

Learning ECMAScript 6

Learn all the new ES6 features and be among the
most prominent JavaScript developers who can write
efficient JS programs as per the latest standards!

Narayan Prusty

BIRMINGHAM - MUMBAI

Learning ECMAScript 6

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1250815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-444-3

www.packtpub.com

www.packtpub.com

Credits

Author
Narayan Prusty

Reviewers
Andrea Chiarelli

Philippe Renevier Gonin

Domenico Luciani

Mihir Mone

Takeharu Oshida

Juri Strumpflohner

Commissioning Editor
Veena Pagare

Acquisition Editor
Aaron Lazar

Content Development Editor
Shweta Pant

Technical Editor
Rohith Rajan

Copy Editor
Yesha Gangani

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

Foreword

There is no better time than now to be working with JavaScript. Over the last few
years, we've seen JavaScript go from being the language no one really wanted to
touch to being the language that everyone can't wait to get their hands on. Large,
complicated applications are being built everyday in browsers and are exercising
and pushing JavaScript further than it has ever been pushed before. Frameworks
and entirely new approaches to application design have spawned to meet the
demands of this new world of client-side development, and the community has
rallied around them.

With ECMAScript 2015, or ES6 as it's commonly known, we finally have the language
to match our lofty ambitions. We've gained large, much needed functionalities, such
as Promises, and a module system that is native to the language; we've also gained
smaller, more subtle additions that make day-to-day development more enjoyable. Get
familiar with object destructuring, and you'll wonder how you ever wrote JavaScript
without it; use an arrow function for the first time, and you'll never want to type
"function" again. Avoid the complications of function scope and leaky variables
with "let", and you'll spend less time bashing your head against the desk.

Not only is ES6 a great language and an incredible upgrade on ES5, but the hard
work of many members of the community also means that you can use it today
and not have to wait for complete implementations in browsers. Tools exist to let
you convert your ES6 code into ES5 compliant code, meaning the future's now,
not 5 years down the line, as it so often is with JavaScript.

This book will guide you through a selection of the most useful additions to JavaScript
and bring you up to the speed with the current functionality available to you. You'll
learn how building modular applications is much easier with ES6's native module
system and how your code can become cleaner, more succinct, and more enjoyable
to work with. Learning this new standard is a daunting task for any developer, and
I'm delighted to contribute a foreword toward a book that will make this task much
less daunting.

This brave new world of JavaScript, client-side applications, frameworks, and more
is being powered by ES6, and this book will help you take your first steps toward it.
I hope you end this book as excited as I am.

Jack Franklin
JavaScript Developer at GoCardless
@Jack_Franklin
http://www.jackfranklin.co.uk

@Jack_Franklin
http://www.jackfranklin.co.uk

About the Author

Narayan Prusty is a web and mobile app developer. He specializes in WordPress,
HTML5, JavaScript, PHP, Solr, and Cordova. He has been learning and building
applications using these technologies for many years.

He is the founder of QScutter.com, which provides courses on various application
development topics and has more than 10,000 subscribers worldwide. His personal
blog, http://www.QNimate.com, is among the top Intel XDK and WordPress blogs.
He also works as a consultant and freelance developer for many companies worldwide.

Visit him online at http://www.twitter.com/narayanprusty.

Thanks first and foremost to the web community. Without their
combined brilliance and generosity in documenting and sharing
solutions, I wouldn't have been able to write this book. Finally,
thanks to my family for being so supportive.

http://www.QNimate.com
http://www.twitter.com/narayanprusty

About the Reviewers

Andrea Chiarelli has over 20 years of experience as a software engineer and
technical writer. In his professional career, he has used various technologies for
the projects he has been involved in, from C# to JavaScript, ASP.NET to AngularJS,
and REST to PhoneGap/Cordova.

He has contributed to many online and offline magazines, such as Computer
Programming and ASP Today, and was a coauthor of a few books published
by Wrox Press.

Currently, he is a senior software engineer at the Italian office of Apparound Inc.,
a mobile software company founded in the heart of Silicon Valley, and he is a regular
contributor to HTML.it, an Italian online magazine focused on web technologies.

Philippe Renevier Gonin has been an assistant professor at the University of
Nice Sophia Antipolis, France, since 2005. He teaches web technologies, software
engineering (architecture and development), and HCI (Human Computer Interaction).
From a research perspective, Philippe works on connections between user-centered
design (for example, users and tasks models) and software engineering (for example,
component architecture and UI development). In his projects, he often develops
software and tools in Javascript, HMTL, CSS, and Java (Android).

Domenico Luciani is a 22-year-old passionate programmer. He is currently
working as a software engineer for some companies and is pursuing a degree in
computer science at The University of Palermo.

He is a computer vision enthusiast. He loves computer security and often pen-tests
too; he takes part in bounty programs for many companies. He has worked on many
technologies in the past, such as MongoDB, Node.js, PHP, PostgreSQL, and C.

He creates Node.js modules, which are published on the NPM website. He has
collaborated as a reviewer and is currently learning GoLang just for fun.

He is also a part of the Maker community and likes working on his Raspberry Pi.
He loves writing code using vim and managing it with Git. He also writes tests
and collaborates on open source projects across the Web.

In his spare time, he is a runner and loves parkour. You can find more information
about him at http://www.dlion.it.

Mihir Mone is a postgraduate from Monash University, Australia. Although he
did his post graduation in network computing, these days, he mainly is into web and
mobile development. After spending some time fiddling around with routers and
switches, he quickly decided to build upon his passion for web development—not
design, but development. Building web systems and applications rather than websites
with all their fancy Flash animations was something that was very interesting and
alluring to him. He even returned to his alma mater to teach web development in
order to give back what he had learned.

Now, he works for a small software/engineering house in Melbourne, doing web
development and prototyping exciting new ideas in the field of data visualization
and UX domains.

He is also a big JavaScript fan and has previously reviewed a few books on jQuery
and JavaScript. He is a Linux enthusiast and a big proponent of the OSS movement.
He believes that software should always be free to actualize its true potential.

A true geek at heart, he spends some of his leisure time writing code in the hope
that it may be helpful to the masses. You can find more information on him at
http://mihirmone.apphb.com.

http://www.dlion.it
http://mihirmone.apphb.com

Takeharu Oshida (https://github.com/georgeOsdDev) works at a small
start-up called Mobilus (http://mobilus.co.jp/). Mobilus provides a real-time
communication platform and an SDK called Konnect.

As a JavaScript engineer, he designs JavaScript APIs, and creates React.JS-based
web applications with ES6.

He is also a member of the Xitrum web framework project (http://xitrum-
framework.github.io/). As a part of this project, he is learning the functional
programming style of Scala by either creating sample applications or translating
documents.

He has been a reviewer on Learning Behavior-driven Development Javascript, published
by Packt Publishing.

Juri Strumpflohner is a passionate developer who loves to code, follow the latest
trends on web development, and share his findings with others. He has been working
as a coding architect and technical lead for an e-government company, where he is
responsible for coaching developers, innovating, and making sure that the software
meets the desired quality.

In his free time, he contributes to open source projects, does book reviews (like this
one), tweets (@juristr), and writes about the latest web development tech news
on his blog at http://juristr.com. Currently, he's particularly interested in ES
2015 (ES6), AngularJS, React, Babel, and all the hot stuff that comes with modern
web development.

When not coding, Juri is either training or teaching Yoseikan Budo, a martial art
where he currently has a 2nd DAN black belt. Follow him on twitter (@juristr)
on the Web, or visit his blog at http://juristr.com to catch up with him.

https://github.com/georgeOsdDev
http://mobilus.co.jp/
http://xitrum-framework.github.io/
http://xitrum-framework.github.io/
@juristr
http://juristr.com
@juristr
http://juristr.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Playing with Syntax	 1

The let keyword	 1
Declaring function scoped variables	 2
Declaring block scoped variables	 3
Re-declaring variables	 4

The const keyword	 6
The scope of constant variables	 7
Referencing the objects using constant variables	 7

Default parameter values	 8
The spread operator	 9

Other usages of the spread operator	 11
Making array values a part of another array	 11
Pushing the values of an array into another array	 11

Spreading multiple arrays	 12
The rest parameter	 13
The destructuring assignment	 14

The array destructuring assignment	 14
Ignoring values	 15
Using the rest operator in the array destructuring assignment	 15
Default values for variables	 16
Nested array destructuring	 17
Using the destructuring assignment as a parameter	 17

The object destructuring assignment	 17
Default values for the variables	 18
Destructuring computed property names	 19
Destructuring nested objects	 19
Using the object destructuring assignment as a parameter	 19

Table of Contents

[ii]

The arrow functions	 19
The value of "this" in an arrow function	 20
Other differences between the arrow and traditional functions	 22

The enhanced object literals	 22
Defining properties	 22
Defining methods	 23
The computed property names	 23

Summary	 24
Chapter 2: Knowing Your Library	 25

Working with numbers	 25
The binary notation	 26
The octal notation	 26
The Number.isInteger(number) method	 27
The Number.isNaN(value) method	 28
The Number.isFinite(number) method	 29
The Number.isSafeInteger(number) method	 30
The Number.EPSILON property	 30

Doing Math	 31
Trigonometry related operations	 32
Arithmetic related operations	 32
Miscellaneous methods	 33

The Math.imul(number1, number2) function	 33
The Math.clz32(number) function	 33
The Math.sign(number) function	 34
The Math.trunc(number) function	 34
The Math.fround(number) function	 34

Working with strings	 35
Escaping larger code points	 36
The codePointAt(index) method	 36
The String.fromCodePoint(number1, …, number 2) method	 36
The repeat(count) method	 37
The includes(string, index) method	 37
The startsWith(string, index) method	 37
The endsWith(string, index) function	 38
Normalization	 38

A case study	 38
Template strings	 40

Expressions	 40
Multiline strings	 42
Raw strings	 43

Table of Contents

[iii]

Arrays	 44
The Array.from(iterable, mapFunc, this) method	 44
The Array.of(values…) method	 44
The fill(value, startIndex, endIndex) method	 45
The find(testingFunc, this) method	 46
The findIndex(testingFunc, this) method	 47
The copyWithin(targetIndex, startIndex, endIndex) function	 47
The entries(), keys(), and values() method	 48

Collections	 49
Array buffers	 49
Typed arrays	 51
Set	 52
WeakSet	 53
Map	 54
WeakMap	 55

Object	 56
The __proto__ property	 56

The Object.is(value1, value2) method	 56
The Object.setPrototypeOf(object, prototype) method	 57
The Object.assign(targetObj, sourceObjs…) method	 57

Summary	 58
Chapter 3: Using Iterators	 59

The ES6 symbols	 59
The "typeof" operator	 60
The "new" operator	 60
Using symbols as property keys	 61
The Object.getOwnPropertySymbols() method	 62
The Symbol.for(string) method	 62
The well-known symbols	 63

The iteration protocols	 64
The iterator protocol	 64
The iterable protocol	 65

Generators	 66
The return(value) method	 68
The throw(exception) method	 69
The "yield*" keyword	 70

The "for…of" loop	 71
The tail call optimization	 72

Converting the non-tail calls into the tail calls	 73
Summary	 74

Table of Contents

[iv]

Chapter 4: Asynchronous Programming	 75
The JavaScript execution model	 76
Writing asynchronous code	 76

The asynchronous code involving events	 77
The asynchronous code involving callbacks	 80

Promises to the rescue	 82
The Promise constructor	 83
The fulfillment value	 84
The then(onFulfilled, onRejected) method	 85
The catch(onRejected) method	 91
The Promise.resolve(value) method	 94
The Promise.reject(value) method	 94
The Promise.all(iterable) method	 95
The Promise.race(iterable) method	 96

The JavaScript APIs based on Promises	 97
The Battery Status API	 97
The Web Cryptography API	 98

Summary	 99
Chapter 5: Implementing the Reflect API	 101

The Reflect object	 101
The Reflect.apply(function, this, args) method	 102
The Reflect.construct(constructor, args, prototype) method	 102
The Reflect.defineProperty(object, property, descriptor) method	 103

Understanding the data properties and accessor properties	 104
The Reflect.deleteProperty(object, property) method	 106
The Reflect.enumerate(object) method	 107
The Reflect.get(object, property, this) method	 107
The Reflect.set(object, property, value, this) method	 108
The Reflect.getOwnPropertyDescriptor(object, property) method	 109
The Reflect.getPrototypeOf(object) method	 109
The Reflect.setPrototypeOf(object, prototype) method	 110
The Reflect.has(object, property) method	 110
The Reflect.isExtensible(object) method	 111
The Reflect.preventExtensions(object) method	 111
The Reflect.ownKeys(object) method	 112

Summary	 112

Table of Contents

[v]

Chapter 6: Using Proxies	 113
Proxies in a nutshell	 113

Terminology	 114
The Proxy API	 114

Traps	 115
The get(target, property, receiver) method	 115
The set(target, property, value, receiver) method	 118
The has(target, property) method	 118
The isExtensible(target) method	 119
The getPrototypeOf(target) method	 120
The setPrototypeOf(target, prototype) method	 120
The preventExtensions(target) method	 121
The getOwnPropertyDescriptor(target, property) method	 122
The defineProperty(target, property, descriptor) method	 123
The deleteProperty(target, property) method	 124
The enumerate(target) method	 124
The ownKeys(target) method	 125
The apply(target, thisValue, arguments) method	 127
The construct(target, arguments) method	 128

The Proxy.revocable(target, handler) method	 128
Use Case	 129

The uses of proxies	 129
Summary	 130

Chapter 7: Walking You Through Classes	 131
Understanding the Object-oriented JavaScript	 131

The JavaScript data types	 132
Creating objects	 132
Understanding inheritance	 133
The constructors of primitive data types	 137

Using classes	 139
Defining a class	 139

The class declaration	 139
The class expression	 141

The prototype methods	 141
The get and set methods	 143
The generator method	 144

The static methods	 145
Implementing inheritance in classes	 146
The computed method names	 148
The attributes of properties	 149
Classes are not hoisted!	 149

Table of Contents

[vi]

Overriding the result of the constructor method	 150
The "Symbol.species" static accessor property	 150
The "new.target" implicit parameter	 152

Using "super" in the object literals	 153
Summary	 154

Chapter 8: Modular Programming	 155
The JavaScript modules in a nutshell	 155
Implementing modules – the old way	 156

The Immediately-Invoked Function Expression	 156
Asynchronous Module Definition	 158
CommonJS	 159
Universal Module Definition	 160

Implementing modules – the new way	 161
Creating the ES6 modules	 161
Importing the ES6 modules	 162
The module loader	 164
Using modules in browsers	 164
Using modules in the eval() function	 165
The default exports versus the named exports	 165
Diving into an example	 165

Summary	 167
Index	 169

[vii]

Preface
ECMAScript is a scripting language standardized by Ecma International in the
ECMA-262 specification and ISO/IEC 16262. Scripting languages such as JavaScript,
JScript and ActionScript are supersets of ECMAScript. Although JavaScript, JScript,
and ActionScript have more capabilities than ECMAScript, by defining more objects
and methods, the core features of these languages are the same as ECMAScript.

ECMAScript 6 is the sixth version and the seventh edition of the ECMAScript
language. In short, it is also called "ES6".

Although JavaScript is extremely powerful and flexible, it's often criticized for
having unnecessary redundancy. Therefore, JavaScript developers often use
abstractions such as CoffeeScript and Typescript, which provide easier syntax,
powerful features, and compile to JavaScript. ES6 was introduced to improve
JavaScript and ensure that developers no longer needed to use abstractions or
other techniques to write quality code, which was becoming a lengthy process.

The ES6 features are inherited from other popular and abstracting languages, such
as CoffeeScript. Therefore, ES6 language features behave the same way as they do
in other languages, and are not new in the programming world, even if they are
new in JavaScript.

This book provides explanations with examples for all the features of the new version
of ECMAScript, ECMAScript 6. This book is about the JavaScript implementation of
ECMAScript 6. All the features and examples in this book work on all the JavaScript
environments, such as browsers, Node.js, Cordova, and so on.

Preface

[viii]

What this book covers
Chapter 1, Playing with Syntax, introduces new ways of creating variables and
function parameters. This chapter discusses the new objects and functions
syntaxes in more depth.

Chapter 2, Knowing Your Library, introduces the new prototype-based methods for
the existing objects.

Chapter 3, Using Iterators, shows the different types of iterators available in ES6, and
how to create custom iterators. It also discusses the tail call optimization in ES6.

Chapter 4, Asynchronous Programming, illustrates how Promises can make it easier to
write code that's executed asynchronously.

Chapter 5, Implementing the Reflect API, gives an in-depth guide to object reflection
in ES6.

Chapter 6, Using Proxies, shows how to define the custom behavior the fundamental
operations on the objects using the ES6 proxies.

Chapter 7, Walking You Through Classes, introduces the Object-oriented Programming
using the ES6 classes. Concepts such as inheritance, constructors, abstraction,
information hiding, and more are explained here.

Chapter 8, Modular Programming, explains different ways to create modules using
JavaScript. Technologies such as the IIFE, CommonJS, AMD, UMD, and ES6 modules
are covered.

What you need for this book
If you are reading this book after ES6 is fully supported by all the JavaScript engines,
then you don't need to set up any specific testing environment. You can simply test
the examples on any engine of your choice.

If you are reading this book before ES6 is completely supported by all the JavaScript
engines, then follow up with this book and execute the code snippets for which
you can use an ES6 transpiler. If you want to run the code examples in the browser
environment, then use this sample webpage template, which has Traceur transpiler
attached to it for converting ES6 into ES5 on every page-load:

<!doctype html>
<html>
<head>...</head>
<body>

Preface

[ix]

...

<script src="traceur.js"></script>
<script src="bootstrap.js"></script>
<script type="module">
 //Place ES6 code here
</script>
</body>
</html>

Download the traceur.js script from https://google.github.io/traceur-
compiler/bin/traceur.js, and the bootstrap.js script from https://google.
github.io/traceur-compiler/src/bootstrap.js. Then, place them in the same
directory as the HTML file containing the previous code.

In the exercise files (the code bundle), Traceur transpiler and polyfills are already
attached. The exercise files are created for testing the code examples on browsers.

For Chapter 4, Asynchronous Programming, you will have to use the browser
environment for testing, as we have used jQuery and AJAX in the examples.
You will also need a web server for it.

For Chapter 8, Modular Programming, if you use the browser environment for testing,
then you need a web server. But if you use the Node.js environment, then you don't
need a web server.

Compatibility with ECMAScript 6
This book was written before all the JavaScript engines started supporting all the
features of ES6.

The specifications of ES6 have already been finalized. It's just not all JavaScript
engines have finished the implementation of all the features of ES6. I am pretty
much sure that by the end of 2016, all JavaScript engines will support ES6.

Kangax has created an ES6 compatibility table where you can track the support
of various ES6 features on various JavaScript engines. You can find the table at
http://kangax.github.io/compat-table/es6/.

https://google.github.io/traceur-compiler/bin/traceur.js
https://google.github.io/traceur-compiler/bin/traceur.js
https://google.github.io/traceur-compiler/src/bootstrap.js
https://google.github.io/traceur-compiler/src/bootstrap.js
http://kangax.github.io/compat-table/es6/

Preface

[x]

Running ECMAScript 6 in incompatible
engines
If you want to run ES6 in an engine that doesn't support ES6, then you can use the
ES6 polyfills or the ES6 transpilers.

A polyfill is a piece of code that provides the technology that you, the developer,
expect the JavaScript engine to provide natively. Remember that polyfills are not
available for every ES6 feature, and that they cannot be created. A list of all the
available polyfills and their download links are available at https://github.com/
Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#ecmascript-6-
harmony.

An ES6 transpiler takes the ES6 source code and outputs the ES5 source code, which
is compatible with all JavaScript engines. Transpilers support the conversion of more
features than polyfills, but may not support all the features of ES6. There are various
transpilers available, such as the Google Traceur (https://github.com/google/
traceur-compiler), Google Caja (https://developers.google.com/caja/),
Babel (https://babeljs.io/), Termi ES6 Transpiler (https://github.com/termi/
es6-transpiler), and more. You should always transpile the ES6 code to ES5 before
attaching it to your web pages, instead of transpiling it on frontend each time your
page loads so that web pages don't load slower.

Therefore, by using a transpiler and/or polyfills, you can start writing ES6 code for
distribution even before all the engines completely support ES6 and before non-ES6
engines become obsolete.

Who this book is for
This book is for anyone who is familiar with JavaScript. You don't have to be
a JavaScript expert to understand this book. This book will help you take your
JavaScript knowledge to the next level.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#ecmascript-6-harmony
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#ecmascript-6-harmony
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills#ecmascript-6-harmony
https://github.com/google/traceur-compiler
https://github.com/google/traceur-compiler
https://developers.google.com/caja/
https://babeljs.io/
https://github.com/termi/es6-transpiler
https://github.com/termi/es6-transpiler

Preface

[xi]

A block of code is set as follows:

var a = 12; //accessible globally

function myFunction()
{
 console.log(a);

 var b = 13; //accessible throughout function

 if(true)
 {
 var c = 14; //accessible throughout function
 console.log(b);
 }

 console.log(c);
}

myFunction();

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

[1]

Playing with Syntax
JavaScript was lacking behind some other programming languages when compared
to various syntactic forms such as declaring constant variables, declaring block
scoped variables, extracting data from arrays, shorter syntax for declaring functions
and so on. ES6 adds up a lot of new syntax-based features to JavaScript, which helps
the developers to write less and do more. ES6 also prevents programmers from using
various hacks for achieving various goals, which have negative performance impact
and made code harder to read. In this chapter, we will look at the new syntactic
features, introduced by ES6.

In this chapter, we'll cover:

•	 Creating the block scoped variables using the let keyword
•	 Creating constant variables using the const keyword
•	 The spread operator and the rest parameter
•	 Extracting the data from iterables and objects using the destructuring

assignment
•	 The arrow functions
•	 The new syntaxes for creating the object properties

The let keyword
The ES6 let keyword is used to declare a block scoped variable, optionally initializing
it to a value. The programmers who come from other programming language
background, but new to JavaScript, often end up writing error-prone JavaScript
programs, believing that the JavaScript variables are block scoped. Almost every
popular programming language has the same rules when it comes to the variable
scopes, but JavaScript acts a bit different due to a lack of the block scoped variables.
Due to the fact that JavaScript variables are not block scoped, there are chances of
memory leak and also the JavaScript programs are harder to read and debug.

Playing with Syntax

[2]

Declaring function scoped variables
The JavaScript variables that are declared using the var keyword are called as
function scoped variables. The function scoped variables are accessible globally to
the script, that is, throughout the script, if declared outside a function. Similarly,
if the function scoped variables are declared inside a function, then they become
accessible throughout the function, but not outside the function.

Here is an example that shows how to create the function-scoped variables:

var a = 12; //accessible globally

function myFunction()
{
 console.log(a);

 var b = 13; //accessible throughout function

 if(true)
 {
 var c = 14; //accessible throughout function
 console.log(b);
 }

 console.log(c);
}

myFunction();

The output of the code is:

12
13
14

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Here, you can see that the c variable is accessible outside the if statement, but
this is not the case in other programming languages. So, the programmers coming
from other languages would expect the c variable to be undefined outside the if
statement, but that's not the case. Therefore, ES6 had introduced the let keyword,
which can be used for creating variables that are block scoped.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[3]

Declaring block scoped variables
Variables that are declared using the let keyword are called as block scoped variables.
The block scoped variables behave the same way as the function scoped variables
when declared outside a function, that is, they are accessible globally. But when the
block scoped variables are declared inside a block, then they are accessible inside the
block that they are defined in (and also any sub-blocks) but not outside the block.

A block is used to group zero or more statements. A pair of curly brackets
delimits the block, that is {}.

Let's take the previous example script, replace var with the let keyword, and see
the output:

let a = 12; //accessible globally

function myFunction()
{
 console.log(a);

 let b = 13; //accessible throughout function

 if(true)
 {
 let c = 14; //accessible throughout the "if" statement
 console.log(b);
 }

 console.log(c);
}

myFunction();

The output of the code is:

12
13
Reference Error Exception

Now, the output is as expected by a programmer who is used to another
programming language.

Playing with Syntax

[4]

Re-declaring variables
When you declare a variable using the var keyword that is already declared using
var keyword (in the same scope) then it's overwritten. Consider this example:

var a = 0;
var a = 1;

console.log(a);

function myFunction()
{
 var b = 2;
 var b = 3;

 console.log(b);
}

myFunction();

The output of the code is:

1
3

The output is as expected. But the variables created using the let keyword don't
behave in the same way.

When you declare a variable using the let keyword that is already declared using
the let keyword in the same scope, then it throws a TypeError exception. Consider
this example:

let a = 0;
let a = 1; //TypeError

function myFunction()
{
 let b = 2;
 let b = 3; //TypeError

 if(true)
 {
 let c = 4;

Chapter 1

[5]

 let c = 5; //TypeError
 }
}

myFunction();

When you declare a variable with a name that's already accessible in a function (or
inner function), or is a sub-block using var or the let keyword respectively, then it's
a different variable. Here, is an example that shows the behavior:

var a = 1;
let b = 2;

function myFunction()
{
 var a = 3; //different variable
 let b = 4; //different variable

 if(true)
 {
 var a = 5; //overwritten
 let b = 6; //different variable

 console.log(a);
 console.log(b);
 }

 console.log(a);
 console.log(b);
}

myFunction();

console.log(a);
console.log(b);

The output of the code is:

5
6
5
4
1
2

Playing with Syntax

[6]

var versus let, which one to use?
When writing the ES6 code, it is recommended to switch to using
the let keyword because it makes scripts more memory friendly,
prevents scoping mistakes, prevents accidental bugs, and makes
the code easier to read. But if you are already addicted to the var
keyword and comfortable using it, then you can still use this.

You may be wondering why not just make the var keyword to define the block-
scoped variables instead of introducing the let keyword? The reason why the
var keyword wasn't made enough to define block-scoped variables, instead of
introducing the let keyword, was for the sake of backward compatibility.

The const keyword
The ES6 const keyword is used to declare the read-only variables, that is, the
variables whose value cannot be reassigned. Before ES6, the programmers usually
used to prefix the variables that were supposed to be constant. For example, take a
look at the following code:

var const_pi = 3.141;
var r = 2;
console.log(const_pi * r * r); //Output "12.564"

The value of pi should always remain constant. Here, although we have prefixed
it, there is still a chance that we might accidentally change its value somewhere in
the program, as they're no native protection to the value of pi. Prefixing is just not
enough to keep the track of the constant variables.

Therefore, the const keyword was introduced to provide a native protection to the
constant variables. So, the previous program should be written in this way in ES6:

const pi = 3.141;
var r = 2;

console.log(pi * r * r); //Output "12.564"

pi = 12; //throws read-only exception

Here, when we tried to change the value of pi, a read-only exception was thrown.

Chapter 1

[7]

The scope of constant variables
Constant variables are block-scoped variables, that is, they follow the same scoping
rules as the variables that are declared using the let keyword. Here is an example,
which shows the scope of the constant variables:

const a = 12; //accessible globally

function myFunction()
{
 console.log(a);

 const b = 13; //accessible throughout function

 if(true)
 {
 const c = 14; //accessible throughout the "if" statement
 console.log(b);
 }

 console.log(c);
}

myFunction();

The output of the preceding code is:

12
13
ReferenceError Exception

Here, we can see that the constant variables behave in the same way as the block
scoped variables, when it comes to the scoping rules.

Referencing the objects using constant
variables
When we assign an object to a variable, the reference of the object is what the
variable holds and not the object itself. So, when assigning an object to a constant
variable, the reference of the object becomes constant to that variable and not to the
object itself. Therefore, the object is mutable.

Playing with Syntax

[8]

Consider this example:

const a = {
 "name" : "John"
};

console.log(a.name);

a.name = "Eden";

console.log(a.name);

a = {}; //throws read-only exception

The output of the preceding code is:

John
Eden
a is read only: Exception

In this example, the a variable stores the address (that is, reference) of the object. So
the address of the object is the value of the a variable, and it cannot be changed. But
the object is mutable. So when we tried to assign another object to the a variable, we
got an exception as we were trying to change the value of the a variable.

Default parameter values
In JavaScript there is no defined way to assign the default values to the function
parameters that are not passed. So, the programmers usually check for the
parameters with the undefined value (as it is the default value for the missing
parameters), and assign the default values to them. Here is an example, which shows
how to do this:

function myFunction(x, y, z)
{
 x = x === undefined ? 1 : x;
 y = y === undefined ? 2 : y;
 z = z === undefined ? 3 : z;

 console.log(x, y, z); //Output "6 7 3"
}
myFunction(6, 7);

Chapter 1

[9]

ES6 provides a new syntax that can be used to do this in an easier way. Here is the
code which demonstrates how to do this in ES6:

function myFunction(x = 1, y = 2, z = 3)
{
 console.log(x, y, z); // Output "6 7 3"
}

myFunction(6,7);

Also, passing undefined is considered as missing an argument. Here is an example
to demonstrate this:

function myFunction(x = 1, y = 2, z = 3)
{
 console.log(x, y, z); // Output "1 7 9"
}

myFunction(undefined,7,9);

Defaults can also be expressions. Here is an example to demonstrate this:

function myFunction(x = 1, y = 2, z = 3 + 5)
{
 console.log(x, y, z); // Output "6 7 8"
}

myFunction(6,7);

The spread operator
A spread operator is represented by the "…" token. A spread operator splits an
iterable object into the individual values.

An iterable is an object that contains a group of values, and
implements ES6 iterable protocol to let us iterate through its
values. An array is an example of built in an iterable object.

Playing with Syntax

[10]

A spread operator can be placed wherever multiple function arguments or multiple
elements (for array literals) are expected in code.

The spread operator is commonly used to spread the values of an iterable object into
the arguments of a function. Let's take an example of an array and see how to split it
into the arguments of a function.

Before ES6, for providing the values of an array as function argument, the
programmers used the apply() method of functions. Here is an example:

function myFunction(a, b)
{
 return a + b;
}

var data = [1, 4];
var result = myFunction.apply(null, data);

console.log(result); //Output "5"

Here, the apply method takes an array, extracts the values, passes them as individual
arguments to the function, and then calls it.

ES6 provides an easy way to do this, using the spread operator. Here is an example:

function myFunction(a, b)
{
 return a + b;
}

let data = [1, 4];
let result = myFunction(...data);
console.log(result); //Output "5"

During runtime, before the JavaScript interpreter calls the myFunction function,
it replaces …data with the 1,4 expression:

let result = myFunction(...data);

The previous code is replaced with:

let result = myFunction(1,4);

After this, the function is called.

Chapter 1

[11]

A spread operator doesn't call the apply() method. The JavaScript
runtime engine spreads the array using the iteration protocols, and has
nothing to do with the apply() method, but the behavior is same.

Other usages of the spread operator
The spread operator is not just limited to spreading an iterable object into the
function arguments, but it can be used wherever multiple elements (for array literals)
are expected in code. So it has many uses. Let's see some other use cases of the
spread operator for arrays.

Making array values a part of another array
It can also be used to make the array values a part of another array. Here is an
example code that demonstrates how to make the values of an existing array
a part of another array while creating it.

let array1 = [2,3,4];
let array2 = [1, ...array1, 5, 6, 7];

console.log(array2); //Output "1, 2, 3, 4, 5, 6, 7"

Here the following line:

let array2 = [1, ...array1, 5, 6, 7];

Will be replaced with the following line:

let array2 = [1, 2, 3, 4, 5, 6, 7];

Pushing the values of an array into another array
Sometimes, we may need to push the values of an existing array into the end of
another existing array.

Before ES6, this is how the programmers used to do it:

var array1 = [2,3,4];
var array2 = [1];

Array.prototype.push.apply(array2, array1);

console.log(array2); //Output "1, 2, 3, 4"

Playing with Syntax

[12]

But in ES6 we have a much cleaner way to do it, which is as follows:

let array1 = [2,3,4];
let array2 = [1];

array2.push(...array1);

console.log(array2); //Output "1, 2, 3, 4"

Here the push method takes a series of variables, and adds them to the end of the
array on which it is called.

Here the following line:

array2.push(...array1);

Will be replaced with the following line:

array2.push(2, 3, 4);

Spreading multiple arrays
Multiple arrays can be spread on a single line of expression. For example, take the
following code:

let array1 = [1];
let array2 = [2];
let array3 = [...array1, ...array2, ...[3, 4]];//multi array
spread
let array4 = [5];

function myFunction(a, b, c, d, e)
{
 return a+b+c+d+e;
}

let result = myFunction(...array3, ...array4); //multi array
spread

console.log(result); //Output "15"

Chapter 1

[13]

The rest parameter
The rest parameter is also represented by the "…" token. The last parameter of a
function prefixed with "…" is called as a rest parameter. The rest parameter is an
array type, which contains the rest of the parameters of a function when number of
arguments exceeds the number of named parameters.

The rest parameter is used to capture a variable number of the function arguments
from within a function.

Before ES6, the programmers used the arguments object of a function to retrieve the
extra arguments, passed to the function. The arguments object is not an array, but it
provides some interfaces that are similar to an array.

Here is a code example that shows how to use the arguments object to retrieve the
extra arguments:

function myFunction(a, b)
{
 var args = Array.prototype.slice.call(arguments,
 myFunction.length);

 console.log(args);
}

myFunction(1, 2, 3, 4, 5); //Output "3, 4, 5"

In ES6, this can be done in a much easier and cleaner way, using the rest parameter.
Here is an example of using the rest parameter:

function myFunction(a, b, ...args)
{
 console.log(args); //Output "3, 4, 5"
}

myFunction(1, 2, 3, 4, 5);

The arguments object is not an array object. Therefore, to do array operations on the
arguments object, you need to first convert it to an array. As the ES6 rest parameter
is an array type, it's easier to work with it.

Playing with Syntax

[14]

What is the "…" token called?
The "…" token is called as the spread operator or rest parameter,
depending on where and how it's used.

The destructuring assignment
The destructuring assignment is an expression that allows you to assign the values or
properties of an iterable or object, to the variables, using a syntax that looks similar
to the array or object construction literals respectively.

A destructuring assignment makes it easy to extract data from iterables or objects
by providing a shorter syntax. A destructuring assignment is already present in
the programming languages, such as Perl and Python, and works the same way
everywhere.

There are two kinds of destructuring assignment expressions—the array and object
destructuring assignment. Let's see each of them in details.

The array destructuring assignment
An array destructuring assignment is used to extract the values of an iterable object
and assign them to the variables. It's named as the array destructuring assignment
because the expression is similar to an array construction literal.

Before ES6, the programmers used to do it this way to assign the values of an array
to the variables:

var myArray = [1, 2, 3];
var a = myArray[0];
var b = myArray[1];
var c = myArray[2];

Here, we are extracting the values of an array and assigning them to the a, b, c
variables respectively.

In ES6, we can do this in just one line statement using the array destructuring
assignment:

let myArray = [1, 2, 3];
let a, b, c;

[a, b, c] = myArray; //array destructuring assignment syntax

Chapter 1

[15]

As you see, the [a, b, c] is the array destructuring expression.

On the left-hand side of the array destructuring statement, we need to place the
variables to which we want to assign the array values, using syntax similar to an
array literal. On right-hand side, we need to place an array (actually any iterable
object) whose values we want to extract.

The previous example code can be made even shorter in this way:

let [a, b, c] = [1, 2, 3];

Here we create the variables on the same statement and instead of providing the
array variable, we provide the array with a construction literal.

If there are fewer variables than items in the array, then only the first items
are considered.

If you place a non-iterable object on the right-hand side of the
array destructuring assignment syntax, then a TypeError
exception is thrown.

Ignoring values
We can also ignore some of the values of the iterable. Here is example code, which
shows how to do this:

let [a, , b] = [1, 2, 3];

console.log(a);
console.log(b);

The output is as follows:

1
3

Using the rest operator in the array destructuring
assignment
We can prefix the last variable of the array destructuring expression using the "…"
token. In this case, the variable is always converted into an array object, which holds
the rest of the values of the iterable object, if the number of other variables is less
than the values in the iterable object.

Playing with Syntax

[16]

Consider this example to understand it:

let [a, ...b] = [1, 2, 3, 4, 5, 6];

console.log(a);
console.log(Array.isArray(b));
console.log(b);

The output is as follows:

1
true
2,3,4,5,6

In the previous example code, you can see that the b variable is converted into an
array, and it holds all the other values of the right-hand side array.

Here the "…" token is called as the rest operator.

We can also ignore the values while using the rest operator. Here is an example to
demonstrate this:

let [a, , ,...b] = [1, 2, 3, 4, 5, 6];

console.log(a);
console.log(b);

The output is as follows:

1
4,5,6

Here, we ignored the 2, 3 values.

Default values for variables
While destructuring, you can also provide the default values to the variables if an
array index is undefined. Here is an example to demonstrate this:

let [a, b, c = 3] = [1, 2];
console.log(c); //Output "3"

Chapter 1

[17]

Nested array destructuring
We can also extract the values from a multi-dimensional array and assign them to
variables. Here is an example to demonstrate this:

let [a, b, [c, d]] = [1, 2, [3, 4]];

Using the destructuring assignment as a parameter
We can also use the array destructuring expression as the function parameter for
extracting the values of an iterable object, passed as argument into the function
parameters. Here is an example to demonstrate this:

function myFunction([a, b, c = 3])
{
 console.log(a, b, c); //Output "1 2 3"
}

myFunction([1, 2]);

Earlier in this chapter, we saw that if we pass undefined as an argument to a
function call, then JavaScript checks for the default parameter value. So, we can
provide a default array here too, which will be used if the argument is undefined.
Here is an example to demonstrate this:

function myFunction([a, b, c = 3] = [1, 2, 3])
{
 console.log(a, b, c); //Output "1 2 3"
}

myFunction(undefined);

Here, we passed undefined as an argument and therefore, the default array, which
is [1, 2, 3], was used for extracting the values.

The object destructuring assignment
An object destructuring assignment is used to the extract property values of an object
and assign them to the variables.

Playing with Syntax

[18]

Before ES6, the programmers used to do it in the following way to assign the values
of an object's properties to the variables:

var object = {"name" : "John", "age" : 23};
var name = object.name;
var age = object.age;

In ES6, we can do this in just one line statement, using the object destructuring
assignment:

let object = {"name" : "John", "age" : 23};
let name, age;

({name, age} = object); //object destructuring assignment syntax

On the left-hand side of the object destructuring statement, we need to place the
variables to which we want to assign the object property values using syntax similar
to object literal. On right-hand side, we need to place an object whose property
values we want to extract are finally close the statement using the () token.

Here the variable names must be same as the object property names. If you want to
assign different variable names, then you can do it this way:

let object = {"name" : "John", "age" : 23};
let x, y;

({name: x, age: y} = object);

The previous code can be made even shorter this way:

let {name: x, age: y} = {"name" : "John", "age" : 23};

Here we are create the variables and object on the same line. We don't need to
close the statement using the () token, as we are creating the variables on the
same statement.

Default values for the variables
You can also provide the default values to the variables, if the object property is
undefined while destructuring. Here is an example to demonstrate this:

let {a, b, c = 3} = {a: "1", b: "2"};
console.log(c); //Output "3"

Chapter 1

[19]

Destructuring computed property names
Some property names are constructed dynamically using expressions. In this case, to
extract the property values, we can use the [] token to provide the property name
an expression. Here is an example:

let {["first"+"Name"]: x} = { firstName: "Eden" };
console.log(x); //Output "Eden"

Destructuring nested objects
We can also the extract property values from the nested objects, that is, the objects
within the objects. Here is an example to demonstrate this:

var {name, otherInfo: {age}} = {name: "Eden", otherInfo: {age:
23}};
console.log(name, age); //Eden 23

Using the object destructuring assignment as a
parameter
Just like the array destructuring assignment, we can also use the object destructuring
assignment as a function parameter. Here is an example to demonstrate this:

functionmyFunction({name = 'Eden', age = 23, profession =
"Designer"} = {})
{
 console.log(name, age, profession); //Output "John 23
Designer"
}

myFunction({name: "John", age: 23});

Here, we passed an empty object as a default parameter value, which will be used as
a default object if undefined is passed as a function argument.

The arrow functions
ES6 provides a new way to create functions using the => operator. These functions
are called as arrow functions. This new method has a shorter syntax, and the arrow
functions are the anonymous functions.

Playing with Syntax

[20]

Here is an example that shows how to create an arrow function:

let circleArea = (pi, r) => {
 let area = pi * r * r;
 return area;
}

let result = circleArea(3.14, 3);

console.log(result); //Output "28.26"

Here, circleArea is a variable, referencing to the anonymous arrow function.
The previous code is similar to the next code in ES5:

Var circleArea = function(pi, r) {
 var area = pi * r * r;
 return area;
}

var result = circleArea(3.14, 3);

console.log(result); //Output "28.26"

If an arrow function contains just one statement, then you don't have to use the {}
brackets to wrap the code. Here is an example:

let circleArea = (pi, r) => pi * r * r;
let result = circleArea(3.14, 3);

console.log(result); //Output "28.26"

When {} brackets are not used then the value of the statement in the body is
automatically returned.

The value of "this" in an arrow function
In the arrow functions, the value of this keyword is same as the value of this
keyword of the enclosing scope (the global or function scope, inside whichever
the arrow function is defined), instead of referring to the context object (that is,
the object inside of which the function is a property), which is the value of this
in traditional functions.

Chapter 1

[21]

Consider this example to understand the difference in the traditional function's and
the arrow function's this value:

var object = {
 f1: function(){
 console.log(this);
 var f2 = function(){ console.log(this); }
 f2();
 setTimeout(f2, 1000);
 }
}

object.f1();

The output is as follows:

Object
Window
Window

Here, this inside the f1 function refers to object, as f1 is the property of it. this
inside f2 refers to the window object, as f2 is a property of the window object.

But this behaves differently in the arrow functions. Let's replace the traditional
functions with the arrow functions in the preceding code and see the value of this:

var object = {
 f1: () => {
 console.log(this);
 var f2 = () => { console.log(this); }
 f2();
 setTimeout(f2, 1000);
 }
}

object.f1();

The output is as follows:

Window
Window
Window

Here, this inside the f1 function copies the this value of global scope, as f1 lies in
global scope. this inside f2 copies the this value of f1, as f2 lies in the f1 scope.

Playing with Syntax

[22]

Other differences between the arrow and
traditional functions
The arrow functions cannot be used as object constructors that is, the new operator
cannot be applied on them.

Apart from syntax, the this value, and the new operator, everything else is the same
between the arrow and traditional functions, that is, they both are the instances of
the Function constructor.

The enhanced object literals
ES6 has added some new syntax-based extensions to the {} object literal for creating
properties. Let's see them:

Defining properties
ES6 provides a shorter syntax for assigning the object properties to the values of the
variables, which have the same name as the properties.

In ES5, you have been doing this:

var x = 1, y = 2;
var object = {
 x: x,
 y: y
};

console.log(object.x); //output "1"

In ES6, you can do it this way:

let x = 1, y = 2;
let object = { x, y };

console.log(object.x); //output "1"

Chapter 1

[23]

Defining methods
ES6 provides a new syntax for defining the methods on an object. Here is an example
to demonstrate the new syntax:

let object = {
 myFunction(){
 console.log("Hello World!!!"); //Output "Hello World!!!"
 }
}

object.myFunction();

This concise function allows the use of super in them, whereas the traditional
methods of the objects don't allow the use of super. We will learn more about
it later in this book.

The computed property names
The property names that are evaluated during runtime are called as the computed
property names. An expression is usually resolved to find the property name
dynamically.

In ES5, the computed properties are defined in this way:

var object = {};

object["first"+"Name"] = "Eden";//"firstName" is the property name

//extract
console.log(object["first"+"Name"]); //Output "Eden"

Here, after creating the object, we attach the properties to the object. But in ES6,
we can add the properties with the computed name while creating the objects.
Here is an example:

let object = {
 ["first" + "Name"]: "Eden",
};

//extract
console.log(object["first" + "Name"]); //Output "Eden"

Playing with Syntax

[24]

Summary
In this chapter, we learned about the variable's scopes, read-only variables, splitting
arrays into individual values, passing indefinite parameters to a function, extracting
data from objects and arrays, arrow functions, and new syntaxes for creating
object properties.

In the next chapter, we will learn about built-in objects and symbols, and we will
discover the properties added by ES6 into strings, arrays, and objects.

[25]

Knowing Your Library
ES6 has added lots of new properties and methods to built-in JavaScript objects,
so that the programmer can do cumbersome tasks easily. These new functionalities
aim to help the developers get rid of using hacks and error-prone techniques to do
various operations related to numbers, strings, and arrays. In this chapter, we will
look at all the new functionalities added by ES6 to the native objects.

In this chapter, we'll cover:

•	 The new properties and methods of the Number object
•	 Representing the numeric constants as binary or octal
•	 The new properties and methods of the Math object
•	 Creating the multiline strings and the new methods of the String object
•	 The new properties and methods of Array object
•	 What are Maps and Sets?
•	 Using array buffers and typed arrays
•	 The new properties and methods of Object object

Working with numbers
ES6 adds new ways of creating numbers and new properties to the Number object
to make working with numbers easier. The Number object was enhanced in ES6 to
make it easier to create mathematically rich applications, and prevent the common
misconceptions that caused the errors. ES6 also provides new ways to do things that
were already possible in ES5, such as representing the numeric constants as octal.

Knowing Your Library

[26]

JavaScript represents the numbers as base 10 decimals. The numeric
constants are, by default, interpreted as base 10 decimals.

The binary notation
In ES5, there was no native way to represent the numeric constants as binary.
But in ES6, you can prefix the numeric constants using the 0b token to make
JavaScript interpret them as binary.

Here is an example:

let a = 0b00001111;
let b = 15;

console.log(a === b);
console.log(a);

The output is as follows:

true
15

Here, 0b00001111 is a binary representation of 15, base 10 decimal.

The octal notation
In ES5, to represent a numeric constant as octal, we needed to prefix the numeric
constant using 0. For example, take a look at the following:

var a = 017;
var b = 15;

console.log(a === b);
console.log(a);

The output is as the following:

true
15

Chapter 2

[27]

But often, programmers new to JavaScript, get confused with the octal representations
as the decimal number with 0 at the front. For example, they think 017 is same as 17.
Therefore, to remove this confusion, ES6 lets us prefix the numeric constants using 0o
to make JavaScript interpret them as octal.

Here is an example to demonstrate this:

let a = 0o17;
let b = 15;

console.log(a === b);
console.log(a);

The output is as follows:

true
15

The Number.isInteger(number) method
JavaScript numbers are stored as the 64-bit, floating-point numbers. So the integers
in JavaScript are the floating-point numbers without a decimal fraction, or a decimal
fraction with all 0's.

In ES5, there was no built-in way to check whether a number is an integer or not.
ES6 adds a new method to the Number object called as isInteger(), which takes
a number and returns true or false, depending on weather the number is an
integer or not.

Here is an example code:

let a = 17.0;
let b = 1.2;

console.log(Number.isInteger(a));
console.log(Number.isInteger(b));

The output is as follows:

true
false

Knowing Your Library

[28]

The Number.isNaN(value) method
In ES5, there was no way to check whether a variable holds the NaN value or not.

The global isNaN() function is used to check whether a value is a
number or not. If the value is not a number, then it returns true,
otherwise it returns false.

So ES6 introduced a new method for the Number object called as isNaN() to check
whether a value is NaN or not. Here is an example, which demonstrates Number.
isNaN() and also explains how it is different from the global isNaN() function:

let a = "NaN";
let b = NaN;
let c = "hello";
let d = 12;

console.log(Number.isNaN(a));
console.log(Number.isNaN(b));
console.log(Number.isNaN(c));
console.log(Number.isNaN(d));

console.log(isNaN(a));
console.log(isNaN(b));
console.log(isNaN(c));
console.log(isNaN(d));

The output is as follows:

false
true
false
false
true
true
true
false

Here you can see that Number.isNaN() method returns true only if the passed value
is exactly NaN.

Chapter 2

[29]

You might ask, why not use == or the === operator instead of
the Number.isNaN(value) method? The NaN value is the only
value that is not equal to itself, that is, the expression NaN==NaN
or NaN===NaN will return false.

The Number.isFinite(number) method
In ES5 there was no built-in way to check whether a value is a finite number.

The global isFinite() function takes a value and checks
whether it's a finite number or not. But unfortunately, it also
returns true for values that convert to a Number type.

So ES6 introduced the Number.isFinite() method, which resolves the issue of the
window.isFinite() function. Here is an example to demonstrate this:

console.log(isFinite(10));
console.log(isFinite(NaN));
console.log(isFinite(null));
console.log(isFinite([]));

console.log(Number.isFinite(10));
console.log(Number.isFinite(NaN));
console.log(Number.isFinite(null));
console.log(Number.isFinite([]));

The output is as follows:

true
false
true
true
true
false
false
false

Knowing Your Library

[30]

The Number.isSafeInteger(number) method
The JavaScript numbers are stored as 64-bit floating-point numbers, following the
international IEEE 754 standard. This format stores numbers in 64 bits, where the
number (the fraction) is stored in 0 to 51 bits, the exponent in 52 to 62 bits, and the
sign in the last bit.

So in JavaScript, safe integers are those numbers that are not needed to be rounded
to some other integer to fit in the IEEE 754 representation. Mathematically, the
numbers from -(253-1) to (253-1) are considered as safe integers.

Here is an example to demonstrate this:

console.log(Number.isSafeInteger(156));
console.log(Number.isSafeInteger('1212'));
console.log(Number.isSafeInteger(Number.MAX_SAFE_INTEGER));
console.log(Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1));
console.log(Number.isSafeInteger(Number.MIN_SAFE_INTEGER));
console.log(Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1));

The output is as follows:

true
false
true
false
true
false

Here, Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER are constant
values, introduced in ES6, representing (253-1) and -(253-1) respectively.

The Number.EPSILON property
JavaScript uses such binary floating-point representation that the computers fail
to accurately represent, numbers like 0.1, 0.2, 0.3, and so on. When your code is
executed, numbers like 0.1 are rounded to the nearest number in that format,
which results in small rounding error.

Consider this example:

console.log(0.1 + 0.2 == 0.3);
console.log(0.9 - 0.8 == 0.1);
console.log(0.1 + 0.2);
console.log(0.9 - 0.8);

Chapter 2

[31]

The output is as follows:

false
false
0.30000000000000004
0.09999999999999998

The Number.EPSILON property was introduced in ES6, which has a value of
approximately 2-52. This value represents a reasonable margin of error when
comparing the floating-point numbers. Using this number, we can create
a custom function to compare the floating-point numbers by ignoring the
minimal rounding errors.

Here is an example code:

functionepsilonEqual(a, b)
{
 return Math.abs(a - b) <Number.EPSILON;
}

console.log(epsilonEqual(0.1 + 0.2, 0.3));
console.log(epsilonEqual(0.9 - 0.8, 0.1));

The output is as follows:

true
true

Here, epsilonEqual() is the custom function that we build to compare whether the
two values are equal or not. Now, the output is as expected.

To learn more about this behavior of JavaScript and the floating-point
arithmetic, visit http://floating-point-gui.de/.

Doing Math
ES6 adds a lot of new methods to the Math object, related to trigonometry, arithmetic,
and miscellaneous. This lets the developers use native methods instead of external
math libraries. Native methods are optimized for performance, and have better
decimal precision.

http://floating-point-gui.de/

Knowing Your Library

[32]

Trigonometry related operations
Here is an example code, which shows the entire trigonometry-related methods that
are added to the Math object:

console.log(Math.sinh(0)); //hyberbolic sine of a value
console.log(Math.cosh(0)); //hyberbolic cosine of a value
console.log(Math.tanh(0)); //hyberbolic tangent of a value
console.log(Math.asinh(0)); //inverse hyperbolic sine of a value
console.log(Math.acosh(1)); //inverse hyperbolic cosine of a
value
console.log(Math.atanh(0)); //inverse hyperbolic tangent of a
value
console.log(Math.hypot(2, 2, 1));//Pythagoras theorem

The output is as follows:

0
1
0
0
0
0
3

Arithmetic related operations
Here is an example code, which shows the entire arithmetic related methods added
to the Math object:

console.log(Math.log2(16)); //log base 2
console.log(Math.log10(1000)); //log base 10
console.log(Math.log1p(0)); //same as log(1 + value)
console.log(Math.expm1(0)); //inverse of Math.log1p()
console.log(Math.cbrt(8)); //cube root of a value

The output is as follows:

4
3
0
0
2

Chapter 2

[33]

Miscellaneous methods
ES6 adds some miscellaneous methods to the Math object. These methods are used
for conversion and extracting information from the numbers.

The Math.imul(number1, number2) function
The Math.imul() takes two numbers as 32-bit integers and multiplies them.
It returns the lower 32 bits of the result. This is the only native way to do 32-bit
integer multiplication in JavaScript.

Here is an example to demonstrate this:

console.log(Math.imul(590, 5000000)); //32-bit integer
multiplication
console.log(590 * 5000000); //64-bit floating-point multiplication

Output is:

-1344967296
2950000000

Here when multiplication was done it produced a number so large it couldn't be
stored in 32 bits, therefore the lower bits were lost.

The Math.clz32(number) function
The Math.clz32() function returns the number of leading zero bits in the 32-bit
representation of a number.

Here is an example to demonstrate this:

console.log(Math.clz32(7));
console.log(Math.clz32(1000));
console.log(Math.clz32(295000000));

Output is:

29
22
3

Knowing Your Library

[34]

The Math.sign(number) function
The Math.sign() function returns the sign of a number, indicating weather the
number is negative, positive or zero.

Here is an example to demonstrate this:

console.log(Math.sign(11));
console.log(Math.sign(-11));
console.log(Math.sign(0));

Output is:

1
-1
0

From the preceding code, we can see that the Math.sign() function returns 1 if the
number is positive, -1 if the number is negative, and 0 if the number is zero.

The Math.trunc(number) function
The Math.trunc() function returns the integer part of a number by removing any
fractional digit. Here is an example to demonstrate this:

console.log(Math.trunc(11.17));
console.log(Math.trunc(-1.112));

Output is:

11
-1

The Math.fround(number) function
The Math.fround() function rounds a number to a 32-bit floating point value.
Here is an example to demonstrate this:

console.log(Math.fround(0));
console.log(Math.fround(1));
console.log(Math.fround(1.137));
console.log(Math.fround(1.5));

Chapter 2

[35]

Output is:

0
1
1.1369999647140503
1.5

Working with strings
ES6 provides new ways of creating strings and adds new properties to global String
object and to its instances to make working with strings easier. Strings in JavaScript
lacked features and capabilities when compared with programming languages such
as Python and Ruby therefore ES6 enhanced strings to change that.

Before we get into new string features lets revise JavaScript's internal character
encoding and escape sequences. In the Unicode character set every character is
represented by a base 10 decimal number called a code point. A code unit is a fixed
number of bits in memory to store a code point. An encoding schema determines the
length of code unit. A code unit is 8 bits if the UTF-8 encoding schema is used or 16
bits if the UTF-16 encoding schema is used. If a code point doesn't fit in a code unit it
is spilt into multiple code units, that is, multiple characters in sequence representing
a single character.

JavaScript interpreters by default interpret JavaScript source code as sequence of
UTF-16 code units. If source code is written in the UTF-8 encoding schema then there
are various ways to tell the JavaScript interpreter to interpret it as sequence of UTF-8
code units. JavaScript strings are always a sequence of UTF-16 code points.

Any Unicode character with a code point less than 65536 can be escaped in a JavaScript
string or source code using the hexadecimal value of its code point, prefixed with \u.
Escapes are six characters long. They require exactly four characters following \u. If
the hexadecimal character code is only one, two or three characters long, you'll need
to pad it with leading zeroes. Here is an example to demonstrate this:

var \u0061 = "\u0061\u0062\u0063";
console.log(a); //Output is "abc"

Knowing Your Library

[36]

Escaping larger code points
In ES5, for escaping a character that requires more than 16 bits for storing, we needed
two Unicode escapes. For example, to add \u1F691 to a string we had to escape it
this way:

console.log("\uD83D\uDE91");

Here \uD83D and \uDE91 are called surrogate pairs. A surrogate pair is two Unicode
characters when written in sequence represent another character.

In ES6 we can write it without surrogate pairs:

console.log("\u{1F691}");

A string stores \u1F691 as \uD83D\uDE91, so length of the above string is still 2

The codePointAt(index) method
The codePointAt() method of a string returns a non-negative integer that is the
code point of the character at the given index.

Here is an example to demonstrate this:

console.log("\uD83D\uDE91".codePointAt(1));
console.log("\u{1F691}".codePointAt(1));
console.log("hello".codePointAt(2));

Output is:

56977
56977
1080

The String.fromCodePoint(number1, …,
number 2) method
The fromCodePoint() method of String object takes a sequence of code points and
returns a string. Here is an example to demonstrate this:

console.log(String.fromCodePoint(0x61, 0x62, 0x63));
console.log("\u0061\u0062 " == String.fromCodePoint(0x61, 0x62));

Chapter 2

[37]

Output is:

abc
true

The repeat(count) method
The repeat() method of a string, constructs and returns a new string which contains
the specified number of copies on which it was called, concatenated together. Here is
an example to demonstrate this:

console.log("a".repeat(6)); //Output "aaaaaa"

The includes(string, index) method
The includes() method is used to find whether one string may be found in
another string, returning true or false as appropriate. Here is an example to
demonstrate this:

var str = "Hi, I am a JS Developer";
console.log(str.includes("JS")); //Output "true"

It takes an optional second parameter representing the position in the string at
which to begin searching. Here is an example to demonstrate this:

var str = "Hi, I am a JS Developer";
console.log(str.includes("JS", 13)); // Output "false"

The startsWith(string, index) method
The startsWith() method is used to find whether a string begins with the characters
of another string, returning true or false as appropriate. Here is an example to
demonstrate this:

var str = "Hi, I am a JS Developer";
console.log(str.startsWith('Hi, I am')); //Output "true"

It takes an optional second parameter representing the position in the string at which
to begin searching. Here is an example to demonstrate this:

var str = "Hi, I am a JS Developer";

console.log(str.startsWith('JS Developer', 11)); //Output "true"

Knowing Your Library

[38]

The endsWith(string, index) function
The endsWith() method is used to find whether a string ends with the characters of
another string, returning true or false as appropriate. It also takes an optional second
parameter representing the position in the string that is assumed as the end of the
string. Here is an example to demonstrate this:

var str = "Hi, I am a JS Developer";
console.log(str.endsWith("JS Developer")); //Output "true"
console.log(str.endsWith("JS", 13)); //Output "true"

Normalization
Normalization is simply the process of searching and standardizing code points
without changing the meaning of the string.

There are also different forms of normalization: NFC, NFD, NFKC and NFKD.

Let's understand Unicode string normalization by an example use case:

A case study
There are many Unicode characters that can be stored in 16 bits and can also be
represented using a surrogate pair. For example, 'é' character can be escaped
two ways:

console.log("\u00E9"); //output 'é'
console.log("e\u0301"); //output 'é'

The problem is when applying the == operator, iterating or finding length you
will get an unexpected result. Here is an example to demonstrate this:

var a = "\u00E9";
var b = "e\u0301";

console.log(a == b);
console.log(a.length);
console.log(b.length);

for(let i = 0; i<a.length; i++)
{
 console.log(a[i]);
}

Chapter 2

[39]

for(let i = 0; i<b.length; i++)
{
 console.log(b[i]);
}

Output is:

false
1
2
é
é

Here both the strings display the same way but when we do various string
operations on them we get different results.

The length property ignores surrogate pairs and assumes every 16-bit to be single
character. The == operator matches the binary bits therefore it also ignores surrogate
pairs. The [] operator also assumes every 16-bit to be an index therefore ignoring
surrogate pairs.

In this case to solve the problems we need to convert the surrogate pairs to 16-bit
character representation. This process is called as normalization. To do this ES6
provides a normalize() function. Here is an example to demonstrate this:

var a = "\u00E9".normalize();
var b = "e\u0301".normalize();

console.log(a == b);
console.log(a.length);
console.log(b.length);

for(let i = 0; i<a.length; i++)
{
 console.log(a[i]);
}

for(let i = 0; i<b.length; i++)
{
 console.log(b[i]);
}

Knowing Your Library

[40]

Output is:

true
1
1
é
é

Here the output is as expected. normalize() returns the normalized version of the
string. normalize() uses NFC form by default.

Normalization is not just done in the case of surrogate pairs; there are many
other cases.

The Normalized version of a string is not made for displaying
to the user; it's used for comparing and searching in strings.

To learn more about Unicode string normalization and normalization forms visit
http://www.unicode.org/reports/tr15/.

Template strings
Template strings is just a new literal for creating strings that makes various things
easier. They provide features such as embedded expressions, multi-line strings,
string interpolation, string formatting, string tagging, and so on. They are always
processed and converted to a normal JavaScript string on runtime therefore they
can be used wherever we use normal strings.

Template strings are written using back ticks instead of single or double quotes.
Here is an example of a simple template string:

let str1 = `hello!!!`; //template string
let str2 = "hello!!!";

console.log(str1 === str2); //output "true"

Expressions
In ES5, to embed expressions within normal strings you would do something
like this:

Var a = 20;
Var b = 10;

http://www.unicode.org/reports/tr15/

Chapter 2

[41]

Var c = "JavaScript";
Var str = "My age is " + (a + b) + " and I love " + c;

console.log(str);

Output is:

My age is 30 and I love JavaScript

In ES6, template strings make it much easier to embed expressions in strings.
Template strings can contain expressions in them. The expressions are placed in
placeholders indicated by dollar sign and curly brackets, that is, ${expressions}.
The resolved value of expressions in the placeholders and the text between them are
passed to a function for resolving the template string to a normal string. The default
function just concatenates the parts into a single string. If we use a custom function
to process the string parts then the template string is called as a tagged template
string and the custom function is called as tag function.

Here is an example which shows how to embed expressions in a template strings:

let a = 20;
let b = 10;
let c = "JavaScript";
letstr = `My age is ${a+b} and I love ${c}`;

console.log(str);

Output is:

My age is 30 and I love JavaScript

Let's create a tagged template string, that is, process the string using a tag function.
Let's implement the tag function to do the same thing as the default function. Here is
an example to demonstrate this:

let tag = function(strings, ...values)
{
 let result = "";

 for(let i = 0; i<strings.length; i++)
 {
 result += strings[i];

 if(i<values.length)
 {
 result += values[i];

Knowing Your Library

[42]

 }
 }

 return result;
};

return result;
};

let a = 20;
let b = 10;
let c = "JavaScript";
let str = tag `My age is ${a+b} and I love ${c}`;

console.log(str);

Output is:

My age is 30 and I love JavaScript

Here our tag function's name is tag but you can name it anything else. The custom
function takes two parameters, that is, the first parameter is an array of string literals
of the template string and the second parameter is an array of resolved values of the
expressions. The second parameter is passed as multiple arguments therefore we use
the rest argument.

Multiline strings
Template strings provide a new way to create strings that contain multiple lines
of text.

In ES5, we need to use \n new line character to add new line breaks. Here is an
example to demonstrate this:

console.log("1\n2\n3");

Output is:

1
2
3

In ES6, using multiline string we can simply write:

console.log(`1
2
3`);

Chapter 2

[43]

Output is:

1
2
3

In the above code we simply included new lines where we needed to place \n. While
converting the template string to normal string the new lines are converted to \n.

Raw strings
A raw string is a normal string in which escaped characters aren't interpreted.

We can create a raw string using a template string. We can get raw version
of a template string use String.raw tag function. Here is an example to
demonstrate this:

let s = String.raw `xy\n${ 1 + 1 }z`;
console.log(s);

Output is:

xy\n2z

Here \n is not interpreted as new line character instead of its two characters, that is,
\ and n. Length of variable s would be 6.

If you create a tagged function and you want to return the raw string then use raw
property of the first argument. raw property is an array, which holds raw versions
of the strings of the first argument. Here is an example to demonstrate this:

let tag = function(strings, ...values)
{
 return strings.raw[0]
};

letstr = tag `Hello \n World!!!`;

console.log(str);

Output is:

Hello \n World!!!

Knowing Your Library

[44]

Arrays
ES6 adds new properties to the global Array object and to its instances to make
working with arrays easier. Arrays in JavaScript lacked features and capabilities
when compared with programming languages such as Python and Ruby therefore
ES6 enhanced arrays to change that.

The Array.from(iterable, mapFunc, this)
method
The Array.from() method creates a new array instance from an iterable object.
The first argument is a reference to the iterable object. The second argument is
optional and is a callback (known as Map function) that is called for every element
of the iterable object. The third argument is also optional and is the value of this
inside the Map function.

Here is an example to demonstrate this:

letstr = "0123";
letobj = {number: 1};
letarr = Array.from(str, function(value){
 return parseInt(value) + this.number;
}, obj);

console.log(arr);

Output is:

1, 2, 3, 4

The Array.of(values…) method
The Array.of() method is an alternative to the Array constructor for creating
arrays. When using Array constructor if we pass only one argument, that too a
number, then Array constructor constructs an empty array with array length
property equal to the passed number instead of creating an array of one element
with that number in it. Therefore the Array.of() method was introduced to
resolve this issue.

Chapter 2

[45]

Here is an example to demonstrate this:

let arr1 = new Array(2);
let arr2 = new Array.of(2);

console.log(arr1[0], arr1.length);
console.log(arr2[0], arr2.length);

Output is:

undefined 2
2 1

You should use Array.of() instead of Array constructor when you are constructing
a new array instance dynamically, that is, when you don't know the type of values
and the number of elements.

The fill(value, startIndex, endIndex) method
The fill() method of an array fills all the elements of the array from the
startIndex to an endIndex (not including endIndex) with a given value.
Remember that startIndex and endIndex arguments are optional; therefore if
they are not provided then the whole array is filled with the given value. If only
startIndex is provided then endIndex defaults to length of array minus 1.

If startIndex is negative then it's treated as length of array plus startIndex.
If endIndex is negative, it is treated as length of array plus endIndex.

Here is an example to demonstrate this:

let arr1 = [1, 2, 3, 4];
let arr2 = [1, 2, 3, 4];
let arr3 = [1, 2, 3, 4];
let arr4 = [1, 2, 3, 4];
let arr5 = [1, 2, 3, 4];

arr1.fill(5);
arr2.fill(5, 1, 2);
arr3.fill(5, 1, 3);
arr4.fill(5, -3, 2);
arr5.fill(5, 0, -2);

Knowing Your Library

[46]

console.log(arr1);
console.log(arr2);
console.log(arr3);
console.log(arr4);
console.log(arr5);

Output is:

5,5,5,5
1,5,3,4
1,5,5,4
1,5,3,4
5,5,3,4

The find(testingFunc, this) method
The find() method of an array returns an array element, if it satisfies the provided
testing function. Otherwise it returns undefined.

The find() method takes two arguments, that is, the first argument is the testing
function and the second argument is the value of this in the testing function.
The second argument is optional.

The testing function has three parameters: the first parameter is the array element
being processed, second parameter is the index of the current element being
processed and third parameter is the array on which find() is called upon.

The testing function needs to return true to satisfy a value. The find() method
returns the first element which satisfies the provided testing function.

Here is an example to demonstrate the find() method:

var x = 12;
var arr = [11, 12, 13];
var result = arr.find(function(value, index, array){
 if(value == this)
 {
 return true;
 }
}, x);

console.log(result); //Output "12"

Chapter 2

[47]

The findIndex(testingFunc, this) method
The findIndex() method is similar to the find() method. The findIndex() method
returns the index of the satisfied array element instead of the element itself.

let x = 12;
let arr = [11, 12, 13];
let result = arr.findIndex(function(value, index, array){
 if(value == this)
 {
 return true;
 }
}, x);

console.log(result); Output "1"

The copyWithin(targetIndex, startIndex,
endIndex) function
The copyWithin() method of an array is used to copy the sequence of values of the
array to a different position in the array.

The copyWithin() method takes three arguments: first argument represents the
target index where to copy elements to, second argument represents the index
position where to start copying from and the third argument represents the index ,
that is, where to actually end copying elements.

The third argument is optional and if not provided then it defaults to length-1
where length is the length of the array. If startIndex is negative then it's calculated
as length+startIndex. Similarly if endIndex is negative then it's calculated as
length+endIndex.

Here is an example to demonstrate this:

let arr1 = [1, 2, 3, 4, 5];
let arr2 = [1, 2, 3, 4, 5];
let arr3 = [1, 2, 3, 4, 5];
let arr4 = [1, 2, 3, 4, 5];

arr1.copyWithin(1, 2, 4);
arr2.copyWithin(0, 1);

Knowing Your Library

[48]

arr3.copyWithin(1, -2);
arr4.copyWithin(1, -2, -1);

console.log(arr1);
console.log(arr2);
console.log(arr3);
console.log(arr4);

Output is:

1,3,4,4,5
2,3,4,5,5
1,4,5,4,5
1,4,3,4,5

The entries(), keys(), and values() method
The entries() method of an array returns an iterable object that contains
key/value pairs for each index of the array. Similarly the keys() method of an
array returns an iterable object that contains keys for each of the indexes in the
array. Similarly, the values() method of an array returns an iterable object that
contains values of the array.

The iterable object returned by the entries() method stores the key/value pairs
in the form of arrays.

The iterable object returned by these functions is not an array.

Here is an example to demonstrate this:

let arr = ['a', 'b', 'c'];
let entries = arr.entries();
let keys = arr.keys();
let values = arr.values();

console.log(...entries);
console.log(...keys);
console.log(...values);

Output is:

0,a 1,b 2,c
0 1 2
a b c

Chapter 2

[49]

Collections
A collection is any object that stores multiple elements as a single unit. ES6 introduced
various new collection objects to provide better ways of storing and organizing data.

The array is the only collection object available in ES5. ES6 introduces array buffers,
typed arrays, Sets, and Maps, which are built in collection objects.

Let's see the different collection objects provided by ES6.

Array buffers
Elements of arrays can be of any type such as strings, numbers, objects, and so on.
Arrays can grow dynamically. The problem with arrays is that they are slow in terms
of execution time, and occupy more memory. This causes issues while developing
applications that require too much computation and deal with large amount of
numbers. Therefore array buffers were introduced to tackle this issue.

An array buffer is a collection of 8-bit blocks in memory. Every block is an array
buffer element. The size of an array buffer needs to be decided while creating,
it therefore it cannot grow dynamically. Array buffers can only store numbers.
All blocks are initialized to number 0 on creation of an array buffer.

An array buffer object is created using ArrayBuffer constructor.

let buffer = new ArrayBuffer(80); //80 bytes size

Reading from and writing values into an array buffer object can be done using a
DateView object. It's not compulsory that only 8 bits are used to represent a number.
We can use 8, 16, 32 and 64 bits to represent a number. Here is an example, which
shows how to create a DateView object and read/write to an ArrayBuffer object:

let buffer = new ArrayBuffer(80);
let view = new DataView(buffer);

view.setInt32(8,22,false);

var number = view.getInt32(8,false);

console.log(number); //Output "22"

Knowing Your Library

[50]

Here we created a DataView object using DataView constructor. A DataView object
provides several methods to read and write numbers into an array buffer object.
Here we used setInt32() method which uses 32 bits to store a provided number.

All the methods of a DataView object that are used to write data to an array buffer
object take three arguments. First argument represents the offset, that is, the byte we
want to write the number to. Second argument is the number to be stored. And third
argument is a Boolean type, which represents the endian of the number, such as
false represents a big-endian.

Similarly all the methods of a DataView object that are used to read data of an array
buffer object take two arguments. First argument is the offset and second argument
represents the endian used.

Here are other functions for storing numbers provided by a DataView object:

•	 setInt8: Uses 8 bits to store a number. It takes a signed integer (-ve or +ve).
•	 setUint8: Uses 8 bits to store a number. It takes an unsigned integer (+ve).
•	 setInt16: Uses 16 bits to store a number. It takes a signed integer.
•	 setUint16: Uses 16 bits to store a number. It takes an unsigned integer.
•	 setInt32: Uses 32 bits to store a number. It takes a signed integer.
•	 setUint32: Uses 32 bits to store a number. It takes an unsigned integer.
•	 setFloat32: Uses 32 bits to store a number. It takes a signed decimal number.
•	 setFloat64: Uses 64 bits to store a number. It takes a signed decimal number.

Here are other functions for retrieving stored numbers by a DataView object:

•	 getInt8: Reads 8 bits. Returns signed integer number.
•	 getUint8: Reads 8 bits. Returns unsigned integer number.
•	 getInt16: Reads 16 bits. Returns signed integer number.
•	 getUint16: Reads 16 bits. Returns unsigned integer number.
•	 getInt32: Reads 32 bits. Returns signed integer number.
•	 getUint32: Reads 32 bits. Returns unsigned integer number.
•	 getFloat32: Reads 32 bits. Returns signed decimal number.
•	 getFloat64: Reads 64 bits. Returns signed decimal number.

Chapter 2

[51]

Typed arrays
We saw how to read and write numbers in array buffers. But the method was very
cumbersome because we had to call a function every time. Typed arrays let us read
and write to an array buffer object just like we do for normal arrays.

A typed array acts like a wrapper for an array buffer object and treats data of an
array buffer object as a sequence of n-bit numbers. The n value depends on how we
created the typed array.

Here is the code example that demonstrates how to create an array buffer object and
read/write to it using a typed array:

var buffer = new ArrayBuffer(80);
vartyped_array = new Float64Array(buffer);
typed_array[4] = 11;

console.log(typed_array.length);
console.log(typed_array[4]);

Output is:

10
11

Here we created typed array using the Float64Array constructor, it therefore treats
data in the array buffer as a sequence of 64-bit signed decimal numbers. Here the
array buffer object size was 640 bits therefore only 10 64-bit numbers can be stored.

Similarly, there are other typed array constructors to represent data in an array
buffer as a sequence of different bit numbers. Here is the list:

•	 Int8Array: Treats as 8-bit signed integers
•	 Uint8Array: Treats as 8-bit unsigned integers
•	 Int16Array: Treats as 16-bit signed integers
•	 Uint16Array: Treats as 16-bit unsigned integers
•	 Int32Array: Treats as 32-bit signed integers
•	 Uint32Array: Treats as 32-bit unsigned integers
•	 Float32Array: Treats as 32-bit signed decimal number
•	 Float64Array: Treats as 64-bit signed decimal number

Knowing Your Library

[52]

Typed arrays provide all the methods that are also provided by normal JavaScript
arrays. They also implement the iterable protocol therefore they can be used as an
iterable object.

Set
A Set is a collection of unique values of any data type. The values in a Set are arranged
in insertion order. A Set is created using Set constructor. Here is an example:

let set1 = new Set();
let set2 = new Set("Hello!!!");

Here set1 is an empty Set. Whereas set2 was created using values of an iterable
object, that is, characters of a string and the string was not empty therefore set2
is non-empty.

Here is example code, which demonstrates various operations that can be done on
a Set:

let set = new Set("Hello!!!");

set.add(12); //add 12

console.log(set.has("!")); //check if value exists
console.log(set.size);

set.delete(12); //delete 12

console.log(...set);

set.clear(); //delete all values

Output is:

true
6
H e l o !

Here we added nine items to the set object but the size was only six because
Set automatically deletes duplicate values. The characters land !were repeated
multiple times.

Chapter 2

[53]

The Set object also implements the iterable protocol so they can be used as an
iterable object.

Sets are used when you want to maintain a collection of values and check if a value
exists instead of retrieving a value. For example: Sets can be used as an alternative to
an array if you only use the indexOf() method of the array in your code to check if
an value exists.

WeakSet
Here are the differences between Set and WeakSet objects:

•	 A Set can store primitive types and object references whereas a WeakSet
object can only store object references

•	 One of the important features of the WeakSet object is that if there is
no other reference to an object stored in a WeakSet object then they are
garbage collected

•	 Lastly a WeakSet object is not enumerable, that is, you cannot find its size;
it also doesn't implement iterable protocol

Apart from these three differences it behaves exactly the same way as a Set.
Everything else apart from these three differences is same between a Set and
WeakSet object.

A WeakSet object is created using WeakSet constructor. You cannot pass an iterable
object as an argument to WeakSet object.

Here is an example to demonstrate WeakSet:

letweakset = new WeakSet();

(function(){
 let a = {};
 weakset.add(a);
})()

//here 'a' is garbage collected from weakset
console.log(weakset.size); //output "undefined"
console.log(...weakset); //Exception is thrown

weakset.clear(); //Exception, no such function

Knowing Your Library

[54]

Map
A Map is a collection of key/value pairs. Keys and values of a Map can be of any
data type. The key/value pairs are arranged in the insertion order. A Map object is
created using the Map constructor.

Here is an example, which demonstrates how to create a Map object and do various
operations on it:

let map = new Map();
let o = {n: 1};

map.set(o, "A"); //add
map.set("2", 9);

console.log(map.has("2")); //check if key exists
console.log(map.get(o)); //retrieve value associated with key
console.log(...map);

map.delete("2"); //delete key and associated value
map.clear(); //delete everything

//create a map from iterable object
let map_1 = new Map([[1, 2], [4, 5]]);

console.log(map_1.size); //number of keys

Output is:

true
A
[object Object],A 2,9
2

While creating a Map object from an iterable object we need to make sure that the
values returned by the iterable object are arrays, each of length 2 i.e., index 0 is the
key and index 1 is the value.

If we try to add a key that already exists then it's overwritten. The Map objects also
implement the iterable protocol and can therefore also be used as an iterable object.
While iterating Maps using the iterable protocol, they return arrays with key/value
pairs as you can see in the preceding example.

Chapter 2

[55]

WeakMap
Here are the differences between the Map and the WeakMap objects:

•	 Keys of a Map object can be of primitive types or object references but keys in
WeakMap object can only be object references

•	 One of the important features of the WeakMap object is that if there is
no other reference to an object that is referenced by a key then the key is
garbage collected.

•	 Lastly the WeakMap object is not enumerable, that is, you cannot find its size
and it doesn't implement iterable protocol.

Everything else, apart from these three differences is similar between the Map and
the WeakMap object.

A WeakMap is created using WeakMap constructor. Here is an example that
demonstrates its usage:

let weakmap = new WeakMap();

(function(){
 let o = {n: 1};
 weakmap.set(o, "A");
})()

//here 'o' key is garbage collected
let s = {m: 1};

weakmap.set(s, "B");

console.log(weakmap.get(s));
console.log(...weakmap); //exception thrown

weakmap.delete(s);
weakmap.clear(); //Exception, no such function

let weakmap_1 = new WeakMap([[{}, 2], [{}, 5]]); //this works

console.log(weakmap_1.size); //undefined

Knowing Your Library

[56]

Object
ES6 standardizes the __proto__ property of an object and adds new properties to
the global Object object.

The __proto__ property
JavaScript objects have an internal [[prototype]] property that references the
object's prototype, that is, the object it inherits. To read the property we had to use
Object.getPrototypeof() and to create a new object with a given prototype we
had to use the Object.create() method. A [[prototype]] property cannot be
directly read or be modified.

Inheriting was cumbersome due to the nature of the [[prototype]] property,
therefore some browsers added a special __proto__ property in objects, which is
an accessor property that exposes the internal [[prototype]] property and makes
working with prototypes easier. The __proto__ property was not standardized in
ES5 but due to its popularity it was standardized in ES6.

Here is an example to demonstrate this:

//In ES5
var x = {x: 12};
var y = Object.create(x, {y: {value: 13}});

console.log(y.x); //Output "12"
console.log(y.y); //Output "13"

//In ES6
let a = {a: 12, __proto__: {b: 13}};
console.log(a.a); //Output "12"
console.log(a.b); //Output "13"

The Object.is(value1, value2) method
The Object.is() method determines whether two values are equal or not. It is
similar to the === operator but there are some special cases for the Object.is()
method. Here is an example that demonstrates the special cases:

console.log(Object.is(0, -0));
console.log(0 === -0);
console.log(Object.is(NaN, 0/0));

Chapter 2

[57]

console.log(NaN === 0/0);
console.log(Object.is(NaN, NaN));
console.log(NaN ===NaN);

Output is:

false
true
true
false
true
false

The Object.setPrototypeOf(object, prototype)
method
The Object.setPrototypeOf() method is just an another way to assign the
[[prototype]] property of an object. Here is an example to demonstrate this:

let x = {x: 12};
let y = {y: 13};

Object.setPrototypeOf(y, x)

console.log(y.x); //Output "12"
console.log(y.y); //Output "13"

The Object.assign(targetObj, sourceObjs…) method
The Object.assign() method is used is used to copy the values of all enumerable
own properties from one or more source objects to a target object. This method will
return the targetObj.

Here is an example which demonstrates this:

let x = {x: 12};
let y = {y: 13, __proto__: x};
let z = {z: 14, get b() {return 2;}, q: {}};

Object.defineProperty(z, "z", {enumerable: false});

let m = {};

Knowing Your Library

[58]

Object.assign(m, y, z);

console.log(m.y);
console.log(m.z);
console.log(m.b);
console.log(m.x);
console.log(m.q == z.q);

Output is:

13
undefined
2
undefined
true

Here is a list of important things to keep in mind while using the Object.assign()
method:

•	 It invokes getters on the sources and setters on the target.
•	 It just assigns values of the properties of source to the new or existing

properties of target.
•	 It doesn't copy the [[prototype]] property of sources.
•	 JavaScript property names can be strings or symbols. Object.assign()

copies both.
•	 Property definitions are not copied from sources therefore you need to use

Object.getOwnPropertyDescriptor()Object.defineProperty() instead.
•	 It ignores copying keys with null and undefined values.

Summary
In this chapter we learned new features added by ES6 for working with numbers,
strings, arrays and objects. We saw how arrays impact performance in math-rich
applications and how the array buffers can be used instead. We also walked through
the new collection objects provided by ES6.

In next chapter, we will learn about Symbols and Iteration protocol, and we will
discover yield keyword and generators also.

[59]

Using Iterators
ES6 introduces new object interfaces and loops for iteration. The addition of the new
iteration protocols opens up a new world of algorithms and abilities for JavaScript.
We will start the chapter by introducing the symbols and various properties
of the Symbol object. We will also learn how the execution stacks are created for
the nested function calls, their impacts, and how to optimize their performance
and memory usage.

Although symbols are a separate topic to iterators, we will still be covering symbols
in this chapter because to implement the iterable protocol, you need to
use symbols.

In this chapter, we'll cover:

•	 Using symbols as the object property keys
•	 Implementing the iteration protocols in the objects
•	 Creating and using the generator objects
•	 Using the for…of loop for iterating
•	 The tail call optimization

The ES6 symbols
ES6 symbols are the new primitive type introduced in ES6. A symbol is a unique and
immutable value. Here is an example code, which shows how to create a symbol:

var s = Symbol();

Symbols don't have a literal form; therefore, we need to use the Symbol() function
to create a symbol. The Symbol() function returns a unique symbol every time it
is called.

Using Iterators

[60]

The Symbol() function takes an optional string parameter that represents the
description of the symbol. A description of a symbol can be used for debugging,
but not to access the symbol itself. Two symbols with the same description are
not equal at all. Here is an example to demonstrate this:

let s1 = window.Symbol("My Symbol");
let s2 = window.Symbol("My Symbol");

console.log(s1 === s2); //Output is "false"

From the preceding example, we can also say that a symbol is a string-like value that
can't collide with any other value.

The "typeof" operator
The typeof operator outputs "symbol" when applied on a variable, holding a
symbol. Here is an example to demonstrate this:

var s = Symbol();
console.log(typeof s); //Output "symbol"

Using the typeof operator is the only way to identify whether a variable is holding
a symbol.

The "new" operator
You cannot apply the new operator on the Symbol() function. The Symbol() function
detects if it's being used as an constructor, and if true, it then throws an exception.
Here is an example to demonstrate this:

try
{
 let s = new Symbol(); //"TypeError" exception
}
catch(e)
{
 console.log(e.message); //Output "Symbol is not a constructor"
}

Chapter 3

[61]

But the JavaScript engine can internally use the Symbol() function as an constructor
to wrap a symbol in an object. Therefore, "s" will be equal to Object(s).

All the primitive types that are introduced from ES6 onwards
will not allow their constructors to be invoked manually.

Using symbols as property keys
Till ES5, the JavaScript object property keys had to be string type. But in ES6, the
JavaScript object property keys can be strings or symbols. Here is an example that
demonstrates how to use a symbol as an object property key:

let obj = null;
let s1 = null;

(function(){
 let s2 = Symbol();
 s1 = s2;
 obj = {[s2]: "mySymbol"}
 console.log(obj[s2]);
 console.log(obj[s2] == obj[s1]);
})();

console.log(obj[s1]);

The output is:

mySymbol
true
mySymbol

From the preceding code, you can see that in order to create or retrieve a property
key using symbols, you need to use the [] token. We saw the [] token while
discussing the computed property names in Chapter 2, Knowing Your Library.

To access a symbol property key, we need the symbol. In the previous example,
both s1 and s2 hold the same symbol value.

The primary reason for introducing symbols in ES6 was so that it
can be used as a key for object property, and prevent the accidental
collision of the property keys.

Using Iterators

[62]

The Object.getOwnPropertySymbols() method
The Object.getOwnPropertyNames() method cannot retrieve the symbol
properties. Therefore, ES6 introduced Object.getOwnPropertySymbols()
to retrieve an array of symbol properties of an object. Here is an example to
demonstrate this:

let obj = {a: 12};
let s1 = Symbol("mySymbol");
let s2 = Symbol("mySymbol");

Object.defineProperty(obj, s1, {
 enumerable: false
});

obj[s2] = "";

console.log(Object.getOwnPropertySymbols(obj));

The output is as follows:

Symbol(mySymbol),Symbol(mySymbol)

From the previous example, you can see that the Object.getOwnPropertySymbols()
method can also retrieve the non-enumerable symbol properties.

The in operator can find the symbol properties in an object, whereas the
for…in loop and Object.getOwnPropertyNames() cannot find the
symbol properties in an object for the sake of backward compatibility.

The Symbol.for(string) method
The Symbol object maintains a registry of the key/value pairs, where the key is the
symbol description, and the value is the symbol. Whenever we create a symbol using
the Symbol.for() method, it gets added to the registry and the method returns the
symbol. If we try to create a symbol with a description that already exists, then the
existing symbol will be retrieved.

Chapter 3

[63]

The advantage of using the Symbol.for() method instead of the Symbol() method
to create symbols is that while using the Symbol.for() method, you don't have
to worry about making the symbol available globally, because its always available
globally. Here is an example to demonstrate this:

let obj = {};

(function(){
 let s1 = Symbol("name");
 obj[s1] = "Eden";
})();

//obj[s1] cannot be accessed here

(function(){
 let s2 = Symbol.for("age");
 obj[s2] = 27;
})();

console.log(obj[Symbol.for("age")]); //Output "27"

The well-known symbols
In addition to your own symbols, ES6 comes up with a built-in set of symbols,
known as the well-known symbols. Here is a list of properties, referencing some
important built-in symbols:

•	 Symbol.iterator

•	 Symbol.match

•	 Symbol.search

•	 Symbol.replace

•	 Symbol.split

•	 Symbol.hasInstance

•	 Symbol.species

•	 Symbol.unscopables

•	 Symbol.isContcatSpreadable

•	 Symbol.toPrimitive

•	 Symbol.toStringTag

Using Iterators

[64]

You will come across the use of these symbols in various chapters of this book.

While referring to the well-known symbols in the text, we usually prefix
them using the @@ notation. For example, the Symbol.iterator symbol
is referred to as the @@iterator method. This is done to make it easier
to refer to the well-known symbols in the text.

The iteration protocols
An iteration protocol is a set of rules that an object needs to follow for implementing
the interface, which when used, a loop or a construct can iterate over a group of
values of the object.

ES6 introduces two new iteration protocols known as the iterable protocol, and the
iterator protocol.

The iterator protocol
Any object that implements the iterator protocol is known as an iterator. According
to the iterator protocol, an object needs to provide a next() method that returns the
next item in the sequence of a group of items.

Here is an example to demonstrate this:

let obj = {
 array: [1, 2, 3, 4, 5],
 nextIndex: 0,
 next: function(){
 return this.nextIndex < this.array.length ?
 {value: this.array[this.nextIndex++], done: false} :
 {done: true};
 }
};

console.log(obj.next().value);
console.log(obj.next().value);
console.log(obj.next().value);
console.log(obj.next().value);
console.log(obj.next().value);
console.log(obj.next().done);

Chapter 3

[65]

The output is as follows:

1
2
3
4
5
true

Every time the next() method is called, it returns an object with two properties:
value and done. Let's see what these two properties represent:

•	 The done property: This returns true if the iterator has finished iterating
over the collection of values. Otherwise, this returns as false.

•	 The value property: This holds the value of the current item in the collection.
It is omitted when the done property is true.

The iterable protocol
Any object that implements the iterable protocol is known as an iterable. According
to the iterable protocol, an object needs to provide the @@iterator method; that is,
it must have the Symbol.iterator symbol as a property key. The @@iterator
method must return an iterator object.

Here is an example to demonstrate this:

let obj = {
 array: [1, 2, 3, 4, 5],
 nextIndex: 0,
 [Symbol.iterator]: function(){
 return {
 array: this.array,
 nextIndex: this.nextIndex,
 next: function(){
 return this.nextIndex < this.array.length ?
 {value: this.array[this.nextIndex++], done: false} :
 {done: true};
 }
 }
 }
};

let iterable = obj[Symbol.iterator]()

Using Iterators

[66]

console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().done);

The output is as follows:

1
2
3
4
5
true

Generators
A generator function is like a normal function, but instead of returning a single
value, it returns multiple values one by one. Calling a generator function doesn't
execute its body immediately, but rather returns a new instance of the generator
object (that is, an object that implements both, iterable and iterator protocols).

Every generator object holds a new execution context of the generator function.
When we execute the next() method of the generator object, it executes the
generator function's body until the yield keyword is encountered. It returns the
yielded value, and pauses the function. When the next() method is called again,
it resumes the execution, and then returns the next yielded value. The done property
is true when the generator function doesn't yield any more value.

A generator function is written using the function* expression. Here is an example
to demonstrate this:

function* generator_function()
{
 yield 1;
 yield 2;
 yield 3;
 yield 4;
 yield 5;
}

let generator = generator_function();

Chapter 3

[67]

console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().done);

generator = generator_function();

let iterable = generator[Symbol.iterator]();

console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().value);
console.log(iterable.next().done);

The output is as follows:

1
2
3
4
5
true
1
2
3
4
5
true

There is an expression following the yield keyword. The value of the expression
is what returned by the generator function via the iterable protocol. If we omit the
expression, then undefined is returned. The value of the expression is what we call
as the yielded value.

We can also pass an optional argument to the next() method. This argument
becomes the value returned by the yield statement, where the generator function
is currently paused. Here is an example to demonstrate this:

function* generator_function()
{
 var a = yield 12;

Using Iterators

[68]

 var b = yield a + 1;
 var c = yield b + 2;
 yield c + 3;
}

var generator = generator_function();

console.log(generator.next().value);
console.log(generator.next(5).value);
console.log(generator.next(11).value);
console.log(generator.next(78).value);
console.log(generator.next().done);

The output is as follows:

12
6
13
81
true

The return(value) method
You can anytime end a generator function before it has yielded all the values using
the return() method of the generator object. The return() method takes an optional
argument, representing the final value to return.

Here is an example demonstrating this:

function* generator_function()
{
 yield 1;
 yield 2;
 yield 3;
}

var generator = generator_function();

console.log(generator.next().value);
console.log(generator.return(22).value);
console.log(generator.next().done);

Chapter 3

[69]

The output is as follows:

1
22
true

The throw(exception) method
You can manually trigger an exception inside a generator function using the throw()
method of the generator object. You must pass an exception to the throw() method
that you want to throw. Here is an example to demonstrate this:

function* generator_function()
{

 try
 {
 yield 1;
 }
 catch(e)
 {
 console.log("1st Exception");
 }

 try
 {
 yield 2;
 }
 catch(e)
 {
 console.log("2nd Exception");
 }

}

var generator = generator_function();

console.log(generator.next().value);
console.log(generator.throw("exception string").value);
console.log(generator.throw("exception string").done);

Using Iterators

[70]

The output is as follows:

1
1st Exception
2
2nd Exception
true

In the preceding example, you can see that the exception is thrown where the
function was paused the last time. After the exception is handled, the throw()
method continuous execution, and returns the next yielded value.

The "yield*" keyword
The yield* keyword inside a generator function takes an iterable object as the
expression and iterates it to yield its values. Here is an example to demonstrate this:

function* generator_function_1()
{
 yield 2;
 yield 3;
}

function* generator_function_2()
{
 yield 1;
 yield* generator_function_1();
 yield* [4, 5];
}

var generator = generator_function_2();

console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().done);

The output is as follows:

1
2
3

Chapter 3

[71]

4
5
true

The "for…of" loop
Until now, we were iterating over an iterable object using the next() method, which
is a cumbersome task. ES6 introduced the for…of loop to make this task easier.

The for…of loop was introduced to iterate over the values of an iterable object.
Here is an example to demonstrate this:

function* generator_function()
{
 yield 1;
 yield 2;
 yield 3;
 yield 4;
 yield 5;
}

let arr = [1, 2, 3];

for(let value of generator_function())
{
 console.log(value);
}

for(let value of arr)
{
 console.log(value);
}

The output is as follows:

1
2
3
4
5
1
2
3

Using Iterators

[72]

The tail call optimization
Whenever a function call is made, an execution stack is created in the stack memory
to store the variables of the function.

When a function call is made inside another function call, a new execution stack
is created for the inner function call. But the problem is that the inner function
execution stack takes up some extra memory, that is, it stores an extra address,
representing where to resume the execution when this function finishes executing.
Switching and creating the execution stacks also takes some additional CPU time.
This problem is not noticeable when there are a couple or hundreds of nested levels
of calls, but it's noticeable when there are thousands or more of the nested levels
of calls, that is, the JavaScript engines throw the RangeError: Maximum call
stack size exceeded exception. You might have, at some point, experienced
the RangeError exception while creating a recursive function.

A tail call is a function call, performed optionally at the very end of a function
with the return statement. If a tail call leads to the same function call again and
again, then it's called as a tail-recursion, which is a special case of recursion. What's
special about tail calls is that there is a way to actually prevent the extra CPU-time
and memory usage while making the tail calls, which is to reuse the stack of the out
function, instead of creating a new execution stack thereby saving the CPU time
and the extra memory usage. Reusing the execution stack while making a tail call is
called as the tail call optimization.

ES6 adds the support for a tail call optimization if the script is written in the "use
strict" mode. Let's see an example of a tail call:

"use strict";

function _add(x, y)
{
 return x + y;
}

function add1(x, y)
{
 x = parseInt(x);
 y = parseInt(y);

 //tail call
 return _add(x, y);
}

Chapter 3

[73]

function add2(x, y)
{
 x = parseInt(x);
 y = parseInt(y);

 //not tail call
 return 0 + _add(x, y);
}

console.log(add1(1, '1')); //2
console.log(add2(1, '2')); //3

Here, the _add() call in the add1() function is a tail call, as it's the final action of the
add1() function. But the _add() call in the add2() function is not a tail call, as it's
not the final action, which is adding 0 to the result of _add() is the final action.

The _add() call in add1() doesn't create a new execution stack. Instead, it reuses the
add1() function's execution stack; in other words, the tail call optimization occurs.

Converting the non-tail calls into the tail calls
As the tail calls are optimized, you must use the tail calls whenever possible, instead
of the non-tail calls. You can optimize your code by converting the non-tail calls into
the tail calls.

Let's see an example of converting a non-tail call into a tail call, which is similar to
the previous:

"use strict";

function _add(x, y)
{
 return x + y;
}

function add(x, y)
{
 x = parseInt(x);
 y = parseInt(y);

 var result = _add(x, y);
 return result;
}

console.log(add(1, '1'));

Using Iterators

[74]

In the previous code, the _add() call was not a tail call and therefore, two execution
stacks were created. We can convert it into a tail call in this way:

function add(x, y)
{
 x = parseInt(x);
 y = parseInt(y);

 return _add(x, y);
}

Here, we omitted the use of the result variable and instead, we lined up the function
call with the return statement. Similarly, there are many other strategies to convert
the non-tail calls into the tail calls.

Summary
In this chapter, we learned a new way of creating the object property keys using
symbols. We saw the iterator and iterable protocols, and learned how to implement
these protocols in the custom objects. Then, we learned how to iterate over an
iterable object using the for…of loop. Finally, we ended the chapter by learning
what tail calls are, and how they are optimized in ES6.

In the next chapter, we will learn what Promises are, and how to write a better
asynchronous code using Promises.

[75]

Asynchronous Programming
ES6 introduced a native support for the well-known programming patterns.
One such pattern is the Promise pattern, which makes it easier to read and write
the asynchronous code. In this chapter, we will learn to write asynchronous code
using the ES6 Promise API. The new JavaScript and HTML5 asynchronous APIs
are now being implemented with Promises to facilitate writing less and cleaner
code. Therefore, it's important to learn Promises in-depth. We will also see some
example APIs that are exposed using Promises such as the Web Cryptography
API, and the Battery Status API.

In this chapter, we'll cover:

•	 The JavaScript execution model
•	 The difficulties faced while writing the asynchronous code
•	 Creating Promises and how Promises work
•	 How Promises make it easier to write the asynchronous code
•	 The different states of a Promise
•	 Various methods of the Promise object.
•	 Various JavaScript and HTML5 APIs, which use Promises

Asynchronous Programming

[76]

The JavaScript execution model
The JavaScript code is executed in a single thread, that is, two pieces of script
cannot run at same time. Each website opened in browser gets a single thread
for downloading, parsing, and executing the website called as the main thread.

The main thread also maintains a queue, which has asynchronous tasks queued to
be executed one by one. These queued tasks can be event handlers, callbacks, or any
other kind of task. The new tasks are added to the queue as AJAX requests/response
happen, events occur, timers registered, and more. One long running queue task
can stop the execution of all other queue tasks and the main script. The main thread
executes the tasks of this queue whenever possible.

HTML5 introduced web workers, which are the actual threads
running parallel to the main thread. When a web worker finishes
executing or needs to notify the main thread, it simply adds a new
event item to the queue.

This queue is what makes it possible for executing the code asynchronously.

Writing asynchronous code
ES5 natively supports two patterns for writing the asynchronous code, that is,
the event pattern and the callback pattern. While writing the asynchronous code,
we usually start an asynchronous operation and register the event handlers or
pass the callbacks, which will be executed once the operation is finished.

The event handlers or the callbacks are used, depending on how the specific
asynchronous API is designed. An API that is designed for an event pattern can
be wrapped with some custom code to create the callback pattern for the API, and
vice-versa. For example, AJAX is designed for the event pattern, but jQuery AJAX
exposes it as a callback pattern.

Let's consider some examples of writing asynchronous code involving events and
callbacks and their difficulties.

Chapter 4

[77]

The asynchronous code involving events
For asynchronous JavaScript APIs involving events, you need to register the success
and error event handlers which will be executed depending on whether the operation
was a success or failure respectively.

For example, while making an AJAX request, we register the event handlers which
will be executed depending on whether the AJAX request was made successfully
or not. Consider this code snippet which makes and AJAX request and logs the
retrieved information:

function displayName(json)
{
 try
 {
 //we usally display it using DOM
 console.log(json.Name);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}
function displayProfession(json)
{
 try
 {
 console.log(json.Profession);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

function displayAge(json)
{
 try
 {
 console.log(json.Age);
 }
 catch(e)
 {

Asynchronous Programming

[78]

 console.log("Exception: " + e.message);
 }
}

function displayData(data)
{
 try
 {
 var json = JSON.parse(data);

 displayName(json);
 displayProfession(json);
 displayAge(json);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

var request = new XMLHttpRequest();
var url = "data.json";

request.open("GET", url);
request.addEventListener("load", function(){
 if(request.status === 200)
 {
 displayData(request.responseText);
 }
 else
 {
 console.log("Server Error: " + request.status);
 }
}, false);

request.addEventListener("error", function(){
 console.log("Cannot Make AJAX Request");
}, false);

request.send();

Chapter 4

[79]

Here, we assume the data.json file to have this content:

{
 "Name": "Eden",
 "Profession": "Developer",
 "Age": "25"
}

The send() method of the XMLHttpRequest object is executed asynchronously,
which retrieves the data.json file and calls the load or error event handler,
depending on whether the request was made successfully or not.

There is absolutely no issue with how this AJAX works, but the issue is with how
we write the code involving events. Here are the issues that we faced while writing
the previous code:

•	 We had to add an exception handler for every block of code that will be
executed asynchronously. We can't just wrap the whole code using a single
try…catch statement. This makes it difficult to catch the exceptions.

•	 The code is harder to read, as it's difficult to follow the code flow due to the
nested function calls.

•	 If another part of the program wants to know if the asynchronous operation
is finished, pending, or being executed then we have to maintain the custom
variables for that purpose. So we can say it is difficult to find the state of the
asynchronous operation.

This code can get even more complicated and harder to read if you are nesting multiple
AJAX or any other asynchronous operations. For example, after displaying the data,
you may want to ask the user to verify if the data is correct or not and then send the
Boolean value back to the server. Here is the code example to demonstrate this:

function verify()
{
 try
 {
 var result = confirm("Is the data correct?");
 if (result == true)
 {
 //make AJAX request to send data to server
 }
 else
 {
 //make AJAX request to send data to server
 }

Asynchronous Programming

[80]

 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

function displayData(data)
{
 try
 {
 var json = JSON.parse(data);

 displayName(json);
 displayProfession(json);
 displayAge(json);

 verify();
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

The asynchronous code involving callbacks
For asynchronous JavaScript APIs involving callbacks, you need to pass the success
and error callbacks, which will be called depending on whether the operation was a
success or failure respectively.

For example, while making an AJAX request using jQuery, we need to pass the
callbacks, which will be executed depending on whether the AJAX request was
made successfully or not. Consider this code snippet that makes an AJAX request
using jQuery and logs the retrieved information:

function displayName(json)
{
 try
 {
 console.log(json.Name);
 }
 catch(e)
 {

Chapter 4

[81]

 console.log("Exception: " + e.message);
 }
}

function displayProfession(json)
{
 try
 {
 console.log(json.Profession);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

function displayAge(json)
{
 try
 {
 console.log(json.Age);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

function displayData(data)
{
 try
 {
 var json = JSON.parse(data);

 displayName(json);
 displayProfession(json);
 displayAge(json);
 }
 catch(e)
 {
 console.log("Exception: " + e.message);
 }
}

Asynchronous Programming

[82]

$.ajax({url: "data.json", success: function(result, status,
responseObject){
 displayData(responseObject.responseText);
}, error: function(xhr,status,error){
 console.log("Cannot Make AJAX Request. Error is: " + error);
}});

Even here, there is absolutely no issue with how this jQuery AJAX works, but the
issue is with how we write the code involving callbacks. Here are the issues that
we faced while writing the preceding code:

•	 It is difficult to catch the exceptions, as we have to use multiple try and
catch statements.

•	 The code is harder to read, as it's difficult to follow the code flow due to
the nested function calls.

•	 It's difficult to maintain the state of the asynchronous operation.

Even this code will get more complicated if we nest the multiple jQuery AJAX
or any other asynchronous operations.

Promises to the rescue
ES6 introduces a new native pattern for writing the asynchronous code called as
Promise pattern.

This new pattern removes the common code issues that the event and callback
pattern had. It also makes the code look more like a synchronous code.

A Promise (or a Promise object) represents an asynchronous operation. The existing
asynchronous JavaScript APIs are usually wrapped with Promises, and the new
JavaScript APIs are being purely implemented using the Promises.

Promises are new in JavaScript but are already present in many other programming
languages. Programming Languages such as C# 5, C++ 11, Swift, Scala, and more are
some examples that support Promises.

ES6 provides the Promise API using which we can create Promises and use them.
Let's explore the ES6 Promise API.

Chapter 4

[83]

The Promise constructor
The Promise constructor is used to create new Promise instances. A Promise object
represents an asynchronous operation.

We need to pass a callback to the Promise constructor, which executes the
asynchronous operation. This callback is called as the executor. The executor should
take two parameters, that is, the resolve and reject callbacks. The resolve callback
should be executed if the asynchronous operation was successful, and the reject
callback should be executed if the operation was unsuccessful. If the asynchronous
operation was successful and has a result, then we can pass the result of the
asynchronous operation to the resolve callback. If the asynchronous operation was
unsuccessful, then we can pass the reason of failure to the reject callback.

Here is a code example, which demonstrates how to create a Promise and wrap an
AJAX request using it:

var promise = new Promise(function(resolve, reject){

 var request = new XMLHttpRequest();
 var url = "data.json";

 request.open("GET", url);

 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);

 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");
 }, false);

 request.send();

});

Asynchronous Programming

[84]

The executor is executed synchronously. But the executor is executing an
asynchronous operation and therefore, the executor can return before the
asynchronous operation is finished.

A Promise is always in one of these states:

•	 Fulfilled: If the resolve callback is invoked with a non-Promise object as
argument or no argument, then we say that the Promise is fulfilled

•	 Rejected: If the reject callback is invoked or an exception occurs in the
executor scope, then we say that the Promise is rejected

•	 Pending: If the resolve or reject callback is yet to be invoked, then we
say that the Promise is pending

•	 Settled: A Promise is said to be settled if it's either fulfilled or rejected,
but not pending

Once a Promise is fulfilled or rejected, it cannot be transitioned back. An attempt to
transition it will have no effect.

If the resolve callback is invoked with a Promise object as an argument,
then the Promise object is either fulfilled or rejected, depending on
whether the passed Promise object is fulfilled or rejected.

The fulfillment value
The fulfillment value of a fulfilled Promise represents the result of a successful
asynchronous operation.

If the argument that we passed to the resolve callback is anything other than
another Promise object, then the argument itself is considered as a fulfillment
value of the Promise object.

If we pass nothing to the resolve callback, then the fulfillment value is considered
as undefined, and the Promise is considered to be fulfilled.

To see what happens when we pass a Promise object as an argument to the resolve
callback, consider this example—suppose we have a Promise named A. Promise
A's resolve callback was called by passing Promise B as argument then Promise A
is said to be fulfilled if Promise B is fulfilled and the fulfillment value of Promise A
now is same as the fulfillment value of Promise B.

Chapter 4

[85]

Consider this code example:

var a = new Promise(function(resolve, reject){
 var b = new Promise(function(res, rej){
 rej("Reason");
 });

 resolve(b);
});

var c = new Promise(function(resolve, reject){
 var d = new Promise(function(res, rej){
 res("Result");
 });

 resolve(d);
});

In the previous example, as Promise B gets rejected, therefore Promise A also
gets rejected. The reason for the rejection of both the Promises is the string called
"Reason". Similarly, C gets fulfilled if D gets fulfilled. The fulfillment value of C
and D is the string called "Result".

When we say that "a Promise resolves with a value, or is resolved
with a value," it means that the executor of the Promise invokes or
has invoked the resolve callback with the value.

The then(onFulfilled, onRejected) method
The then() method of a Promise object lets us do some task after a Promise has been
fulfilled or rejected. The task can also be another event-driven or callback-based
asynchronous operation.

The then() method of a Promise object takes two arguments, that is, the onFulfilled
and onRejected callbacks. The onFulfilled callback is executed if the Promise object
was fulfilled, and the onRejected callback is executed if the Promise was rejected.

The onRejected callback is also executed if an exception is thrown in the scope
of the executor. Therefore, it behaves like an exception handler, that is, it catches
the exceptions.

The onFulfilled callback takes a parameter, that is, the fulfillment value of the
Promise. Similarly, the onRejected callback takes a parameter, that is, the reason
of rejection.

Asynchronous Programming

[86]

The callbacks passed to the then() method are executed asynchronously.

Here is the code example to demonstrate the then() method:

var promise = new Promise(function(resolve, reject){
 var request = new XMLHttpRequest();
 var url = "data.json";
 request.open("GET", url);
 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);
 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");
 }, false);

 request.send();
});

promise.then(function(value){
 value = JSON.parse(value);
 return value;
}, function(reason){
 console.log(reason);
});

Here, if the AJAX request was successful (that is, the Promise was fulfilled),
then the onFulfilled callback is executed by passing the response text as the
argument. The onFulfilled callback converts the JSON string into the JavaScript
object. The onFulfilled callback returns the JavaScript object.

Many programmers remove the Promise object variable, and write the preceding
code in this way:

function ajax()
{
 return new Promise(function(resolve, reject){
 var request = new XMLHttpRequest();
 var url = "data.json";

Chapter 4

[87]

 request.open("GET", url);
 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);
 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");
 }, false);

 request.send();
 });
}

ajax().then(function(value){
 value = JSON.parse(value);
 return value;
}, function(reason){
 console.log(reason);
});

This style makes the code even easier to read. All the new JavaScript APIs that are
implemented using Promises come in this pattern.

The then() method always returns a new promise object, which resolves the return
value of the calling callback. Here is how a new promise object is returned by the
then() method:

•	 If the onFulfilled callback is called and there is no return statement in it,
then a new fulfilled Promise is created internally and returned.

•	 If the onFulfilled callback is called and we return a custom Promise, then it
internally creates and returns a new promise object. The new Promise object
resolves the custom Promise object.

•	 If the onFulfilled callback is called and we return something else other
than a custom Promise, then also a new Promise object is created internally
and returned. The new Promise object resolves the return value.

Asynchronous Programming

[88]

•	 If we pass null instead of the onFulfilled callback, then a callback is
created internally and replaced with the null. The internally created
onFulfilled returns a new fulfilled promise object. The fulfillment
value of the new promise object is same as the fulfillment value of the
parent Promise.

•	 If the onRejected callback is called and there is no return statement in it,
then a new rejected Promise is created internally and returned.

•	 If onRejected callback is called and we return a custom Promise, then it
internally creates and returns a new promise object. The new promise
object resolves the custom promise object.

•	 If the onRejected callback is called and we return something else other than
a custom Promise, then also a new promise object is created internally and
returned. The new promise object resolves the returned value.

•	 If we pass null instead of the onRejected callback, or omit it, then a callback
is created internally and is used instead. The internally created onRejected
callback returns a new rejected promise object. The reason of rejection of the
new promise object is same as the reason of rejection of the parent Promise.

In the previous code example, we haven't yet logged the retrieved data to console.
We can chain Promises to do this. And also in the previous code, we do not handle
the exceptions that might occur in the onFulfilled callback. Here is how we can
expand the code to log data and also handle exceptions of all the onFulfilled
callbacks chained:

function ajax()
{
 return new Promise(function(resolve, reject){
 var request = new XMLHttpRequest();
 var url = "data.json";
 request.open("GET", url);
 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);
 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");

Chapter 4

[89]

 }, false);

 request.send();
 });
}

ajax().then(function(value){
 value = JSON.parse(value);
 return value;
}).then(function(value){
 console.log(value.Name);
 return value;
}).then(function(value){
 console.log(value.Profession);
 return value;
}).then(function(value){
 console.log(value.Age);
 return value;
}).then(null, function(reason){
 console.log(reason);
});

In this code example, we chained multiple Promises using the then() method to
parse and log the response received by the executor of the first Promise of the chain.
Here, the last then() method is used as an exception or error handler for all the
onFulfilled methods and executors.

Here is an image that shows how the execution of multiple chained Promises work:

Image courtesy of MDN

Asynchronous Programming

[90]

Let's go ahead and add an event driven asynchronous operation to the chain, that is,
to verify if the data displayed is correct or not. Here is how we can expand the code
to do this:

function ajax()
{
 return new Promise(function(resolve, reject){
 var request = new XMLHttpRequest();
 var url = "http://localhost:8888/data.json";
 request.open("GET", url);
 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);
 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");
 }, false);

 request.send();
 });
}

function verify(value)
{
 return new Promise(function(resolve, reject){
 if(value == true)
 {
 //make AJAX request to send data to server
 }
 else
 {
 //make AJAX request to send data to server
 }
 });
}

ajax().then(function(value){
 value = JSON.parse(value);

Chapter 4

[91]

 return value;
}).then(function(value){
 console.log(value.Name);
 return value;
}).then(function(value){
 console.log(value.Profession);
 return value;
}).then(function(value){
 console.log(value.Age);
 return value;
}).then(function(value){
 var result = confirm("Is the data correct?");
 return result;
}).then(verify).then(null, function(reason){
 console.log(reason);
});

Now we can see how wrapping the AJAX operation with Promises made the code
easier to read and write. Now the code is more understandable at first glance.

The catch(onRejected) method
The catch() method of a promise object is used instead of the then() method,
when we use the then() method only to handle errors and exceptions. There is
nothing special about how the catch() method works. It's just that it makes the
code much easier to read, as the word "catch" makes it more meaningful.

The catch() method just takes one argument, that is, the onRejected callback.
The onRejected callback of the catch() method is invoked in the same way as
the onRejected callback of the then() method.

The catch() method always returns a Promise. Here is how a new promise object is
returned by the catch() method:

•	 If there is no return statement in the onRejected callback, then a new
fulfilled Promise is created internally and returned.

•	 If we return a custom Promise, then it internally creates and returns a new
promise object. The new promise object resolves the custom promise object.

•	 If we return something else other than a custom Promise in the onRejected
callback, then also a new promise object is created internally and returned.
The new promise object resolves the returned value.

Asynchronous Programming

[92]

•	 If we pass null instead of the onRejected callback, or omit it, then a
callback is created internally and used instead. The internally created
onRejected callback returns a rejected promise object. The reason for the
rejection of the new promise object is same as the reason for the rejection
of a parent promise object.

•	 If the promise object to which catch() is called gets fulfilled, then the
catch() method simply returns a new fulfilled promise object and ignores
the onRejected callback. The fulfillment value of the new promise object is
same as the fulfillment value of the parent Promise.

To understand the catch() method, consider this code:

promise.then(null, function(reason){
});

This code can be rewritten in this way using the catch() method:

promise.catch(function(reason){
});

These two code snippets work exactly in the same way.

Let's rewrite the AJAX code example by replacing the last chained then() method
with the catch() method:

function ajax()
{
 return new Promise(function(resolve, reject){
 var request = new XMLHttpRequest();
 var url = "data.json";
 request.open("GET", url);
 request.addEventListener("load", function(){
 if(request.status === 200)
 {
 resolve(request.responseText);
 }
 else
 {
 reject("Server Error: " + request.status);
 }
 }, false);
 request.addEventListener("error", function(){
 reject("Cannot Make AJAX Request");
 }, false);

Chapter 4

[93]

 request.send();
 });
}

function verify(value)
{
 return new Promise(function(resolve, reject){
 if(value == true)
 {
 //make AJAX request to send data to server
 }
 else
 {
 //make AJAX request to send data to server
 }
 });
}

ajax().then(function(value){
 value = JSON.parse(value);
 return value;
}).then(function(value){
 console.log(value.Name);
 return value;
}).then(function(value){
 console.log(value.Profession);
 return value;
}).then(function(value){
 console.log(value.Age);
 return value;
}).then(function(value){
 var result = confirm("Is the data correct?");
 return result;
}).then(verify)
.catch(function(reason){
 console.log(reason);
});

Now the code is even easier to read at first glance.

Asynchronous Programming

[94]

The Promise.resolve(value) method
The resolve() method of the Promise object takes a value and returns a promise
object that resolves the passed value.

The resolve() method is basically used to convert a value to an promise object.
It is useful when you find yourself with a value that may or may not be a Promise,
but you want to use it as a Promise. For example, the jQuery Promises have different
interfaces than the ES6 Promises. Therefore, you can use the resolve() method to
convert the jQuery Promises into the ES6 Promises.

Here is code example that demonstrates how to use the resolve() method:

var p1 = Promise.resolve(4);
p1.then(function(value){
 console.log(value);
});

//passed a promise object
Promise.resolve(p1).then(function(value){
 console.log(value);
});

Promise.resolve({name: "Eden"}).then(function(value){
 console.log(value.name);
});

The output is as follows:

4
4
Eden

The Promise.reject(value) method
The reject() method of the Promise object takes a value and returns a rejected
promise object with the passed value as the reason.

Unlike Promise.resolve() method, the reject() method is used for debugging
purposes and not for converting values into Promises.

Here is code example that demonstrates how to use the reject() method:

var p1 = Promise.reject(4);
p1.then(null, function(value){
 console.log(value);

Chapter 4

[95]

});

Promise.reject({name: "Eden"}).then(null, function(value){
 console.log(value.name);
});

The output is as follows:

4
Eden

The Promise.all(iterable) method
The all() method of the Promise object takes an iterable object as an argument
and returns a Promise that fulfills when all of the Promises in the iterable object
have been fulfilled.

This can be useful when we want to execute some task after some asynchronous
operations have finished.

Here is code example which demonstrates how to use the Promise.all() method:

var p1 = new Promise(function(resolve, reject){
 setTimeout(function(){
 resolve();
 }, 1000);
});

var p2 = new Promise(function(resolve, reject){
 setTimeout(function(){
 resolve();
 }, 2000);
});

var arr = [p1, p2];

Promise.all(arr).then(function(){
 console.log("Done"); //"Done" is logged after 2 seconds
});

If the iterable object contains a value that is not a promise object, then it's converted
to the Promise object using the Promise.resolve() method.

Asynchronous Programming

[96]

In case any of the passed Promises get rejected, then the Promise.all() method
immediately returns a new rejected Promise for the same reason as the rejected
passed Promise. Here is an example to demonstrate this:

var p1 = new Promise(function(resolve, reject){
 setTimeout(function(){
 reject("Error");
 }, 1000);
});

var p2 = new Promise(function(resolve, reject){
 setTimeout(function(){
 resolve();
 }, 2000);
});

var arr = [p1, p2];

Promise.all(arr).then(null, function(reason){
 console.log(reason); //"Error" is logged after 1 second
});

The Promise.race(iterable) method
The the race() method of the Promise object takes an iterable object as the
argument and returns a Promise that fulfills or rejects as soon as one of the
Promises in the iterable object is fulfilled or rejected, with the fulfillment value
or reason from that Promise.

As the name suggests, the race() method is used to race between Promises
and see which one finishes first.

Here is code example that shows how to use the race() method:

var p1 = new Promise(function(resolve, reject){
 setTimeout(function(){
 resolve("Fulfillment Value 1");
 }, 1000);
});

var p2 = new Promise(function(resolve, reject){
 setTimeout(function(){

Chapter 4

[97]

 resolve("fulfillment Value 2");
 }, 2000);
});

var arr = [p1, p2];

Promise.race(arr).then(function(value){
 console.log(value); //Output "Fulfillment value 1"
}, function(reason){
 console.log(reason);
});

The JavaScript APIs based on Promises
The new asynchronous JavaScript APIs are now based on the Promise pattern
instead of events and callbacks. And the new versions of the old JavaScript APIs
are now based on Promises.

For example, the old version of the Battery status API and the Web Cryptography
API were based on event, but the new versions of these APIs are purely implemented
using Promises. Let's see an overview of these APIs.

The Battery Status API
The Battery Status API provides us the battery's current charge level and charging
status. Here is a code example of the new Battery Status API:

navigator.getBattery().then(function(value){
 console.log("Batter Level: " + (value.level * 100));
}, function(reason){
 console.log("Error: " + reason);
});

The getBattery() method of the navigator object returns a fulfilled Promise
if it has successfully retrieved the battery information. Otherwise, it returns a
rejected Promise.

If the Promise is fulfilled, then the fulfillment value is an object holding the battery
information. The level property of the fulfillment value represents the level of
charge remaining.

Asynchronous Programming

[98]

The Web Cryptography API
The Web Cryptography API lets us do hashing, signature generation and verification,
encryption and decryption.

Here is a code example of the new Web Cryptography API:

function convertStringToArrayBufferView(str)
{
 var bytes = new Uint8Array(str.length);
 for (var iii = 0; iii < str.length; iii++)
 {
 bytes[iii] = str.charCodeAt(iii);
 }

 return bytes;
}

function convertArrayBufferToHexaDecimal(buffer)
{
 var data_view = new DataView(buffer)
 var iii, len, hex = '', c;

 for(iii = 0, len = data_view.byteLength; iii < len; iii++)
 {
 c = data_view.getUint8(iii).toString(16);
 if(c.length < 2)
 {
 c = '0' + c;
 }

 hex += c;
 }

 return hex;
}

window.crypto.subtle.digest({name: "SHA-256"}, convertStringToArrayBuf
ferView("ECMAScript 6")).then(function(result){
 var hash_value = convertArrayBufferToHexaDecimal(result);
 console.log(hash_value);
});

In this code example, we will find the SHA-256 hash value of a string.

Chapter 4

[99]

The window.crypto.subtle.digest method takes an array buffer of a string
and hash the algorithm name, and returns a Promise object. If it has successfully
produced the hashes value, then it returns a fulfilled Promise and the fulfillment
value is an array buffer representing the hash value.

Summary
In this chapter, we learned how JavaScript executes the asynchronous code.
We learned about the different patterns of writing asynchronous code. We saw
how Promises make it easier to read and write the asynchronous code, and how
to use the ES6 Promise API. We also saw some JavaScript APIs that are based
on Promises. Overall, the chapter aimed at explaining Promises, their benefits,
and how to use APIs that are based on them.

In the next chapter, we will learn about ES6 Reflect API and its uses.

[101]

Implementing the Reflect API
ES6 introduced a new API, the Reflect API for the object reflection (that is, inspecting
and manipulating the properties of objects). Although ES5 already had APIs for the
object reflection, these APIs were not well organized and on failure, they used to throw
exception. The ES6 Reflect API is well organized and makes it easier to read and write
code, as it doesn't throw exceptions on failure. Instead, it returns the Boolean value,
representing if the operation was true or false. Since developers are adapting to the
Reflect API for the object reflection, it's important to learn this API in depth.

In this chapter, we'll cover:

•	 Calling a function with a given this value
•	 Invoking a constructor with the prototype property of another constructor
•	 Defining or modifying the attributes of the object properties
•	 Enumerating over the properties of an object using an iterator object
•	 Retrieving and setting the internal [[prototype]] property of an object
•	 And a lot of other operations related to inspecting and manipulating

methods and properties of objects.

The Reflect object
The ES6 global Reflect object exposes all the new methods for the object reflection.
Reflect is not a function object therefore, you cannot invoke the Reflect object.
Also, you cannot use it with the new operator.

All the methods of the ES6 Reflect API are wrapped in the Reflect object to make it
look well organized.

Implementing the Reflect API

[102]

The Reflect object provides many methods, which overlaps the global Object
object's methods in terms of functionality.

Let's see the various methods provided by the Reflect object for object reflection.

The Reflect.apply(function, this, args) method
The Reflect.apply() method is used to invoke a function with a given this value.
The function invoked by Reflect.apply() is called as the target function. It's same
as the apply() method of the function object.

The Reflect.apply() method takes three arguments:

•	 The first argument represents the target function.
•	 The second argument represents the value of this inside the target

function. This argument is optional.
•	 The third argument is an array object, specifying the arguments of the

target function. This argument is optional.

The Reflect.apply() method returns whatever the target function returns.

Here is code example to demonstrate how to use the Reflect.apply() method:

function function_name(a, b, c)
{
 return this.value + a + b + c;
}

var returned_value = Reflect.apply(function_name, {value: 100},
[10, 20, 30]);

console.log(returned_value); //Output "160"

The Reflect.construct(constructor, args,
prototype) method
The Reflect.construct() method is used to invoke a function as a constructor.
It's similar to the new operator. The function that will be invoked as a constructor
is called as the target constructor.

One special reason why you may want to use the Reflect.construct() method
instead of new operator is when you want the target the constructor's prototype
to match the prototype an another constructor.

Chapter 5

[103]

The Reflect.construct() method takes three arguments:

•	 The first argument is the target constructor.
•	 The second argument is an array, specifying the arguments of the target

constructor. This argument is optional.
•	 The third argument is another constructor whose prototype will be used

as the prototype of the target constructor. This argument is optional.

The Reflect.construct() method returns the new instance created by the target
constructor.

Here is the code example, to demonstrate how to use the Reflect.constructor()
method:

function constructor1(a, b)
{
 this.a = a;
 this.b = b;

 this.f = function(){
 return this.a + this.b + this.c;
 }
}

function constructor2(){}
constructor2.prototype.c = 100;

var myObject = Reflect.construct(constructor1, [1,2],
constructor2);

console.log(myObject.f()); //Output "103"

In the preceding example, we used the prototype of consturctor2 as the
prototype of constructor1 while invoking constructor1.

The Reflect.defineProperty(object, property,
descriptor) method
The Reflect.defineProperty() method defines a new property directly on an
object, or modifies an existing property on an object. It returns a Boolean value
indicating whether the operation was successful or not.

Implementing the Reflect API

[104]

It's similar to the Object.defineProperty() method. The difference is that the
Reflect.defineProperty() method returns a Boolean, whereas the Object.
defineProperty() returns the modified object. If the Object.defineProperty()
method fails to modify or define an object property, then it throws exception,
whereas the Reflect.defineProperty() method returns false result.

The Reflect.defineProperty() method takes in three arguments:

•	 The first argument is the object that is used to define or modify a property
•	 The second argument is the symbol or name of the property that is to be

defined or modified
•	 The third argument is the descriptor for the property that being defined

or modified

Understanding the data properties and accessor
properties
Since ES5, every object property is either a data property or an accessor property.
A data property has a value, which may or may not be writable, whereas an accessor
property has getter-setter pair of functions to set and retrieve the property value.

The attributes of a data property are value, writable, enumerable, and configurable.
On the other hand, the attributes of an accessor property are set, get, enumerable,
and configurable.

A descriptor is an object that describes the attributes of a property. When
creating a property using the Reflect.defineProperty() method, the Object.
defineProperty() method, the Object.defineProperties() method, or the
Object.create() method, we need to pass a descriptor for the property.

A data property's descriptor object has the following properties:

•	 Value: This is the value associated with the property. The default value
is undefined.

•	 Writable: If this is true, then the property value can be changed with an
assignment operator. The default value is false.

•	 Configurable: If this is true, then the property attributes can be changed,
and the property may be deleted. The default value is false. Remember
that when the configurable attribute is false and writable is true, the
value and the writable attributes can be changed.

•	 Enumerable: If this is true, then the property shows up in the for…in
loop and the Object.keys() method. The default value is false.

Chapter 5

[105]

An accessor property's descriptor has the following properties:

•	 Get: This is a function that returns the property value. The function has
no parameters and default value is undefined.

•	 Set: This is a function that sets the property value. The function will
receive the new value that is being assigned to the property.

•	 Configurable: If this is true, then the property descriptor can be
changed and the property may be deleted. The default value is false.

•	 enumerable: If this is true, then the property shows up in for…in loop
and the Object.keys() method. The default value is false.

Depending on the properties of the descriptor object, JavaScript decides whether the
property is a data property or an accessor property.

If you add a property without using the Reflect.defineProperty() method, the
Object.defineProperty() method, the Object.defineProperties() method,
or the Object.create() method, then the property is a data property and the
writable, enumerable, and the configurable attributes are all set to true.
After the property is added, you can modify its attributes.

If an object already has a property with the specified name while calling the
Reflect.defineProperty() method, the Object.defineProperty() method
or the Object.defineProperties() method, then the property is modified.
The attributes that are not specified in the descriptor remain the same.

You can change a data property to an accessor property, and vice-versa. If you do
this, the configurable and the enumerable attributes that are not specified in the
descriptor will be preserved in the property. Other attributes that are not specified
in the descriptor are set to their default values.

Here is an example code that demonstrates how to create a data property using the
Reflect.defineProperty() method:

var obj = {}

Reflect.defineProperty(obj, "name", {
 value: "Eden",
 writable: true,
 configurable: true,
 enumerable: true
});

console.log(obj.name); //Output "Eden"

Implementing the Reflect API

[106]

Here is another example code that demonstrates how to create a accessor property
using the Reflect.defineProperty() method:

var obj = {
 __name__: "Eden"
}

Reflect.defineProperty(obj, "name", {
 get: function(){
 return this.__name__;
 },
 set: function(newName){
 this.__name__ = newName;
 },
 configurable: true,
 enumerable: true
});

obj.name = "John";
console.log(obj.name); //Output "John"

The Reflect.deleteProperty(object, property)
method
The Reflect.deleteProperty() method is used to delete a property of an object.
It's the same as the delete operator.

This method takes two arguments, that is, the first argument is the reference to the
object and the second argument is the name of the property to delete. The Reflect.
deleteProperty() method returns true if it has deleted the property successfully.
Otherwise, it returns false.

Here is code example that demonstrates how to delete a property using the
Reflect.deleteProperty() method:

var obj = {
 name: "Eden"
}

console.log(obj.name); //Output "Eden"

Reflect.deleteProperty(obj, "name");

console.log(obj.name); //Output "undefined"

Chapter 5

[107]

The Reflect.enumerate(object) method
The Reflect.enumerate() method takes an object as argument and returns an
iterator object that represents the enumerable properties of the object. It also returns
the enumerable inherited properties of an object.

The Reflect.enumerate() method is similar to the for…in loop. The Reflect.
enumerate() method returns an iterator, whereas the for…in loop iterates over
enumerable properties.

Here is an example to demonstrate how to use the Reflect.enumerate() method:

var obj = {
 a: 1,
 b: 2,
 c: 3
};

var iterator = Reflect.enumerate(obj);

console.log(iterator.next().value);
console.log(iterator.next().value);
console.log(iterator.next().value);
console.log(iterator.next().done);

The output is as follows:

a
b
c
true

The Reflect.get(object, property, this) method
The Reflect.get() method is used to retrieve the value of an object's property.
The first argument is the object and the second argument is the property name.
If the property is an accessor property, then we can provide a third argument
which will be the value of this inside the get function.

Here is code example that demonstrates how to use the Reflect.get() method:

var obj = {
 __name__: "Eden"
};

Implementing the Reflect API

[108]

Reflect.defineProperty(obj, "name", {
 get: function(){
 return this.__name__;
 }
});

console.log(obj.name); //Output "Eden"

var name = Reflect.get(obj, "name", {__name__: "John"});

console.log(name); //Output "John"

The Reflect.set(object, property, value, this)
method
The Reflect.set() method is used to set the value of an object's property. The first
argument is the object, the second argument is the property name, and the third
argument is the property value. If the property is an accessor property, then we can
provide a fourth argument which will be the value of this inside the set function.

The Reflect.set() method returns true if the property value was set successfully.
Otherwise, it returns false.

Here is code example that demonstrates how to use the Reflect.set() method:

var obj1 = {
 __name__: "Eden"
};

Reflect.defineProperty(obj1, "name", {
 set: function(newName){
 this.__name__ = newName;
 },

 get: function(){
 return this.__name__;
 }
});

var obj2 = {
 __name__: "John"
};

Chapter 5

[109]

Reflect.set(obj1, "name", "Eden", obj2);

console.log(obj1.name); //Output "Eden"
console.log(obj2.__name__); //Output "Eden"

The Reflect.getOwnPropertyDescriptor(object,
property) method
The Reflect.getOwnPropertyDescriptor() method is used to retrieve the
descriptor of an object's property.

The Reflect.getOwnPropertyDescriptor() method is same as
the Object.getOwnPropertyDescriptor() method. The Reflect.
getOwnPropertyDescriptor() method takes two arguments. The first
argument is the object and the second argument is the property name.

Here is an example to demonstrate the Reflect.getOwnPropertyDescriptor()
method:

var obj = {
 name: "Eden"
};

var descriptor = Reflect.getOwnPropertyDescriptor(obj, "name");

console.log(descriptor.value);
console.log(descriptor.writable);
console.log(descriptor.enumerable);
console.log(descriptor.configurable);

The output is as the following:

Eden
true
true
true

The Reflect.getPrototypeOf(object) method
The Reflect.getPrototypeOf() method is used to retrieve prototype of an object
that is, the value of the internal [[prototype]] property of an object.

The Reflect.getPrototypeOf() method is same as the Object.getPrototypeOf()
method.

Implementing the Reflect API

[110]

Here is the code example that demonstrates how to use the Reflect.
getPrototypeOf() method:

var obj1 = {
 __proto__: {
 name: "Eden"
 }
};

var obj2 = Reflect.getPrototypeOf(obj1);

console.log(obj2.name); //Output "Eden"

The Reflect.setPrototypeOf(object, prototype)
method
The Reflect.setPrototypeOf() is used to set the internal [[prototype]]
property's value of an object. The Reflect.setPrototypeOf() method will
return true if the internal [[prototype]] property's value was set successfully.
Otherwise, it will return false.

Here is a code example, which demonstrates how to use it:

var obj = {};

Reflect.setPrototypeOf(obj, {
 name: "Eden"
});

console.log(obj.name); //Output "Eden"

The Reflect.has(object, property) method
The Reflect.has() is used to check if a property exists in an object. It also checks
for the inherited properties. It returns true if the property exists. Otherwise it'd
return as false.

It's same as the in operator.

Here is code example that demonstrates how to use the Reflect.has() method:

var obj = {
 __proto__: {
 name: "Eden"

Chapter 5

[111]

 },
 age: 12
};

console.log(Reflect.has(obj, "name")); //Output "true"
console.log(Reflect.has(obj, "age")); //Output "true"

The Reflect.isExtensible(object) method
The Reflect.isExtensible() method is used to check if an object is extensible or
not, that is, if we can add new properties to an object.

An object can be marked as non-extensible using the Object.preventExtensions(),
Object.freeze() and the Object.seal() methods.

The Reflect.isExtensible() method is same as the Object.isExtensible()
method.

Here is code example, which demonstrates how to use the Reflect.
isExtensible() method:

var obj = {
 name: "Eden"
};

console.log(Reflect.isExtensible(obj)); //Output "true"

Object.preventExtensions(obj);

console.log(Reflect.isExtensible(obj)); //Output "false"

The Reflect.preventExtensions(object)
method
The Reflect.preventExtensions() is used to mark an object as non-extensible.
It returns a Boolean, indicating whether the operation was successful or not.

It's same as the Object.preventExtensions() method:

var obj = {
 name: "Eden"
};

Implementing the Reflect API

[112]

console.log(Reflect.isExtensible(obj)); //Output "true"

console.log(Reflect.preventExtensions(obj)); //Output "true"

console.log(Reflect.isExtensible(obj)); //Output "false"

The Reflect.ownKeys(object) method
The Reflect.ownKeys() method returns an array whose values represent the keys
of the properties of an provided object. It ignores the inherited properties.

Here is the example code to demonstrate this method:

var obj = {
 a: 1,
 b: 2,
 __proto__: {
 c: 3
 }
};

var keys = Reflect.ownKeys(obj);

console.log(keys.length); //Output "2"
console.log(keys[0]); //Output "a"
console.log(keys[1]); //Output "b"

Summary
In this chapter, we learned what the object reflection is, and how to use the ES6
Reflect API for the object reflection. We saw various methods of the Reflect object
with examples. Overall, this chapter introduced the ES6 Reflect API to inspect and
manipulate the properties of objects.

In the next chapter, we will learn about the ES6 proxies and their uses.

[113]

Using Proxies
Proxies are used to define the custom behavior for the fundamental operations on
objects. Proxies are already available in the programming languages such as C#,
C++, and Java, but JavaScript has never had proxies. ES6 introduced the Proxy API,
which lets us create proxies. In this chapter, we will look at proxies, their usage,
and the proxy traps. Due to the benefits of proxies, the developers are using proxies
increasingly and therefore, it's important to learn about proxies in-depth with
examples, which we will do in this chapter.

In this chapter, we'll cover:

•	 Creating proxies using the Proxy API
•	 Understanding what proxies are and how to use them
•	 Intercepting various operations on the objects using traps
•	 The different kinds of available traps
•	 Some use cases of proxies

Proxies in a nutshell
A proxy acts like a wrapper for an object, and defines the custom behavior for the
fundamental operations on the object. Some fundamental operations on the objects
are property lookup, property assignment, constructor invocation, enumeration,
and so on.

Once an object is wrapped using a proxy, all the operations that are supposed to
be done on the object should now be done on the proxy object, so that the custom
behavior can take place.

Using Proxies

[114]

Terminology
Here are some important terms that are used while studying proxies:

•	 Target: This is the object that is wrapped by proxy.
•	 Traps: These are functions that intercept various operations on the target

object, and define the custom behavior for those operations.
•	 Handler: This is an object that holds the traps. A handler is attached to a

proxy object.

The Proxy API
The ES6 Proxy API provides the Proxy constructor to create proxies. The Proxy
constructor takes two arguments, which are:

•	 Target: This is the object that will be wrapped by the proxy
•	 Handler: This is an object that contains the traps for the target object

A trap can be defined for every possible operation on the target object. If a trap is not
defined, then the default action takes place on the target.

Here is a code example that shows how to create a proxy, and do various operations
on the target object. In this example, we have not defined any traps:

var target = {
 age: 12
};
var handler = {};
var proxy = new Proxy(target, handler);

proxy.name = "Eden";

console.log(target.name);
console.log(proxy.name);
console.log(target.age);
console.log(proxy.age);

The output is as follows:

Eden
Eden
12
12

Chapter 6

[115]

Here, we can see that the age property of the target object can be accessed via the
proxy object. And when we added the name property to the proxy object, it was
actually added to the target object.

As there was no trap attached for the property assignment, the proxy.name
assignment resulted to the default behavior that is simply assigning the value
to the property.

So, we can say a proxy is just a wrapper for a target object and traps can be
defined to change the default behavior of operations.

Many developers don't keep a reference variable for the target object to make use
of the proxy mandatory for accessing the object. Keep a reference for the handler
only when you need to reuse it for multiple proxies. Here is how they rewrite the
previous code:

var proxy = new Proxy({
 age: 12
}, {});

proxy.name = "Eden";

Traps
There are different traps for different operations that can be performed on an object.
Some of the traps need to return values. There are some rules they need to follow
while returning values. The returned values are intercepted by the proxy to filter,
and/or to check if the returned values obey the rules. If a trap doesn't obey rules
while returning value, then the proxy throws the TypeError exception.

The value of this inside a trap is always a reference to the handler.

Lets take a look at the various kinds of traps.

The get(target, property, receiver) method
The get trap is executed when we retrieve a property value using the dot or bracket
notation, or the Reflect.get() method. It takes three parameters, that is, the target
object, the property name, and the proxy.

It must return a value that represents the property value.

Using Proxies

[116]

Here is a code example, which shows how to use the get trap:

var proxy = new Proxy({
 age: 12
 }, {
 get: function(target, property, receiver){
 if(property in target)
 {
 return target[property];
 }
 else
 {
 return "Not Found";
 }
 }
 }
);

console.log(Reflect.get(proxy, "age"));
console.log(Reflect.get(proxy, "name"));

The output is as follows:

12
Not found

Here, we can see that the get trap looks for the property in the target object, and if
it finds it, then returns the property value. Otherwise, it returns a string indicating
that it was not found.

The receiver parameter is the reference of the object whose property we intended
to access. Consider this example to better understand the value of the receiver
parameter:

var proxy = new Proxy({age: 13}, {
 get: function(target, property, receiver){

 console.log(receiver);

 if(property in target)
 {
 console.log(receiver);
 return target[property];
 }

Chapter 6

[117]

 else
 {
 return "Not Found";
 }
 }
 }
);

var temp = proxy.name;

var obj = {
 age: 12,
 __proto__: proxy
}

temp = obj.name;

The output is as follows:

{age: 13}
{age: 12}

Here obj inherits the proxy object. Therefore, when the name property was not
found in the obj object, it was looked in the proxy object. As the proxy object
had a get trap, it provided a value.

So, the value of the receiver parameter when we accessed the name property
via the obj.name expression, is obj, and when we accessed the name property
via proxy.name expression is proxy.

The value of the receiver parameter is decided in the same way for all other
traps also.

Rules
These rules shouldn't be violated while using the get trap:

•	 The value returned for a property must be the same as the value of the
target object property if the target object property is a non-writable,
non-configurable data property.

•	 The value returned for a property must be undefined if the target object
property is non-configurable accessor property that has undefined as its
[[Get]] attribute.

Using Proxies

[118]

The set(target, property, value, receiver) method
The set trap is invoked when we set the value of a property using the assignment
operator, or the Reflect.set() method. It takes four parameters, that is, the target
object, the property name, the new property value, and the receiver.

The set trap must return true if the assignment was successful. Otherwise, it will
return false.

Here is a code example, which demonstrates how to use the set trap:

var proxy = new Proxy({}, {
 set: function(target, property, value, receiver){
 target[property] = value;
 return true;
 }
});

Reflect.set(proxy, "name", "Eden");
console.log(proxy.name); //Output "Eden"

Rules
These rules shouldn't be violated while using the set trap:

•	 If the target object property is a non-writable, non-configurable data property,
then it will return as false, that is, you cannot change the property value

•	 If the target object property is a non-configurable accessor property that has
undefined as its [[Set]] attribute, then it will return as false, that is, you
cannot change the property value

The has(target, property) method
The has trap is executed when we check if a property exists or not, using the in
operator. It takes two parameters, that is, the target object and the property name.
It must return a Boolean value that indicates whether the property exists or not.

Here is a code example, which demonstrates how to use the has trap:

var proxy = new Proxy({age: 12}, {
 has: function(target, property){
 if(property in target)
 {
 return true;
 }

Chapter 6

[119]

 else
 {
 return false;
 }
 }
});

console.log(Reflect.has(proxy, "name"));
console.log(Reflect.has(proxy, "age"));

The output is as follows:

false
true

Rules
These rules shouldn't be violated while using the has trap:

•	 You cannot return false if the property exists as a non-configurable own
property of the target object

•	 You cannot return false if the property exists as an own property of the
target object, and the target object is not extensible

The isExtensible(target) method
The isExtensible trap is executed when we check if the object is extensible or not,
using the Object.isExtensible() method. It takes only one parameter, that is,
the target object. It must return a Boolean value indicating whether the object is
extensible or not.

Here is a code example, which demonstrates how to use the isExtensible trap:

var proxy = new Proxy({age: 12}, {
 isExtensible: function(target){
 return Object.isExtensible(target);
 }
});

console.log(Reflect.isExtensible(proxy)); //Output "true"

Using Proxies

[120]

Rules
These rules shouldn't be violated while using the isExtensible trap:

•	 You cannot return false if the target is extensible. Similarly, you cannot
return true if the target is non-extensible.

The getPrototypeOf(target) method
The getPrototypeOf trap is executed when we retrieve the value of the internal
[[prototype]] property, using either the Object.getPrototypeOf() method or
the __proto__ property. It takes only one parameter, that is, the target object.

It must return an object or null value. The null value indicates that the object
doesn't inherit anything else and is the end of the inheritance chain.

Here is a code example, which demonstrates how to use the getPrototypeOf trap:

var proxy = new Proxy({age: 12, __proto__: {name: "Eden"}}, {
 getPrototypeOf: function(target){
 return Object.getPrototypeOf(target);
 }
});

console.log(Reflect.getPrototypeOf(proxy).name); //Output "Eden"

Rules
These rules shouldn't be violated while using the getPrototypeOf trap:

•	 It must either return an object or return null value.
•	 If the target is not extensible, then this trap must return the actual prototype

The setPrototypeOf(target, prototype) method
The setPrototypeOf trap is executed when we set the value of the internal
[[prototype]] property, using either the Object.setPrototypeOf() method
or the __proto__ property. It takes two parameters, that is, the target object and
value of the property to be assigned.

This trap will return a Boolean, indicating whether it has successfully set the
prototype or not.

Chapter 6

[121]

Here is a code example, which demonstrates how to use the setPrototypeOf trap:

var proxy = new Proxy({}, {
 setPrototypeOf: function(target, value){
 Reflect.setPrototypeOf(target, value);
 return true;
 }
});

Reflect.setPrototypeOf(proxy, {name: "Eden"});

console.log(Reflect.getPrototypeOf(proxy).name); //Output "Eden"

Rules
These rules shouldn't be violated while using the setPrototypeOf trap:

•	 You must return false if the target is not extensible

The preventExtensions(target) method
The preventExtensions trap is executed when we prevent the addition of new
properties using the Object.preventExtensions() method. It takes only one
parameter, that is, the target object.

It must return a Boolean, indicating weather it has successfully prevented the
extension of the object or not.

Here is a code example, which demonstrates how to use the preventExtensions trap:

var proxy = new Proxy({}, {
 preventExtensions: function(target){
 Object.preventExtensions(target);
 return true;
 }
});

Reflect.preventExtensions(proxy);

proxy.a = 12;
console.log(proxy.a); //Output "undefined"

Using Proxies

[122]

Rules
These rules shouldn't be violated while using the preventExtensions trap:

•	 This trap can return true only if the target is non-extensible, or it has made
the target non-extensible

The getOwnPropertyDescriptor(target, property)
method
The getOwnPropertyDescriptor trap is executed when we retrieve the descriptor
of a property by using the Object.getOwnPropertyDescriptor() method. It takes
two parameters, that is, the target object and the name of the property.

This trap must return a descriptor object or undefined. The undefined value is
returned if the property doesn't exist.

Here is a code example, which demonstrates how to use the
getOwnPropertyDescriptor trap:

var proxy = new Proxy({age: 12}, {
 getOwnPropertyDescriptor: function(target, property){
 return Object.getOwnPropertyDescriptor(target, property);
 }
});

var descriptor = Reflect.getOwnPropertyDescriptor(proxy, "age");

console.log("Enumerable: " + descriptor.enumerable);
console.log("Writable: " + descriptor.writable);
console.log("Configurable: " + descriptor.configurable);
console.log("Value: " + descriptor.value);

The output is as follows:

Enumerable: true
Writable: true
Configurable: true
Value: 12

Chapter 6

[123]

Rules
These rules shouldn't be violated while using the getOwnPropertyDescriptor trap:

•	 This trap must either return an object or return an undefined property
•	 You cannot return the undefined value if the property exists as a

non-configurable own property of the target object
•	 You cannot return the undefined value if the property exists as an own

property of the target object, and the target object is not extensible
•	 You will have to return undefined, if the property does not exist as an own

property of the target object, and the target object is not extensible
•	 You cannot make the configurable property of the returned descriptor

object false, if the property exists as an own property of the target object,
or if it exists as a configurable own property of the target object

The defineProperty(target, property, descriptor)
method
The defineProperty trap is executed when we define a property using the
Object.defineProperty() method. It takes three parameters, that is, the target
object, the property name, and the descriptor object.

This trap should return a Boolean indicating whether it has successfully defined the
property or not.

Here is a code example, which demonstrates how to use the defineProperty trap:

var proxy = new Proxy({}, {
 defineProperty: function(target, property, descriptor){
 Object.defineProperty(target, property, descriptor);
 return true;
 }
});

Reflect.defineProperty(proxy, "name", {value: "Eden"});

console.log(proxy.name); //Output "Eden"

Using Proxies

[124]

Rules
These rules shouldn't be violated while using the defineProperty trap:

•	 It must return false if the target object is not extensible, and the property
doesn't yet exist

The deleteProperty(target, property) method
The deleteProperty trap is executed when we delete a property using either
the delete operator or the Reflect.deleteProperty() method. It takes two
parameters, that is, the target object and the property name.

This trap must return a Boolean, indicating whether the property was deleted
successfully or not.

Here is a code example, which demonstrates how to use the deleteProperty trap:

var proxy = new Proxy({age: 12}, {
 deleteProperty: function(target, property){
 return delete target[property];
 }
});

Reflect.deleteProperty(proxy, "age");
console.log(proxy.age); //Output "undefined"

Rules
This rule shouldn't be violated while using the deleteProperty trap:

•	 This trap must return false if the property exists as a non-configurable own
property of the target object

The enumerate(target) method
The enumerate trap is executed when we loop over the property keys using either
the for…in loop or the Reflect.enumerate() method. It takes one parameter, that
is, the target object.

This trap must return an iterator object, representing the enumerable keys of the object.

Chapter 6

[125]

Here is a code example, which demonstrates how to use the enumerate trap:

var proxy = new Proxy({age: 12, name: "Eden"}, {
 enumerate: function(target){
 var arr = [];

 for(var p in target)
 {
 arr[arr.length] = p;
 }

 return arr[Symbol.iterator]();
 }
});

var iterator = Reflect.enumerate(proxy);

console.log(iterator.next().value);
console.log(iterator.next().value);
console.log(iterator.next().done);

Output is:

age
name
true

Rules
This rule shouldn't be violated while using the enumerate trap:

•	 This trap must return an object

The ownKeys(target) method
The ownKeys trap is executed when we retrieve the own property keys
using the Reflect.ownKeys(), Object.getOwnPropertyNames(), Object.
getOwnPropertySymbols(), and the Object.keys() methods. It takes only
one parameter, that is, the target object.

The Reflect.ownKeys() method is similar to the Object.getOwnPropertyNames()
method, that is, they return the enumerable and non-enumerable property keys of a
object. They ignore the inherited properties. The only difference is that the Reflect.
ownKeys() method returns both, the symbol and string keys, whereas the Object.
getOwnPropertyNames() method returns only the string keys.

Using Proxies

[126]

The Object.getOwnPropertySymbols() method returns the enumerable and
non-enumerable properties whose keys are symbols. It ignores the inherited properties.

The Object.keys() method is similar to the Object.getOwnPropertyNames()
method, but the only difference is that the Objecy.keys() method returns the
enumerable properties only.

The ownKeys trap must return an array, representing the own property keys.

Here is a code example, which demonstrates how to use the ownKeys trap:

var s = Symbol();

var object = {age: 12, __proto__: {name: "Eden"}, [s]: "Symbol"};

Object.defineProperty(object, "profession", {
 enumerable: false,
 configurable: false,
 writable: false,
 value: "Developer"
})

var proxy = new Proxy(object, {
 ownKeys: function(target){
 return Object.getOwnPropertyNames(target).concat(Object.
getOwnPropertySym
bols(target));
 }
});

console.log(Reflect.ownKeys(proxy));
console.log(Object.getOwnPropertyNames(proxy));
console.log(Object.keys(proxy));
console.log(Object.getOwnPropertySymbols(proxy));

The output is as follows:

["age", "profession", Symbol()]
["age", "profession"]
["age"]
[Symbol()]

Here, we can see that the values of the array returned by the ownKeys trap are
filtered by the proxy, based on what the caller expected. For example, the Object.
getOwnPropertySymbols() caller expected an array of symbols. Therefore, the
proxy removed the strings from the returned array.

Chapter 6

[127]

Rules
These rules shouldn't be violated while using the ownKeys trap:

•	 The elements of the returned array must either be a string or symbol
•	 The returned array must contain the keys of all the non-configurable own

properties of the target object
•	 If the target object is not extensible, then the returned array must contain all

the keys, of the own properties, of the target object, and no other values

The apply(target, thisValue, arguments) method
If the target is a function, then calling the proxy will execute the apply trap.
The apply trap is also executed for function's apply() and call() methods,
and the Reflect.apply() method.

The apply trap takes three parameters. The first parameter is the target object,
and the third parameter is an array, representing the arguments of the function call.
The second parameter is same as the value of this of the target function, that is, it's
same as the value of this of the target function, if the target function would have
been invoked without the proxy.

Here is a code example, which demonstrates how to use the apply trap:

var proxy = new Proxy(function(){}, {
 apply: function(target, thisValue, arguments){
 console.log(thisValue.name);
 return arguments[0] + arguments[1] + arguments[2];
 }
});

var obj = {
 name: "Eden",
 f: proxy
}

var sum = obj.f(1,2,3);

console.log(sum);

The output is as follows:

Eden
6

Using Proxies

[128]

The construct(target, arguments) method
If the target is a function, then calling the target as a constructor using the new
operator or the Reflect.construct() method will execute the construct trap.

The construct trap takes two parameters. The first parameter is the target
object, and the second parameter is an array, representing the arguments of the
constructor call.

The construct trap must return an object, representing the newly created instance.

Here is a code example, which demonstrates how to use the construct trap:

var proxy = new Proxy(function(){}, {
 construct: function(target, arguments){
 return {name: arguments[0]};
 }
});

var obj = new proxy("Eden");
console.log(obj.name); //Output "Eden"

The Proxy.revocable(target, handler) method
A revocable proxy is a proxy that can be revoked (that is, switched off).

To create the revocable, proxies we have to use the Proxy.revocable() method.
The Proxy.revocable() method is not a constructor. This method also takes the
same arguments as the Proxy constructor, but instead of returning a revocable proxy
instance directly, it returns an object with two properties, which are the following:

•	 proxy: This is the revocable proxy object
•	 revoke: When this function is called, it revokes the proxy

Once a revocable proxy is revoked, any attempts to use it will throw a
TypeError exception.

Here is an example to demonstrate how to create a revocable proxy and revoke it:

var revocableProxy = Proxy.revocable({
 age: 12
 }, {
 get: function(target, property, receiver){
 if(property in target)
 {

Chapter 6

[129]

 return target[property];
 }
 else
 {
 return "Not Found";
 }
 }
 }
);

console.log(revocableProxy.proxy.age);

revocableProxy.revoke();

console.log(revocableProxy.proxy.name);

The output is as follows:

12
TypeError: proxy is revoked

Use Case
You can use the revocable proxies instead of the regular proxies. You can use it
when you pass a proxy to a function that runs asynchronously or is parallel so
that you can revoke it anytime in case you don't want the function to be able to
use that proxy anymore.

The uses of proxies
There are several uses of proxies. Here are some main use cases:

•	 Creating virtualized objects, such as remote objects, persistent objects,
and more

•	 The lazy creation of objects
•	 Transparent logging, tracing, profiling, and more
•	 Embedded domain specific languages
•	 Generically interposing abstractions in order to enforce the access control

Using Proxies

[130]

Summary
In this chapter, we learned what proxies are and how to use them. We saw the
various traps available with examples. We also saw different rules that need to
be followed by different traps. This chapter explained everything in-depth about
the ES6 Proxy API. Finally, we saw some use cases of proxies.

In the next chapter, we will walk through the object oriented programming,
and the ES6 classes.

[131]

Walking You
Through Classes

ES6 introduced classes that provide a much simpler and clearer syntax to creating
constructors and dealing with inheritance. JavaScript never had the concept of classes,
although it's an object-oriented programming language. Programmers from the other
programming language background often found it difficult to understand JavaScript's
object-oriented model and inheritance due to lack of classes. In this chapter, we will
learn about the object-oriented JavaScript using the ES6 classes:

•	 The JavaScript data types
•	 Creating objects the classical way
•	 The constructors of the primitive types
•	 What are classes in ES6
•	 Creating objects using classes
•	 The inheritance in classes
•	 The features of classes

Understanding the Object-oriented
JavaScript
Before we proceed with the ES6 classes, let's refresh our knowledge on the JavaScript
data types, constructors, and inheritance. While learning classes, we will be comparing
the syntax of the constructors and prototype-based inheritance with the syntax of the
classes. Therefore, it is important to have a good grip on these topics.

Walking You Through Classes

[132]

The JavaScript data types
The JavaScript variables hold (or store) data (or value). The type of data variables
that they hold is called as the data type. In JavaScript, there are seven different data
types: number, string, Boolean, null, undefined, symbol, and object.

When it comes to holding objects, variables hold the object reference (that is, the
memory address) instead of the object itself.

All the other data types other than object are called as primitive data types.

The arrays and functions are actually the JavaScript objects.

Creating objects
There are two ways of creating an object in JavaScript, that is, using the object
literal, or using a constructor. The object literal is used when we want to create
fixed objects, whereas constructor is used when we want to create the objects
dynamically on runtime.

Let's consider a case where we may need to use the constructors instead of the
object literal. Here is a code example:

var student = {
 name: "Eden",
 printName: function(){
 console.log(this.name);
 }
}

student.printName(); //Output "Eden"

Here, we created a student object using the object literal, that is, the {} notation.
This works well when you just want to create a single student object.

But the problem arises when you want to create multiple student objects. Obviously,
you don't want to write the previous code multiple times to create multiple student
objects. This is where constructors come into use.

Chapter 7

[133]

A function acts like a constructor when invoked using the new keyword. A constructor
creates and returns an object. The this keyword, inside a function, when invoked as
a constructor, points to the new object instance, and once the constructor execution is
finished, the new object is automatically returned. Consider this example:

function Student(name)
{
 this.name = name;
}

Student.prototype.printName = function(){
 console.log(this.name);
}

var student1 = new Student("Eden");
var student2 = new Student("John");

student1.printName(); //Output "Eden"
student2.printName(); //Output "John"

Here, to create multiple student objects, we invoked the constructor multiple times
instead of creating multiple student objects using the object literals.

To add methods to the instances of the constructor, we didn't use the this keyword,
instead we used the prototype property of constructor. We will learn more on why
we did it this way, and what the prototype property is, in the next section.

Actually, every object must belong to a constructor. Every object has an inherited
property named constructor, pointing to the object's constructor. When we create
objects using the object literal, the constructor property points to the global Object
constructor. Consider this example to understand this behavior:

var student = {}

console.log(student.constructor == Object); //Output "true"

Understanding inheritance
Each JavaScript object has an internal [[prototype]] property pointing to another
object called as its prototype. This prototype object has a prototype of its own, and
so on until an object is reached with null as its prototype. null has no prototype,
and it acts as a final link in the prototype chain.

Walking You Through Classes

[134]

When trying to access a property of an object, and if the property is not found in the
object, then the property is searched in the object's prototype. If still not found, then
it's searched in the prototype of the prototype object. It keeps on going until null is
encountered in the prototype chain. This is how inheritance works in JavaScript.

As a JavaScript object can have only one prototype, JavaScript supports only a
single inheritance.

While creating objects using the object literal, we can use the special __proto__
property or the Object.setPrototypeOf() method to assign a prototype of an
object. JavaScript also provides an Object.create() method, with which we can
create a new object with a specified prototype as the __proto__ lacked browser
support, and the Object.setPrototypeOf() method seemed a little odd. Here is
code example that demonstrates different ways to set the prototype of an object
while creating, using the object literal:

var object1 = {
 name: "Eden",
 __proto__: {age: 24}
}

var object2 = {name: "Eden"}
Object.setPrototypeOf(object2, {age: 24});

var object3 = Object.create({age: 24}, {name: {value: "Eden"}});

console.log(object1.name + " " + object1.age);
console.log(object2.name + " " + object2.age);
console.log(object3.name + " " + object3.age);

The output is as follows:

Eden 24
Eden 24
Eden 24

Here, the {age:24} object is referred as base object, superobject, or parent object as
its being inherited. And the {name:"Eden"} object is referred as the derived object,
subobject, or the child object, as it inherits another object.

Chapter 7

[135]

If you don't assign a prototype to an object while creating it using the object literal,
then the prototype points to the Object.prototype property. The prototype of
Object.prototype is null therefore, leading to the end of the prototype chain.
Here is an example to demonstrate this:

var obj = {
 name: "Eden"
}

console.log(obj.__proto__ == Object.prototype); //Output "true"

While creating objects using a constructor, the prototype of the new objects
always points to a property named prototype of the function object. By default,
the prototype property is an object with one property named as constructor.
The constructor property points to the function itself. Consider this example
to understand this model:

function Student()
{
 this.name = "Eden";
}

var obj = new Student();

console.log(obj.__proto__.constructor == Student); //Output "true"
console.log(obj.__proto__ == Student.prototype); //Output "true"

To add new methods to the instances of a constructor, we should add them to
the prototype property of the constructor, as we did earlier. We shouldn't add
methods using the this keyword in a constructor body, because every instance
of the constructor will have a copy of the methods, and this isn't very memory
efficient. By attaching methods to the prototype property of a constructor, there
is only one copy of each function that all the instances share. To understand this,
consider this example:

function Student(name)
{
 this.name = name;
}

Student.prototype.printName = function(){
 console.log(this.name);
}

Walking You Through Classes

[136]

var s1 = new Student("Eden");
var s2 = new Student("John");

function School(name)
{
 this.name = name;
 this.printName = function(){
 console.log(this.name);
 }
}

var s3 = new School("ABC");
var s4 = new School("XYZ");

console.log(s1.printName == s2.printName);
console.log(s3.printName == s4.printName);

The output is as follows:

true
false

Here, s1 and s2 share the same printName function that reduces the use of memory,
whereas s3 and s4 contain two different functions with the name as printName that
makes the program use more memory. This is unnecessary, as both the functions
do the same thing. Therefore, we add methods for the instances to the prototype
property of the constructor.

Implementing the inheritance hierarchy in the constructors is not as straightforward
as we did for object literals. Because the child constructor needs to invoke the parent
constructor for the parent constructor's initialization logic to take place and we
need to add the methods of the prototype property of the parent constructor to
the prototype property of the child constructor, so that we can use them with the
objects of child constructor. There is no predefined way to do all this. The developers
and JavaScript libraries have their own ways of doing this. I will show you the most
common way of doing it.

Here is an example to demonstrate how to implement the inheritance while creating
the objects using the constructors:

function School(schoolName)
{
 this.schoolName = schoolName;
}
School.prototype.printSchoolName = function(){

Chapter 7

[137]

 console.log(this.schoolName);
}

function Student(studentName, schoolName)
{
 this.studentName = studentName;

 School.call(this, schoolName);
}
Student.prototype = new School();
Student.prototype.printStudentName = function(){
 console.log(this.studentName);
}

var s = new Student("Eden", "ABC School");
s.printStudentName();
s.printSchoolName();

The output is as follows:

Eden
ABC School

Here, we invoked the parent constructor using the call method of the function
object. To inherit the methods, we created an instance of the parent constructor,
and assigned it to the child constructor's prototype property.

This is not a foolproof way of implementing inheritance in the constructors, as there
are lots of potential problems. For example—in case the parent constructor does
something else other than just initializing properties, such as DOM manipulation,
then while assigning a new instance of the parent constructor, to the prototype
property, of the child constructor, can cause problems.

Therefore, the ES6 classes provide a better and easier way to inherit the existing
constructors and classes. We will see more on this later in this chapter.

The constructors of primitive data types
The primitive data, types such as boolean, string, and number, have their constructor
counterparts. These counterpart constructors behave like wrappers for these primitive
types. For example, the String constructor is used to create a string object that contains
an internal [[PrimitiveValue]] property that holds the actual primitive value.

Walking You Through Classes

[138]

At runtime, wherever necessary, the primitive values are wrapped with their
constructor counterparts, and also the counterpart objects are treated as primitive
values, so that the code works as expected. Consider this example code to
understand how it works:

var s1 = "String";
var s2 = new String("String");

console.log(typeof s1);
console.log(typeof s2);

console.log(s1 == s2);
console.log(s1.length);

The output is as follows:

string
object
true
6

Here, s1 is a primitive type, and s2 is an object although applying the == operator
on them gives us a true result. s1 is a primitive type but still we are able to access
the length property however primitive types shouldn't have any properties.

All this is happening because the previous code was converted into this on runtime:

var s1 = "String";
var s2 = new String("String");

console.log(typeof s1);
console.log(typeof s2);

console.log(s1 == s2.valueOf());
console.log((new String(s1)).length);

Here, we can see how the primitive value was wrapped with its constructor
counterpart, and how the object counterpart was treated as primitive value
when necessary. Therefore, the code works as expected.

The primitive types introduced from ES6 onwards won't allow their counterpart
functions to be invoked as constructors, that is, we can't explicitly wrap them using
their object counterparts. We saw this behavior while learning symbols.

The null and undefined primitive types don't have any counterpart constructors.

Chapter 7

[139]

Using classes
We saw that JavaScript's object-oriented model is based on the constructors and
prototype-based inheritance. Well, the ES6 classes are just new a syntax for the
existing model. Classes do not introduce a new object-oriented model to JavaScript.

The ES6 classes aim to provide a much simpler and clearer syntax for dealing with
the constructors and inheritance.

In fact, classes are functions. Classes are just a new syntax for creating functions
that are used as constructors. Creating functions using the classes that aren't used
as constructors doesn't make any sense, and offer no benefits. Rather, it makes your
code difficult to read, as it becomes confusing. Therefore, use classes only if you
want to use it for constructing objects. Let's have a look at classes in detail.

Defining a class
Just as there are two ways of defining functions, function declaration and function
expression, there are two ways to define a class: using the class declaration and the
class expression.

The class declaration
For defining a class using the class declaration, you need to use the class keyword,
and a name for the class.

Here is a code example to demonstrate how to define a class using the class declaration:

class Student
{
 constructor(name)
 {
 this.name = name;
 }
}

var s1 = new Student("Eden");
console.log(s1.name); //Output "Eden"

Here, we created a class named Student. Then, we defined a constructor method
in it. Finally, we created a new instance of the class—an object, and logged the name
property of the object.

Walking You Through Classes

[140]

The body of a class is in the curly brackets, that is, {}. This is where we need
to define methods. Methods are defined without the function keyword, and a
comma is not used in between the methods.

Classes are treated as functions, and internally the class name is treated as the
function name, and the body of the constructor method is treated as the body
of the function.

There can only be one constructor method in a class. Defining more than one
constructor will throw the SyntaxError exception.

All the code inside a class body is executed in the strict mode, by default.

The previous code is the same as this code when written using function:

function Student(name)
{
 this.name = name;
}

var s1 = new Student("Eden");
console.log(s1.name); //Output "Eden"

To prove that a class is a function, consider this code:

class Student
{
 constructor(name)
 {
 this.name = name;
 }
}

function School(name)
{
 this.name = name;
}

console.log(typeof Student);
console.log(typeof School == typeof Student);

The output is as follows:

function
true

Here, we can see that a class is a function. It's just a new syntax for creating a function.

Chapter 7

[141]

The class expression
A class expression has a similar syntax to a class declaration. However, with class
expressions, you are able to omit the class name. Class body and behavior remains
the same in both the ways.

Here is a code example to demonstrate how to define a class using a class expression:

var Student = class {
 constructor(name)
 {
 this.name = name;
 }
}

var s1 = new Student("Eden");
console.log(s1.name); //Output "Eden"

Here, we stored a reference of the class in a variable, and used it to construct
the objects.

The previous code is the same as this code when written using function:

var Student = function(name) {
 this.name = name;
}

var s1 = new Student("Eden");
console.log(s1.name); //Output "Eden"

The prototype methods
All the methods in the body of the class are added to the prototype property of the
class. The prototype property is the prototype of the objects created using class.

Here is an example that shows how to add methods to the prototype property of
a class:

class Person
{
 constructor(name, age)
 {
 this.name = name;
 this.age = age;
 }

Walking You Through Classes

[142]

 printProfile()
 {
 console.log("Name is: " + this.name + " and Age is: " +
this.age);
 }
}

var p = new Person("Eden", 12)
p.printProfile();

console.log("printProfile" in p.__proto__);
console.log("printProfile" in Person.prototype);

The output is as follows:

Name is: Eden and Age is: 12
true
true

Here, we can see that the printProfile method was added to the prototype
property of the class.

The previous code is the same as this code when written using function:

function Person(name, age)
{
 this.name = name;
 this.age = age;
}

Person.prototype.printProfile = function()
{
 console.log("Name is: " + this.name + " and Age is: " +
this.age);
}

var p = new Person("Eden", 12)
p.printProfile();

console.log("printProfile" in p.__proto__);
console.log("printProfile" in Person.prototype);

The output is as follows:

Name is: Eden and Age is: 12
true
true

Chapter 7

[143]

The get and set methods
In ES5, to add accessor properties to the objects, we had to use the Object.
defineProperty() method. ES6 introduced the get and set prefixes for methods.
These methods can be added to the object literals and classes for defining the get
and set attributes of the accessor properties.

When get and set methods are used in a class body, they are added to the
prototype property of the class.

Here is an example to demonstrate how to define the get and set methods in a class:

class Person
{
 constructor(name)
 {
 this._name_ = name;
 }

 get name(){
 return this._name_;
 }

 set name(name){
 this._name_ = name;
 }
}

var p = new Person("Eden");
console.log(p.name);
p.name = "John";
console.log(p.name);

console.log("name" in p.__proto__);
console.log("name" in Person.prototype);
console.log(Object.getOwnPropertyDescriptor(p.__proto__,
"name").set);
console.log(Object.getOwnPropertyDescriptor(Person.prototype,
"name").get);
console.log(Object.getOwnPropertyDescriptor(p, "_name_").value);

The output is as follows:

Eden
John
true

Walking You Through Classes

[144]

true
function name(name) { this._name_ = name; }
function name() { return this._name_; }
John

Here, we created an accessor property to encapsulate the _name_ property. We also
logged some other information to prove that name is an accessor property, which is
added to the prototype property of the class.

The generator method
To treat a concise method of an object literal as the generator method, or to treat a
method of a class as the generator method, we can simply prefix it with the * character.

The generator method of a class is added to the prototype property of the class.

Here is an example to demonstrate how to define a generator method in class:

class myClass
{
 * generator_function()
 {
 yield 1;
 yield 2;
 yield 3;
 yield 4;
 yield 5;
 }

}

var obj = new myClass();

let generator = obj.generator_function();

console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().value);
console.log(generator.next().done);

console.log("generator_function" in myClass.prototype);

Chapter 7

[145]

The output is as follows:

1
2
3
4
5
true
true

The static methods
The methods that are added to the body of the class with the static prefix are called
as static methods. Static methods are the own methods of the class, that is, they
are not added to the prototype property of the class, rather they are added to the
class itself. For example, the String.fromCharCode() method is a static method
of the String constructor, that is, fromCharCode is the own property of the String
function itself.

Static methods are often used to create utility functions for an application.

Here is an example to demonstrate how to define and use a static method in class:

class Student
{
 constructor(name)
 {
 this.name = name;
 }

 static findName(student)
 {
 return student.name;
 }
}

var s = new Student("Eden");
var name = Student.findName(s);

console.log(name); //Output "Eden"

Here, findName is a static method of the Student class.

Walking You Through Classes

[146]

The previous code is the same as this code when written using function:

function Student(name)
{
 this.name = name;
}

Student.findName = function(student){
 return student.name;
}

var s = new Student("Eden");
var name = Student.findName(s);

console.log(name); //Output "Eden"

Implementing inheritance in classes
Earlier in this chapter, we saw how difficult it was to implement inheritance
hierarchy in functions. Therefore, ES6 aims to make it easy by introducing the
extends clause, and the super keyword for classes.

By using the extends clause, a class can inherit static and non-static properties
of another constructor (which may or may not be defined using a class).

The super keyword is used in two ways:

•	 It's used in a class constructor method to call the parent constructor
•	 When used inside methods of a class, it references the static and non-static

methods of the parent constructor

Here is an example to demonstrate how to implement the inheritance hierarchy in
the constructors using the extends clause, and the super keyword:

function A(a)
{
 this.a = a;
}

A.prototype.printA = function(){
 console.log(this.a);
}

Chapter 7

[147]

class B extends A
{
 constructor(a, b)
 {
 super(a);
 this.b = b;
 }

 printB()
 {
 console.log(this.b);
 }

 static sayHello()
 {
 console.log("Hello");
 }
}

class C extends B
{
 constructor(a, b, c)
 {
 super(a, b);
 this.c = c;
 }

 printC()
 {
 console.log(this.c);
 }

 printAll()
 {
 this.printC();
 super.printB();
 super.printA();
 }
}

var obj = new C(1, 2, 3);
obj.printAll();

C.sayHello();

Walking You Through Classes

[148]

The output is as follows:

3
2
1
Hello

Here, A is a function constructor; B is a class that inherits A; C is a class that inherits B;
and as B inherits A, therefore C also inherits A.

As a class can inherit a function constructor, we can also inherit the prebuilt function
constructors, such as String and Array, and also the custom function constructors
using the classes instead of other hacky ways that we used to use.

The previous example also shows how and where to use the super keyword.
Remember that inside the constructor method, you need to use super before
using the this keyword. Otherwise, an exception is thrown.

If a child class doesn't have a constructor method, then the default
behavior will invoke the constructor method of the parent class.

The computed method names
You can also decide the name of the static and non-static methods of a class and
concise methods of a object literal on runtime, that is, you can define the name of
methods via expressions. Here is an example to demonstrate this:

class myClass
{
 static ["my" + "Method"](){
 console.log("Hello");
 }
}

myClass["my" + "Method"](); //Output "Hello"

Chapter 7

[149]

The computed property names also allow you to use symbols as keys for the
methods. Here is an example to demonstrate this:

var s = Symbol("Sample");

class myClass
{
 static [s]()
 {
 console.log("Hello");
 }
}

myClass[s](); //Output "Hello"

The attributes of properties
When using class, the attributes of the static and non-static properties of constructor
are different than when declared using function:

•	 The static methods are writable and configurable, but not enumerable
•	 The prototype property and the prototype.constructor property of class

is not writable, numerable, or configurable
•	 The properties of the prototype property are writable and configurable,

but not enumerable

Classes are not hoisted!
You can call a function before its defined, that is, function calls can be made above
the function definition. But in case of class, you cannot use a class before its defined.
Trying to do so in classes will throw the ReferenceError exception.

Here is an example to demonstrate this:

myFunc();
function myFunc(){}

var obj = new myClass(); //throws ReferenceError exception
class myClass{}

Walking You Through Classes

[150]

Overriding the result of the constructor
method
The constructor method, by default, returns the new instance if there is no return
statement in it. If there is a return statement, then whatever is the value in the
return statement is returned.

Here is an example to demonstrate this:

class myClass
{
 constructor()
 {
 return Object.create(null);
 }
}

console.log(new myClass() instanceof myClass); //Output "false"

The "Symbol.species" static accessor property
The @@species static accessor property is optionally added to a child constructor,
in order to signal the methods of the parent constructor, about what the constructor
should use if the parent constructor's methods are returning new instances. If the
@@species static accessor property is not defined on a child constructor, then the
methods of the parent constructor can use the default constructor.

Consider this example to understand the use of @@species—the map() method of
the array objects returns a new Array instance. If we call the map() method of an
object that inherits an array object, then the map() method returns a new instance of
the child constructor instead of the Array constructor, which is not what we always
want. Therefore, ES6 introduced the @@species property, which provides a way to
signal such kind of functions, to use a different constructor instead of the default
constructor.

Here is a code example to demonstrate how to use the @@species static
accessor property:

class myCustomArray1 extends Array
{
 static get [Symbol.species]()
 {
 return Array;
 }

Chapter 7

[151]

}

class myCustomArray2 extends Array{}

var arr1 = new myCustomArray1(0, 1, 2, 3, 4);
var arr2 = new myCustomArray2(0, 1, 2, 3, 4);

console.log(arr1 instanceof myCustomArray1);
console.log(arr2 instanceof myCustomArray2);

arr1 = arr1.map(function(value){ return value + 1; })
arr2 = arr2.map(function(value){ return value + 1; })

console.log(arr1 instanceof myCustomArray1);
console.log(arr2 instanceof myCustomArray2);

console.log(arr1 instanceof Array);
console.log(arr2 instanceof Array);

The output is as follows:

true
true
false
true
true
false

It is recommended that if you are creating a JavaScript library, then the methods
of the constructors in your library should always look for the @@species property
while returning new instances. Here is an example to demonstrate this:

//Assume myArray1 is part of library
class myArray1
{

 //default @@species. Child class will inherit this property
 static get [Symbol.species]()
 {
 //default constructor
 return this;
 }

 mapping()
 {

Walking You Through Classes

[152]

 return new this.constructor[Symbol.species]();
 }
}

class myArray2 extends myArray1
{
 static get [Symbol.species]()
 {
 return myArray1;
 }
}

var arr = new myArray2();

console.log(arr instanceof myArray2); //Output "true"

arr = arr.mapping();

console.log(arr instanceof myArray1); //Output "true"

In case you don't want to define a default @@species property in parent constructors,
then you can use the if…else conditional to check whether the @@species property
is defined or not. But the previous pattern is preferred. The built-in map() method
also uses the previous pattern.

All the built-in methods of the JavaScript constructors in ES6 look for a @@species
property if they return a new instance. For example, the methods of Array, Map,
ArrayBuffer, Promise, and other such constructors look for the @@species property
if they return new instances.

The "new.target" implicit parameter
ES6 adds a parameter named new.target to all the functions. The dot in between is
a part of the parameter name.

The default value of new.target is undefined. But when a function is invoked
as a constructor, the value of the new.target parameter depends on the following
conditions:

•	 If a constructor is invoked using a new operator, then new.target points to
this constructor

•	 If a constructor is invoked via super keyword, then the value of new.target in
it is the same as the value of new.target of the constructor that is called super.

Chapter 7

[153]

Inside an arrow function, the value of new.target is the same as the value of
new.target of the surrounding non-arrow function.

Here is an example code to demonstrate this:

function myConstructor()
{
 console.log(new.target.name);
}

class myClass extends myConstructor
{
 constructor()
 {
 super();
 }
}

var obj1 = new myClass();
var obj2 = new myConstructor();

The output is as follows:

myClass
myConstructor

Using "super" in the object literals
The super keyword can also be used in the concise methods of the object literals.
The super keyword in concise methods of the object literals, has the same value
as the [[prototype]] property of the object defined by the object literal.

In the object literals, super is used to access the over-ridden properties by the
child object.

Here is an example to demonstrate how to use super in object literals:

var obj1 = {
 print(){
 console.log("Hello");
 }
}

var obj2 = {
 print(){

Walking You Through Classes

[154]

 super.print();
 }
}

Object.setPrototypeOf(obj2, obj1);
obj2.print(); //Output "Hello"

Summary
In this chapter, we first learned the basics of the object-oriented programming using
ES5. Then, we jumped into ES6 classes, and learned how it makes easy for us to read
and write the object-oriented JavaScript code. We also learned miscellaneous features,
such as the new.target and accessor methods.

In the next chapter, we will learn how to create and use the ES6 modules.

[155]

Modular Programming
Modular programming is one of the most important and frequently used software
design techniques. Unfortunately, JavaScript didn't support modules natively that
lead JavaScript programmers to use alternative techniques to achieve modular
programming in JavaScript. But now, ES6 brings modules in to JavaScript officially.

This chapter is all about how to create and import JavaScript modules. In this chapter,
we will first learn how the modules were created earlier, and then we will jump to the
new built-in module system that was introduced in ES6, known as the ES6 modules.

In this chapter, we'll cover:

•	 What is modular programming?
•	 The benefits of modular programming
•	 The basics of IIFE modules, AMD, UMD, and CommonJS
•	 Creating and importing the ES6 modules
•	 The basics of the Modular Loader
•	 Creating a basic JavaScript library using modules

The JavaScript modules in a nutshell
The practice of breaking down programs and libraries into modules is called
modular programming.

In JavaScript, a module is a collection of related objects, functions, and other
components of a program or library that are wrapped together and isolated
from the scope of the rest of the program or library.

Modular Programming

[156]

A module exports some variables to the outside program to let it access the
components wrapped by the module. To use a module, a program needs to
import the module and the variables exported by the module.

A module can also be split into further modules called as its submodules,
thus creating a module hierarchy.

Modular programming has many benefits. Some benefits are:

•	 It keeps our code both cleanly separated and organized by splitting into
multiple modules

•	 Modular programming leads to fewer global variables, that is, it eliminates
the problem of global variables, because modules don't interface via the
global scope, and each module has its own scope

•	 Makes code reusability easier as importing and using the same modules in
different projects is easier

•	 It allows many programmers to collaborate on the same program or library,
by making each programmer to work on a particular module with a
particular functionality

•	 Bugs in an application can easily be easily identified as they are localized
to a particular module

Implementing modules – the old way
Before ES6, JavaScript had never supported modules natively. Developers used
other techniques and third-party libraries to implement modules in JavaScript.

Using Immediately-invoked function expression (IIFE), Asynchronous Module
Definition (AMD), CommonJS, and Universal Module Definition (UMD) are
various popular ways of implementing modules in ES5. As these ways were not
native to JavaScript, they had several problems. Let's see an overview of each of
these old ways of implementing modules.

The Immediately-Invoked Function
Expression
The IIFE is used to create an anonymous function that invokes itself. Creating
modules using IIFE is the most popular way of creating modules.

Chapter 8

[157]

Let's see an example of how to create a module using IIFE:

//Module Starts

(function(window){
 var sum = function(x, y){
 return x + y;
 }

 var sub = function(x, y){
 return x - y;
 }

 var math = {
 findSum: function(a, b){
 return sum(a,b);
 },
 findSub: function(a, b){
 return sub(a, b);
 }
 }

 window.math = math;
})(window)

//Module Ends

console.log(math.findSum(1, 2)); //Output "3"
console.log(math.findSub(1, 2)); //Output "-1"

Here, we created a module using IIFE. The sum and sub variables are global to the
module, but not visible outside of the module. The math variable is exported by the
module to the main program to expose the functionalities that it provides.

This module works completely independent of the program, and can be imported
by any other program by simply copying it into the source code, or importing it as
a separate file.

A library using IIFE, such as jQuery, wraps its all of its APIs in
a single IIFE module. When a program uses a jQuery library,
it automatically imports the module.

Modular Programming

[158]

Asynchronous Module Definition
AMD is a specification for implementing modules in browser. AMD is designed by
keeping the browser limitations in mind, that is, it imports modules asynchronously
to prevent blocking the loading of a webpage. As AMD is not a native browser
specification, we need to use an AMD library. RequireJS is the most popular
AMD library.

Let's see an example on how to create and import modules using RequireJS.
According to the AMD specification, every module needs to be represented by
a separate file. So first, create a file named math.js that represents a module.
Here is the sample code that will be inside the module:

define(function(){
 var sum = function(x, y){
 return x + y;
 }
 var sub = function(x, y){
 return x - y;
 }
 var math = {
 findSum: function(a, b){
 return sum(a,b);
 },
 findSub: function(a, b){
 return sub(a, b);
 }
 }
 return math;
});

Here, the module exports the math variable to expose its functionality.

Now, let's create a file named index.js, which acts like the main program that
imports the module and the exported variables. Here is the code that will be inside
the index.js file:

require(["math"], function(math){
 console.log(math.findSum(1, 2)); //Output "3"
 console.log(math.findSub(1, 2)); //Output "-1"
})

Here, math variable in the first parameter is the name of the file that is treated
as the AMD module. The .js extension to the file name is added automatically
by RequireJS.

Chapter 8

[159]

The math variable, which is in the second parameter, references the exported variable.

Here, the module is imported asynchronously, and the callback is also executed
asynchronously.

CommonJS
CommonJS is a specification for implementing modules in Node.js. According to the
CommonJS specification, every module needs to be represented by a separate file.
The CommonJS modules are imported synchronously.

Let's see an example on how to create and import modules using CommonJS. First,
we will create a file named math.js that represents a module. Here is a sample code
that will be inside the module:

var sum = function(x, y){
 return x + y;
}

var sub = function(x, y){
 return x - y;
}

var math = {
 findSum: function(a, b){
 return sum(a,b);
 },

 findSub: function(a, b){
 return sub(a, b);
 }
}

exports.math = math;

Here, the module exports the math variable to expose its functionality.

Now, let's create a file named index.js, which acts like the main program that
imports the module. Here is the code that will be inside the index.js file:

var math = require("./math").math;

console.log(math.findSum(1, 2)); //Output "3"
console.log(math.findSub(1, 2)); //Output "-1"

Here, the math variable is the name of the file that is treated as module. The .js
extension to the file name is added automatically by CommonJS.

Modular Programming

[160]

Universal Module Definition
We saw three different specifications of implementing modules. These three
specifications have their own respective ways of creating and importing modules.
Wouldn't it have been great if we can create modules that can be imported as an IIFE,
AMD, or CommonJS module?

UMD is a set of techniques that is used to create modules that can be imported as an
IIFE, CommonJS, or AMD module. Therefore now, a program can import third-party
modules, irrespective of what module specification it is using.

The most popular UMD technique is returnExports. According to the
returnExports technique, every module needs to be represented by a separate file.
So, let's create a file named math.js that represents a module. Here is the sample
code that will be inside the module:

(function (root, factory) {
 //Environment Detection
 if (typeof define === 'function' && define.amd) {
 define([], factory);
 } else if (typeof exports === 'object') {
 module.exports = factory();
 } else {
 root.returnExports = factory();
 }
}(this, function () {
 //Module Definition
 var sum = function(x, y){
 return x + y;
 }
 var sub = function(x, y){
 return x - y;
 }
 var math = {
 findSum: function(a, b){
 return sum(a,b);
 },
 findSub: function(a, b){
 return sub(a, b);
 }
 }
 return math;
}));

Now, you can successfully import the math.js module any way that you wish,
for instance, by using CommonJS, RequireJS, or IIFE.

Chapter 8

[161]

Implementing modules – the new way
ES6 introduced a new module system called ES6 modules. The ES6 modules are
supported natively and therefore, they can be referred as the standard JavaScript
modules.

You should consider using ES6 modules instead of the old ways, because they have
neater syntax, better performance, and many new APIs that are likely to be packed
as the ES6 modules.

Let's have a look at the ES6 modules in detail.

Creating the ES6 modules
Every ES6 module needs to be represented by a separate .js file. An ES6 module can
contain any JavaScript code, and it can export any number of variables.

A module can export a variable, function, class, or any other entity.

We need to use the export statement in a module to export variables. The export
statement comes in many different formats. Here are the formats:

export {variableName};
export {variableName1, variableName2, variableName3};
export {variableName as myVariableName};
export {variableName1 as myVariableName1, variableName2 as
myVariableName2};
export {variableName as default};
export {variableName as default, variableName1 as myVariableName1,
variableName2};
export default function(){};
export {variableName1, variableName2} from "myAnotherModule";
export * from "myAnotherModule";

Here are the differences in these formats:

•	 The first format exports a variable.
•	 The second format is used to export multiple variables.
•	 The third format is used to export a variable with another name, that is,

an alias.
•	 The fourth format is used to export multiple variables with different names.
•	 The fifth format uses default as the alias. We will find out the use of this

later in this chapter.

Modular Programming

[162]

•	 The sixth format is similar to fourth format, but it also has the default alias.
•	 The seventh format works similar to fifth format, but here you can place an

expression instead of a variable name.
•	 The eighth format is used to export the exported variables of a submodule.
•	 The ninth format is used to export all the exported variables of a submodule.

Here are some important things that you need to know about the export statement:

•	 An export statement can be used anywhere in a module. It's not compulsory
to use it at the end of the module.

•	 There can be any number of export statements in a module.
•	 You cannot export variables on demand. For example, placing the export

statement in the if…else condition throws an error. Therefore, we can
say that the module structure needs to be static, that is, exports can be
determined on compile time.

•	 You cannot export the same variable name or alias multiple times. But you
can export a variable multiple times with a different alias.

•	 All the code inside a module is executed in the strict mode by default.
•	 The values of the exported variables can be changed inside the module that

exported them.

Importing the ES6 modules
To import a module, we need to use the import statement. The import statement
comes in many different formats. Here are the formats:

import x from "module-relative-path";
import {x} from "module-relative-path";
import {x1 as x2} from "module-relative-path";
import {x1, x2} from "module-relative-path";
import {x1, x2 as x3} from "module-relative-path";
import x, {x1, x2} from "module-relative-path";
import "module-relative-path";
import * as x from "module-relative-path";
import x1, * as x2 from "module-relative-path";

An import statement consists of two parts: the variable names we want to import
and the relative path of the module.

Chapter 8

[163]

Here are the differences in these formats:

•	 In the first format, the default alias is imported. The x is alias of the
default alias.

•	 In the second format, the x variable is imported.
•	 The third format is the same as the second format. It's just that x2 is an

alias of x1.
•	 In the fourth format, we import the x1 and x2 variables.
•	 In the fifth format, we import the x1 and x2 variables. The x3 is an alias

of the x2 variable.
•	 In the sixth format, we import the x1 and x2 variable, and the default alias.

The x is an alias of the default alias.
•	 In the seventh format, we just import the module. We do not import any of

the variables exported by the module.
•	 In the eighth format, we import all the variables, and wrap them in an object

called x. Even the default alias is imported.
•	 The ninth format is the same as the eighth format. Here, we give another

alias to the default alias.

Here are some important things that you need to know about the import statement:

•	 While importing a variable, if we import it with an alias, then to refer to that
variable, we have to use the alias and not the actual variable name, that is,
the actual variable name will not be visible, only the alias will be visible.

•	 The import statement doesn't import a copy of the exported variables; rather,
it makes the variables available in the scope of the program that imports it.
Therefore, if you make a change to an exported variable inside the module,
then the change is visible to the program that imports it.

•	 The imported variables are read-only, that is, you cannot reassign them to
something else outside of the scope of the module that exports them.

•	 A module can only be imported once in a single instance of a JavaScript
engine. If we try to import it again, then the already imported instance of
the module will be used.

•	 We cannot import modules on demand. For example, placing the import
statement in the if…else condition throws an error. Therefore, we can say
that the imports should be able to be determined on compile time.

Modular Programming

[164]

•	 The ES6 imports are faster than the AMD and CommonJS imports, because
the ES6 imports are supported natively and also as importing modules
and exporting variables are not decided on demand. Therefore, it makes
JavaScript engine easier to optimize performance.

The module loader
A module loader is a component of a JavaScript engine that is responsible for
importing modules.

The import statement uses the build-in module loader to import modules.

The built-in module loaders of the different JavaScript environments use different
module loading mechanisms. For example, when we import a module in JavaScript
running in the browsers, then the module is loaded from the server. On the other hand,
when we import a module in Node.js, then the module is loaded from filesystem.

The module loader loads modules in a different manner, in different environments, to
optimize the performance. For example, in the browsers, the module loader loads and
executes modules asynchronously in order to prevent the importing of the modules
that block the loading of a webpage.

You can programmatically interact with the built-in module loader using the module
loader API to customize its behavior, intercept module loading, and fetch the
modules on demand.

We can also use this API to create our own custom module loaders.

The specifications of the module loader are not specified in ES6. It is a separate
standard, controlled by the WHATWG browser standard group. You can find the
specifications of the module loader at http://whatwg.github.io/loader/.

The ES6 specifications only specify the import and export statements.

Using modules in browsers
The code inside the <script> tag doesn't support the import statement, because the
tag's synchronous nature is incompatible with the asynchronicity of the modules in
browsers. Instead, you need to use the new <module> tag to import modules.

Using the new <module> tag, we can define a script as a module. Now, this module
can import other modules using the import statement.

http://whatwg.github.io/loader/

Chapter 8

[165]

If you want to import a module using the <script> tag, then you have to use the
Module Loader API.

The specifications of the <module> tag are not specified in ES6.

Using modules in the eval() function
You cannot use the import and export statements in the eval() function. To import
modules in the eval() function, you need to use the Module Loader API.

The default exports vs. the named exports
When we export a variable with the default alias, then it's called as a default
export. Obviously, there can only be one default export in a module, as an alias
can be used only once.

All the other exports except the default export are called as named exports.

It's recommended that a module should either use default export or named exports.
It's not a good practice to use both together.

The default export is used when we want to export only one variable. On the other
hand, the named exports are used when we want to export the multiple variables.

Diving into an example
Let's create a basic JavaScript library using the ES6 modules. This will help us
understand how to use the import and export statements. We will also learn
how a module can import other modules.

The library that we will create is going to be a math library, which provides basic
logarithmic and trigonometric functions. Let's get started with creating our library:

•	 Create a file named math.js, and a directory named math_modules. Inside
the math_modules directory, create two files named logarithm.js and
trigonometry.js, respectively.
Here, the math.js file is the root module, whereas the logarithm.js and
the trigonometry.js files are its submodules.

•	 Place this code inside the logarithm.js file:
var LN2 = Math.LN2;
var N10 = Math.LN10;

Modular Programming

[166]

function getLN2()
{
 return LN2;
}

function getLN10()
{
 return LN10;
}

export {getLN2, getLN10};

Here, the module is exporting the functions named as exports.

It's preferred that the low-level modules in a module hierarchy should export all
the variables separately, because it may be possible that a program may need just
one exported variable of a library. In this case, a program can import this module
and a particular function directly. Loading all the modules when you need just one
module is a bad idea in terms of performance.

Similarly, place this code in the trigonometry.js file:

var cos = Math.cos;
var sin = Math.sin;

function getSin(value)
{
 return sin(value);
}

function getCos(value)
{
 return cos(value);
}

export {getCos, getSin};

Here we do something similar. Place this code inside the math.js file, which acts as
the root module:

import * as logarithm from "math_modules/logarithm";
import * as trigonometry from "math_modules/trigonometry";

export default {
 logarithm: logarithm,
 trigonometry: trigonometry
}

Chapter 8

[167]

It doesn't contain any library functions. Instead, it makes easy for a program to
import the complete library. It imports its submodules, and then exports their
exported variables to the main program.

Here, in case the logarithm.js and trigonometry.js scripts depends on other
submodules, then the math.js module shouldn't import those submodules,
because logarithm.js and trigonometry.js are already importing them.

Here is the code using which a program can import the complete library:

import math from "math";

console.log(math.trigonometry.getSin(3));
console.log(math.logarithm.getLN2(3));

Summary
In this chapter, we saw what modular programming is and learned different
modular programming specifications. Finally, we created a basic library using
the modular programming design technique. Now, you should be confident
enough to build the JavaScript apps using the ES6 modules.

[169]

Index
A
AJAX requests 76
apply() method 10
apply(target, thisValue, arguments)

method 127
array buffers 49
array destructuring assignment

about 14
default values, for variables 16
nested array destructuring 17
rest operator, using 15, 16
using, as parameter 17
values, ignoring 15

arrays
about 44
Array.from() method 44
Array.of()method 44, 45
copyWithin() method 47
entries() method 48
fill() method 45
findIndex() method 47
find() method 46
keys() method 48
values() method 48

arrow functions
about 19
differentiating, with traditional

functions 22
this value 20, 21

asynchronous code
writing 76

asynchronous code, involving
callbacks 80-82

asynchronous code, involving events 77-79

Asynchronous Module Definition (AMD)
about 156
used, for implementing modules 158

attributes, of properties 149

B
base object 134
Battery Status API 75, 97
binary notation 26
browsers

modules, using in 164

C
child object 134
class declaration 139, 140
classes

defining 139
inheritance, implementing in 146-148
static methods, using in 145, 146
using 139

class expression 141
codePointAt() method 36
code unit 35
collections

about 49
array buffers 49, 50
Map 54
Set 52, 53
typed arrays 51, 52
WeakMap 55
WeakSet 53

CommonJS
about 156
used, for implementing modules 159

[170]

computed method names 148
const keyword

about 6
constant variables, scope 7
objects using constant variables,

referencing 7
constructor method

result, overriding of 150
constructors, of primitive data

types 137, 138
construct(target, arguments) method 128
copyWithin() method 47

D
data type 132
default exports

versus named exports 165
default parameter values 8
defineProperty(target, property, descriptor)

method
about 123
rules 124

deleteProperty(target, property) method
about 124
rules 124

derived object 134
descriptor object, accessor property

configurable property 105
enumerable property 105
get function 105
set function 105

descriptor object, data property
configurable property 104
enumerable property 104
value property 104
writable property 104

destructuring assignment
about 14
array destructuring assignment 14
object destructuring assignment 18

E
endsWith() function 38
enhanced object literals

about 22
computed property names 23

methods, defining 23
properties, defining 22

entries() method 48
enumerate(target) method

about 124
rules 125

ES5 25
ES6

about 25
const keyword 6
let keyword 1

ES6 modules
about 155
creating 161, 162
example 165-167
importing 162, 163

ES6 symbols
about 59, 60
new operator 60
Object.getOwnPropertySymbols()

method 62
Symbol.for(string) method 62
typeof operator 60
using, as property keys 61

eval() function
modules, using in 165

executor 83
expressions

about 41, 42
multiline strings 42, 43
raw strings 43

F
fill() method 45
findIndex() method 47
find() method 46
floating-point arithmetic

URL 31
for…of loop 71
functions

for storing numbers 50

G
generator method 144, 145
generators

about 66, 67

[171]

for…of keyword 71
return(value) method 68
throw(exception) method 69, 70
yield* keyword 70

get method 143, 144
getOwnPropertyDescriptor(target,

property) method
about 122
rules 123

getPrototypeOf(target) method
about 120
rules 120

get(target, property, receiver) method
about 115, 116
rules 117

H
handler 114
has(target, property) method

about 118
rules 119

HTML5 75

I
Immediately-invoked function

expression (IIFE)
about 156
used, for implementing modules 156, 157

includes() method 37
inheritance

about 133
example 134-136
implementing, in classes 146-148

isExtensible(target) method
about 119
rules 120

isFinite() function 29
isNaN() function 28
iteration protocols

about 64
iterable protocol 65
iterator protocol 64

J
JavaScript

objects, creating in 132, 133
JavaScript APIs, based on Promises

about 97
Battery Status API 97
Web Cryptography API 98, 99

JavaScript data types
about 132
Boolean 132
null 132
number 132
object 132
string 132
symbol 132
undefined 132

JavaScript execution model 76
JavaScript modules 155
JavaScript objects 25
jQuery 76

K
keys() method 48

L
let keyword

about 1
block scoped variables, declaring 3
function scoped variables, declaring 2
variables, re-declaring 4, 5

M
Map 54
Math

about 31
arithmetic related operations 32
trigonometry related operations 32

miscellaneous methods
about 33
Math.clz32() function 33
Math.imul() function 33
Math.sign() function 34
Math.trunc() function 34

[172]

modular programming
about 155
benefits 156

Module Loader API 165
modules

implementing 156, 161
implementing, Asynchronous Module

Definition (AMD) used 158
implementing, CommonJS used 159
implementing, Immediately-invoked

function expression (IIFE)
used 156, 157

implementing, Universal Module
Definition (UMD) used 160

using, in browsers 164
using, in eval() function 165

N
named exports

versus default exports 165
new operator 60
new.target implicit parameter 152
Node.js 159
non-tail calls

converting, into tail calls 73, 74
normalization

about 38
case study 38-40
URL 40

Number.EPSILON property 30
numbers

binary notation 26
Number.isFinite() method 29
Number.isInteger() method 27
Number.isNaN() method 28
Number.isNaN()method 29
Number.isSafeInteger() method 30
octal notation 26
working with 25

O
object

__proto__ property 56
about 56

creating, in JavaScript 132, 133
Object.assign() method 57, 58
Object.is() method 56
Object.setPrototypeOf() method 57

object destructuring assignment
about 17
computed property names, destructing 19
default values, for variables 18
nested objects, destructing 19
using, as parameter 19

Object.getOwnPropertySymbols()
method 62

object literals
super keyword, using in 153

object-oriented JavaScript
about 131
JavaScript data types 132

octal notation 26
ownKeys(target) method

about 125, 126
rules 127

P
parent object 134
Perl 14
preventExtensions(target) method

about 121
rules 122

primitive data types
about 132
constructors 137, 138

Promise pattern
about 82
catch(onRejected) method 91-93
fulfillment value 84, 85
Promise.all(iterable) method 95
Promise constructor 83, 84
Promise.race(iterable) method 96
Promise.reject(value) method 94
Promise.resolve(value) method 94
states 84
then(onFulfilled, onRejected) method 85-91

properties
attributes 149

property keys
ES6 symbols, using as 61

[173]

prototype methods
about 141, 142
generator 144, 145
get 143
set 143

proxies
about 113
use cases 129

Proxy API 114
Proxy.revocable(target, handler) method

about 128
use case 129

Python 35

R
Reflect API 101
Reflect object

about 101
Reflect.apply(function, this, args)

method 102
Reflect.construct(constructor, args,

prototype) method 102, 103
Reflect.defineProperty(object, property,

descriptor) method 103, 104
Reflect.deleteProperty(object, property)

method 106
Reflect.enumerate(object) method 107
Reflect.get(object, property, this)

method 107
Reflect.getOwnPropertyDescriptor(object,

property) method 109
Reflect.getPrototypeOf(object)

method 109, 110
Reflect.has(object, property)

method 110, 111
Reflect.ownKeys(object) method 112
Reflect.preventExtensions(object)

method 111
Reflect.set(object, property, value, this)

method 108
Reflect.setPrototypeOf(object, prototype)

method 110
repeat() method 37
RequireJS 158
rest operator 16
rest parameter 13

return(value) method 68
Ruby 35

S
Set

about 52, 53
differentiating, with WeakSet 53
unique values 52

set method 143, 144
setPrototypeOf(target, prototype) method

about 120
rules 121

set(target, property, value, receiver) method
about 118
rules 118

spread operator
about 9, 10
array values, merging with another

array 11
array values, pushing to another

array 11, 12
multiple arrays, spreading 12
uses 11

states, Promise pattern
fulfilled 84
pending 84
rejected 84
settled 84

static methods
using, in classes 145, 146

String.fromCodePoint() method 36
strings

codePointAt() method 36
endsWith() function 38
expressions 40
includes() method 37
larger code points, escaping 36
normalization 38
repeat() method 37
startsWith() method 37
String.fromCodePoint() method 36
template strings 40
working with 35

subobject 134
super keyword

using, in object literals 153

[174]

superobject 134
Symbol.for(string) method 62
Symbol() function 60
Symbol.species static accessor

property 150-152

T
tag function 41
tagged template string 41
tail call optimization 72
tail calls

about 72
non-tail calls, converting into 73, 74

tail-recursion 72
target 114
target constructor 102
terminologies, proxies

handler 114
target 114
traps 114

throw(exception) method 69, 70
traps

about 114, 115
apply(target, thisValue, arguments)

method 127
construct(target, arguments) method 128
defineProperty(target, property,

descriptor) method 123, 124
deleteProperty(target, property)

method 124
enumerate(target) method 124
getOwnPropertyDescriptor(target,

property) method 122, 123
getPrototypeOf(target) method 120
get(target, property, receiver)

method 115-117
has(target, property) method 118, 119
isExtensible(target) method 119
ownKeys(target) method 125, 126
preventExtensions(target) method 121, 122
setPrototypeOf(target, prototype)

method 120
set(target, property, value, receiver)

method 118

typed arrays
about 51, 52
constructors 51

typeof operator 60

U
Unicode string normalization

URL 40
Universal Module Definition (UMD)

about 156
used, for implementing modules 160

UTF-8 35
UTF-16 35

V
values() method 48

W
WeakMap 55
WeakSet

differentiating, with Set 53
Web Cryptography API 75, 98, 99
web workers 76
well-known symbols 63
WHATWG

URL 164

Y
yield* keyword 70

Thank you for buying
Learning ECMAScript 6

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Rapid Underscore.js [Video]
ISBN: 978-1-78439-162-1 Duration: 00:49 hours

Harness the power of the extensive range of
functionalities that come with Underscore.js

1.	 Take functional programming to the next level
with the aid of the Underscore library.

2.	 Learn why Underscore is a great addition to
any JavaScript programmer's toolbelt.

3.	 Create an exciting International Space Station
project, one step at a time.

JavaScript Promises Essentials
ISBN: 978-1-78398-564-7 Paperback: 90 pages

Build fully functional web applications using
Promises, the new standard in JavaScript

1.	 Integrate JavaScript Promises into your
application by mastering the key concepts
of the Promises API.

2.	 Replace complex nested callbacks in JavaScript
with the more intuitive chained Promises.

3.	 Acquire the knowledge needed to start working
with JavaScript Promises immediately.

Please check www.PacktPub.com for information on our titles

Mastering JavaScript
Design Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1.	 Learn how to use tried and true software
design methodologies to enhance your
Javascript code.

2.	 Discover robust JavaScript implementations
of classic as well as advanced design patterns.

3.	 Packed with easy-to-follow examples that
can be used to create reusable code and
extensible designs.

Introducing Grunt: The JavaScript
Task Runner [Video]
ISBN: 978-1-78439-617-6 Duration: 01:00 hours

Speed up and streamline web development by
automating workflows with Grunt

1.	 Automate your workflows to decrease the
amount of time spent on menial tasks.

2.	 Cut out time-consuming extra steps and
make it easy for everyone to share the same
workflow tools.

3.	 Combine all the tasks used in the course to
create a concise and compact deployment
package.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Playing with Syntax
	The let keyword
	Declaring function scoped variables
	Declaring block scoped variables
	Re-declaring variables

	The const keyword
	The scope of constant variables
	Referencing the objects using constant variables

	Default parameter values
	The spread operator
	Other usages of the spread operator
	Making array values a part of another array
	Pushing the values of an array into another array

	Spreading multiple arrays

	The rest parameter
	The destructuring assignment
	The array destructuring assignment
	Ignoring values
	Using the rest operator in the array destructuring assignment
	Default values for variables
	Nested array destructuring
	Using the destructuring assignment as a parameter

	The object destructuring assignment
	Default values for the variables
	Destructuring computed property names
	Destructuring nested objects
	Using the object destructuring assignment as a parameter

	The arrow functions
	The value of "this" in an arrow function
	Other differences between the arrow and traditional functions

	The enhanced object literals
	Defining properties
	Defining methods
	The computed property names

	Summary

	Chapter 2: Knowing Your Library
	Working with numbers
	The binary notation
	The octal notation
	The Number.isInteger(number) method
	The Number.isNaN(value) method
	The Number.isFinite(number) method
	The Number.isSafeInteger(number) method
	The Number.EPSILON property

	Doing Math
	Trigonometry related operations
	Arithmetic related operations
	Miscellaneous methods
	The Math.imul(number1, number2) function
	The Math.clz32(number) function
	The Math.sign(number) function
	The Math.trunc(number) function
	The Math.fround(number) function

	Working with strings
	Escaping larger code points
	The codePointAt(index) method
	The String.fromCodePoint(number1, …, number 2) method
	The repeat(count) method
	The includes(string, index) method
	The startsWith(string, index) method
	The endsWith(string, index) function
	Normalization
	A case study

	Template strings
	Expressions
	Multiline strings
	Raw strings

	Arrays
	The Array.from(iterable, mapFunc, this) method
	The Array.of(values…) method
	The fill(value, startIndex, endIndex) method
	The find(testingFunc, this) method
	The findIndex(testingFunc, this) method
	The copyWithin(targetIndex, startIndex, endIndex) function
	The entries(), keys(), and values() method

	Collections
	Array buffers
	Typed arrays
	Set
	WeakSet
	Map
	WeakMap

	Object
	The __proto__ property
	The Object.is(value1, value2) method
	The Object.setPrototypeOf(object, prototype) method
	The Object.assign(targetObj, sourceObjs…) method

	Summary

	Chapter 3: Using Iterators
	The ES6 symbols
	The "typeof" operator
	The "new" operator
	Using symbols as property keys
	The Object.getOwnPropertySymbols() method
	The Symbol.for(string) method
	The well-known symbols

	The iteration protocols
	The iterator protocol
	The iterable protocol

	Generators
	The return(value) method
	The throw(exception) method
	The "yield*" keyword
	The "for…of" loop

	The tail call optimization
	Converting the non-tail calls into the tail calls

	Summary

	Chapter 4: Asynchronous Programming
	The JavaScript execution model
	Writing asynchronous code
	The asynchronous code involving events
	The asynchronous code involving callbacks

	Promises to the rescue
	The Promise constructor
	The fulfillment value
	The then(onFulfilled, onRejected) method
	The catch(onRejected) method
	The Promise.resolve(value) method
	The Promise.reject(value) method
	The Promise.all(iterable) method
	The Promise.race(iterable) method

	The JavaScript APIs based on Promises
	The Battery Status API
	The Web Cryptography API

	Summary

	Chapter 5: Implementing the Reflect API
	The Reflect object
	The Reflect.apply(function, this, args) method
	The Reflect.construct(constructor, args, prototype) method
	The Reflect.defineProperty(object, property, descriptor) method
	Understanding the data properties and accessor properties

	The Reflect.deleteProperty(object, property) method
	The Reflect.enumerate(object) method
	The Reflect.get(object, property, this) method
	The Reflect.set(object, property, value, this) method
	The Reflect.getOwnPropertyDescriptor(object, property) method
	The Reflect.getPrototypeOf(object) method
	The Reflect.setPrototypeOf(object, prototype) method
	The Reflect.has(object, property) method
	The Reflect.isExtensible(object) method
	The Reflect.preventExtensions(object) method
	The Reflect.ownKeys(object) method

	Summary

	Chapter 6: Using Proxies
	Proxies in a nutshell
	Terminology

	The Proxy API
	Traps
	The get(target, property, receiver) method
	The set(target, property, value, receiver) method
	The has(target, property) method
	The isExtensible(target) method
	The getPrototypeOf(target) method
	The setPrototypeOf(target, prototype) method
	The preventExtensions(target) method
	The getOwnPropertyDescriptor(target, property) method
	The defineProperty(target, property, descriptor) method
	The deleteProperty(target, property) method
	The enumerate(target) method
	The ownKeys(target) method
	The apply(target, thisValue, arguments) method
	The construct(target, arguments) method

	The Proxy.revocable(target, handler) method
	Use Case

	The uses of proxies
	Summary

	Chapter 7: Walking You Through Classes
	Understanding the Object-oriented JavaScript
	The JavaScript data types
	Creating objects
	Understanding inheritance
	The constructors of primitive data types

	Using classes
	Defining a class
	The class declaration
	The class expression

	The prototype methods
	The get and set methods
	The generator method

	The static methods
	Implementing inheritance in classes
	The computed method names
	The attributes of properties
	Classes are not hoisted!
	Overriding the result of the constructor method
	The "Symbol.species" static accessor property
	The "new.target" implicit parameter

	Using "super" in the object literals
	Summary

	Chapter 8: Modular Programming
	The JavaScript modules in a nutshell
	Implementing modules – the old way
	The Immediately-Invoked Function Expression
	Asynchronous Module Definition
	CommonJS
	Universal Module Definition

	Implementing modules – the new way
	Creating the ES6 modules
	Importing the ES6 modules
	The module loader
	Using modules in browsers
	Using modules in the eval() function
	The default exports vs. the named exports
	Diving into an example

	Summary

	Index

