1J VanToll

Forewor BY Scott Gonzalez

M MANNING

www.it-ebooks.info

http://www.it-ebooks.info/

JQuery Ul in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JQuery Ul in Action

T] VANTOLL

MANNING
Shelter Island

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/l/l Manning Publications Co. Development editor: Sean Dennis
20 Baldwin Road Technical development editor: Teresa Burger
Shelter Island, NY 11964 Copyeditor: Teresa Wilson

Proofreader: Elizabeth Martin
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617291937
Printed in the United States of America

123456789 10-EBM- 1918 17 16 15 14

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents

PART 1 MEET JQUERY UI 0uoouoooooooooooooooooooooooo-o0oooooooooooooooooo.coo-oo-oo1

1 = Introducing jQuery Ul 3
2 = Enhancing Uls with widgets 18

PART 2 JOUERY UI CORE ..cvevuniiiiiinnniiiiininniiiiinnnnineeinnneceeenennnee. 41

3 = Building complex web forms with jQuery Ul 43
= Enhancing interfaces with layout and utility widgets 77
= Adding interaction to your interfaces 107

Creating rich animations with effects 135

N O Ot
]

= Theming and styling applications with jQuery Ul 162

PART 3 (CUSTOMIZATION AND ADVANCED USAGE ceeeeeeecescescescscescesces 183

8 = Using the widget factory to build stateful plugins 185
9 = Extending widgets with the widget factory 213

10 = Preparing your application for production 238

11 = Building a flight-search application 259

12 = Under the hood of jQuery Ul 287

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents

Sforeword xiii

preface xv

acknowledgments xvi

about this book xviii

about the cover illustration xxi

PART 1 MEET JOUERY Ul....cuuiiiinniiiinniiinnnicinnncninnencennaneee. 1

Introducing jQuery UI 3
1.1 Whatis in jQuery UI? 4
1.2 The benefits of using jQuery Ul 6

Cohestve and consistent APIs 6 = Comprehensive browser support 7
Open source and free to use 7 = Thorough documentation 7
Powerful theming mechanism 7 = Emphasis on accessibility 8
Stable and maintenance friendly 9

1.3 The limitations of jQuery UL 9
Lack of widgets 9 = jQuery Ul and mobile devices 10
1.4 Getting started with the library 11

Versions of the library 11 = Downloading from the jQuery Ul
website 11 = Downloading from CDNs 12

1.5 The first example 12

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

1.6 Using an online testing tool 15

1.7 Summary 17

Enhancing Uls with widgets 18

2.1 Creating widgets 19
2.2 Customizing widgets with options 20

2.3 Modifying widgets with methods 24

Invoking methods 24 = Using option() to modify widgets 27
Using dialogs to edit lists 28

2.4 Responding to widget changes with events 31

Subscribing to widget events 32 = Event handlers vs.
callbacks 34 = Fvent parameters 35

2.5 Summary 39

PART 2 JOUERY Ul CORE....cuuvrirennnirinneirenneceennnccnenencennnenc 41

Building complex web forms with jQuery Ul 43
3.1 The challenges of building modern web forms 44

3.2 Autocomplete: suggesting input options to users 46

Using local data 47 = Loading from a remote source 49
Using autocomplete with third-party services and APIs 52

3.3 Button: enhancing native buttons, inputs, and links 55
3.4 Selectmenu: enhancing native <select> elements 59

3.5 Datepicker: selecting dates from a pop-up calendar 62

Parsing and formatting dates 64 = Handling date
globalization 67

3.6 Spinner: enhancing native <input> elements to collect
numeric data 69

3.7 Completing the appointment form 71
3.8 HTMLS5 elements vs. jQuery Ul widgets 74
3.9 Summary 76

Enhancing interfaces with layout and utility widgets 77

4.1 Accordion: creating toggleable content panels 78

Configuring the accordion widget 79 = Adding and removing
panels 81

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

4.2 Tabs: toggling between content areas 82

Loading remote content 83 = Loading movie information in a
tabs widget 83

4.3 Menu: creating web menus with semantic markup 88
4.4 Dialog: displaying content in a pop-up container 91
4.5 Progressbar: displaying the progress of a task 94

4.6 Slider: selecting a value using moveable handles 97
Building range sliders 98 = Adding a font size range 99

4.7 Tooltip: enhancing native tooltips with a customizable
control 101

Using custom tooltip content 103 = Displaying a preview in a
tooltip 104

4.8 Summary 106

Adding interaction to your interfaces 107

5.1 Draggable: allowing users to move elements 108

5.2 Droppable: creating containers that accept draggables 110

Building a drag-and-drop game 110 = Building a shopping
cart 114

5.3 Sortable: rearranging elements in a list 118

Building connected lists 121 = Building a fruit and vegetable
sorting game 121

5.4 Resizable: allowing users to change the size of elements 125

Using custom resize handles 126 = Building an appointment
scheduler 127

5.5 Selectable: allowing users to select elements from a group 130

5.6 Creating multidevice interactions: the importance
of touch 132

Why doesn’t jQuery UI support touch events? 132 = Introducing
JjQuery UI Touch Punch 133

5.7 Summary 134

Creating rich animations with effects 135

6.1 Using effects and the effect() method 136

Customizing effects with easings 138 = Making visual
associations with the transfer effect 140

www.it-ebooks.info

http://www.it-ebooks.info/

X CONTENTS

6.2 Animating visibility changes 142
Building form validation messages 142 = Building portlets with
JQuery UL 144

6.3 Using effects with the jQuery Ul widgets 147
The show and hide options 147 = Showing a message in a
dialog 148

6.4 Animating CSS class name changes 151
Enhancing addClass(), removeClass(), and toggleClass() 151
Building an off-canvas navigation menu for mobile 153

6.5 Effects vs. CSS3 animations and transitions 156
CSS3 transitions vs. the jQuery UI class name methods 156 = CSS

animations vs. effects 158

6.6 Summary 161

Theming and styling applications with jQuery Ul 162
7.1 Using built-in and custom themes 163
7.2 Using the jQuery UI CSS framework to customize

applications 166
Styling widget containers 167 = Styling interaction states 168
Styling interaction cues 169 = Building a styled confirmation
dialog 172
7.3 Styling with widget class names 174
Building vertical tabs 176 = Building a mobile-friendly
datepicker 178 = Adding arrows to tooltips with CSS 179

7.4 Summary 181

PART 3 CUSTOMIZATION AND ADVANCED USAGE «ceveceescccescees 183

Using the widget factory to build stateful plugins 185

8.1 Building a widget 186
Constructing widgets with $.widget() 187 = Choosing a
markup structure 189 = Quverriding _create() to initialize
widgets 190 = Making widgets themeable 193 = Listening
Jor events with _on() 195

8.2 Customizing widgets with options, methods, and events 196

Making widgets configurable with options 197 = Changing the
widget’s state with methods 200 = Triggering widget events with
_trigger() 202

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

8.3 Enabling, disabling, and destroying widgets 205

Enabling and disabling a widget 205 = Undoing a widget’s effects
with _destroy() 207

8.4 Summary 212

Extending widgets with the widget factory 213

9.1 Building widget extensions 214

Changing existing and adding new options to a widget 214
Redefining widgets with the widget factory 218 = Extending a
custom widget 220

9.2 Customizing widgets with extension points 225

Using undocumented extension points 227 = Adding your own
extension points 230

9.3 Extending the datepicker widget 231
Building a mobile-friendly datepicker extension 234

9.4 Summary 236

1 Preparing your application for production 238
10.1 The problem with third-party CDNs 239
10.2 Downloading jQuery Ul from Download Builder 241

10.3 Managing JavaScript dependencies with AMD 243
Setting up RequirefS for development 245 = Loading jQuery Ul
components with Require]S 246

10.4 Building your application’s assets with the optimizer 249
Optimizing JavaScript assets 249 = Optimizing CSS
dependencies 251

10.5 Supporting AMD in custom widgets 254
10.6 Summary 257

] Building a flight-search application 259
11.1 Structuring your application 260

11.2 Collecting user input 261
Building an airport code autocomplete 263 = Polyfilling HTML5
inputs with jQuery UL 265 = Validating user input with
HTML5 268

11.3 Connecting to a RESTful API 271
Looking up flights with $.ajax() 271 = Parsing XML with
JQuery 272

www.it-ebooks.info

http://www.it-ebooks.info/

11.4

11.5
11.6
11.7
11.8

CONTENTS

Displaying the results on the screen 274

Storing and resolving templates with Require]S 276 = Showing a
processing indicator while data loads 277

Adding a responsive design 279

Preparing the application for production 283
Getting the optimal performance with almond 284
Summary 286

Z Under the hood of jQuery UL 287

12.1

12.2

12.3

12.4

12.5

12.6

appendix A
appendix B
appendix C
appendix D
appendix E
appendix I

Positioning elements with the position utility 287
Building a UI walkthrough with the position utility and dialog
widget 290 = Handling collisions elegantly 293 = Controlling
the collision detection 295

Using the utility functionality in jQuery UI Core 297
Generating unique ids 297 = Using key code constants 299

Accessing and managing widget instances 300
Detecting widget instances with :data() 301

Advanced widget prototype methods and properties 302
A widget’s prototype chain explained 303 = Using a widget’s
default element to streamline initialization 305 = Supporting
embedded-window use in widgets 307 = Displaying elements with
_show() and _hide() 308 = Customizing options on the fly 310

Using autoinitialization to remove boilerplate code 311

How jQuery Mobile’s autoinitialization works 312 = jQuery
Mobile’s widget extension 314 = Autoinitializing jQuery Ul
widgets 315

Summary 318

Learning jQuery 319

How jQuery UI tests jQuery UL 325

Using jQuery Ul with Backbone 332

Creating decimal, currency, and time pickers with Globalize 337
Contributing to jQuery Ul 343

Polyfilling HTML5 with jQuery Ul 348

index 355

www.it-ebooks.info

http://www.it-ebooks.info/

Joreword

jQuery has taken the web development community by storm. It has done this by build-
ing an API that is approachable for designers and new developers while simultane-
ously providing the power and extensibility desired by the most advanced and
experienced developers. jQuery is easy to learn, easy to extend, and paves over
browser differences, making it the go-to choice for millions of developers.
jQuery Ul takes the same philosophies used to build jQuery and applies them to var-
ious aspects of UI creation. Building elegant interfaces with powerful, customizable
widgets should be just as easy as showing and hiding elements. jQuery Ul delivers on this
promise while addressing often ignored issues such as accessibility and extensibility.
jQuery UI has built a solid base over the past seven years and the number of users is
growing steadily. But the web is evolving at a rapid pace and new JavaScript libraries and
Ul toolkits are popping up left and right. Choosing the right tools for your next project
can be quite daunting. jQuery UI in Action shows how to leverage jQuery UI to quickly
build an application or just add an extra touch of interaction on an existing page.
This book will serve as a fantastic resource for anyone interested in getting started
with jQuery UL As always, TJ has done a great job of walking through tasks in detail
and pointing out potential pitfalls. TJ’s dedication and desire to help others has been
an invaluable asset, not just to jQuery UI, but to the web development community as a
whole. I'm sure you’ll feel the same way after reading this book.
Scort GONZALEZ
ProjJecT LEAD, JQUERY UI

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

preface

In 2013 Manning contacted me about writing a book on jQuery Ul Because I had
been an enthusiastic user of the library for five years, and had been a member of the
jQuery team for approximately two years, I had a lot of experience and knowledge
that I wanted to share with the world. I said Yes!

From the start, I made it clear that I wanted to take a different tack with this book:
rather than reprinting the library’s API documentation in a book, which is something
I think far too many tech books do, I wanted to write about how to use the jQuery Ul
components in real-world usage scenarios and applications. I also wanted to tackle the
tough questions for jQuery UI users. Why should you use the jQuery UI datepicker
instead of the native date picker included in HTML5? How do you use jQuery UI on
mobile devices, especially in low bandwidth situations?

From start to finish the book took about a year and a half to complete, and
although it was an exhausting amount of work, I'm extremely happy with the result.
jQuery Ul is a stable library that helps you write robust, accessible, and cross-browser
friendly web applications today. This book represents my attempt to share the knowl-
edge I've gained from building countless projects with jQuery Ul, and from working
as a member of the jQuery team. I hope you enjoy it.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

I never thought that I would be writing one of these ... I feel like I’'m at the Oscars or
something. Although I hate to list specific names, as it will force me to exclude people
I'should thank and it’ll be totally awkward the next time I see them, I'll do it anyway ...
otherwise this section would be kind of boring.

I'll start with Scott Gonzdlez, who brought me into the jQuery project, walked me
through countless jQuery concepts, and has always been around to help with any
problem I run into. In addition to helping me with all things jQuery UI over the last
few years, Scott also contributed the foreword to this book.

Next I'll thank Jorn Zaefferer, whose expertise has made me a better developer
during my time with jQuery UL I asked Jérn to perform the technical review of this
book because I felt he was the most qualified person for the job (he is the original
author of a good chunk of the jQuery UI source), and I wasn’t disappointed. The
book is unquestionably better because of Jorn.

The entire jQuery UI team has either directly or indirectly helped make this book
a reality, so I'd also like to thank Kris Borchers, Felix Nagel, Corey Frang, Mike Sherov,
Rafael Xavier, and Alexander Schmitz.

The people at Manning have been great through the long and arduous process of
writing a technical book. My development editor, Sean Dennis, not only provided
great feedback throughout, but also took care of managing the various tedious pro-
cesses involved in writing and publishing a book. Robin de Jongh was the one who
asked me to write this book and was a great guy to talk to throughout the process.
Without him there would be no book.

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xvii

The following peer reviewers also provided invaluable insights, reading the manu-
script a number of times during its development and I'd like to acknowledge them
here: Linda Carver, A. Krishna Chaitanya, Alain Couniot, Jirgen De Commer, Dave
Corun, Cole Davisson, Mark Elston, Peter Empen, Ed Griebel, Al Scherer, Natalia
Stavisky, Philip Taffet, and Gregor Zurowski.

But without question, the lion’s share of thanks goes to my beautiful and talented
significant other, Trish. In addition to providing desperately needed moral support
throughout the harrowing journey that was the writing of this book, Trish also helped
shape the structure and flow of the chapters with her own development expertise (as
well as her brutally honest criticism). And because she has a wizard-like ability to bend
CSS to her will, she may even have had her hand in the book’s examples directly.

Thank you, Trisha. I love you.

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

JQuery UI in Action’s primary purpose is to teach you how to use the jQuery UI library
to build rich, user-friendly web applications. The book starts with the basics of creat-
ing and modifying widgets, and moves on to a series of complex examples, such as
building widgets from scratch, optimizing your applications for production, and even
building a complete flight-search application.

This book assumes that you have basic knowledge of CSS, JavaScript, and jQuery. If
you’re not an expert don’t despair—when intermediate- and advanced-level concepts
are brought up, they’re explained. If you're finding yourself a bit overwhelmed,
appendix A discusses resources for getting up to speed. On the flip side, if you're an
expert don’t despair either. You’ll build a number of real-world examples and discuss
advanced aspects of the library throughout the book.

Roadmap
This book is organized into three parts.

Part 1 provides an introduction to jQuery Ul Chapter 1 introduces the library
itself, with an explanation of what is in the library, what the library does well, and what
it doesn’t do well. Chapter 2 explains the ins and outs of widgets, the core building
blocks of jQuery UL

Part 2 walks through the core components of jQuery Ul, starting with its widgets.
Chapter 3 introduces the five jQuery UI form widgets, uses them to build a complete
form, and compares the widgets to their HTML5 counterparts. Chapter 4 discusses the
three jQuery UI layout widgets and the four utility widgets. Chapter 5 introduces the

Xviii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK XixX

five interaction widgets, and uses them to build a series of real-world interfaces, as well
as a few games. Chapter 6 contains a thorough discussion of the jQuery UI effects and
chapter 7 explains everything about jQuery UI themes.

Part 3 builds upon the core knowledge taught in part 2 to show a series of
advanced topics. Chapter 8 shows how to build your own widgets from scratch, using
the same mechanism jQuery UI uses. Chapter 9 shows how to customize the behavior
of any widget using widget extensions. Chapter 10 teaches how to prepare a jQuery UI
application for production usage, including applying several performance optimiza-
tions. Chapter 11 builds upon all this knowledge to explain how to build a complete
flight-search application. And finally, chapter 12 looks under the hood of the library,
to show the tools that jQuery UT uses to make jQuery UI work.

There are 6 appendixes. Appendix A covers the best ways to learn jQuery. How
jQuery UI tests its own widgets (jQuery UI tests jQuery UI!) is the focus of appendix B.
Appendix C focuses on using jQuery Ul with Backbone. Appendix D is about global-
ization. Ways to contribute to jQuery UI are explained in appendix E, and polyfilling
HTMLS5 with jQuery Ul is touched on in appendix F.

Code conventions

jQuery Ul in Action provides copious examples that show howyou can make use of each of
the topics covered. Source code in listings or in text appears in a fixed-width font
like this to separate it from ordinary text. In addition, class and method names,
object properties, and other code-related terms and content in text are presented
using the same fixed-width font.

Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

Getting the source code

You can access the source code for all examples in the book from the publisher’s website
atwww.manning.com/jQueryUlIinAction. All source code for the projectisalso hosted at
GitHub, a commercial Git hosting firm, at https://github.com/tjvantoll/jquery-ui-in-
action-demos. We will maintain the current URL via the publisher’s website. The source
is maintained by chapter, so, for example, you can download /source-code/ch06 and
you will have a full copy of the source code up to that point in the book.

Author Online

Purchase of jQuery UI in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/jQueryUlinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

www.it-ebooks.info

https://github.com/tjvantoll/jquery-ui-in-action-demos
https://github.com/tjvantoll/jquery-ui-in-action-demos
http://www.manning.com/vantoll/
http://www.manning.com/vantoll/
http://www.it-ebooks.info/

ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the author

- @@ 1] VanToll is a developer advocate for Telerik and a jQuery team
B member. He has over a decade of web development experience—
specializing in performance and the mobile web. TJ speaks about
his research and experiences at conferences around the world,
and has written for publications such as Smashing Magazine,
HTML5 Rocks, and MSDN Magazine.

www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration

The figure on the cover of jQuery Ul in Action is captioned a “Man from Imotski, Croa-
tia.” The illustration is taken from the reproduction, published in 2006, of a nine-
teenth-century collection of costumes and ethnographic descriptions entitled
Dalmatia by Professor Frane Carrara (1812-1854), an archaeologist and historian, and
the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the
Museum of Antiquity), itself situated in the Roman core of the medieval center of
Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The
book includes finely colored illustrations of figures from different regions of Dalma-
tia, accompanied by descriptions of the costumes and of everyday life.

Imotski is a small town situated on the northern side of the Biokovo massif in the
Dalmatian hinterland, close to the border of Croatia with Bosnia-Herzogovina. The
man on the cover is wearing an embroidered vest over a white linen shirt and white
woolen trousers, a suede jacket is thrown over his shoulder, and he is carrying a
musket. The rich and colorful embroidery on his costume is typical for this region
of Croatia.

Dress codes have changed since the nineteenth century, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

ABOUT THE COVER ILLUSTRATION

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
illustrations from collections such as this one.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Meet 1Query Ul

rI:ese first two chapters serve as an introduction to jQuery Ul As you’ll
learn in chapter 1, jQuery Ul is a collection of plugins and utilities that build on
jQuery, supported by the jQuery Foundation. You can count on them to be offi-
cially supported and maintained throughout the life of your application.

In chapter 1 you’ll learn about the library itself—what’s in it, who maintains
it, what it does well, and even what it doesn’t do well.

In chapter 2 you’ll build on that knowledge to learn the ins and outs of wid-
gets, the core building blocks of jQuery UL The focus here is on three mecha-
nisms the widget factory provides for customization: options, methods, and
events. Options are configurable properties of widgets, methods let you perform
actions on widgets, and events let you to respond to changes on the widgets.

What you learn about the library, and about the jQuery UI widgets, will give
you the foundation you need to build more complex interfaces in part 2.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing 1Query Ul

This chapter covers

= What jQuery Ul includes
= Whether jQuery Ul is for you
= How to get started using the library

Let’s take a trip back to early 2006. The term AJAX had been coined, the second
beta of Internet Explorer 7 was released, and John Resig announced a small library
he called jQuery. jQuery would soon become wildly popular, thanks in part to how
easy it was to extend its core functionality through plugins.

Months passed, and thousands of plugins were created by the jQuery commu-
nity. Although the abundance of plugins provided variety, they were scattered
around the internet, had inconsistent APIs, and often had little or no documenta-
tion. Because of these problems, the jQuery team wanted to provide an official set
of plugins in a centralized location. In September 2007 they created a new library
with these plugins—jQuery UL

From a high level, jQuery UI was, and still is, a collection of plugins and utilities
that build on jQuery. But dig deeper and you find a set of consistent, well-
documented, themeable building blocks to help you create everything from small
websites to highly complex web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Introducing jQuery Ul

Unlike jQuery plugins, the plugins and utilities in jQuery UI are supported by the
jQuery Foundation. You can count on them to be officially supported and maintained
throughout the life of your application.

The stability and ease of use of jQuery Ul led to continuous growth in the library’s
popularity. The library is now used in 19% of the top 10,000 sites on the web, and has
been incorporated into WordPress core and Drupal.

In this book you’ll learn how to use the pieces of jQuery UI to create powerful and
interactive websites and applications. In this chapter you’ll start by taking a thorough
look at what the jQuery UI library is, why you’d want to use it, and how to download
the library and get it up and running. Let’s get started!

Who is this book for?

This book assumes that you have basic knowledge of CSS, JavaScript, and jQuery. If
you're not an expert don’t despair—when intermediate- and advanced-level concepts
are brought up, they’re explained. If you're finding yourself a bit overwhelmed, appen-
dix A discusses resources for getting up to speed. On the flip side, if you're an expert
don’t despair either. We'll build a number of real-world examples and discuss ad-
vanced aspects of the library throughout the book.

1.1 Whatis in jQuery UI?

The plugins and utilities in jQuery UI are divided into four categories—widgets, inter-
actions, effects, and utilities (the structure of the library is presented in figure 1.1):

= Widgets are jQuery plugins used to create Ul elements such as datepickers and
menus. As of version 1.11, the library has 12 widgets, shown in figure 1.2. The
widgets in jQuery UI adhere to the library’s CSS framework, and therefore have
a consistent look and feel. We’ll cover the jQuery UI widgets in chapters 2, 3,
and 4 and the CSS framework in chapter 7.

= Interactions are jQuery plugins that give the user the ability to interact with DOM
elements. The draggable interaction allows users to drag elements around the
screen, and the sortable interaction allows users to sort items in a list. We’ll
cover interactions in chapter 5.

= Effects are a full suite of custom animations and transitions for DOM elements.
They’re built on the animations provided in jQuery Core, and enhance a number
of Core’s methods such as show () and hide (). We’ll cover effects in chapter 6.

= Utilities are a set of modular tools the library uses internally. The widget factory
is the mechanism all jQuery UI widgets are built with; we’ll cover it in chapters 8
and 9. The position utility provides an easy and precise means of positioning
elements on the screen. We’ll cover position and the rest of the utilities in
jQuery Ul in chapter 12.

www.it-ebooks.info

http://www.it-ebooks.info/

What is in jQuery UI?

Autocomplete Button) Resizable Selectable
Datepicker

; ; Sortable
Accordion Dialog Droppable
Tabs Progressbar

Draggable
Tooltip Selectmenu
Slider
@ jQuervy
l user interface Bounce
Blind
Widget factory
Transfer
Color
Slide
:tabbable
Size Effects Drop
Position ot Explode
aata Shake
:focusable Fade
Scale
Fold
Pulsate

Highlight

Puff

Figure 1.1 The pieces of the jQuery Ul library, categorized into widgets, interactions, utilities, and effects

The pieces of jQuery UI work well together, but they were also designed with modular-
ity in mind. Although the widget factory and position utility are heavily used in the
library, they’'re also standalone plugins that can be used outside of jQuery UI; their

only dependency is jQuery Core.

Now that we’ve seen what jQuery Ul includes, let’s see what jQuery UI can be used
for, and how it might be a good fit for your next project.

Who is jQuery UI?

Development on jQuery Ul (as well as all jQuery projects) is coordinated by the jQuery
Foundation—a nonprofit association funded by community contributions of time and

money.

The jQuery Ul team is a group of eight individuals (I am one of them) scattered
throughout the world. | became enthralled with jQuery Ul after | discovered the amaz-
ing number of things the library could do with a small amount of code. | started sub-
mitting bug fixes and documentation and haven’t looked back.

| hope you become as excited about the library as | am. The jQuery Ul project is pri-
marily community and volunteer driven, and there’s always plenty to do!

www.it-ebooks.info

http://www.it-ebooks.info/

1.2

121

Accordion

v One

Contents

r Two

» Three

Autocomplete

i Dialog
jQuery

jQuery Mobile

Menu

Two | Three

Four

Ho
=]
™

Slider

Button

One Two Three

Tooltip

Contents

CHAPTER 1 Introducing jQuery Ul

Datepicker

o February 2014

Su Mo Tu We Th Fr

3 4 5 6 7

10 11 12 13 14

16 17 18 15 20 21
23 24 25 26 27 28

Selectmenu

15
22

Option One

Option One

Option Two

Option Three
Tabs
One Two Three

Contents

Progressbar

7/

Spinner

The benefits of using jQuery Ul

Any website or application that uses jQuery almost certainly has a use for jQuery UL
jQuery Core is powerful, but it’s a small library that doesn’t do everything you need to
build modern web applications. If you've been frustrated by searching the internet
and piecing together jQuery plugins, then jQuery UI provides an appealing alterna-
tive. Let’s look at the advantages of using the library.

Cohesive and consistent APIs

Figure 1.2 An exam-
ple of all 12 jQuery Ul
widgets. Because of
the jQuery Ul CSS
framework, each wid-
get has a consistent
look.

Because jQuery plugins have different authors, they often have wildly inconsistent
APIs. jQuery UI has also faced this problem. The jQuery UI library started as a collec-
tion of popular plugins by numerous authors with a variety of programming styles.
This resulted in years of refactoring to present a consistent API to end users.

www.it-ebooks.info

http://www.it-ebooks.info/

122

123

124

1.2.5

The benefits of using jQuery Ul 7

Throughout the process, common patterns emerged and were abstracted into utili-
ties like the widget factory.

Because jQuery UI provides consistent APIs, users can move from one part of the
library to another without constantly needing to refer to online documentation.

Comprehensive browser support

When using jQuery UI, you can feel confident that your code works in all major brows-
ers. As of version 1.11, jQuery UI supports Internet Explorer versions 7 and up, as well
as the latest two versions of Chrome, Firefox, Safari, and Opera. With jQuery UI, you
write your code once and it runs everywhere.

NOTE Internet Explorer 6 support was dropped in version 1.10 of jQuery UI
due to low global usage. If you still need Internet Explorer 6 support, you can
use version 1.9 of jQuery UL

Open source and free to use

Everything in jQuery Ul is open source. The library’s source files are publicly available
at https://github.com/jquery/jquery-ui. Not only are the source files open source but
the project’s home page and API documentation are as well (see https://github.com/
jquery/jqueryui.com and https://github.com/jquery/api.jqueryui.com, respectively).

All development is done in the open, and the community is encouraged to partici-
pate. If you find a bug in the library, you can submit a patch for it. If you’re confused
by the documentation, you can ask for clarification. If you find a typo, you can submit
a patch that fixes it. The development of all jQuery projects is community driven, and
contributions are always welcome. For more information on contributing to jQuery,
see appendix E.

jQuery Ul is also free. The use of jQuery UI (and all jQuery projects) is under the
terms of the MIT license. All jQuery projects are free to use in any project (including
commercial ones), as long as the copyright headers are preserved.

Thorough documentation

One of the major pain points with jQuery plugins is the difficulty of finding up-to-date and
accurate documentation. All pieces of jQuery UI are thoroughly and consistently docu-
mented at http://api.jqueryui.com/. By default, the APIs for the latest version are shown,
but previous versions are available as well. For example, http://api.jqueryui.com/1.10/
shows the APIs for 1.10 and http://api.jqueryui.com/1.9/ shows the APIs for 1.9.

Powerful theming mechanism

Another challenge of working with plugins is creating a consistent look. Although
some plugins provide a way to theme the elements they create, the conventions used
are often wildly different. jQuery UI solves this with a CSS framework that all its wid-
gets use; therefore, all widgets look the same out of the box, but you still have the flex-
ibility to create your own custom look and feel.

www.it-ebooks.info

http://api.jqueryui.com/
http://api.jqueryui.com/1.10/
http://api.jqueryui.com/1.9/
http://www.it-ebooks.info/

1.2.6

CHAPTER 1 Introducing jQuery Ul

Download jQuery Ul Start with one of jQuery Ul's 24
with your custom theme. preconfigured themes.

ThemeRoller ==,

- Accordion Button
Roll Your Own Gallery Help
¥ Section 1 A button element
A Chaice 1 Choice 2 Choice 3

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam.

Integer ut neque. Vivamus nisi metus, molestie vel, gravida in,

condimentum sit amet, nunc. Nam a nibh. Donec suscipit eros. Autocomplete
Nam mi. Proin viverra leo ut odio. Curabitur malesuada.

Vestibulum a velit eu ante scelerisque vulputate.

Spinner
» Section 2
-
b Section 3 -
Slider
Tabs
First Second Third
Datepicker
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aligua. Ut (<] February 2014 [+]
enim ad minim veniam, quis nostrud exercitation ullamco laboris Su Mo Tu We Th Fr Sa

nisi ut aliguip ex ea commodo consequat.

[[
Configure styles for your The preview area updates as
custom theme. styles are changed.

Figure 1.3 Using jQuery Ul ThemeRoller, you can configure a custom theme by playing with CSS prop-
erties and seeing their effect on the jQuery Ul widgets live.

To make this process easier, the jQuery UI ThemeRoller allows you to visually play with
the widgets’ displays and generate a CSS file with your theme. Not a designer? No wor-
ries. jQuery Ul also provides 24 themes you can use or build on top of. ThemeRoller is
available at http://jqueryui.com/themeroller/ and is shown in figure 1.3.

Emphasis on accessibility

Accessibility is an important consideration when building anything for the web, but
making even simple applications accessible to all audiences can be a difficult task.
Documentation is scarce, screen readers can be tricky to test on, and specifications
such as Accessible Rich Internet Applications (ARIA) can be complex and difficult
to understand.

All jQuery UI widgets are designed with accessibility in mind. You can add widgets
to your site and feel confident that everyone can use them. The jQuery UI widgets are
keyboard accessible, use ARIA roles appropriately, and use proper markup to optimize
user experiences on screen readers.

www.it-ebooks.info

http://jsfiddle.net/draft/
http://www.it-ebooks.info/

The limitations of jQuery UI 9

NOTE ARIA is a technical specification published by the World Wide Web
Consortium (W3C). It aims to improve the accessibility of web pages—specifi-
cally pages with dynamic content and UI components. It specifies a number of
HTML attributes that can be applied to elements to help assistive technologies
such as screen readers interpret web pages.

12.7 Stable and maintenance friendly

1.3

1.3.1

Because jQuery Ul is maintained by the jQuery Foundation, the library is updated as
new versions of jQuery Core and browsers are released. Although using the latest ver-
sion of the library is encouraged, the jQuery UI team realizes the difficulty of upgrad-
ing large and complex applications.

Therefore, two versions of the library are maintained simultaneously. Fixes made
to the latest stable release can be incorporated in the previous legacy release. APIs are
never removed from the library without being deprecated for a full major release.

To help with upgrading, a detailed guide is published with each major release of the
library. The upgrade guide for 1.11 is at http://jqueryui.com/upgrade-guide/1.11/,
and the upgrade guide for 1.10 is at http://jqueryui.com/upgrade-guide/1.10/.

A changelog, listing every change—including bug fixes—made to the library in
that release, is also produced. The changelog for 1.11.0 is at http://jqueryui.com/
changelog/1.11.0/, and the changelog for 1.10.4 is at http://jqueryui.com/
changelog/1.10.4.

Now that you know why you’d want to use jQuery Ul, let’s discuss why you might
not want to use the library.

The limitations of jQuery Ul

Although jQuery UI solves a lot of problems, it doesn’t solve everyone’s. The library
receives two main complaints: it doesn’t have enough widgets, and it’s not optimized
for mobile. Let’s deal with each of these.

Lack of widgets

As of version 1.11, jQuery UI has 12 widgets. Although these widgets are in the library
because they solve common UI problems, 12 widgets certainly don’t solve every Ul
problem that even a small company encounters.

Fortunately, you can use jQuery Ul alongside community and commercially written
jQuery plugins. Many third-party plugins use portions of jQuery UI, such as the widget
factory and the CSS framework, to provide a consistent APT and a consistent theme.

If you can’t find a widget to meet your needs, it’s easy to build your own with
jQuery UL We’ll discuss how to build custom widgets using the widget factory in chap-
ter 8.

Finally, all jQuery UI widgets are built with extensibility in mind. You can make sub-
tle alterations to the library’s widgets or build completely new widgets on top of them
easily. We’ll discuss extending jQuery UI widgets in chapter 9.

www.it-ebooks.info

http://jqueryui.com/changelog/1.11.0/
http://jqueryui.com/changelog/1.11.0/
http://jqueryui.com/changelog/1.10.4
http://jqueryui.com/changelog/1.10.4
http://www.it-ebooks.info/

10

CHAPTER 1 Introducing jQuery Ul

1.3.2 jQuery Ul and mobile devices

The other major complaint about jQuery UI is that the library isn’t optimized for
mobile devices. The primary issues cited are the lack of touch-event support, the dis-

play of the widgets, and the size of the library. Let’s tackle each of these individually:

Touch-event support—As of version 1.11, jQuery UI doesn’t natively support touch
events. By default, some widgets and interactions don’t work on mobile brows-
ers such as iOS Safari or Chrome for Android. But a workaround is available
until true support for touch events comes in a future release. We’ll discuss the
issues with touch events, how to get jQuery UI to work with them, and future
plans for true support when we discuss interactions in chapter 5.

Display of widgets—The look and feel of jQuery UI widgets are more suited for
desktop browsers than mobile ones. To address this, the jQuery UI team is work-
ing with the jQuery Mobile team to build widgets that look good on all screen
sizes. In the meantime, because all jQuery UI widgets conform to the jQuery UI
CSS framework, it’s easy to adjust the display of all widgets to meet your needs.
We’ll discuss the jQuery UI CSS framework, along with specific mobile consider-
ations, in chapter 7.

Size of the library—TFile size is important for any client-side library, especially on
mobile devices where connection speed can be limited and latency is frequently
high. jQuery Ul is a large library with many components, and the full library is a
lot to download. But jQuery Ul is modularly written, so it’s easy to create a build
with only the pieces of the library that you need. Although creating a custom
build is important for any site or application, it’s vital if you’re targeting mobile
devices. We’ll discuss custom builds in chapter 10.

If you’re building a site or application that solely targets mobile devices, you should

consider a mobile-centric framework like jQuery Mobile. But if you're building for
desktop and mobile, you can still get all the benefits of jQuery UI with a few tweaks to
optimize the mobile experience, which we’ll discuss throughout the book.

Now that we’ve looked at the advantages and limitations of jQuery UI, let’s look at
how to use it.

jQuery Ul vs. jQuery Mobile

jQuery Mobile is a Ul framework that creates experiences that work on all devices.
Like jQuery Ul, jQuery Mobile is a series of widgets and utilities built on jQuery Core.
In fact, jQuery Mobile includes the jQuery Ul widget factory and uses it to create all
its widgets.

Because of the similarity in the two frameworks, the teams are working to merge the
common pieces of the projects. The end goal is a single set of widgets that work on
any device. As a first step, jQuery Mobile’s 1.4 release included the jQuery Ul tabs
widget. This collaboration continuously improves the mobile device supportinjQuery Ul.

www.it-ebooks.info

http://www.it-ebooks.info/

14

14.1

14.2

Getting started with the library 11

Getting started with the library

You can get a copy of jQuery UI two ways: download the library from http://
jqueryui.com/ or retrieve the files from a content delivery network (CDN). You’ll
learn about each of these options, but first you need to decide what version of the
library to use.

Versions of the library

In this book we’ll cover version 1.11 of jQuery UL The final position in the version
number (1.11.17, 1.11.2, and so on) is reserved for bug fix releases. Because breaking
changes are never introduced in bug fix releases, you can use any release in the 1.11
series with the examples in this book. The code examples explicitly use 1.11.0, but the
latest bug fix release in the 1.11 series is recommended.

What’s new in jQuery Ul 1.11?

The two main features of jQuery Ul 1.11 are a new widget, selectmenu, and complete
Asynchronous Module Definition (AMD) support to use for dependency management.

Selectmenu is an accessible, customizable, and themeable replacement for the na-
tive <select> element. You'll learn how to use selectmenu, as well as the other wid-
gets jQuery Ul provides for building forms, in chapter 3.

AMD allows you to create highly customized builds of jQuery Ul so that users download
only the portion of the library that they need. We’ll look at AMD when we discuss custom
builds and preparing the library for production in chapter 10.

Downloading from the jQuery Ul website

The first of the two options is downloading the library from http://jqueryui.com.
There you’ll find the download section shown in figure 1.4.

Build a custom download
with Download Builder.

Download jQuery Ul 1.11.0

Custom Download Dowrrﬂqlgﬁﬁ :gfeggzylous

Quick Downloads:

il .10

Download the full

latest release. Figure 1.4 The download prompt
on http://jqueryui.com. You can
download the latest stable or lega-
cy releases of jQuery Ul, or visit
jQuery Core Download Builder to create a cus-
dependency. tom build.

www.it-ebooks.info

http://jqueryui.com/
http://jqueryui.com/
http://www.it-ebooks.info/

12

143

1.5

CHAPTER 1 Introducing jQuery Ul

Let’s look at each element of the download prompt:

= Build a custom download with Download Builder—The Custom Download button
links to the jQuery UI Download Builder. Download Builder allows you to create
a custom build that includes only the portions of the library that you need. This
is ideal for production, as you want users to download only the portions of the
library they need. For development, it’s convenient to have the entire library
available, and therefore you won’t build a custom download for now. You’ll
build a production version of the library in chapter 10.

= Download the latest release—The quick downloads are links to zip files containing
all the files in the library. The Stable button links to a zip file with the files for
the latest released version.

= Download the previous major release—The Legacy button links to a zip file with all
the library’s files, but for the previous major version of the library (recall that
two versions are maintained simultaneously).

= jQuery Core dependency—To aid users in upgrading, jQuery UI maintains compat-
ibility with multiple versions of jQuery Core. Both versions 1.10.x and 1.11.x
can be used with any version of jQuery Core 1.6 or higher.

The zip files downloaded using the Stable or Legacy buttons contain every file you
need, including all dependencies. Although it’s helpful to have all these files when
preparing an application for production, it can be overwhelming when getting
started. There’s an easier way to get the library up and running.

Downloading from CDNs

A content delivery network (CDN) is a network of servers designed to serve files to
users. Using a CDN moves the responsibility of hosting files from your own servers to a
series of external ones. The jQuery Foundation, Google, and Microsoft all provide
CDNs that host jQuery Core as well as jQuery UL You can find documentation and a
full listing of the libraries each host provides at the following URLs:

= jQuery—http://code.jquery.com/

= Google—https:/ /developers.google.com/speed/libraries/devguide

= Microsoft—http:/ /www.asp.net/ajaxlibrary/cdn.ashx
Because a CDN doesn’t require you to host your own version of jQuery and jQuery UI,
it’s perfect for demos and experimentation. You’ll use CDN versions of the library

throughout this book. Next, you’ll learn how to take these files from a CDN and get
them on a web page.

The first example

You've seen how to download jQuery UL Now let’s see how you can use it. You need to
build an HTML page that includes jQuery Core, jQuery UI’s CSS, and jQuery UI’s
JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

The first example 13

All examples in this book use the same boilerplate HTML using jQuery’s CDN
(http://code.jquery.com) to download all jQuery files. The boilerplate is shown in
the following listing.

Listing 1.1 Boilerplate for examples

An HTMLS5 doctype. jQuery Core
and Ul only support standards
mode. This doctype puts all
browsers in standards mode.

<!doctype htmls>
<html lang="en">

head .
< ” Import version L11.0 of

jQuery UP’s style sheet
from jQuery’s CDN.

<meta charset="utf-8">
<title>First Demo</titles
<link rel="stylesheet"
href="http://code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css">
</head>
<body> Import version LILI of jQuery
<!— Your HTML here --»> Core from jQuery’s CDN.

<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></scripts>

I—- Y JavaScript h -- . .
</b0:1y> our Javascript fiere -o> Import version 1.11.0 of jQuery Ul’s
. .)
< /htmls JavaScript from jQuery’s CDN.

The placement of the style sheet and scripts is important. Style sheets are placed in
the <head> of the document so that HTML elements in the <body> are styled as they’re
rendered. When style sheets are placed after elements in the <body>, the user may
experience a flash of unstyled content (FOUC). In this case, elements are rendered
without styling, and subsequently enhanced after the style sheet is downloaded and
parsed by the browser.

Conversely, scripts are placed last in the <body>, after any HTML the page needs.
This is done for two reasons. First, if something were to go wrong with the download,
parsing, or execution of the script, or if the user had JavaScript disabled, the content
of the web page would still be available to the user. Second, because the scripts are
at the end of the page, any JavaScript you write doesn’t depend on whether the DOM
is ready.

The examples in this book assume that the boilerplate shown in listing 1.1 is in
place, and the <!—Your HTML here --> and <!—Your JavaScript here --> comments
indicate where you insert content. Here’s an example of a jQuery UI datepicker:
<input id="datepicker">
<scripts>

$("#datepicker") .datepicker();
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

14

CHAPTER 1 Introducing jQuery Ul

Waiting for the DOM to be ready

Historically, <script> tags have been placed in the <head> of HTML documents.
When the browser executes these scripts, the <body> isn’t rendered. Therefore,
scripts need to wait for the browser’'s DOMContentLoaded event before they can ac-
cess DOM elements. jQuery Core provides a shorthand for doing this:

$ (function() {
// The DOM is now ready.
[OF;

When scripts are placed at the end of the document (before </body>), the wrapping
$ (function() {}) is no longer necessary.

The following listing shows the example after the datepicker code has been inserted
into the boilerplate.

Listing 1.2 First example: building a datepicker

<!doctype htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<title>First Demo</titles>
<link rel="stylesheet" href="http://code.jquery.com/ui/1.11.0/themes/
smoothness/jquery-ui.css">
</head>
<body>
<input id="datepicker"s>

<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></scripts>

<scripts>
$("#datepicker") .datepicker();
</scripts>
</body>
</html> 2] C\Users\tj\Desktoplir £ = = || @ First Demo
Save this textas a .html file, and openitin
. . o o
a browser. Give the input focus, and you August 2013
see the datepicker shown in figure 1.5. Su Mo Tu We Th Fr Sa
That’s it. With one line of HTML and 12i[3
one line of JavaScript, you have a fully <[5 [S6| (S (51|89 (w10
functional datepicker! LY 2] e b 15 L0 el
The full source code for the 18519 (20| =2 (2|23 m2d
. 25 26 27 28 29 30 31
examples presented throughout this
book is available for download at

https://github.com/ tjvantoll/jquery-ui- Figure 1.5 The first example. A jQuery Ul datepicker
in-action-demos. You don’t have to keep opens when the <input> receives focus.

www.it-ebooks.info

https://github.com/tjvantoll/jquery-ui-in-action-demos
https://github.com/tjvantoll/jquery-ui-in-action-demos
http://www.it-ebooks.info/

1.6

Using an online testing tool 15

track of the boilerplate in your head. The datepicker code can be found at chapter01/
01-building-a-datepicker.html.

But there’s an even easier way to play with jQuery Ul—without having to leave your
browser.

jQuery coding standards

You can write an expression such as $("#datepicker") in JavaScript in several
ways: $('#datepicker'), $("#datepicker"), or $('#datepicker'). jQuery Ul
as well all jQuery projects consistently follow jQuery’s JavaScript style guide (http://
contribute.jquery.org/style-guide/js/).

For consistency, this book adheres to the conventions in this guide. Notable conven-
tions include using double quotes for strings ("jQuery" and not 'jQuery') and the
liberal use of spacing—s3 ("#datepicker") and not $ ("#datepicker"). These are
jQuery’s internal conventions and not requirements of projects using jQuery. If you
prefer single quotes then use them. The most important thing is to be consistent in
your own usage; don’t use single quotes in one function and double quotes in the next.

Using an online testing tool

Online testing tools allow you to write HTML, CSS, and JavaScript in the browser and
preview the results live. You can also save examples and get a unique URL you can
save or share with others. You’ll use these tools to set up your boilerplate and save it
in a bookmark.

JS Bin (http://jsbin.com/), jsFiddle (http://jsfiddle.net), and CodePen (http://
codepen.io/) are examples of these services. Although the core functionality of each
service is roughly the same, each has unique features, and you can play with them to
see which you like best. Let’s look at how to run your datepicker example in jsFiddle.

Visit http://jstiddle.net. The pertinent portions of the UI are shown in figure 1.6.

Place Save the fiddle for a un|que
Run the fiddle to see the HTML here. URL you can bookmark.

HTML/JS/CSS rendered live. \ Place CSS here.

&8 SFIDDLE & B An dl #Swe o Tylp « JSH

Frameworks & Extensions
Fiddle Options

External Resources

Bnguages

Figure 1.6 jsFiddle is an
online testing tool that you
Legal, Creciits and Links can use to run jQuery Ul
code. You place HTML,
CSS, and JavaScript in

Ajax Requests

Place JS here. their appropriate panes,
After the fiddle runs, the result j
Ulédeg%%%rfocu%rre bQue oftha HIML Coa Snd I8 haut and click the Run button to
! is rendered here. see the results.

www.it-ebooks.info

http://codepen.io/
http://codepen.io/
http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/style-guide/js/
http://www.it-ebooks.info/

16

CHAPTER 1 Introducing jQuery Ul

First, you need to make jQuery and jQuery UI available as external resources. The
URLSs you want to use are

= http://code jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css
= http://code.jquery.com/jquery-1.11.1.js
= http://code jquery.com/ui/1.11.0/jquery-ui.js

You can copy and paste these URLs from http://code.jquery.com if you want to avoid
typos or to play with other versions. After you add the resources, save the fiddle. This
saves the current state and gives you a unique URL you can bookmark so you don’t
have to enter the external resources again. After this setup, you can enter HTML,
JavaScript, and CSS. Then, run the example, and the result displays in the Result pane.

Because the datepicker is one line of HTML and one line of JavaScript, to run the
example in jsFiddle you place those lines in the appropriate panes and run the fiddle.
The result is shown in figure 1.7.

NOTE You can view this example live at http://jsfiddle.net/tj_vantoll/
Eda2W/. If you append /show to the end of a jsFiddle URL (for instance,
http://jstiddle.net/tj_vantoll/Eda2W/show/), you can view the example out-
side of the jsFiddle UI—it’s the equivalent of looking at just the Result pane.
Finally, if you create a jsFiddle account, you can use http://jsfiddle.net/
draft/ to view the result of last example you ran. Because the draft URL is
short (and bookmarkable), it’s handy for testing on mobile devices.

jsFiddle handles the boilerplate for you so you can concentrate on jQuery UI, making
it a convenient option for playing with the examples provided throughout this book.

<input id="datepicker">

$("#datepicker”).datepicker();

o August 2013 0o

Su Mo Tu We Th Fr Sa

1

4 5 6 7 8 9 10
11(3121314 15 [16|17
18| 19 20| 21| 22| 23| 24
25 26| 27| 28| 29 30 31

L%

Figure 1.7 The datepicker example running in jsFiddle. The jsFiddle interface takes the HTML in the HTML
pane and the JavaScript in the JavaScript pane, runs them, and displays the results in the Result pane.

www.it-ebooks.info

http://code.jquery.com/ui/1.11.0/themes/smoothness/jquery-ui.css
http://jsfiddle.net/tj_vantoll/Eda2W/
http://jsfiddle.net/tj_vantoll/Eda2W/
http://jsfiddle.net/draft/
http://jsfiddle.net/draft/
http://www.it-ebooks.info/

Summary 17

1.7 Summary

jQuery Ul is a collection of widgets, effects, interactions, and utilities to help you build
powerful websites and applications. jQuery UI is known for its stable, cohesive APIs,
excellent browser support, and comprehensive documentation.

You can download jQuery UI from http://jqueryui.com or from a CDN. You can
test jQuery UI locally or use an online testing tool such as JS Bin, jsFiddle, or Code-
Pen. You saw how easy it is to build powerful UI elements by creating a datepicker with
one line of HTML and one line of JavaScript.

In the next chapters, you’ll explore the functionality that the jQuery Ul library pro-
vides. You’ll start in chapter 2 with a deeper look at the core components of jQuery UL
widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing Uls with widgets

This chapter covers
= Creating widgets using jQuery Ul
® Reading the jQuery Ul APl documentation

= Customizing widgets using options, methods,
and events

A widget, as explained in chapter 1, is a reusable UI component. The 12 UI widgets
in jQuery UI help solve the most common UI problems that web developers run
into. In chapters 3-5, you’ll look at each widget specifically, but first, you’ll learn
how widgets in jQuery UI work, and how to customize their behavior.

The widgets in jQuery UI are created with the widget factory: a mechanism for
creating powerful, feature-rich jQuery plugins. Because all widgets go through a
single factory, after you learn how one works, you’ll have a good idea of how they all
work. In this chapter we’ll focus on three mechanisms the widget factory provides
for customization: options, methods, and events. Options are configurable proper-
ties of widgets, methods let you perform actions on the widget, and events let you
respond to changes on the widget.

To begin, let’s see how to create widgets.

18

www.it-ebooks.info

http://www.it-ebooks.info/

2.1

Creating widgets 19

Creating widgets

At their core, jQuery UI widgets are jQuery plugins with added functionality to make
them customizable, extensible, and themeable. Whereas most jQuery plugins run
once and are done, widget plugins remember the elements they’re associated with.
You can then customize the widget with options, control it with methods, and respond
to changes on the widget with events.

How do you create widgets? Because widgets are also jQuery plugins, the syntax to
create them should look familiar. You saw the syntax when you created a datepicker in
chapter 1. Let’s look at that example in more detail:

The DOM element that is

cinput id="datepicker"s converted to a datepicker.

<scripts>
$.("#datepicker") .datepicker () ; Selects the <input> element by its
</script> id, and converts it to a widget using
the datepicker plugin method.

This example shows the easiest way to create a widget: selecting DOM elements using
jQuery and calling the widget’s plugin method. You can even create widgets on multi-
ple elements at once. This example creates two datepickers:
<input>
<input>
<scripts>

$("input") .datepicker();
</scripts>
Because all jQuery UI widgets are also plugins, the same syntax of selecting elements
and calling the plugin can be used to create any of them. Here is how you can create a
dialog widget:
<div id="dialog">jQuery UI Rocks!</div>
<scripts>

$("#dialog") .dialog() ;
</scripts>
Run this example, and you see the dialog shown
in figure 2.1.

NOTE If you're getting an error that “$ is not JQuery UI Rocks!

defined” or “Object has no method ‘dialog’,”

you aren’t including jQuery and jQuery UI’s

JavaScript files. For details on including

jQuery and jQuery UI's scripts in these exam- Figure 2.1 A jQuery Ul dialog widget
ples, refer to section 1.5. created using the dialog () plugin.

Like most jQuery plugins, jQuery UI widget plugins return a jQuery object. The
plugin can then be chained with other jQuery method calls. The following code cre-
ates a dialog and uses jQuery Core’s css () method to change the text color to red:

www.it-ebooks.info

http://www.it-ebooks.info/

20

2.2

CHAPTER 2 Enhancing Uls with widgets

<div id="dialog">jQuery UI Rocks!</div>
<scripts>
$("#dialog")
.dialog()
.css("color", "red");
</scripts>
The ability to build a datepicker or dialog in a few lines of code is powerful, but
chances are you’re going to need more custom behavior than the default widget pro-
vides, such as a title or a different width.
jQuery UI widgets have options to provide this customization. Let’s take a look at
how to use them.

Dynamically creating widgets

In addition to selecting elements on the DOM, you can also dynamically create elements
and convert them to widgets. The following uses jQuery to create a new <input>
element and convert it to a datepicker widget:

$S("<inputs>") .datepicker();

Because the newly created element isn’t on the DOM, you need to add it for the widget
to be visible. The following creates a new element, converts it to a datepicker, and
appends it to the <body>:

S("<input>") .datepicker() .appendTo("body");

The dialog widget is unique because it automatically appends its element to the DOM
upon creation. Therefore, to display a new dialog you can create a new <div> and
call dialog(); it displays automatically:

$("<div>").dialog() ;

Customizing widgets with options

Options are customizable properties of widgets. All options have default values that
are used when no options are explicitly passed. Recall how you instantiated the dialog
in section 2.1:

$("#dialog").dialog() ;

No options are specified, so the default set is used. Let’s customize these defaults to
build something practical. Suppose you need to display a notification to the user after
a long-running task, such as uploading a series of files, completes.

The following code creates a new <div> and converts it to a dialog with the title
and buttons options set:
$("<div>Your files have been successfully uploaded.</div>").dialog ({

buttons: {
"OK": function() {}

b

title: "Success"

I3

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with options 21

$("<divsYour files..</div").dialog ({
buttons: {
"OK": function() {}

b

title: "Success" Figure 2.2 A jQuery

3K e X Ul dialog used to dis-
' _/ play a success mes-
Your files have been sage. The title

successfully uploaded. option determines the

text in the title bar,

and the buttons op-
tion creates an OK
button.

This dialog is shown in figure 2.2. As this demonstrates, you can specify options by
passing them to the plugin as a JavaScript object.

What other options can you set? The jQuery UI API documentation lists every
option available for each widget. Figure 2.3 shows a screenshot of the dialog widget’s
options taken from its online documentation at http://api.jqueryui.com/dialog/. In
this section we’ll look at only a few of these options to demonstrate how widget
options work. We’ll take a more thorough look at the dialog widget and its options in
chapter 4.

minWidth
modal
position

resizable

Options Methods Events
appendTo close beforeClose
autoOpen destroy close
buttons isOpen create
closeOnEscape moveToTop drag
closeText open dragStart
dialogClass option dragStop
draggable widget focus
height open
hide Extension Points resize
maxH@g ht allowlnteraction res.nzeStart
maxWidth resizeStop
minHeight

Figure 2.3 The dialog widget’s documentation at http://api.jqueryui.com/dialog/. The oval
highlights the dialog’s 19 configurable options. Each option is a link that takes you to more de-

tailed information.

www.it-ebooks.info

http://www.it-ebooks.info/

22

CHAPTER 2 Enhancing Uls with widgets

The name of The JavaScript variable type
the option A description of the option the option is expecting
/ and what it’s used for \
width Type: Number
Default: 200
The width of the dialog, in pixels. J
Code examples: The default value used if the
Initialize the dialog with the width option specified: option is not specified

1| $(".selector").dialog({ width: 500 });

Get or set the width option, after initialization:

1 cette
2 var width = $(".selector").dialog("option", "width");
3
4 sette
5 5(".selector").dialog("option", "width", 500);
Code examples showing how to get and Code examples showing how
set the option after initialization to specify the option

Figure 2.4 Documentation on the dialog widget’s width option from http://api.jqueryui.com/dialog/
#option-width. The documentation gives a description of the option, lists its JavaScript type, its default
value, and gives some examples of how to use it.

Each link listed in figure 2.3 takes you to a section with documentation on the individ-
ual option, method, or event. Figure 2.4 shows the documentation for the width
option.

Note the following points:

= The default value of the width option is 300; this is why all your dialogs have
been 300 pixels wide to this point.

= The option can be retrieved or changed using the option() method. You’ll
learn how methods work, including the option () method, in the next section.

TIP All options and their default values are accessible at $.ui. [widget-
Name] .prototype.options, for example, $.ui.dialog.prototype.options.
You can change these values to alter the defaults that jQuery UI sets. If you
were to run $.ui.dialog.prototype.options.width = 500, any new dialog
instances would default to a width of 500 pixels rather than 300. Existing dia-
log instances wouldn’t be affected.

Let’s add one more option to your notification dialog. Recall that the example uses a
dialog to notify users that their files have finished uploading. Assuming that upload-
ing is a process that could take a while, the user may have moved on to other tasks in
the interface and the default dialog position—the center of the screen—might be an

www.it-ebooks.info

http://api.jqueryui.com/dialog/#option-width
http://api.jqueryui.com/dialog/#option-width
http://www.it-ebooks.info/

Customizing widgets with options 23

annoyance. To mitigate this, you can change the position of the dialog with its posi-
tion option. The following code shows the dialog on the bottom-left corner of the

screen:

$("<divsYour files have been successfully uploaded.</div>").dialog ({
buttons: {
"OK": function() {}

b
title: "Success",
position: {
my: "left bottom",
at: "left bottom"

1
I3

You’ll look at the position option more thoroughly in chapter 12, but you can see
that it reads like a normal English sentence: position my left bottom at the left bottom (of
the window).

Experimenting with effects as options

Recall that effects—a suite of animations and transitions for DOM elements—are a
major component of the jQuery Ul library. Although you won’t learn about effects until
chapter 6, you can get a preview of the power they provide using dialog’s show and
hide options.

The dialogs you’ve looked at fade in and fade out when they’re shown and hidden.
You can change that using the show and hide options. The following code opens a
dialog with the fade effect and closes with a puff effect:

$("<divs>").dialog({ show: "fade", hide: "puff" });

The show and hide options also accept an object for added configuration. This dialog
slowly explodes when it's closed:

$("#dialog") .dialog ({
hide: {
effect: "explode",
duration: 2000
1
i

Try playing with the following effects to see what jQuery Ul makes possible. You'll
take a thorough look at these effects in chapter 6.

= blind = drop = fold " pulsate = size
= bounce u explode = highlight ® scale = slide
= clip u fade u puff u shake

www.it-ebooks.info

http://www.it-ebooks.info/

24

2.3

23.1

CHAPTER 2 Enhancing Uls with widgets

You now have a functioning notification dialog positioned in the corner of the screen.
But you still have a major problem with this example: the OK button doesn’t close the
dialog. How can you fix that?

Although options let you customize a widget on creation, they don’t allow you to
change the widget afterwards. You can’t use an option to close the dialog. You need to
use another feature of jQuery UI widgets: methods.

Modifying widgets with methods

All widget actions after initialization happen as method calls. Methods query the cur-
rent state of the widget as well as alter it. Options let you set a dialog’s initial height,
width, and title; methods let you change those values, open a dialog, close it, and
destroy it.

In this section you’ll look at how widget methods are invoked through their plug-
ins. Then, you’ll see how to get and set the values of options using the option()
method.

As with options, the jQuery UI API documentation lists every method available for
each widget. Figure 2.5 shows the methods available for the dialog widget. We won’t
be covering each method the dialog widget has. We’ll specifically look at close (),
isOpen (), open(), and option().

Let’s start by looking at how methods are invoked.

Invoking methods

You can invoke a widget method in many ways, but the easiest—and the one the API
documentation uses—is to invoke the method through the widget’s plugin. The fol-
lowing alters your notification dialog to call the dialog’s close () method when the OK

Options Methods Events

appendTo close beforeClose

autoOpen destroy close

buttons isOpen create

closeOnEscape moveToTop drag

closeText en dragStart

dialogClass option dragStop

draggable widget focus

height open

hide Extension Points resize

maxHeight resizeStart

maxWidth ~aliowlnteraction resizeStop

minHeight

minWidth

modal

position

resizable Figure 2.5 The dialog widget’s APl documentation with
show an oval highlighting the widget’s seven methods. Each
title method name is a link to a section with more thorough doc-
width umentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying widgets with methods 25

button is clicked. Be aware that the syntax can be confusing initially, so don’t be
alarmed if you don’t understand this; we’ll go over what’s happening in detail.

$("<divsYour files have been successfully uploaded.</div>").dialog ({
buttons: {
"OK": function() { Attaches a click event
handler to the OK button

Invokes $(this).dialog("close");
the close() }
method b

I3

The dialog’s buttons option works by associating button labels with a function to run
when the button is clicked. The function declared at @ runs when the OK button is
clicked. The context of the click handler, this, is set to the dialog’s DOM element.
You use that reference to invoke the close () method @.

When you pass the name of the method to the plugin as a string, the method is
invoked. This can be confusing as JavaScript methods are typically invoked using (),
thatis, dialog.close () rather than dialog("close"). Why would the jQuery UI wid-
gets use this convention?

= Convenience—A true close function is associated with the widget that you can
retrieve and invoke using (), but it requires multiple lines of code to retrieve
the instance and invoke the method. You’ll look briefly at accessing the widget’s
instance later in this chapter, and then you’ll dig deep into instances in chap-
ters 8 and 12.
= Ability to affect multiple elements—jQuery’s plugin syntax allows methods to be
invoked on multiple elements at the same time. The following code converts
two <div> elements to dialog widgets, and then opens them both. (The
autoOpen option prevents the dialogs from automatically opening. We’ll discuss
the option in more detail momentarily.)
<div>A</div>
<div>B</div>
<scripts>
s("diV")
.dialog({ autoOpen: false })
.dialog("open");
</script>
= Chainability—Methods that alter a widget’s state return the original jQuery
object so the call can be chained. Consider the following:

<div id="dialog">jQuery UI Rocks!</div>

<scripts> QJ Initializes the dialog
Invokes the jQuery $("#dialog") widget on the <div>
Core css() method to .dialog({ autoOpen: false })
change the color of -dialog("open") Opens the dialog with
the dialog’s text .css("color", "orange"); the open() method
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

26

CHAPTER 2 Enhancing Uls with widgets

The close() and open() methods return the same jQuery object containing the
<div>, making it possible to chain the calls with other widget methods—and even
jQuery Core methods.

The close () and open () methods are examples of methods that change the widget.
The other type of method returns information about the widget. Consider dialog’s
isOpen () method:

<div id="dialog">jQuery UI Rocks!</divs>

<Scr?:;ti#dialog ") Rgturns true as
.dialog () dialogs are opened
.dialog("isOpen"); by default
g js ;
</script>

Methods that return information about the widget can’t be chained because they
don’t return jQuery objects. The following results in a JavaScript error because the
JavaScript interpreter attempts to call dialog () on true:

$("#dialog") Returns the
.dialog() Boolean true
.dialog("isOpen")
-dialog("open"); Throws a TypeError

because you can’t

call dialog() on true
You can determine a method’s return type, and whether the method is chainable, by
looking at the API documentation. Figure 2.6 compares the API documentation of the
isOpen () and open () methods. The open () method is chainable because it returns a
jQuery object; the isOpen () method isn’t.

NOTE Were you confused by the “plugin only” text for the open() method’s
return type in figure 2.6? This indicates thata jQuery objectis returned only when
the method is invoked through the plugin, for example dialog("open"). When
open() is invoked on an instance, nothing is returned. You’ll learn about

instances shortly.
jQuery return type,
chainable \

open() Returns: ()

Opens the dialog.
This method does not accept any arguments.

isOpen() Returns:
Whether the dialog is currently open. J
This method does not accept any arguments. non-jQuery return type,

not chainable

Figure 2.6 Comparison of the open () and isOpen () dialog methods. The open () method is chain-
able because it returns a jQuery object; the isOpen () isn’t because it returns a Boolean.

www.it-ebooks.info

http://www.it-ebooks.info/

23.2

Modifying widgets with methods 27

The methods you’ve looked at—open (), close (), and isOpen ()—are specific to the
dialog widget. Although all widgets have unique methods, several methods are common
to all widgets. We’ll look at the most common of these, option(), in the next section.

Options vs. the option() method

The difference between options and the option () method can be confusing. Options
are configurable widget properties. For example, the dialog widget has height,
width, and title options. You use the option () method to get and set the value
of these options.

To clarify the difference, whenever methods are referenced in this book they’re al-
ways suffixed with a set of parentheses. Therefore, close () refers to the widget's
close method, option () to the widget's option method, and so forth. The same con-
vention is also followed in the jQuery Ul online documentation.

Using option() to modify widgets

Widget options can be set on initialization by passing an object to the widget’s plugin.
This initializes a dialog with a height of 200:

$("#dialog").dialog({ height: 200 });

The option () method allows you to do two things after the widget has been initialized:
retrieve the value of options (the getter) and set the value of options (the setter).

To get a specific option, pass its name as a string to the plugin as the second argu-
ment. The following returns the value of the height option:

$("#dialog")
.dialog({ height: 200 }
.dialog("option", "height"); <+— Returns 200

To get the values of all the options, call option() with no parameters. It returns an
object with the options as key value pairs:
$("#dialog")

.dialog()

.dialog("option");
To invoke the setter version of option(), pass the name of the option as a second
argument, and the value of the option as a third argument. The following sets the dia-
log’s height option to 500:
$("#dialog")

.dialog()

.dialog("option", "height", 500);
You can pass an object as the second argument to set multiple options at once. The
following sets the dialog’s height option to 500 and its width option to 500:
S("#dialog")

.dialog()

.dialog("option", ({

height: 500,
width: 500

I3

www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Enhancing Uls with widgets
The setter form of option () returns a jQuery object, which has two powerful effects: it
allows the setter to be applied to multiple elements, and it allows the setter to be
chained with other jQuery method calls. The following code creates two dialogs, sets
both their heights to 500 pixels, and then changes their text color to red:
<div class="redDialog">One</div>
<div class="redDialog">Two</div> Se"?“s both
Sgts the <scripts> QJ <div> elements c<°:i?>rt2|t‘::nts
bot:i:igal:f)gosf ver .Crl;eZ]ii);l(?g " J to dialog widgets
to 500 pixels :dialog("option", "height", 500)
-css("color", "red"); Changes the color of
</script> both dialogs to red
Because the setter form of option () returns the original jQuery object, the css () call
changes the color of both <div> elements.

Changing options is a common task when dealing with jQuery UI widgets, so it’s
important to understand the syntax of the option () method. Let’s look at an example
of how changing options can be useful.

2.3.3 Using dialogs to edit lists

A common web interface is a list of items that are editable. The dialog widget provides
a convenient means to edit these lists, as it allows you to pop up a form without forcing
the user to navigate to another page. It’s easier to see this type of interface visually.
Figure 2.7 shows a UI with a list of profiles that you’ll build. This list has one require-
ment: the first and last names of all users who aren’t admins can be edited.

First Last

Id Name Name Admin
1 TI VanToll Yes Edit
2 Santa Claus No Edit
3 Easter Bunny No Edit
4 Tooth Fairy No Edit
5 Chuck Norris Yes Edit
Editing Santa Claus * .)
Editing Chuck Norris *®
First Name:
Santa Administrators cannot be Flgure.: 2.7 An edit-
Last Name: edited. able list of users. Ad-
Claus ministrators such as

Chuck Norris can’t be
Cancel edited, but regular us-
Update Cancel ers such as Santa
Claus can be.

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying widgets with methods 29

Let’s look at how to build this list, starting with the HTML shown here:

<table>
<theads>..
<tbody>
<tr>
<td>1</td>
<td>TJ</td>
<td>VanToll</td>
<td>Yes</td>
<td>
<button>Edit</buttons>
</td>
</tr>

.</thead>

</tbody>
</table>

<div id="dialog">

<form>

<label for="firstName">First Name:</label>

<input type="text" id="firstName'">

<label for="lastName">Last Name:</label>

<input type="text" id="lastName"> .
</form> J Dlsp!ays only for
<p>Administrators cannot be edited.</p> administrators

</div>

NOTE Some code is omitted to conserve space. You can view the full source in
the book’s code samples or online at http://jsfiddle.net/tj_vantoll/tAp93/.

As you can see, the list itself is an HTML <table>. The editing form is also simple,
although it does contain a note that should only display for admin users @. To see
how you enforce this, let’s look at the JavaScript code for this example, shown in the
following listing. Although the code is long, we’ll go over each piece individually.

Listing 2.1 Building an editable list

$("#dialog") .dialog({

autoOpen: false, Doesn’t automatically
buttons: { open the dialog
Update: function() ({
var firstName = $("#firstName").val(),
lastName = $("#lastName").val(),
row = $(this).data("editingRow") ;
row.find("td").eq(1).text(firstName); Updates the table with
row.find("td").eq(2).text(lastName); the updated names
$(this).dialog("close"); #2
b
Cancel: function() {
$(this).dialog("close"); Closes the
} dialog

www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Enhancing Uls with widgets

13K

$("table").on("click", "button", function() { Attaches a click handler
var row = $(this).parents("tr"), for all buttons
firstName = row.find("td").eqg(1).text(),
lastName = row.find("td").eq(2).text(),
admin = row.find("td").eqg(3).text() === "Yes"; .

4 Fills the first and
$("#firstName").val(firstName); last name <input>
$("#lastName").val(lastName) ; elements
S("#dialog")

Changes the ﬁ .dialog("option", ({ Changes the

A !

dialog’s title title: "Editing " + firstName + " " + lastName, dialog’s €SS
dialogClass: admin ? "admin" : "" class name

3]

.data("editingRow", row) Stores the row currently
.dialog("open"); being edited

b Calls the dialog’s

open() method

The first thing you do is convert the <div id="dialog"> element to a dialog widget.
Normally, dialogs automatically open when created; but here you don’t want this
because the editing dialog shouldn’t display until the Edit buttons are clicked. Set the
option that controls this behavior, autoOpen, to false 0.

Next, you create Update and Cancel buttons on the dialog with the buttons
option. Both call the close () method @ to close the dialog in their click handlers.
The update () method does a little logic to update the list first. We’ll get back to how
that works.

After the dialog is created, you attach an event handler to the <table> that listens
for clicks on all <button> elements €. Inside the handler, you set the first and last
name <input> values based on the person being edited @. Then, you call the dialog’s
option() method to change two options: title and dialogClass.

The title change is simple—you build a string with the user’s first and last name @.
The dialogClass option, which controls a CSS class name that’s applied to the dialog,
is trickier. Here, you add an admin-dialog class name only if the user is an admin @.
This gives you a CSS hook to show and hide elements based on whether the user being
edited is an admin. This example uses the following CSS to hide the dialog’s <p> for
regular users and hide the editing form and update buttons for admin users:
.ui-dialog p { display: none; }

.admin-dialog p { display: block; }

.admin-dialog form { display: none; }

.admin-dialog button:first-child { display: none; }

You use jQuery Core’s data () method to store a reference to the <tr> being edited
@. The Update button’s click handler uses this reference to determine which row’s
information to update after changes are made. You call dialog’s open() method to
display the dialog to the user @.

www.it-ebooks.info

http://www.it-ebooks.info/

24

Responding to widget changes with events 31

In this example, you used the option() method to change its title and class name
before displaying it. You were able to use a single dialog that you could reuse even
though many different users were being edited.

You’ve nowlooked at how to customize widgets with options and how to control them
with methods. Next, you’ll see how you can respond to widget changes with events.

Retrieving instances with the instance() method

When you initialize a widget on a DOM element, jQuery Ul builds a JavaScript object
that represents the widget and stores it on the element using jQuery Core’s data ()
method. This object is known as the instance of the widget.

The instance is how jQuery Ul remembers that a given element has a widget initialized
on it. If you try to call dialog’s close () method on an element that isn’t a dialog wid-
get, you receive an error:

$("#does-not-exist") .dialog("close");
> Error: cannot call methods on dialog prior to initialization;
attempted to call method 'close'

You can retrieve the widget’s instance at any time using the instance () method.
Assuming there’s an element with an id of "dialog", the following code assigns the
instance to a variable:

var instance = $("#dialog").dialog("instance");

The instance () method is the only method you can call on an uninitialized ele-
ment. For example, $("#not-a-dialog").dialog("close") throws an error,
but $ ("#not-a-dialog") .dialog("instance") returns undefined.

The instance contains all options and methods associated with the widget. You can
use it to invoke methods using the more traditional JavaScript () operator:

instance.open () ;
instance.close () ;

Feel free to explore what’s in the widget’s instance and what you can do with it.
We’ll take a thorough look when we dig into advanced widget factory topics in chap-
ters 8, 9, and 12.

Responding to widget changes with events

All widgets trigger events that allow you to respond to changes in the widget’s state. Sup-
pose you need to display a message to the user whenever a dialog is closed. Dialog’s
close () method closes a dialog, butit doesn’tlet you know when a dialog has been closed.
The close event, however, is triggered every time a dialog is closed, regardless of whether
it’s closed by a script or a user action such as clicking the Close button.

You can subscribe to events in two ways: event handlers and callbacks. First, we’ll
look at how each works and the differences between them. Then, we’ll look at the
parameters passed to the event and what you can do with them.

www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Enhancing Uls with widgets
2.4.1 Subscribing to widget events
To subscribe to widget events as event handlers, you use one of the event listening
functions in jQuery Core, such as on(). The following code listens for the dialog’s
create event:
<div id="dialog"s></divs>
ipt
<scr;;(> i#dialo ") Attaches a create event
Selects the g . listener on the <div>
<div> .on("dialogcreate", function() {
console.log("Dialog was created");
3]
-dialog () ; Converts the <div>
</script>

to a dialog widget

TIP This and subsequent examples log to the console in the browser’s built-
in developer tools. The F12 key opens the developer tools in Internet
Explorer, and Ctrl + Shift + I (Command + Shift + I on OS X) opens the devel-
oper tools in Firefox, Chrome, and Safari. You can view the output of these
examples there. Refer to appendix A for more details on using the browser’s

developer tools.

The create event fires when the dialog is created with dialog(); this invokes the

event handler and the console.log (). The create eventis the only event all widgets
have. A full list of available events is in the API documentation. Figure 2.8 shows the
list of events for the dialog widget. As with options and methods, we’ll cover a few

events to show how they work.

Options Methods
appendTo close

autoOpen destroy

buttons isOpen
closeOnEscape moveToTop
closeText open
dialogClass option
draggable widget

height

hide Extension Points
::::{—'\;?% allowlnteraction
minHeight

minWidth

modal

position

resizable

show

title

width

Events

beforeClose
close

create

drag
dragStart
dragStop
focus

resizeStart
resizeStop

Figure 2.8 The dialog widget’s APl documentation with an oval highlighting the widget’s elev-
en events. Each event name is a link to a section with additional documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Responding to widget changes with events 33

Like native DOM events such as change, click, and focus, you can attach multiple
handlers for any widget event. This example attaches two listeners for the create
event, triggering two console.log() calls:

<div id="dialog"></div>

<scripts>
$("#dialog")
.on("dialogcreate", function() {
console.log("First listener");
3]
.on("dialogcreate", function() ({
console.log("Second listener");
3]
.dialog() ;
</scripts>

Each widget has a prefix it prepends to all event names to avoid naming conflicts. This
is why the previous examples listen for dialogcreate rather than create. Without
prefixes, a create event would fire not only dialog creates but also menu, tab, and all
other widget creates.

Although the default prefix is the widget’s name (as for dialog), some widgets use
a different value. These exceptions are

= draggable m drag

= droppable m drop
= slider m slide

= resizable m resize
= sortable m sort

= spinner = spin

If you’re unsure, the prefixes are stored on each widget’s prototype object. For exam-
ple, $.ui.dialog.prototype.widgetEventPrefix == "dialog" and $.ui.dragga-
ble.prototype.widgetEventPrefix == "drag". These prefix discrepancies are a
known source of confusion, and the project is moving toward using widget-
Name:eventName ("dialog:create", "draggable:create", and so on) for all event
names in a future release.

You need the event prefixes when binding event handlers with on (), but all wid-
gets also support passing a callback function to the widget as an option. Like the cre-
ate event handlers, the callback is called when the dialog is created. The following
code uses a callback function for the create event:

<div id="dialog"></div>

<scripts>
"#dialog") .dialo
s ialog") e g ({ Invokes when the
create: function() { dialog is created
alert("Dialog was created"); g
}
I3
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

34

24.2

CHAPTER 2 Enhancing Uls with widgets

For the most part, event handlers and callbacks can be used interchangeably, but they
have a few important differences.

Event handlers vs. callbacks

Let’s look at an example that uses both an event handler and a callback. Recall that
callbacks are passed as options and event handlers are attached using on ().
<div id="dialog"></div>
<scripts>
S("#dialog")
.on("dialogcreate", function() {

// I am an event handler
I3
.dialog ({
create: function() {
// I am a callback option
1

) ;
</scripts>
Both functions are invoked when the dialog is created. What’s the difference between
them?
The first is the value of this. When using callbacks, this is always set to the widget’s
DOM element. This is convenient if you need to make changes to the DOM element in
the handler. The following code changes a dialog’s text to red when it’s created:

<div id="dialog">jQuery UI Rocks!</divs>

<scripts>
$("#dialog") .dialog ({
create: function()
$(this).css("color", "red");
1
1)
</script>

When using event handlers, this is set to the element the listener is attached to.
Therefore, if you attach an event handler to a widget’s element, it works exactly like a
callback. In the following code, this is set to the dialog <div>:

$("#dialog").on("dialogcreate", function() {
$(this).css("color", "red");
}) .dialog () ;

However, if you try to run this same example with an event handler attached to the
document, it does not work:

$(document).on("dialogcreate", function() ({
$(this).css("color", "red");

)
$("#dialog").dialog() ;

This code does successfully create a dialog, and the event handler is invoked, but this
is set to the document object—which you cannot set CSS properties on. Therefore the

www.it-ebooks.info

http://www.it-ebooks.info/

24.3

Responding to widget changes with events 35

dialog’s text does not change to red. This example also showcases the second differ-
ence between callbacks and event handlers: event handlers bubble up the DOM the
same way native DOM events do. Unlike callbacks, you can attach a single event han-
dler on a parent element to operate on multiple widget instances. The following list-
ing counts the number of dialogs created and displays it on the page.

Listing 2.2 Counting the number of dialogs created

<button>Make Dialog</buttons>
<p>Dialogs created: 0</p>

<scripts>
var dialogs = 0; J Listens for a dialog
$(document).on("dialogcreate", function() { bmngcraﬁed
dialogs++;
$("#count").text(dialogs); Updates the text of the
1) i with the new count
$("button").on("click", function() {
$("<divs>").dialog(); Creates a
1) new dialog
</script>

This example starts by attaching a dialogcreate event handler to the document @.
You then attach a click event handler to the example’s button. Every time the button
is clicked, you create a new <div> and immediately initialize a dialog widget on it €.
This new dialog triggers a create event, which bubbles to each of its parent elements
until it reaches the document itself. This triggers the dialogcreate event handler,
which increments a counter and outputs the count in the example’s @.
Although this example uses a single event in a single widget, all widget events can be
used in this fashion. You can use $ (document) .on("menuselect", function() {})
to listen for select events on all menu widget instances.

You have two different ways to handle events in jQuery Ul, but which do you use,
event handlers or callback functions? In general, callbacks are easier to use because
you specify them alongside the widget’s options. But if you need functionality to run
for multiple widgets—as the previous example did—you need to use an event handler.

Now that you’ve seen how to subscribe to events, let’s look at the information
passed to the events and what you can do with it.

Event parameters

All widget events, regardless of whether they’re handled as callback options or event
handlers, have two parameters: event and ui. The following code shows the values
passed to dialog’s create event:

<div id="dialog">jQuery UI Rocks!</div>
<scripts>
$("#dialog").dialog ({
create: function(event, ui)
console.log(event);
console.log(ui);

www.it-ebooks.info

http://www.it-ebooks.info/

36

CHAPTER 2 Enhancing Uls with widgets

}
1)
</scripts>
This logs the following:
jQuery.Event {type: "dialogcreate", target: div#dialog..}
Object {}

The event parameter contains a populated jQuery Event object, and the ui parameter

contains an empty object. Let’s look at each of these in more detail, starting with
event.

NOTE Event parameters are named event and ui by convention only; you
can name them whatever you’d like. But because all online documentation of
events utilizes this naming convention, it’s worth adhering to.

The two most useful properties on the Event objectare type and target, which tell you the
name of the event and the DOM element the event occurred on, respectively. The object
also has a method you may recognize from native DOM events: preventDefault () .

NOTE A full list of the properties and methods on the Event object and what
they do can be found at http://api.jquery.com/category/events/event-object/.

For native DOM events, preventDefault () does as its name implies: prevents the default
action the browser normally takes. Consider the following code:

jQuery Ul
<scripts>
$("a").on("click", function(event) {
event .preventDefault () ;
P

</script>

If you clicked the link, the browser wouldn’t go to http://jqueryui.com because of the
preventDefault () call.

Like native DOM events, certain widget events can also be prevented using prevent -
Default (). Suppose users must first accept a terms-of-use agreement before they can
access an application. To display the terms to the user, you use the dialog shown in fig-
ure 2.9.

You must accept the site's terms of use before continuing.
[l agree to allow this site to gather all my data and do
whatever with it that they so choose. This includes but is not |

Figure 2.9
I accept the terms A terms-of-use dialog.
The user must accept
the terms before being
allowed to close the di-
alog.

OK

www.it-ebooks.info

http://www.it-ebooks.info/

Responding to widget changes with events 37

The following listing shows the abbreviated source used to build this dialog. You can view
the full source at http://jstiddle.net/tj_vantoll/KW3aw/.

Listing 2.3 Building a terms-of-use dialog

$("#dialog") .dialog ({
buttons: {

OK: function() { <}4!? Invokes the
$(this).dialog("close"); close() method
}
Prevents },
the dialog beforeClose: function(event, ui) ﬁ Sees if the terms
fr9m if (1$("#terms").prop("checked")) { are not checked
closing event .preventDefault () ;
$("[for=terms]").addClass("ui-state-error-text");
}
} Adds an error class name
1) to the terms’ <label>

The approach used here may seem odd at first. Your OK button’s click handler blindly
invokes close () without first checking whether the terms have been accepted @.

This is because the enforcing is done in a beforeClose callback, specified below the
buttons. In the callback, you first determine whether the terms’ check box is checked 0.
If it’s not, you call the event’s preventDefault () method to stop the dialog from closing
©. To tell the user why the dialog didn’t close, you add an ui-state-error-text class
name to the check box’s <labels element @.

NOTE The ui-state-error-text class name is part of jQuery UI's CSS frame-
work, which we’ll cover in chapter 7.

Why would you use the beforeClose event instead of putting the logic in the OK but-
ton’s click handler? The beforeClose eventis triggered regardless of how the dialog is
closed. It runs when the user clicks the dialog’s OK button or its close icon (in the
header). This flexibility makes it the preferred means for handling this type of logic.

Although some events can be canceled using preventDefault (), most can’t. Events
that can be canceled are marked as such in the API documentation. The documentation
for dialog’s beforeClose event (http://api.jqueryui.com/dialog/#event-beforeClose)
notes that “If canceled, the dialog will not close.”

That covers the event argument, but what about ui, the second argument?

The ui argument is an object that contains properties that may be useful in event
handlers and callbacks. An object is always passed for the second argument. For events
that don’t need additional properties, such as the beforeClose event you looked at,
an empty object is passed.

Each property provided in the ui object is listed in the jQuery UI API documenta-
tion. The documentation for dialog’s drag event is shown in figure 2.10.

www.it-ebooks.info

http://api.jqueryui.com/dialog/#event-beforeClose
http://www.it-ebooks.info/

38

CHAPTER 2 Enhancing Uls with widgets

drag(event, ui) Type: dialogdrag

Triggered while the dialog is being dragged.

event
Type: Event

ui

Type: Object
position
Type: Object
The current CSS position of the dialog.

offset
Type: Object
The current offset position of the dialog.

Figure 2.10 API documenta-
tion for the dialog widget’s
drag event. The oval highlights
the properties provided in the
ui argument.

As you can see, the drag event is passed the position and offset coordinates of the
dialog. The position property gives the coordinates of the dialog relative to its offset

parent, and the offset property gives the coordinates of the dialog relative to the
document itself.

NOTE Ifyoudon’tunderstand the difference between position and offset, don’t
worry. It’s a confusing topic, and the point of this section is to show how infor-
mation is passed to widget events. But if you're curious, check out http://
api.jquery.com/position/ and http://api.jquery.com/offset/.

To use these properties, consider the following example. The option() method is
used to display the current coordinates of the dialog as its title:

$("<divs>").dialog({
drag: function(event, ui) {
$(this).dialog("option", "title",
ui.offset.top + " x " + ui.offset.left);

}
3

You’ll see how the properties in the ui object are useful as you look at examples
throughout the book.

What about extension points?

In addition to options, methods, and events, you may have noticed a fourth option on
the API documentation screenshots in this section: extension points. All methods in
the jQuery Ul widgets are extensible using the widget factory. You can override any
existing method and optionally invoke the original method using super (). The jQue-
ry Ul team is documenting methods intended for overriding in extensions as exten-
sion points.

www.it-ebooks.info

http://api.jquery.com/position/
http://api.jquery.com/position/
http://www.it-ebooks.info/

2.5

Summary 39

The following code shows what is possible with extension points. It extends the dia-
log widget’s title () method so that it appends a prefix to the title used:

$.widget ("ui.dialog", $.ui.dialog, {
_title: function(title) {
title.text ("Prefix: " + this.options.title);
}

1)

Don’t worry if you don’t understand this syntax or these concepts. We’'ll go over this
and a number of other advanced widget concepts in chapters 8, 9, and 12.

Summary

Widgets are jQuery plugins with added functionality to handle customization, them-
ing, and more. Because all jQuery UI widgets are built using the widget factory, they
have a consistent API for configuration.

Options allow widgets to be configured on initialization. Each option has a default
value that can be overridden. Methods let you retrieve information about a widget
and change its state after initialization. Some methods, such as option(), are com-
mon to all widgets. Events let you respond to changes made to the widgets. You can
handle events with either event handlers or callback options. Event handlers use event
bubbling to operate on multiple widgets, and callback options always have this set to
the widget’s DOM element.

Now that you’ve seen what widgets are and how they work, you’re going to dig into
the individual widgets in jQuery UL You’'ll start by using a collection of these widgets
to build a common, yet tricky, requirement of many web applications: a contact form.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2
7Query Ul Core

N)w that you have the basics, it’s time to take a comprehensive look at the
components of jQuery Ul: twelve jQuery UI widgets (chapters 3—4), five jQuery
UI interactions (chapter 5), numerous jQuery Ul effects (chapter 6), and the
jQuery UI CSS framework (chapter 7).

You’ll see how each component works, as well as how to apply that knowledge
in real-world applications. Your first challenge will be building a sample form so
patients can make a medical appointment.

The knowledge you gain in part 2 will prepare you for part 3, where you’ll dig
into the more complex parts of jQuery UI, as well as prepare your applications
for production.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Buwilding complex web
Jorms with 1Query Ul

This chapter covers
= Using the jQuery Ul form widgets
= Building an enhanced contact form

= Comparing the jQuery Ul widgets to their
HTML5 counterparts

Building forms with native HTML is difficult; a limited number of controls offers a
limited set of functionality. In this chapter we’ll look at how the five form widgets of
jQuery Ul—autocomplete, button, datepicker, selectmenu, and spinner—enhance
these native HTML elements and make it easy to build nontrivial forms.

To learn about the widgets and what they do, you’ll build a sample form, one
that patients can use to make appointments at a local doctor’s office. No one likes
visiting the doctor, and your job is to make the appointment process as easy as pos-
sible for the user.

You’ll explore new elements that appeared on the web with HTML5, many with
functionality similar to the jQuery UI form widgets. We’ll compare and contrast the

43

www.it-ebooks.info

http://www.it-ebooks.info/

44

3.1

CHAPTER 3 Building complex web forms with jQuery UI

HTML5 elements with the jQuery UI widgets and discuss which make sense for you to
use today.
Let’s get started by looking at the form you’ll build.

The challenges of building modern web forms

Let’s assume you’re a small web development company and you get an email from a
US-based doctor’s office. They want to add a form to their website that allows
patients to request office appointments, and they want you to do it. They list the fol-
lowing requirements:

= Collect the name of the user’s insurance company. The office has a database of
insurance companies the user should be allowed to filter and select.

= Collect the language the patient speaks—English or Spanish.

= Let the patient select a doctor or nurse. The doctors and nurses should be sepa-
rated into distinct groups.

= Collect the appointment date from the patient. The office isn’t open on week-
ends, and Dr. Smith doesn’t work on Tuesdays. The date should be localized for
English and Spanish speakers.

= Collect the number of days the user has been sick. Don’t let the user pick
invalid values like negative numbers.

= All controls in the form should match the current website’s black-and-white
color scheme.

= The form should work in all browsers.

Although this list is long, it’s not an uncommon list of requirements for a modern web
form. As more and more of our daily interactions move to the web, the forms that
developers are expected to build are increasingly complex. Think how you’d build a
form to meet these requirements.

Without any libraries, you’re limited to the native HTML controls—<input>, <but-
ton>, <select>, and <textarea>. Although you can build forms that collect this data
with native HTML, those forms tend to be neither user friendly nor developer friendly.

NOTE The list of form controls is now slightly larger due to increasing
HTML5 form support in some browsers. We’ll discuss how HTML5 impacts
your form development in the last section of this chapter.

One of your criteria is to allow the user to select an appointment date. This raises a
few questions. How do you let the user know what format the date should be in? How
do you confirm that the user picked a valid date? No developer wants to write code
that manually checks for leap years or number of days in a month. No user wants to try
different values to determine which one is correct.

Another frustrating issue with HTML elements is that it’s difficult to alter their dis-
play. HTML form controls weren’t created with styling or themeability in mind; it’s
impossible to perform some customizations, such as changing the height of a

www.it-ebooks.info

http://www.it-ebooks.info/

The challenges of building modern web forms

45

— Request Doctor Appointment
. Date:
— Request Doctor Appointment
Buttonset Language:
Language: Ji* English Espafiol [February 2014 o
English (3 Espafiol () ——8M8
D]
Doctor: Selectmenu | %" Su Mo Tu We Th Fr Sa
No Preference & No Preference
Date: Datepicker | Dat: Focus 51 e S |
i 10 11 12 13| 14
17 18 19 20 21
Iosarance: Autocomplete | Insurance: 24 25 26 27| 28
2 Insurance:
Number of Days Sick: : Number of Days Sick:
Spinner - a
= |Typing | AUTOMOBILE CLUB INTER-INSUR
s Button AMERICAN FAMILY MUTUAL INSU
™ © Make Appointment
BANKERS STANDARD INSURANCE

FARM RIIRFALI PROPFRTY R CASI

Figure 3.1 Converting form controls into a jQuery Ul widget gives them a consistent look. It also makes
the controls more usable. When users give focus to the Date input, they see a datepicker. When users
enter text into the Insurance input, they see potential options in a menu.

<select> element, the size of a radio button, or anything about the <option> ele-
ments of a <select>.

The jQuery UI form widgets alleviate these concerns by providing powerful and
customizable controls. The widgets have an attractive appearance and have CSS hooks
to customize the display to your desire. Figure 3.1 shows the appointment form built
with jQuery UL

On the left side of figure 3.1 is the form without enhancement—rather dull and
uninspiring. In the middle is the form after the controls are converted to widgets.
The set of controls has a consistent look and feel that you can use with any of the
jQuery UI themes. The user interacts with friendlier controls—a calendar to select a
date from and an autocomplete list that filters companies as the user types, shown
on the right side.

We’ll spend the next several chapters looking at how to build this form with the
jQuery UI widgets. Let’s start the journey with a widget that helps users search and fil-
ter through values: autocomplete.

TIP If you’d like to follow along, you can view the final version of this exam-
ple at http://jsfiddle.net/tj_vantoll/Dt8pW/.

Styling form controls

All browsers allow some level of control over the display of form elements, but few
styles can be consistently applied. Firefox and Internet Explorer let you change the
color of a <select>, but Chrome and Safari don’t. Internet Explorer allows you to
change the height of a <select>, but other browsers don’t.

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Dt8pW/
http://api.jqueryui.com/datepicker/#option-minDate
http://api.jqueryui.com/datepicker/#option-minDate
http://www.it-ebooks.info/

46

3.2

CHAPTER 3 Building complex web forms with jQuery Ul

(continued)

Furthermore, browsers have specific styling hooks to customize the display of individual
form elements. The pseudo-element : : -ms-check can be used to change the height,
width, color, and background of check boxes and radio buttons in Internet Explorer 10
and 11. A full list of these styling hooks and how they work can be found at http: //
tjvantoll.com/2013/04/15/ list-of-pseudo-elements-to-style-form-controls/.

Because of the differences in styling forms across browsers, it's highly recommend-
ed to test the display of any form customizations in as many browsers as possible.
jQuery Ul removes much of this guesswork by providing widgets that look great and
are consistent across browsers.

Autocomplete: suggesting input options to users

Autocompletion is a pattern that all web users are familiar with. When you type a
phrase in your search engine, it suggests results; when you compose an email, your
mail client suggests recipients. Although this pattern is commonplace, implementing
it on the web is nontrivial. The jQuery UI autocomplete widget provides a powerful
means of associating an input field with a series of suggested values.

You’ll use the autocomplete widget to tackle the first of your requirements: collect-
ing the name of the user’s insurance company.

Why do you build this as an autocomplete and not a <select>? Large drop-down
menus can overwhelm users and make it difficult to find the value they’re looking
for. Have you ever been frustrated by sifting through a country drop-down menu
with 300+ options?

Also, when using a <select> you need to retrieve all values from the database
before displaying the form. This is a potentially expensive operation on the server and
delays the time when the user sees the form.

By using an autocomplete, you let the user filter values by typing. The autocom-
plete widget also gives you flexibility; you can still load all data on page load, but you
can also defer loading it until it’s needed—and only load values that match what the
user typed. Let’s discuss each approach.

Setting up a PHP server

A few examples in this section include PHP to show how the autocomplete widget in-
teracts with server-side code. To run these examples on your own computer, you
must set up a PHP server. Don't feel compelled to do this. The PHP code is thoroughly
explained, so you don’t have to go through the hassle unless you want to tinker with
the examples.

If you do, the easiest way to run PHP is to download and install a preconfigured PHP
server, such as the following:

= WAMP—http://www.wampserver.com/ (Windows)
MAMP—http://www.mamp.info/ (Mac)

www.it-ebooks.info

http: //tjvantoll.com/2013/04/15/list-of-pseudo-elements-to-style-form-controls/
http: //tjvantoll.com/2013/04/15/list-of-pseudo-elements-to-style-form-controls/
http://www.it-ebooks.info/

3.21

PHP array to

Autocomplete: suggesting input options to users 47

Alternatively, you can download PHP directly from http://php.net/ and start a new
server from the command line. For more information on this option, see http://
php.net/manual/en/features.commandline.webserver.php.

Using local data

The easiest way to use the autocomplete widget is with local data—which means that
the options are available to JavaScript directly, without needing to contact a remote
server. To drive the autocomplete widget with local data, pass an array for the source
option. The following is an example of an autocomplete that uses local data:

<input id="autocomplete">
<scripts>
$("#autocomplete").autocomplete ({
source: ["Alligator", "Ant", "Anteater", "Ape", "Armadillo"]

1

</scripts>
The five options specified in the source option are suggested to the user in a menu as
the user types. Figure 3.2 shows what happens when the user types an a, and then
selects the first option with the mouse.

In your appointment example, the list of insurance companies you need is stored
in a serverside database. In this case, to use a local array you load that data to a
JavaScript array. How you implement this depends on the type of database and server-
side environment you’re using. The following shows a sample PHP structure:

<? Scompanies = array("One", "Two", "Three"); ?> CmamsaPHPanay

<script> values. In a more

Converts the (D <? $companies_json = json_encode($companies); ?> with hardcoded

JSON format.

$("#autocomplete").autocomplete ({ realistic environment,
source: <? echo $companies_json; ?> this would retrieve
P i the values from a
</script> Uses the JSON data as server-side database.
the source option.

3l —a ——— Alligator
Alligator Alligator

Ant Ant

Anteater Anteater

Ape Ape

Armadillo Armadillo

Figure 3.2 How the autocomplete widget displays suggestions to the user. Here the user selects
“Alligator” with the mouse, and the input is filled with the user’s selection.

www.it-ebooks.info

http://php.net/manual/en/features.commandline.webserver.php
http://php.net/manual/en/features.commandline.webserver.php
http://www.it-ebooks.info/

48

CHAPTER 3 Building complex web forms with jQuery Ul

This gives you the autocomplete behavior you’re looking for. Although the local form
of the source option is convenient, you have to load all options before the form is dis-
played and store them in JavaScript. This is fine if you have a few dozen or a few hun-
dred options; however, when you have thousands or tens of thousands of options,
managing this data in the browser becomes problematic, and often leads to a slow
experience for users. To handle large datasets, let’s look at how to load data from a
remote source.

Associating options with codes

Often back-end structures need to associate a code with each option in an autocom-
plete. For example, a back end might require the code “UK” instead of the label “Unit-
ed Kingdom”. For this scenario, the source option accepts an array of objects with
label and value properties. The following shows an autocomplete that displays
country names and maps them to country codes on selection:

<input id="autocomplete">

<scripts>
$("#autocomplete") .autocomplete ({
source: [
{ label: "United Kingdom (UK)", value: "UK" },
{ label: "United States of America (USA)", value: "USA" }
]
}):
</scripts>

When the user selects an option, the value is entered in the text box rather than the
label. This is shown in this figure.

u‘ u UK
United Kingdom (UK) United Kingdom (UK)
United States of America (USA) United States of America (USA)

When labels and values are used, the user sees the labels, but the values are placed in the input
after selection. Here, the user selects the “United Kingdom (UK)” label, and its corresponding val-
ue—"UK"—is placed in the input.

Notice that in this example you include the value of each option within its label (“Unit-
ed Kingdom (UK)” instead of “United Kingdom”). There are a couple reasons for doing
this. First, it allows the user to type either labels or values to see autocomplete op-
tions. In the country example, this means the user can type "un" or "us" to see the
United States. Second, including the value in the label makes it less surprising when
the value ends up in the input after selection. For instance, the user could be sur-
prised by their “Switzerland” selection changing to "CHE", whereas they would likely
understand the change after selecting “Switzerland (CHE)”.

We’ll look at a real-world example of how to use codes when we build a flight search
application in chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

3.2.2

Autocomplete: suggesting input options to users 49

Loading from a remote source

Loading data from a remote data source provides a quick way for users to filter
though large datasets. To show how the autocomplete widget can load remote data,
let’s look at an example:

<input id="autocomplete">

<scripts> To use remote data,
$("#autocomplete").autocomplete ({ QJ pass a string instead
source: "/path/to/server" of an array.
I3
</scripts>

Note that the source option is a string rather than an array. This string is a URL where
you send AJAX requests to retrieve matched options as the user types. In this example,
the autocomplete widget makes GET AJAX requests to /path/to/server after the user
types into the <inputs>.

The autocomplete widget doesn’t filter results when using a remote source; rather,
the request made to the server includes a term request parameter containing the char-
acters the user typed, allowing the server to filter suggestions. This workflow is shown
in figure 3.3.

$("input").autocomplete({ source: "/path/to/server" });
JavaScript Framework: || JavaScript Framework: |jQuery Ul
Request made to Request made to
/path/to/server?term=j /path/to/server?term=jQuery+U
Which returns Which returns
["jQuery", " jQuery UI","jQuery Mobile"] ["jQuery UI"]
The widget The widget
displays this as displays this as
JavaScript Framework: || JavaScript Framework: |jQuery U
jQuery jQuery UI
jQuery UI

jQuery Mobile

Figure 3.3 When using a remote source, the autocomplete widget sends the typed value as a term
request parameter, and the server returns the filtered options. On the left, the user types "j ", the widget
sends a request to the server with a query string of "term=5", the server responds with an array con-
taining three matches, and the widget displays them in a menu. On the right, the user has continued
to type, and the new term (" jQuery U") is sent to the server. The server responds with a single match,
which the widget displays.

www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Building complex web forms with jQuery UI

The remote server must return a JSON-encoded array. As when using local data, the
array can contain strings or objects with label and value properties. jQuery Ul doesn’t
provide server-side implementations to filter the options based on user-typed terms, but
most server-side environments provide an easy means to compare strings and encode
data to JSON. A sample PHP implementation is shown in the following listing.

Listing 3.1 Filtering autocomplete options in PHP

Retrieves the user-
A hardcoded array
<? typed term from the of all potential
$ GET["term"] request parameter.

Sterm = options. In a more

$companies = array(#B realistic example,
"AUTOMOBILE CLUB INTER-INSURANCE EXCHANGE", this data would be
"AMERICAN FAMILY MUTUAL INSURANCE COMPANY", stored in a server-
"BANKERS STANDARD INSURANCE COMPANY", side database.

Loops over Vi
all company $result = array();

names. foreach ($companies as $company) {
if (strpos(strtoupper ($company), strtoupper (Sterm)) D —
1== false) {

If the company array_push($result, Scompany); Determines whether
name contains } the company name
the search } contains the search
term, adds it to) term. Both words are
the array that’s fcho json_encode ($result); uppercase, so the test
returned. e is case insensitive.

JSON-encodes the resulting
array, and outputs it.

Don’t worry about the PHP details in this listing; it’s offered as a sample because it’s
infeasible to list the numerous server-side environments that exist. The point is that
the serverside code—regardless of what language or framework it uses—needs to take
the request parameter term, identify the options that match it, and return the valid
options as JSON. If the data for the autocomplete is stored in a database, this filtering
can be done at the database level.

Cross-domain AJAX requests

By default the browser denies any AJAX request to another domain. For instance, re-
quests to http://example2.com from http://example.com will be blocked. This is per
the browser’s same origin policy, which prevents malicious sites from grabbing sen-
sitive information from other sites and executing actions on their behalf.

Cross-domain access to web assets and APIs has recently been made available
through a specification known as cross-origin resource sharing (CORS).

For information on CORS, see http://www.w3.0org/TR/cors/.

www.it-ebooks.info

http://www.it-ebooks.info/

Autocomplete: suggesting input options to users 51

Because remote data is loaded as the user types, you no longer have to load the entire
database on page load. Nevertheless, loading remote data could create a large
demand on the server receiving the requests. You can mitigate this with the delay and
minLength options.

The delay option determines the number of milliseconds between when the user
types and when a search is done. The default value is 300; changing the delay to 0
makes sense for local data when you have a small number of potential options. The
following code shows this:

<input id="autocomplete">

<scripts>
$("#autocomplete").autocomplete ({
source: ["Alligator", "Ant", "Anteater", "Ape", "Armadillo"],
delay: O
I3
</scripts>

Conversely, increasing the delay makes sense if you're using remote data and you’re
concerned about the load on the server. The following example waits a full second
before performing a request:

<input id="autocomplete">
<scripts>
$("#autocomplete").autocomplete ({
source: "/path/to/server",
delay: 1000

</Sciiét>

One second is a long time for a user to wait before seeing results. Try not to go over 500
milliseconds unless you need to. Another option to reduce server load is to set a
minLength.

The minLength option determines the minimum number of characters the user
must type before a search is performed. The default value of 1 is fine for most cases,
but can be increased when a single character can match a large number of values—or
if server load is a concern. The following requires the user to type two characters
before a search is done:

<input id="autocomplete">
<scripts>
$("#autocomplete").autocomplete ({
source: "/path/to/server",
minLength: 2
1
</script>
Let’s use this knowledge for your insurance carrier autocomplete. Because your
requirements stated there were a large number of insurance companies, you use a
minLength of 2 as shown in the previous example. But you leave the default delay in
place, as you aren’t concerned about server load.

www.it-ebooks.info

http://www.it-ebooks.info/

52

3.2.3

CHAPTER 3 Building complex web forms with jQuery UI

Your final implementation of the company autocomplete is shown in the next listing.

Listing 3.2 Final implementation of the insurance company autocomplete

HEHAHAHAHAHAEHEHEHE index. htm]l HHEHEHEHEHEHEHEHEHEH
<input id="autocomplete">
<script>
$("#autocomplete").autocomplete ({
source: "search.php",
minLength: 2
13K

</script>

HHHHHHHHHHHHHHHHHS search.php HHEHHHHHHHHHHHHHHHHHS

<?
Sterm = $_GET["term"];
Scompanies = array(

"AUTOMOBILE CLUB INTER-INSURANCE EXCHANGE",
"AMERICAN FAMILY MUTUAL INSURANCE COMPANY",
"BANKERS STANDARD INSURANCE COMPANY",

)i

Sresult = array();
foreach ($companies as $company) {
if (strpos(strtoupper (Scompany), strtoupper (Sterm))
1== false) {
array push(S$result, S$company) ;

}

echo json_encode(S$result);?>

This is the version of the insurance carrier autocomplete you’ll use in your example.
But before we finish with the autocomplete widget, we need to discuss one more sce-
nario: integrating with services that you don’t control.

Using autocomplete with third-party services and APIs

In your appointment form, the insurance company lookup was done on your own
servers. You were free to tailor the returned data to match your expected format, but
often this isn’t the case. Applications need to integrate with third-party APIs that don’t
return simple arrays or data in convenient label-value pairs.

To make it possible to integrate with these services, the source option has a varia-
tion that accepts a callback function. The function is called after each character the
user types and determines which options should display. To show how the source call-
back function works, let’s look at an example that uses local data before moving on to
a third-party call.

All autocompletes you’ve seen to this point have matched terms anywhere in the
options. For example, “a” matches “ant”, but it also matches “cat”. You can use a call-
back function to alter the widget so that it matches only at the beginning. This is
shown in the following code.

www.it-ebooks.info

http://www.it-ebooks.info/

Autocomplete: suggesting input options to users 53

Listing 3.3 Autocompletes that only match at the beginning

<input id="autocomplete">

<scripts>
var data = ["Alligator", "Ant", "Antelope", "Cat",
"Chicken", "Cow"];
Escapes any $("#autocomplete") .autocomplete ({ J The c_a"baCk
RegExp source: function(request, response) { function to use.
meaningful var results = [],
characters. term = $.ui.autocomplete.escapeRegex(request.term),
matcher = new RegExp(""" + term, "i"), Creates a RegExp
Runs a function for each matches = $.grep(data, function(item) { | gbject to use to
data item. When functions return matcher.test(item); test terms
return true, their item is D) i against options.

added to the matches array. response (matches) ;

} Determines whether the
1 Invokes the response term matches the item.
</scripts function to show options Returning true indicates a
that matched your match, and the item is
regular expression. added to the array.

The callback function you use for source receives two arguments @. The first,
request, is an object that has a single term property. The term has the string that’s
currently in the <input>. The second, response, is a function that needs to be called
with an array of options that should be displayed. With a callback function, determin-
ing which options match the term is your responsibility.

To do so, you first escape any RegExp meaningful characters from the term the
user typed (request.term) @. If you didn’t escape it, the user’s term would be inter-
preted as a regular expression. (The "." character would match all options!)

Next, you create the regular expression you’ll use to compare the term against the
options ©. The “*” character tells the RegExp to match characters only at the start of
the strings. This makes “a” match “ant” but not “cat”. The second argument, “i”, tells
the RegExp to perform a case-insensitive match. For example, both “a” and “A” match
“Ant”.

After this, you loop over each potential option in the data array using $.grep ()
0. You pass to $.grep () the array to filter and a function that’s invoked for each item
in the array. For each item, if the function returns true, it’s added to the array
returned by $.grep () ; otherwise, it’s not. In your case, you use the RegExp you created
earlier to determine whether the term matches each option @.

Now the matches array contains only the options that match the user-typed term
based on your criteria. The final step is to invoke the source callback’s response argu-
ment with the array of matched options you have built @. This displays the options to
the user.

The callback function gives you complete control over what options the user sees.
You can adapt the example to make the autocomplete case sensitive, display an option
regardless of what the user typed, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Building complex web forms with jQuery UI

Although this approach uses local data, it’s easy to adapt to hit third-party services.
To show this, let’s use GitHub’s JSON API to build an autocomplete for the names of
all public Git repositories. If you look at the API’s documentation (http://developer
.github.com/v3/search/#search-repositories), you’ll see that a ton of information is
returned. How can you sift through all this to get the repository names? An implemen-
tation of this is shown in the following listing.

Listing 3.4 An autocomplete of jQuery Git repositories on GitHub

$("#autocomplete").autocomplete ({
minLength: 2, . Loads data
source: function(request, response) { using an
$.getJSON("https://api.github.com/search/repositories", AJAX call
{ g: request.term + " in:name" })
Attaches a .then(function(data) {
function to run var matches = $.map(data.items, function(repo) {
when the call return repo.full name;
completes P i
response (matches) ; Aggregates the full
b names of each
} matched repository

I3F;
NOTE You can view this example at http://jsfiddle.net/tj_vantoll/jck37/.

The code here is similar to the previous example. The main difference is that you start
the source callback function by asynchronously loading data using $.getJSON (). The
GitHub search API takes the keyword to search with as a "g" request parameter @.
The rest of the search string, "in:name", is known as a qualifie—which is a GitHub-
specific syntax for restricting a search. By default the GitHub search matches reposito-
ries based on their names, descriptions, and more. The "in:name" qualifier tells
GitHub to match on names only.

TIP You can read more about GitHub search qualifiers, including a full list
of the qualifiers available, at https://help.github.com/articles/searching-
repositories.

Next, you use the then () method to attach a function to run when the $.getJSON()
call completes @. Inside that function, you need to aggregate the data GitHub
returned into something that autocomplete can use. A simplified version of the data

returned by GitHub is
{
items: [
{ name: "jquery", full name: "jquery/jquery", ... },
{ name: "jquery-ui", full name: "jquery/jquery-ui", ... },

www.it-ebooks.info

http://developer.github.com/v3/search/#search-repositories
http://developer.github.com/v3/search/#search-repositories
https://help.github.com/articles/searching-repositories
https://help.github.com/articles/searching-repositories
http://www.it-ebooks.info/

3.3

Button: enhancing native buttons, inputs, and links 55

You loop over the items array €, and place each repository’s full name into a
matches array. Then you pass the matches array to the response function to show the
list. The callback option gives you flexibility. You could push repo.full name +
" (Forks: " + repo.forks + ") " into the matches array to display the number of forks
a repository has alongside its name.

Between local data, remote data, and third-party services, the autocomplete widget
gives you the ability to create autocompletes with almost any source of data. Now that
you’ve explored autocompletes, and built the insurance company autocomplete you
need for your appointment form, you’re going to shift focus to how you can improve
the form’s buttons.

The autocorrect attribute

Many mobile OSes have a mechanism known as autocorrection that automatically
corrects misspelled words as you type. Although occasionally helpful, autocorrection
is almost never helpful in autocomplete inputs, where you have a predefined list of
options. You can turn autocorrection off on any <input> by setting its autocorrect
attribute to "off"—for instance, <input autocorrect="off">.

So that you don’t have to explicitly include this attribute on all autocomplete <input>
elements, you can use the following autocomplete extension that adds the attribute
automatically:
$.widget ("uil.autocomplete", $.ui.autocomplete, {
_create: function() ({
this. super () ;
this.element.attr("autocorrect", "off");
}
)

You'll learn how this works when you look at widget extensions in chapter 9. Some
mobile browsers also automatically capitalize the first letter of every <inputs>. You
can turn this behavior off by setting the <input > element’s autocapitalize attribute
to "off"—that is, <input autocapitalize="off">. This is helpful on fields where
itmakes no sense to capitalize the first letter, such as email addresses and usernames.

Button: enhancing native buttons, inputs, and links

Although HTML has plenty of button controls, it’s difficult to change their display to
match the rest of your application, and it’s nontrivial to perform common actions
such as adding icons or grouping buttons.

The jQuery UI button widgets provide a means to convert native buttons to theme-
able and customizable controls. You’ll use the button widget to fulfill your second
requirement: collecting the language the patient speaks.

This requirement is easy to meet with a set of radio buttons or a <select>, so why
use radio buttons? In general, when you have a small number of options, radio button
controls are preferred as the user can see all options at once. When you have many
options or space is limited, a drop-down menu is preferred.

www.it-ebooks.info

http://www.it-ebooks.info/

56

CHAPTER 3 Building complex web forms with jQuery UI

Why can’t you meet this requirement by creating HTML radio buttons? Keep in
mind that you have to build controls that match the current site’s color scheme—and
radio buttons are nearly impossible to style.

Luckily, the jQuery UI button widgets can turn <button>, <input type= "but-
ton|checkbox | image |radio|reset | submit">, and <a> elements into controls that
are styleable and themeable. To show the effect of the widget, the following converts
each supported element to a button widget:

<buttonsbutton</buttons>

<input type="button" value="button"s Check boxes and
<input type="reset" value="reset"s> radio buttons
<input type="submit" value="submit"s must be associated
with a <label>.
<label for="checkbox">checkbox</label> WwWe'll look at this
<input type="checkbox" id="checkbox"> momentarily.

<label for="radio"sradio</labels>
<input type="radio" id="radio"s>

a

<scripts>
$("button, input, a").button();
</scripts>

Figure 3.4 shows the display before and after the conversion.

button button

button button

reset reset

$("button, input, a").button() ;

submit submit
checkbox checkbox
radio () radio
a d

Figure 3.4 The button widget creates a consistent and themeable control from buttons, check-
boxes, radio buttons, and links. Here, each of these controls is converted in a single call.

www.it-ebooks.info

http://www.it-ebooks.info/

Button: enhancing native buttons, inputs, and links 57

In figure 3.4 you can see how easy it is to use the button widget to create a consistent
and decentlooking display for button controls. Now you need to create the radio but-
tons to collect the user’s language.

TIP jQuery Ul does a bit of magic to make radio buttons and check boxes style-
able. The visual controls—the “checkbox” and “radio” buttons in figure 3.4—
are those inputs’ <label> elements. jQuery Ul styles the <label> elements and
hides the check box/radio buttons in a manner that leaves them available
to assistive technologies, such as screen readers. You’ll dig into this technique
in more detail in chapter 8 when you build a custom widget that uses the
same behavior.

Note from the previous example that check box and radio button controls required a

<label> before the button widget was instantiated on them:

<label for="checkbox">checkbox</label>

<input type="checkbox" id="checkbox">

<label for="radio">radio</label>

<input type="radio" id="radio">

The for attribute of the label must match the id attribute of the form control. This is

a requirement for form building as it helps assistive devices such as screen readers

connect the <input> element to its associated <labels. It also allows you to click the

label to toggle check boxes and select radio buttons. Figure 3.5 shows this behavior.
Why does the button widget force you to provide the <label> elements instead of

generating them for your All the jQuery UI widgets are built with accessibility and

graceful degradation in mind. If JavaScript were to fail on this page, the user—as well

as assistive devices—would still have a usable form with semantic controls. If all goes

well, the button widget enhances the markup to something prettier.

<label for="checkbox">checkbox</labels>
<input type="checkbox" id="checkbox">

Clicking this <label> Toggles this <input type="checkbox">
checkbox

Figure 3.5 The importance of

<label for="radio"sradio</labels associating <label> elements

<input type="radio" id="radio"> with <input> elements: click-
ing the labels toggles check box-

S . L . es and selects radios. This
Clicking this <label> Selects this <input type=“radio”>

increases the clickable area of

these small controls, which is es-
pecially important on mobile de-

radio vices, where fingers can easily
miss small targets.

www.it-ebooks.info

http://www.it-ebooks.info/

58

CHAPTER 3 Building complex web forms with jQuery UI

Also remember that one of your requirements is to make sure the form works in all
browsers. By using semantic HTML, you ensure that the form works everywhere, even
in browsers that jQuery and jQuery UI no longer support.

Here’s the code you use to build the language control:

<label for="language-en">English</label>
<input type="radio" id="language-en" name="language" value="" checked>
<label for="language-es">Espafiol</label>
<input type="radio" id="language-es" name="language" value="es">
<scripts>

$("input") .button() ;
</script>

This produces the buttons shown in figure 3.6.

Although these controls look much better English Espafiol
than the native radio buttons, you can do better.

Figure 3.6 Two radio buttons that have

jQuery UI also includes a buttonset widget
designed to logically and visually group button
controls. To create buttonsets, call the buttonset
plugin on the parent element of button controls.

become jQuery Ul button widgets. The
English <input> has a checked attri-
bute, and therefore appears as the se-
lected button.

The following example switches your language control to use a buttonset:

<label for="language-en">English</labels>

<input type="radio" id="language-en" name="language" value="" checked>

<label for="language-es'">Espafiol</label>

<input type="radio" id="language-es" name="language" value="es">

<scripts>
S ("#buttonset") .buttonset() ;
</scripts>
The updated display of the radio buttons is shown
in figure 3.7.

The buttonset widget provides this visual asso-
ciation between the buttons, and the underlying
button widgets ensure the browser’s native key-
board controls are preserved. The space bar can still
be used to toggle check boxes, and the arrow keys
can still be used to toggle the selected radio button.

English Espaiiol

Figure 3.7 When the parent element
of button controls—in this case two ra-
dio buttons—is converted into a but-
tonset, the widget automatically
applies the CSS necessary to group the
buttons together.

NOTE The buttonset widget isn’t limited to radio buttons; it can group any

element that can be converted to a button widget.

This concludes your language control for this form, but you have one last
customization to make with the button widget. To create a consistent form display,
let’s also convert the form’s Submit button to a button widget, using the following
HTML and JavaScript:

www.it-ebooks.info

http://www.it-ebooks.info/

3.4

Selectmenu: enhancing native <select> elements 59

<button>Make Appointment</buttons>
<scripts>

$("button") .button() ;
</script>
To add customization, let’s use the button’s icons option to display a small icon next
to the button. The icons option takes an object with two optional properties—
primary and secondary. The primary icon displays on the left side of the button, and
the secondary icon displays on the right. The values of these two properties must
match one of the 173 jQuery Ul icon class names listed at http://api.jqueryui.com/
theming/icons/. The following code adds a calendar icon to your Submit button:

<buttons>Make Appointment</buttons>

<scripts>
$("button") .button ({
icons:
primary: "ui-icon-calendar"
}
I3
</scripts>

We’ll continue to discuss the button in examples throughout this book. Next, let’s
look at the jQuery Ul replacement for native drop-down menus: selectmenu.

Why are there so many HTML button controls?
The HTML specification originally contained only four button types.

= <input type="reset">—Resets a form to its original state

" <input type="submit">—Submits a form

" <input type="button">—Buttons that aren’t used to submit forms

= <input type="image">—An image to act as a control to submit forms

Unfortunately, <input> elements can’t contain child elements, and that limits what
you can do with them. Thus, <button> elements (which can contain children) were
created.

<button> elements can have a type of reset, submit, or button. The default type
is submit. Because images can be added as children of <button> elements, a
<button type="image"> iS hot needed.

The original <input>-based buttons have never been deprecated or removed from
the HTML specification, meaning you have two sets of controls with overlapping func-
tionality. Because <button> is more powerful, its use is preferred.

Selectmenu: enhancing native <select> elements

<select> elements are one of the most difficult elements to customize in HTML.
Almost no CSS properties work across browsers, and it’s impossible to style or position
their associated <option> elements.

www.it-ebooks.info

http://api.jqueryui.com/theming/icons/
http://api.jqueryui.com/theming/icons/
http://www.it-ebooks.info/

60

CHAPTER 3 Building complex web forms with jQuery UI

The selectmenu widget solves these problems by replacing the <select> element
with a customizable and themeable control that retains the accessibility and behavior
of the original element. You’ll use the selectmenu widget to meet the third of your
requirements: allowing the user to select a doctor or nurse.

The selectmenu widget works by converting <select> elements as shown in the
following example:

Makes the selectmenu 200

<style> ixels wid
select { width: 200px; } pixels wide
</style>
<select id="selectmenu"> . . .
: . Determines which option
<option>One</options> to select by default
<option selected>Two</options> y u

<option>Three</options>
</select>
<scripts>

S ("#selectmenu").selectmenu() ;
</script>
Per your requirements, the options should be grouped into doctor and nurse catego-
ries. The native <select> element allows this behavior by grouping <option> ele-
ments within <optgroup> tags.

Although <optgroup> elements are implemented in all major browsers, they suffer
the same difficulties with styling and customization that the <select> and <option>
elements do. Fortunately, the selectmenu widget handles <optgroup> elements with-
out any extra configuration; you call the selectmenu plugin after selecting the appro-
priate <select> element. This is shown in the following example:

<style>
select { width: 200px; } Makes the rendered
</style> selectmenu 200 pixels

<label for="doctor"sDoctor:</labels>

<select id="doctor" name="doctor">

<option>No Preference</options>
<optgroup label="Doctors">
<option>Adams</options>

<option>Crowley</options> Determines the heading

<option>Smith</option> displayed for the group

<option>VanToll</options of options
</optgroup>

<optgroup label="Nurses">
<options>Davis</option>
<option>Johnson</option>
<options>Jones</option>
<option>White</option>

</optgroup>

</select>

<scripts> Calls the selectmenu
$("select").selectmenu() ; plugin

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Selectmenu: enhancing native <select> elements 61

Note that in each example you assign an explicit width to <select> elements @. The
selectmenu widget requires this width be set to determine the width of the rendered
control.

Why can’t the widget figure out an appropriate width on its own? By default, native
<select> elements are set to a width of auto, where auto resolves to the width of the
longest option in the menu. Although it’s desirable to replicate this behavior, it’s
impossible to get the width of an <option> element in JavaScript; you must manually
set an explicit width on <select> elements when using the widget.

TIP You can also set the width of a selectmenu using its width option.

Figure 3.8 shows the effect of transforming your doctor <select> into a selectmenu in
Google Chrome.

You’ve seen that the selectmenu widget is an easy and powerful replacement for
the native <select> element. Next, we’ll look at the most complex and powerful form
widget in jQuery UI: datepicker.

No Preference -

No Preference

¥ Mo Preference . Doctors
Doctors r
o Adams
Crowley $("select") CFOW'EY
Smith .selectmenu() ; .
Smith
Nurses
Davis VanToll
Johnson
Jones Nurses
White .
Davis
Johnson
Jones
White

Figure 3.8 The effect of transforming a <select> with <optgroup> elements into a selectmenu
widget in Google Chrome on 0S X

www.it-ebooks.info

http://www.it-ebooks.info/

62

3.5

CHAPTER 3 Building complex web forms with jQuery UI

Datepicker: selecting dates from a pop-up calendar

Dates are common pieces of data that forms collect. It should be easy to collect a date
from a user on the web, but that has a number of nontrivial challenges. What format do
you need the date in? How do you handle the number of days in a month? Leap years?

These problems frustrate users and programmers alike. Have you ever input a date
in a form and been frustrated when you discovered the month needed a leading zero,
or used dashes (-) instead of slashes (/)?

In your case, you need to collect an appointment date from the patient. You have
to ensure that the user isn’t allowed to pick weekends, or Tuesdays if the user wants to
see Dr. Smith. Finally, you have to display the calendar in multiple locales.

You saw how to create datepickers in chapter 1 (calling the datepicker plugin on
an <inputs>). For your appointment datepicker, you start with

<label for="date"sDate:</label>
<input type="text" name="date" id="date">
<script>
$("input") .datepicker();
</scripts>

To enforce the available days, you need to use the beforeShowDay option. The option
takes a function that’s called once for each individual day before it’s displayed. If

December is about to be shown, the beforeShowDay function is invoked 31 times—once
for each day. The function is passed a date and must return an array with three values:

= A Boolean that determines whether the day should be enabled
= An optional string to use as a CSS class name for the day’s cell
= An optional string to use as a tooltip for the day’s cell

The following code disables Christmas with a custom display:

<style>
.ui-datepicker .ui-christmas span {
color: red;

background: green; .
} In JavaScript, months and days

(of the week) are zero-based,
but days of the month are one-
based. Therefore, Il is
equivalent to December.

</style>
<label for="date"sDate:</labels>
<input type="text" name="date" id="date">

<scripts>
$("input") .datepicker ({
beforeShowDay: function(date) {
if (date.getDate() == 25 && date.getMonth() == 11) { <+———
return [false, "ui-christmas", "Christmas!"];
1
return [true]; QT Enables all Disables Christmas
} other days. and adds a custom
1 class name and tooltip.
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Datepicker: selecting dates from a pop-up calendar 63

For your use case of disabling weekends, the datepicker widget provides a utility func-
tion: $.datepicker.noWeekends (). The following code uses this function:

<label for="date"sDate:</label>
<input type="text" name="date" id="date">
<scripts>
$("input") .datepicker ({
beforeShowDay: $.datepicker.noWeekends
I3

</scripts>
But you also need to disable Tuesdays when Dr. Smith is selected. Let’s create a func-

tion to handle thi
ton to handie this 0 is Sunday, | is Monday, and so on in

If Smith, a system when days are zero-based.

enables the day | function checkDate(date) {

OMY“ifsa var isWeekday = date.getDay() > 0 && date.getDay () < 6;

weekday AND if ($("#doctor").val() === "Smith") {
not Tuesday. | return [isWeekday && date.getDay() != 2 1;
} else {

If not Smith, return [isWeekday 1; Gets the value of the

enables the day } doctor <select>,

}i and sees if Dr. Smith

fit kday.
if it’s a weekday. was selected.

then, use this function as the beforeShowDay function:

$("input") .datepicker ({

beforeShowDay: checkDate
1
This creates the behavior you desire, but there’s one issue: if the user manually types
in a date or changes the doctor, the form could be submitted with an invalid value.
You need to validate that the user selected a correct date on submission, and
datepicker has the tools to do that.

TIP Youcan also use the minDate and maxDate options to customize which dates
are available. In your appointment example, a minDate of 0 would prevent users
from selecting dates in the past; a minDate of 2 would force the user to pick an
appointment at least two days into the future. For details on the data types these
options accept, see http://api.jqueryui.com/datepicker/#option-minDate and
http://api.jqueryui.com/datepicker/#option-maxDate.

Datepicker and options

Datepicker is the most customizable widget of jQuery Ul, with a daunting 50 options.
Don’t worry about knowing all them, or even a small fraction of them. Most are for
specific use cases that you’ll likely never need. In fact, it’'s quite common to have
datepickers in production that don’t set any options at all. The following figure shows
common options you may want to experiment with.

www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 3 Building complex web forms with jQuery UI

(continued)
{
buttonlmage: "/calendar.png”,
buonimageoniy. e, \ hangetiont e
} { changeYear: true }

o | Feb “ s | 2014 4 3 o { showOtherMonths: true }

| Wk Su Mo Tu We Th Fr Sa
+ o 2 2 2 0 3bd
5 2l 32 5| 6| 7|| 8
6 ol[10/ 11] 12] 13][14] 25
7 |16 17[18| 19 20 21 22
8 |23 24 25 26 27 2

Today Done ﬁ

{ showButtonPanel: true }

{ showWeek: true } —

A datepicker with a variety of options set to customize the display. You may want to experiment
with these options for the datepickers you need in your applications.

3.5.1 Parsing and formatting dates

ou avaScri as a native Date object built in, it doesn’t tackle one common
Although Script h tive Date object built td t tackl

problem: converting Date objects to strings and strings to Date objects. This is a tricky
problem when you consider the solution has to handle leap years, the number of days

in each month, and the many formats in which dates can be displayed.

For your appointment field you need to determine whether the string in the
<input> represents a valid date. To do this, you use two of datepicker’s utility func-
tions to convert dates to strings and vice versa—$.datepicker.formatDate ()and

$.datepicker.parseDate ().

NOTE Utility functions can be invoked without being tied to an instance of
the widget. You don’t have to create a datepicker to use $.datepicker.for-
matDate () and $.datepicker.parseDate (); you just call them.

The first parameter each of these functions takes is a string that specifies the format of

the date. Here are the common ones:

= d—Day of the month with no leading zeros
= dd—Day of the month, always two digits

www.it-ebooks.info

http://www.it-ebooks.info/

Datepicker: selecting dates from a pop-up calendar 65

= D—Short day name (Mon, Tue, Wed)

= DD—Long day name (Monday, Tuesday, Wednesday)
= o—Day number of the year (no leading zeros)

= oo—Day number of the year (always three digits)

= m—Month of the year with no leading zeros

= mm—Month of the year, always two digits

= M—Short month name (Jan, Feb, Mar)

= MM—Long month name (January, February, March)
= y—Two-digit year

= yy—Four-digit year

NOTE These same formats can be passed to the dateFormat option to config-
ure the format of the user-selected date in its associated <input>.

Let’s start with $.datepicker. formatDate, which converts Date objects to strings. The
following listing shows how the same date can be displayed in multiple formats using

formatDate ().
Listing 3.5 Formatting dates with formatDate ()
var date = new Date(2014, 0, 2); <— Creates a Date object for January 2, 2014
$S.datepicker.formatDate("d / m / y", date); < 2/1/14
02/01/2014 — ¢ .datepicker.formatDate("dd / mm / yy", date);

$.datepicker.formatDate("dd-mm-yy", date); <+— 02-01-2014

Thujan 2,204 —> $.datepicker.formatDate("D M d, yy", date);
$.datepicker.formatDate("DD M d, yy", date)

) : Thursda
Thursday S.datepicker.formatDate("DD MM 4, yy", date); jan 2, 20Y|4

January 2, 2014

See how easy it is to output dates in a variety of formats? Also notice that characters in
the format strings that aren’t recognized are transferred to the output string
directly—for example, the commas, slashes, and dashes. One warning: if you want to
include characters in your formatted date that are also special formatting characters,
you need to quote them. Suppose you wanted to output the day number of the year.
You might try

$.datepicker.formatDate("Day o of yy", new Date(2014, 0, 2));

but this unexpectedly outputs “Thuald 2 2f 2014”, because the "D" in "Day" and "o"
in "of" are interpreted as formatting characters. The following code outputs the
expected “Day 2 of 2014":

$.datepicker.formatDate("'Day' o 'o'f yy", new Date(2014, 0, 2));

formatDate () converts Date objects to strings, but parseDate () does the opposite: it
converts strings back to Date objects. All these statements return a Date object repre-
senting January 2, 2014:

www.it-ebooks.info

http://www.it-ebooks.info/

66

Checks for
weekends
and Dr.
Smith

CHAPTER 3 Building complex web forms with jQuery UI

$.datepicker.parseDate("d / m / y", "2 / 1 / 14");

$.datepicker.parseDate("dd / mm / yy", "02 / 01 / 2014 ");
$.datepicker.parseDate("dd-mm-yy", "02-01-2014");

$.datepicker.parseDate("D M d, yy", "Thu Jan 2, 2014");
$.datepicker.parseDate("DD M d, yy", "Thursday Jan 2, 2014");
$.datepicker.parseDate("DD MM d, yy", "Thursday January 2, 2014");
parseDate () throws an exception if the string can’t be parsed into a valid Date

object, making it perfect for determining whether user-inputted values are valid dates.
The following function determines the validity of a date:

function isvalidDate(date) {
try { Because parseDate() can throw an
$.datepicker.parseDate("yy-mm-dd", date) ;| exception, it must be wrappedina
return true; try/catch block. If parseDate()
} catch(error) { does throw an exception, the date
return false; isn’t valid. If it executes
} successfully, the date is valid.
} True
isvalidDate("2014-01-01"); True, 2012 was .
isvalidDate("2012-02-29") ; a leap year. False, 2014 isn’t
isvValidDate("2014-02-29"); a leap year.
isvalidDate("2014-10-31");
' Tr1 r
isvalidDate("2014-09-31"); ue, Octobe
has 31 days.

False, September
doesn’t have 31 days.

That'’s it. You don’t need to manually check for leap years or the number of days in

September. You can use this approach to validate the date in your appointment form.

This is shown in the following code:
Listens for form

submission
$("form").on("submit", function(event) { DetermmeSWhther
the user-provided
var date; : .
date is valid
try {
date = $.datepicker.parseDate("mm/dd/yy", $("#date").val());
} catch (error) { } ...prevents
if (!date) { <@ If date is defined... the form from
event .preventDefault () ; submitting...
alert ("Please provide a valid date.");
1 ...and notifies the user
if (date && !checkDate(date)[0 1) { of the problem

event .preventDefault () ;
alert ("Cannot select a weekend or Tuesday for Dr. Smith.");

}
)

You attach a submit event listener to your appointment form @, then call parseDate
with the user-provided date in a try/catch block ®. If the date can be parsed, it’s
assigned to the date variable. If the date can’t be parsed, date remains undefined and

www.it-ebooks.info

http://www.it-ebooks.info/

3.5.2

Datepicker: selecting dates from a pop-up calendar 67

you go to the conditional @. If you have an error, you prevent the default event action
(submission of the form) @, and then display an error to the user 0. Finally, you use
the checkDate () function you created earlier to ensure that the user didn’t select Dr.
Smith on Tuesday, or a day on the weekend 0.

TIP Although alert () works well for examples, in a production application
you should display text error messages on the screen and highlight inputs
that have errors. Not only do these best practices make your form look more
professional, they also make it significantly more usable. Currently, when you
close the alert, you have no way of knowing what the problem is. You’ll dig
deeper into form validation when you build a more complex example in
chapter 11.

Although parsing and formatting dates are tricky problems, you have one final prob-
lem to tackle: globalization.

Datepicker and the widget factory

Datepicker is some of the oldest code in jQuery Ul and therefore doesn’t follow some
of the modern conventions used by the library. It is the only widget in jQuery Ul that
isn’t built with the widget factory. Not to worry; a lot of work has been done to mimic
the widget factory’s APIs so that datepicker works like the other widgets of jQuery Ul.

One difference is that datepicker has no events. It does, however, have five callbacks
that can be specified as options: beforeShow, beforeShowDay, onChangeMonthYear,
onClose, and onSelect. Because these are options and not events, this works

$("#datepicker") .datepicker ({ onClose: function() {} });
but this doesn’t:

$("#datepicker") .datepicker().on("datepickeronclose", function() {});

Handling date globalization

Collecting dates from users of varied languages and cultures is a difficult task. You
need to use different words for the days of the month and the months of the years, but
you also need to deal with the structure of the date. Should the month or the day be
displayed first? Does the culture read from left to right or right to left?

Although you need to handle only English and Spanish in your form, the jQuery UI
datepicker handles 70+ locales. A few of these locales are shown in figure 3.9.

The datepicker widget stores locale information in $.datepicker.regional: an
array of locale information indexed by language code. $.datepicker.regional ["fr"
] and $.datepicker.regional["ja"] contain the information needed to build the
datepicker for the French and Japanese languages, respectively. The default locale is
English and is stored at $.datepicker.regional[""].

www.it-ebooks.info

http://www.it-ebooks.info/

68

CHAPTER 3 Building complex web forms with jQuery UI

| | I

o Septembre 2013 o o 2013 nanvso o o 20134 9H o

L M M b] v s D naw i 't 'a 'a 'm H B % #* X # =+t

1 7| F | S | S 4 S | 1| S [| S 3| ST | S| |

23568 14| 13| 12| 11 10, 9 8 8 9 10 11 12 13 14

9 10 11 12 13 14 15 21 20 19 18 17 16 15 15 16 17 18 19 20 21

16 17 18 19 20 21 22 28 27 26 25 24 23 22 22 23 24 25 26 27 28
23 24 25 26 27 28 29 30 29 29 30

30

Figure 3.9 The jQuery Ul datepicker widget supports over 70 different locales. This figure shows three:
French, Hebrew, and Japanese (left to right).

You can set the locale for a datepicker in multiple ways. At datepicker initialization
you can pass the locale information to the plugin. The following code creates a
datepicker using the French locale:

$("#datepicker").datepicker($.datepicker.regional["fr"]);

Additionally, you can call the option () method to change the datepicker’s locale after
initialization. The following example changes the datepicker’s locale to Japanese:

$("#datepicker") .datepicker("option", $.datepicker.regionall "ja" 1);

Datepicker provides a setDefaults ()utility function to set the default values all
future datepickers should use. You can use this function to default all datepickers to a
given locale, such as defaulting all datepickers to the Hebrew locale:

$.datepicker.setDefaults($.datepicker.regional["he"]);

Due to file size considerations, the locale information that datepicker needs to build
locale pickers isn’t packaged in the main jQuery UI CDN file and has to be imported
separately. If you download the jQuery UI zip archive from https://github.com/
jquery/jquery-ui/releases, the locale information is in the ui/il8n folder (ui/il8n/
datepicker-fr,js, for example, contains French locale data).

NOTE ¢I8n stands for internationalization and ally stands for accessibility.
These terms have become common because “internationalization” and
“accessibility” are painful to type.

Let’s bring this back to your example. The following code takes your language radio
buttons and updates them to change the locale of the datepicker in a change event:

<span id="buttonset"s Your language

<label for="language-en">English</labels> buttonset from

<input type="radio" id="language-en" name="language" earlier
value="" checked>

<label for="language-es">Espafiol</label>
<input type="radio" id="language-es" name="language" value="es">

www.it-ebooks.info

https://github.com/jquery/jquery-ui/releases
https://github.com/jquery/jquery-ui/releases
http://www.it-ebooks.info/

Sets the
default
locale to
English

3.6

Spinner: enhancing native <input> elements to collect numeric data 69

<label for="date"sDate:</label>

. . Imports the Iocal:j
<input type="text" name="date" id="date"> . .
information
<script src="scripts/jquery-ui/il8n/datepicker-es.js"></scripts>
<scripts>
$("#buttonset") .buttonset () ; Qj Attaches a.change event
$("[name='language']l").on("change", function() { to the radio buttons
$("#date")
.datepicker("option", $.datepicker.regionall this.value]);
b Updates the
$("#date") .datepicker($.datepicker.regionall ""]); locale with
</scripts option()

You first import the Spanish locale data @. This line assumes you have jQuery UI
accessible in a scripts folder in the same directory as the HTML for the example.
(Remember that the locale data is not available on the jQuery CDN.) Then you attach
a change event to the language buttonset’s radio buttons ®; it’s invoked whenever the
selected radio button changes. You call the option() method to change the locale to
the selected value €. Outside of the change event, you create the datepicker widget
and set the default locale to English @.

This concludes our whirlwind tour of the datepicker widget. Because datepicker
has a ton of options, it may be helpful to peruse its API documentation at http://
api.jqueryui.com/datepicker/ to see some other things that are possible. Next, we’ll
look at the final widget for your form: spinner.

Spinner: enhancing native <input> elements to collect
numeric data

Like dates, numbers are another common piece of information to collect from users.
Normal text inputs offer little control over the data that users input. What’s the maxi-
mum value allowed? The minimum? How do you handle more complex values like
decimals and currency?

The spinner widget solves these problems by providing an easy way for users to
input numbers in any format. You’ll use the spinner to build the last field in your
form: an input to collect the number of days the user has been sick.

To create spinner widgets, select <input> elements and invoke the widget’s plugin.
The following code shows this:
<input id="spinner" value="1">
<scripts>

$("#spinner").spinner();
</scripts>
The display of this spinner is shown in figure 3.10.

The spinner widget has two controls to increase and decrease the value of the spin-
ner by one step. When the <input> has focus, the user can additionally use the up and
down arrow keys to do the same.

www.it-ebooks.info

http://api.jqueryui.com/datepicker/
http://api.jqueryui.com/datepicker/
http://www.it-ebooks.info/

70

CHAPTER 3 Building complex web forms with jQuery UI

Current value

/ Increase value by one step
) Fy
\ Decrease value by one step

1 -
Figure 3.10 The spinner widget adds two buttons that allow the user to increment and
decrement the value of an <input>.

The default step value of spinner controls is 1. In figure 3.10 if the user clicks the up
arrow the value changes from 1 to 2. But this step value can be changed with the step
option. The following example creates a spinner that steps by values of 10:
<input id="spinner"s>
<scripts>

$("#spinner").spinner({ step: 10 });
</scripts>
Now the user can choose values of 0, 10, 20, 30, and so forth. But the user can also
choose values of -10, -20, and so on. To cap the range of a spinner, the widget provides
min and max options. The following spinner allows the user to select multiples of 10
from 0 to 100:

<input id="spinner">
<scripts>
$("#spinner").spinner ({
min: O,
max: 100,
step: 10
1

</script>
The HTMLS5 specification added min, max, and step as valid HTML attributes, and the
spinner widget uses them if they’re present. You can declaratively specify the min, max,
and step options in HTML rather than passing them to the plugin:
<input id="spinner" min="0" max="100" step="10">
<scripts>
$("#spinner") .spinner();

</scripts>

WARNING If min, max, and step are specified as both attributes and options,

the option values will be used. Make sure you only use one for clarity.

To create a spinner for your number-of-days-sick control, you only need to prevent the
user from picking numbers less than one:

<label for="days"s>Number of Days Sick:</label>
<input type="text" id="days" name="days">
<scripts>

$("#days") .spinner ({ min: 1 });
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

3.7

Completing the appointment form 71

But, like datepicker, the user can still submit any value for this field—including nega-
tive numbers, fractional numbers, and alphabetic characters. To prevent this, let’s add
another check to your submit event handler:

$("form").on("submit", function(event) { J Ch.ecksyvhether.the .
if (1$("#days").spinner("isvalid")) { spinner’s value is valid
event .preventDefault () ;
alert ("Please provide a valid number of days.");

}
N

You call spinner’s isvalid() method @ to determine the validity of the spinner’s
value. The method checks that the value is a valid number that adheres to the widget’s
min, max, and step constraints.

You now have a complete number picker to use in your form. The spinner has
more to offer, including support for decimal, currency, and time pickers in over 350
cultures. We’ll cover those in appendix D.

Completing the appointment form

You’ve made it through all the pieces of the appointment form, so let’s see how it all
comes together. The source of the form is shown in listing 3.6.

NOTE The full example is available at http://jsfiddle.net/tj_vantoll/Dt8pW/.

Listing 3.6 The complete appointment form

<form method="POST" action="/path/to/server">
<fieldset>
<legend>Request Doctor Appointment</legends>
<div>
<labelsLanguage:</label>

<label for="language-en">English</label>
<input type="radio" id="language-en" name="language"
value="" checked>
<label for="language-es">Espaflol</label>
<input type="radio" id="language-es" name="language"
value="es">

</div>
<divs>
<label for="doctor"sDoctor:</label>
<select id="doctor" name="doctor">
<option>No Preference</optionx>
<optgroup label="Doctors">
<option>Adams</option>
<option>Crowley</options>
<option>Smith</options>
<option>VanToll</options>
</optgroup>
<optgroup label="Nurses">
<optionsDavis</option>

www.it-ebooks.info

http://www.it-ebooks.info/

72

CHAPTER 3 Building complex web forms with jQuery UI

<option>Johnson</option>
<option>Jones</option>
<option>White</options>

</optgroup>
</select>
</div>
<divs>

<label for="date"sDate:</label>
<input type="text" name="date" id="date">
</div>
<divs>
<label for="insurance"sInsurance:</labels>
<input type="text" name="insurance" id="insurance">
</div>
<div>
<label for="days">Number of Days Sick:</label>
<input type="text" id="days" name="days">

</div>
<div>
<button>Make Appointment</buttons> .
</div> Converts the radio
</fieldsets l?uttons to a buttonset
widget that changes the
</form> . ,
. datepicker’s locale
<script>
S ("#buttonset") .buttonset () ;
Converts $("[name='language']").on("change", function() {
the dropdown $("#date")

widget

to a selectmenu

)

.datepicker("option", $.datepicker.regionall ""]);

.datepicker("option", $.datepicker.regionall this.value]);

"#doctor") .selectmenu() ; Converts the
doctor fields to
"#insurance") .autocomplete ({ an autocomplete Converts the date)
minLength: 2, widget field to a datepicker
source: "search.php" that restricts the

available days

"#date") .datepicker ({
beforeShowDay: function(date

)
var isWeekday = date.getDay() > 0 && date.getDay() < 6;

{
)

if ($("#doctor").val() "Smith") {
return [isWeekday && date.getDay () != 2 1;
} else {

return [isWeekday];

}
}

"button") .button ({ Converts the Submit
icons: { button to a button widget
primary: "ui-icon-calendar" with a calendar icon
}
"#days") .spinner ({ min: 1 }); Converts the days field
"form").on("submit", function(event) { (numbeVOfdaYSSkk)

var date, to a spinner widget

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the appointment form 73

daysvValid = $("#days") .spinner("isvalid");

try {
date = $.datepicker.parseDate("mm/dd/yy",
S ("#date").val());

} catch (error) { }
if (!date) {
event .preventDefault () ;
alert ("Please provide a valid date.");
}
if (date && !checkDate(date)[0]) {

event .preventDefault () ;
alert("You cannot select a weekend or Tuesday " +
"for Dr. Smith.");

}
if (!daysvalid) {
event .preventDefault () ;
alert ("Please provide a valid number of days.");

}
1
</scripts>
Converting the language <input type="radio"> controls to a buttonset @ overcomes
the impossibility of styling native radio buttons with a themeable control.

Converting the doctor <select> to a selectmenu ® overcomes the difficulties of
styling the native element. You have a themeable and customizable control that
matches the other elements in the form and groups the options.

Converting the insurance company <input> to an autocomplete € presents users
with a list of potential insurance companies after they type. This is helpful for users
who may not remember the name of their company or know what options are avail-
able. It also helps server load, because you only look up options as you need to.

Converting the date <input> to a datepicker @ gives the user a calendar control to
select a date from. You also restrict the available appointment days and change the
locale based on the user’s language.

Converting the submit <button> to a button widget @ gives a button that looks the
same as the rest of the form controls with an easily customizable icon.

Converting the sick days <input> to a spinner @ gives the user buttons and key-
board shortcuts to increment and decrement the value of the <input>. By setting the
min to 1, you indicate to the user that you’re looking for a positive value.

But wait, don’t you have two requirements left?

= All controls in the form should match the current website’s black and white
color scheme.
= The form should work in all browsers.

Because you built the form with jQuery Ul, these last two requirements have taken
care of themselves. All widgets in the form conform to the jQuery UI theming frame-
work; therefore, changing the form’s theme is a matter of changing the style sheet
imported. This is great for pesky clients who say they want a black-and-white form, but

www.it-ebooks.info

http://www.it-ebooks.info/

74

3.8

CHAPTER 3 Building complex web forms with jQuery UI

suddenly have a thing for green the next day. You’ll look at the specifics of swapping
out themes in chapter 7.

What about browser support? As you saw in chapter 1, jQuery UI supports all mod-
ern browsers as well as Internet Explorer 7 and above. But this client said they wanted
“all” browsers. You’re in luck. This form works everywhere because of the progressive
enhancement approach jQuery UI takes for building widgets.

The initial HTML is a functional form that works fine without JavaScript. If JavaScript
fails because of an authoring error, if the user has JavaScript disabled, or if the user is
using a relic of the past like Internet Explorer 5.5, the form still works. If JavaScript
is enabled and functioning, the form is enhanced with more functional controls that are
easier on the eyes.

Now that you’ve seen how to build an appointment form using jQuery UI widgets,
let’s look at how these widgets compare to the controls in HTML5.

HTMLS5 elements vs. jQuery Ul widgets

The HTMLS5 specification added several components to the HTML platform that were
inspired by JavaScript libraries such as jQuery UI This includes new elements like
<progress> and <datalists>, as well as a slew of new input types: color, date, date-
time, datetime-local, email, month, number, range, search, tel, time, url, and
week. Because the specification was inspired by JavaScript libraries, the functionality
of the new native controls and libraries overlap—both <input type="date"> and the
datepicker widget can be used to collect a date from the user.

What’s a web developer to do? We’ll focus on two of the elements from your
appointment form—the datepicker and the number picker—and discuss the pros and
cons of using the HTML5 control versus the jQuery UI widget. Although this doesn’t
provide a comprehensive overview of all HTML5 elements and jQuery UI widgets, the
arguments for and against each is similar with each of these controls.

Here is the HTML that you turned into datepicker and spinner widgets:

<label for="date"sDate:</label>
<input type="text" name="date" id="date">

<label for="days">Number of Days Sick:</labels>

<input type="text" id="days" name="days">

The equivalent elements from the HTML5 specification are <input type="date">and
<input type="number"s. Let’s swap in the HTML5 controls by changing the type of
the <input> elements:

<label for="date"sDate:</label>
<input type="date" name="date" id="date">

<label for="days"s>Number of Days Sick:</labels>
<input type="number" id="days" name="days">

That’sit. The main appeal of the HTML5 controls is that they’re simple to use and depen-
dency free. Another advantage is that the browser determines how input is presented

www.it-ebooks.info

http://www.it-ebooks.info/

HTMLS5 elements vs. jQuery UI widgets 75

to the user. Why is this a big deal? Check out figure 3.11, which shows the display of
<input type="date"> and <input type="number"> on various platforms.

TIP On iOS Safari, you can use a keyboard that only shows numbers 0-9 by
including a pattern attribute set to " [0-9] *"—that is, <input type="number"
pattern="[0-9]*">,

Note the highly customized keyboard display used on the mobile browsers. These con-
trols are optimized to make it easy for users to input data quickly. With all this power,
why are you reading a chapter on jQuery UI form widgets?

As it turns out, along with the advantages of HTML5 form controls, there are also
some serious (and usually show-stopping) disadvantages. For one, although giving the
browser the ability to control how the input is displayed leads to the custom mobile
inputs, it also means that you have little to no control over the display on desktop brows-
ers. Need to change the spacing in the calendar? It’s not possible. Need to change the
colors to match your application’s look and feel? That’s not possible either.

The second major disadvantage of the native controls is that they only handle basic
use cases. Need to collect a date from the user? The native control can do that. Need
to disable days, show multiple months, or show the picker on the click of an icon?
You’re out of luck.

The third major disadvantage of the native controls is browser support. As of this writ-
ing, <input type="date"> isn’t supported in Internet Explorer (any version), Firefox,

105 Safari Chrome Chrome for Android
IH!:EI!! B s yyvy =k

Seplember 2013 = il
Clear Done Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 L T

<input type="date"> 8 9 o1 12 1B ou

October 3 2013 15 16 17 18 18 20 21
' 2 23 24 25 % W 28

29 30

Done

<input type="number">
P e 1]2]|3]4|5]|&6]7|8]9]0

17y sagel”

= . |7

e @ space returm

Figure 3.11 The display of HTML5 date and number inputs on i0S Safari, Chrome, and Chrome for Android.
Notice how the two mobile browsers—iOS Safari and Chrome for Android—optimize the Ul to make it
easy to input values.

www.it-ebooks.info

http://www.it-ebooks.info/

76

3.9

CHAPTER 3 Building complex web forms with jQuery UI

Safari, or the default Android browser. <input type="number isn’tsupported in Internet

Explorer, and isn’t fully implemented in Android or iOS Safari (no min, max, or step

attribute support). Therefore, unless you’re writing the rare web application that only

has to work on one platform, you’re going to run into issues using these new elements.
To conclude, the major advantages of the HTML5 controls are

= They’re easy to use.
= They're dependency free.
= The browser controls how data is inputted (helpful mobile Uls).

The main detriments are

= You have little control over the display.
= They handle only trivial use cases.
= Limited browser support.

Although we’ve addressed only a few of the many form controls of HTML5, the same
arguments hold true for the others; the only real difference is that some HTML5 fea-
tures are better supported by browsers than others.

For the vast majority of applications, the native controls aren’t a viable option yet
due to their limited support and functionality. But you have one additional option. If
you have a basic use case, and your only problem is browser support, you can use
jQuery UI to polyfill the native functionality. We’ll discuss this, and a number of addi-
tional HTML5 elements, in chapter 11 and appendix F.

Summary

The jQuery UI form widgets assist with the complex task of building modern web
forms. Specifically, they

= Provide accessible replacements for elements that are nearly impossible to style,
such as dropdowns and radio buttons

= Add functionality that is not natively available on the web, such as robust calen-
dar controls and server-backed autocompletes

= Apply a consistent and configurable theme

= Are accessible to all users—even users on assistive technologies such as screen
readers

= Work in IE versions 7+ and all modern browsers

= Take a progressive enhancement approach, so that even users in unsupported
browsers get a functional form

HTMLS5 includes a number of controls with functionality that overlaps that of the
jQuery UI form widgets. The new controls are easy to use and great for input on
mobile devices, but they’re not customizable and suffer from limited browser support.
You’ll look more at how to practically use these HTML5 controls in chapter 11.

jQuery UI has widgets for more than form building. Next, you’ll look at the layout
and utility widgets included in the library.

www.it-ebooks.info

http://www.it-ebooks.info/

Enhancing interfaces with
layout and utility widgets

This chapter covers

Organizing content with layout widgets
Organizing actions into menus
Opening content in interactive dialogs
Replacing the browser’s native tooltips
Building a message composer

In chapter 3, you looked at using the jQuery UI form widgets to build powerful web
forms. In this chapter, you’ll focus on the jQuery UI widgets dedicated to displaying
content and utility functionality.

The jQuery UI layout widgets—accordion and tabs—provide an easy means of
organizing content in panels that can be shown and hidden. These widgets can
organize content in digestible chunks, or present content in a limited amount of
space. You'll look at the structure of these widgets, then see how to add advanced
functionality, such as loading remote content and dynamically creating panels.

77

www.it-ebooks.info

http://www.it-ebooks.info/

78

4.1

CHAPTER 4 Enhancing interfaces with layout and utility widgets

The jQuery UI utility widgets—menu, dialog, progressbar, slider, and tooltip—
bring a number of desktop UI controls to the web. Although these controls have been
on the desktop for years, they remain nontrivial to create on the web. You’ll see that
the jQuery UI utility widgets make it not only possible but easy to create powerful
interactions such as displaying content in animated pop ups, selecting values in a
range, and building tooltips with complex markup. On top of all this, you still get the
themeability and accessibility that is built into all the jQuery UI widgets.

We’ll get started by looking at the first of the jQuery UI layout widgets: accordion.

Accordion: creating toggleable content panels

Accordions are common UI elements that allow you to organize content and display
information in a limited amount of space. Accordions associate headers with content
panels. By default, when a header is clicked, its content expands and all other content
panels collapse. This simultaneous expanding and collapsing is the effect that gives
the accordion widget its name.

Because accordions work by associating headers with content, the accordion wid-
get expects pairs of headers and content elements for HTML markup. Although not
required, typically the headers are <hl>, <h2>, ... <h6> elements and the content pan-
els are <div> elements, as shown in the following example:

<h3>Header One</h3>
<div>Content One</divs>
<h3>Header Two</h3>
<div>Content Two</div>

For a more practical example, suppose you run a site that displays information on box
office movies. The site lists popular movies with detailed descriptions and statistics
such as their budgets and box office proceeds.

For your movie site you’ll use movie names as headers and place the more detailed
information in their associated content panels, shown next:

<div id="accordion"s>
<h3>Chostbusters</h3>
<div>
<p>Ghostbusters is a 1984....</p>
</div>
<h3>Titanic</h3>
<div>
<p>Titanic is a 1997 epic...</p>
</divs>
<h3>Top Gun</h3>
<div>
<p>Top Gun is a 1986 action...</p>
</div>
</div>
<scripts>
S ("#accordion") .accordion() ;
</script>

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/jAwrA/
http://www.it-ebooks.info/

4.1.1

Accordion: creating toggleable content panels 79
- Ghostbusters
<div id="accordion"s>
Ghostbusters is a 1984 American <h3>Ghostbusters</h3>
supernatural comedy film directed /\diw
by Ivan Reitman and written by Dan <p>Ghostbusters is a 1984....</p>
Aykroyd and Harold Ramis. The film </div>
stars Bill Murray, Aykroyd, and <h3>Titanic</h3>
Ramis as three eccentric <divs>
parapsychologists in New York City <p>Titanic is a 1997 epic...</p>
who start a ghost catching business. </div>
<h3>Top Gun</h3>
+ Titanic <divs>
<p>Top Gun is a 1986 action...</p>
» Top Gun </div>
</div>

Figure 4.1 jQuery Ul accordion widget used to display movie information. The accordion widget auto-
matically activates the first panel.

Note that to create the accordion widget, you have to call the accordion() plugin on
the parent of the headers and content panels. The display of this accordion is shown
in figure 4.1. Note that the widget opens the first content panel automatically by
default.

TIP The accordion widget accepts any arbitrary markup pattern; therefore,
you’re free to use whatever HTML elements you’d like for headers and con-
tent panels. The only requirement is that the content panels must be the sib-
lings immediately after their associated headers in the DOM. For more
information, see the header option documentation at http://api.jque-
ryui.com/accordion/#option-header.

In this example, you accomplish two things by displaying the content in an accordion.
First, by organizing the widget as header and panel pairs, the content is easily
skimable; users can scan to find the movie they’re interested in and click for more
details. Second, the example presents a lot of content in a limited amount of space.

By default, the accordion widget allows a single content panel to be displayed at a
time. Clicking on the Titanic header shown in figure 4.1 causes the first content panel
(Ghostbusters) to collapse and the second (Titanic) to expand simultaneously. By
default, the user can’t close all content panels; clicks on the open panel’s header do
nothing. Although this is the default behavior, you can customize it—and a lot more—
using the accordion’s options.

Configuring the accordion widget
The accordion widget has options to configure its appearance and behavior; we’ll
cover the most common ones here.

As you saw in the previous section, the accordion displays exactly one content area
to the user. If this behavior isn’t desired, you can set the collapsible option to true
to let the user collapse all content panels, as shown next:

www.it-ebooks.info

http://api.jqueryui.com/accordion/#option-header
http://api.jqueryui.com/accordion/#option-header
http://www.it-ebooks.info/

80

CHAPTER 4 Enhancing interfaces with layout and utility widgets

<div id="accordion">
<h3>Header One</h3>
<div>Content One</divs>
<h3>Header Two</h3>
<div>Content Two</div>
</divs>
<script>
$("#accordion").accordion({ collapsible: true });
</scripts>

The user can collapse all sections, but the first panel is still opened by default when
the widget is created. This behavior is controlled by the active option—a zero-based
index that determines the currently displayed content panel. The following example
creates an accordion in which the second panel is opened on initialization:

<div id="accordion"s>
<h3>Header One</h3>

<div>Content One</divs <+— Content panel at index 0
<h3>Header Two</h3>
<div>Content Two</divs <— Content panel at index |
</divs>
<scripts>
$("#accordion").accordion({ active: 1 });

, Sets the active option to | (the
</script> second content panel)

If you set the collapsible option, you can additionally set active to false, which ini-
tializes the accordion with all panels collapsed. This is shown in the following code:

<div id="accordion"s>
<h3>Header One</h3>
<div>Content One</div>
<h3>Header Two</h3>
<div>Content Two</divs>

</divs>
<script>
$("#accordion") .accordion ({
active: false,
collapsible: true
1) i
</script>

Changing the active option after initialization changes the content panel displayed
and animates it as if the user had clicked the corresponding header. The following list-
ing creates two buttons that programmatically modify the displayed content panel by
setting the active option using the option() method.

Listing 4.1 Modifying the active option to programmatically change panels

<div id="accordion">
<h3>Header One</h3>

<div>Content One</divs <+— The first content panel

<h3>Header Two</h3>

<div>Content Two</divs> <— The second content panel
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

4.1.2

Calls the
refresh()
method

Accordion: creating toggleable content panels 81

<button>Show One</buttons>
<button>Show Two</buttons>

<scripts>
$("#accordion") .accordion/() ; Shows the
$("button:first").on("click", function() { first content
$("#accordion").accordion("option", "active", 0); panel
I3
$("button:last").on("click", function() {
$("#accordion") .accordion("option", "active", 1); Shows the
1 second
</scripts> content panel

These are the most common accordion options, but you can also set icons to use on
the headers with the icons option, show content on hover (rather than click) of the
headers using the event option, and control the height of the content panels using
the heightStyle option.

Before we finish our look at accordions, we’ll look at how another problem is

solved: adding and removing panels.

Adding and removing panels
If you look through the accordion’s API, you'll notice that it has no options, methods,
or utility functions to explicitly add or remove panels. Instead, accordion—as well as
the tabs and menu widgets—implements this functionality through a generic
refresh () method. The widget expects you to add new elements or remove existing
ones on the DOM, and then call refresh (). The following listing shows a form that can
be used to create new panels.
Listing 4.2 A form to create new accordion panels
<div id="accordion"s></divs> ﬂ An empty accordion
<forms container
<label for="header">Header:</labels>
<input type="text" id="header" required>
<label for="content"sContent:</labels>
<textarea id="content" required></textareas>
<button>Add Panel</buttons>
</form>
<scripts>
var accordion = $("#accordion") .accordion() ;
$("form").on("submit", function(event) { Adds a new
event .preventDefault () ; header and
accordion.append (content panel
"<h3>" + $("#header").val() + "</h3>" +
"<div>" ("#content") .val() "< /div>" .
e +,, ¥ K + e/ g Resets the form to its
) .accordion("refresh"); initial tat
this.reset(); initial (empty) state
N
</scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

82

4.2

CHAPTER 4 Enhancing interfaces with layout and utility widgets

You start with an empty accordion container @ and a form to add new panels. When
the form is submitted, you append new <h3> and <div> elements with the entered val-
ues for the header and content @. Finally, you call the refresh() method © to tell
the widget to render and style the panels you added.

Although the accordion widget gives you a variety of ways to display content, it
requires the panels to be vertically stacked on top of each other. Your next layout wid-
get—tabs—works similarly to accordion. It associates headers with content panels, but
it offers more positioning flexibility and adds several powerful options.

Tabs: toggling between content areas

The same as accordions, tabs are common UI elements used to organize content into
multiple sections in a limited space. Because these widgets serve similar functions,
they were designed to have a similar APL In fact, the tabs’ active, collapsible, dis-
abled, event, heightStyle options and refresh() method work exactly the same as
the accordion’s.

The tabs widget, however, offers more flexibility in how the content is organized
and presented. In this section, you’ll see this flexibility by looking at how to load
remote content and create user-closeable panels.

You start by creating tabs. Like accordions, tabs require a specific set of markup, as
shown next:

<div id="tabs">

One</1i>
Two</1li>

<div id="one">One Contents</div>
<div id="two">Two Contents</divs>
</divs>
<scripts>
$("#tabs").tabs();
</script>

The display of the tabs widget is shown in figure 4.2.

The main requirement of the markup pattern is that the href attribute of the <a>
tag must match the id attribute of the content panels. This is done for progressive
enhancement; if JavaScript fails, the user still has a functioning list of links to content.

<div id="tabs">

One</1li>
Two</1li>
One Two

<div id="one">One Contents</divs>
‘\\‘h—gl//////////’. <div id="two">Two Contents</div>
One Contents </div>

Figure 4.2 A jQuery Ul tabs widget with two panels. The widget opens the first panel by default.

www.it-ebooks.info

http://www.it-ebooks.info/

421

4.2.2

Tabs: toggling between content areas 83

Like accordion, the first content panel is open by default, and you can configure that
with the active option.
Now that you know the basics, let’s do something more interesting.

TIP Because the widget uses hash-based links, you can provide a hash in the
URL to load a page with a given tab preselected. If the previous example were
located at http://example.com, then http://example.com#two would load
the page with the second tab activated.

Loading remote content

In the previous example, all your content was in HTML in the tabs control. Although
this works for most use cases, the tabs widget also allows you to load remote content
from a server.

Why would you use this? It could be that generating the content is resource inten-
sive—perhaps because of expensive database queries or accessing third-party services.
Or there may be a lot of content, and loading it all on page load is not only expensive
on your servers, but also challenging for your users to sift though.

In these cases, you can use the tabs widget’s ability to load remote content. Refer to
the following example:

<div id="tabs">

<uls qj Local tab
<lis>Introduction</1li>
Step One QAAC) Remote tab

<div id="intro"s>Welcome, click "Step One" to get started.</divs>
</div>
<scripts>

$("#tabs").tabs();
</script>
You have two links: one that references a local tab @ and another @ that doesn’t
appear to reference anything. In fact, the second link references a remote file that
isn’t included in the page. When the user clicks the link, the tabs widget fetches
step-one.html via an AJAX call, creates a new content panel, and displays the HTML
in the remote file within it. To see how this can be useful, let’s return to the movie
site example.

Loading movie information in a tabs widget

Recall that the site lists popular movies with statistics such as the movies’ budgets and
box office proceeds. Assuming your site lists a large number of movies, retrieving
every statistic on every movie when the page loads puts a lot of load on your servers. It
also creates a poor experience for the user; the page loads slowly, and the user is
shown an overwhelming amount of information all at once. How can you fix this? You
could use traditional HTML links, but you don’t want users to load a full page to view a
movie’s information.

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Enhancing interfaces with layout and utility widgets

®

Movie List Introduction Titanic * | Top Gun

s Ghostbusters

+ Titanic Top Gun Users can close
s Top Gun ;
+ Box Office: 179 million USD tabs at any time.
¢ Budget: 15 million USD
* Released: May 16th, 1986

Clicks on movies open a new tab.

Figure 4.3 A tabs widget used to display information on movies. When the user clicks a movie in the
list, its information is retrieved from the server and displayed in a new tab.

By using the tabs widget, you get the best of both worlds; users see movie information
instantly, and you ease the load on your servers and bandwidth by displaying movie
details only on user request.

Figure 4.3 shows the UI you’ll build in this example. The following listing shows
the implementation of this UL There’s a lot here, but don’t be overwhelmed; we’ll go
over each piece individually.

Listing 4.3 A movie listing with jQuery Ul

<div id="movie-list" class="ui-widget"> Static list of
<h2>Movie List</h2> movie links.

Ghostbusters</1i>
Titanic
Top Gun

</divs>

Initial markup for @
the tabs control.
<div id="tabs">

Introduction</1li>

<div id="intro">
Welcome, select movies and their information will appear here.

</divs>
</div>
<scripts> H
andler for
- n n -
var tabs = $("#tabs").tabs(); clicks on the
$("#movie-list").on("click", "a", function(event) { static movie list.
event .preventDefault () ;
Looks for P
an existing var index,
tab for this movie = this.innerHTML,
movie. existing = tabs.find(" [data-movie='" + movie + "'l1");

www.it-ebooks.info

http://www.it-ebooks.info/

Tabs: toggling between content areas 85

if (exist%ng.lengil:h == 0) { If there
tabs.find(" .u1—tl:abs—nav") . isn’t an
.append("<li data-movie='" + movie + "'>" + existing
"" + movie + "" + tab, make
"<button class='ui-icon ui-icon-close'>" + one.
Calls the "Remove Tab</buttons>" +
n 1 n . . o
':2':;:9 b tagglire;;esh" , Finds the appropriate
: i tab to activate.
J Determines
Activates the existing = tabs.find("[data-movie='" + movie + "']"); the tab’s
appropriate index = tabs.find(".ui-tabs-nav 1i").index(existing); index.
tab. tabs.tabs("option", "active", index);

I3

In a keydown event,

tabs.on("click keydown", ".ui-icon-close", function() { only remove if the
if (event.type === "keydown" && ! (Enter or space bar
Attachesaclick event.keyCode === $.ui.keyCode.ENTER || keys are pressed.
and keydown event .keyCode === $.ui.keyCode.SPACE)) {
event handler return;
to the Close }
buttons. var panellId = $(this).closest("1i") .remove ()

.attr("aria-controls"); Removes the
$("#" + panelld).remove () ; appropriate
tabs.tabs("refresh"); Calls the refresh() elements from

1 method to update the DOM.
</script> the widget.

You start with a static list of movies @ and a container for the tabs @ that are posi-
tioned on the left- and right-hand sides of the screen, respectively. The tabs container
contains one local tab with introductory text for the user.

Next, you listen for clicks on the static list of movie links ©. When clicks occur, you
check whether a tab for the selected movie is already open (you don’t want to open
two Titanic tabs). To find a potentially existing tab, you use this check @:

tabs.find(" [data-movie='" + movie + "']")

This query assumes that the movie for the tab is stored in an HTML5 data-* attribute;
you’ll see how this works when you add new tabs.

TIP HTML5 data-* attributes are a quick and standards-compliant way of stor-
ing data on DOM elements. Here you’re storing the movie name on an <1i> ele-
ment using <1i data-movie="Titanic">Titanic. You can retrieve that
value using $ ("1i") .attr("data-movie"), getall elements with that custom
attribute using $ (" [data-movie] "), or get all elements with that custom attri-
bute equal to “Titanic” using $ (" [data-movie='Titanic']").

If you can’t find an existing tab @, you add a new one by adding an <1i> element to
the tab’s (which has a class name of ui-tabs-nav). Note that you add a data-
movie attribute with the name of the movie the user clicked. This is the hook that the
tab @ uses to determine whether the tab is currently open. You also add a button for

www.it-ebooks.info

http://www.it-ebooks.info/

86

CHAPTER 4 Enhancing interfaces with layout and utility widgets

users to close tabs using one of the jQuery UI built-in icons: ui-icon-close. You’ll
learn more about using the jQuery Ul icons in chapter 7.

After adding the new tab, you have to call the refresh() method for the tabs wid-
get to render the new tab @. Note that you didn’t have to create a panel that corre-
sponds to the new list item. Because these tabs are remote, the tabs widget
automatically creates the panel when the remote link is activated.

Your final step in the click handler is to activate the tab for the movie the user clicked.
You run the same query you ran earlier to find the tab for the movie that was clicked @:

existing = tabs.find("[data-movie='" + movie + "']")

This time, you know an <1i> with a corresponding data-movie attribute exists because
if it didn’t, you just created one. Because the tabs widget uses a numeric index to deter-
mine which tab is active, you must determine the index of the clicked movie’s tab to acti-
vate it @. Finally, you set the active option to this index to activate the tab @ (more
on what that does momentarily).

In the last bit of code, you use a delegated event handler to handle user clicks on the
Close buttons 0. The handler finds the button’s corresponding <1i> element and
panel, removes both from the DOM @, and calls the tabs’ refresh () method to update
the display @. There is one additional twist here: to make this UI keyboard accessible,
you also listen for keydown events that occur on the close icons. Normally this is unnec-
essary on buttons—because the browser fires click events on Enter and space bar key
presses—however, in this case, the tabs widget internally prevents the default action of
Enter and space bar key presses (to implement its own keyboard functionality). There-
fore you must explicitly listen for keydown events to make the Close buttons work with
the keyboard—including a check to make sure you close tabs only when the Enter and
space bar keys are pressed (and not “a”, “b”, and so forth) (11}

NOTE Wondering about the key code constants ($.ui.keyCode.ENTER and
$.ui.keyCode.SPACE)? jQuery UI provides several of these constants so you
don’t have to memorize the numeric codes that browsers use—for instance, 13
for Enter and 32 for the space bar. You can view a full list of the constants pro-
vided at http://api.jqueryui.com/jQuery.ui.keyCode/.

Let’s go back to the tab activation, or what happens after you set the active option.
Activating the tab causes the tabs widget to load the HTML for the tab via an AJAX call
and display it to the user. Therefore, when the user clicks Titanic, movie.php
?movie=titanic is requested, and the HTML response is placed in a newly created
content panel and displayed. A sample implementation of a server-side resource that
builds this HTML—movie.php—is shown in the following code:
<?
Smovies = array(
"ghostbusters" => array(

"title" => "Ghostbusters",

"box office" => "238",

"budget" => "30",

www.it-ebooks.info

http://www.it-ebooks.info/

Tabs: toggling between content areas 87

"release" => "June 8th, 1984"
)
"titanic" => array(
"title" => "Titanic",
"box_office" => "658",
"budget" => "200",
"release" => "December 19th, 1997"
),
"top_gun" => array(
"title" => "Top Gun",
"box_office" => "179",
"budget" => "15",
"release" => "May 1l6th, 1986"

) ;

S$movie = S$movies[$_GET["movie"]];
?>

<h3><? echo $movie["title"] ?></h3>

Box Office</strongs>:
<? echo $movie["box office"] ?> million USD
</1i>

Budget:
<? echo Smovie["budget"] ?> million USD
</1li>

Released:
<? echo $movie["release"] ?>
</1i>
</uls>

WARNING Although it works well for a demo, hardcoding a large list of infor-
mation as in this example is generally a bad idea. A more robust implementa-
tion of this server-side component would get the movie information from a
database instead of hardcoding the information in arrays. Such an approach
would be more reusable (the movie data could be consumed elsewhere) and
more maintainable.

You now have a UI that’s both server and user friendly. The user gets two things: fast
page loads and the ability to toggle between movies to compare information. Your
servers benefit from reduced load; they only have to load detailed information when
users request it.

Now that you know how to use the jQuery UI layout widgets to organize content,
let’s move on to the jQuery UI utility widgets, starting with one that groups actions
together: menu.

TIP Although tabs are shown on top of their content panels by default, you
can use CSS to position them on the bottom or side of their content. We’ll
look at an example of this in chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

88

4.3

CHAPTER 4 Enhancing interfaces with layout and utility widgets

Menu: creating web menus with semantic markup

The menu is a UI element that needs no introduction; nearly any interface you interact
with uses menus to group actions. jQuery UI makes it easy to create this common con-
trol on the web with the menu widget. With it, tasks such as creating nested menus, add-
ing icons to options, and using dividers to separate actions are simple. And like all the
jQuery UI widgets, you get a themeable and accessible widget with no extra effort.

As with the layout widgets, the menu widget enhances semantic markup—in this
case an unordered list—to create a customizable and themeable control. The follow-
ing listing builds a menu control to showcase the menu widget’s features.

Listing 4.4 A menu widget

<style>

-ui-menu { width: 200px; } The width of menus is 100% by default,
</ St&fle> which is rarely what you need. This sets
<ul id="menu"> the width of all menus to 200 pixels.

Star Any of the jQuery Ul
</1li> icons can be used in
<l%> Empty list items menu options.
<> create dividers.
Options

<1i>One</1li> Lists can be nested to
Two</1i> create nested menus.

</1li>

<script>
$("#menu") .menu() ;
</script>

Figure 4.4 shows the display of this menu widget.

<ul id="menu">

Star
</1li> Empty list items create Any of jQuery Ul's icons can be
</1li> dividers. used in menu options.

* Star
One</1i> Options ’ One
Two</1li> Two

The menu widget turns nested lists
into nested menu options.

Figure 4.4 A menu showcasing three features of the menu widget: the ability to turn nested lists into
nested menus, the ability to create dividers from empty <1i> elements, and the ability to add jQuery Ul
icons to individual menu items.

www.it-ebooks.info

http://www.it-ebooks.info/

Menu: creating web menus with semantic markup 89

Now that you have a menu in place, you need it to do something when the user selects
options. To show how this is done, let’s build an example.

Suppose you want to build a UI to compose a message and store it in the browser.
On its own, this Ul isn’t practical (there are easier ways to store messages). But you
could incorporate this approach in a more complex scenario where it would be valu-
able. Email clients, CMS services, blog commenting services, and online text editors all
preserve messages. Although simple, this message composer is an ideal way to intro-
duce the jQuery UI utility widgets.

NOTE The final version of the message composer is available at http:/ /jsfiddle
.net/tj_vantoll/jAwrA/. If may be helpful to refer to the complete example
throughout the chapter for context.

You’ll start with a menu that has options to save a message, load its previous state, and
delete its saved state. Figure 4.5 shows the UI you’ll build for this.

Load the saved state
of the message.
Save the current
state of the message.

Load
Message Composer

Delete

Delete the message.
The <textarea> where the user
can compose a message.

Figure 4.5 The message composer you’ll build with the jQuery Ul utility widgets. The user
can compose a message, save it, load a previously saved message, and delete the message.

The following listing shows an implementation of this UL As in the previous example,
we’ll go over each piece of this individually.

Listing 4.5 Implementation of a message composer

<style>
.ui-menu { width: 200px; }
</style>

<div id="composer"s>
<h3>Message Composer</h3>
<textarea id="message"></textareas>
</divs>

<ul id="menu">

Load

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/jAwrA/
http://jsfiddle.net/tj_vantoll/jAwrA/
http://www.it-ebooks.info/

90 CHAPTER 4 Enhancing interfaces with layout and utility widgets

</1li>
<li class="ui-state-disabled" id="save-option">
Save

</1i> The Save option

i) is disabled by
<i%></1l> default.
<l1>
Delete
</1li>

<scripts>
var menu = $("#menu") .menu ({ Determines
Attaches select: function(event, ui) { which option
a select var selection = $.trim(ui.item.text()), was selected.
event message = $("#message").val();
callback. switch(selection) ({
case "Load":
message = localStorage.getItem("message");
Loads the $("#message").val(message); Saves the
message from break; message to
localStorage. case "Save': localStorage.
localStorage.setItem("message", message);
break;
case "Delete":
$("#message").val(""); Deletes the
localStorage.removeltem("message", ""); message from
} break; localStorage.
}
1 Disables the Save
option if the
$("#message").on("keyup", function() { message is empty.
var message = $(this).val();
Listens for if (message.length === 0)
keypresses on $("#save-option").addClass("ui-state-disabled");
the message } else {
<textarea>. $("#save-option").removeClass("ui-state-disabled");

}

n n .
menu.menu("refresh"); Calls the menu’s

i refresh() method.
</script>
The menu has three items: Load, Save, and Delete. The Save option O is given a ui-
state-disabled class name. The menu widget automatically disables any option that
has this class name when the widget is created—which is what you want here, as users
can’t save a message until they type one.

You then attach a callback for the menu’s select event @. The event is invoked
every time the user selects an option from the menu. The second argument of the
callback, ui, has an item property set to the user-selected <1i> element. You use the
textual content of that element to determine which option the user selected €.

Next, you do a switch over the potential menu options. If the user selects Load,
you retrieve the value from localStorage and set the value of the <textareas to the

www.it-ebooks.info

http://www.it-ebooks.info/

4.4

Dialog: displaying content in a pop-up container 91

retrieved value @); if the user selects Save, you store the value of the <textarea>
in localStorage @; if the user selects Delete, you remove the value from local-

Storage 0

NOTE localStorage is an easy-to-use means of storing key-value pairs in the
browser that are persisted across sessions. Its main three methods—getItem(),
setItem(), and removeItem()—allow you to get, set, and remove strings,
respectively, from an in-browser data store for your domain. For more infor-
mation on localStorage, check out http://diveintohtml5.info/storage.html.

The last block of code prevents the user from saving an empty message. You attach a
keyup handler to the <textarea> @. If the message is empty, you add the ui-state-
disabled class name to the Save option; otherwise, you remove it ©. The same as
accordion and tabs, in order for markup changes to take effect on menus you need to
call its refresh () method @.

Menus make it easy to create a powerful widget of grouped actions. You'll extend
this menu with additional functionality later in this chapter, but for now we’ll revisit a
utility widget you first saw in chapter 2: dialog.

Dialog: displaying content in a pop-up container

The dialog is another UI element that needs no introduction. Most Uls use dialogs to
display messages, confirm actions, or let the user select options. Despite their ubiqui-
tous presence in desktop interfaces, dialogs are difficult to create on the web. Internet
Explorer 4 introduced window.showModelessDialog()and window.showModalDialog ()
to show modeless and modal dialogs, respectively (we’ll look at what those terms mean
momentarily). Unfortunately, these APIs were verbose and fraught with issues; they haven’t
been implemented in all browsers. HTML 5.1 introduces the <dialog> element, but it’ll be
a long time before this gets implemented everywhere, and longer yet before it provides the
functionality that web developers need.

Luckily, the jQuery UI dialog widget provides an easy and elegant means to dis-
play content in dialog windows. You saw some of what you can do with dialogs in
chapter 2. Here we’ll look at the advanced use of dialogs. We’ll start with a common
use case for dialogs: confirmation.

Confirmation dialogs are used to ensure the user wants to perform an irreversible
action. Recall that your menu example from the previous section had a Delete action
that removed the user’s message without confirmation. Let’s use the dialog widget to
add a confirmation step to the delete process. Figure 4.6 shows the confirmation dia-
log you’ll add.

www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Enhancing interfaces with layout and utility widgets

The dialog is modal, so the user cannot
interact with any of these controls
while the dialog is open.

= Load Message Composer

/

o Delete y

Are you sure you want to delete your

message?
Cancel Yeah, Let's Do It
Close the dialog. Perform the delete.

Figure 4.6 Prior to deleting the user’s saved message, you’ll present this confirmation dialog. This dialog
allows the user to abort the action with the Cancel button, or proceed with the Yeah, Let’s Do It button.
This dialog is modal, which prevents the user from interacting with the rest of the screen until the user
interacts with the dialog.

For reference, here’s a condensed version of how you’re currently handling a delete:

select: function(event, ui) {
var selection = $.trim(ui.item.text());

switch(selection) ({

case "Delete":

S ("#message").val("");
localStorage.removeltem("message", "");
break;

}

To start this conversion, let’s move the delete functionality to a function:

function deleteMessage ()
$("#message").val("");
localStorage.removeltem("message", "");

}i

www.it-ebooks.info

http://www.it-ebooks.info/

Dialog: displaying content in a pop-up container 93

Next, let’s add the following <div> to your example’s HTML to serve as the confirma-
tion dialog:
<div id="confirmDelete">

<p>Are you <strongssure you want to delete your message?</p>
</div>
Now that you have this <div> on the DOM, you convert it to a dialog widget. This is
shown in the following code:

Sets the
$("#confirmDelete") .dialog ({ dialog to NOT
autoOpen: false, auto-open
buttons: [
{
text: "Cancel", j Calls the
click: function() { close()
$(this).dialog("close"); method

}

click: function() ({ function, defined earlier
deleteMessage () ;

text: "Yeah, Let's Do It", j Calls the deleteMessage()

$(this).dialog("close");

Makes the }
dialog modal : —s .
class: "primary Applies a primary CSS class name that
} you use to make the confirmation
1, button visually stand out

minWidth: 400,
modal: true

I3

NOTE If you're having trouble putting the pieces of this example together,
don’t worry. We’ll return to the full source at the end of this chapter.

By default, dialogs automatically open when they’re created. Here you don’t want that
behavior, as the dialog shouldn’t display until the Delete option is clicked. Therefore,
you set the autoOpen option to false @), preventing the automatic open.

Next, you define the buttons you want with the buttons option. Each object in the
array can contain any attributes, properties, or event handlers the buttons should have.
For the Cancel button, you assign a click event handler that closes the dialog @. Note
that the context of the event handler (this) was automatically set to the dialog’s DOM
element. Therefore, you call the close () method with $(this) .dialog("close").

The confirmation button also closes the dialog but first calls the deleteMessage ()
function you defined earlier to perform the delete €.

The final property you configure is the modal option. By default, dialog widgets are
modeless—which means you can interact with other controls on the page while dialogs
are open. In this case, you don’t want users to be able to interact with the menu or alter
the message while the confirmation message is displaying, and you want users to focus
on the dialog rather than the rest of the UL you set the modal option to true @. The

www.it-ebooks.info

http://www.it-ebooks.info/

94

CHAPTER 4 Enhancing interfaces with layout and utility widgets

dialog widget completely prevents users from interacting with content behind modal
dialogs—including both mouse- and keyboard-based input.

After you create the dialog, your last step is to change the Delete handling to open
your new dialog instead of performing the delete. To do this, you change the code
that previously performed the delete to invoke your new dialog’s open () method:

case "Delete":

$("#confirmDelete").dialog("open") ;

break;
And that’sit! You now have a functioning confirmation dialog that verifies the user wants
to perform the irreversible delete action. We’ll continue looking at the dialog widget
throughout the book—we’ll even build a few dialog extensions in chapter 9—but for
now let’s move on to a utility widget that displays the status of a process: progressbar.

4.5 Progresshar: displaying the progress of a task
Progressbar is another common UI element in desktop applications. When you install
an application, your OS displays a bar indicating how far along in the process you are.
When you download a file, your browser displays a bar that shows the progress.

The jQuery UI progressbar widget provides an easy way of implementing this func-
tionality on the web. The progressbar widget has two modes: determinate and indeter-
minate. Determinate progressbars are used to display exact values—10%, 20%, and so
forth. They should be used when you know the exact status of the process the pro-
gressbar is being shown for. An example of a determinate progressbar is shown in the
following code:
<style>

.ui-button { margin-top: lem; }
.ui-progressbar { position: relative; }
#progressbar-label {
position: absolute; "
Teft: 503, Positions the label
- o in the center of the
top: 4px; progresshar
font-weight: bold;
}
</style>
<div id="progressbar">
<div id="progressbar-label">0%</div>
</divs>
<button>Make Progress</buttons Creates the gret:tes a
<script> progressbar wli‘dg(:t‘

" " . widget ’
$("#progressbar") .progressbar () ; g and listens
var button = $("button").button().on("click", function() { for clicks

var value = $("#progressbar") .progressbar("value");

Gets the
Increments value += 10; current
the value FD value

www.it-ebooks.info

http://www.it-ebooks.info/

Progressbar: displaying the progress of a task 95

$("#progressbar") .progressbar("value", value);
Updates $("#progressbar-label") .html(value + "%"); Sets the
the label if (value === 100) { incremented

button.button("disable"); . value
) If progress is
complete, disables
b the button
</scripts>

You create a progressbar without setting any options @. The value option defaults
to 0, which creates a determinate progressbar.

NOTE You create indeterminate progressbars by setting the value option to
false. We’ll look at those shortly.

You also create a button widget and attach a click event handler to it @. On every
click you call the progressbar’s value () method as a getter to retrieve the widget’s cur-
rent numeric value @. Then, you increment the value by 10 and call the value ()
method as a setter @ to update the displayed value. With this approach, the progress-
bar moves from 0 to 100 by increments of 10 with each click of the button. The display
of this progressbar after three clicks is shown in figure 4.7.

30%

Make Progress

Figure 4.7 A determine progressbar that advances 10% every time you click the Make Progress button.

Using determinate progressbars is appropriate when you know how far along in the
process the user is, such as when a user fills out a form with multiple parts. But often
this isn’t the case. For these situations, you need indeterminate progressbars.

Indeterminate progressbars should be used to convey that some process is occur-
ring and you don’t know how long the process will take. To create indeterminate pro-
gressbars, you set the value option to false. Let’s return to your message composer
to see how you use an indeterminate progressbar.

In this example, you store and load data from localStorage. Interacting with
localStorage is nearly instantaneous when dealing with small amounts of data like a
single message. Suppose, however, you have a more common and complex case of
loading and storing data in a serverside database. In this case, you don’t know how
long the user will have to wait while the data is retrieved and saved. Let’s simulate this
scenario and add an indeterminate progressbar to your example.

Recall that previously you’ve been retrieving the stored message directly in the
select event:

select: function(event, ui) {
var selection = $.trim(ui.item.text());

switch(selection) ({

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 Enhancing interfaces with layout and utility widgets

case "Load":

message = localStorage.getItem("message");
$("#message").val(message);
break;

}

As with the delete functionality, let’s move this processing to its own function:

function loadMessage () {
var message = localStorage.getItem("message");
S ("#message") .val(message);

}

To simulate more intensive processing, you wrap this functionality in a setTimeout to
delay it by a few seconds:

setTimeout (function() {
var message = localStorage.getItem("message"); .
S ("#message") .val(message); Ddaypnnesang
' by 0 to 5 seconds.

}, Math.random() * 5000);

Because the user has to wait, you show an indeterminate progressbar while the pro-
cessing occurs. Furthermore, to prevent the user from interacting with the page dur-
ing this time, you also place the progressbar in a modal dialog. This is shown in the
following example:

function loadMessage () {
var message,

Adds the dialog = $("<divs>").dialog({ Creates a Creates an
progressbar modal: true, modal dia|og indeterminate
to the dialog title: "Loading..." progressbar
P
progressbar = $("<div>") .progressbar ({ value: false });
dialog.append(progressbar) ; Loads the
setTimeout (function() { message
message = localStorage.getItem("message");
$("#message").val(message);
dialog.remove () ;
}, Math.random() * 5000); Removes
}i the dialog

You create a new <div> and convert it to a modal dialog @. Because dialogs auto-
open, this dialog is instantly displayed to the user. Next, you create a new <div> and
convert it to an indeterminate progressbar ®. You append the progressbar to the dia-
log so the bar displays in the dialog €. Finally, when the timeout finishes you load the
message as you did before @), and then remove the dialog from the DOM @.

This pattern of showing an indeterminate progressbar in a modal dialog is a conve-
nient means of indicating to the user that some processing is occurring. The display of
this progressbar is shown in figure 4.8.

With the progressbar in place, let’s move on to the next of the utility widgets: slider.

www.it-ebooks.info

http://www.it-ebooks.info/

4.6

Slider: selecting a value using moveable handles 97

[~
e Message Composer

Loading... S

De

Figure 4.8 An indeterminate pro-
gressbar displayed in a modal dia-
log to indicate that processing is
occurring—in this case you’re load-
ing a message.

Slider: selecting a value using moveable handles

Sliders are UI elements that let the user select a value between a min and a max. They
let the user quickly visualize the range of potential values and easily experiment with
values in that range. Because values are selected in a range, this automatically prevents
the user from selecting invalid values.

As a realistic example, consider volume controls. They have a finite minimum
value (mute) and a finite maximum value (the loudest that the hardware can pro-
duce); therefore, volume controls are typically represented as sliders. This not only
gives the user an easy way to configure the volume level, but it also prevents the user
from choosing ridiculous values—like a negative volume.

The jQuery UI slider widget brings this functionality to the web. The following
code shows a slider control with the min, max, step, and value options set:

<div id="slider"></div>

<scripts>
$("#slider").slider ({
min: O,
max: 10,
step: 2,
value: 4
I3
</script>

This creates a slider to select a value between 0 and 10 that’s a multiple of two.
Because the value option is set to 4, the slider’s handle starts there.

If this example seems familiar, it’s because the min, max, and step options are also
options on the spinner widget. The spinner widget enhances a textbox to accept
numeric values, and the slider widget creates a range to select a value from. The dif-
ference is shown in figure 4.9.

So when do you use a slider and when do you use a spinner? In general, sliders are
best at collecting approximate values and spinners are best at collecting precise val-
ues. For example volume controls make good sliders because you want an approxi-
mate level (quiet or loud) rather than an exact numeric value. Most thermostats
function as spinners because you want an exact value—such as 72 degrees Fahrenheit.

www.it-ebooks.info

http://www.it-ebooks.info/

98

4.6.1

CHAPTER 4 Enhancing interfaces with layout and utility widgets

<input id="spinner" value="4">
<scripts>
$("#spinner").spinner ({
min: O,
max: 10,
step: 2
b i 4 -

</scripts>

<div id="slider"></div>

<script>
$("#slider").slider ({
min: O,
max: 10,
step: 2,
value: 4
P
</script>

Figure 4.9 A comparison of the spinner (top) and slider (bottom) widgets. Although both widgets accept
min, max, and step options, the spinner enforces them within a textbox, and the slider enforces them
using a visual range.

When you do want to use a slider, the widget allows more powerful customization than
putting a single handle on a range. Next, we’ll look at how to configure the slider to
collect a range of values.

Building range sliders

If you’ve ever shopped online, you've likely seen a range slider. Online retailers use
range sliders to let you filter items between a minimum and a maximum price, such as
all items between $25 and $75. To handle such a selection, you need the ability to
place multiple handles on the range.

Building range sliders is tricky. You have to build multiple handles, prevent them
from overlapping, style the range in between the handles, and ensure keyboard inter-
actions continue to work. Fortunately, creating range sliders with the slider widget is
as easy as setting the range option.

The range option accepts three values: true, "min", and "max". We’ll look at an
example to see what these values do. The following code shows three sliders with each
type of range slider:
<div id="spinner-range"></div>

<div id="spinner-range-min"></divs>
<div id="spinner-range-max"></divs>

<scripts
$("#spinner-range").slider ({
range: true,
values: [25, 75]
P
$("#spinner-range-min") .slider ({

www.it-ebooks.info

http://www.it-ebooks.info/

4.6.2

Slider: selecting a value using moveable handles

range: "min",
value: 25

I3

$("#spinner-range-max").slider ({
range: "max",
value: 75

I3

</script>

The display of this example is shown in figure 4.10.

range:
values:

range:
value:

range:
value:

}

true,

[25, 75 1] -\\\\\\\h*
||min|| ,
25
— -7///////////—,
75

99

Figure 4.10 The three different types of range options provided by the jQuery Ul slider widget. When
the range option is true (top), the widget creates two handles and highlights the area between the
two; when the range is "min" (middle), the widget highlights the area between the value and the min;
when the range is "max" (bottom), the widget highlights the area between the value and the max.

As you can see from figure 4.10, a range option set to true creates a slider with two
handles. The values option can be passed an array to configure the starting points of
the two handles. The slider widget automatically styles the range between the handles.

On the other hand, the min and max ranges use only one handle. A "min" range
highlights the area between the slider’s min option (which defaults to 0) and the

value; a "max" range highlights the area between the value and the slider’s max

option (which defaults to 100). Let’s use this functionality to add a range slider to
your message-composing example.

Adding a font size range

To show how to use a range slider, let’s add a setting so that the user can change the

font size of a message. This new control is shown in figure 4.11.
Recall that the message itself is in a <textarea> with an id of "message":

<textarea id="message"></textarea>

www.it-ebooks.info

http://www.it-ebooks.info/

100

CHAPTER 4 Enhancing interfaces with layout and utility widgets

"4
Load Message Composer
8 Save

s Settings jQuery Ul Rocks!

Delety Settings x

Font Size:

Figure 4.11 A slider to let the user
change the message’s font size

You start by defaulting the font size of this <textarea> to lem and giving it a set
height and width:

#message {
font-size: lem;
width: 250px;
height: 100px;

}

Concrete dimensions prevent the <textareas> from resizing as you change the font-
size. Next, you add a new Settings option to your example’s menu:

<ul id="menu">

Settings
</1li>

When the user clicks this option, you have it open the following dialog:

<div id="settingsDialog">
<p>Font Size:</p>
<div id="slider"></div>
</div>
<scripts>
$("#settingsDialog") .dialog({
autoOpen: false,
title: "Settings"
)i

</script>

NOTE In this case, there’s no need to make the dialog modal. There’s no
harm in letting the user interact with the rest of the interface while the set-
tings dialog is open.

Your last step is to convert the <div id="slider"></div> in the dialog to a slider:

www.it-ebooks.info

http://www.it-ebooks.info/

4.7

Tooltip: enhancing native tooltips with a customizable control 101

$("#slider").slider ({
range: "min",

value: 1,
min: 0.5,
max: 2.5,
step: 0.1,
slide: function(event, ui) {
S ("#message").css("font-size", ui.value + "em");

}
1
Because this slider controls a font size in ems, and 1 em = 16 pixels by default, you
set the step to 0.1 so the steps on the range are gradual. Along the same lines, you
cap the minimum font-size at 0.5em and the maximum at 2.5em (8 pixels — 40
pixels by default).

You use the slider’s slide event to change the font-size of the message. The
event is triggered every time the user changes the slider’s value. The new value is pro-
vided in the event’s ui argument; you use it to call jQuery Core’s css () method to per-
form the change.

The slider widget makes a nice fit for this example as it lets the user see the mini-
mum and maximum font size at a glance and play with a variety of values. Next, we’ll
look at the last of the jQuery UT utility widgets: tooltip.

Tooltip: enhancing native tooltips with a customizable control

Like the other UI elements we’ve looked at in this chapter, tooltips are common on
desktop applications. Hover over any icon in a word processor, image editor, or mail
client and you’ll likely be shown text describing what the icon does.

Unlike the other Ul elements we’ve looked at, this behavior has been available on the
web nearly since its inception. If you give an element a title attribute, all browsers dis-
play a tooltip after the user hovers over the element for approximately 1 second:

<input id="tooltip" title="Hover over me for a second and this message appears">

Although this behavior is easy to add, it’s also limited. You have no control over the
following things:

= The look of the tooltip.

= When the tooltip appears and disappears.

= Where the tooltip is positioned (above the element, below it, and so on).

= What displays in the tooltip. (You can’t use HTML in a title attribute.)

The jQuery UI tooltip widget provides a customizable and themeable replacement for
native tooltips that makes all items in this list possible. Because it’s a direct replace-
ment, the tooltip widget uses the title attribute directly by default:

<input id="tooltip" title="tooltip">

<scripts>

S ("#tooltip") .tooltip();
</scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

102

CHAPTER 4 Enhancing interfaces with layout and utility widgets

<input title="tooltip"s>

tooltip
<input title="tooltip"s> |
<script>
$("input") .tooltip(); .
</scripts> tOOItlp

Figure 4.12 Comparison of a native tooltip (top) and the jQuery Ul tooltip (bottom). The display of the
native tooltip is controlled by the browser itself (this screenshot was taken in Chrome on 0S X). The
display of the jQuery Ul tooltip is consistent across all browsers, and is highly configurable.

Figure 4.12 shows the effect of applying the tooltip widget to an <inputs>.

Although you can create tooltip widgets on individual elements, you can also
instantiate the widget on any parent element. This approach adds tooltip functionality
to any descendent element with a title attribute by default. The following code adds
tooltip behavior to both <input> elements:
<div id="parent">

<input title="tooltip">
<input title="tooltip2">
</div>
<script>
S ("#parent") .tooltip() ;
</scripts>
This technique can be extended to the topmost container of an HTML document, the
document object:

$ (document) .tooltip();

That one line of code is all you need to create a direct replacement for native tooltips
with the jQuery UI tooltip widget! Internally, the tooltip widget uses event delegation
to determine which elements to display tooltips on and when. Event handlers are
therefore attached only once, to the element the tooltip widget is created on. These
handlers listen for mouse and focus events on descendent elements and display tool-
tips appropriately.

With delegated tooltips, the widget is smart enough to display tooltips on items you
dynamically add to the DOM. Consider the following example that dynamically adds
an <inputs:
$(document).tooltip();
document .body.innerHTML += "<input title='tooltip's>";

Because of the delegated approach, even though the <input> is added affer the widget
is created, tooltips display on the dynamically added element.

www.it-ebooks.info

http://www.it-ebooks.info/

4.7.1

Tooltip: enhancing native tooltips with a customizable control 103

NOTE The items option configures which elements display a tooltip. By
default, this is set to any element with a title attribute, or [title]. If you
wanted to display only tooltips on anchor elements with id attributes, you could
change the items option to [id]. You’'ll see an example of this momentarily.

Although the tooltip widget provides an elegant replacement for the native control,
sometimes you need more. The tooltip widget supports more powerful customization
such as displaying HTML content, dynamically determining the content to display, and
getting content from an external server. Let’s see how.

Using custom tooltip content

The jQuery UI tooltip widget provides functionality far beyond what’s capable with
native title attributes. A title attribute, for example, can’t contain HTML; there-
fore, something as simple as bolding a word isn’t possible. With jQuery UI, you can use
HTML by setting the content option.

The content option accepts a string with HTML to use as the message, or a func-
tion that returns the HTML to use. The following code shows how you can use the
string version of the tooltip to display bold text:

<input id="tooltip">

<scripts>
$("#tooltip") .tooltip ({
content: "Hi!"
i
</scripts>

WARNING jQuery UI doesn’t parse HTML in a title attribute as it presents a
cross-site scripting vulnerability. When <input title="Hi!</
strong>"> is converted to a tooltip widget, it literally displays Hi!</
strong> in the tooltip presented to the user.

The function version of the content option adds the ability to customize the tooltip’s
behavior. The function is called before the tooltip is displayed to the user, and must
return the content to display in the tooltip. The default version of the content option
is a function that returns the element’s title attribute. The following example shows
how you can alter this behavior to display the id attribute of all elements in a tooltip:

<input id="I show!" title="I don't.">

<scripts>
$(document).tooltip ({
content: function() {
return this.id; <+—@ Displays the id
b
items: " [id]"
1) Uses tooltips for all
</script> elements with an id

www.it-ebooks.info

http://www.it-ebooks.info/

104

4.7.2

CHAPTER 4 Enhancing interfaces with layout and utility widgets

You instantiate a tooltip widget on the document object itself to ensure all elements on
the DOM can potentially use tooltips. Then, you specify a function for the content
option that returns the element’s id 0.

Next, you set the items option, which identifies the elements that display dele-
gated tooltips. For consistency with the native tooltips, the items option defaults to
[titlel, which tells the widget to show a tooltip on all items with a title attribute;
for example, <input title="title">. Because this example is driven by id attributes,
you change items to show a tooltip on all elements that have an id ®; for example,
<input id="id">.

Now that we’ve taken a tour of the tooltip widget’s functionality, let’s return to the
message composer example to see how the tooltip widget can enhance your Ul

Displaying a preview in a tooltip
Recall that the first option in the message composer menu was an option to load a

previously stored message:

<ul id="menu">

Load

</1li>

Unfortunately, the user currently has no way of previewing the saved message before
loading. Let’s use the tooltip widget to add this behavior. This is implemented in the
following code:

The first menu option is
the Load option. Attach
$("#menu li:first").tooltip({ a tooltip widget to it.

content: function() {

var message = localStorage.getItem("message"); Buﬂdsthelnessage
if (message && message.length > 20) to display in the
Shows the return message.substring(0, 20) + "..."; tooltip.
tooltipafter } clse {
a l-second return message;
delay. } j Ensures the element
}, displays despite having
items: "*", no title attribute.
show: { delay: 300 },
position: { Positions the element on
my: "left center", the right of the menu.

at: "right center"

}
1
You create a tooltip on the Load menu option. The tooltip is for a preview, not for dis-
playing the entire message. The content function grabs the actual message from
localStorage, then conditionally substrings long messages and adds an ellipsis (...)
to them @.

www.it-ebooks.info

http://www.it-ebooks.info/

Tooltip: enhancing native tooltips with a customizable control 105

® Load Tooltips are an awes...
B8 Save

Some other message . .
P Settings Figure4.13 Togive users away

to preview their stored message,
you show a tooltip when they hov-
er over the Load menu option.

&}

Delete

Because the Load menu item doesn’t have a title attribute, you override the default
items option of [title] @. The star selector ("*") selects all elements. Because only
one element is eligible here—the selected #menu 1i:first—it’s the only element
matched.

Finally, you set options that we’ll be taking a deeper look at in later chapters. The
show option uses the jQuery Ul effects configuration to show the tooltip after a 1-second
delay @. We’ll dig deeper into the full functionality of effects in chapter 6.

The position option sets the tooltip to display on the right-hand side of the Load
menu option @. We’ll look at the position utility and how this option can be config-
ured in chapter 12.

The resulting tooltip that shows a message preview is shown in figure 4.13. This
example assumes the user has previously saved a message of “Tooltips are an awesome
UI control.”

As a reminder, the full source of the message composer example is available at
http://jsfiddle.net/tj_vantoll/jAwrA/. There you can play with all the options the
tooltip widget provides. We’ll look at additional uses of the tooltip widget throughout
this book, including adding pointers to the tooltips in chapter 7, and using tooltips to
display accessible form validation messages in chapter 11.

Using AJAX to retrieve tooltip content

The function form of the content option has one final variation that can be used to
support content retrieved asynchronously. To use this variation, instead of returning
a value directly, you invoke the function’s first argument with the content to use. This
is easier to see in an example. The following code displays a message tooltip for all
elements with a title attribute:

$(document) .tooltip ({
content: function(response) {
response ("message");
}

1)

www.it-ebooks.info

http://www.it-ebooks.info/

106

4.8

CHAPTER 4 Enhancing interfaces with layout and utility widgets

(continued)
To use AJAX-loaded content, perform the server-side call and then invoke the same
callback function with the results, as shown in the following code:

$(document) .tooltip ({
content: function(response) {
$.ajax ({ url: "/path/to/server" })
.then (function(data) {
response (data) ;

Summary

jQuery UI provides a collection of widgets that make building complex web Uls sim-
ple. The layout widgets—accordion and tabs—help you organize content in digestible
chunks. You used the tabs widget to load remote data and create panels the user could
toggle between and close. The jQuery UI utility widgets made it easy to replicate com-
mon desktop UI elements on the web. You used the utility widgets to build a demo for
composing messages in the browser.

You’ll continue to look at these widgets throughout the book. You’ll see how to
add effects to UI widgets in chapter 6, style UI widgets in chapter 7, and extend UI wid-
gets in chapter 9. You’ll also dig under the hood to see how these widgets are built in
chapter 12. For now though, we’ll shift from UI widgets to widgets that add mouse-
based interactions.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding interaction
to your interfaces

This chapter covers

= Building drag-and-drop interactions
= Sorting items in a list

® Resizing and selecting elements

= Building touch-friendly interactions

jQuery UI provides two types of widgets: the themeable widgets you’ve spent the last
two chapters on, and a set of mouse-based widgets collectively known as interac-
tions. Rather than changing the appearance of DOM elements, interactions let you
perform various actions on DOM elements using the mouse. Applying the dragga-
ble widget to a DOM element, for example, lets the user drag the element around
the screen using the mouse.

Despite being a different type of widget, interactions are still widgets imple-
mented using the widget factory. The same conventions for options, methods, and
events that you’ve learned still apply.

These mouse-based interactions are powerful tools when building interfaces.
Suppose you need users to rank five movies from best to worst in a web form. You

107

www.it-ebooks.info

http://www.it-ebooks.info/

108

5.1

CHAPTER 5 Adding interaction to your interfaces

could provide text boxes to let users manually type in the rankings, but it’s far easier—
and more intuitive—to use the mouse to rearrange the movies. The sortable widget
makes this interaction possible.

One major limitation of these interactions is that they don’t currently support
touch events; by default, the examples presented in this chapter don’t work on iOS or
Android devices. We’ll explain why, and then look at a workaround to get touch
events working in jQuery UI right now.

Let’s begin our look at the jQuery UI interactions with the most commonly used
one: draggable.

Draggable: allowing users to move elements

Draggable elements are ubiquitous in modern computer interfaces. Your OS of choice
undoubtedly lets you drag files to move them around in the filesystem.

Although draggable interfaces are common, implementing them on the web still
isn’t easy. The HTML5 specification includes a draggable attribute that has now been
implemented in all desktop browsers. Although the draggable attribute is great for
dragging an element around the screen, it—like many native HTML5 features—suffers
from limited customizability and extensibility.

The draggable widget shines because it makes it easy to perform complex interac-
tions. To show how, let’s build a few. Because interactions are widgets, they follow the
same initialization conventions you’ve learned. The following code creates a red box
you can drag around the screen:

<style>
#draggable {
width: 100px;
height: 100px;
background: red;

}

</style>
<div id="draggable"></div>
<script>

S ("#draggable") .draggable() ;
</script>

First of all, it’s pretty cool that one line of JavaScript is all you need to make an element
draggable. But you can do more. The following code makes two draggables—one that
can be moved only on the x-axis, and one that can be moved only on the y-axis:

<style>
#x, #y {
width: 100px;
height: 100px;
}
#x { background: red; }
#y { background: blue; }
</style>
<div id="x"></div>
<div id="y"></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Draggable: allowing users to move elements 109

<scripts>
$("#x") .draggable ({ axis: "x" });
$("#y").draggable ({ axis: "y" });
</script>

It’s powerful to see what you can do with a small amount of code. Let’s look at one
more example. Another common use case for draggable elements is constraining the
area in which they’re draggable. The draggable element makes this easy to implement
with the containment option, as shown in the following code:

<style>

#parent {
border: 1px dotted black;
width: 400px;
height: 200px;

}

#draggable {
background: red;
height: 50px;

width: 50px; Contains the parent

} el.ement—a. 400 x 2.00-
</styles> pixel box with a I-pixel Contains the draggable
<div id="parent"s dotted black border elem.ent—a red 50 x

<div id="draggable"s</div> 50-pixel-square box
</div>
<scripts>

$("#draggable").draggable({ containment: "#parent" });
</scripts>

Contains the element in the
element with id “parent”

Here, because the containment option is set to "parent", the draggable widget auto-
matically prevents the draggable element from leaving its parent’s boundaries. This
behavior is shown in figure 5.1.

TIP The containment option also accepts a DOM element, the strings "par-
ent", "document", and "window"—and even an array of coordinates in the
document, such as in the form of (x1, yl, x2, y2). For more details, see
http://api.jqueryui.com/draggable /#option-containment.

The draggable widget
contains the element
within its parent.

Figure 5.1 The draggable widget enforces the containment of the draggable box within its parent.

www.it-ebooks.info

http://www.it-ebooks.info/

110

5.2

5.2.1

CHAPTER 5 Adding interaction to your interfaces

There’s more to draggable than this, but before we delve too deep into draggable
functionality, we need to introduce its sister widget: droppable.

Droppable: creating containers that accept draggables

Most Uls that use draggables also use droppables. Consider the OS’s file interface.
When you start dragging files, you can move them to alternate directories, move them
to the trash bin, move them to other applications, and more.

The jQuery UI droppable widget makes it seamless to create drop targets for drag-
gable widgets. As a short example, the following code has two <div> elements, the
first of which is turned into a draggable widget and the second into a droppable wid-
get. A drop event is fired whenever a draggable is dropped onto a droppable. You use
a drop event callback to change the droppable’s background to red, indicating that a
drop occurred:

<style>
#draggable {
width: 100px;
height: 100px;
border: 1lpx solid black;
}
#droppable {
width: 200px;
height: 200px;
border: 1lpx solid black;

) The draggable
</styles element, a 100-
<div id="draggable"></div> pixel-square box.
<div id="droppable"></div>
<scripts o Tlhe droppa?(l)% Set to the droppable
" " . element, a 200- element. Change its
$ ("#draggable") .draggable() ; pixel-square box. background to red

$("#droppable") .droppable ({
drop: function()
$(this) .css("background", "red");
1

after the draggable
box is dropped on it.

1

</scripts>

That’s all there is to detecting a drop. The widget handles all the complex mouse
events and collision detection for you. Although this example shows what you can
accomplish with a small amount of code, chances are you’ll need to build some-
thing more complex than a box that turns red. To build something more useful, and
to show off what draggable and droppable make possible, let’s build something
fun—a game.

Building a drag-and-drop game

Although drag and drop has many applications, one of the most prominent is in
games. Dragging and dropping items on the screen builds a far more userfriendly
experience than interacting with a series of form controls.

www.it-ebooks.info

http://www.it-ebooks.info/

Droppable: creating containers that accept draggables 111

blue

green

Figure 5.2 A game where children must match the colored
yellow boxes on the left to the word boxes on the right. To imple-
ment this, you convert the colored boxes to draggable wid-
gets and the word boxes to droppable widgets.

For the purpose of this example, let’s suppose you're a company that develops web
games for children. You’ll build a game in which kids have to match colors to words
(matching a blue box to the word blue). Figure 5.2 shows the game you’ll build.

The source for this example is shown in the following listing. Don’t worry about
the details; we’ll go over each part individually.

NOTE Some of the visual CSS is omitted from this example for clarity. You
can check out the full source and play with this example live at http://jsfid-
dle.net/tj_vantoll/S7pdy/ .

Listing 5.1 A children’s word-matching drag-and-drop game

<style>
#colors {
position: absolute;
1

.ui-draggable ({
width: 100px;
height: 100px;
cursor: move;
border: 1px solid black;

1

#drop-zones {
position: absolute;
left: 200px;

1

#drop-zones > div {
width: 100px;
height: 100px;

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/S7pdy/
http://jsfiddle.net/tj_vantoll/S7pdy/
http://www.it-ebooks.info/

112 CHAPTER 5 Adding interaction to your interfaces

border: 1lpx solid black;

}

</style>

<div id="colors"></div>
<div id="drop-zones"></div>

<scripts>
function randomize(array)
return array.sort (function() ({
return 0.5 - Math.random() ;
P
}i Randomizes the
. list of colors used
var 1 = 0,
colors = randomize (["red", "blue", "green", "yellow"]);
for (; i < colors.length; i++) {
$("<divs>", { id: colors[i 1 })
.css("background", colors[i])
.appendTo ("#colors") Builds the color
.draggable ({ revert: "invalid", zIndex: 2 }); draggables
1
Builds randomize (colors); Rerandomizes the colors before
the drop for (i = 0; i < colors.length; i++) { building the droppables
zones S("<div>", { text: colors[i])
n — n .
} .appendTo ("#drop-zones") ; Determines
the types of
$("#drop-zones > div") .droppable ({ draggables
Sets the accept: function(draggable) { each droppable
background return $(this).text() == draggable.attr("id"); accepts
of the b))
droppable drop: function(event, ui) { .
on success var color = ui.draggable.css("background-color"); Hides the
$(this).css("background", color).addClass("filled"); draggable with
ui.draggable.hide("puff"); a puff effect
if ($(".filled").length === colors.length) {
$("<divs<p>Nice job! Refreshing game.</p></divs>")
.dialog({ modal: true });
setTimeout (function() {
window.location = window.location;
}, 3000);
} Shows a confirmation
} dialog on game completion
13K
</script>

This first thing to note in this example is the list of colors @. To ensure all games are
different, you define a randomize () function that sorts this array in a random order.

Next, for each color in your array, you create a new <div> and set its id and back-
ground to that color, such as <div id="red" style="background: red;">. You then
append the newly created <div> to the colors container (<div id="colors"s>) and
convert it to a draggable widget @.

www.it-ebooks.info

http://www.it-ebooks.info/

Droppable: creating containers that accept draggables 113

In doing so, you set two options: revert to false and zIndex to 2. The zIndex
option controls the zIndex CSS property applied to the element being dragged. By set-
ting it to 2, you ensure that the dragged element always displays on top of all other ele-
ments (because no elements have zIndex rules applied).

The revert option controls whether a draggable element returns to its starting posi-
tion when dragging stops. When set to false (the default), the element never reverts;
when set to true, it always reverts. You set it to "invalid"—which means the draggable
reverts when not dropped on a droppable. This behavior is advantageous for your game,
as the reversion provides visual feedback to the user that the selection was invalid.

TIP You can control the duration of the revert animation using the revert-
Duration option. If you were to set revertDuration to 2000, invalid dragga-
ble elements would take two full seconds to return to their starting positions.

Now that you’ve created the draggables, you have to create the droppable areas. You
again randomize the list of colors @. If you didn’t do this, the draggables would
always be aligned with their appropriate droppable, which wouldn’t be much of a
challenge for your users!

After this, you again create a new <div> for each color. This time, though, you
append the newly created elements to the drop zone container (<div id="drop-
zones">) and set each color as their text @.

The last step is to convert these new drop zones to droppable widgets. You set an
accept option and a drop event callback. The droppable widget’s accept option con-
trols which draggable widgets should be accepted. It supports two types of arguments.
The first is a CSS selector—for example, "*" allows all draggables and "#foo" only
allows draggables with an id of "foo". The second, and the one you use @, is a func-
tion that must return a Boolean indicating whether the draggable should be accepted.
Your version is shown here:

accept: function(draggable) {
return $(this).text() == draggable.attr("id");
}

The context of the accept option (this) is set to the droppable element and is passed
the draggable element as an argument. Recall that you set both the content of the
droppables and the id of the draggables equal to the color’s name. With that in mind,
this function is saying, “when the text of the droppable matches the id of the dragga-
ble, the draggable should be accepted; otherwise, it should be rejected.”

Because the accept option enforces the color section, your drop event is called
only after the user makes valid selections. The drop event’s ui parameter contains a
reference to the draggable object in its draggable property. You grab the back-
ground-color from the draggable element and set it as the background of the droppa-
ble one as shown in the following code and at @. A "filled" class name is also
added; you’ll use that later to determine when the game is complete:

var color = ui.draggable.css("background-color");
$(this).css("background", color).addClass("filled");

www.it-ebooks.info

http://www.it-ebooks.info/

114

5.2.2

CHAPTER 5 Adding interaction to your interfaces

NOTE As with the accept option, the context of the drop event is automati-
cally set to the droppable’s DOM element.

The background change gives the user a visual indication that the drop was successful,
and because it was, you also no longer need the draggable. Therefore, you hide it O:

ui.draggable.hide("puff");

You use one of the jQuery Ul effects—puff—to add a small effect that makes the drag-
gable grow slightly as it fades away. We’ll look more at how these effects can be config-
ured in chapter 6.

The last thing you need to do is determine when the game is complete. Recall that
you added a "filled" class name to each droppable in the drop event. Therefore,
when the number of filled droppables matches the number of colors ($(".filled"
) .length === colors.length), the game is complete. At this point you show the user
a congratulatory message @ then refresh the page to restart the game.

And with that, you have a fully functional matching game! Although there’s a
decent amount of code here, think about all the code the draggable and droppable
widgets save you. You didn’t have to write any code to implement dragging, detect col-
lisions, or animate the draggables on invalid selections. Also, because you wrote this in
a manner that looped over the colors, it’s easy to alter the number of colors in this
game to adjust the difficulty level. Try adding to the colors array, and note how the
game still functions fine.

Although this is cool, you may be “I don’t build children’s games; how is this useful
to me?” Dragging and dropping elements has all sorts of practical use cases, including
a common feature on most e-commerce sites: the shopping cart.

Building a shopping cart

If you’ve ever shopped online, you’ve almost certainly used a shopping cart. In this
section, let’s imagine that you need to build an online shopping cart for a local gro-
cery store. Due to the nature of grocery shopping, users tend to end up with a nontriv-
ial number of items in their cart. Due to the number of transactions, you want to give
the user an easy and intuitive way to add items. Therefore, you’ll add a twist to the nor-
mal online shopping cart experience and let the users drag and drop available items
to their cart.

We’ll use this cart to explain a few more of the common configuration options in
the draggable and droppable widgets. Figure 5.3 shows the cart that you’ll build with
the draggable helper and cursor options annotated.

The following listing shows the implementation of the shopping cart.

NOTE A live demo of this example is available at http://jstiddle.net/
tj_vantoll/PUVXn/

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/PUVXn/
http://jsfiddle.net/tj_vantoll/PUVXn/
http://www.it-ebooks.info/

Droppable: creating containers that accept draggables

Bananas

Apples

Grapes

Oranges

Watermelon

Strawberries

{ helper: "clone" }

Figure 5.3 A shopping cart implemented with the jQuery Ul draggable and droppable widgets

Cart - 0 Ttem(s)

PN

N

{ cursor: "move" }

Listing 5.2 A grocery store shopping cart implementation

<style>

#items { list-style: none; }

#items 1i
border: 1px solid

black;

border-radius: 5px;

width: 100px;
cursor: move;

1

#cart {
position: fixed;
top: 0;
right: 0;
height: 55px;
width: 150px;
border: 2px solid

}

#cart.active {

black;

border: 2px dotted black;

}

#cart.hover {
opacity: 0.5;
}

</style>

<ul id="items">
<lis>Bananas</1li>
<lis>Apples
Grapes
Oranges
Watermelon
Strawberries</1li>

<div id="cart">

Cart - 0 Item(s)

www.it-ebooks.info

115

http://www.it-ebooks.info/

116 CHAPTER 5 Adding interaction to your interfaces

</div>

<scripts>
$("#items 1i") .draggable ({J Uses the CSS

cursor: "move" move cursor
: /

revert: "invalid",
helper: "clone"

Uses a clone of the item
as the draggable helper

)i
("# t") .d ble(. .
: car rOpfa ° { R Applies this class name to
o . activeClass: active",
Applies this . ¥ the droppable on hover
class name to hoverClass: "hover",
thedroppaMe drop: function(event, ui) {
on activation var count = parseInt($("#count").text(), 10); Accepts draggables
$("#count").text(count + 1); on any overlap

b

tolerance: "touch"
Increments the

)) ’ cart’s item count
</script>

You use CSS to position the cart in the top-right corner of the screen and the list of
grocery items on the left. In JavaScript, you convert the items to draggable widgets
and the cart to a droppable widget.

When converting the grocery list items to draggables, the first option you set is the
cursor option to "move" @. This tells the widget to set the CSS cursor property to
"move" while the draggable is dragged by the user. Although the cursor property has
many potential values (see https://developer.mozilla.org/en-US/docs/Web/CSS/
cursor for a list), "move" is the most appropriate choice for draggable elements.
Because the cursor option only determines the cursor during a move, you also set {
cursor: move; } on #items 1i in CSS. This provides the move cursor for users when
they hover before they begin dragging. Setting these properties is important as the
cursor change helps the user discover that the element in question can be dragged.

Next, you set the revert option to "invalid" as you did in the previous example.
This is a common selection as it provides feedback to users that they missed the
intended target.

Last, you set the helper option, which controls the element that the user drags.
By default, helper is set to "original", which means the element converted to a
draggable widget is used as the helper. You used this behavior in your matching game
in the previous section. But in this case, you want to give the user the ability to drop
multiple items of the same type in the cart; therefore, you leave the original dragga-
ble element in place. When the helper option is set to "clone" @, the draggable
widget automatically clones the draggable when a drag starts, and removes the clone
after a drag completes.

TIP You can also pass a function for the helper option that returns a DOM
element to use as a helper while dragging. This is useful when the original
element is large or complex, and you only want to show a simplified represen-
tation while dragging.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
https://developer.mozilla.org/en-US/docs/Web/CSS/cursor
http://www.it-ebooks.info/

Droppable: creating containers that accept draggables 117

N

Default state

Cart - 0 Item(s)

#cart { border: 2px solid black; }

.

Active state (drag in progress)

border: 2px dotted black;
}
K\ Cart - 0 Item(s)

Hover state (draggable :
over droppable) Watermelog:---«««f-osrrereanrmmsmmansnnnns i
#cart.hover {

opacity: 0.5;
}

Figure 5.4 The default, active, and hover states of a droppable as applied to the shopping cart

Cart - 0 Item(s)

Now that the items are draggables, you need to turn the cart into a droppable widget.
The first two options you set are activeClass to "active" @ and hoverClass to
"hover" @. These options represent CSS class names to apply to the droppable ele-
ment whenever an acceptable draggable is being dragged or hovered over the droppa-
ble, respectively. In this case, because you didn’t specify an accept option, all
draggable elements are considered acceptable. Like the cursor option, you use these
class names to provide feedback to users. The display of the cart name under the vari-
ous states is shown in figure 5.4.

If the feedback provided by these class names is so important, why didn’t you use it
in the matching game? Because activeClass and hoverClass apply class names only
to acceptable droppables, they would affect only the correct color droppable in the
matching game. Styling with these options would give away the correct answer!

The last option you set is tolerance ©, which determines which algorithm the
widgets should use for determining whether a draggable is indeed over a droppable.
It has four possible values:

= "fit"—Drop is valid if the draggable overlaps the droppable completely.

= "intersect"—Drop is valid if the draggable overlaps the droppable by at

least 50% vertically and horizontally. This is the default setting.

= "pointer"—Drop is valid if the mouse cursor is over the droppable.

= "touch"—Drop is valid if the draggable overlaps the droppable in any amount.

For your cart you want to make it as easy as possible for users to add items, so you set
tolerance to the most permissive value: "touch".

www.it-ebooks.info

http://www.it-ebooks.info/

118

5.3

CHAPTER 5 Adding interaction to your interfaces

And that’s it for this example. In a few lines of code, you created a simple drag-and-
drop shopping cart. Because it requires so little code, this functionality can easily be
added to just about any existing shopping cart application.

With that, our look at the draggable and droppable widgets is complete, but we’re
just getting started with jQuery UI interactions. Next, we’ll look at a close relative of
the draggable and droppable widgets: sortable.

Sortable: rearranging elements in a list

One of the more common applications of draggable interfaces is the ability to sort
items in a list. Although common, the sortable interaction is shockingly difficult to
implement. You have to implement the logic to enable the mouse events for dragging,
and then the collision detection from droppable, and then you need to reposition the
items in the list to account for the rearranged list. Because of this, the sortable widget
is the most complex widget in jQuery UL

Fortunately, this complexity has all been abstracted to an easy-to-use widget. To cre-
ate sortables, you call the plugin on an unordered list:

<ul id="sortable">
Item 1</1li>
<lis>TItem 2</1li>
Ttem 3</1i>

<script>
S ("#sortable") .sortable();
</scripts>

That’s all it takes to make the items in a list sortable by the user.

TIP Although elements are the most common, you can turn any ele-
ment into a sortable widget. The widget element’s immediate children are
converted to sortable items. This can be customized using the items option.

This interaction leads to all sorts of possibilities. Recall your movie site that you
worked on in the last chapter. Let’s suppose that the owners of this site contact you
with a new feature in mind. They want to conduct a poll and have their users rank five
popular movies from best to worst.

Think for a moment about how you’d implement this. Radio buttons are often
used for polls, but they can gather only one selection, not capture the order of five
items. You could use text boxes, but that’s not user friendly. Let’s see how you can
build this poll using the sortable widget.

Figure 5.5 shows the poll that you’ll build.

The implementation of this poll is shown in the following listing.

NOTE Some visual CSS is not shown in the listing. The full source is available
online at http://jsfiddle.net/tj_vantoll/5N6h9/.

www.it-ebooks.info

http://www.it-ebooks.info/

Sortable: rearranging elements in a list 119

Please rank these movies (best to worst):

‘ Aliens

‘Tquun

‘Tmmm

|
|
[s |
|
|

‘ Ghostbusters

Submit

Figure 5.5 A poll that asks users to rank five movies from best to worst. The poll is implemented with
the sortable widget; meaning, the user can rearrange movies with the mouse.

Listing 5.3 A movie-ranking poll

<style>
#movies li:hover { cursor: move; }
#movies .movie-placeholder {
border: 1lpx dotted black;

}

</style>

<p>Please rank these movies (best to worst) :</p>
<ol id="movies"></o0l>
<button>Submit</buttons>

<scripts>
var movies = ["Ghostbusters", "Titanic", "Top Gun", Rando"ﬁzes
"Aliens", "Predator"].sort (function/() { the movie
return 0.5 - Math.random() ; order
I
i=0,
list = $("#movies") .sortable ({
placeholder: "movie-placeholder" Creates the
D i sortable
for (; i < movies.length; i++) ({ widget
list.append("" + movies[i] + "</1li>");
1
$("button") .button().on("click", function() {
var movies = [];
$("#movies 1li") .each(function() ({
movies.push(this.innerHTML) ; Shows the user’s
1 selections in a
alert ("Selection: " + movies.join(", ")); pop up
I3
</script>

You start with a list of movies that you rearrange in a random order @. You do this so
the initial ordering of the list doesn’t influence your users’s selections.

www.it-ebooks.info

http://www.it-ebooks.info/

120

CHAPTER 5 Adding interaction to your interfaces

Please rank these movies (best to worst):

B Aot
HfCGRTor

Full 4
ATIIOSTOTELIET

Titanic N

Placeholder

Top Gun

Aliens

Figure 5.6 The dotted, bordered
Submit box is the placeholder element that
the sortable widget creates.

Next you set one of the sortable’s most common options: placeholder @. While a
sortable item is being dragged, the sortable widget adds a filler element to the list.
The sortable adds the filler where the item would be if it were dropped. This filler ele-
ment is known as a placeholder and is far easier to show in a picture. Figure 5.6 shows
the display of the placeholder during a sort.

The placeholder option specifies a class name to apply to this element so it can be
styled with CSS. In your example you apply a movie-placeholder class name with an
associated border: 1px dotted black CSS rule so your placeholder in figure 5.6 dis-
plays with a dotted border.

The last thing you do is attach a click event handler to your Submit button to
gather the results. In the handler, you loop over each list item sequentially ($ ("#mov-
ies 1i").each(..)) and push each item’s innerHTML—which is the name of the
movie—to an array. At the end of the handler, you alert the user to show the results
were collected successfully ©. In a more realistic scenario, you’d send this data to a
server that would aggregate these rankings and show the totals to the user.

This example shows how to use the sortable widget to build a practical UI control
with a limited amount of code. Think of how painful and user unfriendly it would be
to build a ranking control with regular HTML form elements. Next, we’ll show a more
powerful use of the sortable widget: connecting multiple lists.

Draggable vs. sortable

Even though much of the functionality is the same, the draggable and sortable widgets
are not dependent on each other; but they do share a similar API. The sortable widget
uses the following options that are also in draggable: axis, cancel, containment,
cursor, cursorAt, delay, disabled, distance, grid, handle, helper, opacity,
revert, scroll, scrollSensitivity, scrollSpeed, and zIndex.

www.it-ebooks.info

http://www.it-ebooks.info/

53.1

5.3.2

Sortable: rearranging elements in a list 121

(continued)

The sortable widget’s tolerance option is similar to the droppable widget’s; howev-
er, droppable offers four choices—"fit", "intersect", "pointer", and "touch";
sortable offers only "intersect" and "pointer".

Building connected lists

A common requirement of sortable lists is to connect multiple lists to each other. Con-
sider a scheduling application where people or supplies need to be divided into multi-
ple groups, or a to-do app that lets users move items from To Do to Done (and,
unfortunately, vice versa). The jQuery Ul sortable widget makes it easy to connect lists
with the connectWith option.

To show how to do this, let’s build another children’s game with a different twist.
This time you’ll present the user with two lists with mismatched items—in this case,
fruits and vegetables. The user’s job is to move each item to the appropriate list.

To start, you create lists and connect them with the connectWith option. The fol-
lowing example builds two connected lists:

<h3>Fruits</h3>

Banana
<lisCarrot
Grape

<h3>Vegetables</h3>

Apple
<lis>Pea</1li>
<lis>Spinach</1i>
</uls>
<scripts>
$("ul") .sortable ({
connectWith: "ul"

</Scilét>

The connectWith option takes a selector of sortable elements that the current list
should be connected to. Therefore, $("ul").sortable ({ connectWith: "ul" })
converts all elements to sortable widgets and connects them all. The user can
then drag items from the fruits list to the vegetables list and vice versa. Let’s see how
you can take this basic functionality and turn it into a complete game.

Building a fruit and vegetable sorting game

To create a game, you need to do more than build lists. You need to validate the cor-
rectness of the lists, and ideally add a bit of randomness so the user isn’t playing the
same game every time. The sortable widget gives you the hooks to make this possible.

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 Adding interaction to your interfaces

The fruits and vegetables aren't sorted correctly — rearrange them!

Fruits Vegetables
¢ Avocado * Apple
e Kiwi ¢ Fig
¢ QOlives * Lemon
+ Banana o TS
. Cele‘r}‘ . .G;.a:.p.é. 5 Ve
¢ Com * Orange Figure 5.7 A fruit and vegetable sorting game
* GreenBean « Garlic implemented with the sortable widget. The user
* Pea * Spinach must move all fruits into the fruits list and all veg-
s Kale etables into the vegetables list to win.

As with previous examples, we’ll show an implementation of the game, and then walk
through it step by step. Figure 5.7 shows the display of the game, and the implementa-
tion is shown in listing 5.4.

NOTE The CSS for this example is omitted here for brevity. You can view it in
the book’s downloadable code samples, or view this example live at http://
jsfiddle.net/tj_vantoll/nCjwc/.

Listing 5.4 A children’s game to sort fruits and vegetables

<p>The fruits and vegetables are not sorted correctly—rearrange them!</p>
<div id="game">
<div id="fruits-container"s>

<h3>Fruits</h3>
<ul id="fruits">
</div>
<div id="vegetables-container"s>
<h3>Vegetables</h3>
<ul id="vegetables">
</divs>
</div>
<scripts>
var fruits = ["Avocado", "Banana", "Apple", "Cherry", "Fig", "Grape",
"Kiwi", "Lemon", "Olives", "Orange", "Pumpkin", "Tomato"],
vegetables = ["Broccoli", "Carrot", "Celery", "Corn", "Garlic",
"Green Bean", "Kale", "Lettuce", "Onion", "Pea", "Spinach",
"Turnip"];
S.each(fruits.concat(vegetables), function(index, item) {
var type = fruits.indexOf(item) >= 0 ? "fruit" : "vegetable";
if (Math.random() < 0.6) { Randomly
$("<1li data-type=" + type + ">" + item + "") determines
Creates .appendTo(Math.random() >= 0.5 ? "#fruits" : whether
a new "#vegetables"); each item
list item } is included
for each 1
fruit and .
$("#fruits, #vegetables").sortable ({
vegetable

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/nCjwc/
http://jsfiddle.net/tj_vantoll/nCjwc/
http://www.it-ebooks.info/

Sortable: rearranging elements in a list 123

connectWith: "#fruits, egetables",
Connects the L ftrui fiveg

fruit and cursor: "move", Cre?tesa
helper: function(event, item) { <div> to use
vegetable IR . . as a helper
lists return $("<divs", { text: item.text() });
}
placeholder: "sortable-placeholder",
Checks for stop: function() {
completion if (isvalid()) {
in a stop $("<divs>").append("<p>Correct! Refreshing game.</p>")
event .dialog() ;
setTimeout (function()
window.location = window.location;
}, 3000);
}
}
i
function isvalid() ({
var valid = true;
S("#fruits 1i, #vegetables 1i") .each(function() {
var item = $(this),
actual = item.parent()[0].id == "fruits" ? "fruit"
"vegetable",
correct = item.attr("data-type");
if (actual != correct) {
valid = false;
}
i
return valid;
Vi
</script>

You start with an array of fruits and vegetables, and loop over them to create the sortable
items. You wrap the addition of each fruit and vegetable with a Math.random()< 0.6
call @. Because Math.random() returns a number between 0 and 1, each fruit and veg-
etable is present in the game 60% of the time. This adds randomness so that users aren’t
bored after their first play.

For each fruit and vegetable that passes your check, you then create a list item as
shown in the following code @:
$("<1li data-type=" + type + ">" + item + "</1li>")

.appendTo(Math.random() >= 0.5 ? "#fruits" : "#vegetables");
Two interesting things are going on here. First, you store the type of the list item (fruit
or vegetable) in a data-type attribute. You use that later when you verify that the user’s
selections are correct. Next, you call Math.random() again. Because this call uses 0.5,
there’s a 50% chance you’ll append this new list item to the fruits listand a 50% chance
you’ll append it to the vegetables list.

Now that the lists are populated, you turn them into widgets. The cursor and place-
holder options should look familiar from the previous example, but the helper option
is new. Whenever a drag starts on a sortable item, the element being dragged is referred
to as a helper element, and is given a class name of ui-sortable-helper for styling

www.it-ebooks.info

http://www.it-ebooks.info/

124

CHAPTER 5 Adding interaction to your interfaces

purposes. By default, the helper is the sortable element itself, which corresponds to a
helper option of "original". The helper option also accepts "clone", which clones
the element and uses it as a helper, or a function that returns a new element to use as
a helper. In this example, you use this option and create a new helper <div> @:

helper: function(event, item) {
return $("<divs", { text: item.text() });
}

Why did you do this? Because these sortable elements are <1i> elements, by default
they’re displayed with bullets next to them in the list—for example, ¢ Banana. Drag-
ging an element with the bullet looks a little odd, and creating a new <div> to use as a
helper works around this.

NOTE A cleaner solution would’ve been to apply list-style-type: none to
the ui-sortable-helper class name in CSS. But the function-based helper
works just as well and serves as a nice introduction to the option.

You’ve now completed all setup needed for the game, so the last thing to do is to
check when the user has successfully sorted all items. The sortable widget’s stop event
is called when any sort completes; it’s the perfect place to check whether the user has
finished @. The implementation of this check is in the isvalid() function, which
you call immediately. Don’t worry too much about the implementation of isvValid().
All it does is use the data-type attribute you set on each list item to determine
whether all items are in the correct list. If isValid() returns true, you display a con-
firmation dialog to the user and refresh the page to start a new game.

With that, you have a functioning sorting game in a few dozen lines of JavaScript.
Think about how hard this would’ve been to set up without any help from jQuery UL
You’d have to recreate the draggable items, the collision detection, helper and place-
holder management, and more. It’s no wonder the sortable widget is the most com-
plex widget in the library.

Building sortable tables

One little-known feature of the sortable widget is that you can use it to make table rows
sortable. There’s one small caveat, though: you need to convert the table’s <tbody>
to a sortable widget rather than the <table> itself, as shown in the following code:

<style>
td { border: 1px solid black; }
</style>
<table>
<tbody>
<tr><td>One</td></tr>
<tr><td>Two</td></tr>
</tbody>
</table>
<script>
$S("tbody") .sortable();
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

5.4

Resizable: allowing users to change the size of elements 125

Let’s move on to another common, yet tricky, interaction that jQuery UI makes easy:
resizing elements.

Resizable: allowing users to change the size of elements

Resizable elements are another common desktop interaction. Resizable elements
have two use cases. The first is to give the user control over the size of the display. Con-
sider the windows in a desktop OS; users can change the size of each individual win-
dow to meet their needs. The other use case for resizable elements is to add additional
functionality. Most calendar applications, as an example, let you resize entries to
increase the duration of an appointment in either direction.

The jQuery UI resizable widget makes it easy to create resizable elements on the
web, with several options that make advanced and tricky use cases possible. Like all
the jQuery UI widgets, to create a resizable element you invoke the widget’s plugin.
The following code creates a resizable <divs>:
<style>

#resizable {
width: 100px;

height: 100px;
border: 1lpx dotted black;

}
</style>
<div id="resizable"></div>
<scripts>
$("#resizable").resizable();
</scripts>
&

This displays as shown in figure 5.8.
The resizable widget automaticallyadds an icon to the ~ Figure 5.8 A100x100 <div>

. . . lement converted to a resizable
bottom right-hand side of the element. By default, resiz- ©
g Y ’ widget. By default the element

able elements can be resized to the south, east, and south- ¢an pe resized to the south, east,
east. The handles option lets you configure thisbehavior. and southeast.

TIP If the icon in the bottom corner is unde-
sirable, you can remove it by adding .ui- nw
resizable-se { background: none; }. After
you do this, the functionality remains, but the
icon is gone.

ne

-~ 3

The handles option is set to "e, s, se" by sw f se
default, which explains the behavior you see.
You can set the option to a comma-delimited Figure 5.9 The resizable widget lets you

String Containing any of the fol]owing in any configure the directions the element can
be resized with the handles option. The
eight potential handles are shown on an
the string "all" to make an element that can be element. The handles option also ac-
resized in any direction. The handles are shown cepts "all", which uses all eight han-
dles.

order: n, e, s, w, ne, se, sw, nw. You can also pass

in figure 5.9.

www.it-ebooks.info

http://www.it-ebooks.info/

126

54.1

CHAPTER 5 Adding interaction to your interfaces

To allow for more customization, you can
also build custom handles.

Using custom resize handles

The final version of the handles option lets
you specify your own DOM elements to use as
the handles. This allows you to build custom
resizable interactions. Figure 5.10 shows a

v v v v v wv

Figure 5.10 A resizable element with a

. . custom resizing handle on its east side. You

resizable element with a custom east handle. build this by explicitly providing markup for
The following listing shows the code used the east handle, as shown in listing 5.5.

to build this element.

Listing 5.5 Resizable element with a custom east handle

<style>

#resizable {
width: 100px;
height: 100px;
border: 1lpx solid black;

}

.ui-resizable-e {
background-color: skyblue;
width: 18px;

right: 0;
}
</style>
/sty The element that
<div id="resizable"s> you use as the
<div class="ui-resizable-handle ui-resizable-e"> east handle

</divs>
</div>
<scripts>
$("#resizable").resizable({ Specifies the
handles: { custom handle i‘n
e: ".ui-resizable-e" the handles option
¥
minWidth: 50 Ensures the element is
b a at least 50 pixels wide
</script>

The first thing to notice here is the class names on your custom handle @. The resiz-
able widget requires that a custom handle have class names ui-resizable-handle
and ui-resizable-{direction}—in this case, ui-resizable-e.

www.it-ebooks.info

http://www.it-ebooks.info/

542

Resizable: allowing users to change the size of elements 127

To tell the resizable widget about your custom handle, you pass an object in as the
handles option ®. The keys of the object are the directions in which the user can
resize. In this case, you specify "e" because the user should only be able to resize to
the east. The value of each handle can be a selector that matches a child element of
the resizable element, a DOM element, or a jQuery object. In this case, your handle is
a child of the resizable element, so you pass a selector that matches it.

Asalaststep, you set the minwidth option to 50 €. This prevents the user from resiz-
ing the element to a size smaller than 50 pixels. The resizable widget also provides max-
Width, minHeight, and maxHeight options for similar constraining functionality.

With custom handles you can build a highly customized display for your resizable
controls. To see at what the resizable widget makes possible, let’s look at a common
use of resizable Ul elements: a calendar control.

Building an appointment scheduler

Most desktop calendar programs give you the ability to drag and resize appointments
using the mouse. Although writing a full-featured web-based scheduler is a complex
topic well out of the scope of this book, let’s look at how the resizable and draggable
widgets make building the grid portion of the calendar easy. Figure 5.11 shows the cal-
endar grid you’ll build.

In this grid the black box represents an appointment and each column represents
a day of the workweek. The vertical gray lines are spaced 50 pixels apart and are used
to represent half-hour time slots. To build this scheduler, suppose you have the follow-
ing requirements:

= The appointment can resize only in the north and south directions.

= The appointment can resize only in certain intervals, corresponding to a half
hour (50 pixels).

= Appointments can be dragged anywhere within a day or into other days.

= The appointment can’t be dragged or resized outside of the calendar.

November 2013

Monday Tuesday Wednesday Thursday Friday

Figure 5.11 A scheduler for
creating appointments. The
black box represents an ap-
pointment, and the vertical
lines represent half-hour time
slots. The user can drag the
appointment to different days
and times—and resize the ap-
pointment to change its
length.

www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 Adding interaction to your interfaces

Consider how tricky these requirements are to meet without the help of any widgets
or plugins. With the jQuery UI interactions, you can meet these requirements with
nine lines of JavaScript! The following listing shows an implementation of this grid.

NOTE This example is available online at http://jsfiddle.net/tj_vantoll/
yUs44/.

Listing 5.6 Building a calendar grid with resizable and draggable

<style>
#appointment {
width: 100px;
height: 100px;
border: 1px solid black;
}
#appointment :hover { cursor: move; }
#calendar {
border: 1px solid red;
height: 500px;
width: 500px;
position: relative;
background-color: #fff;
background-image:
linear-gradient (90deg, transparent 99%, #ddd 100%), Creates the
linear-gradient (#eee .lem, transparent .lem); grid lines
background-size: 20% 100%, 100% 50px;
}

</style>

<hl>November 2013</hl>

<div id="headers"s>
<h3>Monday</h3>
<h3>Tuesday</h3>
<h3>Wednesday</h3>
<h3>Thursday</h3>
<h3>Friday</h3>

</div>

<div id="calendar">
<div id="appointment"s></div>

</divs>
<script> Resizes the
$("#appointment") .resizable ({ appointment only to
handles: "n, s", the north and south
Resizes grid: [0, 50],
. onlyby containment: "parent® Contains the resizable
increments 3] in its parent
of 50 pixels .draggable ({
grid: [100, 50],
containment: "parent"
b i Makes the element
</scripts> draggable

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/yUs44/
http://jsfiddle.net/tj_vantoll/yUs44/
http://www.it-ebooks.info/

Resizable: allowing users to change the size of elements 129

WARNING The gridlines are drawn using CSS gradients. Although most browsers
now support CSS gradients, they’re not supported in Internet Explorer versions
9and earlier. In these browsers, the grid doesn’tappear. For a full list of browsers
that support CSS gradients, see http://caniuse.com/#feat=css-gradients. For
more information on how this grid works, as well as how to create other cool pat-
terns with CSS gradients, see http://lea.verou.me/2010/12/checkered-stripes-
other-background-patterns-with-css3-gradients/.

Let’s look at how this example meets all your criteria. First, by setting the appoint-
ment’s handles option to "n, s" (1} you enforce the requirement that the resizable
element can only be resized vertically, not horizontally or diagonally.

Your next criterion was to allow the user to resize the appointment only in a set
interval. You want to let the user resize appointments by the hour or half hour, rather
than by minutes or seconds.

To implement this, you use the resizable widget’s grid option @. The grid option
takes an array of pixels, with the x and y values as the resizing increments. The x value
of the array is irrelevant, as the user can’t resize the appointment horizontally. By set-
ting the y value to 50, the resizable widget allows the appointment’s height to be
changed only by increments of 50 pixels—50 pixels, 100 pixels, 150 pixels, and so
on—which corresponds to half hours, per the example’s convention.

Next, you prevent the user from resizing an appointment outside of the calendar
itself. This is easy as the resizable widget has the same containment option as the drag-
gable widget. By setting containment to "parent", the resizable widget automatically
contains all resizing actions in its parent widget—the calendar €. As with the dragga-
ble widget, the resizable widget’s containment option can also be set to a selector or a
DOM element to contain the element within.

This takes care of your resizable criteria. Next, you make the appointment dragga-

ble @.

TIP A DOM element can be initialized with multiple widgets. Although some
combinations make no sense—for instance, an element that’s a dialog and a
datepicker—some, such as draggable and resizable, can be quite useful.

To keep draggable in sync with resizable, you also set the draggable grid option.
Unlike resizable, the x value of the grid is relevant here, as you want to let the user
drag appointments horizontally to different columns. You specify an x value equal to
the width of the columns: 100. For the y value, you use the same value as resizable (50)
so the user can drag appointments to reschedule by the half hour.

That’s all there is to it. You built a powerful appointment scheduler that met your
criteria with a few lines of configuration for the draggable and resizable widgets.
This brings us to the last of the jQuery Ul interactions: selectable.

www.it-ebooks.info

http://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
http://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
http://www.it-ebooks.info/

130

5.5

CHAPTER 5 Adding interaction to your interfaces

Dialog, resizable, and draggable

Whether or not you realized it, you saw the draggable and resizable widgets in action
before this chapter. The dialog widget uses these interactions to make dialog ele-
ments draggable and resizable by default. Whether dialog elements are draggable
and resizable can be configured using the draggable and resizable options, re-
spectively. The following code shows how to create a dialog that’s neither draggable
nor resizable:

$("<div>").dialog({
draggable: false,
resizable: false

1) 7

Selectable: allowing users to select elements from a group

Selectable elements should be familiar to anyone who has used a file browser GUI in
any OS. Almost invariably the OS lets you select a file by clicking on it, select additional
files by clicking with a modifier key held down (Control on Windows, Command on
0OS X), and select multiple files simultaneously by dragging your mouse to create a box
or lasso.

The jQuery Ul selectable widget brings this paradigm to the web. Selectable is one
of the simplest widgets of jQuery UI Although it has options, methods, and events like
other widgets, for the vast majority of use cases the default behavior is all you need.
Therefore, we’ll only be looking at a single example that replicates the file GUI behav-
ior in the browser.

Like sortable, when the selectable’s plugin is called on an element, its immediate
children are converted to selectable items. The following code converts a list to a
selectable widget:

<ul id="selectable">
book.pdf</1i>
image.png
<lisportrait.jpg
paint.bmp</1li>
words.doc</1i>
<lis>text.txt

<scripts>
$("#selectable").selectable();

</script>

Although this does create a selectable widget, it gives no visual indication of what files
are selected. This is because instead of styling the selectable elements directly, the wid-
get adds CSS class names to the appropriate items and the author is responsible for
styling them. The following four class names are applied by the selectable widget:

www.it-ebooks.info

http://www.it-ebooks.info/

Selectable: allowing users to select elements from a group 131

.ui-selecting { background: hotpink; } —<sii::::::::;:_—h\\\\\\\\

paint.bmp

.ui-selectable-helper

Add File Remove Selected File(s)

Figure 5.12 A browser representation of an 0S’s file GUI implemented with the selectable widget. The
user can add new files and remove any selected files. The selectable widget’s helper is styled with a
dotted line, and files selected with the lasso are styled with a background in color.

= ui-selectee—Applied to all selectable elements, regardless of state

= ui-selecting—Applied to elements selected by the lasso before the user
releases the mouse

= ui-selected—Applied to selected elements

= ui-selectable-helper—Applied to the lasso created by the mouse

To see how these class names work, you’ll add a little CSS to your example. You'll also
add a Remove button to make the example a bit more useful. Figure 5.12 shows the
updated display of your example.

The following listing shows the final code of this example.

NOTE Some CSS is omitted from this example to focus on the selectable
interaction. You can view the full source and play with this example at http://
jsfiddle.net/tj_vantoll/Bd57U/.

Listing 5.7 Mimicking a filesystem GUI with jQuery Ul

<style>
.ui-selecting { background: hotpink; } Styles selectables hot
, .ui-selected { background: red; color: white; } Nnkduﬂngsehcﬁon
</style>
<ul id="selectable"> Stylt_es Sele.Ctab'es
<lisbook.pdf</1i> red with white text

image.png after selection

<lisportrait.jpg

<lispaint.bmp</1li>

words.doc</1li>

text.txt</1i>

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Bd57U/
http://jsfiddle.net/tj_vantoll/Bd57U/
http://www.it-ebooks.info/

132

5.6

5.6.1

CHAPTER 5 Adding interaction to your interfaces

<button id="add">Add File</button>
<button id="remove"s>Remove Selected File(s)</buttons>

<scripts>
var selectable = $("#selectable").selectable(); Adds a new
$("#add").button().on("click", function() { list item to
selectable.append("<lisnew"); the list
)i
S("#remove") .button().on("click", function() {
$(".ui-selected").remove() ; <F““‘2’ Removes all
1 selected items
</script>

You style selectables as hot pink during mouse selection @ and red with white text after
they have been selected @. You don’t touch the ui-sortable-helper class name, leav-
ing it as its default display defined by the widget (border: 1px dotted black).

After creating the selectable widget, you convert the Add button to a button widget
and attach a click handler to it. The click event handler adds a new <1i> element to
the list @—and that’s it. There’s no refresh () method call or any call that tells the
widget of the new element. How does the widget know that a new element was added?

The selectable widget is unique because it checks for new elements in the list
whenever a select operation begins. Because this is a potentially expensive operation,
the widget exposes an autoRefresh option that you can set to false to disable it. If
you set autoRefresh to false, the widget has a refresh() method you can call after
adding and removing elements. Because you have only a handful of items here, it
makes sense to leave autoRefresh set to true.

The last thing you do is convert the Remove button to a button widget and attach a
click event handler to it as well. In the click handler, you select all elements with the
ui-selectable-selected class name and remove them from the DOM @.

If you run this example, you’ll notice that you can perform all the actions that
you’re used to with a desktop OS with this small amount of code.

Before we end our discussion of jQuery UI interactions, there’s one last thing we
need to discuss. If you’ve happened to test any of the examples in this chapter to this
point on an iOS or Android device, you may have noticed that they don’t work. In the
next section we’ll discuss why that is, and what you can do to make them work.

Creating multidevice interactions: the importance of touch

Unless you have been living under a log, you're likely aware of the mobile explosion
that has taken the web development industry by storm. Despite this, the latest release
of jQuery UI still doesn’t support touch events out of the box.

Why is this?

Why doesn’t jQuery Ul support touch events?

The answer is complicated and requires a short history lesson. In 2007 the iPhone was
released and with it came touch events: a new event model for handling interactions

www.it-ebooks.info

http://www.it-ebooks.info/

5.6.2

Creating multidevice interactions: the importance of touch 133

on the web. Android soon followed with an implementation, and Firefox for Android,
Chrome for Android, BlackBerry, and Opera Mobile would soon follow as well.

Despite the number of implementations, Apple’s model has two major problems.
First, it forces web developers to explicitly handle two types of events: mouse-based
ones and touch-based ones. Unfortunately, the two event models have subtle differ-
ences that make this a nontrivial task.

The second issue is that Apple owns a number of patents related to its touch event
implementation. These patents have (thus far) prevented touch events from becom-
ing a W3C standard.

Because of these issues, the Internet Explorer team came up with a new approach
known as pointer events, which shipped in Internet Explorer 10. Microsoft submitted
this model to the W3C, and it’s now a candidate recommendation spec—http://
www.w3.org/TR/pointerevents/.

NOTE The candidate recommendation status means that the major features of
the spec are locked down and the spec authors are waiting for feedback on the
finer points before the spec enters its next state: proposed recommendation.

The pointer event model addresses the single largest problem with the touch event
model: it handles multiple input types. If you're on a Windows touch screen tablet,
you can handle mouse, touch, and stylus-based input, all with a single set of pointer
events.

The jQuery UI team feels this model is the best way to move forward with events on
the web; the team is currently working with others to create a polyfill of pointer events
for browsers that don’t natively support them, which will make the interactions work
on any device. Expect it to be included in the library in a future release of jQuery UL

NOTE You can read a more thorough history of touch events at http://
blog.jquery.com/2012/04/10/getting-touchy-about-patents/.

Although this history lesson provides background, you’'re likely interested in getting
the jQuery UI widgets to work for you now. Fortunately, there’s a quick workaround to
make that possible.

Introducing jQuery Ul Touch Punch

jQuery UI Touch Punch is a tiny script that adds touch event support to all the
jQuery UI widgets. It listens for touch events, then uses a DOM specification known
as custom events to fire the corresponding mouse events that the jQuery UI widgets
are looking for.

TIP Custom events allow you to trigger native events (click, keypress, mouse-
move, touchstart, and so on) as if the user had taken that action. To read
more about custom events, see https://developer.mozilla.org/en-US/docs/
Web/Guide/API/DOM/Events/Creating_and_triggering_events.

www.it-ebooks.info

http://www.w3.org/TR/pointerevents/
http://www.w3.org/TR/pointerevents/
http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/
http://blog.jquery.com/2012/04/10/getting-touchy-about-patents/
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Creating_and_triggering_events
https://developer.mozilla.org/en-US/docs/Web/Guide/API/DOM/Events/Creating_and_triggering_events
http://www.it-ebooks.info/

134

5.7

CHAPTER 5 Adding interaction to your interfaces

What’s nice about Touch Punch is it requires no configuration to make it work. You
download Touch Punch’s script from http://touchpunch.furf.com/ and include it
after jquery-ui:
<script src="jquery.js"></scripts>
<script src="jquery-ui.js"></scripts>
<script src="jquery.ui.touch-punch.js"></script>
That’s it. This approach adds touch support for the jQuery UI widgets in any browser
that supports the touch event model (iOS Safari, Android, Chrome for Android, Fire-
fox for Android, Opera Mobile, and BlackBerry).

Although having to include an external plugin isn’t ideal, Touch Punch provides
an elegant stopgap solution until true pointer event support is released in jQuery UL

Interactions on Windows 8 touch devices

Even though the jQuery Ul interactions do not support pointer events, as of ver-
sion 1.11, the interactions do support Windows 8 touch devices running Internet Ex-
plorer 10 and Internet Explorer 11. How? When you apply an interaction widget to an
element, the widget sets the element’s touch-action CSS property to "none", which
makes Internet Explorer 10+ fire the mouse events that make the interactions work—
even on touch screens. You can read more about what the touch-action property
does at http://msdn.microsoft.com/en-us/library/windows/apps/hh767313.aspx.

To summarize, the jQuery Ul interactions work in all desktop browsers, as well as Win-
dows 8 devices. The interactions do not work on mobile browsers that use the touch
event model, but you can use Touch Punch to add support for those browsers. Be-
tween the two you get comprehensive device coverage.

Summary

In this chapter, you looked at the five interaction widgets provided by jQuery UL You
used them to create a number of practical UIs—from children’s games to a shopping
cart to an appointment scheduler.

Currently, these interactions don’t work on mobile browsers that use the touch
event model, such as 108 Safari and Chrome for Android. The jQuery UI team is work-
ing on creating a polyfill for pointer events that will bring support to all browsers, but
in the meantime, you can use jQuery UI Touch Punch to make sure the interactions
work on all devices today.

With this chapter, we’ve now completed our look at all the jQuery UI widgets.
Although we’ll continue to explore the inner workings of widgets throughout the
book, for now we’ll switch our focus to the jQuery UI animation components, collec-
tively known as effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating rich
animations with effects

This chapter covers

= Building animations with effects

m Using effects in the jQuery Ul widgets
= Animating CSS class name changes

jQuery Ul includes 15 built-in animations, that provide ways to show and hide ele-
ments, draw the user’s attention to elements, or add visual appeal to your Uls.
These effects stand on their own with the effect () method, tie into existing wid-
gets such as dialog, and work with jQuery Core methods such as show() and
hide (). But it doesn’t stop there. jQuery UI also adds powerful abilities to animate
CSS class name changes, transition between colors, and a whole lot more.

The jQuery UI effects are so powerful they’ve helped inspire changes made to
the CSS specification, and you can now perform transitions and animations directly
in CSS. At the end of this chapter, you’ll explore what you can do with CSS directly,
and compare that to the APIs in jQuery UL

It’s important to note that just because jQuery UI lets you make an element
explode into 50 pieces over 10 seconds (yes, you can do that), it doesn’t mean that

135

www.it-ebooks.info

http://www.it-ebooks.info/

136

6.1

CHAPTER 6 Creating rich animations with effects

you should. As we go through this chapter, we’ll discuss where these effects make

sense for practical use.
Let’s get started with the core method of the jQuery UI effects: effect ().

Using effects and the effect() method

The most common—and easiest—way to run the jQuery UI effects is through the
effect () plugin method. In its simplest form, you pass the effect () plugin the name

of the effect to use. The following code shakes a blue box:

<style>
div {
background: blue;
height: 100px;
width: 100px;
}
</style>
<div></div>
<scripts>
$("div").effect("shake");
</script>

What effects are there? As of jQuery 1.11, the following 15 effects are available:

= blind = drop = fold = pulsate m size
® bounce = explode = highlight = scale = glide
u clip u fade ® puff = shake ®m transfer

As with widgets, each effect has detailed API documentation on how the effect is used
and the available configurations. The URL to use is http://api.jqueryui.com/{NAME}-
effect/. For example, http://api.jqueryui.com/shake-effect/ takes you to the API doc-

umentation for the shake effect and is shown in figure 6.1.

Description: Shakes the element multiple times, vertically or horizontally.

direction (default: "left")

Type: String

A value of "left" or "right" will shake the element horizontally, and a value of "up" or "down" will
shake the element vertically. The value specifies which direction the element should move along the axis
for the first step of the effect.

distance (default: 20)
Type: Number
Distance to shake.

times (default: 3)
Type: Integer
Times to shake.

Figure 6.1 The API documentation for each jQuery Ul effect lists the options that can be used to con-
figure the animation. For the shake effect (shown here), you can configure the direction of the shake,

the distance to shake, and the number of times to shake.

www.it-ebooks.info

http://www.it-ebooks.info/

Using effects and the effect() method 137

The values listed in bold—direction, distance, and times—are options that config-
ure the effect. To pass these options, provide them as objects as the second argument
to effect (). The following code alters the previous example to shake the blue box 10
times over a distance of 100 pixels:

$("div").effect("shake", {
times: 10,
distance: 100

N

If you test this example, the effect runs so fast that it looks like a blur. This is because
the next parameter of effect () —duration—defaults to 400 milliseconds, which isn’t
nearly enough time to shake a box 10 times. The following code increases the dura-
tion to 3 full seconds:

$("div").effect("shake", {

times: 10, Defines .tl!e duration:
distance: 100 3000 milliseconds =

}, 3000); 3 full seconds

Now your animation has plenty of time to do its shaking. The final argument of the
effect () plugin is a function that runs as a callback when the animation completes.
The following code adds a callback to your example that makes the box red after the
shaking finishes:
$("div").effect("shake", {

times: 10,

distance: 100

}, 3000, function() ({
$(this).css("background", "red");

N

Although this is powerful, the API is starting to feel messy; the previous code certainly
isn’t clear to read. Because of this, the effect () plugin offers an alternative signature
in which all arguments are passed as a single object. The following code alters your
example to use the object signature:

$("div") .effect ({

e].ffect : "shake", Provides the name
times: 10, of the effect.
distance: 100,

duration: 3000,

complete: function() {
$(this).css("background", "red");
}

I3

Take note of two changes here. First, the name of the effect to use is passed as an
effect property @. This is the only required property when using the effect ()
object signature. The other change is the properties that apply only to the shake effect
(times and distance) are no longer in a separate “options” argument; they’re
included directly in the object passed to effect ().

www.it-ebooks.info

http://www.it-ebooks.info/

138

6.1.1

CHAPTER 6 Creating rich animations with effects

The object form of effect () takes one additional property we haven’t discussed:
an easing.

Customizing effects with easings

What are easings? An easing is a function that dictates the rate at which an animation
progresses. jQuery Core includes two of them: linear and swing. The linear easing
runs the entire animation at a constant pace, and the swing easing starts the anima-
tion slowly and speeds up toward the end. The swing easing is the default easing used
in both jQuery Core and jQuery UI A full list of easings in jQuery UI can be found at
http://api.jqueryui.com/easings/ and is shown in figure 6.2.

linear easelnQuad easeQutQuad easelnOutQuad easelnCubic easeQutCubic easelnQutCubic

/ -~ g /
rd /’ —
easelnQuart easeQutQuart easelnQutQuart easelniluint easeOutiint easeanutiint easelnExpo easeQutExpo
easelnQutExpo easelnSine easeQutSine easelnQutSine easelnCirc easeQutCirc easelnQutCirc easelnElastic

easeQutElastic easelnQutElastic easelnBack easeQutBack easelnQutBack easelnBounce easeQutBounce easelnQutBounce

Figure 6.2 Alist of the easings provided by jQuery Ul from http://api.jqueryui.com/easings/. Each graph
plots the progress of the animation (the y-axis) against time (the x-axis). Clicking on each graph runs an
animation with the corresponding easing. If you’re having trouble understanding easings, it’s worth taking
a minute to run these; easings are far easier to understand visually.

Each graph in figure 6.2 plots the progression of the animation (the y-axis) against
time (the x-axis). The linear easing is the easiest to understand as the rate of the ani-
mation remains constant throughout. Some easings—such as easeOutElastic—run
the animation beyond its final value before the animation completes. Although these
easings offer plenty of options, why would you want to use any of them?
To answer, let’s look at a few examples. The following code uses the jQuery Ul
explode effect to split a green box into four pieces over 5 seconds:
<style>
div {
background: green;
height: 100px;
width: 100px;

}

</style>

www.it-ebooks.info

http://www.it-ebooks.info/

Using effects and the effect() method 139

<div></div>
<scripts>
$("div") .effect ({
effect: "explode", Uses the default swing
pieces: 4, easing because no easing
duration: 5000 is explicitly provided
I3
</script>

Although this effect is cool, the default easing—swing—doesn’t provide the ideal,
realistic exploding experience. And if you’re going to make an element explode, you
may as well do it right.

What would be better is an easing that starts off slow, and then builds to a fast fin-
ish. If you look at figure 6.2, you see a few easings that meet this criterion, but the best
choice looks to be easeInExpo. To use this easing, include it as a property on the
object passed to effect (), as shown in the following code:
$("div") .effect ({

effect: "explode",

easing: "easeInExpo",

pieces: 4,

duration: 5000
I3
Easings are a nice way of configuring any animation to meet your needs, and they’re not
used only in the effect () method. You can use these easings with any of the jQuery
Core animation methods: animate (), hide(), fadeIn(), fadeOut (), fadeToggle(),
hide (), show (), slideDown (), slideToggle (), slideUp(), and toggle().

Suppose you need to move an element in your interface from one side of the
screen to the other over 1 second:

<style>
div {
background: green;
height: 100px;
width: 100px;
position: absolute;
1
</style>
<div></divs>
<scripts> The second argument
$("div") .animate ({ of animate() is a
left: $(window).width() - 100 duration—in this
}, 1000); case, | second.
</scripts>

This works, but is rather boring. Let’s liven it up with animation using the easeOut-
Elastic easing (the third argument to animate ()is an easing):
$("div") .animate ({

left: $(window) .width() - 100
}, 1000, "easeOutElastic");

www.it-ebooks.info

http://www.it-ebooks.info/

140

6.1.2

CHAPTER 6 Creating rich animations with effects

It’s worth running this example to see how changing the easing can have a great
effect. By using an easeOutElastic easing, the box swings out past its final value, then
gradually settles back into it.

Why do this? By changing the easing, you create a more lively animation that’s
more fun and more engaging for users. And you can do this by playing with a few
property names—no math required!

Next, let’s look at another practical use of effects: making visual associations.

Making visual associations with the transfer effect

The interfaces you build on the web today are increasingly complex, and it can be dif-
ficult for users to learn how the various controls work. One of the jQuery UI effects,
transfer, lets you assist users with an easy-to-use animation. Consider the grocery list
builder application shown in figure 6.3.

Add Groceries Grocery List

Irem: Add « Empty

Figure 6.3 A small application that builds grocery lists. You will use the transfer effect to help the user
associate the Add Groceries form with the Grocery List.

From the screenshot, this UI seems easy to use. When you click the Add button, the
grocery item is added to the list. But suppose this functionality were integrated in a
more complicated example—such as a site that additionally manages coupons or per-
sonal expenses. In this type of situation—when more information is on the screen—
users may not instantly recognize where the grocery list is after they add items. The
user may be confused about what the application is doing.

Using the transfer effect, you help users make this association. The effect works by
transferring the outline of one element to another. As it’s easier to see this visually, fig-
ure 6.4 shows the effect you’ll add.

r— Add Groceries Grocery List
Item: | Peanut Butter i Add Empty
] * Emp
r—Add Groceries l Grocery List
Item: = Peanut Butter Add Empty
* Emp
— Add Groceries j Grocery List
TItem:
m; Add + Peanut Butter

Figure 6.4 Progression of the transfer effect to associate the form with the grocery list

www.it-ebooks.info

http://www.it-ebooks.info/

Using effects and the effect() method 141

The code to build this is shown in the following listing. Some of the visual styling has
been removed to keep this example succinct. The full source is available in the book’s
code samples or online at http://jsfiddle.net/tj_vantoll/7HQDK/.

Listing 6.1 A grocery list builder that uses the transfer effect

<style>
.ui-effects-transfer { border: 1lpx dotted black; } Styles the transfer
</style> q} DOM element
<div id="grocery-list">
<h3>Grocery List</h3>
<li class="empty">Empty
</div>
<form>
<fieldset>
<legend>Add Groceries</legend>
<label for="item">Item:</labels>
<input id="item" requireds>
<button>Add</button>
</fieldset>
</form>
<scripts>
function addToList (value) { Adds the new
var list = $("#grocery-list ul"); item to the list
list.append("" + value + "</1li>");
list.find(".empty") .remove() ; Removes the “empty”
}i list item
Starts the $("form").on("submit", function(event)
transfer on event .preventDefault () ; j’ Ends the
the input $("input").effect("transfer", { transfer on the
to: "#grocery-list ul", grocery list
complete: function() ({
addToList ($(this).val()); On completion, updates
$(this).val(""); the grocery list
1
P
P
</script>

You start by applying a dotted border to the ui-effects-transfer CSS class name @.
The transfer effect creates and animates this element, but it leaves the styling up to
you. The CSS you apply creates the look of the dotted box shown in figure 6.5.

Next, in your HTML, you have a form for the user to add items and a list to display
those items in. In JavaScript, you listen for the form to be submitted, select the <input>
in the form, and perform a transfer effect on it ®. The transfer effect takes a required
to property that determines an element that the selected element’s outline is trans-
ferred to. You set the to property to "#grocery-list ul" ©, which tells the transfer
effect to animate an outline from the <input> to the grocery list’s element.

When the animation completes, you add the new item to the list and empty the
contents of the <input> @.

www.it-ebooks.info

http://www.it-ebooks.info/

142

6.2

6.2.1

CHAPTER 6 Creating rich animations with effects

The example showcases how you can use effects to teach users how an interface
works. Instead of assuming users knows where the cart is, you use a transfer effect to
draw their eyes in that direction.

Although these types of effects can be powerful, they can also annoy users if used
excessively. As a future enhancement of this form you might consider performing the
animation only on the first one or two additions to the list. After this, the effect is no
longer useful, and may annoy power users who just want to build a grocery list.

In the next section, we’ll continue to look at practical applications of the jQuery UI
effects. This time, instead of looking at the effect () method, we’ll look at how effects
tie into familiar methods from jQuery Core.

Animating visibility changes
One of the most common tasks performed by JavaScript in the browser is showing and
hiding elements. In jQuery Core this is done using three methods: show (), hide (),
and toggle (). jQuery UI enhances these same APIs with the ability to use the effects
and easings you saw in the previous section.

The enhanced APIs for show (), hide (), and toggle () work almost exactly like the
effect () method. As with the transfer effect, this is easier to see in an example.

Building form validation messages

Let’s return to the appointment form you built in chapter 3. Recall that you had a few
errors that the user could run into—specifically, invalid dates and numbers. In chap-
ter 3, you used alerts to show these errors, which isn’t user friendly. Let’s build a more
robust means of displaying these errors in a list, and use effects to show the list at the
appropriate times. The list you’ll build is shown in figure 6.5.

As the form from chapter 3 is lengthy, we won’t dig back into the full source here.
You can view the final state of this example at http://jsfiddle.net/tj_vantoll/Rc4]2/ to
follow along. To implement an error box for this form, you add the following HTML:

The list to contain
the error messages

<div class="ui-state-error">

</div>

— Request Doctor Appointment

» Please provide a valid date.
« Please provide a valid number of days.

Language:

English Espafiol

Figure 6.5 The contact form you built in chapter 3 with a formatted list of error messages.
You'll use the jQuery Ul shake effect to draw the user’s eyes to these messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Animating visibility changes 143

You place this <div> in the appointment <form>, and set its display to none so the
user doesn’t see the error box by default:

.ui-state-error { display: none; }

TIP The ui-state-error class name applies all the styling for the “Please
provide...” box in figure 6.5; no custom CSS is used. This is one of the many
class names that the jQuery UI CSS framework provides. You can view a full
list at http://api.jqueryui.com/theming/css-framework/, and we’ll discuss
these class names when we talk about themes in chapter 7.

Now that you have a box, you have to fill it with error messages. Let’s define a handle-
Errors function for managing error messages. handleErrors accepts an array of error

messages—[], ["Invalid date."], and so on—and figures out how to display them
appropriately. An implementation of this function is shown in the following code:
Gets a reference
function handleErrors(errors) { t°thgconfdner
var container = $(".ui-state-error") .hide(), and hides it
Gets a reference list = container.find("ul").empty();
t°the|“fa“9 if (errors.length === 0) ({ Exits if there
empties it return; are no errors

!
Adds a list item

for each error $.each(errors, function(index, error) (
list.append("" + error + "</lis>"); Shows the
I3 container with
container.show("shake", { times: 2 }, 100); a shake effect

}i

You start by getting a reference to the error container @ and list @. You hide the con-
tainer and empty the list to return each element to its initial state. Next, because you
don’t want to show the error box with no errors in it, you check whether you received
an empty errors array ©. If so, there’s nothing more to do, and you return.

If you did get errors, you have to display them, so you create a new <1i> for each
message and add it to the list @.

The last thing you do is show the error box, and you use the jQuery UI version of
the show () method to do it @. The arguments you pass to show () may look familiar as
they’'re the same ones that the effect () method accepts. The first argument is the
name of the effect, the second is the effect-specific options, and the third is the dura-
tion to use. The fourth argument to show () is a function to run when the animation
finishes, but you don’t need to use it here.

Like effect (), the show() method accepts a single object as an argument. The
same call to show () could be written as follows:
container.show ({

effect: "shake",
times: 2,

duration: 100

I3

www.it-ebooks.info

http://www.it-ebooks.info/

144

6.2.2

CHAPTER 6 Creating rich animations with effects

Although the effects tie into many of jQuery UI and jQuery Core APIs, they use the
same consistent API. You haven’t specifically looked at how hide() and toggle ()
work because the API is identical. The following code hides the same container using
the shake effect

container.hide("shake", { times: 2 }, 100);
and the following toggles it (shows it if it’s hidden, hides it if it’s visible):
container.toggle("shake", { times: 2 }, 100);

Why use an effect? Isn’t it easier to show and hide the error box without any effects?

This example demonstrates the same use of effects you saw in the previous section:
drawing the user’s eyes. Have you been frustrated when you attempt to submit a web
form? This is a common occurrence, and it’s often because forms don’t make error
messages obvious to the user. It helps to use a bright color such as red, but often it’s
not enough. By using a shake effect, you attempt to make the error messages more
obvious by drawing the user’s eyes to them on each failed submission.

Accessible form validation

Although making form validation messages visually stand out improves the usability
of your form, the messages aren’t announced to screen readers; blind users have no
idea there was an issue.

After an invalid form submission, a more robust implementation would move focus to
the first invalid field, and give it an aria-invalid attribute set to true. The imple-
mentation would also place the error message in an alternative DOM element, and
link the message element to the invalid form element using the aria-describedby
attribute. If the date were the only invalid field, you could do that with the following code:

$("#date")
.attr("aria-invalid", true)
.after("Please provide a valid date.")
.attr("aria-describedby", "message")
.focus () ;

You’ll look at how to implement accessible form validation when you build a more
complex form in chapter 11.

To show another use of the jQuery UI effects with the jQuery Core visibility methods,
let’s look at one more example.

Building portlets with jQuery Ul

Portlets are web UI elements that are made to look like desktop application windows.
Like desktop windows, most portlets can be dragged, minimized, and maximized. Port-
lets frequently appear in large web portals and can be used to display anything from
static content to highly dynamic content such as weather reports or sports scores.

www.it-ebooks.info

http://www.it-ebooks.info/

Animating visibility changes 145

jQuery -

jQuery is a fast, small, and feature-rich JavaScript library. It

makes things like HTML document traversal and manipulation,

event handling, animation, and Ajax much simpler with an

easy-to-use API that works across a multitude of browsers.

With a combination ¢ jQuery UI -

changed the way tha
jQuery Ul is a curated set of user interface interactions, effects,

. - e : “Query JavaScript
jQuery Mobile * lteractive web

applications or you just need to add a date picker to a form
control, jQuery UI is the perfect choice.

Figure 6.6 Three portlets, or web Ul elements made to look like desktop windows, built using jQuery
Ul. The user can expand or collapse the content of each portlet using the icon in the top-right corner.

Let’s look at how you create portlets using jQuery UL Figure 6.6 shows an example of
the portlets you’ll build.

The following listing shows the implementation of these portlet controls. The list-
ing only includes the HTML for one portlet window and omits the CSS. The full demo
shown in figure 6.7 is available at http://jsfiddle.net/j_vantoll/5caqN/.

Listing 6.2 Implementation of portlet controls

<div class="portlet ui-widget ui-widget-content ui-corner-all"s>
<div class="portlet-header ui-widget-header">
<button>minimize</buttons>
jQuery
</div>
<div class="portlet-content">
<p>jQuery is a...</p>

</divs>
</div> Makes each portlet
<scripts draggable
S(".portlet")
.draggable ({ handle: ".ui-widget-header", stack: ".portlet" })
.each (function() {
$(this).find("button")
.button ({
icons: { primary: "ui-icon-minusthick" }, Attaches a click
text: false handler to each
3 minimize/maximize
.on("click", function() ({ button
var maximized = $(this) .button("option",
"icons") .primary === "ui-icon-minusthick";
S (this)
. .Update.s t.he .button("option", {
nnnunuehnanquze label: maximized ? "maximize" : "minimize",
button’s options icons: { primary: maximized ? "ui-icon-plusthick":
"ui-icon-minusthick" }
)

www.it-ebooks.info

http://www.it-ebooks.info/

146

CHAPTER 6 Creating rich animations with effects

.parents(".portlet")
.find(".portlet-content").toggle("blind", 200);
P

} Vi Toggles the visibility
</script> of the content with
the blind effect

NOTE Confused about the ui-* class names being used here? Don’t worry,

we’ll cover what each of these do when we talk about the jQuery UI CSS frame-
work in chapter 7.

You start by making each portlet draggable and set two options: handle and stack 0.
The handle option controls which portion of a draggable the user can initiate a drag
from. Because you want to allow users to drag a portlet only by its header, you set han-
dle to a CSS class name that matches it. The stack option manages the CSS z-index
property of draggables so that the currently dragged item is always brought to the
front. If you didn’t use this, and the user were to drag a second portlet on top of the
first, the second would appear behind the first.

Now that the portlets are draggable, you have to make them collapsible. To do this,
you convert their header buttons to button widgets and attach a click event handler
to them @. Inside the handler, you first change the clicked button’s options such that
its icon is switched from plus to minus (or vice versa), and its label is changed from
maximize to minimize (or vice versa) €. Why do you bother updating the label
option—which is the button’s text—for a button with no visible text? Even though the
text is invisible, jQuery UI ensures that it remains accessible to assistive technologies
such as screen readers. The library also places the text in the button’s title attribute,
so even sighted users see the text when they hover over the button. It’s very important
to keep this text up to date, even though it doesn’t visually appear within the button.

After this, you get a reference to the clicked button’s associated content and toggle
it using the blind effect @. The blind effect shows and hides an element by altering its
height vertically or horizontally, much like an accordion widget. Using this effect
helps to mimic the desktop behavior of minimizing windows. Also, the animation
helps tell the user that the content is being collapsed, and not being removed com-
pletely. To ensure this animation doesn’t get in the user’s way, you set the duration to
a quick 200 milliseconds.

NOTE In addition to changing an element’s height, the blind effect uses the
CSS overflow property to prevent the browser from repositioning the ele-
ment’s text as its height changes—producing a smoother animation. As such,
the blind effect works well on elements that contain text.

And that’s all it takes to build portlet controls using jQuery Ul As the API to create
these effects is so simple, it’s easy to experiment with different effects and easings to
customize the experience. Try using the explode or pulsate effects on this example for
a little fun.

www.it-ebooks.info

http://www.it-ebooks.info/

Using effects with the jQuery UI widgets 147

To continue our look at how effects tie into existing APIs, let’s look at how you can
use them directly in the jQuery UI widgets.

6.3 Using effects with the jQuery Ul widgets

If you’ve perused the jQuery UI API documentation, you may have noticed that some
widgets—specifically dialog, tabs, and tooltip—have show and hide options that use
the jQuery UI effects. These options give you an easy way to configure how these wid-
gets are shown and hidden. The values they accept are similar to the arguments you
invoked show (), hide (), and toggle () with, but with a few differences.

6.3.1 The show and hide options

To explore these, let’s use the dialog widget as an example. By default, the dialog wid-
get uses no animations when it opens and closes. Internally, this is because its show
and hide options are set to null. Like all effect-based methods, you can pass an effect
name for these two options. The following code opens a dialog with the puff effect
and closes it with the blind effect:

$("<divs>") .dialog ({
show: "puff",
hide: "blind"

1)
Similar to other effect methods, you can pass an object with the full configuration of
the effect. The following code uses objects for show and hide:

$("<divs>") .dialog ({ . .
show: { Configuration specific to the puff effect. It controls

the size to “puff” out to. In this case, the dialog

effect: "puff", e e . .
puffs out to twice its size when it opens.

percentage: 200,
duration: 3000,

easing: "linear"
111 de: { Configuration specific to the blind effect. It controls the
effect: "blind", sirec.tion th,(,e element i.s pl}lled \.Nhe.n it’s hidden'. Using
ai . . horizontal” means this dialog is hidden from right to left.
irection: "horizontal"

}
1
You can see that the syntax here is the same as the object you can pass to effect (),
show (), hide (), and toggle (). The dialog opens with a puff effect over 3 seconds with
a linear easing. The dialog closes with a blind effect, the default duration (400), and
the default easing ("swing").

Thus far, the show and hide options have used the exact same syntax you’ve already
seen. So what’s different? Unlike the effect methods—effect (), show(), hide (), and
toggle () —the show and hide options offer Boolean and number shorthand.

The Boolean shorthand determines whether a preconfigured animation should be
used. If set to true, the widget uses the jQuery Core fadeIn()or fadeOut () methods
(for show or hide, respectively) with the default duration and easing.

www.it-ebooks.info

http://www.it-ebooks.info/

148

6.3.2

CHAPTER 6 Creating rich animations with effects

The number shorthand determines the duration to use for the animation. It also
uses fadeIn() or fadeOut () and the default easing.

The following example creates a dialog that uses each of these shorthands. It
opens with a fade-in animation over the default 400 milliseconds and closes with a
fade-out animation over a full second:
$("<div>").dialog({

show: true,
hide: 1000

) ;

The Boolean and number shorthand for these options are provided because they’re
the most common animations used. Setting show and hide to true is a way to use a
small animation to improve the visual appeal of your widgets. But if this is the case,
why might you want to use the more advanced options? Let’s look at an example
where they make sense.

NOTE Although we didn’t specifically look at the tabs and tooltip widgets, the
configuration for the show and hide options is identical. In fact, the imple-
mentation of these options is in the widget factory directly. You can use these
options and effects in custom-built widgets. We’ll start looking into custom
widgets in chapter 8.

Showing a message in a dialog

To show more advanced options in actions, let’s return to the fruit and vegetable sort-
ing example you built in the previous chapter. To help you remember the game, an
image of it is shown in figure 6.7.

In your implementation of the game, we didn’t discuss the instructions, which are
a sentence located above the game itself. The current instructions have one problem:
they don’t stand out in any way; therefore, users can easily miss them. Although you
could make the instructions stand out visually—with bright colors or a bigger font
size—that would distract the user during the game itself. Let’s try a different
approach: showing the instructions in a dialog.

The fruits and vegetables aren't sorted correctly —rearrange them!

Fruits Vegetables
+ Banana * Olives
« Fig ¢ Tomato
e Lemon ¢ Onion
e Orange « Spinach
» Pumpkin
¢ Broccoli Figure 6.7 The fruit and vegetable game you
« Carrot built in chapter 5. Notice that the instructions
e Celery are not especially noticeable—a user can easily
e Garlic miss them.

www.it-ebooks.info

http://www.it-ebooks.info/

Using effects with the jQuery UI widgets 149

The HTML for the instructions is a paragraph tag:
<p>The fruit and vegetables aren't sorted correctly—-rearrange them!</p>

You’ll start by converting this paragraph to a dialog as the first thing in your game’s

JavaScript:
$("p").dialog() ;

The display of this dialog is shown in
figure 6.8.

Although this does make the
instructions stand out, several things
aren’t ideal here:

= The user can interact with the
game while the dialog is still
open.

= The user can only close the dia-
log using a small 20-pixel-wide
close button.

Fruits Vegetables

+ Banana * Broccoli

+ Fig + Com

* Kiwi S

+ Lemon x
* Orange

« Tomato

« Carrot .

« Pea The fruits and vegetables

aren't sorted correctly—
rearrange them!

Figure 6.8 Showing the instructions for the game
pulls them out of the main content and makes them
stand out to the user.

= The user sees this dialog every time a new game starts. You want users to see the

dialog only once.

Let’s add effects and options to your dialog to improve the user experience. The next

listing shows an updated dialog.

NOTE You can view the updated game at http://jsfiddle.net/tj_vantoll/
MaKKX/. Note that the sessionStorage check is commented out because it
makes the example difficult to test. You can uncomment the check to see its effect.

Listing 6.3 A message dialog with instructions

if (!sessionStorage.getItem("messageViewed"))
$("p").dialog({
show: {
effect: "scale",
easing: "easeOutElastic",
duration: 750
b
hide: {
effect: "scale",
Hides the duration: 100
dialog with },

a scale effect modal: true,

Shows the message only
if it hasn’t been viewed

Shows the
dialog with a
scale effect

Uses a modal
dialog

title: "Fruit & Vegetable Sorter",

width: 400,

buttons: { Creates an
OK button

"OK": function() {

$(this).dialog("close");

}

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/MaKKX/
http://jsfiddle.net/tj_vantoll/MaKKX/
http://www.it-ebooks.info/

150 CHAPTER 6 Creating rich animations with effects

b

close: function()
sessionStorage.setItem("messageViewed", true); Records that
} the message has
1 been viewed

}

You start with a check to make sure that the user hasn’t already seen the message @.
We’ll discuss how this works momentarily.

Next, you create your dialog with several more options set. First, you define a scale
effect to use when showing @ and hiding @ the dialog. Using a scale effect when dis-
playing the dialog makes it jump out and grab the user’s attention. To make the dialog
stand out even more, you use an easeOutElastic easing, which runs the first part of
the animation quickly.

When the dialog closes, you also use the scale effect. The goal here is slightly dif-
ferent than when you opened the dialog. Because the scale effect shrinks the dialog to
hide it, it draws the user’s eyes in the direction of the game, which is where the user
should look after reading the instructions. You set the duration to a tiny 100 millisec-
onds to get the dialog out of the way of the game quickly.

After this, you set the modal option to true @ to prevent the user from interacting
with the game until the dialog is closed. Modal dialogs place a semitransparent overlay
over the content behind the dialog while it’s displayed. Because the overlay grays out
the game a bit, this is yet another technique for grabbing the user’s attention.

Next, you set the buttons option to create an OK button that allows the user to
close the dialog @. This gives the user a far bigger target to close the dialog with,
which is important on small screens such as mobile devices.

As a last step, you specify a close event callback that sets a "messageViewed" vari-
able in sessionStorage @. How does sessionStorage work?

You may recall from earlier chapters that localStorage is a means of storing key-
value pairs in the browser. sessionStorage and localStorage share an identical API
and behave the same way, with one important difference: localStorage is persisted
indefinitely, but sessionStorage is only persisted for the user’s session. After the user
closes the browser, or the page’s tab, sessionStorage is emptied. If you open the
game, close the instructions, and refresh the page, you don’t see the instructions
again. But if you open the game in a new tab, you do.

sessionStorage makes sense for your example because, although you don’t want
the user to see the instructions on subsequent plays of your game, you do want the
user to see them when returning to the game the next day, or next month.

The updated version of your dialog is shown in figure 6.9.

This example shows how the jQuery UI effects can be used in a practical manner to
enhance an application. In this case, with a few lines of configuration you took static
instructions and made them bounce out and grab the user’s attention. To avoid
annoying users, you showed the instructions once per session, made the instructions
easy to close, and used a short duration on the hide effect.

www.it-ebooks.info

http://www.it-ebooks.info/

6.4

6.4.1

Animating CSS class name changes 151

Fruits Vegetables

¢ Avocado « Fig

e Banana e [.emon

+ Apple .

. Kiwi Fruit & Vegetable Sorter x
¢ Tomato

e Green B)

e Kale The fruits and vegetables aren't sorted

= Spinach correctly—rearrange them!

OK

Figure 6.9 The updated version of the instructions dialog does two things to draw the user’s attention:
it uses an effect to jump off the page, and it uses a modal dialog to gray out the rest of the content. This
dialog includes an OK button, which makes it easy for the user to close the dialog to get to the game.

Before we complete our look at effects, we need to look at one last way they integrate
with existing APIs.

Animating CSS class name changes

Like showing and hiding elements, another extremely common operation in web
development is managing CSS class names to control the display of DOM elements. Up
until CSS3 transitions—which we’ll look at in the next section—it was impossible to
transition between the values specified by the class name. If you have a <div> with a
top of 100px, and then add a class name that changes it to 200px, the <div> doesn’t
animate to its new position; it instantly hops 100 pixels.

jQuery UI makes these transitions easy by extending familiar methods from jQuery
Core. Specifically, it extends the addClass(), removeClass (), and toggleClass ()
methods. Let’s see how.

Enhancing addClass(), removeClass(), and toggleClass()

As an example of how jQuery UI enhances jQuery Core, the following code animates a
<div> from a 50 x 50-pixel box to a 100 x 100-pixel box over a full second:

<style>
div {
height: 50px;
width: 50px;
background: red;

www.it-ebooks.info

http://www.it-ebooks.info/

152

CHAPTER 6 Creating rich animations with effects

div.big {
height: 100px;
width: 100px;
}
</style>
<divs</divs>
<script>
$("div").addClass("big", 1000);
</scripts>
The same as the other effect methods you've seen, each of the three class name
manipulation methods that jQuery UI extends has two forms.

The first—and the one used in the previous example—specifies each property
individually in the order of class name, duration, easing, and complete callback func-
tion. The following code also increases the size of the <div>, but does so over 2 sec-
onds with a 1inear easing and logs a message when the animation completes:

$("div").addClass("big", 1000, "linear", function() {
console.log("complete");

1
The other form of the class name manipulation method takes an object. The previous
example could also be written as follows:

$("div").addClass("big", {
duration: 1000,
easing: "linear",
complete: function() ({
console.log("complete");
}

I3

TIP To hit the jQuery UI extensions of the jQuery Core class name methods,
you must pass at least two arguments. $ ("div") .removeClass("big", 1000
) performs a transition, but $ ("div") .removeClass ("big") doesn’t. If you
want a transition but don’t need any customization, you can pass an empty
object, for instance, $ ("div") .removeClass ("big", {}).

If you’ve used the jQuery Core animate () function before, you may know that you
can perform these exact same effects with it. The following code has the same func-
tionality—growing the <div> to 100 x 100 with a linear easing and logging when it
finishes—using animate () instead of addClass():

$("div") .animate ({
height: 100,
width: 100

}, 1000, "linear", function() {
console.log("complete")

3

Because the end result is exactly the same, why use CSS class names? To explore this,
let’s look at an example that has become popular lately: off-canvas navigation.

www.it-ebooks.info

http://www.it-ebooks.info/

6.4.2

Animating CSS class name changes 153

Animating multiple class names simultaneously

One little-known fact about the jQuery Core class name manipulation methods is that
they can operate on multiple class names simultaneously. The following adds three
class names to all paragraphs. In accordance with the HTML class attribute, the
class names need to be space delimited:

$("p").addClass("red big spaced");

The jQuery Ul class name—-based animations also work with multiple class names,
and provide a powerful means to combine several class names in a single animation.
The following code performs a single animation that transitions the color, font-
size, and padding on a paragraph over 3 seconds:

<style>
.red { color: red; }
.big { font-size: Sem; }
.spaced { padding: lem; }

</style>
<p>jQuery UI Rocks!</p>
<scripts>
$("p").addClass("red big spaced", 3000);
</scripts>

Building an off-canvas navigation menu for mobile

If you’ve browsed the web on a mobile device, you’'re almost certainly familiar with off-
canvas navigation menus. These menus are initially hidden and “fly-out” over the
main content after the user takes an action—usually clicking a link or button. Because
the menus are initially hidden, they’re popular on mobile and responsive sites as they
help conserve limited space.

The off-canvas navigation menu you’ll build is shown in figure 6.10.

Settings

———

Profile

Payment

Favorites

¢« Close

Figure 6.10 An off-canvas navigation menu for settings shown on a mobile device. Click-
ing the Settings button displays the menu. Clicking the Close button hides it.

www.it-ebooks.info

http://www.it-ebooks.info/

154

CHAPTER 6 Creating rich animations with effects

How do these menus work? The most common way of implementing them is by ani-
mating the CSS left property. You give the menu an initial, negative left value that

positions it off the screen, then update it to 0 after the button is clicked to show it.
Your implementation of this menu uses this approach and is shown in listing 6.4.

NOTE Some of the visual CSS and boilerplate HTML is omitted from this list-
ing for simplicity. The full source of this demo can be viewed online at http://
jsfiddle.net/tj_vantoll/4ytAn/ or in the book’s code examples.

Listing 6.4 An off-canvas navigation menu

<style>
#menu { o
position: absolute; The initial left
left: -200px; of the menu
top: 0px;
width: 200px;
}
#menu.visible { The updated left
left: 0; of the menu
}
</style>
<header> The button to
<button>Settings</buttons open the menu
</header>
<div id="menu">
<h3>Settings</h3>
... The button to
<button>Close</button> close the menu
</divs>
<scripts>
$("header button") .button ({
icons: { primary: "ui-icon-gear" }
I3
$("#menu button") .button ({
icons: { primary: "ui-icon-closethick" } i
1) 43 A click handler
$("button").on("click", function() ({ for each button
$("#menu") .toggleClass("visible", 300, "easeOutQuint");
1)
</script> Toggles the visible class to

show and hide the menu

NOTE This example doesn’t display correctly in Internet Explorer versions
earlier than 9 because it uses the HTML5 <header> element. You can add sup-
port for the new HTML5 semantic elements in Internet Explorer versions ear-
lier than 9 using the HTMLS5 shiv. See https://github.com/aFarkas/html5shiv
for details.

You start with the menu positioned ata left of -200px @, which—because the menu
is 200 pixels wide—places it off the screen. Next, you define a visible CSS class name

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/4ytAn/
http://jsfiddle.net/tj_vantoll/4ytAn/
http://www.it-ebooks.info/

Animating CSS class name changes 155
S S

that has a left value of 0 @, which, when applied, places the menu completely within
the visible viewport on the left-hand side of the screen.

In this example’s JavaScript, you attach a click event handler to each of the two
buttons on the page ©. In the handler, you toggle the "visible" class name using the
toggleClass () method @. This uses the jQuery UI extension to the jQuery Core
toggleClass () methods, and jQuery UI animates all properties associated with the
change—in this case, left. You use a short duration (300 milliseconds) and an easing
that accelerates the first part of the animation ("easeOutQunit") so that the user sees
the menu quickly.

This example demonstrates why the class name changes are cleaner than using a
more low-level method such asanimate () . For one, your JavaScript code is easier to read.
Someone unfamiliar with this codebase will have an easier time understanding code that
adds a "visible" class name than code that hardcodes individual CSS properties.

More importantly, using CSS class names to drive animations helps you group your
code and separate your concerns. The JavaScript controls the state of the menu
(whether or not it’s visible), and your CSS defines what that state means visually. This
gives you more flexibility with the maintenance of this application. If you want this
menu to come in from the right-hand side of the screen, you don’t have to change any
JavaScript code.

This CSS-driven approach to animations is so powerful that jQuery UI effects have
inspired changes to the web platform directly, via CSS3 animations and transitions. In
the next section, we’ll look at how the native transitions work and whether you should
be using them today.

Animating colors with jQuery Ul

jQuery Core doesn’t have the ability to animate the color of elements. For example,
if you run $("*") .animate ({ color: "red" }) on a page with only jQuery Core
loaded, nothing happens. jQuery Ul adds this support through the jQuery color plugin,
which is packaged with the library.

You can animate colors using the jQuery Core animate () function or with the CSS
class manipulation methods we looked at in this section. The color plugin supports
colors as hex values, rgb (), rgba (), and valid CSS color names like "red" and
"blue". The following code animates a number of CSS color properties on a <div>
over 2 seconds:
<style>
div {
border: 10px solid black;
outline: 10px solid black;

div.rainbow {

background: #FF0000; <— Red
border-color: yellow;
color: rgb(0, 0, 255); <— Blue

outline-color: green;

www.it-ebooks.info

http://www.it-ebooks.info/

156

6.5

6.5.1

CHAPTER 6 Creating rich animations with effects

(continued)
</style>
<div>jQuery UI Rocks!</divs>
<scripts>
$("div") .addClass("rainbow", 2000) ;
</script>

A full list of the properties supported and additional documentation can be found on
the color plugin’s documentation at https://github.com/jquery/jquery-color.

Effects vs. CSS3 animations and transitions

Like many of the jQuery UI widgets, some of the functionality offered by the jQuery UI
effects is now natively implemented in many browsers. Whereas the widget equivalents
have been incorporated in the HTML specification, the effect equivalents have
inspired changes in the CSS specification—specifically, CSS animations and transi-
tions. Let’s look at CSS3 transitions first.

CSS3 transitions vs. the jQuery Ul class name methods

CSS3 transitions provide a way to control changes to CSS properties. Transitions are
often associated with class names; they’re best compared to the jQuery Ul versions of
the addClass (), removeClass (), and toggleClass () methods.

The following listing shows two identical transitions of text from black to red. One
uses the jQuery UI class name animations, and the other uses CSS3 transitions.

Listing 6.5 Comparison of class name animation in jQuery Ul and CSS3

<style>
#css |
-webkit-transition: color 5000ms linear;
transition: color 5000ms linear; CSS rule
} declaratifn)s
.red { color: red; } for transition
</style>

<p id="ui">jQuery UI</p>
<p id="css">CSS3</p>
<scripts>
$("#ui") .addClass("red", {
duration: 5000,
easing: "linear",
complete: function() {
console.log("ui animation complete");
}

Event handler
transitionend

P
$("#css") .addClass("red") jQuery Ul class
.on("webkitTransitionEnd transitionend", function() { "ame_'l.’ased
transition

console.log("css transition complete");

)

</scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

Effects vs. CSS3 animations and transitions 157

The jQuery UI method should look familiar, as it’s the same code you’ve looked at in
this chapter. The CSS-based transition, however, may look a bit odd at first. To start,
the configuration for the transition is in CSS rather than JavaScript. Let’s look at each
of the pieces of the transition CSS rule O:

= color—The property name to transition. This can list specific property names
as is done here, or the keyword all to transition all property changes.

= 5000ms—The equivalent of the duration property from jQuery UL The one dif-
ference is that in CSS you must also provide the unit (s for seconds and ms for
milliseconds).

= linear—The equivalent of the easing property from jQuery Ul CSS provides
ease, ease-in, ease-out, ease-in-out, and linear easings. The default value
is ease.

This one line is all you need to configure the transition. But the code has two lines of
CSS: a transition and a -webkit-transition. What is this about?

Originally, most major browsers—specifically, Firefox, Chrome, Safari, Opera, the
default Android browser, and iOS Safari—implemented CSS3 transitions behind a ven-
dor-specific prefix. The prefixes have now been removed in the latest version of all
browsers, although older versions of several WebKit-based browsers still receive signifi-
cant use—most notably the default Android browser, which didn’t remove the prefix
until Android 4.4, and has a considerable market share. For this reason, the transi-
tion rule must be explicitly stated twice—once with the -webkit- prefix and once
without it.

NOTE You can view more thorough documentation on which browser ver-
sions use vendor prefixes for CSS transitions at http://caniuse.com/#feat=css-
transitions. Note that Internet Explorer implemented transitions without a
prefix in Internet Explorer 10.

The last part of this example is the equivalent of the jQuery UI effect complete prop-
erty: the transitionend event @. As the name implies, the transitionend event is
fired when a CSS transition completes. As with the transition CSS property, you
must additionally listen for a vendor-specific event name for more comprehensive
browser support.

Which approach should you use?

In general, CSS3 transitions are preferred over jQuery-based transitions as the
browser can execute the CSS-based ones faster. On desktop browsers, the perfor-
mance difference is of little concern, as the browser can perform most JavaScript and
CSS-based transitions effortlessly, but on mobile browsers, the device’s limited pro-
cessing power makes the performance difference pronounced. If you're developing
applications for the desktop, it makes sense to use whichever approach works best for
you; but if you’re developing for mobile use, lean toward CSS-based transitions for
optimal performance.

www.it-ebooks.info

http://caniuse.com/#feat=css-transitions
http://caniuse.com/#feat=css-transitions
http://www.it-ebooks.info/

158

6.5.2

CHAPTER 6 Creating rich animations with effects

Computer scientist Donald Knuth famously said that “premature optimization is
the root of all evil,” and that sentiment applies here. Test your applications on the
devices that you support. Start with the transition approach that you prefer, and if you
don’t notice any performance issues, then it’s not worth worrying about.

Although browser support for CSS transitions is good, you need to provide vendor
prefixes for some browsers, and Internet Explorer versions earlier than 10 have no
support. If it’s important to you to have functioning transitions in these browsers, stick
with the jQuery UI class name-based transitions.

Next, we’ll compare another CSS3 feature, animations, to the jQuery UI effects.

CSS animations vs. effects

CSS3 animations offer more power than simple transitions. Instead of changing a
property from one value to another, you can control the value of multiple properties
at different intervals. In this sense, CSS animations are more like the jQuery UI effects.
Consider the shake effect. One of the positioning properties (left, right, top, or
bottom) must be changed in several directions over the course of the animation. It’s
not as simple as changing a property from one value to another.

The best way to compare effects to animations is with an example. The following
listing shows two paragraphs. One is shaken with the jQuery UI shake effect, and the
other is shaken with a CSS animation.

Listing 6.6 Comparing CSS animations to the jQuery Ul effects

<style>
@-webkit-keyframes shake { ... } The same content as the
@keyframes shake { T unprefixed @keyframes
0% { left: 0; } declaration

12.5% { left: -20px; }
25% { left: 0; }

37.5% { left: 20px; }
50% { left: 0; } Defines the shake
62.5% { left: -20px; } CSS animation
75% { left: 0; } keyframes
87.5% { left: 20px; }
100% { left: 0; }

}

#ess | Specifies the
position: absolute; animation
-webkit-animation: shake 1s linear; rule

animation: shake 1s linear;
1
</style>
<p id="css">CSS3</p>
<p id="ui">jQuery UI</p>

<script>
$("#ui") .effect("shake", {
times: 2, Uses a jQuery
duration: 1000, Ul shake effect

easing: "linear",

www.it-ebooks.info

http://www.it-ebooks.info/

Effects vs. CSS3 animations and transitions 159

complete: function() {

console.log("ui shake complete"); UsesaiQuery
D 1 Ul shake effect
S("#css").on("webkitAnimationEnd animationend", function() {

console.log("css shake complete");

I3

</script> Attaches an animationend

event handler

The jQuery Ul-based shake effect should look familiar. You shake a paragraph two
times over a second with a 1linear easing. As with CSS transitions, CSS animations can
be tricky to understand if you haven’t seen them before.

The e@keyframes declaration defines the animation and gives it a name—in this
case, shake @. Each keyframe, or entry in the @keyframes declaration, defines the
CSS rules to be applied to selected elements during the animation. For the shake ani-
mation, you see that the left property is moved in 20-pixel increments back and forth
to mimic the jQuery Ul shake effect (whose default distance property is set to 20).

After you have a CSS animation defined with ekeyframes, you apply animation
rules to elements. The syntax for animation is similar to that of the transition prop-
erty you saw earlier. The shake 1s linear value specified tells the browser to perform
the shake CSS animation on this element over 1 second using a linear easing @.

Finally, you listen for the animationend event to show the equivalent of the jQuery
UI complete function €.

As with CSS transitions, most browsers initially implemented CSS animations
behind a vendor prefix. However, many browsers have yet to drop the prefix. As of this
writing, the latest versions of Chrome, Safari, Opera, the default Android browser, and
i0S Safari all use the -webkit- prefix for CSS animations. Firefox dropped its -moz-
prefix in version 16, and Internet Explorer 10 shipped with CSS animations unpre-
fixed. The @keyframes declaration, animation property, and animationend event
used in this example all include a WebKit vendor-prefixed version.

Because the example creates identical animations, this again begs the question of
whether you should be using jQuery UI or CSS. Unfortunately, there is no easy answer.

As with CSS transitions, the browser can perform CSS animations quicker, so if
you’re experiencing performance issues, you should look to CSS animations first.
Desktop browsers can run the majority of JavaScript-based animations without issue,
but mobile browsers may have issues—particularly with complex animations that
require a great deal of processing power.

Although CSS transitions are succinct, CSS animations are verbose and more diffi-
cult to configure than the convenient APIs provided by jQuery UL You need to do
math to configure the @keyframes in the previous example, but not with the jQuery
Ul effect. The jQuery UI APIs are more convenient when they hook directly into wid-
gets. Although you could configure a CSS animation to open a dialog with a blind
effect, using $ ("<div>") .dialog({ show: "blind" }) is much easier and more main-
tainable in a large application.

www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Creating rich animations with effects

To complicate things further, some things can be done using the jQuery UI effects
that can’t be done with CSS animations, and vice versa. You can’t write a CSS animation
that makes a <div> explode into 100 pieces:

S("<div>")
.appendTo ("body")
.css ({ height: 500, width: 500, background: "red" })
.effect ("explode", { pieces: 100, duration: 10000 });

On the flip side, no jQuery UI effect lets you infinitely spin a <div> in three dimen-
sions, as this code does:

@-webkit-keyframes spin-3d {
50% {
-webkit-transform: rotateX(360deg) rotateY(360deg)
skewY (180deg) ;

}
100% {

-webkit-transform: rotateX(0Odeg) rotateY(0Odeg) skewY(0deg);
}

}

@keyframes spin-3d {
50% {
transform: rotateX(360deg) rotateY(360deg) skewY(180deg) ;
1

100% {
transform: rotateX(0deg) rotateY(0deg) skewY(0Odeg);
}

div {
height: 500px;
width: 500px;
background: red;
position: absolute;
-webkit-animation: spin-3d 10s linear infinite;
animation: spin-3d 10s linear infinite;

TIP For more examples of using 3D in CSS, as well as an excellent tutorial on
how to build your own, see http://desandro.github.io/3dtransforms/.

Unfortunately, it’s not easy to handle this overlapping behavior. To summarize, the
advantages of using CSS-based animations are

= They provide optimal performance.
= They’re defined in CSS and can be used without JavaScript.

and the detriments are

= They can be verbose, especially for complex animations.
= You must specify vendor prefixes when using them.
= They don’t work in older browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

6.6

Summary 161

If performance is critical, use CSS animations. If browser support is important, stick to
jQuery UL Otherwise, use whichever makes more sense for you and your projects.

TIP If you need the performance of CSS transitions and animations, but
prefer the jQuery syntax for performing animations, there are several plu-
gins that provide a jQuery-like animation syntax, but use CSS under the
hood for optimal performance. The two most popular of these plugins are
Velocity.js (https://github.com/julianshapiro/velocity) and jQuery Transit
(http:/ /ricostacruz.com/jquery.transit/).

Summary

jQuery UI includes 15 effects that can be used with the effect () method, integrate
with jQuery UI widgets, and even tie into jQuery Core methods such as show () and
hide (). The jQuery Ul effects also add functionality such as advanced easings and the
ability to animate class name changes. But just because these effects let you do crazy
things doesn’t mean that you should.

You saw a number of reasons why effects are practical in real-life applications. You
built a small grocery list builder that used the transfer effect to help the user learn the
interface. You added the shake effect to an error box in a form to draw the user’s
attention. You also moved a game’s instructions into a dialog for a similar effect.

As with many of the jQuery UI widgets, the jQuery UI effects have inspired similar
functionality on the web natively as CSS transitions and animations. You looked at how
these worked and compared them to the jQuery UI effects. CSS-based transitions and
animations are faster, but they can be more verbose and don’t work in all browsers yet.

Now that you’ve seen the powerful ways jQuery UI lets you animate elements, let’s
look at the tools the library provides to style elements with themes.

www.it-ebooks.info

http://www.it-ebooks.info/

Theming and styling
applications with jQuery Ul

This chapter covers

= Using the jQuery Ul themes
= Building custom themes with ThemeRoller
= Styling with the jQuery Ul CSS framework

We’ve discussed the widgets in jQuery UI and how they work, but we’ve yet to dis-
cuss an important part of any set of UI widgets: how they look.

jQuery Ul includes a theming system that makes it easy to apply a consistent
look to all widgets. The library includes 24 prebuilt themes, as well as an online tool
for customizing them.

The library’s theming system is implemented as a series of CSS class names, col-
lectively known as the jQuery UI CSS framework. The class names in the CSS frame-
work let you create themeable components, as well as perform a number of
common web development tasks such as styling error messages, using any of the
jQuery UI icons, and styling widgets based on their state. We’ll discuss what these
class names are, how to use them, and the powerful things you can do with them.

162

www.it-ebooks.info

http://www.it-ebooks.info/

7.1

Using built-in and custom themes 163

Each individual widget uses a separate set of class names to allow for widget-specific
customization. We’ll end the chapter by looking at what widget-specific class names are
available and how they work.

Before digging into the jQuery UI CSS class names, let’s look at how to use the
themes built in to jQuery UL

Using built-in and custom themes

Thus far, all widgets you’ve used in this book have had a grayish appearance because
you’ve been using the default jQuery UI theme: smoothness. The smoothness theme,
and its grayish appearance, was designed to easily integrate into existing sites because
it’s a lot easier to drop a gray datepicker into an existing design than a bright red one.
But wait, how did you specify which theme to use?

Recall the example boilerplate introduced in chapter 1:

<!doctype htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<titles>..</title>
<link rel="stylesheet” href="http://code.jquery.com/ui/1.11.0/themes/

smoothness/jquery-ui.css">
</head> Imports the

<body> smoothness theme

</body>
</html>
The smoothness string in the path is what selects the theme to use for this page. To use
a different theme, replace smoothness with the name of another theme. Importing
http://code jquery.com/ui/1.11.0/themes/le-frog/jquery-ui.css uses the le-frog theme.

The one limitation of changing the file names is you can’t view multiple themes simul-
taneously to compare them, but don’t worry—for that there’s ThemeRoller, an online
tool for previewing the provided themes as well as designing your own. ThemeRoller is
available at http://jqueryui.com/themeroller/ and is shown in figure 7.1.

When you first visit ThemeRoller, the best place to begin is the Gallery tab @. The
tab lets you preview all 24 jQuery UI themes and see the effect they have on each
jQuery UI widget live. Despite the many options, it’s unlikely that a theme will work
perfectly for you without any alterations.

After you've found a theme you like, switch to the Roll Your Own tab. Here you can
make customizations—including font, colors, and borders ®—to the theme youselected.

WARNING Despite years of trying, your author’s artistic skills remain compa-
rable to the average five-year-old with a box of crayons. As a result—as much
as I would love to—this book won’t give advice on how to choose colors for
your apps. Several online resources can help you, though. Adobe Kuler pro-
vides a series of color selections that you can experiment with. See https://
kuler.adobe.com/explore/.

www.it-ebooks.info

https://kuler.adobe.com/explore/
https://kuler.adobe.com/explore/
http://www.it-ebooks.info/

164

CHAPTER 7 Theming and styling applications with jQuery Ul

Choose an existing
theme to start with.

Accordion

¥ Section 1

a

Mauris mauris ante, blandit e
Vivamus nisi metus, molestic
a nibh. Donec suscipit eros. |
malesuada. Vestibulum a vel

Download your
custom theme.

» Section 2
» Section 3
Tabs
Customize your
theme by altering First Second | Third

the CSS properties
in the sidebar. Lorem ipsum dolor sit amet, c

- incididunt ut labore et dolore 1

| 2030303 JEEEEEE

nostrud exercitation ullamco |

Figure 7.1 The steps needed to build a jQuery Ul theme with ThemeRoller. First, select a starting theme
on the Gallery tab, then customize it by playing with CSS properties in the sidebar. As a final step, download
the theme with the Download theme button.

The nice thing about ThemeRoller is you can visually see the effect a CSS property
change has on all widgets instantly; they rerender themselves as changes are made.
This is shown in figure 7.2.

Accordion Button
 Section 1 A button dement
A

Mauris mavris ante, Mandit et, uitrices a, suscipit apt.

ei'lmm."]mrlqcr . ncqu. Vivamus nisi metus, molestic vef,

gravida in, condimentum sit amet, nunc. ‘J‘J';l'm a ruﬁ'fl. Autocomplete
Donee suscipit eros. Nam mi. Proin viverra (eo ut odio.

Curabitur malesuada. Vestibulum a velit cu ante

scelerisque vulpurare. c

C++

coldfusion

Figure 7.2 Asyouchange CSS properties in ThemeRoller, all widgets are automatically updated to display
the change. Here, the font family is changed to cursive, and all widget text changes to cursive instantly.

www.it-ebooks.info

http://www.it-ebooks.info/

Using built-in and custom themes 165

Theme
Select the theme you want to include or design a custom theme
Custom Theme

€55 Scope: .
Figure 7.3 The theme selector on

the jQuery Ul Download Builder with
a custom theme from ThemeRoller
selected. You can use a CSS Scope

to scope the theme to a specific part
of a page.

If you like your changes and want to use them, click the Download theme button on
the Roll Your Own tab @ (in figure 7.1). This sends you to the jQuery UI Download
Builder with your custom theme preselected. If you scroll to the bottom of the Down-
load Builder, you’ll see the screen shown in figure 7.3.

The CSS Scope input sets a scope that the custom theme should be limited to. If
you use a CSS scope of div#sidebar, the theme’s CSS rules only apply in a <div
id="sidebar"> element. In the vast majority of situations, you won’t need a CSS scope;
it makes sense only if you want to use multiple themes on one page.

Clicking the Download button downloads a zip file containing the files shown in
figure 7.4.

What are those jquery-ui.structure.css and jquery-ui.theme.css files? jQuery UI
breaks its CSS rules into two categories: structural (margin, width, height, and so
forth) and theming (the ones you configured in ThemeRoller). These rules are
placed into jquery-ui.structure.css and jquery-ui.theme.css, respectively. This gives you

v [jguery-ui-1.11.0.custom iQuery Core
v [external

v [jguery

= jciir‘_.fjf./— Images the theme relies on

> D images / Test page containing all widgets

index.html

Jjguery-ui.css

=, jguery-ui.js

5T jguery-ui.min.css

=, jguery-ui.min.js CSS files for custom theme
jquery-ui.structure.css
jguery-ui.structure.min.css
Jguery-ui.theme.css
Jjauery-ui.theme.min.css

| |

| |

Figure 7.4 The contents of a jQuery Ul download with a custom theme. The jquery-ui.css and jquery-
ui.min.css files contain the CSS for the theme (jquery-ui.min.css is minified and jquery-ui.css is not),
the images directory contains images that the theme depends on, and index.html is a demo page
where you can see how all of the jQuery Ul widgets look with your theme.

www.it-ebooks.info

http://www.it-ebooks.info/

166

7.2

CHAPTER 7 Theming and styling applications with jQuery Ul

the ability to manage multiple themes without duplication, as jquery-ui.structure.css
remains the same regardless of which theme you use. Unless you plan on managing
multiple themes—and the majority of developers don’t—use jquery-ui.css, as it’s the
structure and theme concatenated together.

If you open jquery-ui.css, you’ll see that it starts with the following comment block:
/*! jQuery UI - v1.11.0 - 2014-01-01
* http://jqueryui.com
* Includes: core.css, draggable.css,
* To view and modify this theme, visit http://jqueryui.com/themeroller/

?ffDefault=Verdana. ..

* Copyright 2014 jQuery Foundation and other contributors; Licensed MIT */
The key part is the URL starting with http://jqueryui.com/themeroller/. If you navi-
gate to this URL in your browser, you go to ThemeRoller with all your custom changes
in place. This is great for keeping your theme up to date as new versions of jQuery Ul
are released. When jQuery Ul x.y.z comes out, you can import your theme, see how it
looks with the updated library, and then download an updated CSS file with your
changes preserved.

TIP In general, it’s a bad practice to directly edit a ThemeRoller-built CSS
theme file. Leaving the file intact makes it easier to upgrade when new ver-
sions of jQuery UI are released. Create a new CSS file for your application,
and do any additional styling there.

Although ThemeRoller is a great starting point for styling applications, you can’t do
everything in it. You’re limited to specific CSS properties, and you can’t target individ-
ual widgets. ThemeRoller is just the beginning of the styling capabilities provided by
jQuery UL

To see other things that are possible, let’s dig into the jQuery UI CSS framework.

Third-party themes

In addition to the themes provided in jQuery Ul, a number of themes created by the
jQuery community are available. The most popular of these is jQuery Ul Bootstrap,
which integrates the popular Bootstrap library with jQuery Ul. You can learn more
about Bootstrap at http://getbootstrap.com/ and check out jQuery Ul Bootstrap at
http://jquery-ui-bootstrap.github.io/jquery-ui-bootstrap/.

Using the jQuery Ul CSS framework to customize applications

jQuery UI comes packaged with a full CSS framework with CSS class names that serve a
variety of purposes. To get a sense of the names, a full list is documented at http://
api.jqueryui.com/theming/css-framework/.

In this section, we’ll go over the class names and what you can do with them. The
main three categories of class names are widget containers, interaction states, and
interaction cues. We’ll go over each, starting with widget containers.

www.it-ebooks.info

http://api.jqueryui.com/theming/css-framework/
http://api.jqueryui.com/theming/css-framework/
http://www.it-ebooks.info/

7.2.1

Using the jQuery UI CSS framework to customize applications 167

TIP To avoid naming conflicts, every class name used by jQuery starts with a
ui- prefix. Names are lowercased, and words are separated with hyphens—
for instance, ui-widget-content.

Styling widget containers

The first set of class names creates a visual consistency between the widgets used in an
application. This set has only three class names, so they’re not too hard to remember:

= ui-widget—Class name applied to the outer container of all widgets.

= ui-widget-header—Class name applied to header containers.

= ui-widget-content—Class name applied to content containers. The content
container can be the parent or sibling of a ui-widget-header.

Internally, jQuery UI consistently applies these class names to all its widgets. Fig-
ure 7.5 shows how the class names are applied to a few widgets. The solid border is
around the ui-widget-header element, and the dotted black border is around the
ui-widget-content element.

In the case of the tabs, dialog, and datepicker widgets, the ui-widget-content
class name is on the outer container of the widget. The accordion widget places ui-
widget-content on each content pane.

NOTE Ingeneral, ui-widget-content is placed on the outer widget container
as it’s desirable to have a border around the whole widget. If you don’t want a
border—as with the accordion—it’s placed on a separate child element.

:IIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘ E x® E
E Tab E E E
: : L] Content -
E Content E S I EEEEEEEEEEEEEEEEEEEEEEEEEEEERF
:IIIIIIIIIIIIIIIIIIIIIIIIIIIIII: [—————————————————

o December 2013 o

~ Tab

Su Mo Tu We Th Fr Sa

-

: Content il 23 a5l 67

S EEEEEEEEEEEEEEEEEEEEEEEEERNERP 8 g 10 11 12 13 14
15 16 17 18 19 20 21
22|l 23]l-24]| 25} 26]} 27]F-28

2913031

Figure 7.5 Locations of widget container class names ui-widget-header (solid border) and ui -
widget-content (dotted border) on the tabs, dialog, accordion, and datepicker widgets. The accordion
header uses neither because it is clickable; it uses the interaction states we’ll cover in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

168

7.2.2

CHAPTER 7 Theming and styling applications with jQuery Ul

Because the class names are consistently applied, you can write CSS rules that target all
widgets at the same time. The following code shows an example of this:
.ui-widget {

font-size: 1.2em;
font-family: Tahoma;

1

.ui-widget-header (
border: 5px solid blue;
background: red;
color: white;

}

.ui-widget-content {
border: 2px solid green;
background: purple;
color: gray;

}

Although this example doesn’t produce pretty widgets, it shows the types or rules that
are safe to apply to these class names. Because the ui-widget class name is applied to
all widgets, you can apply only a few CSS rules safely without breaking the display of
some widgets. In fact, the jQuery UI themes internally specify only a font-size and
font-family. For the header and content class names, border, background, and
color are the most common rules used.

Unless you’re a designer creating a custom look, it’s uncommon to need to add
CSS rules to these class names beyond the rules that are configurable in ThemeRoller.
But as you'll see in the next chapter, if you know how to apply these class names to
HTML elements, you can create custom widgets that work with the jQuery UI theming
system automatically. If you want to add a container to your application that looks the
same as your widgets, you can use the following markup:
<div class="ui-widget ui-widget-content"s>

<div class="ui-widget-header">

Hello

</div>

Content
</divs>
The container class names handle the widget’s default look, but they don’t handle styl-
ing based on user interaction—such as the display of a tab after it’s activated. The next
category of framework classes addresses these states.

Styling interaction states

You may have noticed that when you hover over a button widget, its display changes.
Or when you click an accordion header, it’s automatically highlighted. What you may
not have noticed is all these changes happen by manipulating a few core class names.
The class names for the four widget states are

www.it-ebooks.info

http://www.it-ebooks.info/

Using the jQuery UI CSS framework to customize applications 169

= ui-state-default—Applied to clickable elements such as a button, tab, or
accordion header.

= ui-state-hover—Applied to clickable elements when the mouse hovers over
them.

= ui-state-focus—Applied when clickable elements receive keyboard focus.

= ui-state-active—Applied when a clickable element is activated. The active
tab and accordion header are given this class name.

To get a sense of how these class names work, consider the following example:

<style>
.ui-state-default { color: blue; } <) Default styling
Hover styling @ .ui-state-hover { color: orange; }

.ui-state-focus { color: green; } <@ Focus styling
Active styling @+ .ui-state-active { font-size: 1.5em; }
</style>

<div id="buttonset">
<label for="one"s>one</label>
<input name="numbers" type="radio" id="one"s>

<label for="two">two</label>

<input name="numbers" type="radio" id="two">
</div>
<scripts>

$("#buttonset").buttonset () ;
</scripts>

TIP This example is easier to see visually. You can try this example out at
http://jsfiddle.net/tj_vantoll/78vQL/ .

You have a buttonset widget containing two radio buttons. Because the buttons are
clickable, the widget places the ui-state-default class name on each of them. As a
result, your buttons start with blue text (1)

If you hover over either button, its text changes to orange @. If you give either
button focus with the keyboard, its text changes to green @. Finally, if you select
either radio button, the selected button’s font-size increases @.

As with the container class names, jQuery UI consistently applies the interaction
state class names to all clickable elements in all widgets. By writing rules to target these
states, you can again style widgets simultaneously.

Before we look at more comprehensive examples of how all these class names
come together, we’ll discuss one last category: interaction cues.

7.2.3 Styling interaction cues

Interaction states are directly related to clickable elements, but interaction cues can be
applied to any element. The six interaction cue class names are

= ui-state-highlight—Represents a highlighted container element.

= ui-state-error—Represents an erred container element.

www.it-ebooks.info

http://www.it-ebooks.info/

170

CHAPTER 7 Theming and styling applications with jQuery Ul

= ui-state-error-text—Utility class name to style error text without applying a
background. It can be used on the labels of erred form fields.

= ui-state-disabled—Represents a disabled element.

= ui-priority-primary—Represents a higher priority elementin a set, such as a
button you want to stand out to the user.

® ui-priority-secondary—Represents a lesser priority element in a set, such as
a button you don t want to stand out; for example, a cancel button.

Of these six, only ui-state-disabled is used by the jQuery UI widgets internally; the
rest are intended for utility use in your applications. To show how, let’s dig into more
robust examples that use these class names.

Let’s start by revisiting the accordion widget to add the ability to disable and dis-
play errors for individual headers. How could you use this functionality? Suppose you
run an online service where users have accounts they can manage. An accordion pro-
vides an excellent way to divide the various settings into categories such as profile, bill-
ing information, preferences, and so forth.

With such a setup, erring individual headers lets you draw the user’s attention to a
collapsed panel to take some action—such as changing an expired password.

Disabling lets you prevent the user from interacting with individual headers. You
have to be careful, though. In most situations, it’s better to hide rather than disable
elements; many users become confused when presented with controls they can’t use.
But in this example, you’ll look at one way that disabling can be advantageous.

The accordion control you’ll build is shown in figure 7.6.

The first tab displays with a red background, border, and text and contains a warn-
ing icon. The second tab appears disabled to the user. The following listing shows the
code to build this accordion.

NOTE The full source of this example is available at http://jstiddle.net/
tj_vantoll/z6w6P/.

Erred header

Account Settings /

- A Profile —

Password: Update

To use this feature you must
upgrade your account.

Disabled header

Figure 7.6 An accordion control with an erred header and a disabled header

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/z6w6P/
http://jsfiddle.net/tj_vantoll/z6w6P/
http://www.it-ebooks.info/

Using the jQuery UI CSS framework to customize applications 171

Listing 7.1 Erring and disabling accordion panels

<style>
.ui-state-error .ui-icon {
display: inline-block;
}

</style> Applies an
<div id="accordion"s> erred state
<h3 class="ui-state-error">

This section has an error

 Shows an
Profile alert icon
</h3>
<divs>
<form>

<label for="password"
class="ui-state-error-text">Password:</label>
<input id="password" required
title="Your password has expired, please choose a new one">
<buttons>Update</buttons>
</form>
</div>
<h3 class="ui-state-disabled">Admin</h3> Q—AG, Disables the Admin header
<div>Admin - Contents</divs>

</div>
<scripts> .
P . Shows a tooltip for
$("#accordion"))
) disabled headers
.accordion ()
.tooltip ({
items: ".ui-state-disabled",
content: "To use this feature you must upgrade your account"
N
S ("#password") .tooltip() ;
</scripts>

For the first tab, you apply the erred styling by adding the ui-state-error class name
@, which applies the red border, background, and text color to the header. The class
name doesn’t, however, apply the warning icon as shown in figure 7.6. This comes
from the in the header @.

You’ve used the jQuery UI icons several times throughout this book, but you’ve
only looked at using icons as options of the jQuery UI widgets, such as the button wid-
get’s icons option. All the jQuery Ul icons can be used in HTML directly by apply-
ing two class names: ui-icon and the name of the specific icon, in this case, ui-
icon-alert. You can find a full list of the icons available at http://api.jqueryui.com/
theming/icons/.

NOTE If <span class="ui-icon ui-icon-alert"s creates the icon,
why do you give the “This section has an error” text in it? The text is provided
for screen reader users who can’t see the red styling or the warning icon. The
ui-icon class name hides this text from sighted users and leaves it accessible
to assistive technologies such as screen readers.

www.it-ebooks.info

http://api.jqueryui.com/theming/icons/
http://api.jqueryui.com/theming/icons/
http://www.it-ebooks.info/

172

7.2.4

CHAPTER 7 Theming and styling applications with jQuery Ul

That takes care of the first panel, so let’s move on to the disabled panel. You disable
an accordion panel by applying the ui-state-disabled class name to the appropriate
header element @. The widget now automatically prevents this panel from being
opened. This technique of disabling with ui-state-disabled works for several of the
jQuery UI widgets—specifically, tabs, menu, and button.

But you need to take care of one last thing. Disabled UI elements can confuse users
unless they’re given an indication of why the elements are disabled. For this example
you add a tooltip O to the disabled accordion header to let the user know why the
header is disabled—the user needs to upgrade the account to use this panel.

Although this is not a complete example, it shows how the jQuery UI CSS frame-
work makes it easy to customize a widget’s built-in behavior to meet your needs. The
accordion widget has no built-in options to error or disable individual tabs, but you
can build this display using a few of the framework’s class names. Let’s look at another
example of how you can customize widgets with the jQuery UI CSS framework.

Layout helper class names

We haven'’t specifically looked at one category of class names: the layout helpers.
The layout helpers are a series of utility class names you may have a use for in your
applications:

® ui-helper-hidden—Hides the element visually and from screen readers.

= ui-helper-hidden-accessible—Hides the element visually but leaves it
accessible to screen readers.

= ui-helper-reset—A CSS style reset. It resets margin, padding, border,
outline, line-height, text-decoration, font-size, and list-style to a
baseline value that’s consistent across browsers. Read more about what CSS
resets do at http://meyerweb.com/eric/tools/css/reset/.

= ui-helper-clearfix—Clears floating child elements. Learn more about CSS
floats and clearing them at https://developer.mozilla.org/en-US/docs/Web/
CSS/float.

= ui-front—jQuery Ul uses this class name internally to manage the z-index-
based stacking of elements on the screen. Read more about ui-front at http:
//api.jqueryui.com/theming/stacking-elements/ .

Building a styled confirmation dialog

In chapter 4, you built a dialog to get the user’s confirmation before you deleted the
user’s data. Now that you know about the CSS framework, let’s see how you can use
the CSS class names in jQuery UI to improve the look of a confirmation dialog. This
time, you’ll build a dialog for a different use case: confirming a money transfer.
If you've ever banked online, a dialog such as that shown in figure 7.7 should
look familiar.

The code to build this dialog is shown in the next listing.

www.it-ebooks.info

http://api.jqueryui.com/theming/stacking-elements/
http://api.jqueryui.com/theming/stacking-elements/
https://developer.mozilla.org/en-US/docs/Web/CSS/float
https://developer.mozilla.org/en-US/docs/Web/CSS/float
http://www.it-ebooks.info/

Using the jQuery UI CSS framework to customize applications 173

Confirm Money Transfer ®

© Bank transfers take two days to process.

Please confirm you would like to transfer
$1,000,000 to TJ VanToll.

m Sess Figure 7.7 A confirmation dialog to
show before a money transfer

NOTE The full source of this example can be found at http://jstiddle.net/
tj_vantoll/a3zkQ/.

Listing 7.2 Building a styled confirmation dialog

<style>
.ui-dialog .ui-state-highlight { padding: 0.5em; }
.ui-dialog .ui-icon-info { display: inline-block; }
.ui-widget-content .ui-priority-primary
color: white;
background: green;
} Styles the
</style> primary button
<div id="dialog">

<p class="ui-state-highlight">
 Highlights the

Informational message informational paragraph

Bank transfers take two days to process.
</p>
<p>Please confirm you would like to transfer $1,000,000 to TJ
VanToll.</p>

Uses an
info icon

</div>
<scripts>
$("#dialog") .dialog ({
buttons: [
{ Uses the

text: "OK", primary button
"class": "ui-priority-primary", class name
click: function() ({

// Process transaction
$(this).dialog("close");

1
)
{ Uses the
text: "Close", secondary button
"class": "ui-priority-secondary", class name
click: function() {
$(this).dialog("close");
1
1

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/a3zkQ/
http://jsfiddle.net/tj_vantoll/a3zkQ/
http://www.it-ebooks.info/

174

7.3

CHAPTER 7 Theming and styling applications with jQuery Ul

1,
title: "Confirm Money Transfer",
width: 500

)
</script>
Let’s start with the HTML. For the informational message about bank transfers, you
use the jQuery Ul ui-state-highlight class name to make the message stand out to
the user @. Inside the message, you use another of the CSS framework icons, ui-
icon-info, to visually indicate that this is an information message €. You also provide
a text fallback for screen readers that can’t read the icon.

In JavaScript, you create a dialog widget—using the widget’s buttons option to cre-
ate the two buttons. On each button’s object, you include a class property to add the
class names—ui-priority-primary @ and ui-priority-secondary @, respec-
tively—to each button. The class names add emphasis to a primary action and reduce
emphasis from a secondary action. You want to draw the user’s eye and attention to
the OK button to encourage the user to complete the transaction.

Internally, jQuery UI bolds the primary button and decreases the opacity of the
secondary button to achieve this effect. To further draw the user’s attention, you also
change the background and text color of the primary button 0.

TIP The word class is a reserved word in JavaScript; to use it in code you must
quote it as in this example. Although the language doesn’t currently use class,
it will be used in the next version of JavaScript (ECMAScript 6).

One last note before we move on: did you notice the difference between the three CSS

rules you used?

.ui-dialog .ui-state-highlight { .. }

.ui-dialog .ui-icon-info { .. }

.ui-widget-content .ui-priority-primary { .. }

See how the first two rules are prefixed with a ui-dialog class name and the third

with ui-widget-content? The first two use widget-specific class names, and the last

uses a framework-wide rule. As you saw in this section, framework-wide rules let you

add CSS rules that apply to all widgets. Because you made your button green using ui-

widget-content, any future widgets with primary buttons will be styled the same.
Although the ability to style all widgets at the same time is powerful, sometimes you

don’t want changes to apply everywhere. In this example, the highlighting changes

are prefixed with ui-dialog because you want the CSS rules to apply only when ui-

state-highlight is used in a dialog. ui-dialog is one of many class names that

jQuery UI provides for each individual widget. Next, let’s look at what class names are

available and what you can do with them.

Styling with widget class names

Each widget uses a comprehensive set of CSS class names so you can easily target
any section of any widget. The class names are documented in each widget’s API

www.it-ebooks.info

http://www.it-ebooks.info/

Styling with widget class names 175

A"/-'
<div class="ui-dialog ui-widget vi-widget-content"> \

. ui-dialog: The outer container of the dialog.
) ") . e . .
<div class="ui-dialog-titlebar u}-ngggt-heaﬂer > ~— ui-dialog-titlebar : The title bar containing the

e — dialog's title and cl button.
Title —— iog s fitie and close button

<button class="ui-dialog-titlebar-close"> T uwi-dialog-title: The container around the textual
"Clase" — title of the dialog.
</button> —_—

. - — T ui-dialog-titlebar-close: The dialog's close
<fdiv> _— —
- - button.

<div class="ui-dialog-content">Content</div> .
ui-dialog-content : The container around the dialog’s

«div class="ul-dialog-buttonpane"> — . content. This is also the element the widget was
instantiated with.
<div class="ui-dialog-buttonset">
<button=> ui-dialog-buttonpane : The pane that contains the
oK . dialog's buttons. This will only be present if the puttons
</button> S~ option is set.
</div> — .
</div> —— ui-dialog-buttonset: The container around the
v buttons themselves.
<fdiv>

Figure 7.8 On the left is a simplified version of the markup the dialog widget uses. On the right is the
dialog widget’s class name documentation. Notice that the nesting in the documentation matches the
nesting used in the rendered HTML markup.

documentation. The dialog class names are documented at http://api.jqueryui.com/
dialog/#theming. The documentation uses nesting to show the structure of each wid-
get’s markup. The dialog widget’s ui-dialog-titlebar, ui-dialog-content, and ui-
dialog-buttonpane elements are direct children of the ui-dialog element. This rela-
tionship is shown in figure 7.8.

The widget-specific class names give you the ability to target specific parts of wid-
gets without having to worry about affecting other widgets. Figure 7.9 shows how you
could use the dialog class names to customize its appearance.

.ui-dialog ({ .ui-dialog-title {
border: 15px solid green; font-size: 2em;

} }

: Title x

CONTENT

.ui-dialog-content { .ui-dialog-titlebar {
text-transform: uppercase; border: 5px dotted black;

} }

Figure 7.9 A sampling of the dialog-specific CSS class names available. The ui-dialog class name
applies a solid border to the whole dialog; ui-dialog-title applies a larger font size to the title bar;
ui-dialog-content uppercases the content’s text; and ui-dialog-titlebar applies a dotted
border to the title bar.

www.it-ebooks.info

http://api.jqueryui.com/dialog/#theming
http://api.jqueryui.com/dialog/#theming
http://www.it-ebooks.info/

176

7.3.1

CHAPTER 7 Theming and styling applications with jQuery Ul

Admittedly, putting a 15-pixel green border around dialogs isn’t practical for most
applications, but you can do it! Let’s look at how you can use the widget-specific class
names to make powerful customizations to the jQuery UI widgets.

Building vertical tabs

Recall from chapter 4 that the jQuery UI tabs widget displays tabs horizontally on top
of the active tab’s content. Although this is the most common use case, suppose you
want the tabs to display vertically on the side of the content, as shown in figure 7.10.

One One Contents

Figure 7.10 AjQuery

| Two Ul tabs widget with

| CSS rules applied to
the tabs-specific class

‘ Three names to stack the

1 tabs vertically.

Although you may think you need JavaScript to rearrange elements to create this dis-
play, the class names provided by jQuery UI make it possible to do this in CSS alone.
The key portions of the CSS are shown in the following listing. The full source and a
live demo are available at http://jsfiddle.net/tj_vantoll/SL44T/.

Listing 7.3 Displaying tabs vertically

.ui-tabs { overflow: hidden; }

.ui-tabs .ui-tabs-nav {
float: left; Floats the
width: 10em; 4} navigation
border-radius: 4px 0 0 4px;
border-right: 1px solid gray;

}

.ui-tabs .ui-tabs-nav 1i {
width: 100%;
border: 1px solid gray; Relatively positions
border-width: 1px 0 1lpx 1px; the list items
position: relative;
right: -2px;

} Gives the active nav
.ui-tabs .ui-tabs-nav li.ui-state-active { item a white border

border-right: 1px solid white;
}

.ui-tabs .ui-tabs-panel ({

float: left; Calculates the width
width: -webkit-calc(100% - llem); of the tab panels

width: calc(100% - 1llem);
box-sizing: border-box;

www.it-ebooks.info

http://www.it-ebooks.info/

Styling with widget class names 177

The main tabs container has a class name of ui-tabs, and it has four immediate
children: the navigation (ui-tabs-nav) and three panels (ui-tabs-panel), one for
each of the tabs. The key to this example is that both the navigation and the panels
are floated @), which makes them appear side by side. To make this work, you also
need to give both the navigation and the panels an explicit width, which we’ll get
to momentarily.

After this is done, you need to replicate one visual detail from the default
horizontal tabs by removing the border between the active tab and the content
panel. If you look at figure 7.10, you can see that there’s no border between One
and One Contents.

To make this happen, you don’t remove the border from the navigation; rather,
you position the individual list items directly on top of it @. Notice how both the .ui-
tabs-nav and .ui-tabs-nav 1i selectors are given the same border. Now all you have
to do is remove the border from the currently active list item.

The tabs widget makes this easy as ui-state-active is automatically applied to the
active tab; you use this selector to apply a white border ©, which gives the appearance
that the border has been removed.

Your last task is to determine the widths to use for both the tabs navigation and pan-
els. In this example, you use a width of 10 em for the navigation and the default 100%
width for the parent ui-tabs container. To make your content responsive to different
screen sizes, and leave the width of the navigation a static 10 em, you use a new feature
of CSS to calculate the width of the content panels: the calc () function.

By specifying a width of calc(100% - 1lem) for the tab panels @, you tell the
browser to take the default width of the panels, subtract 11 em (to account for
the navigation), and use the result as the width of the panels. The calc() function
makes it easy to calculate percentages based on widths and static values. Now you can
resize the window to your heart’s desire, and the content panels adapt to the screen
size automatically.

WARNING The calc() function isn’t supported in Internet Explorer versions
earlier than 9 as well as Android versions earlier than 4.4. If you need to sup-
port these browsers, you unfortunately need to hardcode widths for both ui-
tabs and ui-tabs-panel to make this vertical tabs approach work.

As you can see from this example, the class names provided by the tabs widget give you
the ability to perform complex customizations without any JavaScript. Although build-
ing vertical tabs is cool, you may have noticed one limitation of this approach: because
ui-tabs is styled, you can’t use vertical and horizontal tabs side by side. We’ll return to
this example to build a more robust implementation in chapter 9 when we look at
widget extensions.

Next, let’s look at another handy use of the jQuery UI widget class names.

www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 Theming and styling applications with jQuery Ul

7.3.2 Building a mobile-friendly datepicker

The jQuery UI datepicker is great for letting users select dates from a calendar, but on
touch devices, the calendar days are small; it’s too easy for fingers to accidentally select
the wrong day. Let’s see how you can use the CSS class names on the datepicker to
make the widget mobile friendly.

You’ll build the inline datepicker shown in figure 7.11. The code to build this
datepicker is shown in the following listing.

Listing 7.4 A mobile-friendly inline datepicker

<style>

Aooics changes emedia (max-width: 600px) { Qj Makes the datepicker take
(l:r’l)ly to devi%es .ui-datepicker { width: 100%; } up the full screen width

that are < 600 .ui-datepicker-calendar td a {

pixels wide text-align: center;
padding: 0.5em;
} Makes the dates

} easier to tap
</style>
<div id="datepicker"s></div>
<scripts>

$("#datepicker").datepicker();
</script>

Because the datepicker displays appropriately on larger screens, you start your CSS with
a media query to limit your changes to screens with a viewport of under 600 pixels wide
@. Media queries are a quick way to scope CSS rules based
on the characteristics of the browser it’s running on—most
commonly its width. Media queries aren’t supported in
Internet Explorer versions earlier than 9, although
because you're building for mobile devices, thisisn’ta con-

December 2013

Tu We
cern; older versions of the browser ignore the media query.

TIP Media queries are the primary tool for building
responsive web applications as they let you condition-
ally apply CSS rules based on the browser’s height and
width. A full exploration of media queries is outside
the scope of this book, but a good place to get started
is https://developer.mozilla.org/en-US/docs/Web/
Guide/CSS/Media_queries.

Next, you use the datepicker-specific CSS class names to
make the datepicker larger for mobile devices. Specifi-
cally, you first use the outer ui-datepicker class name to
make the datepicker take up the full width of the screen
@. Then, you increase the padding of all links in the ui-

datepicker-calendar to make them bigger and easier to ~ Figure 7.11 An inline

click with fingers ©. ::‘::'fpﬁ’n‘zs"'aye“

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Media_queries
http://www.it-ebooks.info/

Styling with widget class names 179

Although this is great, most developers want to use a mobile datepicker tied to an
<input>, not an inline one. Because this is a common requirement, you’ll implement
this use case as well. But because this is a nontrivial task that requires a decent amount
of JavaScript, you’ll build it in chapter 9 as a widget extension.

For now, let’s look at one last use of the jQuery UI widget-specific class names.

7.3.3 Adding arrows to tooltips with CSS

The jQuery UI tooltip widget makes it easy to show

additional information for controls on a web page. Please use xx.xX

But the tooltip widget doesn’t provide one common format.

Ul pattern out of the box: adding arrows. If you’re

not sure what I’'m talking about, take a look at the

image shown in figure 7.12. Figure 7.12 A jQuery Ul tooltip with
Notice how the arrow points from the tooltip to 5 ¢ss-drawn arrow

the form control itself. This small visual touch helps

the user associate the tooltip with the input. And believe it or not, you can draw the

Amount:

arrow in CSS alone. This is shown in the following listing. You can view the example
live at http://jsfiddle.net/tj_vantoll/cAz6T/.

Listing 7.5 Adding arrows to a tooltip widget

<style>

.ui-tooltip {
text-align: center;
padding: 0;
box-shadow: none;
width: 200px;

}

.ui-tooltip-content {
position: relative;
padding: 0.5em;

}

.ui-tooltip-content::after, .ui-tooltip-content::before {
content: "";
position: absolute;
border-style: solid;
display: block;
left: 50px;

}

.ui-tooltip-content: :before {
top: -10px;
border-color: #AAA transparent;
border-width: 10px 10px O0;

}

.ui-tooltip-content::after { Creates triangles
top: -7pX; using the border of
border-color: white transparent; pseudo-elements

border-width: 10px 10px 0;

}

</style>

www.it-ebooks.info

http://www.it-ebooks.info/

180

CHAPTER 7 Theming and styling applications with jQuery Ul

<label for="amount"s>Amount:</label>
<input id="amount" title="Please use xx.xx format.">

<scripts>
$("#amount") .tooltip ({
position: Positions
my: "center bottom", the tooltip
at: "center top-10",
collision: "none"
1
P i
</script>

The tooltip widget provides only two CSS class names: ui-tooltip and ui-tooltip-
content. But as it turns out, that’s all you need to build this cool effect. Most of the
magic here comes from using the : :before and : :after pseudo-elements on the ui-
tooltip-content element. If you haven’t used ::before and ::after, they're two
bonus elements every DOM node has that you can use to add supplementary content
or styling.

WARNING Although the two-colon syntax for ::before and ::after is now
standard, Internet Explorer 8 supports only the now-outdated single-colon ver-
sions—:before and :after. The double-colon syntax is technically correct per
the CSS specification, butall modern browsers support both the single-and dou-
ble-colon syntax. Personally, because it’s not a big deal if the pointers aren’t
present, I prefer sticking with the technically correct : :before and : :after.

Even if you understand how pseudo-elements work, this example is still likely a mys-
tery. How in the world is this CSS turning into a pointer? This code uses an odd trick
to draw triangles with a single element in CSS: if you give an element with no height
and no width a border on three sides, it creates a triangle @. If this makes no sense to
you, you’re not alone; this is a nearly impossible thing to conceptualize. There’s a
great demo at http://codepen.io/chriscoyier/pen/lotjh that walks through exactly
what’s going on here. If you're near a computer or phone, watch this now.

If you're not able to watch the demo, just accept that by some CSS magic the
: :before and : :after pseudo-elements on the ui-tooltip-content element are tri-
angles. The : :before triangle is the same color as the border, and the : :after trian-
gle is white. The white triangle obscures most of the dark triangle. This gives the
appearance of a single, cohesive border for the tooltip.

TIP http://cssarrowplease.com is an online tool for building these CSS-
based pointers without having to understand the magic going on.

Because you’re using a pointer, you have to make sure the pointer points at the correct
element. To do this, you use the tooltip’s position option. As you saw in chapter 4, the
position reads like an English sentence: position my (the tooltip’s) horizontal center
vertical bottom at the horizontal center vertical top (of the input) @. Don’t worry about
the positioning specifics here; we’ll return to this example when we discuss the position
utility in detail in chapter 12.

www.it-ebooks.info

http://www.it-ebooks.info/

74

Summary 181

Summary

jQuery UI provides a number of tools to style and theme your applications. You started
with ThemeRoller, an online tool to build themes. You can use it to build a theme
from scratch, or one based on the 24 built-in themes. You can also import your theme
back into ThemeRoller to make further changes.

From there, you can use the two sets of CSS class names that the library provides:
framework-wide and widget-specific. The framework-wide class names let you change
the look of all widgets at once, and the widget-specific class names let you write CSS
that targets specific widgets. Between these two sets of class names, you have the ability
to build highly customized Uls. You used the class names to build a vertical tabs UI, a
mobile-friendly datepicker, and tooltips with CSS-based arrows.

We’ll continue to discuss the jQuery UI CSS framework throughout the book. In
the next chapter, you’ll build a custom widget from scratch, and you’ll see how apply-
ing the jQuery UI class names makes a widget automatically themeable.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Customization
and advanced usage

rI:ese final 5 chapters cover the more complex aspects of jQuery Ul, starting
with widgets. In chapter 8 you’ll learn how to build your own widgets from
scratch, using the same mechanism jQuery UI uses. In chapter 9 you’ll see how
to customize any widget’s behavior using widget extensions.

You’ll learn in chapter 10 how to optimize your applications for production
use, including the most important optimizations for building mobile sites. In
chapter 11 you’ll build on this and create a complete application from scratch—
one that runs fast on all devices. Chapter 12 looks under the hood of jQuery UI
to uncover the tools that make jQuery UI work.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using the widget factory
to build stateful plugins

This chapter covers

= Creating widgets with the widget factory
= The benefits of using the widget factory
®m Accessing a widget's data and inner workings

Throughout this book, you’ve looked at the widgets jQuery UI provides and all the
things you can do with them. Although the jQuery UI widgets let you do a lot, the
widgets don’t cover all the UI controls you need to build modern web applications.
Don’t worry—the most powerful part of jQuery isn’t its widgets, it’s the mechanism
that all its widgets are built with: the widget factory.

The widget factory evolved from the early days of jQuery UL Recall that the
jQuery UI project started as a collection of popular plugins from a variety of
authors, coding styles, and APIs. Over time, common patterns and best practices
emerged. Implementations of these patterns gradually moved out of individual
plugins and into a common base, which eventually became the widget factory. The
widget factory itself is a jQuery plugin that builds jQuery plugins that adhere to

these common conventions.

185

www.it-ebooks.info

http://www.it-ebooks.info/

186

8.1

CHAPTER 8 Using the widget factory to build stateful plugins

The widget factory is also a standalone component; you can use it independently
of the jQuery Ul library. In fact, the widget factory serves as the basis of all the jQuery
Mobile widgets and numerous third-party jQuery plugins. By learning to use the wid-
get factory, you’ll have the ability to build widgets that work anywhere that jQuery
Core is available.

In this chapter, you’ll walk through the development of a custom widget built from
scratch. You'll see that, like all of jQuery UI, the widget factory packs a whole lot of
functionality in a few, easy-to-use APIs.

Let’s get started.

Why build a widget rather than a jQuery plugin?

A widget’s differentiating feature is its concept of state. Many jQuery plugins don’t
have—or need—the concept of state. Consider the following jQuery plugin that re-
places the selected element’s contents with a random number:

$.fn.randomNumber = function/|() {

return this.each(function(index, element) {

$(element).html(Math.random() * 1000);

1
IE
This plugin is designed to run once and be done. The plugin doesn’t remember which
elements it changed or anything about them. Contrast that with any of the jQuery Ul
widgets, such as the dialog widget created in the following code:

<div id="dialog"></div>
<script>

$("#dialog").dialog({ title: "Hello World" });
</script>

The randomNumber () plugin knew nothing about the element it operated on; the di-
alog widget knows a whole lot about the <div id="dialog"> element. It knows that
it's a dialog, that its title is "Hello World", and more. (We'll look at how it remem-
bers this information later in the chapter.)

Dialog is an excellent candidate for a widget because it has a state to manage; you
can open it, close it, change its title, change its height, and so forth. Conversely,
the randomNumber () plugin isn’t a good widget candidate because it has no state.
The general rule is this: use the widget factory when you want to build a plugin that
maintains state.

Building a widget

Building a fully featured widget is a complex, multistep process; we’ll break widget
creation into a set of steps that you’ll follow in this chapter. The nine steps are shown
in the following checklist. Don’t worry about what each step means; we’ll walk
through each individually.

www.it-ebooks.info

http://www.it-ebooks.info/

811

Building a widget 187

1 $.widget () 2 Markup structure 3 _create()
4 Make themeable 5 Add options 6 Expose methods
7 Trigger events 8 Enable/Disable 9 _destroy()

To walk through these steps, you need
a widget to build, and in this chapter,
you'll build a to-do list. In this case it | ¥ Watkdeg
will be a list of tasks that the user can Mop floor
check and uncheck. Such a list could
be used for any set of tasks—for exam- Figure 8.1 The to-do list you'll build in this chapter
ple, a grocery list or your widget-creation checklist. An image of the to-do list you’ll
build is shown in figure 8.1.
Let’s dig right in with the API to create widgets: $.widget ().

Clean dishes

NOTE The finished version of this widget is available at http://jsfiddle.net/
tj_vantoll/zStp7/ if you’d like to follow along or play with the examples as we go.

Constructing widgets with S.widget()

As discussed at the beginning of this chapter, the widget factory itself is a jQuery
plugin located on the $ global object. To invoke it, call $.widget () as shown in the
following code:

The widget’s namespace The name of the widget
Invokes $.widget() o\ The widget’s
| prototype object

$.widget "tj. todo" ;

You invoke $.widget () with two parameters @. The first is the name of the widget:
"tj.todo". Why is the name in two parts, separated by a period?

The first half of the name determines the widget’s namespace @. The namespace
determines the location where the widget’s constructor function and prototype are
stored on the global $ object. All jQuery UI widgets use a "ui" namespace; therefore,
they’re accessible at $.ui ($.ui.dialog, $.ui.tabs, and so on).

The "ui" namespace is reserved for the jQuery UI widgets; you need to create your
own namespace for your own widgets. In this example, the namespace is my first
name: "tj". We’ll look at how the widget’s constructor function works momentarily.

The second half of the name is the string to use as the plugin name €. Because
you used "todo", a todo () plugin was created for you.

The last parameter to $.widget () is an object to use as the widget’s prototype
object @. You can use the prototype object to override default widget behavior and
expose methods to users of the widget. We’ll go over how this object works in the next
section when we look at _create (). For now, because it’s a required argument, you
pass an empty object.

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/zStp7/
http://jsfiddle.net/tj_vantoll/zStp7/
http://www.it-ebooks.info/

188

CHAPTER 8 Using the widget factory to build stateful plugins

NOTE $.widget() takes one additional, optional parameter: the constructor
function of another widget to extend. This powerful feature lets you alter and
build on top of existing widgets. We’re skipping the parameter for now to focus
on developing a widget from scratch. Chapter 9 covers widget extension in detail.

When you execute $.widget ("tj.todo", {}), a lot happens. This is shown in fig-
ure 8.2; let’s look at that figure in detail.

NAMESPACE CREATION

The widget factory created an object at $.tj to use as a namespace for the todo wid-
get. $.widget () is smart enough to create the namespace only if it doesn’t already
exist. If you create another widget on the same namespace—for instance, $.widget (
"tj.awesome", {})—the original namespace isn’t overridden.

CONSTRUCTOR FUNCTION

Although you haven’t used constructor functions, they exist for each of the jQuery Ul
widgets. For example, you can create a new dialog using the following code:

new $.ui.dialog({ title: "The Widget Factory Rocks!" }, "<div>");

The first argument is an object for configuring the widget’s options.. The second
argument determines the element to convert to a widget—in this case, a newly created
<divs>. When using constructor functions, you can optionally omit the new keyword:

$.ui.dialog({ title: "The Widget Factory Rocks!" }, "<div>");

By running $.widget (), you get this behavior for free. The following creates a new
 and converts it to a todo widget:

$.tj.todo({}, "<uls>");

CHAINABLE PLUGIN

The chainable plugin should look familiar, as it’s the mechanism you’ve used to ini-
tialize widgets up to this point. $.widget () created this plugin for you automatically;
you can now initialize todo widgets by selecting elements and calling todo (). The fol-
lowing converts all elements to todo widgets:

S("ul").todo();

$.widget ("tj.todo",

0 Namespace Pseudo-class
creation
":tj-todo"

$.tj.todo $.fn.todo
o Constructor function e Chainable plugin ~ Figure 8.2 An overview of what
on namespace happens when creating a widget

www.it-ebooks.info

http://www.it-ebooks.info/

Building a widget 189

Because the plugin is also automatically chainable, you can append additional jQuery
method calls. The following code initializes todo widgets and then hides them:

S("ul").todo().css("display", "none");

PSEUDO-CLASS

The widget factory creates a pseudo-class with the widget’s full name—in this case,
":tj-todo". CSS pseudo-classes are selectors that match elements based on the state
they’re in. For example, : focus matches the element that currently has focus. Pseudo-
classes are always prefixed with a single colon. The pseudo-class can be used to find all
elements that have a widget associated with them, or to determine whether a given
element is a widget. This behavior is shown in the following listing.

Listing 8.1 Using the pseudo-class created by the widget factory

Creates a new L> $.widget ("tj.todo", {}); Converts the

 element. var ul = §("").appendTo("body") ; :It:lmen'tdtota
ul.todo() ; odo widget.
Sdeasandlogs console.log($(":tj-todo"));

are todo widgets; is a todo widget.

in this case, the It is, so true is logged.
 is logged.

all elements that console.log(ul.is(":tj-todo")); < Determines whether the

WARNING The pseudo-class created by the widget factory only works in
jQuery’s selector engine. $ (":tj-todo") matches all todo widgets, but doc-
ument . querySelectorAll (":tj-todo"), or a CSS selector such as :tj-todo
{ color: red; },won’t.

You’ve now seen all the functionality you get by running $.widget (), but your widget
still doesn’t do anything. The next step in your process is choosing the HTML markup
structure for your widget to use.

8.1.2 Choosing a markup structure

All widgets built using the widget factory work by associating themselves with a DOM
element. For most widgets, a single DOM node is all you need to build the widget. For
instance, autocomplete, datepicker, and spinner require only an <input> element to
be initialized.

Some widgets, however, require a more complex structure. Recall the expected
markup to build a tabs widget shown in the following code:

<div>

One</1li>

<div id="one">One Contents</divs>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

190

8.1.3

CHAPTER 8 Using the widget factory to build stateful plugins

What markup structure should you use for a to-do list? You need to consider two
things when choosing the markup structure of your widget:

1 It should be as easy as possible to create a widget.
2 The markup should be semantic.

The first consideration means that you should aim to require as little markup as possi-
ble. For instance, the spinner widget could require developers to create DOM elements
for the up and down arrows. But this would make the spinner far harder for develop-
ers to use; the widget generates these elements for you.

The second consideration means that the markup should make sense, even when
the element isn’t a widget. Consider the required markup of the tabs widget. If
JavaScript were to fail, the user would still have a set of functioning links to content.
This rule is applied across all the jQuery UI widgets. If the button widget fails, the user
still has a functioning unenhanced button; if the spinner widget fails, the user still has
a functioning <inputs>.

With these criteria in mind, you’ll need the following markup to build your todo
widget:

First todo

Second todo

<1i>Third todo

As this is a to-do list, you use an HTML unordered list () to represent it. You’ll
require that the initial items on the list be specified as list items (<1i>s). That way, if
something goes wrong in JavaScript, users can still view the items on the list, even if
they can’t edit them.

To build a complete todo widget, you need more markup than this—most notably,
you need to add check boxes. How do the jQuery UI widgets add the extra markup
they need when widgets are initialized? They use one of many hooks the widget fac-
tory provides: _create ().

WARNING Take note of the underscore prefix. The method name is
_create(), not create (). We’ll go over why an underscore prefix is used for
most of the widget factory’s methods in section 8.3.2 when we discuss meth-
ods; for now, make sure you include the underscore.

Overriding _create() to initialize widgets

In addition to the features you've seen, the widget factory also provides a number of
methods and properties to aid with widget development. To add custom behavior to
your new widget, you have to override a few of these methods—starting with
_create (). To see how to do this, recall your call to $.widget ():

$.widget ("tj.todo", {});

The last argument to $.widget () is an object to use as the widget’s prototype. If you
don’t understand the details of how prototype objects in JavaScript work, don’t worry.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a widget 191

For now, know that the default set of methods and properties a widget uses is stored in
$.Widget.prototype (note the capital W). When you pass methods and properties to
$.widget (), they’re used instead of those on $.Widget.prototype.

TIP A full list of the methods and properties on $.Widget .prototype is doc-
umented at http://api.jqueryui.com/jquery.widget/.

This is easier to see with an example. The first method you override in any custom widget
isthe create () method. The widget factory invokes create () anytime an element is
converted toawidget. The default_create () on $.Widget.prototype does nothing. To
make your widget do something useful, you must provide your own _create():
$.widget ("tj.todo", {

_create: function() ({
this.element.addClass("tj-todo");
}

I3

You provide a _create () method for the todo widget’s prototype, and the widget fac-
tory uses it instead of $.Widget.prototype. create(). Although the create()
method doesn’t have any parameters, it does have this.element set to the element
the widget was initialized on, and this.options set to any options that were passed.
You use the this.element reference to add a CSS class name to the element that was
converted to a widget.

The following example creates a new , appends it to the <body>, and initializes
a todo widget on it:

$("<lis>Walk dog</lis>")

.appendTo ("body") J Initializes the todo widget

todo () ; on the new
When the todo plugin runs @, your create () method is invoked, and a "tj-todo"
class name is added to the element.

One other important thing takes place when an element is initialized with a wid-
get. Under the hood, the widget factory invokes the widget’s constructor function—in
this case, $.tj.todo—which performs a number of initialization tasks, including call-
ing create(), and then returns an object with all properties and methods available
on the widget. This object is known as the widget’s instance.

The instance object gives direct access to the methods and properties on a widget
without going through the widget’s plugin. To see how it works, let’s return to your
todo widget.

Remember that for your to-do list, the markup you need to add is a check box for
each item on the list. The following code alters your create () method to do that:
_create: function() ({

this.element.addClass("tj-todo");
this. renderList();

b

www.it-ebooks.info

http://www.it-ebooks.info/

192

CHAPTER 8 Using the widget factory to build stateful plugins

_renderList: function()
this.element.find("1i") .each(function() ({
var 11 = $(this),
label = $("<label></label>"),
checkbox = $("<input>", ({
type: "checkbox",
value: li.text()

)

label.append(checkbox) .append(li.text());
1li.html(label);

1
}
This code adds a <label> element and a check box to each <1i> in the element. The
_renderList () method—which does all the work here—is abstracted out of
_create () because you’re going to need it in other methods later.

Take note of one more thing: you were able to invoke _renderList () using a refer-
ence to this. In this case, this is set to the widget’s instance object; you can use the
this reference to invoke any widget methods directly. As you’ll see throughout this
chapter, the widget factory automatically sets this to the widget’s instance object in
most of its methods.

You now have the markup that you need, and a CSS class name to use for styling.
But your to-do list still doesn’t look like a jQuery UI widget. Next, let’s see how to
make this widget themeable.

Working with instances

If you're coding a widget, the widget’s instance is easy to access as it’s set as the
context (a.k.a this) of most methods. But what if you need to access a widget’s in-
stance when using its plugin? The widget factory provides two external mechanisms
for doing so.

The first is the instance () method. The following code creates a new dialog widget,
and then accesses its instance using the instance () method:

$S("<div>") .dialog() .dialog("instance") ;

The second option relies on the fact that—internally—the widget factory stores the
instance object using the $.data () method in jQuery Core, with the widget’s full
name as a key; you can use $.fn.data() to retrieve it:

$("<div>") .dialog() .data("ui-dialog") ;

The widget factory utilizes this API to remember which elements have been initialized
with a widget, which makes a number of things possible, including protection against
multiple instantiation. If the widget’s plugin is called multiple times on the same el-
ement, create () will be invoked only once, as shown in the figure.

www.it-ebooks.info

http://www.it-ebooks.info/

8.14

Building a widget 193

(continued)
_create() was }

called only once H
y Hi Plugin invoked twice

L $("").todo().todo(); on the same element
create!

View of the JavaScript console where a widget is created and its plugin is invoked twice

Making widgets themeable

One of the major advantages of using jQuery Ul widgets is that you get a consistent, easily
configurable display. In chapter 7, you saw how to configure the theming hooks pro-
vided by the widgets. Let’s look at how to add these hooks to your custom widget.

To make a widget themeable, you must correctly apply the appropriate class names
from the jQuery UI CSS framework, specifically the following:

= Widget containers—ui-widget, ui-widget-header, ui-widget-content
s Interaction states—ui-state-default, ui-state-hover, ui-state-focus, ui-
state-active

Let’s start with the widget containers. For your to-do list, you have no header; ui-
widget-header isn’t relevant. But you do need to add ui-widget and ui-widget-
content to the outer container of the list. You’ll add these class names in _create():

_create: function() ({
this.element.addClass("tj-todo ui-widget ui-widget-content " +
"ui-corner-all");
this. renderList () ;

TIP The jQuery UI CSS framework has helper class names for adding CSS
border-radius values that are configurable in ThemeRoller. The previous
example uses ui-corner-all to round all corners. The full list of corner class
names is available at http://api.jqueryui.com/theming/css-framework/.

Next, you need to add the interaction states. But first you need to determine which
elements in the widget are clickable. For your to-do list, the only clickable elements
are the check boxes. But you may recall from chapter 3 that check boxes are nearly
impossible to style with CSS. How can you theme a check box? How does the jQuery UI
button widget make this possible?

To answer, let’s start by looking at the markup you use for each item in the to-do
list:

www.it-ebooks.info

http://www.it-ebooks.info/

194

CHAPTER 8 Using the widget factory to build stateful plugins

<label>
<input type="checkbox">

</label>
</1li>
Recall from chapter 3 that browsers have a builtin feature for interacting with form
elements: clicks on an element’s <label> are automatically transferred to the element
itself. You can take advantage of this behavior to work around the styling limitations of
check boxes.

Instead of styling the check box, you’ll make its <label> the full height and width
of the <1i>, and style the whole <1i> as clickable. With this setup, all clicks on the
 also click the <labels>, which toggles the underlying check box appropriately.
The jQuery UI button widget uses this technique for styling check boxes and radio
buttons. The native buttons themselves are hidden (in an accessible manner), and the
button’s <label> elements are styled instead.

This approach has one other advantage. Because check boxes are tiny, they're
tough to click with a mouse, and painfully difficult to tap on touch devices. By styling
the <1i>, you give the user a much larger target.

To make the to-do list themeable, you alter your _renderList () to use the follow-

ing code:

8 Adds class names
var that = this; to each
this.element.find("1i").each(function() {

var 1i = $(this).addClass("tj-todo-item ui-state-default"),
label = $("<label>"),

Handles checkbox = $("<input>", {
the hover type: "checkbox",

class value: 1li.text()

names BE

label.append(checkbox) .append(li.text());
1li.html(label);

that. hoverable(1i); ﬁ Handles the focus
that. focusable(1i); class names

1

You add two class names to each <1i> in the list: ui-state-default and tj-todo-
item @. As you recall from the previous chapter, ui-state-default is the class name
that indicates the default state of clickable elements in a widget. This applies the same
clickable look as the jQuery UI buttons, tabs, and so forth.

You want to provide widget-specific class names. You already added a tj-todo class
name to the , and here you add tj-todo-item to each <1li>. Widget-specific class
names give developers who use your widget flexibility in how they style it.

The ui-state-default class name takes care of the default display of the <1i>, but
remember that clickable elements can have three other states: active, hover, and focus.

For the hover and focus states, the widget factory provides two helper methods:
_hoverable() @ and focusable() €. These methods add event handles to the
passed element—in this case, the <lis>—such that the ui-state-hover and

www.it-ebooks.info

http://www.it-ebooks.info/

8.1.5

Building a widget 195

ui-state-focus class names are automatically managed. When the user mouses over
the <1i>, the <1i> receives the ui-state-hover class name; when the user mouses out
of the <1i>, the class name is removed. The ui-state-focus is managed similarly on
focus-in and focus-out of the element.

You have an almost fully themeable widget. You’re missing only the ui-state-
active class name. For the todo widget, you’ll want to add the active class name to any
checked items. And to do that, you need to listen for clicks on the check box. But
where do you put that code? The widget factory has a helper method for this as well.

Listening for events with _on()

Throughout this book, you’ve been using the on() method to bind to DOM events.
Although you can use on () to listen to events in widgets, the widget factory provides
an additional method with a few widget-specific niceties: _on() (note the under-
score prefix).

Remember that for your todo widget, you need to listen for clicks on check boxes,
and then toggle the ui-state-active class name on the <1i> appropriately. When
the check box is checked, its <1i> should have ui-state-active. When the check
box is unchecked, it shouldn’t. To keep your logic consolidated in one place, you’ll
want to manage the class name in _renderList (), but how do you call it?

Let’s start with looking at how you would do it with on () (the jQuery Core one with
no prefix). As a general rule, the _create () method is used to attach all event listen-
ers; you’ll add your code there:

_create: function() ({

this.element.on("click", "input",
$.proxy(this. renderList, this));

}

This code listens for clicks on the todo widget , and—when the target is an
<input>—invokes renderList (). The $.proxy() call is necessary so that this in
_renderList () is set to the widget instance, instead of the DOM element the event
occurred on.

Next, let’s look at the same functionality implemented with _on():

_create: function() {

this._on(this.element, {
"click input": this._ renderList

1
}
Although the code for the two approaches is similar, _on () offers a few conveniences
for widget development. First, it sets this to the widget instance automatically.
There’s no need for a $.proxy () call.

_on() also automatically suppresses events on disabled widgets and cleans up event

handlers when awidgetis destroyed. We’ll get to the specifics of both later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 8 Using the widget factory to build stateful plugins

Now that you call _renderList () when the user clicks check boxes, you have to
make it toggle the ui-state-active class name. The updates to _renderList () are

shown in the following code:
Determines whether

renderList: function() . . .
—) i)) the item is active
this.element.find("1i").each(function() {
var 11 = $(this).addClass("tj-todo-item ui-state-default"),
active = 1i.find(":checked").length === 1,
checkbox = $("<input>", { ... });
li.toggleClass("ui-state-active", active);
b ; Toggles the ui-state-active
! class name

}i

With this update, you determine whether the <1i>’s check box is checked 0, and
then use that to decide whether the ui-state-active class name should be added or
removed from the <1i> itself @.

TIP The jQuery Core toggleClass() method takes an optional second
parameter. When passed, as in _renderList (), true indicates the class name
should be added and false indicates the class name should be removed.

You now have a widget that works seamlessly with all the jQuery UI built-in themes, as
well as third-party ones. With all class names in place, let’s add a bit of CSS to give the
widget its final display:

.tj-todo {
padding-left: 0;
}

.tj-todo .tj-todo-item label { Takes up the full
padding: 0.5em 0.3em; width and height

display: block; of the
: tj-todo .ui-state-active { Crosses out all completed
text-decoration: line-through; to-do items

}

The most important rule here is setting the display of the <label> to block. Your
<label> elements need to take up the full dimensions of the parent <1i> @ to
ensure that all clicks toggle the appropriate check box (remember that clicks on
<label> elements are transferred to their corresponding check box).

Now, not only is your widget themeable, but it also has its final look in place. But
developers still can’t do a lot with your widget. It’s time to make it customizable.

8.2 Customizing widgets with options, methods, and events

We’ve covered a lot of territory, so let’s review where we are. You created your widget
using $.widget (), chose a markup structure to use, built your markup with
_create (), and made your widget themeable. Your checklist shows your progress:

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with options, methods, and events 197

- Sewidget (- - Markup structure . exeatel)
4 Makethemeable 5 Add options 6 Expose methods
7 Trigger events 8 Enable/Disable 9 _destroy()

What you haven’t yet tackled is how to make your widget customizable. You need to
add the same options, methods, and events that the jQuery UI widgets have. Let’s start
with options.

8.2.1 Making widgets configurable with options

Options are properties you can provide to customize the behavior of a widget. You’ve
been using them in the widgets presented so far. Let’s look at how to add them to your
custom widget.

For the to-do list, you’ll implement an option that gives developers the ability to
place the todo widget in a submittable form: a name attribute. Providing name as a con-
figurable option lets developers choose the name of the key submitted to the server.

To start, you need to add an options object to your widget’s prototype:
$.widget ("tj.todo", {

options: ({

name: "todo"

b

.

The options object should have a key-value pair for each option the widget has. Each
key—in this case, name—is the name of the option, and each value—in this case,
"todo"—is the default value of the option. Your widget has a single name option that
defaults to "todo".

After you define the option, you have to use it. The following code adds it to your
_renderList () method:

var that = this;

Saves a X : . ‘
reference to this.element.find("1i").each(function() ({
the widget’s S
instance checkbox = $("<inputs>", {
type: "checkbox",
name: that.options.name, Adds a name
value: 1i.text() attribute based
2K on the option

I3

TIP The use of a variable named that is a JavaScript convention to store a ref-
erence to an outer function’s this so it can be used in an inner function. In this
example, you save a reference to the widget’s instance as that @, and then use
the reference to access the instance’s options in an inner function @.

www.it-ebooks.info

http://www.it-ebooks.info/

198

CHAPTER 8 Using the widget factory to build stateful plugins

With this approach, all check boxes have a name of "todo" by default. To use a differ-
ent value, you pass it when the widget is initialized. The following code uses a name of
"tasks":

$("ul").todo({ name: "tasks" });
To see how this could be used, refer to the following code:

<form method="POST" action="/path/to/server">

Clean dishes</1li>
Walk dog
Mop floor</lis

<button>Submit</buttons>
</form>
<scripts>
$("ul").todo({ name: "tasks" });
</scripts>
If the user were to check the first two tasks on the list and then submit,
tasks=Clean+dishes&tasks=Walk+dog would be submitted to the URL at /path/to/
server. The formatting of the post-data string isn’t specific to jQuery or jQuery UI Per
the HTML specification, only check boxes that are checked are serialized and sent on
HTTP requests. You need to deduce unchecked check boxes by their omission—for
example, “Mop floor” wasn’t checked because it wasn’t included in the post-data.

You now have a functioning option, but you need to handle one more thing.
Recall that the option () method lets you change any option at any time. Currently, if
you call the option () method on your widget, it doesn’t work. The name of this to-do
list remains "todo", when it should be changed to "tasks":

S("ul").todo()

.todo("option", "name", "tasks");
To see how to respond to changes, you need to use another of the widget factory’s
methods: _setOption(). To add a _setOption() method, you pass it on the widget’s
prototype:
$.widget ("tj.todo", {

options: { name: "todo" },
_setOption: function(key, value) ({

b
)

_setOption() is called every time an option is changed on the widget. It is passed the
name of the option as key and the value of the option as value. If you run todo (
"option", "name", "tasks"), setOption() is called with "name" and "tasks". In
_setOption(), you have to implement the code to alter the widget based on the
option change.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with options, methods, and events 199

In your case, you have a method that does that: _renderList (). (Remember how I
said abstracting that method would come in handy later?) All you need to do is call
_renderList () in _setOption():

_setOption: function(key, value) {

this. super(key, value);

this. renderList () ;
}
What about the _super () method call? This calls your parent widget’s method, in this
case $.Widget.prototype._ setOption (), which updates the appropriate property on
the instance’s options object; for example, setting this.options.name. Because
_renderList () uses this.options.name, the super() call has to happen before the
call to _renderList (). Don’t worry about the specifics of _super () ; extending widgets
is the topic of the next chapter, and we’ll go over the details then.

You now have a completely functional option, but that’s only one way of letting
developers configure a widget. We’ll look at adding methods next.

What about _setOptions()?

If you have perused the widget factory’s documentation, you may have noticed that
both setOption() and setOptions() are methods. setOptions() is always
called first when options are changed, and it's responsible for invoking setOption().
In fact, the base implementation in $.Widget.prototype. setOptions ()loops over
the options and calls _setOption() on each:

_setOptions: function(options) {
var key;
for (key in options) {
this. setOption(key, options[key]);
}

return this;

}

The only reason to provide your own _setOptions () method is if you want to perform
optimizations when multiple properties are changed at the same time. Consider a
hypothetical “box” widget with height and width options. Suppose both options are
updated at the same time:

$("div").box("option", { height: 200, width: 200 });

Instead of resizing the box twice—once for height, once for width—you could per-
form the resizing in _setOptions () to ensure it happens only once:

_setOptions: function(options) {
this. super(options);
if (options.height || options.width) {
this.resize() ;
}

}

The dialog widget performs a similar optimization for its numerous dimension-related
options.

www.it-ebooks.info

http://www.it-ebooks.info/

200

822

CHAPTER 8 Using the widget factory to build stateful plugins

Changing the widget’s state with methods

Options let you customize a widget, but they don’t let you perform actions on it. If you
were to use the to-do list you’ve built to this point, wouldn’t you need some way of
adding items to it? In this section, you’ll add four methods to your widget: add (),
check (), uncheck (), and remove ().

To add a method, you add a function to the widget’s prototype. The following code
defines a hello widget with a single world() method. The hello("world") call
invokes the method and the alert ():
$.widget ("tj.hello", {

world: function()
alert ("hello world");
}
)i

$("<div>") .hello() .hello("world");

Have you noticed that all the methods you've used in the todo widget thus far—
_create(), renderList (), and _setOption()—have been prefixed with an under-
score? In widget methods, the underscore prefix determines whether the method can
be invoked through its widget’s plugin:

$.widget ("tj.hello", {

available: function() {},

_notAvailable: function() {} J This works fine.
)i
$("<div>").hello() .hello("available"); 43 This throws an error.
$("<div>") .hello() .hello(" notAvailable");

You define two methods: available () and notAvailable (). Invoking available ()
through the widget’s plugin @ works fine, but attempting to invoke notAvailable ()
throws a JavaScript error @.

Although they have similarities, don’t think of underscore-prefixed methods like
private members from other languages. The methods aren’t available through the
plugin, but they’re still accessible on the widget’s instance. The following code invokes
the previous example’s _notAvailable () method:

$("<div>") .hello() .hello("instance"). notAvailable() ;

Use an underscore when it doesn’t make sense to invoke the method through the
plugin. _create() is a perfect example: explicitly invoking it is unnecessary (as the
widget factory does it for you); it doesn’t make sense to expose it.

Conversely, if developers could use the method’s functionality—make it available.
The methods you’ll add in this section will all be publicly exposed. Let’s start with the
add () method; an implementation is shown in the following code:

$.widget ("tj.todo", {

add: function(value)
this.element.append("<1li>" + value + "</1li>");

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with options, methods, and events 201

this. renderList () ;

}
1
Because all your logic is consolidated in _renderList (), there’s not much to this
method. The widget factory sets this equal to the widget instance; you use the
this.element reference to append a new list item.

Having an add () method makes it possible for developers to build UI elements
that interact with the to-do list. The following listing shows a form that utilizes the new
add () method.

Listing 8.2 Adding items to the to-do list

Clean dishes
Walk dog</lix>
<lis>Mop floor</lis>

</uls>
<form>
<label>Add Item:<input requireds></label>
<button>Add</buttons>
</f01.fm> Converts the list
<script> QJ to a todo widget
var todo = $("ul").todo();
$("form").on("submit", function(event) {
event .preventDefault () ;
var input = $(this).find("input"); J Adds.thet.yped item to
todo.todo("add", input.val()); thehstumngaddo
input.val("");
P
</script>

This example uses a form with a single text box. When
the user submits the form, you take the value the user
typed and invoke the to-do list’s add () method with it walk dog
@. This workflow is shown in figure 8.3.

Clean dishes

One more question worth considering is, why didn’t Mop floor
you build a <form> into the widget itself? You certainly Wash car
could have create () build a <form> that adds items to
the list. The downside of this approach is that it makes 544 Imm@;h;?}__/ o

the widget far less extensible. If you were to bake the
<form> into the widget and a user wanted to fill the list ~ Figure 8.3 Anexternal form that
with an alternative Ul, the user would have to hide or adds items to the to-do list
remove the <form> to use the todo widget.

If you keep the widget minimal, and expose its API through methods, developers
can build solutions on top of it. We’ll look at some of those things in the next chapter,
but before we end our methods discussion, you have three more methods to imple-
ment: check (), uncheck (), and remove (). The implementation of these three meth-
ods is shown in the following code:

www.it-ebooks.info

http://www.it-ebooks.info/

202

823

CHAPTER 8 Using the widget factory to build stateful plugins

remove: function(value)
this.element.find(" [value='" + value + "']")
.parents("li:first") Removes the
-remove () ; appropriate list
Iy item from the DOM
check: function(value) {

this. toggleCheckbox (value, true);

b

uncheck: function(value)
this._toggleCheckbox(value, false);
. Checks or unchecks
_toggleCheckbox: function(value, checked) ({ the check box based
this.element.find(" [value='" + value + "']") on the argument

.prop ("checked", checked);
this. renderList();

}
All three methods take the value of the item to operate on—for example, "Walk dog".

The remove () method finds the check box with this value, and then removes its par-
ent <1i> from the DOM @.

WARNING You're dealing with two different remove () methods here: the
method you're adding to the to-do list ($.t]j.todo.prototype.remove) and
the jQuery Core $.fn.remove method, which removes elements from the
DOM. Normally, I don’t like introducing potentially confusing APIs, but in
this case, I went with remove () because it’s a direct antonym of add (). Also, I
can’t use delete because it’s a JavaScript reserved word, and the other words
the thesaurus gave me sound silly—for example, abolish(), eliminate (), or
expel (). Because of the ambiguity, I’ll try to clarify when this comes up to
avoid confusion.

Because the implementation of the check () and uncheck () methods is so similar, you
place the logic in a shared _toggleCheckbox () method. toggleCheckbox () finds the
appropriate check box and checks or unchecks it appropriately @. It then calls
_renderList () so ui-state-active is added or removed from the appropriate <1i>.

All these methods give developers flexibility when using your widget. In the next
chapter you’ll use the todo widget’s remove () method to build an extension with
which items can be removed from the list.

At this point your widget is configurable. Developers can add items with add (),
check off items with check (), uncheck them with uncheck (), and remove them with
remove (). Your next step is to allow developers to respond to changes that take place
in the widget. You do that by triggering events.

Triggering widget events with _trigger()

Like options and methods, events need little introduction because you’ve been using
them throughout this book. The jQuery UI widgets trigger events whenever their state
changes—a dialog is closed, a tab is activated, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with options, methods, and events 203

When writing a widget, you have to decide what events to trigger. This is a judg-
ment call, but in general, you should trigger events for anything that could be useful
for developers to subscribe to. For the to-do list, the most important use case is check-
ing and unchecking items in the list, so let’s start there.

Recall that you're using _on() to update your widget’s markup whenever a check
box is clicked:
this. on(this.element, {

"click input": this. renderList

1
The following code alters this code to trigger "check" and "uncheck" events:

this._on(this.element, {

"click input": function(event) {
this. renderList () ;
this. trigger(event.target.checked ? "check" : "uncheck",

event, { value: event.target.value });

}

Triggers a “check”
or “uncheck” event

using _trigger()

I3

The only addition here is another one of the widget factory’s convenience methods:
_trigger(). _trigger() takes three arguments: the name of the event, an event
object, and an object with data associated with the event. You trigger either a "check"
or an "uncheck" event (depending on whether the check box is checked), and you
pass the value of the check box @.

As with all the jQuery UI widget events, you can now subscribe to events with call-
back functions or event handlers. For instance, when a user checks an item, each of
these functions logs the value of the check box checked:
$("ul") .todo ({

check: function(event, ui) { <— Callback function
console.log(ui.value);

}

}) .on("todocheck", function(event, ui) { <— Event handler
console.log(ui.value);

1
Before we move on, remember that in the last section you added check() and

uncheck () methods; you need to trigger check and uncheck events there as well. The
following code adds this behavior to the methods:

check: function(value) {

this. toggleCheckbox(value, true);

this. trigger("check", null, { value: value });
1
uncheck: function(value) {

this. toggleCheckbox(value, false);

this. trigger("uncheck", null, { value: value });

www.it-ebooks.info

http://www.it-ebooks.info/

204

CHAPTER 8 Using the widget factory to build stateful plugins

These examples use null in place of an event object. Whenever you provide data to an
event (in this case, the value of the check box), you must provide all three parame-
ters to _trigger (). In the click event handler, you had an event to pass along, but
here you don’t. In these situations, pass null to indicate that there’s no native event.

You now have comprehensive coverage for the check and uncheck events; they’ll
be triggered regardless of whether the user clicks check boxes in the UTI or a developer
uses the check () or uncheck () methods.

This consistency gives developers flexibility in what they can implement with the
todo widget. If you want to sync changes to a back-end database as they’re made, you
can use the check and uncheck events to do that.

Now that you’re triggering events, you're near the end of your widget develop-
ment checklist. The last things we need to cover are enabling, disabling, and destroy-
ing widgets.

Triggering cancellable events

You may recall from chapter 2 that some jQuery Ul widget events are cancellable—
that is, you can cancel an event to prevent some action from occurring. If you prevent
the default action of the dialog widget’s beforeClose event, the dialog does not close.

How do you implement your own cancellable events? The same _trigger () method
you just used to trigger events returns a Boolean that indicates whether the default
action was prevented. You can use that Boolean to determine whether to continue
with the action.

As an example, you can make the todo widget’s check event cancellable with the fol-
lowing change to the check () method:

check: function(value)
if (this. trigger("check", null, { value: value })) {
this. toggleCheckbox(value, true);
}

}

Now, if a user subscribes to the check event and prevents the default action,
_trigger () will return false and the check box will not be checked. For instance,
the following code creates a todo widget, appends it to the <body>, and invokes the
check () method on its only item:

var list = $("One") .todo ({
check: function(event) ({
event .preventDefault () ;
1

IOF;
list.appendTo("body");
list.todo("check", "One");

Because the todo() call includes a check event callback that calls prevent-
Default (), the trigger () call within the widget’s check () method returns false,
and the widget’s checkbox is not checked.

www.it-ebooks.info

http://www.it-ebooks.info/

8.3

83.1

Enabling, disabling, and destroying widgets 205

Enabling, disabling, and destroying widgets

Let’s take one last look at your widget checklist.

1 $-widget{)- 2 Markup-structure . —ereatel
- Make-themeable - Add-optiens - Expesemethods
7 TFriggerevents 8 Enable/Disable 9 _destroy ()

Your new widget is almost complete. The last two steps are allowing developers to dis-
able and destroy widgets. As in most of the widget steps, much of the functionality to
do this is baked into the widget factory, but you have to override a few methods for
your todo widget. Let’s get started by looking at how to enable and disable widgets.

Enabling and disabling a widget

Disabling UI elements is a common Ul pattern to prevent users from interacting with a
control. Native form elements <input>, <select>, <textarea>, and <button> can be
disabled by adding a disabled attribute—for example, <input disabled>.

Most of the jQuery UI widgets can be enabled or disabled. Some of the functional-
ity is built in to the widget factory itself.

NOTE The two widgets that can’t be disabled are datepicker and dialog.
Datepicker doesn’t support the same disabling mechanism because it’s the
only widget not built with the widget factory. The dialog widget doesn’t sup-
port disabling because it doesn’t make any sense to disable a dialog (more on
this momentarily).

Specifically, the widget factory provides a disabled property, disable () method, and
enable () method for all widgets. Let’s look at how these work in a button widget
example. The following code creates a disabled button by setting its disabled option:

var magicButton = $("<button>Magic Button</buttons>")
.appendTo("body")
.button({ disabled: true });

You can then enable the same button by calling its enable () method
magicButton.button("enable");

and call its disable () method to disable it again:
magicButton.button("disable");

How can you let developers disable your widget? First, let’s look at what the widget fac-
tory provides. To start, your to-do list already has enable () and disable () methods.
The following code creates a new to-do list and calls its disable () method:
$("One")

.todo ()

.appendTo ("body")
.todo("disable");

www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 Using the widget factory to build stateful plugins

If you were to try this out, you’d see that it has no visual effect on the widget. You can
still check and uncheck the item on the list. To see why, let’s look at the full imple-
mentations of the base enable () and disable () methods your widget uses: $.Widget
.prototype.enable () and $.Widget.prototype.disable():

enable: function() ({
return this. setOptions({ disabled: false });

|
disable: function()

return this. setOptions({ disabled: true });
}

The default methods set only the widget’s disabled option. To implement disabling
logic, you must respond to the change in the disabled option. And—you’ll recall
from section 8.3.1—you do this with _setOption(). The following code alters your
widget so it can be disabled and enabled:

_setOption: function(key, value) ({
this. super(key, value);
this. renderList () J If the disabled option
if (key == "disabled") { is changing
this.element
...disable or enable .find("input").prop("disabled", value);
the widget’s check this.element
boxes .find("1i") .toggleClass("ui-state-disabled", value);
)) ...and toggle the ui-state-
disabled class name on

each .

The first addition to _setOption () is a check for the disabled option @. Remember
that setOption() is called for any option change, so you need this check to make
sure your code runs only when dealing with the disabled option.

If you’re dealing with disabled, you do two things: toggle the disabled property
on all check boxes @, and toggle the ui-state-disabled class name on all <1i>s ©.
Because this is the disabled option, when the value is true, you disable all check
boxes and add ui-state-disabled. When the value is false, you enable all check
boxes and remove ui-state-disabled.

Now that you have the functionality in place, what about styling your disabled wid-
get? Because you're using the themeable ui-state-disabled class name, your dis-
abled state is styled according to your theme. No extra work is needed!

If you do want to tweak the disabled look, you can target the disabled list items
using .tj-todo .ui-state-disabled. The widget factory also adds a namespace-widget-
name-disabled class name to the outer container of the widget. In the case of your todo
widget, the outer has a tj-todo-disabled class name when disabled.

Now that you have a widget that can be enabled and disabled, you’re nearing the
end of your widget checklist. You have only one thing left to handle: destruction.

www.it-ebooks.info

http://www.it-ebooks.info/

8.3.2

Enabling, disabling, and destroying widgets 207

What if your widget can’t be disabled?

Although most widgets can be disabled, there are exceptions. Disabling a dialog wid-
get would be bizarre, for example; at the least, the jQuery Ul team couldn’t come up
with a practical reason to allow it.

The dialog widget does two things. First, it sets the enable () and disable () meth-
ods it inherits from the widget factory to an empty function—specifically, $.noop, a
convenience property provided by jQuery Core that’s literally set to function() {}:

disable: $.noop,
enable: $.noop

The dialog widget still has disable () and enable () methods, but they do nothing.
The second thing the dialog widget does is ignore the disabled option. The following
code appears near the beginning of the dialog widget’'s setOption () method:

if (key === "disabled") {
return;
}

If you're developing a widget that it doesn’t make sense to disable, this approach is
recommended.

Undoing a widget’s effects with _destroy()

In the terms of the widget factory, destroying a widget is like hitting the undo button
in a text editor. When a widget is destroyed on an element, any markup that was
added is removed; any class names that were added are removed; any events that were
bound are unbound. The element is returned to its prewidget state.

All the jQuery UI widgets provide a destroy () method that undoes their effects. As
an example, the following code initializes a <button> with a button widget, and then
destroys the widget using destroy():

$("<buttonsButton</buttons>")

Initializes the
. dT "body" ;
Destroys the iﬁiizn (? ("body") button widget
button WIdget .button("destroy");

Now that you’re on the implementing end, you have to provide this functionality as
well. How do you do it? Like most of the topics in this chapter, the widget factory gives
you a method to provide this functionality: destroy ().

WARNING Take note of the underscore prefix again—destroy() and
_destroy () are different methods with different purposes. We’ll get to that in
a minute.

Here’s the implementation of your todo widget’s destroy () method:

_destroy: function()
this.element
.removeClass (

www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 Using the widget factory to build stateful plugins
Removes all "tj-todo ui-widget ui-widget-content ui-corner-all")
class names .find("1i") .each(function() {
that were var 1li = $(this) .removeClass (
added. "tj-todo-item ui-state-default"),
input = 1li.find("input"),
text = li.text(); Removes checked
if (input.is(":checked")) { items from the
1i.remove() ; DOM.
} else {
1i.hetml (text); Leaves unchecked
} items. Sets their
1 innerHTML to
} text only.

Your first step is to remove all class names that the widget added. You first do that from
your main element @, then for each <1i>.

Next, you determine whether the check box of each <1i> is checked. If it is, you
remove the <1i> from the DOM @. Because of this implementation, checked to-do
items are removed from the list when it’s destroyed. We’ll look at why you take this
approach in a moment.

Finally, you revert the contents of all list items that aren’t checked. To see how this
works, let’s recall the HTML you used when you created the widget in _create (). You
took a list item—for example, <1i>Walk dog—and turned it into the following
markup:

<label>
<input type="checkbox" value="Walk dog">
Walk dog
</label>
</1li>
To undo this, you set the innerHTML of each (using jQuery Core’s html ()
method) back to the text of the <1i>, in this case, “Walk dog” ©.

That’s the end of your method. You may be wondering why you didn’t need to do
more. You didn’t unbind any events, and there were some class names you didn’t
remove. As it turns out, the widget factory handles this for you.

Whenever a widget’s destroy () method (no underscore prefix) is called, the wid-
get factory performs common cleanup tasks in $.Widget.prototype.destroy () and
then delegates to the widget’s destroy()method (with an underscore prefix) for
widget-specific cleanup. The following code shows an abridged version of $.Widget

.prototype.destroy (). Don’t worry if you don’t understand everything here; we’re
looking at the code to give an overview of the things destroy () does for you.

destroy: function() { J Calls the widget-specific
this. destroy(); _destroy() method

this.element ﬁ Removes all stored
.removeData(this.widgetFullName) ; widget data

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling, disabling, and destroying widgets 209

this.widget ()
Removes disabled .removeClass (

state class names this.widgetFullName + "-disabled " +

3 . Unbinds all
"ui-state-disabled"); events attached
this.bindings.unbind(this.eventNamespace) ; with _on()
Removes all this.hoverable.removeClass("ui-state-hover");
hover state gb this.focusable.removeClass("ui-state-focus"); Removes all
class names focus state
class names

destroy() invokes the destroy() method for widgetspecific cleanup @. This is the
method you implemented for your to-do list earlier in this section.

To understand the next line @, remember that the widget factory stores instance
data using $.data () with a key of the widget’s full name—in this case, tj-todo. Call-
ing removeData () removes the instance from jQuery’s internal data store to avoid
memory leaks.

Both disabled class names—ui-state-disabled and the widget-specific tj-todo-
disabled—are removed from the widget ©.

The next line may also seem a bit cryptic. this.bindings is a collection of ele-
ments in the widget with events bound to them with _on() @ The unbind() call
removes those events. Remember earlier in the chapter when I said that if you use
_on(), all events are cleaned up for you? This is the code that makes that happen.

The code at @ and @ removes the ui-state-hover and ui-state-focus class
names from all elements that were made hoverable or focusable using hoverable ()
and focusable().

You only need to worry about cleaning up things specific to your widget in
_destroy (). The widget factory takes care of all generic cleanup tasks for you. Before
leaving the topic of widget destruction, we need to discuss one thing: why bother
destroying a widget?

For one, it can be useful to have the ability to completely undo a widget’s effect
when building a UL The following listing uses the todo widget to build an editable list
of items.

Listing 8.3 An editable list built with the todo widget

<style>
#update { display: none; }
</style>

<ul id="todo">
Clean dishes
<lis>Walk dog
Mop floor</lis

<button id="edit"s>Edit</buttons>
<button id="update">Update</button>

<scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

210

CHAPTER 8 Using the widget factory to build stateful plugins

var list = $("#todo"),
editButton = $("#edit") .button(),

updateButton = $("#update") .button() ; q‘r Initializes a

todo widget

editButton.on("click", function() {
on the

list.todo () ;
editButton.hide() ;
updateButton.show () ;

1) Destroys the
updateButton.on("click", function() ({ todo widget

list.todo("destroy"); on the
editButton.show() ;
updateButton.hide () ;

1
</script>
In this example, you have two buttons: Edit and Update. The Edit button converts the
example’s to a todo widget @. The user can then check off items on the list.

When the user clicks Update, the todo widget’s destroy () method removes the
todo widget from the @, leaving a list of items. Because of your implementation
of destroy(), items that the user checks are removed from the when it’s
destroyed. This workflow is shown in figure 8.4.

Beyond the UI niceties, there’s one other good reason to implement destroy ()
on your widgets: destroy () (which, as you recall, invokes _destroy ()) is called when
the widget’s element is removed from the DOM using any of the jQuery Core meth-
ods. In the following code a button widget is initialized on a <buttons>, and then it’s
removed from the DOM because the innerHTML of its parent is changed using the
jQuery Core html () method.

+ Clean dishes

+ Walk dog [J Clean dishes
+ Mop floor User clicks
* [Walk dog
Edit
[JMop floor
User checks Update
Walk dog
[Clean dishes
™ Walldeg + Clean dishes
+ Mop floor
(] Mop floor
Edit Figure 8.4 Workflow of the
User clicks destroy () example. The
Update Update user can check off items to re-

move them from the list.

www.it-ebooks.info

http://www.it-ebooks.info/

Enabling, disabling, and destroying widgets 211

<div>
<button>Button</buttons>
</div>
<scripts>
$("button") .button() ;
$("div") .html("Some other content");
</script>

Even though the code doesn’t explicitly call destroy (), it does invoke the button wid-
get’s destroy () (and _destroy()) methods. This is another piece of magic that the
widget factory provides. Internally, the widget factory duck punches jQuery Core’s
internal $.cleanData () method. When it detects that a widget has been removed, it
invokes its destroy () method to give the widget a chance to clean up and avoid mem-
ory leaks. Even if you have no intention of providing undo functionality, it’s important
to include a _destroy () method to avoid leaks.

TIP Duck punching refers to a technique of extending some piece of a
library without altering its original source. (The technique is also some-
times known as monkey patching the proxy pattern.) Paul Irish has a great
explanation of the technique and concrete implementations of it at http://
www.paulirish.com/2010/duck-punching-with-jquery/. You’ll use the duck
punching technique to build datepicker extensions in the next chapter.

Evaluating third-party widgets

Although building a custom widget is powerful, it can also be a lot of work, and some-
one else may have built what you need. You can look for third-party widgets on jQue-
ry’s plugin repository at http://plugins.jquery.com/ or with a Google search.

Remember, though, that unlike the jQuery Ul widgets, you have no idea what you’re
going to get from widgets you find on the internet. You can find robust widgets that
save you time and development effort, and you can find widgets that don’t work.

When evaluating unofficial jQuery widgets, here are a few questions to ask. The more
of these questions you can answer affirmatively, the more likely the widget will work
well in your application:

= Does the widget use the widget factory? If so, all the conventions we've dis-
cussed throughout the book for options, methods, events, and such still apply.
Usually, widget maintainers mention whether the widget factory is used in the
widget’'s documentation; if not, you can look for a call to $.widget () in the wid-
get’s code.

= [s the widget themeable? If it is, the existing jQuery Ul themes will work fine with
the new widget. To see if the widget is themeable, check for the CSS frame-
work’s class names (ui-widget, ui-widget-content, and so on) on the wid-
get’s markup.

= Does the widget have tests? Unit tests are a sign that the widget’s code is stable
and all its APIs work. Furthermore, because unit tests aid with code mainte-
nance, their presence is a good sign that the widget will be updated as future
versions of jQuery are released.

www.it-ebooks.info

http://www.paulirish.com/2010/duck-punching-with-jquery/
http://www.paulirish.com/2010/duck-punching-with-jquery/
http://www.it-ebooks.info/

212 CHAPTER 8 Using the widget factory to build stateful plugins

(continued)

= s jt well documented? This one is a bit self-explanatory; thorough documentation
makes it easier to get started with a widget and to use it.

= [s it maintained? A widget that was last updated a month ago is more likely to be
actively maintained than a widget that was last updated two years ago. Look for
the release date of the latest version of the widget, and when the last few com-
mits were.

= [s it battle tested? If you're the 10,000th person to use a widget, chances are
you’ll have a smoother experience than the 10th person to use it. Widgets that
have been used in numerous production applications are more likely to have the
kinks worked out. If the widget is on GitHub, look for projects that have a lot of
watchers and stars. If the project isn’t on GitHub, look for how much information
is available with a Google search or on Stack Overflow.

84 Summary
That’s it! In this chapter, you saw that the widget factory is used to build stateful plug-

ins, and then you went through a nine-step process of building a widget with it. The
nine steps you took were

Create the widget with $.widget ().

1

2 Decide on a markup structure to use.

3 Build the markup structure with _create ().

4 Make the widget themeable by applying the appropriate class names from the
jQuery UI CSS framework.
Add options to make the widget configurable.
Expose methods.

5
6
7 Trigger events as the widget’s state changes using _trigger ().
s Allow developers to disable and enable the widget.

9

Undo the widget’s effects using _destroy ().

You can refer back to this chapter and follow these nine steps anytime you want to
build a stateful plugin with the widget factory.

But what if you don’t want to build a complete widget from scratch? Sometimes
you need to make a quick alteration to an existing widget, and the widget factory has
an extension mechanism built in that does that. We’ll spend the next chapter looking
at how it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending widgets
with the widget factory

This chapter covers

= Building on top of the jQuery Ul widgets
= Using and creating extension points

= Extending datepicker

We’ve spent the greater part of this book looking at myriad things you can do with
the jQuery UI widgets. But although the jQuery UI widgets handle the most com-
mon development use cases, real-life applications often have specific—often
crazy—requirements. To give a few concrete examples: the jQuery UI team has had
feature requests asking for accordions that store their open panel in a cookie, drag-
gables that have a Cancel button, and autocompletes within autocompletes. (I'm
not sure what those last two even mean, but someone asked for them.)

Widgets can’t solve every niche problem that developers have, so to allow for
highly customized solutions to these unique issues, the widget factory allows you to
extend existing widgets. The ability to extend widgets lets you add, remove, or
tweak the behavior of an existing widget without reinventing the wheel. Because of

213

www.it-ebooks.info

http://www.it-ebooks.info/

214

9.1

9.11

CHAPTER 9 Extending widgets with the widget factory

the customizability it provides, the widget factory’s extensions mechanism is—in my
opinion—the single most powerful feature in jQuery UL

In this chapter, we’ll look at how to create widget extensions, then we’ll build a
few examples to see what they make possible. We’ll look at datepicker specifically, as
it’s the only jQuery UI widget that doesn’t use the widget factory yet and requires
tricky workarounds.

Let’s dig in.

Building widget extensions

Widget extensibility is built directly into the widget factory; you can use all the widget
mechanisms you’ve learned, along with a few mechanisms specific to widget exten-
sions that you’ll learn throughout this chapter. In fact, extending widgets is as easy as
passing the constructor function of the widget to extend into $.widget (). The follow-
ing builds an extension of the jQuery Ul dialog widget named superDialog:

$.widget ("tj.superDialog", $.ui.dialog, {});

superDialog is an exact clone of the dialog widget. You can use its constructor func-
tion to create a new dialog

$.tj.superDialog("<div>") ;

or you can use its plugin

$("<div>") .superDialog() ;

With the widget factory, you aren’t limited to one level of inheritance; you can build
extensions of extensions. The following creates a third superDuperDialog widget that
extends the superDialog widget:

$.widget ("tj.superDuperDialog", $.tj.superDialog, {});

All three widgets are complete widgets, each with its own plugin; each of the following
creates a new dialog:

$("<divs>").dialog() ;

$("<div>") .superDialog() ;

$("<div>") .superDuperDialog() ;

Although it’s cool that you can create a copy of a widget in one line of code, these
extensions aren’t useful; they’re the same widget with different names. To make your
widget extensions useful, you have to make them do something their parent widget
doesn’t. Let’s start by altering options.

Changing existing and adding new options to a widget

With widget extensions you have the full power of the widget factory at your disposal.
Anything you can do with a widget, you can do with a widget extension—including
altering options, or adding new ones.

To show this, let’s return to the confirmation dialog that you builtin chapter 2. That
example created a new <div> and converted it to a dialog widget with an OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building widget extensions 215

$("<divsYour transaction processed successfully.</divs>").dialog ({
options: {
buttons: {
OK: function() {

$(this).dialog("close");
}

}
1
This works, but you repeat the five lines to create the OK button every time you want
to create a confirmation dialog. You could change $.ui.dialog.prototype
.options.buttons, but that would change the defaults of all dialogs, not just confir-
mation ones.

To consolidate this configuration, let’s create a confirmationDialog widget
extension:
$.widget ("tj.confirmationDialog",

options: {

buttons: {
OK: function() {

$.ui.dialog, { Specifies the .
confirmationDialog’s options

$(this).confirmationDialog("close");
}
} ! .
close: function() ({ 43 Destrqys the dialog
$(this).confirmationDialog("destroy") ; when it’s closed

}

}
1
You define options for your confirmationDialog @ and when you extend another wid-
get, the widget factory intelligently merges the widget’s default options with its par-
ent’s defaults. So your widget still has all the dialog widget’s options—height, width,
modal, and so on—without needing to explicitly list them. Any options you do provide
override those of the parent widget. The following creates a confirmation dialog using
your new widget’s plugin:
$("<divs>Your transaction processed successfully.</divs>")

.confirmationDialog() ;
This dialog is shown in figure 9.1. Although you
passed no options to confirmationDialog(),
it automatically has an OK button that closes

the dialog. Your transaction processed
. . successfully.
The other option you pass is a close event
callback that calls the confirmationDialog’s

destroy () method @. Because you're creating a —

new <div> every time you build a confirmation

dialog, this prevents the dialog from staying in
the DOM when you no longer need it.

www.it-ebooks.info

Figure 9.1 A confirmation dialog built
with the confirmationDialog widget

http://www.it-ebooks.info/

216

CHAPTER 9 Extending widgets with the widget factory

The confirmation dialog sets the default value of its parent widget’s options. Next,
let’s show a widget that adds a new option altogether. Remember the vertical tabs
example that you built in chapter 7? You added CSS to the tabs widget to stack the tabs
vertically instead of horizontally:

.ui-tabs {
padding: 0;
overflow: hidden;

1

.ui-tabs .ui-widget-header {
border: none;

}

/* etc */

This works if all your tabs are vertical, but what if you want horizontal and vertical tabs
in the same application, or even on the same page? We’ll look at a couple of ways to
make this possible, starting with adding a new option to the tabs widget.

For consistency with the jQuery UI slider widget (which can also display horizon-
tally or vertically), you’ll use an orientation option that can be set to "horizontal"
or "vertical". The final display of this widget is shown in figure 9.2.

To implement this widget, you need to change your custom CSS so that it no longer
addsrules to the ui-tabs classname. Instead, you prefixall ruleswith aui-tabs-vertical
class name, as shown here:

.ui-tabs-vertical {
padding: 0;
overflow: hidden;

}

.ui-tabs-vertical .ui-widget-header {
border: none;

/* etc */

Your widget extension now has to manage this class name to determine whether the
tabs display horizontally or vertically. The first step is to add logic to conditionally add
the ui-tabs-vertical class name when the tabs are initialized in create (). But

$("#tabs") .tabs({ orientation: "vertical" });

One Two Three
B —

‘ One One Contents One Contents

‘ Two

‘ Three

$("#tabs").tabs();

Figure 9.2 Display of a tabs extension that adds an orientation option

www.it-ebooks.info

http://www.it-ebooks.info/

Building widget extensions 217

there’s a problem with this. The tabs widget’s existing _create () method already does
alot, and if you override it, you lose all that behavior.

No need to worry; the widget factory has a trick up its sleeve to make the parent
widget’s method available in all extended methods. To see this in action, look at the
tabs extension shown in the following listing.

Listing 9.1 Tabs widget extension with an orientation option

$.widget ("tj.tabs", $.ui.tabs, { Qa Creates the extension

options: { with name “tj.tabs”

Adds an orientation orientation: "horizontal"

option that defaults b)
to “horizontal” _create: function() {
th}s ._super () ; . . Invokes the parent
} this. handleOrientation() ; widget’s _create() method
_handleOrientation: function() ({
this.element.toggleClass("ui-tabs-vertical",
this.options.orientation === "vertical");

}setOption: function(key, value) { Qj Invokes_the parent widget’s
- this. superApply(arguments) ; _setOption() method
if (key === "orientation") {
this. handleOrientation() ;
}

1
_destroy: function() {
this._ super() ;
this.element.removeClass ("ui-tabs-vertical");
1
I3

NOTE This example is available at http://jsfiddle.net/tj_vantoll/S6bCN/.

We’ll start at the top before getting into _create (). The call to $.widget () defines
the widget’s full name as "tj.tabs" @. How can you have two widgets that have the
same name? Because the widgets have different full names, "tj.tabs" and
"ui.tabs", these two widgets can coexist; their constructor functions are available at
$.tj.tabs() and $.ui.tabs (), respectively.

But because you can’t have multiple jQuery plugins with the same name, the
tabs () plugin is now associated with $.tj.tabs () and not $.ui.tabs (). This can be
confusing; we’ll look at a better way to handle this in the next section.

Next, you define a new option for your tabs widget extension: orientation, which
defaults to "horizontal" @. Because your extension inherits all options from its par-
ent widget—in this case $.ui.tabs—this is the only option you need to explicitly list.

After the options, you provide a few methods on your new widget’s prototype—the
first being _create (). In _create() you can see the utility function the widget factory
provides for accessing the parent widget’s method of the same name: _super () €.

www.it-ebooks.info

http://www.it-ebooks.info/

218

9.1.2

CHAPTER 9 Extending widgets with the widget factory

_super () is incredibly useful in extensions because, instead of having to duplicate
the logic in the jQuery UI tab widget’s create (), you can directly invoke it and then
add your custom logic to manage the ui-tabs-vertical class name.

The rest of this example manages this class name. In _destroy() you ensure the
class name is removed, and in _setOption() you ensure the class name is added or
removed appropriately when the orientation option changes.

_setOption() uses one other method you haven’t seen before: superApply ().
_superApply () and super () both invoke the parent widget’s method of the same
name. The difference is in the arguments the methods accept; super () accepts zero
to many arguments passed individually, and _superApply () accepts an array of argu-
ments. For example, you call _superapply(arguments) @, but you could have
invoked _super () with the two arguments of _setOption() explicitly listed—that is,
_super (key, value). Because the two methods do the same thing, which one you
use is a matter of personal preference.

TIP The arguments objectis an array-like local variable available in all functions.
It contains the arguments passed to the function. For more information on
arguments, see https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference /Functions_and_function_scope/arguments.

This extension approach added a new orientation option, but you could have taken
other approaches. You could’ve used a different plugin name as shown in the follow-
ing code:
$.widget ("tj.verticalTabs", $.ui.tabs,
_create: function() {
this. super();

this.element.addClass("ui-tabs-vertical");
1
_destroy: function() {
this. super();
this.element.removeClass("ui-tabs-vertical");

}

1
This implementation creates two separate plugins: tabs() and verticalTabs().
Developers call tabs () to create horizontal tabs and verticalTabs () to create verti-
cal ones. The only difference is this implementation doesn’t let you change the orien-
tation of the tabs using the option () method.

The widget factory makes different approaches possible so that you can create the
widget that best meets your needs. In the next section you’ll return to your initial ver-
tical tabs implementation to see how you can clean it up.

Redefining widgets with the widget factory

Often you perform asmall alteration to an existing widget, butyou have no need to create
abrand-new widget from scratch. Your first vertical tabs extension is the perfect example
of this—you added a new option, but you had no need to create a new widget.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/arguments
http://www.it-ebooks.info/

Building widget extensions 219

Widgets extensions and method calls

When you create widget extensions that define new plugins, such as the vertical-
Tabs example, the parent widget’s plugin cannot be used to invoke methods on ele-
ments that are instances of the child widget. This is a bit of a mouthful, so let’'s look
at an example:

$.widget ("tj.superDialog", $.ui.dialog, {});

var div = $("<div>") .superDialog() ;
div.superDialog("close"); <@ This works.
div.dialog("close");

43 This doesn’t.

Here, you create a superDialog widget that extends the dialog widget, and then create
a superDialog instance on a newly created <div>. Because the <div> is a superDialog
instance, you can invoke methods on it through the superbialog() plugin @, but
you cannot use the parent widget’s dialog () plugin @.

Before jQuery UI 1.9, there was no good way to do this. Your only option was to change
the widget’s methods on its prototype. The following example does this for the tabs
widget’s _create () method:

$.ui.tabs.prototype. create = function() ({
this.element.addClass("some-class-name") ;

Vi

The problem with this approach is that you have no access to the super() and
_superApply () methods; therefore, to invoke the tabs widget’s original _create ()
method, you must store off a reference to it before overriding it:

var oldCreate = $.ui.tabs.prototype. create;

$.ui.tabs.prototype. create = function() ({ <ng? Set this for the
oldCreate.apply(this); parent method.
this.element.addClass("some-class-name") ;

Vi

This code is a lot of work to perform a single action in _create (). You have to manu-
ally set the context (this) of the parent method’s create () @—something that the
widget factory handled for you.

The biggest problem with this approach is that it requires you to duplicate boiler-
plate code to store a reference to the parent method. You override only one method,
but if you had more, you’d have to duplicate the same code for each.

To make this process easier, a new feature was added to the widget factory in the
jQuery UI 1.9 release: the ability to redefine widgets. To see how this works, let’s look
at the same example implemented with the widget factory:
$.widget ("ui.tabs", $.ui.tabs, {

_create: function() ({

this. super();
this.element.addClass("some-class-name") ;

www.it-ebooks.info

http://www.it-ebooks.info/

220

9.1.3

CHAPTER 9 Extending widgets with the widget factory

This example is also four lines of code, but it’s far cleaner. You don’t have to worry
about saving references to the parent widget’s method—you just call _super (). This
approach ends up being cleaner for more complex examples. Let’s return to your wid-
get that added an orientation option to the tabs widget:
$.widget ("tj.tabs", $.ui.tabs, {

options: {

orientation: "horizontal"

I
1)

As discussed, the issue here is that you're creating two widgets: $.tj.tabs and
$.ui.tabs. To change this widget to redefine $.ui.tabs, you change the namespace
from "tj" to "ui":
$.widget ("ui.tabs", $.ui.tabs, {

options: {

orientation: "horizontal"

b
I3

Instead of creating a new widget on a different namespace, you alter the jQuery UI
tabs widget’s behavior. Because of this, all instances of the tabs widget are affected—
any new and existing tabs widget instances now have an orientation option.

In general, whether to build a new widget or redefine an existing one is a matter of
personal preference and depends on the specific scenario, but I'll give a few recom-
mendations. For quick changes, redefining a widget is preferred—as users of the wid-
get don’t have to remember two different widget names and plugins.

For more complex changes, a new widget is preferred. A different name helps to
clearly differentiate the widget from its parent; otherwise, users of the widget might
attribute the additional functionality to the parent. As an example, a developer using
your updated tabs widget might assume that the orientation option is part of jQuery
UI, and wonder why it’s not documented on the API documentation.

Regardless of which approach you use, widget extensions make all sorts of power-
ful customizations possible. Let’s look at a few more practical examples of this, start-
ing with your todo widget from the last chapter.

Extending a custom widget

Widget extensions aren’t limited to the jQuery UI widgets. Any widget built with the
widget factory can be extended, even completely custom widgets like the to-do list you
built in the previous chapter. To show this, you’ll build two extensions of this widget,
one that makes items in the list removable and another that makes them sortable.

Let’s start with the removable example. Remember from chapter 8 that each item
in the list could be checked and unchecked, but there was no way to remove items
from the list; therefore, you’ll build an extension that adds this functionality. The dis-
play of this widget is shown in figure 9.3.

www.it-ebooks.info

http://www.it-ebooks.info/

Building widget extensions 221

Write widget ®
Post on GitHub x
Profit? Figure 9.3 A todo widget extension

that adds remove icons

The implementation of this widget is shown in the following listing.

Listing 9.2 A todo widget extension with removable items

$.widget ("tj.todo", $.tj.todo, {
_create: function() ({

this. super(); @ Listens for clicks on
this. on({ the list’s buttons
"click button": function(event) {
var value = $(event.target).parents("li:first")
.find ("input") .val();
this.remove (value) ; Calls the
1 ql remove()
1) i method
Removes b
all buttons _renderList: function() {
from the var listItems = this.element.find("1i");
list listItems.find("button").remove () ; Creates a new
this. super(); <button>
listItems.each (function() {
var button = $("<button>Close</button>").button({
icons: { primary: "ui-icon-closethick" },
text: false #4
1) #a
$(this) .append(button);
3]
}
destroy: function() { qj Removes all buttons
this.element.find("button") .remove () ; from the list

this._super() ;
}
1
NOTE This example is available at http://jsfiddle.net/tj_vantoll/umrmm/.
If you need to reference the code for the original todo widget, you can view
that at http://jsfiddle.net/tj_vantoll/zStp7/.

This example works by adding a <button> elementto each <1i>in thelist. In_create(),
after calling _super (), you use _on() to attach an event listener for buttons in the list
@. The listener determines which item was clicked, then calls the todo widget’s
remove () method you added in chapter 8 to remove the <1i> from the DOM @.
Next, you have toinject the <button> elements into each <11i>. Because the todo wid-
get’s_renderList () method is called every time the listis manipulated (when items are
added, removed, checked, or unchecked), it makes for a perfect extension point for the

www.it-ebooks.info

http://www.it-ebooks.info/

222

CHAPTER 9 Extending widgets with the widget factory

todo widget. We’ll discuss extensions points in more detail in the next section, but for
now know that extensions points are methods that are convenient to extend.

You remove all buttons from the list €, before you call super (). You do this
because the parent widget relies on getting the text of each <1i>, and having button
elements in the <1i> messes with that logic. I'm specifically using this approach to
show that there’s no rule for where to call _super () in an extension. You can call it in
the beginning, the middle, or the end of a method—you can avoid calling it com-
pletely if you don’t need the parent widget’s behavior.

After the super () call, your list’s markup structure is in place, so you can now add
your buttons. You do so by looping over each <1i>, creating a new button for each 0,
and appending the new button to the <1i>.

Your last task is to eliminate the buttons when the widget is destroyed. You accom-
plish this by extending the todo widget’s _destroy () method, removing all <button>
elements @, and invoking the parent widget’s destroy () with _super ().

To get the display you need, you have to add a little CSS to make your buttons look
right. The following CSS handles the positioning and sizing of the buttons:

.tj-todo .tj-todo-item {
position: relative;

.tj-todo .tj-todo-item button {

position: absolute;

right: 5px;

height: 1.5em;

width: 1.5em;

top: 0.4em;
}
And with that, you have a todo widget in which users can remove items from the list—
all in about 25 lines of code. This example shows off the true power of the widget fac-
tory. Because you’re building on top
of an existing solution, you don’t Write widget
have to write much code to create a Profit?
custom Ul component.

[3

, . Post on GitHub
Let’s look at one more extension

example: a sortable list. Figure 9.4 . L
L. . Figure 9.4 An extension of your to-do list widget that
shows the sortable to-do list in action. |ets users reorder items in the list
The implementation of the sort-

able todo widget is shown in the following listing.

Listing 9.3 A sortable todo widget

$.widget ("tj.todo", $.tj.todo, ({
options: {

sortable: false Defines a
} sortable option

_create: function() {
this._ super();

www.it-ebooks.info

http://www.it-ebooks.info/

Building widget extensions 223

if (this.options.sortable)
this.element.sortable () ; Makes the element sortable

}o#2 if the option is set

1

_setOption: function(key, value)
this. super(key, value);
if (key === "sortable") {

if (value) { ﬁ Makes the element
this.element.sortable() ; sortable
Destroys }
the widget if (!value && this. isSortable())

if necessary this.element.sortable("destroy");

}
}

}, Determines whether
isSortable: function() { the element is
B return this.element.is(":data(ui-sortable)"); sortable
b
_destroy: function() { Destroys the widget
if (this. isSortable()) { }8 if necessary
this.element.sortable("destroy");

}

this. super();
}
1 i

NOTE This example is available at http://jsfiddle.net/tj_vantoll /vi]65/.

The code here is similar to the vertical tabs extension. You define a sortable option
and default it to false @. In _create (), when the option is set, you convert the todo
widget’s element to a sortable widget @. (Remember that there’s no reason a single
element can’t be associated with multiple widgets.)

To handle the sortable option being changed, you override _setOption (). When
sortable is set to true, you make the todo widget’s element sortable €. Because the
widget factory prevents dual instantiation, there’s no harm in calling sortable() on
an element that’s already sortable; it has no effect.

When the sortable option is set to false, the situation is a bit more complex.
Before calling destroy () to remove the sortable functionality, you first must make
sure that the todo widget’s element has been initialized with a sortable widget @. You
need this check because calling a widget method before the widget is initialized—in
this case sortable("destroy")—throws an error.

To determine whether the element is sortable, you use this.element.is
(":data(ui-sortable)") @. We’'ll look at how the :data () selector works in chap-
ter 12, but for now know that it selects elements that have data stored under the speci-
fied key. If the element has data stored with the widget’s name, then that element has
that widget initialized on it. (Remember that destroy () cleans up that data.)

In the todo widget’s destroy () method, you need to clean up the sortable widget
0. You use the same _isSortable() method you defined earlier to determine
whether the element is a sortable and, if so, call its destroy () method.

www.it-ebooks.info

http://www.it-ebooks.info/

224

CHAPTER 9 Extending widgets with the widget factory

Now you can create sortable to-do lists by setting the sortable option to true:

Write widget
Post on GitHub

<lis>Profit?</1i>

<scripts>

$("ul").todo({ sortable: true });
</script>

You can change whether the list is sortable by changing the option:
S("ul").todo("option", "sortable", false);

Just as in the vertical tabs example, this is only one possible implementation. You also
could’ve created a new widget that’s always sortable. An implementation of this is
shown here:

$.widget ("tj.sortableTodoList", $.tj.todo, ({

_create: function() {
this._ super();
this.element.sortable() ;

}

_destroy: function() {
this.element.sortable("destroy");
this. super();

}

13K

With this approach, you can create a sortable to-do list by calling this new widget’s
plugin:

Write widget
Post on GitHub

<lis>Profit?</1i>

<scripts>

$("ul").sortableTodoList () ;
</script>

As before, neither approach is better; they’re different ways of extending the todo wid-
get with additional behavior. If you prefer having a separate plugin with a different
name, then create a new widget; if you have no need for a completely different widget,
then redefine the original widget.

Before we end this section, there’s one final question worth discussing: why didn’t
you implement removable and sortable items directly in the todo widget? Why build
this functionality as extensions?

The answer is one the jQuery UI team itself has learned the hard way: widgets with
lots of options are difficult to use and maintain. For every option you add to a widget,
you have to think about how it interacts with every other option. Worse, every option

www.it-ebooks.info

http://www.it-ebooks.info/

9.2

Customizing widgets with extension points 225

you add makes extending your widget harder (extensions also have to worry about
supporting every single option).

The interaction between options is a consistent source of bugs and code complex-
ity in jQuery UL Think of all the combinations of datepicker’s 50 options! Plus, the
vast majority of use cases don’t require more than a couple of options. I've yet to see a
datepicker that required a quarter of datepicker’s 50 options.

Because of this, from now on the jQuery UI team will attempt to implement only
commonly needed options. To make the jQuery UI widgets customizable for highly
specific situations, the library has recently implemented a brand-new means of cus-
tomization: extension points.

Options that depend on other options

Limiting the number of options a widget has is a widget APl design best practice.
Another is to avoid creating options that depend on other options.

jQuery Ul itself violates this best practice in a few places for backward compati-
bility. As an example, the resizable widget has animate, animateDuration, and
animateEasing options. These APIs are confusing because animateDuration and
animateEasing are irrelevant when animate isn’t set to true.

If you need multiple values for a single option, the preferred approach is to accept an
object. For instance, the dialog widget’'s show and hide options accept an object with
multiple properties set, as shown here:
$("<divs>") .dialog ({
hide: {
duration: 500,
easing: "linear",

effect: "puff"

}
1

Customizing widgets with extension points

Although any method in a widget can be overridden with the widget factory, the
jQuery UI team has realized that it’s useful to create methods specifically for exten-
sion. These methods are designated as extension points and have the same API stabil-
ity as options, methods, and events—meaning jQuery UI will never rename or remove
an extension point in a bug fix release.

The extension point mechanism doesn’t apply only to jQuery UL By adding exten-
sion points to custom widgets, you make them easier to use, and easier for other devel-
opers to build widgets on top of. We’ll look at examples of this later in the section.

The jQuery UI extension points are now listed on each widget’s API documenta-
tion—right alongside the widget’s options, methods, and events. Figure 9.5 shows the
dialog widget’s single extension point.

www.it-ebooks.info

http://www.it-ebooks.info/

226

CHAPTER 9 Extending widgets with the widget factory

Options Methods Events

appendTo close beforeClose

autoOpen destroy close

buttons isOpen create

closeOnEscape moveToTop drag . " .
WD— open draaStart Figure .9.5 'I_'he d!alog widget’s
dialogClass option dragStop extension points list on http://
draggable widget focus api.jqueryui.com/dialog/. Not
height open all widgets have extension

hide Extension Points resize points, but the ones that do will
maxHeight allowlnieraction resizeStart always show up in this location
maxWidth - resizeStop on the API docs.

bl Bnlmled

As discussed, extension points are nothing more than widget methods; you know the
mechanism to override the dialog’s _allowInteraction() method:

$.widget ("ui.dialog", $.ui.dialog, {
_allowInteraction: function() {}

1
The dialog widget’s allowInteraction() method is specifically used for modal dia-
logs. Normally, modal dialogs don’t allow users to interact with elements outside of
the dialog. This behavior is almost always what you want, but suppose you have an ele-
ment outside the dialog that’s positioned to look as if it’s inside the dialog.
Many third-party plugins take this approach. Consider the following code that uses

the third-party Select2 jQuery plugin in a modal dialog:
<div id="dialog">

<label for="country"sCountry:</label>

<select id="country"s>

<option>Afghanistan</options>

<option>Albania</options>
<option>Algeria</options>

</select>

</div>
<scripts>
$("#dialog").dialog({ modal: true });
$("#country").select2();
</scripts>
The display of this example is shown in ®
figure 9.6.

As you can see from figure 9.6, the Country: | Afghanistan -
Select2 plugin automatically provides an Q
<input> for the user to filter options in Afghanistan
the list. Unfortunately, the dialog wid-)
get blocks this <input> from getting | Albania

Algeria

focus. Why? Take a look at the gener

ated markup structure of this example, Fizue 9.6 Display of the Select2 plugin with a
shown here: modal dialog

www.it-ebooks.info

http://api.jqueryui.com/dialog/
http://api.jqueryui.com/dialog/
http://www.it-ebooks.info/

9.21

Customizing widgets with extension points 227

<body>
<div id="dialog" class="ui-dialog" ...></div>
<div class="select2-drop" ...>
<input class="select2-input">
</div>
</body>

Although the <input> looks as if it’s inside the dialog, it’s actually in a sibling <divs>,
and is absolutely positioned on top of the dialog: the dialog widget blocks any interac-
tions with this <inputs>.

This is where the _allowInteraction() method comes in. The method lets you
whitelist elements the user can use that aren’t children of modal dialogs. The follow-
ing code uses the _allowInteraction() extension point to allow the use of the

Select2 plugin:
$.widget ("ui.dialog", $.ui.dialog,
_allowlInteraction: function(event) ({
return $(event.target).is(".select2-input") ||

this. super(event);

}
1
You perform two checks here. First, you see if the element that received the event has
a select2-input class name. This is what allows the Select2 <input> to receive focus.
Second, you call super() so that you still do the checks in the parent widget’s
method. $.ui.dialog.prototype. allowInteraction(), for instance, has a work-
around to ensure datepickers work within dialogs.

TIP The autocomplete and selectmenu widgets automatically work within
modal dialogs because of their use of the ui-front class name and
appendTo option. Read more about the technique these widgets use at
http://api.jqueryui.com/theming/stacking-elements/. The datepicker wid-
get will take the same approach when its rewrite is complete, which will
remove the need for the workaround in the dialog widget’s
_allowInteraction () method.

Now you have a Select2 plugin that works in a jQuery UI modal dialog, and, because
_allowInteraction() is a documented extension point, you can feel comfortable
that this fix will work in future releases.

Because extension points are a relatively new mechanism in jQuery Ul, there are
still few documented extension points. What do you do if you want to extend an
undocumented method?

Using undocumented extension points

If you use jQuery UI long enough, you’ll almost certainly want to extend a method
that isn’t an official extension point. Although only some methods are documented as
extension points, any widget method can be overridden using the widget factory. And

www.it-ebooks.info

http://www.it-ebooks.info/

228

CHAPTER 9 Extending widgets with the widget factory

sometimes it can be advantageous to override the undocumented methods (we’ll look
at an example in a bit).

Despite this, overriding undocumented methods should always be considered a
last resort during development. Because jQuery Ul is free to rename or replace any
undocumented method during any release (even a bug fix release), you risk having
your application break as new versions of jQuery UI come out.

But sometimes it can be worth the risk to truly customize the behavior of the wid-
get. To give a concrete example of this, let’s return to the dialog widget. The dialog
widget does some logic to manage focus for you. When you open a dialog, focus is
automatically set to the first of the following:

An element with the autofocus attribute

A tabbable element in the dialog’s content

A tabbable element in the dialog’s button pane
The dialog’s close button

The dialog itself

a H» W N P

This is done for accessibility purposes. Shifting focus lets screen reader users know
that there is new content to interact with.

NOTE The dialog widget also moves focus when a dialog is closed. When you
open a dialog, the widget remembers which element had focus, and when you
close the dialog, focus is returned to that element.

Usually, this behavior gives focus to an appropriate element in the dialog, but not
always, for instance, in the following example:

<div id="dialog">
<p>The transaction processed successfully. For details,
see your account.</p>
</divs>
<scripts>
$("#dialog") .dialog ({
buttons: {
OK: function() {
$(this).dialog("close");
1

} x
)

</script>)
/ p The transaction processed

successfully, For details, see
your account.

The display of this dialog is shown in figure 9.7.
Notice that the your account <a> received
focus.

If you refer to the dialog’s focus algorithm, o
you’ll see why. Because there’s no element with
an autofocus attribute, the dialog looks for a rigye 9.7 Display of a dialog widget with

tabbable element in the dialog’s content. focus placed on a link in the content

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing widgets with extension points 229

Because <a> tags with href attributes are tabbable, the dialog widget selects the link
and gives it focus.

Here this isn’t desirable behavior. Because this is a simple confirmation dialog, you
want to focus the OK button so the user can easily close the dialog with the Enter key.
Having focus on the link also draws the user’s attention to the link, and you have no
reason to do that in this example.

How do you change this behavior? Although there are no documented extension
points to control this, if you look at the source of the dialog widget (https://
github.com/jquery/jquery-ui/blob/master/ui/dialog.js), you’ll see that there is a
method that controls this behavior: focusTabbable ().

You can use this method to alter the focus logic in your example. The following
code shows an extension that does that:
$.widget ("ui.dialog", $.ui.dialog, ({

_focusTabbable: function() ({
var okButton = this.uiDialog.find("button:contains ('OK')");

ﬁ::;::z if (okButton.length > 0) {
with text okButton.focus () Focuses the OK
“OK” } else { button if found
this. super();
}
} Calls the parent
1 method if not

This extension overrides one method: focusTabbable (). You use a reference to the
dialog’s outer DOM element (this.uiDialog) to look for any <button> elements that
contain the text "0K" @.

If you find one, you give it focus ®; otherwise, you call the parent widget’s
_focusTabble () with super() to let it determine which element should receive
focus ©.

With this extension in place, your example dialog now gives focus to the OK button
when opened rather than to the link. You could’ve written this extension other ways.
You could’ve looked for the first button in the button pane, regardless of its text. You
also could’ve assumed there would always be an OK button and given it focus without
checking whether it exists.

The point here isn’t the specific implementation, as what you’ll need to do is spe-
cific to what you’re building. The point is that you could change the widget’s behavior
only by extending an undocumented method of the dialog widget.

Is this all right? Although developers coming from a server-side background may
cringe at using undocumented APIs, it’s sometimes the only option you have to imple-
ment your requirements. As we discussed, using undocumented extension points
should always be a last resort.

Creating extensible widgets is an important goal of the jQuery UI project. If you think
a specific method should be listed as an extension point, let us know! Or if you think
some logic in a widget could be refactored to make it more extensible, create a ticket
requesting it. Better yet, after you create the ticket, submit a pull request implementing

www.it-ebooks.info

https://github.com/jquery/jquery-ui/blob/master/ui/dialog.js
https://github.com/jquery/jquery-ui/blob/master/ui/dialog.js
http://www.it-ebooks.info/

230 CHAPTER 9 Extending widgets with the widget factory

the new extension point! For more information on contributing to jQuery UI, see
appendix E.

9.2.2 Adding your own extension points

Extension points make a widget more extensible, and therefore it’s easier to build
complex solutions on top of the widget. Because jQuery UI tries to adhere to this
methodology in its widgets, you should try to do the same in your own custom widgets
as well. As a general rule, if you think someone may want to change the behavior of
something you’re writing, put it in a method.

Let’s return to the extension you built earlier in this chapter that added remove but-
tons to your to-do list. For a refresher, the code for that extension is shown again here:

$.widget ("tj.todo", $.tj.todo, ({

_renderList: function() {
var listItems = this.element.find("1i");

listItems.each(function()
var button = $("<button>Remove</button>") .button ({
icons: { primary: "ui-icon-closethick" },
text: false

)
$(this) .append(button);
I3
}
)

The code that builds the remove <button> elements is embedded in the
_renderList () method. If you want to customize how the buttons work, you need to
reimplement the entire, nontrivial _renderList () method. Let’s move the button cre-
ation to its own method to make it an extension point.

The following code implements a new _buildRemoveButton () extension point:

$.widget ("tj.todo", $.tj.todo, ({

_renderList: function() ({
var listItems = this.element.find("1i"),
that = this;

listItems.each(function()
var button = that._ buildRemoveButton() ;
$(this) .append(button);
3]
i
_buildRemoveButton: function() {
return $("<button>Remove</button>") .button ({
icons: { primary: "ui-icon-closethick" },
text: false

www.it-ebooks.info

http://www.it-ebooks.info/

9.3

Extending the datepicker widget 231

Functionality-wise, thisimplementation does the exact same thing, butyou now have the
ability to alter the code that builds the remove <button> elements without needing to
reimplement _renderList (). This extension shows text on the button instead of an
icon. (Notice that the text option is no longer set; it takes its default value of true.)
$.widget ("tj.todo", $.tj.todo, {

_buildRemoveButton: function() {

return $("<button>Remove</button>") .button ({
icons: { primary: "ui-icon-closethick" }

Is this an extension of an extension? Yes, it is. With the widget factory you can extend
or redefine the same widget as many times as you'd like.

Because of the power of extending widgets, it’s important to think about extension
points during the development of a widget. By putting your button-creating code in its
own method, you allow developers to customize the button’s creation without having
to repeat code from your widget.

Before we end our discussion of widget extensions, there’s one last widget we need
to discuss: datepicker.

Extending the datepicker widget

Remember that datepicker is the only widget in jQuery UI that isn’t built with the wid-
get factory. Because of this, it also can’t be extended using the widget factory—which
unfortunately means that none of the techniques we’ve discussed throughout this
chapter will work on datepicker.

You can do some things, although
the implementations aren’t nearly as |
clean as widgets built with the widget fac-) January 2014 o
tory. To show this, let’s tackle one com-
mon datepicker request: changing what Su Mo Tu We Th Fr Sa
the Today button does.

Recall that setting the datepicker’s 1.2 3 4
showButtonPanel option to true dis- 5 6 7 8 9 10 11
plays the datepicker along with the two 12| 13/l 14| 15 16 17 18
buttons shown in figure 9.8.

If you had to guess, what do you sup- S ety 22 2 214

pose the Today button does? Most peo- 26 27 28 25 30 31
ple, including me, believe that it should
select today’s date, place today’s date Today Done

value in the <input>, and close the cal-
endar. Alas, thls.lsn t the behavior of Fhe Figure 9.8 A datepicker with a button pane. The
Today button—instead, the button links putton pane contains two buttons: Today and

to today’s date. Done.

www.it-ebooks.info

http://www.it-ebooks.info/

232

CHAPTER 9 Extending widgets with the widget factory

To understand what this means, you have to know that there’s always an active date
when the datepicker is open. The active date is today’s date by default, but it can be
altered with datepicker’s keyboard shortcuts, the next and previous month buttons, or
by typing dates directly in the datepicker’s <inputs>. You can select the active date at
any time using the Enter key.

When you click the Today button, it makes today’s date the active date. If you navi-
gate the datepicker in figure 9.8 to February and click Today, you’re taken back to Jan-
uary, but today’s date isn’t selected.

This behavior confuses almost everybody who uses the datepicker; it’s counterintu-
itive. So how do you change it?

There are no options to control the behavior, and no events triggered when the
Today button is clicked; you must resort to a technique mentioned in the last chapter:
duck punching.

Internally, datepicker runs $.datepicker._gotoToday () whenever the Today but-
ton is clicked. You still need $.datepicker. gotoToday() to run—as you need to
make Today’s date active—but you need to add to what it does.

With the widget factory this was simple; you used _super() to call the parent’s
method, then did your custom logic. But because datepicker isn’t built with the widget
factory, that’s not an option here. So what do you do?

This is where the duck-punching technique comes into play. Duck punching lets
you extend a function while maintaining a reference to the original function. Let’s
look at the implementation:
$.datepicker. gotoToday = (function(orig) ({

return function(id) {
orig.call(this, id);
this. selectDate(id);

}i

}) ($.datepicker. gotoToday) ;
Let’s break this down, starting with the first and last lines:

$.datepicker. gotoToday = (function(orig) ({

}) ($.datepicker. gotoToday) ;

This is an assignment; you're assigning a new value to $.datepicker._gotoToday.
What is being assigned is where this gets tricky.

function(orig) {} defines an anonymous function and ($.datepicker
._gotoToday) immediately invokes that function—passing it a reference to
$.datepicker._gotoToday; after this executes, orig is set to the original version of
$.datepicker._ gotoToday. Because this whole block of code is an assignment, what-
ever you return from this anonymous function will become the new value of
$.datepicker. gotoToday.

Here’s the function that you return:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending the datepicker widget 233

return function(id)

orig.call(this, id);

this. selectDate(id);
Vi
Because you have a reference to the original $.datepicker._gotoToday as orig, you
invoke that first, then you add your custom behavior: calling another internal method
$.datepicker. selectDate(), which selects the active date and places it in the
<input>. Nowyour datepicker’s Today button selects today’s date instead of linking to it.

Duck punching is a clever technique to implement a new version of a function,
while maintaining the ability to call the original version. The widget factory’s
_super () and _superApply () methods are implemented using a similar approach
internally.

Although this technique is clever, is this approach to extending datepicker safe to
add to your production applications? Like undocumented extension points, there’s a
definite risk when altering undocumented methods in datepicker. jQuery UI can
change the name, behavior, or the existence of these methods at any time.

But unlike other jQuery UI widgets, a long-term rewrite of the datepicker is in
progress, which means two things:

1 You shouldn’t have to keep these hacks in long-term. Eventually, there will be
far easier ways to alter the datepicker.
2 The API of the current datepicker isn’t changing in any way.

In many ways, datepicker is a victim of its own success. Datepicker is such a popular
widget—easily the most popular in jQuery Ul—that any change is a breaking change
for many users; therefore, the team is focusing almost exclusively on the rewrite.
Because of this, however crazy it may seem, duck punching datepicker’s methods is a
reasonable solution to customize datepicker’s behavior until it’s rewritten.

The technique of duck punching functions is a bit tricky to wrap your head
around, but it’s incredibly powerful. It lets you add to the behavior of any JavaScript
function without needing to change the original function. Internally, jQuery UI duck
punches a few of jQuery Core methods to add to their behavior.

Never change the jQuery Ul source code!

If you find a bug in jQuery Ul, or there’s some behavior you want to modify that isn’t
part of a public API, you may be tempted to alter the jQuery Ul source code to change
the behavior to meet your needs. Resist that urge. Modifying the library’s source code
makes upgrading difficult, because as each new version of jQuery Ul is released, you
have to remember every change you have made, and reapply each of those changes
to the new version—which is a manual and error-prone task.

Using undocumented extensions points and duck punching, albeit not ideal, provide
appealing alternatives to modifying the source code. These techniques let you alter
the library’s internal behavior without having to reapply your changes at every upgrade.

www.it-ebooks.info

http://www.it-ebooks.info/

234

9.3.1

CHAPTER 9 Extending widgets with the widget factory

To help drive the duck punching concept home, let’s look at one more example.

Building a mobile-friendly datepicker extension

In chapter 7 you used CSS to make an inline datepicker that displayed nicely on
mobile devices. We avoided discussing a datepicker that’s tied to an <input> because
it requires nontrivial customization using the duck-punching technique we just dis-
cussed. To show the problem, consider the following

| Carriar ¥ 10:42 PM -
example: |

Date: H
<label for="date"sDate:</label> _
<input id="date">
<scripts> o January 201«

$("#date") .datepicker();
</scripts> Su Mo Tu We Th
Figure 9.9 shows how this example looks on an iPhone 1 5
running iOS7.
Done

Obviously, this behavior isn’t ideal; the user sees
only a portion of the datepicker, and the positioningof |QW E R T Y U | O P
everything is off. And unfortunately, changing a few
. A|S|DIF|GIH]JIK]L
options isn’t going to fix this situation.

The code to improve the mobile experience 4 ZXCVBNM®

requires a variety of changes, including duck punching
123 space return

a few more of datepicker’s methods. I'll present the
implementation first, then we’ll go over each piece Figure 9.9 Display of a vanilla
individually. The updated datepicker implementation datepicker widget when its

is shown in listing 9.4 <input> receives focus on i0S

NOTE Some of the visual CSS is omitted to focus on the JavaScript aspect of
this example. To view the full source of this example, see http://jstfiddle.net/
tj_vantoll/RZVKS/.

Listing 9.4 A mobile-friendly datepicker

<style>
input { font-size: lem; } Prevents the browser
</style> from zooming in

<label for="date"sDate:</label>

<input id="date" placeholder="mm/dd/yyyy"> Adds a placeholder
3 with the date format

<scripts>
$.datepicker. findPos = (function(orig) {
Overrides return funcFi?n(obj ? { . .
findPos() varlp?51tlon = orig.call(this, obj);
Ercuﬁom position[0] = 0;

positioning

return position;

¥ Overrides _attachments()
}) ($.datepicker. findPos) ; to change the datepicker’s
(function(orig) {

$.datepicker. attachments = button

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/RZVKS/
http://jsfiddle.net/tj_vantoll/RZVKS/
http://www.it-ebooks.info/

Extending the datepicker widget 235

return function(input, inst) {
Calls the parent orig.call(this, input, inst);
attachments() g input.next ("button") #6 Converts the
- method .text ("toggle calendar") button to a
.button ({ button widget

icons: { primary: "ui-icon-calendar" },
text: false #6
1) #e

}i
}) ($.datepicker. attachments) ; J Only shows the

$("#date") .datepicker ({ datepicker when its
showOn: "button" button is clicked

N
</scripts>
The first problem to fix is the zoom issue. The reason the <input> and datepicker are
so large in figure 9.9 is that mobile browsers automatically zoom in to <input> ele-
ments that have a computed font-size under 16 pixels when they receive focus. The
fix for this is making sure the <input> has a font size of at least 16 pixels @.

TIP By default, 1 em is equivalent to 16 px; because em values cascade, par-
ent elements have the ability to alter this value. For more on how ems work,
see http://css-tricks.com/ css-font-size/.

Even with this change, seeing a full datepicker on focus can be disorienting to users on
a small screen; because of this, you set the datepicker’s showOn option to "button" Q.
This tells the datepicker to generate a <button> and to show the datepicker only when
that button is clicked—not on focus of the <input>. Because the datepicker no longer
shows on focus, you add a placeholder attribute to the <input> to tell the user the for-
mat you're expecting @. (You can see the display of the placeholder in figure 9.10.)

Although the button the datepicker builds from showOn: "button" can be con-
figured with the buttonImage, buttonImageOnly, and buttonText options—and is
given a ui-datepicker-trigger class name—you have no means of controlling the
creation of the <buttons itself. You can’t, for instance, use a themed jQuery UI but-
ton widget.

To work around this, you duck punch the method that datepicker uses to generate
the button: $.datepicker. attachments() @. You call the original
$.datepicker. attachments() @ and convert the <buttons it created to a button
widget with a calendar icon @.

There’s one last workaround to discuss, this time for positioning. The datepicker
always attempts to align the calendar’s left edge with the left edge of its <input> and
gives you no means of configuring this position. This is almost always fine on desktop
browsers, but on mobile browsers this has a tendency to push the calendar outside
of the browser’s viewport, and having any portion of a calendar off the screen renders
it unusable.

www.it-ebooks.info

http://www.it-ebooks.info/

236

9.4

CHAPTER 9 Extending widgets with the widget factory

To work around this, duck punch another of the Garrier = 10:41PM -
datepicker’s methods: $.datepicker. findPos () (3) Date: s
findPos () returns an array in which the first value is
- o January 2014 o

the calendar’s 1eft coordinate and the second value is

. . . Su Mo Tu We Th Fr S
its top coordinate. In your override, you first call the @ Moo Tu e roee

original method and then set the 1left coordinate to 0. o
This ensures the calendar is positioned on the left 50|26 [7| (8| 9| 5105|111
edge of the screen and takes up the full viewport. 12 13 14 15 16 17 18

The updated version of your mobile datepicker is 19 20 21 22 23 24 25

shown in figure 9.10. 2 e
Although this example works, the implementa-
tion is less than ideal because you can’t use the wid-
get factory. Because you altered the datepicker’s
methods directly, this isn’t an extension of
datepicker; all datepicker instances are affected by] D O
your changes. You can’t use a mobile datepicker - '
alongside a desktop one, for example. Figure 9.10 The improved
. os datepicker widget display on i0S—
In many ways, looking at how hard it is to custom- -
. K ’ with a new placeholder, a button
ize datepicker is the best way to show how much the yjdget, and CSS to make the

widget factory does for you. datepicker more mobile friendly

Evaluating third-party widgets

As you’ll recall from the HTML5 discussion in chapter 3, most mobile browsers now
have a native means of collecting dates from the user—without any JavaScript or con-
figuration you used in the preceding example.

Remember that if all you need is a date from a mobile user, you should attempt to
use the HTML5 input first, as it’s going to use the same picker the user is accus-
tomed to.

But also remember that the HTML5 datepicker is extremely limited; if you need to make
customizations—disabling individual days, highlighting individual days, controlling the
formatting, custom styling, and so on—you can use the approach we just discussed.

Summary

In this chapter, you looked at extension, the most powerful feature of the widget fac-
tory. You saw that extending an existing widget is as easy as passing the widget’s con-
structor function to $.widget (). A widget can even redefine itself to change its
behavior without generating a new widget with a different name.

Although you can extend any method in a widget extension, jQuery Ul is moving
toward documenting its extensible methods as extension points. These extension
points appear on each widget’s API documentation alongside the widget’s options,

www.it-ebooks.info

http://www.it-ebooks.info/

Summary 237

methods, and events. You also saw how to add extension points to the todo widget you
built in the previous chapter.

Although sticking to the publicly documented extension points is recommended,
in unique situations you can override any method in any of the jQuery UI widgets. If
you believe an existing method in a widget should be an extension point, let the
jQuery UI team know! Creating extensible widgets is an important goal of the project,
and it’s feedback that we’d love to have. For more, see appendix E.

Finally, you looked at how to extend the only widget in jQuery UI not using the
widget factory: datepicker. You saw that it’s messy, but you can use a technique known
as duck punching to alter the behavior of the widget.

Now that you’ve built and extended widgets, let’s look at how to get your applica-
tion using jQuery UI ready for production.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing your
application for production

This chapter covers

= Managing dependencies with AMD

= Building your files for production

= Adding AMD support to jQuery Ul extensions

So far, we’ve discussed all the components (widgets, effects, utilities, and more)
that make up the jQuery Ul library. Although these components offer a lot of func-
tionality, there are a few problems associated with having this many components.
The biggest problem is, because jQuery Ul is a clientside library, the browser must
download all the JavaScript code to implement this functionality over the net-
work—which increases the amount of time it takes your application to load.

To make things worse, because JavaScript is an interpreted language, the
browser also has to convert the text contents of these JavaScript files to executable
byte code—which leads to a longer wait for your users. Load times are important.
Studies have shown that over 25% of people abandon a website if it takes over 4 sec-
onds to load. An amazon.com spokesman famously stated that a one-second delay
on its load times represents a loss of over $1.5 billion a year!

238

www.it-ebooks.info

http://www.it-ebooks.info/

10.1

The problem with third-party CDNs 239

The mobile explosion has exacerbated these issues. Users on mobile devices, espe-
cially ones on rural networks, have much higher latency and much lower download
speeds than more traditional desktop computers.

The sheer size of jQuery UI coupled with mobile’s surge in importance has led to a
perception that jQuery Ul is too big to be used on mobile. Although jQuery Ul is big,
it’s also written modularly, meaning that it’s easy to include only the parts of the
library you need. And because jQuery UI has so much in it (enough to write a whole
book on!), few applications use even half of the library.

In this chapter, we’ll look at the tools jQuery UI provides to include only the parts
of the library you need, and how to package them so your applications are optimized
for production usage.

We’ll start by digging deeper into why the setup you’ve used to this pointisn’t ideal
for production.

The problem with third-party CDNs

In chapter 1, we introduced boilerplate to use in all your examples. It contained the
following three lines to download jQuery Core and jQuery UI from jQuery’s CDN:
<link href="http://code.jquery.com/ui/1.11.0/themes/smoothness/
jguery-ui.css" rel="stylesheet">
<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></scripts>
Third-party CDN downloads like this are great for testing; you can access the files you
need without having to grab the files and store them on your own servers. But unless
you’re developing the rare application that only ever runs on a blazing fast internal
network, third-party CDNs aren’t appropriate for use in production. To explain why,
we have to dig deeper into how the browser handles these three lines of code.

The browser has to figure out where the web server that hosts these files resides on
the internet. Specifically, it has to perform a DNS lookup to find the IP address associ-
ated with the domain code.jquery.com. The browser and OS cache these lookups for a
limited time to limit redundant trips, but if the user doesn’t have the domain cached,
your application must perform the lookup before your application loads.

Once the browser knows where the web server is located, it must establish a TCP
connection to the external server and transfer data across it. This again has a time cost
to the end user.

The browser issues an HTTP GET request for jquery-1.11.1js and ui/1.11.0/
jquery-ui.js from the web server located at code.jquery.com (or, as the browser sees
it, 108.161.188.209). This workflow is shown in figure 10.1.

No need to worry if this is too much information; the point is to show how net-
work-intensive <link> and <script»> tags can be.

The time it takes for each trip to the network is known as round-trip time (RTT).
One round trip on a desktop browser with a fast internet connection takes a matter
of a few milliseconds, but on mobile, a single round trip can easily take hundreds of

www.it-ebooks.info

http://www.it-ebooks.info/

240

CHAPTER 10 Preparing your application for production

DNS root servers code.jquery.com (108.161.188.209)

© whatis Its © ' needui.11.0/

; . s Here it is.
code.jquery.com? 108.161.188.209. jquery-ui.js.

© needatcP Ok. We're
connection. connected.

<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></scripts>
b g Jgq Y Jq Y J g

Time

Figure 10.1 Round trips the browser must take when it parses a <script> tag from an external domain

milliseconds—and sometimes up to a full second in an extreme edge case (trying to
access a server in Asia on a 3G network in rural Michigan, for example). Because of
this, reducing RTTs is the top web-performance best practice listed on both Google
and Yahoo’s performance best-practice lists. (See https://developers.google.com/
speed/articles/ and http://developer.yahoo.com/performance/rules.html, respec-
tively.) Reducing RTTs is the single most important thing you can do to improve the
performance of your web applications—especially on mobile devices.

What does this have to do with third-party CDNs? Because the third-party CDN is on
a different domain, the browser must perform at least one round trip to establish a TCP
connection, and possibly a second to perform a DNSlookup. These are extra round trips
that aren’t necessary if you host jQuery and jQuery UI on your own domain.

There’s one additional issue with third-party CDNs that we need to discuss: the sheer
size of the download. Because you can’t tell the external CDN which parts of jQuery Ul
you need, you must download the entirety of the library. And because jQuery UI does
a lot of stuff, that can be a whole lot of code. If you only need to use an autocomplete,
you shouldn’t subject your users on slow connections to download sortable’s collision-
detection algorithms, or datepicker’s globalization logic.

Although third-party CDNs are great for testing, they aren’t appropriate for use in
production in the majority of applications. Throughout the rest of this chapter,
you’ll rework your boilerplate project structure to perform better in a production
setting. To overcome the issues with third-party CDNs, we have two goals: reduce the
number of round trips and ensure users download only the parts of jQuery UI that
they need.

Luckily, jQuery UI has tools to make both of these optimizations possible. We’ll
start with Download Builder.

www.it-ebooks.info

https://developers.google.com/speed/articles/
https://developers.google.com/speed/articles/
http://www.it-ebooks.info/

Downloading jQuery UI from Download Builder 241

What about caching?

An oft-cited benefit of using third-party CDNs is the potential for the user to enter your
site with the external resource already cached, eliminating the need for any network
trips at all. Unfortunately cache hits in the wild are extremely rare.

Why?

Browsers cache files by their complete URL; for a user to have jQuery or jQuery Ul
cached, they would need to have visited another site that downloaded jQuery or
jQuery Ul using that exact same URL. Any change, however small, and the browser
sees the file as a completely different resource. And there are three big differentia-
tors in the URLs:

= The CDN provider—Google, the jQuery Foundation, Microsoft, and others pro-
vide CDNs with jQuery and jQuery Ul. To the browser, http://code.jquery.com/
jquery-1.11.1.js and http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/
jquery.min.js are different resources.

= The version number—There are dozens of versions of both jQuery and jQuery Ul
in the wild. In 2013, the most popular version was jQuery 1.4.2 (keeping in mind
that the latest version released in 2013 was 1.10.2). To the browser, http://
code.jquery.com/jquery-1.10.1.js and http://code.jquery.com/jquery-1.10.2.js
are different resources.

= http versus https—To the browser, http://code.jquery.com/jquery-1.11.1.js and
https://code.jquery.com/jquery-1.11.1.js are different resources.

Because of these variations, the odds of a user arriving at your site with jQuery or
jQuery Ul already cached are too low to justify using third-party CDNs. Fora more detailed
write-up on the subject, see http://www.stevesouders.com/blog/2013/03/18/
http-archive-jquery/.

10.2 Downloading jQuery Ul from Download Builder

The first tool we’ll look at is the jQuery UI Download Builder, available at http://jque-
ryui.com/download/. Download Builder lets you configure a download of jQuery UI
with only the pieces you need.

The page is set up as a series of check boxes for each of the widgets and utilities in
jQuery UL The check box for each feature is smart enough to know what the feature’s
dependencies are. Because of this, the recommended approach to using Download
Builder is to deselect all check boxes, and then select widgets and utilities that you
need. In figure 10.2. when the accordion widget is selected, its two dependencies—
jQuery UI Core and the widget factory—are selected as well.

After you have the features you need selected, click the Download button to down-
load a custom build of jQuery Ul The built JavaScript file is located at jquery-
ui.min.js, and the built CSS file is located at jquery-ui.min.css in the downloaded build.

www.it-ebooks.info

http://jqueryui.com/download/
http://jqueryui.com/download/
http://code.jquery.com/jquery-1.11.1.js
http://code.jquery.com/jquery-1.11.1.js
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js
http://code.jquery.com/jquery-1.10.1.js
http://code.jquery.com/jquery-1.10.1.js
http://www.stevesouders.com/blog/2013/03/18/http-archive-jquery/
http://www.stevesouders.com/blog/2013/03/18/http-archive-jquery/
http://www.it-ebooks.info/

242

CHAPTER 10 Preparing your application for production

Ul Core Core Ul Core ~ Core
Toggle All Toggle All X
Widget ™ Widget
Mouse Mouse
Position Position
Interactions Draggable Interactions Draggable
Toggle All Toggle All
Droppable Droppable
Resizable Resizable
Selectable Selectable
Sortable Sortable
Widgets Widgets & Accordion
Toggle All Toggle All

Figure 10.2 When Accordion is checked, its dependencies are as well.

You can see the difference the custom build made by looking at the sizes of your new
files. jQuery UI 1.11 in its entirety is 232 K, and your custom build with the accordion
widget is 19 K. A savings of 213 K! Although not quite as much of an impact, your CSS
file was reduced from 27 K to 16 K. The savings are shown in table 10.1.

Table 10.1 The savings of configuring a custom build of the accordion widget

File size File size after gzip
jQuery Ul JS (full) 232 K 61 K
jQuery Ul JS (accordion only) 19 K 6 K
jQuery Ul CSS (full) 27 K 55K
jQuery Ul CSS (accordion only) 16 K 3.3K

Although Download Builder can have huge benefits in reducing the size of jQuery Ul,
it can be a bit of a pain to use. If you decide to use a new widget, you have to go back
to Download Builder, remember which dependencies you’re using, generate a new
build, and put the updated files in your project—alot of work for us lazy web developers.

More importantly, Download Builder doesn’t solve your biggest performance
issue: reducing RTTs. The next technique solves both the download size and the RTT
issues, but it’s going to require a bit more work to set up.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing JavaScript dependencies with AMD 243

The importance of gzip

All modern browsers support sending compressed resources over the network, with the
most common means of compression being gzip. gzip compression has a drastic impact
onthefile size of HTML, CSS, and JavaScript files. Running gzip on jQuery Ul 1.11 reduces
its JavaScript from 232 K to 61 K, and its CSS from 27 K to 5.5 K!

The compression algorithm running under the hoods of gzip works by replacing re-
peated strings with symbols; files with lots of repeated strings—such as CSS files—
tend to get the highest level of compression.

Because of gzip’s dramatic impact, it's important to make sure that your web server
is using gzip on JavaScript and CSS files. You can verify this by looking for a Content-
Encoding: gzip response header on these files. The following figure shows this
header on the Network tab of Chrome’s developer tool.

Q_ Elements | Network | Sources Timeline Profiles Resources Audits C

® O YV =
Name o
Path Headers Preview Response Cookies Timing
Yuery=wp
7982607.1390572595.45.6.utmcsr=bugs. jgueryu
main.js Host: jqueryui.com
/iquery-wp— Pragma: no-cache
. Referer: http://jqueryui.com/
wdelaof.js User-Agent: Mozilla/5.8 (Macintosh; Intel M
— Uuse.typekit.n v Response Headers view source
comment-... Cache-Control: max-age=8640@
wp-=include: Connection: “Ep=e ve

Content-Encoding: gzip

Chrome’s developer tool showing that the Content-Encoding header is indeed sent on a JavaScript
resource

For a more detailed explanation of gzip, see Chrome’s gzip best practice documenta-
tion at https://developers.google.com/speed/docs/best-practices/payload#Gzip-
Compression.

10.3 Managing JavaScript dependencies with AMD

Managing dependencies in JavaScript has always been a tricky subject. Because
JavaScript has no native means of declaring dependencies, web developers have histor-
ically been limited to <script> tags and global variables, which are easy to mess up. For
instance, to use the accordion widget, you must know what its dependencies are
(jQuery Core, jQuery UI Core, and the widget factory) and include each of them before
the accordion widget itself. If you get the order wrong, you get an error. Although
explicitly managing dependencies for a single script isn’t too bad, the practice can

www.it-ebooks.info

https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
https://developers.google.com/speed/docs/best-practices/payload#GzipCompression
http://www.it-ebooks.info/

244

CHAPTER 10 Preparing your application for production

easily get out of control in big apps where you have hundreds of components with var-
ious codependencies.

The Asynchronous Module Definition (AMD) format attempts to solve depen-
dency management on the web. Instead of relying on <scripts> tags that communi-
cate through global variables, AMD modules declaratively specify their dependencies
and return a function or object that other modules can use.

NOTE ECMAScript 6, the upcoming version of JavaScript, includes an imple-
mentation of JavaScript modules, which will finally bring dependency man-
agement to JavaScript natively. But as of the time of this writing, the syntax
hasn’t been finalized; it will be a few years before enough browsers imple-
ment modules and they can be realistically used in production applications.

Although AMD defines APIs for how modules should be specified, it doesn’t provide
an implementation of the APIs. Think of AMD like the HTML specification which
defines HTML elements and how they work, but it’s up to the browsers to implement
them.

In the same sense, to use AMD you need a script loader that implements the AMD
APIs. Although a few AMD loaders are out there, by far the most popular one is
Require]S. Require]JS is a free, open source, and well-documented library, making it
perfect for managing dependencies in any application.

In the rest of this section, we’ll look at how to use Require]S to load jQuery UI in
your applications, how to switch your own application files to use AMD, and how to use
Require]S to optimize your files for production.

Do | have to use AMD?

Although AMD provides many benefits to managing dependencies and building your
resources, it can be difficult to convince your boss or organization to switch to using
it—especially in existing code bases.

But don’t worry; you by no means have to use AMD. jQuery and jQuery Ul both add all
their modules to the global $ variable; therefore, you can reference these global vari-
ables as you always have.

Remember that your main performance goals were to reduce RTTs and the download
size. If you can’t use AMD, you can use some other process to concatenate and min-
ify your scripts, and a variety of alternative solutions for this are out there. Ruby on
Rails has the Asset Pipeline and Rakefiles; Java has Ant tasks; Node.js has Grunt
and Gulp tasks.

In general, it's best to search for the best tool that matches your server-side
environment.

Let’s start by looking at how to change your boilerplate to use Require]s.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing JavaScript dependencies with AMD 245

10.3.1 Setting up RequirelS for development

Before introducing Require]s, let’s give an example showing how you’ve been doing
things to this point. You’ll start with two files: an index.html and an app.js:
— index.html
L 9s

L app.js
Your app’s index.html includes jQuery, jQuery UL and your application’s functionality
from jQuery’s CDN in <script> tags:

<script src="http://code.jquery.com/jquery-1.11.1.js"></script>
<script src="http://code.jquery.com/ui/1.11.0/jquery-ui.js"></scripts>
<script src="js/app.js"></script>

Your app.js performs whatever logic you need your application to perform. In this
case, you’ll use it to create a new <input>, convert it to a spinner widget, and append
it to the <body>:
$("<input>")

.appendTo

.spinner (
min:

"bOdy")

B O~

'
max: 0

1

Although this example is simple, it shows the disadvantages of using <scripts> tags
and global variables. First, the three <scripts> tags must be in this exact order for this
application to work. Second, this application downloads all of jQuery Ul, and must
perform numerous round trips to retrieve the three files it needs. So how are you
going to improve this?

To get the improved example started, you’re going to need to download the latest
versions of the following three things:

= require.js from http://requirejs.org/docs/download.html
= jQuery Core from http://jquery.com/download/
= jQuery UI from https://github.com/jquery/jquery-ui/releases

You’ll want to download the unminified, development versions of these libraries
(jquery.js and require.js, not jquery.min.js and require.min.js). The development ver-
sions make your app easier to debug if things go wrong, and you’ll take care of minify-
ing the files for production later. For jQuery UI, you can get the development files at
https://github.com/jquery/jquery-ui/releases. Download the latest zip file and grab
the JavaScript files, which as of version 1.11 are in the ui directory.

After downloading these files, you’ll want to create the following directory struc-
ture on your local development machine:
F—— index.html
L §s

F—— app.js

www.it-ebooks.info

http://www.it-ebooks.info/

246

10.3.2

CHAPTER 10 Preparing your application for production

— jquery-ui
F—— accordion.js
F—— autocomplete.js
F—— button.js
F—— spinner.js

— jquery.js

L require.js

With this setup, you place all your JavaScript assets in a js directory, and all the jQuery
Ulfiles in a jquery-ui subdirectory. For convenience, you include all the jQuery Ul files
even though you’re not using every one. As you’ll see, Require]S takes care of bundling
up only what you need. Require]S is also flexible enough to handle any directory struc-
ture you’d like to use. You’ll stick to this structure in your example for simplicity.

Now that you have your files set up, you have to use them.

Loading jQuery Ul components with RequireJS

To start using Require]S, change the three <script> tags in your index.html file to
this:

<script src="js/require.js" data-main="js/app"></script>

This is a normal <script»> tag that synchronously loads js/require.js. When require.js
loads, it automatically performs an AJAX call to asynchronously load the file specified
in its data-main attribute—js/app.js in this case—and executes it. Even though app.js
loads and executes, you’re still not loading jQuery or jQuery UI; you get an error that
$ isn’t defined.

To load your dependencies add an AMD-defined require () call in app.js:
require (["jquery", "jguery-ui/spinner"], function($, spinner) {

$("<input>")
.appendTo ("body")
.spinner ({
min: O,
max: 10
1

1
The only thing different from before is the first line, and it can be tricky to under-
stand at first. The require () function takes two parameters: an array of dependencies
and a callback function. Our example’s two dependencies are jQuery Core and the
jQuery UI spinner widget. RequireJS resolves these dependency strings—"jquery"
and "jquery-ui/spinner"—as the names of files in the project’s directory structure.
When require () runs, it asynchronously loads jquery.js and jquery-ui/spinner.js via
AJAX requests. When these files both load, the callback function is invoked with the
dependent modules as arguments.

Require]S also does two important things on top of this. First, although it loads a
module’s dependencies in parallel (that is, multiple HTTP requests are sent out

www.it-ebooks.info

http://www.it-ebooks.info/

Managing JavaScript dependencies with AMD 247

simultaneously), it ensures that all dependencies are loaded before the callback func-
tion is invoked. In the callback function, you can be absolutely sure that all declared
dependencies are available.

Second, Require]S resolves deep dependencies of modules. The jQuery Ul spinner
widget depends on a few other jQuery Ul files, such as the widget factory and the but-
ton widget. Having the deep file dependencies be transparent—that is, you don’t have
to know the dependencies of dependencies—is incredibly useful. You can use mod-
ules without needing their dependencies. It’s the same functionality you got from the
jQuery UI Download Builder, without going through the manual process of checking
check boxes.

Under the hood Require]S still loads these deep dependencies asynchronously.
Figure 10.3 shows the network activity from running this example.

Figure 10.3 showcases another important feature of RequireJS: it’s smart enough to
load dependencies only once. Every file in jQuery UI depends on jQuery Core, yet you
can see that jqueryjs was loaded only once. In fact, because the spinner widget
depends on jQuery Core, you don’t have to list the jQuery dependency in your exam-
ple. The following removes the "jquery" dependency from your require () call:
require (["jquery-ui/spinner"], function(spinner)

S("<inputs>")
.appendTo("body")
.spinner ({
min: O,
max: 10
3N
1
When loaded with AMD, jQuery Core still makes the global $ variable available for
backward compatibility. In the same manner, all the jQuery UI modules append their
APIs to the global $ variable. The spinner widget’s constructor function is, for exam-
ple, at $.ui.spinner.

require.js 200
, . GET .
—= [jquery-ui-in-action- OK
app.js 200
== [jquery-ui-in-action- SET OK
spinner.js 200
.pu ner.j GET
== /jquery-ui-in-action- OK
JFIUUW-JS . CET 200
——J /lquery-ui-in-action- QK
core.js GET 200
== [jquery-ui-in-action- OK
| widget.js GET 200
/iquery-ui-in-action- OK Figure 10.3 The Network tab of
i) the Chrome developer tool showing
button.js CET 200 the JavaScript files loaded by your
== /jquery-ui-in-action- OK AMD example

www.it-ebooks.info

http://www.it-ebooks.info/

248

CHAPTER 10 Preparing your application for production

All AMD modules have the ability to return a value, and the jQuery UI widgets all
return their constructor functions. You can optionally use the widget’s constructor
function instead of its plugin in the callback function:

require (["jquery-ui/spinner"], function(spinner) ({
spinner ({ min: 0, max: 10 }, "<inputs>")
.widget ()

.appendTo("body") ;

)i

NOTE All widgets have a widget () method that returns a jQuery object. For
most widgets—such as accordion, menu, and tabs—the returned object con-
tains the element the widget was initialized on. Other widgets return an ele-
ment that they create internally; for instance, the autocomplete widget’s
widget () method returns the elementit displays suggestions in. The spin-
ner widget’swidget () method returns a <divs itwraps around the <input > ele-
mentitisinitialized on. You can see what the widget () method returns for each
widget on its API page.. The spinner widget’s widget () method is documented
at http://api.jqueryui.com/spinner/#method-widget.

Regardless of how you choose to create widgets, the big advantage of AMD is that
you're loading only the parts of jQuery UI that you need. If your application needs
only a spinner, you load only what you need to make a spinner. If your application sud-
denly needs an autocomplete, you can add "jquery-ui/autocomplete" to your
require () call and not worry about what autocomplete depends on.

Although your example has solved your download size issues, there’s still a big
problem: you perform more round trips than before—and we discussed how that’s
the number-one thing you don’t want to do!

RequireJS has a trick up its sleeve to help with that. And it has a cool name too: the
optimizer.

Datepicker exception

Yet again the pesky datepicker widget is the exception to the rule. Because datepicker
isn’t written with the widget factory, it doesn’t return a constructor function when
required with RequireJS. You can still load datepicker as an AMD dependency, but
you can’t use the returned value as a constructor function; therefore, this doesn’t work:

require (["jquery-ui/datepicker" 1, function(datepicker) {
datepicker ({}, "<input>");

1) 5
For better or worse, you need to stick to initiating datepicker instances with its plugin:

require (["jquery", "jquery-ui/datepicker"], function($) {
$("<input>")
.datepicker ()

.appendTo ("body") ;

IOF;

www.it-ebooks.info

http://www.it-ebooks.info/

10.4

10.4.1

Building your application’s assets with the optimizer 249

Building your application’s assets with the optimizer

Although the AMD spec defines how to define and require resources, it doesn’t define
how to optimize those files for use in web browsers. In addition to its implementation
of AMD, Require]S has a separate optimization tool that does this, known as the optimizer
The optimizer is written in JavaScript and runs on top of Node.js. To run the exam-
ples in this section you need to have Node.js installed on your machine, although you
do not need to learn anything about it. Also, installing Node.js on Windows and OS X
is now as easy as downloading and running an installer. If you don’t have Node.js
installed on your machine, grab the installer from http://nodejs.org/ and run it.

TIP If you're a Java developer, you might want to check out an alternative
version of the optimizer written in Java. For more details, see https://
github.com/jrburke/r.js.

You can verify the install worked by opening a new command-line session (Command
Prompt on Windows, Terminal on OS X) and typing node. If you see something other
than “command not found,” it worked.

In addition to Node js itself, the installer installs npm, or Node Package Manager:
a package management system for Node.js modules. Because the RequireJS optimizer
is implemented as a Node.js module, you’ll use npm to install it.

To install the optimizer, run the following on your command-line session of
choice:

> npm install -g requirejs

NOTE In this book, command-line code is displayed in bold text to differenti-
ate it from browser code.

The -g flag tells npm to install the module globally—in other words, not specific to an
individual project. You can verify that the installation worked by running r.js (r.js.cmd
on Windows). You should see the following output:

> r.js
See https://github.com/jrburke/r.js for usage.

That’s it for your installation; now you’re ready to optimize your files.

Optimizing JavaScript assets

Before doing so, we need to set a few configuration variables to tell the optimizer how
to optimize your code. You can specify the configuration as command-line arguments
or a JavaScript file to use as a build profile. I find the separate file to be more readable
and maintainable, so you’ll use that for your example. If you’re interested in learning
about the command-line option, the optimizer’s documentation (http://
requirejs.org/docs/optimization.html) has a few examples.

You’ll name your configuration file build.js and place it in the same js directory
you’ve placed the rest of your JavaScript assets in:

www.it-ebooks.info

http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html
https://github.com/jrburke/r.js
https://github.com/jrburke/r.js
http://www.it-ebooks.info/

250

CHAPTER 10 Preparing your application for production

F—— index.html

L js

— app.js

— build.js

— jquery-ui
F—— accordion.js
F—— autocomplete.js
F—— button.js
F—— core.js
F—— datepicker.js

T

— Jjquery.js
L require.js

There is an overwhelming number of options that you can provide the optimizer (a
full list is available at http://requirejs.org/docs/optimization.html#options), but the
vast majority of applications need only a few, which we’ll walk through. For your exam-
ple, you need only the following build.js:
(f

name: "app",

out: "app.built.js"

h
You set two options: name and out. name is the filename of the JavaScript module to
optimize, and out controls the filename of the output file generated by the optimizer.

Now that you have your installations done and your configuration in place, you
can run the build. To do so, run this command in the root directory of your project
(that is, the same directory containing your project’s index.html). Remember that on
Windows, you’ll need to use r.js.cmd instead of r.js:

> $ r.js -o js/build.js
You should see the following output:

Tracing dependencies for: app
Uglifying file: js/app.built.js

js/app.built.js

js/jquery.js

js/jquery-ui/core.js

js/jquery-ui/widget.js

js/jquery-ui/button.js

js/jquery-ui/spinner.js

js/app.js

The optimizer starts at the file indicated by the name option (app.js), collects all its
dependencies, concatenates them in a single file (named app.built.js because of the
out option), and minifies that file. You now have a single js/app.built,js file that con-
tains everything your application needs. Back in your app’s index.html, remember
that you currently use this <script> tag:

<script src="js/require.js" data-main="js/app"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

10.4.2

Building your application’s assets with the optimizer 251

To switch to the built file for production, all you need to do is add ".built" to the
data-main attribute:

<script src="js/require.js" data-main="js/app.built"s</scripts>

With this, you’ve solved both your RTT and download size issues. This code performs
only two round trips—one for require.js and one for app.built.js. Because app.built.js
contains only the modules you’re using, the user downloads only what is needed.

TIP If performance is ultracritical and you want to get the RTT count down
to one, the author of Require]S provides an alternative AMD loader called
almond. We’ll look at how to use almond in the next chapter.

This example shows the benefits of managing dependencies with AMD and Require]S.
Need to add a new dependency? Add it to your require() statement, rerun your
build, and it’s there. Need to remove a dependency? Remove it from require(),
rerun your build, and it’s gone. There’s no need to mess with configuration files or
configure a new build on Download Builder.

We’ve now covered how to optimize your JavaScript assets for production, but we
haven’t said a thing about CSS files. The reason is that although there are some third-
party plugins, neither RequireJS nor the AMD specification handles CSS dependencies.
Although RequireJS doesn’t manage CSS dependencies, its optimizer does let you con-
catenate and minify CSS files using the same build you used for JS files. We’ll look at
how to use that next.

Optimizing CSS dependencies

The build you created in the previous section works great for smaller apps, but more
complex apps have to build multiple JS files, CSS files, and more. No worries, though;
RequireJS has configuration options to meet these nontrivial requirements.

Let’s return to your application’s directory structure to show the location of CSS
files:

— css
F—— app.css
L jquery-ui
F—— accordion.css

images
L ...

— index.html
_js
app.js
build.js

jquery-ui
F—— accordion.js
jquery.js
require.js

T TTT

www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 10 Preparing your application for production

The same as your JavaScript files, you're free to place your files in whatever directory struc-
ture you like (and RequireJS will support that structure), but for the sake of this example,
you’re going to use a CSS directory with the jQuery UI .css files in a jquery-ui directory.

For your application’s code, you use a single app.css file in the same CSS directory.
In it, you import your app’s CSS dependencies and add any styling you need for your
application. For this example, you’ll load only your jQuery UI dependencies. To con-
tinue the same spinner example, place the following in your app.css:

@import "jquery-ui/core.css";

@import "jquery-ui/theme.css";

@import "jquery-ui/button.css";

@import "jquery-ui/spinner.css";

The only two required jQuery UI .css files are core.css and theme.css—which contain
the jQuery UI CSS framework class names and the base theming rules, respectively.
From there, all widgets in jQuery UI have a dedicated CSS file that’s needed only if you
use that widget. Because—unlike AMD—you have no dependency management in
CSS, you need to explicitly list your dependencies.

Normally, including @eimport statements in CSS files is a bad practice. The browser
performs a separate HTTP request to load each of these files—the very round trips
we’ve been attempting to avoid. But don’t worry; the same Require]S optimizer you've
been using to optimize your JS files can inline these @import statements as well.

Now that you have your CSS in place, let’s return to your build. Here’s the configu-
ration you’ve been using:

(f

name: "app",

out: "app.built.js"
h
This tells the optimizer to build the module in file app.js and place the output in
app.builtjs. To expand this to handle multiple files, including CSS files, you have to
use additional build options. The following code is the updated build.js:

The base URL of
{ JavaScript modules

The root appDir: "../", The directory for
directory of baseUrl: "js", the built assets
the application dir: "../built",

optimizeCss: "standard", 41 Uses the standard CSS

modu?es 2 0 } compression algorithm
name: "app"

An array of]
JavaScript modules h
to optimize

If you run this build from the command line again (r.js -o js/build.js), you'll see
that it takes a slightly different approach than your previous build. When you specify a
dir option, the optimizer clones the app’s entire directory structure in a new directory.
The name of the new directory is determined by the dir option—in this case, built €.

www.it-ebooks.info

http://www.it-ebooks.info/

Building your application’s assets with the optimizer 253

From there, the optimizer looks for any JavaScript or CSS files in the application—
where the root of the application is determined by the appDir option @—minifies
them, and inlines any @import statements in CSS files. The type of compression the
optimizer does on CSS files is determined by the optimizeCss option. You use "stan-
dard" compression @, which removes all lines and unnecessary whitespace. If you
want to preserve new lines or whitespace, you can set optimizeCSS to "keepLines" or
"keepWhitespace", respectively.

The optimizer does the same task you saw in the previous section: optimizes AMD
modules. By passing a modules option @, you can specify multiple files to optimize if
your application requires it. The directory for the JavaScript modules is determined
by the baseUrl @ option.

The cool thing about this approach is that it doesn’t mix your source files with
your built files. In the previous example, you had an app.built.js file that sat alongside
app.js. Here, your source directories aren’t touched; instead, you have an app.js in
your main application’s directory and another in the built directory, which gives the
following structure:

— built

I— app.css

jquery-ui

Q
[0}
[0}

—

js

I— app.js
— build.js
I— jquery-ui
| ..
I— jquery.js
L require.js
— css

I— app.css

L jquery-ui
L

F— index.html
L Js
I— app.js
— build.js
I— jquery-ui
I— jquery.js

L require.js

If you look at your app.css in the built directory, you see that instead of being four
@import statements, it’s now a single line of minified code with the four jQuery UI CSS
files embedded.

Use the following two lines to import resources in development

<link href="css/app.css" rel="stylesheet">
<script src="js/require.js" data-main="js/app"></scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

254

10.5

CHAPTER 10 Preparing your application for production

and the following two for production:

<link href="built/css/app.css" rel="stylesheet">

<script src="built/js/require.js" data-main="built/js/app"></scripts>

The only difference is the updated references to the built directory, because that’s
where your built assets are. In development, these two lines generate 10 HTTP requests
for four CSS files and six JavaScript files. In production, these two lines generate 3 HTTP
requests: one for app.css, one for require.js, and one for app.js. This is a major perfor-
mance improvement, and this is for the simplest of examples. In large applications, a
Require]S build can easily reduce hundreds of requests down to a small handful.

The examples in this chapter were purposely simple to show how to use jQuery Ul
in an AMD setting. Because the topic of managing large applications and complex
build configuration is so vast, a more comprehensive discussion is outside the scope of
this book. If you’re looking for more detailed material on the subject, JavaScript Appli-
cation Design: A Build First Approach by Nicolas Bevacqua, to be published by Manning
in 2015, is an excellent resource.

Although we won’t dig deeper into AMD-based builds, we need to discuss one last
thing, and that’s how you can add AMD support to your own jQuery Ul extensions.
How does jQuery UI offer AMD support, and still work for users not using AMD? Let’s
explore that next.

Supporting AMD in custom widgets

If you’re designing a module to be externally used—whether it’s distributed online or
distributed throughout your company—it’s important to support common develop-
ment environments. In this case, that means supporting developers who want to use
AMD, and developers who don’t.

Let’s return to your todo widget you built in chapter 8. Let’s suppose you want to use
your todo widget in your AMD example from the previous section. You add its todo.js
file to your js directory—right alongside jquery.js and the jquery-ui directory:

F—— index.html
[— js
— app.js
— build.js
— jquery-ui
F—— accordion.js
— jquery.js
— require.js
L todo.js

You change your app.js to use todo.js with the following:

require (["todo"], function(todo) {
todo({}, "OneTwoThree")
.element

.appendTo("body") ;

www.it-ebooks.info

http://www.it-ebooks.info/

Supporting AMD in custom widgets 255

You expect this code to create a new with three items, convert it to a todo widget,
and append it to the <body>. Instead, this example fails with a JavaScript error that $
isn’t defined.

The problem is you never declared dependencies for your todo widget. RequireJS
doesn’t know that the widget depends on jQuery Core and the widget factory, so it
never loads them. You can change that easily enough. The following code shows the
todo widget updated to support AMD:

define (["jguery", "jquery-ui/widget"], function($, widget) {
return widget("tj.todo", {
Defines a options: { ... }, Returns the
module with its _create: function(...) { }, module’s APIs

dependencies
}i
1
Notice you're using define () instead of require () on the first line of your module.
require ()lets you load dependencies; define () lets you load dependencies, and then
return an API that can be used by other modules. You should use define () whenever
you want to define a new module.

The parameters of define() are the same as require () —an array of dependen-
cies as strings and a callback function @. The todo widget depends on jQuery Core
and the widget factory, so you pass them as the first argument. In the callback func-
tion—to be consistent with the jQuery UI widgets—you return the result of $.wid-
get (), which is the widget’s constructor function @. That same constructor function
was what your previous example was using:

require (["todo"], function(todo) {
todo({}, "OneTwoThree</1li>")
.element

.appendTo("body") ;

1
This code now works as expected. Require]S loads jQuery, the widget factory, and the
todo widget. Then, the code to create a new todo widget with the widget’s constructor
function executes successfully.

There’s only one problem. Suppose the developers of another project don’t use
AMD and want to use the todo widget. They use code like this:
<script src="js/jquery.js"></script>

<script src="js/jquery-ui/widget.js"></script>
<script src="js/todo.js"></scripts>

<scripts>
$("<lis>OneTwoThree</lis>")
.todo ()
.appendTo("body") ;
</script>

This code worked fine before you introduced AMD support, but now it doesn’t. Because
this new example doesn’t use AMD or Require]S—which implements the necessary AMD

www.it-ebooks.info

http://www.it-ebooks.info/

256

CHAPTER 10 Preparing your application for production

functions—this code throws an error because define isn’t defined. So when you added
support for AMD, you also removed support for developers not using AMD. How do the
jQuery UI modules support both?

What jQuery UI does, and what is the established solution to this problem, is a
technique known as a UMD wrapper. UMD (Universal Module Definition) refers to a
pattern for writing modules that work in multiple environments. jQuery UI uses a
UMD wrapper in all its modules. If you look at the source code for the spinner widget
you’ll see the following:

(function(factory) ({ <1—0 First to execute.
if (typeof define === "function" && define.amd) {
define ([
Third to execute. "jquery", Registers as
Checks whether "./core", AMD module.
AMD is being used. ", /widget",
", /button"
1, factory);
} else {
Only adds to factory(jQuery);)
the global } Second to execute:
jQuery variable. } (function($) { the factory.

return $.widget ("ui.spinner", {
. Creates the
1 spinner widget.

DN

This code is a bit intimidating at first glance, so let’s break it down piece by piece. 1
find it easiest to explain this in terms of the order in which these lines of code exe-
cute. Of course, the first line that executes is line one @), which defines a function
that immediately invokes itself. The function at (1) passes itself a reference to the func-
tion at @ and sets it as a factory parameter. You may need to reread that sentence a
few times or play with the code here before that sinks in. Don’t worry if you continue
to be confused. Just know that in the function at @, the following is now true:

factory = function($) {
return $.widget("ui.spinner", {

1
}
factory is a variable that references a function that creates the spinner widget; it
hasn’t been invoked yet. Before invoking factory, you need to know whether the user
is using AMD.

You check for AMD support by looking for a define () function available with an
amd property @. If this is the case, you call define () @ with the spinner widget’s
dependencies—jQuery Core, jQuery UI Core, the widget factory, the button widget—
and a reference to the factory. define () resolves the dependencies and invokes fac-
tory with its dependencies. The factory invocation causes $.widget () to run @,
which defines the spinner widget as an AMD module.

www.it-ebooks.info

http://www.it-ebooks.info/

10.6

Summary 257

Backing up to @, if the user isn’t using AMD, you invoke the factory with the
jouery global variable @. Note that this route doesn’t resolve any dependencies. It
requires all of the spinner widget’s dependencies to be available before this code runs.

Although admittedly a bit convoluted, the UMD wrapper lets you support AMD
users and non-AMD users without having to create separate files.

TIP Alternative versions of UMD also let you support use in Node.js environ-
ments. Because jQuery Ul is exclusively browser-based code, it doesn’t add
the extra code to do this. If you’re writing a module that would be useful in
the browser as well as the server, check out the alternative UMD versions at
https://github.com/umdjs/umd.

Let’s take what we’ve learned back to the todo widget. To support both AMD and non-
AMD users, all you need to do is add the same UMD wrapper, passing the appropriate
dependencies—jQuery Core and the widget factory:

(function(factory) ({

if (typeof define === "function" && define.amd)
define ([
"jquery",
"jquery-ui/widget"
1, factory);
} else {

factory(jQuery);

}(fuiction($) {

return $.widget("tj.todo", { ... });
D
Users can now use the todo widget regardless of whether or not they use AMD.
Although the UMD wrapper is a bit verbose and tricky to understand, the ability to
support multiple usage scenarios is valuable in any code you intend to distribute—
whether it’s on the web or in your company.

Summary

Performance is important to any web application. In the context of jQuery and jQuery
UI, the two most important optimizations you can make to your application are reduc-
ing RTTs by concatenating scripts and reducing download size by configuring a build
that includes only what you need.

Download Builder is a web-based tool that lets you configure a build of jQuery UI
with only the pieces you need. Unfortunately, however, using Download Builder is a
manual process. If you need another part of jQuery UI, you have to go back and create
a new build.

AMD is a more complex, but more elegant solution to the performance problems.
Using an AMD loader like RequireJS, you can specify your dependencies in your
JavaScript files, and you can load only the code you need. When you’re ready for pro-
duction, you can run the RequireJS optimizer to minify and concatenate your files.

www.it-ebooks.info

http://www.it-ebooks.info/

258

CHAPTER 10 Preparing your application for production

Even if you can’t do every optimization laid out in this chapter, every little bit
helps. If you can’t convince your boss, team, or organization to make the switch to
AMD, look into ways you can minify and concatenate scripts in your own server-side
environment. Focus on reducing RTTs and HTTP requests, as that has the biggest per-
formance benefit, especially in the context of mobile devices.

If you’re building distributable code, support for both AMD and non-AMD usage
makes it available to a wider audience of developers. Using a UMD wrapper is the pre-
ferred way of adding this support.

You’ve now made it through the core jQuery UI topics. You know how to wield wid-
gets, customize themes, use effects, and now—how to get your code ready for produc-
tion. It’s time to put all this knowledge to use on a larger scale.

www.it-ebooks.info

http://www.it-ebooks.info/

Buwilding a
Jlighi-search application

This chapter covers

= Building mobile-friendly forms

= Connecting to a RESTful API

= Creating responsive forms

= Bundling a full application for production

Up to this point you’ve learned about jQuery UI and built a number of real-world
applicable examples, but you have yet to build something at real-world scale—an
application that you may actually need to build and deploy. And building a full-
scale web application is no simple task. Depending on the application, it may
require jQuery, jQuery UI, other utility libraries, as well as server-side components.

To learn how these pieces come together, you’ll build a small flight-search appli-
cation, similar to one on Orbitz, Travelocity, or any airline’s site. In building this
form, you’ll get an idea of how these live sites work. Along the way, we’ll look at
concepts we haven’t yet explored, such as client-side form validation, interacting
with a RESTful API, and creating a responsive application. Figure 11.1 shows the fin-
ished version of the application that you’ll build.

259

www.it-ebooks.info

http://www.it-ebooks.info/

260

11.1

CHAPTER 11 Building a flight-search application

—Find a Flight . . .
o Showing all trips from Detroit to Atlanta on 3/2.
From:
(10 results found)
DTW
Departure Arrival Duration Flights Flight Numbers
To:
ATL 5:30 AM 7:32 AM 2h02m 1 DL341
Date: 6:30 AM 8:36 AM 2h06m 1 DL2283
03/02/2014 7:34 AM 9:30 AM 1h56m 1 FL261
Max # of Results: 7:34 AM 9:30 AM 1hS6m 1 WNS5261
10
5:00 AM 9:30 AM 4h30m 2 US4710/469
Hops:
5:00 AM 9:30 AM 4h30m 2 AAS5027/469
Any Nonstop Only
7:30 AM 9:32 AM 2h02m 1 DL1257
Order By:
Arrival Time - 6:30 AM 10:38AM 4h08m 2 US2015/450
6:30 AM 10:38AM 4h08m 2 AA2015/450
8:35 AM 10:41AM 2h06m 1 DL1893

Figure 11.1 A flight-tracking application built using tools you’ve learned about throughout this book

NOTE A functional version of the application is available at http://jsfiddle.net/
tj_vantoll/ujwWL/. Please note that, because jsFiddle examples can’t use mul-
tiple files, there are small differences between the code shown on jsFiddle and
the code shown in the book. For example, the jsFiddle code doesn’t use AMD.

Let’s get started.

Structuring your application

Before you can start coding, you need to get your directory structure in place. For
consistency, you’ll use a base structure that’s identical to the examples you used in
chapter 10:

|— css
|— app.css
L jguery-ui
|— accordion.css

I— accordion.js

|_
|_
i— jquery-ui
=

jquery.js
require.js

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/ujwWL/
http://jsfiddle.net/tj_vantoll/ujwWL/
http://www.it-ebooks.info/

11.2

Collecting user input 261

As a reminder, app.css contains your application’s CSS, app.js contains your applica-
tion’s JS, and build.js contains your application’s Require]S build configuration. You’ll
add more files to the project throughout the chapter, but for each we’ll discuss what
the file is and where it goes in this structure.

Your app’s index.html file will start with the following boilerplate:

<!doctype htmls>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Find a Flight!</title>
<link href="css/app.css" rel="stylesheet">

</head>
<body>
<form>
<fieldsets>
<legend>Find a Flight</legend>
<!-- The form fields -->
</fieldset> Shows the list of
</form> matched flights in
<div id="flights-container"s</div> this container

<script src="js/require.js" data-main="js/app"></script>

</body>
</html>

NOTE The main two components of this page are <form> to collect search
input from the user and <div> to show the results. We’ll look at what to putin
these two containers throughout this chapter.

At a high level, this application does three things: collects data from the user, contacts
a third-party API to find flights that match the provided data, and displays the matches
on the screen. You'll tackle these three sequentially in the next three sections, starting
with how to gather data from the user.

Collecting user input

Before talking about what data you need, we have to discuss the API you’ll use to find
flights. The means of contacting a third-party API is always API-sspecific, and you have to
start with the API provider’s documentation. For your example, the folks at Mashape
(https://www.mashape.com/) and FlightLookup (http://www.flightlookup.com/)
have provided us access to their flight-lookup APL If you look at the documentation for
their API at https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-
method#!documentation you’ll see the following code at the top:

curl --include --request GET 'https://flightlookup-timetable-
rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/?

&Hops=NONSTOP&Count=10&SortOrder=0"' \
--header "X-Mashape-Authorization: **kkkkkkkkkkkkkkkkkkn

www.it-ebooks.info

https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
http://www.it-ebooks.info/

262

CHAPTER 11 Building a flight-search application

This may look like a mess, but it’s fairly straightforward. It uses the curl command-line
utility to perform an HTTP GET request to the given URL. It includes a custom
X-Mashape-Authorization HTTP header that contains the API key Mashape needs to
know that you have permission to use the API (which is obfuscated with asterisks
here). Because you won’t be using curl, don’t worry about the specific syntax; instead,
look at how the data you collect fits into the request you need to send. You need to
format a URL as follows: https://...mashape.com/TimeTable/from/to/date/

Then, add a query string that contains the number of hops, a count, and a sort
order. Your task is to collect the data you need to build this URL—which means you
have to ask users for the following six pieces of information:

= From—Your departure airport

= To—Your arrival or destination airport

= Date—When do you plan to leave?

= Number of results—How many flights do you want to see at a time?

= Hops—Do you want a nonstop flight, or are you OK with making connections?
= Order B)—How do you want the returned flights sorted?

The last two are going to be the easiest, so you’ll code them first, using the following
HTML for the Hops and Order By questions:

<div>
<label>Hops:</label>
<div id="hops">
<label for="hops-any">Any</label>
<input type="radio" name="hops" id="hops-any" value="" checked>
<label for="hops-nonstop">Nonstop Only</label>
<input type="radio" name="hops" id="hops-nonstop" value="NONSTOP">
</divs>
</div>
<div>
<label for="order-by">Order By:</labels>
<select id="order-by">
<option value="0">Arrival Time</option>
<option value="1">Departure Time</options>
<option value="2">Duration</options>
</select>
</divs>

Next, you turn these elements into jQuery UI widgets to make them themeable. The
following code shows the initial version of your app.js. It converts the Hops and Order
By form elements into buttonset and selectmenu widgets:

require (["jquery", jquery-ui/button", "jquery-ui/selectmenu"],
function($, button, selectmenu) ({
var hops = $("#hops") .buttonset (),
orderBy = $("#order-by").selectmenu() ;

www.it-ebooks.info

http://www.it-ebooks.info/

11.2.1

Collecting user input 263

You store off references to the two elements because you’ll use them later when you
connect to the API. For these widgets the code is straightforward because the default
behavior does everything you need. The next three fields—7o, From, and Date—
require a bit more work; we’ll devote a section to implementing each.

Building an airport code autocomplete

Per your FlightLookup API, the 7o and From fields need to be three-letter Interna-
tional Air Transport Association (IATA) airport codes. The IATA code is a unique iden-
tifier assigned to each airport around the world. Usually these codes are related to
their city’s name (ATL is the IATA code for Atlanta’s airport), but not always (IAD is the
IATA code for Dulles airport near Washington, DC). As a result, even seasoned travel-
ers may not know the appropriate code to use, especially for new destinations.

Because you don’t want to rely on users knowing the appropriate codes, you’ll use
an autocomplete that lets the user type the airport’s code (ATL) or the destination’s
name (Atlanta). Recall from chapter 3 that the autocomplete widget has a built-in
mechanism to associate the labels the user needs to type with an underlying code.
This mechanism is perfectly suited for this airport-code use case.

In chapter 3 we talked about options to connect an autocomplete to a server-side
back end. In this chapter we’ll mix it up a bit and show a way of driving an autocom-
plete exclusively from the client.

NOTE I retrieved the airport data from http://www.airportcodes.org/ and
formatted it in a JSON file for use in this example.

You’ll place a JSON file containing your data in your project’s directory structure as
follows

F__

css
| ...
F—— index.html

— s
L json

L airports.json
and the airports.json file is formatted like this:

{

"airports": [
{ "label": "Aalborg, Denmark (AAL)", "value": "AAL" },
{ "label": "Aalesund, Norway (AES)", "value": "AES" },

1 ~3500 other
} airport entries
The JSON file contains a single airports property that contains an array of all airports
in the world. Each object in the array contains two properties: a label (the text the user

sees in the autocomplete menu) and a value (the text that ends up in the <input> after
the user selects an option). Notice that in this case, you include the value in each

www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 11 Building a flight-search application

From: From:
wasl |ad|
Lawas, Malaysia (LWY) Washington DC - Dulles (IAD)
Wadi Ad Dawasir, Saudi Arabia '
(WAE)

Washington DC - All airports (WAS)
Washington DC - Dulles (IAD)
Washington DC - National (DCA)
Wasior, Indonesia (WSR)

Figure11.2 Users cantype eitherthe
city name or the airport IATA code to
match autocomplete options.

option’s label. Users who know the airport codes can type them, and users who don’t
know the codes can type city names. This behavior is shown in figure 11.2.

Now that you have that data in place, you have to add the two airport fields to your
form. You do that by adding the following HTML to your index.html

<div>
<label for="from-airport">From:</label>
<input id="from-airport" autocorrect="off">
</div>
<div>
<label for="to-airport">To:</label>
<input id="to-airport" autocorrect="off">
</divs>

and the following to your app.js:

require([..., "jquery-ui/autocomplete"], function(
var fromAirport = $("#from-airport"),

$.getJSON("json/airports.json").then(function(data) {
fromAirport.add(toAirport).autocomplete ({
source: data.airports,

., autocomplete) ({

Converts both

: Ties the <input> elements to
} minLength: 2 autocompletes autocomplete widgets
)i H
K Shows results after two ;o tt he airport
1) characters are typed ata

TIP You first saw this in chapter 3, but as a reminder, setting the autocor-
rect attribute to "off" prevents the browser/OS—most notably iOS and
Android—from automatically correcting the user’s input. This attribute is a
good idea to add to any autocomplete field—as well as username fields, pass-
word fields, and email address fields.

You load the JSON file using the jQuery Core getJSON () method @. When it finishes,
you convert the 7o and From <input> elements to autocomplete widgets @ using the
airport data from your JSON file € (recall that the JSON file was an object with a single
airports property). Finally, because there are over 3000 airports, and you filter on
the client, you set the minLength to 2 @. This forces the user to type two characters

www.it-ebooks.info

http://www.it-ebooks.info/

Collecting user input 265

before seeing the results, which limits the number of potential matches to hundreds
rather than thousands.

NOTE Older browsers such as Internet Explorer <=8 and Android < 3 have con-
siderably slower JavaScript speeds than modern browsers. If you support these
browsers, consider setting the minLength to 3 to avoid a sluggish experience.

With that you have functioning autocompletes for both your 7o and From fields. But
there’s one final question we have to ask before moving on: is building an autocom-
plete only on the client side a good idea?

Like most software development questions, the answer depends on the situation.
In this case, the big advantage with being client-side only is that you don’t have to set
up a server to host and filter this data. This gives you more flexibility in how this appli-
cation is used; it makes it possible for me to host this example on jsFiddle without set-
ting up an external server. Because of the ease of use and flexibility of storing all data
on the client, it’s a realistic option for small- to medium-sized datasets, but is a bit too
heavy for large datasets.

Your airport JSON file is 52 K after gzip compression. The file is loaded asynchro-
nously, but that can still be a bit heavy for mobile devices; although this example could
be more efficiently written to perform the filtering on a server-side back end, the flex-
ibility of running only on the client makes it ideal for this example—as the current
performance isn’t bad. For a discussion of how you can connect an autocomplete wid-
get to a serverside back end, refer to chapter 3.

Autocompletes and scrolling long lists of options

By default, the autocomplete widget doesn’t display a scroll bar when displaying a
long list of options, but it's easy to add one. Your example uses the following CSS to
accomplish this:

.ui-autocomplete {
max-height: 200px;
overflow-x: hidden;
overflow-y: auto;

}

Here, an overflow-y of auto tells the browser to add a vertical scroll whenever the
height of the menu exceeds its max-height—which you set at 200 pixels. Setting
overflow-y to hidden prevents the browser from creating a horizontal scroll bar.

11.2.2 Polyfilling HTML5 inputs with jQuery Ul

The last fields to add to your form are a datepicker to pick a destination date and a
number picker to choose the number of results to use. You may recall from chapter 3
that you have a choice here. Although the jQuery UI widgets offer functionality and
extensibility, the HTML5 native controls—in this case, <input type="date"s> and

www.it-ebooks.info

http://www.it-ebooks.info/

266

CHAPTER 11 Building a flight-search application

<input type="number">—are preferable for simple usage scenarios—mostly because
mobile devices can provide an optimized keyboard for data entry. For your example, a
simple usage scenario is exactly what you have. You don’t need your date or number
pickers to do anything special; you just need a date and a number.

But keep in mind that only some browsers support the new HTML5 controls, and
you want a solution that works everywhere. To accomplish this, you use a technique
known as polyfilling, or using native support where it’s available, and falling back to a
JavaScript-based solution where it’s not. To start implementing this, let’s add the fol-
lowing HTML to your form
<div>

<label for="date"sDate:</labels>

<input id="date">
</div>
<div>

<label for="results">Max # of Results:</labels>

<input id="results" value="10" min="10" max="100" step="10">
</divs>

and this JS to convert the two form elements to widgets in your app.js file:

require([..., "jquery-ui/datepicker", "jquery-ui/spinner"],
function(..., datepicker, spinner) {

var date = $("#date")
results = $("#results");

date.datepicker() ;

results.spinner() ;

)i

At this point you have a familiar solution: both <input> elements are jQuery Ul widgets
thatlook and work the same in all browsers. The nextstep is to use the widgets only when
needed, thatis, onlywhen the native controls aren’t supported. To do that, first you have
to change your HTML to use the new types. You can do that by switching your datepicker
<input> to a type of "date" and your spinner <input> to a type of "number":

<input type="date" id="date">

<input type="number" id="results" value="10" min="10" max="100" step="10">
Now you have to switch your logic to create widgets only when necessary. You do that
by making the following alteration to your app.js file:

function isTypeSupported(type) {

. . Detects whether the
var input = document.createElement ("input") ; browser natively
input.setAttribute("type", type); supports the type
return input.type === type;

}i

var date = $("#date"),
results = $("#results");

www.it-ebooks.info

http://www.it-ebooks.info/

Collecting user input 267

if (!isTypeSupported("date")) {
date.datepicker ({ dateFormat: "yy-mm-dd" }); Initializes a
} datepicker widget
if (!isTypeSupported("number")) { if necessary
results.spinner() ;
} Initializes a spinner
widget if necessary

You define a new function that determines whether native support of a given type is
available @. In it, you create a new <input>, change its type attribute to the type
passed in, and see if the change took. If it did, you have support; if not, you don’t.

NOTE A more thorough discussion of polyfills, including how to use Modern-

izr to detect native features without having to write them yourself, is in appen-
dix F.

You then use that function to determine whether you should initialize a datepicker
widget on your <input>. If you do need a datepicker, you set its dateFormat to "yy-
mm-dd"—which is the same format the HTML5 picker uses ®. This ensures that, when
it’s time to call your API, your date is in the same format, regardless of whether the
user is using the HTML5 control or the datepicker widget. You use the same approach
to create a spinner widget only if necessary €. The end result of your polyfill
approach for the date input is shown in figure 11.3.

With these last two fields added, your form is now complete. But before you call off
to your API, you have one last task: validating the user’s data.

Safari i0S Chrome
Date: Date: Date:
2014-03-02 I [Maf 2, 2014 n 03/02/2014 gv
o March 2014 o < > Clear Done | March 2014 ~ o|[e][>
su Mo Tu we Th Fr sa Sun Mon Tue Wed Thu Fri Sat
1
1 2 3 4 5 6 7 B

9 10 11 12 13 14 15
e 17 18 1% 20 21 22
10 11 12 13 14 15 March 2 2014 23 24 25 26 27 28 29

16| 17 18 19 20 21 22 0 3
23 24 25| 26 27 28 29
30 31

Figure 11.3 Safari doesn’t have a native datepicker, so it uses the jQuery Ul datepicker. i0S and Chrome
have a native datepicker, so they use the native implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

268

CHAPTER 11 Building a flight-search application

11.2.3 Validating user input with HTML5

Client-side form validation is a notoriously painful development experience. Building
auserfriendly, developer-friendly, and accessible validation mechanism is hard. HTML5
introduced a mechanism, known as constraint validation, designed to make form vali-
dation easier. Constraint validation refers to a series of HTML attributes, a DOM API, and
a series of CSS hooks that the browser natively provides to validate form data.

Although constraint validation does make form validation easier, it’s not without
its drawbacks. Almost all browsers now support constraint validation, but some don’t
have it turned on—which sounds weird, but we’ll talk about what this means and how
to work around it.

We’ll start with the HTML attributes of constraint validation, as they’re easy to use.
To make your first three form elements required, all you need to do is add a required
attribute to them:
<input id="from-airport" requireds
<input id="to-airport" requireds>
<input type="date" id="date" requireds>
When you try to submit this form without these fields filled in, supporting browsers
will prevent the submission and provide an error message—you don’t need to write
any JavaScript! Furthermore, the browser will automatically validate the type="date",
type="number", min, max, and step attributes that you already configured. Figure 11.4
shows this behavior in a few browsers.

If all browsers supported HTML form validation, you’d be done; unfortunately, this
isn’t the case. Here’s where things get weird though. As mentioned, all popular brows-
ers (except Internet Explorer <= 9) support the APIs of constraint validation; some
WebKit-based browsers—specifically Safari, iOS Safari, and the default Android
browser—don’t have the APIs turned on. Even though these browsers recognize the
new HTMLS5 attributes, they neither prevent form submission nor show validation bub-
bles to the user. To work around this odd behavior, you use the following code.

WARNING This approach works everywhere other than Internet Explorer <=9;
the form itself is still functional in Internet Explorer <= 9, but the validation
doesn’t work. If you need full support for older versions of Internet Explorer,
check out more fully featured validation libraries such as the jQuery validation
plugin (http://jqueryvalidation.org/) or Kendo UI's validator (http://
demos.telerik.com/kendo-ui/web/validator/index.html).

From: Date: Max # of Results:

02/29/2014 H |4| XI

Please fill out this field.

- Please provide a valid date. ’_You must enter a value between 10 and 100

Figure11.4 From left toright: required field validation in Firefox, date validation in Chrome, and number
validation in Internet Explorer

www.it-ebooks.info

http://demos.telerik.com/kendo-ui/web/validator/index.html
http://demos.telerik.com/kendo-ui/web/validator/index.html
http://www.it-ebooks.info/

Loops
over
each

invalid
field

Sets the
aria-invalid
attribute

Listens
submit
events

Collecting user input 269

function validateForm() {

var invalidFields, Undoes the effects of
form = $("form"); previous invocations
form.find(".ui-state-error-text")
.removeClass("ui-state-error-text")
form.find("[aria-invalid]").attr("aria-invalid", false)
form.find(":ui-tooltip").tooltip("destroy");
Adds a class
invalidFields = form.find(":invalid") .each(function() { name to the
form.find("label [for=" + this.id + "]") field’s label
.addClass("ui-state-error-text")
$(this).attr("aria-invalid", true)
J .attr("title", this.validationMessage)
.tooltip({ tooltipClass: "ui-state-error" }); Initializes a
}) .first () .focus(); tooltip widget
on the element
return invalidFields.length === 0;
bi Focuses the first
$("form").on("submit", function(event) { invalid field
f event .preventDefault () ;
or if (validateForm()) { only calls the
// call the API API when the
} data is valid

I3

This approach revolves around listening for submit events on the <form> @. On
browsers with constraint validation implemented and enabled, you won’t get a submit
event until the user provides valid data. For these browsers, all this code is unnecessary
and does nothing. But in browsers with constraint validation disabled, you use the
validateForm() @ function to highlight the appropriate fields and determine
whether the data is valid. (You don’t want to call the flight-lookup API with invalid data
if you can avoid it.)

The validateForm() function is where things get fun. First, you reset the form to
its initial state @—removing changes that the subsequent code in the function makes.

Next, you find all invalid fields in the form using the :invalid pseudo-class @.
This is a pseudo-class the browser provides that matches all fields that are invalid per
their constraints, such as the required and type attributes. This is one of those APIs
that the WebKit family of browsers supports, even though they have constraint valida-
tion turned off.

For each invalid field, you do a few things. First, you add a ui-state-error-text
class name to the invalid field’s <label> element €. Then, you set the field’s aria-
invalid attribute to true @. This informs assistive devices such as screen readers that
the field contains invalid data.

You have to tell the user what the problem with the field is. The browser has built
that message for you and stored it the invalid element’s validationMessage property.
You take this message, set it as the element’s title attribute, and convert it to a tooltip
widget. The user sees a tooltip when hovering over the field and when it has focus @.
The tooltip widget also ensures that screen readers read the validation message as

www.it-ebooks.info

http://www.it-ebooks.info/

270

CHAPTER 11 Building a flight-search application

well. To match the native validation behavior, you From:

move focus to the first invalid element in the f l

form @. | |
Figure 11.5 shows how your new validation '

T

mechanism looks in Safari.
value missing

TIP If you want to learn more about HTML5
formvalidation, including how to customize the
validation messages, I have amore thorough dis-
cussion at http://www.htmlbrocks.com/en/
tutorials/forms/constraintvalidation/.

Figure 11.5 The Ul shown after the
user attempts to submit the form with-
out providing a required field in Safari on

0s X
With this you have a form that collects the data

that you need and validates that it’s correct. The validation isn’t 100% comprehen-
sive—you don’t ensure the user picks a valid airport—but you’ve protected against the
most common mistakes users make, and built a feedback mechanism to inform them
of the errors that they made.

Writing accessible form validation

Writing validation in an accessible manner can be tricky, but by making sure you fol-
low a few best practices, you can ensure your forms are usable for everyone. Here’s
a list of the most important things to do:

= Manage the aria-invalid attribute—When a form element with invalid data
has focus, screen-reader users need to know when there’s a problem. You can
do this by setting the element’s aria-invalid attribute to "true" or "false"
based whether its data is valid—<input aria-invalid="true"> oOr <input
aria-invalid="false">.

= Ensure screen readers can read error messages—Screen reader users not only
need to know that fields are invalid, they also need to know why. Your previous
example used a tooltip widget to accomplish this. Under the hood, the tooltip
widget added an aria-described-by attribute to associate itself with the
<input>, and to ensure its content is read by screen readers when the <input>
receives focus. This is a little more in depth than most forms need, and a sim-
pler solution is to set an aria-label attribute containing the error message,
such as <input aria-invalid="true" aria-label="Please enter a posi-
tive number">. Make sure you remove the aria-label when the field
becomes valid.

= Don’t rely on color to designate invalid fields—Accessibility isn’t only about
screen readers, and in the case of form validation, you also have to be consider-
ate of color-blind users. No matter how bright a red you add to your form, some
users won't see it. Your previous example made the validation messages visu-
ally stand out with a tooltip widget. Other common techniques are error icons
and drawing boxes around invalid fields.

www.it-ebooks.info

http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/
http://www.html5rocks.com/en/tutorials/forms/constraintvalidation/
http://www.it-ebooks.info/

Connecting to a RESTful API 271

Now that you have a form that collects the data you need, let’s put it to use.

11.3 Connecting to a RESTful API

REST refers to Representational State Transfer, which Wikipedia defines as a “software
architectural style consisting of a coordinated set of architectural constraints applied
to components, connectors, and data elements.” In the context of web services, REST-
ful APIs structure their URLs in a predefined manner and handle the core HTTP meth-
0ds—GET, PUT, POST, DELETE, and so forth—appropriately. Let’s see how this works
in practice by connecting to your flight-lookup service.

NOTE A more detailed discussion of what makes an API RESTful is available at
http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to
_web_services.

11.3.1 Looking up flights with S.ajax()

Although building RESTful APIs can be a complex task, connecting to them from the cli-
entside is relatively easy—especially in the case of your flight-lookup API, because it uses
a single HTTP GET to retrieve data. You can look back to the API’s documentation at
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!doc-
umentation, but the main thing you’re interested in is the URL, such as the one we dis-
cussed earlier: https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/
LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0.

Your job is to build this URL with user-provided data rather than hardcoded data,
and to display the results on the screen. You’ll start with the following code, which
uses the jQuery Core $.ajax () method to connect to the flightlookup APL

NOTE Recall from earlier examples that the date, fromAirport, toAirport,
hops, results, and orderBy variables correspond to jQuery objects contain-

ing the input elements of the form. .
Sets the API key in

a custom header

var selectedDate = $.datepicker.parseDate("yy-mm-dd", date.val());
$.ajax ({
Adds the two headers: { "X-Mashape-Authorization": "x*k#xxxxkkkxxxrkkkxxn },
airport codes url: "https://flightlookup-timetable-rest.p.mashape.com/TimeTable/" +
to the URL fromAirport.val() + "/" +

toAirport.val() + "/" +
$.datepicker.formatDate("mm/dd/yy", selectedDate) + "/",

data: {
Hops: hops.find(":checked").vall(), Adds the
Count: results.val(), destination
SortOrder: orderBy.val() date to the URL
) Adds the
2K query string

jQuery’sajax () method lets you specify custom headers by providing a headers option.
You use that to add your custom X-Mashape-Authorization header so Mashape knows

www.it-ebooks.info

http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://www.mashape.com/flightlookup/flight-schedules-one-day-rest-method#!documentation
https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0
https://flightlookup-timetable-rest.p.mashape.com/TimeTable/BOS/LAX/12/31/2012/? &Hops=NONSTOP&Count=10&SortOrder=0
http://www.it-ebooks.info/

272

11.3.2

CHAPTER 11 Building a flight-search application

it’s you @. Next, you need to add the two airport codes to the URL; you can do this by
appending them from the values of their respective <input> elements @.

After this comes the date, and here you have a little work to do. Remember that you
specified a dateFormat of "yy-mm-dd" for consistency with the HTML5 date <inputs>,
butyour APIneeds the date in "mm/dd/yy" format. To convert the date from one format
to another, you use a combination of datepicker’s parseDate () and formatDate () util-
ity functions. You use parseDate () to get a Date object representing the date that the
user selected, then you output that date in "mm/dd/yy" by passing the Date object to the
formatDate () method @.

The last part of the URL to add is the query string, and you can add that using the
ajax () method’s data property @. Internally, jQuery will URL-encode these values
and turn it into a valid query string automatically.

And that’s it. You don’t have to tell $.ajax () that you need to make a GET request
because that’s the default. If you invoke this code, you’ll see that it indeed performs a
GET request and returns XML containing the results of the query, such as the following:
<?xml version="1.0" encoding="UTF-8"?>
<results>

<query status="0" message="success" RouteCount="120" ... />

<route ActualFrom='DTW' ActualTo='ATL'>

<segment From.l='Detroit' From.2='DTW' To='ATL'
To.l='Atlanta' To.2='ATL' />

</route>

<routes>...</route>
</results>
The XML returns a lot of information, but I'm only showing a small segment here so
you can get an idea of the structure. The core of what you’re interested in are the
attributes of the <route> tags nested in <results>. Each <route> additionally has a
<segment> for each flight that makes up the route, but to keep this example lean,
we’ll focus on the <route> elements for now. But how do you get the data you need
from that XML?

Parsing XML with jQuery

XML parsing can seem like a scary task, but jQuery Core contains a number of meth-
ods that make traversing complex XML structures easy. Let’s look at how you can use
them to get the data you need.

We’ll start by moving your AJAX call into its own method and adding a success
callback:

function lookupFlights() {
return $.ajax({ ... });

}i

lookupFlights.then (function(data) {

I3

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting to a RESTful API 273

At this point, data is an XML string with the full results from the API call. To traverse
the XML, you select the string using jQuery and use the f£ind () method to select child
tags. Here’s the code you use to pull the information you need out of the XML:

Finds each <route>
and loops through

var flights = [] them
$(data).find("route") .each(function() { ? S%Iec!:sthe <route>
var route = $(this), with jQuery
flight = {
from: route.attr("ActualFrom.1l"),
to: route.attr("ActualTo.1"), Picks individual

), attributes out
of the XML tag

departureDate: route.attr("DepartureDate.3"
departureTime: route.attr("DepartureTime.l"),
arrivalDate: route.attr("ArrivalDate.3"),
arrivalTime: route.attr("ArrivalTime.1l"),
duration: route.attr("Duration"),

flights: route.attr("FlightCount"),
flightNumbers: route.attr("FlightNumbers")

Vi
flights.push(flight); Adds the object to
b the array of routes

You select the XML string with jQuery, call its find () method to select all <route>
tags, and use each () to loop over them @. Inside the loop, the context (this) is set to
the <route> as a string. You pull information from the <routes, convert it to a jQuery
object, and store it in the route variable @. Then, you use jQuery’s attr () method to
pluck individual attributes from the <route> tag and store all of them in the £light
object €. Finally, you add that object to an array of flights @. You do this so that, after
this code runs, instead of dealing with XML strings, you have an array of JavaScript
objects with the data you need. The following is a sample version of the £1ights array
with two routes:
[
{"from":"Detroit", "to":"Atlanta", "departureDate":"2/26",
"departureTime":"6:30 AM","arrivalDate":"2/26",
"arrivalTime":"8:45 AM", "duration":"2h15m","flights":"1",
"flightNumbers":"DL2283"},
{"from":"Detroit","to":"Atlanta","departureDate":"2/26",
"departureTime":"7:34 AM","arrivalDate":"2/26",
"arrivalTime":"9:30 AM", "duration":"1h56m","flights":"1",
"flightNumbers":"FL261"}
]
Now that you have the data you need, let’s review where you stand. You built a form,
connected it to your flightlookup API, and parsed the data you needed into a
JavaScript array. Now that you have the data ready to go, you need to build something

with it.

www.it-ebooks.info

http://www.it-ebooks.info/

274

114

CHAPTER 11 Building a flight-search application

Displaying the results on the screen

You can display flight data in countless ways, but as the data is tabular, it lends itself to
an HTML <table>, so we’ll use one for this example. You can also build <table> ele-
ments in JavaScript in countless ways, but the most maintenance-friendly option is to
use a JavaScript templating engine to format your data into HTML. The JavaScript tem-
plating spectrum has several libraries available, but you’ll use Underscore in this exam-
ple because it’s one of the more popular templating solutions; it’s also simple to use.

TIP Ifyouwanttolearn more about the basics of JavaScript templating, check out
http://coding.smashingmagazine.com/2012/12/05/ client-side-templating /. If
youwant to see what templating engines are out there and compare them, there’s
a good tool available at http://garann.github.io/template-chooser/.

The simplest way of using a JavaScript templating engine like Underscore is to place a
<script> tag in your HTML with the template you want to use. The following code
shows the <script> tag that you’ll include in your index.html file:

Tells the browser this is

HTML, not JavaScript Shows a nice message

<script type="text/html" id="flights-template"s> if no flights are found
<% if (flights.length ===) { %>

<p>There were no flights found that matched your selections.</p>
<% } else { %>
<table id="flights">
<caption>
Showing all trips from <%- flights[0].from %> to
<%- flights[0].to %> on <%- flights[0].departureDate %>.
 (<%- flights.length %> result

Outputs a heading
about the trips found

<%- flights.length === 1 ? "" : "g" %> found)
</caption>
<thead class="ui-widget-header">
<th>Departure</th>
<th>Arrival</th>
<th>Duration</th>
<th>Flights</th>
<th>Flight Numbers</th>
</theads>
<tbody>
<% _.each(flights, function(flight) { %>
<tr>
<td><%- flight.departureTime %></td>
<td><%- flight.arrivalTime %></td>
<td><%- flight.duration %></td>
<td><%- flight.flights %></td>
<td><%- flight.flightNumbers %></td>
</tr>
<% }) %>
</tbody>
</table>
<% } %>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying the results on the screen 275

If you haven’t used JavaScript templating before, the initial <script> tag @ may seem
alittle odd. To tell the browser that this is an HTML template, and not JavaScript code,
you have to set the <script> element’s type attribute to something other than text/
javascript (the default). By convention, you use text/html here.

The template itself is mostly straight HTML with a few special Underscore delimit-
ers mixed in to add logic and to output your flight data. The first delimiter you use is
<% ... %>, which is Underscore’s way of letting you execute JavaScript code in the tem-
plate. You use it to perform an if check that outputs a message if the £1ights array is
empty @.

The other delimiter you use is <%- ... $>, which is Underscore’s means of letting
you output JavaScript values. You use it to output a heading for your table of flights €,
and then to output the flight data itself (one flight per row).

Now that you have this template in place, you have to use it, and you add the fol-
lowing code to your app.js to do that.

NOTE Remember that the £1ights variable in your app.js is an array of flight
data that you aggregated in the previous section. Also, remember your
index.html has a <div id="flights-container"></div> element that’s refer-
enced in the following code.

Passes the flight var html = .template(J Retrieves the contents
data to the 1 $("#flights-template").html(), of your template
template { flights: flights });
$("#flights-container").html(html); 1 Fills your results
<div> with the
templated markup
Underscore’s _.template () function takes two arguments: a template string and data.
Your template string is the contents of the <script> tag you defined earlier; you get a
reference to the <script id="flights-template"> element and use the jQuery Core
html () method to grab its contents @. For the second data argument, you create an
object with a flights property that contains the array of flight information you built
earlier @.
Underscore then applies the data to the template, and you end up with an HTML
string with a <table> full of flights (or a <p> if the flights array is empty). You set the
HTML of your flights container <div> to this template markup @.

TIP If you don’t like the delimiters Underscore uses—for example, <% %>
and <%- %$>—you can customize them by setting .templateSettings. For
more information, see http://underscorejs.org/#template.

This displays flight results in a <table> on the screen, but this implementation isn’t
ideal. Storing HTML templates in a <script> tag is odd, and because this implementa-
tion relies on that <script> tag being in the HTML, you can’t share this template
across multiple pages or multiple applications. Let’s look at one technique to clean up
your templating logic.

www.it-ebooks.info

http://www.it-ebooks.info/

276

CHAPTER 11 Building a flight-search application

11.4.1 Storing and resolving templates with RequireJS

Up to this point you’ve used Require]S only to resolve JavaScript dependencies, and
that’s how it’s used the vast majority of the time. But RequireJS can load additional file
types—such as CSS files, JSON files, and more—through plugins. Perhaps the most
common plugin is the RequireS text plugin, which lets you load an arbitrary text
resource using the same require () and define () methods you know. The text plugin
is also commonly used to manage HTML template dependencies—which is exactly
what you need here.
You start by adding a few new files to your application:

— index.html

— 3s
| F—— text.js
|

L template
L flight-list.html

The text,js file is the text plugin, which you can download from https://github.com/
requirejs/text. The flight-list.html file is your flight HTML template minus the outer
<scripts> tag, as shown here:
<% if (flights.length ===) { %>

<p>There were no flights found that matched your selections.</p>
<% } else { %>

<table id="flights">

</ta£ié>
<% } %>
To use the text plugin, you only need to know one rule: when loading text dependen-
cies, you must prefix them with "text!". You’ll add the following to app.js to load the
text plugin and your template:

require([..., "text", "text!../template/flight-list.html"],
function(..., text, flightListTemplate) {

}

)i
The "text!" prefix is needed so Require]S knows that it doesn’t need to interpret the
file it loads as JavaScript code. Here, Require]S loads the file at . . /template/flight-
light.html and assigns its text to the flightListTemplate variable.

With this variable in place, you can switch your templating logic to use it rather
than relying on a <script> tag. Remember that you’re currently using the following
code:

var html = _.template(
$("#flights-template").html(),
{ flights: flights });
S("#flights-container") .html(html);

www.it-ebooks.info

https://github.com/requirejs/text
https://github.com/requirejs/text
http://www.it-ebooks.info/

11.4.2

Displaying the results on the screen 277

Let’s switch this up to use the flightListTemplate variable:

var html = .template(flightListTemplate, { flights: flights });
$("#flights-container").html(html);
This approach has a few advantages. For one, you can now remove the <script> tag
from your index.html as you no longer need it. (It still appears in the jsFiddle exam-
ple because of the inability to split your example into multiple files in that environ-
ment.) Secondly, you can now share this template across multiple pages and even
multiple applications. Other pages or applications just have to depend on the tem-
plate file. Finally, you can build your templates into your optimized build file without
any extra work. All this works when you run the Require]JS optimizer. No extra config-
uration is needed.

With that, you have a fully functional flight lookup with a solid implementation.
With the behavior in place, let’s look at some things you can do to clean up the user
experience.

Showing a processing indicator while data loads

Between contacting your RESTful API, parsing the XML response, and templating
the HTML results, the user could potentially have to wait a few seconds between
clicking the Lookup button and seeing the results on the screen. Currently, the user
receives no feedback that processing is occurring—which can make your applica-
tion seem unresponsive.

The current implementation is doing nothing to prevent the user from hitting the
Lookup button multiple times—which adds load to your API server and slows the
experience for all users. It also frustrates users who wonder why their button clicks
aren’t doing anything. Let’s see what you can do to fix this.

First, remember that your function to look up flights from your RESTful API was
named lookupFlights (). For readability, you break the two pieces of functionality
you added in the last two sections—parsing the flight data and templating it—into
their own functions as well. This is shown in the following code:

function parseFlights(data) {
var flights = []
$(data).find("route") .each(function/() {
var flight =
flights.push(flight);
I3
return flights;

}i

function templateFlights(flights) {
var html = .template(flightListTemplate, { flights: flights });
S("#flights-container") .html(html);

}i
With this in place, your code to perform the lookups looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

278

CHAPTER 11 Building a flight-search application

lookupFlights () .then (function(data) {

var flights = parseFlights(data);

templateFlights(flights);
)
This code reads a bit like an English sentence. Look up the flights, parse the flight
data, and template the flights onto the screen. But remember that you want to add
code that provides feedback while this processing is happening.

You do so by combining a jQuery UI dialog with a progressbar. You start by adding

the following to app.js:

require([..., "jquery-ui/dialog", "jquery-ui/progressbar"], Adds requires
function(dialog, progressbar) for dialog and
Creates a var processingDialog = $("<divs>").dialog({ progressbar
new autoOpen: false,
<div> modal: true,
and makes title: "Looking up flights..."
it a dialog I3
progressbar = $("<div>") .progressbar ({ value: false });
processingDialog.append(progressbar);
} Creates a new<div> and

Opens the
processing

)i makes it a progressbar

First, you add the dialog and progressbar widgets to the list of module dependencies
in app.js @. In the callback you create two new widgets. The first is a dialog widget you
create from a newly created <div> @. You set its autoOpen option to false as you
don’t want the dialog to show right away, and you set modal to true because you don’t
want the user to interact with the UI while this dialog is open.

Next, you create a progressbar widget from another newly created <div> and set its
value to false, so it renders as an indeterminate progressbar (that is, a progressbar
that has no definite value) @. Then, you append the progressbar to the dialog widget
you just created. You’ll see how this all comes together momentarily. Now if you return
to the code that looks up and templates the flights, you can switch it to do the following:

processingDialog.dialog("open") ;
lookupFlights () .then (function(data) {

dialog var flights = parseFlights(data); Closes the
templateFlights(flights); processing dialog

processingDialog.dialog("close");
1
With your widgets in place, all you need to do is open the dialog before your process-
ing begins @ and close it when processing completes @. Now, instead of wondering
what’s happening, the user instantly sees the display in figure 11.6 after clicking the
Lookup button.

Because the dialog is modal, and the user can’t interact with elements while a
modal dialog is open, this technique has the added advantage of preventing duplicate
form submissions. Not bad for a few extra lines of code.

This solves one of your application’s UX problems, but we can make more
improvements. If you load this on a mobile device, you’ll notice that the results

www.it-ebooks.info

http://www.it-ebooks.info/

11.5

Adding a responsive design

-Find a Flight-
From:
DTW
To:
ATL
Date: 1
03/02/2014 Looking up flights...
Max # of Results:
10
Hops:
Any Nonstop Only
Order By:
Arrival Time
_lookp

279

Figure 11.6 A processing indicator to show while you look up and process flight results

<table> doesn’t fit very well. Figure 11.7 shows how the
<table> looks on an iPhone running iOS7 by default.

Although the user can zoom out to see the data, this
display isn’t ideal for users on smaller screens. Let’s see
what you can do to make your application look good,
regardless of what device it’s viewed on.

Adding a responsive design

The release of the iPhone in 2007, and the explosion of
mobile device usage that followed, fundamentally
changed the way we develop for the web. No longer do we
have the convenience of developing desktop-only applica-
tions; instead we must consider a full spectrum of
devices—from a 320-pixel-wide iPhone screen to 2000+
pixel-wide high-resolution retina displays. Building appli-
cations for these screens can be overwhelming, but the
web community has responded with a series of techniques
to help, collectively known as responsive web design.

For your flightlookup, you’ll use one of the core tenets
of responsive web design, media queries, to optimize your

www.it-ebooks.info

Verizon ¥ 11 PM -

10.0.0.13

Showing all trips from
3/2. (10 resul

Departure Arrival Duratio|

5:30 AM 7:32 AM 2h(2m

6:30 AM 2:36 AM Zhi6m

T34 AM 930 AM Th56m

T34 AM 930 AM Th36m

5:00 AM 930 AM 4h3im

5:00 AM 9:30 AM 4h30m

T:30 AM 0:32 AM 2h02m

Figure 11.7 Your data goes
off the screen of an iPhone.

http://www.it-ebooks.info/

280

CHAPTER 11 Building a flight-search application

application for different screen sizes. Personally, I find it easiest to think of media que-
ries as a way of conditionally adding CSS rules based on the device’s features—most com-
monly its width. Consider the following CSS:

body {
color: black;
}

@emedia (max-width: 800px) {
body { color: blue; }
}

This CSS makes all text black in browsers that are > 800 pixels wide and blue in browsers
that are <= 800 pixels wide. I like to read the max-width: 800px portion of the media
query as, “Is the maximum width of the current browser window 800 pixels or less?” If
so, apply the nested CSS rules. These media queries are live, so if you resize your browser
window across the 800-pixel barrier, you can see the color: blue rule being applied and
unapplied. You can play with this at http://jsfiddle.net/tj_vantoll/LHts7/.

Although you can use properties other than width in a media query (height, device
orientation, resolution, and so on), this width check is all you need to make your
application responsive.

NOTE A comprehensive discussion of responsive web design is out of the
scope of this book. For a more thorough guide see The Responsive Web (Man-
ning, 2004) by Matthew Carver (http://www.manning.com/carver/).

Before we dig into how to make your app responsive, we have to discuss how your CSS
is currently structured. All the CSS for your example is stored in a single app.css file,
which starts by bringing in the CSS for jQuery UT:

@import "jquery-ui/all.css";

NOTE Notice that you bring in all of the jQuery UI CSS instead of managing
the individual files that you need. Because the jQuery UI CSS is substantially
smaller than its JS (~14 times smaller), and because you’re using more than
half of the jQuery UI CSS already, managing individual jQuery UI CSS files has
a minimal performance benefit. It also would make the file more difficult to
maintain, as every time you need to add or remove a widget to the project,
you’d have to add or remove its entry from your app’s CSS file.

After that, you configure your layout, which is controlled by the following code:

form {
float: left;
min-width: 300px;
width: 30%;

}

#flights-container {
float: left;
width: 70%;

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a responsive design 281

Because of these rules, the sibling <form> and <div id="flights-container"> ele-
ments appear next to each other, with the <form> taking up 30% of the width and the
<div> taking up the other 70%. To keep the <form> from getting too small on small
screens, you give itamin-width of 300px. Because both of these containers are floating,
when the <form> reaches its min-width, the <div> drops below <form>. But you're
doing nothing to optimize the user experience after the flight container drops.

To improve this, you define two breakpoints, or maximum widths, where you want
custom CSS to apply. For your purposes you use breakpoints of 800 and 500 pixels—
which correspond to the widths of an average tablet and phone in portrait mode,
respectively. Admittedly these numbers are a bit arbitrary, but it doesn’t matter. Pick
whatever values work best for your application—800 and 500 work well here as
they’re the points at which the current display isn’t ideal. Let’s add the following CSS
to your example:

@emedia (max-width: 800px) {

#flights-container, form { J Makes the form apd table
width: 100%; take up the full width
}

input, .ui-spinner ({
width: 200px;
}

fieldset > div { Shows the form elements
float: left; next to each other

margin-left: 0.5em;
height: 70px;
width: 210px;
}
}

@emedia (max-width: 500px) {

td, th {
padding: 0.8em 0.lem;
} .
#flights-container { Reduces the spacing
padding: 0; for small screens

}

}

If you’re on a desktop browser, or have one available, you can see the effect of these
breakpoints by starting with a large browser window and resizing to a small one. When
your browser reaches 800 pixels wide, the first set of rules takes effect. The first thing
you do is switch the application’s <form> and flight list to take up the full width of the
screen @. (Recall that they previously took up 30% and 70%, respectively.) This
switches these two containers from appearing side-by-side to displaying stacked on top
of each other.

Because the containers are stacked, you have a little extra room in the <form> that
you can use; you additionally float each <div> containing a form element so that they
display next to each other @. Figure 11.8 shows the updated tablet display of your
application.

www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 11 Building a flight-search application

This approach works well for tablet-sized screens, but if you keep resizing your
screen down, you see that the display breaks down on tiny phone screens. This is
where your second breakpoint comes in. For displays 500 pixels and under, you
reduce the padding in the flight container and in the flights table €.

The final display of your application on three screen sizes is shown in figure 11.8.

NOTE AsI'm nota designer, the display of the flights table on a mobile device
could be improved. Tables are a difficult UI element to make look good on
small screens. For a good roundup on ways to make tables work in a responsive
context, see http://css-tricks.com/responsive-data-table-roundup/.

iPhone (320-px-wide viewport)

evoo Verizon F 3 AAZEM Lo L (R
100013 100013
Find a Flight - 1 Showing all trips from Detroit to
From: Atlanta on 3/2. (10 results found)
oTW
Flight
. Departure Arrival Duration Flights Nu
ATL S30AM T:32AM him | DL341
Date: B30 AM 836 AM Zhdbm | DL2283
[Mar 2, 2014 n
T AM 30 AM Ihdam | FL261
Max # of Results:
- - T AM 930 AM IhS6m 1 WNS261
10
- SO0 AM %30 AM #h30m 2 US4710:469
Hops:
.ﬂﬂy’ NDI“Sl‘OP onh, SO0 AM 930 AM 4h30m 2 AASD2T 6%
Order By: T0AM 93EAM H02m | DLI2ST
ATV LN GIOAM I03SAMANOSm 2 US2015450
630 AM 10:38AM 4h08m 2 AAZ013450
B35 AM 10:41AM 2h06m 1 DLI93

Nexus 7 in portrait mode
(640-px-wide viewport)

« © % 000 Mjquenuin-action-demesie 71 4 f
Fimd a Flight
From: Yo
or ..
O Max # of Resule:
[0. .]
Hops: Guder By
showing all trips from Detroit to Atlanta on 3/2. (10
results found)

Departuwe Arivad Buatmn Flghta Flaght Humbess

S30AM raTAM IhEm ' DL3a

&30 AN B36AM PhdSm 1 DLz
T34 AM pI0AM Thiem ' FLam
T3 AM 230AM IhSsm [w281
0aAM 30 AN 2

ANSIRTIA

Typical laptop display (1280-px-wide viewport)

—Find a Flight
From:
DTW Departure
Ta: 330 AM
AT 630 AM
Date: T3 AM
03/02/2014
T34 AM
Max # of Results:
300 AM
10
500 AM
Hops:
Any Nonstop Only T:30 AM
Ovéer Dr: 6:30 AM
Arrival Time 630 AM

Arrival

732 AM

B:36 AM

%30 AM

9:30 AM

%30 AM

9:30 AM

932 AM

10:38AM

10:38AM

1041AM

Showing all trips from Detroit to Atlanta on 3/2. (10 results found)

Duration Flights Flight Numbers
2h02m 1 DL31
2h06m 1 DL2263
1h56m 1 FLI61
1h56m 1 WNS261
4h30m 2 US4TI0M69
4h30m 2 AASO2TH469
2h02m 1 DLI257
4h08m 2 US2015450
4h08m 2 AA2015M50
2h06m 1 DLIBY3

Figure 11.8 The display of your responsive design on three screen sizes: an iPhone 5 running iOS 7 (top
left), a Nexus 7 tablet (top right), and a MacBook Pro (bottom)

www.it-ebooks.info

http://www.it-ebooks.info/

11.6

Preparing the application for production 283

The key takeaway of the responsive approach is the ability to have CSS rules conditionally
apply based on the browser and device capabilities. Here you use the browser’s width to
rework your application to optimize the experience for users on different devices.

With the UI finalized, your application is now complete. The last thing you need to
do is apply the lessons you learned in the last chapter and optimize your application’s
assets for production.

Preparing the application for production

In chapter 10, we discussed in detail the importance of optimizing front-end assets,
but it’s worth repeating. We mentioned that Amazon.com famously found that a one-
second delay of load times resulted in a loss of $1.5 billion a year. And recall that the
single most important thing you can do to improve the load time of your application
is to reduce the number of HTTP requests that it performs.

Because you wrote your JavaScript using AMD, there’s not much that you have to
do here. You start by configuring a js/build.js file that’s nearly identical to the one you
built in the previous chapter:

S

appDir: "../",
baseUrl: "js",
dir: "../built",
optimizeCss: "standard",
modules: [

{ name: "app" }

]
b
Like the one in chapter 10, this copies all your assets to a built directory, and then
minifies and concatenates each of them. Refer to chapter 10 or http://requirejs.org/
docs/optimization.html#options for details on what each individual option does.
To run the build, run the following from the command line in the root of the
application:

> r.js -o js/build.js

The build creates a single concatenated CSS and JavaScript file for you to use in your
application. You can go back to your index.html and switch the paths you use to
import these files. Currently you're using the following two imports:

<link href="css/app.css" rel="stylesheet">
<script src="js/require.js" data-main="js/app"></script>

For production you can switch them to point at the built directories instead:

<link href="built/css/app.css" rel="stylesheet">
<script src="built/js/require.js" data-main="built/js/app"></script>

After the build, your app.js and app.css files are 78 K and 5.6 K gzipped, respectively—
not bad considering you’re using jQuery, several jQuery UI widgets, and Underscore
for templating. These numbers don’t include require.js, as it’s not built into app.js.

www.it-ebooks.info

http://requirejs.org/docs/optimization.html#options
http://requirejs.org/docs/optimization.html#options
http://www.it-ebooks.info/

284

11.7

CHAPTER 11 Building a flight-search application

require.js adds one additional (6.3 K gzipped) HTTP request, which is perfectly
acceptable for the vast majority of applications; however, suppose your flight tracker is
intended for mobile users, and a fast load time is paramount to the success of the
application. With this prerequisite, you can take one extra step in your build and
switch require.js out for a more lightweight AMD loader: almond.

Getting the optimal performance with almond

almond describes itself as a replacement AMD loader for RequireJS. It’s lightweight,
but because of that it doesn’t do everything that require.js does. In fact, it’s intended
for use only after an optimized build is performed. But for production code, almond
gives you the basic features of AMD loader with an extremely small footprint. Person-
ally, I think it’s easier to see how almond works by adding it to your application.

WARNING If you’re using certain advanced behaviors of Require]JS that aren’t
discussed in this book, you may not be able to use almond. For a full list of
restrictions, see https://github.com/jrburke/almond#restrictions.

You’ll start by adding almond.js from https://github.com/jrburke/almond to your js
directory:

F—— index.html
— 5e
F—— almond.js

Then, you make one small alteration to your build.js configuration:

{
appDir: "../",
baseUrl: "js",
dir: "../built",
optimizeCss: "standard",
modules: [

{
name: "app", q}
include: ["almond"]

h

Each module in RequirefS can specify an include array, containing any modules that

should be prepended to the output file. Because you include almond as an include (1}

it will be the first module present in the concatenated and minified built/js/app.js file.
To update your built files, you need to run r.js again from the root of this application:

> r.js -o js/build.js
Let’s go back to your production <script> tag included from the last section:

<script src="built/js/require.js" data-main="built/js/app"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the optimal performance with almond 285

Because an AMD loader (almond) is now is built in to your output file, you can switch
this <script> tag to point directly at your app.js file:

<script src="built/js/app.js"></script>

That’s all there is to using almond. With this approach you’ve eliminated a few bytes
that the user has to download (remember almond.js is smaller than require.js), but
more importantly, you’ve eliminated an HTTP request from your application. Instead
of the browser downloading require.js, and then downloading app.js asynchronously,
it can download app.js directly—and you still have all the advantages of using AMD to
manage your dependencies.

To summarize, with this approach you can use this <script> tag during development

<script src="js/require.js" data-main="js/app"></scripts>
and this one in production:
<script src="built/js/app.js"></script>

Before leaving this topic, we have one more question to consider: how can you auto-
mate the switching between the two <script> tags? No programmer wants to manu-
ally alter them every time you need to develop or deploy to production.

You have a few different options for handling this situation, but my personal favor-
ite is to use your server-side environment to detect whether you’re in development or
production. Consider the following PHP code:

<? if (strpos($_SERVER["HTTP HOST"], "localhost")) { 2>
<script src="js/require.js" data-main="js/app"></scripts>
<? } ?>
<script src="built/js/app.js"></scripts>
<? } ?>

This code checks whether the server is running on the localhost domain. If it is, it out-
puts the development <script> tag; otherwise, it uses the production version. If
you’re developing in a Java/JSP environment, you could write the same check this way:

<% if (request.getServerName () .equals("localhost")) { %>
<script src="js/require.js" data-main="js/app"></scripts>
<% } else { %>
<script src="built/js/app.js"></scripts>

<% } %>

If you’re in an environment where you’re running on the client side only, you can use
the following code:

<scripts>
if (window.location.hostname === "localhost") ({
document .write('<script src="js/require.js" ' +
'data-main="js/app"><\/script>');
} else {
document .write('<script src="built/js/app.js"><\/script>');
}
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

286

11.8

CHAPTER 11 Building a flight-search application

This code has the same flow as the previous examples, but there’s one quirk in the way
you include the <script> tags. Because you're already in a <scripts> tag, you can’t use
the character sequence "</script>", as it would prematurely close the outer <script>
block; you escape the / character and write <\/script> instead of </scripts.

As there are numerous serverside environments, I'm not going to include an
exhaustive list of how to check for a domain in each of them, but the idea is the same:
perform a check that you know will be true only in development and use it to output
the appropriate <script> in each environment. The same technique can be used to
include the appropriate CSS file as well:

<scripts>
if (window.location.hostname === "localhost") {
document .write('<link href="css/app.css" rel="stylesheet">');
} else {
document .write('<link href="built/css/app.css" rel="stylesheet">');
}
</script>

With all these in place let’s summarize the performance of your application. The
final version of the app loads with three HTTP requests: index.html (1 K gzipped),
app.js (81 K gzipped), and app.css (5.6 K gzipped). These three resources amount to
a mere 87.6 K being sent across the network to load the page—which should load
quickly even on the worst of mobile networks. This page uses a few additional
resources—specifically, the jQuery UI theme images and your airport JSON data—but
those files are loaded asynchronously and don’t delay the application’s initial load.

Admittedly, getting all these optimizations into an existing project can be difficult
if not impossible, but every little bit helps. Remember that the single most important
thing you can do for mobile performance is reduce the number of HTTP requests
your application performs; therefore, that’s the best place to start.

Summary

Using jQuery, jQuery Ul, and a few utility libraries, you built an application that con-
tacted a RESTful API to present flight choices to an end user. Along the way, you put
some of the widgets you’ve learned about throughout the book to use—and learned
new techniques like polyfilling, templating, and building a responsive UL You used
Require]S to optimize your front-end assets for production, making your application
ideal for use on mobile devices.

Throughout the book, you may have noticed how every complex example you
built, including this flight search, ended up involving very little of jQuery Ul itself, and
lots of other code. This is the goal of jQuery UI to provide well-encapsulated widgets
and utilities that just work, so you can focus on your applications. In the context of
this chapter, jQuery UI let you focus on making a compelling flight search, without
worrying about how to build UI components like autocompletes and dialogs.

Although you’ve now seen the core of what jQuery UI has to offer, and even built a
small production application with it, we have a few topics left to cover. In the next
chapter, we’ll look at advanced stuff that you can do with jQuery UL

www.it-ebooks.info

http://www.it-ebooks.info/

Under the hood of jQuery Ul

This chapter covers

= Advanced positioning of elements

= Tips and tricks for dealing with widget instances
= Working with widget properties

= Building declarative widgets

12.1

Although we’ve covered the core of jQuery UI, we have yet to dig into a series of
utilities, methods, and properties intended for more advanced usage of the library.
As you explore these utilities, you’ll also get a look at how jQuery UI works under
the hood. You’ll learn things like how jQuery UI manages instances, how it struc-
tures prototype chains, and how some of jQuery Mobile works.

Let’s start by looking at how the jQuery UI widgets handle positioning.

Positioning elements with the position utility

Positioning an element relative to another element on the web is surprisingly hard.
Besides the brute-force mathematical computations—comparing heights, widths,
and offsets—you also have to worry about CSS positioning mechanisms (static, rela-
tive, absolute, and fixed), not to mention accounting for the window’s scroll offset,
or collision detection if the element doesn’t fit.

287

www.it-ebooks.info

http://www.it-ebooks.info/

288

CHAPTER 12 Under the hood of jQuery Ul

This is where the jQuery UI position utility comes in. The position utility provides
an elegant API that makes positioning elements a trivial task. It’s what the jQuery Ul
widgets use to perform all their positioning magic, including centering dialogs, show-
ing tooltips, and placing nested menus in the right spots.

TIP The autocomplete dialog, menu, and tooltip widgets have a position
option to configure how the widgets are positioned. We’ll look at how those
work momentarily.

We’ll look at how to do cool things with the position utility, but let’s start with an
example to get the syntax down—because it can be tricky at first. The following code
makes two boxes—one red and one blue:

<style>
div { height: 100px; width: 100px; }
#red { background: red; }
#blue { background: blue; }

</style>

<div id="red"></div>

<div id="blue"></div>

Suppose you want to position the red box on the right-hand side of the blue box. The
following code does that

$("#red") .position ({
my: "left",
at: "right",
of: "#blue"

)

What’s cool about this API is that it reads like an English sentence. Position my (the
red box) left side at the right side of the element with an id of "blue". See how easy
that was? There was no need to calculate the blue box’s offset or either box’s dimen-
sions; it just worked. And we’re just getting started with what the position utility can
do. Using the same red-and-blue-box example, figure 12.1 shows different position-
ing options.

NOTE I highly recommend playing with this example to get a feel for how the
options for the position utility works. Although I explain each option here,
there’s no substitute for experimentation with live code. You can play at
http://jsfiddle.net/tj_vantoll/LgGQH/.

We’ll start with the red box at the bottom of the blue box. This box shows that the my
and at options of the position utility accept two positions, which—to be consistent
with CSS conventions—are listed in the order of horizontal, vertical. If you were to
read this code, it would read, “Position my (the red box) horizontal left, vertical top, at
the horizontal right, vertical bottom of the blue box.”

www.it-ebooks.info

http://www.it-ebooks.info/

Positioning elements with the position utility 289

$("#red").position ({
my: "left bottom",
$("#red") .position ({ at: "right+10 top-10",
my : “right—SO%“, of: "#blue"
at: "left", 1
of: "#blue"
I
Red
Red Blue /_\
All red boxes are
Red positioned relative to
this blue box.
$("#red") .position ({
my: "left top",
at: "right bottom",
of: "#blue" Figure 12.1 Options for positioning
1) i elements with the position-utility

If you specify only one position, that position is normalized using the same parsing
rules CSS uses (for properties such as background-position). For instance, "left"
equates to "left center", or the horizontal left, vertical center of an element, and
"top" equates to "center top", or the horizontal center, vertical top of an element.

To show this in action, let’s move on to the red box on the left-hand side of the
blue box—the one that uses the following positioning:

$("#red").position({
my: "right-50%",
at: "left",
of: "#blue"

I3

Here, because only one horizontal direction is specified, the my and at options are each
assumed to be vertically centered. So this code reads, “Position my (the red box) hori-
zontal right at the horizontal left of the blue box.” But you’ll notice there’s one addi-
tional twist here: the use of -50%. This is an offset, which each direction of the my and
at options optionally accepts as percentages or pixels. (We’ll get to pixels momen-
tarily.) The offset is relative to the element being positioned; 50% here refers to half the
width of the red box, or 50 pixels. Offsets can be positive or negative. Your use of
"right-50%" means that the right position of the red box should be adjusted by -50%;
that is, the red box should be moved 50 pixels to the left.

Offsets can also be in pixels, which is what you use in your final box (the one on
the top).

www.it-ebooks.info

http://www.it-ebooks.info/

290

12.1.1

CHAPTER 12 Under the hood of jQuery Ul

$("#red") .position({
my: "left bottom",
at: "right+10 top-10",
of: "#blue"

) ;

This example reads, “Position my (the red box) horizontal left, vertical bottom 10 pix-
els beyond the horizontal right, and 10 pixels above the vertical top of the blue box.”
The position utility assumes that numbers without percentages are pixel values and
uses them as an offset.

This gives you a sense of the things you can do with the position utility. If you're
still having trouble understanding the syntax, it’s worth taking a few minutes to play in
jsFiddle and understand how the keywords work.

Although moving red boxes around the screen makes for a nice learning exercise,
chances are you aren’t building a production application full of blue and red boxes to
move around the screen. (But if you are, that’s awesome!) Let’s look at useful applica-
tions of the position utility.

Building a Ul walkthrough with the position utility and dialog widget

If you create an account on a web service, there’s a decent chance you’ll be given a
tutorial or walkthrough of the UI These walkthroughs are designed to introduce parts
of the interface and what they do. Figure 12.2 shows part of the walkthrough you go
through after creating a Gmail account.

With the position utility and dialog widget, building such a walkthrough is rela-
tively easy. For simplicity, let’s say your application includes the following three UI ele-
ments that you want to introduce to the user:
<header>My awesome header</headers>

<aside>My awesome sidebar</aside>
<footer>My awesome footer</footers

You’ll use the following code to accomplish this.

Google KN

Gmail - = Click here v C More ~
MPOSE Manage your contacts and to-do list X
= % Promotions
Inbox (3)
Swap between your Mail, Contacts, rith Gmail's inbox - Hi John Gmail's inbox put
Starred and Tasks by clicking the Gmail drop-
down menu.
Important ost out of Gmail - Hi John Tips to get the mo:
Sent Mail
« Back Next » rever you are - Hi John Get the official Gmail
Drafts
. Circles

Figure 12.2 A Ul walkthrough that Gmail gives new users

www.it-ebooks.info

http://www.it-ebooks.info/

291

Positioning elements with the position utility

NOTE The following example is available at http://jstfiddle.net/tj_vantoll/
59eZq/. Unless you're on a very large screen, it’s easier to see this example in
action at http://jsfiddle.net/tj_vantoll/59eZq/show (which runs the example
outside of the jsFiddle development interface).

<style>
Hides all #dialog p { display: none; }
messages #dialog[data-step="1"] #step-1 { display: block; }
by default #dialog[data-step="2"] #step-2 { display: block;]

Only shows the
message for the
current step

#dialog[data-step="3"] #step-3 { display: block;
</style>
<div id="dialog" data-step="1" title="Walkthrough">

—

<p id="step-1">1)
<p 1d="step-2">2)
<p 1d="step-3">3)

This is the header!</p>
This is the sidebar!</p>
This is the footer!</p>

</div>
<scripts>
var positions = [An array of
{ coordinates
my: "center top", for the dialog
at: "center bottom",
of: "header"
b
{
my: "left center",
at: "right center",
of: "aside"
b
{
my: "center bottom",
at: "center top",
of: "footer"
}
1;
$("#dialog") .dialog(
modal: true, { Gets the
buttons: { current step
"Next": function()
var step = parseInt($(this).attr("data-step"), 10);
Closes the : e
> if (step ===) |
dialog t $(this) .dialog("close");
} else { Alters the
S th(iis)1 (position of
.dialog("option", "position", the dialo:
Inc:ﬁments ﬁ positions[step]) &
e step .attr("data-step", ++step)
}
}
b
position: positions[0]
I3
</scripts>

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/59eZq/
http://jsfiddle.net/tj_vantoll/59eZq/
http://www.it-ebooks.info/

292

CHAPTER 12 Under the hood of jQuery Ul

The core of this example is a single dialog with three instructional <p> tags in it, one
for each step you want to walk the user through. With a little CSS, you configure the
dialog to only show the paragraph that matches the value of the dialog’s data-step
attribute @. Because the dialog starts with a data-step of "1", the #dialog[data-
step="1"] #step-1 { display: block; } rule applies and shows the first message.

The rest of the code is responsible for managing the dialog’s position option and
data-step attribute. You start by defining a positions array containing the three
locations you want the dialog to display: under the header, to the left of the aside, and
above the footer @. When you initialize the dialog widget, you set its position option
toposition[0] so the dialog initially displays under the header. To let the user move
through the walkthrough, you add a Next button with the buttons option. When it’s
clicked, you retrieve the current value of the data-step attribute ©. If the attribute
is 3, you're at the last step so you close the dialog @. If not, you move the dialog to the
next position in the array @ and then increment the dialog’s data-step attribute @.
(Remember that because of your CSS, a new data-step value will show a new message
that corresponds to the new position.)

The result of this code is a dialog that moves around the screen as the user pro-
gresses through the walkthrough. This is shown in figure 12.3.

NOTE Please excuse the horrible “design” of the header, sidebar, and footer
elements. The point here is you can easily position the dialog next to any ele-
ment in your interface.

Although you can do plenty of things with positioning dialogs, the widget where cus-
tom positioning is most often used is the tooltip widget. We’ll look at things you can
do with tooltips, but first we have to discuss one last of piece of functionality the posi-
tion utility provides: collision detection.

fy awesome header

Walkthrough

1) This is the header!

Walkthrough % e

2) This is the sidebar!

o Walkthrough x

3) This is the footer!

Figure 12.3 A Ul walkthrough as a series of dialogs that explains parts of the interface to the user

www.it-ebooks.info

http://www.it-ebooks.info/

Positioning elements with the position utility 293

12.1.2 Handling collisions elegantly

A common problem when positioning elements—and especially tooltip elements—is
dealing with collisions. Let’s say you want to globally show tooltips below elements,
and you implement that with the following code:
$(document) .tooltip ({
position: {
my: "center top",
at: "center bottom+10"

}

N
This shows a tooltip on all elements with a title attribute that appears 10 pixels
below the element. This works great, except for one problem: what happens if the ele-
ment is already at the bottom of the screen? With the preceding code you may expect
the user to never see the tooltip, but instead, the tooltip displays 10 pixels above of the
element. Why?

Built in to the position utility is the concept of collision detection. The utility auto-
matically detects that the element it’s positioning—in this case a tooltip—is outside
the bounds of the window and, if so, attempts to reposition it in the window.

TIP The position utility does collision detection against the window by
default, but that can be configured using the within option. This is useful
when you need to position elements within a scrollable container, and want
to make sure they fit.

The position utility has two means of repositioning an element: flipping and fitting.
Flipping is the default means of handling collisions, and what it does is
straightforward: if the utility detects that the element doesn’t fit in the window, it
flips it to the opposite side of the element it’s being positioned against. That’s
exactly what happened in the earlier example. Because the tooltip wouldn’t fit below
the elements on the bottom of the screen, the utility flipped it from the bottom to
the top.

If flipping doesn’t work, the other mechanism available is fitting, which moves the
element in an attempt to get it on the screen. If you tried to display a tooltip and it was
off the screen by a few pixels, fitting would move it back in the screen.

All this is configurable using the position utility’s collision option, which has
four values: "f1lip", "fit", "flipfit", and "none". Understanding these values is one
of those situations where a picture is essential. Figure 12.4 shows a few <input> ele-
ments that have tooltips. The first input shows the default tooltip positioning, whereas
the other four show the effect of applying the various collision values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 Under the hood of jQuery Ul

I am a long, long, long tooltip. The default tooltip position.
No collision handling

is necessary.

collision: flip

I am a long, long, long tooltip. <~———+—— Flip collision handling moves
this tooltip from the left side

of <input> to the right.

collision: fit

Iama |ong! |Qng' |ong too]tip. <—— Fit collision handling moves this
tooltip a few pixels to keep it

within the screen.

collision: flipfit

Iam a |0ngr |0ngr |ong]:00]1:”:,r <~———+—— Identical position of flip collision
handling as flipfit attempts flip

positioning first.

collision: none

Since there’s no collision
handling, this tooltip is left in its
default position, even though that
This is a scroll bar, or the position is off the screen.
edge of the browser window.

I am a long, long,

Figure 12.4 Values for the position utility’s collision option and their effects

The top <input> here is the control; it shows where a tooltip appears when it’s not
near the screen’s boundaries (left-aligned with the <input>). The next four apply the
four available collision values:

= flip—This collision type flips the element to the opposite side of the element
it’s being positioned against. The name can be a bit confusing, as the tooltip
isn’t literally flipping vertically or horizontally on the x- or y-axis; instead, it’s
moving from one side of the element it’s being positioned against to the other.
In figure 12.4, because the second <input> element’s tooltip does fit on the
left-hand side of the <input>, it’s moved to align on the right-hand side.

= fit—Rather than flipping, the fit collision type shifts the element in an attempt
to keep it on the screen. Notice that the third <input> element’s tooltip is
shifted a few pixels from its default horizontal position (aligned with the left-
hand side of the <input>).

= flipfit—This type is a combination of the previous two. First, the flip logic is
applied, then—if the element still isn’t within the screen—the fit logic is
applied to show as much of the element as possible. In this example, because

www.it-ebooks.info

http://www.it-ebooks.info/

12.1.3

Uses flip
collision
detection

Positioning elements with the position utility 295

the flip logic is sufficient to place the tooltip on the screen, its behavior is iden-
tical to the flip <inputs>.

= none—The final collision type tells the position utility to ignore collision detec-
tion altogether. The last <input> element’s tooltip doesn’t fit, but because its
collision is set to "none", it remains off the screen.

TIP You can specify different means of handling horizontal and vertical colli-
sions by passing a pair of strings for the collision option. A collision of
"flip none" tells the position utility to use flip collision handling for hori-
zontal collisions, and no collision handling for vertical collisions.

Although these values give you flexibility in how you handle collisions, sometimes this
isn’t enough. Sometimes you need to know whether the elementfits so you can take some
custom action. To see what I mean, let’s return to a tooltip example from chapter 7.

Controlling the collision detection

In chapter 7, you saw how to build tooltips with arrows that pointed at their corre-
sponding element (which was an <input>). Also remember that, to ensure that the
arrows always displayed on the correct side of the tooltip, you had to turn the position
utility’s collision detection off.

Although turning collision detection off does keep the arrow pointing at the ele-
ment appropriately, it also means that the tooltip can potentially display outside of the
screen. You know now that you can use the position utility’s flip collision mechanism
to move the arrow tooltip above or below the <input>. But that leaves a problem. You
used CSS to draw the arrow, and you need to alter the CSS based on whether the tool-
tip is above or below the <input>. To make this possible, the position utility exposes
this information to the using property. Before we show this in action, first remember
that your example from chapter 7 used the following HTML:
<label for="amount"sAmount:</label>
<input id="amount" title="Please use xx.xx format.">
You’ll take this HTML and build an arrow tooltip that can display on either side of its
<inputs>.

NOTE The full source of this example is available at http://jsfiddle.net/
tj_vantoll/587n9/. Also, the result of this code is shown in figure 12.5. If
you’re having trouble understanding what this code is trying to accomplish, it
may help to look at the picture first.

$("#amount") .tooltip ({ Configuration
position: { for the tooltip’s
1 my: "bottom", initial position
at: "top-10",
collision: "flip", Adds a “top” or
using: function(position, feedback) ({ “hottom” class name
$(this).addClass(feedback.vertical)

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/59eZq/
http://jsfiddle.net/tj_vantoll/59eZq/
http://www.it-ebooks.info/

296

CHAPTER 12 Under the hood of jQuery Ul

.css(position); Performs the
} positioning
13K

You start by defaulting the tooltip to display above the <input> @. You subtract 10 pixels
from the top of the tooltip (which moves the tooltip up 10 pixels) to make room for the
pointer. Next, yousetyour collisionto "f1lip" so the position utility automatically flips

}

the tooltip below the <input> when it doesn’t fit above @.

Next, you specify a using option. With a using option, the position utility contin-
ues to do its collision detection work, but it doesn’t alter the position of the element;
instead, you're responsible for that, and the using function is passed the information
that you need to do it.

Specifically, the using function is passed two objects, named position and feed-
back by convention. The position parameter has the coordinates the position utility
has calculated for the element as two properties: top and left. This format—an
object with top and left properties—is designed to be passed directly into the jQuery
Core css () method to do the positioning—which is exactly what you do here @.

The advantage of the using function is you can perform logic before the position-
ing takes place. And this is what the feedback argument is for. It’s an object that con-
tains a variety of data about the element being positioned and the element it’s being
positioned against. You can refer to http://api.jqueryui.com/position/ for a full list
of the feedback argument’s properties, but here you have a specific need: you need to
know if the tooltip should display above or below the bottom of the <input>. This
information is available in the feedback object’s vertical property—which is set to
"top" or "bottom" accordingly. You use this property to apply an appropriate CSS class
name to the tooltip @.

Now that you have a "top" or "bottom" class name on the tooltip, you can add CSS
to move the tooltip’s pointer to the appropriate side of the <input>:

.bottom .ui-tooltip-content::before {
bottom: -10px;

}

.bottom .ui-tooltip-content::after {
bottom: -7px;

.top .ui-tooltip-content::before {
top: -10px;
}

.top .ui-tooltip-content::after {
top: -7px;

And with this you have a tooltip that not only points at an <input>, but also automati-
cally adjusts to keep itself within the screen. This functionality is shown in figure 12.5.

For most of your positioning needs, the my and at properties are sufficient. When
you need to keep elements within the screen at all times, you can configure the colli-
sion option to suit your needs. And in the case where you need fine-grained control

www.it-ebooks.info

http://www.it-ebooks.info/

12.2

12.2.1

Using the utility functionality in jQuery UI Core 297

® O O / @ jquery Ul tooltip - jsFiddl: x 8 06 /& iguery Ul tooltip - jsFiddle x
«- (& jsfiddle.net/tj_vantoll/587n9/show/ €« c jsfiddle.net/tj_vantoll/587n9/show/

Amount:
Please use xx.xx

format.
Please use xx.xx

Amount: format.

Figure 12.5 The tooltip displays above the <input> by default (left picture), but if you scroll to move
the <input> to the top of the window, the tooltip no longer fits within the viewport, so the tooltip flips
to the bottom (right picture).

over how the collision detection works, the using option gives you advanced control.
The great thing about the position utility is that when you need these advanced config-
uration options, you're still spared the details of the mathematical computations and
collision detection algorithms.

Let’s move from the position utility to additional jQuery UI internals that can help
you improve your own code, starting with a few utilities in jQuery UI Core.

Using the utility functionality in jQuery Ul Core

When we looked at managing dependencies in chapter 10, we saw that almost every
single file in jQuery UI depends on core.js, or jQuery UI Core (notable exceptions are
the widget factory and the position utility, which are intended for easy use without any
jQuery UI dependencies). jQuery UI Core is a collection of utilities that are used by
the library internally, but because they're potentially useful outside the internal
jQuery UL, the utilities are exposed and documented on the jQuery UI API site.

Let’s look at some of the functionality that’s available.

Generating unique ids

Sometimes when developing widgets you need elements to have an id attribute. Sup-
pose you need to generate an <input> and a <label>, and you need their id and for
attributes to match.

But generating your own ids is no easy task. By definition, id attributes must be
unique, so you have to make sure you're not conflicting with any other ids already
present. As a concrete example, recall the tooltips widgets you used to show validation
messages in chapter 11. Following is a reduced version of that code:
<input name="to" requireds>
<scripts>

$(“input“)
.attr("title", "You must provide an airport code.")
.tooltip () ;
</scripts>
You used this approach because you wanted to make your form validation accessible,
and the tooltip widget does this by associating the tooltip element with the <input>
using an aria-describedby attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

298

CHAPTER 12 Under the hood of jQuery Ul

NOTE Despite popular belief, screen readers don’t read the HTML title
attribute. For details, see http://blog.silktide.com/2013/01/i-thought-title-
text-improved-accessibility-i-was-wrong/ .

When the tooltip widget is active, the rendered markup is something like the following:

<input name="to" required aria-describedby="ui-id-1">
<div role="tooltip" class="ui-tooltip ..." id="ui-id-1">

<div class="ui-tooltip-content">

You must provide an airport code.

</div>
</div>
The association between the <input> element’s aria-describedby attribute and the
tooltip element’s id tells the screen reader to read the contents of the element with an
id of "ui-id-1" (when the <input> receives focus).

The thing to note here is the "ui-id-1" value. It wasn’t present in your initial
markup, so the tooltip widget had to generate that value (and clean it up when the
tooltip is no longer used). Internally, the tooltip widget uses jQuery UI Core’s
uniqueId() and removeUniqueId() methods to make this happen. Here’s the code
the widget uses to create the tooltip element:
var tooltip = $("<div>")

.attr("role", "tooltip")

.addClass("ui-tooltip ui-widget ui-corner-all ui-widget-content " +

(this.options.tooltipClass || ""))

.uniqueId() ;
The call to uniqueId() at the end is what adds the "ui-id-1" id attribute. jQuery Ul
Core adds the uniqueId() method to $.£fn so it can be used on any jQuery object. For
example, $("<div>") .uniqueId() creates a <div> that has a unique id attribute.
The uniqueId() method is also smart enough to not add an id attribute if the ele-
ment already has one. In the following code the uniqueId() call does nothing:

$("<div id='foo'>") .uniqueId() ;

The counterpart to uniqueId() is the removeUniqueId () method, which removes the
id that uniqueId() added. The tooltip widget doesn’t need removeUniqueId()—as
the tooltip element is removed from the DOM when a tooltip is destroyed—but some
jQuery UI widgets do.

The accordion widget, for example, adds an aria-controls attribute that associ-
ates its headers with its content panels. And like the aria-describedby attribute, the
aria-controls association requires the headers and content panels to have unique id
attributes. The accordion widget’s _destroy () method includes the following code to
remove the attributes when the accordion is destroyed (where this.headers is a ref-
erence to a jQuery object containing all the accordion’s headers):

// clean up headers
this.headers.removeUniqueId() ;

// clean up content panels
this.headers.next () .removeUniquelId() ;

www.it-ebooks.info

http://blog.silktide.com/2013/01/i-thought-title-text-improved-accessibility-i-was-wrong/
http://blog.silktide.com/2013/01/i-thought-title-text-improved-accessibility-i-was-wrong/
http://www.it-ebooks.info/

12.2.2

Using the utility functionality in jQuery UI Core 299

The removeUniquelId() is smart enough to remove only the id attributes that the
uniqueId() method generated; the following leaves the "foo" id attribute in place:

S("<div id='foo's>") .removeUniqueId() ;

In general, any time you have a need to generate an id attribute to associate elements,
the uniqueId() and removeUniqueId () methods provide an elegant way to do so.

Using key code constants

jQuery UI Core provides a series of key code constants in the $.ui.keyCode object. If
you want to detect Enter key presses in your code—and don’t want to hardcode that
the Enter key is equivalent to key code 13—you can use the following code:

$(document) .on("keydown", function(event) {
if (event.keyCode === $.ui.keyCode.ENTER) {
alert ("Enter was pressed!");
1

1
You can view a full list of the key codes jQuery UI provides at http://api.jqueryui.com/
jQuery.ui.keyCode/.

The last piece of jQuery UI Core we need to discuss is the handy :data pseudo-
selector, but to show what it’s best used for, we’ll include it in the broader context of
dealing with widget instances.

What else is in jQuery Ul Core?

If you dig into core.js, you’'ll see that there’s far more to jQuery Ul Core than ID and
key code handling. So what’s all that other stuff?

About half of the code in jQuery Ul Core is code that manipulates logic in jQuery
Core—either to add functionality or work around bugs in older versions. Remember
that jQuery Ul supports multiple versions of jQuery Core, so a user of jQuery Ul 1.11
could be using any version of jQuery Core >= 1.6.

Before jQuery 1.8 you couldn’'t use the jQuery Core outerHeight () and outer-
width () functions as setters. jQuery Ul needs this functionality, so it adds the func-
tionality for users using jQuery Core < 1.8. Interestingly enough, jQuery Ul Core uses
the same duck-punching technique we discussed in chapter 9 to change the jQuery
Core functionality.

In general, the hope is that in the near future jQuery Ul Core will no longer exist as
these workarounds become unnecessary. (The outerHeight () and outerWidth ()
workarounds will be removed when jQuery Ul no longer supports jQuery Core versions
<1.8.) The utility functions—uniqueId (), removeUniqueId (), keyCode, and so on—
in jQuery Ul Core will be moved into their own files to make the library more modular.

As a final note, jQuery Ul Core has some deprecated functions that | won’t be dis-
cussing to discourage their use in new code. If you're curious, you can learn about
these deprecated utilities at the jQuery Ul Core documentation at http://api.jqueryui
.com/category/ui-core/ .

www.it-ebooks.info

http://api.jqueryui.com/jQuery.ui.keyCode/
http://api.jqueryui.com/jQuery.ui.keyCode/
http://api.jqueryui.com/category/ui-core/
http://api.jqueryui.com/category/ui-core/
http://www.it-ebooks.info/

300

12.3

CHAPTER 12 Under the hood of jQuery Ul

Accessing and managing widget instances

We’ve talked about widget instances on and off throughout the book, but now let’s
take an in-depth look at what they are and some of the things you can do with them.
We’ll start with a review before we get into the trickier stuff.

Every time you instantiate a widget on a DOM element, the widget factory creates
an object—the instance—and associates it with the element using $.data (). The key
used to store the instance on the element is the widget’s full name—that is, the wid-
get’s namespace, plus a dash, plus the widget’s name. The dialog widget is stored
under a key of "ui-dialog" because its namespace is "ui" and its name is "dialog".

You can retrieve the instance a few ways. The first is to use $.data (), as shown in
the following code, which assigns the instance of a newly created dialog to a variable
(named instance):
var myDialog = $("<divs>").dialog(),

instance = myDialog.data("ui-dialog");
As of jQuery UI 1.11, you can also retrieve the instance using the widget’s instance ()
method. The following code assigns a newly created dialog instance to an instance
variable:
var myDialog = $("<div>").dialog(),

instance = myDialog.dialog("instance");
The instance () method is the preferred means of accessing the instance as it doesn’t
rely on the jQuery Ul internal implementation (storing the instance using $.data()).
But regardless of how you access the instance, what might you want to do with it?

Unlike interacting with widgets through their plugins, instance references give you
access to a number of things: all the widget’s methods and properties, as well as the
methods and properties on parent widgets’ prototypes (more on additional things
you can do with those references momentarily).

Furthermore, some developers prefer the instance-based method calls to plugin-
based method calls. Consider the following example that creates a dialog with an OK
button that closes it:
$("<div>").dialog({

buttons: {

OK: function() {
$(this).dialog("close");
1

}
1
Some developers find the dialog("close") syntax awkward and prefer the following
instanced-based approach:
var myDialog = $("<divs>").dialog({
buttons: {

OK: function() {
myDialog.close() ;

www.it-ebooks.info

http://www.it-ebooks.info/

12.3.1

Accessing and managing widget instances 301

}
}

}) .dialog("instance");
You use the instance () method to store a reference to the instance in a myDialog
variable. When the button is clicked, you use the instance reference to invoke the
close () method with a more familiar JavaScript syntax. It’s important to note that nei-
ther the instance-based nor plugin-based method invocation syntax is “correct”; it’s a
matter of personal preference.

Before we leave the topic of instances, there’s one more technique we need to
discuss.

TIP Earlier you learned that trying to invoke widget methods through the
widget’s plugin throws an error if that element is not a widget, such as $(
"#not-a-dialog") .dialog("open"). The instance() method is the one
exception to this rule. $ ("#not-a-dialog") .dialog("instance") returns
undefined rather than throwing an error.

Detecting widget instances with :data()

Besides the syntax conveniences, instances are also the way that jQuery UI detects
whether a given element has a widget initialized on it. Say you have the following ele-
ment on the DOM:

<div id="foo"></div>

How do you know if the element is a dialog? As it turns out, internally jQuery UI has to
ask this type of question a lot. When a dialog’s draggable option is changed to false,
the dialog’s setOption() method needs to know whether the dialog has a draggable
instance on it to know if it’s safe to call draggable’s destroy () method. (Remember
that calling widget methods before the widget is initialized—with the exception of
instance () —throws an error.) As another example, when you drop a draggable on a
droppable, the droppable widget needs to search for nested droppable widgets to fire
events in the correct order. (It also affects the behavior of the greedy option. See
http:/ /api.jqueryui.com/droppable/#option-greedy.)

Because of this need, jQuery UI Core extends the jQuery Core selector engine
(Sizzle) to add a custom :data() pseudo-selector.

It works by selecting elements that have data stored with a key that matches the
value given to :data (). This is easier to see in an example.

TIP jQuery UI adds the pseudo-selector with Sizzle’s createPseudo()
method. To learn more about Sizzle’s APIs, including how to add your own
pseudo-selectors, see its documentation at https://github.com/jquery/sizzle/
wiki/Sizzle-Documentation.

<div id="one"></div>

<div id="two"></div>
<scripts>

www.it-ebooks.info

https://github.com/jquery/sizzle/wiki/Sizzle-Documentation
https://github.com/jquery/sizzle/wiki/Sizzle-Documentation
http://www.it-ebooks.info/

302

CHAPTER 12 Under the hood of jQuery Ul

Stores a $S("#one").data("foo", "bar");
string on the console.log($(":data(foo)")); Logs all elements that
first <div> </script> have data stored with
a key of foo

124

You use $.data() to store the key/value pair of "foo" and "bar" on the first <div> 0.
Then, you use the :data () pseudo-selector to select all elements that have data stored
with a key of "foo" @. Because the first <div> has data stored with that key, it’s
selected and logged.

Because the jQuery UI widgets store their instances using $.data (), this same tech-
nique can be used to detect widgets. The following selects all dialog widgets:

$(":data(ui-dialog)");

Although finding all widgets can be handy for debugging, the more common scenario
is determining whether a given element is a widget, and you can accomplish that by
combining the :data () pseudo-selector with the jQuery Core is () method. Consider
the following example:

<div id="dialog"></div>
<div id="not-dialog"></div>

<scripts>
$("#dialog") .dialog() ;
$("#dialog").is(":data(ui-dialog)"); <— true
false ——> $("#not-dialog").is(":data(ui-dialog)") ;
</scripts>

The first check returns true as the <div id="dialog"></div> has a dialog widget ini-
tialized on it, and the second check returns false as the <div id="not-dialog"></
div> doesn’t.

TIP Because the mechanism of storing widget instances with $.data() is
built in to the widget factory, the same :data () checks work with custom wid-
gets. For example, $(":data(tj-todo)") finds all elements with your cus-
tom todo widget initialized on it.

We’ve now looked at things you can do with instances. Next, let’s look at what the
instance gives you access to: prototype objects.

Advanced widget prototype methods and properties

Although we’ve discussed most of what you can do with widgets built with the widget fac-
tory, we’ve glossed over the details of how the widget’s methods are structured inter-
nally—such as how the widget factory automatically manages a prototype chain for you.
Having an understanding of a widget’s prototype structure is important so you know
all the things you can do with widget instances, and is vital for creating custom widgets,
especially widgets that extend other widgets. You’ll see how to use these methods and
properties to streamline widget initialization, make widgets work in <iframe> elements,
and make a <div data-role="dialog"></div> magically turn into a dialog widget.

www.it-ebooks.info

http://www.it-ebooks.info/

124.1

Advanced widget prototype methods and properties 303

But before we do that, we have to dig in deep to see how a widget’s prototype chain
works.

A widget’s prototype chain explained

As with your instance discussion, let’s begin with a quick review of what we’ve dis-
cussed on widget prototype objects. Suppose you create the following widget:
$.widget ("tj.custom", {

_create: function() {}
I3
Recall that the last argument to $.widget () is an object to use as the widget’s proto-
type. You provide an object with a single _create() method. Because you didn’t
extend an existing widget, the widget factory uses $.Widget as a base widget by
default. If you do specify a widget, that widget is extended. The following code
extends the dialog widget:

$.widget ("tj.customDialog", $.ui.dialog, {});

We’ve discussed all this before, but now let’s get into more detail on what’s happening
behind the scenes. When you create widgets, the widget factory automatically struc-
tures the widget’s prototype chain such that instances of the widget can access meth-
ods and properties on any parent widget’s prototype objects. That sentence can be a
mouthful, so let’s break it down.

First, an explanation of prototype chains in JavaScript. Whenever you use the dot
notation in JavaScript (as in myObject.value), the JavaScript interpreter looks for the
subsequent string ("value", in this case) as a property in the object itself. If it finds
myObject.value it uses it, but if not, the interpreter then looks for the member (prop-
erty or method) in the object’s prototype object. And if it can’t find the member
there, it goes to the next prototype object and so on, until the interpreter reaches
Object.prototype. This lookup chain is what gives the prototype chain its name.

As an example, consider the following:

"jQuery UI".trim() ;

"jQuery UI".hasOwnProperty("whatever");

Both lines of code invoke methods on String objects. On the first line, when the
JavaScript interpreter sees trim(), it first looks for a trim() method on the String
object’s prototype (that is, String.prototype.trim). In this case, String.proto-
type.trim exists, so the interpreter invokes it.

On the second line, when the JavaScript interpreter sees hasOwnProperty (), it
again looks for String.prototype.hasOwnProperty, but this time it doesn’t find it, so
it looks to the next object in the prototype chain: which in this case is Object . proto-
type. Object .prototype.hasOwnProperty exists, so the interpreter invokes it.

TIP Object.prototype.hasOwnProperty returns whether the current object
has the passed property defined. For more details, see https://devel-
oper.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object/hasOwnProperty).

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
http://www.it-ebooks.info/

304

CHAPTER 12 Under the hood of jQuery Ul

NOTE For a more thorough explanation of prototype chains in JavaScript, see
http:/ /yehudakatz.com/2011/08/12/understanding-prototypes-in-javascript/.

Having a complete understanding of prototype chains isn’t necessary as the widget
factory automatically builds the chain for you when you create widgets. Say I write the
following code:

$.widget ("tj.customDialog", $.ui.dialog, {});

var instance = $.tj.customDialog({}, "<div>");

This defines the same customDialog widget that inherits from the jQuery UI dialog.
Then it creates an instance of the new customDialog and assigns it to an instance vari-
able. After this code runs, suppose you want to add a new line that uses the instance:

instance. [?]

Because of the widget’s prototype chain, when you use the dot notation here, the inter-
preter looks up members in the following order. Note that the order is extremely impor-
tant as many of these objects contain methods and properties with the same names:

= The instance object—The instance object itself has data unique to the element it’s
instantiated on; it’s not shared by other instances of the widget. The instance
has an options object containing the current state of its options, for example,
and an element property that refers to the DOM element the instance is associ-
ated with.

= $.tj.customDialog.prototype—If a member isn’t found on the instance, the
interpreter checks the customDialog widget’s prototype object next. Because
your code to create this widget specified an empty prototype object, this object
contains only a few properties added by the widget factory (widgetName,
namespace, and so on).

= $.ui.dialog.prototype—If a member isn’t found on the customDialog’s pro-
totype, the interpreter consults its parent widget—in this case, dialog—next. The
dialog widget’s prototype has all the dialog widget’s methods and properties.

= $.Widget.prototype—If a member isn’t found on dialog’s prototype, the inter-
preter moves on to the base widget prototype. The $.Widget . prototype methods
and properties are documented at http://api.jqueryui.com/jquery.widget/.

= Object.prototype—This is the end of the line for all prototype chains. If the
interpreter doesn’t find a property here, it returns undefined. If you’re invok-
ing a method and the interpreter doesn’t find it, the interpreter throws a
TypeError (because undefined is not a function).

Figure 12.6 shows a visual representation of this lookup process.

Having an understanding of a widget’s prototype chain is important when building
custom widgets. When you extend a widget, you inherit members from parent widgets
(and ultimately $.Widget.prototype), but you can override them by including a
member on new widget’s prototype object. Let’s look at examples of that.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced widget prototype methods and properties 305

$.widget ("tj.customDialog", $.ui.dialog, {});
var instance = $.tj.customDialog({}, "<div>");

Do you have an
element property?

instance.element

Instance object

$.tj.customDialog.prototype

Yes. Here $.ui.dialog.prototype
it is.

$.Widget .prototype

Object.prototype

Do you have
a destroy
method? Instance object

S.tj.customDialog.prototype

instance.destroy ()

$.ui.dialog.prototype

$.Widget.prototype

it is.

Object.prototype

Figure 12.6 Visualization of the JavaScript interpreter accessing a property or method on an instance.
The first example looks for an element property and immediately finds it on the instance object. The
second example looks for a destroy () method and has to go through the instance object, the cus-

tom widget’s prototype, and the dialog widget’s prototype, before finding the method on the base wid-
get’s prototype.

12.4.2 Using a widget’s default element to streamline initialization

One of the properties on $.Widget.prototype is defaultElement, which is an ele-
ment to use when a widget instance is constructed without providing an element. How
do you create a widget instance without providing an element?

Remember from chapter 8 that in addition to plugin-based initialization, all widgets
created with the widget factory have constructor functions that can initialize widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

306

CHAPTER 12 Under the hood of jQuery Ul

The following uses the dialog widget’s constructor function to initialize a dialog widget
on a newly created <divs:

$.ui.dialog({}, "<divs");

The first argument of each widget’s constructor is an object containing the options to
use, and the second argument is the element to create the widget on. What we
haven’t discussed is that you can omit the second argument, and this example does
the same thing:

$.ui.dialog({});

This works because when only one argument is provided to the constructor function,
the widget factory uses $.Widget .prototype.defaultElement, which is "<div>". Indi-
vidual widgets can override the defaultElement on their prototype to specify more
appropriate elements. For instance, because spinners need to be created on <input>
elements, $.ui.spinner.prototype.defaultElement is set to "<input>". The follow-
ing code creates a new spinner and appends it to the <body>:

$.ui.spinner({}).widget () .appendTo("body") ;

NOTE Remember that the widget () method returns the outer container
of a widget. The preceding code needs this call because internally the spin-
ner widget wraps the <input> element with additional markup. So
$.ui.spinner({}).appendTo("body") alone would append the <inputs>
but lose that additional markup.

When creating custom widgets, it’s important to update this property if it’s necessary
for the widget you're creating. A <div> isn’t appropriate for your todo widget from
chapter 8 as it uses elements. To use a different defaultElement, you include the
property on your widget’s prototype object:

$.widget ("tj.todo", {

defaultElement: "<uls>",
options: { ... },

1

With this in place, you can use the constructor functions and omit the second
argument. The following creates a new todo widget, adds two tasks, and appends it to
the <body>:

var instance = $.tj.todo({});

instance.add("Task One");

instance.add("Task Two") ;
instance.element.appendTo("body") ;

Let’s look at a few more properties on $.Widget.prototype.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced widget prototype methods and properties 307

12.4.3 Supporting embedded-window use in widgets

If you have perused the various widget properties, you may be surprised to see $. Widget
.prototype.document and $.Widget.prototype.window. On the base widget’s proto-
type, these properties are references to the browser’s document and window objects. So
why do these properties exist?

They exist for widgets used in <iframe> elements—which have their own docu-
ment and window objects. Real-world uses of <iframe> elements are typically complex,
and are frequently used to interact with third-party services, so you’ll build a simple
example to show the intention of these two properties.

Let’s start with this:

<divsParent</div>

<iframe src="child.html"></iframe> Embeds
<scripts child.html
$.widget ("tj.blink", {
_create: function()
this. on(window,
click: function() {
this.element.fadeOut ("fast").fadeIn("fast");

}

1 J Initializes a blink widget

on each <div>

S("div") .blink () ;

var child = $("iframe").load(function() {

} $("div", child.contents ()).blink(); T Initializes a blink widget
)

</scripts>

on each <div> in the
<iframe>

This code defines the extremely useful blink widget, which makes an element blink
when the user clicks anywhere on the window. In this example, you initialize a blink
widget on the page’s <div> elements @), and, after the <iframe> loads, you initialize a
blink widget on each of its <div> elements 0.

TIP jQuery UI supports creating widgets in multiple windows as is shown
here. But it’s a one-way street; after you create a widget in a window, you can’t
move it to another window and expect it to work. (Technically it might work in
some cases, but moving widgets across windows in general isn’t supported by

jQuery UL)

With this approach, any click on the window makes all blink widgets, well, blink. This
includes elements on the main page, as well as elements in the <iframe>. To switch up
this logic, let’s return to the code that attaches the click event handler to the window:
this. on(window, {

click: function() { ... }

I3

www.it-ebooks.info

http://www.it-ebooks.info/

308

12.4.4

CHAPTER 12 Under the hood of jQuery Ul

For example’s sake, let’s change it to use the window property on the instance (which
is set to this):

this. on(this.window,
click: function() { ... }

1)
Whenever a widget is initialized, its instance object is given window and document prop-
erties that point to the window and document objects of the window it was created in.
After making this change, blink widgets blink only on clicks of their respective windows.
When creating custom widgets, use of the instance window and document objects (as
opposed to the window and document global objects) is recommended to support
embedded-window use. Although in this example the code works in both cases (albeit
with different behavior), many times this isn’t the case, such as getting coordinates for
positioning. jQuery UI uses the window and document instance properties internally.

Displaying elements with _show() and _hide()

Recall from chapter 6 that several of the jQuery UI widgets provide show and hide
options that tie into the jQuery UI effects suite. Under the hood, all these widgets
defer to $.Widget._show() and $.Widget._hide() to do the dirty work of processing
the options.

To see how you can use these methods yourself, let’s build a small example using a
widget that adds a notification message to the bottom corner of the screen. The wid-
get is shown in action in figure 12.7.

0 00 @ jsriddie demo by ti_van x ¥

&« c jsfiddle.net/tj_vantoll/phkCB/show/

Your account has been updated. Figure 12.7 View of the notifica-
tion widget you’ll build

The code used to build this widget is shown in the following listing.

NOTE Some code is omitted to focus on the effects integration. You can find
the full code and see this widget live at http://jstfiddle.net/tj_vantoll/phkCB/.

Listing 12.1 A notification widget

$.widget ("tj.notification", {

options: { ’3 Defaults the show and

show: true, hide options to true
hide: true

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced widget prototype methods and properties 309

1
_create: function() ({
this.button = $("<buttonsClose</button>")
.addClass("tj-notification-button")
.button ({
text: false,
icons: { primary: "ui-icon-closethick" }
3]

.appendTo(this.element);

this. on(this.button, { Calls the close() method
click: this.close when the close button
13N} is clicked

this.element
.addClass("ui-widget ui-widget-content tj-notification")

.position(
Uses _show() P ¢

to display the my: r%ght -10 bottom-10", Positions the nqtiﬁcation
ALY at: "right bottom", at the bottom right of
notification .
of: window the screen
I3
}
open: function() ({
this. show(this.element, this.options.show);
¥, Uses _hide()
close: function() { to hide the
this. hide(this.element, this.options.hide); notification

}
1
The code in _create () performs the setup necessary—creating the close button and
positioning the notification—but for the effects integration we’re mostly interested in
the two options, as well as the open () and close () methods.

The start of the code declares two options, show and hide, and defaults them to
true, which—as you may recall from chapter 6—tells jQuery UI to use a fade in and
fade out effect, respectively @.

The options are used in the open() and close () methods, which are wrappers of
the show() @ and hide() @ methods. Both show() and hide () take three argu-
ments: an element, an options argument, and an optional callback function (which
we’re not using here).

What’s cool about this approach is that’s all the code you need to tie into the
jQuery UI effects suite. The following creates a notification that fades in over 300 mil-
liseconds and hides with the jQuery UI blind effect:

$("<divsYour account has been updated.</divs>")
.appendTo ("body")
.notification ({
show: 300,
hide: "blind"

I3

For a full listing of the types of data you can use for show and hide, either return to
chapter 6 where we first discussed this, or check out the options’ documentation at

www.it-ebooks.info

http://www.it-ebooks.info/

310

12.4.5

CHAPTER 12 Under the hood of jQuery Ul

http://api.jqueryui.com/jquery.widget/#option-hide and http://api.jqueryui.com/
jquery.widget/#option-show.

Customizing options on the fly

The last widget method we’re going to discuss is one of the more useful ones; it’s the
basis of how jQuery Mobile’s autoinitialization works. The method is
_getCreateOptions (), and it gives you the ability to define options during widget ini-
tialization. When you provide a _getCreateOptions() method, you can define
options that override the widget’s defaults. Consider the following code that creates a
test widget:

$.widget ("tj.test", { Defaults the foo
option: { option to “bar”
foo: "bar"
Uses a foo 1,
oe?ongf _getCreateOptions: function() {
bang return { foo: "bang" };
1
P
$.tj.test({}).options.foo; q44€) “bang”

“biz” €,44> $.tj.test({ foo: "biz" }).options.foo;

Each time the test widget’s constructor function is called, the getCreateOptions ()
method is invoked @. Here the getCreateOptions () method returns a hardcoded
foo option, which overrides the widget’s default value for this option ("bar")
with "bang".

Because of this override, when you create an instance with no options, its foo
option is set to "bang" @. Despite the override, user-supplied options still override
the values given in _getCreateOptions (); therefore, your second instance maintains
the "biz" option that was passed to its constructor O.

Now that you have an idea of how _getCreateOptions () works, let’s see how this is
useful, starting with a few ways that jQuery Ul itself uses these methods. The jQuery UI
selectmenu widget uses the following method:

_getCreateOptions: function() {
return { disabled: this.element.prop("disabled") };
}

The context of getCreateOptions () (this) is set to the widget instance, which gives
access to the element the widget is being created on. The selectmenu widget uses that
reference to default its disabled option to whether the <select> it’s initializing is dis-
abled. Deriving widget options from element attributes like this is the most common
use of _getCreateOptions (). The spinner widget does something similar.

You may remember from chapter 3 that the spinner widget has min, max, and step
options, but you can also provide these values as HTML attributes. The following cre-
ates a spinner widget with a min option of 2, a max option of 20, and a step option of 2:

www.it-ebooks.info

http://api.jqueryui.com/jquery.widget/#option-show
http://api.jqueryui.com/jquery.widget/#option-show
http://www.it-ebooks.info/

12.5

Using autoinitialization to remove boilerplate code 311

<input min="2" max="20" step="2">
<scripts>

$("input") .spinner();
</script>

The spinner widget makes this possible with the following _getCreateOptions ()
method:

_getCreateOptions: function() ({
var options = {},
element = this.element;

S.each(["min", "max", "step" 1, function(i, option) {
var value = element.attr(option);
if (value !== undefined && value.length) {
options[option] = value;

}
N

return options;

}
Here the widget loops over an array of three strings—"min", "max", and "step"—and
checks whether each exists as an option. (The value.length check also makes sure
the attribute value has at least one character in it.) The attributes that do have values
are added to an options object that’s returned at the end of the method.

The approach of initializing widgets based on their attributes is cool, and leads to
another question: why not allow any option to be specified as an attribute? Let’s see
how to do that next.

Using autoinitialization to remove boilerplate code

If you work with jQuery UI long enough, you’ll notice yourself writing a lot of code
that initializes widgets. Your flight search example from the previous chapter included
this block:

("#from-airport") .autocomplete(...);
("#to-airport").autocomplete(...);

("#date") .datepicker() ;

("#hops") .buttonset () ;

("#order-by") .selectmenu() ;

Lr r r r

This code becomes tedious because you’re doing the same task: selecting elements
and converting them to widgets. When the jQuery Mobile project—which uses the
widget factory for its widgets—came out, they provided a new technique for initializ-
ing widgets known as autoinitialization.

Autoinitialization works by configuring elements with a series of attributes, and
then letting jQuery Mobile turn those elements into widgets automatically. Consider
the following jQuery Mobile application:
<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">

www.it-ebooks.info

http://www.it-ebooks.info/

312

12.5.1

CHAPTER 12 Under the hood of jQuery Ul

<meta name="viewport" content="width=device-width, initial-scale=1">
<title>jQuery Mobile</title>

<link rel="stylesheet" href="//code.jquery.com/mobile/1.4.2/
jquery.mobile-1.4.2.min.css">
<script src="//code.jquery.com/jquery-1.11.1.min.js"></script>
<script src="//code.jquery.com/mobile/1.4.2/jquery.mobile-
1.4.2.min.js"></script>
</head>
<body>

<div data-role="page">
<div data-role="header">
<hl>jQuery Mobile Rocks!</hl>
</divs>
<div data-role="main" class="ui-content">
<input type="button" data-icon="gear" value="Settings">
</divs>
</div>

</body>
</html>
When this page loads, three widgets are created: a page, a header, and a button. The
display of this page is shown in figure 12.8.

Notice that you didn’t need to write a single line of JavaScript to create this UI and
these widgets, which is cool, but how does this work? And more importantly, how can
you get this behavior with jQuery UI? To answer, let’s dig into jQuery Mobile’s code.

How jQuery Mobile’s autoinitialization works

The magic starts in a method that jQuery Mobile adds to $. fn: enhanceWithin (). The
primary job of enhanceWithin() is detecting which elements should be enhanced in
the given element. The following adds a new <input type="button"> element to the
page and converts it to a button widget:

S(".ui-content").append("<input type='button' value='New!'>");
S (document) .enhanceWithin() ;

B O 0/ [=)jquery Mobile Rocks! x

€« c localhost

jQuery Mobile Rocks!

Settings

Figure 12.8 Display of a jQuery
Mobile app with one button

www.it-ebooks.info

http://www.it-ebooks.info/

Using autoinitialization to remove boilerplate code 313

To make this possible, each jQuery Mobile widget has an initSelector property that
tells the enhanceWithin() method what elements should be enhanced. Because
$.mobile.button.prototype.initSelector contains "input [type='button']",
jQuery Mobile knows to turn it into a button widget.

Internally, jQuery Mobile calls enhanceWithin () on each page to initialize widgets.
For your purposes, what’s interesting is what enhanceWithin () does under the hood,
or rather, what it doesn’t. The following is a condensed version of jQuery Mobile’s
enhanceWithin () method:

var index, Loops over all widgets

widgetElements = {}, in jQuery Mobile Finds all
that = this; elements
: . . that match
S.each($.mobile.widgets, function(name, constructor) {

the widget’s
var elements = $.mobile.enhanceable (initSelector
that.find(constructor.initSelector));
Loops over
eachwidget 1if (elements.length > 0) {
with matches widgetElements [constructor.prototype.widgetName] = elements;
2K Invokes the . Adds any
for (index in widgetElements) { widget’s matching elllem?"t
widgetElements[index][index] (); plugin to a collection

}

This code starts by looping over all of jQuery Mobile’s widgets @. $.mobile.widgets
is an object where the key is the name of the widget and the value is the widget’s con-
structor—which is how the name and constructor functions are assigned to the name
and constructor variables in the $.each() callback. For the button widget, name and
constructor are set to "button" and $.mobile.button, respectively.

For each widget, the code looks for any elements that match the widget’s init-
Selector property and assigns the matches to an elements variable @. The context
(that, in this case) is set to the jQuery object enhanceWithin() was invoked on. In a
$ (document) .enhanceWithin() call, that is set to a jQuery object containing the
document. If there are elements that matched the widget’s initSelector, they’re
added to the widgetElements object €.

After that, the code loops over each widget that has matches @ and invokes those
widgets’ respective plugins @. The widgetElements[index] [index] () line is a bit
weird, because the index variable is the widget’s name. So in your button example,
you go into this loop with index set to "button". widgetElements["button"]
resolves to a jQuery object with all matched elements, and widgetElements["but-
ton"]["button"] () is a fancy way of writing widgetElements.button.button(),
which invokes the plugin on all matched elements.

To take a step back, remember how I said the important part of this code is what
isn’t here? There’s no code to handle options; the enhanceWithin () method invokes
the plugin with no arguments. But your original jQuery Mobile example used <input
type="button" data-icon="gear" value="Settings"> (note the data-icon="gear"

www.it-ebooks.info

http://www.it-ebooks.info/

314

12.5.2

Loops
er each
option

CHAPTER 12 Under the hood of jQuery Ul

attribute), and figure 12.8 shows that a gear showed up. You can use your knowledge
of the widget factory from earlier in this chapter to see that an icon option is indeed
set on the element:

$("input") .button("instance").options.icon <+— “gear”

So...how did that happen?

jQuery Mobile’s widget extension

The answer is the widget factory’s _getCreateOption () method. jQuery Mobile takes
the default $.Wwidget.prototype. getCreateOptions() method (which does noth-
ing), and changes it to populate options based on the element’s attributes. The follow-
ing shows the complete code:

var rcapitals = /[A-Z]/g,
replaceFunction = function(c¢) {
return "-" 4+ c.toLowerCase() ;

}i

$.extend($.Widget.prototype,
_getCreateOptions: function()
var option, wvalue,
elem = this.element[0],

options = {};
Retrieves the
for (option in this.options) { attribute’s
value = $.mobile.getAttribute(elem, value

option.replace(rcapitals, replaceFunction));

if (value != null) {

options[option] = value; < Includes the option from

1 the attribute if present

}

return options;

}

b

This code starts by looping over each option @. (Remember the context of
_getCreateOptions() is set to the instance object.) For each option, it calls a
$.mobile.getAttribute () method @. Internally, $.mobile.getAttribute () gets an
HTML5 data-* attribute off the element and does some data-type coercion (for
instance, converting "false" to false, "2" to 2, and so on). The name of the attribute
$.mobile.getAttribute () retrieves is determined by this call:

option.replace(rcapitals, replaceFunction)

This takes the name of the option (the option variable) and replaces all capital letters
in the name with a "-" and the letter lowercased. This code would convert the dialog
widget’s "autoOpen" option to "auto-open". jQuery Mobile’s $.mobile.getAttrib-
ute () would then look for a "data-auto-open" attribute on the element.

www.it-ebooks.info

http://www.it-ebooks.info/

12.5.3

Using autoinitialization to remove boilerplate code 315

The rest of the code is straightforward. When a data-* attribute is found for the
given option, it is added to the options object ©, which becomes the instance’s set of
starting options.

This code explains why <input type="button" data-icon="gear" value="Set-
tings"> had its icon option automatically set to "gear". When this widget is initial-
ized, jQuery Mobile’s getCreateOptions() method loops over all the button
widget’s options, searches the element for data-* attributes that align with the options,
finds one (data-icon), and initializes the widget with that option set.

This type of initialization is known as declarative initialization. As opposed to
imperative initialization—where you need to list out option values explicitly in code—
declarative initialization lets you associate a widget’s options directly on the HTML ele-
ments. I personally find declarative initialization to be elegant as it removes boiler-
plate JavaScript code.

But this is jQuery Mobile code, not jQuery Ul code. Because this code is so simple,
you can port this to use with the jQuery UI widgets. Let’s look at how to do that.

Autoinitializing jQuery Ul widgets

If you look at the preceding jQuery Mobile code, the only jQuery Mobile—specific
code was the $.mobile.getAttribute () method. Therefore, if you abstract that code
from jQuery Mobile, you can bring the benefits of declarative initialization to jQuery
UL This approach is shown in the following listing.

Listing 12.2 Declarative initialization of jQuery Ul widgets

$.extend($.Widget.prototype,

_getCreateOptions: function() {
var option,
value,
options = {};
))) } Retrieves the data-*
for (option in this.options) { attribute from the element
value = this.element.data(option);
if (value != null) {
options[option] = value;

}
}
P
There’s a lot of code here, but most of this you’ve seen before. The only real differ-
ence is the use of the jQuery Core data() method to retrieve the data-* attributes
from the element @. To get a sense of what data () is doing for you, look at the follow-
ing code:

<div data-one="false" data-two="2" data-foo-bar="foo"></div>

<scripts>
$("div").data("one") === false;
$("div").data("two") === 2; true
$("div").data("fooBar") === "foo";
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

316

CHAPTER 12 Under the hood of jQuery Ul

As you can see, the data () method takes care of performing data type conversions, as
well as converting multiword attributes into camel-case variables. Why doesn’t jQuery
Mobile use this? Its $.mobile.getAttribute () method has additional (jQuery Mobile
specific) logic that forces it to replicate some of the functionality built in to data (),
which you don’t need here. With this setup in place, you can now write code like this:
<div id="dialog" data-height="200" data-width="500"></div>
<scripts>
$("#dialog") .dialog();

</scripts>
This creates a dialog that’s 200 pixels tall and 500 pixels wide, and you didn’t have to
specify any of those options in JavaScript. This approach handles reading attributes,
but you’re still not autoinitializing widgets. You still had to explicitly select an element
and call the dialog plugin on it.

Remember that jQuery Mobile has a whole construct built around this with the
initSelector properties. You can build something lightweight that works like that
fairly easily. Consider the following approach:

$.extend($.fn, {

enhance: function()
this.find("[data-role]l").addBack("[data-role]l")
.each (function()
var element = $(this),

role = element.attr("data-role");
element [role] ();

I3

return this;

}
1
This adds a new enhance () jQuery plugin that finds all elements with a data-role
attribute and initializes a widget with that value on the element.

NOTE Because the find () method selects only child elements, the addBack ()
callin the preceding code ensures thatif a data-role attribute is applied to the
element enhance () is invoked on, that element is also selected. For example,

$("<ul data-role='todo's").find("[data-role]") doesn’t select
the newly created , but $("<ul data-role='todo'>").find(
"[data-role]") .addBack(" [data-role] ") does. For more information on

addBack (), see http://api.jquery.com/addBack/.

This new plugin means you can rewrite your previous example as follows:

<div data-role="dialog" id="dialog" data-height="200"
data-width="500"></div>

<scripts>
$(document) .enhance() ;

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Using autoinitialization to remove boilerplate code 317

Notice that to make this work, you had to add a data-role="dialog" attribute to the
element. You still had to write some JavaScript here, but the great thing is it’ll handle
as many widgets as you need, including nested widgets. The following example creates
a tabs widget, progressbar widget, and slider widget:

<div data-role="tabs">

One</1li>
Two</1li>
</uls>
<div id="one">
<div data-role="progressbar" data-value="false"></div>
</div>
<div id="two">
<div data-role="sglider" data-min="0" data-max="50"
data-step="10"></div>
</div>
</div>
<scripts>
$ (document) .enhance() ;
</script>

Because the implementation is based on the widget factory, it also works with custom
widgets—such as your to-do list:
<ul data-role="todo">

Clean dishes</1li>

Walk dog</lis>

<lisMop floor</lis>
</uls>
<scripts>

$(document) .enhance() ;
</scripts>
This approach also works well when you dynamically insert HTML chunks into an
existing document. The technique is common with MVC frameworks like Backbone,
so we’ll have a more thorough discussion of that in appendix C (which is specifically
about using jQuery UI with Backbone).

If you’re interested, the code we discussed to use declarative widgets is available as
a library on GitHub at https://github.com/tjvantoll/Declarative-Widgets. Its only
dependencies are jQuery Core and the widget factory, and it supports the use of AMD.
The use of declarative widgets isn’t right or wrong; it gives you flexibility in how

you define widgets used in your applications. I personally find it elegant as it usually
removes JavaScript boilerplate, but some prefer the explicitness of imperative
JavaScript-based initialization. Declarative initialization does get verbose with more
complex options—for example, data-icons="'{"primary":"ui-icon-heart"}' to get
a heart icon on a button widget—but for most options I find HTML-based initializa-
tion cleaner and easier to read.

www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 12 Under the hood of jQuery Ul

12.6 Summary

The way we built the declarative widgets library shows that it’s valuable to know what’s
going on under the hood. Often knowing the inner workings can lead to solutions you
may not have thought existed. Who knew the widget factory’s _getCreateOptions ()
method was one of the cornerstones of the jQuery Mobile project?

And it goes beyond the methods we discussed in this chapter, or in this book.
Despite all that it does, the jQuery UI source code is surprisingly approachable. If
you’re stuck in a tricky situation, or are curious how the library works, digging into the
source can be a valuable learning experience. It’s how I got started on the journey
that led to this book ©.

www.it-ebooks.info

http://www.it-ebooks.info/

Al

All

appendix A
Learning 1Query

Because this is a book on jQuery UI and not jQuery Core, I assume the reader has
some knowledge of the jQuery library before starting this book. Because I often get
asked, “What’s the best way to learn jQuery?” I thought I’d gather a few of the
resources that have worked for me.

Experimentation

Different people learn in different ways, but what has helped me is digging right
into code. The appeal of jQuery is that it makes difficult tasks extraordinarily easy
(its motto is write less, do more, after all!), and seeing results visually provides amaz-
ing feedback. Here are some of my favorite ways to experiment.

Try jQuery (try.jquery.com)

My go-to starting point for learning jQuery is Try jQuery—which is available at
http://tryjquery.com. The great thing about Try jQuery is that it’s an interactive
tutorial that you must actively participate in to advance. Figure A.1 shows an exam-
ple exercise.

This example teaches how to select elements with jQuery; it specifically asks the
user to select the <h2> element in the HTML provided. The user must type this in
the console located at the bottom of the screen (which works the same as the
browser’s developer tools that we’ll look at in a minute). In the screenshot, I have
already typed the correct answer, $("h2"), and the Ul responded with a success
message and a Continue button that takes me to the next exercise.

I highly recommend going through the entire set of Try jQuery tutorials as a
starting point to learning jQuery.

319

www.it-ebooks.info

http://www.it-ebooks.info/

320

Al2

APPENDIX A Learning jQuery

1. Introduction to jQueny 1.3 Element selector I

Let's try out a few simple element selectors to start with. Using the jQ
ahead and select the [[F] of this simple web page.

2. Traversing the DOM
with the DOM "
Welcome to jQuery Travels - Traversing the DOM since 2006

4. Listening to DOM Events Fly to New York today for as little as 5299.99

5. Styling
6. Leam More

Download Slides

' HTML Slides Hints

-We 'l to jQuery Travels - Traversing the DOM
$

m‘-{auen" <p=Fly to New York today for as little as <span=

Console

TOTAL POINTS > $("h2")

250 ! ve on, . _ _
2% Complete r CONTINUE

Figure A.1 An example exercise from Try jQuery about selecting elements

Online testing tools

Another set of learning tools I'm fond of are the online environments that let you run
web code—such as HTML, CSS, and JavaScript—in the browser. You can easily experi-
ment without worrying about the setup and boilerplate that typically goes into build-
ing a web page.

Each of these tools has different features, but they all function similarly. The next
three figures show the same code—appending a new <h2> to the <body> and under-
lining its text—running in the three most popular of these tools: JS Bin (figure A.2),
jsFiddle (figure A.3), and CodePen (figure A.4).

® File ~ Add library Share HTML €SS JavaScript Conscle Output EMCoum Blog Help
HTML - JavaSeript = Output [Runwith)s | AutounJS™ A
<!DOCTYPE html> S$("<h2>jQuery UI Rocks!<fh2>")

<html> .css{ "text-decoration", "underline") .IQHE[]E IHRHE]‘S'

¢head> .appendTo{ "body");

<script

src="http://code.jguery.com/jquery-
2.1.0.min.js"><¢/seript>
<meta charset="utf-8">
<title>ds Bin</title>
</head>
<body>

</body>
</html>

Figure A.2 Live coding in JS Bin

www.it-ebooks.info

http://www.it-ebooks.info/

A.1l3

Experimentation 321

a » Run # Save i + JSHint = Collaboration 1j_vantoll
R al # S « Ti 51 Ci 1

Frameworks & Extensions
[Query 2.1.0
onLoad
Fiddle Options -1 (]

${ "<hz>jQuery UI Rocks!</h2>")) JjQuery UI Rocks!

.€ss("text-decoration”, "underline”)
| I

Extemnal Resources _appendTo(“body”)3
Languages
Ajax Requests

Figure A.3 Live coding in jsFiddle

CEDDEPEN | aswe -5

HTM

$("<h2>jQuery UI Rocks!</h2>")
.css{ "text-decoration”, "underline”)
.appendTo{ "body");

pratty sweet

Figure A.4 Live coding in CodePen

Each tool gives you an area to write HTML, CSS, and JavaScript, and then shows you
the result in another area. For the purposes of learning jQuery, each tool has a conve-
nient way of adding jQuery to your example. In JS Bin, it’s the Add library button; in
jsFiddle, it’s the Frameworks & Extensions section; and in CodePen, it’s the cog or
gear icon at the top of the JS panel.

Which of these tools to use is largely a matter of personal preference, and I encour-
age you to play with them all to decide which you like best. Personally, I'm a fan of jsFid-
dle because of its screen layout (I like the four panelsin a grid) and how it handles URLs
for sharing test cases with others. I'm such a fan of jsFiddle that I use it in numerous
examples throughout this book. You can learn more about jsFiddle in chapter 1.

The browser’s developer tools

One of the best ways to experiment with jQuery is to use the browser’s built-in devel-
oper tools. I recommend learning the browser’s developer tools early on because
you’ll acquire knowledge that extends far beyond learning jQuery. In my opinion, it’s
the single most valuable tool a web developer has, enabling you to inspect the DOM,
alter CSS, profile your applications, and more.

Although all browsers’ developer tools are different, they have consolidated
around a few core pieces of functionality, including the keyboard shortcut needed to
open them. You can use F12 on Windows and Cmd + Option + I on OS X.

www.it-ebooks.info

http://www.it-ebooks.info/

322

APPENDIX A Learning jQuery

TIP For Safari on OS X, you first have to enable the developer tools by going
to Preferences = Advanced and clicking the Show Develop Menu in Menu
Bar check box.

The main task worth familiarizing yourself with is the browser’s console, as it lets you
execute JavaScript code and is great for experimentation. Figures A.5 and A.6 show
the same example of adding an underlined <h2> to a page using the developer tools
in Chrome and Internet Explorer.

| B 0O ey nin Acton

m | "

« c lacalhost L]

JQuery UI Rocks!

Q. Elements Network Sources Timeline Profiles Resources Audits | Console| » = ﬁ- I:I‘x
® W <topframe> v

> $("<h2=jQuery UI Rocks!</h2>").css("text-decoration", "underline").appendTo("body");
[<h2 style="text-decoration: underline;">jQuery UI Rocks!</h2>]

Figure A.5 Adding an <h2> with Chrome’s developer tools

. o EW
I'/:':\ & localh o _>| . . . " NS ed
\=) ocalhost @ jQuery Ul in Action X TR

jQuery UI Rocks!

]
Console @] [Ao] [@0] [X ? Bl & x
Target: _top: show ll
$("<h2>jQuery UI Rocks!</h2>").css("text-decoration", "underline").appendTo("body");
p [object Object] {@: HTMLHeadingElement {...}, context: undefined, jquery: "1.11.2
<
X r 2

Figure A.6 Adding an <h2> with Internet Explorer’s developer tools

www.it-ebooks.info

http://www.it-ebooks.info/

A2

A2.1

Reading 323

You can do a lot with the browsers’ develop tools, and it’s worth taking time to learn
them. For a more detailed guide on these tools, you can use the following resources:

= Chrome—https://developers.google.com/chrome-developer-tools/

= Internet Explorer—http://msdn.microsoft.com/library/ie/bg182326 (v=vs.85)

= Firefox—https://developer.mozilla.org/en-US/docs/Tools

= Safari—https://developer.apple.com/library/safari/documentation/AppleAppli-
cations/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html

Chrome’s documentation is particularly good, and it also has a free interactive course
that works exactly like Try jQuery at http://discover-devtools.codeschool.com/. If
you’re a Chrome user, it’s a great set of tutorials to go through; even seasoned devel-
opers can learn a thing or two.

Reading

After you've experimented with jQuery, a well-written resource can help you learn the
finer points of the library, and to understand why the library works as it does. I'll give
a few recommendations for reading material.

jQuery Learning Center (learn.jquery.com)

The jQuery Learning Center (http://learn.jquery.com) is a collection of articles and
tutorials about all things jQuery. Here you can find everything from jQuery 101 to
tutorials on advanced features of the library. You can even find material on jQuery Ul
(some authored by yours truly). Figure A.7 shows the site with a sampling of topics.

Chapters USing le.l ery Core

$vs 80

${ document).ready()

About [Query

JavaScript 101

Using jQuery Core

Avoiding Conflicts with Other Libraries

Attributes

Frequently Asked Questions

Selecting Elements

=% Events Working with Selections

[za) Effects Manipulating Elements

< Ajax The jQuery Object

% Plugins Traversing

& Performance CS8S, Styling, & Dimensions

& Code Organization Data Methods

Utility Methods

Deferreds
terating over jQuery and non-jQuery Objects
W jQuery Ul
Using jQuery's .index() Function
Theming jQuery Ul
Frequently Asked Questions
Widget Factory How do | select an item using class or ID?

=s How do | select elements when | already have a DOM element?
28 jQuery Mobile

Figure A.7 Sampling of topics on the jQuery Learning Center. The screenshot is from http://
learn.jquery.com/using-jquery-core/.

www.it-ebooks.info

https://developer.apple.com/library/safari/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html
https://developer.apple.com/library/safari/documentation/AppleApplications/Conceptual/Safari_Developer_Guide/Introduction/Introduction.html
http://learn.jquery.com/using-jquery-core/
http://learn.jquery.com/using-jquery-core/
http://www.it-ebooks.info/

324

A22

APPENDIX A Learning jQuery

What’s cool is that the Learning Center is an open source project that’s officially main-
tained by the jQuery Foundation. The project is hosted on GitHub at https://
github.com/jquery/learn jquery.com, and there you can report issues with the site,
contribute fixes, and even write your own articles!

Books

Although the Learning Center is great for reference material, it doesn’t give you the
thorough walkthrough of jQuery that you get from a whole book dedicated to it.
There are a ton of books on jQuery out there, so to help you sift through the list, I'll
make two recommendations for books I’'ve personally read.

Although now slightly dated, jQuery Enlightenment by Cody Lindley (2009) is the
best free book I know of on jQuery. The book is full of examples that link to live code
on JS Bin (this book is where I got the inspiration to use jsFiddle examples through-
out the book), which in my opinion significantly enhances the learning experience.
JQuery Enlightenment is freely available as a PDF on http://jqueryenlightenment.com/.

About a year after I read jQuery Enlightenment, Bear Bibeault and Yehuda Katz
released the second edition of jQuery in Action (Manning, 2010). This book fascinated
me, as it explained not just how jQuery works, but also why it works the way that it
does. It inspired me to mimic this approach and answer the whys behind jQuery Ul in
this book. The second edition of jQuery in Action is now a little dated. Aurelio De Rosa
is completing a third edition to get the content up to speed. You can check out the
third edition of jQuery in Action at http://manning.com/derosa/.

www.it-ebooks.info

https://github.com/jquery/learn.jquery.com
https://github.com/jquery/learn.jquery.com
http://www.it-ebooks.info/

B.1

appendix B
How jQuery
Ul tests jQuery Ul

To verify that the various features of jQuery UI work as intended, the library has a
series of unit tests that run in all the library’s supported browsers. The tests them-
selves are written using the QUnit testing library. Because several excellent QUnit
tutorials are online (http://qunitjs.com/cookbook/ is a particularly good one), I
won’t give one here. Instead, I'll show how jQuery UI tests its own widgets, using
examples directly from the jQuery UI source code. Hopefully, looking at how
jQuery UI tests its own widgets will help you approach testing yours.

Testing options

jQuery UI attempts to test every potential value of every option for every widget.
Although the test coverage isn’t perfect, the majority of options have tests to verify
their behavior.

NOTE The $("#spin") call selects an <input id="spin"> element in the
<div id="qunit-fixture">. If you're not familiar with QUnit, the fixture
<div> is a place to put markup to use during the tests. QUnit resets the
markup in the fixture to its initial state before each test—ensuring changes
made in one test don’t affect others.

Here’s the spinner widget’s tests for its max option:

Declares the number
test("max", function() { of expected assertions
expect (3);
var element = $("#spin").val(1000).spinner({ max: 100 });
equal (element.val(), 1000, "value not constrained on init");
element .spinner("value", 1000); Asserts the value is
preserved on init l

325

www.it-ebooks.info

http://www.it-ebooks.info/

326

APPENDIX B How jQuery UI tests jQuery UI

equal (element.val(), 100, "max constrained in value method");

element.val(1000) .blur();
equal (element.val(), 1000, "max not constrained if manual entry");

b Asserts the value is
Asserts the value is preserved constrained in value()
from manual entry

The test starts by calling QUnit’s expect () function, which tells QUnit how many asser-
tions this test should perform @. It this test completes, and exactly three assertions
were not performed, QUnit will fail the test. Explicitly declaring the number of asser-
tions acts as a safeguard; it ensures you don’t include an assertion that QUnit can’t
execute, which may happen during a refactor, or when dealing with asynchronous
code. The call to expect() is important enough that jQuery UI sets the QUnit
requireExpects configuration variable to true (QUnit.config.requireExpects =
true), which tells QUnit to require a call to expect () in each test. With require-
Expects set, QUnit fails any test without an expect () call automatically.

Next, this test does a few assertions to verify the max option’s behavior. The code
starts by setting the <input> element’s value to 1000, and then initializing a spinner
widget on it. The spinner’s max option is set to 100. The first assertion ensures that the
<input> element’s value wasn’t constrained by the max option, specifically, that the
value remained 1000 despite the max of 100 ®. This behavior is for consistency with
the native <input type="number"s> control. If you create a <input type="number"
value="1000" max="100"> element, its starting value is 1000.

The next assertion checks the opposite behavior—that the value is constrained
when using the value () method. It does so by invoking the value () method with a
value of 1000, and asserting that the value was limited to the max (100) ©.

The last assertion is another check to ensure consistent behavior with <input
type="number"> controls. If a user manually types a number greater than the <input>
element’s max, the browser doesn’t update the <input> element’s value on blur. The
test makes sure the spinner adheres to this behavior by setting the <input> element’s
value to 1000, explicitly triggering a blur event, and asserting that the value of 1000
wasn’t altered @.

These tests ensure that the spinner’s max option does what its documentation says
that it does. But this doesn’t cover everything the max option does. When using the
spinner widget with Globalize, you can also pass formatted strings to use as the max
option (appendix D looks at this in detail); therefore, the spinner widget includes a
test for that as well:
test ("max, string", function() {

expect(3);
var element = $("#spin")
.val(1000)
.spinner ({
max: "$100.00",

numberFormat: "C",
culture: "en"

www.it-ebooks.info

http://www.it-ebooks.info/

B.2

Testing methods 327

3N

equal (element.val(), "$1,000.00", "value not constrained on init");
equal (element.spinner("option", "max"), 100, "option converted to
number") ;

element.spinner("value", 1000);

equal (element.val(), "$100.00", "max constrained in value method");

I3

This is more or less the same test as before; the only difference is the use of strings for
the max option instead of numbers. jQuery UI attempts to write tests that cover every
type documented in its API documentation. For instance, the autocomplete’s source
option has tests that cover the three data types it accepts (array, object, and function).

For your own widgets, testing each type of each option verifies that the widget
works correctly—especially as the widget is worked on over time. Looking for tests is
also a good criterion for judging third-party widgets. A third-party widget with thor-
ough test coverage is more likely to work as advertised than one without tests.

Let’s move from options to how jQuery UI tests its methods.

Testing methods
Like options, jQuery UI attempts to test every documented method for every widget.

Importantly, though, jQuery UI doesn’t test internal, undocumented methods. Here’s
the test for the spinner widget’s isvValid() method:

test("isvValid", function()
expect(8);

var element = $("#spin").spinner ({
min: O,
max: 10,
step: 2
I
spinner = element.spinner("instance");
ok (!spinner.isvalid(), "initial state is invalid"); Ensures nonnumeric

element.val("this is not a number"); stnngsarelnvahd

ok (!spinner.isValid(), "text string is not wvalid");

element.val("0");

ok (spinner.isValid(), "min value is valid");
element.val("10");
ok (spinner.isvalid(), "max value is valid");

element.val("4");

ok (spinner.isvValid(), "inbetween step is valid"); Ensures numbers below

element.val("-1"); the min are invalid

ok(!spinner.isvValid(), "below min is invalid");

element.val("11");

ok (!spinner.isValid(), "above max is invalid"); Ensures numbers
above the max

element.val("1"); are invalid

ok (!spinner.isvValid(), "step mismatch is invalid");

www.it-ebooks.info

http://www.it-ebooks.info/

328

APPENDIX B How jQuery UI tests jQuery UI

The test makes a number of assertions to ensure the isvalid() method correctly
determines the validity of the spinner. It ensures that nonnumeric strings @, values
below the min @), and values above the max € are all invalid—among other checks for
the strings users can potentially input.

What you don’t see here is that internally isvalid() uses an _adjustValue()
method to do most of the dirty work of determining the validity of a user’s input. But
because jQuery UI tests only the public API, you won’t find a single test that hits
_adjustValue () directly. The adjustValue () method gets indirectly tested when it’s
called from the public API methods.

Like options, jQuery UI also tests all method variations. The spinner widget’s
stepUp () method, for instance, can be called with no arguments—that is, spinner (
"stepUp")—or with a single argument indicating the number of steps to take—that
is, spinner("stepUp", 5). Here’s the test that jQuery UI uses to verify this method
works as documented:

test ("stepUp", function() ({
expect(4);

var element = $("#spin").val(0).spinner ({
step: 2, Asserts stepUp()’s
max: 16 behavior with no
) arguments

element .spinner("stepUp");

equal (element.val(), 2, "stepUp 1 step"); Assert_s stePUp()’s
behavior with an

Asserts element.spinner("stepUp", 5); argument
stepUp() is equal (element.val(), 12, "stepUp 5 steps");
constrained
by the max element .spinner("stepUp", 4);
equal (element.val(), 16, "close to max and stepUp 4 steps");

B.3

element.spinner("stepUp");
equal (element.val(), 16, "at max and stepUp 1 step");

Asserts stepUp() is
constrained while at the max

The test starts by creating a spinner widget with a value of 0, a step of 2, and a max
of 16. The first assertion calls the stepUp () method and ensures it increments the
<input> element’s value by a single step (from 0 to 2) @. The next assertion
invokes the stepUp () method with 5 and ensures it increments the <input> ele-
ment’s value by 5 steps (from 2 to 12) @. The last two assertions ensure that the
stepUp () method respects the spinner’s max and stops the value at 16—both when
the spinner’s value starts below the max © and when it starts at it @.
Let’s move from options to how jQuery UI tests events.

Testing events

Like options and methods, jQuery UI attempts to test each documented event for
each widget. But testing events has a few unique twists. For one, events are often

www.it-ebooks.info

http://www.it-ebooks.info/

Testing events 329

asynchronous, which requires extra logic in the tests. Listing B.1 shows a test for the
autocomplete widget’s focus event.

NOTE A little background: the autocomplete widget’s focus event is trig-
gered every time an item in the autocomplete’s menu is focused. By default,
the widget replaces the text <input> element’s value with the content of the
focused menu item, but canceling the focus event prevents this behavior.
The canceling behavior is what this test is concerned with.

Listing B.1 Testing canceling the autocomplete’s focus event

var data = ["Clojure", "COBOL", "ColdFusion", "Java",
"JavaScript", "Scala", "Scheme"];
asyncTest ("cancel focus", function() { Declares the test as
expect (1); i' an asynchronous test
var customVal = "custom value",
element = $("#autocomplete") .autocomplete ({
delay: 0,
. Sets the source: data,
. <input> t?. focus: function() ({
custom value $(this).val(customval); Cancels
return false; the event
tl?el srf‘l:zz & b o J Delays execution by
element.val("ja") .keydown() ; 50 milliseconds
setTimeout (function()
Simulates element.simulate("keydown", { keyCode: $.ui.keyCode.DOWN });
a down equal (element.val(), customval);
arrow key g start () ; Asserts the
}, 50); % Restarts the custom value is
1 test runner in the <input>

To start, you declare this test as an asyncTest () instead of a test () @. (You'll see why
momentarily.) With a synchronous test, QUnit executes each line of code in the
test () and then moves on to the next test (). With an asynchronous test, QUnit
doesn’t continue when it reaches the end of an asyncTest () ; instead, it waits for a call
to start () before continuing.

Within the test, the first thing you do is instantiate an autocomplete widget with a
focus event callback. The callback sets the autocomplete’s <input> to a static string
@, and then returns false to cancel the event €. (Remember that you can return
false or call preventDefault () on the event argument—which isn’t used here—to
cancel an event.)

Now, you need to trigger a focus event to get this callback to run. To make this
happen, you do two things. First, you need to show the menu. You do this by setting
the <input> element’s value to the first two characters of a match ("ja") and trigger-
ing a keydown event @. The next step is to simulate a down-arrow-key press (which
moves focus to the first option), but you can’t do that quite yet.

www.it-ebooks.info

http://www.it-ebooks.info/

330

APPENDIX B How jQuery UI tests jQuery UI

How jQuery Ul automates its tests

We discussed all that jQuery Ul does to write its tests, but we haven’t touched on
how jQuery Ul runs them. To start, because QUnit runs in a browser, you can run the
library’s test suite yourself by downloading jQuery Ul from https://github.com/jquery/
jauery-ui/ and opening tests/unit/all.html in your browser of choice.

But that’s a manual process; to automate this, jQuery Ul does a couple of things.
First, every time code is committed to the master branch in the project’s git reposi-
tory, a Travis Cl (Continuous Integration) server runs checks on the project—including
linting the project’s HTML, CSS, and JavaScript, as well as running all the unit tests.
The committer of the code is notified if any problems are found. You can view the
project’s Travis builds at https://travis-ci.org/jquery/jquery-ui.

Every commit also triggers a run on another Cl server—TestSwarm. Unlike a more
fully featured Cl server, TestSwarm serves a single purpose: executing HTML-based
tests across multiple browsers. Instead of opening an HTML page in dozens of
browser + OS combinations, the jQuery Ul team can test in their local browser and
let TestSwarm handle the full suite of browsers that the library supports. You can
learn more about TestSwarm, including how to set up your own TestSwarm infra-
structure, at https://github.com/jquery/testswarm. You can view the results of the
jQuery Ul test runs at http://swarm.jquery.org/project/jqueryui.

Internally, jQuery UI displays the autocomplete menu asynchronously, with a delay
that’s configurable by the delay option. Your code needs to wait for the menu to dis-
play before it can continue. To do that, you wrap the rest of the test’s code in a set-
Timeout () call that delays its execution by 50 milliseconds ©. Remember that because
this is an asyncTest (), QUnit won’t move on to the next test automatically. Instead, it
idles until start () is called.

After the delay, the menu has now been displayed, so you can continue. You simu-
late a down-arrow key being pressed @, which moves focus to the first menu item and
triggers your focus event callback. You ensure that the focus event was triggered, and
that the <input> has the custom value (as opposed to “Java”) @. Then you invoke
start () to tell QUnit to continue with normal execution @.

There are other tests for the focus event when it’s not canceled, and tests to make
sure focus event callbacks are triggered with the documented arguments (ui and
event). As you can see, testing events is a little more work, but the same premise
applies: jQuery UI attempts to test all its behavior that’s publicly documented.

And this premise extends beyond options, methods, and events. Each widget has
tests to verify that the documented markup structures are parsed correctly, that the
appropriate ARIA attributes are added, that the documented class names are added to
the correct elements, and more. Writing and maintaining all these tests is no small
task, but it helps make jQuery UI the stable library that it is.

www.it-ebooks.info

https://github.com/jquery/jquery-ui/
https://github.com/jquery/jquery-ui/
http://www.it-ebooks.info/

Testing events 331

jQuery simulate

In listing B.1 you may have noticed the call to simulate ()—which isn’t a part of jQuery
Core or jQuery Ul. This works because jQuery Ul includes the jQuery simulate plugin
as part of its test suite. The simulate plugin is a small library specifically intended for
simulating browser mouse and keyboard events.

The plugin works much like the jQuery Core trigger () method, except it has a con-
venient API to set properties on the event object passed to callbacks. Consider the
call to simulate in listing B.1:

element.simulate("keydown", { keyCode: $.ui.keyCode.DOWN }) ;

If you were to call trigger ("keydown") instead, keydown event handlers wouldn’t
know what key was pressed—and you can’t include properties in the Event object
through the trigger () API. (Although you can explicitly create a jQuery.Event ob-
ject and pass it to trigger(). For more, see http://api.jquery.com/category/
events/event-object/.)

With simulate (), you have the convenience of quickly including properties on the
Event object. The plugin intelligently merges properties passed to its second argu-
ment with properties on an Event object that it creates internally.

In addition to the Event object niceties, the simulate plugin also provides a conve-
nient means of simulating the user dragging something across the screen. The fol-
lowing simulates the user moving an element 10 pixels left and 10 pixels down:

element.simulate("drag", {
dx: 10,
dy: 10

) g

The draggable and sortable widgets use this abstraction heavily in their test suites. For
more on what the simulate plugin can do, and to download it for use in your own test
suites, check out its GitHub repository at https://github.com/jquery/jquery-simulate.

www.it-ebooks.info

http://api.jquery.com/category/events/event-object/
http://api.jquery.com/category/events/event-object/
http://www.it-ebooks.info/

C.1

appendix C

Using 1Query
Ul with Backbone

One question I frequently am asked is how jQuery UI works with MVC frameworks
like Backbone. This definitely is a topic worth discussing, because jQuery UI com-
pliments Backbone quite nicely. The best way to use the libraries is to let Backbone
do what it does best—manage an application’s data and views—and let jQuery UI
do what it does best—the UI Let’s look at how to do that.

NOTE This guide is intended for readers who have some familiarly with
the Backbone library, although I’ll try to provide enough context so that
everyone can follow. To learn more about Backbone, you can refer to its
documentation at http://backbonejs.org/, or Addy Osmani’s excellent
(and free!) book on writing Backbone applications, available at http://
addyosmani.github.io/backbone-fundamentals/.

Building a Backbone view

To show the integration in action, you’ll build a small sample app to manage a gro-
cery list. Your grocery list will have a single piece of functionality: a button that
removes individual groceries from the list. The HTML you’ll use to build this is
shown here

<ul id="grocery-list">
<script type="text/template" id="grocery-template"s>
<% .each(groceries, function(grocery) { %>

<%= grocery.name %>
<button data-id="<%= grocery.id %>">Remove</buttons>
</1li>
<% }); %>

</script>

332

www.it-ebooks.info

http://addyosmani.github.io/backbone-fundamentals/
http://addyosmani.github.io/backbone-fundamentals/
http://www.it-ebooks.info/

Building a Backbone view 333

and here’s the JavaScript you need:

var Grocery = Backbone.Model.extend({}),

GroceryList = Backbone.Collection.extend ({
model: Grocery

1y

GroceryView = Backbone.View.extend ({
template: _.template($("#grocery-template") .html()),
el: "#grocery-list",
events: {

"click button": "remove"

}

render: function() {
this.S$el.html (
this.template ({ groceries: this.model.toJSON() }));

b
remove: function(event) {
var grocery = this.model.get (
$(event.currentTarget).attr("data-id"));
this.model.remove (grocery) ;
this.render () ;

} Renders the list
I3 to reflect the

rocery removal
new GroceryView ({ grocery

model: new GroceryList ([
new Grocery ({ id: 1, name: "Apples" }),
new Grocery({ id: 2, name: "Bananas" }),
new Grocery({ id: 3, name: "Peanut Butter" }),
new Grocery({ id: 4, name: "Bread" }),
new Grocery({ id: 5, name: "Milk" })

1)
}).render () ; Renders the initial
grocery list

NOTE You can play with this example at http://jsfiddle.net/tj_vantoll/H3fHr/.

If you’re not familiar with Backbone, don’t worry too much about the specific syntax
used here. Backbone works by separating the model data (in this case, Grocery and
GroceryList) from the view logic (in this case, GroceryView). But because we’re con-
cerned about jQuery UI integration, the main thing to focus on is the render ()
method. Here, render () takes the data in the View’s model (GroceryList) and uses a
template to inject the data into the <ul id="grocery-list">.

TIP If you don’t understand what the template is doing here, refer to chap-
ter 11 where we discuss templating in more detail.

Because render () is what updates the HTML, it must be explicitly called every time
the view’s data changes. In this example, it’s called twice, once after the initial
GroceryList is created @ and again in the remove () method, which is invoked after
the user clicks the Remove buttons in the Ul @. Now that you have an example in
place, let’s see how you can add in jQuery UI widgets.

www.it-ebooks.info

http://www.it-ebooks.info/

334

c.2

C3

APPENDIX C Using jQuery UI with Backbone

Adding jQuery Ul to the view

Let’s suppose that you want to change your example’s remove buttons to use a jQuery
UI button widget with an icon. You could start by selecting elements and invoking the
button widget’s plugin:
$("button") .button ({

icons: { primary: "ui-icon-closethick" },

text: false
1
This works initially, but as soon as you remove a grocery item from the list, the buttons
are no longer button widgets. Why? Every time you call render (), the entire view is
rerendered from scratch; the buttons you initially created are removed as soon as
render () is reinvoked.

Because of this, you must put the widget instantiation in the render () method
itself. The following initializes button widgets on each of the remove buttons:

render: function() {
this.$el.html (
this.template ({ groceries: this.model.toJdSON() }));

this.$el.find("button") .button ({
icons: { primary: "ui-icon-closethick" },
text: false

)i

TIP All Backbone views have el and $el properties. el is a reference to the
view element’s DOM node (as an HTMLElement), and $el is that same element
wrapped in a jQuery object. Because it is a jQuery object, the $el property
gives you direct access to all methods on $.fn—show(), hide(), find(),
html (), and so forth.

Now, each time this view is rendered, its HTML is replaced and button widgets are
instantiated on each of the newly created <button> elements. This approach works,
but it can be a bit verbose to manually instantiate widgets in render () —especially in
complex views with a lot of widgets. Let’s see how a library we built in chapter 12 can
help out with this.

Using declarative widgets

In chapter 12 you built the declarative widgets library, a simple means of creating wid-
gets through HTML attributes—rather than explicit JavaScript-based instantiation.
Moving the configuration to HTML from JavaScript can be elegant, and in my opin-
ion, it works well in MVC frameworks like Backbone.

To see what I'm talking about, let’s add the declarative widgets library to your
example. Currently your template is using the following code to create <button>
elements:

www.it-ebooks.info

http://www.it-ebooks.info/

Using declarative widgets 335

<% _.each(groceries, function(grocery) { %>

<buttons>Remove</buttons>

To switch to using declarative widgets, you have to move the option configuration cur-
rently in JavaScript into HTML5 data-* attributes on the <buttons:

<% _.each(groceries, function(grocery) { %>

<button data-role="button" data-text="false"
data-icons="'{"primary":"ui-icon-closethick"}'>
Remove

</buttons>

Here, the data-role attribute tells declarative widgets which widget the markup
should become, and the other data-* attributes correspond to button widget options.
So data-role="button" tells declarative widgets this should become a button widget,
data-text="false" says to set the button widget’s text option to false, and data-
icons='{"primary":"ui-icon-closethick"} says to set the button widget’s icons
option to {"primary":"ui-icon-closethick"}.

Notice that for options that are objects—in this case, the icons option—the
declarative widgets library requires the corresponding HTML attribute be valid JSON.
Both the keys of the object must be enclosed in double quotes. So both data-
icons="{'primary':'ui-icon-closethick'}" (single quotes around the key) and
data-icons="{primary: 'ui-icon-closethick'}" (no quotes around the key) aren’t
valid options when using declarative widgets.

Now that you have the HTML attributes in place, you need to use it. The declara-
tive widgets library exposes a single enhance () jQuery plugin method, and all you
need to do is call it in render ():

render: function() {
this.Sel
.html (this.template ({ groceries: this.model.toJSON() }))
.enhance () ;

NOTE You can view the declarative approach to this example at http://
jsfiddle.net/tj_vantoll/YSBRP/.

Notice that you're not explicitly instantiating any widgets here. The single call to
enhance () finds all elements with a data-role attribute—specifically, itself and each
of its children—and initializes the appropriate widgets on those elements. Although I
personally find this approach elegant, it’s worth noting that neither the JavaScript-
based initialization nor the declarative initialization approaches are correct; it’s a mat-
ter of personal preference.

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/Y5BRP/
http://jsfiddle.net/tj_vantoll/Y5BRP/
http://www.it-ebooks.info/

336

APPENDIX C Using jQuery UI with Backbone

Regardless of how you choose to initialize widgets, Backbone’s render () method is
the ideal place to do so, as it’s typically the place that HTML is injected into the DOM.
With this approach jQuery Ul is a nice compliment to Backbone. You can let Back-
bone handle your data, routing, and views—and let jQuery UI handle the widgets that
you need to build your UL

www.it-ebooks.info

http://www.it-ebooks.info/

D.1

appendix D
Creating decimal, currency,
and time pickers with Globalize

In chapter 3 we discussed how to use the jQuery UI spinner widget to transform
<input> elements into basic number pickers. Here, we’ll look at more complex
usage scenarios of the spinner widget, including how to create decimal, currency,
and time pickers.

To make this possible, the spinner widget uses another jQuery project known as
Globalize. Globalize is alibrary that handles the formatting and parsing of various data
types—strings, dates, numbers, and the like—in numerous cultures around the
world. The spinner widgetintegrates with Globalize’s formatting and parsing to make
these complex widgets possible. Let’s look at how, starting with decimal pickers.

Building decimal pickers

Keeping track of how various cultures handle something as simple as decimals is
tricky because you have to know whether the culture use a period (1.23) or a
comma (1,23) to delimit whole numbers from fractional numbers. Let’s assume
you want to get a numeric value from a user that has two digits after the decimal
mark. You could start with the following approach:

<input id="spinner">

<scripts>
$("#spinner").spinner ({
step: 0.01,
page: 100
1
</scripts>

This mostlyworks, butit has two problems. First, the spinner shortens trailing zeros. For
instance, the whole number 1 displays as "1" rather than "1.00". Second, the spinner

337

www.it-ebooks.info

http://www.it-ebooks.info/

338 APPENDIX D Creating decimal, currency, and time pickers with Globalize

doesn’t use the correct delimiter based on the user’s culture. U.S. users expect to see a
value of "0.25" to represent one quarter, but most European users expect to see "0, 25".

The solutions to these problems lie in two of the spinner widget’s options—cul -
ture and numberFormat—which are used in tandem. The culture option accepts a
Globalize culture. In general, culture codes are shorthand language codes—"en" =
English, "es" = Spanish, "fr" = French, and "de" = German. The numberFormat
option controls the format of the data that the spinner should use. The two most com-
mon formats are "n" for decimal numbers and "C" for currency values.

With this in mind, let’s see how you can alter your spinner to use these options.
Before we look at the code, there’s one important thing to note: for space consider-
ations, Globalize and its culture information aren’t stored on jQuery’s CDN. There-
fore, you must download Globalize from https://github.com/jquery/globalize/
releases (get version 0.1.1, as that’s the version this appendix uses), or from another
CDN. Microsoft’s CDN has Globalize, and that’s what we use in the following listing.

Listing D.1 Creating spinners with decimal values

globalize.min.js"> Microsoft’s CDN
</scripts>
<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/cultures/
globalize.cultures.js">

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/ Imports Globalize from

</script> Imports Globalize’s culture
<input id="spinner"s data from Microsoft’s CDN
<script>
$("#spinner").spinner ({
Sets the step: 0.01, Sets the numberFormat
cu!‘turﬁ page: 100, to.“n“ for a decimal
(Gte(:m:i) numberFormat: "n", spinner

culture: "de"

)

</script>

This example solves both of your previous issues. Because you set numberFormat to
"n" @), the spinner control knows you want to display a decimal value and always dis-
plays two decimal digits regardless of the number. You no longer see whole numbers
such as "1". Second, because the culture is set to "de" (German) @, the spinner uses
a comma instead of a period to separate whole numbers from fractional numbers.

NOTE Globalize has multiple number formats to handle values with different
numbers of decimal digits. For example, n0, n1, n2, and n3 handle numbers
with 0, 1, 2, and 3 decimal digits, respectively. For a full list of the formats Glo-
balize can handle, refer to its documentation.

TIP Don’t know the language the user speaks? You can grab that value from
navigator.language and pass it to the culture option.

This updated spinner functionality is shown in figure D.1.

www.it-ebooks.info

https://github.com/jquery/globalize/releases
https://github.com/jquery/globalize/releases
http://www.it-ebooks.info/

D.2

Building currency pickers 339

<input id="de" value="5"> <input id="en" value="5">
5,00 . 5.00 :
$("#de") .spinner ({ $("#en") .spinner ({
step: 0.01, step: 0.01,
page: 100, page: 100,
numberFormat: "n", numberFormat: "n",
culture: "de" culture: "en"
I 1

Figure D.1 Display of a decimal picker in the English and German cultures

The cool thing about using Globalize is that you don’t have to know which cultures
use which conventions for handling decimal numbers—you just need to tell the wid-
get which culture to use and let it handle the rest. The story is similar with another
tricky data type: currency.

Building currency pickers

Currency has the same challenges decimal pickers have and more. In addition to
knowing the period-versus-comma rules, you also need to know the appropriate cur-
rency symbol to use: the United States uses the dollar sign ($), much of Europe uses
the Euro (€), Japan uses the Yen (¥), and so forth. In addition, some currencies have
niche rules. For instance, the Yen can’t have fractional values. (There’s no such thing
as half a Yen.)

To create a currency spinner, set the spinner’s culture option to the user’s culture
and its numberFormat option to "C"—which stands for currency. The following listing
shows a currency spinner that steps by a value of 25.

NOTE You can play with this example live at http://jstiddle.net/tj_vantoll/
fC5j8/.

Listing D.2 A currency spinner

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/
globalize.min.js"></scripts>

<script src="http://ajax.aspnetcdn.com/ajax/globalize/0.1.1/cultures/
globalize.cultures.js">

</script>

<input id="spinner" value="1025">
<scripts>
$("#spinner").spinner ({
step: 25,
numberFormat: "C",
culture: "de"
P

</scripts>

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/fC5j8/
http://jsfiddle.net/tj_vantoll/fC5j8/
http://www.it-ebooks.info/

340 APPENDIX D Creating decimal, currency, and time pickers with Globalize

{ culture: "de" } { culture: "en" }
1.025,00 € * 1 $1,025.00 :
Figure D.2 Display of
{ culture: "ja" } { culture: "en-GB" } currency spinners in
German, English (U.S.),
¥1,025 - £1,025.00 - Japanese, and English

(Great Britain)

Figure D.2 shows the display of the spinner in a variety of cultures.

That’s really all there is to it. Globalize ensured that the correct delimiters (deci-
mal points vs. commas) were used, as well as the correct currency symbols. It even
ensured that the Yen picker didn’t display fractional values automatically. If you want
to get a consistent value, you call the spinner’s value () method. The following code
returns 1025 for all the examples in figure D.2:

$("#spinner") .spinner("value");

Before leaving the topic of globalization, let’s look at another complex data type that
Globalize can help with: times.

D.3 Building time pickers

Different cultures also have different ways of storing times. Unlike currencies, times
are typically displayed in only two ways across cultures: with a 12-hour clock or a 24-
hour clock. But even handling these two options can be tricky. The same time could
display as 5:00 PM or 17:00 depending on where the user is located, and you don’t
want to worry about which culture uses which format.

Unlike the earlier examples, the spinner widget doesn’t directly integrate time sup-
port. But you can add support to the widget with a little extra code. The following list-
ing shows an approach that’s used on the jQuery UI demo site. (You can view the
demo at http://jqueryui.com/spinner/#time.)

Listing D.3 A timespinner widget

$.widget ("ui.timespinner", $.ui.spinner, { ﬂ Creates an extension

options: { of the spinner widget
step: 60 * 1000,

Defaults page: 60
the step },
and page _parse: function(value) {
options if (typeof value === "string") ({
if (Number(value) == value) { Converts a
return Number (value) ; formatted Stri"g to
} a millisecond value

return +Globalize.parseDate(value);

}

return value;

b

_format: function(value) {

www.it-ebooks.info

http://www.it-ebooks.info/

Building time pickers 341

Converts a
millisecond value to
a formatted string

}
I3

return Globalize.format(new Date(value), "t"); <¢&
This code creates a timespinner extension of the spinner widget @. (You can read
more about widget extensions in chapter 9.) To keep the timespinner’s value culture-
independent, it’s stored as a millisecond value. You’ll see how to use the value
momentarily, but knowing that the value is millisecond-based explains why you default
the step and page options @. You set step to 60000 because 60,000 milliseconds is 60
seconds, or one minute. You set page to 60 because there are 60 minutes (or steps) in
an hour. This lets the user step the timespinner in one-minute increments (for exam-
ple, 5:00 = 5:01 or 5:00 = 4:59) and one-hour increments (for example, 5:00 = 6:00
or 5:00 = 4:00).

The rest of the code converts between the millisecond value of the date and the for-
matted string that displays. The _format () method converts a millisecond value (passed
in via the value argument) and converts it to a formatted string using Globalize’s for-
mat () method @. The "t" argument you pass to format () tells Globalize to format the
string as a time. The _parse () method does the opposite. It takes a formatted value (for
example, "19:00" or "7:00 PM") and returns the millisecond value it represents ©. It
calls Globalize’s parseDate () method to normalize the cultural difference.

With this in place, you can create a spinner using the following code:

<input id="spinner"s>

<scripts>

Globalize.culture("en");

$("#spinner").timespinner () ;
</scripts>

Globalize.culture () sets the default culture so you don’t have to continuously tell
Globalize which culture to use. By setting the culture to "en" (which defaults to U.S.
English), you get a spinner that displays a 12-hour clock. Because the timespinner wid-
get uses a millisecond representation under the hood, you can get the value to deter-
mine the user-selected time in a culture-agnostic way.
The following logs the spinner’s current hour:
var spinner = $("#spinner"),
date = new Date(spinner.timespinner("value"));
console.log(date.getHours());
This code logs 19, regardless of whether a spinner displays 7:00 PM (in the case of a cul-
ture with a 12-hour clock) or 19:00 (in the case of a culture with a 24-hour clock). The
most common way of handling this situation is storing the timestamp in a server-side
database. Figure D.3 shows the display of a few timespinner widgets. As you can see, the
spinner can be initialized with a culture-specific string or a culture-agnostic timestamp.
Although we’ve focused on spinner integrations, these examples have showcased
only some of what Globalize can do. Globalize handles number, decimal, percentage,
currency, time, and date formatting in numerous cultures. And Globalize has no

www.it-ebooks.info

http://www.it-ebooks.info/

342

APPENDIX D Creating decimal, currency, and time pickers with Globalize

<input id="en-1" value="7:00 PM"> <input id="en-2" value="1388566800000">
7:00 PM - 4:00 AM -
Globalize.culture("en"); Globalize.culture("en");
Globalize.culture("en"); $("#en-2") .timespinner() ;
<input id="de-1" value="19:00"> <input id="de-2" value="1388566800000">
19:00 : 04:00 .
Globalize.culture("de"); Globalize.culture("de");
S("#de-1") .timespinner() ; S("#de-2") .timespinner();

Figure D.3 Display of four timespinner widgets. The top two use the U.S. English culture (which uses
a 12-hour clock), and the bottom two use the German culture (which uses a 24-hour clock). The spinners
can be initialized with a formatted string—7:00 PM or 19:00—or with a timestamp. In this example, the
1388566800000 timestamp represents a date with its hour set to 4 and its minutes set to 0.

dependencies. You can use it with the jQuery UI widgets if you’d like, but you can use
it to parse and format data in an application that doesn’t use jQuery at all. If your
application is used by multiple cultures, it’s worth taking a look at Globalize’s docu-
mentation at https://github.com/jquery/globalize to see all you can do with it.

Why doesn’t datepicker use Globalize?

Unfortunately, datepicker and spinner use different globalization approaches; to use
both, you have to import Globalize and its data, as well as datepicker’s locale scripts.

Datepicker is some of the oldest code in jQuery Ul and therefore hasn’t been updated
to modern conventions the library is using, such as Globalize. A rewrite of datepicker
to use Globalize is in the works; you can monitor the progress at http://wiki.jqueryui
.com/w/page/12137778/Datepicker.

www.it-ebooks.info

http://wiki.jqueryui.com/w/page/12137778/Datepicker
http://wiki.jqueryui.com/w/page/12137778/Datepicker
http://www.it-ebooks.info/

E.1

appendix L
Contributing to jQuery Ul

Believe it or not, the vast majority of work done on jQuery UI (and all other jQuery
projects, for that matter) is a volunteer effort. Because of this, and because of the
ever-increasing amount of work to do, the jQuery UI project is constantly looking
for help from the community.

For whatever reason, when most people decide they want to contribute, they
start by heading to the jQuery UI bug tracker and trying to fix bugs. The problem
with this is that the vast majority of outstanding bugs aren’t easy to fix. When simple
bugs come in, we (the jQuery UI team) fix them immediately. It’s the tricky ones or
the ones that have no clear solution that stick around. And as an aspiring contribu-
tor, trying to tackle these problems when you’re just getting started is almost always
a frustrating experience.

Unless you have a lot of jQuery UI and open source experience, you're better
off contributing in another way in the beginning. But don’t worry; there’s plenty to
do! What follows is a list of ways you can help jQuery UL

TIP The first place to head when you’re considering contributing to any
jQuery project is http://contribute.jquery.org/. The site goes into explicit
detail on how to contribute to all aspects of jQuery. The information in this
appendix summarizes these guides specifically for the jQuery UI project.

Help others on the forums, Stack Overflow, and IRC
In my opinion, the best way to start giving back to jQuery Ul is by helping others
with the library. You can provide support on many venues:

= jQuery Forum (http://forum.jquery.com/)—jQuery hosts a forum where users
can submit questions and provide feedback on all jQuery projects, including
jQuery UL The jQuery Ul-specific forum is located at http://
forum.jquery.com/using-jquery-ui.

343

www.it-ebooks.info

http://forum.jquery.com/using-jquery-ui
http://forum.jquery.com/using-jquery-ui
http://www.it-ebooks.info/

344

E.2

APPENDIX E Contributing to jQuery Ul

= Stack Overflow (hitp://stackoverflow.com/)—Stack Overflow is an extremely popu-
lar question-and-answer site that you have likely heard of and used. For ques-
tions specifically about jQuery Ul, see http://stackoverflow.com/questions/
tagged/jquery-ui.

= #jquery on IRC—jQuery hosts a series of IRC channels on Freenode. The #jquery
channel is specifically dedicated for support, aiding people who come to the chan-
nel looking for help on using the various jQuery projects. For more information
on what IRC and Freenode are, how to join, and how to help, see http://
irc.jquery.org/.

These three locations have a lot of people with a lot of questions about jQuery and
jQuery UL The jQuery UI team itself simply can’t deal with this quantity. We need peo-
ple to step in and help.

Besides the altruistic aspect of helping others, answering questions is a spectacular
way to learn and get started contributing to the project. You learn about the problems
people are having, and by helping to solve them, you learn a lot about the project.

Triage bugs
Bug triage refers to the process of reviewing existing and incoming bug tickets and
processing them. This means doing a number of things:

= Making sure the ticket is valid—Lots of people submit jQuery UI bugs, but not all
the issues are bugs. Oftentimes people come to the bug tracker when they
should be going to support venues such as the forums, Stack Overflow, or
#jquery on IRC.

= Checking for duplicates—When jQuery UTI has a bug, it’s not uncommon for multi-
ple people to report it. Detecting duplicate bugs can be a tricky and time-
consuming task, but finding duplicates is valuable, as an existing ticket may
have a long conversation associated with it, or the project may have already
decided not to support a given use case. It’s even possible that the issue has
already been fixed, but has yet to make it into a stable release.

= Creating a reduced lest case—People sometimes submit issues with a substantial
amount of code, which makes it difficult to track down the underlying prob-
lem. Reducing the amount of code needed to reproduce an issue—even by a
few lines—can be invaluable for debugging. Oftentimes reducing test cases
reveals issues that are unrelated to jQuery Ul, such as bugs in the browser or
jQuery Core.

As with support, triaging bugs takes time and effort, and is a great way to assist the
jQuery UI team. The jQuery UI bug tracker is located at http://bugs.jqueryui.com/.
You can create an account and comment on any existing issue. If you find duplicate
issues, comment about it. If you can create a better test case, comment with the new
test case. If you find an old issue that’s no longer relevant, comment and let us know.

www.it-ebooks.info

http://stackoverflow.com/questions/tagged/jquery-ui
http://stackoverflow.com/questions/tagged/jquery-ui
http://irc.jquery.org/
http://irc.jquery.org/
http://www.it-ebooks.info/

E.3

E.4

Write code 345

If you create an account on http://bugs.jqueryui.com/, you can also set up email
notifications for new tickets and new comments. With the notifications, you can help
the project by responding to tickets and questions as they come in—which lessens the
load on the core team.

The same as contributing to the jQuery UI support efforts, it can be tremendously
valuable to contribute to the jQuery UI triage effort. Triaging is the easiest way to keep
track of the day-to-day activities on the project. In the bug tracker you’ll work side by
side with the team, because we’re also in there managing tickets. And if you’re looking
to eventually contribute code, the bug tracker can teach you how the team’s processes
work, and how we address issues as they come in. Over time, you’ll learn how to tackle
the issues yourself.

Write documentation and maintain the websites

Another great way to get involved with jQuery Ul is with its documentation. jQuery Ul
has a lot of code, and it’s important to the project to have comprehensive guides on
how to use it. Many people don’t realize that all the jQuery UI documentation is open
source and available on GitHub (https://github.com/jquery/api.jqueryui.com). So if
you notice a problem with the documentation, you can fix it!

And it’s not just the documentation source code that’s online. All jQuery’s web-
sites are open source and available on GitHub as well. For instance, the code behind
http: //jqueryui.com is available at https://github.com/jquery/jqueryui.com.

If you’d like to contribute to this process, there’s plenty you can do. To start, you
can write new documentation for the API site or fix existing API issues (which you can
view at https://github.com/jquery/api.jqueryui.com/issues). If you're interested in
writing, you can author new articles for the jQuery Learning Center
(learn.jquery.com). If you’re interested in design, you can help us improve the look of
our sites. If you're interested in UX, we’d love help improving the user experience on
http://jqueryui.com and http://api.jqueryui.com. For more details on the specifics,
see http://contribute. jquery.org/web-sites/.

Write code

Last but not least, you can always contribute code to jQuery UI, but I'll offer one word
of warning: if you find an issue with the library, don’t jump directly to submitting a
pull request with a fix on GitHub. jQuery UI has a number of processes in place to
assure consistency and improve the long-term maintainability of the project. We
require the following things:

= The issue must have a ticket created on http://bugs.jqueryui.com and a team
member must mark the ticket as valid.

= There must be a unit test that verifies the fix being offered works as expected.
This is to prevent regressions, where the original issue comes back after some
unrelated change.

www.it-ebooks.info

learn.jquery.com
http://www.it-ebooks.info/

346

E.5

APPENDIX E Contributing to jQuery Ul

= Code must adhere to jQuery’s JavaScript style guide (http://contribute.jquery
.org/style-guide/js/).

= Commit messages must adhere to our guidelines (http://contribute.jquery.org/
commits-and-pull-requests/).

Don’t let this discourage you. These best practices help maintain the high quality of
the jQuery UI codebase, and adhering to them doesn’t require much more effort.
Sometimes it’s helpful to look at a list of previous commits to get an idea of how the
team does it. You can see the latest commits to jQuery UI at https://github.com/
jquery/jquery-ui/commits/master.

If you're completely unfamiliar with GitHub, http://contribute jquery.org/
commits-and-pull-requests/ is a great place to start as it walks you through all the
processes necessary to contribute code to any jQuery project. For more specific
information on jQuery Ul, such as how to run the unit tests, see its GitHub reposi-
tory at https://github.com/jquery/jquery-ui.

Ask for help

If all else fails, feel free to join #jqueryui-dev on IRC and say that you want to help. The
jQuery UI team hangs out in that channel, and we can help point you in the right
direction. The team also has a weekly meeting in #jquery-meeting if you want to find
us all in one place. The meeting is open to anyone, so feel free to lurk in the channel
or introduce yourself. For meeting times, as well as meeting notes from previous meet-
ings, see http://meetings.jquery.org.

My own journey with jQuery Ul

| started in jQuery Ul when a previous employer switched to using jQuery Ul from a
another Ul library (which | won’t name), and | instantly fell in love. The ease of per-
forming complex tasks made the library a joy to work with.

Eventually, | wanted to do more. Learning and playing with jQuery and jQuery Ul be-
came my fun side project | worked on at home. | created a Stack Overflow account
and started answering jQuery Ul questions. (My username is tj-vantoll, if you're curi-
ous.) As | learned more about the library, | decided | wanted to try to contribute code.

| found the bug tracker and tried to fix a few bugs, but | mostly failed. But | did start
commenting on the tickets. Even if | couldn’t fix the bug, I'd comment on what |
thought the problem was. I'd reduce the test case to show the least amount of code
needed to recreate the problem. | did this a lot. And as | gained confidence and
experience, | started to do more. Along with some other team members, we method-
ically went through each ticket open in the bug tracker. We found hundreds of bugs
that were either duplicates or no longer relevant.

www.it-ebooks.info

http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/style-guide/js/
http://contribute.jquery.org/commits-and-pull-requests/
http://contribute.jquery.org/commits-and-pull-requests/
https://github.com/jquery/jquery-ui/commits/master
https://github.com/jquery/jquery-ui/commits/master
http://www.it-ebooks.info/

Ask for help 347

(continued)

In the process, | found bugs that | could fix. | had learned the processes and had
met a few of the team members. My first code contribution to jQuery Ul was a patch
to fix resizable dialogs in Opera 11; it was included in version 1.8.18. As | learned
more about the code, | could tackle harder problems, such as complex bugs and
new features.

My experience with jQuery Ul has been invaluable. I've met many awesome people
and traveled to amazing places. Seeing how the jQuery Ul team works, and coding
alongside them, made me a far better developer. Doors that were previously closed
have opened. I've even had the opportunity to write a book!

www.it-ebooks.info

http://www.it-ebooks.info/

appendix I
Polyfilling HT'ML5
with 1Query Ul

In chapter 3 we discussed a number of new HTML5 elements and compared them
to jQuery UI widgets. In summary, we concluded that the major advantages of the
HTMLS5 controls are

= Ease of use.

= Dependency-free.

= The browser controls how data is inputted. (For instance, you get optimized
mobile keyboards.)

The main detriments are

= You have little control over the display.
= They handle only trivial use cases.
= Only some browsers support the controls.

In chapter 3 we also had a brief discussion of which control you should use. To start,
if you have a nontrivial usage scenario, you have no choice but to use JavaScript-
based widgets like those of jQuery UL If you want to build a calendar where the user
can’t select weekends, you have to use a JavaScript-based datepicker—as that’s
impossible to build with an <input type="date">. Conversely, if you have a trivial
use case, using the HTML5 controls makes sense. You get mobile-optimized key-
boards without the need to introduce a JavaScript-based control.

No matter how simple the use case, the native controls still have one big prob-
lem: browser support. Although some HTML5 elements are now widely imple-
mented, others—like <input type="date">—are only present in a handful of
browsers. But you have another option. If you want to use HTML5 controls today,

348

www.it-ebooks.info

http://www.it-ebooks.info/

F.1

Using polyfills 349

and you don’t want to worry about browser support, you can use jQuery UI to polyfill
the native functionality.

Using polyfills

A polyfill is a piece of code that adds a feature when it’s not natively available on the
platform. In our case, the native features we’re interested in are the new HTMLS5 ele-
ments and input types. To use a polyfill, first you need to detect whether the feature is
supported on the platform the code is running on. The following shows a function
that does a feature detect for native date support and uses the jQuery UI datepicker if
native support isn’t available:

<input type="date"s> Detects and
<scripts> returns whether
function dateSupport () { the browser
var input = document.createElement ("input"); su?ports a date
input.setAttribute("type", "date"); <input>
return input.type == "date";
}i
if (!dateSupport()) {

$("input [type=date]") .datepicker ({ 41 Converts all

dateFormat: "yy-mm-dd" date inputs to
1
}

datepickers
</script> Uses the HTML5-
specified format
Here you first test whether the browser natively supports <input type="date"> @.
The check creates an <input> element and changes its type to "date". If the browser
recognizes the type, it remains "date"; otherwise, the browser uses "text".

If the browser supports the native picker, you’re done. If not, you convert all date
inputs to datepicker widgets @. The default date format of HTML5’s date input dif-
fers from datepicker’s default. The final step is to set the datepicker’s dateFormat
option equal to the specification’s format ("yy-mm-dd") @; that way, you get a con-
sistently formatted date serverside, regardless of whether the browser natively sup-
ports the control.

If you run this code in a browser that supports <input type="date"s, such as
Chrome, you’ll see no visual change. In browsers with no support, such as Internet
Explorer or Safari, you’ll see a jQuery UI datepicker control being used. The cool
thing with polyfills is you don’t have to care about which browsers support the ele-
ment and which don’t. You can rest assured that all users can use a calendar to enter
a date.

To make all this possible, though, you need to accurately detect whether the user’s
platform supports a given feature. And doing that can be hard; how would you know
that dynamically creating an <input>, changing its type to "date", and seeing if the
change took would be an accurate test for <input type="date"> support? Luckily,
there’s a library that aggregates these tests for us.

www.it-ebooks.info

http://www.it-ebooks.info/

350

F1.1

APPENDIX F Polyfilling HTMLS5 with jQuery UI

Using Modernizr

Modernizr is a library that does exactly what we’re looking for: it detects HTML5 and
CSS3 features in the user’s browser. It takes the guesswork out of testing for features.
With Modernizr, instead of writing your own test for <input type="date"> support,
you can check the Modernizr. inputtypes.date property.

You can download either a development or production version of Modernizr from
http://modernizr.com/. The development version is perfect for development, as it
has every check that Modernizr uses. But each of those checks takes time, and doing
every check has the potential to take a long time—especially for users with slower
browsers. Before using Modernizr in production, it’s a best practice to create a pro-
duction build with only the checks that you need. For your purpose, you need two
checks: Input Attributes and Input Types. Figure F.1 shows Modernizr’s download
builder with these two checks selected.

Select additional check boxes if you need them in your application, but the input
attributes and types are all you need to polyfill HTML5 elements using jQuery UL Now
that we have Modernizr in place, let’s look at the polyfills jQuery UI makes possible.

NOTE You can view all these polyfills in action at http://jsfiddle.net/
tj_vantoll/A62]t/. If you view this in Chrome you’ll see all native controls—as
it supports all the controls we’ll discuss—but if you open it in an older
browser, such as Internet Explorer 8, you’ll see jQuery UI widgets used in
place of the native controls.

TIP There’s more to Modernizr than the handful of feature detects we
need here. To learn more, check out Modernizr’s documentation at http://
modernizr.com/docs/ .

€555 HTML5S Misc.

applicationCache | Geclocation APl
Canvas @ Inline SVG
Canvas Text | SMIL

Drag 'n Drop | SVG
hashchange @ SVG clip paths
History (pushState) @ Touch Events
HTMLS Audio | WebGL

HTMLS Video

IndexedDB

Input Attributes EXtra

| ©efontface

@ background-size

@ border-image

@ border-radius

@ box-shadow

@ Flexible Box Model (lexbox)
@ Flexbox Legacy

® hsla)

@ multiple backgrounds

® opacity

(<l B N N N B N N N |

® rgba) Nete: does not odd dasses

@ htmiSshiv v3.7

@ htmiSshiv v3.7.1 w/ printshiv
@ Modernizrload

[)

@ Media Querles

@ Add CSS Classes

| text-shadow Input Types

@ CSS Animations Note: coes not ackd classes

@ CSS Columns | localStorage

@ CSS Generated Content @ postMessage
(] @ sesslonStorage

@ CSS Gradients ® Web Sockets

@ CSS Reflections 8 Web SQL Database

@ CS5 2D Transforms ® Web Workers

@ CS5 3D Transforms

| CSS Transitions

<]

Figure F.1 Modernizr’s production build tool at http://modernizr.com/download/. The
two checks we need for polyfilling HTML5 elements are Input Attributes and Input Types.

www.it-ebooks.info

http://jsfiddle.net/tj_vantoll/A62Jt/
http://jsfiddle.net/tj_vantoll/A62Jt/
http://modernizr.com/docs/
http://modernizr.com/docs/
http://www.it-ebooks.info/

F.2

F.3

F4

Polyfilling <input type="range"> with slider 351

How to know which browser supports what

Polyfills remove the need to keep a mental list of which browsers support which features,
but sometimes it’s nice to see a list. If all the browsers you support already have the
native control, you have no need to use a polyfill. In my experience, the best resource
for up-to-date browser feature support documentation is http://caniuse.com/, which
lists support by feature in a number of tables. Support documentation on the features
we’ll discuss in this appendix is at the following URLs:

" <input type="date">—http://caniuse.com/#search=input-date
<input type="number">—http://caniuse.com/#feat=input-number
<input type="range">—http://caniuse.com/#feat=input-range
<progress>—nhttp://caniuse.com/#feat=progressmeter
<datalist>—http://caniuse.com/#feat=datalist

Polyfilling <input type="date"> with datepicker

The first polyfill you’ll use is also the easiest, because you’ve written it before. In the
following code, the only difference is your feature check for <input type="date">
support, which is now a check of Modernizr. inputtypes.date.

if (!Modernizr.inputtypes.date) ({
$("input [type=datel") .datepicker ({ dateFormat: "yy-mm-dd" });
1

Polyfilling <input type="number"> with spinner
The code to polyfill native number <input> elements is similarly simple:

if (!Modernizr.inputtypes.number)
$("input [type=number]") .spinner () ;
}

Like the spinner widget, native <input type="number"> elements support the min,
max, and step attributes to customize their behavior. But because the spinner widget
automatically reads those attributes, they’re supported here without any extra work.

Polyfilling <input type="range"> with slider

The range polyfill is a bit more complex, because—unlike datepicker and spinner—
a slider must be created on a <div> rather than an <input>. You need to create an
extra element for each <input> you need to polyfill. The approach you’ll take is
shown here:

if (!Modernizr.inputtypes.range) {
$("input [type=rangel").each(function(index, input) Cm?msanew
var input = $(input), <div> t.o use
Transfers the slider = $("<divs").slider ({ as the slider
;E:E:ﬁz min: parseInt(input.attr("min"), 10) || O,
attributes max: parselnt(input.attr("max"), 10) || 100,
value: parselnt(input.attr("value"), 10) || 50,
step: parselnt(input.attr("step"), 10) || 1,

www.it-ebooks.info

http://www.it-ebooks.info/

352 APPENDIX F Polyfilling HTMLS5 with jQuery UI

change: function(event, ui) {
$(this).prev("input").val(ui.value); Keeps the
1 <input>
. 13K . . in sync with
slider.insertAfter(input); Appends the the slider
. input.hide () ; Hides the slider ?fter
} i <input> the <input>

In browsers without <input type="range"s> support, you loop over each <input
type="range">. For each one, you create a new <div> and initialize a slider widget on
it @. (Remember that you can’t initialize a slider widget on the <input> itself.)

To ensure the min, max, step, and value attributes on the <input type="range">
are reflected on the <divs you create, you must explicitly read each attribute from the
<input> and set them as an option of the slider @. If the attribute isn’t present on the
<input>, you pass the HTML5 range input’s default (0 for min, 100 for max, 50 for
value, and 1 for step).

At the end of the loop, you append the newly created <divs—which is now a
slider—directly after the <input> @), and then hide the <input> itself @. You leave
the <input> around so that it’s included in form submissions, but you hide it so the
user sees only the slider. To make sure the hidden <input> maintains the correct
value, the last thing you do is add a change event callback that keeps the <input> ele-
ment’s value and slider’s value in sync @.

F.5 Polyfilling <progress> with progressbhar

Next, we’ll look at the <progress> element, which is an element that displays the
progress of a task, much like the progressbar widget. The <progress> element has two
custom attributes—max and value—that work exactly like the progressbar’s max and
value options.

TIP You can learn more about the <progress> element at http://css-
tricks.com/html5-progress-element/.

Modernizr core doesn’t have a check for the <progress> element. Modernizr’s down-
load site has a noncore (Modernizr’s wording) set of checks—which includes a <prog-
ress> test—but because the check is a single line we’ll just include it inline:

Checks for <progress> suppor:j
if (document.createElement ("progress").max === undefined) {

" ") .each (functi
3("progress®) .each(unction() { Transfers the <progress> element’s
var progress = $(this), .
)) attributes to the progressbar
Creates a new div = $("<div>") .progressbar ({
<div>, and max: parselnt(progress.attr("max"), 10) || 100,
initializes a value: parselnt(progress.attr("value"), 10) || false
progressbar 1
widget progress.replaceWith(div); Replaces the <progress>
b with the <div>

}

www.it-ebooks.info

http://css-tricks.com/html5-progress-element/
http://css-tricks.com/html5-progress-element/
http://www.it-ebooks.info/

Polyfilling <datalist> with autocomplete 353

To check for native <progress> support, you create a new <progress> element, and
see if it has a max property defined @. For browsers with support, you're done, but for
browsers without support, you then loop over each <progress> element. Like the pre-
vious slider example, you then create a new <div>. This time you initialize the new
<div> with a progressbar widget @—using the custom max and value attributes from
the original <progress> element @. For consistency with the HTML5 specification, if
the user doesn’t provide a value attribute, you default the value option to false,
which creates an indeterminate progressbar. Finally, you replace the initial <prog-
ress> element with the progressbar <div> @.

F.6 Polyfilling <datalist> with autocomplete

The last polyfill we’ll look at is one for the <datalist> element. If you haven’t seen a
<datalist> before, it’s a quick way of building an autocomplete that’s native to the
browser. You can associate a <datalist> with an <input> by having the <input> ele-
ment’s 1list attribute match the <datalist> element’s id attribute. The following
builds a basic autocomplete:

<input type="text" list="projects">

<datalist id="projects"s>
<option>jQuery</options> j v
<option>jQuery UlI</options> .
<option>jQuery Mobile</option> JQuery

</datalist> jQuery ul

Figure F.2 shows the display of this <input> after the user jQuery Mobile

73

types a
. Figure F.2 Display of a
TIP You can learn more about what <datalist> elements .gatalist> element

are and when to use them at http://msdn.microsoft.com/ in Chrome on 0S X
en-us/magazine/dn133614.aspx.

For browsers that don’t support the <datalist> element, you’ll use the following
code to polyfill with an autocomplete widget:

if (!Modernizr.input.list) { Loops over all text inputs
$("input [type=text] [list]").each(function() with a list attribute
var options,
listAttribute = $(this).attr("list"),

datalist = $("#" + listAttribute); < Finds the <input>
if (datalist.length > 0) { element’s associated

Loops options = []; <datalist>

ove{eaCh datalist.find("option").each(function() ({
<option> options.push({ label: this.innerHTML, value: this.value });

1) i

$(this) .autocomplete ({ source: options }); Builds the

} autocomplete
P widget
n 1 n .
} $("datalist") .remove () ; Removes all
<datalist> elements

from the DOM

www.it-ebooks.info

http://msdn.microsoft.com/en-us/magazine/dn133614.aspx
http://msdn.microsoft.com/en-us/magazine/dn133614.aspx
http://www.it-ebooks.info/

354

APPENDIX F Polyfilling HTMLS5 with jQuery UI

You loop over each text <input> that has a list attribute—which indicates that it’s
associated with a <datalist> @. For each one, you find the <input> element’s
<datalist> by searching for an element that matches the <input> element’s list
attribute @.

NOTE You can associate <datalist> elements with other types of <input>
elements such as date <inputss, and even color <inputss. To see some in
action, visit http://demo.agektmr.com/datalist/. For our purposes, we’ll only
polyfill the text-based version.

Assuming you find a <datalist> (that’s what the datalist.length > 0 checkis for),
you loop over each of its <option> elements and add them to an array of options .
You then initialize an autocomplete widget on the <input> @ and use that option’s
array as the autocomplete’s source option. Because you don’t need the <datalist>
elements to stick around in browsers that don’t support them, you remove all of them
from the DOM @.

With this code in place, you can use <datalist> elements and rest assured that the
user receives an autocomplete control in all browsers. There’s one last quirk to be
aware of, though. Internet Explorer versions < 10 don’t recognize <option> elements
unless they're in <select> elements, meaning, this polyfill doesn’t work in those ver-
sions. Specifically, the datalist.find("option") check returns nothing. The work-
around for this is a bit convoluted, but it works. The fix is using Internet Explorer
conditional comments to add <select> elements in the <datalist> element:
<datalist id="projects">

<!--[if IE]><select><!--<![endif]-->

<option>jQuery</option>

<option>jQuery Ul</options>

<option>jQuery Mobile</options>

<!--[if IE]><select><!--<![endif]-->
</datalist>
All browsers other than Internet Explorer versions < 10 completely ignore the condi-
tional comments, including versions 10 and above. (Conditional comment support
was removed from Internet Explorer in version 10.) But in versions before 10, the
comments are interpreted, and a <select> is created. Having a <select> present tem-
porarily is all you need for your polyfill to read the <option> elements. The polyfill
removes the <datalist> elements entirely at the end anyway.

So unfortunately, if you need to support Internet Explorer < 10 and you want to
use <datalist> elements, you must use conditional comments that insert a <select>
around <option> elements for these older browsers. With this in place, the polyfill
works as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

mmdex

A

ally (accessibility) 68
accept option 113
accessibility 8, 270
Accessible Rich Internet
Applications. See ARTA
accordion widget
adding and removing
panels 81-82
configuring 79-81
overview 78-79
active option 80, 86
addClass() method 151-152
_adjustValue () method 328
$.ajax() function 271
alert() function 67
_allowInteraction() method 226
almond 284-286
AMD (Asynchronous Module
Definition) 11
loading components with
Require]S 246-248
overview 243-245
setting up Require]S 245-246
supporting in custom
widgets 254-258
animate () function
139, 152, 155
animateDuration option 225
animateEasing option 225
animation
color 155
CSS
addClass() method 151-152
jQuery Ul effects vs. 156-161

off-canvas navigation menu
for mobile 153-155
removeClass ()
method 151-152
toggleClass() method
151-152
effect() method 136-138
effects
customizing with
easings 138-140
transfer effect 140-142
show and hide options
147-148
showing message in
dialog 148-151
visibility changes
building portlets 144-147
form validation
messages 142-144
appendTo option 227
appointment form example
71-74
appointment scheduler
example 127-129
ARIA (Accessible Rich Internet
Applications) 8
aria-describedby attribute 144
aria-invalid attribute 144
Asynchronous Module
Definition. See AMD
asyncTest() function 329
autocapitalize attribute 55
autocomplete widget
airport code example
263-265
local data source 47-48

355

www.it-ebooks.info

overview 46—47
polyfilling datalist element
with 353-354
remote source 49-52
scrolling and 265
testing focus event 329
third-party API source 52-55
autocorrect attribute 55
autoinitialization
enhanceWithin ()
method 312-314
_getCreateOptions()
method 314-315
overview 311-318
automated testing 330
autoOpen option 25, 278
autoRefresh option 132
axis option 120

Backbone 317

adding jQuery Ul to view 334

creating view 332-333

el/$el properties 334

using declarative

widgets 334-336

beforeClose event 37
beforeShow option 67
beforeShowDay option 62, 67
Bootstrap library 166
browsers

developer tools in 321-323

form controls styling 45

HTML5 support listing 351

support for 7

http://www.it-ebooks.info/

356

bug triage 344-345
buttons option 93
buttons, in forms 55-59
buttonset widget 58

Cc

caching 241
calc() function 177
callbacks 34-35
Can I use... website 351
cancel option 120
cancellable events 204
Cascading Style Sheets. See
CSS 151
CDNs (content delivery
networks)
downloading jQuery Ul
from 12
production usage and
239-240
chainable plugin 188-189
CI (Continuous
Integration) 330
class attribute 153
close() method 24, 93
CodePen 15, 320-321
collapsible option 79
collisions
flip collision setting 295-297
handling with position
utility 293-295
color property 157
colors, animating 155
connected lists 121
connectWith option 121
constraint validation 268
constructor function for
widgets 188
containment option 109, 120,
129
content delivery networks. See
CDNs
content option 105
Content-Encoding header 243
Continuous Integration. See CI
contributing to jQuery Ul
bug triage 344-345
documentation 345
helping others on
forums 343-344
submitting code 345-346
CORS (cross-origin resource
sharing) 50
_create() function 190-193

INDEX

createPseudo() method 301
cross-origin resource sharing. See
CORS
CSS (Cascading Style Sheets)
addClass() method 151-152
CSS3 animations vs. jQuery Ul
effects 156-161
off-canvas navigation menu
for mobile 153-155
optimizing 251-254
removeClass() method
151-152
responsive design 279
theming using framework
interaction cues 169-172
interaction states 168-169
styled confirmation dialog
example 172-174
widget containers 167-168
toggleClass() method
151-152
css() method 19, 101
culture option 339
currency pickers 339-340
cursor option 114, 120
cursorAt option 120

D

data-* attributes 85, 315
data() method 30, 301-302, 315
<datalist> element 74, 353-354
date input type 351
datepicker widget

callback options 67

extending 231-237

formatting dates 64-67

Globalize library and 342

localizations for 67-69

for mobile devices 178-179

options for 63

overview 62-64

polyfilling date input type

with 351

Require]S and 248
decimal pickers 337-339
declarative widgets

317, 334-336

defaultElement property
305-306
define() function 255-256
delay option 51, 120
deleteMessage () function 93
_destroy() function 207-212

www.it-ebooks.info

developer tools, browser
321-323
dialog() method 20
dialogcreate event handler 35
dialogs
draggable option 130
editing list using 28-31
overview 91-94
resizable option 130
showing message in 148-151
theming 172-174
direction option 137
disabled option 120
distance option 120, 137
documentation
contributing to 345
jQuery UI advantages 7
DOMContentLoaded event 14
downloading jQuery UI
from CDNs 12
Download Builder 241-243
from jQuery UI website 11-12
drag-and-drop game
example 110-114
draggable 130
overview 108-110
sortable vs. 120
drop event 110
droppable
drag-and-drop game
example 110-114
overview 110
shopping cart example
114-118
Drupal 4

E

easing 138-140
ECMAScript 244
effect() method 136-138
effects
CSS
addClass() method
151-152
off-canvas navigation menu
for mobile 153-155
removeClass ()
method 151-152
toggleClass() method
151-152
CSS3 animations vs. 156-161
customizing with easings
138-140
effect() method 136-138

http://www.it-ebooks.info/

effects (continued)
jQuery UI category 4
as options 23
show and hide options
147-148
showing message in
dialog 148-151
transfer effect 140-142
visibility changes
building portlets 144-147
form validation
messages 142-144
em unit 235
embedded-window usage for
widgets 307-308
enhance() method 335
enhanceWithin () method
312-314
event handlers 34-35
Event object 36
event option 81
event parameter 35
events
cancellable 204
listening for 195-196
testing 328-330
for widgets
event handlers vs.
callbacks 34-35
event parameters 35-39
subscribing to 32-34
expect() function 326
extending widgets
custom widgets 220-225
options for widgets 214-218
overview 214
redefining widget
prototype 218-220
Extensible Markup Language.
See XML
extension points 38
adding 230-231
overview 225-227
using undocumented

227-230

F

fadeIn() method 139
fadeOut() method 139
fadeToggle() method 139
find() method 273

Firefox 323

fit collision option 293-294

INDEX

fit option 120
flash of unstyled content. See
FOUC
flight-search application
application structure 260-261
collecting user input
airport code
autocomplete 263-265
overview 261-263
polyfilling HTML5
inputs 265-267
validating user input
268-271
connecting to RESTful API
looking up flights 271-272
parsing XML with
jQuery 272-273
displaying results
overview 274-276
processing indicator
277-279
using templates 276-277
overview 259-260
performance improvements
with almond 284-286
production preparation
283-284
responsive design 279-283
flip collision option 295-297
flipfit collision option 293-294
focus event 329
_focusTabbable () method 229
font size example 99-101
_format() method 341
formatDate() function 64, 272
forms
appointment form
example 71-74
autocomplete
local data source 47-48
overview 46-47
remote source 49-52
third-party API source
52-55
browser support for styling 45
buttons 55-59
challenges of modern web
forms 44-46
datepicker widget
formatting dates 64-67
localizations for 67-69
overview 62-64
dialog widget 91-94

www.it-ebooks.info

357

HTML5 elements vs.
widgets 74-76
progressbar widget 94-96
selectmenu widget 59-61
slider widget
font size example 99-101
overview 97-98
range sliders 98-99
spinner widget 69-71
tooltips
displaying preview in
104-106
HTML contentin 103-104
overview 101-103
validation messages 142-144
forums 343-344
FOUC (flash of unstyled
content) 13
fruit and vegetable sorting
game 121-125

G

getAttribute () method 315
_getCreateOptions()
method 310-311, 314-315
getltem () method 91
getJ]SON() method 54, 264
Globalize library
currency pickers 339-340
decimal pickers 337-339
time pickers 340-342
Google Chrome 75
developer tools in 323
support for 7
_gotoToday() method 232
$.grep() method 53
grid option 120, 129
gzip compression 243

H

<h1> ... <h6> elements 78
handle option 120, 146
handles option 125
hash-based links 83
<head> section 14
heightStyle option 81
help and support 346-347
helper option 114, 120
hide option 147-148
_hide() method 308-310
hide() method 139, 144
href attribute 82

http://www.it-ebooks.info/

358

HTML5 (Hypertext Markup

Language 5)

datepickers 236

draggable attribute 108

polyfilling elements
datalist element 353-354
date input type 351
number input type 351
overview 349-350
progress element 352-353
range input type 351-352
using Modernizr 350

tooltip content 103-104

validating input 268-271

widgets vs. 74-76

i18n (internationalization) 68
IATA (International Air Trans-
port Association) 263

icons option 59, 81
<iframe> elements 307
@import statements 253
include array 284
<input> elements 59, 69, 74
instance () method 31, 192, 300
instances of widgets 300-301
interaction
draggable 108-110
droppable
drag-and-drop game
example 110-114
overview 110
shopping cart
example 114-118
jQuery UI category 4
resizable
appointment scheduler
example 127-129
custom resize handles
126-127
overview 125-126
selectable 130-132
sortable
connected lists using 121
fruit and vegetable sorting
game 121-125
overview 118-121
theming using CSS 168-172
touch events

lack of support for 132-133

Touch Punch 133-134

INDEX

International Air Transport
Association. See IATA

internationalization. Seeil8n

Internet Explorer 76
developer tools in 323
support for 7

intersect option 120

IRC chat 344, 346

isOpen() method 26

_isSortable () method 223

isValid() method 71, 124, 327

J

JavaScript, optimizing 249-251
Query
jQuery Learning Center
website 323-324
online testing tools 320-321
Try jQuery website 319
JQuery Enlightenment 324
jQuery Forum website 343
JQuery in Action 324
jQuery Learning Center
website 323-324
jQuery Mobile 10
jQuery UI
advantages of
accessibility 8
browser support 7
consistent APIs 6-7
documentation 7
open source 7
stability 9
theming mechanism 7-8
changing source code 233
coding standards 15
contributing to
bug triage 344-345
documentation 345
helping others on
forums 343-344
submitting code 345-346
defined 4-5
downloading 241-243
from CDNs 12
from jQuery UI website
11-12
example using 12-15
getting help 346-347
history of 3-4
HTML5 elements vs.
widgets 74-76
icon class names 59
jQuery Mobile vs. 10

www.it-ebooks.info

limitations of
lack of widgets 9
mobile device support 10
online testing tools 15-17
team behind 5
versions of library 11
jQuery UI Core 297-299
jsBin 15, 320-321
jsFiddle 15, 260, 320-321

key code constants 299
@keyframes declaration 159

L

<label> elements 57
label property 48
layout
accordion widget
adding and removing
panels 81-82
configuring 79-81
overview 78-79
menu widget 88-91
tabs widget
loading remote content 83
movie information
example 83-87
overview 82-83
left property 154
linear easing 138
<link> tag 239
lists, editing using dialogs 28-31
localization 67-69
localStorage 150

MAMP 46

Mashape 261

max option 70, 97
maxDate option 63
maxHeight option 127
maxWidth option 127
menu widget 88-91
methods, testing 327-328
min option 70, 97
minDate option 63
minHeight option 127
minLength option 51, 264

http://www.it-ebooks.info/

mobile devices
extending datepicker
widget 231-237
off-canvas navigation
menu 153-155
support for 10
themed datepicker for
178-179
touch events
lack of support for 132-133
Touch Punch 133-134
modal option 93, 150
modeless dialogs 93
Modernizr library 350
modifier key 130
movie information example
83-87
MVC frameworks 317, 332

N

namespace creation for
widgets 188

none collision option 295

noWeekends() function 63

npm (Node Package
Manager) 249

number input type 351

numberFormat option 338

0

off-canvas navigation menu for
mobile 153-155
offset, position 38, 289
_on() function 195-196
on() method 32, 34
onChangeMonthYear option 67
onClose option 67
online testing tools 15-17,
320-321
onSelect option 67
opacity option 120
open source software 7
open() method 26
Opera 7
optimizeCss option 253
optimizer
optimizing CSS 251-254
optimizing JavaScript
249-251
overview 249

INDEX

<option> elements 60
option() method
changing locale 69
options vs. 27
options
option() method vs. 27
relying on other options 225
testing 325-327
for widgets 20-24, 197-199
orientation option 216
outerHeight() function 299
outerWidth () function 299

P

panels, accordion widget
adding and removing
panels 81-82
configuring 79-81
overview 78-79
parameters, event 35-39
_parse() method 341
parseDate () function 64-65,
272, 341
performance 284-286
placeholder option 120
plugins 19, 186
pointer option 120
polyfilling HTML5 with jQuery
Ul

datalist element 353-354
date input type 351
inputs 265-267
number input type 351
overview 349-350
progress element 352-353
range input type 351-352
using Modernizr 350
portlets 144-147
position option 23, 38, 180
position utility
flip collision setting 295-297
handling collisions 293-295
overview 287-290
UI walkthrough
example 290-292
preventDefault() method 36-37
production usage
AMD and
loading components with
Require]S 246-248
overview 243-245
setting up Require]S 2
45-246

www.it-ebooks.info

359

supporting in custom
widgets 254-258
building with optimizer
optimizing CSS 251-254
optimizing JavaScript
249-251
overview 249
downloading jQuery UI from
Download Builder 241-243
flightsearch application
283-284
third-party CDNs and
239-240
<progress> element 74, 352-353
progressbar widget
overview 94-96
polyfilling progress element
with 352-353
prototype 191
prototype chain for
widgets 303-304
pseudo-class for widgets 189

Q

qualifiers 54

QUnit testing library
testing events 328-330
testing methods 327-328
testing options 325-327

R

radio buttons 58
randomNumber() plugin 186
range input type 351-352
range sliders 98-99
refresh () method 81, 86
regional array 67
remote sources

for autocomplete 49-52

for tabs widget 83

for tooltips 105
removeClass() method 151-152
removeltem () method 91
removeUniqueld () method 298
render() method 333
require () function 246, 251
required attribute 268
requireExpects configuration

variable 326

Require]S

loading components

with 246-248

http://www.it-ebooks.info/

360

Require]S (continued)
setting up 245-246
using templates with 276277

Resig, John 3

resizable 130
appointment scheduler

example 127-129
custom resize handles
126-127
overview 125-126

RESTful APIs

looking up data with
$.ajax() 271-272

parsing XML with
jQuery 272-273

revert option 120

revertDuration option 113

rgb() function 155

rgba() function 155

RTT (round-trip time) 239

S

Safari 75

developer tools in 323

support for 7
scroll option 120
scrollSensitivity option 120
scrollSpeed option 120
<select> elements 46, 60
selectable 130-132
_selectDate() method 233
selectmenu widget 11, 59-61
sessionStorage 150
setDefaults() function 68
setltem () method 91
_setOption () method 199
setTimeout() function 330
shopping cart example 114-118
show option 147-148
_show() method 308-310
show() method 139, 143
simulate () function 331
slideDown () method 139
slider widget

font size example 99-101

overview 97-98

polyfilling range input type

with 351-352

range sliders 98-99
slideToggle () method 139
slideUp() method 139
sortable

connected lists using 121

draggable vs. 120

INDEX

fruit and vegetable sorting
game 121-125
overview 118-121
source option 47, 49
spacing in code 15
spinner widget
overview 69-71
polyfilling number input type
with 351
stability of jQuery UI 9
stack option 146
Stack Overflow 344
step attribute 70
step option 97
stepUp() method 328
style element 13
subscribing to events 32-34
_super() method 38, 221
_superApply() method 218
swing easing 138

T

tables, sortable 124
tabs widget
loading remote content 83
movie information
example 83-87
overview 82-83
vertical tabs 176-177
term parameter 49
term property 53
testing
automated 330
events 328-330
methods 327-328
online tools 15-17, 320-321
options 325-327
TestSwarm 330
that variable 197
Theme Roller 8, 163-166
theming
builtin 163-166
jQuery Ul advantages 7-8
making widgets
themeable 193-195
third-party themes 166
using CSS framework
interaction cues 169-172
interaction states 168-169
styled confirmation dialog
example 172-174
widget containers 167-168

www.it-ebooks.info

using widget class names
adding arrows to tooltips
with CSS 179-181
mobile-friendly datepicker
example 178-179
overview 174-176
vertical tabs 176-177
third-party API source 52-55
this keyword 34, 197
time pickers 340-342
times option 137
title attribute 103
toggle() method 139, 144
toggleClass() method
151-152, 196
tolerance option 121
tooltips
adding arrows to 179-181
displaying preview in 104-106
HTML content in 103-104
overview 101-103
touch events
lack of support for 132-133
Touch Punch 133-134
touch option 120
Touch Punch 133-134
transfer effect 140-142
transitionend event 157
_trigger() function 202-204
trigger () method 331
Try jQuery website 319
TypeError 304

u

ui namespace 187
ui parameter 35, 113
UI walkthrough example
290-292
ui-datepicker class name 178
ui-dialog-buttonpane class
name 175
ui-dialog-content class
name 175
ui-dialog-titlebar class name 175
ui-front class name 172, 227
ui-helper-clearfix class
name 172
ui-helper-hidden class name 172
ui-helper-hidden-accessible class
name 172
ui-helper-reset class name 172
ui-priority-primary class
name 170

http://www.it-ebooks.info/

ui-priority-secondary class
name 170
ui-state-active class name
169, 177
ui-state-default class name 169
ui-state-disabled class name
170, 172
ui-state-error class name 169
ui-state-error-text class
name 170
ui-state-focus class name 169
ui-state-highlight class
name 169, 174
ui-state-hover class name 169
ui-tabs class name 216
ui-tabs-vertical class name 216
ui-tooltip class name 180
ui-tooltip-content class
name 180
ui-widget class name 167-168
ui-widget-content class 167
ui-widget-content class
name 167
ui-widget-header class name 167
 elements 118
undocumented extension
points 227-230
unique ids, generating 297-299
upgrading 233
using option 296
utility functions
generating unique ids
297-299
using key code constants 299

'

validation
HTML5 268-271
messages for forms 142-144
plugin for 268
value property 48
value () method 95
vertical tabs 176-177
views, Backbone
adding jQuery Ul to 334
creating 332-333
visibility changes
building portlets 144-147
form validation
messages 142-144

INDEX

w

W3C (World Wide Web
Consortium) 9
WAMP 46
widget factory
$.widget() function
chainable plugin 188-189
constructor function 188
namespace creation 188
pseudo-class 189
adding methods 200-202
adding options 197-199
building 186-187
_destroy() function 207-212
enabling and disabling
widgets 205-207
extending widgets
custom widgets 220-225
datepicker widget 231-237
options for widgets
214-218
overview 214
redefining widget
prototype 218-220
extension points
adding 230-231
overview 225-227
using undocumented
227-230
listening for events with
_on() 195-196
making themeable 193-195
markup structure 189-190
overriding _create() to
initialize widgets 190-193
overview 185-186
triggering events with
_trigger() 202-204
widget() method 248
widgets
autoinitialization
enhanceWithin ()
method 312-314
_getCreateOptions()
method 314-315
overview 311-318
creating 19-20
customizing with options
20-24, 301-302, 310-311
dynamically creating 20

www.it-ebooks.info

361

embedded-window
usage 307-308
enabling and disabling
205-207
events for
event handlers vs.
callbacks 34-35
event parameters 35-39
subscribing to 32-34
_getCreateOptions()
method 310-311
_hide() method 308-310
HTMLS5 elements vs. 74-76
instances of 300-301
jQuery Ul category 4
lack of 9
methods for
editing list using dialogs
example 28-31
invoking 24-27
option() method 27-28
plugins vs. 186
prototype chain 303-304
_show() method 308-310
streamlining
initialization 305-306
supporting AMD 254-258
theming using class names
adding arrows to tooltips
with CSS 179-181
mobile-friendly datepicker
example 178-179
overview 174-176
vertical tabs 176-177
theming using CSS 167-168
third-party 211
Windows 8 touch devices 134
within option 293
WordPress 4
World Wide Web Consortium.
See W3C

X

XML (Extensible Markup
Language) 272-273

Y4

zIndex attribute 113, 120

http://www.it-ebooks.info/

WEB DEVELOPMENT

JQuery Ul v action

TJ VanToll SEE INS

Y oure only one tag away from richer user interfaces—

<script sre="jquery-ui.js">. The jQuery UI library simpli-

fies web UI development by providing robust widgets,
interactions, and effects you can use immediately. It includes
datepickers, autocompletes, tooltips, and a whole lot more.
And, jQuery UTl'’s powerful widget factory makes it a snap to
customize existing components to meet your needs.

¢CA fantastic resource.”?

—From the Foreword by Scott
Gonzélez, Project Lead, jQuery Ul

CCA complete and detailed
guide to writing
web user interfaces. ??

jQuery Ul'in Action is a practical guide to using and custom-
izing jQuery Ul library components. By working through
numerous examples, you'll quickly master jQuery UT’s twelve
widgets and five interactions—draggable, droppable, resizable,
selectable, and sortable. The engaging examples illustrate

—Gregor Zurowski, Sotheby’s

techniques that work across all devices. You'll use the widget CCExcellent, in—depth
factory to create reusable plugins and discover jQuery UT’s explanations of jQuery UT’s
CSS theming system that allows you to create a custom, inner workings. b))

cohesive look for your sites and your applications.)
Y Y pp —Linda Carver

Wicked Coursing LLC
What's Inside
* Create interactions that work on any device ¢C Articulate, well-organized,
* Customizable widgets for web and mobile apps easy to read, and thorough.??
* Written by a member of the core jQuery UI team —Philip Taffet, SOHOsoft LLC

e Covers jQuery UI 1.11

Written for front-end developers and web designers with a
basic understanding of jQuery.

A professional web developer, TJ VanToll is a2 member of the
jQuery Ul core team.

To download their free eBook in PDF, ePub, and Kindle formats, owners

of this book should visit manning.com/jQueryUlinAction

ISBN 13: 978-1-L17291-93-7
ISBN 10: 1-b617291-93-5

“ ‘H 5‘44 99
MN7816171291937

$44.99 / Can $47.99 [INCLUDING eBOOK]

www.it-ebooks.info

http://www.it-ebooks.info/

	jQuery UI in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions
	Getting the source code
	Author Online
	About the author

	about the cover illustration
	Part 1: Meet jQuery UI
	Chapter 1: Introducing jQuery UI
	1.1 What is in jQuery UI?
	1.2 The benefits of using jQuery UI
	1.2.1 Cohesive and consistent APIs
	1.2.2 Comprehensive browser support
	1.2.3 Open source and free to use
	1.2.4 Thorough documentation
	1.2.5 Powerful theming mechanism
	1.2.6 Emphasis on accessibility
	1.2.7 Stable and maintenance friendly

	1.3 The limitations of jQuery UI
	1.3.1 Lack of widgets
	1.3.2 jQuery UI and mobile devices

	1.4 Getting started with the library
	1.4.1 Versions of the library
	1.4.2 Downloading from the jQuery UI website
	1.4.3 Downloading from CDNs

	1.5 The first example
	1.6 Using an online testing tool
	1.7 Summary

	Chapter 2: Enhancing UIs with widgets
	2.1 Creating widgets
	2.2 Customizing widgets with options
	2.3 Modifying widgets with methods
	2.3.1 Invoking methods
	2.3.2 Using option() to modify widgets
	2.3.3 Using dialogs to edit lists

	2.4 Responding to widget changes with events
	2.4.1 Subscribing to widget events
	2.4.2 Event handlers vs. callbacks
	2.4.3 Event parameters

	2.5 Summary

	Part 2: jQuery UI Core
	Chapter 3: Building complex web forms with jQuery UI
	3.1 The challenges of building modern web forms
	3.2 Autocomplete: suggesting input options to users
	3.2.1 Using local data
	3.2.2 Loading from a remote source
	3.2.3 Using autocomplete with third-party services and APIs

	3.3 Button: enhancing native buttons, inputs, and links
	3.4 Selectmenu: enhancing native <select> elements
	3.5 Datepicker: selecting dates from a pop-up calendar
	3.5.1 Parsing and formatting dates
	3.5.2 Handling date globalization

	3.6 Spinner: enhancing native <input> elements to collect numeric data
	3.7 Completing the appointment form
	3.8 HTML5 elements vs. jQuery UI widgets
	3.9 Summary

	Chapter 4: Enhancing interfaces with layout and utility widgets
	4.1 Accordion: creating toggleable content panels
	4.1.1 Configuring the accordion widget
	4.1.2 Adding and removing panels

	4.2 Tabs: toggling between content areas
	4.2.1 Loading remote content
	4.2.2 Loading movie information in a tabs widget

	4.3 Menu: creating web menus with semantic markup
	4.4 Dialog: displaying content in a pop-up container
	4.5 Progressbar: displaying the progress of a task
	4.6 Slider: selecting a value using moveable handles
	4.6.1 Building range sliders
	4.6.2 Adding a font size range

	4.7 Tooltip: enhancing native tooltips with a customizable control
	4.7.1 Using custom tooltip content
	4.7.2 Displaying a preview in a tooltip

	4.8 Summary

	Chapter 5: Adding interaction to your interfaces
	5.1 Draggable: allowing users to move elements
	5.2 Droppable: creating containers that accept draggables
	5.2.1 Building a drag-and-drop game
	5.2.2 Building a shopping cart

	5.3 Sortable: rearranging elements in a list
	5.3.1 Building connected lists
	5.3.2 Building a fruit and vegetable sorting game

	5.4 Resizable: allowing users to change the size of elements
	5.4.1 Using custom resize handles
	5.4.2 Building an appointment scheduler

	5.5 Selectable: allowing users to select elements from a group
	5.6 Creating multidevice interactions: the importance of touch
	5.6.1 Why doesn’t jQuery UI support touch events?
	5.6.2 Introducing jQuery UI Touch Punch

	5.7 Summary

	Chapter 6: Creating rich animations with effects
	6.1 Using effects and the effect() method
	6.1.1 Customizing effects with easings
	6.1.2 Making visual associations with the transfer effect

	6.2 Animating visibility changes
	6.2.1 Building form validation messages
	6.2.2 Building portlets with jQuery UI

	6.3 Using effects with the jQuery UI widgets
	6.3.1 The show and hide options
	6.3.2 Showing a message in a dialog

	6.4 Animating CSS class name changes
	6.4.1 Enhancing addClass(), removeClass(), and toggleClass()
	6.4.2 Building an off-canvas navigation menu for mobile

	6.5 Effects vs. CSS3 animations and transitions
	6.5.1 CSS3 transitions vs. the jQuery UI class name methods
	6.5.2 CSS animations vs. effects

	6.6 Summary

	Chapter 7: Theming and styling applications with jQuery UI
	7.1 Using built-in and custom themes
	7.2 Using the jQuery UI CSS framework to customize applications
	7.2.1 Styling widget containers
	7.2.2 Styling interaction states
	7.2.3 Styling interaction cues
	7.2.4 Building a styled confirmation dialog

	7.3 Styling with widget class names
	7.3.1 Building vertical tabs
	7.3.2 Building a mobile-friendly datepicker
	7.3.3 Adding arrows to tooltips with CSS

	7.4 Summary

	Part 3: Customization and advanced usage
	Chapter 8: Using the widget factory to build stateful plugins
	8.1 Building a widget
	8.1.1 Constructing widgets with $.widget()
	8.1.2 Choosing a markup structure
	8.1.3 Overriding _create() to initialize widgets
	8.1.4 Making widgets themeable
	8.1.5 Listening for events with _on()

	8.2 Customizing widgets with options, methods, and events
	8.2.1 Making widgets configurable with options
	8.2.2 Changing the widget’s state with methods
	8.2.3 Triggering widget events with _trigger()

	8.3 Enabling, disabling, and destroying widgets
	8.3.1 Enabling and disabling a widget
	8.3.2 Undoing a widget’s effects with _destroy()

	8.4 Summary

	Chapter 9: Extending widgets with the widget factory
	9.1 Building widget extensions
	9.1.1 Changing existing and adding new options to a widget
	9.1.2 Redefining widgets with the widget factory
	9.1.3 Extending a custom widget

	9.2 Customizing widgets with extension points
	9.2.1 Using undocumented extension points
	9.2.2 Adding your own extension points

	9.3 Extending the datepicker widget
	9.3.1 Building a mobile-friendly datepicker extension

	9.4 Summary

	Chapter 10: Preparing your application for production
	10.1 The problem with third-party CDNs
	10.2 Downloading jQuery UI from Download Builder
	10.3 Managing JavaScript dependencies with AMD
	10.3.1 Setting up RequireJS for development
	10.3.2 Loading jQuery UI components with RequireJS

	10.4 Building your application’s assets with the optimizer
	10.4.1 Optimizing JavaScript assets
	10.4.2 Optimizing CSS dependencies

	10.5 Supporting AMD in custom widgets
	10.6 Summary

	Chapter 11: Building a flight-search application
	11.1 Structuring your application
	11.2 Collecting user input
	11.2.1 Building an airport code autocomplete
	11.2.2 Polyfilling HTML5 inputs with jQuery UI
	11.2.3 Validating user input with HTML5

	11.3 Connecting to a RESTful API
	11.3.1 Looking up flights with $.ajax()

	11.3.2 Parsing XML with jQuery
	11.4 Displaying the results on the screen
	11.4.1 Storing and resolving templates with RequireJS
	11.4.2 Showing a processing indicator while data loads

	11.5 Adding a responsive design
	11.6 Preparing the application for production
	11.7 Getting the optimal performance with almond
	11.8 Summary

	Chapter 12: Under the hood of jQuery UI
	12.1 Positioning elements with the position utility
	12.1.1 Building a UI walkthrough with the position utility and dialog widget
	12.1.2 Handling collisions elegantly
	12.1.3 Controlling the collision detection

	12.2 Using the utility functionality in jQuery UI Core
	12.2.1 Generating unique ids
	12.2.2 Using key code constants

	12.3 Accessing and managing widget instances
	12.3.1 Detecting widget instances with :data()

	12.4 Advanced widget prototype methods and properties
	12.4.1 A widget’s prototype chain explained
	12.4.2 Using a widget’s default element to streamline initialization
	12.4.3 Supporting embedded-window use in widgets
	12.4.4 Displaying elements with _show() and _hide()
	12.4.5 Customizing options on the fly

	12.5 Using autoinitialization to remove boilerplate code
	12.5.1 How jQuery Mobile’s autoinitialization works
	12.5.2 jQuery Mobile’s widget extension
	12.5.3 Autoinitializing jQuery UI widgets

	12.6 Summary

	appendix A: Learning jQuery
	A.1 Experimentation
	A.1.1 Try jQuery (try.jquery.com)
	A.1.2 Online testing tools
	A.1.3 The browser’s developer tools

	A.2 Reading
	A.2.1 jQuery Learning Center (learn.jquery.com)
	A.2.2 Books

	appendix B: How jQuery UI tests jQuery UI
	B.1 Testing options
	B.2 Testing methods
	B.3 Testing events

	appendix C: Using jQuery UI with Backbone
	C.1 Building a Backbone view
	C.2 Adding jQuery UI to the view
	C.3 Using declarative widgets

	appendix D: Creating decimal, currency, and time pickers with Globalize
	D.1 Building decimal pickers
	D.2 Building currency pickers
	D.3 Building time pickers

	appendix E: Contributing to jQuery UI
	E.1 Help others on the forums, Stack Overflow, and IRC
	E.2 Triage bugs
	E.3 Write documentation and maintain the websites
	E.4 Write code
	E.5 Ask for help

	appendix F: Polyfilling HTML5 with jQuery UI
	F.1 Using polyfills
	F.1.1 Using Modernizr

	F.2 Polyfilling <input type="date"> with datepicker
	F.3 Polyfilling <input type="number"> with spinner
	F.4 Polyfilling <input type="range"> with slider
	F.5 Polyfilling <progress> with progressbar
	F.6 Polyfilling <datalist> with autocomplete

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

