ways: event handlers and callbacks. First, we’ll
look at how each works and the differences between them. Then, we’ll look at the
parameters passed to the event and what you can do with them.

Retrieving instances with the instance() method
When you initialize a widget on a DOM element, jQuery UI builds a JavaScript object
that represents the widget and stores it on the element using jQuery Core’s data()
method. This object is known as the instance of the widget.

The instance is how jQuery UI remembers that a given element has a widget initialized
on it. If you try to call dialog’s close() method on an element that isn’t a dialog wid-
get, you receive an error:

$("#does-not-exist").dialog("close");
> Error: cannot call methods on dialog prior to initialization;
attempted to call method 'close'

You can retrieve the widget’s instance at any time using the instance() method.
Assuming there’s an element with an id of "dialog", the following code assigns the
instance to a variable:

var instance = $("#dialog").dialog("instance");

The instance() method is the only method you can call on an uninitialized ele-
ment. For example, $("#not-a-dialog").dialog("close") throws an error,
but $("#not-a-dialog").dialog("instance") returns undefined.

The instance contains all options and methods associated with the widget. You can
use it to invoke methods using the more traditional JavaScript () operator:

instance.open();
instance.close();

Feel free to explore what’s in the widget’s instance and what you can do with it.
We’ll take a thorough look when we dig into advanced widget factory topics in chap-
ters 8, 9, and 12.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Enhancing UIs with widgets
2.4.1 Subscribing to widget events

To subscribe to widget events as event handlers, you use one of the event listening
functions in jQuery Core, such as on(). The following code listens for the dialog’s
create event:

<div id="dialog"></div>
<script>
 $("#dialog")
 .on("dialogcreate", function() {
 console.log("Dialog was created");
 })
 .dialog();
</script>

TIP This and subsequent examples log to the console in the browser’s built-
in developer tools. The F12 key opens the developer tools in Internet
Explorer, and Ctrl + Shift + I (Command + Shift + I on OS X) opens the devel-
oper tools in Firefox, Chrome, and Safari. You can view the output of these
examples there. Refer to appendix A for more details on using the browser’s
developer tools.

The create event fires when the dialog is created with dialog(); this invokes the
event handler and the console.log(). The create event is the only event all widgets
have. A full list of available events is in the API documentation. Figure 2.8 shows the
list of events for the dialog widget. As with options and methods, we’ll cover a few
events to show how they work.

Selects the
<div>

Attaches a create event
listener on the <div>

Converts the <div>
to a dialog widget

Figure 2.8 The dialog widget’s API documentation with an oval highlighting the widget’s elev-
en events. Each event name is a link to a section with additional documentation.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

33Responding to widget changes with events
Like native DOM events such as change, click, and focus, you can attach multiple
handlers for any widget event. This example attaches two listeners for the create
event, triggering two console.log() calls:

<div id="dialog"></div>
<script>
 $("#dialog")
 .on("dialogcreate", function() {
 console.log("First listener");
 })
 .on("dialogcreate", function() {
 console.log("Second listener");
 })
 .dialog();
</script>

Each widget has a prefix it prepends to all event names to avoid naming conflicts. This
is why the previous examples listen for dialogcreate rather than create. Without
prefixes, a create event would fire not only dialog creates but also menu, tab, and all
other widget creates.

 Although the default prefix is the widget’s name (as for dialog), some widgets use
a different value. These exceptions are

■ draggable ➡ drag
■ droppable ➡ drop
■ slider ➡ slide
■ resizable ➡ resize
■ sortable ➡ sort
■ spinner ➡ spin

If you’re unsure, the prefixes are stored on each widget’s prototype object. For exam-
ple, $.ui.dialog.prototype.widgetEventPrefix == "dialog" and $.ui.dragga-
ble.prototype.widgetEventPrefix == "drag". These prefix discrepancies are a
known source of confusion, and the project is moving toward using widget-
Name:eventName ("dialog:create", "draggable:create", and so on) for all event
names in a future release.

 You need the event prefixes when binding event handlers with on(), but all wid-
gets also support passing a callback function to the widget as an option. Like the cre-
ate event handlers, the callback is called when the dialog is created. The following
code uses a callback function for the create event:

<div id="dialog"></div>
<script>
 $("#dialog").dialog({
 create: function() {
 alert("Dialog was created");
 }
 });
</script>

Invokes when the
dialog is created
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Enhancing UIs with widgets
For the most part, event handlers and callbacks can be used interchangeably, but they
have a few important differences.

2.4.2 Event handlers vs. callbacks

Let’s look at an example that uses both an event handler and a callback. Recall that
callbacks are passed as options and event handlers are attached using on().

<div id="dialog"></div>
<script>
 $("#dialog")
 .on("dialogcreate", function() {
 // I am an event handler
 })
 .dialog({
 create: function() {
 // I am a callback option
 }
 });
</script>

Both functions are invoked when the dialog is created. What’s the difference between
them?

 The first is the value of this. When using callbacks, this is always set to the widget’s
DOM element. This is convenient if you need to make changes to the DOM element in
the handler. The following code changes a dialog’s text to red when it’s created:

<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog").dialog({
 create: function() {
 $(this).css("color", "red");
 }
 });
</script>

When using event handlers, this is set to the element the listener is attached to.
Therefore, if you attach an event handler to a widget’s element, it works exactly like a
callback. In the following code, this is set to the dialog <div>:

$("#dialog").on("dialogcreate", function() {
 $(this).css("color", "red");
}).dialog();

However, if you try to run this same example with an event handler attached to the
document, it does not work:

$(document).on("dialogcreate", function() {
 $(this).css("color", "red");
});
$("#dialog").dialog();

This code does successfully create a dialog, and the event handler is invoked, but this
is set to the document object—which you cannot set CSS properties on. Therefore the
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

35Responding to widget changes with events
dialog’s text does not change to red. This example also showcases the second differ-
ence between callbacks and event handlers: event handlers bubble up the DOM the
same way native DOM events do. Unlike callbacks, you can attach a single event han-
dler on a parent element to operate on multiple widget instances. The following list-
ing counts the number of dialogs created and displays it on the page.

<button>Make Dialog</button>
<p>Dialogs created: 0</p>

<script>
 var dialogs = 0;
 $(document).on("dialogcreate", function() {
 dialogs++;
 $("#count").text(dialogs);
 });
 $("button").on("click", function() {
 $("<div>").dialog();
 });
</script>

This example starts by attaching a dialogcreate event handler to the document B.
You then attach a click event handler to the example’s button. Every time the button
is clicked, you create a new <div> and immediately initialize a dialog widget on it D.
This new dialog triggers a create event, which bubbles to each of its parent elements
until it reaches the document itself. This triggers the dialogcreate event handler,
which increments a counter and outputs the count in the example’s C.
Although this example uses a single event in a single widget, all widget events can be
used in this fashion. You can use $(document).on("menuselect", function() {})
to listen for select events on all menu widget instances.

 You have two different ways to handle events in jQuery UI, but which do you use,
event handlers or callback functions? In general, callbacks are easier to use because
you specify them alongside the widget’s options. But if you need functionality to run
for multiple widgets—as the previous example did—you need to use an event handler.

 Now that you’ve seen how to subscribe to events, let’s look at the information
passed to the events and what you can do with it.

2.4.3 Event parameters

All widget events, regardless of whether they’re handled as callback options or event
handlers, have two parameters: event and ui. The following code shows the values
passed to dialog’s create event:

<div id="dialog">jQuery UI Rocks!</div>
<script>
 $("#dialog").dialog({
 create: function(event, ui) {
 console.log(event);
 console.log(ui);

Listing 2.2 Counting the number of dialogs created

Listens for a dialog
being created

B

Updates the text of the
 with the new countC

Creates a
new dialogD
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Enhancing UIs with widgets
 }
 });
</script>
This logs the following:
jQuery.Event {type: "dialogcreate", target: div#dialog…}
Object {}

The event parameter contains a populated jQuery Event object, and the ui parameter
contains an empty object. Let’s look at each of these in more detail, starting with
event.

NOTE Event parameters are named event and ui by convention only; you
can name them whatever you’d like. But because all online documentation of
events utilizes this naming convention, it’s worth adhering to.

The two most useful properties on the Event object are type and target, which tell you the
name of the event and the DOM element the event occurred on, respectively. The object
also has a method you may recognize from native DOM events: preventDefault().

NOTE A full list of the properties and methods on the Event object and what
they do can be found at http://api.jquery.com/category/events/event-object/.

For native DOM events, preventDefault() does as its name implies: prevents the default
action the browser normally takes. Consider the following code:

jQuery UI
<script>
 $("a").on("click", function(event) {
 event.preventDefault();
 });
</script>

If you clicked the link, the browser wouldn’t go to http://jqueryui.com because of the
preventDefault() call.

 Like native DOM events, certain widget events can also be prevented using prevent-
Default(). Suppose users must first accept a terms-of-use agreement before they can
access an application. To display the terms to the user, you use the dialog shown in fig-
ure 2.9.

Figure 2.9
A terms-of-use dialog.
The user must accept
the terms before being
allowed to close the di-
alog.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

37Responding to widget changes with events
The following listing shows the abbreviated source used to build this dialog. You can view
the full source at http://jsfiddle.net/tj_vantoll/KW3aw/.

$("#dialog").dialog({
 buttons: {
 OK: function() {
 $(this).dialog("close");
 }
 },
 beforeClose: function(event, ui) {
 if (!$("#terms").prop("checked")) {
 event.preventDefault();
 $("[for=terms]").addClass("ui-state-error-text");
 }
 }
});

The approach used here may seem odd at first. Your OK button’s click handler blindly
invokes close() without first checking whether the terms have been accepted B.

 This is because the enforcing is done in a beforeClose callback, specified below the
buttons. In the callback, you first determine whether the terms’ check box is checked C.
If it’s not, you call the event’s preventDefault() method to stop the dialog from closing
D. To tell the user why the dialog didn’t close, you add an ui-state-error-text class
name to the check box’s <label> element E.

NOTE The ui-state-error-text class name is part of jQuery UI’s CSS frame-
work, which we’ll cover in chapter 7.

Why would you use the beforeClose event instead of putting the logic in the OK but-
ton’s click handler? The beforeClose event is triggered regardless of how the dialog is
closed. It runs when the user clicks the dialog’s OK button or its close icon (in the
header). This flexibility makes it the preferred means for handling this type of logic.

 Although some events can be canceled using preventDefault(), most can’t. Events
that can be canceled are marked as such in the API documentation. The documentation
for dialog’s beforeClose event (http://api.jqueryui.com/dialog/#event-beforeClose)
notes that “If canceled, the dialog will not close.”

 That covers the event argument, but what about ui, the second argument?
 The ui argument is an object that contains properties that may be useful in event

handlers and callbacks. An object is always passed for the second argument. For events
that don’t need additional properties, such as the beforeClose event you looked at,
an empty object is passed.

 Each property provided in the ui object is listed in the jQuery UI API documenta-
tion. The documentation for dialog’s drag event is shown in figure 2.10.

Listing 2.3 Building a terms-of-use dialog

Invokes the
close() method

B

Sees if the terms
are not checked

C
Prevents

the dialog
from

closing

D

Adds an error class name
to the terms’ <label> E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/dialog/#event-beforeClose
http://www.it-ebooks.info/

38 CHAPTER 2 Enhancing UIs with widgets
As you can see, the drag event is passed the position and offset coordinates of the
dialog. The position property gives the coordinates of the dialog relative to its offset
parent, and the offset property gives the coordinates of the dialog relative to the
document itself.

NOTE If you don’t understand the difference between position and offset, don’t
worry. It’s a confusing topic, and the point of this section is to show how infor-
mation is passed to widget events. But if you’re curious, check out http://
api.jquery.com/position/ and http://api.jquery.com/offset/.

To use these properties, consider the following example. The option() method is
used to display the current coordinates of the dialog as its title:

$("<div>").dialog({
 drag: function(event, ui) {
 $(this).dialog("option", "title",
 ui.offset.top + " x " + ui.offset.left);
 }
});

You’ll see how the properties in the ui object are useful as you look at examples
throughout the book.

Figure 2.10 API documenta-
tion for the dialog widget’s
drag event. The oval highlights
the properties provided in the
ui argument.

What about extension points?
In addition to options, methods, and events, you may have noticed a fourth option on
the API documentation screenshots in this section: extension points. All methods in
the jQuery UI widgets are extensible using the widget factory. You can override any
existing method and optionally invoke the original method using _super(). The jQue-
ry UI team is documenting methods intended for overriding in extensions as exten-
sion points.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jquery.com/position/
http://api.jquery.com/position/
http://www.it-ebooks.info/

39Summary
2.5 Summary
Widgets are jQuery plugins with added functionality to handle customization, them-
ing, and more. Because all jQuery UI widgets are built using the widget factory, they
have a consistent API for configuration.

 Options allow widgets to be configured on initialization. Each option has a default
value that can be overridden. Methods let you retrieve information about a widget
and change its state after initialization. Some methods, such as option(), are com-
mon to all widgets. Events let you respond to changes made to the widgets. You can
handle events with either event handlers or callback options. Event handlers use event
bubbling to operate on multiple widgets, and callback options always have this set to
the widget’s DOM element.

 Now that you’ve seen what widgets are and how they work, you’re going to dig into
the individual widgets in jQuery UI. You’ll start by using a collection of these widgets
to build a common, yet tricky, requirement of many web applications: a contact form.

The following code shows what is possible with extension points. It extends the dia-
log widget’s _title() method so that it appends a prefix to the title used:

$.widget("ui.dialog", $.ui.dialog, {
 _title: function(title) {
 title.text("Prefix: " + this.options.title);
 }
});

Don’t worry if you don’t understand this syntax or these concepts. We’ll go over this
and a number of other advanced widget concepts in chapters 8, 9, and 12.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

jQuery UI Core

Now that you have the basics, it’s time to take a comprehensive look at the
components of jQuery UI: twelve jQuery UI widgets (chapters 3–4), five jQuery
UI interactions (chapter 5), numerous jQuery UI effects (chapter 6), and the
jQuery UI CSS framework (chapter 7).

 You’ll see how each component works, as well as how to apply that knowledge
in real-world applications. Your first challenge will be building a sample form so
patients can make a medical appointment.

 The knowledge you gain in part 2 will prepare you for part 3, where you’ll dig
into the more complex parts of jQuery UI, as well as prepare your applications
for production.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Building complex web
 forms with jQuery UI
Building forms with native HTML is difficult; a limited number of controls offers a
limited set of functionality. In this chapter we’ll look at how the five form widgets of
jQuery UI—autocomplete, button, datepicker, selectmenu, and spinner—enhance
these native HTML elements and make it easy to build nontrivial forms.

 To learn about the widgets and what they do, you’ll build a sample form, one
that patients can use to make appointments at a local doctor’s office. No one likes
visiting the doctor, and your job is to make the appointment process as easy as pos-
sible for the user.

 You’ll explore new elements that appeared on the web with HTML5, many with
functionality similar to the jQuery UI form widgets. We’ll compare and contrast the

This chapter covers
■ Using the jQuery UI form widgets
■ Building an enhanced contact form
■ Comparing the jQuery UI widgets to their

HTML5 counterparts
43

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 Building complex web forms with jQuery UI
HTML5 elements with the jQuery UI widgets and discuss which make sense for you to
use today.

 Let’s get started by looking at the form you’ll build.

3.1 The challenges of building modern web forms
Let’s assume you’re a small web development company and you get an email from a
US-based doctor’s office. They want to add a form to their website that allows
patients to request office appointments, and they want you to do it. They list the fol-
lowing requirements:

■ Collect the name of the user’s insurance company. The office has a database of
insurance companies the user should be allowed to filter and select.

■ Collect the language the patient speaks—English or Spanish.
■ Let the patient select a doctor or nurse. The doctors and nurses should be sepa-

rated into distinct groups.
■ Collect the appointment date from the patient. The office isn’t open on week-

ends, and Dr. Smith doesn’t work on Tuesdays. The date should be localized for
English and Spanish speakers.

■ Collect the number of days the user has been sick. Don’t let the user pick
invalid values like negative numbers.

■ All controls in the form should match the current website’s black-and-white
color scheme.

■ The form should work in all browsers.

Although this list is long, it’s not an uncommon list of requirements for a modern web
form. As more and more of our daily interactions move to the web, the forms that
developers are expected to build are increasingly complex. Think how you’d build a
form to meet these requirements.

 Without any libraries, you’re limited to the native HTML controls—<input>, <but-
ton>, <select>, and <textarea>. Although you can build forms that collect this data
with native HTML, those forms tend to be neither user friendly nor developer friendly.

NOTE The list of form controls is now slightly larger due to increasing
HTML5 form support in some browsers. We’ll discuss how HTML5 impacts
your form development in the last section of this chapter.

One of your criteria is to allow the user to select an appointment date. This raises a
few questions. How do you let the user know what format the date should be in? How
do you confirm that the user picked a valid date? No developer wants to write code
that manually checks for leap years or number of days in a month. No user wants to try
different values to determine which one is correct.

 Another frustrating issue with HTML elements is that it’s difficult to alter their dis-
play. HTML form controls weren’t created with styling or themeability in mind; it’s
impossible to perform some customizations, such as changing the height of a
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

45The challenges of building modern web forms
<select> element, the size of a radio button, or anything about the <option> ele-
ments of a <select>.

 The jQuery UI form widgets alleviate these concerns by providing powerful and
customizable controls. The widgets have an attractive appearance and have CSS hooks
to customize the display to your desire. Figure 3.1 shows the appointment form built
with jQuery UI.

 On the left side of figure 3.1 is the form without enhancement—rather dull and
uninspiring. In the middle is the form after the controls are converted to widgets.
The set of controls has a consistent look and feel that you can use with any of the
jQuery UI themes. The user interacts with friendlier controls—a calendar to select a
date from and an autocomplete list that filters companies as the user types, shown
on the right side.

 We’ll spend the next several chapters looking at how to build this form with the
jQuery UI widgets. Let’s start the journey with a widget that helps users search and fil-
ter through values: autocomplete.

TIP If you’d like to follow along, you can view the final version of this exam-
ple at http://jsfiddle.net/tj_vantoll/Dt8pW/.

Focus

Typing

Buttonset

Selectmenu

Datepicker

Autocomplete

Spinner

Button

Figure 3.1 Converting form controls into a jQuery UI widget gives them a consistent look. It also makes
the controls more usable. When users give focus to the Date input, they see a datepicker. When users
enter text into the Insurance input, they see potential options in a menu.

Styling form controls
All browsers allow some level of control over the display of form elements, but few
styles can be consistently applied. Firefox and Internet Explorer let you change the
color of a <select>, but Chrome and Safari don’t. Internet Explorer allows you to
change the height of a <select>, but other browsers don’t.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Dt8pW/
http://api.jqueryui.com/datepicker/#option-minDate
http://api.jqueryui.com/datepicker/#option-minDate
http://www.it-ebooks.info/

46 CHAPTER 3 Building complex web forms with jQuery UI
3.2 Autocomplete: suggesting input options to users
Autocompletion is a pattern that all web users are familiar with. When you type a
phrase in your search engine, it suggests results; when you compose an email, your
mail client suggests recipients. Although this pattern is commonplace, implementing
it on the web is nontrivial. The jQuery UI autocomplete widget provides a powerful
means of associating an input field with a series of suggested values.

 You’ll use the autocomplete widget to tackle the first of your requirements: collect-
ing the name of the user’s insurance company.

 Why do you build this as an autocomplete and not a <select>? Large drop-down
menus can overwhelm users and make it difficult to find the value they’re looking
for. Have you ever been frustrated by sifting through a country drop-down menu
with 300+ options?

 Also, when using a <select> you need to retrieve all values from the database
before displaying the form. This is a potentially expensive operation on the server and
delays the time when the user sees the form.

 By using an autocomplete, you let the user filter values by typing. The autocom-
plete widget also gives you flexibility; you can still load all data on page load, but you
can also defer loading it until it’s needed—and only load values that match what the
user typed. Let’s discuss each approach.

(continued)
Furthermore, browsers have specific styling hooks to customize the display of individual
form elements. The pseudo-element ::-ms-check can be used to change the height,
width, color, and background of check boxes and radio buttons in Internet Explorer 10
and 11. A full list of these styling hooks and how they work can be found at http: //
tjvantoll.com/2013/04/15/list-of-pseudo-elements-to-style-form-controls/.

Because of the differences in styling forms across browsers, it’s highly recommend-
ed to test the display of any form customizations in as many browsers as possible.
jQuery UI removes much of this guesswork by providing widgets that look great and
are consistent across browsers.

Setting up a PHP server
A few examples in this section include PHP to show how the autocomplete widget in-
teracts with server-side code. To run these examples on your own computer, you
must set up a PHP server. Don’t feel compelled to do this. The PHP code is thoroughly
explained, so you don’t have to go through the hassle unless you want to tinker with
the examples.

If you do, the easiest way to run PHP is to download and install a preconfigured PHP
server, such as the following:

■ WAMP—http://www.wampserver.com/ (Windows)
■ MAMP—http://www.mamp.info/ (Mac)
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http: //tjvantoll.com/2013/04/15/list-of-pseudo-elements-to-style-form-controls/
http: //tjvantoll.com/2013/04/15/list-of-pseudo-elements-to-style-form-controls/
http://www.it-ebooks.info/

47Autocomplete: suggesting input options to users
3.2.1 Using local data

The easiest way to use the autocomplete widget is with local data—which means that
the options are available to JavaScript directly, without needing to contact a remote
server. To drive the autocomplete widget with local data, pass an array for the source
option. The following is an example of an autocomplete that uses local data:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: ["Alligator", "Ant", "Anteater", "Ape", "Armadillo"]
 });
</script>

The five options specified in the source option are suggested to the user in a menu as
the user types. Figure 3.2 shows what happens when the user types an a, and then
selects the first option with the mouse.

 In your appointment example, the list of insurance companies you need is stored
in a server-side database. In this case, to use a local array you load that data to a
JavaScript array. How you implement this depends on the type of database and server-
side environment you’re using. The following shows a sample PHP structure:

<? $companies = array("One", "Two", "Three"); ?>
<? $companies_json = json_encode($companies); ?>
<script>
 $("#autocomplete").autocomplete({
 source: <? echo $companies_json; ?>
 });
</script>

Alternatively, you can download PHP directly from http://php.net/ and start a new
server from the command line. For more information on this option, see http://
php.net/manual/en/features.commandline.webserver.php.

Figure 3.2 How the autocomplete widget displays suggestions to the user. Here the user selects
“Alligator” with the mouse, and the input is filled with the user’s selection.

Creates a PHP array
with hardcoded
values. In a more
realistic environment,
this would retrieve
the values from a
server-side database.

Converts the
PHP array to
JSON format.

Uses the JSON data as
the source option.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://php.net/manual/en/features.commandline.webserver.php
http://php.net/manual/en/features.commandline.webserver.php
http://www.it-ebooks.info/

48 CHAPTER 3 Building complex web forms with jQuery UI
This gives you the autocomplete behavior you’re looking for. Although the local form
of the source option is convenient, you have to load all options before the form is dis-
played and store them in JavaScript. This is fine if you have a few dozen or a few hun-
dred options; however, when you have thousands or tens of thousands of options,
managing this data in the browser becomes problematic, and often leads to a slow
experience for users. To handle large datasets, let’s look at how to load data from a
remote source.

Associating options with codes
Often back-end structures need to associate a code with each option in an autocom-
plete. For example, a back end might require the code “UK” instead of the label “Unit-
ed Kingdom”. For this scenario, the source option accepts an array of objects with
label and value properties. The following shows an autocomplete that displays
country names and maps them to country codes on selection:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: [
 { label: "United Kingdom (UK)", value: "UK" },
 { label: "United States of America (USA)", value: "USA" }
]
 });
</script>

When the user selects an option, the value is entered in the text box rather than the
label. This is shown in this figure.

When labels and values are used, the user sees the labels, but the values are placed in the input
after selection. Here, the user selects the “United Kingdom (UK)” label, and its corresponding val-
ue—"UK"—is placed in the input.

Notice that in this example you include the value of each option within its label (“Unit-
ed Kingdom (UK)” instead of “United Kingdom”). There are a couple reasons for doing
this. First, it allows the user to type either labels or values to see autocomplete op-
tions. In the country example, this means the user can type "un" or "us" to see the
United States. Second, including the value in the label makes it less surprising when
the value ends up in the input after selection. For instance, the user could be sur-
prised by their “Switzerland” selection changing to "CHE", whereas they would likely
understand the change after selecting “Switzerland (CHE)”.

We’ll look at a real-world example of how to use codes when we build a flight search
application in chapter 11.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

49Autocomplete: suggesting input options to users
3.2.2 Loading from a remote source

Loading data from a remote data source provides a quick way for users to filter
though large datasets. To show how the autocomplete widget can load remote data,
let’s look at an example:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: "/path/to/server"
 });
</script>

Note that the source option is a string rather than an array. This string is a URL where
you send AJAX requests to retrieve matched options as the user types. In this example,
the autocomplete widget makes GET AJAX requests to /path/to/server after the user
types into the <input>.

 The autocomplete widget doesn’t filter results when using a remote source; rather,
the request made to the server includes a term request parameter containing the char-
acters the user typed, allowing the server to filter suggestions. This workflow is shown
in figure 3.3.

To use remote data,
pass a string instead
of an array.

Figure 3.3 When using a remote source, the autocomplete widget sends the typed value as a term
request parameter, and the server returns the filtered options. On the left, the user types "j", the widget
sends a request to the server with a query string of "term=j", the server responds with an array con-
taining three matches, and the widget displays them in a menu. On the right, the user has continued
to type, and the new term ("jQuery U") is sent to the server. The server responds with a single match,
which the widget displays.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Building complex web forms with jQuery UI
The remote server must return a JSON-encoded array. As when using local data, the
array can contain strings or objects with label and value properties. jQuery UI doesn’t
provide server-side implementations to filter the options based on user-typed terms, but
most server-side environments provide an easy means to compare strings and encode
data to JSON. A sample PHP implementation is shown in the following listing.

<?
$term = $_GET["term"];
$companies = array(#B
 "AUTOMOBILE CLUB INTER-INSURANCE EXCHANGE",
 "AMERICAN FAMILY MUTUAL INSURANCE COMPANY",
 "BANKERS STANDARD INSURANCE COMPANY",
 ...
);

$result = array();
foreach ($companies as $company) {
 if (strpos(strtoupper($company), strtoupper($term))
 !== false) {
 array_push($result, $company);
 }
}

echo json_encode($result);
?>

Don’t worry about the PHP details in this listing; it’s offered as a sample because it’s
infeasible to list the numerous server-side environments that exist. The point is that
the server-side code—regardless of what language or framework it uses—needs to take
the request parameter term, identify the options that match it, and return the valid
options as JSON. If the data for the autocomplete is stored in a database, this filtering
can be done at the database level.

Listing 3.1 Filtering autocomplete options in PHP

Retrieves the user-
typed term from the
request parameter.

A hardcoded array
of all potential
options. In a more
realistic example,
this data would be
stored in a server-
side database.

Loops over
all company

names.

Determines whether
the company name
contains the search

term. Both words are
uppercase, so the test

is case insensitive.

If the company
name contains

the search
term, adds it to
the array that’s

returned.
JSON-encodes the resulting

array, and outputs it.

Cross-domain AJAX requests
By default the browser denies any AJAX request to another domain. For instance, re-
quests to http://example2.com from http://example.com will be blocked. This is per
the browser’s same origin policy, which prevents malicious sites from grabbing sen-
sitive information from other sites and executing actions on their behalf.

Cross-domain access to web assets and APIs has recently been made available
through a specification known as cross-origin resource sharing (CORS).

For information on CORS, see http://www.w3.org/TR/cors/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

51Autocomplete: suggesting input options to users
Because remote data is loaded as the user types, you no longer have to load the entire
database on page load. Nevertheless, loading remote data could create a large
demand on the server receiving the requests. You can mitigate this with the delay and
minLength options.

 The delay option determines the number of milliseconds between when the user
types and when a search is done. The default value is 300; changing the delay to 0
makes sense for local data when you have a small number of potential options. The
following code shows this:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: ["Alligator", "Ant", "Anteater", "Ape", "Armadillo"],
 delay: 0
 });
</script>

Conversely, increasing the delay makes sense if you’re using remote data and you’re
concerned about the load on the server. The following example waits a full second
before performing a request:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: "/path/to/server",

 delay: 1000
 });
</script>

One second is a long time for a user to wait before seeing results. Try not to go over 500
milliseconds unless you need to. Another option to reduce server load is to set a
minLength.

 The minLength option determines the minimum number of characters the user
must type before a search is performed. The default value of 1 is fine for most cases,
but can be increased when a single character can match a large number of values—or
if server load is a concern. The following requires the user to type two characters
before a search is done:

<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: "/path/to/server",
 minLength: 2
 });
</script>

Let’s use this knowledge for your insurance carrier autocomplete. Because your
requirements stated there were a large number of insurance companies, you use a
minLength of 2 as shown in the previous example. But you leave the default delay in
place, as you aren’t concerned about server load.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 Building complex web forms with jQuery UI
 Your final implementation of the company autocomplete is shown in the next listing.

################## index.html ####################
<input id="autocomplete">
<script>
 $("#autocomplete").autocomplete({
 source: "search.php",
 minLength: 2
 });
</script>

################## search.php ####################
<?
$term = $_GET["term"];
$companies = array(
 "AUTOMOBILE CLUB INTER-INSURANCE EXCHANGE",
 "AMERICAN FAMILY MUTUAL INSURANCE COMPANY",
 "BANKERS STANDARD INSURANCE COMPANY",
 ...
);

$result = array();
foreach ($companies as $company) {
 if (strpos(strtoupper($company), strtoupper($term))
 !== false) {
 array_push($result, $company);
 }
}

echo json_encode($result);?>

This is the version of the insurance carrier autocomplete you’ll use in your example.
But before we finish with the autocomplete widget, we need to discuss one more sce-
nario: integrating with services that you don’t control.

3.2.3 Using autocomplete with third-party services and APIs

In your appointment form, the insurance company lookup was done on your own
servers. You were free to tailor the returned data to match your expected format, but
often this isn’t the case. Applications need to integrate with third-party APIs that don’t
return simple arrays or data in convenient label-value pairs.

 To make it possible to integrate with these services, the source option has a varia-
tion that accepts a callback function. The function is called after each character the
user types and determines which options should display. To show how the source call-
back function works, let’s look at an example that uses local data before moving on to
a third-party call.

 All autocompletes you’ve seen to this point have matched terms anywhere in the
options. For example, “a” matches “ant”, but it also matches “cat”. You can use a call-
back function to alter the widget so that it matches only at the beginning. This is
shown in the following code.

Listing 3.2 Final implementation of the insurance company autocomplete
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

53Autocomplete: suggesting input options to users

xp
o

s.
a

<input id="autocomplete">
<script>
 var data = ["Alligator", "Ant", "Antelope", "Cat",
 "Chicken", "Cow"];
 $("#autocomplete").autocomplete({
 source: function(request, response) {
 var results = [],
 term = $.ui.autocomplete.escapeRegex(request.term),
 matcher = new RegExp("^" + term, "i"),
 matches = $.grep(data, function(item) {
 return matcher.test(item);
 });

 response(matches);
 }
 });
</script>

The callback function you use for source receives two arguments B. The first,
request, is an object that has a single term property. The term has the string that’s
currently in the <input>. The second, response, is a function that needs to be called
with an array of options that should be displayed. With a callback function, determin-
ing which options match the term is your responsibility.

 To do so, you first escape any RegExp meaningful characters from the term the
user typed (request.term) C. If you didn’t escape it, the user’s term would be inter-
preted as a regular expression. (The "." character would match all options!)

 Next, you create the regular expression you’ll use to compare the term against the
options D. The “^” character tells the RegExp to match characters only at the start of
the strings. This makes “a” match “ant” but not “cat”. The second argument, “i”, tells
the RegExp to perform a case-insensitive match. For example, both “a” and “A” match
“Ant”.

 After this, you loop over each potential option in the data array using $.grep()
E. You pass to $.grep()the array to filter and a function that’s invoked for each item
in the array. For each item, if the function returns true, it’s added to the array
returned by $.grep(); otherwise, it’s not. In your case, you use the RegExp you created
earlier to determine whether the term matches each option F.

 Now the matches array contains only the options that match the user-typed term
based on your criteria. The final step is to invoke the source callback’s response argu-
ment with the array of matched options you have built G. This displays the options to
the user.

 The callback function gives you complete control over what options the user sees.
You can adapt the example to make the autocomplete case sensitive, display an option
regardless of what the user typed, and more.

Listing 3.3 Autocompletes that only match at the beginning

The callback
function to use.

BEscapes any
RegExp

meaningful
characters.

C

Creates a RegE
object to use t
test terms
against optionD

Runs a function for each
data item. When functions

return true, their item is
dded to the matches array. E

Determines whether the
term matches the item.
Returning true indicates a
match, and the item is
added to the array.F

Invokes the response
function to show options

that matched your
regular expression. G
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Building complex web forms with jQuery UI
 Although this approach uses local data, it’s easy to adapt to hit third-party services.
To show this, let’s use GitHub’s JSON API to build an autocomplete for the names of
all public Git repositories. If you look at the API’s documentation (http://developer
.github.com/v3/search/#search-repositories), you’ll see that a ton of information is
returned. How can you sift through all this to get the repository names? An implemen-
tation of this is shown in the following listing.

$("#autocomplete").autocomplete({
 minLength: 2,
 source: function(request, response) {
 $.getJSON("https://api.github.com/search/repositories",
 { q: request.term + " in:name" })
 .then(function(data) {
 var matches = $.map(data.items, function(repo) {
 return repo.full_name;
 });
 response(matches);
 });
 }
});

NOTE You can view this example at http://jsfiddle.net/tj_vantoll/jck37/.

The code here is similar to the previous example. The main difference is that you start
the source callback function by asynchronously loading data using $.getJSON(). The
GitHub search API takes the keyword to search with as a "q" request parameter B.
The rest of the search string, "in:name", is known as a qualifier—which is a GitHub-
specific syntax for restricting a search. By default the GitHub search matches reposito-
ries based on their names, descriptions, and more. The "in:name" qualifier tells
GitHub to match on names only.

TIP You can read more about GitHub search qualifiers, including a full list
of the qualifiers available, at https://help.github.com/articles/searching-
repositories.

Next, you use the then()method to attach a function to run when the $.getJSON()
call completes C. Inside that function, you need to aggregate the data GitHub
returned into something that autocomplete can use. A simplified version of the data
returned by GitHub is

{
 items: [
 { name: "jquery", full_name: "jquery/jquery", ... },
 { name: "jquery-ui", full_name: "jquery/jquery-ui", ... },
 ...
]
}

Listing 3.4 An autocomplete of jQuery Git repositories on GitHub

Loads data
using an
AJAX call

B

Attaches a
function to run

when the call
completes C Aggregates the full

names of each
matched repository D
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://developer.github.com/v3/search/#search-repositories
http://developer.github.com/v3/search/#search-repositories
https://help.github.com/articles/searching-repositories
https://help.github.com/articles/searching-repositories
http://www.it-ebooks.info/

55Button: enhancing native buttons, inputs, and links
You loop over the items array D, and place each repository’s full_name into a
matches array. Then you pass the matches array to the response function to show the
list. The callback option gives you flexibility. You could push repo.full_name +
" (Forks: " + repo.forks + ")" into the matches array to display the number of forks
a repository has alongside its name.

 Between local data, remote data, and third-party services, the autocomplete widget
gives you the ability to create autocompletes with almost any source of data. Now that
you’ve explored autocompletes, and built the insurance company autocomplete you
need for your appointment form, you’re going to shift focus to how you can improve
the form’s buttons.

3.3 Button: enhancing native buttons, inputs, and links
Although HTML has plenty of button controls, it’s difficult to change their display to
match the rest of your application, and it’s nontrivial to perform common actions
such as adding icons or grouping buttons.

 The jQuery UI button widgets provide a means to convert native buttons to theme-
able and customizable controls. You’ll use the button widget to fulfill your second
requirement: collecting the language the patient speaks.

 This requirement is easy to meet with a set of radio buttons or a <select>, so why
use radio buttons? In general, when you have a small number of options, radio button
controls are preferred as the user can see all options at once. When you have many
options or space is limited, a drop-down menu is preferred.

The autocorrect attribute
Many mobile OSes have a mechanism known as autocorrection that automatically
corrects misspelled words as you type. Although occasionally helpful, autocorrection
is almost never helpful in autocomplete inputs, where you have a predefined list of
options. You can turn autocorrection off on any <input> by setting its autocorrect
attribute to "off"—for instance, <input autocorrect="off">.

So that you don’t have to explicitly include this attribute on all autocomplete <input>
elements, you can use the following autocomplete extension that adds the attribute
automatically:

$.widget("ui.autocomplete", $.ui.autocomplete, {
 _create: function() {
 this._super();
 this.element.attr("autocorrect", "off");
 }
});

You’ll learn how this works when you look at widget extensions in chapter 9. Some
mobile browsers also automatically capitalize the first letter of every <input>. You
can turn this behavior off by setting the <input> element’s autocapitalize attribute
to "off"—that is, <input autocapitalize="off">. This is helpful on fields where
it makes no sense to capitalize the first letter, such as email addresses and usernames.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Building complex web forms with jQuery UI
 Why can’t you meet this requirement by creating HTML radio buttons? Keep in
mind that you have to build controls that match the current site’s color scheme—and
radio buttons are nearly impossible to style.

 Luckily, the jQuery UI button widgets can turn <button>, <input type= "but-
ton|checkbox|image|radio|reset|submit">, and <a> elements into controls that
are styleable and themeable. To show the effect of the widget, the following converts
each supported element to a button widget:

<button>button</button>
<input type="button" value="button">
<input type="reset" value="reset">
<input type="submit" value="submit">

<label for="checkbox">checkbox</label>
<input type="checkbox" id="checkbox">
<label for="radio">radio</label>
<input type="radio" id="radio">

a

<script>
 $("button, input, a").button();
</script>

Figure 3.4 shows the display before and after the conversion.

Check boxes and
radio buttons
must be associated
with a <label>.
We’ll look at this
momentarily.

$("button, input, a").button();

Figure 3.4 The button widget creates a consistent and themeable control from buttons, check-
boxes, radio buttons, and links. Here, each of these controls is converted in a single call.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

57Button: enhancing native buttons, inputs, and links
In figure 3.4 you can see how easy it is to use the button widget to create a consistent
and decent-looking display for button controls. Now you need to create the radio but-
tons to collect the user’s language.

TIP jQuery UI does a bit of magic to make radio buttons and check boxes style-
able. The visual controls—the “checkbox” and “radio” buttons in figure 3.4—
are those inputs’ <label> elements. jQuery UI styles the <label> elements and
hides the check box/radio buttons in a manner that leaves them available
to assistive technologies, such as screen readers. You’ll dig into this technique
in more detail in chapter 8 when you build a custom widget that uses the
same behavior.

Note from the previous example that check box and radio button controls required a
<label> before the button widget was instantiated on them:

<label for="checkbox">checkbox</label>
<input type="checkbox" id="checkbox">
<label for="radio">radio</label>
<input type="radio" id="radio">

The for attribute of the label must match the id attribute of the form control. This is
a requirement for form building as it helps assistive devices such as screen readers
connect the <input> element to its associated <label>. It also allows you to click the
label to toggle check boxes and select radio buttons. Figure 3.5 shows this behavior.

 Why does the button widget force you to provide the <label> elements instead of
generating them for you? All the jQuery UI widgets are built with accessibility and
graceful degradation in mind. If JavaScript were to fail on this page, the user—as well
as assistive devices—would still have a usable form with semantic controls. If all goes
well, the button widget enhances the markup to something prettier.

<label for="checkbox">checkbox</label>
<input type="checkbox" id="checkbox">

Clicking this <label> Toggles this <input type="checkbox">

<label for="radio">radio</label>
<input type="radio" id="radio">

Clicking this <label> Selects this <input type=“radio”>

Figure 3.5 The importance of
associating <label> elements
with <input> elements: click-
ing the labels toggles check box-
es and selects radios. This
increases the clickable area of
these small controls, which is es-
pecially important on mobile de-
vices, where fingers can easily
miss small targets.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

58 CHAPTER 3 Building complex web forms with jQuery UI
Also remember that one of your requirements is to make sure the form works in all
browsers. By using semantic HTML, you ensure that the form works everywhere, even
in browsers that jQuery and jQuery UI no longer support.

 Here’s the code you use to build the language control:

<label for="language-en">English</label>
<input type="radio" id="language-en" name="language" value="" checked>
<label for="language-es">Español</label>
<input type="radio" id="language-es" name="language" value="es">
<script>
 $("input").button();
</script>

This produces the buttons shown in figure 3.6.
 Although these controls look much better

than the native radio buttons, you can do better.
jQuery UI also includes a buttonset widget
designed to logically and visually group button
controls. To create buttonsets, call the buttonset
plugin on the parent element of button controls.
The following example switches your language control to use a buttonset:

 <label for="language-en">English</label>
 <input type="radio" id="language-en" name="language" value="" checked>
 <label for="language-es">Español</label>
 <input type="radio" id="language-es" name="language" value="es">

<script>
 $("#buttonset").buttonset();
</script>

The updated display of the radio buttons is shown
in figure 3.7.

 The buttonset widget provides this visual asso-
ciation between the buttons, and the underlying
button widgets ensure the browser’s native key-
board controls are preserved. The space bar can still
be used to toggle check boxes, and the arrow keys
can still be used to toggle the selected radio button.

NOTE The buttonset widget isn’t limited to radio buttons; it can group any
element that can be converted to a button widget.

This concludes your language control for this form, but you have one last
customization to make with the button widget. To create a consistent form display,
let’s also convert the form’s Submit button to a button widget, using the following
HTML and JavaScript:

Figure 3.6 Two radio buttons that have
become jQuery UI button widgets. The
English <input> has a checked attri-
bute, and therefore appears as the se-
lected button.

Figure 3.7 When the parent element
of button controls—in this case two ra-
dio buttons—is converted into a but-
tonset, the widget automatically
applies the CSS necessary to group the
buttons together.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

59Selectmenu: enhancing native <select> elements
<button>Make Appointment</button>
<script>
 $("button").button();
</script>

To add customization, let’s use the button’s icons option to display a small icon next
to the button. The icons option takes an object with two optional properties—
primary and secondary. The primary icon displays on the left side of the button, and
the secondary icon displays on the right. The values of these two properties must
match one of the 173 jQuery UI icon class names listed at http://api.jqueryui.com/
theming/icons/. The following code adds a calendar icon to your Submit button:

<button>Make Appointment</button>
<script>
 $("button").button({
 icons: {
 primary: "ui-icon-calendar"
 }
 });
</script>

We’ll continue to discuss the button in examples throughout this book. Next, let’s
look at the jQuery UI replacement for native drop-down menus: selectmenu.

3.4 Selectmenu: enhancing native <select> elements
<select> elements are one of the most difficult elements to customize in HTML.
Almost no CSS properties work across browsers, and it’s impossible to style or position
their associated <option> elements.

Why are there so many HTML button controls?
The HTML specification originally contained only four button types.

■ <input type="reset">—Resets a form to its original state
■ <input type="submit">—Submits a form
■ <input type="button">—Buttons that aren’t used to submit forms
■ <input type="image">—An image to act as a control to submit forms

Unfortunately, <input> elements can’t contain child elements, and that limits what
you can do with them. Thus, <button> elements (which can contain children) were
created.

<button> elements can have a type of reset, submit, or button. The default type
is submit. Because images can be added as children of <button> elements, a
<button type="image"> is not needed.

The original <input>-based buttons have never been deprecated or removed from
the HTML specification, meaning you have two sets of controls with overlapping func-
tionality. Because <button> is more powerful, its use is preferred.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/theming/icons/
http://api.jqueryui.com/theming/icons/
http://www.it-ebooks.info/

60 CHAPTER 3 Building complex web forms with jQuery UI
 The selectmenu widget solves these problems by replacing the <select> element
with a customizable and themeable control that retains the accessibility and behavior
of the original element. You’ll use the selectmenu widget to meet the third of your
requirements: allowing the user to select a doctor or nurse.

 The selectmenu widget works by converting <select> elements as shown in the
following example:

<style>
 select { width: 200px; }
</style>
<select id="selectmenu">
 <option>One</option>
 <option selected>Two</option>
 <option>Three</option>
</select>
<script>
 $("#selectmenu").selectmenu();
</script>

Per your requirements, the options should be grouped into doctor and nurse catego-
ries. The native <select> element allows this behavior by grouping <option> ele-
ments within <optgroup> tags.

 Although <optgroup> elements are implemented in all major browsers, they suffer
the same difficulties with styling and customization that the <select> and <option>
elements do. Fortunately, the selectmenu widget handles <optgroup> elements with-
out any extra configuration; you call the selectmenu plugin after selecting the appro-
priate <select> element. This is shown in the following example:

<style>
 select { width: 200px; }
</style>
<label for="doctor">Doctor:</label>
<select id="doctor" name="doctor">
 <option>No Preference</option>
 <optgroup label="Doctors">
 <option>Adams</option>
 <option>Crowley</option>
 <option>Smith</option>
 <option>VanToll</option>
 </optgroup>
 <optgroup label="Nurses">
 <option>Davis</option>
 <option>Johnson</option>
 <option>Jones</option>
 <option>White</option>
 </optgroup>
</select>
<script>
 $("select").selectmenu();
</script>

Makes the selectmenu 200
pixels wide

Determines which option
to select by default

Makes the rendered
selectmenu 200 pixelsB

Determines the heading
displayed for the group
of options

Calls the selectmenu
plugin
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

61Selectmenu: enhancing native <select> elements
Note that in each example you assign an explicit width to <select> elements B. The
selectmenu widget requires this width be set to determine the width of the rendered
control.

 Why can’t the widget figure out an appropriate width on its own? By default, native
<select> elements are set to a width of auto, where auto resolves to the width of the
longest option in the menu. Although it’s desirable to replicate this behavior, it’s
impossible to get the width of an <option> element in JavaScript; you must manually
set an explicit width on <select> elements when using the widget.

TIP You can also set the width of a selectmenu using its width option.

Figure 3.8 shows the effect of transforming your doctor <select> into a selectmenu in
Google Chrome.

 You’ve seen that the selectmenu widget is an easy and powerful replacement for
the native <select> element. Next, we’ll look at the most complex and powerful form
widget in jQuery UI: datepicker.

$("select")
.selectmenu();

Figure 3.8 The effect of transforming a <select> with <optgroup> elements into a selectmenu
widget in Google Chrome on OS X
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 3 Building complex web forms with jQuery UI
3.5 Datepicker: selecting dates from a pop-up calendar
Dates are common pieces of data that forms collect. It should be easy to collect a date
from a user on the web, but that has a number of nontrivial challenges. What format do
you need the date in? How do you handle the number of days in a month? Leap years?

 These problems frustrate users and programmers alike. Have you ever input a date
in a form and been frustrated when you discovered the month needed a leading zero,
or used dashes (-) instead of slashes (/)?

 In your case, you need to collect an appointment date from the patient. You have
to ensure that the user isn’t allowed to pick weekends, or Tuesdays if the user wants to
see Dr. Smith. Finally, you have to display the calendar in multiple locales.

 You saw how to create datepickers in chapter 1 (calling the datepicker plugin on
an <input>). For your appointment datepicker, you start with

<label for="date">Date:</label>
<input type="text" name="date" id="date">
<script>
 $("input").datepicker();
</script>

To enforce the available days, you need to use the beforeShowDay option. The option
takes a function that’s called once for each individual day before it’s displayed. If
December is about to be shown, the beforeShowDay function is invoked 31 times—once
for each day. The function is passed a date and must return an array with three values:

■ A Boolean that determines whether the day should be enabled
■ An optional string to use as a CSS class name for the day’s cell
■ An optional string to use as a tooltip for the day’s cell

The following code disables Christmas with a custom display:

<style>
 .ui-datepicker .ui-christmas span {
 color: red;
 background: green;
 }
</style>
<label for="date">Date:</label>
<input type="text" name="date" id="date">
<script>
 $("input").datepicker({
 beforeShowDay: function(date) {
 if (date.getDate() == 25 && date.getMonth() == 11) {
 return [false, "ui-christmas", "Christmas!"];
 }
 return [true];
 }
 });
</script>

In JavaScript, months and days
(of the week) are zero-based,

but days of the month are one-
based. Therefore, 11 is

equivalent to December.

Disables Christmas
and adds a custom

class name and tooltip.

Enables all
other days.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

63Datepicker: selecting dates from a pop-up calendar
For your use case of disabling weekends, the datepicker widget provides a utility func-
tion: $.datepicker.noWeekends(). The following code uses this function:

<label for="date">Date:</label>
<input type="text" name="date" id="date">
<script>
 $("input").datepicker({
 beforeShowDay: $.datepicker.noWeekends
 });
</script>

But you also need to disable Tuesdays when Dr. Smith is selected. Let’s create a func-
tion to handle this

function checkDate(date) {
 var isWeekday = date.getDay() > 0 && date.getDay() < 6;
 if ($("#doctor").val() === "Smith") {
 return [isWeekday && date.getDay() != 2];
 } else {
 return [isWeekday];
 }
};

then, use this function as the beforeShowDay function:

$("input").datepicker({
 beforeShowDay: checkDate
});

This creates the behavior you desire, but there’s one issue: if the user manually types
in a date or changes the doctor, the form could be submitted with an invalid value.
You need to validate that the user selected a correct date on submission, and
datepicker has the tools to do that.

TIP You can also use the minDate and maxDate options to customize which dates
are available. In your appointment example, a minDate of 0 would prevent users
from selecting dates in the past; a minDate of 2 would force the user to pick an
appointment at least two days into the future. For details on the data types these
options accept, see http://api.jqueryui.com/datepicker/#option-minDate and
http://api.jqueryui.com/datepicker/#option-maxDate.

0 is Sunday, 1 is Monday, and so on in
a system when days are zero-based.

Gets the value of the
doctor <select>,

and sees if Dr. Smith
was selected.

If Smith,
enables the day

only if it’s a
weekday AND
not Tuesday.

If not Smith,
enables the day

if it’s a weekday.

Datepicker and options
Datepicker is the most customizable widget of jQuery UI, with a daunting 50 options.
Don’t worry about knowing all them, or even a small fraction of them. Most are for
specific use cases that you’ll likely never need. In fact, it’s quite common to have
datepickers in production that don’t set any options at all. The following figure shows
common options you may want to experiment with.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Building complex web forms with jQuery UI
3.5.1 Parsing and formatting dates

Although JavaScript has a native Date object built in, it doesn’t tackle one common
problem: converting Date objects to strings and strings to Date objects. This is a tricky
problem when you consider the solution has to handle leap years, the number of days
in each month, and the many formats in which dates can be displayed.

 For your appointment field you need to determine whether the string in the
<input> represents a valid date. To do this, you use two of datepicker’s utility func-
tions to convert dates to strings and vice versa—$.datepicker.formatDate()and
$.datepicker.parseDate().

NOTE Utility functions can be invoked without being tied to an instance of
the widget. You don’t have to create a datepicker to use $.datepicker.for-
matDate() and $.datepicker.parseDate(); you just call them.

The first parameter each of these functions takes is a string that specifies the format of
the date. Here are the common ones:

■ d—Day of the month with no leading zeros
■ dd—Day of the month, always two digits

(continued)

A datepicker with a variety of options set to customize the display. You may want to experiment
with these options for the datepickers you need in your applications.

{
 buttonImage: "/calendar.png",
 buttonImageOnly: true,
 showOn: "button"
} { changeYear: true }

{ changeMonth: true }

{ showWeek: true }

{ showOtherMonths: true }

{ showButtonPanel: true }
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

65Datepicker: selecting dates from a pop-up calendar
■ D—Short day name (Mon, Tue, Wed)
■ DD—Long day name (Monday, Tuesday, Wednesday)
■ o—Day number of the year (no leading zeros)
■ oo—Day number of the year (always three digits)
■ m—Month of the year with no leading zeros
■ mm—Month of the year, always two digits
■ M—Short month name (Jan, Feb, Mar)
■ MM—Long month name (January, February, March)
■ y—Two-digit year
■ yy—Four-digit year

NOTE These same formats can be passed to the dateFormat option to config-
ure the format of the user-selected date in its associated <input>.

Let’s start with $.datepicker.formatDate, which converts Date objects to strings. The
following listing shows how the same date can be displayed in multiple formats using
formatDate().

var date = new Date(2014, 0, 2);

$.datepicker.formatDate("d / m / y", date);
$.datepicker.formatDate("dd / mm / yy", date);
$.datepicker.formatDate("dd-mm-yy", date);
$.datepicker.formatDate("D M d, yy", date);
$.datepicker.formatDate("DD M d, yy", date);
$.datepicker.formatDate("DD MM d, yy", date);

See how easy it is to output dates in a variety of formats? Also notice that characters in
the format strings that aren’t recognized are transferred to the output string
directly—for example, the commas, slashes, and dashes. One warning: if you want to
include characters in your formatted date that are also special formatting characters,
you need to quote them. Suppose you wanted to output the day number of the year.
You might try

$.datepicker.formatDate("Day o of yy", new Date(2014, 0, 2));

but this unexpectedly outputs “Thua14 2 2f 2014”, because the "D" in "Day" and "o"
in "of" are interpreted as formatting characters. The following code outputs the
expected “Day 2 of 2014”:

$.datepicker.formatDate("'Day' o 'o'f yy", new Date(2014, 0, 2));

formatDate() converts Date objects to strings, but parseDate() does the opposite: it
converts strings back to Date objects. All these statements return a Date object repre-
senting January 2, 2014:

Listing 3.5 Formatting dates with formatDate()

Creates a Date object for January 2, 2014

2/1/14
02/01/2014

02-01-2014
Thu Jan 2, 2014

Thursday
Jan 2, 2014Thursday

January 2, 2014
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 3 Building complex web forms with jQuery UI

C

$.datepicker.parseDate("d / m / y", "2 / 1 / 14");
$.datepicker.parseDate("dd / mm / yy", "02 / 01 / 2014 ");
$.datepicker.parseDate("dd-mm-yy", "02-01-2014");
$.datepicker.parseDate("D M d, yy", "Thu Jan 2, 2014");
$.datepicker.parseDate("DD M d, yy", "Thursday Jan 2, 2014");
$.datepicker.parseDate("DD MM d, yy", "Thursday January 2, 2014");

parseDate() throws an exception if the string can’t be parsed into a valid Date
object, making it perfect for determining whether user-inputted values are valid dates.
The following function determines the validity of a date:

function isValidDate(date) {
 try {
 $.datepicker.parseDate("yy-mm-dd", date);
 return true;
 } catch(error) {
 return false;
 }
}

isValidDate("2014-01-01");
isValidDate("2012-02-29");
isValidDate("2014-02-29");
isValidDate("2014-10-31");
isValidDate("2014-09-31");

That’s it. You don’t need to manually check for leap years or the number of days in
September. You can use this approach to validate the date in your appointment form.
This is shown in the following code:

$("form").on("submit", function(event) {
 var date;

 try {
 date = $.datepicker.parseDate("mm/dd/yy", $("#date").val());
 } catch (error) { }

 if (!date) {
 event.preventDefault();
 alert("Please provide a valid date.");
 }
 if (date && !checkDate(date)[0]) {
 event.preventDefault();
 alert("Cannot select a weekend or Tuesday for Dr. Smith.");
 }
});

You attach a submit event listener to your appointment form B, then call parseDate
with the user-provided date in a try/catch block C. If the date can be parsed, it’s
assigned to the date variable. If the date can’t be parsed, date remains undefined and

Because parseDate() can throw an
exception, it must be wrapped in a
try/catch block. If parseDate()
does throw an exception, the date
isn’t valid. If it executes
successfully, the date is valid.

True

True, 2012 was
a leap year. False, 2014 isn’t

a leap year.

True, October
has 31 days.

False, September
doesn’t have 31 days.

Listens for form
submission

B

Determines whether
the user-provided

date is valid

C

If date is defined…D
…prevents
the form from
submitting…

E

…and notifies the user
of the problemF

hecks for
weekends

and Dr.
Smith

G

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

67Datepicker: selecting dates from a pop-up calendar
you go to the conditional D. If you have an error, you prevent the default event action
(submission of the form) E, and then display an error to the user F. Finally, you use
the checkDate() function you created earlier to ensure that the user didn’t select Dr.
Smith on Tuesday, or a day on the weekend G.

TIP Although alert() works well for examples, in a production application
you should display text error messages on the screen and highlight inputs
that have errors. Not only do these best practices make your form look more
professional, they also make it significantly more usable. Currently, when you
close the alert, you have no way of knowing what the problem is. You’ll dig
deeper into form validation when you build a more complex example in
chapter 11.

Although parsing and formatting dates are tricky problems, you have one final prob-
lem to tackle: globalization.

3.5.2 Handling date globalization

Collecting dates from users of varied languages and cultures is a difficult task. You
need to use different words for the days of the month and the months of the years, but
you also need to deal with the structure of the date. Should the month or the day be
displayed first? Does the culture read from left to right or right to left?

 Although you need to handle only English and Spanish in your form, the jQuery UI
datepicker handles 70+ locales. A few of these locales are shown in figure 3.9.

 The datepicker widget stores locale information in $.datepicker.regional: an
array of locale information indexed by language code. $.datepicker.regional ["fr"
] and $.datepicker.regional["ja"] contain the information needed to build the
datepicker for the French and Japanese languages, respectively. The default locale is
English and is stored at $.datepicker.regional[""].

Datepicker and the widget factory
Datepicker is some of the oldest code in jQuery UI and therefore doesn’t follow some
of the modern conventions used by the library. It is the only widget in jQuery UI that
isn’t built with the widget factory. Not to worry; a lot of work has been done to mimic
the widget factory’s APIs so that datepicker works like the other widgets of jQuery UI.

One difference is that datepicker has no events. It does, however, have five callbacks
that can be specified as options: beforeShow, beforeShowDay, onChangeMonthYear,
onClose, and onSelect. Because these are options and not events, this works

$("#datepicker").datepicker({ onClose: function() {} });

but this doesn’t:

$("#datepicker").datepicker().on("datepickeronclose", function() {});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Building complex web forms with jQuery UI
You can set the locale for a datepicker in multiple ways. At datepicker initialization
you can pass the locale information to the plugin. The following code creates a
datepicker using the French locale:

$("#datepicker").datepicker($.datepicker.regional["fr"]);

Additionally, you can call the option()method to change the datepicker’s locale after
initialization. The following example changes the datepicker’s locale to Japanese:

$("#datepicker").datepicker("option", $.datepicker.regional["ja"]);

Datepicker provides a setDefaults()utility function to set the default values all
future datepickers should use. You can use this function to default all datepickers to a
given locale, such as defaulting all datepickers to the Hebrew locale:

$.datepicker.setDefaults($.datepicker.regional["he"]);

Due to file size considerations, the locale information that datepicker needs to build
locale pickers isn’t packaged in the main jQuery UI CDN file and has to be imported
separately. If you download the jQuery UI zip archive from https://github.com/
jquery/jquery-ui/releases, the locale information is in the ui/i18n folder (ui/i18n/
datepicker-fr.js, for example, contains French locale data).

NOTE i18n stands for internationalization and a11y stands for accessibility.
These terms have become common because “internationalization” and
“accessibility” are painful to type.

Let’s bring this back to your example. The following code takes your language radio
buttons and updates them to change the locale of the datepicker in a change event:

 <label for="language-en">English</label>
 <input type="radio" id="language-en" name="language"
 value="" checked>
 <label for="language-es">Español</label>
 <input type="radio" id="language-es" name="language" value="es">

Figure 3.9 The jQuery UI datepicker widget supports over 70 different locales. This figure shows three:
French, Hebrew, and Japanese (left to right).

Your language
buttonset from

earlier
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/jquery-ui/releases
https://github.com/jquery/jquery-ui/releases
http://www.it-ebooks.info/

69Spinner: enhancing native <input> elements to collect numeric data

nt
<label for="date">Date:</label>
<input type="text" name="date" id="date">

<script src="scripts/jquery-ui/i18n/datepicker-es.js"></script>
<script>
 $("#buttonset").buttonset();
 $("[name='language']").on("change", function() {
 $("#date")
 .datepicker("option", $.datepicker.regional[this.value]);
 });

 $("#date").datepicker($.datepicker.regional[""]);
</script>

You first import the Spanish locale data B. This line assumes you have jQuery UI
accessible in a scripts folder in the same directory as the HTML for the example.
(Remember that the locale data is not available on the jQuery CDN.) Then you attach
a change event to the language buttonset’s radio buttons C; it’s invoked whenever the
selected radio button changes. You call the option() method to change the locale to
the selected value D. Outside of the change event, you create the datepicker widget
and set the default locale to English E.

 This concludes our whirlwind tour of the datepicker widget. Because datepicker
has a ton of options, it may be helpful to peruse its API documentation at http://
api.jqueryui.com/datepicker/ to see some other things that are possible. Next, we’ll
look at the final widget for your form: spinner.

3.6 Spinner: enhancing native <input> elements to collect
numeric data
Like dates, numbers are another common piece of information to collect from users.
Normal text inputs offer little control over the data that users input. What’s the maxi-
mum value allowed? The minimum? How do you handle more complex values like
decimals and currency?

 The spinner widget solves these problems by providing an easy way for users to
input numbers in any format. You’ll use the spinner to build the last field in your
form: an input to collect the number of days the user has been sick.

 To create spinner widgets, select <input> elements and invoke the widget’s plugin.
The following code shows this:

<input id="spinner" value="1">
<script>
 $("#spinner").spinner();
</script>

The display of this spinner is shown in figure 3.10.
 The spinner widget has two controls to increase and decrease the value of the spin-

ner by one step. When the <input> has focus, the user can additionally use the up and
down arrow keys to do the same.

Imports the locale
information

B

Attaches a change eve
to the radio buttons

C

Updates the
locale with

option() D

Sets the
default

locale to
English

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/datepicker/
http://api.jqueryui.com/datepicker/
http://www.it-ebooks.info/

70 CHAPTER 3 Building complex web forms with jQuery UI
The default step value of spinner controls is 1. In figure 3.10 if the user clicks the up
arrow the value changes from 1 to 2. But this step value can be changed with the step
option. The following example creates a spinner that steps by values of 10:

<input id="spinner">
<script>
 $("#spinner").spinner({ step: 10 });
</script>

Now the user can choose values of 0, 10, 20, 30, and so forth. But the user can also
choose values of -10, -20, and so on. To cap the range of a spinner, the widget provides
min and max options. The following spinner allows the user to select multiples of 10
from 0 to 100:

<input id="spinner">
<script>
 $("#spinner").spinner({
 min: 0,
 max: 100,
 step: 10
 });
</script>

The HTML5 specification added min, max, and step as valid HTML attributes, and the
spinner widget uses them if they’re present. You can declaratively specify the min, max,
and step options in HTML rather than passing them to the plugin:

<input id="spinner" min="0" max="100" step="10">
<script>
 $("#spinner").spinner();
</script>

WARNING If min, max, and step are specified as both attributes and options,
the option values will be used. Make sure you only use one for clarity.

To create a spinner for your number-of-days-sick control, you only need to prevent the
user from picking numbers less than one:

<label for="days">Number of Days Sick:</label>
<input type="text" id="days" name="days">
<script>
 $("#days").spinner({ min: 1 });
</script>

Current value
Increase value by one step

Decrease value by one step

Figure 3.10 The spinner widget adds two buttons that allow the user to increment and
decrement the value of an <input>.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

71Completing the appointment form
But, like datepicker, the user can still submit any value for this field—including nega-
tive numbers, fractional numbers, and alphabetic characters. To prevent this, let’s add
another check to your submit event handler:

$("form").on("submit", function(event) {
 if (!$("#days").spinner("isValid")) {
 event.preventDefault();
 alert("Please provide a valid number of days.");
 }
});

You call spinner’s isValid() method B to determine the validity of the spinner’s
value. The method checks that the value is a valid number that adheres to the widget’s
min, max, and step constraints.

 You now have a complete number picker to use in your form. The spinner has
more to offer, including support for decimal, currency, and time pickers in over 350
cultures. We’ll cover those in appendix D.

3.7 Completing the appointment form
You’ve made it through all the pieces of the appointment form, so let’s see how it all
comes together. The source of the form is shown in listing 3.6.

NOTE The full example is available at http://jsfiddle.net/tj_vantoll/Dt8pW/.

<form method="POST" action="/path/to/server">
 <fieldset>
 <legend>Request Doctor Appointment</legend>
 <div>
 <label>Language:</label>

 <label for="language-en">English</label>
 <input type="radio" id="language-en" name="language"
 value="" checked>
 <label for="language-es">Español</label>
 <input type="radio" id="language-es" name="language"
 value="es">

 </div>
 <div>
 <label for="doctor">Doctor:</label>
 <select id="doctor" name="doctor">
 <option>No Preference</option>
 <optgroup label="Doctors">
 <option>Adams</option>
 <option>Crowley</option>
 <option>Smith</option>
 <option>VanToll</option>
 </optgroup>
 <optgroup label="Nurses">
 <option>Davis</option>

Listing 3.6 The complete appointment form

Checks whether the
spinner’s value is valid

B

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 3 Building complex web forms with jQuery UI
 <option>Johnson</option>
 <option>Jones</option>
 <option>White</option>
 </optgroup>
 </select>
 </div>
 <div>
 <label for="date">Date:</label>
 <input type="text" name="date" id="date">
 </div>
 <div>
 <label for="insurance">Insurance:</label>
 <input type="text" name="insurance" id="insurance">
 </div>
 <div>
 <label for="days">Number of Days Sick:</label>
 <input type="text" id="days" name="days">
 </div>
 <div>
 <button>Make Appointment</button>
 </div>
 </fieldset>
</form>
<script>
 $("#buttonset").buttonset();
 $("[name='language']").on("change", function() {
 $("#date")
 .datepicker("option", $.datepicker.regional[this.value]);
 });

 $("#doctor").selectmenu();

 $("#insurance").autocomplete({
 minLength: 2,
 source: "search.php"
 });

 $("#date").datepicker({
 beforeShowDay: function(date) {
 var isWeekday = date.getDay() > 0 && date.getDay() < 6;
 if ($("#doctor").val() === "Smith") {
 return [isWeekday && date.getDay() != 2];
 } else {
 return [isWeekday];
 }
 }
 }).datepicker("option", $.datepicker.regional[""]);

 $("button").button({
 icons: {
 primary: "ui-icon-calendar"
 }
 });

 $("#days").spinner({ min: 1 });

 $("form").on("submit", function(event) {
 var date,

Converts the radio
buttons to a buttonset

widget that changes the
datepicker’s locale

B

Converts
the dropdown
to a selectmenu
widget

C

Converts the
doctor fields to
an autocomplete
widget

D

Converts the date
field to a datepicker

that restricts the
available days

E

Converts the Submit
button to a button widget
with a calendar icon

F

Converts the days field
(number of days sick)
to a spinner widgetG
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

73Completing the appointment form
 daysValid = $("#days").spinner("isValid");

 try {
 date = $.datepicker.parseDate("mm/dd/yy",
 $("#date").val());
 } catch (error) { }

 if (!date) {
 event.preventDefault();
 alert("Please provide a valid date.");
 }
 if (date && !checkDate(date)[0]) {
 event.preventDefault();
 alert("You cannot select a weekend or Tuesday " +
 "for Dr. Smith.");
 }
 if (!daysValid) {
 event.preventDefault();
 alert("Please provide a valid number of days.");
 }
 });
</script>

Converting the language <input type="radio"> controls to a buttonset B overcomes
the impossibility of styling native radio buttons with a themeable control.

 Converting the doctor <select> to a selectmenu C overcomes the difficulties of
styling the native element. You have a themeable and customizable control that
matches the other elements in the form and groups the options.

 Converting the insurance company <input> to an autocomplete D presents users
with a list of potential insurance companies after they type. This is helpful for users
who may not remember the name of their company or know what options are avail-
able. It also helps server load, because you only look up options as you need to.

 Converting the date <input> to a datepicker E gives the user a calendar control to
select a date from. You also restrict the available appointment days and change the
locale based on the user’s language.

 Converting the submit <button> to a button widget F gives a button that looks the
same as the rest of the form controls with an easily customizable icon.

 Converting the sick days <input> to a spinner G gives the user buttons and key-
board shortcuts to increment and decrement the value of the <input>. By setting the
min to 1, you indicate to the user that you’re looking for a positive value.

 But wait, don’t you have two requirements left?

■ All controls in the form should match the current website’s black and white
color scheme.

■ The form should work in all browsers.

Because you built the form with jQuery UI, these last two requirements have taken
care of themselves. All widgets in the form conform to the jQuery UI theming frame-
work; therefore, changing the form’s theme is a matter of changing the style sheet
imported. This is great for pesky clients who say they want a black-and-white form, but
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Building complex web forms with jQuery UI
suddenly have a thing for green the next day. You’ll look at the specifics of swapping
out themes in chapter 7.

 What about browser support? As you saw in chapter 1, jQuery UI supports all mod-
ern browsers as well as Internet Explorer 7 and above. But this client said they wanted
“all” browsers. You’re in luck. This form works everywhere because of the progressive
enhancement approach jQuery UI takes for building widgets.

 The initial HTML is a functional form that works fine without JavaScript. If JavaScript
fails because of an authoring error, if the user has JavaScript disabled, or if the user is
using a relic of the past like Internet Explorer 5.5, the form still works. If JavaScript
is enabled and functioning, the form is enhanced with more functional controls that are
easier on the eyes.

 Now that you’ve seen how to build an appointment form using jQuery UI widgets,
let’s look at how these widgets compare to the controls in HTML5.

3.8 HTML5 elements vs. jQuery UI widgets
The HTML5 specification added several components to the HTML platform that were
inspired by JavaScript libraries such as jQuery UI. This includes new elements like
<progress> and <datalist>, as well as a slew of new input types: color, date, date-
time, datetime-local, email, month, number, range, search, tel, time, url, and
week. Because the specification was inspired by JavaScript libraries, the functionality
of the new native controls and libraries overlap—both <input type="date"> and the
datepicker widget can be used to collect a date from the user.

 What’s a web developer to do? We’ll focus on two of the elements from your
appointment form—the datepicker and the number picker—and discuss the pros and
cons of using the HTML5 control versus the jQuery UI widget. Although this doesn’t
provide a comprehensive overview of all HTML5 elements and jQuery UI widgets, the
arguments for and against each is similar with each of these controls.

 Here is the HTML that you turned into datepicker and spinner widgets:

<label for="date">Date:</label>
<input type="text" name="date" id="date">

<label for="days">Number of Days Sick:</label>
<input type="text" id="days" name="days">

The equivalent elements from the HTML5 specification are <input type="date"> and
<input type="number">. Let’s swap in the HTML5 controls by changing the type of
the <input> elements:

<label for="date">Date:</label>
<input type="date" name="date" id="date">

<label for="days">Number of Days Sick:</label>
<input type="number" id="days" name="days">

That’s it. The main appeal of the HTML5 controls is that they’re simple to use and depen-
dency free. Another advantage is that the browser determines how input is presented
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

75HTML5 elements vs. jQuery UI widgets
to the user. Why is this a big deal? Check out figure 3.11, which shows the display of
<input type="date"> and <input type="number"> on various platforms.

TIP On iOS Safari, you can use a keyboard that only shows numbers 0–9 by
including a pattern attribute set to "[0-9]*"—that is, <input type="number"
pattern="[0-9]*">.

Note the highly customized keyboard display used on the mobile browsers. These con-
trols are optimized to make it easy for users to input data quickly. With all this power,
why are you reading a chapter on jQuery UI form widgets?

 As it turns out, along with the advantages of HTML5 form controls, there are also
some serious (and usually show-stopping) disadvantages. For one, although giving the
browser the ability to control how the input is displayed leads to the custom mobile
inputs, it also means that you have little to no control over the display on desktop brows-
ers. Need to change the spacing in the calendar? It’s not possible. Need to change the
colors to match your application’s look and feel? That’s not possible either.

 The second major disadvantage of the native controls is that they only handle basic
use cases. Need to collect a date from the user? The native control can do that. Need
to disable days, show multiple months, or show the picker on the click of an icon?
You’re out of luck.

 The third major disadvantage of the native controls is browser support. As of this writ-
ing, <input type="date"> isn’t supported in Internet Explorer (any version), Firefox,

Figure 3.11 The display of HTML5 date and number inputs on iOS Safari, Chrome, and Chrome for Android.
Notice how the two mobile browsers—iOS Safari and Chrome for Android—optimize the UI to make it
easy to input values.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Building complex web forms with jQuery UI
Safari, or the default Android browser. <input type="number isn’t supported in Internet
Explorer, and isn’t fully implemented in Android or iOS Safari (no min, max, or step
attribute support). Therefore, unless you’re writing the rare web application that only
has to work on one platform, you’re going to run into issues using these new elements.

 To conclude, the major advantages of the HTML5 controls are

■ They’re easy to use.
■ They’re dependency free.
■ The browser controls how data is inputted (helpful mobile UIs).

The main detriments are

■ You have little control over the display.
■ They handle only trivial use cases.
■ Limited browser support.

Although we’ve addressed only a few of the many form controls of HTML5, the same
arguments hold true for the others; the only real difference is that some HTML5 fea-
tures are better supported by browsers than others.

 For the vast majority of applications, the native controls aren’t a viable option yet
due to their limited support and functionality. But you have one additional option. If
you have a basic use case, and your only problem is browser support, you can use
jQuery UI to polyfill the native functionality. We’ll discuss this, and a number of addi-
tional HTML5 elements, in chapter 11 and appendix F.

3.9 Summary
The jQuery UI form widgets assist with the complex task of building modern web
forms. Specifically, they

■ Provide accessible replacements for elements that are nearly impossible to style,
such as dropdowns and radio buttons

■ Add functionality that is not natively available on the web, such as robust calen-
dar controls and server-backed autocompletes

■ Apply a consistent and configurable theme
■ Are accessible to all users—even users on assistive technologies such as screen

readers
■ Work in IE versions 7+ and all modern browsers
■ Take a progressive enhancement approach, so that even users in unsupported

browsers get a functional form

HTML5 includes a number of controls with functionality that overlaps that of the
jQuery UI form widgets. The new controls are easy to use and great for input on
mobile devices, but they’re not customizable and suffer from limited browser support.
You’ll look more at how to practically use these HTML5 controls in chapter 11.

 jQuery UI has widgets for more than form building. Next, you’ll look at the layout
and utility widgets included in the library.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing interfaces with
 layout and utility widgets
In chapter 3, you looked at using the jQuery UI form widgets to build powerful web
forms. In this chapter, you’ll focus on the jQuery UI widgets dedicated to displaying
content and utility functionality.

 The jQuery UI layout widgets—accordion and tabs—provide an easy means of
organizing content in panels that can be shown and hidden. These widgets can
organize content in digestible chunks, or present content in a limited amount of
space. You’ll look at the structure of these widgets, then see how to add advanced
functionality, such as loading remote content and dynamically creating panels.

This chapter covers
■ Organizing content with layout widgets
■ Organizing actions into menus
■ Opening content in interactive dialogs
■ Replacing the browser’s native tooltips
■ Building a message composer
77

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Enhancing interfaces with layout and utility widgets
 The jQuery UI utility widgets—menu, dialog, progressbar, slider, and tooltip—
bring a number of desktop UI controls to the web. Although these controls have been
on the desktop for years, they remain nontrivial to create on the web. You’ll see that
the jQuery UI utility widgets make it not only possible but easy to create powerful
interactions such as displaying content in animated pop ups, selecting values in a
range, and building tooltips with complex markup. On top of all this, you still get the
themeability and accessibility that is built into all the jQuery UI widgets.

 We’ll get started by looking at the first of the jQuery UI layout widgets: accordion.

4.1 Accordion: creating toggleable content panels
Accordions are common UI elements that allow you to organize content and display
information in a limited amount of space. Accordions associate headers with content
panels. By default, when a header is clicked, its content expands and all other content
panels collapse. This simultaneous expanding and collapsing is the effect that gives
the accordion widget its name.

 Because accordions work by associating headers with content, the accordion wid-
get expects pairs of headers and content elements for HTML markup. Although not
required, typically the headers are <h1>, <h2>, … <h6> elements and the content pan-
els are <div> elements, as shown in the following example:

<h3>Header One</h3>
<div>Content One</div>
<h3>Header Two</h3>
<div>Content Two</div>

For a more practical example, suppose you run a site that displays information on box
office movies. The site lists popular movies with detailed descriptions and statistics
such as their budgets and box office proceeds.

 For your movie site you’ll use movie names as headers and place the more detailed
information in their associated content panels, shown next:

<div id="accordion">
 <h3>Ghostbusters</h3>
 <div>
 <p>Ghostbusters is a 1984....</p>
 </div>
 <h3>Titanic</h3>
 <div>
 <p>Titanic is a 1997 epic...</p>
 </div>
 <h3>Top Gun</h3>
 <div>
 <p>Top Gun is a 1986 action...</p>
 </div>
</div>
<script>
 $("#accordion").accordion();
</script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/jAwrA/
http://www.it-ebooks.info/

79Accordion: creating toggleable content panels
Note that to create the accordion widget, you have to call the accordion() plugin on
the parent of the headers and content panels. The display of this accordion is shown
in figure 4.1. Note that the widget opens the first content panel automatically by
default.

TIP The accordion widget accepts any arbitrary markup pattern; therefore,
you’re free to use whatever HTML elements you’d like for headers and con-
tent panels. The only requirement is that the content panels must be the sib-
lings immediately after their associated headers in the DOM. For more
information, see the header option documentation at http://api.jque-
ryui.com/accordion/#option-header.

In this example, you accomplish two things by displaying the content in an accordion.
First, by organizing the widget as header and panel pairs, the content is easily
skimable; users can scan to find the movie they’re interested in and click for more
details. Second, the example presents a lot of content in a limited amount of space.

 By default, the accordion widget allows a single content panel to be displayed at a
time. Clicking on the Titanic header shown in figure 4.1 causes the first content panel
(Ghostbusters) to collapse and the second (Titanic) to expand simultaneously. By
default, the user can’t close all content panels; clicks on the open panel’s header do
nothing. Although this is the default behavior, you can customize it—and a lot more—
using the accordion’s options.

4.1.1 Configuring the accordion widget

The accordion widget has options to configure its appearance and behavior; we’ll
cover the most common ones here.

 As you saw in the previous section, the accordion displays exactly one content area
to the user. If this behavior isn’t desired, you can set the collapsible option to true
to let the user collapse all content panels, as shown next:

<div id="accordion">
 <h3>Ghostbusters</h3>
 <div>
 <p>Ghostbusters is a 1984....</p>
 </div>
 <h3>Titanic</h3>
 <div>
 <p>Titanic is a 1997 epic...</p>
 </div>
 <h3>Top Gun</h3>
 <div>
 <p>Top Gun is a 1986 action...</p>
 </div>
</div>

Figure 4.1 jQuery UI accordion widget used to display movie information. The accordion widget auto-
matically activates the first panel.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/accordion/#option-header
http://api.jqueryui.com/accordion/#option-header
http://www.it-ebooks.info/

80 CHAPTER 4 Enhancing interfaces with layout and utility widgets
<div id="accordion">
 <h3>Header One</h3>
 <div>Content One</div>
 <h3>Header Two</h3>
 <div>Content Two</div>
</div>
<script>
 $("#accordion").accordion({ collapsible: true });
</script>

The user can collapse all sections, but the first panel is still opened by default when
the widget is created. This behavior is controlled by the active option—a zero-based
index that determines the currently displayed content panel. The following example
creates an accordion in which the second panel is opened on initialization:

<div id="accordion">
 <h3>Header One</h3>
 <div>Content One</div>
 <h3>Header Two</h3>
 <div>Content Two</div>
</div>
<script>
 $("#accordion").accordion({ active: 1 });
</script>

If you set the collapsible option, you can additionally set active to false, which ini-
tializes the accordion with all panels collapsed. This is shown in the following code:

<div id="accordion">
 <h3>Header One</h3>
 <div>Content One</div>
 <h3>Header Two</h3>
 <div>Content Two</div>
</div>
<script>
 $("#accordion").accordion({
 active: false,
 collapsible: true
 });
</script>

Changing the active option after initialization changes the content panel displayed
and animates it as if the user had clicked the corresponding header. The following list-
ing creates two buttons that programmatically modify the displayed content panel by
setting the active option using the option() method.

<div id="accordion">
 <h3>Header One</h3>
 <div>Content One</div>
 <h3>Header Two</h3>
 <div>Content Two</div>
</div>

Listing 4.1 Modifying the active option to programmatically change panels

Content panel at index 0

Content panel at index 1

Sets the active option to 1 (the
second content panel)

The first content panel

The second content panel
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

81Accordion: creating toggleable content panels
<button>Show One</button>
<button>Show Two</button>
<script>
 $("#accordion").accordion();

 $("button:first").on("click", function() {
 $("#accordion").accordion("option", "active", 0);
 });
 $("button:last").on("click", function() {
 $("#accordion").accordion("option", "active", 1);
 });
</script>

These are the most common accordion options, but you can also set icons to use on
the headers with the icons option, show content on hover (rather than click) of the
headers using the event option, and control the height of the content panels using
the heightStyle option.

 Before we finish our look at accordions, we’ll look at how another problem is
solved: adding and removing panels.

4.1.2 Adding and removing panels

If you look through the accordion’s API, you’ll notice that it has no options, methods,
or utility functions to explicitly add or remove panels. Instead, accordion—as well as
the tabs and menu widgets—implements this functionality through a generic
refresh() method. The widget expects you to add new elements or remove existing
ones on the DOM, and then call refresh(). The following listing shows a form that can
be used to create new panels.

<div id="accordion"></div>

<form>
 <label for="header">Header:</label>
 <input type="text" id="header" required>

 <label for="content">Content:</label>
 <textarea id="content" required></textarea>

 <button>Add Panel</button>
</form>

<script>
 var accordion = $("#accordion").accordion();

 $("form").on("submit", function(event) {
 event.preventDefault();
 accordion.append(
 "<h3>" + $("#header").val() + "</h3>" +
 "<div>" + $("#content").val() + "</div>"
).accordion("refresh");
 this.reset();
 });
</script>

Listing 4.2 A form to create new accordion panels

Shows the
first content
panel

Shows the
second
content panel

An empty accordion
containerB

Adds a new
header and
content panel

C

Calls the
refresh()
method

D
Resets the form to its
initial (empty) state
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Enhancing interfaces with layout and utility widgets
You start with an empty accordion container B and a form to add new panels. When
the form is submitted, you append new <h3> and <div> elements with the entered val-
ues for the header and content C. Finally, you call the refresh() method D to tell
the widget to render and style the panels you added.

 Although the accordion widget gives you a variety of ways to display content, it
requires the panels to be vertically stacked on top of each other. Your next layout wid-
get—tabs—works similarly to accordion. It associates headers with content panels, but
it offers more positioning flexibility and adds several powerful options.

4.2 Tabs: toggling between content areas
The same as accordions, tabs are common UI elements used to organize content into
multiple sections in a limited space. Because these widgets serve similar functions,
they were designed to have a similar API. In fact, the tabs’ active, collapsible, dis-
abled, event, heightStyle options and refresh() method work exactly the same as
the accordion’s.

 The tabs widget, however, offers more flexibility in how the content is organized
and presented. In this section, you’ll see this flexibility by looking at how to load
remote content and create user-closeable panels.

 You start by creating tabs. Like accordions, tabs require a specific set of markup, as
shown next:

<div id="tabs">

 One
 Two

 <div id="one">One Contents</div>
 <div id="two">Two Contents</div>
</div>
<script>
 $("#tabs").tabs();
</script>

The display of the tabs widget is shown in figure 4.2.
 The main requirement of the markup pattern is that the href attribute of the <a>

tag must match the id attribute of the content panels. This is done for progressive
enhancement; if JavaScript fails, the user still has a functioning list of links to content.

<div id="tabs">

 One
 Two

 <div id="one">One Contents</div>
 <div id="two">Two Contents</div>
</div>

Figure 4.2 A jQuery UI tabs widget with two panels. The widget opens the first panel by default.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

83Tabs: toggling between content areas
Like accordion, the first content panel is open by default, and you can configure that
with the active option.

 Now that you know the basics, let’s do something more interesting.

TIP Because the widget uses hash-based links, you can provide a hash in the
URL to load a page with a given tab preselected. If the previous example were
located at http://example.com, then http://example.com#two would load
the page with the second tab activated.

4.2.1 Loading remote content

In the previous example, all your content was in HTML in the tabs control. Although
this works for most use cases, the tabs widget also allows you to load remote content
from a server.

 Why would you use this? It could be that generating the content is resource inten-
sive—perhaps because of expensive database queries or accessing third-party services.
Or there may be a lot of content, and loading it all on page load is not only expensive
on your servers, but also challenging for your users to sift though.

 In these cases, you can use the tabs widget’s ability to load remote content. Refer to
the following example:

<div id="tabs">

 Introduction
 Step One

 <div id="intro">Welcome, click "Step One" to get started.</div>
</div>
<script>
 $("#tabs").tabs();
</script>

You have two links: one that references a local tab B and another C that doesn’t
appear to reference anything. In fact, the second link references a remote file that
isn’t included in the page. When the user clicks the link, the tabs widget fetches
step-one.html via an AJAX call, creates a new content panel, and displays the HTML
in the remote file within it. To see how this can be useful, let’s return to the movie
site example.

4.2.2 Loading movie information in a tabs widget

Recall that the site lists popular movies with statistics such as the movies’ budgets and
box office proceeds. Assuming your site lists a large number of movies, retrieving
every statistic on every movie when the page loads puts a lot of load on your servers. It
also creates a poor experience for the user; the page loads slowly, and the user is
shown an overwhelming amount of information all at once. How can you fix this? You
could use traditional HTML links, but you don’t want users to load a full page to view a
movie’s information.

Local tabB

Remote tabC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Enhancing interfaces with layout and utility widgets
By using the tabs widget, you get the best of both worlds; users see movie information
instantly, and you ease the load on your servers and bandwidth by displaying movie
details only on user request.

 Figure 4.3 shows the UI you’ll build in this example. The following listing shows
the implementation of this UI. There’s a lot here, but don’t be overwhelmed; we’ll go
over each piece individually.

<div id="movie-list" class="ui-widget">
 <h2>Movie List</h2>

 Ghostbusters
 Titanic
 Top Gun

</div>

<div id="tabs">

 Introduction

 <div id="intro">
 Welcome, select movies and their information will appear here.
 </div>
</div>

<script>
 var tabs = $("#tabs").tabs();

 $("#movie-list").on("click", "a", function(event) {
 event.preventDefault();

 var index,
 movie = this.innerHTML,
 existing = tabs.find("[data-movie='" + movie + "']");

Listing 4.3 A movie listing with jQuery UI

Users can close
tabs at any time.

Clicks on movies open a new tab.

Figure 4.3 A tabs widget used to display information on movies. When the user clicks a movie in the
list, its information is retrieved from the server and displayed in a new tab.

Static list of
movie links.

B

Initial markup for
the tabs control.

C

Handler for
clicks on the
static movie list.

D

Looks for
an existing
tab for this

movie.

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

85Tabs: toggling between content areas

 if (existing.length == 0) {
 tabs.find(".ui-tabs-nav")
 .append("<li data-movie='" + movie + "'>" +
 "" + movie + "" +
 "<button class='ui-icon ui-icon-close'>" +
 "Remove Tab</button>" +
 "");
 tabs.tabs("refresh");
 }

 existing = tabs.find("[data-movie='" + movie + "']");
 index = tabs.find(".ui-tabs-nav li").index(existing);
 tabs.tabs("option", "active", index);
 });

 tabs.on("click keydown", ".ui-icon-close", function() {
 if (event.type === "keydown" && !(
 event.keyCode === $.ui.keyCode.ENTER ||
 event.keyCode === $.ui.keyCode.SPACE)) {
 return;
 }
 var panelId = $(this).closest("li").remove()
 .attr("aria-controls");
 $("#" + panelId).remove();
 tabs.tabs("refresh");
 });
</script>

You start with a static list of movies B and a container for the tabs C that are posi-
tioned on the left- and right-hand sides of the screen, respectively. The tabs container
contains one local tab with introductory text for the user.

 Next, you listen for clicks on the static list of movie links D. When clicks occur, you
check whether a tab for the selected movie is already open (you don’t want to open
two Titanic tabs). To find a potentially existing tab, you use this check E:

tabs.find("[data-movie='" + movie + "']")

This query assumes that the movie for the tab is stored in an HTML5 data-* attribute;
you’ll see how this works when you add new tabs.

TIP HTML5 data-* attributes are a quick and standards-compliant way of stor-
ing data on DOM elements. Here you’re storing the movie name on an ele-
ment using <li data-movie="Titanic">Titanic. You can retrieve that
value using $("li").attr("data-movie"), get all elements with that custom
attribute using $("[data-movie]"), or get all elements with that custom attri-
bute equal to “Titanic” using $("[data-movie='Titanic']").

If you can’t find an existing tab F, you add a new one by adding an element to
the tab’s (which has a class name of ui-tabs-nav). Note that you add a data-
movie attribute with the name of the movie the user clicked. This is the hook that the
tab E uses to determine whether the tab is currently open. You also add a button for

If there
isn’t an
existing
tab, make
one.FCalls the

refresh()
method.

G
Finds the appropriate

tab to activate.
H

Determines
the tab’s
index.

I
Activates the
appropriate

tab.

J

Attaches a click
and keydown
event handler
to the Close
buttons.1)

In a keydown event,
only remove if the
Enter or space bar
keys are pressed.

1!

Removes the
appropriate
elements from
the DOM.1@

Calls the refresh()
method to update
the widget.1#
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Enhancing interfaces with layout and utility widgets
users to close tabs using one of the jQuery UI built-in icons: ui-icon-close. You’ll
learn more about using the jQuery UI icons in chapter 7.

 After adding the new tab, you have to call the refresh() method for the tabs wid-
get to render the new tab G. Note that you didn’t have to create a panel that corre-
sponds to the new list item. Because these tabs are remote, the tabs widget
automatically creates the panel when the remote link is activated.

 Your final step in the click handler is to activate the tab for the movie the user clicked.
You run the same query you ran earlier to find the tab for the movie that was clicked H:

existing = tabs.find("[data-movie='" + movie + "']")

This time, you know an with a corresponding data-movie attribute exists because
if it didn’t, you just created one. Because the tabs widget uses a numeric index to deter-
mine which tab is active, you must determine the index of the clicked movie’s tab to acti-
vate it I. Finally, you set the active option to this index to activate the tab J (more
on what that does momentarily).

 In the last bit of code, you use a delegated event handler to handle user clicks on the
Close buttons 1). The handler finds the button’s corresponding element and
panel, removes both from the DOM 1@, and calls the tabs’ refresh() method to update
the display 1#. There is one additional twist here: to make this UI keyboard accessible,
you also listen for keydown events that occur on the close icons. Normally this is unnec-
essary on buttons—because the browser fires click events on Enter and space bar key
presses—however, in this case, the tabs widget internally prevents the default action of
Enter and space bar key presses (to implement its own keyboard functionality). There-
fore you must explicitly listen for keydown events to make the Close buttons work with
the keyboard—including a check to make sure you close tabs only when the Enter and
space bar keys are pressed (and not “a”, “b”, and so forth) 1!.

NOTE Wondering about the key code constants ($.ui.keyCode.ENTER and
$.ui.keyCode.SPACE)? jQuery UI provides several of these constants so you
don’t have to memorize the numeric codes that browsers use—for instance, 13
for Enter and 32 for the space bar. You can view a full list of the constants pro-
vided at http://api.jqueryui.com/jQuery.ui.keyCode/.

Let’s go back to the tab activation, or what happens after you set the active option.
Activating the tab causes the tabs widget to load the HTML for the tab via an AJAX call
and display it to the user. Therefore, when the user clicks Titanic, movie.php
?movie=titanic is requested, and the HTML response is placed in a newly created
content panel and displayed. A sample implementation of a server-side resource that
builds this HTML—movie.php—is shown in the following code:

<?
 $movies = array(
 "ghostbusters" => array(
 "title" => "Ghostbusters",
 "box_office" => "238",
 "budget" => "30",
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

87Tabs: toggling between content areas
 "release" => "June 8th, 1984"
),
 "titanic" => array(
 "title" => "Titanic",
 "box_office" => "658",
 "budget" => "200",
 "release" => "December 19th, 1997"
),
 "top_gun" => array(
 "title" => "Top Gun",
 "box_office" => "179",
 "budget" => "15",
 "release" => "May 16th, 1986"
)
);

 $movie = $movies[$_GET["movie"]];
?>

<h3><? echo $movie["title"] ?></h3>

 Box Office:
 <? echo $movie["box_office"] ?> million USD

 Budget:
 <? echo $movie["budget"] ?> million USD

 Released:
 <? echo $movie["release"] ?>

WARNING Although it works well for a demo, hardcoding a large list of infor-
mation as in this example is generally a bad idea. A more robust implementa-
tion of this server-side component would get the movie information from a
database instead of hardcoding the information in arrays. Such an approach
would be more reusable (the movie data could be consumed elsewhere) and
more maintainable.

You now have a UI that’s both server and user friendly. The user gets two things: fast
page loads and the ability to toggle between movies to compare information. Your
servers benefit from reduced load; they only have to load detailed information when
users request it.

 Now that you know how to use the jQuery UI layout widgets to organize content,
let’s move on to the jQuery UI utility widgets, starting with one that groups actions
together: menu.

TIP Although tabs are shown on top of their content panels by default, you
can use CSS to position them on the bottom or side of their content. We’ll
look at an example of this in chapter 7.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 4 Enhancing interfaces with layout and utility widgets
4.3 Menu: creating web menus with semantic markup
The menu is a UI element that needs no introduction; nearly any interface you interact
with uses menus to group actions. jQuery UI makes it easy to create this common con-
trol on the web with the menu widget. With it, tasks such as creating nested menus, add-
ing icons to options, and using dividers to separate actions are simple. And like all the
jQuery UI widgets, you get a themeable and accessible widget with no extra effort.

 As with the layout widgets, the menu widget enhances semantic markup—in this
case an unordered list—to create a customizable and themeable control. The follow-
ing listing builds a menu control to showcase the menu widget’s features.

<style>
 .ui-menu { width: 200px; }
</style>
<ul id="menu">

 Star

 Options

 One
 Two

<script>
 $("#menu").menu();
</script>

Figure 4.4 shows the display of this menu widget.

Listing 4.4 A menu widget

The width of menus is 100% by default,
which is rarely what you need. This sets
the width of all menus to 200 pixels.

Any of the jQuery UI
icons can be used in
menu options.Empty list items

create dividers.

Lists can be nested to
create nested menus.

<ul id="menu">

 Star

 Options

 One
 Two

Empty list items create
dividers.

Any of jQuery UI’s icons can be
used in menu options.

The menu widget turns nested lists
into nested menu options.

Figure 4.4 A menu showcasing three features of the menu widget: the ability to turn nested lists into
nested menus, the ability to create dividers from empty elements, and the ability to add jQuery UI
icons to individual menu items.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

89Menu: creating web menus with semantic markup
Now that you have a menu in place, you need it to do something when the user selects
options. To show how this is done, let’s build an example.

 Suppose you want to build a UI to compose a message and store it in the browser.
On its own, this UI isn’t practical (there are easier ways to store messages). But you
could incorporate this approach in a more complex scenario where it would be valu-
able. Email clients, CMS services, blog commenting services, and online text editors all
preserve messages. Although simple, this message composer is an ideal way to intro-
duce the jQuery UI utility widgets.

NOTE The final version of the message composer is available at http://jsfiddle
.net/tj_vantoll/jAwrA/. If may be helpful to refer to the complete example
throughout the chapter for context.

You’ll start with a menu that has options to save a message, load its previous state, and
delete its saved state. Figure 4.5 shows the UI you’ll build for this.

The following listing shows an implementation of this UI. As in the previous example,
we’ll go over each piece of this individually.

<style>
 .ui-menu { width: 200px; }
</style>

<div id="composer">
 <h3>Message Composer</h3>
 <textarea id="message"></textarea>
</div>

<ul id="menu">

 Load

Listing 4.5 Implementation of a message composer

Load the saved state
of the message.

Save the current
state of the message.

The <textarea> where the user
can compose a message.

Delete the message.

Figure 4.5 The message composer you’ll build with the jQuery UI utility widgets. The user
can compose a message, save it, load a previously saved message, and delete the message.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/jAwrA/
http://jsfiddle.net/tj_vantoll/jAwrA/
http://www.it-ebooks.info/

90 CHAPTER 4 Enhancing interfaces with layout and utility widgets

 <li class="ui-state-disabled" id="save-option">
 Save

 Delete

<script>
 var menu = $("#menu").menu({
 select: function(event, ui) {
 var selection = $.trim(ui.item.text()),
 message = $("#message").val();

 switch(selection) {
 case "Load":
 message = localStorage.getItem("message");
 $("#message").val(message);
 break;
 case "Save":
 localStorage.setItem("message", message);
 break;
 case "Delete":
 $("#message").val("");
 localStorage.removeItem("message", "");
 break;
 }
 }
 });

 $("#message").on("keyup", function() {
 var message = $(this).val();
 if (message.length === 0) {
 $("#save-option").addClass("ui-state-disabled");
 } else {
 $("#save-option").removeClass("ui-state-disabled");
 }
 menu.menu("refresh");
 });
</script>

The menu has three items: Load, Save, and Delete. The Save option B is given a ui-
state-disabled class name. The menu widget automatically disables any option that
has this class name when the widget is created—which is what you want here, as users
can’t save a message until they type one.

 You then attach a callback for the menu’s select event C. The event is invoked
every time the user selects an option from the menu. The second argument of the
callback, ui, has an item property set to the user-selected element. You use the
textual content of that element to determine which option the user selected D.

 Next, you do a switch over the potential menu options. If the user selects Load,
you retrieve the value from localStorage and set the value of the <textarea> to the

The Save option
is disabled by
default.B

Attaches
a select

event
callback. C

Determines
which option
was selected.

D

Loads the
message from
localStorage. E

Saves the
message to
localStorage.

F

Deletes the
message from
localStorage.G

Listens for
keypresses on
the message
<textarea>.H

Disables the Save
option if the

message is empty.

I

Calls the menu’s
refresh() method.J
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

91Dialog: displaying content in a pop-up container
retrieved value E; if the user selects Save, you store the value of the <textarea>
in localStorage F; if the user selects Delete, you remove the value from local-
Storage G.

NOTE localStorage is an easy-to-use means of storing key-value pairs in the
browser that are persisted across sessions. Its main three methods—getItem(),
setItem(), and removeItem()—allow you to get, set, and remove strings,
respectively, from an in-browser data store for your domain. For more infor-
mation on localStorage, check out http://diveintohtml5.info/storage.html.

The last block of code prevents the user from saving an empty message. You attach a
keyup handler to the <textarea> H. If the message is empty, you add the ui-state-
disabled class name to the Save option; otherwise, you remove it I. The same as
accordion and tabs, in order for markup changes to take effect on menus you need to
call its refresh() method J.

 Menus make it easy to create a powerful widget of grouped actions. You’ll extend
this menu with additional functionality later in this chapter, but for now we’ll revisit a
utility widget you first saw in chapter 2: dialog.

4.4 Dialog: displaying content in a pop-up container
The dialog is another UI element that needs no introduction. Most UIs use dialogs to
display messages, confirm actions, or let the user select options. Despite their ubiqui-
tous presence in desktop interfaces, dialogs are difficult to create on the web. Internet
Explorer 4 introduced window.showModelessDialog()and window.showModalDialog()
to show modeless and modal dialogs, respectively (we’ll look at what those terms mean
momentarily). Unfortunately, these APIs were verbose and fraught with issues; they haven’t
been implemented in all browsers. HTML 5.1 introduces the <dialog> element, but it’ll be
a long time before this gets implemented everywhere, and longer yet before it provides the
functionality that web developers need.

 Luckily, the jQuery UI dialog widget provides an easy and elegant means to dis-
play content in dialog windows. You saw some of what you can do with dialogs in
chapter 2. Here we’ll look at the advanced use of dialogs. We’ll start with a common
use case for dialogs: confirmation.

 Confirmation dialogs are used to ensure the user wants to perform an irreversible
action. Recall that your menu example from the previous section had a Delete action
that removed the user’s message without confirmation. Let’s use the dialog widget to
add a confirmation step to the delete process. Figure 4.6 shows the confirmation dia-
log you’ll add.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Enhancing interfaces with layout and utility widgets
For reference, here’s a condensed version of how you’re currently handling a delete:

select: function(event, ui) {
 var selection = $.trim(ui.item.text());

 switch(selection) {
 ...
 case "Delete":
 $("#message").val("");
 localStorage.removeItem("message", "");
 break;
 }
}

To start this conversion, let’s move the delete functionality to a function:

function deleteMessage() {
 $("#message").val("");
 localStorage.removeItem("message", "");
};

The dialog is modal, so the user cannot
interact with any of these controls

while the dialog is open.

Close the dialog. Perform the delete.

Figure 4.6 Prior to deleting the user’s saved message, you’ll present this confirmation dialog. This dialog
allows the user to abort the action with the Cancel button, or proceed with the Yeah, Let’s Do It button.
This dialog is modal, which prevents the user from interacting with the rest of the screen until the user
interacts with the dialog.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

93Dialog: displaying content in a pop-up container
Next, let’s add the following <div> to your example’s HTML to serve as the confirma-
tion dialog:

<div id="confirmDelete">
 <p>Are you sure you want to delete your message?</p>
</div>

Now that you have this <div> on the DOM, you convert it to a dialog widget. This is
shown in the following code:

$("#confirmDelete").dialog({
 autoOpen: false,
 buttons: [
 {
 text: "Cancel",
 click: function() {
 $(this).dialog("close");
 }
 },
 {
 text: "Yeah, Let's Do It",
 click: function() {
 deleteMessage();
 $(this).dialog("close");
 },
 class: "primary"
 }
],
 minWidth: 400,
 modal: true
});

NOTE If you’re having trouble putting the pieces of this example together,
don’t worry. We’ll return to the full source at the end of this chapter.

By default, dialogs automatically open when they’re created. Here you don’t want that
behavior, as the dialog shouldn’t display until the Delete option is clicked. Therefore,
you set the autoOpen option to false B, preventing the automatic open.

 Next, you define the buttons you want with the buttons option. Each object in the
array can contain any attributes, properties, or event handlers the buttons should have.
For the Cancel button, you assign a click event handler that closes the dialog C. Note
that the context of the event handler (this) was automatically set to the dialog’s DOM
element. Therefore, you call the close() method with $(this).dialog("close").

 The confirmation button also closes the dialog but first calls the deleteMessage()
function you defined earlier to perform the delete D.

 The final property you configure is the modal option. By default, dialog widgets are
modeless—which means you can interact with other controls on the page while dialogs
are open. In this case, you don’t want users to be able to interact with the menu or alter
the message while the confirmation message is displaying, and you want users to focus
on the dialog rather than the rest of the UI; you set the modal option to true E. The

Sets the
dialog to NOT
auto-open

B

Calls the
close()
method

C

Calls the deleteMessage()
function, defined earlier

D

Applies a primary CSS class name that
you use to make the confirmation
button visually stand out

Makes the
dialog modal

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Enhancing interfaces with layout and utility widgets

dialog widget completely prevents users from interacting with content behind modal
dialogs—including both mouse- and keyboard-based input.

 After you create the dialog, your last step is to change the Delete handling to open
your new dialog instead of performing the delete. To do this, you change the code
that previously performed the delete to invoke your new dialog’s open() method:

case "Delete":
 $("#confirmDelete").dialog("open");
 break;

And that’s it! You now have a functioning confirmation dialog that verifies the user wants
to perform the irreversible delete action. We’ll continue looking at the dialog widget
throughout the book—we’ll even build a few dialog extensions in chapter 9—but for
now let’s move on to a utility widget that displays the status of a process: progressbar.

4.5 Progressbar: displaying the progress of a task
Progressbar is another common UI element in desktop applications. When you install
an application, your OS displays a bar indicating how far along in the process you are.
When you download a file, your browser displays a bar that shows the progress.

 The jQuery UI progressbar widget provides an easy way of implementing this func-
tionality on the web. The progressbar widget has two modes: determinate and indeter-
minate. Determinate progressbars are used to display exact values—10%, 20%, and so
forth. They should be used when you know the exact status of the process the pro-
gressbar is being shown for. An example of a determinate progressbar is shown in the
following code:

<style>
 .ui-button { margin-top: 1em; }
 .ui-progressbar { position: relative; }
 #progressbar-label {
 position: absolute;
 left: 50%;
 top: 4px;
 font-weight: bold;
 }
</style>

<div id="progressbar">
 <div id="progressbar-label">0%</div>
</div>
<button>Make Progress</button>

<script>
 $("#progressbar").progressbar();

 var button = $("button").button().on("click", function() {
 var value = $("#progressbar").progressbar("value");

 value += 10;

Positions the label
in the center of the
progressbar

Creates the
progressbar
widget

B Creates a
button
widget,
and listens
for clicks

C

Gets the
current
valueD

Increments
the value
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

95Progressbar: displaying the progress of a task
 $("#progressbar").progressbar("value", value);
 $("#progressbar-label").html(value + "%");
 if (value === 100) {
 button.button("disable");
 }
 });
</script>

You create a progressbar without setting any options B. The value option defaults
to 0, which creates a determinate progressbar.

NOTE You create indeterminate progressbars by setting the value option to
false. We’ll look at those shortly.

You also create a button widget and attach a click event handler to it C. On every
click you call the progressbar’s value() method as a getter to retrieve the widget’s cur-
rent numeric value D. Then, you increment the value by 10 and call the value()
method as a setter E to update the displayed value. With this approach, the progress-
bar moves from 0 to 100 by increments of 10 with each click of the button. The display
of this progressbar after three clicks is shown in figure 4.7.

Using determinate progressbars is appropriate when you know how far along in the
process the user is, such as when a user fills out a form with multiple parts. But often
this isn’t the case. For these situations, you need indeterminate progressbars.

 Indeterminate progressbars should be used to convey that some process is occur-
ring and you don’t know how long the process will take. To create indeterminate pro-
gressbars, you set the value option to false. Let’s return to your message composer
to see how you use an indeterminate progressbar.

 In this example, you store and load data from localStorage. Interacting with
localStorage is nearly instantaneous when dealing with small amounts of data like a
single message. Suppose, however, you have a more common and complex case of
loading and storing data in a server-side database. In this case, you don’t know how
long the user will have to wait while the data is retrieved and saved. Let’s simulate this
scenario and add an indeterminate progressbar to your example.

 Recall that previously you’ve been retrieving the stored message directly in the
select event:

select: function(event, ui) {
 var selection = $.trim(ui.item.text());

 switch(selection) {

Sets the
incremented
valueE

Updates
the label

If progress is
complete, disables
the button

Figure 4.7 A determine progressbar that advances 10% every time you click the Make Progress button.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 Enhancing interfaces with layout and utility widgets

C

 ...
 case "Load":
 message = localStorage.getItem("message");
 $("#message").val(message);
 break;
 }
}

As with the delete functionality, let’s move this processing to its own function:

function loadMessage() {
 var message = localStorage.getItem("message");
 $("#message").val(message);
}

To simulate more intensive processing, you wrap this functionality in a setTimeout to
delay it by a few seconds:

setTimeout(function() {
 var message = localStorage.getItem("message");
 $("#message").val(message);
}, Math.random() * 5000);

Because the user has to wait, you show an indeterminate progressbar while the pro-
cessing occurs. Furthermore, to prevent the user from interacting with the page dur-
ing this time, you also place the progressbar in a modal dialog. This is shown in the
following example:

function loadMessage() {
 var message,
 dialog = $("<div>").dialog({
 modal: true,
 title: "Loading..."
 }),
 progressbar = $("<div>").progressbar({ value: false });

 dialog.append(progressbar);
 setTimeout(function() {
 message = localStorage.getItem("message");
 $("#message").val(message);
 dialog.remove();
 }, Math.random() * 5000);
};

You create a new <div> and convert it to a modal dialog B. Because dialogs auto-
open, this dialog is instantly displayed to the user. Next, you create a new <div> and
convert it to an indeterminate progressbar C. You append the progressbar to the dia-
log so the bar displays in the dialog D. Finally, when the timeout finishes you load the
message as you did before E, and then remove the dialog from the DOM F.

 This pattern of showing an indeterminate progressbar in a modal dialog is a conve-
nient means of indicating to the user that some processing is occurring. The display of
this progressbar is shown in figure 4.8.

 With the progressbar in place, let’s move on to the next of the utility widgets: slider.

Delay processing
by 0 to 5 seconds.

Creates a
modal dialog

B Creates an
indeterminate

progressbar

Adds the
progressbar
to the dialog

D

Loads the
message

E

Removes
the dialogF
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

97Slider: selecting a value using moveable handles
4.6 Slider: selecting a value using moveable handles
Sliders are UI elements that let the user select a value between a min and a max. They
let the user quickly visualize the range of potential values and easily experiment with
values in that range. Because values are selected in a range, this automatically prevents
the user from selecting invalid values.

 As a realistic example, consider volume controls. They have a finite minimum
value (mute) and a finite maximum value (the loudest that the hardware can pro-
duce); therefore, volume controls are typically represented as sliders. This not only
gives the user an easy way to configure the volume level, but it also prevents the user
from choosing ridiculous values—like a negative volume.

 The jQuery UI slider widget brings this functionality to the web. The following
code shows a slider control with the min, max, step, and value options set:

<div id="slider"></div>
<script>
 $("#slider").slider({
 min: 0,
 max: 10,
 step: 2,
 value: 4
 });
</script>

This creates a slider to select a value between 0 and 10 that’s a multiple of two.
Because the value option is set to 4, the slider’s handle starts there.

 If this example seems familiar, it’s because the min, max, and step options are also
options on the spinner widget. The spinner widget enhances a textbox to accept
numeric values, and the slider widget creates a range to select a value from. The dif-
ference is shown in figure 4.9.

 So when do you use a slider and when do you use a spinner? In general, sliders are
best at collecting approximate values and spinners are best at collecting precise val-
ues. For example volume controls make good sliders because you want an approxi-
mate level (quiet or loud) rather than an exact numeric value. Most thermostats
function as spinners because you want an exact value—such as 72 degrees Fahrenheit.

Figure 4.8 An indeterminate pro-
gressbar displayed in a modal dia-
log to indicate that processing is
occurring—in this case you’re load-
ing a message.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4 Enhancing interfaces with layout and utility widgets
When you do want to use a slider, the widget allows more powerful customization than
putting a single handle on a range. Next, we’ll look at how to configure the slider to
collect a range of values.

4.6.1 Building range sliders

If you’ve ever shopped online, you’ve likely seen a range slider. Online retailers use
range sliders to let you filter items between a minimum and a maximum price, such as
all items between $25 and $75. To handle such a selection, you need the ability to
place multiple handles on the range.

 Building range sliders is tricky. You have to build multiple handles, prevent them
from overlapping, style the range in between the handles, and ensure keyboard inter-
actions continue to work. Fortunately, creating range sliders with the slider widget is
as easy as setting the range option.

 The range option accepts three values: true, "min", and "max". We’ll look at an
example to see what these values do. The following code shows three sliders with each
type of range slider:

<div id="spinner-range"></div>
<div id="spinner-range-min"></div>
<div id="spinner-range-max"></div>

<script>
 $("#spinner-range").slider({
 range: true,
 values: [25, 75]
 });
 $("#spinner-range-min").slider({

<input id="spinner" value="4">
<script>
 $("#spinner").spinner({
 min: 0,
 max: 10,
 step: 2
 });
</script>

<div id="slider"></div>
<script>
 $("#slider").slider({
 min: 0,
 max: 10,
 step: 2,
 value: 4
 });
</script>

Figure 4.9 A comparison of the spinner (top) and slider (bottom) widgets. Although both widgets accept
min, max, and step options, the spinner enforces them within a textbox, and the slider enforces them
using a visual range.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

99Slider: selecting a value using moveable handles
 range: "min",
 value: 25
 });
 $("#spinner-range-max").slider({
 range: "max",
 value: 75
 });
</script>

The display of this example is shown in figure 4.10.

As you can see from figure 4.10, a range option set to true creates a slider with two
handles. The values option can be passed an array to configure the starting points of
the two handles. The slider widget automatically styles the range between the handles.

 On the other hand, the min and max ranges use only one handle. A "min" range
highlights the area between the slider’s min option (which defaults to 0) and the
value; a "max" range highlights the area between the value and the slider’s max
option (which defaults to 100). Let’s use this functionality to add a range slider to
your message-composing example.

4.6.2 Adding a font size range

To show how to use a range slider, let’s add a setting so that the user can change the
font size of a message. This new control is shown in figure 4.11.

 Recall that the message itself is in a <textarea> with an id of "message":

<textarea id="message"></textarea>

{
 range: true,
 values: [25, 75]
}

{
 range: "min",
 value: 25
}

{
 range: "max",
 value: 75
}

Figure 4.10 The three different types of range options provided by the jQuery UI slider widget. When
the range option is true (top), the widget creates two handles and highlights the area between the
two; when the range is "min" (middle), the widget highlights the area between the value and the min;
when the range is "max" (bottom), the widget highlights the area between the value and the max.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Enhancing interfaces with layout and utility widgets
You start by defaulting the font size of this <textarea> to 1em and giving it a set
height and width:

#message {
 font-size: 1em;
 width: 250px;
 height: 100px;
}

Concrete dimensions prevent the <textarea> from resizing as you change the font-
size. Next, you add a new Settings option to your example’s menu:

<ul id="menu">
 ...

 Settings

When the user clicks this option, you have it open the following dialog:

<div id="settingsDialog">
 <p>Font Size:</p>
 <div id="slider"></div>
</div>
<script>
 $("#settingsDialog").dialog({
 autoOpen: false,
 title: "Settings"
 });
</script>

NOTE In this case, there’s no need to make the dialog modal. There’s no
harm in letting the user interact with the rest of the interface while the set-
tings dialog is open.

Your last step is to convert the <div id="slider"></div> in the dialog to a slider:

Figure 4.11 A slider to let the user
change the message’s font size
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

101Tooltip: enhancing native tooltips with a customizable control
$("#slider").slider({
 range: "min",
 value: 1,
 min: 0.5,
 max: 2.5,
 step: 0.1,
 slide: function(event, ui) {
 $("#message").css("font-size", ui.value + "em");
 }
});

Because this slider controls a font size in ems, and 1 em = 16 pixels by default, you
set the step to 0.1 so the steps on the range are gradual. Along the same lines, you
cap the minimum font-size at 0.5em and the maximum at 2.5em (8 pixels – 40
pixels by default).

 You use the slider’s slide event to change the font-size of the message. The
event is triggered every time the user changes the slider’s value. The new value is pro-
vided in the event’s ui argument; you use it to call jQuery Core’s css()method to per-
form the change.

 The slider widget makes a nice fit for this example as it lets the user see the mini-
mum and maximum font size at a glance and play with a variety of values. Next, we’ll
look at the last of the jQuery UI utility widgets: tooltip.

4.7 Tooltip: enhancing native tooltips with a customizable control
Like the other UI elements we’ve looked at in this chapter, tooltips are common on
desktop applications. Hover over any icon in a word processor, image editor, or mail
client and you’ll likely be shown text describing what the icon does.

 Unlike the other UI elements we’ve looked at, this behavior has been available on the
web nearly since its inception. If you give an element a title attribute, all browsers dis-
play a tooltip after the user hovers over the element for approximately 1 second:

<input id="tooltip" title="Hover over me for a second and this message appears">

Although this behavior is easy to add, it’s also limited. You have no control over the
following things:

■ The look of the tooltip.
■ When the tooltip appears and disappears.
■ Where the tooltip is positioned (above the element, below it, and so on).
■ What displays in the tooltip. (You can’t use HTML in a title attribute.)

The jQuery UI tooltip widget provides a customizable and themeable replacement for
native tooltips that makes all items in this list possible. Because it’s a direct replace-
ment, the tooltip widget uses the title attribute directly by default:

<input id="tooltip" title="tooltip">
<script>
 $("#tooltip").tooltip();
</script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Enhancing interfaces with layout and utility widgets
Figure 4.12 shows the effect of applying the tooltip widget to an <input>.
 Although you can create tooltip widgets on individual elements, you can also

instantiate the widget on any parent element. This approach adds tooltip functionality
to any descendent element with a title attribute by default. The following code adds
tooltip behavior to both <input> elements:

<div id="parent">
 <input title="tooltip">
 <input title="tooltip2">
</div>
<script>
 $("#parent").tooltip();
</script>

This technique can be extended to the topmost container of an HTML document, the
document object:

$(document).tooltip();

That one line of code is all you need to create a direct replacement for native tooltips
with the jQuery UI tooltip widget! Internally, the tooltip widget uses event delegation
to determine which elements to display tooltips on and when. Event handlers are
therefore attached only once, to the element the tooltip widget is created on. These
handlers listen for mouse and focus events on descendent elements and display tool-
tips appropriately.

 With delegated tooltips, the widget is smart enough to display tooltips on items you
dynamically add to the DOM. Consider the following example that dynamically adds
an <input>:

$(document).tooltip();
document.body.innerHTML += "<input title='tooltip'>";

Because of the delegated approach, even though the <input> is added after the widget
is created, tooltips display on the dynamically added element.

<input title="tooltip">

<input title="tooltip">
<script>
 $("input").tooltip();
</script>

Figure 4.12 Comparison of a native tooltip (top) and the jQuery UI tooltip (bottom). The display of the
native tooltip is controlled by the browser itself (this screenshot was taken in Chrome on OS X). The
display of the jQuery UI tooltip is consistent across all browsers, and is highly configurable.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

103Tooltip: enhancing native tooltips with a customizable control
NOTE The items option configures which elements display a tooltip. By
default, this is set to any element with a title attribute, or [title]. If you
wanted to display only tooltips on anchor elements with id attributes, you could
change the items option to [id]. You’ll see an example of this momentarily.

Although the tooltip widget provides an elegant replacement for the native control,
sometimes you need more. The tooltip widget supports more powerful customization
such as displaying HTML content, dynamically determining the content to display, and
getting content from an external server. Let’s see how.

4.7.1 Using custom tooltip content

The jQuery UI tooltip widget provides functionality far beyond what’s capable with
native title attributes. A title attribute, for example, can’t contain HTML; there-
fore, something as simple as bolding a word isn’t possible. With jQuery UI, you can use
HTML by setting the content option.

 The content option accepts a string with HTML to use as the message, or a func-
tion that returns the HTML to use. The following code shows how you can use the
string version of the tooltip to display bold text:

<input id="tooltip">
<script>
 $("#tooltip").tooltip({
 content: "Hi!"
 });
</script>

WARNING jQuery UI doesn’t parse HTML in a title attribute as it presents a
cross-site scripting vulnerability. When <input title="Hi!</
strong>"> is converted to a tooltip widget, it literally displays Hi!</
strong> in the tooltip presented to the user.

The function version of the content option adds the ability to customize the tooltip’s
behavior. The function is called before the tooltip is displayed to the user, and must
return the content to display in the tooltip. The default version of the content option
is a function that returns the element’s title attribute. The following example shows
how you can alter this behavior to display the id attribute of all elements in a tooltip:

<input id="I show!" title="I don't.">
<script>
 $(document).tooltip({
 content: function() {
 return this.id;
 },
 items: "[id]"
 });
</script>

Displays the idB

Uses tooltips for all
elements with an idC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 Enhancing interfaces with layout and utility widgets
You instantiate a tooltip widget on the document object itself to ensure all elements on
the DOM can potentially use tooltips. Then, you specify a function for the content
option that returns the element’s id B.

 Next, you set the items option, which identifies the elements that display dele-
gated tooltips. For consistency with the native tooltips, the items option defaults to
[title], which tells the widget to show a tooltip on all items with a title attribute;
for example, <input title="title">. Because this example is driven by id attributes,
you change items to show a tooltip on all elements that have an id C; for example,
<input id="id">.

 Now that we’ve taken a tour of the tooltip widget’s functionality, let’s return to the
message composer example to see how the tooltip widget can enhance your UI.

4.7.2 Displaying a preview in a tooltip

Recall that the first option in the message composer menu was an option to load a
previously stored message:

<ul id="menu">

 Load

 …

Unfortunately, the user currently has no way of previewing the saved message before
loading. Let’s use the tooltip widget to add this behavior. This is implemented in the
following code:

$("#menu li:first").tooltip({
 content: function() {
 var message = localStorage.getItem("message");
 if (message && message.length > 20) {
 return message.substring(0, 20) + "...";
 } else {
 return message;
 }
 },
 items: "*",
 show: { delay: 300 },
 position: {
 my: "left center",
 at: "right center"
 }
});

You create a tooltip on the Load menu option. The tooltip is for a preview, not for dis-
playing the entire message. The content function grabs the actual message from
localStorage, then conditionally substrings long messages and adds an ellipsis (…)
to them B.

The first menu option is
the Load option. Attach
a tooltip widget to it.

Builds the message
to display in the
tooltip.

B

Ensures the element
displays despite having
no title attribute.

C

Shows the
tooltip after
a 1-second
delay.

D

Positions the element on
the right of the menu.

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

105Tooltip: enhancing native tooltips with a customizable control
Because the Load menu item doesn’t have a title attribute, you override the default
items option of [title] C. The star selector ("*") selects all elements. Because only
one element is eligible here—the selected #menu li:first—it’s the only element
matched.

 Finally, you set options that we’ll be taking a deeper look at in later chapters. The
show option uses the jQuery UI effects configuration to show the tooltip after a 1-second
delay D. We’ll dig deeper into the full functionality of effects in chapter 6.

 The position option sets the tooltip to display on the right-hand side of the Load
menu option E. We’ll look at the position utility and how this option can be config-
ured in chapter 12.

 The resulting tooltip that shows a message preview is shown in figure 4.13. This
example assumes the user has previously saved a message of “Tooltips are an awesome
UI control.”

 As a reminder, the full source of the message composer example is available at
http://jsfiddle.net/tj_vantoll/jAwrA/. There you can play with all the options the
tooltip widget provides. We’ll look at additional uses of the tooltip widget throughout
this book, including adding pointers to the tooltips in chapter 7, and using tooltips to
display accessible form validation messages in chapter 11.

Figure 4.13 To give users a way
to preview their stored message,
you show a tooltip when they hov-
er over the Load menu option.

Using AJAX to retrieve tooltip content
The function form of the content option has one final variation that can be used to
support content retrieved asynchronously. To use this variation, instead of returning
a value directly, you invoke the function’s first argument with the content to use. This
is easier to see in an example. The following code displays a message tooltip for all
elements with a title attribute:

$(document).tooltip({
 content: function(response) {
 response("message");
 }
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Enhancing interfaces with layout and utility widgets
4.8 Summary
jQuery UI provides a collection of widgets that make building complex web UIs sim-
ple. The layout widgets—accordion and tabs—help you organize content in digestible
chunks. You used the tabs widget to load remote data and create panels the user could
toggle between and close. The jQuery UI utility widgets made it easy to replicate com-
mon desktop UI elements on the web. You used the utility widgets to build a demo for
composing messages in the browser.

 You’ll continue to look at these widgets throughout the book. You’ll see how to
add effects to UI widgets in chapter 6, style UI widgets in chapter 7, and extend UI wid-
gets in chapter 9. You’ll also dig under the hood to see how these widgets are built in
chapter 12. For now though, we’ll shift from UI widgets to widgets that add mouse-
based interactions.

(continued)
To use AJAX-loaded content, perform the server-side call and then invoke the same
callback function with the results, as shown in the following code:

$(document).tooltip({
 content: function(response) {
 $.ajax({ url: "/path/to/server" })
 .then(function(data) {
 response(data);
 });
 }
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Adding interaction
 to your interfaces
jQuery UI provides two types of widgets: the themeable widgets you’ve spent the last
two chapters on, and a set of mouse-based widgets collectively known as interac-
tions. Rather than changing the appearance of DOM elements, interactions let you
perform various actions on DOM elements using the mouse. Applying the dragga-
ble widget to a DOM element, for example, lets the user drag the element around
the screen using the mouse.

 Despite being a different type of widget, interactions are still widgets imple-
mented using the widget factory. The same conventions for options, methods, and
events that you’ve learned still apply.

 These mouse-based interactions are powerful tools when building interfaces.
Suppose you need users to rank five movies from best to worst in a web form. You

This chapter covers
■ Building drag-and-drop interactions
■ Sorting items in a list
■ Resizing and selecting elements
■ Building touch-friendly interactions
107

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 Adding interaction to your interfaces
could provide text boxes to let users manually type in the rankings, but it’s far easier—
and more intuitive—to use the mouse to rearrange the movies. The sortable widget
makes this interaction possible.

 One major limitation of these interactions is that they don’t currently support
touch events; by default, the examples presented in this chapter don’t work on iOS or
Android devices. We’ll explain why, and then look at a workaround to get touch
events working in jQuery UI right now.

 Let’s begin our look at the jQuery UI interactions with the most commonly used
one: draggable.

5.1 Draggable: allowing users to move elements
Draggable elements are ubiquitous in modern computer interfaces. Your OS of choice
undoubtedly lets you drag files to move them around in the filesystem.

 Although draggable interfaces are common, implementing them on the web still
isn’t easy. The HTML5 specification includes a draggable attribute that has now been
implemented in all desktop browsers. Although the draggable attribute is great for
dragging an element around the screen, it—like many native HTML5 features—suffers
from limited customizability and extensibility.

 The draggable widget shines because it makes it easy to perform complex interac-
tions. To show how, let’s build a few. Because interactions are widgets, they follow the
same initialization conventions you’ve learned. The following code creates a red box
you can drag around the screen:
<style>
 #draggable {
 width: 100px;
 height: 100px;
 background: red;
 }
</style>
<div id="draggable"></div>
<script>
 $("#draggable").draggable();
</script>

First of all, it’s pretty cool that one line of JavaScript is all you need to make an element
draggable. But you can do more. The following code makes two draggables—one that
can be moved only on the x-axis, and one that can be moved only on the y-axis:

<style>
 #x, #y {
 width: 100px;
 height: 100px;
 }
 #x { background: red; }
 #y { background: blue; }
</style>
<div id="x"></div>
<div id="y"></div>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

109Draggable: allowing users to move elements
<script>
 $("#x").draggable({ axis: "x" });
 $("#y").draggable({ axis: "y" });
</script>

It’s powerful to see what you can do with a small amount of code. Let’s look at one
more example. Another common use case for draggable elements is constraining the
area in which they’re draggable. The draggable element makes this easy to implement
with the containment option, as shown in the following code:

<style>
 #parent {
 border: 1px dotted black;
 width: 400px;
 height: 200px;
 }
 #draggable {
 background: red;
 height: 50px;
 width: 50px;
 }
</style>
<div id="parent">
 <div id="draggable"></div>
</div>
<script>
 $("#draggable").draggable({ containment: "#parent" });
</script>

Here, because the containment option is set to "parent", the draggable widget auto-
matically prevents the draggable element from leaving its parent’s boundaries. This
behavior is shown in figure 5.1.

TIP The containment option also accepts a DOM element, the strings "par-
ent", "document", and "window"—and even an array of coordinates in the
document, such as in the form of (x1, y1, x2, y2). For more details, see
http://api.jqueryui.com/draggable/#option-containment.

Contains the parent
element—a 400 x 200-
pixel box with a 1-pixel
dotted black border

Contains the draggable
element—a red 50 x
50-pixel-square box

Contains the element in the
element with id “parent”

The draggable widget
contains the element

within its parent.

Figure 5.1 The draggable widget enforces the containment of the draggable box within its parent.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 Adding interaction to your interfaces
There’s more to draggable than this, but before we delve too deep into draggable
functionality, we need to introduce its sister widget: droppable.

5.2 Droppable: creating containers that accept draggables
Most UIs that use draggables also use droppables. Consider the OS’s file interface.
When you start dragging files, you can move them to alternate directories, move them
to the trash bin, move them to other applications, and more.

 The jQuery UI droppable widget makes it seamless to create drop targets for drag-
gable widgets. As a short example, the following code has two <div> elements, the
first of which is turned into a draggable widget and the second into a droppable wid-
get. A drop event is fired whenever a draggable is dropped onto a droppable. You use
a drop event callback to change the droppable’s background to red, indicating that a
drop occurred:

<style>
 #draggable {
 width: 100px;
 height: 100px;
 border: 1px solid black;
 }
 #droppable {
 width: 200px;
 height: 200px;
 border: 1px solid black;
 }
</style>
<div id="draggable"></div>
<div id="droppable"></div>
<script>
 $("#draggable").draggable();
 $("#droppable").droppable({
 drop: function() {
 $(this).css("background", "red");
 }
 });
</script>

That’s all there is to detecting a drop. The widget handles all the complex mouse
events and collision detection for you. Although this example shows what you can
accomplish with a small amount of code, chances are you’ll need to build some-
thing more complex than a box that turns red. To build something more useful, and
to show off what draggable and droppable make possible, let’s build something
fun—a game.

5.2.1 Building a drag-and-drop game

Although drag and drop has many applications, one of the most prominent is in
games. Dragging and dropping items on the screen builds a far more user-friendly
experience than interacting with a series of form controls.

The draggable
element, a 100-
pixel-square box.

The droppable
element, a 200-
pixel-square box.

Set to the droppable
element. Change its
background to red
after the draggable
box is dropped on it.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

111Droppable: creating containers that accept draggables
For the purpose of this example, let’s suppose you’re a company that develops web
games for children. You’ll build a game in which kids have to match colors to words
(matching a blue box to the word blue). Figure 5.2 shows the game you’ll build.

 The source for this example is shown in the following listing. Don’t worry about
the details; we’ll go over each part individually.

NOTE Some of the visual CSS is omitted from this example for clarity. You
can check out the full source and play with this example live at http://jsfid-
dle.net/tj_vantoll/S7pdy/.

<style>
 #colors {
 position: absolute;
 }
 .ui-draggable {
 width: 100px;
 height: 100px;
 cursor: move;
 border: 1px solid black;
 }
 #drop-zones {
 position: absolute;
 left: 200px;
 }
 #drop-zones > div {
 width: 100px;
 height: 100px;

Listing 5.1 A children’s word-matching drag-and-drop game

Figure 5.2 A game where children must match the colored
boxes on the left to the word boxes on the right. To imple-
ment this, you convert the colored boxes to draggable wid-
gets and the word boxes to droppable widgets.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/S7pdy/
http://jsfiddle.net/tj_vantoll/S7pdy/
http://www.it-ebooks.info/

112 CHAPTER 5 Adding interaction to your interfaces

 with
ct
 border: 1px solid black;
 }
</style>

<div id="colors"></div>
<div id="drop-zones"></div>

<script>
 function randomize(array) {
 return array.sort(function() {
 return 0.5 - Math.random();
 });
 };

 var i = 0,
 colors = randomize(["red", "blue", "green", "yellow"]);

 for (; i < colors.length; i++) {
 $("<div>", { id: colors[i] })
 .css("background", colors[i])
 .appendTo("#colors")
 .draggable({ revert: "invalid", zIndex: 2 });
 }

 randomize(colors);
 for (i = 0; i < colors.length; i++) {
 $("<div>", { text: colors[i] })
 .appendTo("#drop-zones");
 }

 $("#drop-zones > div").droppable({
 accept: function(draggable) {
 return $(this).text() == draggable.attr("id");
 },
 drop: function(event, ui) {
 var color = ui.draggable.css("background-color");
 $(this).css("background", color).addClass("filled");
 ui.draggable.hide("puff");

 if ($(".filled").length === colors.length) {
 $("<div><p>Nice job! Refreshing game.</p></div>")
 .dialog({ modal: true });
 setTimeout(function() {
 window.location = window.location;
 }, 3000);
 }
 }
 });
</script>

This first thing to note in this example is the list of colors B. To ensure all games are
different, you define a randomize() function that sorts this array in a random order.

 Next, for each color in your array, you create a new <div> and set its id and back-
ground to that color, such as <div id="red" style="background: red;">. You then
append the newly created <div> to the colors container (<div id="colors">) and
convert it to a draggable widget C.

Randomizes the
list of colors used

B

Builds the color
draggablesC

Rerandomizes the colors before
building the droppablesD

Builds
the drop

zones

E

Determines
the types of
draggables
each droppable
accepts

F

Sets the
background

of the
droppable
on success

G

Hides the
draggable
a puff effe

H

Shows a confirmation
dialog on game completion I
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

113Droppable: creating containers that accept draggables
 In doing so, you set two options: revert to false and zIndex to 2. The zIndex
option controls the zIndex CSS property applied to the element being dragged. By set-
ting it to 2, you ensure that the dragged element always displays on top of all other ele-
ments (because no elements have zIndex rules applied).

 The revert option controls whether a draggable element returns to its starting posi-
tion when dragging stops. When set to false (the default), the element never reverts;
when set to true, it always reverts. You set it to "invalid"—which means the draggable
reverts when not dropped on a droppable. This behavior is advantageous for your game,
as the reversion provides visual feedback to the user that the selection was invalid.

TIP You can control the duration of the revert animation using the revert-
Duration option. If you were to set revertDuration to 2000, invalid dragga-
ble elements would take two full seconds to return to their starting positions.

Now that you’ve created the draggables, you have to create the droppable areas. You
again randomize the list of colors D. If you didn’t do this, the draggables would
always be aligned with their appropriate droppable, which wouldn’t be much of a
challenge for your users!

 After this, you again create a new <div> for each color. This time, though, you
append the newly created elements to the drop zone container (<div id="drop-
zones">) and set each color as their text E.

 The last step is to convert these new drop zones to droppable widgets. You set an
accept option and a drop event callback. The droppable widget’s accept option con-
trols which draggable widgets should be accepted. It supports two types of arguments.
The first is a CSS selector—for example, "*" allows all draggables and "#foo" only
allows draggables with an id of "foo". The second, and the one you use F, is a func-
tion that must return a Boolean indicating whether the draggable should be accepted.
Your version is shown here:

accept: function(draggable) {
 return $(this).text() == draggable.attr("id");
}

The context of the accept option (this) is set to the droppable element and is passed
the draggable element as an argument. Recall that you set both the content of the
droppables and the id of the draggables equal to the color’s name. With that in mind,
this function is saying, “when the text of the droppable matches the id of the dragga-
ble, the draggable should be accepted; otherwise, it should be rejected.”

 Because the accept option enforces the color section, your drop event is called
only after the user makes valid selections. The drop event’s ui parameter contains a
reference to the draggable object in its draggable property. You grab the back-
ground-color from the draggable element and set it as the background of the droppa-
ble one as shown in the following code and at G. A "filled" class name is also
added; you’ll use that later to determine when the game is complete:

var color = ui.draggable.css("background-color");
$(this).css("background", color).addClass("filled");
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 5 Adding interaction to your interfaces
NOTE As with the accept option, the context of the drop event is automati-
cally set to the droppable’s DOM element.

The background change gives the user a visual indication that the drop was successful,
and because it was, you also no longer need the draggable. Therefore, you hide it H:

ui.draggable.hide("puff");

You use one of the jQuery UI effects—puff—to add a small effect that makes the drag-
gable grow slightly as it fades away. We’ll look more at how these effects can be config-
ured in chapter 6.

 The last thing you need to do is determine when the game is complete. Recall that
you added a "filled" class name to each droppable in the drop event. Therefore,
when the number of filled droppables matches the number of colors ($(".filled"
).length === colors.length), the game is complete. At this point you show the user
a congratulatory message I then refresh the page to restart the game.

 And with that, you have a fully functional matching game! Although there’s a
decent amount of code here, think about all the code the draggable and droppable
widgets save you. You didn’t have to write any code to implement dragging, detect col-
lisions, or animate the draggables on invalid selections. Also, because you wrote this in
a manner that looped over the colors, it’s easy to alter the number of colors in this
game to adjust the difficulty level. Try adding to the colors array, and note how the
game still functions fine.

 Although this is cool, you may be “I don’t build children’s games; how is this useful
to me?” Dragging and dropping elements has all sorts of practical use cases, including
a common feature on most e-commerce sites: the shopping cart.

5.2.2 Building a shopping cart

If you’ve ever shopped online, you’ve almost certainly used a shopping cart. In this
section, let’s imagine that you need to build an online shopping cart for a local gro-
cery store. Due to the nature of grocery shopping, users tend to end up with a nontriv-
ial number of items in their cart. Due to the number of transactions, you want to give
the user an easy and intuitive way to add items. Therefore, you’ll add a twist to the nor-
mal online shopping cart experience and let the users drag and drop available items
to their cart.

 We’ll use this cart to explain a few more of the common configuration options in
the draggable and droppable widgets. Figure 5.3 shows the cart that you’ll build with
the draggable helper and cursor options annotated.

 The following listing shows the implementation of the shopping cart.

NOTE A live demo of this example is available at http://jsfiddle.net/
tj_vantoll/PUVXn/

 .
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/PUVXn/
http://jsfiddle.net/tj_vantoll/PUVXn/
http://www.it-ebooks.info/

115Droppable: creating containers that accept draggables
<style>
 #items { list-style: none; }
 #items li {
 border: 1px solid black;
 border-radius: 5px;
 width: 100px;
 cursor: move;
 }
 #cart {
 position: fixed;
 top: 0;
 right: 0;
 height: 55px;
 width: 150px;
 border: 2px solid black;
 }
 #cart.active {
 border: 2px dotted black;
 }
 #cart.hover {
 opacity: 0.5;
 }
</style>

<ul id="items">
 Bananas
 Apples
 Grapes
 Oranges
 Watermelon
 Strawberries

<div id="cart">
 Cart - 0 Item(s)

Listing 5.2 A grocery store shopping cart implementation

{ cursor: "move" }

{ helper: "clone" }

Figure 5.3 A shopping cart implemented with the jQuery UI draggable and droppable widgets
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 5 Adding interaction to your interfaces
</div>

<script>
 $("#items li").draggable({
 cursor: "move",
 revert: "invalid",
 helper: "clone"
 });
 $("#cart").droppable({
 activeClass: "active",
 hoverClass: "hover",
 drop: function(event, ui) {
 var count = parseInt($("#count").text(), 10);
 $("#count").text(count + 1);
 },
 tolerance: "touch"
 });
</script>

You use CSS to position the cart in the top-right corner of the screen and the list of
grocery items on the left. In JavaScript, you convert the items to draggable widgets
and the cart to a droppable widget.

 When converting the grocery list items to draggables, the first option you set is the
cursor option to "move" B. This tells the widget to set the CSS cursor property to
"move" while the draggable is dragged by the user. Although the cursor property has
many potential values (see https://developer.mozilla.org/en-US/docs/Web/CSS/
cursor for a list), "move" is the most appropriate choice for draggable elements.
Because the cursor option only determines the cursor during a move, you also set {
cursor: move; } on #items li in CSS. This provides the move cursor for users when
they hover before they begin dragging. Setting these properties is important as the
cursor change helps the user discover that the element in question can be dragged.

 Next, you set the revert option to "invalid" as you did in the previous example.
This is a common selection as it provides feedback to users that they missed the
intended target.

 Last, you set the helper option, which controls the element that the user drags.
By default, helper is set to "original", which means the element converted to a
draggable widget is used as the helper. You used this behavior in your matching game
in the previous section. But in this case, you want to give the user the ability to drop
multiple items of the same type in the cart; therefore, you leave the original dragga-
ble element in place. When the helper option is set to "clone" C, the draggable
widget automatically clones the draggable when a drag starts, and removes the clone
after a drag completes.

TIP You can also pass a function for the helper option that returns a DOM
element to use as a helper while dragging. This is useful when the original
element is large or complex, and you only want to show a simplified represen-
tation while dragging.

Uses the CSS
move cursor

B

Uses a clone of the item
as the draggable helper

C

Applies this
class name to
the droppable
on activation E

Applies this class name to
the droppable on hover

D

Accepts draggables
on any overlap

Increments the
cart’s item countF
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
http://www.it-ebooks.info/

117Droppable: creating containers that accept draggables
Now that the items are draggables, you need to turn the cart into a droppable widget.
The first two options you set are activeClass to "active" D and hoverClass to
"hover" E. These options represent CSS class names to apply to the droppable ele-
ment whenever an acceptable draggable is being dragged or hovered over the droppa-
ble, respectively. In this case, because you didn’t specify an accept option, all
draggable elements are considered acceptable. Like the cursor option, you use these
class names to provide feedback to users. The display of the cart name under the vari-
ous states is shown in figure 5.4.

 If the feedback provided by these class names is so important, why didn’t you use it
in the matching game? Because activeClass and hoverClass apply class names only
to acceptable droppables, they would affect only the correct color droppable in the
matching game. Styling with these options would give away the correct answer!

 The last option you set is tolerance F, which determines which algorithm the
widgets should use for determining whether a draggable is indeed over a droppable.
It has four possible values:

■ "fit"—Drop is valid if the draggable overlaps the droppable completely.
■ "intersect"—Drop is valid if the draggable overlaps the droppable by at

least 50% vertically and horizontally. This is the default setting.
■ "pointer"—Drop is valid if the mouse cursor is over the droppable.
■ "touch"—Drop is valid if the draggable overlaps the droppable in any amount.

For your cart you want to make it as easy as possible for users to add items, so you set
tolerance to the most permissive value: "touch".

Hover state (draggable
over droppable)

Default state

Active state (drag in progress)

#cart { border: 2px solid black; }

#cart.active {
 border: 2px dotted black;
}

#cart.hover {
 opacity: 0.5;
}

Figure 5.4 The default, active, and hover states of a droppable as applied to the shopping cart
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 5 Adding interaction to your interfaces
 And that’s it for this example. In a few lines of code, you created a simple drag-and-
drop shopping cart. Because it requires so little code, this functionality can easily be
added to just about any existing shopping cart application.

 With that, our look at the draggable and droppable widgets is complete, but we’re
just getting started with jQuery UI interactions. Next, we’ll look at a close relative of
the draggable and droppable widgets: sortable.

5.3 Sortable: rearranging elements in a list
One of the more common applications of draggable interfaces is the ability to sort
items in a list. Although common, the sortable interaction is shockingly difficult to
implement. You have to implement the logic to enable the mouse events for dragging,
and then the collision detection from droppable, and then you need to reposition the
items in the list to account for the rearranged list. Because of this, the sortable widget
is the most complex widget in jQuery UI.

 Fortunately, this complexity has all been abstracted to an easy-to-use widget. To cre-
ate sortables, you call the plugin on an unordered list:

<ul id="sortable">
 Item 1
 Item 2
 Item 3

<script>
 $("#sortable").sortable();
</script>

That’s all it takes to make the items in a list sortable by the user.

TIP Although elements are the most common, you can turn any ele-
ment into a sortable widget. The widget element’s immediate children are
converted to sortable items. This can be customized using the items option.

This interaction leads to all sorts of possibilities. Recall your movie site that you
worked on in the last chapter. Let’s suppose that the owners of this site contact you
with a new feature in mind. They want to conduct a poll and have their users rank five
popular movies from best to worst.

 Think for a moment about how you’d implement this. Radio buttons are often
used for polls, but they can gather only one selection, not capture the order of five
items. You could use text boxes, but that’s not user friendly. Let’s see how you can
build this poll using the sortable widget.

 Figure 5.5 shows the poll that you’ll build.
 The implementation of this poll is shown in the following listing.

NOTE Some visual CSS is not shown in the listing. The full source is available
online at http://jsfiddle.net/tj_vantoll/5N6h9/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

119Sortable: rearranging elements in a list
<style>
 #movies li:hover { cursor: move; }
 #movies .movie-placeholder {
 border: 1px dotted black;
 }
</style>

<p>Please rank these movies (best to worst):</p>
<ol id="movies">
<button>Submit</button>

<script>
 var movies = ["Ghostbusters", "Titanic", "Top Gun",
 "Aliens", "Predator"].sort(function() {
 return 0.5 - Math.random();
 }),
 i = 0,
 list = $("#movies").sortable({
 placeholder: "movie-placeholder"
 });

 for (; i < movies.length; i++) {
 list.append("" + movies[i] + "");
 }

 $("button").button().on("click", function() {
 var movies = [];
 $("#movies li").each(function() {
 movies.push(this.innerHTML);
 });
 alert("Selection: " + movies.join(", "));
 });
</script>

You start with a list of movies that you rearrange in a random order B. You do this so
the initial ordering of the list doesn’t influence your users’s selections.

Listing 5.3 A movie-ranking poll

Figure 5.5 A poll that asks users to rank five movies from best to worst. The poll is implemented with
the sortable widget; meaning, the user can rearrange movies with the mouse.

Randomizes
the movie
order

B

Creates the
sortable
widgetC

Shows the user’s
selections in a
pop up

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 Adding interaction to your interfaces
Next you set one of the sortable’s most common options: placeholder C. While a
sortable item is being dragged, the sortable widget adds a filler element to the list.
The sortable adds the filler where the item would be if it were dropped. This filler ele-
ment is known as a placeholder and is far easier to show in a picture. Figure 5.6 shows
the display of the placeholder during a sort.

 The placeholder option specifies a class name to apply to this element so it can be
styled with CSS. In your example you apply a movie-placeholder class name with an
associated border: 1px dotted black CSS rule so your placeholder in figure 5.6 dis-
plays with a dotted border.

 The last thing you do is attach a click event handler to your Submit button to
gather the results. In the handler, you loop over each list item sequentially ($("#mov-
ies li").each(…)) and push each item’s innerHTML—which is the name of the
movie—to an array. At the end of the handler, you alert the user to show the results
were collected successfully D. In a more realistic scenario, you’d send this data to a
server that would aggregate these rankings and show the totals to the user.

 This example shows how to use the sortable widget to build a practical UI control
with a limited amount of code. Think of how painful and user unfriendly it would be
to build a ranking control with regular HTML form elements. Next, we’ll show a more
powerful use of the sortable widget: connecting multiple lists.

Placeholder

Figure 5.6 The dotted, bordered
box is the placeholder element that
the sortable widget creates.

Draggable vs. sortable
Even though much of the functionality is the same, the draggable and sortable widgets
are not dependent on each other; but they do share a similar API. The sortable widget
uses the following options that are also in draggable: axis, cancel, containment,
cursor, cursorAt, delay, disabled, distance, grid, handle, helper, opacity,
revert, scroll, scrollSensitivity, scrollSpeed, and zIndex.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

121Sortable: rearranging elements in a list
5.3.1 Building connected lists

A common requirement of sortable lists is to connect multiple lists to each other. Con-
sider a scheduling application where people or supplies need to be divided into multi-
ple groups, or a to-do app that lets users move items from To Do to Done (and,
unfortunately, vice versa). The jQuery UI sortable widget makes it easy to connect lists
with the connectWith option.

 To show how to do this, let’s build another children’s game with a different twist.
This time you’ll present the user with two lists with mismatched items—in this case,
fruits and vegetables. The user’s job is to move each item to the appropriate list.

 To start, you create lists and connect them with the connectWith option. The fol-
lowing example builds two connected lists:

<h3>Fruits</h3>

 Banana
 Carrot
 Grape

<h3>Vegetables</h3>

 Apple
 Pea
 Spinach

<script>
 $("ul").sortable({
 connectWith: "ul"
 });
</script>

The connectWith option takes a selector of sortable elements that the current list
should be connected to. Therefore, $("ul").sortable({ connectWith: "ul" })
converts all elements to sortable widgets and connects them all. The user can
then drag items from the fruits list to the vegetables list and vice versa. Let’s see how
you can take this basic functionality and turn it into a complete game.

5.3.2 Building a fruit and vegetable sorting game

To create a game, you need to do more than build lists. You need to validate the cor-
rectness of the lists, and ideally add a bit of randomness so the user isn’t playing the
same game every time. The sortable widget gives you the hooks to make this possible.

(continued)
The sortable widget’s tolerance option is similar to the droppable widget’s; howev-
er, droppable offers four choices—"fit", "intersect", "pointer", and "touch";
sortable offers only "intersect" and "pointer".
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Adding interaction to your interfaces
As with previous examples, we’ll show an implementation of the game, and then walk
through it step by step. Figure 5.7 shows the display of the game, and the implementa-
tion is shown in listing 5.4.

NOTE The CSS for this example is omitted here for brevity. You can view it in
the book’s downloadable code samples, or view this example live at http://
jsfiddle.net/tj_vantoll/nCjwc/.

<p>The fruits and vegetables are not sorted correctly—rearrange them!</p>
<div id="game">
 <div id="fruits-container">
 <h3>Fruits</h3>
 <ul id="fruits">
 </div>
 <div id="vegetables-container">
 <h3>Vegetables</h3>
 <ul id="vegetables">
 </div>
</div>
<script>
 var fruits = ["Avocado", "Banana", "Apple", "Cherry", "Fig", "Grape",
 "Kiwi", "Lemon", "Olives", "Orange", "Pumpkin", "Tomato"],
 vegetables = ["Broccoli", "Carrot", "Celery", "Corn", "Garlic",
 "Green Bean", "Kale", "Lettuce", "Onion", "Pea", "Spinach",
 "Turnip"];

 $.each(fruits.concat(vegetables), function(index, item) {
 var type = fruits.indexOf(item) >= 0 ? "fruit" : "vegetable";

 if (Math.random() < 0.6) {
 $("<li data-type=" + type + ">" + item + "")
 .appendTo(Math.random() >= 0.5 ? "#fruits" :
 "#vegetables");
 }
 });

 $("#fruits, #vegetables").sortable({

Listing 5.4 A children’s game to sort fruits and vegetables

Figure 5.7 A fruit and vegetable sorting game
implemented with the sortable widget. The user
must move all fruits into the fruits list and all veg-
etables into the vegetables list to win.

Randomly
determines
whether
each item
is includedB

Creates
a new

list item
for each

fruit and
vegetable C
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/nCjwc/
http://jsfiddle.net/tj_vantoll/nCjwc/
http://www.it-ebooks.info/

123Sortable: rearranging elements in a list
 connectWith: "#fruits, #vegetables",
 cursor: "move",
 helper: function(event, item) {
 return $("<div>", { text: item.text() });
 },
 placeholder: "sortable-placeholder",
 stop: function() {
 if (isValid()) {
 $("<div>").append("<p>Correct! Refreshing game.</p>")
 .dialog();
 setTimeout(function() {
 window.location = window.location;
 }, 3000);
 }
 }
 });

 function isValid() {
 var valid = true;
 $("#fruits li, #vegetables li").each(function() {
 var item = $(this),
 actual = item.parent()[0].id == "fruits" ? "fruit" :
 "vegetable",
 correct = item.attr("data-type");

 if (actual != correct) {
 valid = false;
 }
 });
 return valid;
 };
</script>

You start with an array of fruits and vegetables, and loop over them to create the sortable
items. You wrap the addition of each fruit and vegetable with a Math.random()< 0.6
call B. Because Math.random() returns a number between 0 and 1, each fruit and veg-
etable is present in the game 60% of the time. This adds randomness so that users aren’t
bored after their first play.

 For each fruit and vegetable that passes your check, you then create a list item as
shown in the following code C:

$("<li data-type=" + type + ">" + item + "")
 .appendTo(Math.random() >= 0.5 ? "#fruits" : "#vegetables");

Two interesting things are going on here. First, you store the type of the list item (fruit
or vegetable) in a data-type attribute. You use that later when you verify that the user’s
selections are correct. Next, you call Math.random() again. Because this call uses 0.5,
there’s a 50% chance you’ll append this new list item to the fruits list and a 50% chance
you’ll append it to the vegetables list.

 Now that the lists are populated, you turn them into widgets. The cursor and place-
holder options should look familiar from the previous example, but the helper option
is new. Whenever a drag starts on a sortable item, the element being dragged is referred
to as a helper element, and is given a class name of ui-sortable-helper for styling

Connects the
fruit and

vegetable
lists

Creates a
<div> to use
as a helper

D

Checks for
completion

in a stop
event E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 Adding interaction to your interfaces
purposes. By default, the helper is the sortable element itself, which corresponds to a
helper option of "original". The helper option also accepts "clone", which clones
the element and uses it as a helper, or a function that returns a new element to use as
a helper. In this example, you use this option and create a new helper <div> D:

helper: function(event, item) {
 return $("<div>", { text: item.text() });
}

Why did you do this? Because these sortable elements are elements, by default
they’re displayed with bullets next to them in the list—for example, • Banana. Drag-
ging an element with the bullet looks a little odd, and creating a new <div> to use as a
helper works around this.

NOTE A cleaner solution would’ve been to apply list-style-type: none to
the ui-sortable-helper class name in CSS. But the function-based helper
works just as well and serves as a nice introduction to the option.

You’ve now completed all setup needed for the game, so the last thing to do is to
check when the user has successfully sorted all items. The sortable widget’s stop event
is called when any sort completes; it’s the perfect place to check whether the user has
finished E. The implementation of this check is in the isValid() function, which
you call immediately. Don’t worry too much about the implementation of isValid().
All it does is use the data-type attribute you set on each list item to determine
whether all items are in the correct list. If isValid() returns true, you display a con-
firmation dialog to the user and refresh the page to start a new game.

 With that, you have a functioning sorting game in a few dozen lines of JavaScript.
Think about how hard this would’ve been to set up without any help from jQuery UI.
You’d have to recreate the draggable items, the collision detection, helper and place-
holder management, and more. It’s no wonder the sortable widget is the most com-
plex widget in the library.

Building sortable tables
One little-known feature of the sortable widget is that you can use it to make table rows
sortable. There’s one small caveat, though: you need to convert the table’s <tbody>
to a sortable widget rather than the <table> itself, as shown in the following code:

<style>
 td { border: 1px solid black; }
</style>
<table>
 <tbody>
 <tr><td>One</td></tr>
 <tr><td>Two</td></tr>
 </tbody>
</table>
<script>
 $("tbody").sortable();
</script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

125Resizable: allowing users to change the size of elements
Let’s move on to another common, yet tricky, interaction that jQuery UI makes easy:
resizing elements.

5.4 Resizable: allowing users to change the size of elements
Resizable elements are another common desktop interaction. Resizable elements
have two use cases. The first is to give the user control over the size of the display. Con-
sider the windows in a desktop OS; users can change the size of each individual win-
dow to meet their needs. The other use case for resizable elements is to add additional
functionality. Most calendar applications, as an example, let you resize entries to
increase the duration of an appointment in either direction.

 The jQuery UI resizable widget makes it easy to create resizable elements on the
web, with several options that make advanced and tricky use cases possible. Like all
the jQuery UI widgets, to create a resizable element you invoke the widget’s plugin.
The following code creates a resizable <div>:

<style>
 #resizable {
 width: 100px;
 height: 100px;
 border: 1px dotted black;
 }
</style>
<div id="resizable"></div>
<script>
 $("#resizable").resizable();
</script>

This displays as shown in figure 5.8.
 The resizable widget automatically adds an icon to the

bottom right-hand side of the element. By default, resiz-
able elements can be resized to the south, east, and south-
east. The handles option lets you configure this behavior.

TIP If the icon in the bottom corner is unde-
sirable, you can remove it by adding .ui-
resizable-se { background: none; }. After
you do this, the functionality remains, but the
icon is gone.

The handles option is set to "e, s, se" by
default, which explains the behavior you see.
You can set the option to a comma-delimited
string containing any of the following in any
order: n, e, s, w, ne, se, sw, nw. You can also pass
the string "all" to make an element that can be
resized in any direction. The handles are shown
in figure 5.9.

Figure 5.8 A 100 x 100 <div>
element converted to a resizable
widget. By default the element
can be resized to the south, east,
and southeast.

n

e

s

w

ne

se

nw

sw

Figure 5.9 The resizable widget lets you
configure the directions the element can
be resized with the handles option. The
eight potential handles are shown on an
element. The handles option also ac-
cepts "all", which uses all eight han-
dles.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 Adding interaction to your interfaces
 To allow for more customization, you can
also build custom handles.

5.4.1 Using custom resize handles

The final version of the handles option lets
you specify your own DOM elements to use as
the handles. This allows you to build custom
resizable interactions. Figure 5.10 shows a
resizable element with a custom east handle.

 The following listing shows the code used
to build this element.

<style>
 #resizable {
 width: 100px;
 height: 100px;
 border: 1px solid black;
 }
 .ui-resizable-e {
 background-color: skyblue;
 width: 18px;
 right: 0;
 }
</style>

<div id="resizable">
 <div class="ui-resizable-handle ui-resizable-e">

 </div>
</div>

<script>
 $("#resizable").resizable({
 handles: {
 e: ".ui-resizable-e"
 },
 minWidth: 50
 });
</script>

The first thing to notice here is the class names on your custom handle B. The resiz-
able widget requires that a custom handle have class names ui-resizable-handle
and ui-resizable-{direction}—in this case, ui-resizable-e.

Listing 5.5 Resizable element with a custom east handle

The element that
you use as the
east handle

B

Specifies the
custom handle in
the handles option

C

Ensures the element is
at least 50 pixels wideD

Figure 5.10 A resizable element with a
custom resizing handle on its east side. You
build this by explicitly providing markup for
the east handle, as shown in listing 5.5.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

127Resizable: allowing users to change the size of elements
 To tell the resizable widget about your custom handle, you pass an object in as the
handles option C. The keys of the object are the directions in which the user can
resize. In this case, you specify "e" because the user should only be able to resize to
the east. The value of each handle can be a selector that matches a child element of
the resizable element, a DOM element, or a jQuery object. In this case, your handle is
a child of the resizable element, so you pass a selector that matches it.

 As a last step, you set the minWidth option to 50 D. This prevents the user from resiz-
ing the element to a size smaller than 50 pixels. The resizable widget also provides max-
Width, minHeight, and maxHeight options for similar constraining functionality.

 With custom handles you can build a highly customized display for your resizable
controls. To see at what the resizable widget makes possible, let’s look at a common
use of resizable UI elements: a calendar control.

5.4.2 Building an appointment scheduler

Most desktop calendar programs give you the ability to drag and resize appointments
using the mouse. Although writing a full-featured web-based scheduler is a complex
topic well out of the scope of this book, let’s look at how the resizable and draggable
widgets make building the grid portion of the calendar easy. Figure 5.11 shows the cal-
endar grid you’ll build.

 In this grid the black box represents an appointment and each column represents
a day of the workweek. The vertical gray lines are spaced 50 pixels apart and are used
to represent half-hour time slots. To build this scheduler, suppose you have the follow-
ing requirements:

■ The appointment can resize only in the north and south directions.
■ The appointment can resize only in certain intervals, corresponding to a half

hour (50 pixels).
■ Appointments can be dragged anywhere within a day or into other days.
■ The appointment can’t be dragged or resized outside of the calendar.

Figure 5.11 A scheduler for
creating appointments. The
black box represents an ap-
pointment, and the vertical
lines represent half-hour time
slots. The user can drag the
appointment to different days
and times—and resize the ap-
pointment to change its
length.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Adding interaction to your interfaces
Consider how tricky these requirements are to meet without the help of any widgets
or plugins. With the jQuery UI interactions, you can meet these requirements with
nine lines of JavaScript! The following listing shows an implementation of this grid.

NOTE This example is available online at http://jsfiddle.net/tj_vantoll/
yUs44/.

<style>
 #appointment {
 width: 100px;
 height: 100px;
 border: 1px solid black;
 }
 #appointment:hover { cursor: move; }
 #calendar {
 border: 1px solid red;
 height: 500px;
 width: 500px;
 position: relative;
 background-color: #fff;
 background-image:
 linear-gradient(90deg, transparent 99%, #ddd 100%),
 linear-gradient(#eee .1em, transparent .1em);
 background-size: 20% 100%, 100% 50px;
 }
</style>

<h1>November 2013</h1>
<div id="headers">
 <h3>Monday</h3>
 <h3>Tuesday</h3>
 <h3>Wednesday</h3>
 <h3>Thursday</h3>
 <h3>Friday</h3>
</div>
<div id="calendar">
 <div id="appointment"></div>
</div>

<script>
 $("#appointment").resizable({
 handles: "n, s",
 grid: [0, 50],
 containment: "parent"
 })
 .draggable({
 grid: [100, 50],
 containment: "parent"
 });
</script>

Listing 5.6 Building a calendar grid with resizable and draggable

Creates the
grid lines

Resizes the
appointment only to
the north and south

B

Resizes
only by

increments
of 50 pixels C

Contains the resizable
in its parentD

Makes the element
draggableE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/yUs44/
http://jsfiddle.net/tj_vantoll/yUs44/
http://www.it-ebooks.info/

129Resizable: allowing users to change the size of elements
WARNING The grid lines are drawn using CSS gradients. Although most browsers
now support CSS gradients, they’re not supported in Internet Explorer versions
9 and earlier. In these browsers, the grid doesn’t appear. For a full list of browsers
that support CSS gradients, see http://caniuse.com/#feat=css-gradients. For
more information on how this grid works, as well as how to create other cool pat-
terns with CSS gradients, see http://lea.verou.me/2010/12/checkered-stripes-
other-background-patterns-with-css3-gradients/.

Let’s look at how this example meets all your criteria. First, by setting the appoint-
ment’s handles option to "n, s" B, you enforce the requirement that the resizable
element can only be resized vertically, not horizontally or diagonally.

 Your next criterion was to allow the user to resize the appointment only in a set
interval. You want to let the user resize appointments by the hour or half hour, rather
than by minutes or seconds.

 To implement this, you use the resizable widget’s grid option C. The grid option
takes an array of pixels, with the x and y values as the resizing increments. The x value
of the array is irrelevant, as the user can’t resize the appointment horizontally. By set-
ting the y value to 50, the resizable widget allows the appointment’s height to be
changed only by increments of 50 pixels—50 pixels, 100 pixels, 150 pixels, and so
on—which corresponds to half hours, per the example’s convention.

 Next, you prevent the user from resizing an appointment outside of the calendar
itself. This is easy as the resizable widget has the same containment option as the drag-
gable widget. By setting containment to "parent", the resizable widget automatically
contains all resizing actions in its parent widget—the calendar D. As with the dragga-
ble widget, the resizable widget’s containment option can also be set to a selector or a
DOM element to contain the element within.

 This takes care of your resizable criteria. Next, you make the appointment dragga-
ble E.

TIP A DOM element can be initialized with multiple widgets. Although some
combinations make no sense—for instance, an element that’s a dialog and a
datepicker—some, such as draggable and resizable, can be quite useful.

To keep draggable in sync with resizable, you also set the draggable grid option.
Unlike resizable, the x value of the grid is relevant here, as you want to let the user
drag appointments horizontally to different columns. You specify an x value equal to
the width of the columns: 100. For the y value, you use the same value as resizable (50)
so the user can drag appointments to reschedule by the half hour.

 That’s all there is to it. You built a powerful appointment scheduler that met your
criteria with a few lines of configuration for the draggable and resizable widgets.
This brings us to the last of the jQuery UI interactions: selectable.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
http://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
http://www.it-ebooks.info/

130 CHAPTER 5 Adding interaction to your interfaces
5.5 Selectable: allowing users to select elements from a group
Selectable elements should be familiar to anyone who has used a file browser GUI in
any OS. Almost invariably the OS lets you select a file by clicking on it, select additional
files by clicking with a modifier key held down (Control on Windows, Command on
OS X), and select multiple files simultaneously by dragging your mouse to create a box
or lasso.

 The jQuery UI selectable widget brings this paradigm to the web. Selectable is one
of the simplest widgets of jQuery UI. Although it has options, methods, and events like
other widgets, for the vast majority of use cases the default behavior is all you need.
Therefore, we’ll only be looking at a single example that replicates the file GUI behav-
ior in the browser.

 Like sortable, when the selectable’s plugin is called on an element, its immediate
children are converted to selectable items. The following code converts a list to a
selectable widget:

<ul id="selectable">
 book.pdf
 image.png
 portrait.jpg
 paint.bmp
 words.doc
 text.txt

<script>
 $("#selectable").selectable();
</script>

Although this does create a selectable widget, it gives no visual indication of what files
are selected. This is because instead of styling the selectable elements directly, the wid-
get adds CSS class names to the appropriate items and the author is responsible for
styling them. The following four class names are applied by the selectable widget:

Dialog, resizable, and draggable
Whether or not you realized it, you saw the draggable and resizable widgets in action
before this chapter. The dialog widget uses these interactions to make dialog ele-
ments draggable and resizable by default. Whether dialog elements are draggable
and resizable can be configured using the draggable and resizable options, re-
spectively. The following code shows how to create a dialog that’s neither draggable
nor resizable:

$("<div>").dialog({
 draggable: false,
 resizable: false
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

131Selectable: allowing users to select elements from a group
■ ui-selectee—Applied to all selectable elements, regardless of state
■ ui-selecting—Applied to elements selected by the lasso before the user

releases the mouse
■ ui-selected—Applied to selected elements
■ ui-selectable-helper—Applied to the lasso created by the mouse

To see how these class names work, you’ll add a little CSS to your example. You’ll also
add a Remove button to make the example a bit more useful. Figure 5.12 shows the
updated display of your example.
The following listing shows the final code of this example.

NOTE Some CSS is omitted from this example to focus on the selectable
interaction. You can view the full source and play with this example at http://
jsfiddle.net/tj_vantoll/Bd57U/.

<style>
 .ui-selecting { background: hotpink; }
 .ui-selected { background: red; color: white; }
</style>

<ul id="selectable">
 book.pdf
 image.png
 portrait.jpg
 paint.bmp
 words.doc
 text.txt

Listing 5.7 Mimicking a filesystem GUI with jQuery UI

.ui-selecting { background: hotpink; }

.ui-selectable-helper

Figure 5.12 A browser representation of an OS’s file GUI implemented with the selectable widget. The
user can add new files and remove any selected files. The selectable widget’s helper is styled with a
dotted line, and files selected with the lasso are styled with a background in color.

Styles selectables hot
pink during selectionB

Styles selectables
red with white text

after selection C
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Bd57U/
http://jsfiddle.net/tj_vantoll/Bd57U/
http://www.it-ebooks.info/

132 CHAPTER 5 Adding interaction to your interfaces
<button id="add">Add File</button>
<button id="remove">Remove Selected File(s)</button>

<script>
 var selectable = $("#selectable").selectable();
 $("#add").button().on("click", function() {
 selectable.append("new");
 });
 $("#remove").button().on("click", function() {
 $(".ui-selected").remove();
 });
</script>

You style selectables as hot pink during mouse selection B and red with white text after
they have been selected C. You don’t touch the ui-sortable-helper class name, leav-
ing it as its default display defined by the widget (border: 1px dotted black).

 After creating the selectable widget, you convert the Add button to a button widget
and attach a click handler to it. The click event handler adds a new element to
the list D—and that’s it. There’s no refresh() method call or any call that tells the
widget of the new element. How does the widget know that a new element was added?

 The selectable widget is unique because it checks for new elements in the list
whenever a select operation begins. Because this is a potentially expensive operation,
the widget exposes an autoRefresh option that you can set to false to disable it. If
you set autoRefresh to false, the widget has a refresh() method you can call after
adding and removing elements. Because you have only a handful of items here, it
makes sense to leave autoRefresh set to true.

 The last thing you do is convert the Remove button to a button widget and attach a
click event handler to it as well. In the click handler, you select all elements with the
ui-selectable-selected class name and remove them from the DOM E.

 If you run this example, you’ll notice that you can perform all the actions that
you’re used to with a desktop OS with this small amount of code.

 Before we end our discussion of jQuery UI interactions, there’s one last thing we
need to discuss. If you’ve happened to test any of the examples in this chapter to this
point on an iOS or Android device, you may have noticed that they don’t work. In the
next section we’ll discuss why that is, and what you can do to make them work.

5.6 Creating multidevice interactions: the importance of touch
Unless you have been living under a log, you’re likely aware of the mobile explosion
that has taken the web development industry by storm. Despite this, the latest release
of jQuery UI still doesn’t support touch events out of the box.

 Why is this?

5.6.1 Why doesn’t jQuery UI support touch events?

The answer is complicated and requires a short history lesson. In 2007 the iPhone was
released and with it came touch events: a new event model for handling interactions

Adds a new
list item to
the list

D

Removes all
selected itemsE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

133Creating multidevice interactions: the importance of touch
on the web. Android soon followed with an implementation, and Firefox for Android,
Chrome for Android, BlackBerry, and Opera Mobile would soon follow as well.

 Despite the number of implementations, Apple’s model has two major problems.
First, it forces web developers to explicitly handle two types of events: mouse-based
ones and touch-based ones. Unfortunately, the two event models have subtle differ-
ences that make this a nontrivial task.

 The second issue is that Apple owns a number of patents related to its touch event
implementation. These patents have (thus far) prevented touch events from becom-
ing a W3C standard.

 Because of these issues, the Internet Explorer team came up with a new approach
known as pointer events, which shipped in Internet Explorer 10. Microsoft submitted
this model to the W3C, and it’s now a candidate recommendation spec—http://
www.w3.org/TR/pointerevents/.

NOTE The candidate recommendation status means that the major features of
the spec are locked down and the spec authors are waiting for feedback on the
finer points before the spec enters its next state: proposed recommendation.

The pointer event model addresses the single largest problem with the touch event
model: it handles multiple input types. If you’re on a Windows touch screen tablet,
you can handle mouse, touch, and stylus-based input, all with a single set of pointer
events.

 The jQuery UI team feels this model is the best way to move forward with events on
the web; the team is currently working with others to create a polyfill of pointer events
for browsers that don’t natively support them, which will make the interactions work
on any device. Expect it to be included in the library in a future release of jQuery UI.

NOTE You can read a more thorough history of touch events at http://
blog.jquery.com/2012/04/10/getting-touchy-about-patents/.

Although this history lesson provides background, you’re likely interested in getting
the jQuery UI widgets to work for you now. Fortunately, there’s a quick workaround to
make that possible.

5.6.2 Introducing jQuery UI Touch Punch

jQuery UI Touch Punch is a tiny script that adds touch event support to all the
jQuery UI widgets. It listens for touch events, then uses a DOM specification known
as custom events to fire the corresponding mouse events that the jQuery UI widgets
are looking for.

TIP Custom events allow you to trigger native events (click, keypress, mouse-
move, touchstart, and so on) as if the user had taken that action. To read
more about custom events, see https://developer.mozilla.org/en-US/docs/
Web/Guide/API/DOM/Events/Creating_and_triggering_events.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.w3.org/TR/pointerevents/
http://www.w3.org/TR/pointerevents/
http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/
http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Creating_and_triggering_events
http://www.it-ebooks.info/

134 CHAPTER 5 Adding interaction to your interfaces
What’s nice about Touch Punch is it requires no configuration to make it work. You
download Touch Punch’s script from http://touchpunch.furf.com/ and include it
after jquery-ui:

<script src="jquery.js"></script>
<script src="jquery-ui.js"></script>
<script src="jquery.ui.touch-punch.js"></script>

That’s it. This approach adds touch support for the jQuery UI widgets in any browser
that supports the touch event model (iOS Safari, Android, Chrome for Android, Fire-
fox for Android, Opera Mobile, and BlackBerry).

 Although having to include an external plugin isn’t ideal, Touch Punch provides
an elegant stopgap solution until true pointer event support is released in jQuery UI.

5.7 Summary
In this chapter, you looked at the five interaction widgets provided by jQuery UI. You
used them to create a number of practical UIs—from children’s games to a shopping
cart to an appointment scheduler.

 Currently, these interactions don’t work on mobile browsers that use the touch
event model, such as iOS Safari and Chrome for Android. The jQuery UI team is work-
ing on creating a polyfill for pointer events that will bring support to all browsers, but
in the meantime, you can use jQuery UI Touch Punch to make sure the interactions
work on all devices today.

 With this chapter, we’ve now completed our look at all the jQuery UI widgets.
Although we’ll continue to explore the inner workings of widgets throughout the
book, for now we’ll switch our focus to the jQuery UI animation components, collec-
tively known as effects.

Interactions on Windows 8 touch devices
Even though the jQuery UI interactions do not support pointer events, as of ver-
sion 1.11, the interactions do support Windows 8 touch devices running Internet Ex-
plorer 10 and Internet Explorer 11. How? When you apply an interaction widget to an
element, the widget sets the element’s touch-action CSS property to "none", which
makes Internet Explorer 10+ fire the mouse events that make the interactions work—
even on touch screens. You can read more about what the touch-action property
does at http://msdn.microsoft.com/en-us/library/windows/apps/hh767313.aspx.

To summarize, the jQuery UI interactions work in all desktop browsers, as well as Win-
dows 8 devices. The interactions do not work on mobile browsers that use the touch
event model, but you can use Touch Punch to add support for those browsers. Be-
tween the two you get comprehensive device coverage.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Creating rich
 animations with effects
jQuery UI includes 15 built-in animations, that provide ways to show and hide ele-
ments, draw the user’s attention to elements, or add visual appeal to your UIs.
These effects stand on their own with the effect()method, tie into existing wid-
gets such as dialog, and work with jQuery Core methods such as show() and
hide(). But it doesn’t stop there. jQuery UI also adds powerful abilities to animate
CSS class name changes, transition between colors, and a whole lot more.

 The jQuery UI effects are so powerful they’ve helped inspire changes made to
the CSS specification, and you can now perform transitions and animations directly
in CSS. At the end of this chapter, you’ll explore what you can do with CSS directly,
and compare that to the APIs in jQuery UI.

 It’s important to note that just because jQuery UI lets you make an element
explode into 50 pieces over 10 seconds (yes, you can do that), it doesn’t mean that

This chapter covers
■ Building animations with effects
■ Using effects in the jQuery UI widgets
■ Animating CSS class name changes
135

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Creating rich animations with effects
you should. As we go through this chapter, we’ll discuss where these effects make
sense for practical use.

 Let’s get started with the core method of the jQuery UI effects: effect().

6.1 Using effects and the effect() method
The most common—and easiest—way to run the jQuery UI effects is through the
effect() plugin method. In its simplest form, you pass the effect() plugin the name
of the effect to use. The following code shakes a blue box:

<style>
 div {
 background: blue;
 height: 100px;
 width: 100px;
 }
</style>
<div></div>
<script>
 $("div").effect("shake");
</script>

What effects are there? As of jQuery 1.11, the following 15 effects are available:

As with widgets, each effect has detailed API documentation on how the effect is used
and the available configurations. The URL to use is http://api.jqueryui.com/{NAME}-
effect/. For example, http://api.jqueryui.com/shake-effect/ takes you to the API doc-
umentation for the shake effect and is shown in figure 6.1.

■ blind ■ drop ■ fold ■ pulsate ■ size

■ bounce ■ explode ■ highlight ■ scale ■ slide

■ clip ■ fade ■ puff ■ shake ■ transfer

Figure 6.1 The API documentation for each jQuery UI effect lists the options that can be used to con-
figure the animation. For the shake effect (shown here), you can configure the direction of the shake,
the distance to shake, and the number of times to shake.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

137Using effects and the effect() method
The values listed in bold—direction, distance, and times—are options that config-
ure the effect. To pass these options, provide them as objects as the second argument
to effect(). The following code alters the previous example to shake the blue box 10
times over a distance of 100 pixels:

$("div").effect("shake", {
 times: 10,
 distance: 100
});

If you test this example, the effect runs so fast that it looks like a blur. This is because
the next parameter of effect()—duration—defaults to 400 milliseconds, which isn’t
nearly enough time to shake a box 10 times. The following code increases the dura-
tion to 3 full seconds:

$("div").effect("shake", {
 times: 10,
 distance: 100
}, 3000);

Now your animation has plenty of time to do its shaking. The final argument of the
effect() plugin is a function that runs as a callback when the animation completes.
The following code adds a callback to your example that makes the box red after the
shaking finishes:

$("div").effect("shake", {
 times: 10,
 distance: 100
}, 3000, function() {
 $(this).css("background", "red");
});

Although this is powerful, the API is starting to feel messy; the previous code certainly
isn’t clear to read. Because of this, the effect() plugin offers an alternative signature
in which all arguments are passed as a single object. The following code alters your
example to use the object signature:

$("div").effect({
 effect: "shake",
 times: 10,
 distance: 100,
 duration: 3000,
 complete: function() {
 $(this).css("background", "red");
 }
});

Take note of two changes here. First, the name of the effect to use is passed as an
effect property B. This is the only required property when using the effect()
object signature. The other change is the properties that apply only to the shake effect
(times and distance) are no longer in a separate “options” argument; they’re
included directly in the object passed to effect().

Defines the duration:
3000 milliseconds =
3 full seconds

Provides the name
of the effect.B
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6 Creating rich animations with effects
 The object form of effect() takes one additional property we haven’t discussed:
an easing.

6.1.1 Customizing effects with easings

What are easings? An easing is a function that dictates the rate at which an animation
progresses. jQuery Core includes two of them: linear and swing. The linear easing
runs the entire animation at a constant pace, and the swing easing starts the anima-
tion slowly and speeds up toward the end. The swing easing is the default easing used
in both jQuery Core and jQuery UI. A full list of easings in jQuery UI can be found at
http://api.jqueryui.com/easings/ and is shown in figure 6.2.

Each graph in figure 6.2 plots the progression of the animation (the y-axis) against
time (the x-axis). The linear easing is the easiest to understand as the rate of the ani-
mation remains constant throughout. Some easings—such as easeOutElastic—run
the animation beyond its final value before the animation completes. Although these
easings offer plenty of options, why would you want to use any of them?

 To answer, let’s look at a few examples. The following code uses the jQuery UI
explode effect to split a green box into four pieces over 5 seconds:

<style>
 div {
 background: green;
 height: 100px;
 width: 100px;
 }
</style>

Figure 6.2 A list of the easings provided by jQuery UI from http://api.jqueryui.com/easings/. Each graph
plots the progress of the animation (the y-axis) against time (the x-axis). Clicking on each graph runs an
animation with the corresponding easing. If you’re having trouble understanding easings, it’s worth taking
a minute to run these; easings are far easier to understand visually.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

139Using effects and the effect() method
<div></div>
<script>
 $("div").effect({
 effect: "explode",
 pieces: 4,
 duration: 5000
 });
</script>

Although this effect is cool, the default easing—swing—doesn’t provide the ideal,
realistic exploding experience. And if you’re going to make an element explode, you
may as well do it right.

 What would be better is an easing that starts off slow, and then builds to a fast fin-
ish. If you look at figure 6.2, you see a few easings that meet this criterion, but the best
choice looks to be easeInExpo. To use this easing, include it as a property on the
object passed to effect(), as shown in the following code:

$("div").effect({
 effect: "explode",
 easing: "easeInExpo",
 pieces: 4,
 duration: 5000
});

Easings are a nice way of configuring any animation to meet your needs, and they’re not
used only in the effect() method. You can use these easings with any of the jQuery
Core animation methods: animate(), hide(), fadeIn(), fadeOut(), fadeToggle(),
hide(), show(), slideDown(), slideToggle(), slideUp(), and toggle().

 Suppose you need to move an element in your interface from one side of the
screen to the other over 1 second:

<style>
 div {
 background: green;
 height: 100px;
 width: 100px;
 position: absolute;
 }
</style>
<div></div>
<script>
 $("div").animate({
 left: $(window).width() - 100
 }, 1000);
</script>

This works, but is rather boring. Let’s liven it up with animation using the easeOut-
Elastic easing (the third argument to animate()is an easing):

$("div").animate({
 left: $(window).width() - 100
}, 1000, "easeOutElastic");

Uses the default swing
easing because no easing
is explicitly provided

The second argument
of animate() is a
duration—in this
case, 1 second.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Creating rich animations with effects
It’s worth running this example to see how changing the easing can have a great
effect. By using an easeOutElastic easing, the box swings out past its final value, then
gradually settles back into it.

 Why do this? By changing the easing, you create a more lively animation that’s
more fun and more engaging for users. And you can do this by playing with a few
property names—no math required!

 Next, let’s look at another practical use of effects: making visual associations.

6.1.2 Making visual associations with the transfer effect

The interfaces you build on the web today are increasingly complex, and it can be dif-
ficult for users to learn how the various controls work. One of the jQuery UI effects,
transfer, lets you assist users with an easy-to-use animation. Consider the grocery list
builder application shown in figure 6.3.

From the screenshot, this UI seems easy to use. When you click the Add button, the
grocery item is added to the list. But suppose this functionality were integrated in a
more complicated example—such as a site that additionally manages coupons or per-
sonal expenses. In this type of situation—when more information is on the screen—
users may not instantly recognize where the grocery list is after they add items. The
user may be confused about what the application is doing.

 Using the transfer effect, you help users make this association. The effect works by
transferring the outline of one element to another. As it’s easier to see this visually, fig-
ure 6.4 shows the effect you’ll add.

Figure 6.3 A small application that builds grocery lists. You will use the transfer effect to help the user
associate the Add Groceries form with the Grocery List.

Figure 6.4 Progression of the transfer effect to associate the form with the grocery list
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

141Using effects and the effect() method
The code to build this is shown in the following listing. Some of the visual styling has
been removed to keep this example succinct. The full source is available in the book’s
code samples or online at http://jsfiddle.net/tj_vantoll/7HQDK/.

<style>
 .ui-effects-transfer { border: 1px dotted black; }
</style>

<div id="grocery-list">
 <h3>Grocery List</h3>
 <li class="empty">Empty
</div>
<form>
 <fieldset>
 <legend>Add Groceries</legend>
 <label for="item">Item:</label>
 <input id="item" required>
 <button>Add</button>
 </fieldset>
</form>

<script>
 function addToList(value) {
 var list = $("#grocery-list ul");
 list.append("" + value + "");
 list.find(".empty").remove();
 };

 $("form").on("submit", function(event) {
 event.preventDefault();
 $("input").effect("transfer", {
 to: "#grocery-list ul",
 complete: function() {
 addToList($(this).val());
 $(this).val("");
 }
 });
 });
</script>

You start by applying a dotted border to the ui-effects-transfer CSS class name B.
The transfer effect creates and animates this element, but it leaves the styling up to
you. The CSS you apply creates the look of the dotted box shown in figure 6.5.

 Next, in your HTML, you have a form for the user to add items and a list to display
those items in. In JavaScript, you listen for the form to be submitted, select the <input>
in the form, and perform a transfer effect on it C. The transfer effect takes a required
to property that determines an element that the selected element’s outline is trans-
ferred to. You set the to property to "#grocery-list ul" D, which tells the transfer
effect to animate an outline from the <input> to the grocery list’s element.

 When the animation completes, you add the new item to the list and empty the
contents of the <input> E.

Listing 6.1 A grocery list builder that uses the transfer effect

Styles the transfer
DOM elementB

Adds the new
item to the list

Removes the “empty”
list item

Starts the
transfer on

the input

C
Ends the
transfer on the
grocery list

D

On completion, updates
the grocery listE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Creating rich animations with effects
 The example showcases how you can use effects to teach users how an interface
works. Instead of assuming users knows where the cart is, you use a transfer effect to
draw their eyes in that direction.

 Although these types of effects can be powerful, they can also annoy users if used
excessively. As a future enhancement of this form you might consider performing the
animation only on the first one or two additions to the list. After this, the effect is no
longer useful, and may annoy power users who just want to build a grocery list.

 In the next section, we’ll continue to look at practical applications of the jQuery UI
effects. This time, instead of looking at the effect() method, we’ll look at how effects
tie into familiar methods from jQuery Core.

6.2 Animating visibility changes
One of the most common tasks performed by JavaScript in the browser is showing and
hiding elements. In jQuery Core this is done using three methods: show(), hide(),
and toggle(). jQuery UI enhances these same APIs with the ability to use the effects
and easings you saw in the previous section.

 The enhanced APIs for show(), hide(), and toggle() work almost exactly like the
effect() method. As with the transfer effect, this is easier to see in an example.

6.2.1 Building form validation messages

Let’s return to the appointment form you built in chapter 3. Recall that you had a few
errors that the user could run into—specifically, invalid dates and numbers. In chap-
ter 3, you used alerts to show these errors, which isn’t user friendly. Let’s build a more
robust means of displaying these errors in a list, and use effects to show the list at the
appropriate times. The list you’ll build is shown in figure 6.5.

 As the form from chapter 3 is lengthy, we won’t dig back into the full source here.
You can view the final state of this example at http://jsfiddle.net/tj_vantoll/Rc4J2/ to
follow along. To implement an error box for this form, you add the following HTML:

<div class="ui-state-error">

</div>

Figure 6.5 The contact form you built in chapter 3 with a formatted list of error messages.
You’ll use the jQuery UI shake effect to draw the user’s eyes to these messages.

The list to contain
the error messages
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

143Animating visibility changes
You place this <div> in the appointment <form>, and set its display to none so the
user doesn’t see the error box by default:

.ui-state-error { display: none; }

TIP The ui-state-error class name applies all the styling for the “Please
provide...” box in figure 6.5; no custom CSS is used. This is one of the many
class names that the jQuery UI CSS framework provides. You can view a full
list at http://api.jqueryui.com/theming/css-framework/, and we’ll discuss
these class names when we talk about themes in chapter 7.

Now that you have a box, you have to fill it with error messages. Let’s define a handle-
Errors function for managing error messages. handleErrors accepts an array of error
messages—[], ["Invalid date."], and so on—and figures out how to display them
appropriately. An implementation of this function is shown in the following code:

function handleErrors(errors) {
 var container = $(".ui-state-error").hide(),
 list = container.find("ul").empty();

 if (errors.length === 0) {
 return;
 }

 $.each(errors, function(index, error) {
 list.append("" + error + "");
 });
 container.show("shake", { times: 2 }, 100);
};

You start by getting a reference to the error container B and list C. You hide the con-
tainer and empty the list to return each element to its initial state. Next, because you
don’t want to show the error box with no errors in it, you check whether you received
an empty errors array D. If so, there’s nothing more to do, and you return.

 If you did get errors, you have to display them, so you create a new for each
message and add it to the list E.

 The last thing you do is show the error box, and you use the jQuery UI version of
the show()method to do it F. The arguments you pass to show() may look familiar as
they’re the same ones that the effect()method accepts. The first argument is the
name of the effect, the second is the effect-specific options, and the third is the dura-
tion to use. The fourth argument to show() is a function to run when the animation
finishes, but you don’t need to use it here.

 Like effect(), the show() method accepts a single object as an argument. The
same call to show() could be written as follows:

container.show({
 effect: "shake",
 times: 2,
 duration: 100
});

Gets a reference
to the container
and hides it

B

Gets a reference
to the list and

empties it C
Exits if there
are no errors

D

Adds a list item
for each error

E
Shows the
container with
a shake effect

F

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6 Creating rich animations with effects
Although the effects tie into many of jQuery UI and jQuery Core APIs, they use the
same consistent API. You haven’t specifically looked at how hide() and toggle()
work because the API is identical. The following code hides the same container using
the shake effect

container.hide("shake", { times: 2 }, 100);

and the following toggles it (shows it if it’s hidden, hides it if it’s visible):

container.toggle("shake", { times: 2 }, 100);

Why use an effect? Isn’t it easier to show and hide the error box without any effects?
 This example demonstrates the same use of effects you saw in the previous section:

drawing the user’s eyes. Have you been frustrated when you attempt to submit a web
form? This is a common occurrence, and it’s often because forms don’t make error
messages obvious to the user. It helps to use a bright color such as red, but often it’s
not enough. By using a shake effect, you attempt to make the error messages more
obvious by drawing the user’s eyes to them on each failed submission.

To show another use of the jQuery UI effects with the jQuery Core visibility methods,
let’s look at one more example.

6.2.2 Building portlets with jQuery UI

Portlets are web UI elements that are made to look like desktop application windows.
Like desktop windows, most portlets can be dragged, minimized, and maximized. Port-
lets frequently appear in large web portals and can be used to display anything from
static content to highly dynamic content such as weather reports or sports scores.

Accessible form validation
Although making form validation messages visually stand out improves the usability
of your form, the messages aren’t announced to screen readers; blind users have no
idea there was an issue.

After an invalid form submission, a more robust implementation would move focus to
the first invalid field, and give it an aria-invalid attribute set to true. The imple-
mentation would also place the error message in an alternative DOM element, and
link the message element to the invalid form element using the aria-describedby
attribute. If the date were the only invalid field, you could do that with the following code:

$("#date")
 .attr("aria-invalid", true)
 .after("Please provide a valid date.")
 .attr("aria-describedby", "message")
 .focus();

You’ll look at how to implement accessible form validation when you build a more
complex form in chapter 11.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

145Animating visibility changes
Let’s look at how you create portlets using jQuery UI. Figure 6.6 shows an example of
the portlets you’ll build.

 The following listing shows the implementation of these portlet controls. The list-
ing only includes the HTML for one portlet window and omits the CSS. The full demo
shown in figure 6.7 is available at http://jsfiddle.net/tj_vantoll/5caqN/.

<div class="portlet ui-widget ui-widget-content ui-corner-all">
 <div class="portlet-header ui-widget-header">
 <button>minimize</button>
 jQuery
 </div>
 <div class="portlet-content">
 <p>jQuery is a...</p>
 </div>
</div>

<script>
$(".portlet")
 .draggable({ handle: ".ui-widget-header", stack: ".portlet" })
 .each(function() {
 $(this).find("button")
 .button({
 icons: { primary: "ui-icon-minusthick" },
 text: false
 })
 .on("click", function() {
 var maximized = $(this).button("option",
 "icons").primary === "ui-icon-minusthick";
 $(this)
 .button("option", {
 label: maximized ? "maximize" : "minimize",
 icons: { primary: maximized ? "ui-icon-plusthick":
 "ui-icon-minusthick" }
 })

Listing 6.2 Implementation of portlet controls

Figure 6.6 Three portlets, or web UI elements made to look like desktop windows, built using jQuery
UI. The user can expand or collapse the content of each portlet using the icon in the top-right corner.

Makes each portlet
draggable

B

Attaches a click
handler to each
minimize/maximize
button

C

Updates the
minimize/maximize

button’s options

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Creating rich animations with effects
 .parents(".portlet")
 .find(".portlet-content").toggle("blind", 200);
 });
 });
</script>

NOTE Confused about the ui-* class names being used here? Don’t worry,
we’ll cover what each of these do when we talk about the jQuery UI CSS frame-
work in chapter 7.

You start by making each portlet draggable and set two options: handle and stack B.
The handle option controls which portion of a draggable the user can initiate a drag
from. Because you want to allow users to drag a portlet only by its header, you set han-
dle to a CSS class name that matches it. The stack option manages the CSS z-index
property of draggables so that the currently dragged item is always brought to the
front. If you didn’t use this, and the user were to drag a second portlet on top of the
first, the second would appear behind the first.

 Now that the portlets are draggable, you have to make them collapsible. To do this,
you convert their header buttons to button widgets and attach a click event handler
to them C. Inside the handler, you first change the clicked button’s options such that
its icon is switched from plus to minus (or vice versa), and its label is changed from
maximize to minimize (or vice versa) D. Why do you bother updating the label
option—which is the button’s text—for a button with no visible text? Even though the
text is invisible, jQuery UI ensures that it remains accessible to assistive technologies
such as screen readers. The library also places the text in the button’s title attribute,
so even sighted users see the text when they hover over the button. It’s very important
to keep this text up to date, even though it doesn’t visually appear within the button.

 After this, you get a reference to the clicked button’s associated content and toggle
it using the blind effect E. The blind effect shows and hides an element by altering its
height vertically or horizontally, much like an accordion widget. Using this effect
helps to mimic the desktop behavior of minimizing windows. Also, the animation
helps tell the user that the content is being collapsed, and not being removed com-
pletely. To ensure this animation doesn’t get in the user’s way, you set the duration to
a quick 200 milliseconds.

NOTE In addition to changing an element’s height, the blind effect uses the
CSS overflow property to prevent the browser from repositioning the ele-
ment’s text as its height changes—producing a smoother animation. As such,
the blind effect works well on elements that contain text.

And that’s all it takes to build portlet controls using jQuery UI. As the API to create
these effects is so simple, it’s easy to experiment with different effects and easings to
customize the experience. Try using the explode or pulsate effects on this example for
a little fun.

Toggles the visibility
of the content with

the blind effect E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

147Using effects with the jQuery UI widgets
 To continue our look at how effects tie into existing APIs, let’s look at how you can
use them directly in the jQuery UI widgets.

6.3 Using effects with the jQuery UI widgets
If you’ve perused the jQuery UI API documentation, you may have noticed that some
widgets—specifically dialog, tabs, and tooltip—have show and hide options that use
the jQuery UI effects. These options give you an easy way to configure how these wid-
gets are shown and hidden. The values they accept are similar to the arguments you
invoked show(), hide(), and toggle() with, but with a few differences.

6.3.1 The show and hide options

To explore these, let’s use the dialog widget as an example. By default, the dialog wid-
get uses no animations when it opens and closes. Internally, this is because its show
and hide options are set to null. Like all effect-based methods, you can pass an effect
name for these two options. The following code opens a dialog with the puff effect
and closes it with the blind effect:

$("<div>").dialog({
 show: "puff",
 hide: "blind"
});

Similar to other effect methods, you can pass an object with the full configuration of
the effect. The following code uses objects for show and hide:

$("<div>").dialog({
 show: {
 effect: "puff",
 percentage: 200,
 duration: 3000,
 easing: "linear"
 },
 hide: {
 effect: "blind",
 direction: "horizontal"
 }
});

You can see that the syntax here is the same as the object you can pass to effect(),
show(), hide(), and toggle(). The dialog opens with a puff effect over 3 seconds with
a linear easing. The dialog closes with a blind effect, the default duration (400), and
the default easing ("swing").

 Thus far, the show and hide options have used the exact same syntax you’ve already
seen. So what’s different? Unlike the effect methods—effect(), show(), hide(), and
toggle()—the show and hide options offer Boolean and number shorthand.

 The Boolean shorthand determines whether a preconfigured animation should be
used. If set to true, the widget uses the jQuery Core fadeIn()or fadeOut()methods
(for show or hide, respectively) with the default duration and easing.

Configuration specific to the puff effect. It controls
the size to “puff” out to. In this case, the dialog
puffs out to twice its size when it opens.

Configuration specific to the blind effect. It controls the
direction the element is pulled when it’s hidden. Using
“horizontal” means this dialog is hidden from right to left.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Creating rich animations with effects
 The number shorthand determines the duration to use for the animation. It also
uses fadeIn() or fadeOut() and the default easing.

 The following example creates a dialog that uses each of these shorthands. It
opens with a fade-in animation over the default 400 milliseconds and closes with a
fade-out animation over a full second:

$("<div>").dialog({
 show: true,
 hide: 1000
});

The Boolean and number shorthand for these options are provided because they’re
the most common animations used. Setting show and hide to true is a way to use a
small animation to improve the visual appeal of your widgets. But if this is the case,
why might you want to use the more advanced options? Let’s look at an example
where they make sense.

NOTE Although we didn’t specifically look at the tabs and tooltip widgets, the
configuration for the show and hide options is identical. In fact, the imple-
mentation of these options is in the widget factory directly. You can use these
options and effects in custom-built widgets. We’ll start looking into custom
widgets in chapter 8.

6.3.2 Showing a message in a dialog

To show more advanced options in actions, let’s return to the fruit and vegetable sort-
ing example you built in the previous chapter. To help you remember the game, an
image of it is shown in figure 6.7.

 In your implementation of the game, we didn’t discuss the instructions, which are
a sentence located above the game itself. The current instructions have one problem:
they don’t stand out in any way; therefore, users can easily miss them. Although you
could make the instructions stand out visually—with bright colors or a bigger font
size—that would distract the user during the game itself. Let’s try a different
approach: showing the instructions in a dialog.

Figure 6.7 The fruit and vegetable game you
built in chapter 5. Notice that the instructions
are not especially noticeable—a user can easily
miss them.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

149Using effects with the jQuery UI widgets
The HTML for the instructions is a paragraph tag:

<p>The fruit and vegetables aren't sorted correctly—rearrange them!</p>

You’ll start by converting this paragraph to a dialog as the first thing in your game’s
JavaScript:

$("p").dialog();

The display of this dialog is shown in
figure 6.8.

 Although this does make the
instructions stand out, several things
aren’t ideal here:

■ The user can interact with the
game while the dialog is still
open.

■ The user can only close the dia-
log using a small 20-pixel-wide
close button.

■ The user sees this dialog every time a new game starts. You want users to see the
dialog only once.

Let’s add effects and options to your dialog to improve the user experience. The next
listing shows an updated dialog.

NOTE You can view the updated game at http://jsfiddle.net/tj_vantoll/
MaKKX/. Note that the sessionStorage check is commented out because it
makes the example difficult to test. You can uncomment the check to see its effect.

if (!sessionStorage.getItem("messageViewed")) {
 $("p").dialog({
 show: {
 effect: "scale",
 easing: "easeOutElastic",
 duration: 750
 },
 hide: {
 effect: "scale",
 duration: 100
 },
 modal: true,
 title: "Fruit & Vegetable Sorter",
 width: 400,
 buttons: {
 "OK": function() {
 $(this).dialog("close");
 }

Listing 6.3 A message dialog with instructions

Shows the message only
if it hasn’t been viewedB

Shows the
dialog with a
scale effectC

Hides the
dialog with

a scale effect D
Uses a modal
dialog

E

Creates an
OK button

F

Figure 6.8 Showing the instructions for the game
pulls them out of the main content and makes them
stand out to the user.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/MaKKX/
http://jsfiddle.net/tj_vantoll/MaKKX/
http://www.it-ebooks.info/

150 CHAPTER 6 Creating rich animations with effects
 },
 close: function() {
 sessionStorage.setItem("messageViewed", true);
 }
 });
}

You start with a check to make sure that the user hasn’t already seen the message B.
We’ll discuss how this works momentarily.

 Next, you create your dialog with several more options set. First, you define a scale
effect to use when showing C and hiding D the dialog. Using a scale effect when dis-
playing the dialog makes it jump out and grab the user’s attention. To make the dialog
stand out even more, you use an easeOutElastic easing, which runs the first part of
the animation quickly.

 When the dialog closes, you also use the scale effect. The goal here is slightly dif-
ferent than when you opened the dialog. Because the scale effect shrinks the dialog to
hide it, it draws the user’s eyes in the direction of the game, which is where the user
should look after reading the instructions. You set the duration to a tiny 100 millisec-
onds to get the dialog out of the way of the game quickly.

 After this, you set the modal option to true E to prevent the user from interacting
with the game until the dialog is closed. Modal dialogs place a semitransparent overlay
over the content behind the dialog while it’s displayed. Because the overlay grays out
the game a bit, this is yet another technique for grabbing the user’s attention.

 Next, you set the buttons option to create an OK button that allows the user to
close the dialog F. This gives the user a far bigger target to close the dialog with,
which is important on small screens such as mobile devices.

 As a last step, you specify a close event callback that sets a "messageViewed" vari-
able in sessionStorage G. How does sessionStorage work?

 You may recall from earlier chapters that localStorage is a means of storing key-
value pairs in the browser. sessionStorage and localStorage share an identical API
and behave the same way, with one important difference: localStorage is persisted
indefinitely, but sessionStorage is only persisted for the user’s session. After the user
closes the browser, or the page’s tab, sessionStorage is emptied. If you open the
game, close the instructions, and refresh the page, you don’t see the instructions
again. But if you open the game in a new tab, you do.

 sessionStorage makes sense for your example because, although you don’t want
the user to see the instructions on subsequent plays of your game, you do want the
user to see them when returning to the game the next day, or next month.

 The updated version of your dialog is shown in figure 6.9.
 This example shows how the jQuery UI effects can be used in a practical manner to

enhance an application. In this case, with a few lines of configuration you took static
instructions and made them bounce out and grab the user’s attention. To avoid
annoying users, you showed the instructions once per session, made the instructions
easy to close, and used a short duration on the hide effect.

Records that
the message has
been viewedG
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

151Animating CSS class name changes
Before we complete our look at effects, we need to look at one last way they integrate
with existing APIs.

6.4 Animating CSS class name changes
Like showing and hiding elements, another extremely common operation in web
development is managing CSS class names to control the display of DOM elements. Up
until CSS3 transitions—which we’ll look at in the next section—it was impossible to
transition between the values specified by the class name. If you have a <div> with a
top of 100px, and then add a class name that changes it to 200px, the <div> doesn’t
animate to its new position; it instantly hops 100 pixels.

 jQuery UI makes these transitions easy by extending familiar methods from jQuery
Core. Specifically, it extends the addClass(), removeClass(), and toggleClass()
methods. Let’s see how.

6.4.1 Enhancing addClass(), removeClass(), and toggleClass()

As an example of how jQuery UI enhances jQuery Core, the following code animates a
<div> from a 50 x 50-pixel box to a 100 x 100-pixel box over a full second:

<style>
 div {
 height: 50px;
 width: 50px;
 background: red;
 }

Figure 6.9 The updated version of the instructions dialog does two things to draw the user’s attention:
it uses an effect to jump off the page, and it uses a modal dialog to gray out the rest of the content. This
dialog includes an OK button, which makes it easy for the user to close the dialog to get to the game.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Creating rich animations with effects
 div.big {
 height: 100px;
 width: 100px;
 }
</style>
<div></div>
<script>
 $("div").addClass("big", 1000);
</script>

The same as the other effect methods you’ve seen, each of the three class name
manipulation methods that jQuery UI extends has two forms.

 The first—and the one used in the previous example—specifies each property
individually in the order of class name, duration, easing, and complete callback func-
tion. The following code also increases the size of the <div>, but does so over 2 sec-
onds with a linear easing and logs a message when the animation completes:

$("div").addClass("big", 1000, "linear", function() {
 console.log("complete");
});

The other form of the class name manipulation method takes an object. The previous
example could also be written as follows:

$("div").addClass("big", {
 duration: 1000,
 easing: "linear",
 complete: function() {
 console.log("complete");
 }
});

TIP To hit the jQuery UI extensions of the jQuery Core class name methods,
you must pass at least two arguments. $("div").removeClass("big", 1000
) performs a transition, but $("div").removeClass("big") doesn’t. If you
want a transition but don’t need any customization, you can pass an empty
object, for instance, $("div").removeClass("big", {}).

If you’ve used the jQuery Core animate() function before, you may know that you
can perform these exact same effects with it. The following code has the same func-
tionality—growing the <div> to 100 x 100 with a linear easing and logging when it
finishes—using animate() instead of addClass():

$("div").animate({
 height: 100,
 width: 100
}, 1000, "linear", function() {
 console.log("complete")
});

Because the end result is exactly the same, why use CSS class names? To explore this,
let’s look at an example that has become popular lately: off-canvas navigation.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

153Animating CSS class name changes
6.4.2 Building an off-canvas navigation menu for mobile

If you’ve browsed the web on a mobile device, you’re almost certainly familiar with off-
canvas navigation menus. These menus are initially hidden and “fly-out” over the
main content after the user takes an action—usually clicking a link or button. Because
the menus are initially hidden, they’re popular on mobile and responsive sites as they
help conserve limited space.

 The off-canvas navigation menu you’ll build is shown in figure 6.10.

Animating multiple class names simultaneously
One little-known fact about the jQuery Core class name manipulation methods is that
they can operate on multiple class names simultaneously. The following adds three
class names to all paragraphs. In accordance with the HTML class attribute, the
class names need to be space delimited:

$("p").addClass("red big spaced");

The jQuery UI class name–based animations also work with multiple class names,
and provide a powerful means to combine several class names in a single animation.
The following code performs a single animation that transitions the color, font-
size, and padding on a paragraph over 3 seconds:

<style>
 .red { color: red; }
 .big { font-size: 5em; }
 .spaced { padding: 1em; }
</style>
<p>jQuery UI Rocks!</p>
<script>
 $("p").addClass("red big spaced", 3000);
</script>

Figure 6.10 An off-canvas navigation menu for settings shown on a mobile device. Click-
ing the Settings button displays the menu. Clicking the Close button hides it.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Creating rich animations with effects
How do these menus work? The most common way of implementing them is by ani-
mating the CSS left property. You give the menu an initial, negative left value that
positions it off the screen, then update it to 0 after the button is clicked to show it.

 Your implementation of this menu uses this approach and is shown in listing 6.4.

NOTE Some of the visual CSS and boilerplate HTML is omitted from this list-
ing for simplicity. The full source of this demo can be viewed online at http://
jsfiddle.net/tj_vantoll/4ytAn/ or in the book’s code examples.

<style>
 #menu {
 position: absolute;
 left: -200px;
 top: 0px;
 width: 200px;
 }
 #menu.visible {
 left: 0;
 }
</style>

<header>
 <button>Settings</button>
</header>
<div id="menu">
 <h3>Settings</h3>
 ...
 <button>Close</button>
</div>

<script>
 $("header button").button({
 icons: { primary: "ui-icon-gear" }
 });
 $("#menu button").button({
 icons: { primary: "ui-icon-closethick" }
 });
 $("button").on("click", function() {
 $("#menu").toggleClass("visible", 300, "easeOutQuint");
 });
</script>

NOTE This example doesn’t display correctly in Internet Explorer versions
earlier than 9 because it uses the HTML5 <header> element. You can add sup-
port for the new HTML5 semantic elements in Internet Explorer versions ear-
lier than 9 using the HTML5 shiv. See https://github.com/aFarkas/html5shiv
for details.

You start with the menu positioned at a left of -200px B, which—because the menu
is 200 pixels wide—places it off the screen. Next, you define a visible CSS class name

Listing 6.4 An off-canvas navigation menu

The initial left
of the menu

B

The updated left
of the menu

C

The button to
open the menu

The button to
close the menu

A click handler
for each button

D

Toggles the visible class to
show and hide the menu E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/4ytAn/
http://jsfiddle.net/tj_vantoll/4ytAn/
http://www.it-ebooks.info/

155Animating CSS class name changes
that has a left value of 0 C, which, when applied, places the menu completely within
the visible viewport on the left-hand side of the screen.

 In this example’s JavaScript, you attach a click event handler to each of the two
buttons on the page D. In the handler, you toggle the "visible" class name using the
toggleClass() method E. This uses the jQuery UI extension to the jQuery Core
toggleClass() methods, and jQuery UI animates all properties associated with the
change—in this case, left. You use a short duration (300 milliseconds) and an easing
that accelerates the first part of the animation ("easeOutQunit") so that the user sees
the menu quickly.

 This example demonstrates why the class name changes are cleaner than using a
more low-level method such as animate(). For one, your JavaScript code is easier to read.
Someone unfamiliar with this codebase will have an easier time understanding code that
adds a "visible" class name than code that hardcodes individual CSS properties.

 More importantly, using CSS class names to drive animations helps you group your
code and separate your concerns. The JavaScript controls the state of the menu
(whether or not it’s visible), and your CSS defines what that state means visually. This
gives you more flexibility with the maintenance of this application. If you want this
menu to come in from the right-hand side of the screen, you don’t have to change any
JavaScript code.

 This CSS-driven approach to animations is so powerful that jQuery UI effects have
inspired changes to the web platform directly, via CSS3 animations and transitions. In
the next section, we’ll look at how the native transitions work and whether you should
be using them today.

Animating colors with jQuery UI
jQuery Core doesn’t have the ability to animate the color of elements. For example,
if you run $("*").animate({ color: "red" }) on a page with only jQuery Core
loaded, nothing happens. jQuery UI adds this support through the jQuery color plugin,
which is packaged with the library.

You can animate colors using the jQuery Core animate() function or with the CSS
class manipulation methods we looked at in this section. The color plugin supports
colors as hex values, rgb(), rgba(), and valid CSS color names like "red" and
"blue". The following code animates a number of CSS color properties on a <div>
over 2 seconds:

<style>
 div {
 border: 10px solid black;
 outline: 10px solid black;
 }
 div.rainbow {
 background: #FF0000;
 border-color: yellow;
 color: rgb(0, 0, 255);
 outline-color: green;
 }

Red

Blue
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Creating rich animations with effects
6.5 Effects vs. CSS3 animations and transitions
Like many of the jQuery UI widgets, some of the functionality offered by the jQuery UI
effects is now natively implemented in many browsers. Whereas the widget equivalents
have been incorporated in the HTML specification, the effect equivalents have
inspired changes in the CSS specification—specifically, CSS animations and transi-
tions. Let’s look at CSS3 transitions first.

6.5.1 CSS3 transitions vs. the jQuery UI class name methods

CSS3 transitions provide a way to control changes to CSS properties. Transitions are
often associated with class names; they’re best compared to the jQuery UI versions of
the addClass(), removeClass(), and toggleClass()methods.

 The following listing shows two identical transitions of text from black to red. One
uses the jQuery UI class name animations, and the other uses CSS3 transitions.

<style>
 #css {
 -webkit-transition: color 5000ms linear;
 transition: color 5000ms linear;
 }
 .red { color: red; }
</style>
<p id="ui">jQuery UI</p>
<p id="css">CSS3</p>
<script>
 $("#ui").addClass("red", {
 duration: 5000,
 easing: "linear",
 complete: function() {
 console.log("ui animation complete");
 }
 });
 $("#css").addClass("red")
 .on("webkitTransitionEnd transitionend", function() {
 console.log("css transition complete");
 });
</script>

Listing 6.5 Comparison of class name animation in jQuery UI and CSS3

(continued)
</style>
<div>jQuery UI Rocks!</div>
<script>
 $("div").addClass("rainbow", 2000);
</script>

A full list of the properties supported and additional documentation can be found on
the color plugin’s documentation at https://github.com/jquery/jquery-color.

CSS rule
declarations
for transitionB

Event handler
transitionend

jQuery UI class
name-based
transition

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

157Effects vs. CSS3 animations and transitions
The jQuery UI method should look familiar, as it’s the same code you’ve looked at in
this chapter. The CSS-based transition, however, may look a bit odd at first. To start,
the configuration for the transition is in CSS rather than JavaScript. Let’s look at each
of the pieces of the transition CSS rule B:

■ color—The property name to transition. This can list specific property names
as is done here, or the keyword all to transition all property changes.

■ 5000ms—The equivalent of the duration property from jQuery UI. The one dif-
ference is that in CSS you must also provide the unit (s for seconds and ms for
milliseconds).

■ linear—The equivalent of the easing property from jQuery UI. CSS provides
ease, ease-in, ease-out, ease-in-out, and linear easings. The default value
is ease.

This one line is all you need to configure the transition. But the code has two lines of
CSS: a transition and a –webkit-transition. What is this about?

 Originally, most major browsers—specifically, Firefox, Chrome, Safari, Opera, the
default Android browser, and iOS Safari—implemented CSS3 transitions behind a ven-
dor-specific prefix. The prefixes have now been removed in the latest version of all
browsers, although older versions of several WebKit-based browsers still receive signifi-
cant use—most notably the default Android browser, which didn’t remove the prefix
until Android 4.4, and has a considerable market share. For this reason, the transi-
tion rule must be explicitly stated twice—once with the –webkit- prefix and once
without it.

NOTE You can view more thorough documentation on which browser ver-
sions use vendor prefixes for CSS transitions at http://caniuse.com/#feat=css-
transitions. Note that Internet Explorer implemented transitions without a
prefix in Internet Explorer 10.

The last part of this example is the equivalent of the jQuery UI effect complete prop-
erty: the transitionend event C. As the name implies, the transitionend event is
fired when a CSS transition completes. As with the transition CSS property, you
must additionally listen for a vendor-specific event name for more comprehensive
browser support.

 Which approach should you use?
 In general, CSS3 transitions are preferred over jQuery-based transitions as the

browser can execute the CSS-based ones faster. On desktop browsers, the perfor-
mance difference is of little concern, as the browser can perform most JavaScript and
CSS-based transitions effortlessly, but on mobile browsers, the device’s limited pro-
cessing power makes the performance difference pronounced. If you’re developing
applications for the desktop, it makes sense to use whichever approach works best for
you; but if you’re developing for mobile use, lean toward CSS-based transitions for
optimal performance.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://caniuse.com/#feat=css-transitions
http://caniuse.com/#feat=css-transitions
http://www.it-ebooks.info/

158 CHAPTER 6 Creating rich animations with effects
 Computer scientist Donald Knuth famously said that “premature optimization is
the root of all evil,” and that sentiment applies here. Test your applications on the
devices that you support. Start with the transition approach that you prefer, and if you
don’t notice any performance issues, then it’s not worth worrying about.

 Although browser support for CSS transitions is good, you need to provide vendor
prefixes for some browsers, and Internet Explorer versions earlier than 10 have no
support. If it’s important to you to have functioning transitions in these browsers, stick
with the jQuery UI class name–based transitions.

 Next, we’ll compare another CSS3 feature, animations, to the jQuery UI effects.

6.5.2 CSS animations vs. effects

CSS3 animations offer more power than simple transitions. Instead of changing a
property from one value to another, you can control the value of multiple properties
at different intervals. In this sense, CSS animations are more like the jQuery UI effects.
Consider the shake effect. One of the positioning properties (left, right, top, or
bottom) must be changed in several directions over the course of the animation. It’s
not as simple as changing a property from one value to another.

 The best way to compare effects to animations is with an example. The following
listing shows two paragraphs. One is shaken with the jQuery UI shake effect, and the
other is shaken with a CSS animation.

<style>
 @-webkit-keyframes shake { ... }
 @keyframes shake {
 0% { left: 0; }
 12.5% { left: -20px; }
 25% { left: 0; }
 37.5% { left: 20px; }
 50% { left: 0; }
 62.5% { left: -20px; }
 75% { left: 0; }
 87.5% { left: 20px; }
 100% { left: 0; }
 }
 #css {
 position: absolute;
 -webkit-animation: shake 1s linear;
 animation: shake 1s linear;
 }
</style>
<p id="css">CSS3</p>
<p id="ui">jQuery UI</p>
<script>
 $("#ui").effect("shake", {
 times: 2,
 duration: 1000,
 easing: "linear",

Listing 6.6 Comparing CSS animations to the jQuery UI effects

The same content as the
unprefixed @keyframes
declaration

Defines the shake
CSS animation
keyframesB

Specifies the
animation
rule

C

Uses a jQuery
UI shake effect
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

159Effects vs. CSS3 animations and transitions
 complete: function() {
 console.log("ui shake complete");
 }
 });
 $("#css").on("webkitAnimationEnd animationend", function() {
 console.log("css shake complete");
 });
</script>

The jQuery UI–based shake effect should look familiar. You shake a paragraph two
times over a second with a linear easing. As with CSS transitions, CSS animations can
be tricky to understand if you haven’t seen them before.

 The @keyframes declaration defines the animation and gives it a name—in this
case, shake B. Each keyframe, or entry in the @keyframes declaration, defines the
CSS rules to be applied to selected elements during the animation. For the shake ani-
mation, you see that the left property is moved in 20-pixel increments back and forth
to mimic the jQuery UI shake effect (whose default distance property is set to 20).

 After you have a CSS animation defined with @keyframes, you apply animation
rules to elements. The syntax for animation is similar to that of the transition prop-
erty you saw earlier. The shake 1s linear value specified tells the browser to perform
the shake CSS animation on this element over 1 second using a linear easing C.

 Finally, you listen for the animationend event to show the equivalent of the jQuery
UI complete function D.

 As with CSS transitions, most browsers initially implemented CSS animations
behind a vendor prefix. However, many browsers have yet to drop the prefix. As of this
writing, the latest versions of Chrome, Safari, Opera, the default Android browser, and
iOS Safari all use the –webkit- prefix for CSS animations. Firefox dropped its –moz-
prefix in version 16, and Internet Explorer 10 shipped with CSS animations unpre-
fixed. The @keyframes declaration, animation property, and animationend event
used in this example all include a WebKit vendor-prefixed version.

 Because the example creates identical animations, this again begs the question of
whether you should be using jQuery UI or CSS. Unfortunately, there is no easy answer.

 As with CSS transitions, the browser can perform CSS animations quicker, so if
you’re experiencing performance issues, you should look to CSS animations first.
Desktop browsers can run the majority of JavaScript-based animations without issue,
but mobile browsers may have issues—particularly with complex animations that
require a great deal of processing power.

 Although CSS transitions are succinct, CSS animations are verbose and more diffi-
cult to configure than the convenient APIs provided by jQuery UI. You need to do
math to configure the @keyframes in the previous example, but not with the jQuery
UI effect. The jQuery UI APIs are more convenient when they hook directly into wid-
gets. Although you could configure a CSS animation to open a dialog with a blind
effect, using $("<div>").dialog({ show: "blind" }) is much easier and more main-
tainable in a large application.

Uses a jQuery
UI shake effect

Attaches an animationend
event handler D
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Creating rich animations with effects
 To complicate things further, some things can be done using the jQuery UI effects
that can’t be done with CSS animations, and vice versa. You can’t write a CSS animation
that makes a <div> explode into 100 pieces:

$("<div>")
 .appendTo("body")
 .css({ height: 500, width: 500, background: "red" })
 .effect("explode", { pieces: 100, duration: 10000 });

On the flip side, no jQuery UI effect lets you infinitely spin a <div> in three dimen-
sions, as this code does:

@-webkit-keyframes spin-3d {
 50% {
 -webkit-transform: rotateX(360deg) rotateY(360deg)
 skewY(180deg);
 }
 100% {
 -webkit-transform: rotateX(0deg) rotateY(0deg) skewY(0deg);
 }
}
@keyframes spin-3d {
 50% {
 transform: rotateX(360deg) rotateY(360deg) skewY(180deg);
 }
 100% {
 transform: rotateX(0deg) rotateY(0deg) skewY(0deg);
 }
}
div {
 height: 500px;
 width: 500px;
 background: red;
 position: absolute;
 -webkit-animation: spin-3d 10s linear infinite;
 animation: spin-3d 10s linear infinite;
}

TIP For more examples of using 3D in CSS, as well as an excellent tutorial on
how to build your own, see http://desandro.github.io/3dtransforms/.

Unfortunately, it’s not easy to handle this overlapping behavior. To summarize, the
advantages of using CSS-based animations are

■ They provide optimal performance.
■ They’re defined in CSS and can be used without JavaScript.

and the detriments are

■ They can be verbose, especially for complex animations.
■ You must specify vendor prefixes when using them.
■ They don’t work in older browsers.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

161Summary
If performance is critical, use CSS animations. If browser support is important, stick to
jQuery UI. Otherwise, use whichever makes more sense for you and your projects.

TIP If you need the performance of CSS transitions and animations, but
prefer the jQuery syntax for performing animations, there are several plu-
gins that provide a jQuery-like animation syntax, but use CSS under the
hood for optimal performance. The two most popular of these plugins are
Velocity.js (https://github.com/julianshapiro/velocity) and jQuery Transit
(http://ricostacruz.com/jquery.transit/).

6.6 Summary
jQuery UI includes 15 effects that can be used with the effect() method, integrate
with jQuery UI widgets, and even tie into jQuery Core methods such as show() and
hide(). The jQuery UI effects also add functionality such as advanced easings and the
ability to animate class name changes. But just because these effects let you do crazy
things doesn’t mean that you should.

 You saw a number of reasons why effects are practical in real-life applications. You
built a small grocery list builder that used the transfer effect to help the user learn the
interface. You added the shake effect to an error box in a form to draw the user’s
attention. You also moved a game’s instructions into a dialog for a similar effect.

 As with many of the jQuery UI widgets, the jQuery UI effects have inspired similar
functionality on the web natively as CSS transitions and animations. You looked at how
these worked and compared them to the jQuery UI effects. CSS-based transitions and
animations are faster, but they can be more verbose and don’t work in all browsers yet.

 Now that you’ve seen the powerful ways jQuery UI lets you animate elements, let’s
look at the tools the library provides to style elements with themes.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Theming and styling
 applications with jQuery UI
We’ve discussed the widgets in jQuery UI and how they work, but we’ve yet to dis-
cuss an important part of any set of UI widgets: how they look.

 jQuery UI includes a theming system that makes it easy to apply a consistent
look to all widgets. The library includes 24 prebuilt themes, as well as an online tool
for customizing them.

 The library’s theming system is implemented as a series of CSS class names, col-
lectively known as the jQuery UI CSS framework. The class names in the CSS frame-
work let you create themeable components, as well as perform a number of
common web development tasks such as styling error messages, using any of the
jQuery UI icons, and styling widgets based on their state. We’ll discuss what these
class names are, how to use them, and the powerful things you can do with them.

This chapter covers
■ Using the jQuery UI themes
■ Building custom themes with ThemeRoller
■ Styling with the jQuery UI CSS framework
162

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

163Using built-in and custom themes
 Each individual widget uses a separate set of class names to allow for widget-specific
customization. We’ll end the chapter by looking at what widget-specific class names are
available and how they work.

 Before digging into the jQuery UI CSS class names, let’s look at how to use the
themes built in to jQuery UI.

7.1 Using built-in and custom themes
Thus far, all widgets you’ve used in this book have had a grayish appearance because
you’ve been using the default jQuery UI theme: smoothness. The smoothness theme,
and its grayish appearance, was designed to easily integrate into existing sites because
it’s a lot easier to drop a gray datepicker into an existing design than a bright red one.
But wait, how did you specify which theme to use?

 Recall the example boilerplate introduced in chapter 1:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>…</title>
 <link rel="stylesheet” href="http://code.jquery.com/ui/1.11.0/themes/

smoothness/jquery-ui.css">
</head>
<body>
 …
</body>
</html>

The smoothness string in the path is what selects the theme to use for this page. To use
a different theme, replace smoothness with the name of another theme. Importing
http://code.jquery.com/ui/1.11.0/themes/le-frog/jquery-ui.css uses the le-frog theme.

 The one limitation of changing the file names is you can’t view multiple themes simul-
taneously to compare them, but don’t worry—for that there’s ThemeRoller, an online
tool for previewing the provided themes as well as designing your own. ThemeRoller is
available at http://jqueryui.com/themeroller/ and is shown in figure 7.1.

 When you first visit ThemeRoller, the best place to begin is the Gallery tab B. The
tab lets you preview all 24 jQuery UI themes and see the effect they have on each
jQuery UI widget live. Despite the many options, it’s unlikely that a theme will work
perfectly for you without any alterations.

 After you’ve found a theme you like, switch to the Roll Your Own tab. Here you can
make customizations—including font, colors, and borders C—to the theme you selected.

WARNING Despite years of trying, your author’s artistic skills remain compa-
rable to the average five-year-old with a box of crayons. As a result—as much
as I would love to—this book won’t give advice on how to choose colors for
your apps. Several online resources can help you, though. Adobe Kuler pro-
vides a series of color selections that you can experiment with. See https://
kuler.adobe.com/explore/.

Imports the
smoothness theme
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://kuler.adobe.com/explore/
https://kuler.adobe.com/explore/
http://www.it-ebooks.info/

164 CHAPTER 7 Theming and styling applications with jQuery UI
The nice thing about ThemeRoller is you can visually see the effect a CSS property
change has on all widgets instantly; they rerender themselves as changes are made.
This is shown in figure 7.2.

Choose an existing
theme to start with.

1

Download your
custom theme.

3

Customize your
theme by altering
the CSS properties
in the sidebar.

2

Figure 7.1 The steps needed to build a jQuery UI theme with ThemeRoller. First, select a starting theme
on the Gallery tab, then customize it by playing with CSS properties in the sidebar. As a final step, download
the theme with the Download theme button.

Figure 7.2 As you change CSS properties in ThemeRoller, all widgets are automatically updated to display
the change. Here, the font family is changed to cursive, and all widget text changes to cursive instantly.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

165Using built-in and custom themes
If you like your changes and want to use them, click the Download theme button on
the Roll Your Own tab D (in figure 7.1). This sends you to the jQuery UI Download
Builder with your custom theme preselected. If you scroll to the bottom of the Down-
load Builder, you’ll see the screen shown in figure 7.3.

 The CSS Scope input sets a scope that the custom theme should be limited to. If
you use a CSS scope of div#sidebar, the theme’s CSS rules only apply in a <div
id="sidebar"> element. In the vast majority of situations, you won’t need a CSS scope;
it makes sense only if you want to use multiple themes on one page.

 Clicking the Download button downloads a zip file containing the files shown in
figure 7.4.

 What are those jquery-ui.structure.css and jquery-ui.theme.css files? jQuery UI
breaks its CSS rules into two categories: structural (margin, width, height, and so
forth) and theming (the ones you configured in ThemeRoller). These rules are
placed into jquery-ui.structure.css and jquery-ui.theme.css, respectively. This gives you

Figure 7.3 The theme selector on
the jQuery UI Download Builder with
a custom theme from ThemeRoller
selected. You can use a CSS Scope
to scope the theme to a specific part
of a page.

jQuery Core

Images the theme relies on

Test page containing all widgets

CSS files for custom theme

Figure 7.4 The contents of a jQuery UI download with a custom theme. The jquery-ui.css and jquery-
ui.min.css files contain the CSS for the theme (jquery-ui.min.css is minified and jquery-ui.css is not),
the images directory contains images that the theme depends on, and index.html is a demo page
where you can see how all of the jQuery UI widgets look with your theme.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 7 Theming and styling applications with jQuery UI
the ability to manage multiple themes without duplication, as jquery-ui.structure.css
remains the same regardless of which theme you use. Unless you plan on managing
multiple themes—and the majority of developers don’t—use jquery-ui.css, as it’s the
structure and theme concatenated together.

 If you open jquery-ui.css, you’ll see that it starts with the following comment block:

/*! jQuery UI - v1.11.0 - 2014-01-01
* http://jqueryui.com
* Includes: core.css, draggable.css, ...
* To view and modify this theme, visit http://jqueryui.com/themeroller/

?ffDefault=Verdana...
* Copyright 2014 jQuery Foundation and other contributors; Licensed MIT */

The key part is the URL starting with http://jqueryui.com/themeroller/. If you navi-
gate to this URL in your browser, you go to ThemeRoller with all your custom changes
in place. This is great for keeping your theme up to date as new versions of jQuery UI
are released. When jQuery UI x.y.z comes out, you can import your theme, see how it
looks with the updated library, and then download an updated CSS file with your
changes preserved.

TIP In general, it’s a bad practice to directly edit a ThemeRoller-built CSS
theme file. Leaving the file intact makes it easier to upgrade when new ver-
sions of jQuery UI are released. Create a new CSS file for your application,
and do any additional styling there.

Although ThemeRoller is a great starting point for styling applications, you can’t do
everything in it. You’re limited to specific CSS properties, and you can’t target individ-
ual widgets. ThemeRoller is just the beginning of the styling capabilities provided by
jQuery UI.

 To see other things that are possible, let’s dig into the jQuery UI CSS framework.

7.2 Using the jQuery UI CSS framework to customize applications
jQuery UI comes packaged with a full CSS framework with CSS class names that serve a
variety of purposes. To get a sense of the names, a full list is documented at http://
api.jqueryui.com/theming/css-framework/.

 In this section, we’ll go over the class names and what you can do with them. The
main three categories of class names are widget containers, interaction states, and
interaction cues. We’ll go over each, starting with widget containers.

Third-party themes
In addition to the themes provided in jQuery UI, a number of themes created by the
jQuery community are available. The most popular of these is jQuery UI Bootstrap,
which integrates the popular Bootstrap library with jQuery UI. You can learn more
about Bootstrap at http://getbootstrap.com/ and check out jQuery UI Bootstrap at
http://jquery-ui-bootstrap.github.io/jquery-ui-bootstrap/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/theming/css-framework/
http://api.jqueryui.com/theming/css-framework/
http://www.it-ebooks.info/

167Using the jQuery UI CSS framework to customize applications
TIP To avoid naming conflicts, every class name used by jQuery starts with a
ui- prefix. Names are lowercased, and words are separated with hyphens—
for instance, ui-widget-content.

7.2.1 Styling widget containers

The first set of class names creates a visual consistency between the widgets used in an
application. This set has only three class names, so they’re not too hard to remember:

■ ui-widget—Class name applied to the outer container of all widgets.
■ ui-widget-header—Class name applied to header containers.
■ ui-widget-content—Class name applied to content containers. The content

container can be the parent or sibling of a ui-widget-header.

Internally, jQuery UI consistently applies these class names to all its widgets. Fig-
ure 7.5 shows how the class names are applied to a few widgets. The solid border is
around the ui-widget-header element, and the dotted black border is around the
ui-widget-content element.

 In the case of the tabs, dialog, and datepicker widgets, the ui-widget-content
class name is on the outer container of the widget. The accordion widget places ui-
widget-content on each content pane.

NOTE In general, ui-widget-content is placed on the outer widget container
as it’s desirable to have a border around the whole widget. If you don’t want a
border—as with the accordion—it’s placed on a separate child element.

Figure 7.5 Locations of widget container class names ui-widget-header (solid border) and ui-
widget-content (dotted border) on the tabs, dialog, accordion, and datepicker widgets. The accordion
header uses neither because it is clickable; it uses the interaction states we’ll cover in the next section.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7 Theming and styling applications with jQuery UI
Because the class names are consistently applied, you can write CSS rules that target all
widgets at the same time. The following code shows an example of this:

.ui-widget {
 font-size: 1.2em;
 font-family: Tahoma;
}
.ui-widget-header {
 border: 5px solid blue;
 background: red;
 color: white;
}
.ui-widget-content {
 border: 2px solid green;
 background: purple;
 color: gray;
}

Although this example doesn’t produce pretty widgets, it shows the types or rules that
are safe to apply to these class names. Because the ui-widget class name is applied to
all widgets, you can apply only a few CSS rules safely without breaking the display of
some widgets. In fact, the jQuery UI themes internally specify only a font-size and
font-family. For the header and content class names, border, background, and
color are the most common rules used.

 Unless you’re a designer creating a custom look, it’s uncommon to need to add
CSS rules to these class names beyond the rules that are configurable in ThemeRoller.
But as you’ll see in the next chapter, if you know how to apply these class names to
HTML elements, you can create custom widgets that work with the jQuery UI theming
system automatically. If you want to add a container to your application that looks the
same as your widgets, you can use the following markup:

<div class="ui-widget ui-widget-content">
 <div class="ui-widget-header">
 Hello
 </div>
 Content
</div>

The container class names handle the widget’s default look, but they don’t handle styl-
ing based on user interaction—such as the display of a tab after it’s activated. The next
category of framework classes addresses these states.

7.2.2 Styling interaction states

You may have noticed that when you hover over a button widget, its display changes.
Or when you click an accordion header, it’s automatically highlighted. What you may
not have noticed is all these changes happen by manipulating a few core class names.
The class names for the four widget states are
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

169Using the jQuery UI CSS framework to customize applications
■ ui-state-default—Applied to clickable elements such as a button, tab, or
accordion header.

■ ui-state-hover—Applied to clickable elements when the mouse hovers over
them.

■ ui-state-focus—Applied when clickable elements receive keyboard focus.
■ ui-state-active—Applied when a clickable element is activated. The active

tab and accordion header are given this class name.

To get a sense of how these class names work, consider the following example:

<style>
 .ui-state-default { color: blue; }
 .ui-state-hover { color: orange; }
 .ui-state-focus { color: green; }
 .ui-state-active { font-size: 1.5em; }
</style>
<div id="buttonset">
 <label for="one">one</label>
 <input name="numbers" type="radio" id="one">

 <label for="two">two</label>
 <input name="numbers" type="radio" id="two">
</div>
<script>
 $("#buttonset").buttonset();
</script>

TIP This example is easier to see visually. You can try this example out at
http://jsfiddle.net/tj_vantoll/78vQL/.

You have a buttonset widget containing two radio buttons. Because the buttons are
clickable, the widget places the ui-state-default class name on each of them. As a
result, your buttons start with blue text B.

 If you hover over either button, its text changes to orange C. If you give either
button focus with the keyboard, its text changes to green D. Finally, if you select
either radio button, the selected button’s font-size increases E.

 As with the container class names, jQuery UI consistently applies the interaction
state class names to all clickable elements in all widgets. By writing rules to target these
states, you can again style widgets simultaneously.

 Before we look at more comprehensive examples of how all these class names
come together, we’ll discuss one last category: interaction cues.

7.2.3 Styling interaction cues

Interaction states are directly related to clickable elements, but interaction cues can be
applied to any element. The six interaction cue class names are

■ ui-state-highlight—Represents a highlighted container element.
■ ui-state-error—Represents an erred container element.

Default stylingB
Hover styling C

Focus stylingD
Active styling E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7 Theming and styling applications with jQuery UI
■ ui-state-error-text—Utility class name to style error text without applying a
background. It can be used on the labels of erred form fields.

■ ui-state-disabled—Represents a disabled element.
■ ui-priority-primary—Represents a higher priority element in a set, such as a

button you want to stand out to the user.
■ ui-priority-secondary—Represents a lesser priority element in a set, such as

a button you don’t want to stand out; for example, a cancel button.

Of these six, only ui-state-disabled is used by the jQuery UI widgets internally; the
rest are intended for utility use in your applications. To show how, let’s dig into more
robust examples that use these class names.

 Let’s start by revisiting the accordion widget to add the ability to disable and dis-
play errors for individual headers. How could you use this functionality? Suppose you
run an online service where users have accounts they can manage. An accordion pro-
vides an excellent way to divide the various settings into categories such as profile, bill-
ing information, preferences, and so forth.

 With such a setup, erring individual headers lets you draw the user’s attention to a
collapsed panel to take some action—such as changing an expired password.

 Disabling lets you prevent the user from interacting with individual headers. You
have to be careful, though. In most situations, it’s better to hide rather than disable
elements; many users become confused when presented with controls they can’t use.
But in this example, you’ll look at one way that disabling can be advantageous.

 The accordion control you’ll build is shown in figure 7.6.
 The first tab displays with a red background, border, and text and contains a warn-

ing icon. The second tab appears disabled to the user. The following listing shows the
code to build this accordion.

NOTE The full source of this example is available at http://jsfiddle.net/
tj_vantoll/z6w6P/.

Erred header

Disabled header

Figure 7.6 An accordion control with an erred header and a disabled header
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/z6w6P/
http://jsfiddle.net/tj_vantoll/z6w6P/
http://www.it-ebooks.info/

171Using the jQuery UI CSS framework to customize applications
<style>
 .ui-state-error .ui-icon {
 display: inline-block;
 }
</style>
<div id="accordion">
 <h3 class="ui-state-error">

 This section has an error

 Profile
 </h3>
 <div>
 <form>
 <label for="password"
 class="ui-state-error-text">Password:</label>
 <input id="password" required
 title="Your password has expired, please choose a new one">
 <button>Update</button>
 </form>
 </div>
 <h3 class="ui-state-disabled">Admin</h3>
 <div>Admin - Contents</div>
</div>
<script>
 $("#accordion")
 .accordion()
 .tooltip({
 items: ".ui-state-disabled",
 content: "To use this feature you must upgrade your account"
 });
 $("#password").tooltip();
</script>

For the first tab, you apply the erred styling by adding the ui-state-error class name
B, which applies the red border, background, and text color to the header. The class
name doesn’t, however, apply the warning icon as shown in figure 7.6. This comes
from the in the header C.

 You’ve used the jQuery UI icons several times throughout this book, but you’ve
only looked at using icons as options of the jQuery UI widgets, such as the button wid-
get’s icons option. All the jQuery UI icons can be used in HTML directly by apply-
ing two class names: ui-icon and the name of the specific icon, in this case, ui-
icon-alert. You can find a full list of the icons available at http://api.jqueryui.com/
theming/icons/.

NOTE If creates the icon,
why do you give the “This section has an error” text in it? The text is provided
for screen reader users who can’t see the red styling or the warning icon. The
ui-icon class name hides this text from sighted users and leaves it accessible
to assistive technologies such as screen readers.

Listing 7.1 Erring and disabling accordion panels

Applies an
erred state

B

Shows an
alert iconC

Disables the Admin headerD

Shows a tooltip for
disabled headers

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/theming/icons/
http://api.jqueryui.com/theming/icons/
http://www.it-ebooks.info/

172 CHAPTER 7 Theming and styling applications with jQuery UI
That takes care of the first panel, so let’s move on to the disabled panel. You disable
an accordion panel by applying the ui-state-disabled class name to the appropriate
header element D. The widget now automatically prevents this panel from being
opened. This technique of disabling with ui-state-disabled works for several of the
jQuery UI widgets—specifically, tabs, menu, and button.

 But you need to take care of one last thing. Disabled UI elements can confuse users
unless they’re given an indication of why the elements are disabled. For this example
you add a tooltip E to the disabled accordion header to let the user know why the
header is disabled—the user needs to upgrade the account to use this panel.

 Although this is not a complete example, it shows how the jQuery UI CSS frame-
work makes it easy to customize a widget’s built-in behavior to meet your needs. The
accordion widget has no built-in options to error or disable individual tabs, but you
can build this display using a few of the framework’s class names. Let’s look at another
example of how you can customize widgets with the jQuery UI CSS framework.

7.2.4 Building a styled confirmation dialog

In chapter 4, you built a dialog to get the user’s confirmation before you deleted the
user’s data. Now that you know about the CSS framework, let’s see how you can use
the CSS class names in jQuery UI to improve the look of a confirmation dialog. This
time, you’ll build a dialog for a different use case: confirming a money transfer.
If you’ve ever banked online, a dialog such as that shown in figure 7.7 should
look familiar.

 The code to build this dialog is shown in the next listing.

Layout helper class names
We haven’t specifically looked at one category of class names: the layout helpers.
The layout helpers are a series of utility class names you may have a use for in your
applications:

■ ui-helper-hidden—Hides the element visually and from screen readers.
■ ui-helper-hidden-accessible—Hides the element visually but leaves it

accessible to screen readers.
■ ui-helper-reset—A CSS style reset. It resets margin, padding, border,

outline, line-height, text-decoration, font-size, and list-style to a
baseline value that’s consistent across browsers. Read more about what CSS
resets do at http://meyerweb.com/eric/tools/css/reset/.

■ ui-helper-clearfix—Clears floating child elements. Learn more about CSS
floats and clearing them at https://developer.mozilla.org/en-US/docs/Web/
CSS/float.

■ ui-front—jQuery UI uses this class name internally to manage the z-index-
based stacking of elements on the screen. Read more about ui-front at http:
//api.jqueryui.com/theming/stacking-elements/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/theming/stacking-elements/
http://api.jqueryui.com/theming/stacking-elements/
https://developer.mozilla.org/en-US/docs/Web/CSS/float
https://developer.mozilla.org/en-US/docs/Web/CSS/float
http://www.it-ebooks.info/

173Using the jQuery UI CSS framework to customize applications
NOTE The full source of this example can be found at http://jsfiddle.net/
tj_vantoll/a3zkQ/.

<style>
 .ui-dialog .ui-state-highlight { padding: 0.5em; }
 .ui-dialog .ui-icon-info { display: inline-block; }
 .ui-widget-content .ui-priority-primary {
 color: white;
 background: green;
 }
</style>
<div id="dialog">
 <p class="ui-state-highlight">

 Informational message

 Bank transfers take two days to process.
 </p>
 <p>Please confirm you would like to transfer $1,000,000 to TJ
 VanToll.</p>
</div>
<script>
 $("#dialog").dialog({
 buttons: [
 {
 text: "OK",
 "class": "ui-priority-primary",
 click: function() {
 // Process transaction
 $(this).dialog("close");
 }
 },
 {
 text: "Close",
 "class": "ui-priority-secondary",
 click: function() {
 $(this).dialog("close");
 }
 }

Listing 7.2 Building a styled confirmation dialog

Figure 7.7 A confirmation dialog to
show before a money transfer

Styles the
primary buttonB

Highlights the
informational paragraphC

Uses an
info icon D

Uses the
primary button
class name

E

Uses the
secondary button
class name

F

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/a3zkQ/
http://jsfiddle.net/tj_vantoll/a3zkQ/
http://www.it-ebooks.info/

174 CHAPTER 7 Theming and styling applications with jQuery UI
],
 title: "Confirm Money Transfer",
 width: 500
 });
</script>

Let’s start with the HTML. For the informational message about bank transfers, you
use the jQuery UI ui-state-highlight class name to make the message stand out to
the user C. Inside the message, you use another of the CSS framework icons, ui-
icon-info, to visually indicate that this is an information message D. You also provide
a text fallback for screen readers that can’t read the icon.

 In JavaScript, you create a dialog widget—using the widget’s buttons option to cre-
ate the two buttons. On each button’s object, you include a class property to add the
class names—ui-priority-primary E and ui-priority-secondary F, respec-
tively—to each button. The class names add emphasis to a primary action and reduce
emphasis from a secondary action. You want to draw the user’s eye and attention to
the OK button to encourage the user to complete the transaction.

 Internally, jQuery UI bolds the primary button and decreases the opacity of the
secondary button to achieve this effect. To further draw the user’s attention, you also
change the background and text color of the primary button B.

TIP The word class is a reserved word in JavaScript; to use it in code you must
quote it as in this example. Although the language doesn’t currently use class,
it will be used in the next version of JavaScript (ECMAScript 6).

One last note before we move on: did you notice the difference between the three CSS
rules you used?

.ui-dialog .ui-state-highlight { … }

.ui-dialog .ui-icon-info { … }

.ui-widget-content .ui-priority-primary { … }

See how the first two rules are prefixed with a ui-dialog class name and the third
with ui-widget-content? The first two use widget-specific class names, and the last
uses a framework-wide rule. As you saw in this section, framework-wide rules let you
add CSS rules that apply to all widgets. Because you made your button green using ui-
widget-content, any future widgets with primary buttons will be styled the same.

 Although the ability to style all widgets at the same time is powerful, sometimes you
don’t want changes to apply everywhere. In this example, the highlighting changes
are prefixed with ui-dialog because you want the CSS rules to apply only when ui-
state-highlight is used in a dialog. ui-dialog is one of many class names that
jQuery UI provides for each individual widget. Next, let’s look at what class names are
available and what you can do with them.

7.3 Styling with widget class names
Each widget uses a comprehensive set of CSS class names so you can easily target
any section of any widget. The class names are documented in each widget’s API
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

175Styling with widget class names
documentation. The dialog class names are documented at http://api.jqueryui.com/
dialog/#theming. The documentation uses nesting to show the structure of each wid-
get’s markup. The dialog widget’s ui-dialog-titlebar, ui-dialog-content, and ui-
dialog-buttonpane elements are direct children of the ui-dialog element. This rela-
tionship is shown in figure 7.8.

 The widget-specific class names give you the ability to target specific parts of wid-
gets without having to worry about affecting other widgets. Figure 7.9 shows how you
could use the dialog class names to customize its appearance.

Figure 7.8 On the left is a simplified version of the markup the dialog widget uses. On the right is the
dialog widget’s class name documentation. Notice that the nesting in the documentation matches the
nesting used in the rendered HTML markup.

.ui-dialog {
 border: 15px solid green;
}

.ui-dialog-title {
 font-size: 2em;
}

.ui-dialog-content {
 text-transform: uppercase;

}

.ui-dialog-titlebar {
 border: 5px dotted black;
}

Figure 7.9 A sampling of the dialog-specific CSS class names available. The ui-dialog class name
applies a solid border to the whole dialog; ui-dialog-title applies a larger font size to the title bar;
ui-dialog-content uppercases the content’s text; and ui-dialog-titlebar applies a dotted
border to the title bar.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/dialog/#theming
http://api.jqueryui.com/dialog/#theming
http://www.it-ebooks.info/

176 CHAPTER 7 Theming and styling applications with jQuery UI
Admittedly, putting a 15-pixel green border around dialogs isn’t practical for most
applications, but you can do it! Let’s look at how you can use the widget-specific class
names to make powerful customizations to the jQuery UI widgets.

7.3.1 Building vertical tabs

Recall from chapter 4 that the jQuery UI tabs widget displays tabs horizontally on top
of the active tab’s content. Although this is the most common use case, suppose you
want the tabs to display vertically on the side of the content, as shown in figure 7.10.

Although you may think you need JavaScript to rearrange elements to create this dis-
play, the class names provided by jQuery UI make it possible to do this in CSS alone.
The key portions of the CSS are shown in the following listing. The full source and a
live demo are available at http://jsfiddle.net/tj_vantoll/SL44T/.

.ui-tabs { overflow: hidden; }

.ui-tabs .ui-tabs-nav {
 float: left;
 width: 10em;
 border-radius: 4px 0 0 4px;
 border-right: 1px solid gray;
}
.ui-tabs .ui-tabs-nav li {
 width: 100%;
 border: 1px solid gray;
 border-width: 1px 0 1px 1px;
 position: relative;
 right: -2px;
}
.ui-tabs .ui-tabs-nav li.ui-state-active {
 border-right: 1px solid white;
}
.ui-tabs .ui-tabs-panel {
 float: left;
 width: -webkit-calc(100% - 11em);
 width: calc(100% - 11em);
 box-sizing: border-box;
}

Listing 7.3 Displaying tabs vertically

Figure 7.10 A jQuery
UI tabs widget with
CSS rules applied to
the tabs-specific class
names to stack the
tabs vertically.

Floats the
navigationB

Relatively positions
the list items

C

Gives the active nav
item a white border

D

Calculates the width
of the tab panels

E

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

177Styling with widget class names
The main tabs container has a class name of ui-tabs, and it has four immediate
children: the navigation (ui-tabs-nav) and three panels (ui-tabs-panel), one for
each of the tabs. The key to this example is that both the navigation and the panels
are floated B, which makes them appear side by side. To make this work, you also
need to give both the navigation and the panels an explicit width, which we’ll get
to momentarily.

 After this is done, you need to replicate one visual detail from the default
horizontal tabs by removing the border between the active tab and the content
panel. If you look at figure 7.10, you can see that there’s no border between One
and One Contents.

 To make this happen, you don’t remove the border from the navigation; rather,
you position the individual list items directly on top of it C. Notice how both the .ui-
tabs-nav and .ui-tabs-nav li selectors are given the same border. Now all you have
to do is remove the border from the currently active list item.

 The tabs widget makes this easy as ui-state-active is automatically applied to the
active tab; you use this selector to apply a white border D, which gives the appearance
that the border has been removed.

 Your last task is to determine the widths to use for both the tabs navigation and pan-
els. In this example, you use a width of 10 em for the navigation and the default 100%
width for the parent ui-tabs container. To make your content responsive to different
screen sizes, and leave the width of the navigation a static 10 em, you use a new feature
of CSS to calculate the width of the content panels: the calc() function.

 By specifying a width of calc(100% - 11em) for the tab panels E, you tell the
browser to take the default width of the panels, subtract 11 em (to account for
the navigation), and use the result as the width of the panels. The calc() function
makes it easy to calculate percentages based on widths and static values. Now you can
resize the window to your heart’s desire, and the content panels adapt to the screen
size automatically.

WARNING The calc() function isn’t supported in Internet Explorer versions
earlier than 9 as well as Android versions earlier than 4.4. If you need to sup-
port these browsers, you unfortunately need to hardcode widths for both ui-
tabs and ui-tabs-panel to make this vertical tabs approach work.

As you can see from this example, the class names provided by the tabs widget give you
the ability to perform complex customizations without any JavaScript. Although build-
ing vertical tabs is cool, you may have noticed one limitation of this approach: because
ui-tabs is styled, you can’t use vertical and horizontal tabs side by side. We’ll return to
this example to build a more robust implementation in chapter 9 when we look at
widget extensions.

 Next, let’s look at another handy use of the jQuery UI widget class names.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 Theming and styling applications with jQuery UI
7.3.2 Building a mobile-friendly datepicker

The jQuery UI datepicker is great for letting users select dates from a calendar, but on
touch devices, the calendar days are small; it’s too easy for fingers to accidentally select
the wrong day. Let’s see how you can use the CSS class names on the datepicker to
make the widget mobile friendly.

 You’ll build the inline datepicker shown in figure 7.11. The code to build this
datepicker is shown in the following listing.

<style>
 @media (max-width: 600px) {
 .ui-datepicker { width: 100%; }
 .ui-datepicker-calendar td a {
 text-align: center;
 padding: 0.5em;
 }
 }
</style>
<div id="datepicker"></div>
<script>
 $("#datepicker").datepicker();
</script>

Because the datepicker displays appropriately on larger screens, you start your CSS with
a media query to limit your changes to screens with a viewport of under 600 pixels wide
B. Media queries are a quick way to scope CSS rules based
on the characteristics of the browser it’s running on—most
commonly its width. Media queries aren’t supported in
Internet Explorer versions earlier than 9, although
because you’re building for mobile devices, this isn’t a con-
cern; older versions of the browser ignore the media query.

TIP Media queries are the primary tool for building
responsive web applications as they let you condition-
ally apply CSS rules based on the browser’s height and
width. A full exploration of media queries is outside
the scope of this book, but a good place to get started
is https://developer.mozilla.org/en-US/docs/Web/
Guide/CSS/Media_queries.

Next, you use the datepicker-specific CSS class names to
make the datepicker larger for mobile devices. Specifi-
cally, you first use the outer ui-datepicker class name to
make the datepicker take up the full width of the screen
C. Then, you increase the padding of all links in the ui-
datepicker-calendar to make them bigger and easier to
click with fingers D.

Listing 7.4 A mobile-friendly inline datepicker

Applies changes
only to devices
that are < 600

pixels wide B

Makes the datepicker take
up the full screen width

C

Makes the dates
easier to tapD

Figure 7.11 An inline
datepicker displayed
on an iPhone
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
http://www.it-ebooks.info/

179Styling with widget class names
 Although this is great, most developers want to use a mobile datepicker tied to an
<input>, not an inline one. Because this is a common requirement, you’ll implement
this use case as well. But because this is a nontrivial task that requires a decent amount
of JavaScript, you’ll build it in chapter 9 as a widget extension.

 For now, let’s look at one last use of the jQuery UI widget-specific class names.

7.3.3 Adding arrows to tooltips with CSS

The jQuery UI tooltip widget makes it easy to show
additional information for controls on a web page.
But the tooltip widget doesn’t provide one common
UI pattern out of the box: adding arrows. If you’re
not sure what I’m talking about, take a look at the
image shown in figure 7.12.

 Notice how the arrow points from the tooltip to
the form control itself. This small visual touch helps
the user associate the tooltip with the input. And believe it or not, you can draw the
arrow in CSS alone. This is shown in the following listing. You can view the example
live at http://jsfiddle.net/tj_vantoll/cAz6T/.

<style>
 .ui-tooltip {
 text-align: center;
 padding: 0;
 box-shadow: none;
 width: 200px;
 }
 .ui-tooltip-content {
 position: relative;
 padding: 0.5em;
 }
 .ui-tooltip-content::after, .ui-tooltip-content::before {
 content: "";
 position: absolute;
 border-style: solid;
 display: block;
 left: 50px;
 }
 .ui-tooltip-content::before {
 top: -10px;
 border-color: #AAA transparent;
 border-width: 10px 10px 0;
 }
 .ui-tooltip-content::after {
 top: -7px;
 border-color: white transparent;
 border-width: 10px 10px 0;
 }
</style>

Listing 7.5 Adding arrows to a tooltip widget

Creates triangles
using the border of
pseudo-elements

B

Figure 7.12 A jQuery UI tooltip with
a CSS-drawn arrow
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7 Theming and styling applications with jQuery UI
<label for="amount">Amount:</label>
<input id="amount" title="Please use xx.xx format.">

<script>
 $("#amount").tooltip({
 position: {
 my: "center bottom",
 at: "center top-10",
 collision: "none"
 }
 });
</script>

The tooltip widget provides only two CSS class names: ui-tooltip and ui-tooltip-
content. But as it turns out, that’s all you need to build this cool effect. Most of the
magic here comes from using the ::before and ::after pseudo-elements on the ui-
tooltip-content element. If you haven’t used ::before and ::after, they’re two
bonus elements every DOM node has that you can use to add supplementary content
or styling.

WARNING Although the two-colon syntax for ::before and ::after is now
standard, Internet Explorer 8 supports only the now-outdated single-colon ver-
sions—:before and :after. The double-colon syntax is technically correct per
the CSS specification, but all modern browsers support both the single- and dou-
ble-colon syntax. Personally, because it’s not a big deal if the pointers aren’t
present, I prefer sticking with the technically correct ::before and ::after.

Even if you understand how pseudo-elements work, this example is still likely a mys-
tery. How in the world is this CSS turning into a pointer? This code uses an odd trick
to draw triangles with a single element in CSS: if you give an element with no height
and no width a border on three sides, it creates a triangle B. If this makes no sense to
you, you’re not alone; this is a nearly impossible thing to conceptualize. There’s a
great demo at http://codepen.io/chriscoyier/pen/lotjh that walks through exactly
what’s going on here. If you’re near a computer or phone, watch this now.

 If you’re not able to watch the demo, just accept that by some CSS magic the
::before and ::after pseudo-elements on the ui-tooltip-content element are tri-
angles. The ::before triangle is the same color as the border, and the ::after trian-
gle is white. The white triangle obscures most of the dark triangle. This gives the
appearance of a single, cohesive border for the tooltip.

TIP http://cssarrowplease.com is an online tool for building these CSS-
based pointers without having to understand the magic going on.

Because you’re using a pointer, you have to make sure the pointer points at the correct
element. To do this, you use the tooltip’s position option. As you saw in chapter 4, the
position reads like an English sentence: position my (the tooltip’s) horizontal center
vertical bottom at the horizontal center vertical top (of the input) C. Don’t worry about
the positioning specifics here; we’ll return to this example when we discuss the position
utility in detail in chapter 12.

Positions
the tooltip

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

181Summary
7.4 Summary
jQuery UI provides a number of tools to style and theme your applications. You started
with ThemeRoller, an online tool to build themes. You can use it to build a theme
from scratch, or one based on the 24 built-in themes. You can also import your theme
back into ThemeRoller to make further changes.

 From there, you can use the two sets of CSS class names that the library provides:
framework-wide and widget-specific. The framework-wide class names let you change
the look of all widgets at once, and the widget-specific class names let you write CSS
that targets specific widgets. Between these two sets of class names, you have the ability
to build highly customized UIs. You used the class names to build a vertical tabs UI, a
mobile-friendly datepicker, and tooltips with CSS-based arrows.

 We’ll continue to discuss the jQuery UI CSS framework throughout the book. In
the next chapter, you’ll build a custom widget from scratch, and you’ll see how apply-
ing the jQuery UI class names makes a widget automatically themeable.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Customization
 and advanced usage

These final 5 chapters cover the more complex aspects of jQuery UI, starting
with widgets. In chapter 8 you’ll learn how to build your own widgets from
scratch, using the same mechanism jQuery UI uses. In chapter 9 you’ll see how
to customize any widget’s behavior using widget extensions.

 You’ll learn in chapter 10 how to optimize your applications for production
use, including the most important optimizations for building mobile sites. In
chapter 11 you’ll build on this and create a complete application from scratch—
one that runs fast on all devices. Chapter 12 looks under the hood of jQuery UI
to uncover the tools that make jQuery UI work.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Using the widget factory
 to build stateful plugins
Throughout this book, you’ve looked at the widgets jQuery UI provides and all the
things you can do with them. Although the jQuery UI widgets let you do a lot, the
widgets don’t cover all the UI controls you need to build modern web applications.
Don’t worry—the most powerful part of jQuery isn’t its widgets, it’s the mechanism
that all its widgets are built with: the widget factory.

 The widget factory evolved from the early days of jQuery UI. Recall that the
jQuery UI project started as a collection of popular plugins from a variety of
authors, coding styles, and APIs. Over time, common patterns and best practices
emerged. Implementations of these patterns gradually moved out of individual
plugins and into a common base, which eventually became the widget factory. The
widget factory itself is a jQuery plugin that builds jQuery plugins that adhere to
these common conventions.

This chapter covers
■ Creating widgets with the widget factory
■ The benefits of using the widget factory
■ Accessing a widget’s data and inner workings
185

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 8 Using the widget factory to build stateful plugins
 The widget factory is also a standalone component; you can use it independently
of the jQuery UI library. In fact, the widget factory serves as the basis of all the jQuery
Mobile widgets and numerous third-party jQuery plugins. By learning to use the wid-
get factory, you’ll have the ability to build widgets that work anywhere that jQuery
Core is available.

 In this chapter, you’ll walk through the development of a custom widget built from
scratch. You’ll see that, like all of jQuery UI, the widget factory packs a whole lot of
functionality in a few, easy-to-use APIs.

 Let’s get started.

8.1 Building a widget
Building a fully featured widget is a complex, multistep process; we’ll break widget
creation into a set of steps that you’ll follow in this chapter. The nine steps are shown
in the following checklist. Don’t worry about what each step means; we’ll walk
through each individually.

Why build a widget rather than a jQuery plugin?
A widget’s differentiating feature is its concept of state. Many jQuery plugins don’t
have—or need—the concept of state. Consider the following jQuery plugin that re-
places the selected element’s contents with a random number:

$.fn.randomNumber = function() {
 return this.each(function(index, element) {
 $(element).html(Math.random() * 1000);
 };
};

This plugin is designed to run once and be done. The plugin doesn’t remember which
elements it changed or anything about them. Contrast that with any of the jQuery UI
widgets, such as the dialog widget created in the following code:

<div id="dialog"></div>
<script>
 $("#dialog").dialog({ title: "Hello World" });
</script>

The randomNumber() plugin knew nothing about the element it operated on; the di-
alog widget knows a whole lot about the <div id="dialog"> element. It knows that
it’s a dialog, that its title is "Hello World", and more. (We’ll look at how it remem-
bers this information later in the chapter.)

Dialog is an excellent candidate for a widget because it has a state to manage; you
can open it, close it, change its title, change its height, and so forth. Conversely,
the randomNumber() plugin isn’t a good widget candidate because it has no state.
The general rule is this: use the widget factory when you want to build a plugin that
maintains state.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

187Building a widget
To walk through these steps, you need
a widget to build, and in this chapter,
you’ll build a to-do list. In this case it
will be a list of tasks that the user can
check and uncheck. Such a list could
be used for any set of tasks—for exam-
ple, a grocery list or your widget-creation checklist. An image of the to-do list you’ll
build is shown in figure 8.1.

 Let’s dig right in with the API to create widgets: $.widget().

NOTE The finished version of this widget is available at http://jsfiddle.net/
tj_vantoll/zStp7/ if you’d like to follow along or play with the examples as we go.

8.1.1 Constructing widgets with $.widget()

As discussed at the beginning of this chapter, the widget factory itself is a jQuery
plugin located on the $ global object. To invoke it, call $.widget() as shown in the
following code:

You invoke $.widget() with two parameters B. The first is the name of the widget:
"tj.todo". Why is the name in two parts, separated by a period?

 The first half of the name determines the widget’s namespace C. The namespace
determines the location where the widget’s constructor function and prototype are
stored on the global $ object. All jQuery UI widgets use a "ui" namespace; therefore,
they’re accessible at $.ui ($.ui.dialog, $.ui.tabs, and so on).

 The "ui" namespace is reserved for the jQuery UI widgets; you need to create your
own namespace for your own widgets. In this example, the namespace is my first
name: "tj". We’ll look at how the widget’s constructor function works momentarily.

 The second half of the name is the string to use as the plugin name D. Because
you used "todo", a todo() plugin was created for you.

 The last parameter to $.widget() is an object to use as the widget’s prototype
object E. You can use the prototype object to override default widget behavior and
expose methods to users of the widget. We’ll go over how this object works in the next
section when we look at _create(). For now, because it’s a required argument, you
pass an empty object.

1 $.widget() 2 Markup structure 3 _create()

4 Make themeable 5 Add options 6 Expose methods

7 Trigger events 8 Enable/Disable 9 _destroy()

$.widget("tj.todo", {});

BInvokes $.widget()

CThe widget’s namespace D The name of the widget

E The widget’s
prototype object

Figure 8.1 The to-do list you’ll build in this chapter
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/zStp7/
http://jsfiddle.net/tj_vantoll/zStp7/
http://www.it-ebooks.info/

188 CHAPTER 8 Using the widget factory to build stateful plugins
NOTE $.widget() takes one additional, optional parameter: the constructor
function of another widget to extend. This powerful feature lets you alter and
build on top of existing widgets. We’re skipping the parameter for now to focus
on developing a widget from scratch. Chapter 9 covers widget extension in detail.

When you execute $.widget("tj.todo", {}), a lot happens. This is shown in fig-
ure 8.2; let’s look at that figure in detail.

NAMESPACE CREATION

The widget factory created an object at $.tj to use as a namespace for the todo wid-
get. $.widget() is smart enough to create the namespace only if it doesn’t already
exist. If you create another widget on the same namespace—for instance, $.widget(
"tj.awesome", {})—the original namespace isn’t overridden.

CONSTRUCTOR FUNCTION

Although you haven’t used constructor functions, they exist for each of the jQuery UI
widgets. For example, you can create a new dialog using the following code:

new $.ui.dialog({ title: "The Widget Factory Rocks!" }, "<div>");

The first argument is an object for configuring the widget’s options.. The second
argument determines the element to convert to a widget—in this case, a newly created
<div>. When using constructor functions, you can optionally omit the new keyword:

$.ui.dialog({ title: "The Widget Factory Rocks!" }, "<div>");

By running $.widget(), you get this behavior for free. The following creates a new
 and converts it to a todo widget:

$.tj.todo({}, "");

CHAINABLE PLUGIN

The chainable plugin should look familiar, as it’s the mechanism you’ve used to ini-
tialize widgets up to this point. $.widget() created this plugin for you automatically;
you can now initialize todo widgets by selecting elements and calling todo(). The fol-
lowing converts all elements to todo widgets:

$("ul").todo();

$.widget("tj.todo", {})

$.tj $(":tj-todo")

$.tj.todo $.fn.todo

Namespace
creation

1

Constructor function
on namespace

2 Chainable plugin3

Pseudo-class4

Figure 8.2 An overview of what
happens when creating a widget
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

189Building a widget
Because the plugin is also automatically chainable, you can append additional jQuery
method calls. The following code initializes todo widgets and then hides them:

$("ul").todo().css("display", "none");

PSEUDO-CLASS

The widget factory creates a pseudo-class with the widget’s full name—in this case,
":tj-todo". CSS pseudo-classes are selectors that match elements based on the state
they’re in. For example, :focus matches the element that currently has focus. Pseudo-
classes are always prefixed with a single colon. The pseudo-class can be used to find all
elements that have a widget associated with them, or to determine whether a given
element is a widget. This behavior is shown in the following listing.

$.widget("tj.todo", {});

var ul = $("").appendTo("body");
ul.todo();
console.log($(":tj-todo"));
console.log(ul.is(":tj-todo"));

WARNING The pseudo-class created by the widget factory only works in
jQuery’s selector engine. $(":tj-todo") matches all todo widgets, but doc-
ument.querySelectorAll(":tj-todo"), or a CSS selector such as :tj-todo
{ color: red; }, won’t.

You’ve now seen all the functionality you get by running $.widget(), but your widget
still doesn’t do anything. The next step in your process is choosing the HTML markup
structure for your widget to use.

8.1.2 Choosing a markup structure

All widgets built using the widget factory work by associating themselves with a DOM
element. For most widgets, a single DOM node is all you need to build the widget. For
instance, autocomplete, datepicker, and spinner require only an <input> element to
be initialized.

 Some widgets, however, require a more complex structure. Recall the expected
markup to build a tabs widget shown in the following code:

<div>

 One

 <div id="one">One Contents</div>
</div>

Listing 8.1 Using the pseudo-class created by the widget factory

Creates a new
 element.

Converts the
element to a
todo widget.

Selects and logs
all elements that
are todo widgets;

in this case, the
 is logged.

Determines whether the
 is a todo widget.
It is, so true is logged.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 8 Using the widget factory to build stateful plugins
What markup structure should you use for a to-do list? You need to consider two
things when choosing the markup structure of your widget:

1 It should be as easy as possible to create a widget.
2 The markup should be semantic.

The first consideration means that you should aim to require as little markup as possi-
ble. For instance, the spinner widget could require developers to create DOM elements
for the up and down arrows. But this would make the spinner far harder for develop-
ers to use; the widget generates these elements for you.

 The second consideration means that the markup should make sense, even when
the element isn’t a widget. Consider the required markup of the tabs widget. If
JavaScript were to fail, the user would still have a set of functioning links to content.
This rule is applied across all the jQuery UI widgets. If the button widget fails, the user
still has a functioning unenhanced button; if the spinner widget fails, the user still has
a functioning <input>.

 With these criteria in mind, you’ll need the following markup to build your todo
widget:

 First todo
 Second todo
 Third todo

As this is a to-do list, you use an HTML unordered list () to represent it. You’ll
require that the initial items on the list be specified as list items (s). That way, if
something goes wrong in JavaScript, users can still view the items on the list, even if
they can’t edit them.

 To build a complete todo widget, you need more markup than this—most notably,
you need to add check boxes. How do the jQuery UI widgets add the extra markup
they need when widgets are initialized? They use one of many hooks the widget fac-
tory provides: _create().

WARNING Take note of the underscore prefix. The method name is
_create(), not create(). We’ll go over why an underscore prefix is used for
most of the widget factory’s methods in section 8.3.2 when we discuss meth-
ods; for now, make sure you include the underscore.

8.1.3 Overriding _create() to initialize widgets

In addition to the features you’ve seen, the widget factory also provides a number of
methods and properties to aid with widget development. To add custom behavior to
your new widget, you have to override a few of these methods—starting with
_create(). To see how to do this, recall your call to $.widget():

$.widget("tj.todo", {});

The last argument to $.widget() is an object to use as the widget’s prototype. If you
don’t understand the details of how prototype objects in JavaScript work, don’t worry.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

191Building a widget
For now, know that the default set of methods and properties a widget uses is stored in
$.Widget.prototype (note the capital W). When you pass methods and properties to
$.widget(), they’re used instead of those on $.Widget.prototype.

TIP A full list of the methods and properties on $.Widget.prototype is doc-
umented at http://api.jqueryui.com/jquery.widget/.

This is easier to see with an example. The first method you override in any custom widget
is the _create() method. The widget factory invokes _create() anytime an element is
converted to a widget. The default _create() on $.Widget.prototype does nothing. To
make your widget do something useful, you must provide your own _create():

$.widget("tj.todo", {
 _create: function() {
 this.element.addClass("tj-todo");
 }
});

You provide a _create() method for the todo widget’s prototype, and the widget fac-
tory uses it instead of $.Widget.prototype._create(). Although the _create()
method doesn’t have any parameters, it does have this.element set to the element
the widget was initialized on, and this.options set to any options that were passed.
You use the this.element reference to add a CSS class name to the element that was
converted to a widget.

 The following example creates a new , appends it to the <body>, and initializes
a todo widget on it:

$("Walk dog")
 .appendTo("body")
 .todo();

When the todo plugin runs B, your _create() method is invoked, and a "tj-todo"
class name is added to the element.

 One other important thing takes place when an element is initialized with a wid-
get. Under the hood, the widget factory invokes the widget’s constructor function—in
this case, $.tj.todo—which performs a number of initialization tasks, including call-
ing _create(), and then returns an object with all properties and methods available
on the widget. This object is known as the widget’s instance.

 The instance object gives direct access to the methods and properties on a widget
without going through the widget’s plugin. To see how it works, let’s return to your
todo widget.

 Remember that for your to-do list, the markup you need to add is a check box for
each item on the list. The following code alters your _create() method to do that:

_create: function() {
 this.element.addClass("tj-todo");
 this._renderList();
},

Initializes the todo widget
on the new

B

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 8 Using the widget factory to build stateful plugins
_renderList: function() {
 this.element.find("li").each(function() {
 var li = $(this),
 label = $("<label></label>"),
 checkbox = $("<input>", {
 type: "checkbox",
 value: li.text()
 });

 label.append(checkbox).append(li.text());
 li.html(label);
 });
}

This code adds a <label> element and a check box to each in the element. The
_renderList() method—which does all the work here—is abstracted out of
_create() because you’re going to need it in other methods later.

 Take note of one more thing: you were able to invoke _renderList() using a refer-
ence to this. In this case, this is set to the widget’s instance object; you can use the
this reference to invoke any widget methods directly. As you’ll see throughout this
chapter, the widget factory automatically sets this to the widget’s instance object in
most of its methods.

 You now have the markup that you need, and a CSS class name to use for styling.
But your to-do list still doesn’t look like a jQuery UI widget. Next, let’s see how to
make this widget themeable.

Working with instances
If you’re coding a widget, the widget’s instance is easy to access as it’s set as the
context (a.k.a this) of most methods. But what if you need to access a widget’s in-
stance when using its plugin? The widget factory provides two external mechanisms
for doing so.

The first is the instance() method. The following code creates a new dialog widget,
and then accesses its instance using the instance() method:

$("<div>").dialog().dialog("instance");

The second option relies on the fact that—internally—the widget factory stores the
instance object using the $.data() method in jQuery Core, with the widget’s full
name as a key; you can use $.fn.data() to retrieve it:

$("<div>").dialog().data("ui-dialog");

The widget factory utilizes this API to remember which elements have been initialized
with a widget, which makes a number of things possible, including protection against
multiple instantiation. If the widget’s plugin is called multiple times on the same el-
ement, _create() will be invoked only once, as shown in the figure.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

193Building a widget
8.1.4 Making widgets themeable

One of the major advantages of using jQuery UI widgets is that you get a consistent, easily
configurable display. In chapter 7, you saw how to configure the theming hooks pro-
vided by the widgets. Let’s look at how to add these hooks to your custom widget.

 To make a widget themeable, you must correctly apply the appropriate class names
from the jQuery UI CSS framework, specifically the following:

■ Widget containers—ui-widget, ui-widget-header, ui-widget-content
■ Interaction states—ui-state-default, ui-state-hover, ui-state-focus, ui-

state-active

Let’s start with the widget containers. For your to-do list, you have no header; ui-
widget-header isn’t relevant. But you do need to add ui-widget and ui-widget-
content to the outer container of the list. You’ll add these class names in _create():

_create: function() {
 this.element.addClass("tj-todo ui-widget ui-widget-content " +
 "ui-corner-all");
 this._renderList();
}

TIP The jQuery UI CSS framework has helper class names for adding CSS
border-radius values that are configurable in ThemeRoller. The previous
example uses ui-corner-all to round all corners. The full list of corner class
names is available at http://api.jqueryui.com/theming/css-framework/.

Next, you need to add the interaction states. But first you need to determine which
elements in the widget are clickable. For your to-do list, the only clickable elements
are the check boxes. But you may recall from chapter 3 that check boxes are nearly
impossible to style with CSS. How can you theme a check box? How does the jQuery UI
button widget make this possible?

 To answer, let’s start by looking at the markup you use for each item in the to-do
list:

(continued)

View of the JavaScript console where a widget is created and its plugin is invoked twice

Plugin invoked twice
on the same element

_create() was
called only once
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 8 Using the widget factory to build stateful plugins

 <label>
 <input type="checkbox">
 </label>

Recall from chapter 3 that browsers have a built-in feature for interacting with form
elements: clicks on an element’s <label> are automatically transferred to the element
itself. You can take advantage of this behavior to work around the styling limitations of
check boxes.

 Instead of styling the check box, you’ll make its <label> the full height and width
of the , and style the whole as clickable. With this setup, all clicks on the
 also click the <label>, which toggles the underlying check box appropriately.
The jQuery UI button widget uses this technique for styling check boxes and radio
buttons. The native buttons themselves are hidden (in an accessible manner), and the
button’s <label> elements are styled instead.

 This approach has one other advantage. Because check boxes are tiny, they’re
tough to click with a mouse, and painfully difficult to tap on touch devices. By styling
the , you give the user a much larger target.

 To make the to-do list themeable, you alter your _renderList() to use the follow-
ing code:

var that = this;
this.element.find("li").each(function() {
 var li = $(this).addClass("tj-todo-item ui-state-default"),
 label = $("<label>"),
 checkbox = $("<input>", {
 type: "checkbox",
 value: li.text()
 });

 label.append(checkbox).append(li.text());
 li.html(label);
 that._hoverable(li);
 that._focusable(li);
});

You add two class names to each in the list: ui-state-default and tj-todo-
item B. As you recall from the previous chapter, ui-state-default is the class name
that indicates the default state of clickable elements in a widget. This applies the same
clickable look as the jQuery UI buttons, tabs, and so forth.

 You want to provide widget-specific class names. You already added a tj-todo class
name to the , and here you add tj-todo-item to each . Widget-specific class
names give developers who use your widget flexibility in how they style it.

 The ui-state-default class name takes care of the default display of the , but
remember that clickable elements can have three other states: active, hover, and focus.

 For the hover and focus states, the widget factory provides two helper methods:
_hoverable() C and _focusable() D. These methods add event handles to the
passed element—in this case, the —such that the ui-state-hover and

Adds class names
to each

B

Handles
the hover
class
names

C

Handles the focus
class names

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

195Building a widget
ui-state-focus class names are automatically managed. When the user mouses over
the , the receives the ui-state-hover class name; when the user mouses out
of the , the class name is removed. The ui-state-focus is managed similarly on
focus-in and focus-out of the element.

 You have an almost fully themeable widget. You’re missing only the ui-state-
active class name. For the todo widget, you’ll want to add the active class name to any
checked items. And to do that, you need to listen for clicks on the check box. But
where do you put that code? The widget factory has a helper method for this as well.

8.1.5 Listening for events with _on()

Throughout this book, you’ve been using the on() method to bind to DOM events.
Although you can use on() to listen to events in widgets, the widget factory provides
an additional method with a few widget-specific niceties: _on() (note the under-
score prefix).

 Remember that for your todo widget, you need to listen for clicks on check boxes,
and then toggle the ui-state-active class name on the appropriately. When
the check box is checked, its should have ui-state-active. When the check
box is unchecked, it shouldn’t. To keep your logic consolidated in one place, you’ll
want to manage the class name in _renderList(), but how do you call it?

 Let’s start with looking at how you would do it with on() (the jQuery Core one with
no prefix). As a general rule, the _create() method is used to attach all event listen-
ers; you’ll add your code there:

_create: function() {
 ...
 this.element.on("click", "input",
 $.proxy(this._renderList, this));
}

This code listens for clicks on the todo widget , and—when the target is an
<input>—invokes _renderList(). The $.proxy() call is necessary so that this in
_renderList() is set to the widget instance, instead of the DOM element the event
occurred on.

 Next, let’s look at the same functionality implemented with _on():

_create: function() {
 ...
 this._on(this.element, {
 "click input": this._renderList
 });
}

Although the code for the two approaches is similar, _on() offers a few conveniences
for widget development. First, it sets this to the widget instance automatically.
There’s no need for a $.proxy() call.

 _on() also automatically suppresses events on disabled widgets and cleans up event
handlers when a widget is destroyed. We’ll get to the specifics of both later in this chapter.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 8 Using the widget factory to build stateful plugins
 Now that you call _renderList() when the user clicks check boxes, you have to
make it toggle the ui-state-active class name. The updates to _renderList() are
shown in the following code:

_renderList: function() {
 this.element.find("li").each(function() {
 var li = $(this).addClass("tj-todo-item ui-state-default"),
 active = li.find(":checked").length === 1,
 checkbox = $("<input>", { ... });

 li.toggleClass("ui-state-active", active);
 ...
 });
};

With this update, you determine whether the ’s check box is checked B, and
then use that to decide whether the ui-state-active class name should be added or
removed from the itself C.

TIP The jQuery Core toggleClass() method takes an optional second
parameter. When passed, as in _renderList(), true indicates the class name
should be added and false indicates the class name should be removed.

You now have a widget that works seamlessly with all the jQuery UI built-in themes, as
well as third-party ones. With all class names in place, let’s add a bit of CSS to give the
widget its final display:

.tj-todo {
 padding-left: 0;
}
.tj-todo .tj-todo-item label {
 padding: 0.5em 0.3em;
 display: block;
}
.tj-todo .ui-state-active {
 text-decoration: line-through;
}

The most important rule here is setting the display of the <label> to block. Your
<label> elements need to take up the full dimensions of the parent B to
ensure that all clicks toggle the appropriate check box (remember that clicks on
<label> elements are transferred to their corresponding check box).

 Now, not only is your widget themeable, but it also has its final look in place. But
developers still can’t do a lot with your widget. It’s time to make it customizable.

8.2 Customizing widgets with options, methods, and events
We’ve covered a lot of territory, so let’s review where we are. You created your widget
using $.widget(), chose a markup structure to use, built your markup with
_create(), and made your widget themeable. Your checklist shows your progress:

BDetermines whether
the item is active

Toggles the ui-state-active
class name C

Takes up the full
width and height
of the

B

Crosses out all completed
to-do items
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

197Customizing widgets with options, methods, and events
What you haven’t yet tackled is how to make your widget customizable. You need to
add the same options, methods, and events that the jQuery UI widgets have. Let’s start
with options.

8.2.1 Making widgets configurable with options

Options are properties you can provide to customize the behavior of a widget. You’ve
been using them in the widgets presented so far. Let’s look at how to add them to your
custom widget.

 For the to-do list, you’ll implement an option that gives developers the ability to
place the todo widget in a submittable form: a name attribute. Providing name as a con-
figurable option lets developers choose the name of the key submitted to the server.

 To start, you need to add an options object to your widget’s prototype:

$.widget("tj.todo", {
 options: {
 name: "todo"
 },
 …
});

The options object should have a key-value pair for each option the widget has. Each
key—in this case, name—is the name of the option, and each value—in this case,
"todo"—is the default value of the option. Your widget has a single name option that
defaults to "todo".

 After you define the option, you have to use it. The following code adds it to your
_renderList() method:

var that = this;
this.element.find("li").each(function() {
 ...
 checkbox = $("<input>", {
 type: "checkbox",
 name: that.options.name,
 value: li.text()
 });
 ...
});

TIP The use of a variable named that is a JavaScript convention to store a ref-
erence to an outer function’s this so it can be used in an inner function. In this
example, you save a reference to the widget’s instance as that B, and then use
the reference to access the instance’s options in an inner function C.

1 $.widget() 2 Markup structure 3 _create()

4 Make themeable 5 Add options 6 Expose methods

7 Trigger events 8 Enable/Disable 9 _destroy()

Saves a
reference to
the widget’s

instance B

Adds a name
attribute based
on the optionC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 Using the widget factory to build stateful plugins
With this approach, all check boxes have a name of "todo" by default. To use a differ-
ent value, you pass it when the widget is initialized. The following code uses a name of
"tasks":

$("ul").todo({ name: "tasks" });

To see how this could be used, refer to the following code:

<form method="POST" action="/path/to/server">

 Clean dishes
 Walk dog
 Mop floor

 <button>Submit</button>
</form>
<script>
 $("ul").todo({ name: "tasks" });
</script>

If the user were to check the first two tasks on the list and then submit,
tasks=Clean+dishes&tasks=Walk+dog would be submitted to the URL at /path/to/
server. The formatting of the post-data string isn’t specific to jQuery or jQuery UI. Per
the HTML specification, only check boxes that are checked are serialized and sent on
HTTP requests. You need to deduce unchecked check boxes by their omission—for
example, “Mop floor” wasn’t checked because it wasn’t included in the post-data.

 You now have a functioning option, but you need to handle one more thing.
Recall that the option() method lets you change any option at any time. Currently, if
you call the option() method on your widget, it doesn’t work. The name of this to-do
list remains "todo", when it should be changed to "tasks":

$("ul").todo()
 .todo("option", "name", "tasks");

To see how to respond to changes, you need to use another of the widget factory’s
methods: _setOption(). To add a _setOption() method, you pass it on the widget’s
prototype:

$.widget("tj.todo", {
 options: { name: "todo" },
 _setOption: function(key, value) {
 ...
 },
 ...
});

_setOption() is called every time an option is changed on the widget. It is passed the
name of the option as key and the value of the option as value. If you run todo(
"option", "name", "tasks"), _setOption() is called with "name" and "tasks". In
_setOption(), you have to implement the code to alter the widget based on the
option change.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

199Customizing widgets with options, methods, and events
 In your case, you have a method that does that: _renderList(). (Remember how I
said abstracting that method would come in handy later?) All you need to do is call
_renderList() in _setOption():

_setOption: function(key, value) {
 this._super(key, value);
 this._renderList();
}

What about the _super() method call? This calls your parent widget’s method, in this
case $.Widget.prototype._setOption(), which updates the appropriate property on
the instance’s options object; for example, setting this.options.name. Because
_renderList() uses this.options.name, the _super() call has to happen before the
call to _renderList(). Don’t worry about the specifics of _super(); extending widgets
is the topic of the next chapter, and we’ll go over the details then.

 You now have a completely functional option, but that’s only one way of letting
developers configure a widget. We’ll look at adding methods next.

What about _setOptions()?
If you have perused the widget factory’s documentation, you may have noticed that
both _setOption() and _setOptions() are methods. _setOptions() is always
called first when options are changed, and it’s responsible for invoking _setOption().
In fact, the base implementation in $.Widget.prototype._setOptions()loops over
the options and calls _setOption() on each:

_setOptions: function(options) {
 var key;
 for (key in options) {
 this._setOption(key, options[key]);
 }
 return this;
}

The only reason to provide your own _setOptions() method is if you want to perform
optimizations when multiple properties are changed at the same time. Consider a
hypothetical “box” widget with height and width options. Suppose both options are
updated at the same time:

$("div").box("option", { height: 200, width: 200 });

Instead of resizing the box twice—once for height, once for width—you could per-
form the resizing in _setOptions() to ensure it happens only once:

_setOptions: function(options) {
 this._super(options);
 if (options.height || options.width) {
 this.resize();
 }
}

The dialog widget performs a similar optimization for its numerous dimension-related
options.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 Using the widget factory to build stateful plugins
8.2.2 Changing the widget’s state with methods

Options let you customize a widget, but they don’t let you perform actions on it. If you
were to use the to-do list you’ve built to this point, wouldn’t you need some way of
adding items to it? In this section, you’ll add four methods to your widget: add(),
check(), uncheck(), and remove().

 To add a method, you add a function to the widget’s prototype. The following code
defines a hello widget with a single world() method. The hello("world") call
invokes the method and the alert():

$.widget("tj.hello", {
 world: function() {
 alert("hello world");
 }
});
$("<div>").hello().hello("world");

Have you noticed that all the methods you’ve used in the todo widget thus far—
_create(), _renderList(), and _setOption()—have been prefixed with an under-
score? In widget methods, the underscore prefix determines whether the method can
be invoked through its widget’s plugin:

$.widget("tj.hello", {
 available: function() {},
 _notAvailable: function() {}
});
$("<div>").hello().hello("available");
$("<div>").hello().hello("_notAvailable");

You define two methods: available() and _notAvailable(). Invoking available()
through the widget’s plugin B works fine, but attempting to invoke _notAvailable()
throws a JavaScript error C.

 Although they have similarities, don’t think of underscore-prefixed methods like
private members from other languages. The methods aren’t available through the
plugin, but they’re still accessible on the widget’s instance. The following code invokes
the previous example’s _notAvailable() method:

$("<div>").hello().hello("instance")._notAvailable();

Use an underscore when it doesn’t make sense to invoke the method through the
plugin. _create() is a perfect example: explicitly invoking it is unnecessary (as the
widget factory does it for you); it doesn’t make sense to expose it.

 Conversely, if developers could use the method’s functionality—make it available.
The methods you’ll add in this section will all be publicly exposed. Let’s start with the
add() method; an implementation is shown in the following code:

$.widget("tj.todo", {
 ...
 add: function(value) {
 this.element.append("" + value + "");

This works fine.B

This throws an error.C
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

201Customizing widgets with options, methods, and events
 this._renderList();
 }
});

Because all your logic is consolidated in _renderList(), there’s not much to this
method. The widget factory sets this equal to the widget instance; you use the
this.element reference to append a new list item.

 Having an add() method makes it possible for developers to build UI elements
that interact with the to-do list. The following listing shows a form that utilizes the new
add() method.

 Clean dishes
 Walk dog
 Mop floor

<form>
 <label>Add Item:<input required></label>
 <button>Add</button>
</form>
<script>
 var todo = $("ul").todo();
 $("form").on("submit", function(event) {
 event.preventDefault();
 var input = $(this).find("input");
 todo.todo("add", input.val());
 input.val("");
 });
</script>

This example uses a form with a single text box. When
the user submits the form, you take the value the user
typed and invoke the to-do list’s add() method with it
B. This workflow is shown in figure 8.3.

 One more question worth considering is, why didn’t
you build a <form> into the widget itself? You certainly
could have _create() build a <form> that adds items to
the list. The downside of this approach is that it makes
the widget far less extensible. If you were to bake the
<form> into the widget and a user wanted to fill the list
with an alternative UI, the user would have to hide or
remove the <form> to use the todo widget.

 If you keep the widget minimal, and expose its API through methods, developers
can build solutions on top of it. We’ll look at some of those things in the next chapter,
but before we end our methods discussion, you have three more methods to imple-
ment: check(), uncheck(), and remove(). The implementation of these three meth-
ods is shown in the following code:

Listing 8.2 Adding items to the to-do list

Converts the list
to a todo widget

Adds the typed item to
the list using add()

B

Figure 8.3 An external form that
adds items to the to-do list
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 Using the widget factory to build stateful plugins
remove: function(value) {
 this.element.find("[value='" + value + "']")
 .parents("li:first")
 .remove();
},
check: function(value) {
 this._toggleCheckbox(value, true);
},
uncheck: function(value) {
 this._toggleCheckbox(value, false);
},
_toggleCheckbox: function(value, checked) {
 this.element.find("[value='" + value + "']")
 .prop("checked", checked);
 this._renderList();
}

All three methods take the value of the item to operate on—for example, "Walk dog".
The remove() method finds the check box with this value, and then removes its par-
ent from the DOM B.

WARNING You’re dealing with two different remove() methods here: the
method you’re adding to the to-do list ($.tj.todo.prototype.remove) and
the jQuery Core $.fn.remove method, which removes elements from the
DOM. Normally, I don’t like introducing potentially confusing APIs, but in
this case, I went with remove() because it’s a direct antonym of add(). Also, I
can’t use delete because it’s a JavaScript reserved word, and the other words
the thesaurus gave me sound silly—for example, abolish(), eliminate(), or
expel(). Because of the ambiguity, I’ll try to clarify when this comes up to
avoid confusion.

Because the implementation of the check() and uncheck() methods is so similar, you
place the logic in a shared _toggleCheckbox() method. _toggleCheckbox() finds the
appropriate check box and checks or unchecks it appropriately C. It then calls
_renderList() so ui-state-active is added or removed from the appropriate .

 All these methods give developers flexibility when using your widget. In the next
chapter you’ll use the todo widget’s remove() method to build an extension with
which items can be removed from the list.

 At this point your widget is configurable. Developers can add items with add(),
check off items with check(), uncheck them with uncheck(), and remove them with
remove(). Your next step is to allow developers to respond to changes that take place
in the widget. You do that by triggering events.

8.2.3 Triggering widget events with _trigger()

Like options and methods, events need little introduction because you’ve been using
them throughout this book. The jQuery UI widgets trigger events whenever their state
changes—a dialog is closed, a tab is activated, and so on.

Removes the
appropriate list
item from the DOMB

Checks or unchecks
the check box based
on the argument

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

203Customizing widgets with options, methods, and events
 When writing a widget, you have to decide what events to trigger. This is a judg-
ment call, but in general, you should trigger events for anything that could be useful
for developers to subscribe to. For the to-do list, the most important use case is check-
ing and unchecking items in the list, so let’s start there.

 Recall that you’re using _on() to update your widget’s markup whenever a check
box is clicked:

this._on(this.element, {
 "click input": this._renderList
});

The following code alters this code to trigger "check" and "uncheck" events:

this._on(this.element, {
 "click input": function(event) {
 this._renderList();
 this._trigger(event.target.checked ? "check" : "uncheck",
 event, { value: event.target.value });
 }
});

The only addition here is another one of the widget factory’s convenience methods:
_trigger(). _trigger() takes three arguments: the name of the event, an event
object, and an object with data associated with the event. You trigger either a "check"
or an "uncheck" event (depending on whether the check box is checked), and you
pass the value of the check box B.

 As with all the jQuery UI widget events, you can now subscribe to events with call-
back functions or event handlers. For instance, when a user checks an item, each of
these functions logs the value of the check box checked:

$("ul").todo({
 check: function(event, ui) {
 console.log(ui.value);
 }
}).on("todocheck", function(event, ui) {
 console.log(ui.value);
});

Before we move on, remember that in the last section you added check() and
uncheck() methods; you need to trigger check and uncheck events there as well. The
following code adds this behavior to the methods:

check: function(value) {
 this._toggleCheckbox(value, true);
 this._trigger("check", null, { value: value });
},
uncheck: function(value) {
 this._toggleCheckbox(value, false);
 this._trigger("uncheck", null, { value: value });
}

Triggers a “check”
or “uncheck” event

using _trigger() B

Callback function

Event handler
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 Using the widget factory to build stateful plugins
These examples use null in place of an event object. Whenever you provide data to an
event (in this case, the value of the check box), you must provide all three parame-
ters to _trigger(). In the click event handler, you had an event to pass along, but
here you don’t. In these situations, pass null to indicate that there’s no native event.

 You now have comprehensive coverage for the check and uncheck events; they’ll
be triggered regardless of whether the user clicks check boxes in the UI or a developer
uses the check() or uncheck() methods.

 This consistency gives developers flexibility in what they can implement with the
todo widget. If you want to sync changes to a back-end database as they’re made, you
can use the check and uncheck events to do that.

 Now that you’re triggering events, you’re near the end of your widget develop-
ment checklist. The last things we need to cover are enabling, disabling, and destroy-
ing widgets.

Triggering cancellable events
You may recall from chapter 2 that some jQuery UI widget events are cancellable—
that is, you can cancel an event to prevent some action from occurring. If you prevent
the default action of the dialog widget’s beforeClose event, the dialog does not close.

How do you implement your own cancellable events? The same _trigger() method
you just used to trigger events returns a Boolean that indicates whether the default
action was prevented. You can use that Boolean to determine whether to continue
with the action.

As an example, you can make the todo widget’s check event cancellable with the fol-
lowing change to the check() method:

check: function(value) {
 if (this._trigger("check", null, { value: value })) {
 this._toggleCheckbox(value, true);
 }
}

Now, if a user subscribes to the check event and prevents the default action,
_trigger() will return false and the check box will not be checked. For instance,
the following code creates a todo widget, appends it to the <body>, and invokes the
check() method on its only item:

var list = $("One").todo({
 check: function(event) {
 event.preventDefault();
 }
});
list.appendTo("body");
list.todo("check", "One");

Because the todo() call includes a check event callback that calls prevent-
Default(), the _trigger() call within the widget’s check() method returns false,
and the widget’s checkbox is not checked.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

205Enabling, disabling, and destroying widgets
8.3 Enabling, disabling, and destroying widgets
Let’s take one last look at your widget checklist.

Your new widget is almost complete. The last two steps are allowing developers to dis-
able and destroy widgets. As in most of the widget steps, much of the functionality to
do this is baked into the widget factory, but you have to override a few methods for
your todo widget. Let’s get started by looking at how to enable and disable widgets.

8.3.1 Enabling and disabling a widget

Disabling UI elements is a common UI pattern to prevent users from interacting with a
control. Native form elements <input>, <select>, <textarea>, and <button> can be
disabled by adding a disabled attribute—for example, <input disabled>.

 Most of the jQuery UI widgets can be enabled or disabled. Some of the functional-
ity is built in to the widget factory itself.

NOTE The two widgets that can’t be disabled are datepicker and dialog.
Datepicker doesn’t support the same disabling mechanism because it’s the
only widget not built with the widget factory. The dialog widget doesn’t sup-
port disabling because it doesn’t make any sense to disable a dialog (more on
this momentarily).

Specifically, the widget factory provides a disabled property, disable() method, and
enable() method for all widgets. Let’s look at how these work in a button widget
example. The following code creates a disabled button by setting its disabled option:

var magicButton = $("<button>Magic Button</button>")
 .appendTo("body")
 .button({ disabled: true });

You can then enable the same button by calling its enable() method

magicButton.button("enable");

and call its disable() method to disable it again:

magicButton.button("disable");

How can you let developers disable your widget? First, let’s look at what the widget fac-
tory provides. To start, your to-do list already has enable() and disable() methods.
The following code creates a new to-do list and calls its disable() method:

$("One")
 .todo()
 .appendTo("body")
 .todo("disable");

1 $.widget() 2 Markup structure 3 _create()

4 Make themeable 5 Add options 6 Expose methods

7 Trigger events 8 Enable/Disable 9 _destroy()
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Using the widget factory to build stateful plugins
If you were to try this out, you’d see that it has no visual effect on the widget. You can
still check and uncheck the item on the list. To see why, let’s look at the full imple-
mentations of the base enable() and disable() methods your widget uses: $.Widget
.prototype.enable() and $.Widget.prototype.disable():

enable: function() {
 return this._setOptions({ disabled: false });
},
disable: function() {
 return this._setOptions({ disabled: true });
}

The default methods set only the widget’s disabled option. To implement disabling
logic, you must respond to the change in the disabled option. And—you’ll recall
from section 8.3.1—you do this with _setOption(). The following code alters your
widget so it can be disabled and enabled:

_setOption: function(key, value) {
 this._super(key, value);
 this._renderList();
 if (key == "disabled") {
 this.element
 .find("input").prop("disabled", value);
 this.element
 .find("li").toggleClass("ui-state-disabled", value);
 }
}

The first addition to _setOption() is a check for the disabled option B. Remember
that _setOption() is called for any option change, so you need this check to make
sure your code runs only when dealing with the disabled option.

 If you’re dealing with disabled, you do two things: toggle the disabled property
on all check boxes C, and toggle the ui-state-disabled class name on all s D.
Because this is the disabled option, when the value is true, you disable all check
boxes and add ui-state-disabled. When the value is false, you enable all check
boxes and remove ui-state-disabled.

 Now that you have the functionality in place, what about styling your disabled wid-
get? Because you’re using the themeable ui-state-disabled class name, your dis-
abled state is styled according to your theme. No extra work is needed!

 If you do want to tweak the disabled look, you can target the disabled list items
using .tj-todo .ui-state-disabled. The widget factory also adds a namespace-widget-
name-disabled class name to the outer container of the widget. In the case of your todo
widget, the outer has a tj-todo-disabled class name when disabled.

 Now that you have a widget that can be enabled and disabled, you’re nearing the
end of your widget checklist. You have only one thing left to handle: destruction.

If the disabled option
is changing

B

…disable or enable
the widget’s check

boxes C
…and toggle the ui-state-

disabled class name on
each . D
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

207Enabling, disabling, and destroying widgets
8.3.2 Undoing a widget’s effects with _destroy()

In the terms of the widget factory, destroying a widget is like hitting the undo button
in a text editor. When a widget is destroyed on an element, any markup that was
added is removed; any class names that were added are removed; any events that were
bound are unbound. The element is returned to its prewidget state.

 All the jQuery UI widgets provide a destroy() method that undoes their effects. As
an example, the following code initializes a <button> with a button widget, and then
destroys the widget using destroy():

$("<button>Button</button>")
 .appendTo("body")
 .button()
 .button("destroy");

Now that you’re on the implementing end, you have to provide this functionality as
well. How do you do it? Like most of the topics in this chapter, the widget factory gives
you a method to provide this functionality: _destroy().

WARNING Take note of the underscore prefix again—destroy() and
_destroy() are different methods with different purposes. We’ll get to that in
a minute.

Here’s the implementation of your todo widget’s _destroy() method:

_destroy: function() :
 this.element
 .removeClass(

What if your widget can’t be disabled?
Although most widgets can be disabled, there are exceptions. Disabling a dialog wid-
get would be bizarre, for example; at the least, the jQuery UI team couldn’t come up
with a practical reason to allow it.

The dialog widget does two things. First, it sets the enable() and disable() meth-
ods it inherits from the widget factory to an empty function—specifically, $.noop, a
convenience property provided by jQuery Core that’s literally set to function() {}:

disable: $.noop,
enable: $.noop

The dialog widget still has disable() and enable() methods, but they do nothing.
The second thing the dialog widget does is ignore the disabled option. The following
code appears near the beginning of the dialog widget’s _setOption() method:

if (key === "disabled") {
 return;
}

If you’re developing a widget that it doesn’t make sense to disable, this approach is
recommended.

Initializes the
button widgetDestroys the

button widget
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Using the widget factory to build stateful plugins
 "tj-todo ui-widget ui-widget-content ui-corner-all")
 .find("li").each(function() {
 var li = $(this).removeClass(
 "tj-todo-item ui-state-default"),
 input = li.find("input"),
 text = li.text();
 if (input.is(":checked")) {
 li.remove();
 } else {
 li.html(text);
 }
 });
}

Your first step is to remove all class names that the widget added. You first do that from
your main element B, then for each .

 Next, you determine whether the check box of each is checked. If it is, you
remove the from the DOM C. Because of this implementation, checked to-do
items are removed from the list when it’s destroyed. We’ll look at why you take this
approach in a moment.

 Finally, you revert the contents of all list items that aren’t checked. To see how this
works, let’s recall the HTML you used when you created the widget in _create(). You
took a list item—for example, Walk dog—and turned it into the following
markup:

 <label>
 <input type="checkbox" value="Walk dog">
 Walk dog
 </label>

To undo this, you set the innerHTML of each (using jQuery Core’s html()
method) back to the text of the , in this case, “Walk dog” D.

 That’s the end of your method. You may be wondering why you didn’t need to do
more. You didn’t unbind any events, and there were some class names you didn’t
remove. As it turns out, the widget factory handles this for you.

 Whenever a widget’s destroy()method (no underscore prefix) is called, the wid-
get factory performs common cleanup tasks in $.Widget.prototype.destroy() and
then delegates to the widget’s _destroy()method (with an underscore prefix) for
widget-specific cleanup. The following code shows an abridged version of $.Widget
.prototype.destroy(). Don’t worry if you don’t understand everything here; we’re
looking at the code to give an overview of the things destroy() does for you.

destroy: function() {
 this._destroy();

 this.element
 .removeData(this.widgetFullName);

Removes all
class names

that were
added. B

Removes checked
items from the
DOM.

C

Leaves unchecked
items. Sets their
innerHTML to
text only.D

Calls the widget-specific
_destroy() method

B

Removes all stored
widget data

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

209Enabling, disabling, and destroying widgets
 this.widget()
 .removeClass(
 this.widgetFullName + "-disabled " +
 "ui-state-disabled");

 this.bindings.unbind(this.eventNamespace);
 this.hoverable.removeClass("ui-state-hover");
 this.focusable.removeClass("ui-state-focus");
}

destroy() invokes the _destroy() method for widget-specific cleanup B. This is the
method you implemented for your to-do list earlier in this section.

 To understand the next line C, remember that the widget factory stores instance
data using $.data() with a key of the widget’s full name—in this case, tj-todo. Call-
ing removeData() removes the instance from jQuery’s internal data store to avoid
memory leaks.

 Both disabled class names—ui-state-disabled and the widget-specific tj-todo-
disabled—are removed from the widget D.

 The next line may also seem a bit cryptic. this.bindings is a collection of ele-
ments in the widget with events bound to them with _on() E The unbind() call
removes those events. Remember earlier in the chapter when I said that if you use
_on(), all events are cleaned up for you? This is the code that makes that happen.

 The code at F and G removes the ui-state-hover and ui-state-focus class
names from all elements that were made hoverable or focusable using _hoverable()
and _focusable().

 You only need to worry about cleaning up things specific to your widget in
_destroy(). The widget factory takes care of all generic cleanup tasks for you. Before
leaving the topic of widget destruction, we need to discuss one thing: why bother
destroying a widget?

 For one, it can be useful to have the ability to completely undo a widget’s effect
when building a UI. The following listing uses the todo widget to build an editable list
of items.

<style>
 #update { display: none; }
</style>

<ul id="todo">
 Clean dishes
 Walk dog
 Mop floor

<button id="edit">Edit</button>
<button id="update">Update</button>

<script>

Listing 8.3 An editable list built with the todo widget

Removes disabled
state class names D Unbinds all

events attached
with _on()

E

Removes all
hover state
class names F

Removes all
focus state
class namesG
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 Using the widget factory to build stateful plugins
 var list = $("#todo"),
 editButton = $("#edit").button(),
 updateButton = $("#update").button();

 editButton.on("click", function() {
 list.todo();
 editButton.hide();
 updateButton.show();
 });
 updateButton.on("click", function() {
 list.todo("destroy");
 editButton.show();
 updateButton.hide();
 });
</script>

In this example, you have two buttons: Edit and Update. The Edit button converts the
example’s to a todo widget B. The user can then check off items on the list.

 When the user clicks Update, the todo widget’s destroy() method removes the
todo widget from the C, leaving a list of items. Because of your implementation
of _destroy(), items that the user checks are removed from the when it’s
destroyed. This workflow is shown in figure 8.4.

 Beyond the UI niceties, there’s one other good reason to implement _destroy()
on your widgets: destroy() (which, as you recall, invokes _destroy()) is called when
the widget’s element is removed from the DOM using any of the jQuery Core meth-
ods. In the following code a button widget is initialized on a <button>, and then it’s
removed from the DOM because the innerHTML of its parent is changed using the
jQuery Core html() method.

Initializes a
todo widget
on the

B

Destroys the
todo widget
on the

C

User clicks
Edit

User checks
Walk dog

User clicks
Update

Figure 8.4 Workflow of the
destroy() example. The
user can check off items to re-
move them from the list.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

211Enabling, disabling, and destroying widgets
<div>
 <button>Button</button>
</div>
<script>
 $("button").button();
 $("div").html("Some other content");
</script>

Even though the code doesn’t explicitly call destroy(), it does invoke the button wid-
get’s destroy() (and _destroy()) methods. This is another piece of magic that the
widget factory provides. Internally, the widget factory duck punches jQuery Core’s
internal $.cleanData() method. When it detects that a widget has been removed, it
invokes its destroy() method to give the widget a chance to clean up and avoid mem-
ory leaks. Even if you have no intention of providing undo functionality, it’s important
to include a _destroy() method to avoid leaks.

TIP Duck punching refers to a technique of extending some piece of a
library without altering its original source. (The technique is also some-
times known as monkey patching the proxy pattern.) Paul Irish has a great
explanation of the technique and concrete implementations of it at http://
www.paulirish.com/2010/duck-punching-with-jquery/. You’ll use the duck
punching technique to build datepicker extensions in the next chapter.

Evaluating third-party widgets
Although building a custom widget is powerful, it can also be a lot of work, and some-
one else may have built what you need. You can look for third-party widgets on jQue-
ry’s plugin repository at http://plugins.jquery.com/ or with a Google search.

Remember, though, that unlike the jQuery UI widgets, you have no idea what you’re
going to get from widgets you find on the internet. You can find robust widgets that
save you time and development effort, and you can find widgets that don’t work.

When evaluating unofficial jQuery widgets, here are a few questions to ask. The more
of these questions you can answer affirmatively, the more likely the widget will work
well in your application:

■ Does the widget use the widget factory? If so, all the conventions we’ve dis-
cussed throughout the book for options, methods, events, and such still apply.
Usually, widget maintainers mention whether the widget factory is used in the
widget’s documentation; if not, you can look for a call to $.widget() in the wid-
get’s code.

■ Is the widget themeable? If it is, the existing jQuery UI themes will work fine with
the new widget. To see if the widget is themeable, check for the CSS frame-
work’s class names (ui-widget, ui-widget-content, and so on) on the wid-
get’s markup.

■ Does the widget have tests? Unit tests are a sign that the widget’s code is stable
and all its APIs work. Furthermore, because unit tests aid with code mainte-
nance, their presence is a good sign that the widget will be updated as future
versions of jQuery are released.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.paulirish.com/2010/duck-punching-with-jquery/
http://www.paulirish.com/2010/duck-punching-with-jquery/
http://www.it-ebooks.info/

212 CHAPTER 8 Using the widget factory to build stateful plugins
8.4 Summary
That’s it! In this chapter, you saw that the widget factory is used to build stateful plug-
ins, and then you went through a nine-step process of building a widget with it. The
nine steps you took were

1 Create the widget with $.widget().
2 Decide on a markup structure to use.
3 Build the markup structure with _create().
4 Make the widget themeable by applying the appropriate class names from the

jQuery UI CSS framework.
5 Add options to make the widget configurable.
6 Expose methods.
7 Trigger events as the widget’s state changes using _trigger().
8 Allow developers to disable and enable the widget.
9 Undo the widget’s effects using _destroy().

You can refer back to this chapter and follow these nine steps anytime you want to
build a stateful plugin with the widget factory.

 But what if you don’t want to build a complete widget from scratch? Sometimes
you need to make a quick alteration to an existing widget, and the widget factory has
an extension mechanism built in that does that. We’ll spend the next chapter looking
at how it works.

(continued)
■ Is it well documented? This one is a bit self-explanatory; thorough documentation

makes it easier to get started with a widget and to use it.
■ Is it maintained? A widget that was last updated a month ago is more likely to be

actively maintained than a widget that was last updated two years ago. Look for
the release date of the latest version of the widget, and when the last few com-
mits were.

■ Is it battle tested? If you’re the 10,000th person to use a widget, chances are
you’ll have a smoother experience than the 10th person to use it. Widgets that
have been used in numerous production applications are more likely to have the
kinks worked out. If the widget is on GitHub, look for projects that have a lot of
watchers and stars. If the project isn’t on GitHub, look for how much information
is available with a Google search or on Stack Overflow.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Extending widgets
 with the widget factory
We’ve spent the greater part of this book looking at myriad things you can do with
the jQuery UI widgets. But although the jQuery UI widgets handle the most com-
mon development use cases, real-life applications often have specific—often
crazy—requirements. To give a few concrete examples: the jQuery UI team has had
feature requests asking for accordions that store their open panel in a cookie, drag-
gables that have a Cancel button, and autocompletes within autocompletes. (I’m
not sure what those last two even mean, but someone asked for them.)

 Widgets can’t solve every niche problem that developers have, so to allow for
highly customized solutions to these unique issues, the widget factory allows you to
extend existing widgets. The ability to extend widgets lets you add, remove, or
tweak the behavior of an existing widget without reinventing the wheel. Because of

This chapter covers
■ Building on top of the jQuery UI widgets
■ Using and creating extension points
■ Extending datepicker
213

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 9 Extending widgets with the widget factory
the customizability it provides, the widget factory’s extensions mechanism is—in my
opinion—the single most powerful feature in jQuery UI.

 In this chapter, we’ll look at how to create widget extensions, then we’ll build a
few examples to see what they make possible. We’ll look at datepicker specifically, as
it’s the only jQuery UI widget that doesn’t use the widget factory yet and requires
tricky workarounds.

 Let’s dig in.

9.1 Building widget extensions
Widget extensibility is built directly into the widget factory; you can use all the widget
mechanisms you’ve learned, along with a few mechanisms specific to widget exten-
sions that you’ll learn throughout this chapter. In fact, extending widgets is as easy as
passing the constructor function of the widget to extend into $.widget(). The follow-
ing builds an extension of the jQuery UI dialog widget named superDialog:

$.widget("tj.superDialog", $.ui.dialog, {});

superDialog is an exact clone of the dialog widget. You can use its constructor func-
tion to create a new dialog

$.tj.superDialog("<div>");

or you can use its plugin

$("<div>").superDialog();

With the widget factory, you aren’t limited to one level of inheritance; you can build
extensions of extensions. The following creates a third superDuperDialog widget that
extends the superDialog widget:

$.widget("tj.superDuperDialog", $.tj.superDialog, {});

All three widgets are complete widgets, each with its own plugin; each of the following
creates a new dialog:

$("<div>").dialog();
$("<div>").superDialog();
$("<div>").superDuperDialog();

Although it’s cool that you can create a copy of a widget in one line of code, these
extensions aren’t useful; they’re the same widget with different names. To make your
widget extensions useful, you have to make them do something their parent widget
doesn’t. Let’s start by altering options.

9.1.1 Changing existing and adding new options to a widget

With widget extensions you have the full power of the widget factory at your disposal.
Anything you can do with a widget, you can do with a widget extension—including
altering options, or adding new ones.

 To show this, let’s return to the confirmation dialog that you built in chapter 2. That
example created a new <div> and converted it to a dialog widget with an OK button.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

215Building widget extensions
$("<div>Your transaction processed successfully.</div>").dialog({
 options: {
 buttons: {
 OK: function() {
 $(this).dialog("close");
 }
 }
 }
});

This works, but you repeat the five lines to create the OK button every time you want
to create a confirmation dialog. You could change $.ui.dialog.prototype

.options.buttons, but that would change the defaults of all dialogs, not just confir-
mation ones.

 To consolidate this configuration, let’s create a confirmationDialog widget
extension:

$.widget("tj.confirmationDialog", $.ui.dialog, {
 options: {
 buttons: {
 OK: function() {
 $(this).confirmationDialog("close");
 }
 },
 close: function() {
 $(this).confirmationDialog("destroy");
 }
 }
});

You define options for your confirmationDialog B and when you extend another wid-
get, the widget factory intelligently merges the widget’s default options with its par-
ent’s defaults. So your widget still has all the dialog widget’s options—height, width,
modal, and so on—without needing to explicitly list them. Any options you do provide
override those of the parent widget. The following creates a confirmation dialog using
your new widget’s plugin:

$("<div>Your transaction processed successfully.</div>")
 .confirmationDialog();

This dialog is shown in figure 9.1. Although you
passed no options to confirmationDialog(),
it automatically has an OK button that closes
the dialog.

 The other option you pass is a close event
callback that calls the confirmationDialog’s
destroy() method C. Because you’re creating a
new <div> every time you build a confirmation
dialog, this prevents the dialog from staying in
the DOM when you no longer need it.

Specifies the
confirmationDialog’s options

B

Destroys the dialog
when it’s closed

C

Figure 9.1 A confirmation dialog built
with the confirmationDialog widget
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 9 Extending widgets with the widget factory
 The confirmation dialog sets the default value of its parent widget’s options. Next,
let’s show a widget that adds a new option altogether. Remember the vertical tabs
example that you built in chapter 7? You added CSS to the tabs widget to stack the tabs
vertically instead of horizontally:

.ui-tabs {
 padding: 0;
 overflow: hidden;
}
.ui-tabs .ui-widget-header {
 border: none;
}
/* etc */

This works if all your tabs are vertical, but what if you want horizontal and vertical tabs
in the same application, or even on the same page? We’ll look at a couple of ways to
make this possible, starting with adding a new option to the tabs widget.

 For consistency with the jQuery UI slider widget (which can also display horizon-
tally or vertically), you’ll use an orientation option that can be set to "horizontal"
or "vertical". The final display of this widget is shown in figure 9.2.

 To implement this widget, you need to change your custom CSS so that it no longer
adds rules to the ui-tabs class name. Instead, you prefix all rules with a ui-tabs-vertical
class name, as shown here:

.ui-tabs-vertical {
 padding: 0;
 overflow: hidden;
}
.ui-tabs-vertical .ui-widget-header {
 border: none;
}
/* etc */

Your widget extension now has to manage this class name to determine whether the
tabs display horizontally or vertically. The first step is to add logic to conditionally add
the ui-tabs-vertical class name when the tabs are initialized in _create(). But

$("#tabs").tabs();

$("#tabs").tabs({ orientation: "vertical" });

Figure 9.2 Display of a tabs extension that adds an orientation option
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

217Building widget extensions
there’s a problem with this. The tabs widget’s existing _create() method already does
a lot, and if you override it, you lose all that behavior.

 No need to worry; the widget factory has a trick up its sleeve to make the parent
widget’s method available in all extended methods. To see this in action, look at the
tabs extension shown in the following listing.

$.widget("tj.tabs", $.ui.tabs, {
 options: {
 orientation: "horizontal"
 },
 _create: function() {
 this._super();
 this._handleOrientation();
 },
 _handleOrientation: function() {
 this.element.toggleClass("ui-tabs-vertical",
 this.options.orientation === "vertical");
 },
 _setOption: function(key, value) {
 this._superApply(arguments);
 if (key === "orientation") {
 this._handleOrientation();
 }
 },
 _destroy: function() {
 this._super();
 this.element.removeClass("ui-tabs-vertical");
 }
});

NOTE This example is available at http://jsfiddle.net/tj_vantoll/S6bCN/.

We’ll start at the top before getting into _create(). The call to $.widget() defines
the widget’s full name as "tj.tabs" B. How can you have two widgets that have the
same name? Because the widgets have different full names, "tj.tabs" and
"ui.tabs", these two widgets can coexist; their constructor functions are available at
$.tj.tabs() and $.ui.tabs(), respectively.

 But because you can’t have multiple jQuery plugins with the same name, the
tabs() plugin is now associated with $.tj.tabs() and not $.ui.tabs(). This can be
confusing; we’ll look at a better way to handle this in the next section.

 Next, you define a new option for your tabs widget extension: orientation, which
defaults to "horizontal" C. Because your extension inherits all options from its par-
ent widget—in this case $.ui.tabs—this is the only option you need to explicitly list.

 After the options, you provide a few methods on your new widget’s prototype—the
first being _create(). In _create() you can see the utility function the widget factory
provides for accessing the parent widget’s method of the same name: _super() D.

Listing 9.1 Tabs widget extension with an orientation option

Adds an orientation
option that defaults

to “horizontal” C
Invokes the parent
widget’s _create() methodD

Invokes the parent widget’s
_setOption() method

E

Creates the extension
with name “tj.tabs”B
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 9 Extending widgets with the widget factory
 _super() is incredibly useful in extensions because, instead of having to duplicate
the logic in the jQuery UI tab widget’s _create(), you can directly invoke it and then
add your custom logic to manage the ui-tabs-vertical class name.

 The rest of this example manages this class name. In _destroy() you ensure the
class name is removed, and in _setOption() you ensure the class name is added or
removed appropriately when the orientation option changes.

 _setOption() uses one other method you haven’t seen before: _superApply().
_superApply() and _super() both invoke the parent widget’s method of the same
name. The difference is in the arguments the methods accept; _super() accepts zero
to many arguments passed individually, and _superApply() accepts an array of argu-
ments. For example, you call _superApply(arguments) E, but you could have
invoked _super() with the two arguments of _setOption() explicitly listed—that is,
_super(key, value). Because the two methods do the same thing, which one you
use is a matter of personal preference.

TIP The arguments object is an array-like local variable available in all functions.
It contains the arguments passed to the function. For more information on
arguments, see https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Functions_and_function_scope/arguments.

This extension approach added a new orientation option, but you could have taken
other approaches. You could’ve used a different plugin name as shown in the follow-
ing code:

$.widget("tj.verticalTabs", $.ui.tabs, {
 _create: function() {
 this._super();
 this.element.addClass("ui-tabs-vertical");
 },
 _destroy: function() {
 this._super();
 this.element.removeClass("ui-tabs-vertical");
 }
});

This implementation creates two separate plugins: tabs() and verticalTabs().
Developers call tabs() to create horizontal tabs and verticalTabs() to create verti-
cal ones. The only difference is this implementation doesn’t let you change the orien-
tation of the tabs using the option() method.

 The widget factory makes different approaches possible so that you can create the
widget that best meets your needs. In the next section you’ll return to your initial ver-
tical tabs implementation to see how you can clean it up.

9.1.2 Redefining widgets with the widget factory

Often you perform a small alteration to an existing widget, but you have no need to create
a brand-new widget from scratch. Your first vertical tabs extension is the perfect example
of this—you added a new option, but you had no need to create a new widget.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
http://www.it-ebooks.info/

219Building widget extensions
Before jQuery UI 1.9, there was no good way to do this. Your only option was to change
the widget’s methods on its prototype. The following example does this for the tabs
widget’s _create() method:

$.ui.tabs.prototype._create = function() {
 this.element.addClass("some-class-name");
};

The problem with this approach is that you have no access to the _super() and
_superApply() methods; therefore, to invoke the tabs widget’s original _create()
method, you must store off a reference to it before overriding it:

var oldCreate = $.ui.tabs.prototype._create;
$.ui.tabs.prototype._create = function() {
 oldCreate.apply(this);
 this.element.addClass("some-class-name");
};

This code is a lot of work to perform a single action in _create(). You have to manu-
ally set the context (this) of the parent method’s _create() B—something that the
widget factory handled for you.

 The biggest problem with this approach is that it requires you to duplicate boiler-
plate code to store a reference to the parent method. You override only one method,
but if you had more, you’d have to duplicate the same code for each.

 To make this process easier, a new feature was added to the widget factory in the
jQuery UI 1.9 release: the ability to redefine widgets. To see how this works, let’s look
at the same example implemented with the widget factory:

$.widget("ui.tabs", $.ui.tabs, {
 _create: function() {
 this._super();
 this.element.addClass("some-class-name");
 }
});

Widgets extensions and method calls
When you create widget extensions that define new plugins, such as the vertical-
Tabs example, the parent widget’s plugin cannot be used to invoke methods on ele-
ments that are instances of the child widget. This is a bit of a mouthful, so let’s look
at an example:

$.widget("tj.superDialog", $.ui.dialog, {});
var div = $("<div>").superDialog();
div.superDialog("close");
div.dialog("close");

Here, you create a superDialog widget that extends the dialog widget, and then create
a superDialog instance on a newly created <div>. Because the <div> is a superDialog
instance, you can invoke methods on it through the superDialog() plugin B, but
you cannot use the parent widget’s dialog() plugin C.

This works.B

This doesn’t.C

Set this for the
parent method.

B

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 9 Extending widgets with the widget factory
This example is also four lines of code, but it’s far cleaner. You don’t have to worry
about saving references to the parent widget’s method—you just call _super(). This
approach ends up being cleaner for more complex examples. Let’s return to your wid-
get that added an orientation option to the tabs widget:

$.widget("tj.tabs", $.ui.tabs, {
 options: {
 orientation: "horizontal"
 },
 ...
});

As discussed, the issue here is that you’re creating two widgets: $.tj.tabs and
$.ui.tabs. To change this widget to redefine $.ui.tabs, you change the namespace
from "tj" to "ui":

$.widget("ui.tabs", $.ui.tabs, {
 options: {
 orientation: "horizontal"
 },
 ...
});

Instead of creating a new widget on a different namespace, you alter the jQuery UI
tabs widget’s behavior. Because of this, all instances of the tabs widget are affected—
any new and existing tabs widget instances now have an orientation option.

 In general, whether to build a new widget or redefine an existing one is a matter of
personal preference and depends on the specific scenario, but I’ll give a few recom-
mendations. For quick changes, redefining a widget is preferred—as users of the wid-
get don’t have to remember two different widget names and plugins.

 For more complex changes, a new widget is preferred. A different name helps to
clearly differentiate the widget from its parent; otherwise, users of the widget might
attribute the additional functionality to the parent. As an example, a developer using
your updated tabs widget might assume that the orientation option is part of jQuery
UI, and wonder why it’s not documented on the API documentation.

 Regardless of which approach you use, widget extensions make all sorts of power-
ful customizations possible. Let’s look at a few more practical examples of this, start-
ing with your todo widget from the last chapter.

9.1.3 Extending a custom widget

Widget extensions aren’t limited to the jQuery UI widgets. Any widget built with the
widget factory can be extended, even completely custom widgets like the to-do list you
built in the previous chapter. To show this, you’ll build two extensions of this widget,
one that makes items in the list removable and another that makes them sortable.

 Let’s start with the removable example. Remember from chapter 8 that each item
in the list could be checked and unchecked, but there was no way to remove items
from the list; therefore, you’ll build an extension that adds this functionality. The dis-
play of this widget is shown in figure 9.3.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

221Building widget extensions
The implementation of this widget is shown in the following listing.

$.widget("tj.todo", $.tj.todo, {
 _create: function() {
 this._super();
 this._on({
 "click button": function(event) {
 var value = $(event.target).parents("li:first")
 .find("input").val();
 this.remove(value);
 }
 });
 },
 _renderList: function() {
 var listItems = this.element.find("li");
 listItems.find("button").remove();
 this._super();
 listItems.each(function() {
 var button = $("<button>Close</button>").button({
 icons: { primary: "ui-icon-closethick" },
 text: false #4
 }); #4
 $(this).append(button);
 })
 },
 _destroy: function() {
 this.element.find("button").remove();
 this._super();
 }
});

NOTE This example is available at http://jsfiddle.net/tj_vantoll/umrmm/.
If you need to reference the code for the original todo widget, you can view
that at http://jsfiddle.net/tj_vantoll/zStp7/.

This example works by adding a <button> element to each in the list. In _create(),
after calling _super(), you use _on() to attach an event listener for buttons in the list
B. The listener determines which item was clicked, then calls the todo widget’s
remove() method you added in chapter 8 to remove the from the DOM C.

 Next, you have to inject the <button> elements into each . Because the todo wid-
get’s _renderList() method is called every time the list is manipulated (when items are
added, removed, checked, or unchecked), it makes for a perfect extension point for the

Listing 9.2 A todo widget extension with removable items

Figure 9.3 A todo widget extension
that adds remove icons

Listens for clicks on
the list’s buttons

B

Calls the
remove()
methodC

Removes
all buttons

from the
list

D

Creates a new
<button>

E

Removes all buttons
from the list

F

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 9 Extending widgets with the widget factory
todo widget. We’ll discuss extensions points in more detail in the next section, but for
now know that extensions points are methods that are convenient to extend.

 You remove all buttons from the list D, before you call _super(). You do this
because the parent widget relies on getting the text of each , and having button
elements in the messes with that logic. I’m specifically using this approach to
show that there’s no rule for where to call _super() in an extension. You can call it in
the beginning, the middle, or the end of a method—you can avoid calling it com-
pletely if you don’t need the parent widget’s behavior.

 After the _super() call, your list’s markup structure is in place, so you can now add
your buttons. You do so by looping over each , creating a new button for each E,
and appending the new button to the .

 Your last task is to eliminate the buttons when the widget is destroyed. You accom-
plish this by extending the todo widget’s _destroy() method, removing all <button>
elements F, and invoking the parent widget’s _destroy() with _super().

 To get the display you need, you have to add a little CSS to make your buttons look
right. The following CSS handles the positioning and sizing of the buttons:

.tj-todo .tj-todo-item {
 position: relative;
}
.tj-todo .tj-todo-item button {
 position: absolute;
 right: 5px;
 height: 1.5em;
 width: 1.5em;
 top: 0.4em;
}

And with that, you have a todo widget in which users can remove items from the list—
all in about 25 lines of code. This example shows off the true power of the widget fac-
tory. Because you’re building on top
of an existing solution, you don’t
have to write much code to create a
custom UI component.

 Let’s look at one more extension
example: a sortable list. Figure 9.4
shows the sortable to-do list in action.

 The implementation of the sort-
able todo widget is shown in the following listing.

$.widget("tj.todo", $.tj.todo, {
 options: {
 sortable: false
 },
 _create: function() {
 this._super();

Listing 9.3 A sortable todo widget

Defines a
sortable optionB

Figure 9.4 An extension of your to-do list widget that
lets users reorder items in the list
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

223Building widget extensions
 if (this.options.sortable) {
 this.element.sortable();
 } #2
 },
 _setOption: function(key, value) {
 this._super(key, value);
 if (key === "sortable") {
 if (value) {
 this.element.sortable();
 }
 if (!value && this._isSortable()) {
 this.element.sortable("destroy");
 }
 }
 },
 _isSortable: function() {
 return this.element.is(":data(ui-sortable)");
 },
 _destroy: function() {
 if (this._isSortable()) {
 this.element.sortable("destroy");
 }
 this._super();
 }
});

NOTE This example is available at http://jsfiddle.net/tj_vantoll/vfJ65/.

The code here is similar to the vertical tabs extension. You define a sortable option
and default it to false B. In _create(), when the option is set, you convert the todo
widget’s element to a sortable widget C. (Remember that there’s no reason a single
element can’t be associated with multiple widgets.)

 To handle the sortable option being changed, you override _setOption(). When
sortable is set to true, you make the todo widget’s element sortable D. Because the
widget factory prevents dual instantiation, there’s no harm in calling sortable() on
an element that’s already sortable; it has no effect.

 When the sortable option is set to false, the situation is a bit more complex.
Before calling destroy() to remove the sortable functionality, you first must make
sure that the todo widget’s element has been initialized with a sortable widget E. You
need this check because calling a widget method before the widget is initialized—in
this case sortable("destroy")—throws an error.

 To determine whether the element is sortable, you use this.element.is
(":data(ui-sortable)") F. We’ll look at how the :data() selector works in chap-
ter 12, but for now know that it selects elements that have data stored under the speci-
fied key. If the element has data stored with the widget’s name, then that element has
that widget initialized on it. (Remember that destroy() cleans up that data.)

 In the todo widget’s _destroy() method, you need to clean up the sortable widget
G. You use the same _isSortable() method you defined earlier to determine
whether the element is a sortable and, if so, call its destroy() method.

Makes the element sortable
if the option is setC

Makes the element
sortable

D

Destroys
the widget

if necessary

E

Determines whether
the element is
sortable

F

Destroys the widget
if necessary

G

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 9 Extending widgets with the widget factory
 Now you can create sortable to-do lists by setting the sortable option to true:

 Write widget
 Post on GitHub
 Profit?

<script>
 $("ul").todo({ sortable: true });
</script>

You can change whether the list is sortable by changing the option:

$("ul").todo("option", "sortable", false);

Just as in the vertical tabs example, this is only one possible implementation. You also
could’ve created a new widget that’s always sortable. An implementation of this is
shown here:

$.widget("tj.sortableTodoList", $.tj.todo, {
 _create: function() {
 this._super();
 this.element.sortable();
 },
 _destroy: function() {
 this.element.sortable("destroy");
 this._super();
 }
});

With this approach, you can create a sortable to-do list by calling this new widget’s
plugin:

 Write widget
 Post on GitHub
 Profit?

<script>
 $("ul").sortableTodoList();
</script>

As before, neither approach is better; they’re different ways of extending the todo wid-
get with additional behavior. If you prefer having a separate plugin with a different
name, then create a new widget; if you have no need for a completely different widget,
then redefine the original widget.

 Before we end this section, there’s one final question worth discussing: why didn’t
you implement removable and sortable items directly in the todo widget? Why build
this functionality as extensions?

 The answer is one the jQuery UI team itself has learned the hard way: widgets with
lots of options are difficult to use and maintain. For every option you add to a widget,
you have to think about how it interacts with every other option. Worse, every option
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

225Customizing widgets with extension points
you add makes extending your widget harder (extensions also have to worry about
supporting every single option).

 The interaction between options is a consistent source of bugs and code complex-
ity in jQuery UI. Think of all the combinations of datepicker’s 50 options! Plus, the
vast majority of use cases don’t require more than a couple of options. I’ve yet to see a
datepicker that required a quarter of datepicker’s 50 options.

 Because of this, from now on the jQuery UI team will attempt to implement only
commonly needed options. To make the jQuery UI widgets customizable for highly
specific situations, the library has recently implemented a brand-new means of cus-
tomization: extension points.

9.2 Customizing widgets with extension points
Although any method in a widget can be overridden with the widget factory, the
jQuery UI team has realized that it’s useful to create methods specifically for exten-
sion. These methods are designated as extension points and have the same API stabil-
ity as options, methods, and events—meaning jQuery UI will never rename or remove
an extension point in a bug fix release.

 The extension point mechanism doesn’t apply only to jQuery UI. By adding exten-
sion points to custom widgets, you make them easier to use, and easier for other devel-
opers to build widgets on top of. We’ll look at examples of this later in the section.

 The jQuery UI extension points are now listed on each widget’s API documenta-
tion—right alongside the widget’s options, methods, and events. Figure 9.5 shows the
dialog widget’s single extension point.

Options that depend on other options
Limiting the number of options a widget has is a widget API design best practice.
Another is to avoid creating options that depend on other options.

jQuery UI itself violates this best practice in a few places for backward compati-
bility. As an example, the resizable widget has animate, animateDuration, and
animateEasing options. These APIs are confusing because animateDuration and
animateEasing are irrelevant when animate isn’t set to true.

If you need multiple values for a single option, the preferred approach is to accept an
object. For instance, the dialog widget’s show and hide options accept an object with
multiple properties set, as shown here:

$("<div>").dialog({
 hide: {
 duration: 500,
 easing: "linear",
 effect: "puff"
 }
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 9 Extending widgets with the widget factory
As discussed, extension points are nothing more than widget methods; you know the
mechanism to override the dialog’s _allowInteraction() method:

$.widget("ui.dialog", $.ui.dialog, {
 _allowInteraction: function() {}
});

The dialog widget’s _allowInteraction() method is specifically used for modal dia-
logs. Normally, modal dialogs don’t allow users to interact with elements outside of
the dialog. This behavior is almost always what you want, but suppose you have an ele-
ment outside the dialog that’s positioned to look as if it’s inside the dialog.

 Many third-party plugins take this approach. Consider the following code that uses
the third-party Select2 jQuery plugin in a modal dialog:

<div id="dialog">
 <label for="country">Country:</label>
 <select id="country">
 <option>Afghanistan</option>
 <option>Albania</option>
 <option>Algeria</option>
 ...
 </select>
</div>
<script>
 $("#dialog").dialog({ modal: true });
 $("#country").select2();
</script>

The display of this example is shown in
figure 9.6.

 As you can see from figure 9.6, the
Select2 plugin automatically provides an
<input> for the user to filter options in
the list. Unfortunately, the dialog wid-
get blocks this <input> from getting
focus. Why? Take a look at the gener-
ated markup structure of this example,
shown here:

Figure 9.5 The dialog widget’s
extension points list on http://
api.jqueryui.com/dialog/. Not
all widgets have extension
points, but the ones that do will
always show up in this location
on the API docs.

Figure 9.6 Display of the Select2 plugin with a
modal dialog
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/dialog/
http://api.jqueryui.com/dialog/
http://www.it-ebooks.info/

227Customizing widgets with extension points
<body>
 <div id="dialog" class="ui-dialog" ...></div>
 <div class="select2-drop" ...>
 <input class="select2-input">
 ...
 </div>
</body>

Although the <input> looks as if it’s inside the dialog, it’s actually in a sibling <div>,
and is absolutely positioned on top of the dialog: the dialog widget blocks any interac-
tions with this <input>.

 This is where the _allowInteraction() method comes in. The method lets you
whitelist elements the user can use that aren’t children of modal dialogs. The follow-
ing code uses the _allowInteraction() extension point to allow the use of the
Select2 plugin:

$.widget("ui.dialog", $.ui.dialog, {
 _allowInteraction: function(event) {
 return $(event.target).is(".select2-input") ||
 this._super(event);
 }
});

You perform two checks here. First, you see if the element that received the event has
a select2-input class name. This is what allows the Select2 <input> to receive focus.
Second, you call _super() so that you still do the checks in the parent widget’s
method. $.ui.dialog.prototype._allowInteraction(), for instance, has a work-
around to ensure datepickers work within dialogs.

TIP The autocomplete and selectmenu widgets automatically work within
modal dialogs because of their use of the ui-front class name and
appendTo option. Read more about the technique these widgets use at
http://api.jqueryui.com/theming/stacking-elements/. The datepicker wid-
get will take the same approach when its rewrite is complete, which will
remove the need for the workaround in the dialog widget’s
_allowInteraction() method.

Now you have a Select2 plugin that works in a jQuery UI modal dialog, and, because
_allowInteraction() is a documented extension point, you can feel comfortable
that this fix will work in future releases.

 Because extension points are a relatively new mechanism in jQuery UI, there are
still few documented extension points. What do you do if you want to extend an
undocumented method?

9.2.1 Using undocumented extension points

If you use jQuery UI long enough, you’ll almost certainly want to extend a method
that isn’t an official extension point. Although only some methods are documented as
extension points, any widget method can be overridden using the widget factory. And
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 9 Extending widgets with the widget factory
sometimes it can be advantageous to override the undocumented methods (we’ll look
at an example in a bit).

 Despite this, overriding undocumented methods should always be considered a
last resort during development. Because jQuery UI is free to rename or replace any
undocumented method during any release (even a bug fix release), you risk having
your application break as new versions of jQuery UI come out.

 But sometimes it can be worth the risk to truly customize the behavior of the wid-
get. To give a concrete example of this, let’s return to the dialog widget. The dialog
widget does some logic to manage focus for you. When you open a dialog, focus is
automatically set to the first of the following:

1 An element with the autofocus attribute
2 A tabbable element in the dialog’s content
3 A tabbable element in the dialog’s button pane
4 The dialog’s close button
5 The dialog itself

This is done for accessibility purposes. Shifting focus lets screen reader users know
that there is new content to interact with.

NOTE The dialog widget also moves focus when a dialog is closed. When you
open a dialog, the widget remembers which element had focus, and when you
close the dialog, focus is returned to that element.

Usually, this behavior gives focus to an appropriate element in the dialog, but not
always, for instance, in the following example:

<div id="dialog">
 <p>The transaction processed successfully. For details,
 see your account.</p>
</div>
<script>
 $("#dialog").dialog({
 buttons: {
 OK: function() {
 $(this).dialog("close");
 }
 }
 });
</script>

The display of this dialog is shown in figure 9.7.
Notice that the your account <a> received
focus.

 If you refer to the dialog’s focus algorithm,
you’ll see why. Because there’s no element with
an autofocus attribute, the dialog looks for a
tabbable element in the dialog’s content.

Figure 9.7 Display of a dialog widget with
focus placed on a link in the content
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

229Customizing widgets with extension points
Because <a> tags with href attributes are tabbable, the dialog widget selects the link
and gives it focus.

 Here this isn’t desirable behavior. Because this is a simple confirmation dialog, you
want to focus the OK button so the user can easily close the dialog with the Enter key.
Having focus on the link also draws the user’s attention to the link, and you have no
reason to do that in this example.

 How do you change this behavior? Although there are no documented extension
points to control this, if you look at the source of the dialog widget (https://
github.com/jquery/jquery-ui/blob/master/ui/dialog.js), you’ll see that there is a
method that controls this behavior: _focusTabbable().

 You can use this method to alter the focus logic in your example. The following
code shows an extension that does that:

$.widget("ui.dialog", $.ui.dialog, {
 _focusTabbable: function() {
 var okButton = this.uiDialog.find("button:contains('OK')");
 if (okButton.length > 0) {
 okButton.focus();
 } else {
 this._super();
 }
 }
});

This extension overrides one method: _focusTabbable(). You use a reference to the
dialog’s outer DOM element (this.uiDialog) to look for any <button> elements that
contain the text "OK" B.

 If you find one, you give it focus C; otherwise, you call the parent widget’s
_focusTabble() with _super() to let it determine which element should receive
focus D.

 With this extension in place, your example dialog now gives focus to the OK button
when opened rather than to the link. You could’ve written this extension other ways.
You could’ve looked for the first button in the button pane, regardless of its text. You
also could’ve assumed there would always be an OK button and given it focus without
checking whether it exists.

 The point here isn’t the specific implementation, as what you’ll need to do is spe-
cific to what you’re building. The point is that you could change the widget’s behavior
only by extending an undocumented method of the dialog widget.

 Is this all right? Although developers coming from a server-side background may
cringe at using undocumented APIs, it’s sometimes the only option you have to imple-
ment your requirements. As we discussed, using undocumented extension points
should always be a last resort.

 Creating extensible widgets is an important goal of the jQuery UI project. If you think
a specific method should be listed as an extension point, let us know! Or if you think
some logic in a widget could be refactored to make it more extensible, create a ticket
requesting it. Better yet, after you create the ticket, submit a pull request implementing

Finds any
buttons

with text
“OK” B

Focuses the OK
button if foundC

Calls the parent
method if notD
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/jquery-ui/blob/master/ui/dialog.js
https://github.com/jquery/jquery-ui/blob/master/ui/dialog.js
http://www.it-ebooks.info/

230 CHAPTER 9 Extending widgets with the widget factory
the new extension point! For more information on contributing to jQuery UI, see
appendix E.

9.2.2 Adding your own extension points

Extension points make a widget more extensible, and therefore it’s easier to build
complex solutions on top of the widget. Because jQuery UI tries to adhere to this
methodology in its widgets, you should try to do the same in your own custom widgets
as well. As a general rule, if you think someone may want to change the behavior of
something you’re writing, put it in a method.

 Let’s return to the extension you built earlier in this chapter that added remove but-
tons to your to-do list. For a refresher, the code for that extension is shown again here:

$.widget("tj.todo", $.tj.todo, {
 ...
 _renderList: function() {
 var listItems = this.element.find("li");
 ...
 listItems.each(function() {
 var button = $("<button>Remove</button>").button({
 icons: { primary: "ui-icon-closethick" },
 text: false
 });
 $(this).append(button);
 })
 }
});

The code that builds the remove <button> elements is embedded in the
_renderList() method. If you want to customize how the buttons work, you need to
reimplement the entire, nontrivial _renderList() method. Let’s move the button cre-
ation to its own method to make it an extension point.

 The following code implements a new _buildRemoveButton() extension point:

$.widget("tj.todo", $.tj.todo, {
 ...
 _renderList: function() {
 var listItems = this.element.find("li"),
 that = this;
 ...
 listItems.each(function() {
 var button = that._buildRemoveButton();
 $(this).append(button);
 })
 },
 _buildRemoveButton: function() {
 return $("<button>Remove</button>").button({
 icons: { primary: "ui-icon-closethick" },
 text: false
 });
 }
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

231Extending the datepicker widget
Functionality-wise, this implementation does the exact same thing, but you now have the
ability to alter the code that builds the remove <button> elements without needing to
reimplement _renderList(). This extension shows text on the button instead of an
icon. (Notice that the text option is no longer set; it takes its default value of true.)

$.widget("tj.todo", $.tj.todo, {
 _buildRemoveButton: function() {
 return $("<button>Remove</button>").button({
 icons: { primary: "ui-icon-closethick" }
 });
 }
});

Is this an extension of an extension? Yes, it is. With the widget factory you can extend
or redefine the same widget as many times as you’d like.

 Because of the power of extending widgets, it’s important to think about extension
points during the development of a widget. By putting your button-creating code in its
own method, you allow developers to customize the button’s creation without having
to repeat code from your widget.

 Before we end our discussion of widget extensions, there’s one last widget we need
to discuss: datepicker.

9.3 Extending the datepicker widget
Remember that datepicker is the only widget in jQuery UI that isn’t built with the wid-
get factory. Because of this, it also can’t be extended using the widget factory—which
unfortunately means that none of the techniques we’ve discussed throughout this
chapter will work on datepicker.

 You can do some things, although
the implementations aren’t nearly as
clean as widgets built with the widget fac-
tory. To show this, let’s tackle one com-
mon datepicker request: changing what
the Today button does.

 Recall that setting the datepicker’s
showButtonPanel option to true dis-
plays the datepicker along with the two
buttons shown in figure 9.8.

 If you had to guess, what do you sup-
pose the Today button does? Most peo-
ple, including me, believe that it should
select today’s date, place today’s date
value in the <input>, and close the cal-
endar. Alas, this isn’t the behavior of the
Today button—instead, the button links
to today’s date.

Figure 9.8 A datepicker with a button pane. The
button pane contains two buttons: Today and
Done.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 9 Extending widgets with the widget factory
 To understand what this means, you have to know that there’s always an active date
when the datepicker is open. The active date is today’s date by default, but it can be
altered with datepicker’s keyboard shortcuts, the next and previous month buttons, or
by typing dates directly in the datepicker’s <input>. You can select the active date at
any time using the Enter key.

 When you click the Today button, it makes today’s date the active date. If you navi-
gate the datepicker in figure 9.8 to February and click Today, you’re taken back to Jan-
uary, but today’s date isn’t selected.

 This behavior confuses almost everybody who uses the datepicker; it’s counterintu-
itive. So how do you change it?

 There are no options to control the behavior, and no events triggered when the
Today button is clicked; you must resort to a technique mentioned in the last chapter:
duck punching.

 Internally, datepicker runs $.datepicker._gotoToday() whenever the Today but-
ton is clicked. You still need $.datepicker._gotoToday() to run—as you need to
make Today’s date active—but you need to add to what it does.

 With the widget factory this was simple; you used _super() to call the parent’s
method, then did your custom logic. But because datepicker isn’t built with the widget
factory, that’s not an option here. So what do you do?

 This is where the duck-punching technique comes into play. Duck punching lets
you extend a function while maintaining a reference to the original function. Let’s
look at the implementation:

$.datepicker._gotoToday = (function(orig) {
 return function(id) {
 orig.call(this, id);
 this._selectDate(id);
 };
})($.datepicker._gotoToday);

Let’s break this down, starting with the first and last lines:

$.datepicker._gotoToday = (function(orig) {
 ...
})($.datepicker._gotoToday);

This is an assignment; you’re assigning a new value to $.datepicker._gotoToday.
What is being assigned is where this gets tricky.

 function(orig) {} defines an anonymous function and ($.datepicker
._gotoToday) immediately invokes that function—passing it a reference to
$.datepicker._gotoToday; after this executes, orig is set to the original version of
$.datepicker._gotoToday. Because this whole block of code is an assignment, what-
ever you return from this anonymous function will become the new value of
$.datepicker._gotoToday.

 Here’s the function that you return:
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

233Extending the datepicker widget
return function(id) {
 orig.call(this, id);
 this._selectDate(id);
};

Because you have a reference to the original $.datepicker._gotoToday as orig, you
invoke that first, then you add your custom behavior: calling another internal method
$.datepicker._selectDate(), which selects the active date and places it in the
<input>. Now your datepicker’s Today button selects today’s date instead of linking to it.

 Duck punching is a clever technique to implement a new version of a function,
while maintaining the ability to call the original version. The widget factory’s
_super() and _superApply() methods are implemented using a similar approach
internally.

 Although this technique is clever, is this approach to extending datepicker safe to
add to your production applications? Like undocumented extension points, there’s a
definite risk when altering undocumented methods in datepicker. jQuery UI can
change the name, behavior, or the existence of these methods at any time.

 But unlike other jQuery UI widgets, a long-term rewrite of the datepicker is in
progress, which means two things:

1 You shouldn’t have to keep these hacks in long-term. Eventually, there will be
far easier ways to alter the datepicker.

2 The API of the current datepicker isn’t changing in any way.

In many ways, datepicker is a victim of its own success. Datepicker is such a popular
widget—easily the most popular in jQuery UI—that any change is a breaking change
for many users; therefore, the team is focusing almost exclusively on the rewrite.
Because of this, however crazy it may seem, duck punching datepicker’s methods is a
reasonable solution to customize datepicker’s behavior until it’s rewritten.

 The technique of duck punching functions is a bit tricky to wrap your head
around, but it’s incredibly powerful. It lets you add to the behavior of any JavaScript
function without needing to change the original function. Internally, jQuery UI duck
punches a few of jQuery Core methods to add to their behavior.

Never change the jQuery UI source code!
If you find a bug in jQuery UI, or there’s some behavior you want to modify that isn’t
part of a public API, you may be tempted to alter the jQuery UI source code to change
the behavior to meet your needs. Resist that urge. Modifying the library’s source code
makes upgrading difficult, because as each new version of jQuery UI is released, you
have to remember every change you have made, and reapply each of those changes
to the new version—which is a manual and error-prone task.

Using undocumented extensions points and duck punching, albeit not ideal, provide
appealing alternatives to modifying the source code. These techniques let you alter
the library’s internal behavior without having to reapply your changes at every upgrade.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 9 Extending widgets with the widget factory
To help drive the duck punching concept home, let’s look at one more example.

9.3.1 Building a mobile-friendly datepicker extension

In chapter 7 you used CSS to make an inline datepicker that displayed nicely on
mobile devices. We avoided discussing a datepicker that’s tied to an <input> because
it requires nontrivial customization using the duck-punching technique we just dis-
cussed. To show the problem, consider the following
example:

<label for="date">Date:</label>
<input id="date">
<script>
 $("#date").datepicker();
</script>

Figure 9.9 shows how this example looks on an iPhone
running iOS7.

 Obviously, this behavior isn’t ideal; the user sees
only a portion of the datepicker, and the positioning of
everything is off. And unfortunately, changing a few
options isn’t going to fix this situation.

 The code to improve the mobile experience
requires a variety of changes, including duck punching
a few more of datepicker’s methods. I’ll present the
implementation first, then we’ll go over each piece
individually. The updated datepicker implementation
is shown in listing 9.4.

NOTE Some of the visual CSS is omitted to focus on the JavaScript aspect of
this example. To view the full source of this example, see http://jsfiddle.net/
tj_vantoll/RZVKS/.

<style>
 input { font-size: 1em; }
</style>

<label for="date">Date:</label>
<input id="date" placeholder="mm/dd/yyyy">

<script>
 $.datepicker._findPos = (function(orig) {
 return function(obj) {
 var position = orig.call(this, obj);
 position[0] = 0;
 return position;
 };
 })($.datepicker._findPos);
 $.datepicker._attachments = (function(orig) {

Listing 9.4 A mobile-friendly datepicker

Prevents the browser
from zooming inB

Adds a placeholder
with the date formatC

Overrides
_findPos()
for custom
positioningD Overrides _attachments()

to change the datepicker’s
button

E

Figure 9.9 Display of a vanilla
datepicker widget when its
<input> receives focus on iOS
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/RZVKS/
http://jsfiddle.net/tj_vantoll/RZVKS/
http://www.it-ebooks.info/

235Extending the datepicker widget
 return function(input, inst) {
 orig.call(this, input, inst);
 input.next("button") #6
 .text("toggle calendar")
 .button({
 icons: { primary: "ui-icon-calendar" },
 text: false #6
 }); #6

 };
 })($.datepicker._attachments);

 $("#date").datepicker({
 showOn: "button"
 });
</script>

The first problem to fix is the zoom issue. The reason the <input> and datepicker are
so large in figure 9.9 is that mobile browsers automatically zoom in to <input> ele-
ments that have a computed font-size under 16 pixels when they receive focus. The
fix for this is making sure the <input> has a font size of at least 16 pixels B.

TIP By default, 1 em is equivalent to 16 px; because em values cascade, par-
ent elements have the ability to alter this value. For more on how ems work,
see http://css-tricks.com/css-font-size/.

Even with this change, seeing a full datepicker on focus can be disorienting to users on
a small screen; because of this, you set the datepicker’s showOn option to "button" H.
This tells the datepicker to generate a <button> and to show the datepicker only when
that button is clicked—not on focus of the <input>. Because the datepicker no longer
shows on focus, you add a placeholder attribute to the <input> to tell the user the for-
mat you’re expecting C. (You can see the display of the placeholder in figure 9.10.)

 Although the button the datepicker builds from showOn: "button" can be con-
figured with the buttonImage, buttonImageOnly, and buttonText options—and is
given a ui-datepicker-trigger class name—you have no means of controlling the
creation of the <button> itself. You can’t, for instance, use a themed jQuery UI but-
ton widget.

 To work around this, you duck punch the method that datepicker uses to generate
the button: $.datepicker._attachments() E. You call the original
$.datepicker._attachments() F and convert the <button> it created to a button
widget with a calendar icon G.

 There’s one last workaround to discuss, this time for positioning. The datepicker
always attempts to align the calendar’s left edge with the left edge of its <input> and
gives you no means of configuring this position. This is almost always fine on desktop
browsers, but on mobile browsers this has a tendency to push the calendar outside
of the browser’s viewport, and having any portion of a calendar off the screen renders
it unusable.

Calls the parent
_attachments()

method F

Converts the
button to a
button widget

G

Only shows the
datepicker when its
button is clicked

H

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 Extending widgets with the widget factory
 To work around this, duck punch another of the
datepicker’s methods: $.datepicker._findPos() D
_findPos() returns an array in which the first value is
the calendar’s left coordinate and the second value is
its top coordinate. In your override, you first call the
original method and then set the left coordinate to 0.
This ensures the calendar is positioned on the left
edge of the screen and takes up the full viewport.

 The updated version of your mobile datepicker is
shown in figure 9.10.

 Although this example works, the implementa-
tion is less than ideal because you can’t use the wid-
get factory. Because you altered the datepicker’s
methods directly, this isn’t an extension of
datepicker; all datepicker instances are affected by
your changes. You can’t use a mobile datepicker
alongside a desktop one, for example.

 In many ways, looking at how hard it is to custom-
ize datepicker is the best way to show how much the
widget factory does for you.

9.4 Summary
In this chapter, you looked at extension, the most powerful feature of the widget fac-
tory. You saw that extending an existing widget is as easy as passing the widget’s con-
structor function to $.widget(). A widget can even redefine itself to change its
behavior without generating a new widget with a different name.

 Although you can extend any method in a widget extension, jQuery UI is moving
toward documenting its extensible methods as extension points. These extension
points appear on each widget’s API documentation alongside the widget’s options,

Evaluating third-party widgets
As you’ll recall from the HTML5 discussion in chapter 3, most mobile browsers now
have a native means of collecting dates from the user—without any JavaScript or con-
figuration you used in the preceding example.

Remember that if all you need is a date from a mobile user, you should attempt to
use the HTML5 input first, as it’s going to use the same picker the user is accus-
tomed to.

But also remember that the HTML5 datepicker is extremely limited; if you need to make
customizations—disabling individual days, highlighting individual days, controlling the
formatting, custom styling, and so on—you can use the approach we just discussed.

Figure 9.10 The improved
datepicker widget display on iOS—
with a new placeholder, a button
widget, and CSS to make the
datepicker more mobile friendly
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

237Summary
methods, and events. You also saw how to add extension points to the todo widget you
built in the previous chapter.

 Although sticking to the publicly documented extension points is recommended,
in unique situations you can override any method in any of the jQuery UI widgets. If
you believe an existing method in a widget should be an extension point, let the
jQuery UI team know! Creating extensible widgets is an important goal of the project,
and it’s feedback that we’d love to have. For more, see appendix E.

 Finally, you looked at how to extend the only widget in jQuery UI not using the
widget factory: datepicker. You saw that it’s messy, but you can use a technique known
as duck punching to alter the behavior of the widget.

 Now that you’ve built and extended widgets, let’s look at how to get your applica-
tion using jQuery UI ready for production.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Preparing your
 application for production
So far, we’ve discussed all the components (widgets, effects, utilities, and more)
that make up the jQuery UI library. Although these components offer a lot of func-
tionality, there are a few problems associated with having this many components.
The biggest problem is, because jQuery UI is a client-side library, the browser must
download all the JavaScript code to implement this functionality over the net-
work—which increases the amount of time it takes your application to load.

 To make things worse, because JavaScript is an interpreted language, the
browser also has to convert the text contents of these JavaScript files to executable
byte code—which leads to a longer wait for your users. Load times are important.
Studies have shown that over 25% of people abandon a website if it takes over 4 sec-
onds to load. An amazon.com spokesman famously stated that a one-second delay
on its load times represents a loss of over $1.5 billion a year!

This chapter covers
■ Managing dependencies with AMD
■ Building your files for production
■ Adding AMD support to jQuery UI extensions
238

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

239The problem with third-party CDNs
 The mobile explosion has exacerbated these issues. Users on mobile devices, espe-
cially ones on rural networks, have much higher latency and much lower download
speeds than more traditional desktop computers.

 The sheer size of jQuery UI coupled with mobile’s surge in importance has led to a
perception that jQuery UI is too big to be used on mobile. Although jQuery UI is big,
it’s also written modularly, meaning that it’s easy to include only the parts of the
library you need. And because jQuery UI has so much in it (enough to write a whole
book on!), few applications use even half of the library.

 In this chapter, we’ll look at the tools jQuery UI provides to include only the parts
of the library you need, and how to package them so your applications are optimized
for production usage.

 We’ll start by digging deeper into why the setup you’ve used to this point isn’t ideal
for production.

10.1 The problem with third-party CDNs
In chapter 1, we introduced boilerplate to use in all your examples. It contained the
following three lines to download jQuery Core and jQuery UI from jQuery’s CDN:

<link href="http://code.jquery.com/ui/1.11.0/themes/smoothness/
 jquery-ui.css" rel="stylesheet">
<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></script>

Third-party CDN downloads like this are great for testing; you can access the files you
need without having to grab the files and store them on your own servers. But unless
you’re developing the rare application that only ever runs on a blazing fast internal
network, third-party CDNs aren’t appropriate for use in production. To explain why,
we have to dig deeper into how the browser handles these three lines of code.

 The browser has to figure out where the web server that hosts these files resides on
the internet. Specifically, it has to perform a DNS lookup to find the IP address associ-
ated with the domain code.jquery.com. The browser and OS cache these lookups for a
limited time to limit redundant trips, but if the user doesn’t have the domain cached,
your application must perform the lookup before your application loads.

 Once the browser knows where the web server is located, it must establish a TCP
connection to the external server and transfer data across it. This again has a time cost
to the end user.

 The browser issues an HTTP GET request for jquery-1.11.1.js and ui/1.11.0/
jquery-ui.js from the web server located at code.jquery.com (or, as the browser sees
it, 108.161.188.209). This workflow is shown in figure 10.1.

 No need to worry if this is too much information; the point is to show how net-
work-intensive <link> and <script> tags can be.

 The time it takes for each trip to the network is known as round-trip time (RTT).
One round trip on a desktop browser with a fast internet connection takes a matter
of a few milliseconds, but on mobile, a single round trip can easily take hundreds of
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 10 Preparing your application for production
milliseconds—and sometimes up to a full second in an extreme edge case (trying to
access a server in Asia on a 3G network in rural Michigan, for example). Because of
this, reducing RTTs is the top web-performance best practice listed on both Google
and Yahoo’s performance best-practice lists. (See https://developers.google.com/
speed/articles/ and http://developer.yahoo.com/performance/rules.html, respec-
tively.) Reducing RTTs is the single most important thing you can do to improve the
performance of your web applications—especially on mobile devices.

 What does this have to do with third-party CDNs? Because the third-party CDN is on
a different domain, the browser must perform at least one round trip to establish a TCP
connection, and possibly a second to perform a DNS lookup. These are extra round trips
that aren’t necessary if you host jQuery and jQuery UI on your own domain.

 There’s one additional issue with third-party CDNs that we need to discuss: the sheer
size of the download. Because you can’t tell the external CDN which parts of jQuery UI
you need, you must download the entirety of the library. And because jQuery UI does
a lot of stuff, that can be a whole lot of code. If you only need to use an autocomplete,
you shouldn’t subject your users on slow connections to download sortable’s collision-
detection algorithms, or datepicker’s globalization logic.

 Although third-party CDNs are great for testing, they aren’t appropriate for use in
production in the majority of applications. Throughout the rest of this chapter,
you’ll rework your boilerplate project structure to perform better in a production
setting. To overcome the issues with third-party CDNs, we have two goals: reduce the
number of round trips and ensure users download only the parts of jQuery UI that
they need.

 Luckily, jQuery UI has tools to make both of these optimizations possible. We’ll
start with Download Builder.

<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></script>

DNS root servers

It’s
108.161.188.209.

code.jquery.com (108.161.188.209)

Here it is.

Time

What is
code.jquery.com?

1 I need ui/1.11.0/
jquery-ui.js.

3

I need a TCP
connection.

Ok. We’re
connected.

2

Figure 10.1 Round trips the browser must take when it parses a <script> tag from an external domain
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developers.google.com/speed/articles/
https://developers.google.com/speed/articles/
http://www.it-ebooks.info/

241Downloading jQuery UI from Download Builder
10.2 Downloading jQuery UI from Download Builder
The first tool we’ll look at is the jQuery UI Download Builder, available at http://jque-
ryui.com/download/. Download Builder lets you configure a download of jQuery UI
with only the pieces you need.

 The page is set up as a series of check boxes for each of the widgets and utilities in
jQuery UI. The check box for each feature is smart enough to know what the feature’s
dependencies are. Because of this, the recommended approach to using Download
Builder is to deselect all check boxes, and then select widgets and utilities that you
need. In figure 10.2. when the accordion widget is selected, its two dependencies—
jQuery UI Core and the widget factory—are selected as well.

 After you have the features you need selected, click the Download button to down-
load a custom build of jQuery UI. The built JavaScript file is located at jquery-
ui.min.js, and the built CSS file is located at jquery-ui.min.css in the downloaded build.

What about caching?
An oft-cited benefit of using third-party CDNs is the potential for the user to enter your
site with the external resource already cached, eliminating the need for any network
trips at all. Unfortunately cache hits in the wild are extremely rare.

Why?

Browsers cache files by their complete URL; for a user to have jQuery or jQuery UI
cached, they would need to have visited another site that downloaded jQuery or
jQuery UI using that exact same URL. Any change, however small, and the browser
sees the file as a completely different resource. And there are three big differentia-
tors in the URLs:

■ The CDN provider—Google, the jQuery Foundation, Microsoft, and others pro-
vide CDNs with jQuery and jQuery UI. To the browser, http://code.jquery.com/
jquery-1.11.1.js and http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js are different resources.

■ The version number—There are dozens of versions of both jQuery and jQuery UI
in the wild. In 2013, the most popular version was jQuery 1.4.2 (keeping in mind
that the latest version released in 2013 was 1.10.2). To the browser, http://
code.jquery.com/jquery-1.10.1.js and http://code.jquery.com/jquery-1.10.2.js
are different resources.

■ http versus https—To the browser, http://code.jquery.com/jquery-1.11.1.js and
https://code.jquery.com/jquery-1.11.1.js are different resources.

Because of these variations, the odds of a user arriving at your site with jQuery or
jQuery UI already cached are too low to justify using third-party CDNs. For a more detailed
write-up on the subject, see http://www.stevesouders.com/blog/2013/03/18/
http-archive-jquery/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jqueryui.com/download/
http://jqueryui.com/download/
http://code.jquery.com/jquery-1.11.1.js
http://code.jquery.com/jquery-1.11.1.js
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js
http://code.jquery.com/jquery-1.10.1.js
http://code.jquery.com/jquery-1.10.1.js
http://www.stevesouders.com/blog/2013/03/18/http-archive-jquery/
http://www.stevesouders.com/blog/2013/03/18/http-archive-jquery/
http://www.it-ebooks.info/

242 CHAPTER 10 Preparing your application for production
You can see the difference the custom build made by looking at the sizes of your new
files. jQuery UI 1.11 in its entirety is 232 K, and your custom build with the accordion
widget is 19 K. A savings of 213 K! Although not quite as much of an impact, your CSS
file was reduced from 27 K to 16 K. The savings are shown in table 10.1.

Although Download Builder can have huge benefits in reducing the size of jQuery UI,
it can be a bit of a pain to use. If you decide to use a new widget, you have to go back
to Download Builder, remember which dependencies you’re using, generate a new
build, and put the updated files in your project—a lot of work for us lazy web developers.

 More importantly, Download Builder doesn’t solve your biggest performance
issue: reducing RTTs. The next technique solves both the download size and the RTT
issues, but it’s going to require a bit more work to set up.

Table 10.1 The savings of configuring a custom build of the accordion widget

File File size File size after gzip

jQuery UI JS (full) 232 K 61 K

jQuery UI JS (accordion only) 19 K 6 K

jQuery UI CSS (full) 27 K 5.5 K

jQuery UI CSS (accordion only) 16 K 3.3 K

Figure 10.2 When Accordion is checked, its dependencies are as well.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

243Managing JavaScript dependencies with AMD
10.3 Managing JavaScript dependencies with AMD
Managing dependencies in JavaScript has always been a tricky subject. Because
JavaScript has no native means of declaring dependencies, web developers have histor-
ically been limited to <script> tags and global variables, which are easy to mess up. For
instance, to use the accordion widget, you must know what its dependencies are
(jQuery Core, jQuery UI Core, and the widget factory) and include each of them before
the accordion widget itself. If you get the order wrong, you get an error. Although
explicitly managing dependencies for a single script isn’t too bad, the practice can

The importance of gzip
All modern browsers support sending compressed resources over the network, with the
most common means of compression being gzip. gzip compression has a drastic impact
on the file size of HTML, CSS, and JavaScript files. Running gzip on jQuery UI 1.11 reduces
its JavaScript from 232 K to 61 K, and its CSS from 27 K to 5.5 K!

The compression algorithm running under the hoods of gzip works by replacing re-
peated strings with symbols; files with lots of repeated strings—such as CSS files—
tend to get the highest level of compression.

Because of gzip’s dramatic impact, it’s important to make sure that your web server
is using gzip on JavaScript and CSS files. You can verify this by looking for a Content-
Encoding: gzip response header on these files. The following figure shows this
header on the Network tab of Chrome’s developer tool.

Chrome’s developer tool showing that the Content-Encoding header is indeed sent on a JavaScript
resource

For a more detailed explanation of gzip, see Chrome’s gzip best practice documenta-
tion at https://developers.google.com/speed/docs/best-practices/payload#Gzip-
Compression.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
http://www.it-ebooks.info/

244 CHAPTER 10 Preparing your application for production
easily get out of control in big apps where you have hundreds of components with var-
ious codependencies.

 The Asynchronous Module Definition (AMD) format attempts to solve depen-
dency management on the web. Instead of relying on <script> tags that communi-
cate through global variables, AMD modules declaratively specify their dependencies
and return a function or object that other modules can use.

NOTE ECMAScript 6, the upcoming version of JavaScript, includes an imple-
mentation of JavaScript modules, which will finally bring dependency man-
agement to JavaScript natively. But as of the time of this writing, the syntax
hasn’t been finalized; it will be a few years before enough browsers imple-
ment modules and they can be realistically used in production applications.

Although AMD defines APIs for how modules should be specified, it doesn’t provide
an implementation of the APIs. Think of AMD like the HTML specification which
defines HTML elements and how they work, but it’s up to the browsers to implement
them.

 In the same sense, to use AMD you need a script loader that implements the AMD
APIs. Although a few AMD loaders are out there, by far the most popular one is
RequireJS. RequireJS is a free, open source, and well-documented library, making it
perfect for managing dependencies in any application.

 In the rest of this section, we’ll look at how to use RequireJS to load jQuery UI in
your applications, how to switch your own application files to use AMD, and how to use
RequireJS to optimize your files for production.

Let’s start by looking at how to change your boilerplate to use RequireJS.

Do I have to use AMD?
Although AMD provides many benefits to managing dependencies and building your
resources, it can be difficult to convince your boss or organization to switch to using
it—especially in existing code bases.

But don’t worry; you by no means have to use AMD. jQuery and jQuery UI both add all
their modules to the global $ variable; therefore, you can reference these global vari-
ables as you always have.

Remember that your main performance goals were to reduce RTTs and the download
size. If you can’t use AMD, you can use some other process to concatenate and min-
ify your scripts, and a variety of alternative solutions for this are out there. Ruby on
Rails has the Asset Pipeline and Rakefiles; Java has Ant tasks; Node.js has Grunt
and Gulp tasks.

In general, it’s best to search for the best tool that matches your server-side
environment.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

245Managing JavaScript dependencies with AMD
10.3.1 Setting up RequireJS for development

Before introducing RequireJS, let’s give an example showing how you’ve been doing
things to this point. You’ll start with two files: an index.html and an app.js:

 index.html
 js
 app.js

Your app’s index.html includes jQuery, jQuery UI, and your application’s functionality
from jQuery’s CDN in <script> tags:

<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></script>
<script src="js/app.js"></script>

Your app.js performs whatever logic you need your application to perform. In this
case, you’ll use it to create a new <input>, convert it to a spinner widget, and append
it to the <body>:

$("<input>")
 .appendTo("body")
 .spinner({
 min: 0,
 max: 10
 });

Although this example is simple, it shows the disadvantages of using <script> tags
and global variables. First, the three <script> tags must be in this exact order for this
application to work. Second, this application downloads all of jQuery UI, and must
perform numerous round trips to retrieve the three files it needs. So how are you
going to improve this?

 To get the improved example started, you’re going to need to download the latest
versions of the following three things:

■ require.js from http://requirejs.org/docs/download.html
■ jQuery Core from http://jquery.com/download/
■ jQuery UI from https://github.com/jquery/jquery-ui/releases

You’ll want to download the unminified, development versions of these libraries
(jquery.js and require.js, not jquery.min.js and require.min.js). The development ver-
sions make your app easier to debug if things go wrong, and you’ll take care of minify-
ing the files for production later. For jQuery UI, you can get the development files at
https://github.com/jquery/jquery-ui/releases. Download the latest zip file and grab
the JavaScript files, which as of version 1.11 are in the ui directory.

 After downloading these files, you’ll want to create the following directory struc-
ture on your local development machine:

 index.html
 js
 app.js
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 10 Preparing your application for production
 jquery-ui
 accordion.js
 autocomplete.js
 button.js

 spinner.js
 ...
 jquery.js
 require.js

With this setup, you place all your JavaScript assets in a js directory, and all the jQuery
UI files in a jquery-ui subdirectory. For convenience, you include all the jQuery UI files
even though you’re not using every one. As you’ll see, RequireJS takes care of bundling
up only what you need. RequireJS is also flexible enough to handle any directory struc-
ture you’d like to use. You’ll stick to this structure in your example for simplicity.

 Now that you have your files set up, you have to use them.

10.3.2 Loading jQuery UI components with RequireJS

To start using RequireJS, change the three <script> tags in your index.html file to
this:

<script src="js/require.js" data-main="js/app"></script>

This is a normal <script> tag that synchronously loads js/require.js. When require.js
loads, it automatically performs an AJAX call to asynchronously load the file specified
in its data-main attribute—js/app.js in this case—and executes it. Even though app.js
loads and executes, you’re still not loading jQuery or jQuery UI; you get an error that
$ isn’t defined.

 To load your dependencies add an AMD-defined require() call in app.js:

require(["jquery", "jquery-ui/spinner"], function($, spinner) {
 $("<input>")
 .appendTo("body")
 .spinner({
 min: 0,
 max: 10
 });
});

The only thing different from before is the first line, and it can be tricky to under-
stand at first. The require() function takes two parameters: an array of dependencies
and a callback function. Our example’s two dependencies are jQuery Core and the
jQuery UI spinner widget. RequireJS resolves these dependency strings—"jquery"

and "jquery-ui/spinner"—as the names of files in the project’s directory structure.
When require() runs, it asynchronously loads jquery.js and jquery-ui/spinner.js via
AJAX requests. When these files both load, the callback function is invoked with the
dependent modules as arguments.

 RequireJS also does two important things on top of this. First, although it loads a
module’s dependencies in parallel (that is, multiple HTTP requests are sent out
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

247Managing JavaScript dependencies with AMD
simultaneously), it ensures that all dependencies are loaded before the callback func-
tion is invoked. In the callback function, you can be absolutely sure that all declared
dependencies are available.

 Second, RequireJS resolves deep dependencies of modules. The jQuery UI spinner
widget depends on a few other jQuery UI files, such as the widget factory and the but-
ton widget. Having the deep file dependencies be transparent—that is, you don’t have
to know the dependencies of dependencies—is incredibly useful. You can use mod-
ules without needing their dependencies. It’s the same functionality you got from the
jQuery UI Download Builder, without going through the manual process of checking
check boxes.

 Under the hood RequireJS still loads these deep dependencies asynchronously.
Figure 10.3 shows the network activity from running this example.

 Figure 10.3 showcases another important feature of RequireJS: it’s smart enough to
load dependencies only once. Every file in jQuery UI depends on jQuery Core, yet you
can see that jquery.js was loaded only once. In fact, because the spinner widget
depends on jQuery Core, you don’t have to list the jQuery dependency in your exam-
ple. The following removes the "jquery" dependency from your require() call:

require(["jquery-ui/spinner"], function(spinner) {
 $("<input>")
 .appendTo("body")
 .spinner({
 min: 0,
 max: 10
 });
});

When loaded with AMD, jQuery Core still makes the global $ variable available for
backward compatibility. In the same manner, all the jQuery UI modules append their
APIs to the global $ variable. The spinner widget’s constructor function is, for exam-
ple, at $.ui.spinner.

Figure 10.3 The Network tab of
the Chrome developer tool showing
the JavaScript files loaded by your
AMD example
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 10 Preparing your application for production
All AMD modules have the ability to return a value, and the jQuery UI widgets all
return their constructor functions. You can optionally use the widget’s constructor
function instead of its plugin in the callback function:

require(["jquery-ui/spinner"], function(spinner) {
 spinner({ min: 0, max: 10 }, "<input>")
 .widget()
 .appendTo("body");
});

NOTE All widgets have a widget() method that returns a jQuery object. For
most widgets—such as accordion, menu, and tabs—the returned object con-
tains the element the widget was initialized on. Other widgets return an ele-
ment that they create internally; for instance, the autocomplete widget’s
widget() method returns the element it displays suggestions in. The spin-
ner widget’s widget() method returns a <div> it wraps around the <input> ele-
ment it is initialized on. You can see what the widget() method returns for each
widget on its API page.. The spinner widget’s widget() method is documented
at http://api.jqueryui.com/spinner/#method-widget.

Regardless of how you choose to create widgets, the big advantage of AMD is that
you’re loading only the parts of jQuery UI that you need. If your application needs
only a spinner, you load only what you need to make a spinner. If your application sud-
denly needs an autocomplete, you can add "jquery-ui/autocomplete" to your
require() call and not worry about what autocomplete depends on.

 Although your example has solved your download size issues, there’s still a big
problem: you perform more round trips than before—and we discussed how that’s
the number-one thing you don’t want to do!

 RequireJS has a trick up its sleeve to help with that. And it has a cool name too: the
optimizer.

Datepicker exception
Yet again the pesky datepicker widget is the exception to the rule. Because datepicker
isn’t written with the widget factory, it doesn’t return a constructor function when
required with RequireJS. You can still load datepicker as an AMD dependency, but
you can’t use the returned value as a constructor function; therefore, this doesn’t work:

require(["jquery-ui/datepicker"], function(datepicker) {
 datepicker({}, "<input>");
});

For better or worse, you need to stick to initiating datepicker instances with its plugin:

require(["jquery", "jquery-ui/datepicker"], function($) {
 $("<input>")
 .datepicker()
 .appendTo("body");
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

249Building your application’s assets with the optimizer
10.4 Building your application’s assets with the optimizer
Although the AMD spec defines how to define and require resources, it doesn’t define
how to optimize those files for use in web browsers. In addition to its implementation
of AMD, RequireJS has a separate optimization tool that does this, known as the optimizer.

 The optimizer is written in JavaScript and runs on top of Node.js. To run the exam-
ples in this section you need to have Node.js installed on your machine, although you
do not need to learn anything about it. Also, installing Node.js on Windows and OS X
is now as easy as downloading and running an installer. If you don’t have Node.js
installed on your machine, grab the installer from http://nodejs.org/ and run it.

TIP If you’re a Java developer, you might want to check out an alternative
version of the optimizer written in Java. For more details, see https://
github.com/jrburke/r.js.

You can verify the install worked by opening a new command-line session (Command
Prompt on Windows, Terminal on OS X) and typing node. If you see something other
than “command not found,” it worked.

 In addition to Node.js itself, the installer installs npm, or Node Package Manager:
a package management system for Node.js modules. Because the RequireJS optimizer
is implemented as a Node.js module, you’ll use npm to install it.

 To install the optimizer, run the following on your command-line session of
choice:

> npm install –g requirejs

NOTE In this book, command-line code is displayed in bold text to differenti-
ate it from browser code.

The –g flag tells npm to install the module globally—in other words, not specific to an
individual project. You can verify that the installation worked by running r.js (r.js.cmd
on Windows). You should see the following output:

> r.js
See https://github.com/jrburke/r.js for usage.

That’s it for your installation; now you’re ready to optimize your files.

10.4.1 Optimizing JavaScript assets

Before doing so, we need to set a few configuration variables to tell the optimizer how
to optimize your code. You can specify the configuration as command-line arguments
or a JavaScript file to use as a build profile. I find the separate file to be more readable
and maintainable, so you’ll use that for your example. If you’re interested in learning
about the command-line option, the optimizer’s documentation (http://
requirejs.org/docs/optimization.html) has a few examples.

 You’ll name your configuration file build.js and place it in the same js directory
you’ve placed the rest of your JavaScript assets in:
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html
https://github.com/jrburke/r.js
https://github.com/jrburke/r.js
http://www.it-ebooks.info/

250 CHAPTER 10 Preparing your application for production
 index.html
 js
 app.js
 build.js
 jquery-ui
 accordion.js
 autocomplete.js
 button.js
 core.js
 datepicker.js
 ...
 jquery.js
 require.js

There is an overwhelming number of options that you can provide the optimizer (a
full list is available at http://requirejs.org/docs/optimization.html#options), but the
vast majority of applications need only a few, which we’ll walk through. For your exam-
ple, you need only the following build.js:

({
 name: "app",
 out: "app.built.js"
})

You set two options: name and out. name is the filename of the JavaScript module to
optimize, and out controls the filename of the output file generated by the optimizer.

 Now that you have your installations done and your configuration in place, you
can run the build. To do so, run this command in the root directory of your project
(that is, the same directory containing your project’s index.html). Remember that on
Windows, you’ll need to use r.js.cmd instead of r.js:

> $ r.js -o js/build.js

You should see the following output:

Tracing dependencies for: app
Uglifying file: js/app.built.js

js/app.built.js

js/jquery.js
js/jquery-ui/core.js
js/jquery-ui/widget.js
js/jquery-ui/button.js
js/jquery-ui/spinner.js
js/app.js

The optimizer starts at the file indicated by the name option (app.js), collects all its
dependencies, concatenates them in a single file (named app.built.js because of the
out option), and minifies that file. You now have a single js/app.built.js file that con-
tains everything your application needs. Back in your app’s index.html, remember
that you currently use this <script> tag:

<script src="js/require.js" data-main="js/app"></script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

251Building your application’s assets with the optimizer
To switch to the built file for production, all you need to do is add ".built" to the
data-main attribute:

<script src="js/require.js" data-main="js/app.built"></script>

With this, you’ve solved both your RTT and download size issues. This code performs
only two round trips—one for require.js and one for app.built.js. Because app.built.js
contains only the modules you’re using, the user downloads only what is needed.

TIP If performance is ultracritical and you want to get the RTT count down
to one, the author of RequireJS provides an alternative AMD loader called
almond. We’ll look at how to use almond in the next chapter.

This example shows the benefits of managing dependencies with AMD and RequireJS.
Need to add a new dependency? Add it to your require() statement, rerun your
build, and it’s there. Need to remove a dependency? Remove it from require(),
rerun your build, and it’s gone. There’s no need to mess with configuration files or
configure a new build on Download Builder.

 We’ve now covered how to optimize your JavaScript assets for production, but we
haven’t said a thing about CSS files. The reason is that although there are some third-
party plugins, neither RequireJS nor the AMD specification handles CSS dependencies.
Although RequireJS doesn’t manage CSS dependencies, its optimizer does let you con-
catenate and minify CSS files using the same build you used for JS files. We’ll look at
how to use that next.

10.4.2 Optimizing CSS dependencies

The build you created in the previous section works great for smaller apps, but more
complex apps have to build multiple JS files, CSS files, and more. No worries, though;
RequireJS has configuration options to meet these nontrivial requirements.

 Let’s return to your application’s directory structure to show the location of CSS
files:

 css
 app.css
 jquery-ui
 accordion.css
 images
 ...
 ...
 index.html
 js
 app.js
 build.js
 jquery-ui
 accordion.js
 ...
 jquery.js
 require.js
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 10 Preparing your application for production
The same as your JavaScript files, you’re free to place your files in whatever directory struc-
ture you like (and RequireJS will support that structure), but for the sake of this example,
you’re going to use a CSS directory with the jQuery UI .css files in a jquery-ui directory.

 For your application’s code, you use a single app.css file in the same CSS directory.
In it, you import your app’s CSS dependencies and add any styling you need for your
application. For this example, you’ll load only your jQuery UI dependencies. To con-
tinue the same spinner example, place the following in your app.css:

@import "jquery-ui/core.css";
@import "jquery-ui/theme.css";
@import "jquery-ui/button.css";
@import "jquery-ui/spinner.css";

The only two required jQuery UI .css files are core.css and theme.css—which contain
the jQuery UI CSS framework class names and the base theming rules, respectively.
From there, all widgets in jQuery UI have a dedicated CSS file that’s needed only if you
use that widget. Because—unlike AMD—you have no dependency management in
CSS, you need to explicitly list your dependencies.

 Normally, including @import statements in CSS files is a bad practice. The browser
performs a separate HTTP request to load each of these files—the very round trips
we’ve been attempting to avoid. But don’t worry; the same RequireJS optimizer you’ve
been using to optimize your JS files can inline these @import statements as well.

 Now that you have your CSS in place, let’s return to your build. Here’s the configu-
ration you’ve been using:

({
 name: "app",
 out: "app.built.js"
})

This tells the optimizer to build the module in file app.js and place the output in
app.built.js. To expand this to handle multiple files, including CSS files, you have to
use additional build options. The following code is the updated build.js:

({
 appDir: "../",
 baseUrl: "js",
 dir: "../built",
 optimizeCss: "standard",
 modules: [
 { name: "app" }
]
})

If you run this build from the command line again (r.js -o js/build.js), you’ll see
that it takes a slightly different approach than your previous build. When you specify a
dir option, the optimizer clones the app’s entire directory structure in a new directory.
The name of the new directory is determined by the dir option—in this case, built D.

The root
directory of

the application B

The base URL of
JavaScript modules

C

The directory for
the built assets

D

Uses the standard CSS
compression algorithmE

An array of
JavaScript modules

to optimize F
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

253Building your application’s assets with the optimizer
 From there, the optimizer looks for any JavaScript or CSS files in the application—
where the root of the application is determined by the appDir option B—minifies
them, and inlines any @import statements in CSS files. The type of compression the
optimizer does on CSS files is determined by the optimizeCss option. You use "stan-
dard" compression E, which removes all lines and unnecessary whitespace. If you
want to preserve new lines or whitespace, you can set optimizeCSS to "keepLines" or
"keepWhitespace", respectively.

 The optimizer does the same task you saw in the previous section: optimizes AMD
modules. By passing a modules option F, you can specify multiple files to optimize if
your application requires it. The directory for the JavaScript modules is determined
by the baseUrl C option.

 The cool thing about this approach is that it doesn’t mix your source files with
your built files. In the previous example, you had an app.built.js file that sat alongside
app.js. Here, your source directories aren’t touched; instead, you have an app.js in
your main application’s directory and another in the built directory, which gives the
following structure:

 built
 css
 app.css
 jquery-ui
 ...
 js
 app.js
 build.js
 jquery-ui
 ...
 jquery.js
 require.js
 css
 app.css
 jquery-ui
 ...
 index.html
 js
 app.js
 build.js
 jquery-ui
 ...
 jquery.js
 require.js

If you look at your app.css in the built directory, you see that instead of being four
@import statements, it’s now a single line of minified code with the four jQuery UI CSS
files embedded.

 Use the following two lines to import resources in development

<link href="css/app.css" rel="stylesheet">
<script src="js/require.js" data-main="js/app"></script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 10 Preparing your application for production
and the following two for production:

<link href="built/css/app.css" rel="stylesheet">
<script src="built/js/require.js" data-main="built/js/app"></script>

The only difference is the updated references to the built directory, because that’s
where your built assets are. In development, these two lines generate 10 HTTP requests
for four CSS files and six JavaScript files. In production, these two lines generate 3 HTTP
requests: one for app.css, one for require.js, and one for app.js. This is a major perfor-
mance improvement, and this is for the simplest of examples. In large applications, a
RequireJS build can easily reduce hundreds of requests down to a small handful.

 The examples in this chapter were purposely simple to show how to use jQuery UI
in an AMD setting. Because the topic of managing large applications and complex
build configuration is so vast, a more comprehensive discussion is outside the scope of
this book. If you’re looking for more detailed material on the subject, JavaScript Appli-
cation Design: A Build First Approach by Nicolas Bevacqua, to be published by Manning
in 2015, is an excellent resource.

 Although we won’t dig deeper into AMD-based builds, we need to discuss one last
thing, and that’s how you can add AMD support to your own jQuery UI extensions.
How does jQuery UI offer AMD support, and still work for users not using AMD? Let’s
explore that next.

10.5 Supporting AMD in custom widgets
If you’re designing a module to be externally used—whether it’s distributed online or
distributed throughout your company—it’s important to support common develop-
ment environments. In this case, that means supporting developers who want to use
AMD, and developers who don’t.

 Let’s return to your todo widget you built in chapter 8. Let’s suppose you want to use
your todo widget in your AMD example from the previous section. You add its todo.js
file to your js directory—right alongside jquery.js and the jquery-ui directory:

 index.html
 js
 app.js
 build.js
 jquery-ui
 accordion.js
 ...
 jquery.js
 require.js
 todo.js

You change your app.js to use todo.js with the following:

require(["todo"], function(todo) {
 todo({}, "OneTwoThree")
 .element
 .appendTo("body");
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

255Supporting AMD in custom widgets
You expect this code to create a new with three items, convert it to a todo widget,
and append it to the <body>. Instead, this example fails with a JavaScript error that $
isn’t defined.

 The problem is you never declared dependencies for your todo widget. RequireJS
doesn’t know that the widget depends on jQuery Core and the widget factory, so it
never loads them. You can change that easily enough. The following code shows the
todo widget updated to support AMD:

define(["jquery", "jquery-ui/widget"], function($, widget) {
 return widget("tj.todo", {
 options: { ... },
 _create: function(...) { },
 ...
 };
});

Notice you’re using define() instead of require() on the first line of your module.
require()lets you load dependencies; define() lets you load dependencies, and then
return an API that can be used by other modules. You should use define()whenever
you want to define a new module.

 The parameters of define() are the same as require()—an array of dependen-
cies as strings and a callback function B. The todo widget depends on jQuery Core
and the widget factory, so you pass them as the first argument. In the callback func-
tion—to be consistent with the jQuery UI widgets—you return the result of $.wid-
get(), which is the widget’s constructor function C. That same constructor function
was what your previous example was using:

require(["todo"], function(todo) {
 todo({}, "OneTwoThree")
 .element
 .appendTo("body");
});

This code now works as expected. RequireJS loads jQuery, the widget factory, and the
todo widget. Then, the code to create a new todo widget with the widget’s constructor
function executes successfully.

 There’s only one problem. Suppose the developers of another project don’t use
AMD and want to use the todo widget. They use code like this:

<script src="js/jquery.js"></script>
<script src="js/jquery-ui/widget.js"></script>
<script src="js/todo.js"></script>
<script>
 $("OneTwoThree")
 .todo()
 .appendTo("body");
</script>

This code worked fine before you introduced AMD support, but now it doesn’t. Because
this new example doesn’t use AMD or RequireJS—which implements the necessary AMD

Defines a
module with its
dependenciesB

Returns the
module’s APIsC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 10 Preparing your application for production
functions—this code throws an error because define isn’t defined. So when you added
support for AMD, you also removed support for developers not using AMD. How do the
jQuery UI modules support both?

 What jQuery UI does, and what is the established solution to this problem, is a
technique known as a UMD wrapper. UMD (Universal Module Definition) refers to a
pattern for writing modules that work in multiple environments. jQuery UI uses a
UMD wrapper in all its modules. If you look at the source code for the spinner widget
you’ll see the following:

(function(factory) {
 if (typeof define === "function" && define.amd) {
 define([
 "jquery",
 "./core",
 "./widget",
 "./button"
], factory);
 } else {
 factory(jQuery);
 }
}(function($) {
 return $.widget("ui.spinner", {
 ...
 });
}));

This code is a bit intimidating at first glance, so let’s break it down piece by piece. I
find it easiest to explain this in terms of the order in which these lines of code exe-
cute. Of course, the first line that executes is line one B, which defines a function
that immediately invokes itself. The function at B passes itself a reference to the func-
tion at C and sets it as a factory parameter. You may need to reread that sentence a
few times or play with the code here before that sinks in. Don’t worry if you continue
to be confused. Just know that in the function at B, the following is now true:

factory = function($) {
 return $.widget("ui.spinner", {
 ...
 });
}

factory is a variable that references a function that creates the spinner widget; it
hasn’t been invoked yet. Before invoking factory, you need to know whether the user
is using AMD.

 You check for AMD support by looking for a define() function available with an
amd property D. If this is the case, you call define() E with the spinner widget’s
dependencies—jQuery Core, jQuery UI Core, the widget factory, the button widget—
and a reference to the factory. define() resolves the dependencies and invokes fac-
tory with its dependencies. The factory invocation causes $.widget() to run G,
which defines the spinner widget as an AMD module.

First to execute.B

Third to execute.
Checks whether
AMD is being used.D

Registers as
AMD module.E

Only adds to
the global

jQuery variable. F

Second to execute:
the factory.

C

Creates the
spinner widget.G
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

257Summary
 Backing up to D, if the user isn’t using AMD, you invoke the factory with the
jQuery global variable F. Note that this route doesn’t resolve any dependencies. It
requires all of the spinner widget’s dependencies to be available before this code runs.

 Although admittedly a bit convoluted, the UMD wrapper lets you support AMD
users and non-AMD users without having to create separate files.

TIP Alternative versions of UMD also let you support use in Node.js environ-
ments. Because jQuery UI is exclusively browser-based code, it doesn’t add
the extra code to do this. If you’re writing a module that would be useful in
the browser as well as the server, check out the alternative UMD versions at
https://github.com/umdjs/umd.

Let’s take what we’ve learned back to the todo widget. To support both AMD and non-
AMD users, all you need to do is add the same UMD wrapper, passing the appropriate
dependencies—jQuery Core and the widget factory:

(function(factory) {
 if (typeof define === "function" && define.amd) {
 define([
 "jquery",
 "jquery-ui/widget"
], factory);
 } else {
 factory(jQuery);
 }
}(function($) {
 return $.widget("tj.todo", { ... });
}));

Users can now use the todo widget regardless of whether or not they use AMD.
Although the UMD wrapper is a bit verbose and tricky to understand, the ability to
support multiple usage scenarios is valuable in any code you intend to distribute—
whether it’s on the web or in your company.

10.6 Summary
Performance is important to any web application. In the context of jQuery and jQuery
UI, the two most important optimizations you can make to your application are reduc-
ing RTTs by concatenating scripts and reducing download size by configuring a build
that includes only what you need.

 Download Builder is a web-based tool that lets you configure a build of jQuery UI
with only the pieces you need. Unfortunately, however, using Download Builder is a
manual process. If you need another part of jQuery UI, you have to go back and create
a new build.

 AMD is a more complex, but more elegant solution to the performance problems.
Using an AMD loader like RequireJS, you can specify your dependencies in your
JavaScript files, and you can load only the code you need. When you’re ready for pro-
duction, you can run the RequireJS optimizer to minify and concatenate your files.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 10 Preparing your application for production
 Even if you can’t do every optimization laid out in this chapter, every little bit
helps. If you can’t convince your boss, team, or organization to make the switch to
AMD, look into ways you can minify and concatenate scripts in your own server-side
environment. Focus on reducing RTTs and HTTP requests, as that has the biggest per-
formance benefit, especially in the context of mobile devices.

 If you’re building distributable code, support for both AMD and non-AMD usage
makes it available to a wider audience of developers. Using a UMD wrapper is the pre-
ferred way of adding this support.

 You’ve now made it through the core jQuery UI topics. You know how to wield wid-
gets, customize themes, use effects, and now—how to get your code ready for produc-
tion. It’s time to put all this knowledge to use on a larger scale.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Building a
 flight-search application
Up to this point you’ve learned about jQuery UI and built a number of real-world
applicable examples, but you have yet to build something at real-world scale—an
application that you may actually need to build and deploy. And building a full-
scale web application is no simple task. Depending on the application, it may
require jQuery, jQuery UI, other utility libraries, as well as server-side components.

 To learn how these pieces come together, you’ll build a small flight-search appli-
cation, similar to one on Orbitz, Travelocity, or any airline’s site. In building this
form, you’ll get an idea of how these live sites work. Along the way, we’ll look at
concepts we haven’t yet explored, such as client-side form validation, interacting
with a RESTful API, and creating a responsive application. Figure 11.1 shows the fin-
ished version of the application that you’ll build.

This chapter covers
■ Building mobile-friendly forms
■ Connecting to a RESTful API
■ Creating responsive forms
■ Bundling a full application for production
259

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 11 Building a flight-search application
NOTE A functional version of the application is available at http://jsfiddle.net/
tj_vantoll/ujwWL/. Please note that, because jsFiddle examples can’t use mul-
tiple files, there are small differences between the code shown on jsFiddle and
the code shown in the book. For example, the jsFiddle code doesn’t use AMD.

Let’s get started.

11.1 Structuring your application
Before you can start coding, you need to get your directory structure in place. For
consistency, you’ll use a base structure that’s identical to the examples you used in
chapter 10:

 css
 app.css
 jquery-ui
 accordion.css
 ...
 index.html
 js
 app.js
 build.js
 jquery-ui
 accordion.js
 ...
 jquery.js
 require.js

Figure 11.1 A flight-tracking application built using tools you’ve learned about throughout this book
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/ujwWL/
http://jsfiddle.net/tj_vantoll/ujwWL/
http://www.it-ebooks.info/

261Collecting user input
As a reminder, app.css contains your application’s CSS, app.js contains your applica-
tion’s JS, and build.js contains your application’s RequireJS build configuration. You’ll
add more files to the project throughout the chapter, but for each we’ll discuss what
the file is and where it goes in this structure.

 Your app’s index.html file will start with the following boilerplate:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Find a Flight!</title>
 <link href="css/app.css" rel="stylesheet">
</head>
<body>

<form>
 <fieldset>
 <legend>Find a Flight</legend>
 <!-- The form fields -->
 </fieldset>
</form>

<div id="flights-container"></div>

<script src="js/require.js" data-main="js/app"></script>

</body>
</html>

NOTE The main two components of this page are <form> to collect search
input from the user and <div> to show the results. We’ll look at what to put in
these two containers throughout this chapter.

At a high level, this application does three things: collects data from the user, contacts
a third-party API to find flights that match the provided data, and displays the matches
on the screen. You’ll tackle these three sequentially in the next three sections, starting
with how to gather data from the user.

11.2 Collecting user input
Before talking about what data you need, we have to discuss the API you’ll use to find
flights. The means of contacting a third-party API is always API-specific, and you have to
start with the API provider’s documentation. For your example, the folks at Mashape
(https://www.mashape.com/) and FlightLookup (http://www.flightlookup.com/)
have provided us access to their flight-lookup API. If you look at the documentation for
their API at https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-
method#!documentation you’ll see the following code at the top:

curl --include --request GET 'https://flightlookup-timetable-
rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/?

&Hops=NONSTOP&Count=10&SortOrder=0' \
 --header "X-Mashape-Authorization: ********************"

Shows the list of
matched flights in
this container
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
http://www.it-ebooks.info/

262 CHAPTER 11 Building a flight-search application
This may look like a mess, but it’s fairly straightforward. It uses the curl command-line
utility to perform an HTTP GET request to the given URL. It includes a custom
X-Mashape-Authorization HTTP header that contains the API key Mashape needs to
know that you have permission to use the API (which is obfuscated with asterisks
here). Because you won’t be using curl, don’t worry about the specific syntax; instead,
look at how the data you collect fits into the request you need to send. You need to
format a URL as follows: https://…mashape.com/TimeTable/from/to/date/

 Then, add a query string that contains the number of hops, a count, and a sort
order. Your task is to collect the data you need to build this URL—which means you
have to ask users for the following six pieces of information:

■ From—Your departure airport
■ To—Your arrival or destination airport
■ Date—When do you plan to leave?
■ Number of results—How many flights do you want to see at a time?
■ Hops—Do you want a nonstop flight, or are you OK with making connections?
■ Order By—How do you want the returned flights sorted?

The last two are going to be the easiest, so you’ll code them first, using the following
HTML for the Hops and Order By questions:

<div>
 <label>Hops:</label>
 <div id="hops">
 <label for="hops-any">Any</label>
 <input type="radio" name="hops" id="hops-any" value="" checked>
 <label for="hops-nonstop">Nonstop Only</label>
 <input type="radio" name="hops" id="hops-nonstop" value="NONSTOP">
 </div>
</div>
<div>
 <label for="order-by">Order By:</label>
 <select id="order-by">
 <option value="0">Arrival Time</option>
 <option value="1">Departure Time</option>
 <option value="2">Duration</option>
 </select>
</div>

Next, you turn these elements into jQuery UI widgets to make them themeable. The
following code shows the initial version of your app.js. It converts the Hops and Order
By form elements into buttonset and selectmenu widgets:

require(["jquery", jquery-ui/button", "jquery-ui/selectmenu"],
 function($, button, selectmenu) {
 var hops = $("#hops").buttonset(),
 orderBy = $("#order-by").selectmenu();
 }
);
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

263Collecting user input
You store off references to the two elements because you’ll use them later when you
connect to the API. For these widgets the code is straightforward because the default
behavior does everything you need. The next three fields—To, From, and Date—
require a bit more work; we’ll devote a section to implementing each.

11.2.1 Building an airport code autocomplete

Per your FlightLookup API, the To and From fields need to be three-letter Interna-
tional Air Transport Association (IATA) airport codes. The IATA code is a unique iden-
tifier assigned to each airport around the world. Usually these codes are related to
their city’s name (ATL is the IATA code for Atlanta’s airport), but not always (IAD is the
IATA code for Dulles airport near Washington, DC). As a result, even seasoned travel-
ers may not know the appropriate code to use, especially for new destinations.

 Because you don’t want to rely on users knowing the appropriate codes, you’ll use
an autocomplete that lets the user type the airport’s code (ATL) or the destination’s
name (Atlanta). Recall from chapter 3 that the autocomplete widget has a built-in
mechanism to associate the labels the user needs to type with an underlying code.
This mechanism is perfectly suited for this airport-code use case.

 In chapter 3 we talked about options to connect an autocomplete to a server-side
back end. In this chapter we’ll mix it up a bit and show a way of driving an autocom-
plete exclusively from the client.

NOTE I retrieved the airport data from http://www.airportcodes.org/ and
formatted it in a JSON file for use in this example.

You’ll place a JSON file containing your data in your project’s directory structure as
follows

 css
 ...
 index.html
 js
 ...
 json
 airports.json

and the airports.json file is formatted like this:

{
 "airports": [
 { "label": "Aalborg, Denmark (AAL)", "value": "AAL" },
 { "label": "Aalesund, Norway (AES)", "value": "AES" },
 ...
]
}

The JSON file contains a single airports property that contains an array of all airports
in the world. Each object in the array contains two properties: a label (the text the user
sees in the autocomplete menu) and a value (the text that ends up in the <input> after
the user selects an option). Notice that in this case, you include the value in each

~3500 other
airport entries
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 11 Building a flight-search application
option’s label. Users who know the airport codes can type them, and users who don’t
know the codes can type city names. This behavior is shown in figure 11.2.

 Now that you have that data in place, you have to add the two airport fields to your
form. You do that by adding the following HTML to your index.html

<div>
 <label for="from-airport">From:</label>
 <input id="from-airport" autocorrect="off">
</div>
<div>
 <label for="to-airport">To:</label>
 <input id="to-airport" autocorrect="off">
</div>

and the following to your app.js:

require([..., "jquery-ui/autocomplete"], function(..., autocomplete) {
 var fromAirport = $("#from-airport"),
 toAirport = $("#to-airport");

 $.getJSON("json/airports.json").then(function(data) {
 fromAirport.add(toAirport).autocomplete({
 source: data.airports,
 minLength: 2
 });
 });
});

TIP You first saw this in chapter 3, but as a reminder, setting the autocor-
rect attribute to "off" prevents the browser/OS—most notably iOS and
Android—from automatically correcting the user’s input. This attribute is a
good idea to add to any autocomplete field—as well as username fields, pass-
word fields, and email address fields.

You load the JSON file using the jQuery Core getJSON() method B. When it finishes,
you convert the To and From <input> elements to autocomplete widgets C using the
airport data from your JSON file D(recall that the JSON file was an object with a single
airports property). Finally, because there are over 3000 airports, and you filter on
the client, you set the minLength to 2 E. This forces the user to type two characters

Figure 11.2 Users can type either the
city name or the airport IATA code to
match autocomplete options.

Loads
the JSON

B

Converts both
<input> elements to
autocomplete widgetsC

Ties the
autocompletes
to the airport
dataD

Shows results after two
characters are typed E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

265Collecting user input
before seeing the results, which limits the number of potential matches to hundreds
rather than thousands.

NOTE Older browsers such as Internet Explorer <= 8 and Android < 3 have con-
siderably slower JavaScript speeds than modern browsers. If you support these
browsers, consider setting the minLength to 3 to avoid a sluggish experience.

With that you have functioning autocompletes for both your To and From fields. But
there’s one final question we have to ask before moving on: is building an autocom-
plete only on the client side a good idea?

 Like most software development questions, the answer depends on the situation.
In this case, the big advantage with being client-side only is that you don’t have to set
up a server to host and filter this data. This gives you more flexibility in how this appli-
cation is used; it makes it possible for me to host this example on jsFiddle without set-
ting up an external server. Because of the ease of use and flexibility of storing all data
on the client, it’s a realistic option for small- to medium-sized datasets, but is a bit too
heavy for large datasets.

 Your airport JSON file is 52 K after gzip compression. The file is loaded asynchro-
nously, but that can still be a bit heavy for mobile devices; although this example could
be more efficiently written to perform the filtering on a server-side back end, the flex-
ibility of running only on the client makes it ideal for this example—as the current
performance isn’t bad. For a discussion of how you can connect an autocomplete wid-
get to a server-side back end, refer to chapter 3.

11.2.2 Polyfilling HTML5 inputs with jQuery UI

The last fields to add to your form are a datepicker to pick a destination date and a
number picker to choose the number of results to use. You may recall from chapter 3
that you have a choice here. Although the jQuery UI widgets offer functionality and
extensibility, the HTML5 native controls—in this case, <input type="date"> and

Autocompletes and scrolling long lists of options
By default, the autocomplete widget doesn’t display a scroll bar when displaying a
long list of options, but it’s easy to add one. Your example uses the following CSS to
accomplish this:

.ui-autocomplete {
 max-height: 200px;
 overflow-x: hidden;
 overflow-y: auto;
}

Here, an overflow-y of auto tells the browser to add a vertical scroll whenever the
height of the menu exceeds its max-height—which you set at 200 pixels. Setting
overflow-y to hidden prevents the browser from creating a horizontal scroll bar.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 11 Building a flight-search application
<input type="number">—are preferable for simple usage scenarios—mostly because
mobile devices can provide an optimized keyboard for data entry. For your example, a
simple usage scenario is exactly what you have. You don’t need your date or number
pickers to do anything special; you just need a date and a number.

 But keep in mind that only some browsers support the new HTML5 controls, and
you want a solution that works everywhere. To accomplish this, you use a technique
known as polyfilling, or using native support where it’s available, and falling back to a
JavaScript-based solution where it’s not. To start implementing this, let’s add the fol-
lowing HTML to your form

<div>
 <label for="date">Date:</label>
 <input id="date">
</div>
<div>
 <label for="results">Max # of Results:</label>
 <input id="results" value="10" min="10" max="100" step="10">
</div>

and this JS to convert the two form elements to widgets in your app.js file:

require([..., "jquery-ui/datepicker", "jquery-ui/spinner"],
 function(..., datepicker, spinner) {
 ...
 var date = $("#date"),
 results = $("#results");
 date.datepicker();
 results.spinner();
 }
);

At this point you have a familiar solution: both <input> elements are jQuery UI widgets
that look and work the same in all browsers. The next step is to use the widgets only when
needed, that is, only when the native controls aren’t supported. To do that, first you have
to change your HTML to use the new types. You can do that by switching your datepicker
<input> to a type of "date" and your spinner <input> to a type of "number":

<input type="date" id="date">
<input type="number" id="results" value="10" min="10" max="100" step="10">

Now you have to switch your logic to create widgets only when necessary. You do that
by making the following alteration to your app.js file:

function isTypeSupported(type) {
 var input = document.createElement("input");
 input.setAttribute("type", type);
 return input.type === type;
};

var date = $("#date"),
 results = $("#results");

Detects whether the
browser natively
supports the typeB
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

267Collecting user input
if (!isTypeSupported("date")) {
 date.datepicker({ dateFormat: "yy-mm-dd" });
}
if (!isTypeSupported("number")) {
 results.spinner();
}

You define a new function that determines whether native support of a given type is
available B. In it, you create a new <input>, change its type attribute to the type
passed in, and see if the change took. If it did, you have support; if not, you don’t.

NOTE A more thorough discussion of polyfills, including how to use Modern-
izr to detect native features without having to write them yourself, is in appen-
dix F.

You then use that function to determine whether you should initialize a datepicker
widget on your <input>. If you do need a datepicker, you set its dateFormat to "yy-
mm-dd"—which is the same format the HTML5 picker uses C. This ensures that, when
it’s time to call your API, your date is in the same format, regardless of whether the
user is using the HTML5 control or the datepicker widget. You use the same approach
to create a spinner widget only if necessary D. The end result of your polyfill
approach for the date input is shown in figure 11.3.

 With these last two fields added, your form is now complete. But before you call off
to your API, you have one last task: validating the user’s data.

Initializes a
datepicker widget
if necessary C

Initializes a spinner
widget if necessaryD

Safari iOS Chrome

Figure 11.3 Safari doesn’t have a native datepicker, so it uses the jQuery UI datepicker. iOS and Chrome
have a native datepicker, so they use the native implementation.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 11 Building a flight-search application
11.2.3 Validating user input with HTML5

Client-side form validation is a notoriously painful development experience. Building
a user-friendly, developer-friendly, and accessible validation mechanism is hard. HTML5
introduced a mechanism, known as constraint validation, designed to make form vali-
dation easier. Constraint validation refers to a series of HTML attributes, a DOM API, and
a series of CSS hooks that the browser natively provides to validate form data.

 Although constraint validation does make form validation easier, it’s not without
its drawbacks. Almost all browsers now support constraint validation, but some don’t
have it turned on—which sounds weird, but we’ll talk about what this means and how
to work around it.

 We’ll start with the HTML attributes of constraint validation, as they’re easy to use.
To make your first three form elements required, all you need to do is add a required
attribute to them:

<input id="from-airport" required>
<input id="to-airport" required>
<input type="date" id="date" required>

When you try to submit this form without these fields filled in, supporting browsers
will prevent the submission and provide an error message—you don’t need to write
any JavaScript! Furthermore, the browser will automatically validate the type="date",
type="number", min, max, and step attributes that you already configured. Figure 11.4
shows this behavior in a few browsers.

 If all browsers supported HTML form validation, you’d be done; unfortunately, this
isn’t the case. Here’s where things get weird though. As mentioned, all popular brows-
ers (except Internet Explorer <= 9) support the APIs of constraint validation; some
WebKit-based browsers—specifically Safari, iOS Safari, and the default Android
browser—don’t have the APIs turned on. Even though these browsers recognize the
new HTML5 attributes, they neither prevent form submission nor show validation bub-
bles to the user. To work around this odd behavior, you use the following code.

WARNING This approach works everywhere other than Internet Explorer <= 9;
the form itself is still functional in Internet Explorer <= 9, but the validation
doesn’t work. If you need full support for older versions of Internet Explorer,
check out more fully featured validation libraries such as the jQuery validation
plugin (http://jqueryvalidation.org/) or Kendo UI’s validator (http://
demos.telerik.com/kendo-ui/web/validator/index.html).

Figure 11.4 From left to right: required field validation in Firefox, date validation in Chrome, and number
validation in Internet Explorer
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://demos.telerik.com/kendo-ui/web/validator/index.html
http://demos.telerik.com/kendo-ui/web/validator/index.html
http://www.it-ebooks.info/

269Collecting user input
function validateForm() {
 var invalidFields,
 form = $("form");

 form.find(".ui-state-error-text")
 .removeClass("ui-state-error-text")
 form.find("[aria-invalid]").attr("aria-invalid", false)
 form.find(":ui-tooltip").tooltip("destroy");

 invalidFields = form.find(":invalid").each(function() {
 form.find("label[for=" + this.id + "]")
 .addClass("ui-state-error-text")
 $(this).attr("aria-invalid", true)
 .attr("title", this.validationMessage)
 .tooltip({ tooltipClass: "ui-state-error" });
 }).first().focus();

 return invalidFields.length === 0;
};

$("form").on("submit", function(event) {
 event.preventDefault();
 if (validateForm()) {
 // Call the API
 }
});

This approach revolves around listening for submit events on the <form> H. On
browsers with constraint validation implemented and enabled, you won’t get a submit
event until the user provides valid data. For these browsers, all this code is unnecessary
and does nothing. But in browsers with constraint validation disabled, you use the
validateForm() I function to highlight the appropriate fields and determine
whether the data is valid. (You don’t want to call the flight-lookup API with invalid data
if you can avoid it.)

 The validateForm() function is where things get fun. First, you reset the form to
its initial state B—removing changes that the subsequent code in the function makes.

 Next, you find all invalid fields in the form using the :invalid pseudo-class C.
This is a pseudo-class the browser provides that matches all fields that are invalid per
their constraints, such as the required and type attributes. This is one of those APIs
that the WebKit family of browsers supports, even though they have constraint valida-
tion turned off.

 For each invalid field, you do a few things. First, you add a ui-state-error-text
class name to the invalid field’s <label> element D. Then, you set the field’s aria-
invalid attribute to true E. This informs assistive devices such as screen readers that
the field contains invalid data.

 You have to tell the user what the problem with the field is. The browser has built
that message for you and stored it the invalid element’s validationMessage property.
You take this message, set it as the element’s title attribute, and convert it to a tooltip
widget. The user sees a tooltip when hovering over the field and when it has focus F.
The tooltip widget also ensures that screen readers read the validation message as

Undoes the effects of
previous invocations

B

Loops
over
each

invalid
field

C

Adds a class
name to the
field’s label

D

Sets the
aria-invalid

attribute E Initializes a
tooltip widget
on the elementF

Focuses the first
invalid fieldG

Listens for
submit
eventsH

Only calls the
API when the
data is validI
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 11 Building a flight-search application
well. To match the native validation behavior, you
move focus to the first invalid element in the
form G.

 Figure 11.5 shows how your new validation
mechanism looks in Safari.

TIP If you want to learn more about HTML5
form validation, including how to customize the
validation messages, I have a more thorough dis-
cussion at http://www.html5rocks.com/en/
tutorials/forms/constraintvalidation/.

With this you have a form that collects the data
that you need and validates that it’s correct. The validation isn’t 100% comprehen-
sive—you don’t ensure the user picks a valid airport—but you’ve protected against the
most common mistakes users make, and built a feedback mechanism to inform them
of the errors that they made.

Writing accessible form validation
Writing validation in an accessible manner can be tricky, but by making sure you fol-
low a few best practices, you can ensure your forms are usable for everyone. Here’s
a list of the most important things to do:

■ Manage the aria-invalid attribute—When a form element with invalid data
has focus, screen-reader users need to know when there’s a problem. You can
do this by setting the element’s aria-invalid attribute to "true" or "false"
based whether its data is valid—<input aria-invalid="true"> or <input
aria-invalid="false">.

■ Ensure screen readers can read error messages—Screen reader users not only
need to know that fields are invalid, they also need to know why. Your previous
example used a tooltip widget to accomplish this. Under the hood, the tooltip
widget added an aria-described-by attribute to associate itself with the
<input>, and to ensure its content is read by screen readers when the <input>
receives focus. This is a little more in depth than most forms need, and a sim-
pler solution is to set an aria-label attribute containing the error message,
such as <input aria-invalid="true" aria-label="Please enter a posi-
tive number">. Make sure you remove the aria-label when the field
becomes valid.

■ Don’t rely on color to designate invalid fields—Accessibility isn’t only about
screen readers, and in the case of form validation, you also have to be consider-
ate of color-blind users. No matter how bright a red you add to your form, some
users won’t see it. Your previous example made the validation messages visu-
ally stand out with a tooltip widget. Other common techniques are error icons
and drawing boxes around invalid fields.

Figure 11.5 The UI shown after the
user attempts to submit the form with-
out providing a required field in Safari on
OS X
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/
http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/
http://www.it-ebooks.info/

271Connecting to a RESTful API

Ad
air
Now that you have a form that collects the data you need, let’s put it to use.

11.3 Connecting to a RESTful API
REST refers to Representational State Transfer, which Wikipedia defines as a “software
architectural style consisting of a coordinated set of architectural constraints applied
to components, connectors, and data elements.” In the context of web services, REST-
ful APIs structure their URLs in a predefined manner and handle the core HTTP meth-
ods—GET, PUT, POST, DELETE, and so forth—appropriately. Let’s see how this works
in practice by connecting to your flight-lookup service.

NOTE A more detailed discussion of what makes an API RESTful is available at
http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to
_web_services.

11.3.1 Looking up flights with $.ajax()

Although building RESTful APIs can be a complex task, connecting to them from the cli-
ent side is relatively easy—especially in the case of your flight-lookup API, because it uses
a single HTTP GET to retrieve data. You can look back to the API’s documentation at
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!doc-
umentation, but the main thing you’re interested in is the URL, such as the one we dis-
cussed earlier: https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/
LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0.

 Your job is to build this URL with user-provided data rather than hardcoded data,
and to display the results on the screen. You’ll start with the following code, which
uses the jQuery Core $.ajax() method to connect to the flight-lookup API.

NOTE Recall from earlier examples that the date, fromAirport, toAirport,
hops, results, and orderBy variables correspond to jQuery objects contain-
ing the input elements of the form.

var selectedDate = $.datepicker.parseDate("yy-mm-dd", date.val());
$.ajax({
 headers: { "X-Mashape-Authorization": "********************" },
 url: "https://flightlookup-timetable-rest.p.mashape.com/TimeTable/" +
 fromAirport.val() + "/" +
 toAirport.val() + "/" +
 $.datepicker.formatDate("mm/dd/yy", selectedDate) + "/",
 data: {
 Hops: hops.find(":checked").val(),
 Count: results.val(),
 SortOrder: orderBy.val()
 }
});

jQuery’s ajax() method lets you specify custom headers by providing a headers option.
You use that to add your custom X-Mashape-Authorization header so Mashape knows

Sets the API key in
a custom header

B

ds the two
port codes
to the URL

C

Adds the
destination

date to the URL D
Adds the
query stringE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0
https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0
http://www.it-ebooks.info/

272 CHAPTER 11 Building a flight-search application
it’s you B. Next, you need to add the two airport codes to the URL; you can do this by
appending them from the values of their respective <input> elements C.

 After this comes the date, and here you have a little work to do. Remember that you
specified a dateFormat of "yy-mm-dd" for consistency with the HTML5 date <input>,
but your API needs the date in "mm/dd/yy" format. To convert the date from one format
to another, you use a combination of datepicker’s parseDate() and formatDate() util-
ity functions. You use parseDate() to get a Date object representing the date that the
user selected, then you output that date in "mm/dd/yy" by passing the Date object to the
formatDate() method D.

 The last part of the URL to add is the query string, and you can add that using the
ajax() method’s data property E. Internally, jQuery will URL-encode these values
and turn it into a valid query string automatically.

 And that’s it. You don’t have to tell $.ajax() that you need to make a GET request
because that’s the default. If you invoke this code, you’ll see that it indeed performs a
GET request and returns XML containing the results of the query, such as the following:

<?xml version="1.0" encoding="UTF-8"?>
<results>
 <query status="0" message="success" RouteCount="120" ... />
 <route ActualFrom='DTW' ActualTo='ATL'>
 <segment From.1='Detroit' From.2='DTW' To='ATL'
 To.1='Atlanta' To.2='ATL' />
 </route>
 <route>...</route>
</results>

The XML returns a lot of information, but I’m only showing a small segment here so
you can get an idea of the structure. The core of what you’re interested in are the
attributes of the <route> tags nested in <results>. Each <route> additionally has a
<segment> for each flight that makes up the route, but to keep this example lean,
we’ll focus on the <route> elements for now. But how do you get the data you need
from that XML?

11.3.2 Parsing XML with jQuery

XML parsing can seem like a scary task, but jQuery Core contains a number of meth-
ods that make traversing complex XML structures easy. Let’s look at how you can use
them to get the data you need.

 We’ll start by moving your AJAX call into its own method and adding a success
callback:

function lookupFlights() {
 return $.ajax({ ... });
};

lookupFlights.then(function(data) {
 ...
});
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

273Connecting to a RESTful API
At this point, data is an XML string with the full results from the API call. To traverse
the XML, you select the string using jQuery and use the find() method to select child
tags. Here’s the code you use to pull the information you need out of the XML:

var flights = []
$(data).find("route").each(function() {
 var route = $(this),
 flight = {
 from: route.attr("ActualFrom.1"),
 to: route.attr("ActualTo.1"),
 departureDate: route.attr("DepartureDate.3"),
 departureTime: route.attr("DepartureTime.1"),
 arrivalDate: route.attr("ArrivalDate.3"),
 arrivalTime: route.attr("ArrivalTime.1"),
 duration: route.attr("Duration"),
 flights: route.attr("FlightCount"),
 flightNumbers: route.attr("FlightNumbers")
 };
 flights.push(flight);
});

You select the XML string with jQuery, call its find() method to select all <route>
tags, and use each() to loop over them B. Inside the loop, the context (this) is set to
the <route> as a string. You pull information from the <route>, convert it to a jQuery
object, and store it in the route variable C. Then, you use jQuery’s attr() method to
pluck individual attributes from the <route> tag and store all of them in the flight
object D. Finally, you add that object to an array of flights E. You do this so that, after
this code runs, instead of dealing with XML strings, you have an array of JavaScript
objects with the data you need. The following is a sample version of the flights array
with two routes:

[
 {"from":"Detroit","to":"Atlanta","departureDate":"2/26",
 "departureTime":"6:30 AM","arrivalDate":"2/26",
 "arrivalTime":"8:45 AM","duration":"2h15m","flights":"1",
 "flightNumbers":"DL2283"},
 {"from":"Detroit","to":"Atlanta","departureDate":"2/26",
 "departureTime":"7:34 AM","arrivalDate":"2/26",
 "arrivalTime":"9:30 AM","duration":"1h56m","flights":"1",
 "flightNumbers":"FL261"}
]

Now that you have the data you need, let’s review where you stand. You built a form,
connected it to your flight-lookup API, and parsed the data you needed into a
JavaScript array. Now that you have the data ready to go, you need to build something
with it.

Finds each <route>
and loops through

them

B

Selects the <route>
with jQuery

C

Picks individual
attributes out
of the XML tag

D

Adds the object to
the array of routesE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 11 Building a flight-search application
11.4 Displaying the results on the screen
You can display flight data in countless ways, but as the data is tabular, it lends itself to
an HTML <table>, so we’ll use one for this example. You can also build <table> ele-
ments in JavaScript in countless ways, but the most maintenance-friendly option is to
use a JavaScript templating engine to format your data into HTML. The JavaScript tem-
plating spectrum has several libraries available, but you’ll use Underscore in this exam-
ple because it’s one of the more popular templating solutions; it’s also simple to use.

TIP If you want to learn more about the basics of JavaScript templating, check out
http://coding.smashingmagazine.com/2012/12/05/client-side-templating/. If
you want to see what templating engines are out there and compare them, there’s
a good tool available at http://garann.github.io/template-chooser/.

The simplest way of using a JavaScript templating engine like Underscore is to place a
<script> tag in your HTML with the template you want to use. The following code
shows the <script> tag that you’ll include in your index.html file:

<script type="text/html" id="flights-template">
<% if (flights.length === 0) { %>
 <p>There were no flights found that matched your selections.</p>
<% } else { %>
 <table id="flights">
 <caption>
 Showing all trips from <%- flights[0].from %> to
 <%- flights[0].to %> on <%- flights[0].departureDate %>.
 (<%- flights.length %> result
 <%- flights.length === 1 ? "" : "s" %> found)
 </caption>
 <thead class="ui-widget-header">
 <th>Departure</th>
 <th>Arrival</th>
 <th>Duration</th>
 <th>Flights</th>
 <th>Flight Numbers</th>
 </thead>
 <tbody>
 <% _.each(flights, function(flight) { %>
 <tr>
 <td><%- flight.departureTime %></td>
 <td><%- flight.arrivalTime %></td>
 <td><%- flight.duration %></td>
 <td><%- flight.flights %></td>
 <td><%- flight.flightNumbers %></td>
 </tr>
 <% }) %>
 </tbody>
 </table>
<% } %>
</script>

Tells the browser this is
HTML, not JavaScript

B
Shows a nice message
if no flights are found

C

Outputs a heading
about the trips found

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

275Displaying the results on the screen
If you haven’t used JavaScript templating before, the initial <script> tag B may seem
a little odd. To tell the browser that this is an HTML template, and not JavaScript code,
you have to set the <script> element’s type attribute to something other than text/
javascript (the default). By convention, you use text/html here.

 The template itself is mostly straight HTML with a few special Underscore delimit-
ers mixed in to add logic and to output your flight data. The first delimiter you use is
<% … %>, which is Underscore’s way of letting you execute JavaScript code in the tem-
plate. You use it to perform an if check that outputs a message if the flights array is
empty C.

 The other delimiter you use is <%- … %>, which is Underscore’s means of letting
you output JavaScript values. You use it to output a heading for your table of flights D,
and then to output the flight data itself (one flight per row).

 Now that you have this template in place, you have to use it, and you add the fol-
lowing code to your app.js to do that.

NOTE Remember that the flights variable in your app.js is an array of flight
data that you aggregated in the previous section. Also, remember your
index.html has a <div id="flights-container"></div> element that’s refer-
enced in the following code.

var html = _.template(
 $("#flights-template").html(),
 { flights: flights });
$("#flights-container").html(html);

Underscore’s _.template() function takes two arguments: a template string and data.
Your template string is the contents of the <script> tag you defined earlier; you get a
reference to the <script id="flights-template"> element and use the jQuery Core
html() method to grab its contents B. For the second data argument, you create an
object with a flights property that contains the array of flight information you built
earlier C.

 Underscore then applies the data to the template, and you end up with an HTML
string with a <table> full of flights (or a <p> if the flights array is empty). You set the
HTML of your flights container <div> to this template markup D.

TIP If you don’t like the delimiters Underscore uses—for example, <% %>
and <%- %>—you can customize them by setting _.templateSettings. For
more information, see http://underscorejs.org/#template.

This displays flight results in a <table> on the screen, but this implementation isn’t
ideal. Storing HTML templates in a <script> tag is odd, and because this implementa-
tion relies on that <script> tag being in the HTML, you can’t share this template
across multiple pages or multiple applications. Let’s look at one technique to clean up
your templating logic.

Retrieves the contents
of your template

BPasses the flight
data to the

template

C

Fills your results
<div> with the
templated markupD
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 11 Building a flight-search application
11.4.1 Storing and resolving templates with RequireJS

Up to this point you’ve used RequireJS only to resolve JavaScript dependencies, and
that’s how it’s used the vast majority of the time. But RequireJS can load additional file
types—such as CSS files, JSON files, and more—through plugins. Perhaps the most
common plugin is the RequireJS text plugin, which lets you load an arbitrary text
resource using the same require() and define() methods you know. The text plugin
is also commonly used to manage HTML template dependencies—which is exactly
what you need here.

 You start by adding a few new files to your application:

 index.html
 js
 text.js
 ...
 template
 flight-list.html

The text.js file is the text plugin, which you can download from https://github.com/
requirejs/text. The flight-list.html file is your flight HTML template minus the outer
<script> tag, as shown here:

<% if (flights.length === 0) { %>
 <p>There were no flights found that matched your selections.</p>
<% } else { %>
 <table id="flights">
 ...
 </table>
<% } %>

To use the text plugin, you only need to know one rule: when loading text dependen-
cies, you must prefix them with "text!". You’ll add the following to app.js to load the
text plugin and your template:

require([..., "text", "text!../template/flight-list.html"],
 function(..., text, flightListTemplate) {

 }
);

The "text!" prefix is needed so RequireJS knows that it doesn’t need to interpret the
file it loads as JavaScript code. Here, RequireJS loads the file at ../template/flight-
light.html and assigns its text to the flightListTemplate variable.

 With this variable in place, you can switch your templating logic to use it rather
than relying on a <script> tag. Remember that you’re currently using the following
code:

var html = _.template(
 $("#flights-template").html(),
 { flights: flights });
$("#flights-container").html(html);
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/requirejs/text
https://github.com/requirejs/text
http://www.it-ebooks.info/

277Displaying the results on the screen
Let’s switch this up to use the flightListTemplate variable:

var html = _.template(flightListTemplate, { flights: flights });
$("#flights-container").html(html);

This approach has a few advantages. For one, you can now remove the <script> tag
from your index.html as you no longer need it. (It still appears in the jsFiddle exam-
ple because of the inability to split your example into multiple files in that environ-
ment.) Secondly, you can now share this template across multiple pages and even
multiple applications. Other pages or applications just have to depend on the tem-
plate file. Finally, you can build your templates into your optimized build file without
any extra work. All this works when you run the RequireJS optimizer. No extra config-
uration is needed.

 With that, you have a fully functional flight lookup with a solid implementation.
With the behavior in place, let’s look at some things you can do to clean up the user
experience.

11.4.2 Showing a processing indicator while data loads

Between contacting your RESTful API, parsing the XML response, and templating
the HTML results, the user could potentially have to wait a few seconds between
clicking the Lookup button and seeing the results on the screen. Currently, the user
receives no feedback that processing is occurring—which can make your applica-
tion seem unresponsive.

 The current implementation is doing nothing to prevent the user from hitting the
Lookup button multiple times—which adds load to your API server and slows the
experience for all users. It also frustrates users who wonder why their button clicks
aren’t doing anything. Let’s see what you can do to fix this.

 First, remember that your function to look up flights from your RESTful API was
named lookupFlights(). For readability, you break the two pieces of functionality
you added in the last two sections—parsing the flight data and templating it—into
their own functions as well. This is shown in the following code:

function parseFlights(data) {
 var flights = []
 $(data).find("route").each(function() {
 var flight = ...
 flights.push(flight);
 });
 return flights;
};

function templateFlights(flights) {
 var html = _.template(flightListTemplate, { flights: flights });
 $("#flights-container").html(html);
};

With this in place, your code to perform the lookups looks like this:
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 11 Building a flight-search application
lookupFlights().then(function(data) {
 var flights = parseFlights(data);
 templateFlights(flights);
});

This code reads a bit like an English sentence. Look up the flights, parse the flight
data, and template the flights onto the screen. But remember that you want to add
code that provides feedback while this processing is happening.

 You do so by combining a jQuery UI dialog with a progressbar. You start by adding
the following to app.js:

require([..., "jquery-ui/dialog", "jquery-ui/progressbar"],
 function(dialog, progressbar) {
 var processingDialog = $("<div>").dialog({
 autoOpen: false,
 modal: true,
 title: "Looking up flights..."
 }),
 progressbar = $("<div>").progressbar({ value: false });
 processingDialog.append(progressbar);
 }
);

First, you add the dialog and progressbar widgets to the list of module dependencies
in app.js B. In the callback you create two new widgets. The first is a dialog widget you
create from a newly created <div> C. You set its autoOpen option to false as you
don’t want the dialog to show right away, and you set modal to true because you don’t
want the user to interact with the UI while this dialog is open.

 Next, you create a progressbar widget from another newly created <div> and set its
value to false, so it renders as an indeterminate progressbar (that is, a progressbar
that has no definite value) D. Then, you append the progressbar to the dialog widget
you just created. You’ll see how this all comes together momentarily. Now if you return
to the code that looks up and templates the flights, you can switch it to do the following:

processingDialog.dialog("open");
lookupFlights().then(function(data) {
 var flights = parseFlights(data);
 templateFlights(flights);
 processingDialog.dialog("close");
});

With your widgets in place, all you need to do is open the dialog before your process-
ing begins B and close it when processing completes C. Now, instead of wondering
what’s happening, the user instantly sees the display in figure 11.6 after clicking the
Lookup button.

 Because the dialog is modal, and the user can’t interact with elements while a
modal dialog is open, this technique has the added advantage of preventing duplicate
form submissions. Not bad for a few extra lines of code.

 This solves one of your application’s UX problems, but we can make more
improvements. If you load this on a mobile device, you’ll notice that the results

Adds requires
for dialog and
progressbarBCreates a

new
<div>

and makes
it a dialog C

Creates a new<div> and
makes it a progressbar D

Opens the
processing

dialog B
Closes the
processing dialog

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

279Adding a responsive design
<table> doesn’t fit very well. Figure 11.7 shows how the
<table> looks on an iPhone running iOS7 by default.

 Although the user can zoom out to see the data, this
display isn’t ideal for users on smaller screens. Let’s see
what you can do to make your application look good,
regardless of what device it’s viewed on.

11.5 Adding a responsive design

The release of the iPhone in 2007, and the explosion of
mobile device usage that followed, fundamentally
changed the way we develop for the web. No longer do we
have the convenience of developing desktop-only applica-
tions; instead we must consider a full spectrum of
devices—from a 320-pixel-wide iPhone screen to 2000+
pixel-wide high-resolution retina displays. Building appli-
cations for these screens can be overwhelming, but the
web community has responded with a series of techniques
to help, collectively known as responsive web design.

 For your flight lookup, you’ll use one of the core tenets
of responsive web design, media queries, to optimize your

Figure 11.6 A processing indicator to show while you look up and process flight results

Figure 11.7 Your data goes
off the screen of an iPhone.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 11 Building a flight-search application
application for different screen sizes. Personally, I find it easiest to think of media que-
ries as a way of conditionally adding CSS rules based on the device’s features—most com-
monly its width. Consider the following CSS:

body {
 color: black;
}
@media (max-width: 800px) {
 body { color: blue; }
}

This CSS makes all text black in browsers that are > 800 pixels wide and blue in browsers
that are <= 800 pixels wide. I like to read the max-width: 800px portion of the media
query as, “Is the maximum width of the current browser window 800 pixels or less?” If
so, apply the nested CSS rules. These media queries are live, so if you resize your browser
window across the 800-pixel barrier, you can see the color: blue rule being applied and
unapplied. You can play with this at http://jsfiddle.net/tj_vantoll/LHts7/.

 Although you can use properties other than width in a media query (height, device
orientation, resolution, and so on), this width check is all you need to make your
application responsive.

NOTE A comprehensive discussion of responsive web design is out of the
scope of this book. For a more thorough guide see The Responsive Web (Man-
ning, 2004) by Matthew Carver (http://www.manning.com/carver/).

Before we dig into how to make your app responsive, we have to discuss how your CSS
is currently structured. All the CSS for your example is stored in a single app.css file,
which starts by bringing in the CSS for jQuery UI:

@import "jquery-ui/all.css";

NOTE Notice that you bring in all of the jQuery UI CSS instead of managing
the individual files that you need. Because the jQuery UI CSS is substantially
smaller than its JS (~14 times smaller), and because you’re using more than
half of the jQuery UI CSS already, managing individual jQuery UI CSS files has
a minimal performance benefit. It also would make the file more difficult to
maintain, as every time you need to add or remove a widget to the project,
you’d have to add or remove its entry from your app’s CSS file.

After that, you configure your layout, which is controlled by the following code:

form {
 float: left;
 min-width: 300px;
 width: 30%;
}
#flights-container {
 float: left;
 width: 70%;
}

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

281Adding a responsive design
Because of these rules, the sibling <form> and <div id="flights-container"> ele-
ments appear next to each other, with the <form> taking up 30% of the width and the
<div> taking up the other 70%. To keep the <form> from getting too small on small
screens, you give it a min-width of 300px. Because both of these containers are floating,
when the <form> reaches its min-width, the <div> drops below <form>. But you’re
doing nothing to optimize the user experience after the flight container drops.

 To improve this, you define two breakpoints, or maximum widths, where you want
custom CSS to apply. For your purposes you use breakpoints of 800 and 500 pixels—
which correspond to the widths of an average tablet and phone in portrait mode,
respectively. Admittedly these numbers are a bit arbitrary, but it doesn’t matter. Pick
whatever values work best for your application—800 and 500 work well here as
they’re the points at which the current display isn’t ideal. Let’s add the following CSS
to your example:

@media (max-width: 800px) {
 #flights-container, form {
 width: 100%;
 }
 input, .ui-spinner {
 width: 200px;
 }
 fieldset > div {
 float: left;
 margin-left: 0.5em;
 height: 70px;
 width: 210px;
 }
}
@media (max-width: 500px) {
 td, th {
 padding: 0.8em 0.1em;
 }
 #flights-container {
 padding: 0;
 }
}

If you’re on a desktop browser, or have one available, you can see the effect of these
breakpoints by starting with a large browser window and resizing to a small one. When
your browser reaches 800 pixels wide, the first set of rules takes effect. The first thing
you do is switch the application’s <form> and flight list to take up the full width of the
screen B. (Recall that they previously took up 30% and 70%, respectively.) This
switches these two containers from appearing side-by-side to displaying stacked on top
of each other.

 Because the containers are stacked, you have a little extra room in the <form> that
you can use; you additionally float each <div> containing a form element so that they
display next to each other C. Figure 11.8 shows the updated tablet display of your
application.

Makes the form and table
take up the full width

B

Shows the form elements
next to each other

C

Reduces the spacing
for small screens

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 11 Building a flight-search application
 This approach works well for tablet-sized screens, but if you keep resizing your
screen down, you see that the display breaks down on tiny phone screens. This is
where your second breakpoint comes in. For displays 500 pixels and under, you
reduce the padding in the flight container and in the flights table D.

 The final display of your application on three screen sizes is shown in figure 11.8.

NOTE As I’m not a designer, the display of the flights table on a mobile device
could be improved. Tables are a difficult UI element to make look good on
small screens. For a good roundup on ways to make tables work in a responsive
context, see http://css-tricks.com/responsive-data-table-roundup/.

iPhone (320-px-wide viewport)
Nexus 7 in portrait mode
(640-px-wide viewport)

Typical laptop display (1280-px-wide viewport)

Figure 11.8 The display of your responsive design on three screen sizes: an iPhone 5 running iOS 7 (top
left), a Nexus 7 tablet (top right), and a MacBook Pro (bottom)
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

283Preparing the application for production
The key takeaway of the responsive approach is the ability to have CSS rules conditionally
apply based on the browser and device capabilities. Here you use the browser’s width to
rework your application to optimize the experience for users on different devices.

 With the UI finalized, your application is now complete. The last thing you need to
do is apply the lessons you learned in the last chapter and optimize your application’s
assets for production.

11.6 Preparing the application for production
In chapter 10, we discussed in detail the importance of optimizing front-end assets,
but it’s worth repeating. We mentioned that Amazon.com famously found that a one-
second delay of load times resulted in a loss of $1.5 billion a year. And recall that the
single most important thing you can do to improve the load time of your application
is to reduce the number of HTTP requests that it performs.

 Because you wrote your JavaScript using AMD, there’s not much that you have to
do here. You start by configuring a js/build.js file that’s nearly identical to the one you
built in the previous chapter:

({
 appDir: "../",
 baseUrl: "js",
 dir: "../built",
 optimizeCss: "standard",
 modules: [
 { name: "app" }
]
})

Like the one in chapter 10, this copies all your assets to a built directory, and then
minifies and concatenates each of them. Refer to chapter 10 or http://requirejs.org/
docs/optimization.html#options for details on what each individual option does.

 To run the build, run the following from the command line in the root of the
application:

> r.js –o js/build.js

The build creates a single concatenated CSS and JavaScript file for you to use in your
application. You can go back to your index.html and switch the paths you use to
import these files. Currently you’re using the following two imports:

<link href="css/app.css" rel="stylesheet">
<script src="js/require.js" data-main="js/app"></script>

For production you can switch them to point at the built directories instead:

<link href="built/css/app.css" rel="stylesheet">
<script src="built/js/require.js" data-main="built/js/app"></script>

After the build, your app.js and app.css files are 78 K and 5.6 K gzipped, respectively—
not bad considering you’re using jQuery, several jQuery UI widgets, and Underscore
for templating. These numbers don’t include require.js, as it’s not built into app.js.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://requirejs.org/docs/optimization.html#options
http://requirejs.org/docs/optimization.html#options
http://www.it-ebooks.info/

284 CHAPTER 11 Building a flight-search application
require.js adds one additional (6.3 K gzipped) HTTP request, which is perfectly
acceptable for the vast majority of applications; however, suppose your flight tracker is
intended for mobile users, and a fast load time is paramount to the success of the
application. With this prerequisite, you can take one extra step in your build and
switch require.js out for a more lightweight AMD loader: almond.

11.7 Getting the optimal performance with almond
almond describes itself as a replacement AMD loader for RequireJS. It’s lightweight,
but because of that it doesn’t do everything that require.js does. In fact, it’s intended
for use only after an optimized build is performed. But for production code, almond
gives you the basic features of AMD loader with an extremely small footprint. Person-
ally, I think it’s easier to see how almond works by adding it to your application.

WARNING If you’re using certain advanced behaviors of RequireJS that aren’t
discussed in this book, you may not be able to use almond. For a full list of
restrictions, see https://github.com/jrburke/almond#restrictions.

You’ll start by adding almond.js from https://github.com/jrburke/almond to your js
directory:

 index.html
 js
 almond.js
 app.js
 build.js
 ...
 ...

Then, you make one small alteration to your build.js configuration:

({
 appDir: "../",
 baseUrl: "js",
 dir: "../built",
 optimizeCss: "standard",
 modules: [
 {
 name: "app",
 include: ["almond"]
 }
]
})

Each module in RequireJS can specify an include array, containing any modules that
should be prepended to the output file. Because you include almond as an include B,
it will be the first module present in the concatenated and minified built/js/app.js file.

 To update your built files, you need to run r.js again from the root of this application:

> r.js –o js/build.js

Let’s go back to your production <script> tag included from the last section:

<script src="built/js/require.js" data-main="built/js/app"></script>

B

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

285Getting the optimal performance with almond
Because an AMD loader (almond) is now is built in to your output file, you can switch
this <script> tag to point directly at your app.js file:

<script src="built/js/app.js"></script>

That’s all there is to using almond. With this approach you’ve eliminated a few bytes
that the user has to download (remember almond.js is smaller than require.js), but
more importantly, you’ve eliminated an HTTP request from your application. Instead
of the browser downloading require.js, and then downloading app.js asynchronously,
it can download app.js directly—and you still have all the advantages of using AMD to
manage your dependencies.

 To summarize, with this approach you can use this <script> tag during development

<script src="js/require.js" data-main="js/app"></script>

and this one in production:

<script src="built/js/app.js"></script>

Before leaving this topic, we have one more question to consider: how can you auto-
mate the switching between the two <script> tags? No programmer wants to manu-
ally alter them every time you need to develop or deploy to production.

 You have a few different options for handling this situation, but my personal favor-
ite is to use your server-side environment to detect whether you’re in development or
production. Consider the following PHP code:

<? if (strpos($_SERVER["HTTP_HOST"], "localhost")) { ?>
 <script src="js/require.js" data-main="js/app"></script>
<? } ?>
 <script src="built/js/app.js"></script>
<? } ?>

This code checks whether the server is running on the localhost domain. If it is, it out-
puts the development <script> tag; otherwise, it uses the production version. If
you’re developing in a Java/JSP environment, you could write the same check this way:

<% if (request.getServerName().equals("localhost")) { %>
 <script src="js/require.js" data-main="js/app"></script>
<% } else { %>
 <script src="built/js/app.js"></script>
<% } %>

If you’re in an environment where you’re running on the client side only, you can use
the following code:

<script>
 if (window.location.hostname === "localhost") {
 document.write('<script src="js/require.js" ' +
 'data-main="js/app"><\/script>');
 } else {
 document.write('<script src="built/js/app.js"><\/script>');
 }
</script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 11 Building a flight-search application
This code has the same flow as the previous examples, but there’s one quirk in the way
you include the <script> tags. Because you’re already in a <script> tag, you can’t use
the character sequence "</script>", as it would prematurely close the outer <script>
block; you escape the / character and write <\/script> instead of </script>.

 As there are numerous server-side environments, I’m not going to include an
exhaustive list of how to check for a domain in each of them, but the idea is the same:
perform a check that you know will be true only in development and use it to output
the appropriate <script> in each environment. The same technique can be used to
include the appropriate CSS file as well:

<script>
 if (window.location.hostname === "localhost") {
 document.write('<link href="css/app.css" rel="stylesheet">');
 } else {
 document.write('<link href="built/css/app.css" rel="stylesheet">');
 }
</script>

With all these in place let’s summarize the performance of your application. The
final version of the app loads with three HTTP requests: index.html (1 K gzipped),
app.js (81 K gzipped), and app.css (5.6 K gzipped). These three resources amount to
a mere 87.6 K being sent across the network to load the page—which should load
quickly even on the worst of mobile networks. This page uses a few additional
resources—specifically, the jQuery UI theme images and your airport JSON data—but
those files are loaded asynchronously and don’t delay the application’s initial load.

 Admittedly, getting all these optimizations into an existing project can be difficult
if not impossible, but every little bit helps. Remember that the single most important
thing you can do for mobile performance is reduce the number of HTTP requests
your application performs; therefore, that’s the best place to start.

11.8 Summary
Using jQuery, jQuery UI, and a few utility libraries, you built an application that con-
tacted a RESTful API to present flight choices to an end user. Along the way, you put
some of the widgets you’ve learned about throughout the book to use—and learned
new techniques like polyfilling, templating, and building a responsive UI. You used
RequireJS to optimize your front-end assets for production, making your application
ideal for use on mobile devices.

 Throughout the book, you may have noticed how every complex example you
built, including this flight search, ended up involving very little of jQuery UI itself, and
lots of other code. This is the goal of jQuery UI: to provide well-encapsulated widgets
and utilities that just work, so you can focus on your applications. In the context of
this chapter, jQuery UI let you focus on making a compelling flight search, without
worrying about how to build UI components like autocompletes and dialogs.

 Although you’ve now seen the core of what jQuery UI has to offer, and even built a
small production application with it, we have a few topics left to cover. In the next
chapter, we’ll look at advanced stuff that you can do with jQuery UI.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

Under the hood of jQuery UI
Although we’ve covered the core of jQuery UI, we have yet to dig into a series of
utilities, methods, and properties intended for more advanced usage of the library.
As you explore these utilities, you’ll also get a look at how jQuery UI works under
the hood. You’ll learn things like how jQuery UI manages instances, how it struc-
tures prototype chains, and how some of jQuery Mobile works.

 Let’s start by looking at how the jQuery UI widgets handle positioning.

12.1 Positioning elements with the position utility
Positioning an element relative to another element on the web is surprisingly hard.
Besides the brute-force mathematical computations—comparing heights, widths,
and offsets—you also have to worry about CSS positioning mechanisms (static, rela-
tive, absolute, and fixed), not to mention accounting for the window’s scroll offset,
or collision detection if the element doesn’t fit.

This chapter covers
■ Advanced positioning of elements
■ Tips and tricks for dealing with widget instances
■ Working with widget properties
■ Building declarative widgets
287

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 12 Under the hood of jQuery UI
 This is where the jQuery UI position utility comes in. The position utility provides
an elegant API that makes positioning elements a trivial task. It’s what the jQuery UI
widgets use to perform all their positioning magic, including centering dialogs, show-
ing tooltips, and placing nested menus in the right spots.

TIP The autocomplete dialog, menu, and tooltip widgets have a position
option to configure how the widgets are positioned. We’ll look at how those
work momentarily.

We’ll look at how to do cool things with the position utility, but let’s start with an
example to get the syntax down—because it can be tricky at first. The following code
makes two boxes—one red and one blue:

<style>
 div { height: 100px; width: 100px; }
 #red { background: red; }
 #blue { background: blue; }
</style>
<div id="red"></div>
<div id="blue"></div>

Suppose you want to position the red box on the right-hand side of the blue box. The
following code does that

$("#red").position({
 my: "left",
 at: "right",
 of: "#blue"
});

What’s cool about this API is that it reads like an English sentence. Position my (the
red box) left side at the right side of the element with an id of "blue". See how easy
that was? There was no need to calculate the blue box’s offset or either box’s dimen-
sions; it just worked. And we’re just getting started with what the position utility can
do. Using the same red-and-blue-box example, figure 12.1 shows different position-
ing options.

NOTE I highly recommend playing with this example to get a feel for how the
options for the position utility works. Although I explain each option here,
there’s no substitute for experimentation with live code. You can play at
http://jsfiddle.net/tj_vantoll/LgGQH/.

We’ll start with the red box at the bottom of the blue box. This box shows that the my
and at options of the position utility accept two positions, which—to be consistent
with CSS conventions—are listed in the order of horizontal, vertical. If you were to
read this code, it would read, “Position my (the red box) horizontal left, vertical top, at
the horizontal right, vertical bottom of the blue box.”

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

289Positioning elements with the position utility
If you specify only one position, that position is normalized using the same parsing
rules CSS uses (for properties such as background-position). For instance, "left"
equates to "left center", or the horizontal left, vertical center of an element, and
"top" equates to "center top", or the horizontal center, vertical top of an element.

 To show this in action, let’s move on to the red box on the left-hand side of the
blue box—the one that uses the following positioning:

$("#red").position({
 my: "right-50%",
 at: "left",
 of: "#blue"
});

Here, because only one horizontal direction is specified, the my and at options are each
assumed to be vertically centered. So this code reads, “Position my (the red box) hori-
zontal right at the horizontal left of the blue box.” But you’ll notice there’s one addi-
tional twist here: the use of -50%. This is an offset, which each direction of the my and
at options optionally accepts as percentages or pixels. (We’ll get to pixels momen-
tarily.) The offset is relative to the element being positioned; 50% here refers to half the
width of the red box, or 50 pixels. Offsets can be positive or negative. Your use of
"right-50%" means that the right position of the red box should be adjusted by -50%;
that is, the red box should be moved 50 pixels to the left.

 Offsets can also be in pixels, which is what you use in your final box (the one on
the top).

$("#red").position({
 my: "left top",
 at: "right bottom",
 of: "#blue"
});

$("#red").position({
 my: "right-50%",
 at: "left",
 of: "#blue"
});

$("#red").position({
 my: "left bottom",
 at: "right+10 top-10",
 of: "#blue"
});

All red boxes are
positioned relative to

this blue box.

Blue

Red

Red

Red

Figure 12.1 Options for positioning
elements with the position-utility
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 12 Under the hood of jQuery UI
$("#red").position({
 my: "left bottom",
 at: "right+10 top-10",
 of: "#blue"
});

This example reads, “Position my (the red box) horizontal left, vertical bottom 10 pix-
els beyond the horizontal right, and 10 pixels above the vertical top of the blue box.”
The position utility assumes that numbers without percentages are pixel values and
uses them as an offset.

 This gives you a sense of the things you can do with the position utility. If you’re
still having trouble understanding the syntax, it’s worth taking a few minutes to play in
jsFiddle and understand how the keywords work.

 Although moving red boxes around the screen makes for a nice learning exercise,
chances are you aren’t building a production application full of blue and red boxes to
move around the screen. (But if you are, that’s awesome!) Let’s look at useful applica-
tions of the position utility.

12.1.1 Building a UI walkthrough with the position utility and dialog widget

If you create an account on a web service, there’s a decent chance you’ll be given a
tutorial or walkthrough of the UI. These walkthroughs are designed to introduce parts
of the interface and what they do. Figure 12.2 shows part of the walkthrough you go
through after creating a Gmail account.

 With the position utility and dialog widget, building such a walkthrough is rela-
tively easy. For simplicity, let’s say your application includes the following three UI ele-
ments that you want to introduce to the user:

<header>My awesome header</header>
<aside>My awesome sidebar</aside>
<footer>My awesome footer</footer>

You’ll use the following code to accomplish this.

Figure 12.2 A UI walkthrough that Gmail gives new users
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

291Positioning elements with the position utility

D

NOTE The following example is available at http://jsfiddle.net/tj_vantoll/
59eZq/. Unless you’re on a very large screen, it’s easier to see this example in
action at http://jsfiddle.net/tj_vantoll/59eZq/show (which runs the example
outside of the jsFiddle development interface).

<style>
 #dialog p { display: none; }
 #dialog[data-step="1"] #step-1 { display: block; }
 #dialog[data-step="2"] #step-2 { display: block; }
 #dialog[data-step="3"] #step-3 { display: block; }
</style>
<div id="dialog" data-step="1" title="Walkthrough">
 <p id="step-1">1) This is the header!</p>
 <p id="step-2">2) This is the sidebar!</p>
 <p id="step-3">3) This is the footer!</p>
</div>
<script>
 var positions = [
 {
 my: "center top",
 at: "center bottom",
 of: "header"
 },
 {
 my: "left center",
 at: "right center",
 of: "aside"
 },
 {
 my: "center bottom",
 at: "center top",
 of: "footer"
 }
];

 $("#dialog").dialog({
 modal: true,
 buttons: {
 "Next": function() {
 var step = parseInt($(this).attr("data-step"), 10);
 if (step === 3) {
 $(this).dialog("close");
 } else {
 $(this)
 .dialog("option", "position",
 positions[step])
 .attr("data-step", ++step)
 }
 }
 },
 position: positions[0]
 });
</script>

Hides all
messages
by default Only shows the

message for the
current stepB

An array of
coordinates
for the dialogC

Gets the
current step

Closes the
dialog

E

Alters the
position of
the dialog

F

Increments
the step

G

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/59eZq/
http://jsfiddle.net/tj_vantoll/59eZq/
http://www.it-ebooks.info/

292 CHAPTER 12 Under the hood of jQuery UI
The core of this example is a single dialog with three instructional <p> tags in it, one
for each step you want to walk the user through. With a little CSS, you configure the
dialog to only show the paragraph that matches the value of the dialog’s data-step
attribute B. Because the dialog starts with a data-step of "1", the #dialog[data-
step="1"] #step-1 { display: block; } rule applies and shows the first message.

 The rest of the code is responsible for managing the dialog’s position option and
data-step attribute. You start by defining a positions array containing the three
locations you want the dialog to display: under the header, to the left of the aside, and
above the footer C. When you initialize the dialog widget, you set its position option
to position[0] so the dialog initially displays under the header. To let the user move
through the walkthrough, you add a Next button with the buttons option. When it’s
clicked, you retrieve the current value of the data-step attribute D. If the attribute
is 3, you’re at the last step so you close the dialog E. If not, you move the dialog to the
next position in the array F and then increment the dialog’s data-step attribute G.
(Remember that because of your CSS, a new data-step value will show a new message
that corresponds to the new position.)

 The result of this code is a dialog that moves around the screen as the user pro-
gresses through the walkthrough. This is shown in figure 12.3.

NOTE Please excuse the horrible “design” of the header, sidebar, and footer
elements. The point here is you can easily position the dialog next to any ele-
ment in your interface.

Although you can do plenty of things with positioning dialogs, the widget where cus-
tom positioning is most often used is the tooltip widget. We’ll look at things you can
do with tooltips, but first we have to discuss one last of piece of functionality the posi-
tion utility provides: collision detection.

Figure 12.3 A UI walkthrough as a series of dialogs that explains parts of the interface to the user
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

293Positioning elements with the position utility
12.1.2 Handling collisions elegantly

A common problem when positioning elements—and especially tooltip elements—is
dealing with collisions. Let’s say you want to globally show tooltips below elements,
and you implement that with the following code:

$(document).tooltip({
 position: {
 my: "center top",
 at: "center bottom+10"
 }
});

This shows a tooltip on all elements with a title attribute that appears 10 pixels
below the element. This works great, except for one problem: what happens if the ele-
ment is already at the bottom of the screen? With the preceding code you may expect
the user to never see the tooltip, but instead, the tooltip displays 10 pixels above of the
element. Why?

 Built in to the position utility is the concept of collision detection. The utility auto-
matically detects that the element it’s positioning—in this case a tooltip—is outside
the bounds of the window and, if so, attempts to reposition it in the window.

TIP The position utility does collision detection against the window by
default, but that can be configured using the within option. This is useful
when you need to position elements within a scrollable container, and want
to make sure they fit.

The position utility has two means of repositioning an element: flipping and fitting.
Flipping is the default means of handling collisions, and what it does is
straightforward: if the utility detects that the element doesn’t fit in the window, it
flips it to the opposite side of the element it’s being positioned against. That’s
exactly what happened in the earlier example. Because the tooltip wouldn’t fit below
the elements on the bottom of the screen, the utility flipped it from the bottom to
the top.

 If flipping doesn’t work, the other mechanism available is fitting, which moves the
element in an attempt to get it on the screen. If you tried to display a tooltip and it was
off the screen by a few pixels, fitting would move it back in the screen.

 All this is configurable using the position utility’s collision option, which has
four values: "flip", "fit", "flipfit", and "none". Understanding these values is one
of those situations where a picture is essential. Figure 12.4 shows a few <input> ele-
ments that have tooltips. The first input shows the default tooltip positioning, whereas
the other four show the effect of applying the various collision values.

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 12 Under the hood of jQuery UI
The top <input> here is the control; it shows where a tooltip appears when it’s not
near the screen’s boundaries (left-aligned with the <input>). The next four apply the
four available collision values:

■ flip—This collision type flips the element to the opposite side of the element
it’s being positioned against. The name can be a bit confusing, as the tooltip
isn’t literally flipping vertically or horizontally on the x- or y-axis; instead, it’s
moving from one side of the element it’s being positioned against to the other.
In figure 12.4, because the second <input> element’s tooltip does fit on the
left-hand side of the <input>, it’s moved to align on the right-hand side.

■ fit—Rather than flipping, the fit collision type shifts the element in an attempt
to keep it on the screen. Notice that the third <input> element’s tooltip is
shifted a few pixels from its default horizontal position (aligned with the left-
hand side of the <input>).

■ flipfit—This type is a combination of the previous two. First, the flip logic is
applied, then—if the element still isn’t within the screen—the fit logic is
applied to show as much of the element as possible. In this example, because

This is a scroll bar, or the
edge of the browser window.

Since there’s no collision
handling, this tooltip is left in its

default position, even though that
position is off the screen.

Identical position of flip collision
handling as flipfit attempts flip

positioning first.

Fit collision handling moves this
tooltip a few pixels to keep it

within the screen.

Flip collision handling moves
this tooltip from the left side

of <input> to the right.

The default tooltip position.
No collision handling

is necessary.

Figure 12.4 Values for the position utility’s collision option and their effects
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

295Positioning elements with the position utility
the flip logic is sufficient to place the tooltip on the screen, its behavior is iden-
tical to the flip <input>.

■ none—The final collision type tells the position utility to ignore collision detec-
tion altogether. The last <input> element’s tooltip doesn’t fit, but because its
collision is set to "none", it remains off the screen.

TIP You can specify different means of handling horizontal and vertical colli-
sions by passing a pair of strings for the collision option. A collision of
"flip none" tells the position utility to use flip collision handling for hori-
zontal collisions, and no collision handling for vertical collisions.

Although these values give you flexibility in how you handle collisions, sometimes this
isn’t enough. Sometimes you need to know whether the element fits so you can take some
custom action. To see what I mean, let’s return to a tooltip example from chapter 7.

12.1.3 Controlling the collision detection

In chapter 7, you saw how to build tooltips with arrows that pointed at their corre-
sponding element (which was an <input>). Also remember that, to ensure that the
arrows always displayed on the correct side of the tooltip, you had to turn the position
utility’s collision detection off.

 Although turning collision detection off does keep the arrow pointing at the ele-
ment appropriately, it also means that the tooltip can potentially display outside of the
screen. You know now that you can use the position utility’s flip collision mechanism
to move the arrow tooltip above or below the <input>. But that leaves a problem. You
used CSS to draw the arrow, and you need to alter the CSS based on whether the tool-
tip is above or below the <input>. To make this possible, the position utility exposes
this information to the using property. Before we show this in action, first remember
that your example from chapter 7 used the following HTML:

<label for="amount">Amount:</label>
<input id="amount" title="Please use xx.xx format.">

You’ll take this HTML and build an arrow tooltip that can display on either side of its
<input>.

NOTE The full source of this example is available at http://jsfiddle.net/
tj_vantoll/587n9/. Also, the result of this code is shown in figure 12.5. If
you’re having trouble understanding what this code is trying to accomplish, it
may help to look at the picture first.

$("#amount").tooltip({
 position: {
 my: "bottom",
 at: "top-10",
 collision: "flip",
 using: function(position, feedback) {
 $(this).addClass(feedback.vertical)

Configuration
for the tooltip’s
initial position

B
Uses flip
collision

detection

C

Adds a “top” or
“bottom” class name

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/59eZq/
http://jsfiddle.net/tj_vantoll/59eZq/
http://www.it-ebooks.info/

296 CHAPTER 12 Under the hood of jQuery UI
 .css(position);
 }
 }
});

You start by defaulting the tooltip to display above the <input> B. You subtract 10 pixels
from the top of the tooltip (which moves the tooltip up 10 pixels) to make room for the
pointer. Next, you set your collision to "flip" so the position utility automatically flips
the tooltip below the <input> when it doesn’t fit above C.

 Next, you specify a using option. With a using option, the position utility contin-
ues to do its collision detection work, but it doesn’t alter the position of the element;
instead, you’re responsible for that, and the using function is passed the information
that you need to do it.

 Specifically, the using function is passed two objects, named position and feed-
back by convention. The position parameter has the coordinates the position utility
has calculated for the element as two properties: top and left. This format—an
object with top and left properties—is designed to be passed directly into the jQuery
Core css() method to do the positioning—which is exactly what you do here E.

 The advantage of the using function is you can perform logic before the position-
ing takes place. And this is what the feedback argument is for. It’s an object that con-
tains a variety of data about the element being positioned and the element it’s being
positioned against. You can refer to http://api.jqueryui.com/position/ for a full list
of the feedback argument’s properties, but here you have a specific need: you need to
know if the tooltip should display above or below the bottom of the <input>. This
information is available in the feedback object’s vertical property—which is set to
"top" or "bottom" accordingly. You use this property to apply an appropriate CSS class
name to the tooltip D.

 Now that you have a "top" or "bottom" class name on the tooltip, you can add CSS
to move the tooltip’s pointer to the appropriate side of the <input>:

.bottom .ui-tooltip-content::before {
 bottom: -10px;
}
.bottom .ui-tooltip-content::after {
 bottom: -7px;
}
.top .ui-tooltip-content::before {
 top: -10px;
}
.top .ui-tooltip-content::after {
 top: -7px;
}

And with this you have a tooltip that not only points at an <input>, but also automati-
cally adjusts to keep itself within the screen. This functionality is shown in figure 12.5.

 For most of your positioning needs, the my and at properties are sufficient. When
you need to keep elements within the screen at all times, you can configure the colli-
sion option to suit your needs. And in the case where you need fine-grained control

Performs the
positioningE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

297Using the utility functionality in jQuery UI Core
over how the collision detection works, the using option gives you advanced control.
The great thing about the position utility is that when you need these advanced config-
uration options, you’re still spared the details of the mathematical computations and
collision detection algorithms.

 Let’s move from the position utility to additional jQuery UI internals that can help
you improve your own code, starting with a few utilities in jQuery UI Core.

12.2 Using the utility functionality in jQuery UI Core
When we looked at managing dependencies in chapter 10, we saw that almost every
single file in jQuery UI depends on core.js, or jQuery UI Core (notable exceptions are
the widget factory and the position utility, which are intended for easy use without any
jQuery UI dependencies). jQuery UI Core is a collection of utilities that are used by
the library internally, but because they’re potentially useful outside the internal
jQuery UI, the utilities are exposed and documented on the jQuery UI API site.

 Let’s look at some of the functionality that’s available.

12.2.1 Generating unique ids

Sometimes when developing widgets you need elements to have an id attribute. Sup-
pose you need to generate an <input> and a <label>, and you need their id and for
attributes to match.

 But generating your own ids is no easy task. By definition, id attributes must be
unique, so you have to make sure you’re not conflicting with any other ids already
present. As a concrete example, recall the tooltips widgets you used to show validation
messages in chapter 11. Following is a reduced version of that code:

<input name="to" required>
<script>
 $("input")
 .attr("title", "You must provide an airport code.")
 .tooltip();
</script>

You used this approach because you wanted to make your form validation accessible,
and the tooltip widget does this by associating the tooltip element with the <input>
using an aria-describedby attribute.

Figure 12.5 The tooltip displays above the <input> by default (left picture), but if you scroll to move
the <input> to the top of the window, the tooltip no longer fits within the viewport, so the tooltip flips
to the bottom (right picture).
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 12 Under the hood of jQuery UI
NOTE Despite popular belief, screen readers don’t read the HTML title
attribute. For details, see http://blog.silktide.com/2013/01/i-thought-title-
text-improved-accessibility-i-was-wrong/.

When the tooltip widget is active, the rendered markup is something like the following:

<input name="to" required aria-describedby="ui-id-1">
<div role="tooltip" class="ui-tooltip ..." id="ui-id-1">
 <div class="ui-tooltip-content">
 You must provide an airport code.
 </div>
</div>

The association between the <input> element’s aria-describedby attribute and the
tooltip element’s id tells the screen reader to read the contents of the element with an
id of "ui-id-1" (when the <input> receives focus).

 The thing to note here is the "ui-id-1" value. It wasn’t present in your initial
markup, so the tooltip widget had to generate that value (and clean it up when the
tooltip is no longer used). Internally, the tooltip widget uses jQuery UI Core’s
uniqueId() and removeUniqueId() methods to make this happen. Here’s the code
the widget uses to create the tooltip element:

var tooltip = $("<div>")
 .attr("role", "tooltip")
 .addClass("ui-tooltip ui-widget ui-corner-all ui-widget-content " +
 (this.options.tooltipClass || ""))
 .uniqueId();

The call to uniqueId() at the end is what adds the "ui-id-1" id attribute. jQuery UI
Core adds the uniqueId() method to $.fn so it can be used on any jQuery object. For
example, $("<div>").uniqueId() creates a <div> that has a unique id attribute.
The uniqueId() method is also smart enough to not add an id attribute if the ele-
ment already has one. In the following code the uniqueId() call does nothing:

$("<div id='foo'>").uniqueId();

The counterpart to uniqueId() is the removeUniqueId() method, which removes the
id that uniqueId() added. The tooltip widget doesn’t need removeUniqueId()—as
the tooltip element is removed from the DOM when a tooltip is destroyed—but some
jQuery UI widgets do.

 The accordion widget, for example, adds an aria-controls attribute that associ-
ates its headers with its content panels. And like the aria-describedby attribute, the
aria-controls association requires the headers and content panels to have unique id
attributes. The accordion widget’s _destroy() method includes the following code to
remove the attributes when the accordion is destroyed (where this.headers is a ref-
erence to a jQuery object containing all the accordion’s headers):

// clean up headers
this.headers.removeUniqueId();

// clean up content panels
this.headers.next().removeUniqueId();
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://blog.silktide.com/2013/01/i-thought-title-text-improved-accessibility-i-was-wrong/
http://blog.silktide.com/2013/01/i-thought-title-text-improved-accessibility-i-was-wrong/
http://www.it-ebooks.info/

299Using the utility functionality in jQuery UI Core
The removeUniqueId() is smart enough to remove only the id attributes that the
uniqueId() method generated; the following leaves the "foo" id attribute in place:

$("<div id='foo'>").removeUniqueId();

In general, any time you have a need to generate an id attribute to associate elements,
the uniqueId() and removeUniqueId() methods provide an elegant way to do so.

12.2.2 Using key code constants

jQuery UI Core provides a series of key code constants in the $.ui.keyCode object. If
you want to detect Enter key presses in your code—and don’t want to hardcode that
the Enter key is equivalent to key code 13—you can use the following code:

$(document).on("keydown", function(event) {
 if (event.keyCode === $.ui.keyCode.ENTER) {
 alert("Enter was pressed!");
 }
});

You can view a full list of the key codes jQuery UI provides at http://api.jqueryui.com/
jQuery.ui.keyCode/.

 The last piece of jQuery UI Core we need to discuss is the handy :data pseudo-
selector, but to show what it’s best used for, we’ll include it in the broader context of
dealing with widget instances.

What else is in jQuery UI Core?
If you dig into core.js, you’ll see that there’s far more to jQuery UI Core than ID and
key code handling. So what’s all that other stuff?

About half of the code in jQuery UI Core is code that manipulates logic in jQuery
Core—either to add functionality or work around bugs in older versions. Remember
that jQuery UI supports multiple versions of jQuery Core, so a user of jQuery UI 1.11
could be using any version of jQuery Core >= 1.6.

Before jQuery 1.8 you couldn’t use the jQuery Core outerHeight() and outer-
Width() functions as setters. jQuery UI needs this functionality, so it adds the func-
tionality for users using jQuery Core < 1.8. Interestingly enough, jQuery UI Core uses
the same duck-punching technique we discussed in chapter 9 to change the jQuery
Core functionality.

In general, the hope is that in the near future jQuery UI Core will no longer exist as
these workarounds become unnecessary. (The outerHeight() and outerWidth()
workarounds will be removed when jQuery UI no longer supports jQuery Core versions
< 1.8.) The utility functions—uniqueId(), removeUniqueId(), keyCode, and so on—
in jQuery UI Core will be moved into their own files to make the library more modular.

As a final note, jQuery UI Core has some deprecated functions that I won’t be dis-
cussing to discourage their use in new code. If you’re curious, you can learn about
these deprecated utilities at the jQuery UI Core documentation at http://api.jqueryui
.com/category/ui-core/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/jQuery.ui.keyCode/
http://api.jqueryui.com/jQuery.ui.keyCode/
http://api.jqueryui.com/category/ui-core/
http://api.jqueryui.com/category/ui-core/
http://www.it-ebooks.info/

300 CHAPTER 12 Under the hood of jQuery UI
12.3 Accessing and managing widget instances
We’ve talked about widget instances on and off throughout the book, but now let’s
take an in-depth look at what they are and some of the things you can do with them.
We’ll start with a review before we get into the trickier stuff.

 Every time you instantiate a widget on a DOM element, the widget factory creates
an object—the instance—and associates it with the element using $.data(). The key
used to store the instance on the element is the widget’s full name—that is, the wid-
get’s namespace, plus a dash, plus the widget’s name. The dialog widget is stored
under a key of "ui-dialog" because its namespace is "ui" and its name is "dialog".

 You can retrieve the instance a few ways. The first is to use $.data(), as shown in
the following code, which assigns the instance of a newly created dialog to a variable
(named instance):

var myDialog = $("<div>").dialog(),
 instance = myDialog.data("ui-dialog");

As of jQuery UI 1.11, you can also retrieve the instance using the widget’s instance()
method. The following code assigns a newly created dialog instance to an instance
variable:

var myDialog = $("<div>").dialog(),
 instance = myDialog.dialog("instance");

The instance() method is the preferred means of accessing the instance as it doesn’t
rely on the jQuery UI internal implementation (storing the instance using $.data()).
But regardless of how you access the instance, what might you want to do with it?

 Unlike interacting with widgets through their plugins, instance references give you
access to a number of things: all the widget’s methods and properties, as well as the
methods and properties on parent widgets’ prototypes (more on additional things
you can do with those references momentarily).

 Furthermore, some developers prefer the instance-based method calls to plugin-
based method calls. Consider the following example that creates a dialog with an OK
button that closes it:

$("<div>").dialog({
 buttons: {
 OK: function() {
 $(this).dialog("close");
 }
 }
});

Some developers find the dialog("close") syntax awkward and prefer the following
instanced-based approach:

var myDialog = $("<div>").dialog({
 buttons: {
 OK: function() {
 myDialog.close();
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

301Accessing and managing widget instances
 }
 }
}).dialog("instance");

You use the instance() method to store a reference to the instance in a myDialog
variable. When the button is clicked, you use the instance reference to invoke the
close() method with a more familiar JavaScript syntax. It’s important to note that nei-
ther the instance-based nor plugin-based method invocation syntax is “correct”; it’s a
matter of personal preference.

 Before we leave the topic of instances, there’s one more technique we need to
discuss.

TIP Earlier you learned that trying to invoke widget methods through the
widget’s plugin throws an error if that element is not a widget, such as $(
"#not-a-dialog").dialog("open"). The instance() method is the one
exception to this rule. $("#not-a-dialog").dialog("instance") returns
undefined rather than throwing an error.

12.3.1 Detecting widget instances with :data()

Besides the syntax conveniences, instances are also the way that jQuery UI detects
whether a given element has a widget initialized on it. Say you have the following ele-
ment on the DOM:

<div id="foo"></div>

How do you know if the element is a dialog? As it turns out, internally jQuery UI has to
ask this type of question a lot. When a dialog’s draggable option is changed to false,
the dialog’s _setOption() method needs to know whether the dialog has a draggable
instance on it to know if it’s safe to call draggable’s destroy() method. (Remember
that calling widget methods before the widget is initialized—with the exception of
instance()—throws an error.) As another example, when you drop a draggable on a
droppable, the droppable widget needs to search for nested droppable widgets to fire
events in the correct order. (It also affects the behavior of the greedy option. See
http://api.jqueryui.com/droppable/#option-greedy.)

 Because of this need, jQuery UI Core extends the jQuery Core selector engine
(Sizzle) to add a custom :data() pseudo-selector.

 It works by selecting elements that have data stored with a key that matches the
value given to :data(). This is easier to see in an example.

TIP jQuery UI adds the pseudo-selector with Sizzle’s createPseudo()
method. To learn more about Sizzle’s APIs, including how to add your own
pseudo-selectors, see its documentation at https://github.com/jquery/sizzle/
wiki/Sizzle-Documentation.

<div id="one"></div>
<div id="two"></div>
<script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/sizzle/wiki/Sizzle-Documentation
https://github.com/jquery/sizzle/wiki/Sizzle-Documentation
http://www.it-ebooks.info/

302 CHAPTER 12 Under the hood of jQuery UI
 $("#one").data("foo", "bar");
 console.log($(":data(foo)"));
</script>

You use $.data() to store the key/value pair of "foo" and "bar" on the first <div> B.
Then, you use the :data() pseudo-selector to select all elements that have data stored
with a key of "foo" C. Because the first <div> has data stored with that key, it’s
selected and logged.

 Because the jQuery UI widgets store their instances using $.data(), this same tech-
nique can be used to detect widgets. The following selects all dialog widgets:

$(":data(ui-dialog)");

Although finding all widgets can be handy for debugging, the more common scenario
is determining whether a given element is a widget, and you can accomplish that by
combining the :data() pseudo-selector with the jQuery Core is() method. Consider
the following example:

<div id="dialog"></div>
<div id="not-dialog"></div>
<script>
 $("#dialog").dialog();
 $("#dialog").is(":data(ui-dialog)");
 $("#not-dialog").is(":data(ui-dialog)");
</script>

The first check returns true as the <div id="dialog"></div> has a dialog widget ini-
tialized on it, and the second check returns false as the <div id="not-dialog"></
div> doesn’t.

TIP Because the mechanism of storing widget instances with $.data() is
built in to the widget factory, the same :data() checks work with custom wid-
gets. For example, $(":data(tj-todo)") finds all elements with your cus-
tom todo widget initialized on it.

We’ve now looked at things you can do with instances. Next, let’s look at what the
instance gives you access to: prototype objects.

12.4 Advanced widget prototype methods and properties
Although we’ve discussed most of what you can do with widgets built with the widget fac-
tory, we’ve glossed over the details of how the widget’s methods are structured inter-
nally—such as how the widget factory automatically manages a prototype chain for you.

 Having an understanding of a widget’s prototype structure is important so you know
all the things you can do with widget instances, and is vital for creating custom widgets,
especially widgets that extend other widgets. You’ll see how to use these methods and
properties to streamline widget initialization, make widgets work in <iframe> elements,
and make a <div data-role="dialog"></div> magically turn into a dialog widget.

Stores a
string on the
first <div> B

Logs all elements that
have data stored with
a key of fooC

true
false
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

303Advanced widget prototype methods and properties
 But before we do that, we have to dig in deep to see how a widget’s prototype chain
works.

12.4.1 A widget’s prototype chain explained

As with your instance discussion, let’s begin with a quick review of what we’ve dis-
cussed on widget prototype objects. Suppose you create the following widget:

$.widget("tj.custom", {
 _create: function() {}
});

Recall that the last argument to $.widget() is an object to use as the widget’s proto-
type. You provide an object with a single _create() method. Because you didn’t
extend an existing widget, the widget factory uses $.Widget as a base widget by
default. If you do specify a widget, that widget is extended. The following code
extends the dialog widget:

$.widget("tj.customDialog", $.ui.dialog, {});

We’ve discussed all this before, but now let’s get into more detail on what’s happening
behind the scenes. When you create widgets, the widget factory automatically struc-
tures the widget’s prototype chain such that instances of the widget can access meth-
ods and properties on any parent widget’s prototype objects. That sentence can be a
mouthful, so let’s break it down.

 First, an explanation of prototype chains in JavaScript. Whenever you use the dot
notation in JavaScript (as in myObject.value), the JavaScript interpreter looks for the
subsequent string ("value", in this case) as a property in the object itself. If it finds
myObject.value it uses it, but if not, the interpreter then looks for the member (prop-
erty or method) in the object’s prototype object. And if it can’t find the member
there, it goes to the next prototype object and so on, until the interpreter reaches
Object.prototype. This lookup chain is what gives the prototype chain its name.

 As an example, consider the following:

"jQuery UI".trim();
"jQuery UI".hasOwnProperty("whatever");

Both lines of code invoke methods on String objects. On the first line, when the
JavaScript interpreter sees trim(), it first looks for a trim() method on the String
object’s prototype (that is, String.prototype.trim). In this case, String.proto-
type.trim exists, so the interpreter invokes it.

 On the second line, when the JavaScript interpreter sees hasOwnProperty(), it
again looks for String.prototype.hasOwnProperty, but this time it doesn’t find it, so
it looks to the next object in the prototype chain: which in this case is Object.proto-
type. Object.prototype.hasOwnProperty exists, so the interpreter invokes it.

TIP Object.prototype.hasOwnProperty returns whether the current object
has the passed property defined. For more details, see https://devel-
oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object/hasOwnProperty).
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
http://www.it-ebooks.info/

304 CHAPTER 12 Under the hood of jQuery UI
NOTE For a more thorough explanation of prototype chains in JavaScript, see
http://yehudakatz.com/2011/08/12/understanding-prototypes-in-javascript/.

Having a complete understanding of prototype chains isn’t necessary as the widget
factory automatically builds the chain for you when you create widgets. Say I write the
following code:

$.widget("tj.customDialog", $.ui.dialog, {});
var instance = $.tj.customDialog({}, "<div>");

This defines the same customDialog widget that inherits from the jQuery UI dialog.
Then it creates an instance of the new customDialog and assigns it to an instance vari-
able. After this code runs, suppose you want to add a new line that uses the instance:

instance.[?]

Because of the widget’s prototype chain, when you use the dot notation here, the inter-
preter looks up members in the following order. Note that the order is extremely impor-
tant as many of these objects contain methods and properties with the same names:

■ The instance object—The instance object itself has data unique to the element it’s
instantiated on; it’s not shared by other instances of the widget. The instance
has an options object containing the current state of its options, for example,
and an element property that refers to the DOM element the instance is associ-
ated with.

■ $.tj.customDialog.prototype—If a member isn’t found on the instance, the
interpreter checks the customDialog widget’s prototype object next. Because
your code to create this widget specified an empty prototype object, this object
contains only a few properties added by the widget factory (widgetName,
namespace, and so on).

■ $.ui.dialog.prototype—If a member isn’t found on the customDialog’s pro-
totype, the interpreter consults its parent widget—in this case, dialog—next. The
dialog widget’s prototype has all the dialog widget’s methods and properties.

■ $.Widget.prototype—If a member isn’t found on dialog’s prototype, the inter-
preter moves on to the base widget prototype. The $.Widget.prototype methods
and properties are documented at http://api.jqueryui.com/jquery.widget/.

■ Object.prototype—This is the end of the line for all prototype chains. If the
interpreter doesn’t find a property here, it returns undefined. If you’re invok-
ing a method and the interpreter doesn’t find it, the interpreter throws a
TypeError (because undefined is not a function).

Figure 12.6 shows a visual representation of this lookup process.
 Having an understanding of a widget’s prototype chain is important when building

custom widgets. When you extend a widget, you inherit members from parent widgets
(and ultimately $.Widget.prototype), but you can override them by including a
member on new widget’s prototype object. Let’s look at examples of that.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

305Advanced widget prototype methods and properties
12.4.2 Using a widget’s default element to streamline initialization

One of the properties on $.Widget.prototype is defaultElement, which is an ele-
ment to use when a widget instance is constructed without providing an element. How
do you create a widget instance without providing an element?

 Remember from chapter 8 that in addition to plugin-based initialization, all widgets
created with the widget factory have constructor functions that can initialize widgets.

instance.element

Instance object

$.tj.customDialog.prototype

$.ui.dialog.prototype

$.Widget.prototype

Object.prototype

Yes. Here
it is.

[<div>]

No

No

Nope

Do you have an
element property?

1

Do you have
a destroy
method?

1

Do you?2

You?3

You?4

instance.destroy()

Yes. Here
it is.

function() {}

Instance object

$.tj.customDialog.prototype

$.ui.dialog.prototype

$.Widget.prototype

Object.prototype

$.widget("tj.customDialog", $.ui.dialog, {});
var instance = $.tj.customDialog({}, "<div>");

Figure 12.6 Visualization of the JavaScript interpreter accessing a property or method on an instance.
The first example looks for an element property and immediately finds it on the instance object. The
second example looks for a destroy() method and has to go through the instance object, the cus-
tom widget’s prototype, and the dialog widget’s prototype, before finding the method on the base wid-
get’s prototype.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 12 Under the hood of jQuery UI
The following uses the dialog widget’s constructor function to initialize a dialog widget
on a newly created <div>:

$.ui.dialog({}, "<div>");

The first argument of each widget’s constructor is an object containing the options to
use, and the second argument is the element to create the widget on. What we
haven’t discussed is that you can omit the second argument, and this example does
the same thing:

$.ui.dialog({});

This works because when only one argument is provided to the constructor function,
the widget factory uses $.Widget.prototype.defaultElement, which is "<div>". Indi-
vidual widgets can override the defaultElement on their prototype to specify more
appropriate elements. For instance, because spinners need to be created on <input>
elements, $.ui.spinner.prototype.defaultElement is set to "<input>". The follow-
ing code creates a new spinner and appends it to the <body>:

 $.ui.spinner({}).widget().appendTo("body");

NOTE Remember that the widget() method returns the outer container
of a widget. The preceding code needs this call because internally the spin-
ner widget wraps the <input> element with additional markup. So
$.ui.spinner({}).appendTo("body") alone would append the <input>
but lose that additional markup.

When creating custom widgets, it’s important to update this property if it’s necessary
for the widget you’re creating. A <div> isn’t appropriate for your todo widget from
chapter 8 as it uses elements. To use a different defaultElement, you include the
property on your widget’s prototype object:

$.widget("tj.todo", {
 defaultElement: "",
 options: { ... },
 ...
});

With this in place, you can use the constructor functions and omit the second
argument. The following creates a new todo widget, adds two tasks, and appends it to
the <body>:

var instance = $.tj.todo({});
instance.add("Task One");
instance.add("Task Two");
instance.element.appendTo("body");

Let’s look at a few more properties on $.Widget.prototype.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

307Advanced widget prototype methods and properties
12.4.3 Supporting embedded-window use in widgets

If you have perused the various widget properties, you may be surprised to see $.Widget
.prototype.document and $.Widget.prototype.window. On the base widget’s proto-
type, these properties are references to the browser’s document and window objects. So
why do these properties exist?

 They exist for widgets used in <iframe> elements—which have their own docu-
ment and window objects. Real-world uses of <iframe> elements are typically complex,
and are frequently used to interact with third-party services, so you’ll build a simple
example to show the intention of these two properties.

 Let’s start with this:

<div>Parent</div>
<iframe src="child.html"></iframe>

<script>
 $.widget("tj.blink", {
 _create: function() {
 this._on(window, {
 click: function() {
 this.element.fadeOut("fast").fadeIn("fast");
 }
 });
 }
 });

 $("div").blink();
 var child = $("iframe").load(function() {
 $("div", child.contents()).blink();
 });
</script>

This code defines the extremely useful blink widget, which makes an element blink
when the user clicks anywhere on the window. In this example, you initialize a blink
widget on the page’s <div> elements B, and, after the <iframe> loads, you initialize a
blink widget on each of its <div> elements C.

TIP jQuery UI supports creating widgets in multiple windows as is shown
here. But it’s a one-way street; after you create a widget in a window, you can’t
move it to another window and expect it to work. (Technically it might work in
some cases, but moving widgets across windows in general isn’t supported by
jQuery UI.)

With this approach, any click on the window makes all blink widgets, well, blink. This
includes elements on the main page, as well as elements in the <iframe>. To switch up
this logic, let’s return to the code that attaches the click event handler to the window:

this._on(window, {
 click: function() { ... }
});

Embeds
child.html

Initializes a blink widget
on each <div>

B

Initializes a blink widget
on each <div> in the
<iframe>C
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 12 Under the hood of jQuery UI
For example’s sake, let’s change it to use the window property on the instance (which
is set to this):

this._on(this.window, {
 click: function() { ... }
});

Whenever a widget is initialized, its instance object is given window and document prop-
erties that point to the window and document objects of the window it was created in.
After making this change, blink widgets blink only on clicks of their respective windows.

 When creating custom widgets, use of the instance window and document objects (as
opposed to the window and document global objects) is recommended to support
embedded-window use. Although in this example the code works in both cases (albeit
with different behavior), many times this isn’t the case, such as getting coordinates for
positioning. jQuery UI uses the window and document instance properties internally.

12.4.4 Displaying elements with _show() and _hide()

Recall from chapter 6 that several of the jQuery UI widgets provide show and hide
options that tie into the jQuery UI effects suite. Under the hood, all these widgets
defer to $.Widget._show() and $.Widget._hide() to do the dirty work of processing
the options.

 To see how you can use these methods yourself, let’s build a small example using a
widget that adds a notification message to the bottom corner of the screen. The wid-
get is shown in action in figure 12.7.

The code used to build this widget is shown in the following listing.

NOTE Some code is omitted to focus on the effects integration. You can find
the full code and see this widget live at http://jsfiddle.net/tj_vantoll/phkCB/.

$.widget("tj.notification", {
 options: {
 show: true,
 hide: true

Listing 12.1 A notification widget

Figure 12.7 View of the notifica-
tion widget you’ll build

Defaults the show and
hide options to true

B

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

309Advanced widget prototype methods and properties
 },
 _create: function() {
 this.button = $("<button>Close</button>")
 .addClass("tj-notification-button")
 .button({
 text: false,
 icons: { primary: "ui-icon-closethick" }
 })
 .appendTo(this.element);
 this._on(this.button, {
 click: this.close
 });

 this.element
 .addClass("ui-widget ui-widget-content tj-notification")
 .position({
 my: "right-10 bottom-10",
 at: "right bottom",
 of: window
 });
 },
 open: function() {
 this._show(this.element, this.options.show);
 },
 close: function() {
 this._hide(this.element, this.options.hide);
 }
});

The code in _create() performs the setup necessary—creating the close button and
positioning the notification—but for the effects integration we’re mostly interested in
the two options, as well as the open() and close() methods.

 The start of the code declares two options, show and hide, and defaults them to
true, which—as you may recall from chapter 6—tells jQuery UI to use a fade in and
fade out effect, respectively B.

 The options are used in the open() and close() methods, which are wrappers of
the _show() C and _hide() D methods. Both _show() and _hide() take three argu-
ments: an element, an options argument, and an optional callback function (which
we’re not using here).

 What’s cool about this approach is that’s all the code you need to tie into the
jQuery UI effects suite. The following creates a notification that fades in over 300 mil-
liseconds and hides with the jQuery UI blind effect:

$("<div>Your account has been updated.</div>")
 .appendTo("body")
 .notification({
 show: 300,
 hide: "blind"
 });

For a full listing of the types of data you can use for show and hide, either return to
chapter 6 where we first discussed this, or check out the options’ documentation at

Calls the close() method
when the close button
is clicked

Positions the notification
at the bottom right of
the screen

Uses _show()
to display the
notification

C

Uses _hide()
to hide the
notification

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 12 Under the hood of jQuery UI
http://api.jqueryui.com/jquery.widget/#option-hide and http://api.jqueryui.com/
jquery.widget/#option-show.

12.4.5 Customizing options on the fly

The last widget method we’re going to discuss is one of the more useful ones; it’s the
basis of how jQuery Mobile’s autoinitialization works. The method is
_getCreateOptions(), and it gives you the ability to define options during widget ini-
tialization. When you provide a _getCreateOptions() method, you can define
options that override the widget’s defaults. Consider the following code that creates a
test widget:

 $.widget("tj.test", {
 option: {
 foo: "bar"
 },
 _getCreateOptions: function() {
 return { foo: "bang" };
 }
});

$.tj.test({}).options.foo;
$.tj.test({ foo: "biz" }).options.foo;

Each time the test widget’s constructor function is called, the _getCreateOptions()
method is invoked B. Here the _getCreateOptions() method returns a hardcoded
foo option, which overrides the widget’s default value for this option ("bar")
with "bang".

 Because of this override, when you create an instance with no options, its foo
option is set to "bang" C. Despite the override, user-supplied options still override
the values given in _getCreateOptions(); therefore, your second instance maintains
the "biz" option that was passed to its constructor D.

 Now that you have an idea of how _getCreateOptions() works, let’s see how this is
useful, starting with a few ways that jQuery UI itself uses these methods. The jQuery UI
selectmenu widget uses the following method:

_getCreateOptions: function() {
 return { disabled: this.element.prop("disabled") };
}

The context of _getCreateOptions() (this) is set to the widget instance, which gives
access to the element the widget is being created on. The selectmenu widget uses that
reference to default its disabled option to whether the <select> it’s initializing is dis-
abled. Deriving widget options from element attributes like this is the most common
use of _getCreateOptions(). The spinner widget does something similar.

 You may remember from chapter 3 that the spinner widget has min, max, and step
options, but you can also provide these values as HTML attributes. The following cre-
ates a spinner widget with a min option of 2, a max option of 20, and a step option of 2:

Defaults the foo
option to “bar”

Uses a foo
option of

“bang”

B

“bang”C
“biz” D
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jqueryui.com/jquery.widget/#option-show
http://api.jqueryui.com/jquery.widget/#option-show
http://www.it-ebooks.info/

311Using autoinitialization to remove boilerplate code
<input min="2" max="20" step="2">
<script>
 $("input").spinner();
</script>

The spinner widget makes this possible with the following _getCreateOptions()
method:

_getCreateOptions: function() {
 var options = {},
 element = this.element;

 $.each(["min", "max", "step"], function(i, option) {
 var value = element.attr(option);
 if (value !== undefined && value.length) {
 options[option] = value;
 }
 });

 return options;
}

Here the widget loops over an array of three strings—"min", "max", and "step"—and
checks whether each exists as an option. (The value.length check also makes sure
the attribute value has at least one character in it.) The attributes that do have values
are added to an options object that’s returned at the end of the method.

 The approach of initializing widgets based on their attributes is cool, and leads to
another question: why not allow any option to be specified as an attribute? Let’s see
how to do that next.

12.5 Using autoinitialization to remove boilerplate code
If you work with jQuery UI long enough, you’ll notice yourself writing a lot of code
that initializes widgets. Your flight search example from the previous chapter included
this block:

$("#from-airport").autocomplete(...);
$("#to-airport").autocomplete(...);
$("#date").datepicker();
$("#hops").buttonset();
$("#order-by").selectmenu();

This code becomes tedious because you’re doing the same task: selecting elements
and converting them to widgets. When the jQuery Mobile project—which uses the
widget factory for its widgets—came out, they provided a new technique for initializ-
ing widgets known as autoinitialization.

 Autoinitialization works by configuring elements with a series of attributes, and
then letting jQuery Mobile turn those elements into widgets automatically. Consider
the following jQuery Mobile application:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

312 CHAPTER 12 Under the hood of jQuery UI
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>jQuery Mobile</title>

 <link rel="stylesheet" href="//code.jquery.com/mobile/1.4.2/
jquery.mobile-1.4.2.min.css">

 <script src="//code.jquery.com/jquery-1.11.1.min.js"></script>
 <script src="//code.jquery.com/mobile/1.4.2/jquery.mobile-

1.4.2.min.js"></script>
</head>
<body>

<div data-role="page">
 <div data-role="header">
 <h1>jQuery Mobile Rocks!</h1>
 </div>
 <div data-role="main" class="ui-content">
 <input type="button" data-icon="gear" value="Settings">
 </div>
</div>

</body>
</html>

When this page loads, three widgets are created: a page, a header, and a button. The
display of this page is shown in figure 12.8.

 Notice that you didn’t need to write a single line of JavaScript to create this UI and
these widgets, which is cool, but how does this work? And more importantly, how can
you get this behavior with jQuery UI? To answer, let’s dig into jQuery Mobile’s code.

12.5.1 How jQuery Mobile’s autoinitialization works

The magic starts in a method that jQuery Mobile adds to $.fn: enhanceWithin(). The
primary job of enhanceWithin() is detecting which elements should be enhanced in
the given element. The following adds a new <input type="button"> element to the
page and converts it to a button widget:

$(".ui-content").append("<input type='button' value='New!'>");
$(document).enhanceWithin();

Figure 12.8 Display of a jQuery
Mobile app with one button
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

313Using autoinitialization to remove boilerplate code

D

To make this possible, each jQuery Mobile widget has an initSelector property that
tells the enhanceWithin() method what elements should be enhanced. Because
$.mobile.button.prototype.initSelector contains "input[type='button']",
jQuery Mobile knows to turn it into a button widget.

 Internally, jQuery Mobile calls enhanceWithin() on each page to initialize widgets.
For your purposes, what’s interesting is what enhanceWithin() does under the hood,
or rather, what it doesn’t. The following is a condensed version of jQuery Mobile’s
enhanceWithin() method:

var index,
 widgetElements = {},
 that = this;

$.each($.mobile.widgets, function(name, constructor) {
 var elements = $.mobile.enhanceable(
 that.find(constructor.initSelector));

 if (elements.length > 0) {
 widgetElements[constructor.prototype.widgetName] = elements;
 }
});

for (index in widgetElements) {
 widgetElements[index][index]();
}

This code starts by looping over all of jQuery Mobile’s widgets B. $.mobile.widgets
is an object where the key is the name of the widget and the value is the widget’s con-
structor—which is how the name and constructor functions are assigned to the name
and constructor variables in the $.each() callback. For the button widget, name and
constructor are set to "button" and $.mobile.button, respectively.

 For each widget, the code looks for any elements that match the widget’s init-
Selector property and assigns the matches to an elements variable C. The context
(that, in this case) is set to the jQuery object enhanceWithin() was invoked on. In a
$(document).enhanceWithin() call, that is set to a jQuery object containing the
document. If there are elements that matched the widget’s initSelector, they’re
added to the widgetElements object D.

 After that, the code loops over each widget that has matches E and invokes those
widgets’ respective plugins F. The widgetElements[index][index]() line is a bit
weird, because the index variable is the widget’s name. So in your button example,
you go into this loop with index set to "button". widgetElements["button"]
resolves to a jQuery object with all matched elements, and widgetElements["but-
ton"]["button"]() is a fancy way of writing widgetElements.button.button(),
which invokes the plugin on all matched elements.

 To take a step back, remember how I said the important part of this code is what
isn’t here? There’s no code to handle options; the enhanceWithin() method invokes
the plugin with no arguments. But your original jQuery Mobile example used <input
type="button" data-icon="gear" value="Settings"> (note the data-icon="gear"

Loops over all widgets
in jQuery Mobile

B Finds all
elements
that match
the widget’s
initSelector

C

Adds any
matching element

to a collection E

Loops over
each widget
with matches

Invokes the
widget’s
plugin

F

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

314 CHAPTER 12 Under the hood of jQuery UI
attribute), and figure 12.8 shows that a gear showed up. You can use your knowledge
of the widget factory from earlier in this chapter to see that an icon option is indeed
set on the element:

$("input").button("instance").options.icon

So…how did that happen?

12.5.2 jQuery Mobile’s widget extension

The answer is the widget factory’s _getCreateOption() method. jQuery Mobile takes
the default $.Widget.prototype._getCreateOptions() method (which does noth-
ing), and changes it to populate options based on the element’s attributes. The follow-
ing shows the complete code:

var rcapitals = /[A-Z]/g,
 replaceFunction = function(c) {
 return "-" + c.toLowerCase();
 };

$.extend($.Widget.prototype, {
 _getCreateOptions: function() {
 var option, value,
 elem = this.element[0],
 options = {};

 for (option in this.options) {
 value = $.mobile.getAttribute(elem,
 option.replace(rcapitals, replaceFunction));

 if (value != null) {
 options[option] = value;
 }
 }

 return options;
 }
});

This code starts by looping over each option B. (Remember the context of
_getCreateOptions() is set to the instance object.) For each option, it calls a
$.mobile.getAttribute() method C. Internally, $.mobile.getAttribute() gets an
HTML5 data-* attribute off the element and does some data-type coercion (for
instance, converting "false" to false, "2" to 2, and so on). The name of the attribute
$.mobile.getAttribute()retrieves is determined by this call:

option.replace(rcapitals, replaceFunction)

This takes the name of the option (the option variable) and replaces all capital letters
in the name with a "-" and the letter lowercased. This code would convert the dialog
widget’s "autoOpen" option to "auto-open". jQuery Mobile’s $.mobile.getAttrib-
ute() would then look for a "data-auto-open" attribute on the element.

“gear”

Loops
er each
option

B

Retrieves the
attribute’s
value

C

Includes the option from
the attribute if presentD
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

315Using autoinitialization to remove boilerplate code
 The rest of the code is straightforward. When a data-* attribute is found for the
given option, it is added to the options object D, which becomes the instance’s set of
starting options.

 This code explains why <input type="button" data-icon="gear" value="Set-
tings"> had its icon option automatically set to "gear". When this widget is initial-
ized, jQuery Mobile’s _getCreateOptions() method loops over all the button
widget’s options, searches the element for data-* attributes that align with the options,
finds one (data-icon), and initializes the widget with that option set.

 This type of initialization is known as declarative initialization. As opposed to
imperative initialization—where you need to list out option values explicitly in code—
declarative initialization lets you associate a widget’s options directly on the HTML ele-
ments. I personally find declarative initialization to be elegant as it removes boiler-
plate JavaScript code.

 But this is jQuery Mobile code, not jQuery UI code. Because this code is so simple,
you can port this to use with the jQuery UI widgets. Let’s look at how to do that.

12.5.3 Autoinitializing jQuery UI widgets

If you look at the preceding jQuery Mobile code, the only jQuery Mobile–specific
code was the $.mobile.getAttribute() method. Therefore, if you abstract that code
from jQuery Mobile, you can bring the benefits of declarative initialization to jQuery
UI. This approach is shown in the following listing.

$.extend($.Widget.prototype, {
 _getCreateOptions: function() {
 var option,
 value,
 options = {};

 for (option in this.options) {
 value = this.element.data(option);
 if (value != null) {
 options[option] = value;
 }
 }
});

There’s a lot of code here, but most of this you’ve seen before. The only real differ-
ence is the use of the jQuery Core data() method to retrieve the data-* attributes
from the element B. To get a sense of what data() is doing for you, look at the follow-
ing code:

<div data-one="false" data-two="2" data-foo-bar="foo"></div>
<script>
 $("div").data("one") === false;
 $("div").data("two") === 2;
 $("div").data("fooBar") === "foo";
</script>

Listing 12.2 Declarative initialization of jQuery UI widgets

Retrieves the data-*
attribute from the element

B

true
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 12 Under the hood of jQuery UI
As you can see, the data() method takes care of performing data type conversions, as
well as converting multiword attributes into camel-case variables. Why doesn’t jQuery
Mobile use this? Its $.mobile.getAttribute() method has additional (jQuery Mobile
specific) logic that forces it to replicate some of the functionality built in to data(),
which you don’t need here. With this setup in place, you can now write code like this:

<div id="dialog" data-height="200" data-width="500"></div>
<script>
 $("#dialog").dialog();
</script>

This creates a dialog that’s 200 pixels tall and 500 pixels wide, and you didn’t have to
specify any of those options in JavaScript. This approach handles reading attributes,
but you’re still not autoinitializing widgets. You still had to explicitly select an element
and call the dialog plugin on it.

 Remember that jQuery Mobile has a whole construct built around this with the
initSelector properties. You can build something lightweight that works like that
fairly easily. Consider the following approach:

$.extend($.fn, {
 enhance: function() {
 this.find("[data-role]").addBack("[data-role]")
 .each(function() {
 var element = $(this),
 role = element.attr("data-role");
 element[role]();
 });
 return this;
 }
});

This adds a new enhance() jQuery plugin that finds all elements with a data-role
attribute and initializes a widget with that value on the element.

NOTE Because the find() method selects only child elements, the addBack()
call in the preceding code ensures that if a data-role attribute is applied to the
element enhance() is invoked on, that element is also selected. For example,
$("<ul data-role='todo'>").find("[data-role]") doesn’t select
the newly created , but $("<ul data-role='todo'>").find(
"[data-role]").addBack("[data-role]") does. For more information on
addBack(), see http://api.jquery.com/addBack/.

This new plugin means you can rewrite your previous example as follows:

<div data-role="dialog" id="dialog" data-height="200"
 data-width="500"></div>
<script>
 $(document).enhance();
</script>
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

317Using autoinitialization to remove boilerplate code
Notice that to make this work, you had to add a data-role="dialog" attribute to the
element. You still had to write some JavaScript here, but the great thing is it’ll handle
as many widgets as you need, including nested widgets. The following example creates
a tabs widget, progressbar widget, and slider widget:

<div data-role="tabs">

 One
 Two

 <div id="one">
 <div data-role="progressbar" data-value="false"></div>
 </div>
 <div id="two">
 <div data-role="slider" data-min="0" data-max="50"
 data-step="10"></div>
 </div>
</div>
<script>
 $(document).enhance();
</script>

Because the implementation is based on the widget factory, it also works with custom
widgets—such as your to-do list:

<ul data-role="todo">
 Clean dishes
 Walk dog
 Mop floor

<script>
 $(document).enhance();
</script>

This approach also works well when you dynamically insert HTML chunks into an
existing document. The technique is common with MVC frameworks like Backbone,
so we’ll have a more thorough discussion of that in appendix C (which is specifically
about using jQuery UI with Backbone).

 If you’re interested, the code we discussed to use declarative widgets is available as
a library on GitHub at https://github.com/tjvantoll/Declarative-Widgets. Its only
dependencies are jQuery Core and the widget factory, and it supports the use of AMD.

 The use of declarative widgets isn’t right or wrong; it gives you flexibility in how
you define widgets used in your applications. I personally find it elegant as it usually
removes JavaScript boilerplate, but some prefer the explicitness of imperative
JavaScript-based initialization. Declarative initialization does get verbose with more
complex options—for example, data-icons='{"primary":"ui-icon-heart"}' to get
a heart icon on a button widget—but for most options I find HTML-based initializa-
tion cleaner and easier to read.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 12 Under the hood of jQuery UI
12.6 Summary
The way we built the declarative widgets library shows that it’s valuable to know what’s
going on under the hood. Often knowing the inner workings can lead to solutions you
may not have thought existed. Who knew the widget factory’s _getCreateOptions()
method was one of the cornerstones of the jQuery Mobile project?

 And it goes beyond the methods we discussed in this chapter, or in this book.
Despite all that it does, the jQuery UI source code is surprisingly approachable. If
you’re stuck in a tricky situation, or are curious how the library works, digging into the
source can be a valuable learning experience. It’s how I got started on the journey
that led to this book ☺.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
Learning jQuery

Because this is a book on jQuery UI and not jQuery Core, I assume the reader has
some knowledge of the jQuery library before starting this book. Because I often get
asked, “What’s the best way to learn jQuery?” I thought I’d gather a few of the
resources that have worked for me.

A.1 Experimentation
Different people learn in different ways, but what has helped me is digging right
into code. The appeal of jQuery is that it makes difficult tasks extraordinarily easy
(its motto is write less, do more, after all!), and seeing results visually provides amaz-
ing feedback. Here are some of my favorite ways to experiment.

A.1.1 Try jQuery (try.jquery.com)

My go-to starting point for learning jQuery is Try jQuery—which is available at
http://try.jquery.com. The great thing about Try jQuery is that it’s an interactive
tutorial that you must actively participate in to advance. Figure A.1 shows an exam-
ple exercise.

 This example teaches how to select elements with jQuery; it specifically asks the
user to select the <h2> element in the HTML provided. The user must type this in
the console located at the bottom of the screen (which works the same as the
browser’s developer tools that we’ll look at in a minute). In the screenshot, I have
already typed the correct answer, $("h2"), and the UI responded with a success
message and a Continue button that takes me to the next exercise.

 I highly recommend going through the entire set of Try jQuery tutorials as a
starting point to learning jQuery.
319

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

320 APPENDIX A Learning jQuery
A.1.2 Online testing tools

Another set of learning tools I’m fond of are the online environments that let you run
web code—such as HTML, CSS, and JavaScript—in the browser. You can easily experi-
ment without worrying about the setup and boilerplate that typically goes into build-
ing a web page.

 Each of these tools has different features, but they all function similarly. The next
three figures show the same code—appending a new <h2> to the <body> and under-
lining its text—running in the three most popular of these tools: JS Bin (figure A.2),
jsFiddle (figure A.3), and CodePen (figure A.4).

Figure A.1 An example exercise from Try jQuery about selecting elements

Figure A.2 Live coding in JS Bin
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

321Experimentation
Each tool gives you an area to write HTML, CSS, and JavaScript, and then shows you
the result in another area. For the purposes of learning jQuery, each tool has a conve-
nient way of adding jQuery to your example. In JS Bin, it’s the Add library button; in
jsFiddle, it’s the Frameworks & Extensions section; and in CodePen, it’s the cog or
gear icon at the top of the JS panel.

 Which of these tools to use is largely a matter of personal preference, and I encour-
age you to play with them all to decide which you like best. Personally, I’m a fan of jsFid-
dle because of its screen layout (I like the four panels in a grid) and how it handles URLs
for sharing test cases with others. I’m such a fan of jsFiddle that I use it in numerous
examples throughout this book. You can learn more about jsFiddle in chapter 1.

A.1.3 The browser’s developer tools

One of the best ways to experiment with jQuery is to use the browser’s built-in devel-
oper tools. I recommend learning the browser’s developer tools early on because
you’ll acquire knowledge that extends far beyond learning jQuery. In my opinion, it’s
the single most valuable tool a web developer has, enabling you to inspect the DOM,
alter CSS, profile your applications, and more.

 Although all browsers’ developer tools are different, they have consolidated
around a few core pieces of functionality, including the keyboard shortcut needed to
open them. You can use F12 on Windows and Cmd + Option + I on OS X.

Figure A.3 Live coding in jsFiddle

Figure A.4 Live coding in CodePen
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

322 APPENDIX A Learning jQuery
TIP For Safari on OS X, you first have to enable the developer tools by going
to Preferences ➞ Advanced and clicking the Show Develop Menu in Menu
Bar check box.

The main task worth familiarizing yourself with is the browser’s console, as it lets you
execute JavaScript code and is great for experimentation. Figures A.5 and A.6 show
the same example of adding an underlined <h2> to a page using the developer tools
in Chrome and Internet Explorer.

Figure A.5 Adding an <h2> with Chrome’s developer tools

Figure A.6 Adding an <h2> with Internet Explorer’s developer tools
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

323Reading
You can do a lot with the browsers’ develop tools, and it’s worth taking time to learn
them. For a more detailed guide on these tools, you can use the following resources:

■ Chrome—https://developers.google.com/chrome-developer-tools/
■ Internet Explorer—http://msdn.microsoft.com/library/ie/bg182326(v=vs.85)
■ Firefox—https://developer.mozilla.org/en-US/docs/Tools
■ Safari—https://developer.apple.com/library/safari/documentation/AppleAppli-

cations/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html

Chrome’s documentation is particularly good, and it also has a free interactive course
that works exactly like Try jQuery at http://discover-devtools.codeschool.com/. If
you’re a Chrome user, it’s a great set of tutorials to go through; even seasoned devel-
opers can learn a thing or two.

A.2 Reading
After you’ve experimented with jQuery, a well-written resource can help you learn the
finer points of the library, and to understand why the library works as it does. I’ll give
a few recommendations for reading material.

A.2.1 jQuery Learning Center (learn.jquery.com)

The jQuery Learning Center (http://learn.jquery.com) is a collection of articles and
tutorials about all things jQuery. Here you can find everything from jQuery 101 to
tutorials on advanced features of the library. You can even find material on jQuery UI
(some authored by yours truly). Figure A.7 shows the site with a sampling of topics.

Figure A.7 Sampling of topics on the jQuery Learning Center. The screenshot is from http://
learn.jquery.com/using-jquery-core/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://developer.apple.com/library/safari/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html
http://learn.jquery.com/using-jquery-core/
http://learn.jquery.com/using-jquery-core/
http://www.it-ebooks.info/

324 APPENDIX A Learning jQuery
What’s cool is that the Learning Center is an open source project that’s officially main-
tained by the jQuery Foundation. The project is hosted on GitHub at https://
github.com/jquery/learn.jquery.com, and there you can report issues with the site,
contribute fixes, and even write your own articles!

A.2.2 Books

Although the Learning Center is great for reference material, it doesn’t give you the
thorough walkthrough of jQuery that you get from a whole book dedicated to it.
There are a ton of books on jQuery out there, so to help you sift through the list, I’ll
make two recommendations for books I’ve personally read.

 Although now slightly dated, jQuery Enlightenment by Cody Lindley (2009) is the
best free book I know of on jQuery. The book is full of examples that link to live code
on JS Bin (this book is where I got the inspiration to use jsFiddle examples through-
out the book), which in my opinion significantly enhances the learning experience.
jQuery Enlightenment is freely available as a PDF on http://jqueryenlightenment.com/.

 About a year after I read jQuery Enlightenment, Bear Bibeault and Yehuda Katz
released the second edition of jQuery in Action (Manning, 2010). This book fascinated
me, as it explained not just how jQuery works, but also why it works the way that it
does. It inspired me to mimic this approach and answer the whys behind jQuery UI in
this book. The second edition of jQuery in Action is now a little dated. Aurelio De Rosa
is completing a third edition to get the content up to speed. You can check out the
third edition of jQuery in Action at http://manning.com/derosa/.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/learn.jquery.com
https://github.com/jquery/learn.jquery.com
http://www.it-ebooks.info/

appendix B
How jQuery

 UI tests jQuery UI

To verify that the various features of jQuery UI work as intended, the library has a
series of unit tests that run in all the library’s supported browsers. The tests them-
selves are written using the QUnit testing library. Because several excellent QUnit
tutorials are online (http://qunitjs.com/cookbook/ is a particularly good one), I
won’t give one here. Instead, I’ll show how jQuery UI tests its own widgets, using
examples directly from the jQuery UI source code. Hopefully, looking at how
jQuery UI tests its own widgets will help you approach testing yours.

B.1 Testing options
jQuery UI attempts to test every potential value of every option for every widget.
Although the test coverage isn’t perfect, the majority of options have tests to verify
their behavior.

NOTE The $("#spin") call selects an <input id="spin"> element in the
<div id="qunit-fixture">. If you’re not familiar with QUnit, the fixture
<div> is a place to put markup to use during the tests. QUnit resets the
markup in the fixture to its initial state before each test—ensuring changes
made in one test don’t affect others.

Here’s the spinner widget’s tests for its max option:

test("max", function() {
 expect(3);
 var element = $("#spin").val(1000).spinner({ max: 100 });
 equal(element.val(), 1000, "value not constrained on init");

 element.spinner("value", 1000);

Declares the number
of expected assertions

B

Asserts the value is
preserved on init C
325

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

326 APPENDIX B How jQuery UI tests jQuery UI
 equal(element.val(), 100, "max constrained in value method");

 element.val(1000).blur();
 equal(element.val(), 1000, "max not constrained if manual entry");
});

The test starts by calling QUnit’s expect() function, which tells QUnit how many asser-
tions this test should perform B. If this test completes, and exactly three assertions
were not performed, QUnit will fail the test. Explicitly declaring the number of asser-
tions acts as a safeguard; it ensures you don’t include an assertion that QUnit can’t
execute, which may happen during a refactor, or when dealing with asynchronous
code. The call to expect() is important enough that jQuery UI sets the QUnit
requireExpects configuration variable to true (QUnit.config.requireExpects =
true), which tells QUnit to require a call to expect() in each test. With require-
Expects set, QUnit fails any test without an expect() call automatically.

 Next, this test does a few assertions to verify the max option’s behavior. The code
starts by setting the <input> element’s value to 1000, and then initializing a spinner
widget on it. The spinner’s max option is set to 100. The first assertion ensures that the
<input> element’s value wasn’t constrained by the max option, specifically, that the
value remained 1000 despite the max of 100 C. This behavior is for consistency with
the native <input type="number"> control. If you create a <input type="number"
value="1000" max="100"> element, its starting value is 1000.

 The next assertion checks the opposite behavior—that the value is constrained
when using the value() method. It does so by invoking the value() method with a
value of 1000, and asserting that the value was limited to the max (100) D.

 The last assertion is another check to ensure consistent behavior with <input
type="number"> controls. If a user manually types a number greater than the <input>
element’s max, the browser doesn’t update the <input> element’s value on blur. The
test makes sure the spinner adheres to this behavior by setting the <input> element’s
value to 1000, explicitly triggering a blur event, and asserting that the value of 1000
wasn’t altered E.

 These tests ensure that the spinner’s max option does what its documentation says
that it does. But this doesn’t cover everything the max option does. When using the
spinner widget with Globalize, you can also pass formatted strings to use as the max
option (appendix D looks at this in detail); therefore, the spinner widget includes a
test for that as well:

test("max, string", function() {
 expect(3);
 var element = $("#spin")
 .val(1000)
 .spinner({
 max: "$100.00",
 numberFormat: "C",
 culture: "en"

Asserts the value is
constrained in value() DAsserts the value is preserved

from manual entryE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

327Testing methods
 });
 equal(element.val(), "$1,000.00", "value not constrained on init");
 equal(element.spinner("option", "max"), 100, "option converted to

number");

 element.spinner("value", 1000);
 equal(element.val(), "$100.00", "max constrained in value method");
});

This is more or less the same test as before; the only difference is the use of strings for
the max option instead of numbers. jQuery UI attempts to write tests that cover every
type documented in its API documentation. For instance, the autocomplete’s source
option has tests that cover the three data types it accepts (array, object, and function).

 For your own widgets, testing each type of each option verifies that the widget
works correctly—especially as the widget is worked on over time. Looking for tests is
also a good criterion for judging third-party widgets. A third-party widget with thor-
ough test coverage is more likely to work as advertised than one without tests.

 Let’s move from options to how jQuery UI tests its methods.

B.2 Testing methods
Like options, jQuery UI attempts to test every documented method for every widget.
Importantly, though, jQuery UI doesn’t test internal, undocumented methods. Here’s
the test for the spinner widget’s isValid() method:

test("isValid", function() {
 expect(8);
 var element = $("#spin").spinner({
 min: 0,
 max: 10,
 step: 2
 }),
 spinner = element.spinner("instance");
 ok(!spinner.isValid(), "initial state is invalid");

 element.val("this is not a number");
 ok(!spinner.isValid(), "text string is not valid");

 element.val("0");
 ok(spinner.isValid(), "min value is valid");

 element.val("10");
 ok(spinner.isValid(), "max value is valid");

 element.val("4");
 ok(spinner.isValid(), "inbetween step is valid");

 element.val("-1");
 ok(!spinner.isValid(), "below min is invalid");

 element.val("11");
 ok(!spinner.isValid(), "above max is invalid");

 element.val("1");
 ok(!spinner.isValid(), "step mismatch is invalid");
});

Ensures nonnumeric
strings are invalid

B

Ensures numbers below
the min are invalid

C

Ensures numbers
above the max
are invalidD
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

328 APPENDIX B How jQuery UI tests jQuery UI
The test makes a number of assertions to ensure the isValid() method correctly
determines the validity of the spinner. It ensures that nonnumeric strings B, values
below the min C, and values above the max D are all invalid—among other checks for
the strings users can potentially input.

 What you don’t see here is that internally isValid() uses an _adjustValue()
method to do most of the dirty work of determining the validity of a user’s input. But
because jQuery UI tests only the public API, you won’t find a single test that hits
_adjustValue() directly. The _adjustValue() method gets indirectly tested when it’s
called from the public API methods.

 Like options, jQuery UI also tests all method variations. The spinner widget’s
stepUp() method, for instance, can be called with no arguments—that is, spinner(
"stepUp")—or with a single argument indicating the number of steps to take—that
is, spinner("stepUp", 5). Here’s the test that jQuery UI uses to verify this method
works as documented:

test("stepUp", function() {
 expect(4);
 var element = $("#spin").val(0).spinner({
 step: 2,
 max: 16
 });

 element.spinner("stepUp");
 equal(element.val(), 2, "stepUp 1 step");

 element.spinner("stepUp", 5);
 equal(element.val(), 12, "stepUp 5 steps");

 element.spinner("stepUp", 4);
 equal(element.val(), 16, "close to max and stepUp 4 steps");

 element.spinner("stepUp");
 equal(element.val(), 16, "at max and stepUp 1 step");
});

The test starts by creating a spinner widget with a value of 0, a step of 2, and a max
of 16. The first assertion calls the stepUp() method and ensures it increments the
<input> element’s value by a single step (from 0 to 2) B. The next assertion
invokes the stepUp() method with 5 and ensures it increments the <input> ele-
ment’s value by 5 steps (from 2 to 12) C. The last two assertions ensure that the
stepUp() method respects the spinner’s max and stops the value at 16—both when
the spinner’s value starts below the max D and when it starts at it E.

 Let’s move from options to how jQuery UI tests events.

B.3 Testing events
Like options and methods, jQuery UI attempts to test each documented event for
each widget. But testing events has a few unique twists. For one, events are often

Asserts stepUp()’s
behavior with no
arguments

B

Asserts stepUp()’s
behavior with an
argument

C

Asserts stepUp() is
constrained while at the max E

Asserts
stepUp() is

constrained
by the max

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

329Testing events
asynchronous, which requires extra logic in the tests. Listing B.1 shows a test for the
autocomplete widget’s focus event.

NOTE A little background: the autocomplete widget’s focus event is trig-
gered every time an item in the autocomplete’s menu is focused. By default,
the widget replaces the text <input> element’s value with the content of the
focused menu item, but canceling the focus event prevents this behavior.
The canceling behavior is what this test is concerned with.

var data = ["Clojure", "COBOL", "ColdFusion", "Java",
 "JavaScript", "Scala", "Scheme"];
asyncTest("cancel focus", function() {
 expect(1);
 var customVal = "custom value",
 element = $("#autocomplete").autocomplete({
 delay: 0,
 source: data,
 focus: function() {
 $(this).val(customVal);
 return false;
 }
 });
 element.val("ja").keydown();
 setTimeout(function() {
 element.simulate("keydown", { keyCode: $.ui.keyCode.DOWN });
 equal(element.val(), customVal);
 start();
 }, 50);
});

To start, you declare this test as an asyncTest() instead of a test() B. (You’ll see why
momentarily.) With a synchronous test, QUnit executes each line of code in the
test() and then moves on to the next test(). With an asynchronous test, QUnit
doesn’t continue when it reaches the end of an asyncTest(); instead, it waits for a call
to start() before continuing.

 Within the test, the first thing you do is instantiate an autocomplete widget with a
focus event callback. The callback sets the autocomplete’s <input> to a static string
C, and then returns false to cancel the event D. (Remember that you can return
false or call preventDefault() on the event argument—which isn’t used here—to
cancel an event.)

 Now, you need to trigger a focus event to get this callback to run. To make this
happen, you do two things. First, you need to show the menu. You do this by setting
the <input> element’s value to the first two characters of a match ("ja") and trigger-
ing a keydown event E. The next step is to simulate a down-arrow-key press (which
moves focus to the first option), but you can’t do that quite yet.

Listing B.1 Testing canceling the autocomplete’s focus event

Declares the test as
an asynchronous testB

Sets the
<input> to

"custom value"

C

Cancels
the event

D

Displays
the menu

E Delays execution by
50 milliseconds

F

Simulates
a down

arrow key G Asserts the
custom value is
in the <input>I

Restarts the
test runnerH
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

330 APPENDIX B How jQuery UI tests jQuery UI
Internally, jQuery UI displays the autocomplete menu asynchronously, with a delay
that’s configurable by the delay option. Your code needs to wait for the menu to dis-
play before it can continue. To do that, you wrap the rest of the test’s code in a set-
Timeout() call that delays its execution by 50 milliseconds F. Remember that because
this is an asyncTest(), QUnit won’t move on to the next test automatically. Instead, it
idles until start() is called.

 After the delay, the menu has now been displayed, so you can continue. You simu-
late a down-arrow key being pressed G, which moves focus to the first menu item and
triggers your focus event callback. You ensure that the focus event was triggered, and
that the <input> has the custom value (as opposed to “Java”) H. Then you invoke
start() to tell QUnit to continue with normal execution I.

 There are other tests for the focus event when it’s not canceled, and tests to make
sure focus event callbacks are triggered with the documented arguments (ui and
event). As you can see, testing events is a little more work, but the same premise
applies: jQuery UI attempts to test all its behavior that’s publicly documented.

 And this premise extends beyond options, methods, and events. Each widget has
tests to verify that the documented markup structures are parsed correctly, that the
appropriate ARIA attributes are added, that the documented class names are added to
the correct elements, and more. Writing and maintaining all these tests is no small
task, but it helps make jQuery UI the stable library that it is.

How jQuery UI automates its tests
We discussed all that jQuery UI does to write its tests, but we haven’t touched on
how jQuery UI runs them. To start, because QUnit runs in a browser, you can run the
library’s test suite yourself by downloading jQuery UI from https://github.com/jquery/
jquery-ui/ and opening tests/unit/all.html in your browser of choice.

But that’s a manual process; to automate this, jQuery UI does a couple of things.
First, every time code is committed to the master branch in the project’s git reposi-
tory, a Travis CI (Continuous Integration) server runs checks on the project—including
linting the project’s HTML, CSS, and JavaScript, as well as running all the unit tests.
The committer of the code is notified if any problems are found. You can view the
project’s Travis builds at https://travis-ci.org/jquery/jquery-ui.

Every commit also triggers a run on another CI server—TestSwarm. Unlike a more
fully featured CI server, TestSwarm serves a single purpose: executing HTML-based
tests across multiple browsers. Instead of opening an HTML page in dozens of
browser + OS combinations, the jQuery UI team can test in their local browser and
let TestSwarm handle the full suite of browsers that the library supports. You can
learn more about TestSwarm, including how to set up your own TestSwarm infra-
structure, at https://github.com/jquery/testswarm. You can view the results of the
jQuery UI test runs at http://swarm.jquery.org/project/jqueryui.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/jquery-ui/
https://github.com/jquery/jquery-ui/
http://www.it-ebooks.info/

331Testing events
jQuery simulate
In listing B.1 you may have noticed the call to simulate()—which isn’t a part of jQuery
Core or jQuery UI. This works because jQuery UI includes the jQuery simulate plugin
as part of its test suite. The simulate plugin is a small library specifically intended for
simulating browser mouse and keyboard events.

The plugin works much like the jQuery Core trigger() method, except it has a con-
venient API to set properties on the event object passed to callbacks. Consider the
call to simulate in listing B.1:

element.simulate("keydown", { keyCode: $.ui.keyCode.DOWN });

If you were to call trigger("keydown") instead, keydown event handlers wouldn’t
know what key was pressed—and you can’t include properties in the Event object
through the trigger() API. (Although you can explicitly create a jQuery.Event ob-
ject and pass it to trigger(). For more, see http://api.jquery.com/category/
events/event-object/.)

With simulate(), you have the convenience of quickly including properties on the
Event object. The plugin intelligently merges properties passed to its second argu-
ment with properties on an Event object that it creates internally.

In addition to the Event object niceties, the simulate plugin also provides a conve-
nient means of simulating the user dragging something across the screen. The fol-
lowing simulates the user moving an element 10 pixels left and 10 pixels down:

element.simulate("drag", {
 dx: 10,
 dy: 10
});

The draggable and sortable widgets use this abstraction heavily in their test suites. For
more on what the simulate plugin can do, and to download it for use in your own test
suites, check out its GitHub repository at https://github.com/jquery/jquery-simulate.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://api.jquery.com/category/events/event-object/
http://api.jquery.com/category/events/event-object/
http://www.it-ebooks.info/

appendix C
Using jQuery

 UI with Backbone

One question I frequently am asked is how jQuery UI works with MVC frameworks
like Backbone. This definitely is a topic worth discussing, because jQuery UI com-
pliments Backbone quite nicely. The best way to use the libraries is to let Backbone
do what it does best—manage an application’s data and views—and let jQuery UI
do what it does best—the UI. Let’s look at how to do that.

NOTE This guide is intended for readers who have some familiarly with
the Backbone library, although I’ll try to provide enough context so that
everyone can follow. To learn more about Backbone, you can refer to its
documentation at http://backbonejs.org/, or Addy Osmani’s excellent
(and free!) book on writing Backbone applications, available at http://
addyosmani.github.io/backbone-fundamentals/.

C.1 Building a Backbone view
To show the integration in action, you’ll build a small sample app to manage a gro-
cery list. Your grocery list will have a single piece of functionality: a button that
removes individual groceries from the list. The HTML you’ll use to build this is
shown here

<ul id="grocery-list">
<script type="text/template" id="grocery-template">
 <% _.each(groceries, function(grocery) { %>

 <%= grocery.name %>
 <button data-id="<%= grocery.id %>">Remove</button>

 <% }); %>
</script>
332

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://addyosmani.github.io/backbone-fundamentals/
http://addyosmani.github.io/backbone-fundamentals/
http://www.it-ebooks.info/

333Building a Backbone view
and here’s the JavaScript you need:

var Grocery = Backbone.Model.extend({}),
 GroceryList = Backbone.Collection.extend({
 model: Grocery
 }),
 GroceryView = Backbone.View.extend({
 template: _.template($("#grocery-template").html()),
 el: "#grocery-list",
 events: {
 "click button": "remove"
 }
 render: function() {
 this.$el.html(
 this.template({ groceries: this.model.toJSON() }));
 },
 remove: function(event) {
 var grocery = this.model.get(
 $(event.currentTarget).attr("data-id"));
 this.model.remove(grocery);
 this.render();
 }
 });

new GroceryView({
 model: new GroceryList([
 new Grocery({ id: 1, name: "Apples" }),
 new Grocery({ id: 2, name: "Bananas" }),
 new Grocery({ id: 3, name: "Peanut Butter" }),
 new Grocery({ id: 4, name: "Bread" }),
 new Grocery({ id: 5, name: "Milk" })
])
}).render();

NOTE You can play with this example at http://jsfiddle.net/tj_vantoll/H3fHr/.

If you’re not familiar with Backbone, don’t worry too much about the specific syntax
used here. Backbone works by separating the model data (in this case, Grocery and
GroceryList) from the view logic (in this case, GroceryView). But because we’re con-
cerned about jQuery UI integration, the main thing to focus on is the render()
method. Here, render() takes the data in the View’s model (GroceryList) and uses a
template to inject the data into the <ul id="grocery-list">.

TIP If you don’t understand what the template is doing here, refer to chap-
ter 11 where we discuss templating in more detail.

Because render() is what updates the HTML, it must be explicitly called every time
the view’s data changes. In this example, it’s called twice, once after the initial
GroceryList is created C and again in the remove() method, which is invoked after
the user clicks the Remove buttons in the UI B. Now that you have an example in
place, let’s see how you can add in jQuery UI widgets.

Renders the list
to reflect the
grocery removalB

Renders the initial
grocery listC
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

334 APPENDIX C Using jQuery UI with Backbone
C.2 Adding jQuery UI to the view
Let’s suppose that you want to change your example’s remove buttons to use a jQuery
UI button widget with an icon. You could start by selecting elements and invoking the
button widget’s plugin:

$("button").button({
 icons: { primary: "ui-icon-closethick" },
 text: false
});

This works initially, but as soon as you remove a grocery item from the list, the buttons
are no longer button widgets. Why? Every time you call render(), the entire view is
rerendered from scratch; the buttons you initially created are removed as soon as
render() is reinvoked.

 Because of this, you must put the widget instantiation in the render() method
itself. The following initializes button widgets on each of the remove buttons:

render: function() {
 this.$el.html(
 this.template({ groceries: this.model.toJSON() }));

 this.$el.find("button").button({
 icons: { primary: "ui-icon-closethick" },
 text: false
 });
}

TIP All Backbone views have el and $el properties. el is a reference to the
view element’s DOM node (as an HTMLElement), and $el is that same element
wrapped in a jQuery object. Because it is a jQuery object, the $el property
gives you direct access to all methods on $.fn—show(), hide(), find(),
html(), and so forth.

Now, each time this view is rendered, its HTML is replaced and button widgets are
instantiated on each of the newly created <button> elements. This approach works,
but it can be a bit verbose to manually instantiate widgets in render()—especially in
complex views with a lot of widgets. Let’s see how a library we built in chapter 12 can
help out with this.

C.3 Using declarative widgets
In chapter 12 you built the declarative widgets library, a simple means of creating wid-
gets through HTML attributes—rather than explicit JavaScript-based instantiation.
Moving the configuration to HTML from JavaScript can be elegant, and in my opin-
ion, it works well in MVC frameworks like Backbone.

 To see what I’m talking about, let’s add the declarative widgets library to your
example. Currently your template is using the following code to create <button>
elements:
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

335Using declarative widgets
<% _.each(groceries, function(grocery) { %>
 ...
 <button>Remove</button>
 ...
<% }); %>

To switch to using declarative widgets, you have to move the option configuration cur-
rently in JavaScript into HTML5 data-* attributes on the <button>:

<% _.each(groceries, function(grocery) { %>
 ...
 <button data-role="button" data-text="false"
 data-icons='{"primary":"ui-icon-closethick"}'>
 Remove
 </button>
 ...
<% }); %>

Here, the data-role attribute tells declarative widgets which widget the markup
should become, and the other data-* attributes correspond to button widget options.
So data-role="button" tells declarative widgets this should become a button widget,
data-text="false" says to set the button widget’s text option to false, and data-
icons='{"primary":"ui-icon-closethick"} says to set the button widget’s icons
option to {"primary":"ui-icon-closethick"}.

 Notice that for options that are objects—in this case, the icons option—the
declarative widgets library requires the corresponding HTML attribute be valid JSON.
Both the keys of the object must be enclosed in double quotes. So both data-
icons="{'primary':'ui-icon-closethick'}" (single quotes around the key) and
data-icons="{primary:'ui-icon-closethick'}" (no quotes around the key) aren’t
valid options when using declarative widgets.

 Now that you have the HTML attributes in place, you need to use it. The declara-
tive widgets library exposes a single enhance() jQuery plugin method, and all you
need to do is call it in render():

render: function() {
 this.$el
 .html(this.template({ groceries: this.model.toJSON() }))
 .enhance();
}

NOTE You can view the declarative approach to this example at http://
jsfiddle.net/tj_vantoll/Y5BRP/.

Notice that you’re not explicitly instantiating any widgets here. The single call to
enhance() finds all elements with a data-role attribute—specifically, itself and each
of its children—and initializes the appropriate widgets on those elements. Although I
personally find this approach elegant, it’s worth noting that neither the JavaScript-
based initialization nor the declarative initialization approaches are correct; it’s a mat-
ter of personal preference.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Y5BRP/
http://jsfiddle.net/tj_vantoll/Y5BRP/
http://www.it-ebooks.info/

336 APPENDIX C Using jQuery UI with Backbone
 Regardless of how you choose to initialize widgets, Backbone’s render() method is
the ideal place to do so, as it’s typically the place that HTML is injected into the DOM.
With this approach jQuery UI is a nice compliment to Backbone. You can let Back-
bone handle your data, routing, and views—and let jQuery UI handle the widgets that
you need to build your UI.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

appendix D
Creating decimal, currency,

 and time pickers with Globalize

In chapter 3 we discussed how to use the jQuery UI spinner widget to transform
<input> elements into basic number pickers. Here, we’ll look at more complex
usage scenarios of the spinner widget, including how to create decimal, currency,
and time pickers.

 To make this possible, the spinner widget uses another jQuery project known as
Globalize. Globalize is a library that handles the formatting and parsing of various data
types—strings, dates, numbers, and the like—in numerous cultures around the
world. The spinner widget integrates with Globalize’s formatting and parsing to make
these complex widgets possible. Let’s look at how, starting with decimal pickers.

D.1 Building decimal pickers
Keeping track of how various cultures handle something as simple as decimals is
tricky because you have to know whether the culture use a period (1.23) or a
comma (1,23) to delimit whole numbers from fractional numbers. Let’s assume
you want to get a numeric value from a user that has two digits after the decimal
mark. You could start with the following approach:

<input id="spinner">
<script>
 $("#spinner").spinner({
 step: 0.01,
 page: 100
 });
</script>

This mostly works, but it has two problems. First, the spinner shortens trailing zeros. For
instance, the whole number 1 displays as "1" rather than "1.00". Second, the spinner
337

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

338 APPENDIX D Creating decimal, currency, and time pickers with Globalize

doesn’t use the correct delimiter based on the user’s culture. U.S. users expect to see a
value of "0.25" to represent one quarter, but most European users expect to see "0,25".

 The solutions to these problems lie in two of the spinner widget’s options—cul-

ture and numberFormat—which are used in tandem. The culture option accepts a
Globalize culture. In general, culture codes are shorthand language codes—"en" =
English, "es" = Spanish, "fr" = French, and "de" = German. The numberFormat
option controls the format of the data that the spinner should use. The two most com-
mon formats are "n" for decimal numbers and "C" for currency values.

 With this in mind, let’s see how you can alter your spinner to use these options.
Before we look at the code, there’s one important thing to note: for space consider-
ations, Globalize and its culture information aren’t stored on jQuery’s CDN. There-
fore, you must download Globalize from https://github.com/jquery/globalize/
releases (get version 0.1.1, as that’s the version this appendix uses), or from another
CDN. Microsoft’s CDN has Globalize, and that’s what we use in the following listing.

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/
globalize.min.js">

</script>
<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/cultures/

globalize.cultures.js">
</script>

<input id="spinner">
<script>
 $("#spinner").spinner({
 step: 0.01,
 page: 100,
 numberFormat: "n",
 culture: "de"
 });
</script>

This example solves both of your previous issues. Because you set numberFormat to
"n" B, the spinner control knows you want to display a decimal value and always dis-
plays two decimal digits regardless of the number. You no longer see whole numbers
such as "1". Second, because the culture is set to "de" (German) C, the spinner uses
a comma instead of a period to separate whole numbers from fractional numbers.

NOTE Globalize has multiple number formats to handle values with different
numbers of decimal digits. For example, n0, n1, n2, and n3 handle numbers
with 0, 1, 2, and 3 decimal digits, respectively. For a full list of the formats Glo-
balize can handle, refer to its documentation.

TIP Don’t know the language the user speaks? You can grab that value from
navigator.language and pass it to the culture option.

This updated spinner functionality is shown in figure D.1.

Listing D.1 Creating spinners with decimal values

Imports Globalize from
Microsoft’s CDN

Imports Globalize’s culture
data from Microsoft’s CDN

Sets the numberFormat
to "n" for a decimal
spinner

BSets the
culture
to “de”

(German)

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

https://github.com/jquery/globalize/releases
https://github.com/jquery/globalize/releases
http://www.it-ebooks.info/

339Building currency pickers
The cool thing about using Globalize is that you don’t have to know which cultures
use which conventions for handling decimal numbers—you just need to tell the wid-
get which culture to use and let it handle the rest. The story is similar with another
tricky data type: currency.

D.2 Building currency pickers
Currency has the same challenges decimal pickers have and more. In addition to
knowing the period-versus-comma rules, you also need to know the appropriate cur-
rency symbol to use: the United States uses the dollar sign ($), much of Europe uses
the Euro (€), Japan uses the Yen (¥), and so forth. In addition, some currencies have
niche rules. For instance, the Yen can’t have fractional values. (There’s no such thing
as half a Yen.)

 To create a currency spinner, set the spinner’s culture option to the user’s culture
and its numberFormat option to "C"—which stands for currency. The following listing
shows a currency spinner that steps by a value of 25.

NOTE You can play with this example live at http://jsfiddle.net/tj_vantoll/
fC5j8/.

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/
globalize.min.js"></script>

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/cultures/
globalize.cultures.js">

</script>

<input id="spinner" value="1025">
<script>
 $("#spinner").spinner({
 step: 25,
 numberFormat: "C",
 culture: "de"
 });
</script>

Listing D.2 A currency spinner

<input id="de" value="5"> <input id="en" value="5">

$("#de").spinner({
 step: 0.01,
 page: 100,
 numberFormat: "n",
 culture: "de"
});

$("#en").spinner({
 step: 0.01,
 page: 100,
 numberFormat: "n",
 culture: "en"
});

Figure D.1 Display of a decimal picker in the English and German cultures
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/fC5j8/
http://jsfiddle.net/tj_vantoll/fC5j8/
http://www.it-ebooks.info/

340 APPENDIX D Creating decimal, currency, and time pickers with Globalize
Figure D.2 shows the display of the spinner in a variety of cultures.
 That’s really all there is to it. Globalize ensured that the correct delimiters (deci-

mal points vs. commas) were used, as well as the correct currency symbols. It even
ensured that the Yen picker didn’t display fractional values automatically. If you want
to get a consistent value, you call the spinner’s value() method. The following code
returns 1025 for all the examples in figure D.2:

$("#spinner").spinner("value");

Before leaving the topic of globalization, let’s look at another complex data type that
Globalize can help with: times.

D.3 Building time pickers
Different cultures also have different ways of storing times. Unlike currencies, times
are typically displayed in only two ways across cultures: with a 12-hour clock or a 24-
hour clock. But even handling these two options can be tricky. The same time could
display as 5:00 PM or 17:00 depending on where the user is located, and you don’t
want to worry about which culture uses which format.

 Unlike the earlier examples, the spinner widget doesn’t directly integrate time sup-
port. But you can add support to the widget with a little extra code. The following list-
ing shows an approach that’s used on the jQuery UI demo site. (You can view the
demo at http://jqueryui.com/spinner/#time.)

$.widget("ui.timespinner", $.ui.spinner, {
 options: {
 step: 60 * 1000,
 page: 60
 },
 _parse: function(value) {
 if (typeof value === "string") {
 if (Number(value) == value) {
 return Number(value);
 }
 return +Globalize.parseDate(value);
 }
 return value;
 },
 _format: function(value) {

Listing D.3 A timespinner widget

{ culture: "de" }

{ culture: "en-GB" }{ culture: "ja" }

{ culture: "en" }

Figure D.2 Display of
currency spinners in
German, English (U.S.),
Japanese, and English
(Great Britain)

Creates an extension
of the spinner widgetB

Defaults
the step

and page
options C

Converts a
formatted string to
a millisecond value

D

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

341Building time pickers
 return Globalize.format(new Date(value), "t");
 }
});

This code creates a timespinner extension of the spinner widget B. (You can read
more about widget extensions in chapter 9.) To keep the timespinner’s value culture-
independent, it’s stored as a millisecond value. You’ll see how to use the value
momentarily, but knowing that the value is millisecond-based explains why you default
the step and page options C. You set step to 60000 because 60,000 milliseconds is 60
seconds, or one minute. You set page to 60 because there are 60 minutes (or steps) in
an hour. This lets the user step the timespinner in one-minute increments (for exam-
ple, 5:00 ➞ 5:01 or 5:00 ➞ 4:59) and one-hour increments (for example, 5:00 ➞ 6:00
or 5:00 ➞ 4:00).

 The rest of the code converts between the millisecond value of the date and the for-
matted string that displays. The _format() method converts a millisecond value (passed
in via the value argument) and converts it to a formatted string using Globalize’s for-
mat() method E. The "t" argument you pass to format() tells Globalize to format the
string as a time. The _parse() method does the opposite. It takes a formatted value (for
example, "19:00" or "7:00 PM") and returns the millisecond value it represents D. It
calls Globalize’s parseDate() method to normalize the cultural difference.

 With this in place, you can create a spinner using the following code:

<input id="spinner">
<script>
 Globalize.culture("en");
 $("#spinner").timespinner();
</script>

Globalize.culture() sets the default culture so you don’t have to continuously tell
Globalize which culture to use. By setting the culture to "en" (which defaults to U.S.
English), you get a spinner that displays a 12-hour clock. Because the timespinner wid-
get uses a millisecond representation under the hood, you can get the value to deter-
mine the user-selected time in a culture-agnostic way.

 The following logs the spinner’s current hour:

var spinner = $("#spinner"),
date = new Date(spinner.timespinner("value"));
console.log(date.getHours());

This code logs 19, regardless of whether a spinner displays 7:00 PM (in the case of a cul-
ture with a 12-hour clock) or 19:00 (in the case of a culture with a 24-hour clock). The
most common way of handling this situation is storing the timestamp in a server-side
database. Figure D.3 shows the display of a few timespinner widgets. As you can see, the
spinner can be initialized with a culture-specific string or a culture-agnostic timestamp.

 Although we’ve focused on spinner integrations, these examples have showcased
only some of what Globalize can do. Globalize handles number, decimal, percentage,
currency, time, and date formatting in numerous cultures. And Globalize has no

Converts a
millisecond value to
a formatted stringE
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

342 APPENDIX D Creating decimal, currency, and time pickers with Globalize
dependencies. You can use it with the jQuery UI widgets if you’d like, but you can use
it to parse and format data in an application that doesn’t use jQuery at all. If your
application is used by multiple cultures, it’s worth taking a look at Globalize’s docu-
mentation at https://github.com/jquery/globalize to see all you can do with it.

<input id="en-1" value="7:00 PM">

<input id="de-2" value="1388566800000"><input id="de-1" value="19:00">

<input id="en-2" value="1388566800000">

Globalize.culture("en");
Globalize.culture("en");

Globalize.culture("de");
$("#de-1").timespinner();

Globalize.culture("de");
$("#de-2").timespinner();

Globalize.culture("en");
$("#en-2").timespinner();

Figure D.3 Display of four timespinner widgets. The top two use the U.S. English culture (which uses
a 12-hour clock), and the bottom two use the German culture (which uses a 24-hour clock). The spinners
can be initialized with a formatted string—7:00 PM or 19:00—or with a timestamp. In this example, the
1388566800000 timestamp represents a date with its hour set to 4 and its minutes set to 0.

Why doesn’t datepicker use Globalize?
Unfortunately, datepicker and spinner use different globalization approaches; to use
both, you have to import Globalize and its data, as well as datepicker’s locale scripts.

Datepicker is some of the oldest code in jQuery UI and therefore hasn’t been updated
to modern conventions the library is using, such as Globalize. A rewrite of datepicker
to use Globalize is in the works; you can monitor the progress at http://wiki.jqueryui
.com/w/page/12137778/Datepicker.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://wiki.jqueryui.com/w/page/12137778/Datepicker
http://wiki.jqueryui.com/w/page/12137778/Datepicker
http://www.it-ebooks.info/

appendix E
Contributing to jQuery UI

Believe it or not, the vast majority of work done on jQuery UI (and all other jQuery
projects, for that matter) is a volunteer effort. Because of this, and because of the
ever-increasing amount of work to do, the jQuery UI project is constantly looking
for help from the community.

 For whatever reason, when most people decide they want to contribute, they
start by heading to the jQuery UI bug tracker and trying to fix bugs. The problem
with this is that the vast majority of outstanding bugs aren’t easy to fix. When simple
bugs come in, we (the jQuery UI team) fix them immediately. It’s the tricky ones or
the ones that have no clear solution that stick around. And as an aspiring contribu-
tor, trying to tackle these problems when you’re just getting started is almost always
a frustrating experience.

 Unless you have a lot of jQuery UI and open source experience, you’re better
off contributing in another way in the beginning. But don’t worry; there’s plenty to
do! What follows is a list of ways you can help jQuery UI.

TIP The first place to head when you’re considering contributing to any
jQuery project is http://contribute.jquery.org/. The site goes into explicit
detail on how to contribute to all aspects of jQuery. The information in this
appendix summarizes these guides specifically for the jQuery UI project.

E.1 Help others on the forums, Stack Overflow, and IRC
In my opinion, the best way to start giving back to jQuery UI is by helping others
with the library. You can provide support on many venues:

■ jQuery Forum (http://forum.jquery.com/)—jQuery hosts a forum where users
can submit questions and provide feedback on all jQuery projects, including
jQuery UI. The jQuery UI–specific forum is located at http://
forum.jquery.com/using-jquery-ui.
343

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://forum.jquery.com/using-jquery-ui
http://forum.jquery.com/using-jquery-ui
http://www.it-ebooks.info/

344 APPENDIX E Contributing to jQuery UI
■ Stack Overflow (http://stackoverflow.com/)—Stack Overflow is an extremely popu-
lar question-and-answer site that you have likely heard of and used. For ques-
tions specifically about jQuery UI, see http://stackoverflow.com/questions/
tagged/jquery-ui.

■ #jquery on IRC—jQuery hosts a series of IRC channels on Freenode. The #jquery
channel is specifically dedicated for support, aiding people who come to the chan-
nel looking for help on using the various jQuery projects. For more information
on what IRC and Freenode are, how to join, and how to help, see http://
irc.jquery.org/.

These three locations have a lot of people with a lot of questions about jQuery and
jQuery UI. The jQuery UI team itself simply can’t deal with this quantity. We need peo-
ple to step in and help.

 Besides the altruistic aspect of helping others, answering questions is a spectacular
way to learn and get started contributing to the project. You learn about the problems
people are having, and by helping to solve them, you learn a lot about the project.

E.2 Triage bugs
Bug triage refers to the process of reviewing existing and incoming bug tickets and
processing them. This means doing a number of things:

■ Making sure the ticket is valid—Lots of people submit jQuery UI bugs, but not all
the issues are bugs. Oftentimes people come to the bug tracker when they
should be going to support venues such as the forums, Stack Overflow, or
#jquery on IRC.

■ Checking for duplicates—When jQuery UI has a bug, it’s not uncommon for multi-
ple people to report it. Detecting duplicate bugs can be a tricky and time-
consuming task, but finding duplicates is valuable, as an existing ticket may
have a long conversation associated with it, or the project may have already
decided not to support a given use case. It’s even possible that the issue has
already been fixed, but has yet to make it into a stable release.

■ Creating a reduced test case—People sometimes submit issues with a substantial
amount of code, which makes it difficult to track down the underlying prob-
lem. Reducing the amount of code needed to reproduce an issue—even by a
few lines—can be invaluable for debugging. Oftentimes reducing test cases
reveals issues that are unrelated to jQuery UI, such as bugs in the browser or
jQuery Core.

As with support, triaging bugs takes time and effort, and is a great way to assist the
jQuery UI team. The jQuery UI bug tracker is located at http://bugs.jqueryui.com/.
You can create an account and comment on any existing issue. If you find duplicate
issues, comment about it. If you can create a better test case, comment with the new
test case. If you find an old issue that’s no longer relevant, comment and let us know.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://stackoverflow.com/questions/tagged/jquery-ui
http://stackoverflow.com/questions/tagged/jquery-ui
http://irc.jquery.org/
http://irc.jquery.org/
http://www.it-ebooks.info/

345Write code
 If you create an account on http://bugs.jqueryui.com/, you can also set up email
notifications for new tickets and new comments. With the notifications, you can help
the project by responding to tickets and questions as they come in—which lessens the
load on the core team.

 The same as contributing to the jQuery UI support efforts, it can be tremendously
valuable to contribute to the jQuery UI triage effort. Triaging is the easiest way to keep
track of the day-to-day activities on the project. In the bug tracker you’ll work side by
side with the team, because we’re also in there managing tickets. And if you’re looking
to eventually contribute code, the bug tracker can teach you how the team’s processes
work, and how we address issues as they come in. Over time, you’ll learn how to tackle
the issues yourself.

E.3 Write documentation and maintain the websites
Another great way to get involved with jQuery UI is with its documentation. jQuery UI
has a lot of code, and it’s important to the project to have comprehensive guides on
how to use it. Many people don’t realize that all the jQuery UI documentation is open
source and available on GitHub (https://github.com/jquery/api.jqueryui.com). So if
you notice a problem with the documentation, you can fix it!

 And it’s not just the documentation source code that’s online. All jQuery’s web-
sites are open source and available on GitHub as well. For instance, the code behind
http: //jqueryui.com is available at https://github.com/jquery/jqueryui.com.

 If you’d like to contribute to this process, there’s plenty you can do. To start, you
can write new documentation for the API site or fix existing API issues (which you can
view at https://github.com/jquery/api.jqueryui.com/issues). If you’re interested in
writing, you can author new articles for the jQuery Learning Center
(learn.jquery.com). If you’re interested in design, you can help us improve the look of
our sites. If you’re interested in UX, we’d love help improving the user experience on
http://jqueryui.com and http://api.jqueryui.com. For more details on the specifics,
see http://contribute.jquery.org/web-sites/.

E.4 Write code
Last but not least, you can always contribute code to jQuery UI, but I’ll offer one word
of warning: if you find an issue with the library, don’t jump directly to submitting a
pull request with a fix on GitHub. jQuery UI has a number of processes in place to
assure consistency and improve the long-term maintainability of the project. We
require the following things:

■ The issue must have a ticket created on http://bugs.jqueryui.com and a team
member must mark the ticket as valid.

■ There must be a unit test that verifies the fix being offered works as expected.
This is to prevent regressions, where the original issue comes back after some
unrelated change.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

learn.jquery.com
http://www.it-ebooks.info/

346 APPENDIX E Contributing to jQuery UI
■ Code must adhere to jQuery’s JavaScript style guide (http://contribute.jquery
.org/style-guide/js/).

■ Commit messages must adhere to our guidelines (http://contribute.jquery.org/
commits-and-pull-requests/).

Don’t let this discourage you. These best practices help maintain the high quality of
the jQuery UI codebase, and adhering to them doesn’t require much more effort.
Sometimes it’s helpful to look at a list of previous commits to get an idea of how the
team does it. You can see the latest commits to jQuery UI at https://github.com/
jquery/jquery-ui/commits/master.

 If you’re completely unfamiliar with GitHub, http://contribute.jquery.org/
commits-and-pull-requests/ is a great place to start as it walks you through all the
processes necessary to contribute code to any jQuery project. For more specific
information on jQuery UI, such as how to run the unit tests, see its GitHub reposi-
tory at https://github.com/jquery/jquery-ui.

E.5 Ask for help
If all else fails, feel free to join #jqueryui-dev on IRC and say that you want to help. The
jQuery UI team hangs out in that channel, and we can help point you in the right
direction. The team also has a weekly meeting in #jquery-meeting if you want to find
us all in one place. The meeting is open to anyone, so feel free to lurk in the channel
or introduce yourself. For meeting times, as well as meeting notes from previous meet-
ings, see http://meetings.jquery.org.

My own journey with jQuery UI
I started in jQuery UI when a previous employer switched to using jQuery UI from a
another UI library (which I won’t name), and I instantly fell in love. The ease of per-
forming complex tasks made the library a joy to work with.

Eventually, I wanted to do more. Learning and playing with jQuery and jQuery UI be-
came my fun side project I worked on at home. I created a Stack Overflow account
and started answering jQuery UI questions. (My username is tj-vantoll, if you’re curi-
ous.) As I learned more about the library, I decided I wanted to try to contribute code.

I found the bug tracker and tried to fix a few bugs, but I mostly failed. But I did start
commenting on the tickets. Even if I couldn’t fix the bug, I’d comment on what I
thought the problem was. I’d reduce the test case to show the least amount of code
needed to recreate the problem. I did this a lot. And as I gained confidence and
experience, I started to do more. Along with some other team members, we method-
ically went through each ticket open in the bug tracker. We found hundreds of bugs
that were either duplicates or no longer relevant.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/commits-and-pull-requests/
http://contribute.jquery.org/commits-and-pull-requests/
https://github.com/jquery/jquery-ui/commits/master
https://github.com/jquery/jquery-ui/commits/master
http://www.it-ebooks.info/

347Ask for help
(continued)
In the process, I found bugs that I could fix. I had learned the processes and had
met a few of the team members. My first code contribution to jQuery UI was a patch
to fix resizable dialogs in Opera 11; it was included in version 1.8.18. As I learned
more about the code, I could tackle harder problems, such as complex bugs and
new features.

My experience with jQuery UI has been invaluable. I’ve met many awesome people
and traveled to amazing places. Seeing how the jQuery UI team works, and coding
alongside them, made me a far better developer. Doors that were previously closed
have opened. I’ve even had the opportunity to write a book!
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

appendix F
Polyfilling HTML5

 with jQuery UI

In chapter 3 we discussed a number of new HTML5 elements and compared them
to jQuery UI widgets. In summary, we concluded that the major advantages of the
HTML5 controls are

■ Ease of use.
■ Dependency-free.
■ The browser controls how data is inputted. (For instance, you get optimized

mobile keyboards.)

The main detriments are

■ You have little control over the display.
■ They handle only trivial use cases.
■ Only some browsers support the controls.

In chapter 3 we also had a brief discussion of which control you should use. To start,
if you have a nontrivial usage scenario, you have no choice but to use JavaScript-
based widgets like those of jQuery UI. If you want to build a calendar where the user
can’t select weekends, you have to use a JavaScript-based datepicker—as that’s
impossible to build with an <input type="date">. Conversely, if you have a trivial
use case, using the HTML5 controls makes sense. You get mobile-optimized key-
boards without the need to introduce a JavaScript-based control.

 No matter how simple the use case, the native controls still have one big prob-
lem: browser support. Although some HTML5 elements are now widely imple-
mented, others—like <input type="date">—are only present in a handful of
browsers. But you have another option. If you want to use HTML5 controls today,
348

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

349Using polyfills
and you don’t want to worry about browser support, you can use jQuery UI to polyfill
the native functionality.

F.1 Using polyfills
A polyfill is a piece of code that adds a feature when it’s not natively available on the
platform. In our case, the native features we’re interested in are the new HTML5 ele-
ments and input types. To use a polyfill, first you need to detect whether the feature is
supported on the platform the code is running on. The following shows a function
that does a feature detect for native date support and uses the jQuery UI datepicker if
native support isn’t available:

<input type="date">
<script>
 function dateSupport() {
 var input = document.createElement("input");
 input.setAttribute("type", "date");
 return input.type == "date";
 };

 if (!dateSupport()) {
 $("input[type=date]").datepicker({
 dateFormat: "yy-mm-dd"
 });
 }
</script>

Here you first test whether the browser natively supports <input type="date"> B.
The check creates an <input> element and changes its type to "date". If the browser
recognizes the type, it remains "date"; otherwise, the browser uses "text".

 If the browser supports the native picker, you’re done. If not, you convert all date
inputs to datepicker widgets C. The default date format of HTML5’s date input dif-
fers from datepicker’s default. The final step is to set the datepicker’s dateFormat
option equal to the specification’s format ("yy-mm-dd") D; that way, you get a con-
sistently formatted date server-side, regardless of whether the browser natively sup-
ports the control.

 If you run this code in a browser that supports <input type="date">, such as
Chrome, you’ll see no visual change. In browsers with no support, such as Internet
Explorer or Safari, you’ll see a jQuery UI datepicker control being used. The cool
thing with polyfills is you don’t have to care about which browsers support the ele-
ment and which don’t. You can rest assured that all users can use a calendar to enter
a date.

 To make all this possible, though, you need to accurately detect whether the user’s
platform supports a given feature. And doing that can be hard; how would you know
that dynamically creating an <input>, changing its type to "date", and seeing if the
change took would be an accurate test for <input type="date"> support? Luckily,
there’s a library that aggregates these tests for us.

Detects and
returns whether
the browser
supports a date
<input>

B

Converts all
date inputs to
datepickersC

Uses the HTML5-
specified formatd
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

350 APPENDIX F Polyfilling HTML5 with jQuery UI
F.1.1 Using Modernizr

Modernizr is a library that does exactly what we’re looking for: it detects HTML5 and
CSS3 features in the user’s browser. It takes the guesswork out of testing for features.
With Modernizr, instead of writing your own test for <input type="date"> support,
you can check the Modernizr.inputtypes.date property.

 You can download either a development or production version of Modernizr from
http://modernizr.com/. The development version is perfect for development, as it
has every check that Modernizr uses. But each of those checks takes time, and doing
every check has the potential to take a long time—especially for users with slower
browsers. Before using Modernizr in production, it’s a best practice to create a pro-
duction build with only the checks that you need. For your purpose, you need two
checks: Input Attributes and Input Types. Figure F.1 shows Modernizr’s download
builder with these two checks selected.

 Select additional check boxes if you need them in your application, but the input
attributes and types are all you need to polyfill HTML5 elements using jQuery UI. Now
that we have Modernizr in place, let’s look at the polyfills jQuery UI makes possible.

NOTE You can view all these polyfills in action at http://jsfiddle.net/
tj_vantoll/A62Jt/. If you view this in Chrome you’ll see all native controls—as
it supports all the controls we’ll discuss—but if you open it in an older
browser, such as Internet Explorer 8, you’ll see jQuery UI widgets used in
place of the native controls.

TIP There’s more to Modernizr than the handful of feature detects we
need here. To learn more, check out Modernizr’s documentation at http://
modernizr.com/docs/.

Figure F.1 Modernizr’s production build tool at http://modernizr.com/download/. The
two checks we need for polyfilling HTML5 elements are Input Attributes and Input Types.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/A62Jt/
http://jsfiddle.net/tj_vantoll/A62Jt/
http://modernizr.com/docs/
http://modernizr.com/docs/
http://www.it-ebooks.info/

351Polyfilling <input type="range"> with slider
F.2 Polyfilling <input type="date"> with datepicker
The first polyfill you’ll use is also the easiest, because you’ve written it before. In the
following code, the only difference is your feature check for <input type="date">
support, which is now a check of Modernizr.inputtypes.date.

if (!Modernizr.inputtypes.date) {
 $("input[type=date]").datepicker({ dateFormat: "yy-mm-dd" });
}

F.3 Polyfilling <input type="number"> with spinner
The code to polyfill native number <input> elements is similarly simple:

if (!Modernizr.inputtypes.number) {
 $("input[type=number]").spinner();
}

Like the spinner widget, native <input type="number"> elements support the min,
max, and step attributes to customize their behavior. But because the spinner widget
automatically reads those attributes, they’re supported here without any extra work.

F.4 Polyfilling <input type="range"> with slider
The range polyfill is a bit more complex, because—unlike datepicker and spinner—
a slider must be created on a <div> rather than an <input>. You need to create an
extra element for each <input> you need to polyfill. The approach you’ll take is
shown here:

if (!Modernizr.inputtypes.range) {
 $("input[type=range]").each(function(index, input) {
 var input = $(input),
 slider = $("<div>").slider({
 min: parseInt(input.attr("min"), 10) || 0,
 max: parseInt(input.attr("max"), 10) || 100,
 value: parseInt(input.attr("value"), 10) || 50,
 step: parseInt(input.attr("step"), 10) || 1,

How to know which browser supports what
Polyfills remove the need to keep a mental list of which browsers support which features,
but sometimes it’s nice to see a list. If all the browsers you support already have the
native control, you have no need to use a polyfill. In my experience, the best resource
for up-to-date browser feature support documentation is http://caniuse.com/, which
lists support by feature in a number of tables. Support documentation on the features
we’ll discuss in this appendix is at the following URLs:

■ <input type="date">—http://caniuse.com/#search=input-date
■ <input type="number">—http://caniuse.com/#feat=input-number
■ <input type="range">—http://caniuse.com/#feat=input-range
■ <progress>—http://caniuse.com/#feat=progressmeter
■ <datalist>—http://caniuse.com/#feat=datalist

Creates a new
<div> to use
as the slider

B

Transfers the
<input>
element’s
attributes

C

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

352 APPENDIX F Polyfilling HTML5 with jQuery UI
 change: function(event, ui) {
 $(this).prev("input").val(ui.value);
 }
 });
 slider.insertAfter(input);
 input.hide();
 });
}

In browsers without <input type="range"> support, you loop over each <input
type="range">. For each one, you create a new <div> and initialize a slider widget on
it B. (Remember that you can’t initialize a slider widget on the <input> itself.)

 To ensure the min, max, step, and value attributes on the <input type="range">
are reflected on the <div> you create, you must explicitly read each attribute from the
<input> and set them as an option of the slider C. If the attribute isn’t present on the
<input>, you pass the HTML5 range input’s default (0 for min, 100 for max, 50 for
value, and 1 for step).

 At the end of the loop, you append the newly created <div>—which is now a
slider—directly after the <input> E, and then hide the <input> itself F. You leave
the <input> around so that it’s included in form submissions, but you hide it so the
user sees only the slider. To make sure the hidden <input> maintains the correct
value, the last thing you do is add a change event callback that keeps the <input> ele-
ment’s value and slider’s value in sync D.

F.5 Polyfilling <progress> with progressbar
Next, we’ll look at the <progress> element, which is an element that displays the
progress of a task, much like the progressbar widget. The <progress> element has two
custom attributes—max and value—that work exactly like the progressbar’s max and
value options.

TIP You can learn more about the <progress> element at http://css-
tricks.com/html5-progress-element/.

Modernizr core doesn’t have a check for the <progress> element. Modernizr’s down-
load site has a noncore (Modernizr’s wording) set of checks—which includes a <prog-
ress> test—but because the check is a single line we’ll just include it inline:

if (document.createElement("progress").max === undefined) {
 $("progress").each(function() {
 var progress = $(this),
 div = $("<div>").progressbar({
 max: parseInt(progress.attr("max"), 10) || 100,
 value: parseInt(progress.attr("value"), 10) || false
 });
 progress.replaceWith(div);
 });
}

Keeps the
<input>
in sync with
the sliderDAppends the

slider after
the <input>E

Hides the
<input>F

Checks for <progress> support B

Creates a new
<div>, and
initializes a

progressbar
widget C

Transfers the <progress> element’s
attributes to the progressbar

D

Replaces the <progress>
with the <div>E
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://css-tricks.com/html5-progress-element/
http://css-tricks.com/html5-progress-element/
http://www.it-ebooks.info/

353Polyfilling <datalist> with autocomplete
To check for native <progress> support, you create a new <progress> element, and
see if it has a max property defined B. For browsers with support, you’re done, but for
browsers without support, you then loop over each <progress> element. Like the pre-
vious slider example, you then create a new <div>. This time you initialize the new
<div> with a progressbar widget C—using the custom max and value attributes from
the original <progress> element D. For consistency with the HTML5 specification, if
the user doesn’t provide a value attribute, you default the value option to false,
which creates an indeterminate progressbar. Finally, you replace the initial <prog-
ress> element with the progressbar <div> E.

F.6 Polyfilling <datalist> with autocomplete
The last polyfill we’ll look at is one for the <datalist> element. If you haven’t seen a
<datalist> before, it’s a quick way of building an autocomplete that’s native to the
browser. You can associate a <datalist> with an <input> by having the <input> ele-
ment’s list attribute match the <datalist> element’s id attribute. The following
builds a basic autocomplete:

<input type="text" list="projects">
<datalist id="projects">
 <option>jQuery</option>
 <option>jQuery UI</option>
 <option>jQuery Mobile</option>
</datalist>

Figure F.2 shows the display of this <input> after the user
types a “j”.

TIP You can learn more about what <datalist> elements
are and when to use them at http://msdn.microsoft.com/
en-us/magazine/dn133614.aspx.

For browsers that don’t support the <datalist> element, you’ll use the following
code to polyfill with an autocomplete widget:

if (!Modernizr.input.list) {
 $("input[type=text][list]").each(function() {
 var options,
 listAttribute = $(this).attr("list"),
 datalist = $("#" + listAttribute);
 if (datalist.length > 0) {
 options = [];
 datalist.find("option").each(function() {
 options.push({ label: this.innerHTML, value: this.value });
 });
 $(this).autocomplete({ source: options });
 }
 });
 $("datalist").remove();
}

Loops over all text inputs
with a list attribute

B

Finds the <input>
element’s associated
<datalist>CLoops

over each
<option>

D

Builds the
autocomplete
widgetE

Removes all
<datalist> elements
from the DOMF

Figure F.2 Display of a
<datalist> element
in Chrome on OS X
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://msdn.microsoft.com/en-us/magazine/dn133614.aspx
http://msdn.microsoft.com/en-us/magazine/dn133614.aspx
http://www.it-ebooks.info/

354 APPENDIX F Polyfilling HTML5 with jQuery UI
You loop over each text <input> that has a list attribute—which indicates that it’s
associated with a <datalist> B. For each one, you find the <input> element’s
<datalist> by searching for an element that matches the <input> element’s list
attribute C.

NOTE You can associate <datalist> elements with other types of <input>
elements such as date <input>s, and even color <input>s. To see some in
action, visit http://demo.agektmr.com/datalist/. For our purposes, we’ll only
polyfill the text-based version.

Assuming you find a <datalist> (that’s what the datalist.length > 0 check is for),
you loop over each of its <option> elements and add them to an array of options D.
You then initialize an autocomplete widget on the <input> E and use that option’s
array as the autocomplete’s source option. Because you don’t need the <datalist>
elements to stick around in browsers that don’t support them, you remove all of them
from the DOM F.

 With this code in place, you can use <datalist> elements and rest assured that the
user receives an autocomplete control in all browsers. There’s one last quirk to be
aware of, though. Internet Explorer versions < 10 don’t recognize <option> elements
unless they’re in <select> elements, meaning, this polyfill doesn’t work in those ver-
sions. Specifically, the datalist.find("option") check returns nothing. The work-
around for this is a bit convoluted, but it works. The fix is using Internet Explorer
conditional comments to add <select> elements in the <datalist> element:

<datalist id="projects">
 <!--[if IE]><select><!--<![endif]-->
 <option>jQuery</option>
 <option>jQuery UI</option>
 <option>jQuery Mobile</option>
 <!--[if IE]><select><!--<![endif]-->
</datalist>

All browsers other than Internet Explorer versions < 10 completely ignore the condi-
tional comments, including versions 10 and above. (Conditional comment support
was removed from Internet Explorer in version 10.) But in versions before 10, the
comments are interpreted, and a <select> is created. Having a <select> present tem-
porarily is all you need for your polyfill to read the <option> elements. The polyfill
removes the <datalist> elements entirely at the end anyway.

 So unfortunately, if you need to support Internet Explorer < 10 and you want to
use <datalist> elements, you must use conditional comments that insert a <select>
around <option> elements for these older browsers. With this in place, the polyfill
works as expected.
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

index
A

a11y (accessibility) 68
accept option 113
accessibility 8, 270
Accessible Rich Internet

Applications. See ARIA
accordion widget

adding and removing
panels 81–82

configuring 79–81
overview 78–79

active option 80, 86
addClass() method 151–152
_adjustValue() method 328
$.ajax() function 271
alert() function 67
_allowInteraction() method 226
almond 284–286
AMD (Asynchronous Module

Definition) 11
loading components with

RequireJS 246–248
overview 243–245
setting up RequireJS 245–246
supporting in custom

widgets 254–258
animate() function

139, 152, 155
animateDuration option 225
animateEasing option 225
animation

color 155
CSS

addClass() method 151–152
jQuery UI effects vs. 156–161

off-canvas navigation menu
for mobile 153–155

removeClass()
method 151–152

toggleClass() method
151–152

effect() method 136–138
effects

customizing with
easings 138–140

transfer effect 140–142
show and hide options

147–148
showing message in

dialog 148–151
visibility changes

building portlets 144–147
form validation

messages 142–144
appendTo option 227
appointment form example

71–74
appointment scheduler

example 127–129
ARIA (Accessible Rich Internet

Applications) 8
aria-describedby attribute 144
aria-invalid attribute 144
Asynchronous Module

Definition. See AMD
asyncTest() function 329
autocapitalize attribute 55
autocomplete widget

airport code example
263–265

local data source 47–48

overview 46–47
polyfilling datalist element

with 353–354
remote source 49–52
scrolling and 265
testing focus event 329
third-party API source 52–55

autocorrect attribute 55
autoinitialization

enhanceWithin()
method 312–314

_getCreateOptions()
method 314–315

overview 311–318
automated testing 330
autoOpen option 25, 278
autoRefresh option 132
axis option 120

B

Backbone 317
adding jQuery UI to view 334
creating view 332–333
el/$el properties 334
using declarative

widgets 334–336
beforeClose event 37
beforeShow option 67
beforeShowDay option 62, 67
Bootstrap library 166
browsers

developer tools in 321–323
form controls styling 45
HTML5 support listing 351
support for 7
355

Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX356
bug triage 344–345
buttons option 93
buttons, in forms 55–59
buttonset widget 58

C

caching 241
calc() function 177
callbacks 34–35
Can I use... website 351
cancel option 120
cancellable events 204
Cascading Style Sheets. See

CSS 151
CDNs (content delivery

networks)
downloading jQuery UI

from 12
production usage and

239–240
chainable plugin 188–189
CI (Continuous

Integration) 330
class attribute 153
close() method 24, 93
CodePen 15, 320–321
collapsible option 79
collisions

flip collision setting 295–297
handling with position

utility 293–295
color property 157
colors, animating 155
connected lists 121
connectWith option 121
constraint validation 268
constructor function for

widgets 188
containment option 109, 120,

129
content delivery networks. See

CDNs
content option 105
Content-Encoding header 243
Continuous Integration. See CI
contributing to jQuery UI

bug triage 344–345
documentation 345
helping others on

forums 343–344
submitting code 345–346

CORS (cross-origin resource
sharing) 50

_create() function 190–193

createPseudo() method 301
cross-origin resource sharing. See

CORS
CSS (Cascading Style Sheets)

addClass() method 151–152
CSS3 animations vs. jQuery UI

effects 156–161
off-canvas navigation menu

for mobile 153–155
optimizing 251–254
removeClass() method

151–152
responsive design 279
theming using framework

interaction cues 169–172
interaction states 168–169
styled confirmation dialog

example 172–174
widget containers 167–168

toggleClass() method
151–152

css() method 19, 101
culture option 339
currency pickers 339–340
cursor option 114, 120
cursorAt option 120

D

data-* attributes 85, 315
data() method 30, 301–302, 315
<datalist> element 74, 353–354
date input type 351
datepicker widget

callback options 67
extending 231–237
formatting dates 64–67
Globalize library and 342
localizations for 67–69
for mobile devices 178–179
options for 63
overview 62–64
polyfilling date input type

with 351
RequireJS and 248

decimal pickers 337–339
declarative widgets

317, 334–336
defaultElement property
305–306
define() function 255–256
delay option 51, 120
deleteMessage() function 93
_destroy() function 207–212

developer tools, browser
321–323

dialog() method 20
dialogcreate event handler 35
dialogs

draggable option 130
editing list using 28–31
overview 91–94
resizable option 130
showing message in 148–151
theming 172–174

direction option 137
disabled option 120
distance option 120, 137
documentation

contributing to 345
jQuery UI advantages 7

DOMContentLoaded event 14
downloading jQuery UI

from CDNs 12
Download Builder 241–243
from jQuery UI website 11–12

drag-and-drop game
example 110–114

draggable 130
overview 108–110
sortable vs. 120

drop event 110
droppable

drag-and-drop game
example 110–114

overview 110
shopping cart example

114–118
Drupal 4

E

easing 138–140
ECMAScript 244
effect() method 136–138
effects

CSS
addClass() method

151–152
off-canvas navigation menu

for mobile 153–155
removeClass()

method 151–152
toggleClass() method

151–152
CSS3 animations vs. 156–161
customizing with easings

138–140
effect() method 136–138
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 357
effects (continued)
jQuery UI category 4
as options 23
show and hide options
147–148
showing message in

dialog 148–151
transfer effect 140–142
visibility changes

building portlets 144–147
form validation

messages 142–144
em unit 235
embedded-window usage for

widgets 307–308
enhance() method 335
enhanceWithin() method

312–314
event handlers 34–35
Event object 36
event option 81
event parameter 35
events

cancellable 204
listening for 195–196
testing 328–330
for widgets

event handlers vs.
callbacks 34–35

event parameters 35–39
subscribing to 32–34

expect() function 326
extending widgets

custom widgets 220–225
options for widgets 214–218
overview 214
redefining widget

prototype 218–220
Extensible Markup Language.

See XML
extension points 38

adding 230–231
overview 225–227
using undocumented

227–230

F

fadeIn() method 139
fadeOut() method 139
fadeToggle() method 139
find() method 273
Firefox 323
fit collision option 293–294

fit option 120
flash of unstyled content. See

FOUC
flight-search application

application structure 260–261
collecting user input

airport code
autocomplete 263–265

overview 261–263
polyfilling HTML5

inputs 265–267
validating user input

268–271
connecting to RESTful API

looking up flights 271–272
parsing XML with

jQuery 272–273
displaying results

overview 274–276
processing indicator

277–279
using templates 276–277

overview 259–260
performance improvements

with almond 284–286
production preparation

283–284
responsive design 279–283

flip collision option 295–297
flipfit collision option 293–294
focus event 329
_focusTabbable() method 229
font size example 99–101
_format() method 341
formatDate() function 64, 272
forms

appointment form
example 71–74

autocomplete
local data source 47–48
overview 46–47
remote source 49–52
third-party API source

52–55
browser support for styling 45
buttons 55–59
challenges of modern web

forms 44–46
datepicker widget

formatting dates 64–67
localizations for 67–69
overview 62–64

dialog widget 91–94

HTML5 elements vs.
widgets 74–76

progressbar widget 94–96
selectmenu widget 59–61
slider widget

font size example 99–101
overview 97–98
range sliders 98–99

spinner widget 69–71
tooltips

displaying preview in
104–106

HTML content in 103–104
overview 101–103

validation messages 142–144
forums 343–344
FOUC (flash of unstyled

content) 13
fruit and vegetable sorting

game 121–125

G

getAttribute() method 315
_getCreateOptions()

method 310–311, 314–315
getItem() method 91
getJSON() method 54, 264
Globalize library

currency pickers 339–340
decimal pickers 337–339
time pickers 340–342

Google Chrome 75
developer tools in 323
support for 7

_gotoToday() method 232
$.grep() method 53
grid option 120, 129
gzip compression 243

H

<h1> … <h6> elements 78
handle option 120, 146
handles option 125
hash-based links 83
<head> section 14
heightStyle option 81
help and support 346–347
helper option 114, 120
hide option 147–148
_hide() method 308–310
hide() method 139, 144
href attribute 82
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX358
HTML5 (Hypertext Markup
Language 5)

datepickers 236
draggable attribute 108
polyfilling elements

datalist element 353–354
date input type 351
number input type 351
overview 349–350
progress element 352–353
range input type 351–352
using Modernizr 350

tooltip content 103–104
validating input 268–271
widgets vs. 74–76

I

i18n (internationalization) 68
IATA (International Air Trans-

port Association) 263
icons option 59, 81
<iframe> elements 307
@import statements 253
include array 284
<input> elements 59, 69, 74
instance() method 31, 192, 300
instances of widgets 300–301
interaction

draggable 108–110
droppable

drag-and-drop game
example 110–114

overview 110
shopping cart

example 114–118
jQuery UI category 4
resizable

appointment scheduler
example 127–129

custom resize handles
126–127

overview 125–126
selectable 130–132
sortable

connected lists using 121
fruit and vegetable sorting

game 121–125
overview 118–121

theming using CSS 168–172
touch events

lack of support for 132–133
Touch Punch 133–134

International Air Transport
Association. See IATA

internationalization. See i18n
Internet Explorer 76

developer tools in 323
support for 7

intersect option 120
IRC chat 344, 346
isOpen() method 26
_isSortable() method 223
isValid() method 71, 124, 327

J

JavaScript, optimizing 249–251
jQuery

jQuery Learning Center
website 323–324

online testing tools 320–321
Try jQuery website 319

jQuery Enlightenment 324
jQuery Forum website 343
jQuery in Action 324
jQuery Learning Center

website 323–324
jQuery Mobile 10
jQuery UI

advantages of
accessibility 8
browser support 7
consistent APIs 6–7
documentation 7
open source 7
stability 9
theming mechanism 7–8

changing source code 233
coding standards 15
contributing to

bug triage 344–345
documentation 345
helping others on

forums 343–344
submitting code 345–346

defined 4–5
downloading 241–243

from CDNs 12
from jQuery UI website

11–12
example using 12–15
getting help 346–347
history of 3–4
HTML5 elements vs.

widgets 74–76
icon class names 59
jQuery Mobile vs. 10

limitations of
lack of widgets 9
mobile device support 10

online testing tools 15–17
team behind 5
versions of library 11

jQuery UI Core 297–299
jsBin 15, 320–321
jsFiddle 15, 260, 320–321

K

key code constants 299
@keyframes declaration 159

L

<label> elements 57
label property 48
layout

accordion widget
adding and removing

panels 81–82
configuring 79–81
overview 78–79

menu widget 88–91
tabs widget

loading remote content 83
movie information

example 83–87
overview 82–83

left property 154
linear easing 138
<link> tag 239
lists, editing using dialogs 28–31
localization 67–69
localStorage 150

M

MAMP 46
Mashape 261
max option 70, 97
maxDate option 63
maxHeight option 127
maxWidth option 127
menu widget 88–91
methods, testing 327–328
min option 70, 97
minDate option 63
minHeight option 127
minLength option 51, 264
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 359
mobile devices
extending datepicker

widget 231–237
off-canvas navigation

menu 153–155
support for 10
themed datepicker for

178–179
touch events

lack of support for 132–133
Touch Punch 133–134

modal option 93, 150
modeless dialogs 93
Modernizr library 350
modifier key 130
movie information example

83–87
MVC frameworks 317, 332

N

namespace creation for
widgets 188

none collision option 295
noWeekends() function 63
npm (Node Package

Manager) 249
number input type 351
numberFormat option 338

O

off-canvas navigation menu for
mobile 153–155

offset, position 38, 289
_on() function 195–196
on() method 32, 34
onChangeMonthYear option 67
onClose option 67
online testing tools 15–17,

320–321
onSelect option 67
opacity option 120
open source software 7
open() method 26
Opera 7
optimizeCss option 253
optimizer

optimizing CSS 251–254
optimizing JavaScript

249–251
overview 249

<option> elements 60
option() method

changing locale 69
options vs. 27

options
option() method vs. 27
relying on other options 225
testing 325–327
for widgets 20–24, 197–199

orientation option 216
outerHeight() function 299
outerWidth() function 299

P

panels, accordion widget
adding and removing

panels 81–82
configuring 79–81
overview 78–79

parameters, event 35–39
_parse() method 341
parseDate() function 64–65,

272, 341
performance 284–286
placeholder option 120
plugins 19, 186
pointer option 120
polyfilling HTML5 with jQuery

UI
datalist element 353–354
date input type 351
inputs 265–267
number input type 351
overview 349–350
progress element 352–353
range input type 351–352
using Modernizr 350

portlets 144–147
position option 23, 38, 180
position utility

flip collision setting 295–297
handling collisions 293–295
overview 287–290
UI walkthrough

example 290–292
preventDefault() method 36–37
production usage

AMD and
loading components with

RequireJS 246–248
overview 243–245
setting up RequireJS 2

45–246

supporting in custom
widgets 254–258

building with optimizer
optimizing CSS 251–254
optimizing JavaScript

249–251
overview 249

downloading jQuery UI from
Download Builder 241–243

flight-search application
283–284

third-party CDNs and
239–240

<progress> element 74, 352–353
progressbar widget

overview 94–96
polyfilling progress element

with 352–353
prototype 191
prototype chain for

widgets 303–304
pseudo-class for widgets 189

Q

qualifiers 54
QUnit testing library

testing events 328–330
testing methods 327–328
testing options 325–327

R

radio buttons 58
randomNumber() plugin 186
range input type 351–352
range sliders 98–99
refresh() method 81, 86
regional array 67
remote sources

for autocomplete 49–52
for tabs widget 83
for tooltips 105

removeClass() method 151–152
removeItem() method 91
removeUniqueId() method 298
render() method 333
require() function 246, 251
required attribute 268
requireExpects configuration

variable 326
RequireJS

loading components
with 246–248
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX360
RequireJS (continued)
setting up 245–246
using templates with 276–277

Resig, John 3
resizable 130

appointment scheduler
example 127–129

custom resize handles
126–127

overview 125–126
RESTful APIs

looking up data with
$.ajax() 271–272

parsing XML with
jQuery 272–273

revert option 120
revertDuration option 113
rgb() function 155
rgba() function 155
RTT (round-trip time) 239

S

Safari 75
developer tools in 323
support for 7

scroll option 120
scrollSensitivity option 120
scrollSpeed option 120
<select> elements 46, 60
selectable 130–132
_selectDate() method 233
selectmenu widget 11, 59–61
sessionStorage 150
setDefaults() function 68
setItem() method 91
_setOption() method 199
setTimeout() function 330
shopping cart example 114–118
show option 147–148
_show() method 308–310
show() method 139, 143
simulate() function 331
slideDown() method 139
slider widget

font size example 99–101
overview 97–98
polyfilling range input type

with 351–352
range sliders 98–99

slideToggle() method 139
slideUp() method 139
sortable

connected lists using 121
draggable vs. 120

fruit and vegetable sorting
game 121–125

overview 118–121
source option 47, 49
spacing in code 15
spinner widget

overview 69–71
polyfilling number input type

with 351
stability of jQuery UI 9
stack option 146
Stack Overflow 344
step attribute 70
step option 97
stepUp() method 328
style element 13
subscribing to events 32–34
_super() method 38, 221
_superApply() method 218
swing easing 138

T

tables, sortable 124
tabs widget

loading remote content 83
movie information

example 83–87
overview 82–83
vertical tabs 176–177

term parameter 49
term property 53
testing

automated 330
events 328–330
methods 327–328
online tools 15–17, 320–321
options 325–327

TestSwarm 330
that variable 197
Theme Roller 8, 163–166
theming

built-in 163–166
jQuery UI advantages 7–8
making widgets

themeable 193–195
third-party themes 166
using CSS framework

interaction cues 169–172
interaction states 168–169
styled confirmation dialog

example 172–174
widget containers 167–168

using widget class names
adding arrows to tooltips

with CSS 179–181
mobile-friendly datepicker

example 178–179
overview 174–176
vertical tabs 176–177

third-party API source 52–55
this keyword 34, 197
time pickers 340–342
times option 137
title attribute 103
toggle() method 139, 144
toggleClass() method

151–152, 196
tolerance option 121
tooltips

adding arrows to 179–181
displaying preview in 104–106
HTML content in 103–104
overview 101–103

touch events
lack of support for 132–133
Touch Punch 133–134

touch option 120
Touch Punch 133–134
transfer effect 140–142
transitionend event 157
_trigger() function 202–204
trigger() method 331
Try jQuery website 319
TypeError 304

U

ui namespace 187
ui parameter 35, 113
UI walkthrough example

290–292
ui-datepicker class name 178
ui-dialog-buttonpane class

name 175
ui-dialog-content class

name 175
ui-dialog-titlebar class name 175
ui-front class name 172, 227
ui-helper-clearfix class

name 172
ui-helper-hidden class name 172
ui-helper-hidden-accessible class

name 172
ui-helper-reset class name 172
ui-priority-primary class

name 170
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 361
ui-priority-secondary class
name 170

ui-state-active class name
169, 177

ui-state-default class name 169
ui-state-disabled class name

170, 172
ui-state-error class name 169
ui-state-error-text class

name 170
ui-state-focus class name 169
ui-state-highlight class

name 169, 174
ui-state-hover class name 169
ui-tabs class name 216
ui-tabs-vertical class name 216
ui-tooltip class name 180
ui-tooltip-content class

name 180
ui-widget class name 167–168
ui-widget-content class 167
ui-widget-content class

name 167
ui-widget-header class name 167
 elements 118
undocumented extension

points 227–230
unique ids, generating 297–299
upgrading 233
using option 296
utility functions

generating unique ids
297–299

using key code constants 299

V

validation
HTML5 268–271
messages for forms 142–144
plugin for 268

value property 48
value() method 95
vertical tabs 176–177
views, Backbone

adding jQuery UI to 334
creating 332–333

visibility changes
building portlets 144–147
form validation

messages 142–144

W

W3C (World Wide Web
Consortium) 9

WAMP 46
widget factory

$.widget() function
chainable plugin 188–189
constructor function 188
namespace creation 188
pseudo-class 189

adding methods 200–202
adding options 197–199
building 186–187
_destroy() function 207–212
enabling and disabling

widgets 205–207
extending widgets

custom widgets 220–225
datepicker widget 231–237
options for widgets

214–218
overview 214
redefining widget

prototype 218–220
extension points

adding 230–231
overview 225–227
using undocumented

227–230
listening for events with

_on() 195–196
making themeable 193–195
markup structure 189–190
overriding _create() to

initialize widgets 190–193
overview 185–186
triggering events with

_trigger() 202–204
widget() method 248
widgets

autoinitialization
enhanceWithin()

method 312–314
_getCreateOptions()

method 314–315
overview 311–318

creating 19–20
customizing with options

20–24, 301–302, 310–311
dynamically creating 20

embedded-window
usage 307–308

enabling and disabling
205–207

events for
event handlers vs.

callbacks 34–35
event parameters 35–39
subscribing to 32–34

_getCreateOptions()
method 310–311

_hide() method 308–310
HTML5 elements vs. 74–76
instances of 300–301
jQuery UI category 4
lack of 9
methods for

editing list using dialogs
example 28–31

invoking 24–27
option() method 27–28

plugins vs. 186
prototype chain 303–304
_show() method 308–310
streamlining

initialization 305–306
supporting AMD 254–258
theming using class names

adding arrows to tooltips
with CSS 179–181

mobile-friendly datepicker
example 178–179

overview 174–176
vertical tabs 176–177

theming using CSS 167–168
third-party 211

Windows 8 touch devices 134
within option 293
WordPress 4
World Wide Web Consortium.

See W3C

X

XML (Extensible Markup
Language) 272–273

Z

zIndex attribute 113, 120
Licensed to tracy moore <nordick.an@gmail.com>www.it-ebooks.info

http://www.it-ebooks.info/

TJ VanToll

Y
ou’re only one tag away from richer user interfaces—
<script src= jquery-ui.js >. The jQuery UI library simpli-
fi es web UI development by providing robust widgets,

interactions, and effects you can use immediately. It includes
datepickers, autocompletes, tooltips, and a whole lot more.
And, jQuery UI’s powerful widget factory makes it a snap to
customize existing components to meet your needs.

jQuery UI in Action is a practical guide to using and custom-
izing jQuery UI library components. By working through
numerous examples, you’ll quickly master jQuery UI’s twelve
widgets and fi ve interactions—draggable, droppable, resizable,
selectable, and sortable. The engaging examples illustrate
techniques that work across all devices. You’ll use the widget
factory to create reusable plugins and discover jQuery UI’s
CSS theming system that allows you to create a custom,
cohesive look for your sites and your applications.

What’s Inside
● Create interactions that work on any device
● Customizable widgets for web and mobile apps
● Written by a member of the core jQuery UI team
● Covers jQuery UI 1.11

Written for front-end developers and web designers with a
basic understanding of jQuery.

A professional web developer, TJ VanToll is a member of the
jQuery UI core team.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/jQueryUIinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

jQuery UI IN ACTION

WEB DEVELOPMENT

M A N N I N G

“A fantastic resource.”
—From the Foreword by Scott

González, Project Lead, jQuery UI

“A complete and detailed
guide to writing

 web user interfaces.”—Gregor Zurowski, Sotheby’s

“Excellent, in-depth
explanations of jQuery UI’s

 inner workings.”
—Linda Carver

Wicked Coursing LLC

“Articulate, well-organized,
easy to read, and thorough.”—Philip Taffet, SOHOsoft LLC

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	jQuery UI in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions
	Getting the source code
	Author Online
	About the author

	about the cover illustration
	Part 1: Meet jQuery UI
	Chapter 1: Introducing jQuery UI
	1.1 What is in jQuery UI?
	1.2 The benefits of using jQuery UI
	1.2.1 Cohesive and consistent APIs
	1.2.2 Comprehensive browser support
	1.2.3 Open source and free to use
	1.2.4 Thorough documentation
	1.2.5 Powerful theming mechanism
	1.2.6 Emphasis on accessibility
	1.2.7 Stable and maintenance friendly

	1.3 The limitations of jQuery UI
	1.3.1 Lack of widgets
	1.3.2 jQuery UI and mobile devices

	1.4 Getting started with the library
	1.4.1 Versions of the library
	1.4.2 Downloading from the jQuery UI website
	1.4.3 Downloading from CDNs

	1.5 The first example
	1.6 Using an online testing tool
	1.7 Summary

	Chapter 2: Enhancing UIs with widgets
	2.1 Creating widgets
	2.2 Customizing widgets with options
	2.3 Modifying widgets with methods
	2.3.1 Invoking methods
	2.3.2 Using option() to modify widgets
	2.3.3 Using dialogs to edit lists

	2.4 Responding to widget changes with events
	2.4.1 Subscribing to widget events
	2.4.2 Event handlers vs. callbacks
	2.4.3 Event parameters

	2.5 Summary

	Part 2: jQuery UI Core
	Chapter 3: Building complex web forms with jQuery UI
	3.1 The challenges of building modern web forms
	3.2 Autocomplete: suggesting input options to users
	3.2.1 Using local data
	3.2.2 Loading from a remote source
	3.2.3 Using autocomplete with third-party services and APIs

	3.3 Button: enhancing native buttons, inputs, and links
	3.4 Selectmenu: enhancing native <select> elements
	3.5 Datepicker: selecting dates from a pop-up calendar
	3.5.1 Parsing and formatting dates
	3.5.2 Handling date globalization

	3.6 Spinner: enhancing native <input> elements to collect numeric data
	3.7 Completing the appointment form
	3.8 HTML5 elements vs. jQuery UI widgets
	3.9 Summary

	Chapter 4: Enhancing interfaces with layout and utility widgets
	4.1 Accordion: creating toggleable content panels
	4.1.1 Configuring the accordion widget
	4.1.2 Adding and removing panels

	4.2 Tabs: toggling between content areas
	4.2.1 Loading remote content
	4.2.2 Loading movie information in a tabs widget

	4.3 Menu: creating web menus with semantic markup
	4.4 Dialog: displaying content in a pop-up container
	4.5 Progressbar: displaying the progress of a task
	4.6 Slider: selecting a value using moveable handles
	4.6.1 Building range sliders
	4.6.2 Adding a font size range

	4.7 Tooltip: enhancing native tooltips with a customizable control
	4.7.1 Using custom tooltip content
	4.7.2 Displaying a preview in a tooltip

	4.8 Summary

	Chapter 5: Adding interaction to your interfaces
	5.1 Draggable: allowing users to move elements
	5.2 Droppable: creating containers that accept draggables
	5.2.1 Building a drag-and-drop game
	5.2.2 Building a shopping cart

	5.3 Sortable: rearranging elements in a list
	5.3.1 Building connected lists
	5.3.2 Building a fruit and vegetable sorting game

	5.4 Resizable: allowing users to change the size of elements
	5.4.1 Using custom resize handles
	5.4.2 Building an appointment scheduler

	5.5 Selectable: allowing users to select elements from a group
	5.6 Creating multidevice interactions: the importance of touch
	5.6.1 Why doesn’t jQuery UI support touch events?
	5.6.2 Introducing jQuery UI Touch Punch

	5.7 Summary

	Chapter 6: Creating rich animations with effects
	6.1 Using effects and the effect() method
	6.1.1 Customizing effects with easings
	6.1.2 Making visual associations with the transfer effect

	6.2 Animating visibility changes
	6.2.1 Building form validation messages
	6.2.2 Building portlets with jQuery UI

	6.3 Using effects with the jQuery UI widgets
	6.3.1 The show and hide options
	6.3.2 Showing a message in a dialog

	6.4 Animating CSS class name changes
	6.4.1 Enhancing addClass(), removeClass(), and toggleClass()
	6.4.2 Building an off-canvas navigation menu for mobile

	6.5 Effects vs. CSS3 animations and transitions
	6.5.1 CSS3 transitions vs. the jQuery UI class name methods
	6.5.2 CSS animations vs. effects

	6.6 Summary

	Chapter 7: Theming and styling applications with jQuery UI
	7.1 Using built-in and custom themes
	7.2 Using the jQuery UI CSS framework to customize applications
	7.2.1 Styling widget containers
	7.2.2 Styling interaction states
	7.2.3 Styling interaction cues
	7.2.4 Building a styled confirmation dialog

	7.3 Styling with widget class names
	7.3.1 Building vertical tabs
	7.3.2 Building a mobile-friendly datepicker
	7.3.3 Adding arrows to tooltips with CSS

	7.4 Summary

	Part 3: Customization and advanced usage
	Chapter 8: Using the widget factory to build stateful plugins
	8.1 Building a widget
	8.1.1 Constructing widgets with $.widget()
	8.1.2 Choosing a markup structure
	8.1.3 Overriding _create() to initialize widgets
	8.1.4 Making widgets themeable
	8.1.5 Listening for events with _on()

	8.2 Customizing widgets with options, methods, and events
	8.2.1 Making widgets configurable with options
	8.2.2 Changing the widget’s state with methods
	8.2.3 Triggering widget events with _trigger()

	8.3 Enabling, disabling, and destroying widgets
	8.3.1 Enabling and disabling a widget
	8.3.2 Undoing a widget’s effects with _destroy()

	8.4 Summary

	Chapter 9: Extending widgets with the widget factory
	9.1 Building widget extensions
	9.1.1 Changing existing and adding new options to a widget
	9.1.2 Redefining widgets with the widget factory
	9.1.3 Extending a custom widget

	9.2 Customizing widgets with extension points
	9.2.1 Using undocumented extension points
	9.2.2 Adding your own extension points

	9.3 Extending the datepicker widget
	9.3.1 Building a mobile-friendly datepicker extension

	9.4 Summary

	Chapter 10: Preparing your application for production
	10.1 The problem with third-party CDNs
	10.2 Downloading jQuery UI from Download Builder
	10.3 Managing JavaScript dependencies with AMD
	10.3.1 Setting up RequireJS for development
	10.3.2 Loading jQuery UI components with RequireJS

	10.4 Building your application’s assets with the optimizer
	10.4.1 Optimizing JavaScript assets
	10.4.2 Optimizing CSS dependencies

	10.5 Supporting AMD in custom widgets
	10.6 Summary

	Chapter 11: Building a flight-search application
	11.1 Structuring your application
	11.2 Collecting user input
	11.2.1 Building an airport code autocomplete
	11.2.2 Polyfilling HTML5 inputs with jQuery UI
	11.2.3 Validating user input with HTML5

	11.3 Connecting to a RESTful API
	11.3.1 Looking up flights with $.ajax()

	11.3.2 Parsing XML with jQuery
	11.4 Displaying the results on the screen
	11.4.1 Storing and resolving templates with RequireJS
	11.4.2 Showing a processing indicator while data loads

	11.5 Adding a responsive design
	11.6 Preparing the application for production
	11.7 Getting the optimal performance with almond
	11.8 Summary

	Chapter 12: Under the hood of jQuery UI
	12.1 Positioning elements with the position utility
	12.1.1 Building a UI walkthrough with the position utility and dialog widget
	12.1.2 Handling collisions elegantly
	12.1.3 Controlling the collision detection

	12.2 Using the utility functionality in jQuery UI Core
	12.2.1 Generating unique ids
	12.2.2 Using key code constants

	12.3 Accessing and managing widget instances
	12.3.1 Detecting widget instances with :data()

	12.4 Advanced widget prototype methods and properties
	12.4.1 A widget’s prototype chain explained
	12.4.2 Using a widget’s default element to streamline initialization
	12.4.3 Supporting embedded-window use in widgets
	12.4.4 Displaying elements with _show() and _hide()
	12.4.5 Customizing options on the fly

	12.5 Using autoinitialization to remove boilerplate code
	12.5.1 How jQuery Mobile’s autoinitialization works
	12.5.2 jQuery Mobile’s widget extension
	12.5.3 Autoinitializing jQuery UI widgets

	12.6 Summary

	appendix A: Learning jQuery
	A.1 Experimentation
	A.1.1 Try jQuery (try.jquery.com)
	A.1.2 Online testing tools
	A.1.3 The browser’s developer tools

	A.2 Reading
	A.2.1 jQuery Learning Center (learn.jquery.com)
	A.2.2 Books

	appendix B: How jQuery UI tests jQuery UI
	B.1 Testing options
	B.2 Testing methods
	B.3 Testing events

	appendix C: Using jQuery UI with Backbone
	C.1 Building a Backbone view
	C.2 Adding jQuery UI to the view
	C.3 Using declarative widgets

	appendix D: Creating decimal, currency, and time pickers with Globalize
	D.1 Building decimal pickers
	D.2 Building currency pickers
	D.3 Building time pickers

	appendix E: Contributing to jQuery UI
	E.1 Help others on the forums, Stack Overflow, and IRC
	E.2 Triage bugs
	E.3 Write documentation and maintain the websites
	E.4 Write code
	E.5 Ask for help

	appendix F: Polyfilling HTML5 with jQuery UI
	F.1 Using polyfills
	F.1.1 Using Modernizr

	F.2 Polyfilling <input type="date"> with datepicker
	F.3 Polyfilling <input type="number"> with spinner
	F.4 Polyfilling <input type="range"> with slider
	F.5 Polyfilling <progress> with progressbar
	F.6 Polyfilling <datalist> with autocomplete

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

