A

Quick answers to common problems

Less Web Development
Cookbook

Over 110 practical recipes to help you write leaner, more efficient
CSS code

Foreword by Luke Page, Technical Lead Developer, Scott Logic Ltd.

Bass Jobsen SBan S caren
Amin Meyghani ol b community experience distiled

www.it-ebooks.info

http://www.it-ebooks.info/

Less Web Development
Cookbook

Over 110 practical recipes to help you write leaner,
more efficient CSS code

Bass Jobsen

Amin Meyghani

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Less Web Development Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing and its dealers
and distributors, will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1250115

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-148-9

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Bass Jobsen

Amin Meyghani

Reviewers
Fahad lbnay Heylaal

Dave Poon

Steve Workman

Commissioning Editor
Ashwin Nair

Acquisition Editors
Richard Brookes-Bland

Richard Harvey

Content Development Editor
Akashdeep Kundu

Technical Editors
Shashank Desai

Novina Kewalramani
Mrunmayee Patil

Rikita Poojari

Copy Editors
Gladson Monteiro

Sarang Chari

Project Coordinator
Milton Dsouza

Proofreaders
Lauren E. Harkins

Paul Hindle

Amy Johnson

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

| became interested in Less after starting work on a project to expand a complex web
application that had just two large CSS files (one went over IE's limit for a number of selectors
in a file), and it used a regex replacement for theme variables—it was a nightmare. There was
no link between colors that were clearly visually linked and numbers that were clearly related,
and the connection was not obvious and copy/pasted blocks of CSS, scattered throughout
the file. At first, it looked manageable, but then as we made changes and fixed bugs, we found
that changing something at one place meant having to find several other places where change
was required. What was worse, perhaps, was that developers were just adding yet another
more complex selector to override another specific place—ad infinitum—until there were older,
simpler selectors that weren't even used anywhere. | thought there must be a better way

and found Less, which is a superset of CSS, focused on fixing these kind of maintainability
problems by making CSS more declarative. | started off with my involvement by porting
Less.js to dotless and then became an integral part of the team, taking over from Alexis in
maintaining and expanding Less.js to keep up with the demands of the ever-evolving WWW,
third-party library usage, and new ideas for CSS management.

| still consider that the primary job of Less is to allow the web developer to have maintainable
CSS in their project. For this, abstraction of variables, splitting them up into separate files,
and abstraction of common selectors and properties is the most important task (though a
long way from what Less can do). We do not implement every feature request but instead

try and choose those that have the biggest impact. We are generally against a feature that
just provides a different way of doing something. Sometimes this means the solution to
problems is not the most obvious one. | hope this will encourage developers to create code
with consistent patterns, and | would urge them to try and keep their Less code simple

and consistent and ensure it follows the same kind of generally accepted maintainability
approaches that are applied to more traditional programming languages. Where common
problems would be better served with new Less features, | hope we identify them and always
welcome input, discussions, and help to our Github repository. However, it was a recent aim
of the project to enable plugins for Less so that projects that need it can implement their own
extensions without burdening the core project with support, for instance, functions for 10
different color models.

www.it-ebooks.info

http://www.it-ebooks.info/

One plugin | would really like to push people to use is Less-plugin-autoprefixer. In the future,
older browsers will not be in use and old polyfills (such as SVG Gradient backgrounds) and
prefixed properties will be, if not a thing of the past, a less common occurrence. By using this
plugin, you can write your CSS in a forward-thinking way and do not have to bloat it with mixins
for polyfills that will be repeated across every project you will work on.

The features most asked for, which I've implemented over the last couple of years, have
tended to focus on using libraries. | think this reflects the rise of people using CSS frameworks
such as Bootstrap to get a head start at the beginning of a project in order to avoid
reimplementing the bare bones. This | think is very positive as it promotes reuse and reduces
the number of ways in which fundamentals are done. The biggest problem that remains with
libraries is around picking out the bits you want to keep and customizing the library into a
project's particular need. Hopefully, Less' import reference feature, not Sass-like extension
will help us with this.

As with any language, problems always present themselves out of nowhere, and it always
helps to get a head start on good solutions. So keep your solutions maintainable and elegant
and enjoy reading this book.

Luke Page

Technical Lead Developer, Scott Logic Ltd. (http://uk.linkedin.com/pub/luke-
page/35/81b/3b6)

www.it-ebooks.info

http://uk.linkedin.com/pub/luke-page/35/81b/3b6
http://uk.linkedin.com/pub/luke-page/35/81b/3b6
http://www.it-ebooks.info/

About the Author

Bass Jobsen has been programming for the Web since 1995, covering everything from

C to PHP, and is always on the hunt to find the most accessible interfaces. Based in Orthen,
the Netherlands, he has also written Less Web Development Essentials, Packt Publishing,
which is a fast-paced tutorial that covers the fundamentals of Less (Leaner CSS) when used
in web development.

Bass uses Less in his daily job for web design tasks, WordPress theme development,
and other Twitter Bootstrap apps.

He is always happy to help those with questions (http://stackoverflow.com/
users/1596547/bass-jobsen), and he writes a blog you can find at
http://bassjobsen.weblogs. fm/.

Also, check out his Bootstrap WordPress starters theme (JBST) and other projects at GitHub
(https://github.com/bassjobsen).

This book is for Colinda, Kiki, Dries, Wolf, and Leny.

Writing this book wasn't possible without the support of my family,
Caroliene, and the people of Vivent. Richard Harvey is a patient and
excellent motivator and critical reader. Akashdeep Kundu helped me to
dot the i's and cross the t's. I'd also like to thank the reviewers of this
book, Dave Poon, Steve Workman, and Fahad Heylaal, for their critical
and valuable suggestions that made this book even better.

Last but not least, | should not forget to thank the Less core Team:
Alexis Sellier (ecloudhead), Jon Schlinkert (ejonschlinkert),
Luke Page (elukeapage), Marcus Bointon (eSynchro),

Maria JuréoviCova (esommeri), Matthew Dean (@matthew-dean),
Max Mikhailov (eseven-phases-max), and all the other contributors
who have made coding Less possible in the first place.

www.it-ebooks.info

http://stackoverflow.com/users/1596547/bass-jobsen
http://stackoverflow.com/users/1596547/bass-jobsen
http://bassjobsen.weblogs.fm/
https://github.com/bassjobsen
http://www.it-ebooks.info/

Amin Meyghani is a designer and developer currently working at HD MADE
(http://hdmade.com/), making automation tools, websites, and apps. He is also a lead
developer at Flitti (http://flitti.com/), leading the team to make next-generation
gamification apps. In addition to arts and technology, Amin has always been passionate about
teaching. He takes advantage of every opportunity to share his knowledge with the world
through books, blogs, or videos. You can find his works and blogs at http://meyghani .
com/. When Amin is not coding, he is either enjoying Persian food or mastering his Persian
calligraphy techniques.

I would like to thank my family for always supporting me and filling my life
with love and hope. | owe them this book, as they have always been there
for me even in the most difficult times.

www.it-ebooks.info

http://hdmade.com/
http://flitti.com/
http://meyghani.com/
http://meyghani.com/
http://www.it-ebooks.info/

About the Reviewers

Fahad Ibnay Heylaal is a developer who hails from Bangladesh and is currently living and
working in Amsterdam. Mostly known for being the creator of Croogo (a CMS based on the
CakePHP framework), he has progressed to become more of a frontend developer over the
last couple of years. If he isn't coding, chances are high that he will be seen cycling around
the beautiful canals of Amsterdam.

Dave Poon is a UX/Ul designer, web developer, and entrepreneur based in Sydney. He
graduated from Central Queensland University with a degree in multimedia studies and a
master's degree in IT. He began his career as a freelance graphics and web designer in
1998 and currently works with web development agencies and medium-sized enterprises.
He began his love affair with Drupal afterward and worked for a variety of companies

using Drupal. Now, he is evangelizing good user experience and interaction design practices
to start-ups and enterprises.

Currently, he is a design lead at Suncorp, one of the biggest financial institutions in Australia.
He is the cofounder of Erlango (http://erlango.com), a digital product development and
design startup located in Sydney and Hong Kong that creates user-centered digital products
for clients and users. He is also the cofounder of SpikeNode (http://spikenode.com)
which is, a platform for DevOps automation.

He is the author of Drupal 7 Fields/CCK Beginner's Guide, Packt Publishing.

Also, he is the technical reviewer of the books Drupal Intranets with Open Atrium, Advanced
Express Web Application Development, and Mastering Web Application Development
with Express, all by Packt Publishing.

I would like to thank my wife, Rita, for her endless patience and support.
Without her, whatever | do would be meaningless.

I would also like to thank my father for his continued encouragement.

www.it-ebooks.info

http://erlango.com
http://spikenode.com
http://www.it-ebooks.info/

Steve Workman is a frontend web engineer and an organizer of the London Web
Standards group. He is a champion at creating high-performance sites with the latest
web technologies and making developers' lives easier with tools and new languages.

I'd like to thank the whole Less community for creating this great language
and my wife, Emily, for always being there.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com, and as a

print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» Ondemand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com,
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1. Getting to Grips with the Basics of Less 9
Introduction 9
Downloading, installing, and integrating less.js 10
Installing the lessc compiler with npm 14
Using less.js with Rhino 16
Declaring variables with Less for commonly used values 17
Setting the properties of CSS styles with mixins 20
Writing more intuitive code and making inheritance clear with nested rules 24
Creating complex relationships between properties 26
Using the built-in functions of Less 28
Using namespaces to make your code reusable and portable 31
Chapter 2: Debugging and Documenting Your Less Code 33
Introduction 33
Debugging your code with less.js 34
Using CSS source maps to debug your code 37
Using Chrome Developer Tools to debug your code 41
Commenting your code in Less 44
Building style guides with tdcss.js 46
Building style guides with StyleDocco 50
Chapter 3: Using Variables and Mixins 55
Introduction 55
Deriving a set of variables from a single base variable 56
Value escaping with the ~"value" syntax 60
Using variable interpolation 63
Redeclaring variables based on lazy loading 66
Using mixins to set properties 68

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Declaring a class and mixin at once
Using selectors inside mixins
Using parametric mixins

Chapter 4: Leveraging the Less Built-in Functions

71
74
77

81

Introduction

Converting units with the convert() function
Using the default() function

Embedding images with data URIs
Formatting strings

Replacing a text within a string

Working with lists

Using mathematical functions

Using the color() function

Evaluating the type of a value

Creating color objects with RGB values
Getting information about a color

Creating a color variant with the darken() and lighten() functions
Creating overlays of two colors with Less

Chapter 5: Extending and Referencing

82
82
84
86
88
89
92
94
96
29
100
105
107
110

113

Introduction

Referencing parent selectors with the & operator
Referencing to the parent selector more than once
Changing the selecting order with the & operator
Using extend to merge selectors

Using extend inside a ruleset

Extending with the all keyword

Extending with media queries

Using extend to reduce the compiled CSS size
Using extend as an alternative for a mixin

Chapter 6: Advanced Less Coding

113
114
118
121
124
126
128
132
135
138

141

Introduction

Giving your rules importance with the limportant statement
Using mixins with multiple parameters

Using duplicate mixin names

Building a switch to leverage argument matching

Avoiding individual parameters to leverage the @arguments variable

Using the @rest... variable to use mixins with a variable number
of arguments

Using mixins as functions

Passing rulesets to mixins

142
142
144
147
150
153

155
156
161

www.it-ebooks.info

http://www.it-ebooks.info/

Using mixin guards (as an alternative for the if...else statements)

Building loops leveraging mixin guards
Applying guards to the CSS selectors
Creating color contrasts with Less
Changing the background color dynamically
Aggregating values under a single property

Chapter 7: Leveraging Libraries with Prebuilt Mixins

Introduction

Importing and downloading prebuilt mixin libraries
Using namespacing with prebuilt libraries

Creating background gradients

Building unlimited gradients with Less Hat

Building a layout with the CSS3 flexbox module
Getting retina ready with Preboot

Generating font-face declarations with Clearless
Improving your website's SEO with 3L mixins
Leveraging sprite images with Pre

Creating bidirectional styling without code duplication
Creating animations with animations.css

Creating animations with More.less

Building semantic grids with semantic.gs

Building an alternative for fluid grids with Frameless
Building a fluid responsive grid system

Chapter 8: Building a Layout with Less

Table of Contents

165
168
173
175
180
185

187

188
189
192
195
199
202
208
211
215
218
222
226
229
233
236
240

245

Introduction

Using CSS Reset with Less

Importing and organizing your Less files
Importing files with the @import directive
Building a grid with grid classes

Creating responsive grids

Building a semantic grid with mixins
Applying the flexbox grid on your design
Integrating a navigation menu in the layout
Repositioning your content

Chapter 9: Using Bootstrap with Less

245
247
250
253
256
261
264
266
270
273

277

Introduction

Downloading and installing Bootstrap
Customizing Bootstrap with variables
Making custom buttons

Making custom panels

277
278
280
283
285

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Making custom navigation bars 287
Extending components using :extend 292
Reusing Bootstrap's grid 294
Using Bootstrap classes and mixins 296
Extending Bootstrap with your own mixins 299
Making custom color schemes with 1pxdeep 301
Autoprefixing Bootstrap's CSS 303
Chapter 10: Less and WordPress 307
Introduction 307
Installing WordPress 308
Developing your WordPress theme with Less 310
Integrating Bootstrap into your WordPress theme 313
Using Semantic Ul to theme your WordPress website 316
Customizing Roots.io with Less 319
Building a WordPress website with the JBST theme 322
Chapter 11: Compiling Less Real Time for Development Using Grunt 327
Introduction 328
Installing Node and Grunt 328
Installing Grunt plugins 331
Utilizing the Gruntfile.js file 335
Loading Grunt tasks 337
Adding a configuration definition for a plugin 338
Adding the Less compiler task 340
Creating CSS source maps with the Less compiler task 344
Cleaning and minimizing your code 346
Adding the watch task 347
Adding the connect and open task 350
Adding the concurrent task 353
Analyzing your code with CSS Lint 355
Removing unused CSS using Grunt 358
Compiling style guides with Grunt 359
Automatically prefix your code with Grunt 361
Installing the Grunt LiveReload plugin 363
Index 367

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

CSS has dramatically changed since its very first emergence, and it is continuing to evolve. In
particular, the emergence of CSS3 has added many new features to CSS, including gradients
and animations. Along with this are many new opportunities to build websites using only CSS
and HTML. Developers are no longer dependent on techniques such as Flash and other tricks
to build interactive and fancy websites.

CSS3 has played an integral role in building responsive websites, where CSS media
queries have made it possible to apply some styles dependent on the width of the
browser's viewport only.

Despite this improvement, CSS is inherently, at its core, a simple style sheet language that
lacks some fundamental programming features such as variables, functions, and operators.
The need for more maintainable CSS, especially with the explosion of complex web apps, has
made CSS preprocessors such as Less a necessity in enabling us to write more readable and
manageable versions without breaking cross-browser compatibilities.

Although Less cannot magically change CSS, it certainly provides us with the tools to help
structure, modularize, debug, and maintain small or large CSS projects more easily. By
extending CSS with variables, functions, and mixins; nesting CSS selectors; and allowing you
to follow the don't repeat yourself (DRY) principle of software programming, Less behaves
more like a programming language in a way that CSS never was. Despite some of the
programming characteristics of Less, you should not be put off by this; by being built as a
superset of CSS, its features are implemented in the CSS way and it follows W3C standards
where possible. Designers and developers who are familiar with CSS will find coding in Less
very natural. Because Less fixes these shortcomings of CSS, the best time to start using
Less is now!

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, you are going to explore the Less preprocessor, most of its core, and some of its
less frequently used features. Through these very easy-to-follow and practical recipes, you will
learn how to write more maintainable and scalable CSS. You will explore making components
and structures through reusable mixins and extends. We will also learn about frameworks that
are based on Less, exploring their features and how they can be seamlessly integrated into
your own projects. In addition, you will learn how to use prebuilt mixin libraries for your current
or upcoming projects. Finally, you will look at debugging techniques that have been available
for other preprocessors and are now available to Less through source maps. By the end of this
book, you will have an extended knowledge and a good understanding of the power of Less,
its libraries, and the important features it has to offer to make writing your CSS more natural,
productive, and intuitive.

What this book covers

Chapter 1, Getting to Grips with the Basics of Less, shows you how to install the Less compiler
for client- and server-side usage. After the installation, you will be shown how to make use

of the basic features of Less: using variables, mixins, operations, built-in functions, and
namespaces; how to nest your rules will also be on the menu here!

Chapter 2, Debugging and Documenting Your Less Code, shows you how to debug your Less
code using your CSS source maps and browser developer tools. You will also be introduced to
style guides and learn how to properly comment your code.

Chapter 3, Using Variables and Mixins, covers the advanced usage of variables and mixins in
Less. After reading this chapter, you will know how to use variables to create reusable Less
code and use mixins to make your CSS properties interactive.

Chapter 4, Leveraging the Less Built-in Functions, explains the different types of built-in
functions of Less. You will find examples of each type of function, including functions for
color manipulation and mathematical operations.

Chapter 5, Extending and Referencing, shows you how to extend and reference selectors and
properties to help you write better CSS and reduce the size of the compiled CSS code. You
will learn to change the order of selectors and merge them.

Chapter 6, Advanced Less Coding, walks you through the process of parameterized mixins
and shows you how to use guards. A guard can be used with as if-else statements and make
it possible to construct interactive loops in Less.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 7, Leveraging Libraries with Prebuilt Mixins, explains how to install and use the
libraries of prebuilt mixins. You will explore different libraries such as Less Elements,
Less hats, and Preboot to build background gradients, grids, and animations in Less,
among others.

Chapter 8, Building a Layout with Less, takes you through the process of creating a complete
website layout with Less. The layout will be built with a responsive and semantic grid and will
include a vertical menu. Finally, you will also learn how to use iconic fonts with Less.

Chapter 9, Using Bootstrap with Less, shows you how to customize Bootstrap and its
components using Bootstrap's Less source files. You will also learn how to use Bootstrap's
mixins to make semantic and reusable layouts and components.

Chapter 10, Less and WordPress, shows you how to use Less when theming your WordPress
site. This includes examples of the Roots.io, SemanticUl, and JBST WordPress themes. You will
be shown how to customize the WooCommerce plugins with Less along with integrating Less
into your other WordPress themes and plugins.

Chapter 11, Compiling Less Real Time for Development Using Grunt, shows you how to set
up a Less compiler using Grunt for real-time compilation. It will also show you how to use
several Node modules for your Less development. By the end of this chapter, you will be very
comfortable setting up a development environment with Grunt and its plugins.

What you need for this book

The latest version of Less.js can be downloaded for free from http://www.lesscss.org/.
You will definitely need a text editor to write your code; however, it does not matter which

text editor or operating system you use. You will also need a modern web browser, namely
the latest versions of Mozilla Firefox, Google Chrome, or Microsoft Internet Explorer. Please
note that some recipes, especially in the final chapter, require some basic familiarity with the
command line. All the tools used in the last chapter are cross-platform and are available for
free, so you should be fine using your favorite operating system. Grunt plugins can be found
by visiting http://gruntjs.com/plugins.

Who this book is for

This book is mainly intended for web developers and designers who are comfortable with CSS
and HTML. If you are someone with some experience with CSS, you will find the learning curve
of understanding the Less syntax to be less steep. Although this book is beneficial to those
who have had some experience with using Less, web developers and designers who would
like to use this book as a gateway to learning the program can still benefit and harness its
true power.

www.it-ebooks.info

http://www.lesscss.org/
http://gruntjs.com/plugins
http://www.it-ebooks.info/

Preface

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the
previous section.

There's more...

This section consists of additional information about the recipe in order to make
the reader more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To start
the process, you will have to edit your index.html file."

g

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

header {
color: blue;
}
section {
color: green;
}
footer ({
color: purple;

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<link rel="stylesheet/less" type="text/css"
href="less/styles.less" />

<script type="text/javascript">less = { env: 'development'
}i</script>

<script src="less.js" type="text/javascript"></scripts>

Any command-line input or output is written as follows:

java -jar js.jar -f less-rhino-1.7.0.3js lessc-rhino-1.7.0.js example.less
example.css

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "In the Styles tab of the
Developers Tools page, you will find the rules that are applied while selecting a selector."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/B01849 Coloredimages.pdf.

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

g

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/B01849_Coloredimages.pdf
https://www.packtpub.com/sites/default/files/downloads/B01849_Coloredimages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with
the Basics of Less

In this chapter, we will cover the following topics:

» Downloading, installing, and integrating less.js

» Installing the 1essc compiler with npm

» Using less.js with Rhino

» Declaring variables with Less for commonly used values

» Setting the properties of CSS styles with mixins

» Writing more intuitive code and making inheritance clear with nested rules
» Creating complex relationships between properties

» Using the built-in functions of Less

» Using namespaces to make your code reusable and portable

Introduction

Leaner CSS (Less) is a preprocessor for CSS code. This chapter will guide you through the
installation of Less. It can be used on the command line via npm (or Rhino) or downloaded
as a script file for a web browser. Other third-party compilers are available too.

Although client-side compiling is not suitable for production, it is very useful to develop and
test your code. A client-side compiler will run in any modern browser and show you the effect
of your coding in real time. On the other hand, the server-side-compiled CSS code can be
minified and used for production. Note that client-side compiling doesn't save the output
and compiles your code again after each browser reload, while the output of the server-side
compiler will be saved in a static CSS file.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

You will also see that Less, in contrast to CSS, is a programming language for writing CSS
more efficiently. It adds built-in functions, variables, and mixins with a lot more to offer to CSS,
which helps you to meet the Don't repeat yourself (DRY) principle of software programming
and reuse your code. Variables enable you to define the commonly used values only once, and
mixins create the reusable blocks of code. You will work more effectively and find that you will
spend less time on debugging and maintaining your projects.

Less extends the CSS language, which also means that valid CSS code is valid Less code.
Whoever is familiar with CSS will find that the process of learning Less has a flat learning
curve and is very intuitive.

After installing Less, the other recipes in this chapter will show you its basic features and
how to use them to write a better, reusable, and more maintainable CSS code.

Downloading, installing, and integrating

less.js

The client-side compiler 1ess. js can be downloaded from http://lesscss.org/. You
can use less. js in the browser, which is a great tool to get you started with Less, although
it should only be used for development. For production usage, you should use precompiling.
Precompiling with the Node . js compiler will be discussed in the Installing the lessc compiler
with npm recipe.

Getting ready

You can download the latest version of 1ess.js from http://lesscss.org/ and copy this
file into your working directory. You will also have to create the index.html and project.
less files in the working directory. You can edit these files with any text editor of your choice.

You will have the following folder and file structure:

index.html

less

L project.less
less.js

You will also need a modern web browser to inspect the results of your work.

www.it-ebooks.info

http://lesscss.org/
http://lesscss.org/
http://www.it-ebooks.info/

Chapter 1

It is not necessary to have a web server running. Navigating to the
index.html file on your hard drive with your browser will be enough.
% However, this won't work for all browsers, so use Mozilla Firefox to be sure
Lo when you do not have a web server running. The examples in this book use
http://localhost/map/ and can be replaced with the path similar to
file:///map/ or c:\map)\, depending on your situation.

How to do it...

1.

To start the process, you will have to edit your index.html file. The index.html
file should contain a valid HTML5 code and have references to the project.less
and less. js files. After you edit it, the HTML file will look as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

<link rel="stylesheet/less" type="text/css"
href="project.less">
<script src="less.js" type="text/javascript"></scripts>
</head>
<body>
<header>the header</header>
<section>this is a paragraph</section>
<footer>the footer</footers
</body>
</html>

The HTML5 code from the preceding step contains a header, section, and footer.
Now you can use Less to style these elements. Enter the following code into the
project.less file to give each element a different font color:
header {
color: blue;
}
section {
color: green;
}
footer ({
color: purple;

}

Finally, you can inspect the result of your actions by opening the index.html file in
your web browser.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

The less.js compiler compiles the Less code in the project . less file linked with the
following HTML code:

<link rel="stylesheet/less" type="text/css" href="project.less" />

Note that without setting the rel="stylesheet/less" attribute, the compiler does not
recognize your code.

The reference to the 1less. js compiler should be included after the reference to the
project.less file in the preceding code as follows:

<script src="less.js" type="text/javascript"></scripts>

Other Less files can be imported into project .less with the @eimport directive. All

imports are compiled into CSS code. Also note that when using the server-side compiler, all
of the compiled CSS code will be saved to the same file. The preceding code differs from

the situation of linking more than one . less style sheet. When linking multiple . less style
sheets, each file will be compiled independently and will not use variables and mixins defined
in the other files.

The compiled CSS code will be injected into the HTML document and style your HTML
elements according to normal CSS rules. When using Firefox's or Google Chrome's
developer tools to inspect your source, you will find the compiled code as follows:

<« Edit style#le...-project - head - html D]

<!DOCTYPE html=
B <html=
=l <head=
<meta charset="utf-8">
<meta content="IE=edge,chrome=1" http-equiv="X-UA-Compatible">
<title>Less example</title>
<meta content="width=device-width, maximum-scale=1.0" name="viewport"s

<link href="firstproject.less® type="text/css" rel="stylesheet/less">
[S] <style id="less:book2-chapterl-project” type="text/css">
1 header {

color: blue;

4 section {
color: green;

footer {
8 color: purple;
91
<fstyle>
<script type="text/javascript® src="less-1.7.6.min.js">
</head>
<body=

The less. js file also has a watch function that checks your files for changes and reloads
your browser views automatically when changes are found. It is pretty simple to use—add
! watch after the URL you want to open, which in this case means appending # !watch
after index.html, and then reload the browser window.

Sk

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

There's more...

You can configure the less.js compiler by adding a less = {}; JavaScript object to your
code using the following code:

<link rel="stylesheet/less" type="text/css"
href="less/styles.less" />

<script type="text/javascript">less = { env: 'development'
}i</script>

<script src="less.js" type="text/javascript"></scripts>

In the preceding code, less is a global object used to parse the env: 'development'
settings to 1ess. js. Please referto http://lesscss.org/#client-side-usage-
browser-options to learn more about the settings that can be used with the
less.js compiler.

Alternatively, these options can be set as data attributes on the script and 1ink tags,
as can be seen in the following example code from the Less website:

<script src="less.js" data-poll="1000"
data-relative-urls="false"></script>
<link data-dump-line-numbers="all" data-global-vars='{ myvar:
"#ddffee", mystr: "\"quoted\"" }' rel="stylesheet/less"
type="text/css" href="less/styles.less">

In this recipe, a local copy of the 1ess . js compiler was used. Alternatively, you can also
load the 1less. js compiler from content delivery network (CDN) or build it with Bower. To
load less. js from CDN, you will have to add the following code to your index.html file:

<script src="//cdnjs.cloudflare.com/ajax/libs/less.js/2.x.x/
less.min.js"></script>

If you aren't aware, Bower is a package manager for the Web. You can install Bower by running
the following command in your console:

npm install bower
You can then run the following command to build 1less. js with Bower:

bower install less

See also

» More information about Bower can be found at http://bower.io/

www.it-ebooks.info

http://lesscss.org/#client-side-usage-browser-options
http://lesscss.org/#client-side-usage-browser-options
http://bower.io/
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

Installing the lessc compiler with npm

For server-side compilation, Less comes with a command-line compiler for Node . js. The
node package manager (npm) can be used to install the Less command-line compiler.

Node is a platform built on Chrome's JavaScript runtime called V8, allowing
s you to easily create fast and scalable network applications.

Getting ready

If you have not installed Node . §s and npm on your system yet, you will have to do this first.
You can do this by following these steps:

1. Download the Node . js source code or a prebuilt installer for your platform from
http://nodejs.org/download/.

2. Install Node. js, which includes npm, on your system.

In the Installing Node and Grunt recipe in Chapter 11, Compiling Less Real Time for
Development Using Grunt, you can read about installing Node . js and npm on your
system in more detail. After installing npm, you can simply run the following command:

npm install --global less

How to do it...

1. For this recipe, you will first need to create a simple Less file and save this file,
which for instance might be example. less. You can try the following code in your
example file:

@color: red;
.paint () {
color: @color;
}
p {
.paint () ;

}

2. After creating the Less file in the preceding format, you will need to save your
file (which may be example . less or whatever flename you have chosen).
If you have chosen example. less, you can run the following command in
your command prompt:

lessc example.less

www.it-ebooks.info

http://nodejs.org/download/
http://www.it-ebooks.info/

Chapter 1

3. After running the 1essc command, you will see it output the following CSS code in
the console:

p {
color: #££0000;

}

If you are new to Less, the example Less code used inside example.less may contain some
syntax that is completely alien to you. The code defines a @color variable and a paint ()
mixin. The Declaring variables with Less for commonly used values recipe explains the basics
of variables in Less, while the Setting the properties of CSS styles with mixins recipe does the
same for mixins.

By default, the 1essc compiler outputs to stdout. You can redirect the output to a CSS file
with the following command:

lessc example.less > example.css

Running the 1essc compiler without any parameters will give you a list of options for the
compiler.

You can use the -x option to compress your output as follows:
lessc -x example.less > example.css

In a similar manner, you can use either the - -clean-css option for a more involved
minification, or the - -source-map option to create a v3 CSS source map. In the Using CSS
source maps to debug your code recipe in Chapter 2, Debugging and Documenting your Less
Code, you can read more about CSS source maps and Less. Note that in version 2 of Less,
the --clean-css option has been moved into a plugin. The usage is similar: just install the
plugin (npm install -g less-plugin-clean-css), then make use of the - -clean-
css argument.

There are many other third-party compilers for Less with a compressive list available at
http://lesscss.org/usage.

With grunt -contrib-1less, you can compile your code with Grunt. For Gulp, you can

use gulp-less. The Compiling style guides with Grunt recipe in Chapter 11, Compiling Less
Real Time for Development Using Grunt, shows you how to build a development workflow with
the Grunt task runner.

]

www.it-ebooks.info

http://lesscss.org/usage
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

In this recipe, you read about Grunt and Gulp, which are JavaScript task runners or build
systems. Comparing with Grunt's build system, Gulp's build system is relatively new. Gulp
uses streams and code over configuration, which makes it more simple and intuitive.

» In Chapter 11, Compiling Less Real Time for Development Using Grunt, you can read
all you want to know about Grunt

» To read more about Gulp, you can visit http://gulpjs.com/

» The Gulp Less plugin can be found at https://github.com/plus3network/
gulp-less

Using less.js with Rhino

Less also runs inside Rhino, which is an open source implementation of JavaScript written
entirely in Java. It is typically embedded into Java applications to provide scripting to end
users. Rhino enables you to use the original 1ess. js distribution in a pure JVM environment.

Getting ready

To use 1less. js inside Rhino, you will have to download and install Rhino from the
following links:

» Download and install the latest version of Rhino from https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Download Rhino

» Download the Rhino version of less-rhino-x.x.x.js and lessc-rhino-
x.x.x.js fromhttps://github.com/less/less.js/tree/master/dist

How to do it...

1. Open your text editor and create a file named example.less. The example.less
file can contain, for instance, the following code:

@base-color: red;
h1l
color: @base-color;

}

2. Now you can run the following command in your command prompt:

java -jar js.jar -f less-rhino-1.7.0.js lessc-rhino-1.7.0.3js
example.less

www.it-ebooks.info

http://gulpjs.com/
https://github.com/plus3network/gulp-less
https://github.com/plus3network/gulp-less
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Download_Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Download_Rhino
https://github.com/less/less.js/tree/master/dist
http://www.it-ebooks.info/

Chapter 1

3. The preceding command should output the following lines of CSS code:

hl {
color: #££0000;

}

Rhino enables Java to run the JavaScript code, while js. jar runs the Less compiler and
generates the CSS output.

To write the output of a file, you will have to append the filename of the CSS files to the list
of commands, as follows:

java -jar js.jar -f less-rhino-1.7.0.3js lessc-rhino-1.7.0.js example.less
example.css

You can also add options for the compiler. You can add the -x option to compress the output
as follows:

java -jar js.jar -f less-rhino-1.7.0.js lessc-rhino-1.7.0.js -x example.
less

The preceding command will then output the following line of CSS code:

hl{color:#£00}

There's more...

A Less compiler for Java has been built with Rhino. You can find out more information about
this Less compiler for Java along with how to download it at https://github.com/
marceloverdijk/lesscss-java.

Declaring variables with Less for

commonly used values

Less allows you to use variables. You can assign a variable a value, which will be called a
declaration. After a variable is declared, you can use the variable anywhere in your code to
reference its value. Variables allow you to specify widely used values in a single place and
then reuse them throughout your code. Defining once also means you have to edit it once
when you want to change its value.

[}

www.it-ebooks.info

https://github.com/marceloverdijk/lesscss-java
https://github.com/marceloverdijk/lesscss-java
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

Getting ready

Open your text editor and create a file named example . less. Variables will start with @ and
will have a name with examples, including @color, @size, and @tree. To write the name, you
are allowed to use any alphanumeric characters, underscores, and dashes. Using this as an
elaborate example, @this-is-variable-name-with-35-chars is a valid variable name.

How to do it...

1. Start with creating a simple HTML5 file named index.html, as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

<title>Use variables in Less</titles>

<link rel="stylesheet/less" type="text/css"
href="example.less">

<script src="less.js" type="text/javascript"></scripts>
</head>
<body>
<hl>Color your page with variables</hl>
<p>Hello Less</p>
<button>Click here</buttons>
</body>
</html>

2. You then need to create the example. less file, which should contain the
following code:

@base-color: red;
h1 {

color: @base-color;
}

p{
color: @base-color;

}

button {
color: @base-color;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. After the first two steps, you will end up with the following folder and file structure:

index.html

less

L example.less
less.js

4. After creating the files as described in the preceding steps, you can open index.
html in your browser.

5. Now, change the first line of code @base-color: red; to @base-color:
green; and reload your browser.

As you can now see, changing the font color of the h1, p, and but ton text is easy as you change
@base-color only once. The only thing you need to do is change the single line of the code:
@base-color: red;.Inthe Downloading, installing, and integrating less.js recipe, you can
read how to use the watch function of 1ess. js to reload your browser automatically after
changing and saving the example. less file.

Variables in Less are defined as the equivalent to statics in other programming languages. You
assign a value to a variable once and use it everywhere in your code. To think of it in another
way, this is like defining the value of the gravitational constant (for the force of gravity) or pi in
your code. Both these values become constants once they are declared and so do not change
at runtime. In fact, you can still change or redeclare them in Less, as explained in the There's
more... section of this recipe.

You can assign any valid Less (or CSS) property value to a variable. Valid property values
include the numbers, strings, lists, CSV lists, and escaped values. Strings and numbers can
be used together to define values with units. For instance, the following code will show you a
declaration for a length in pixels:

@length: 100px;
Other examples of valid variable declarations can be found in the following code:

@color: red;

@list: a b ¢ d;

@csv-1list: a, b, ¢, d;
@escaped-value: ~""darke{color}";

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

There's more...

Less uses the last declaration wins and lazy loading rules, which play an important role and
make redeclaration of a variable suitable for customization.

See also

» You can read more about the usages of redeclaration variables for customization in
the Redeclaring variables based on lazy loading recipe in Chapter 3, Using Variables
and Mixins

Setting the properties of CSS styles with

mixins

In Less, mixins hold a set of properties that can be reused for different rulesets. The
properties of a mixin are included in the ruleset. The mixin itself does not generate output to
the final CSS. They look like normal classes (or an ID ruleset, starting with #). Although they
are optional, most mixin declarations end with parentheses, which prevent the mixins from
compiling into the source. A mixin with parentheses is called a parametric mixin. You can
read more about parametric mixins in the Using parametric mixins recipe in Chapter 3,
Using Variables and Mixins.

Getting ready

Open your text editor and create a file named mixins. less. In this file, define a mixin for
rounded corners, as follows:

.rounded-corners ()
border-radius: 5px;

}

You will also need an index.html file containing some HTML elements to which you can
give rounded corners.

How to do it...

1. You first need to create a valid HTML5 document named index.html with the
following elements:

<header>the header</header>
<p>this is a paragraph</p>
<footersthe footer</footers

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Make sure the head section of your index.html file also contains the
following code:
<link rel="stylesheet/less" type="text/css"
href="project.less">
<script src="less.js" type="text/javascript"></script>

Note that the preceding code references a Less file called project.less instead
of mixins.less

After creating the index . html file, you can start writing your Less code, which will
give the HTML elements rounded corners. Since mixins can be reused, it will be a
good practice to write them in a separated file, enabling you to import the mixins in
your other projects too.

Now, create your project. less file. This file imports the mixin(s) from the
mixins. less file using the following code:

@import "mixins.less";

After creating the files, visit the mixins. less file. Here, write the following code:

.rounded-corners () {
border-radius: 5px;

}

Following this edit, you can give an HTML element rounded corners by adding the
rounded-corners () mixin call to its property list. Finally, your project.less
file will look as shown in the following code:

@import "mixins.less";

@header-background-color: red;
@paragraph-background-color: orange;
@footer-background-color: green;

header {
.rounded-corners () ;
background-color: @header-background-color;
color: contrast (@header-background-color) ;

}

p {
.rounded-corners () ;

s

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

background-color: @paragraph-background-color;
color: contrast (@paragraph-background-color) ;
}
footer ({
.rounded-corners () ;
background-color: @footer-background-color;
color: contrast (@footer-background-color) ;

}

Every element has a background-color and color property set to make the rounded
corners visible and the fonts readable. The color property is set with the built-in contrast
function. You can read more about the built-in functions in the Using the built-in functions of
Less recipe. When you open the index . html file, it looks like the following screenshot:

this is a paragraph

the footer

Less allows you to copy the properties of a class to another by simply adding the class to the
property list. Consider the following example Less code:

.classl

{

propertyl: valuel;

}

.class 2

{
.classl
property2: value2;

}
The preceding Less code will compile into the following CSS code:

.classl {
propertyl: valuel;
}
.class2 {
propertyl: valuel;
property2: value2;

}

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

As you can see, the propertyl property is added to the .class2 class, but .class1 has
also been compiled into the source. With parentheses, the . class1 mixin is not compiled
into the CSS source, so the following code will not be visible in the source:

.class1() {
propertyl: valuel;

}

In the example code of this recipe, you set a background-color and color property for
each element again. While using parametric mixins, as described in the Using parametric
mixins recipe in Chapter 3, Using Variables and Mixins, you can write a second mixin to set
these properties. The roundedcorners () mixin can be called from this particular mixin.
The second mixin will then look like the following Less code:

.colored-and-rounded (@background-color: red) ({
.rounded-corners () ;
background-color: @background-color;
color: contrast (@background-color) ;

}

The colored-and-rounded () mixin can be added to the mixins.less file.
Your project.less file will then look as follows:

@import "mixins.less";

@header-background-color: red;
@paragraph-background-color: orange;
@footer-background-color: green;

header {
.colored-and-rounded () ;

!

p {
.colored-and-rounded () ;

!

footer ({
.colored-and-rounded () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

Writing more intuitive code and making

inheritance clear with nested rules

HTML elements in the hierarchy of the Document Object Model (DOM) of HTML5 documents
are nested while CSS, on the other hand, does not reflect this nested structure. Less makes
nesting of CSS selectors possible. With the nested selectors being used, your code reflects
the nested structure of HTML5.

Getting ready

To get started, you will need to create a valid HTMLS5 file, including some nested elements.
Your HTML, for instance, may look like the following code:

<section role="main">
<hl>heading</hl>
<p>some content</p>
</section>

You will also have to create an empty Less file named project .less. Make sure the head
section of your HTML5 document also contains the following code:

<link rel="stylesheet/less" type="text/css" href="project.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

In CSS, the section with the nested h1 and p elements can, for instance, be styled with the
following CSS code:

section hl {}
section p {}

However, with Less, you can style the same elements using the following Less code:

section {
hi {}
p{}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In the preceding example, nesting the selector mimics the nested structure of your HTML
code. Nesting makes the code intuitive and so much easier to read and maintain. Less's code
will also be more concise than its corresponding CSS code. You should use nesting with care;
nesting too much will break your CSS code after small changes in your HTML. You should not
try to nest your complete HTML structure, but nesting will be very useful to assign pseudo
classes, such as hover, to your elements.

Note that the nested selectors in Less still compile to un-nested selectors in CSS.
To see how this works, use the following Less code:

section {
hl {font-size: 20em;}
p{ padding: 0 10px;}

}
The preceding code will compile into the following CSS code:

section hl ({
font-size: 20em;

}

section p {
padding: 0 10px;

!

Although nesting your selector can make your code more intuitive, it can equally break other
things. For instance, considering object-oriented CSS (00CSS) principles; these do not allow
nesting of headings (h1 to hé). Headings are considered to be built-in objects in OOCSS and
so their appearance should be consistent across an entire site.

See also

» You can read more about OOCSS at http://appendto.com/2014/04/ococss/

» Read the presentation by Nicole Sullivan used to introduce OOCSS at http://www.
slideshare.net/stubbornella/object-oriented-css

=]

www.it-ebooks.info

http://appendto.com/2014/04/oocss/
http://www.slideshare.net/stubbornella/object-oriented-css
http://www.slideshare.net/stubbornella/object-oriented-css
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

Creating complex relationships between

properties

Less supports basic arithmetic operations. These operations, such as division (/), can
be applied to any number, variable, or even color. They can be used to create complex
relationships between properties.

Getting ready

You will first need to create a Less file named project.less and a valid HTML5 document
named index.html. You should make sure the head section of the index.html file
contains the following lines of code:

<link rel="stylesheet/less" type="text/css" href="project.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

1. First create an HTML structure in the index.html file as follows:

<div class="container">
<section role="main">Content</sections>
<aside role="complementary">Side bar</aside>
</div>

2. To set the width of the content and sidebar dependent on the width of the container,
you can use the following Less code:

@basic-width: 800px;

.container {
width: @basic-width;

section {
width: @basic-width * 2/3;
background-color:red;
color:white;
float:left;

}

aside {
width: @basic-width * 1/3;
background-color: black;
color: white;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

float: right;

}

3. Now you can open the index.html file in your browser, which will look like the
following screenshot:

Content

Note that browsers can use different algorithms to round the pixel values
* when you assign them with decimal numbers. This phenomenon has also
been described as Sub-Pixel problems in CSS. You can read more about
’ these sub-pixel problems in CSS at http://ejohn.org/blog/sub-
pixel-problems-in-css/.

In Less, you can operate numbers, variables, and colors. The compiler understands colors
and units. Take a look at the following Less code:

@width: 50px;

@color: yellow;

p {
width: ewidth * 50;
color: @color + #111;

}

This will actually compile into the following CSS code:

p {
width: 2500px;
color: #ffffll;

}

The Less compiler accepts different types of color definitions. In Less, you can use the
hexadecimal notation for red, green, and blue (RGB) values, the RGB functional notation,

or one of the 148 color names defined in CSS3. A complete overview of the color definition
can be found at http://www.w3.org/TR/css3-color/ and http://lesscss.org/
functions/#color-definition. When applying a basic operation on two or more colors,
the compiler gives the result as a color even when different types of color definitions are used.
As you can see, yellow + #111 compilesinto #ff££f11.

When multiplying 50px fifty times, the compiler automatically adds the px unit after the
calculated result.

e

www.it-ebooks.info

http://ejohn.org/blog/sub-pixel-problems-in-css/
http://ejohn.org/blog/sub-pixel-problems-in-css/
http://www.w3.org/TR/css3-color/
http://lesscss.org/functions/#color-definition
http://lesscss.org/functions/#color-definition
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

There's more...

In this recipe, you learned about some basic operations on colors. Less also has many
built-in functions to define and manipulate colors. You can read more about Less's built-in
color functions in Chapter 4, Leveraging the Less Built-in Functions.

See also

» Athttp://meyerweb.com/eric/css/colors/, you can find an overview of the
147 (or 148) color keywords

» Referto http://meyerweb.com/eric/thoughts/2014/06/19/
rebeccapurple/ for color names, which are defined in the CSS3 module along
with their corresponding numeric equivalents

Using the built-in functions of Less

Less has many built-in functions that can be leveraged for others, transforming colors,
manipulating strings, or even performing mathematical operations.

Getting ready

Create a valid HTML document named index.html and an empty project.less file. Make
sure your index.html HTML5 document has the following lines of code in its head section:

<link rel="stylesheet/less" type="text/css" href="project.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

This recipe will show you how to use the darken () and contrast () built-in functions.
Perform the following steps:

1. Start this recipe by creating a simple HTML structure in the index.html file, shown
as follows:

<div class="item colorl">Text</div>
<div class="item color2">Text</div>
<div class="item color3">Text</div>
<div class="item color4">Text</div>
<div class="item color5">Text</div>

www.it-ebooks.info

http://meyerweb.com/eric/css/colors/
http://meyerweb.com/eric/thoughts/2014/06/19/rebeccapurple/
http://meyerweb.com/eric/thoughts/2014/06/19/rebeccapurple/
http://www.it-ebooks.info/

Chapter 1

2. After creating the HTML page, add the following Less code to the project.less file:

@start-color: white;

.colorl {
background-color: @start-color;
color: contrast (@start-color);

}

.color2 {
@color: darken(@start-color, 25%);
background-color: @color;
color: contrast (@color) ;

}

.color3 {
@color: darken(@start-color, 50%);
background-color: @color;
color: contrast (@color) ;

}

.color4 {
@color: darken(@start-color, 75%);
background-color: @color;
color: contrast (@color) ;

}

.colors {
@color: darken(@start-color, 100%) ;
background-color: @color;
color: contrast (@color) ;

}

3. Now, open the index.html file in the browser and you will see the following output:

Both the darken () and contrast () functions return a color. The darken () function
returns a darker variant of the input color, and contrast () returns black or white, based
on the highest contrast with the input color.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

The darken () function ensures that a color is readable against a background, which will be
useful to meet web accessibility requirements too. The contrast () function compares the
luma value (also called luminosity that represents the brightness in an image) of a color and
not the lightness.

There's more...

The built-in functions of Less can be grouped based on their input type. Refer to the
following functions:

» The string functions can be used to manipulate strings. The replace function,
which replaces the text in a string, is an example of a string function.

» The type functions, which include functions such as isnumber () and iscolor (),
return a Boolean value. The iscolor () function returns true for values such as
#££0 or red and false for all other kinds of input types.

» The 1list functions operate on values. Both comma and space-separated lists are
supported. The only two functions in the group are extract () and length (). The
group of mathematical functions contain functions for all kinds of mathematical
operations, such as sin (), round (), and pow ().

» Finally, there are four groups of functions that can be used with colors:

a Color definition functions
a Color channel functions
a Color operations functions

o Color blending functions

You will also have to note that the example code in this recipe did not meet the DRY principle
of software programming. When using guards, as described in the Building loops leveraging
mixins and guards recipe in Chapter 6, Advanced Less coding, you can solve this issue of
code repetition. You can rewrite the Less code to the following code, which uses a guard:

.shade (ecolor, @number) when (@number>0) {
.shade (@color, @number - 1) ;
@darkcolor: darken(@color, (25% * (@number - 1)));
.colore{number} {
background-color: @darkcolor;
color: contrast (@darkcolor) ;

}
}

.shade (white, 5) ;

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

See also

A complete list of the built-in functions supported by Less can be found at
http://lesscss.org/functions/.

Using namespaces to make your code

reusable and portable

In programming languages, namespace is used to create a different scope for an object of
a different origin. It prevents problems with such objects that have the same name. In Less,
you can also create and use namespaces. They will help you to make your Less code more
portable and reusable.

Getting ready

Open your text editor and create a file named project.less. If you don't use the
command-line compiler, you will also have to create a valid HTML5 document, including
the following lines of code in the head section:

<link rel="stylesheet/less" type="text/css" href="project.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

1. Create two mixins with the same name in the project. less file. You can, for
instance, use the following code to create two mixins called mixin:
.mixin ()

color: red;

}
.mixin ()

color: blue;

}
el {
mixin

}

2. Now, compile the Less code you wrote in the project . less file and you will find
that it will compile into the following code:
el {
color:red;
color:blue;

!
Es

www.it-ebooks.info

http://lesscss.org/functions/
http://www.it-ebooks.info/

Getting to Grips with the Basics of Less

3. After compiling your code, you can use the following Less code to wrap the first mixin
in a namespace called #namespace, as follows:

#namespace {
.mixin ()
color: red;

}
}

.mixin()
color: blue;
}

4. Now the namespace mixin, can be utilized with the following Less code:

el {
#namespace > mixin;

5. Finally, the Less code from the preceding step will compile into the following CSS code:

el {
color: red;
}

The Less compiler doesn't throw an error for mixins with the same (or conflicting) names.
The compiler compiles every matching mixin into the CSS code. You can read more about
matching mixins in the Building loops leveraging mixins guards recipe in Chapter 6,
Advanced Less coding.

Namespaces prevent conflicting names. In Less, a namespace starts with # and the code for
it should be wrapped between accolades. A typical namespace will look as follows:

#namespace { .mixin(){} }

Mixins inside a namespace can be called by adding the namespace before the mixin call,
which you can see in the following code:

#namespace > mixin;

You can also use the following code; it will generate the same result as you have obtained in
the preceding code:

#namespace mixin;

Note that the > sign in the preceding code is optional. The > sign has the

same meaning as in CSS. In CSS, the > sign means a child (must be an
i immediate child, not any descendant).

=

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and
Documenting Your
Less Code

In this chapter, we will cover the following topics:

» Debugging your code with 1less.js

» Using CSS source maps to debug your code

» Using Chrome Developer Tools to debug your code
» Commenting your code in Less

» Building style guides with tdcss.js

» Building style guides with StyleDocco

Introduction

Less helps you to write better, reusable, and more readable CSS. While writing, you should
check your syntax and solve the errors found while compiling your code. In the first recipe,

you will learn how to do this. The final CSS code should be tested on different devices and
browsers. Automated testing, as required for test-driven development (TDD), is not possible,
but you can test your code in a browser. Although some tools that compare screen dumps
have had the spot light recently, for more information, see https://github.com/BBC-
News/wraith and https://github.com/facebook/huxley. In this chapter, you will
learn how to find the Less code that generates the style rules for an HTML element in your
page. A good code also contains constructive comments that make your code clearer for
others. Adding comments to your code is covered in the Commenting your code in Less recipe.
Finally, you will learn about two tools that can build style guides based on your code. Note that
the style guide will show you the visual effect of your code.

www.it-ebooks.info

https://github.com/BBC-News/wraith
https://github.com/BBC-News/wraith
https://github.com/facebook/huxley
http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

Debugging your code with less.js

When compiling your Less code on the client side and running it in your browser, you won't
see any syntax or compile errors in the default situation. The 1ess. js file doesn't compile
your code on errors. As a result, you will find your document with no styles. In this recipe,
you will learn how to let 1ess. js display errors and understand them.

Getting ready

For this recipe, you need a valid HTML document, a Less file, and the 1ess. js compiler
file ready.

How to do it...

1. Create the following folder and file structure:

index.html

js

L less.js

less

L example.less

2. Edit the HTML5 file named index.html and make it look as follows:

<!DOCTYPE htmls>
<html>
<head>
<meta charset="utf-8">
<title>Use variables in Less</title>
<link rel="stylesheet/less" type="text/css"
href="less/example.less">
<script type="text/javascript"svar less = { env:
'development' };</script>
<script src="js/less.js"
type="text/javascript"></script>
</head>
<body>
<hl>How to display errors</hl>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

3. Edityour example. less file to style the h1 element in the body, as follows:

h1l
color:red;
font-size:3em;

}

Load the index.html file in your browser and find the h1 colored red.

5. After creating the valid Less code in the example. less file, you can make it invalid
by removing the last curly bracket. Now, when reloading the index.html file in your
browser, you will see an error message, as shown in the following screenshot:

ParseError: missing closing '}’
in example.less on line 1, column 4:

hl {

color:red;

How to display errors

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In your index.html file, a JavaScript 1ess object has been created. This object allows you to
set the options for the 1ess. js compiler. The env option is set to development to allow the
compiler to display the HTML error messages.

.\‘Q You can download the example code files for all Packt books you have

s

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

The Less compiler throws errors of different types, namely ParseError, SyntaxError,
NameError, and FileError, described as follows:

>

FileError: These errors are found while importing a file that does not exist.
In Less, you can import other Less and CSS files with the @eimport directives.

SyntaxError: This error occurs, for instance, if you declare a property that is
not wrapped inside a selector block. Compiling the following code will throw a
SyntaxError:

The properties must be inside the selector blocks; they cannot
be in the root error:
color:red;

p {
color: green;.

}

The preceding error is triggered by the color: red; declaration, which is not
wrapped inside any selector block.

ParseError: These errors can be triggered by the missing { and ; symbols, as seen
in the How to do it... section of this recipe and other invalid code.

NameError: These errors refer to the undefined mixins, classes, and variables. Using
the following code, without declaring @darkColor elsewhere in your Less code, will
break your code and the compiler throwing NameError. The @darkColor variable
throws an undefined error:

p {
color: @darkColor;

}

Not all possible errors will trigger an error. The compiler checks the syntax for parse errors but
does not validate your code. The Less compiler does not check the property names to make
sure they are the known CSS properties. Also, assigning the wrong type to a property does not
throw any error. So, the following code will compile without throwing an error:

}

p {
red: color;

color: 10px;
width:red;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Also note that declaring a mixin with the same name twice doesn't trigger an error. In fact, in
Less, this is not an error at all. See the Using namespaces to make your code reusable and
portable recipe in Chapter 1, Getting to Grips with the Basics of Less, for more information,
as this recipe explains how namespaces can help you prevent the problems with regard to
name conflicts of objects. If the compiler finds two or more matching mixins, all of them will
be compiled.

Tools, such as CSSlint, described in the Analyzing your code with CSS Lint recipe in
Chapter 11, Compiling Less Real Time for Development Using Grunt, can be used to
validate your code for the property and property value typos and mismatches.

Finally, make sure you enable the syntax highlighting feature of the Less code in your editor
when you are coding Less. Syntax highlighting with color-coded fonts makes this far more
readable and will prevent typos and other syntax errors. If your favorite editor doesn't support
Less, try to highlight your code as CSS.

» To analyze your compiled CSS, you can also use the online version of CSSlint,
which can be found at http://csslint.net/.

» Also, check the blog post about the syntax highlighting in Less at http://www.
hongkiat.com/blog/less-tips-tools/. This blog post shows you how to
install the Less syntax highlighting feature into Sublime Text 2 and Notepad++.

Using CSS source maps to debug your code

The Less compiler merges the different Less source files into a single CSS file. This file has
been minified in most cases. When you are inspecting the source of the CSS files with the
developer tools of your browser, you cannot relate the style effects to your original Less code.
The CSS source maps solve this problem by mapping the combined/minified file back to its
unbuilt state.

Getting ready

Currently, the 1less. js client-side compiler does not support the SourceMap option, so you
will need the command-line compiler 1essc to generate CSS source maps. The Installing the
lessc compiler with npm recipe in Chapter 1, Getting to Grips with the Basics of Less, shows
you how to use the command-line compiler. Note that this recipe also requires you to use the
latest version of Google Chrome or the Mozilla Firefox web browser. The developer tools of
both browsers support CSS source maps now.

www.it-ebooks.info

http://csslint.net/
http://www.hongkiat.com/blog/less-tips-tools/
http://www.hongkiat.com/blog/less-tips-tools/
http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

How to do it...

1. Create the following folder and file structure:

index.html

C55

less
project.less
mixins.less

2. Then, edit the HTML5 file named index.html and make it look as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Use CSS Source Maps in Less</title>
<link rel="stylesheet" type="text/css"
href="css/project.css">
</head>
<body>
<hl>The style rules for this heading are defined in
mixins.less</hl>
</body>
</html>

3. Thirdly, edit your project. less file to style the h1 element in the body, as follows:
hi {
.heading(2em) ;
.shadow () ;

}

4. Then, edityour mixins. less file to create the mixins used in the project.less
file, as follows:

.heading (@font-size:4em)
{
color:navy;
font-size: @font-size;
}
.shadow () {
text-shadow: 2px 2px #££0000;

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

5. Now, compile your CSS by running the following command in the command-line prompt:
lessc --source-map less/project.less --source-map-less-inline=true
css/project.css

6. Finally, load the index.html file in your browser and inspect your code with the
browser's Developer Tools option (using Google Chrome).

7. After executing the preceding steps, you will find that your CSS style rules are now
mapped to their origin source file, as can be seen in the following screenshot:

Developer Tools - htkp:/ftestdrive /book2/chapter2/sourcemaps/

Q, | Elements| Network Sources Timeline Profiles Resources Audits Console £ =}
nemt Styles | Computed Event Listeners DOM Breakpoints Properties
¥ <html=
» <heads>.</head> element.style { + g
¥ <body= }
<hl>The style rules for this hl { project.less:2
he.arllng are defined in color: EM#000080;
mixins.less</hl> font-size: 2em;
</Dody= text-shadow: 2px 2px #fo0;
</html=> T
hl { user agent stylesheet
html bOd}' display: block; -

Source maps were introduced to map the minified JavaScript to its source of origin since v3 of
the CSS source map protocol also has support for CSS. The Less compiler generates the CSS
source map and adds a reference to the CSS file, as follows:

/*# sourceMappingURL=project.css.map */

The -source-map-less-inline option, which is used when compiling the CSS code with
the command-line compiler, adds a copy of the Less files to the project . css.map source
map file.

CSS source maps were originally designed to work exclusively with minified code. You can test
this by adding the -x option to the compile command. Currently, the -clean-css option or
plugin does not work together with CSS source maps.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

In Google developer tools, you can click on Less file link in the Sources panel to open the
source file, as shown in the following screenshot:

Q, [] Elements Metwork |Sources| Timeline Profi

[[*] project.css project.less = O

1| @import "mixins.less";
2| hl {

3 .heading{2em};

4| .shadow();

51

{} line?2 Column1

Support for CSS source maps makes Google Chrome also suitable for live editing and the
saving of your Less files. In Chapter 11, Compiling Less Real Time for Development Using
Grunt, you can read how to use Grunt in combination with Google Chrome for live editing
your files.

See also

» Chrome's instruction about working with the CSS preprocessor can be found at
https://developer.chrome.com/devtools/docs/css-preprocessors.
These instructions also include live editing of your Less source files.

» Version 29 of Mozilla Firefox will add support for CSS source maps. More information
on this topic can be found at https://hacks.mozilla.org/2014/02/1live-
editing-sass-and-less-in-the-firefox-developer-tools/.

» Also, Internet Explorer will follow and add CSS source map support in version 11.

=)

www.it-ebooks.info

https://developer.chrome.com/devtools/docs/css-preprocessors
https://hacks.mozilla.org/2014/02/live-editing-sass-and-less-in-the-firefox-developer-tools/
https://hacks.mozilla.org/2014/02/live-editing-sass-and-less-in-the-firefox-developer-tools/
http://www.it-ebooks.info/

Chapter 2

Using Chrome Developer Tools to debug

your code

Nowadays, all major browsers have built-in developer tools, which can help you debug and test
your code. You can use this tool to see the effect of your style rules or find unused CSS code.
Most developer tools also add the performance test tools. The CSS source panel will give you
insight into how CSS's precedence rules influence your style rules.

Getting ready

In this recipe, all you need to use is the Google Chrome browser.

How to do it...

1. Create the following folder and file structure:

index.html

is

L less.min.js
less

L project.less

2. Your index.html file can, for instance, look as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Browser Developer Tools</title>

<link rel="stylesheet/less" type="text/css"
href="less/project.less">
<script src="less/less.min.js"
type="text/javascript"></script>
</head>
<body>
<hl>Less Example</hl>
<header><hl>an other heading</hl></header>
<footer id="content-footer"s© 2014 Packt
Publishing</footer>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

3. Inthe less/project.less file, write the following Less code:
hl {
font-size: 2em;

color: tomato;

}

header {
h1l
font-size: lem;

#content-footer {
span {
font-family:"Times New Roman", Times, serif;

}

4. Now, open the index.html file in your browser, right-click on the an other heading
text with your mouse, and click on the Inspect element.

In the Styles tab of the Developers Tools page, you will now find the following:

Developer Tools - http://testdrive/book2/chapter2/tools/

Q, | Elements | Metwork Sources Timeline Profiles Resources Audits Console 1 ﬁ DA

Styles | Computed Event Listeners DOM Breakpoints Properties

¥ <html> aeer
» <heads.</heads element.style { + i
¥ <body= 1
=<hl=Less Example</hl= header hl {
¥ <header= font-size: lem;
<hl=an other heading</hl=
</header=> Nl {
b <footer id="contentfooter"s . B
,..iff@ter: hd color: Mtomato;
html body header 1 -

In the Styles tab, you can disable the font -size property of the header hi{} selector by
unchecking it. You can also add a color property to the header hi{} selector and set this
property's value to green.

As you can see in the preceding screenshot, the Styles rules are not linked to the Less file

of origin. In the Writing more intuitive code and making inheritance clear with nested rules
recipe in Chapter 1, Getting to Grips with the Basics of Less, you will find out how to map style
rules to the source files of their origin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The styles that are applied to a selector are determined by the cascading, inheritance, and
precedence rules, as described at http://www.w3.0org/TR/CSS2/cascade.html.

In the Styles tab of the Developers Tools page, you will find the rules that are applied while
selecting a selector. Style rules, which are overruled by others, are crossed out. For the
header hi1{} selector, you will find that its color property is set by the style rules for h1 in
the project. less file, while the font -size property is set by the rules for header hi{}.

You will also find that you cannot overwrite the font face of the span tag inside the footer
tag with a footer spanf{} selector; this is due to the #contentfooter span {} selector
having a higher precedence.

The browser tools can help make the applying of styles clearer. Nesting of selectors, as
described in the Writing more intuitive code and making inheritance clear with nested rules
recipe in Chapter 1, Getting to Grips with the Basics of Less, will also help you meet this rule
more intuitively.

There's more...

In the recipe in Chapter 11, Compiling Less Real Time for Development Using Grunt, you will
learn to remove the unused CSS code automatically. Chrome Developer Tools also have an
audit function. In Chrome's Developer Tools page, visit the Audits tab and run the Web Page
Performance option. Add, for instance, the following unused code to your project. less file:

#notinuse {
color: green;

}

Upon adding the preceding code, you will find that 25 percent of your code is unused, as
shown in the following screenshot:

Developer Tools - http://testdrive /book2/chapter2/tools/

Q, Elements Network Sources Timeline Profiles Resources | Audits| Console 1 vl:l» D‘
) Ausits ¥ Web Page Performance

=7 ¥ Remove unused €SS rules (1)

RESULTS 1 rules (25%) of CSS not used by the current page.

¥ : 25% is not used by the current page.
#notinuse

http://testdrive/book2/chapter2/to

Console | Search Emulation Rendering

www.it-ebooks.info

http://www.w3.org/TR/CSS2/cascade.html
http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

The developer tools of Mozilla Firefox also have an option to validate your CSS. You can
validate both the code of the current URL and local CSS files. This option only opens the
URL or file into the online CSS validator at http://jigsaw.w3.org/css-validator/
validator. W3C CSS Validation Service itself is a useful tool to remember.

Google Chrome does not offer any CSS validation, but you can download a plugin from
https://chrome.google.com/webstore/detail/validate-page-css/hmjfaiddf
mhjabcagledbpoppaapacnp?hl=en, which can be used to validate your CSS code.

See also

» Athttp://devtoolsecrets.com/, you can find a great overview of tips and tricks
for the developer tools of major browsers

Commenting your code in Less

Commenting your code will help you and others to better understand the code. If you or
someone else have to change your code, maybe after a long period since the code was
written, the comments should clarify what a block of code does and why it was added in the
first place.

Getting ready

In this recipe, you will need a randomly chosen Less file without a comment. If you don't have
such a file, you can create one yourself.

How to do it...

1. Open your Less file.

2. Then, start adding comments.

Both Less and CSS allow you to use block-level comments that start with /* and
end with * /. The following code will show you an example of a block-level comment:
/*

* Example code for Less Cookbook

* copyright 2014 by Bass Jobsen
*/

In contrast to CSS, Less allows single-line comments. A single-line comment starts
with //, as shown in the following example code:

@menuColor: red; //sets the background color for the menu

=

www.it-ebooks.info

http://jigsaw.w3.org/css-validator/validator
http://jigsaw.w3.org/css-validator/validator
https://chrome.google.com/webstore/detail/validate-page-css/hmjfaiddfmhjabcagledbpoppaapacnp?hl=en
https://chrome.google.com/webstore/detail/validate-page-css/hmjfaiddfmhjabcagledbpoppaapacnp?hl=en
http://devtoolsecrets.com/
http://www.it-ebooks.info/

Chapter 2

a Note that you cannot nest two or more block-level comments. Nesting a
s single-line comment inside a block-level comment is allowed in Less.

Good comments are important to write high quality code. Less's code is reusable, but you
can't reuse something if you don't know what it does. Try to keep your comments short, clear,
and meaningful by using one-liners, if possible.

In most cases, comments should only describe the reason you added some code and not
what the code does. Besides adding a comment to your code, it is important to use clear and
meaningful names for classes, variables, and mixins. Refer to the following code:

//sets the background color of the menu
.mixin4s (@a:@defaulta)
background-color: @a;

}
The preceding code should be replaced with this code:

//sets the background color of the menu to give more attention
.menu-backgroundcolor (ebackground-color:@menubackgroundcolor) {
background-color: @background-color;

}

The Less compiler does not compile the single-line comment into the CSS code. Block-level
and single-line comments wrapped inside a block-level comment are preserved and compiled
into the final CSS code.

R Block-level comments written between /* ! and */ (note the added ! mark)
% are not removed either by the -x compress or the clean-css option.
i You can use this type of comment, for instance, to add copyrights at the

beginning of your code.

Browsers don't read comments, so the clean-css minifier used by Less removes all the
comments from the CSS code. This means the compress option of the compiler removes
all the comments, too.

In version 2 of Less, the clean-css option has been moved into a plugin.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

There's more...

Although browsers don't read your Less or CSS comments, other tools can read and use
them. StyleDocco uses the specially formatted comments in your Less code to generate
documentation and style guide documents from your Less files automatically. You can
read more about StyleDocco in the Building style guides with StyleDocco in this chapter
and Compiling style guides with Grunt recipes in Chapter 11, Compiling Less Real Time for
Development Using Grunt.

See also

In 2013, Lukas Eder (https://twitter.com/lukaseder) wrote a blog entitled The
Golden Rules of Code Documentation. You can apply most of these rules to your Less code,
too. This blog can be found at http://architects.dzone.com/articles/golden-
rules-code.

Building style guides with tdcss.js

Jakob Lgkke Madsen (https://twitter.com/jakobloekke) promotes test-driven CSS.
Madsen wrote the tdcss. js framework, which is a simple style guide tool. The tdcss.

js framework depends only on jQuery and is especially well-suited to adopt a test-driven
approach to CSS styling. You can also use the tdcss. js framework to build a regular online
style guide. In TDD, tests are written to test the functional blocks of code and match the
specification. After this, you can write the code that should meet the test. In test-driven CSS,
the style guide is your test. After making changes in your Less code, all the user interface
elements in your style guide will look as required.

Getting ready

Download the tdcss. js files from https://github.com/jakobloekke/tdcss.js/
archive/master. zip. Unzip this file in your working directory, which will create a folder
named tdcss.js-master.

www.it-ebooks.info

https://twitter.com/lukaseder
http://architects.dzone.com/articles/golden-rules-code
http://architects.dzone.com/articles/golden-rules-code
https://twitter.com/jakobloekke
https://github.com/jakobloekke/tdcss.js/archive/master.zip
https://github.com/jakobloekke/tdcss.js/archive/master.zip
http://www.it-ebooks.info/

How to do it...

1. Create the following folder and file structure:

index.html
js

less

L— src

L less.min.js

buttons.less
tdcss.js-master

tdcss.css
tdcss.js

2. Edityour less/buttons.less file to style some buttons:

@stop-color: red;
@wait-color: orange;
@go-color: green;

.btn {
padding: 0 30px;

font-size: 2em;

&.stop {

background-color: @stop-color;

color: contrast (@stop-color) ;

}
&.wait {
background-color: @wait-color;
color: contrast (@wait-color) ;
}
&.go {

background-color: @go-color;
color: contrast (@go-color) ;

Chapter 2

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

3. Edit the HTMLS5 file named styleguide.html, and make it look as follows:

< !DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Style guide</title>
<link rel="stylesheet/less" type="text/css"
href="less/buttons.less">
<script src="js/less.min.js"
type="text/javascript"></script>
<!-- TDCSS -->
<link rel="stylesheet" href="tdcss.js-master/src/tdcss.css"
type="text/css" media="screen">
<script type="text/javascript"
src="https://code.jquery.com/jquery-2.1.1.min.js">
</scripts>
<script type="text/javascript" src="tdcss.js-
master/src/tdcss.js"></script>
<script type="text/javascript"s>
$ (function () {
$("#tdcss") .tdess () ;
hH
</script>
</head>
<body>
<div id="tdcss">

<!-- # Button styles -->

<!-- & Collection of buttons. -->

<!-- : Stop button -->

<button class="btn stop">Stop</button>
<!-- : Wait button -->

<button class="btn wait">Wait</button>
<!-- : Go button -->

<button class="btn go">Go</button>

</div>
</body>
</html>

4. Now, you can load the styleguide.html file in your browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Finally, you will have a style guide as shown in the following screenshot:

<button class="btn stop">Stop</button>

<button class="btn wait">Wait</button>

<button class="btn go">Go</button>

Style guides built with the tdcss. js framework are not generated automatically.

The styleguide.html file contains styled user interface elements. You can group and
describe these elements with HTML comments. All user interface elements should be
wrapped inside <div id="tdcss"></div> tags

The following HTML comments can then be used to build your style guide:

» To create a section, usethe <!-- # Section name -->comment style

» Descriptive text can be added everywhere in your document with <! -- &
Descriptive text --»>

» Finally, the HTML code of your elements should be preceded with <! -- : Element
title -->

The tdcss. js framework built the style guide on the basis of the preceding HTML comments.

@]

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

See also

» Read the Building style guides with StyleDocco recipe to learn how to generate style
guides automatically based on the comments in your Less code.

» Youcanvisithttp://jakobloekke.github.io/tdcss.js/ to learn more
about the tdcss. js framework and test-driven CSS. This website also contains an
introductory video and presentation about the tdcss. js framework.

Building style guides with StyleDocco

StyleDocco uses comments formatted in Markdown in your Less code to generate
documentation and style guide documents from your Less files automatically. Style guides can
help you and others, such as content developers, to make sure correct styles are used and
generated after changing your Less code base.

Getting ready

For this recipe, you will have to install StyleDocco. This requires Node . js and can be installed
with npm. You can install StyleDocco with the following command:

npm install styledocco

Read the Installing Node and Grunt recipe in Chapter 11, Compiling Less Real Time for
Development Using Grunt, to learn more about Node . js and npm.

Markdown is a plain text formatting syntax that can be easily converted into HTML.
Stackoverflow (http://stackoverflow.com/), a popular developer forum, uses
Markdown for comments and asking questions. Markdown is readable, easy-to-learn,
and does not require any special software. If you are not familiar with Markdown, you can
learn it in about 10 minutes at http://markdowntutorial .com/

How to do it...

1. Create a single Less file named less/button. less and write the following code in
it:
@stop-color: red;
@wait-color: orange;
@go-color: green;

.btn

{

SNED

www.it-ebooks.info

http://jakobloekke.github.io/tdcss.js/
http://stackoverflow.com/
http://markdowntutorial.com/
http://www.it-ebooks.info/

Chapter 2

padding: 0 30px;
font-size: 2em;

/* Stop button
<button class="btn stop">Stop</buttons>

*/

&.stop {
background-color: @stop-color;
color: contrast (@stop-color) ;

}

/* Wait button
<button class="btn wait">Wait</buttons>

*/

&.wait {
background-color: @wait-color;
color: contrast (@wait-color) ;

}

/* Go button
<button class="btn go">Go</buttons>

*/

&.go {
background-color: @go-color;
color: contrast (@go-color) ;

}

Now, run the following command in your command-line prompt:

styledocco -n "My buttons" -s less/*.less

Open docs/index.html in your web browser and click on the buttons tab in the
topmost navigation bar.

i

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Documenting Your Less Code

Finally, you will have a style guide as shown in the following screenshot:

Stop button

<button class="btn stop”>5top</button>

Wait button

<button class="btn wait"s>Wait</button>

Go button

<button class="btn go”=Go</button=

StyleDocco reads the filenames of Less files and Markdown comments to generate your style

guide automatically in the docs/ folder. You can use the -n option to give your style guide a
different name.

Try to avoid indents in your Markdown comments because StyleDocco can interpret them
wrong. In Markdown, code is written with indentation orin ~~~ code ™™~ blocks.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

There's more...

After adding the formatted comments to your Less files, StyleDocco can run automatically,
and you can generate a new style guide every time your code is changed. The Compiling style
guides with Grunt recipe in Chapter 11, Compiling Less Real Time for Development Using
Grunt, describes how you can integrate StyleDocco in a Grunt development workflow.

See also

» You can find the complete documentation of StyleDocco at http://jacobrask.
github.io/styledocco/.

www.it-ebooks.info

http://jacobrask.github.io/styledocco/
http://jacobrask.github.io/styledocco/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables
and Mixins

In this chapter, you will learn about the following;:

» Deriving a set of variables from a single base variable
» Value escaping with the ~"value" syntax

» Using variable interpolation

» Redeclaring variables based on lazy loading

» Using mixins to set properties

» Declaring a class and mixin at once

» Using selectors inside mixins

» Using parametric mixins

Introduction

Less extends CSS with variables and mixins, which helps you to write reusable code. The
recipes in this chapter show you how to use variables and mixins. You will see and learn that
meeting the DRY principle of software programming can be accomplished with Less. Variables
allow you to set and edit the commonly used values only once, and mixins can be reused to
set the properties of more than one CSS style.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

In this chapter, you will learn how to use and declare variables in Less. Less uses lazy loading
for variables, which means they do not have to be declared before being used. Less also uses
the last declaration wins rule when declaring the same variable more than once in your code.
The last declaration wins rule means that the last assigned value will be used at the point of
initialization. Both features make it easy to override a variable at the end of your code. In this
way, the customization of your code becomes easy. You will also learn how to escape values
when assigning variables and how to apply variable interpolation in your Less code.

In addition, you'll be introduced to mixins, which enable you to reuse the mixin properties from
the existing styles. These mixins will become more flexible and reusable when parameterized.

Parametric mixins accept arguments that can be used to set the properties dynamically based
on these arguments.

Deriving a set of variables from a single

base variable

In Less, variables can be used to set other variables. This allows you to create sets of
variables derived from a single variable. For instance, a variable set can define a color
palette or a set of related dimensions. Mathematical operations, as described in the
Creating complex relationships between properties recipe in Chapter 1, Getting to Grips
with the Basics of Less, and the Less built-in functions, as described in Chapter 4,
Leveraging the Less Built-in Functions, can be used to assign the derived variables.

Getting ready

In this recipe, you will change the look of a simple layout by changing one single variable
value. You will need a valid HTML5 document that should include the 1ess. js compiler
and a Less file called project . less.

How to do it...

1. You will first need to create a simple HTML5 file named index.html, as follows:

< !DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

<title>Use variables in Less</title>

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<link rel="stylesheet/less" type="text/css"
href="less/project.less">

<script src="js/less.js"
type="text/javascript"></scripts>
</head>
<body>
<header>
<hl>Page Title</hl>
</headers>
<navs>

<lis>Menu item 1</lis
<lis>Menu item 2</lis
<lis>Menu item 3</lis

</navs>
<articles>
<hlsArticle title</hl>
<p>Article content</p>

</article>
<aside>Additional Information</asides>
<footer>Copyright © 2014 Packt Publishing</footers>
</body>
</html>

After creating and editing your layout in the index.html file, you can create the Less
code to style your layout in the 1less/project. less file, as follows:

@base-width:800px;

@base-color: Tomato;

@dark-color: darken (@base-color, 20%) ;
@light-color: lighten(@base-color, 20%);
@inverse-color: spin(@base-color, 180) ;

*

{
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

*:before,

*:after {

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

header {
width: @base-width;
background-color: @base-color;
hl {
color: contrast (@base-color) ;

}

3. Now, you can load the index.html file in your browser.

4. Change the @base-color to purple, green, or blue. Reload your browser to see
the effect of changing the @base-color variable.

The layout from the preceding steps will look as shown in the following screenshot:

Page Title

Menuitem 1 Menuitem 2 Menu item 3

Additional
Information

Article content

Copyright © 2014 Packt Publishing

The Less code in the project. less file declares two base variables, @base-width and e
base-color, respectively. The ebase-width variable is used to set the width of the article
and the side element with mathematical operations but is not used to derive a new variable.

Note that the Less code starts with resetting the box-sizing model using the Less code
that is shown as follows:

* |
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

*:before,

*:after {
-webkit-box-sizing: border-box;
-moz-box-sizing: border-box;
box-sizing: border-box;

}

By default, browsers use the content-box box-sizing model. In the content-box model, the
widths of the HTML elements do not include the width of borders and padding. The preceding
code calculates the percentage-based width complex. For instance, two HTML elements of

a 50 percent width with a border of 1 pixel width will get a total width of 2 * 50% + 4 px,
which is greater than 100 percent.

The border-box box-sizing model includes borders and padding when calculating the width of
an HTML element. This model allows you to add borders and padding without breaking your
layout and use percentage-based widths easily.

Most libraries and the CSS frameworks use a mixin to set the box-sizing model. The
vendor prefix for the box-sizing model can also be automated using an autoprefix
postprocessor.

The second base variable, called @base-color, is used to derivate a set of variables, which
define the other colors used in this layout.

At the beginning of the Less code, the following color variables are derived from the ebase -
color variable:

@dark-color: darken (@base-color, 20%) ;
@light-color: lighten(@base-color, 20%);
@inverse-color: spin(@base-color, 180) ;

The darken (), lighten (), and spin () functions are built-in functions of Less, which are
discussed in more detail in Chapter 4, Leveraging the Less Built-in Functions.

Further, in the Less code, you see the @border-color variable derived from the @inverse-
color variable. Since the @inverse-color variable was derived from the @base-color
variable already, changing the @base-color variable will also change the @border-color
variable. Also note that the border property finally has been set with the following code:

border: ~"5px solid @{border-color}";

The preceding line of the Less code uses the string interpolation to replace the value assigned
to the @border-color variable with the @{border-color} placeholder in the string. The
~"value" syntax reads the values between the quotes as parameters and returns the string
without the surrounding quotes, as discussed in the Value escaping with the ~"value" syntax
recipe, and the ~"value" syntax.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

See also

» Inthis chapter, you will read about variables and mixins. Basically, mixins are used to
set property values and are not used to set variables. However, in some situations,
you can use a mixin to set a variable because the variables set inside a mixin are only
available in the scope of the caller. You can read more about assigning variables with
mixins in the Using mixins as functions recipe in Chapter 6, Advanced Less Coding.

» The Bootstrap 1pxdeep theme is an excellent example of defining derivate variables.
This theme defines color palettes for Bootstrap 3 based on a single @seed-color
variable. You can find a demonstration of this theme at http://rriepe.github.
io/1pxdeep/. A WordPress theme based on 1pxdeep can be found at
http://wordpress.org/themes/jbst-1pxdeep.

Value escaping with the ~"value™ syntax

The ~"value" syntax for value escaping can be used to assign a value to a property that is
not recognized by Less. Less only accepts a valid CSS syntax for property values.

Getting ready

For this recipe, you will have to create a gradient . less file and an index.html file, which
load the Less file and 1ess. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css" href="gradient.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

1. Write the following Less code into your gradient . less file:

.gradient {
background-image:linear-gradient (to bottom, red, yellow) ;
background-repeat: repeat-x;

filter: ~"-progid:DXImageTransform.Microsoft.gradient
(startColorStr="#ff£f£0000', EndColorStr='#fff£fff00')";

}

2. Add some header elements to your index.html file, as follows:

<header><hl>Page header</hl></header>
<section><header><h2>Article header</h2></header></section>

www.it-ebooks.info

http://rriepe.github.io/1pxdeep/
http://rriepe.github.io/1pxdeep/
http://wordpress.org/themes/jbst-1pxdeep
http://www.it-ebooks.info/

Chapter 3

3. Now, apply the gradient to the header element written in the preceding step by
appending the following Less code to the gradient . less file:
header
color: white;
.gradient;

}

4. Finally, open your index.html file in your browser. The final result should look like
the following screenshot:

Since version 10, MS Internet Explorer only supports standard gradient backgrounds. Earlier
versions of |IE support the filter or ms-filter property with a function as the value. A
function such as -progid:DXImageTransform.Microsoft.gradient (), used asa
property value, can't be compiled by Less since the syntax is not valid CSS. The ~"value"
syntax allows you to set your property to any string value without compiler errors. The
~"value" syntax returns everything between the quotes except for the surrounding quotes
themselves. The only exception is variables, which are set to their assigned values first. The
latest will be called variable interpolation; you can read more about this in the Using variable
interpolation recipe. To illustrate the preceding description, consider the following Less code:

selector

{
@variable: "value";
propertyl: "value";
property2: ~"value";
property3: ~"@{variable}";

}
The preceding Less code will compile into the following CSS code:

selector {
propertyl: "value";
property2: value;
property3: value;

}
[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

There's more...

The ~"value" syntax is similar to the e () built-in function, except that the e () built-in
function can also accept another built-in function as an argument. The e () function allows
you, for instance, to use the following Less code:

e (% ("ms:somefunction(%$)",lighten(red, 10%))) ;
The preceding code will compile into the following CSS code:

ms:somefunction (#££3333) ;

You can read more about Less's built-in function in Chapter 4, Leveraging
s the Less Built-in Functions.

Also note that this recipe adds the £ilter property to support older versions of IE. To support
gradient backgrounds for older versions of other browsers, you will have to add more vendor
prefixes to your code. You can create a mixin for this purpose, which, for instance, will look like
the following code:

.vertical-gradient (@startcolor: red; @endcolor: yellow) {
background-color: @startcolor; /* fallback color if gradients
are not supported */
background-image: -webkit-linear-gradient (top, @startcolor,
@endcolor); /* For Chrome and Safari */
background-image: -moz-linear-gradient (top, @startcolor,
@endcolor); /* For Firefox (3.6 to 15) */
background-image: -o-linear-gradient (top, @startcolor,
@endcolor); /* For Opera (11.1 to 12.0) */
background-image: linear-gradient (to bottom, @startcolor,
@endcolor; /* Standard syntax */
filter: e(%("progid:DXImageTransform.Microsoft.gradient
(startColorstr='%d', endColorstr='%d', GradientType=0)",
argb (@startcolor) ,argb (@endcolor))); /* IE9 and down */

}

You should note that the preceding .vertical-gradient () mixin still does not cover all
possible browsers. You should add vendor prefixes to your mixins for the browsers that you
will have to support in accordance with your requirements. For gradients, the -ms- and older
webkit prefixes are also available. Since version 2 of Less, you can use the autoprefix
plugin to add the vendor prefixes automatically. Also, in Chapter 11, Compiling Less Real
time for Development Using Grunt, you can read how to add vendor prefixes with Grunt. Both
postprocessors are based on PostCSS's autoprefix plugin. The PostCSS autoprefix
plugin only adds the prefixes and not the polyfills. When using these autoprefix plugins with
the preceding gradient code, the filter property that supports the older version of the
Internet Explorer browser is not added to your final CSS code. Instead of trying to find the right
prefixes for the most antique browsers, you could also consider to use graceful degradation.

&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Finally, the ~"value" syntax can also be used to set the variable values and selector
names. Variable assignment can look similar to @variable: ~"value";.Although it will
be possible to use the ~"value" syntax to dynamically construct your selectors, doing this
will be depreciated. Alternatively, you can use the selector interpolation to build your
selectors dynamically, as discussed in the There's more... section of the Using variable
interpolation recipe.

You cannot use the ~"value" syntax to write properties and values. The ~"color: red";
code will additionally throw an error. Also, it is not possible to use the ~"value" syntax with
operations. So, for instance, ~"2" + 2; will throw an error, too, since the syntax returns

a string.

» Even when using Less, the support gradients for the older browser will soon become
complex. An online tool found at http://www.colorzilla.com/gradient-
editor/ can help you find and understand the right vendor prefixes. You can build
your mixins using the code examples from the online gradient editor.

» Many mixin libraries that are discussed in Chapter 5, Extending and Referencing,
also provide you with the mixins to declare background gradients.

» Finally, the Less code of Bootstrap, as discussed in Chapter 9, Using Twitter
Bootstrap with Less, contains a set of namespaced gradient mixins, too.

Using variable interpolation

People who program in PHP, Perl, or Ruby will already be familiar with variable interpolation.
Variable interpolation is the use of variables in strings where the compiler replaces the
variable with the value that has been assigned to it.

Getting ready

For this recipe, you will have to create an example. less file. To see what happens, you can
compile this file on the client side or server side. For server-side compiling, you should have
the 1essc compiler installed, as described in the Installing the lessc compiler with npm
recipe in Chapter 1, Getting to Grips with the Basics of Less. For client-side compiling, you will
have to create an index.html file, which loads the Less file and the 1ess. js compiler with
the following code in the head section:

<link rel="stylesheet/less" type="text/css"
href="less/example.less">
<script src="less.js" type="text/javascript"></scripts>

When you inspect the results in your browser, you will also need an example.png
background image.

(&5}

www.it-ebooks.info

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com/gradient-editor/
http://www.it-ebooks.info/

Using Variables and Mixins

How to do it...

1. Write the following Less code into the example. less file:

@thickness: "thick";
@position: top;
@path: "../images";

.selector {
border-@{position}: ~"@{thickness} double red";
background: url ("@e{path}/example.png") ;

}
2. Compile the example. less file into the CSS code using the following command:

lessc example.less

Alternatively, load the index.html file in your browser for client-site compiling.

In both cases, you will find that the Less code will be compiled into the following
CSS code:

.selector {
border-top: thick double red;
background: url("../images/example.png") ;

}

With variable interpolation, variables inside the string, which are the subject of interpolation,
are written with accolades around their name. So, for instance, the variable will be written

as @{variable}. The string itself is written between double or single quotes. Less compiles
the string in Less into the string in CSS, which also means that the resulting CSS code is
outputted with surrounding quotes, too. The ~"value" syntax, as described in the Value
escaping with the ~"value" syntax recipe, can be used to remove these surrounding quotes.

Variable interpolation can not only be applied on variable values, but also on selector names,
property names, URLs, and @import statements. Variable interpolation to dynamically
create selector names, also called selector interpolation, will be discussed in the There's
more... section.

Note that the interpolation automatically removes the surrounding quotes of the interpolated
variable itself. This means that url ("e{path}/example.png") ; does not compile into
url(""../images""/example.png") ;.

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Currently, Less only allows you to use variable interpolation in the import directives when the
variable has been defined in the root or current scope. For this reason, the following code will
work well:

@path: "../../less/";"
@import "@{path}code.less";

With the epath: "../../less/"; Less code declared in the variables.less file, the
following code won't compile and will result in a NameError variable. The @{path} erroris
an undefined error. This can be seen when compiling the Less code, as follows:

@import "variables.less";
@import "@{path}code.less";

As mentioned in the How it works... section, selectors can be built with interpolation. Consider
the following Less code, for instance:

@class: ~".myclass";
@{class} {
@color: white;

}
The preceding code will be compile into the following CSS code, as follows:

.myclass {
color: white;

}
Alternatively, the preceding code can be written with the ~"value" syntax, as follows:

@class: ".myclass";
~"@class" { }

The last way of the selector interpolation has been depreciated.

» Inthe Building loops, leveraging mixin guards recipe in Chapter 6, Advanced Less
Coding, you will find an example of dynamically generating style rules based on
string interpolation and guards

]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

Redeclaring variables based on lazy loading

When working with variables in Less, you have to realize that the last declaration wins and
that Less uses lazy loading. The theoretical aspect of lazy loading is that the variables are
initialized at the point at which they are used. Coding Less means you can use variables
before you declare them. You can declare these variables later. When you declare a variable
with the same name twice, the last declared value will be used everywhere in your code.

Getting ready

For this recipe, you will have to create an example.less and index.html file, which load
the Less file and 1less. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css" href="example.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

The easiest way to understand both the last declaration wins rule and lazy loading is to
perform the following steps:

1. Write the following code into the example. less file:

@color: red;

p {
color: @color;

}

@color: green;
@color: blue;

2. After creating your Less file, add a p HTML element containing some text to the
index.html file, as follows:
<p>Colored text</p>

3. After creating both the files in the preceding steps, load index.html in your

browser. Now, you will find your text is colored blue. In your browser, it will look like
what is shown in the following screenshot:

Colored text

4. Remove the @color: blue; lineinthe example. less file and you will find your
text is green after you reload your browser.

5. Finally, remove the @color: red; linein the example. less file and you will also
find the text is colored green after reloading.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

If you declare a variable more than once in the same scope, all the variables will use the last
set of values due to the last declaration wins rule. Consider the following example code:

@color: red;

p {
color: @color;

}

@color: blue;
The preceding Less code will be compiled into the following CSS code:

p {
color: blue;

}

Lazy loading means that in the Less code, you can use a variable before it has been declared.
The following code will give you an example of lazy loading:

p {
color: @color;

}

@color: blue;
The preceding Less code will be compiled into the following CSS code:

p {
color: blue;

}

In the preceding How it works... section, you read that the last declaration wins rule will be
applied only for variables in the same scope. This means that the variable declaration in Less
is not global. Mixins and classes in Less have their own scope. Please try the operation we are
performing with the following code:

.mixin-with-its-own-scope()
color: @color;
@color: red;

p {
.mixin-with-its-own-scope;

}

@color: yellow;

&7}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

You will find that the preceding Less code will compile into the following CSS code:

p {
color: #££0000;

}

Note that the #££0000; value equals the hexadecimal representation of the red color. Since
version 2 of Less, colors are no longer compiled into their hexadecimal representation. In the
preceding code, @ecolor: red; is declared inside the scope of the .mixin-with-its-
own-scope () mixin. Within the scope of mixins, the last declaration wins and lazy loading
rules are applied.

As you have seen, you can easily override a variable in Less by putting the definition after it.
For this reason, you don't have to define the default variables in Less. The default variables
assign a value for the variables that are not already set. Also note that using a variable which
has not been set will result in a NameError error.

Both last declaration wins and lazy loading play an important role in Less. Every variable can
be declared again at the end of the code and can affect the preceding code. Redeclaration of
variables makes customization of frameworks, such as Bootstrap 3, possible in the first place
and easy in the second place.

» In Chapter 9, Using Twitter Bootstrap with Less, you can read more about the
customization of Bootstrap 3 with Less

Using mixins to set properties

In Less, mixins can be used to set the properties of a CSS style. The same mixin can be used
to set more than one CSS style. On the official Less site, they call this mix-in properties from
existing styles. Looking at mixins this way will make mixins nothing else than just a common
style. In contrast to normal styles, mixins are not compiled in the final CSS.

Getting ready

1. For this recipe, you will have to create a project.less file and an index.html
file, which load the Less file and 1ess. js compiler with the following code in the
head section:
<link rel="stylesheet/less" type="text/css"

href="less/project.less">
<script src="less.js" type="text/javascript"></scripts>

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

2. Although not required, it is a good practice to define your mixins in a separate file. For
this reason, create a file named mixins. less. This file should be imported in your
project.less file with the following code:

@import "less/mixins.less";

3. Finally, you should end up with the following folder and file structure:

index.html
less

i: mixins.less
project. less

less.js

How to do it...

In this recipe, you will rotate an HTML element by performing the following steps:

1. First, create a mixin to rotate the HTML elements with the following code in the
mixins.less file:

.rotate (edegrees: 180deg)
-webkit-transform: rotate(@degrees) ;
-moz-transform: rotate (@degrees) ;
-ms-transform: rotate (@degrees) ;
-o-transform: rotate(@degrees) ;
transform: rotate (@degrees) ;

}
2. Now, add some HTML code to your index.html file and include the following
HTML code:

<div class="upsidedown">Text upsidedow</div>

3. Finally, your project. less file should look as follows:

@import "less/mixins.less";
.upsidedown {
.rotate;

}

4. After creating the files from the preceding step, you can load the index.html file
in your browser.

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

In the preceding Less code, the call to the . rotate mixin inside the .upsidedown class
copied or "mixined" the properties from the . rotate mixin into the .upsidedown class.
You can see this in the following Less code:

.upsidedown
.rotate;

}
The preceding code will be compiled into the following CSS code:

.upsidedown
-webkit-transform: rotate (180deg) ;
-ms-transform: rotate (180deg) ;
transform: rotate (180deg) ;

}

The . rotate mixin itself is not compiled into the CSS code. Notice that the parentheses
after the mixin's name in the mixins. less file are not required in this situation. However,
when you leave out the parentheses, the mixins will be compiled into the CSS as any normal
class would.

After creating a mixin, you can reuse and apply it on any CSS selector in your Less code. You
can apply the . rotate mixin instance on the body element or on every div element, as in
the following Less code:

body
background-color: red;
.rotate;

}

div {
.rotate;

}

There's more...

In this recipe, the . rotate mixin has been used to set the so-called vendor prefixes. An
example of such a vendor prefix is the -webkit -transform property. Vendor-specific rules or
prefixes were introduced in CSS3. These rules allow browsers to implement the proprietary CSS
properties that would otherwise have no working standard (and may never actually become the
standard). The vendor prefixes are for any CSS rule that has not yet been standardized as a part
of the web standard process. The use of vendor prefixes will make your CSS code more complex.
As you have seen, setting the vendor prefixes with the mixins enable you to define these rules
only once. Changing and maintaining your code will be a lot easier now.

[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Some libraries with prebuilt mixins, as discussed in Chapter 4, Leveraging the Less Built-in
Functions, offer you single-line declarations for the properties that require vendor prefixes.

In the Automatically prefix your code with Grunt recipe in Chapter 11, Compiling Less Real Time
for Development Using Grunt, you can read how to append the vendor prefixes automatically to
your code. Since version 2 of Less, you can also use the Less autoprefix plugin.

You can consult the Can I use database to find out which vendor prefixes you should use
for a CSS3 property. This database provides the compatibility tables for the support of HTML5,
CSS3, and SVG.

» The Can I use database can be found at http://caniuse.com/

» The Less autoprefix plugin can be found at https://github.com/less/less-
plugin-autoprefix

Declaring a class and mixin at once

Mixins are not compiled into the final CSS code. In some situations, it will be useful to define
a class with the same name and properties as the mixin. In this recipe, a clearfix mixin is
used as an example.

Getting ready

For this recipe, you will have to create the clearfix.less and index.html files, which
load the Less file and 1ess. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css" href="clearfix.less">
<script src="less.js" type="text/javascript"></scripts>

How to do it...

1. Openthe index.html file with your favorite text editor and write the following
HTML structure into it:

<div class="row">

<div class="column">Cl</div>

<div class="column">C2</div>
</div>
<divs>positioned under the row</div>

<div class="clearfix">

<div class="column">Cl</div>

<div class="column">C2</div>

7}

www.it-ebooks.info

http://caniuse.com/
https://github.com/less/less-plugin-autoprefix
https://github.com/less/less-plugin-autoprefix
http://www.it-ebooks.info/

Using Variables and Mixins

</div>
<divs>positioned under the row</div>

2. Now, open the clearfix.less file and add the following code to make what you
are doing visible:
div {
border: 1px dashed red;
padding:10px;

}

3. Letyourdiv.column elements float with the following Less code in the clearfix.
less file:

.column
width:200px;
float:left;

}

4. Openthe index.html file in your browser. See that in the default situation, the float
is not cleared and the positioned under the row text is not underneath the columns,
but on the right-hand side of the columns. In your browser, it will look like what is
shown in the following screenshot:

- S PR e :
c2 ipositioned under

the row

: s .‘
: Cl _______________________________ JCZ _______________________________ ‘positioned under

i the row

...

5. Addthe .clearfix mixintothe clearfix.less file using the following code:
.clearfix () {
&:before,
&:after {
content: " ";
display: table;
}
&:after {
clear: both;

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. Finally, mix the clearfix properties into the row class with the following Less code
inthe clearfix.less file:
.row {
.clearfix;

}

Then, create a .clearfix class in your CSS code, leveraging the Less code
as follows:

.clearfix {
.clearfix() ;

}

7. Inspect the result of your coding by opening the index.html file in your browser.
You will find your page looking like what is shown in the following screenshot:

cl 2 i i
r.'.f.'f‘
i positioned under the row :

cl | c2 | |
r.'f.'f‘
: positioned under the row i

A clearfix method is a way for HTML elements to automatically clear themselves without
additional markup. The clearfix properties are frequently used in layouts with floated
elements. In this recipe, micro clearfix hack by Nicolas Gallagher is used; more information
can be found at http://nicolasgallagher.com/micro-clearfix-hack/. The same
clearfix method is used by Bootstrap.

As you can see, the preceding code enables you to use the clearfix code in two different
ways. Firstly, the .clearfix code is used as a mixin in Less to clearfix every element with the
.row class. Secondly, a .clearfix class is compiled into the CSS code, which enables you
toadd a class="clearfix" attribute to your HTML elements.

(75}

www.it-ebooks.info

http://nicolasgallagher.com/micro-clearfix-hack/
http://www.it-ebooks.info/

Using Variables and Mixins

There's more...

The method described in this recipe is mostly used to keep the organization of a Less code
base's file structure clear and clean. Mixins can be grouped in a file or namespace; such a
group should only contain mixins that are not compiled into the CSS. Grouped mixins are
portable and can be easily reused for different projects. For the project itself, it will be useful
to have the ability to use the class in your HTML code and compiled in your CSS code. The
compiled Less code of this recipe allows you to use, for instance, the following HTML code:

<div class="clearfix"></div>

Other than keeping your files well-organized, there is a reason why you need to declare the
.clearfix class without parentheses, which can be mixed in and will provide an output, too.

Bootstrap 3 uses the same strategy (and the clearfix mixin) as used in this recipe.
Bootstrap developers can use the .clearfix class in their Bootstrap templates. On the
other hand, when using Bootstrap as a mixin library, the .clearfix () mixin will be available.
You can read more about Bootstrap and Less in Chapter 9, Using Twitter Bootstrap with Less.

See also

» Athttp://css-tricks.com/snippets/css/clear-£ix/, you can read how
the way to implement the clearfix hack has evolved over time

Using selectors inside mixins

Mixins in Less can not only contain properties, but also selectors. This recipe will show you
how to leverage selectors inside mixins.

Getting ready

For this recipe, you will have to create a coloredlinks. less file and an index.html file,
which load the Less file and less. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css"
href="coloredlinks.less">

<script src="less.js" type="text/javascript"></scripts>

7

www.it-ebooks.info

http://css-tricks.com/snippets/css/clear-fix/
http://www.it-ebooks.info/

Chapter 3

How to do it...

In this recipe, you will create a mixin that gives a color and appends an icon or symbol to your
hyperlinks by performing the following steps:

1.

Start this recipe by adding the . colored-1inks mixin to the coloredlinks.less
file, as follows:

.colored-links () {
a {
color:green;
&::after {
content: "\2764";
}
}
}

Now, add the following HTML code to the index.html file:

<header>the header</headers>

<section>
<p>this is a paragraph
Link 1l Link 1l</a</p></section>
<footer>
Link 1 Link 1l
</footer>

After editing the coloredlinks.less and index.html files, you can add the CSS
selector, which styles the hyperlinks in the footer element, to the Less code in the
coloredlinks.less files, as follows:

footer ({
.colored-1links;

}

Finally, open the index.html file in your browser and you will find that the hyperlinks
in the footer element have a green color and the ¥ symbol appended. The following
screenshot shows how the page should look:

the header

this is a paragraph
Link 1 Link 1

wlink 1w Link 1w

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

The following Less code creates the CSS code that appends some content after a hyperlink
automatically:

footer ({
.colored-1links;

}
The preceding Less code will compile into CSS, as follows:

footer a
color: green;

}

footer a::after
content: "\2764";

}

As you can see, the . colored-1inks mixin mixes all its content, including selectors,
into the footer selector.

The & sign before the : :after pseudo class is a reference to the parent selector

(in this case, the a selector). You can read more about referencing the parent selector
in the Referencing parent selectors with the & operator recipe in Chapter 5, Extending
and Referencing.

There's more...

While working on this recipe, you have likely realized that the possibilities of mixins are nearly
endless. Code can be reused in different projects and to copy a mixin to another project. Also,
styling your links the same way will be easy now. Namespaced mixins, as discussed in the
Using namespaces to make your code reusable and portable recipe in Chapter 1, Getting to
Grips with the Basics of Less, will make your code more portable.

Also note that you can't always overwrite the other styles defined in your project. The Less
code compiles into normal CSS code. Your CSS code will follow all specificity, inheritance,
and cascade rules. The . coloredlinks mixin won't work if other rules with a higher
specificity are applied on the footer element, too. Abody footer a {} selector defined
elsewhere in your project will overrule the styles set by the footer selector in this recipe.
Also, in case your footer has, for instance, an id attribute such as id="site-footer",

all style rules for the #site-footer a selector will have a higher precedence. Less does
not influence the CSS rules for specificity, inheritance, and cascades.

7@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The Building style guides with tdcss.js and Building style guides with StyleDocco recipes in
Chapter 2, Debugging and Documenting Your Less Code, will give you another use case of
using selectors inside mixins. In this recipe, mixins are used containing the &.selector
selectors inside them. The &.selector selectors select the parent selector with the
.selector class.

» You can read more about referencing the parent selector in the Referencing parent
selectors with the & operator recipe in Chapter 5, Extending and Referencing

Using parametric mixins

Mixins can be used with parameters, which make them more flexible and reusable.

Getting ready

For this recipe, you will have to create the following file and folder structure:

index.html

less

L project.less
less. js

You can edit these files with your favorite text editor and inspect the results with your
web browser.

How to do it...

In this recipe, you will leverage a simple mixin to set the border radius of the HTML elements
by performing the following steps:

1. You first need to create a valid HTML5 document named index.html with the
following elements:

<header>the header</headers>
<p>this is a paragraph</p>
<footer>the footer</footers>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Variables and Mixins

Make sure the head section of your index.html file also contains the
following code:

<link rel="stylesheet/less" type="text/css"
href="project.less">
<script src="less.js" type="text/javascript"></script>

2. Openthe project. less file with your text editor and write the following mixins
into it:
.rounded-corners (@radius) {
border-radius: @radius;
border: 3px solid red;
background-color: navy;
padding:10px;
color: white;

}

3. Finally, add the following Less code into the project . less file to give your
HTML elements rounded corners with different radii:

header {
.rounded-corners (10px) ;
}

p {
.rounded-corners (20px) ;

}

footer ({
.rounded-corners (30px) ;

}

4. Openthe index.html file in your browser and you will see the result shown in the
following screenshot:

this is a paragraph

the footer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The @radius parameter accepts the value and makes it available for the local scope of the
.rounded-corners mixin. The preceding steps enable you to use the @radius variable,
which contains the values assigned by the caller, inside the mixins. A user who is familiar
with the programming functions will find that mixins act in a way similar to the functions in
programming languages.

Your code can call the same mixins more than once, and parameters make them flexible.
Depending on the input parameter, the output will differ, and finally, set different values for
your properties.

There's more...

The mixin in this recipe accepts only one parameter, but mixins in Less can accept more
than one, or better theoretically, an endless number of parameters. You can read more about
this in the Using mixins with multiple and named variables recipe in Chapter 6, Advanced
Less Coding.

Nearly all the major browsers support the border-radius property, which is part of the
CSS3 specification. MS Internet Explorer Version 8 and below does not support this border-
radius property. The progressive internet explorer (PIE) project makes IE 6-8 capable

of rendering several of the most useful CSS3 decoration features, including the border-
radius feature. More information about the PIE project can be found at http://css3pie.
com/. Alternatively, popular projects such as Twitter's Bootstrap simply don't support the
border-radius property for the older versions of IE. The strategy to skip some advanced
functionalities for the older browser is called graceful degradation. Graceful degradation may
not break the basic functionalities of your website or application. To find out which browsers
support a CSS property, you can seek the counsel of the Can I use database.

See also

» The Can I use database can be found at http://caniuse.com/

» More information about Bootstrap's support for older browsers can be found at
http://getbootstrap.com/getting-started/#support

» More information about graceful degradation versus progressive enhancement can
be found at http://www.w3.org/wiki/Graceful degredation versus
progressive enhancement

(7]

www.it-ebooks.info

http://css3pie.com/
http://css3pie.com/
http://caniuse.com/
http://getbootstrap.com/getting-started/#support
http://www.w3.org/wiki/Graceful_degredation_versus_progressive_enhancement
http://www.w3.org/wiki/Graceful_degredation_versus_progressive_enhancement
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less
Built-in Functions

In this chapter, you will learn the following topics:

» Converting units with the convert () function
» Using the default () function

» Embedding images with data URIs

» Formatting strings

» Replacing a text within a string

» Working with lists

» Using mathematical functions

» Using the color () function

» Evaluating the type of a value

» Creating color objects with RGB values

» Getting information about a color

» Creating a color variant with the darken () and 1ighten () functions

» Creating overlays of two colors with Less

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

Introduction

In this chapter, you will learn how to use the Less built-in functions. Less provides you many
built-in functions, which enable you to perform instant mathematical and color operations to
set your CSS property's values. From the Using the built-in functions of Less recipe in Chapter
1, Getting to Grips with the Basics of Less, you can learn that the built-in functions are
grouped based on their return (and input) type. The Less built-in functions work just like the
functions in function programming. The built-in functions return a computed value to its caller
based on the function arguments set by the caller.

Converting units with the convert() function

This recipe will show you how to work with units in Less. Less allows you to work with values
and units as defined in CSS3.

Getting ready

For this recipe, you will need a text editor and a Less compiler. In Chapter 1, Getting to
Grips with the Basics of Less, we learned how to use and install the 1ess. js client-side
or command-line 1essc compiler. We will need those skills for this recipe.

How to do it...

1. Use a Less compiler to compile the following Less code into the CSS code:

.distance {
centimeters: convert (10mm,cm) ;
inches: convert (10mm,in) ;
pixels: convert (10mm, px) ;
points: convert (10mm,pt) ;
picas: convert (10mm,pc) ;

}

2. You will find that the Less code compiles into the CSS code, as follows:

.distance(
centimeters: lcm;
inches: 0.39370079in;
pixels: 37.79527559px;
points: 28.34645669pt;
picas: 2.36220472pc;

82

E

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As can be seen in the Creating complex relationships between properties recipe in Chapter 1,
Getting to Grips with the Basics of Less, the Less compiler understands colors and units.

The built-in convert () function makes it possible to covert units of the same type. You

can't only convert different units for distance; CSS also defines units for time, frequency,
angles, and resolution.

For instance, angle can be defined in the deg, grad, rad, and turn units, which can be seen
while compiling the following Less code:

.angles {
gradians: convert (180deg, grad) ;
radians: convert (180deg, rad);
turns: convert (180deg, turn);

}
The preceding Less code will compile into the following CSS code:

.angles {
gradians: 200grad;
radians: 3.14159265rad;
turns: 0.5turn;

}

Note that a full circle contains 360 degrees, 200 gradians, 1 turn, and 2 pi radians.

The built-in convert () function does not work with font-relative lengths (the em, ex, ch,
and rem units). Also, converting units of different types is not possible. For this reason, the
convert (10mm, grad) ; Less code will compile into the 10mm CSS code.

Less only accepts units defined in CSS3. The convert (3600s,h) code won't compile into
1h but remains 3600s. This is because CSS3 only defines milliseconds (ms) and seconds (s),
and time, minutes, and hours are not defined.

» A complete overview of units of distances, degrees, and time can be found at
http://www.w3.org/TR/css3-values/

&)

www.it-ebooks.info

http://www.w3.org/TR/css3-values/
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

Using the default() function

The built-in default () function plays a special role when leveraging mixins, especially
mixin guards.

Getting ready

For this recipe, you will have to know something about parameterized mixins. You also need
to be aware of what guards are and how to use them. You can find both in the Using mixin
guards recipe in Chapter 6, Advanced Less Coding. You will also need a Less compiler, as
discussed in Chapter 1, Getting to Grips with the Basics of Less.

How to do it...

1. Use the command-line 1essc compiler to compile the following Less code:

.mixin (1)
property: 1 * 2;

}

.mixin(2) {
property: 2 * 3;

}

.mixin(@a) when (default()) {
property: @a;

}

one {
.mixin (1) ;

}

five {
.mixin(5) ;

}

2. The preceding Less code compiles into CSS, which looks like the following code:

one {
property: 2;

}

five {
property: 5;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The default () function returns true for the situation if no other mixin matches. Note that
the default () function can only be used in the parametric mixin guards. Also, as mentioned
in the Using namespaces to make your code reusable and portable recipe in Chapter 1,
Getting to Grips with the Basics of Less, the Less compiler compiles all the matching mixins
and does not throw an error when no matching mixins are found.

There's more...

The default () function can also be used with logical guard operations. The following Less
code will show you how to use the default () function together with the not keyword:

.mixin (@value) when not (default())

The .mixin () mixin in the preceding code will only be compiled into the CSS code when at
least one other .mixin () mixin matches. A use case of using the default () function with
the not keyword can be found when evaluating the following Less code:

.mixin (@value) when (iscolor (@evalue)) {
background-color: @value;

}

.mixin (@value) when not (default()) {
color: contrast (@value) ;

}

With the preceding mixins, the test {mixin (black) ;} code will compile into the following
CSS code:

test {
background-color: #000000;
color: #ffffff;

}

For instance, the test {.mixin(5) ; } code does not compile anything into the CSS code.

Multiple usages of the default () function for the same mixins are allowed. However, when
these calls conflict with each other, an Ambiguous use of “default ()~ found error will
be thrown by the compiler.

The following code will show you a valid usage of the multiple default () function:

.mixin (red) {color:darkred;}
.mixin(@a) when (iscolor(@a)) and (default()) {color: ea}
.mixin(@a) when not (iscolor(@a)) and (default()) { display: none;

}

&1

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

See also

The deployment of the code in this recipe also leverages other built-in functions. More
information about the contrast () function can be found in the Creating a color variant with
the darken() and lighten() functions recipe. The iscolor () function is a built-in function
grouped in the type functions. The type functions return true when their input value meets
the type function. This is explained in more detail in the Evaluating the type of a value recipe.

Embedding images with data URIs

In this recipe, you will set the background images for HTML elements with data URIs. Data
URIs don't link to images, creating extra HTTP requests, but write down their content into
the CSS file.

Getting ready

For this recipe, you can use the command-line 1essc or the client-side 1less. js compiler, as
described in Chapter 1, Getting to Grips with the Basics of Less. You will also need a Less file,
which can be edited with your favorite text editor. Finally, you will need an example image, for

instance, a PNG file named image . png.

How to do it

1. Create a project.less file in the same directory as your image . png file and write
the following Less code into it:

div {
background-image: data-uri('image.png') ;
}
2. Now compile the Less code into CSS code using the following command:

lessc project.less
3. Finally, you will find the compiled CSS will look like the following code:
div {

background-image:
url ("data:image/png;base64, iVBORWOKGgOAAAANSUh=") ;

~[ee]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The background-image CSS property should be set to a URI. The function notation for an URI is
url (). Note that the URI not only contains URL, but also data URIs. The data URI is inline the
content of the file into the CSS code. The data-uri () function can be called with an optional
MIME-type string, such as image/png;base64, followed by the URL of the file to inline. Note
that the base64 part of this string sets the encoding type of the inlined content of the files.
Setting the encoding type is not required. The inline code that is not encoded by baseé64
should be the URL encode. In Less, you can use the escape () function for URL encoding.

Sder browsers don't support data URIs. Internet Explorer supports data URIs since Version 8.
In this version of Internet Explorer, the data URI may not contain more than 32,768 bytes.
The IEcompat option in Less enables you to use the data-uri () function for IE8 too.
When the data exceeds the limit, 32,768 bytes, the compiler falls back to the url () syntax
to link the image.

The Less compiler neither validates the MIME type string, nor checks whether the URL content
matches the set MIME type. However, if the URL does not exist, it throws a Runt imeError:
error evaluating function “data-uri®: ENOENT, no such file or
directory error. If no MIME type string has been set, the file extension of the URL will be
used to determine the MIME type.

There's more...

For small images, using data URIs seems a good or better alternative for image sprites, as
described in the Leveraging sprite images with Pre recipe in Chapter 7, Leveraging Libraries
with Prebuilt Mixins. The preceding recipe should be read with care because of the investigation
reported that on some mobile views, a data URI is on average six times slower than using a
binary source. Other situations can be solved using an icon font, such as Font Awesome. Font
Awesome can be found at http://fortawesome.github.io/Font-Awesome/.

Background images with the data URI should only be used for images, which are a part of the
outcome. Technically, there is no reason not to define all the images of your website as an
inline image with a data URI. However, for accessibility proposals, functional and semantically
important images should always be provided with the img tags in the document markup
because screen readers will ignore the background images. Also, some devices running

in a high contrast mode and many printers will disable the background images. For this
reason, you should also set an alternative background color for situations when the image

is unavailable.

You might have noticed that the number of bytes of the base 64-encoded URI is mostly larger
than the number of bytes of the original image. Base 64-encoded data can be compressed
very well. So, when using the HTTP compression for your website, the side effect of the larger
number of bytes can be eliminated.

7}

www.it-ebooks.info

http://fortawesome.github.io/Font-Awesome/
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

See also

» More information on the usage of URIs in CSS can be found at
http://www.w3.0org/TR/CSS21/syndata.html#value-def-uri.

» Some background information about the usage of the HTTP compression with
gzip or deflate for your website can be found at http://css-tricks.com/
snippets/htaccess/active-gzip-compression/. For Apache, you can enable
the compression via .htaccess. The IS users should use the web . config file.

» More information about the load time of data URIs by Peter McLachlan can be found
athttp://www.mobify.com/blog/data-uris-are-slow-on-mobile/.

Formatting strings

With the % () function, you can format strings in Less. This function is very similar to the
printf function found in other programming languages.

Getting ready

For this recipe, you will only need a Less compiler. You can use the command line 1lessc or
the client-side 1less. js compiler and inspect the results in your browser. We have covered
the installation part of these compilers in Chapter 1, Getting to Grips with the Basics of Less.

How to do it...

1. To find out how to use the % () function, you can compile the following Less code
and inspect the compiled CSS code:

formattedstrings {

quotesincluded: % ("Open the %a file","../less.txt");
quotesincludedescaped: % ("Open the %A file","../less.txt");
quotesremoved: % ("Open the %s file","../less.txt");
quotesremovedescaped: % ("Open the %S file","../less.txt");

}

2. After compiling the preceding Less code, your compiled CSS code will look like
the following:

formattedstrings {
quotesincluded: "Open the "../less.txt" file";
quotesincludedescaped: "Open the %22..%2Fless.txt%22 file";
quotesremoved: "Open the ../less.txt file";
quotesremovedescaped: "Open the ..%2Fless.txt file";

(e

www.it-ebooks.info

http://www.w3.org/TR/CSS21/syndata.html#value-def-uri
http://css-tricks.com/snippets/htaccess/active-gzip-compression/
http://css-tricks.com/snippets/htaccess/active-gzip-compression/
http://www.mobify.com/blog/data-uris-are-slow-on-mobile/
http://www.it-ebooks.info/

Chapter 4

The % () function should be called with a string containing one or more placeholders followed
by the remaining arguments, containing expressions to replace the placeholders. Placeholders
start with a % sign and should have one of the following syntaxes: %a, %A, %d, %D, %s, Or %S.

A placeholder can contain any kind of argument, such as string, numbers, colors, and the
escaped values. Currently, there is no difference between the interpretation or usage of $a
and %d or between their capitalized versions. Both the $a and %d placeholders are replaced
with the content, including the surrounding quotes. The %s placeholders are replaced without
quotes; note that this placeholder cannot contain colors. The uppercase placeholders, %2, $D,
and %S, work in the same way as their lowercase versions. However, special characters are
replaced with their utf-8 escape code.

There's more...

Some sources mention that the $¥d and %D placeholders should be used for numbers. These
sources expect that maybe newer versions of Less will have a different format for numbers.
A preferred way of using $d and %D for number placeholders is not confirmed by the Less
core team.

Replacing a text within a string

The built-in replace () function enables you to replace a text within a string. In this recipe,
you will use this function to create a mixin that sets your retina image's background URLs
automatically based on the filename (URL) of your original image. High-density devices have
more than one screen pixel per CSS pixel. For this reason, you should use images with a
higher number of pixels on such devices to get a sharp image projection.

Getting ready

For this recipe, you will use the client-side 1ess. js compiler, as described in Chapter 1,
Getting to Grips with the Basics of Less. You will also need a text editor to create and edit
your HTML and Less files, an image editor to edit an image file, and a square example image,
which is wider than 100 px.

How to do it...

1. Open your square example image with an image editor and resize the file to 200 px x
200 px and save the resized file to example@2x . png. Then resize the image to 100
px x 100 px and save this file as example . png.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

2. Create a project.less file and write the following Less code into it:

.img-retina(efile; @width: auto; @height: auto;) {
background-image: url("e{file}");
@media
only screen and (-webkit-min-device-pixel-ratio: 2),
only screen and min--moz-device-pixel-ratio: 2),

only screen and

(
(
only screen and (-o-min-device-pixel-ratio: 2/1),
(min-device-pixel-ratio: 2),
(

only screen and min-resolution: 192dpi),

only screen and (min-resolution: 2dppx) {
background-image: e (% ('url("%$s")',replace(@efile,
"\. ([a-zA-2]1{3,4})s","@2x.51")));
@size: ~"@{width} @{height}";

-webkit-background-size: @size;
background-size: @size;

}

body {
.img-retina('example.png', 100px, 100px) ;

}

3. Create project.html, which links the 1ess. js compiler and the project.less
file from step 2 with the following HTML code:

<link rel="stylesheet/less" type="text/css"
href="less/project.less">
<script src="js/less.js" type="text/javascript"></script>

4. Inspect the results in your browser and whether they are available on a high
resolution device.

As already said, the built-in replace () function enables you to replace a text within a string.
The replace () function accepts the following four parameters:

» The first parameter contains a string to search and replace in

» The second parameter sets a regular expression (or string) to search for

» The third parameter contains a string that replaces the matched pattern

» The last optional parameter can be used to set regular expression flags

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In this recipe, the replace (efile, "\. ([a-zA-2]{3,4})$","@2x.$1") code is used
to replace the .png text in the filename with the @2x . png text. The preceding code will result
in a new filename: example@2x.png. The replaced filename is used to set the background
image with the url () syntax. Alternatively, the data-uri () function, as explained in the
Embedding images with data URIs recipe, can be used to inline this image.

The basic concept of a retina image is that you're taking an image with double the amount of
pixels of your original image and displaying this image with the CSS pixel width of the original

image. High-density devices have more than one screen pixel per CSS pixel. An iPhone or iPad
has four screen pixels per CSS pixel and therefore has a device-pixel-ratio of 2.

There's more...

As you know, Less is written in JavaScript. Those who are familiar with JavaScript may wonder,
"Can | also use native JavaScript functions?" Especially in this recipe, you will find the Less
replace () function very similar to the JavaScript String.replace () function. The answer
to the first question is yes; currently, Less compilers allow you to use native JavaScript calls.
JavaScript calls should be placed between batesticks. Consider the following Less code:

@image: "../image.png";

.class {
@image_ 2x:
background-image: url("e{image 2x}");

}

The preceding Less code will compile into the following Less code:

~ ~

@{image}.replace ("image", "image@2x")

.class {
background-image: url("../image@2x.png") ;

}

Although the preceding usage of JavaScript will give you the desired result, using JavaScript in
your Less code has been depreciated. Future versions of Less may not support the usage of
the native JavaScript. Also, compilers written in other languages cannot compile the JavaScript
code. Avoiding the native JavaScript will keep your code clean and portable.

While Apple devices have a device-pixel-ratio of 2, there are many other high-density devices
with a different device-pixel-ratio. The media queries used in this recipe are based on an
article at http://css-tricks.com/ by Chris Coyier. Other strategies, which take different
device-pixel-ration into account too, should be used now. Also, in future, prebuilt mixin
libraries, as described in Chapter 7, Leveraging Libraries with Prebuilt Mixins, will provide you
with mixins for retina images.

i

www.it-ebooks.info

http://css-tricks.com/
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

See also

» The A pixel is not a pixel is not a pixel blog post by Peter-Paul Koch in 2010 explains
the difference between the device and CSS pixels very well. This blog post can be
found at http://www.quirksmode.org/blog/archives/2010/04/a pixel
is not.html.

» Brett Jankord wrote about Cross Browser Retina/High Resolution Media Queries in
2012, which can be found at http://brettjankord.com/2012/11/28/cross-
browser-retinahigh-resolution-media-queries/.

» Some basic information about regular expressions and the available flags can be
found at https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Guide/Regular Expressions.

» Read how to test retina display on the Chrome browser at http://www.gee.web.
1d/2014/09/how-test-retina-display-on-chrome.html.

In Less and CSS, list is a comma or space-separated collection of values. The length ()
function returns the number of elements in the list, while the extract () function will
give you the value of a given position in the list.

Getting ready

In this recipe, you will learn how to use the extract () and length () functions with
CSS lists. To demonstrate these functions, a mixin guard will be used to create a loop with
recursion. You can read more about loops with recursion in the Using mixin guards recipe
in Chapter 6, Advanced Less Coding. You can use the client-side 1less. js compiler or the
command-line 1lessc compiler, as explained in Chapter 1, Getting to Grips with the Basics
of Less, to compile the Less code.

How to do it...

1. Write and compile the following Less code:

@sizes: "small", "medium", "large";
.build (enumber) when (@number > 0) {
.build (@number - 1) ;
@class: e(%(".%s",extract (@sizes, @number))) ;
@{class} {
width: 100px * @number;

}
}

.build(length(@sizes)) ;

[

www.it-ebooks.info

http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html
http://www.quirksmode.org/blog/archives/2010/04/a_pixel_is_not.html
http://brettjankord.com/2012/11/28/cross-browser-retinahigh-resolution-media-queries/
http://brettjankord.com/2012/11/28/cross-browser-retinahigh-resolution-media-queries/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://www.gee.web.id/2014/09/how-test-retina-display-on-chrome.html
http://www.gee.web.id/2014/09/how-test-retina-display-on-chrome.html
http://www.it-ebooks.info/

Chapter 4

2. After compiling the preceding Less code, you will end up with the following CSS code:

.small {
width: 100px;
}
.medium {
width: 200px;
}
.large {
width: 300px;

}

You have used lists in CSS before, maybe without even realizing it. Lists are, for instance,
property values for margins and padding, as shown in the following code:

margin: 0 10px 20px 0;

Many shorthand property values are lists. Also, the recent additions to CSS3 add some new
properties with the list values. So, for the background image property, you can assign more
than one image by separating the URLs with a comma.

The extract () and length () functions get the values and the length of a CSV list.
Together, these functions can be used to iterate over the CSV list as arrays. When using the
extract () function, you should note that the first position has the index 1 and not 0.

Less enables you to assign any list of values; you can, for instance, use the following code to
create a list of written numbers:

@numbers: "one", "two", "three";

Note that in the preceding code, the quotes around the values are optional.

The return value of the extract () function acts as an assigned value. So, for instance,
it can be used with operations and other built-in functions, as in the following Less code:

@border: 1lpx solid red;

div.bordered {
border: @border;
background-color: lighten(extract (@border, 3),20%) ;
padding: extract (@border,1l) * 10;

}

55}

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions
The preceding code will compile into the following CSS code:

div.bordered {
border: 1lpx solid #££0000;
background-color: #ff6666;
padding: 10px;

}

Using mathematical functions

Frequently used mathematical functions are also available in Less. These functions include,
among others, functions for rounding and trigonometry. In this recipe, you will create a list of
colors, which covers the visible spectrum, using the sin () and floor () functions.

Getting ready

In this recipe, you will compile the Less code using the client-side 1ess. js compiler, as
described in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to
Grips with the Basics of Less. Finally, you will inspect the result in your browser. You will also
need a text editor to edit your Less and HTML files.

How to do it...

1. Create a Less file named rainbow. less and write the following Less code into it:

.rainbow (@number, @frequency:0) when (@number > 0)

{

.setfrequency () when (efrequency = 0) {
@frequency: 5 / @number;

}
.setfrequency;

.rainbow (@number - 1, @frequency) ;

@red: floor (sin(@frequency * (@number - 1) + 0) * 127 +

128) ;

@green: floor(sin(@frequency * (@number - 1) + 2) * 127 +
128) ;

@blue: floor (sin(@frequency * (@number - 1) + 4) * 127 +
128) ;

@classname: e (%(".color-%a",@number)) ;
@{classname} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

}
}

background-color: rgb(e@red,@green, @blue) ;
height :30px;

.rainbow (12) ;

Create an index.html file, which will link the 1ess.js compiler and the rainbow.
less file from step 2 with the following HTML code:

<link rel="stylesheet/less" type="text/css"
href="rainbow.less">

<script src="less.js" type="text/javascript"></scripts>

This index.html will have the following HTML code in its body part:

<div
<div
<div
<div
<div
<div
<div
<div
<div
<div
<div
<div

class="color-1"></div>
class="color-2"></div>
class="color-3"></div>
class="color-4"></div>
class="color-5"></div>
class="color-6"></div>
class="color-7"></divs>
class="color-8"></divs>
class="color-9"></div>
class="color-10"></div>
class="color-11"></div>
class="color-12"></div>

Inspect the results in your browser. In your browser, you will find twelve colored div
elements, which look like the following screenshot:

[55]-

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

Less has a built-in function for commonly used mathematical calculations. In this recipe,
sin () and floor () functions are used. The sin () function of course calculates a sine
function and the f1loor () function returns the next lowest integer. The code in this recipe
uses three sine waves with a different phase to calculate the RGB values of the colors. The
channel values in the rgb () function are set by an integer, so the results are rounded first
with the £1looxr () function.

There's more...

As made clear in the Replacing a text within a string recipe, native JavaScript math functions,
such as the Math. floor () function, can also be used when put between quotes; however,
to keep your code clean and portable, you should only use the built-in Less math functions.

See also

» The code used in this recipe is inspired by a blog post written by Markandey Singh.
You can find his original post and the JavaScript code at http://www.markandey.
com/2012/04/how-to-generate-rainbow-colors.html.

» A complete list of the built-in mathematical functions can be found at
http://lesscss.org/functions/#math-functions

Using the color() function

The Less colors are defined in the same way as in CSS; color is a color keyword, an RGB hex
value, or the equivalent triplet of the numerical RGB values.

Getting ready

For this recipe, you can use your favorite text editor and the command-line 1essc compiler,
as described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to
Grips with the Basics of Less.

www.it-ebooks.info

http://www.markandey.com/2012/04/how-to-generate-rainbow-colors.html
http://www.markandey.com/2012/04/how-to-generate-rainbow-colors.html
http://lesscss.org/functions/#math-functions
http://www.it-ebooks.info/

Chapter 4

How to do it...

1. Write the following code into a Less file and compile this file with the command-line
lessc compiler:

colors
colorl: color("red") ;
color2: color ("#££0000") ;
color3: color ("#£00") ;

}
2. The preceding Less code will compile into the following CSS code:

colors
colorl: #££0000;
color2: #££0000;
color3: #££0000;

}

The color () function converts a string into a color, as defined by CSS. Colors are
compiled into six-digit hex values. These values start with a # symbol followed by a triplet of
hexadecimal numbers between O and 255.

The color () function can also have another built-in function as an argument when this
function provides a valid color value. So, for instance, color (% ("#"%s,"£f00")) ; will
compile into #££0000;.

Although the color () function removes quotes in most cases, the color () function is not
just a wrapper of the ~"value" syntax or the e () function. Note that the ~"blue" syntax
will be compiled into the unquoted blue string, while the color ("blue") ; call will compile
into the #0000£ £ color value. Also, the iscolor () function evaluates false for ~"blue™",
as can be seen in the compiled CSS code in the Evaluating the type of a value recipe. Last but
not least, the color () function is more strict and throws an argument that is a color keyword
or 3/6 digit hex (for example, the #FFF error for invalid color values).

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

The color definition functions and other color functions, as described in the Creating color
objects with RGB values recipe, already return a color type and should not be wrapped in
the color () function. On the other hand, when you have colors or color names defined

as string, which you want to use as the function argument for built-in color functions, you
should covert them to colors first, leveraging the color () function. The latest can be seen
in the following example code:

@colors: "red", "blue", "yellow";

.lighten(@i: 1) when (@i <= length(e@colors)) {
.lighten(@i + 1);
@color: e(extract(@colors, @i)) ;
.lighte{color} {

color: lighten(color (@color), 10

o\°

)i

.lighten() ;

The 1ighten () function in the preceding code requires a color, as an argument throws an
error for other argument types. You should note that in the preceding example, the quotes
around the values of @colors are not required. When you drop these quotes, you do not
need both the e () and color () functions too.

» A complete overview of CSS Color Module Level 3 can be found at
http://www.w3.0rg/TR/2011/REC-css3-color-20110607/.

» The CSS3 modules extend 16 basic color keywords in CSS with a lot of color
keywords. A complete list of the color keywords contain 147 color names now
and is the same as the SVG 1.0 color keyword names, which can be found at
http://www.w3.0org/TR/SVG/types.html#ColorKeywords.

» You can also look up these color keywords in the color equivalents table at
http://meyerweb.com/eric/css/colors/. This table also includes the
HSL definitions of these colors.

5]

www.it-ebooks.info

http://www.w3.org/TR/2011/REC-css3-color-20110607/
http://www.w3.org/TR/SVG/types.html#ColorKeywords
http://meyerweb.com/eric/css/colors/
http://www.it-ebooks.info/

Chapter 4

Evaluating the type of a value

The built-in functions are grouped as the type functions that can be used to evaluate the
type of a value. The result can be used to match mixins based on the value type.

Getting ready

For this recipe, you will need a text editor and the command-line 1essc compiler ready,
as described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to
Grips with the Basics of Less.

How to do it...

1. Write the following code into a Less file and compile this file with the command-line

2.

lessc compiler:

color-tstt (@color, @test-number) when (iscolor (@color))

{

result-@{test-number}: %("%a is a color",@color) ;

}

.color-test (@color, @test-number) when (default())

{

result-@{test-number}: %("%a is Not a color",@color) ;
}
test {

.color-test (blue, 1) ;

.color-test ("blue",2);

.color-test (color ("blue"),3);

.color-test (~"blue", 4) ;

}

The preceding Less code will compile into the following CSS code:

test {
result-1: "#0000ff is a color";
result-2: ""blue" is Not a color";

result-3: "#0000ff is a color";
result-4: "blue is Not a color";

s

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

The Less code of this recipe contains two mixins with the same name. The first mixin is only
compiled when the iscolor () condition matches, or in other words, evaluates true for the
input parameter. These conditional mixins are also called mixin guards and are explained in
more detail in the Using mixin guards recipe in Chapter 6, Advanced Less Coding recipe.

Colors in Less are not strings, but a special color type defined as a color keyword, an RGB
hex value, or the equivalent triplet of the numerical RGB values. The iscolor () function
returns false for strings or other invalid color values. The Using the color() function

recipe describes how to convert a string to a color with the built-in color () function. Also,
other built-in color definitions and color functions will evaluate as true. For instance, the
iscolor (rgb(255,0,56)) ; call will return true. Note that transparent is a valid color
keyword. User agents should compute this keyword as rgba (0,0, 0, 0). See the There's
more... section of the Creating color objects with RGB values recipe for more information
about the rgba () color definition function.

There's more...

Besides the iscolor () function, Less has other eight built-in functions, so-called is or
type-checking functions, namely the isnumber (), isstring (), iskeyword (), isurl (),
ispixel (), isem(), ispercentage (), and isunit () functions. All these functions,
except the isunit () function, accept a single argument. The arguments for the isunit ()
function are a value and a unit type, and this function evaluates to true when the value is a
number in the specified units. The following code will show you some examples of the usage
of the is functions:

iskeyword (keyword) ; //true
isunit (lpx,em); //false

Creating color objects with RGB values

In this recipe, you will create some color objects with the rgb () color definition function.

Getting ready

For this recipe, you can use your favorite text editor and the command-line 1essc compiler,
as described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Also, looking at the color equivalents table at http://meyerweb.
com/eric/css/colors/ will be useful. This table will give you an insight into the relation
between the different color definitions available in CSS3.

100

www.it-ebooks.info

http://meyerweb.com/eric/css/colors/
http://meyerweb.com/eric/css/colors/
http://www.it-ebooks.info/

Chapter 4

How to do it...

1. Create a colors. less file and write down the following Less code into it:

colors
colorl: rgb(255,0,0); //red
color2: rgb(100%,0,0); //red
color3: rgb(255,255,0); //yellow
color4: rgb(100%,100%,0); //yellow
color5: rgb(255,99,71); //tomato
color6: rgb(100%,38.8%,27.8%); //tomato

}

2. After the compilation of the preceding Less code, your final CSS code will look like the
following code:

colors
colorl: #££0000;
color2: #££0000;
color3: #ff£f£00;
colord: #f£f££00;
color5: #ff6347;
coloré6: #ff6347;

}

The rgb () color definition has been defined in CSS and Less. The rgb () color definition
function in Less accepts a triplet of numbers or percentages as arguments. The three
numbers of the triplet are called channels mostly. The numbers in the triplet define the red,
green, and blue color components. Each of the channels can vary between O and 255 (or O
and 100 percent). The RGB notation allows you to define 2724 = 16777216 different colors.
You can easily convert the notation from hexadecimal to RGB by calculating the decimal
equivalent of the hexadecimal number or vice versa. The hexadecimal value for the tomato
color is #f£6347; the first number of the triplet £ £ defines red, and the £f hexadecimal value
is equal to 255 decimal. The next number of the triplet (green) 63 hexadecimal equals 99
(16*6 + 3) decimal. Finally, the green component of the triplet has 47 hexadecimal, which

is equal to 71 in the decimal notation. Putting the preceding data together makes it clear
that #££6347 is equal to rgb (255,99, 71) ;. The percentage numbers can be found as the
decimal value divided by 255 times 100 percent, or of course, for hexadecimal numbers, the
hexadecimal number divided by £ f times 100 percent. So again, for the tomato color, you
will find the rgb (100%,38.8%,27.8%) ; notation.

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

CSS3 extends the rgb notation with the rgba notation. The rgba notation works the same
way as rgb; besides, there is an additional alpha (a) channel. The alpha value in this notation
will be a fraction between O and 1 and can be used to set the opacity of a color. An alpha

of 1 correspondence with an opaque color and an alpha of O will be invisible. In Less, rgba
colors are assigned with the rgba () function. The rgba () function in Less also accepts a
percentage for the alpha channel argument. The effect of the opacity can be made visible
with the following HTML loaded in your browser:

<div style="background-color:white;">
<div style="padding:10px;
background-color:rgba(255,0,0,0.5) ;color:white; ">text</div>

</div>

As you can see, red with an opacity of 50 percent on the white background will look similar
to pink. Of course, you can rewrite the inline styles in the preceding HTML example into the
Less code. In Less, your code will look like the following code:

div {
background-color: white;
div {
padding: 10px;
background-color: rgba(255,0,0,50%); // red
color: white;

}
}

In case you want to create a transparent color, you can use the built-in red (), green (),
and blue () functions to get the input values for the rgba () function. The following example
code shows how to use these functions to create a transparent color:

.rgba-background (ecolor; @alpha: 50%) {

background-color: rgba(red(@color), green(@color), blue(@color),
@alpha) ;

}

div.red {

.rgba-background (red) ;

102

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The preceding Less code will compile into the CSS code as follows:

div.red {

background-color: rgba (255, 0, 0, 0.5);

}

Less provides more functions to define colors. The hsl () color function defines numerical
hue, saturation, lightness (HSL) colors as a complement to the numerical RGB colors. The
HSL color definition also exists in CSS3. People have claimed that the HSL colors are more
intuitive than the RGB colors (refer to Yay for HSLa by Chris Coyier at http://css-tricks.
com/yay-for-hsla/). The HSL definition also works as a triplet (hue, saturation, and
lightness). The first value of this triplet is the hue. The hue has been defined as an angle of
the color circle with O degree (and 360 degrees) being red, 120 degrees representing green,
and blue found at 240 degrees. The second value describes the saturation as a percentage,
where 100% is full saturation and 0% is a shade of gray. The third and last value is also a
percentage and represents the lightness. A lightness percentage of 50% can be seen as
normal lightness, 0% lightness is black, and then of course, 100% lightness should be white.

To get more of a grip on the HSL color, you can load and inspect the following HTML code into
your browser:

<div style="background-color:hsl (240,100%,25%);">dark blue</div>
<div style="background-color:hsl (240,100%,50%) ;">blue</div>

<div style="background-color:hsl (240,100%,75%) ;">1light blue</div>

<div style="background-color:hsl (240,25%,50%) ;">dark blue</div>
<div style="background-color:hsl (240,50%,50%) ; ">blue</div>

<div style="background-color:hsl (240,100%,50%);">1light blue</div>

In your browser, the preceding code output will look like what is shown in the following
screenshot:

dark blue

blue

light blue

dark blue
blue

light blue

www.it-ebooks.info

http://css-tricks.com/yay-for-hsla/
http://css-tricks.com/yay-for-hsla/
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

The preceding HTML example will show you that creating different shades of blue can be
accomplished by varying the saturation or lightness of the channel values.

Note that the shades of the same color in the SVG 1.0 color keyword names are not related to
HSL and are defined with different hue values, as can be seen in the blue range as follows:

» light blue: hs1(195,53.3%,79%)
» blue: hsl(240,100%,50%)
» darkblue: hsl (240,100%,27.3%)

The hsla () function adds an alpha channel to the HSL definition to define transparency. The
alpha range is from O to 100 percent, and it can also be set with a fraction between 0 and 1.

In Less, you can also use some other color definition functions, which are not defined in
CSS3. The HSV, also called HSB, color space is just like HSL. It's a cylindrical coordinate
representation of points in an RGB color model. HSV is used by Adobe Photoshop and the
popular open source alternative GIMP for color pickers and other built-in color algorithms. In
Less, HSV colors can be defined with the hsv () function. Using the same color definition for
your designs, your Less code will make it easier to match them. The hsv () function also has
a variant that enables you to set the transparency with an alpha channel value, the hsva ()
function, with alpha as a percentage between 0-100 or number O-1.

Finally, there is the argb () function in Less. The argb () function defines a color in
the #aarrggbb hexadecimal format. This #aarrggbb hexadecimal format, with alpha
for transparency between 00 (0) and ££ (255), is used in Internet Explorer, .NET, and
Android development.

In Less, you can convert RGB into ARGB with the following code:
argb (rgba (0, 0, 255, 0.5)); //blue, with 50% transparency
This conversion will compile into the CSS code, as follows:
#800000£€E;

Note that ARGB is not defined in CSS3, so you can't use the argb () function to assign a

CSS property. A use case for the argb () function can be found in Bootstrap's gradient mixins,
which assigns a background gradient for Internet Explorer 8 and earlier versions with the
following code:

filter: e (% ("progid:DXImageTransform.Microsoft.gradient
(startColorstr='%d', endColorstr='%d', GradientType=1l)",
argb (@start-color) ,argb (@end-color))); // IE9 and down

104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Finally, you will have to pay some attention to the compiled output of the color definitions. If
possible, colors are compiled in your CSS code with the RGB hexadecimal format (#rrggbb),
the color names; three-digit hexadecimal representation; and rgb (), hsl (), and hsv ()
functions compile into the #rrggbb representation. Colors with an alpha channel cannot be
written in a hexadecimal triplet and will compile into the rgba (r, g, b, a) ; representation,
unless alpha = 1.Ifalpha = 1, your color will compile in the #rrggbb format too. The
only exception of the preceding code is the argb () color definition, which will always compile
into the #aarrggbb hexadecimal representation.

See also

» The formulas to convert HSL color to RGB colors and vice versa can be found at
http://www.w3.0rg/TR/2011/REC-css3-color-20110607/#hsl-color

Getting information about a color

As you can read in the recipe, colors are defined with different channels. Less provides
you with some functions to get information about a channel that belongs to a certain
color definition.

Getting ready

This recipe will only give you a small piece of example Less code. You can compile this
example Less code with the client-side or server-side compiler, as described in Chapter 1,
Getting to Grips with the Basics of Less, and inspect the compiled CSS code.

How to do it...

1. Compile the following Less code into CSS using a Less compiler:

hsv {
hsvvalue: hsvvalue (hsv (90, 100%, 50%));
color: hsv (90, 100%, 50%);

}

rgb {
hsvvalue: hsvvalue (#408000) ;

}

www.it-ebooks.info

http://www.w3.org/TR/2011/REC-css3-color-20110607/#hsl-color
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

2. You will find that the preceding Less code will compile into the following CSS code:

hsv {
hsvvalue: 50%;
color: #408000;
!
rgb {
hsvvalue: 50%;
!

Colors are defined with channels; the value set by the channel depends on the color definition.
RGB colors have a red, green, and blue channel, and HSL colors have a hue, saturation, and
lightness channel. Less provides you with some built-in color function, which will give you
information (or the value set) about a channel.

For RGB colors, the functions are red (), green (), and blue (), and for HSL colors, hue (),
saturation (), and lightness (). As you can guess now, for HSV colors, the hsvhue (),
hsvsaturation (), and hsvvalue () functions are available.

The example code in this recipe shows you that the input parameter of these functions should
be a valid color, but this color can be defined with any definition.

Both the hsvvalue (hsv (90, 100%, 50.2%)); and hsvvalue (#408000) functions
return 50%. Also, the red (hsv (90, 100%, 50.2%)); and red (#408000) ; functions will
return 64 (note that the result is 64 . 005 for the HSV color definition). Of course, these results
do not differ due to hsv (90, 100%, 50.2%) and #408000. There are different ways to
define the same color.

The channel functions convert a color into the corresponding color space before they find the
channel value that should be returned.

The color channel functions, as described, can also be used for mixin guards, as explained in
detail in the Using mixin guards recipe in Chapter 6, Advanced Less Coding recipe.

Creating a lighter variant of a color will be easy in the HSL color space. You will only have to
increase the lightness of a color. If you only have the hexadecimal representation or even only
the color name for your input color, you can compile the following code to find your lighter
color variant:

@inputcolor: darkgreen;

p {

color: hsl (hue (@inputcolor),saturation (@inputcolor),
lightness (@inputcolor) + 20%); // lighter green

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

You will find that the preceding code will compile into #00ca00; indeed. In the Creating

color a variant with the darken() and lighten() functions recipe, you will learn more

about the color operation functions of Less. These color operations also include the

lighten () function, which will make the preceding 1ighten operation a lot easier. The
lighten('darkgreen', 20%) ; code will compile into the #00ca00 hexadecimal RGB code.

Other functions, which give some information about a color, are the 1uma () and
luminance () functions. The 1uma () function returns the perceptual brightness of a

color object. The perceptual brightness of a color plays an important role for contrast with
other colors. High color contrasts will help visually disabled people. For this reason, the
implementation of the 1uma () function follows the recommendations in Web Content
Accessibility Guidelines (WCAG) 2.0 by W3C. The same calculation is used for the built-in
contrast () function. Note that the 1uma () function has been changed since Less v1.7; it
now uses gamma correction. The luminance () function calculates perceptual brightness
without gamma correction in the same way as the 1uma () function did before Less 1.7 for
backward-compatibility reasons.

» The recommended calculation for the relative luminance by W3C
can be found at http://www.w3.0org/TR/2008/REC-WCAG20 -
20081211 /#relativeluminancedef

» Some background information and links for further reading about the gamma
correction of colors can be found at http://www.colormatters.com/the-
power-of -gamma

Creating a color variant with the darken()

and lighten() functions

In this recipe, you will compile some shades of green into CSS with the Less color
operation functions.

Getting ready

You will need a valid HTML5 document, which includes the 1ess. js compiler and a Less file
called project.less. Note that the Using the built-in functions of Less recipe in Chapter
1, Getting to Grips with the Basics of Less, will show you an example of how to darken colors
with the darken () built-in function.

www.it-ebooks.info

http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
http://www.w3.org/TR/2008/REC-WCAG20-20081211/#relativeluminancedef
http://www.colormatters.com/the-power-of-gamma
http://www.colormatters.com/the-power-of-gamma
http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

How to do it...

1. Write the following HTML code into your HTMLS5 file:

<div>
<div class="green">Shades of green</divs>
</div>

2. Openthe project.less file with your text editor and write the following Less code
into it:
@start-color: green;
div.green
background-color: @start-color;
color: contrast (@start-color) ;
border: e(%("5px solid %a",darken(@start-color,10%)));
&:hover {
background-color: fadeout(@start-color ,50%);

}
}

3. Don't forget to link the project . less file in the head section of your HTML5
document with the following line of code:

<link rel="stylesheet/less" type="text/css"
href="less/project.less">

4. Open the HTMLS5 file in your browser and you will see something that looks like the
following screenshot:

Shadesofgroen
How it works...

Except for the contrast () function, the color operation function, such as the darken ()
and fadeout () functions, used in this recipe changes the saturation, lightness, or
transparency of your colors in the HSL(A) color space. More information about the HSL color
space definition can be found in the Creating color objects with RGB values recipe. The
darken () function will decrease the lightness channel of the color in the HSL space, and
so the desaturation () function will decrease the value of the saturation channel. The
fadeout () and fadein () functions change the value of the alpha channel, which sets
the transparency of your color.

108

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Each color operation function should be called with two arguments: the first argument should
be a valid color and the second argument a percentage used to increase or decrease the
channel value. Note that the percentage of the second argument will be used to increase

or decrease the channel value with the absolute value of this argument, which means that

if you set the second argument to 10%, the channel value will change to the current
percentage plus or minus 10 percent and not to 10 percent of the current value.

The color you operate on doesn't have to be defined in the HSL color space already; each
valid color is converted to the HSL space before it is operated on. The color operation
functions return a color in the #rrggbb hexadecimal notation, unless there is an alpha < 1
condition. Transparent colors, with alpha < 1, are returned in the rgba () color definition.

Note that if you convert the colors to the HSL color space yourself, it is easy to see
what happens.

The named color green can be defined in the HSL color space with the
hsl(120,100%,25.1%) ; notation. Darken this color by 10 percent by calling

darken (green, 10%) ;. This will decrease the lightness channel by 10 percent which
results into the color hs1 (120,100%,15.1%) ;. Now, you can compile the following Less
code and find out that both hs1 (120,100%,15.1%) ; and darken (green, 10%) ; will
compile into #0044d00:

colors
colorl: hsl(120,100%,35.1%);
color2: darken(green,10%) ;

}

There's more...

The contrast () function is also grouped into the color operation functions. The

contrast () function returns a light or a dark color (white and black by default), depending
on the input color. Based on the 1uma () function, as described in the Getting information
about a color recipe, the contrast () function calculates and returns the color that has the
highest contrast with the input color. The contrast () function can, for instance, be used to
set your font color in relation to the background color; if your background color changes, the
font also automatically changes to the color with the highest contrast. Using the font colors
with high contrasts keeps your website readable and meets the web accessibility guidelines.

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

Creating overlays of two colors with Less

In this recipe, you will create an overlay of two colors with the built-in overlay ()
color-blending function.

Getting ready

The best way to compile the Less code in this recipe is by using the client-side less.js
compiler, as described in the Downloading, installing, and integrating less.js recipe in
Chapter 1, Getting to Grips with the Basics of Less, and inspecting the result in your browser.
You will also have to create an HTML5 document named index.html and a less/
blending. less file.

How to do it...

1. Editthe HTML5 file called index.html and make it look as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Use variables in Less</title>
<link rel="stylesheet/less" type="text/css"
href="less/blending.less">
<script type="text/javascript"svar less = { env:
'development' };</script>
<script src="js/less.js"
type="text/javascript"></scripts>
</head>
<body>
<hl>How to display errors</hls>
</body>
</html>

2. Edityour blending. less file to style the div elements, as follows:

h1l
color:red;
font-size:3em;

}

3. Loadthe index.html file in your browser and the result of the overlay ()
color-blending function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

4. Now, vary the input color and color operation function in the blending. less
file and inspect the results in your browser. Other blending or color operations are
the multiply (), screen(), softlight (), hardlight (), difference (),
exculsion (), average (), and negation () functions.

As already mentioned, the built-in color-blending functions are: multiply (), screen (),
overlay (), softlight (), hardlight (), difference (), exculsion (), average (),
and negation () functions. These functions operate on the RGB channels of the colors and
don't influence the transparency.

Every color operation function accepts two valid colors as input; the color should be valid but
can use any kind of color definition available in Less. Compile the following Less code:

overlay(yellow,hsl (240,100%,50%,50%)) ;
overlay (yellow,hsl (240,100%,50%)) ;
overlay (yellow,blue) ;

The output of the preceding code will be three times the same as #££££00; (yellow).
The overlay function has been illustrated in the following screenshot:

#00 #0000ff - #if00

Note that blue and yellow do not compile into green, as you have learned in primary school.
Define yellow with an alpha < 1 operation on a blue background to get a visual green color.
You will also have noticed that the result of this overlay function is equal to one of the

input colors (yellow). The overlay () function performs a multiply () blending operation
when the first color is a light color and a screen blending operation otherwise. Yellow is a light
color, so multiply both the colors. In this case, ££££00 times 0000££f is ££££00 again. The
multiply () function returns darker colors. The counterpart of the multiply () function is
the screen () function, which returns lighter functions. Other color-blending functions in Less
are as follows:

» softlight (): This function is similar to the overlay () function, but it uses only a
fraction of the color, which soft-highlights the other color

» hardlight (): This function preforms an overlay () function with the second
argument to determine whether a multiply or screen operation should be done

» difference (): This function subtracts the second input color from the first input
color (note that the negative values are inverted)

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging the Less Built-in Functions

» exculsion (): The performance of this function is the same operation as the
difference () function but with a lower contrast

» average (): This function indeed computes the average of each color channel
by channel

» negation (): This function has the opposite effect to the difference () function,
which means subtracting the first input color from the second input color (note that
the negative values are inverted)

The Less blending color functions are similar to the blending function found in image editors,
such as Photoshop or the open source alternative GIMP. The similarity between these
functions makes it easier to match the colors of your design in Less and so finally in your
compiled CSS. Read this with care; because of this similarity, it does not always mean that
the functions (and results) are identical.

See also

GIMP is GNU Image Manipulation Program. It is a freely distributed piece of software for
tasks such as photo retouching, image composition, and image authoring. It works on many
operating systems and in many languages. You can find more information and download
GIMP for free from http://www.gimp.org/.

www.it-ebooks.info

http://www.gimp.org/
http://www.it-ebooks.info/

Extending and
Referencing

In this chapter, we will cover the following topics:

» Referencing parent selectors with the & operator

» Referencing to the parent selector more than once
» Changing the selecting order with the & operator

» Using extend to merge selectors

» Using extend inside a ruleset

» Extending with the a1l keyword

» Extending with media queries

» Using extend to reduce the compiled CSS size

» Using extend as an alternative for a mixin

Introduction

In Less, you can use the & sign as a reference to the parent selector in the case of nested
selectors. This reference can not only be used to create style rules for the CSS pseudo
classes, but can also be used in combination with Less's :extend () pseudo class. This
pseudo class merges the attached class with all the appearances of the classes to extend. In
this chapter, you will find some use cases of the & sign referencing in Less, and you will learn
how to use the :extend () pseudo class.

Note that this chapter only handles the referencing and merging of selectors. Less also
enables you to merge property values. The merging of property values will be described in the
Aggregating values under a single property recipe in Chapter 6, Advanced Less Coding.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

Referencing parent selectors with the &

operator

In the Writing more intuitive code and make inheritance clear with nested rules recipe in
Chapter 1, Getting to Grips with the Basics of Less, you can read how to use nested style rules
in Less. Inside nested rules, you can use the & sign to reference the current parent selector. In
this recipe, you will learn how to use the & parent referencing sign. An important use case for
the & parent referencing sign is the nested declaration of pseudo classes for a selector. Some
well-known pseudo classes are :hover, : focus, and :1ink.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Alternatively, you can include the file that has your Less code together
with the 1ess. js compiler into a button.html file and inspect the results in your browser.
More information about how to use the less. js compiler for client-side compiling can be
found in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to
Grips with the Basics of Less.

How to do it...

1. Create a button. less file that will contain the following Less code:
button {

color: white;
border: 2px solid white;

background-color: blue;

&:hover,
&:focus,
&:active {

background-color:red;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

&:visited {

background-color:green;

2. The button.html file should include the button. less file from step 1 and the
less.js compiler. The HTML code in this button.html file should look similar to
what is shown in the following code:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">

<title>Button example</title>

<link rel="stylesheet/less" type="text/css"
href="less/button.less">
<script src="js/less.js"
type="text/javascript"></scripts>
</head>
<buttons>Button</buttons>
<body>
</html>

3. Finally, load the button.html file in your browser and hover and click on the blue
button with your mouse.

In this recipe, the & parent referencing sign was used to set a different background color for
the hover and focus states of the button element.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

When inspecting the compiled CSS code, you will find that it will look like the following code:

button {
color: white;
border: 2px solid white;

background-color: blue;

button:hover,
button: focus,
button:active

background-color: red;

}

button:visited {

background-color: green;

}

You can see that the & operator has been replaced with the parent selector to build new
selectors, such as the button:hover selector, in the compiled CSS code.

Although the & parent referencing is commonly used with pseudo classes and elements,
it also has some other use cases.

In the Building style guides with StyleDocco recipe in Chapter 2, Debugging and Documenting
Your Less Code, you can read how to append class hames to a selector with the & parent
referencing sign. The following Less code is an example of how to append class names:

div {
&.classl {
color: red;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

&.class2 {
color: yellow;

}
}

The preceding Less code will compile into CSS, as follows:

div.classl {
color: red;

}

div.class2 {
color: yellow;

}

Watch out to use spaces after the & sign because the & class will compile
M into selector.class (meaning the selectors that have the .class
Q class), while & .class will compile into a selector's .class class
(meaning elements that have the . class class inside the selector and
don't require an & sign at all).

The & parent referencing sign can even be used to produce repetitive class names. Consider
the following Less code that uses the Block Element Modifier (BEM) methodology:

.label {
&--success {
color:darkgreen;

}

&--error {
color:darkred;

}
}

The preceding Less code will compile into the following CSS code:

.label--success f{

color: darkgreen;

.label--error {

color: darkred;

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

Finally, the & parent selector can also be used to create child and sibling selectors that refer
to the same parent. You will see some examples of this in the Referencing to the parent
selector more than once recipe.

» Read more about pseudo class selectors at http://css-tricks.com/pseudo-
class-selectors/

» Also, read Organizing CSS: Object-Oriented CSS (00CSS), Scalable and
Modular Architecture for CSS (SMACSS), and BEM by Matt Stauffer at
http://mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem

Referencing to the parent selector more

than once

The & parent referencing sign can be used multiple times in the same selector to reference
the same parent. For instance, multiple parent references can be used to construct child and
sibling combinatory selectors.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less.

How to do it...

1. Write the following Less code into a file and compile this file with the command-line
lessc compiler:

p {
color: green;

&+ & {
color: red;
}

}

118

www.it-ebooks.info

http://css-tricks.com/pseudo-class-selectors/
http://css-tricks.com/pseudo-class-selectors/
http://mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem
http://www.it-ebooks.info/

Chapter 5

2. You will find that the preceding Less code will be compiled into the CSS code, as
shown in the following code:

p {
color: green;
}
p+p {
color: red;

}

The compiler replaces the & + & code withp + p. The + sign creates an adjacent sibling
combinatory selector in CSS. The selector selects a p HTML element directly after another p
HTML element. The style effect of the Less code in this recipe can be made visible with the
following HTML code, which should display all appearances of the green text in green and red
text in red when loaded in the browser:

<div>
<p>green</p>
<p>red</p>
<p>red</p>
</div>

<div>
<p>green</p>
</div>

There's more...

Note that the & parent referencing sign references all the parents and not just its nearest
ancestors. This way all the parents are referenced, which can be seen when compiling the
following Less code:

section {
p {
&+ & {
property: value;
}
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing
The preceding Less code will compile into the following CSS code:

section p + section p {
property: value;

}

To understand why all the parents are referenced in the example shown before, you will have
to realize what nesting means. The basics of nesting are explained in the following example.
In fact, there is no functional difference between the following two pieces of code:

//nested
selectorl ({
selector2 {
property: value;
}
}

//without nesting
selectorl selector2
property: value;

}

Both versions of the preceding Less code will compile into the CSS code as follows:

selectorl selector2
property: value;

}

When the & operator only references it's nearest parent, the following code will compile into
something unwanted or at least unexpected:

//nested
footer (
a {
property: value;
&:hover {color:red;}
}
}

Not referencing the footer selector in the preceding code should compile into the a:hover
selector, which will select all the a elements instead of only the a elements in the footer
element. By referencing, all the parents in the Less code will compile into the footer
a:hover selector as intended. Also, the :extend () pseudo class extends all the parents;
see the Using extend inside a ruleset recipe of this chapter.

120

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

See also

» You can read more about child and sibling selectors in CSS at
http://css-tricks.com/child-and-sibling-selectors/

Changing the selecting order with the &

operator

The CSS selectors are pattern-matching rules that determine which style rules apply to

the elements in the document tree. As can be read in the Referencing parent selectors with
the & operator recipe, the & operator can be used inside nested rules in Less. Placing the

& parent reference at the end of a selector inside a nested rule gives you the opportunity to
change the selecting order.

Getting ready

For client-side compiling, you will have to create an index.html file that will load the
example.less file and the 1less. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css"

href="less/example.less">

<script src="js/less.js" type="text/javascript"></script>

How to do it...

1. Create an example.less file and write the following Less code into it:
p{
font-size: 2em;
color: darkgreen;

footer & {
font-size: lem;
color: darkred;

www.it-ebooks.info

http://css-tricks.com/child-and-sibling-selectors/
http://www.it-ebooks.info/

Extending and Referencing

2. Create an index.html file. This should contain the following HTML code in the body
section:

<article>
<p>First paragraph</p>
<p>Second paragraph</p>
</article>
<footers>
<p>Footer paragraph</p>
</footers

3. Finally, load the index.html file in your favorite web browser. In your browser, you
will see what is shown in the following screenshot:

First paragraph

Second paragraph

Footer paragraph

In this recipe, you created the Less code that styles the p elements in your HTML document,
all in the same way. The same styles are also applied to the p elements inside the footer
element, except for a smaller font size.

After inspecting, you will find that the Less code in this recipe will compile into the CSS code,
as shown in this code:

p {
font-size: 2em;

color: darkgreen;
}
footer p {
font-size: lem;
color: darkred;

122

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

As you can see, the footer selector and the Less code compiles into the footer p selector.
Changing the selecting order this way enables you to apply the differences in styles only when
the parent selector matches a certain condition. Code duplication for the referenced selectors
is not needed, which makes your code easier to maintain.

A while ago in 2008, Paul Irish introduced the conditional classes of <html > as an alternative
for conditional style sheets. With these conditional classes, the HTML tag of your document
will look like the following code:

<!--[if 1t IE 71> <html class="ie6"> <! [endif]-->
<!--[if IE 7]> <html class="ie7"> <! [endif]-->
<!--[if IE 8]> <html class="ie8"> <! [endif]-->
<!--[1if gt IE 8]><!--> <htmls> <!l--<![endif]-->

When using these conditional classes of <html >, no additional HTTP requests to load a
browser-specific style sheet are needed. All the CSS code can be added to a single file.

Now consider the following CSS code:

div.foo { color: inherit;}
.1ie6 div.foo { color: #££8000; }

The Less code to compile the preceding CSS code can be easily written now, leveraging the
technigque with the & operator to change the selecting order, as follows:

div.foo {
color: inherit;}
.ie6 & {
color: #££8000;
}
}

The Modernizr tool is a JavaScript library that detects HTML5 and CSS3 features in the user's
browser. After detecting the features, Modernizr also adds condition classes to the body tag
in your HTML document. For this reason, the changing selecting order technique can also be
used together with Modernizr.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

See also

» Conditional Stylesheets vs CSS Hacks? Answer: Neither! by Paul Irish can be read at
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-
hacks-answer-neither/

» The Modernizr JavaScript library can be found at http://modernizr.com/

Using extend to merge selectors

The :extend () pseudo class has been added to Less to merge selectors. In contrast to
using a mixin to set the properties, the :extend () pseudo class can also be applied for
composite selectors. Merging selectors with the :extend () pseudo class reduces the
number of sectors that have the same properties in the compiled CSS code. Merged selectors
reduce the size of your final CSS code.

Getting ready

In this recipe, you will compile two pieces of the Less code to see how the :extend () pseudo
class works.

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. You can edit the code in this recipe with your favorite text editor.

How to do it...

1. The :extend () pseudo class can be put directly on a selector, as shown in the
following Less code:

.classl{
property: value;

}

.class2:extend(.classl) {};

2. Write the preceding Less code into a file and compile this file with the command-line
lessc compiler. You will find that the Less code will compile into the following
CSS code:

.classil,
.class2 {

property: value;

www.it-ebooks.info

http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://modernizr.com/
http://www.it-ebooks.info/

Chapter 5

The :extend () syntax is attached to a selector and looks like a pseudo class in CSS with
one or more selectors as parameters. In this recipe, the :extend () selector will apply the
extending selector (.class2) on to the .class1 class. The .class2 class will be applied on
appearances of the .class1 class. By default, nested appearances and appearances inside
media declarations of the .class1 class are not taken into account. Read the Using extend
inside a ruleset recipe to find out how to extend nested selectors, and read the Extending with
media queries recipe to get a grip on extending inside media declarations.

There's more...

The :extend () pseudo class can be put on a selector together with other pseudo
classes, but the :extend () pseudo class should always be added at the end of the
selector. So, . selector:hover:extend () {} will be a valid Less code in contrast to the
.selector:extend () :hover{} code, which will be invalid.

Less allows you to put multiple :extend () pseudo classes on the same selector, as shown in
the following Less code:

.selector:extend(.classl) :extend(.class2) {}

Note that the preceding Less code can also be written as follows:

.selector:extend(.classl, .class2) {}

In case you apply the :extend () selector on the same ruleset more than once, Less doesn't
remove duplicates, as shown in the following Less code:

.classl,
.class2 {
color: black;

}

.class3:extend(.classl, .class2) {};

The preceding Less code will compile into the following CSS code:

.classl,
.class?2,
.class3,
.class3 {
color: black;

}

The .class3 class has been compiled twice in the CSS code.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

Using extend inside a ruleset

In most use cases, the :extend () pseudo class will be put on the selector using the & parent
referencing sign, as described in the Referencing parent selectors with the & operator recipe.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. You can edit the code in this recipe with your favorite text editor.

How to do it...

Write the following Less code into a file and compile this file with the command-line
lessc compiler:

.class1{
property: value;

}

.class2 {
&:extend(.classl) ;

}
You will find that the Less code will compile into the following CSS code:

.classl, class2{
property: value;

}

A common use case to use the :extend () pseudo class was shown in this recipe. This is
to avoid the base or double CSS classes in the HTML markup. Because of the classes being
merged, you only have to reference the extended class, as discussed in the following example.

Assume you will need variations of buttons with different background colors. In that case, you
can define the following code in Less:

.button
border: 1lpx solid black;

}

.button-red {
background-color: red;

}

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The compiled CSS code of the preceding Less code can be used with the following
HTML snippet:

<button class="button button-red"s>

The preceding HTML snippet can be reduced to the following HTML code, without the
.button class, when the .button-red class extends the .button class in Less:

<button class="button-red">
The Less code for the reduced HTML code will look like the following code:

.button
border: 1lpx solid black;
}
.button-red {
&:extend (.button) ;
background-color: red;

}

Note that Less provides you with different solutions that can be compiled into different CSS
code with the same style effects. In most cases, there is no best solution; the solution to
choose depends on the requirements of your project or even personal preferences. Some
methodologies for writing CSS are OOCSS, SMACSS, and BEM. These methodologies will help
you to structure and write more maintainable CSS code.

The preceding question to create different colored buttons can also be solved with the &
parent referencing sign, as described in the Referencing parent selectors with the & operator
recipe. When using only the & operator, the classes can be merged with the following code:

.button
border: 1lpx solid black;
&-red {
background-color: red;
}
}

The preceding Less code will compile into the CSS code with separated classes for each
button variation, but the same border property will be repeated for each class. If the number
of different button variations grows, the size of the compiled CSS code will also increase due
to the repeating border property declaration.

Finally, you should know that in the case of nesting, extending can become complicated due
to the :extend () pseudo class, which has been applied on all the parents. Also, read the
There's more... section of the Referencing to the parent selector more than once recipe for an
explanation of this behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

Consider the following Less code, which also makes use of the a1l keyword:

.classl {
.class2 {color:red}

}

div > div:extend(.class2 all) {}
The preceding Less code will be compiled into the following CSS code:

.classl .class2,
.classl div > div {
color: #££0000;

}

The .classl div > div selectoris not what is expected in most cases. The desired div >
div selector can be compiled with the div > div:extend(.class 1 .class2 all) {}
Less code.

» Insome cases, the :extend () pseudo class can be used to reduce the CSS size,
but this is not always true

» The An Introduction To Object Oriented CSS (OOCSS) article can be found at
http://www.smashingmagazine.com/2011/12/12/an-introduction-to-
object-oriented-css-oocss/

» Learn more about SMACSS at https://smacss.com/ and get introduced to the
BEM methodology at https://bem. info/

» Also, read Organizing CSS: O0OCSS, SMACSS, and BEM by Matt Stauffer at http://

mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem

Extending with the all keyword

The all keyword can be added at the end of the extend argument to match all the instances
of the selector. In this recipe, you can find that all the instances of a selector include merged
and nested selectors. The all keyword can also be used to extend pseudo classes that are
nested with the &: pseudoclass syntax, as discussed in the Referencing parent selectors
with the & operator recipe.

128

www.it-ebooks.info

http://www.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://www.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
https://smacss.com/
https://bem.info/
http://mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem
http://mattstauffer.co/blog/organizing-css-oocss-smacss-and-bem
http://www.it-ebooks.info/

Chapter 5

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Use your favorite text editor to create and edit an example Less file
called all.less

How to do it...

1. Write the following Less code into an all.less file:

a.red-link {
color:red;
&:hover {
color: lighten(red, 20%) ;
}
}

a.another:extend(a.red-1link) {}
a.another-withhover:extend(a.red-link all) {}
.link--error:extend(.red-1link) {}
.link-all--error:extend(.red-link all) {}

2. Compile the preceding code with the following command:

lessc all.less

3. Finally, you will find that the preceding Less code compiles into the CSS code, as
follows:

a.red-1link,
a.another,
a.another-withhover,
a.link-all--error {

color: red;

a.red-link:hover,

a.another-withhover:hover,

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

a.link-all--error:hover

color: #ffee666;

}

Unless the all keyword is used, only selectors that have an exact match are extended.
When extending without the a11 keyword, as in the a.another:extend (a.red-1ink) {}
code, only the exactly matched a . red-11ink selector will compile into the CSS code. With
the all keyword, Less also matches selectors that match parts of other selectors. In this
recipe, the extended . red-1ink selector in the .greenlink:extend (.red-1ink) {}
code did not match the a. red-1ink selector. When using the a1l keyword, the preceding
selectors will match because the . red-1ink selector matches the . red-1ink part of the
a.red-1link selector.

You also saw that when using the a1l keyword, the &:hover {} code was compiled into
the CSS code. To understand this, you will have to realize that the & operator only adds a
reference to the parent. So consider the following Less code:

.class{
&:hover{}

}

Note that the preceding code, except from the parent reference, does not differ from the
following Less code:

.class:hover {}

When extending with the all keyword, the . class selector will match the . class part of the
.class:hover selector.

There's more...

The all keyword can also be applied in situations where the selectors describe child and
sibling relations. An example of such a situation can be seen when considering the following
Less code:

header p.red {
color: red;

}

.red-paragraph:extend(p.red all) {};

130

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
The preceding Less code will be compiled into the following CSS code:

header p.red,
header .red-paragraph
color: red;

}

Also, in the preceding Less example, note that the header p.red selector does not differ
from the Less code with the p and . red selectors nested, as in the following code:

header {
p {
&.red {

color: red;

}
}
}

Now, it will also be easier to understand that the compiled CSS code of the
.classl:extend(.red all) {} Less code will be different from the compiled
.classl:extend (header p.red all) {} Less code. The latest situation when
compiling the .classl:extend (header p.red all) {} code can be compared to

the mixin of the . red class into . classi. The use of the :extend () pseudo class as an
alternative to mixins will be described in more detail in the Using extend as an alternative for
a mixin recipe.

Finally, note that when extending more than one selector, you will have to add the all
keyword after each selector. This can be seen in the following example code:

selector:extend {.classl all, .class2 all}{}

» Nesting can make extending more complicated, as described in the There's more...
section of the Using extend inside a ruleset recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

Extending with media queries

The CSS media queries help you to display the same content in a different way, depending
on device properties, such as screen width or pixel ratio. The CSS media queries play an
important role in responsive web design. In Less, emedia declarations for the media queries
have their own scope. This secluded scope in Less also influences how the :extend ()
pseudo class works inside media queries. This recipe tells why and how the :extend ()
pseudo class works differently when used inside a @media declaration.

Getting ready

In this recipe, you will compile some example Less code. You can use the command-line
lessc compiler, as described in the Installing the lessc compiler with npom in Chapter 1,
Getting to Grips with the Basics of Less, to compile this Less code. Otherwise, you can also
use the client-side 1ess. js compiler, as described in the Downloading, installing, and
integrating less.js recipe in Chapter 1, Getting to Grips with the Basics of Less, to see the
effect of the media queries in your browsers. The media queries in this recipe set conditions
for the screen width of the device. You can make the effect of these media queries visible by
resizing the window (screen width) of your browser.

How to do it...

1. Write the following Less code into an extend-media. less file:

.base-font {
font-family: Arial;
}
e@emedia all { .base-color {
color: green;
}
p.base-class {
&:extend (.base-font, .base-color, .base-border);
font-size: 2em;

@media (min-width: 768px)
&.base-border {
border: 1lpx solid black;
}
}
}
}

132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Compile the preceding Less code from step 1 with the command-line compiler, or
include the extend-media.less and less.js filesinto an index.html file and
load this file in your browser. The index.html should contain the following lines of
code in the head section:

<link rel="stylesheet/less" type="text/css"
href="extendmedia.less">
<script src="less.js" type="text/javascript"></scripts>

Now inspect the result and find that the p.base-class selector does not extend
the .base-font selector as well as the .base-border selector.

Finally, rewrite your Less code by removing the &:extend (.basefont,
.maincolor, .mainborder) ; line of code and add a new selector to the main
scope that extends the p.base-class-extended selector with the .base-font,
.base-color, and .base-border selectors. Your Less code should look like the
following code:

.base-font {

font-family: Arial;

emedia all {
.base-color {

color: green;

.base-class ({
font-size: 2em;
@media (min-width: 768px) {
&.base-border {

border: 1lpx solid black;

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

}

.base-class-extended:extend(.base-font, .base-color,
.base-class.base-border) {}

As you can see in the first step of this recipe, the :extend () pseudo class is used inside
a media declaration. You can only extend selectors inside the same media declaration;
all selectors outside the scope of the media declaration are ignored. Nevertheless,
selectors inside the media declarations can be extended from the main scope, as is
shown in the last step.

There's more...

Note that in step 4, the .base-class-extended selector was extended with
.base-class.base-border, which results in the following compiled CSS code:

@media all and (min-width: 768px)
.base-class.base-border,
.base-class-extended {

border: 1lpx solid black;

}

From the preceding code, what follows is that the .base-border class is not required to
style the border for elements within the .base-class-extended class.

See also

» The media queries are also used to build responsive grids, as described in the
Creating responsive grids recipe in Chapter 8, Building a Layout with Less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Using extend to reduce the compiled

CSS size

In this recipe, you will see how to use Less's : extend () pseudo class to reduce the size of
the compiled CSS code.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Use your favorite text editor to create and edit the Less files used in
this recipe.

How to do it...

1. Write the following Less code into a Less file and compile this file with the
command-line 1lessc compiler:

.mixin() {
propertyl: value;
property2: value;

}

.classl {

.mixin;

}

.class2 {
.mixin;

}

2. You will find that the preceding Less code will compile into the following CSS code:

.classl {
propertyl: value;
property2: value;

}

.class2 {
propertyl: value;
property2: value;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending and Referencing

3. Now rewrite your Less code, leveraging Less's :extend () pseudo class. Your Less
code will now look as follows:
.mixin {
propertyl: value;
property2: value;
}
.classl:extend(.mixin) {}
.class2:extend(.mixin) {}

4. Finally, compare the compiled CSS code shown in the following code with the
compiled CSS code from the step 2 of this recipe:

.mixin,

.classl,

.class2 {
propertyl: value;
property2: value;

}

To reduce the CSS size in this recipe, the mixin was changed into a class by removing the
parenthesis from the code. You saw that the Less code rewritten with Less's :extend ()
pseudo class compiles into a list with three merged classes. All the classes in this list set the
same properties and values. The Less's :extend () pseudo class helps not to repeat the
same properties and values and only write them out in the CSS code once.

Using the Less's :extend () pseudo class shown in this recipe does not reduce the size of
the CSS code in all situations. Consider the situation in the There's more... section of the
Using extend inside a ruleset recipe. The code in this section uses the Less's :extend ()
pseudo class to avoid the base classes. If the number of properties of your base class is small
in relation to the number of classes and states that extend this base class, the total size of
your CSS will increase when extending this base class. An example of this situation can be
found in the Less code of Bootstrap. Bootstrap, which will be discussed in Chapter 9, Using
Bootstrap with Less, uses a base class for the styling of buttons, panels, and labels, among
others. Consider an example code to see what happens. Compile the following Less code:

.base-class {
color: red;

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

&:hover,
&:focus {
background-color: lightgreen;

}
}

.green {
&:extend (.base-class all);
background-color: green;

}

When evaluating the compiled CSS code, you will find relatively long lists of selectors, such as
the ones shown in the following compiled CSS code:

.base-class:hover,

.base-class:focus,

.green:hover,

.green:focus {
background-color: lightgreen;

}

The total size of the CSS code increases due to the long list of selectors. Less will give you
solutions to extend the CSS syntax, but you still have to choose how to deploy these solutions.
Finding the best solution depends on your requirements.

Also note that your class names in Less are compiled completely into the CSS code, and long
class names will increase the size of the CSS code. On the other hand, short, meaningless
class names will make your Less code unreadable and difficult to maintain.

Before you take your code in production, you should always compress your compiled CSS code.

See also

» Besides the default option of compiler, you can also use the Clean CSS plugin for
Less to compress the CSS output from Less. More information about how to install

and use this plugin can be found at https://github.com/less/less-plugin-
clean-css

www.it-ebooks.info

https://github.com/less/less-plugin-clean-css
https://github.com/less/less-plugin-clean-css
http://www.it-ebooks.info/

Extending and Referencing

Using extend as an alternative for a mixin

Currently, Less accepts only simple selectors as a mixin. In this recipe, you will see how

the :extend () pseudo class can be used to mix the nested or child selectors. Using the
:extend () pseudo class as a mixin will have the same style effect, but the compiled CSS
code will be different. The :extend () pseudo class merges selectors, and mixins add copy
or property to the selector.

Getting ready

In this recipe, you will only compile a small piece of Less code. You can use the
command-line 1essc compiler, as described in the Installing the lessc compiler
with npom in Chapter 1, Getting to Grips with the Basics of Less.

How to do it...

1. Write some Less code that styles a but ton element inside a nav element, and
save this code in the nav. less file. You can use the following code to do this:

nav {
button
border: 1lpx solid: white;
background-color: red;
color: white;
}
}

2. To apply the same style rules on another button element, you can use the following
Less code:

footer (
button:extend (nav button) {}

}

After compiling the preceding Less code with the command-line 1essc compiler, you will find
that the compiled CSS code will look as follows:

nav button,

footer button {
border: 1px solid: white;
background-color: red;
color: white;

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The nested button selector will not differ from the nav button selector. Instead of the nested

selector, you can also write the following Less code:

nav button {
border: 1lpx solid: white;
background-color: red;
color: white;

}

Less does not enable you to mix the nav button selector.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

In this chapter, you will learn:

» Giving your rules importance with the ! important statement

» Using mixins with multiple parameters

» Using duplicate mixin names

» Building a switch to leverage argument matching

» Avoiding individual parameters to leverage the @arguments variable
» Using the @erest. .. variable to use mixins with a variable number of arguments
» Using mixins as functions

» Passing rulesets to mixins

» Using mixin guards (as an alternative for the if..else statements)

» Building loops leveraging mixin guards

» Applying guards to the CSS selectors

» Creating color contrasts with Less

» Changing the background color dynamically

» Aggregating values under a single property

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Introduction

Less helps you to write a better and more readable CSS code. With Less, you will code faster
and will be able to meet the don't repeat yourself (DRY) principle of software programming.
In this chapter, you will see how to create a dynamic and reusable Less code by exploring the
features of Less in more detail.

You will find out how to create a switch leveraging argument matching, how to build the if...
else constructs with the Less guards, and how to dynamically create a list of CSS classes
with recursion in Less by creating a loop.

Giving your rules importance with the

limportant statement

The ! important statement in CSS can be used to get some style rules always applied no
matter where that rules appears in the CSS code. In Less, the ! important statement can
be applied with mixins and variable declarations too.

Getting ready

You can write the Less code for this recipe with your favorite editor. After that, you can use
the command-line 1essc compiler, as described in the Installing the lessc compiler with npom
recipe in Chapter 1, Getting to Grips with the Basics of Less, to compile the Less code. Finally,
you can inspect the compiled CSS code to see where the ! important statements appear. To
see the real effect of the ! important statements, you should compile the Less code client
side, with the client-side compiler 1less. js, as described in the Downloading, installing, and
integrating less.js recipe in Chapter 1, Getting to Grips with the Basics of Less, and watch the
effect in your web browser.

How to do it...

1. Create an important.less file that contains the code like the following snippet:
.mixin() {
color: red;
font-size: 2em;
}

p {
&.important {

.mixin() !important;

}

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

&.unimportant {
.mixin() ;

}

After compiling the preceding Less code with the command-line 1essc compiler, you
will find the following code output produced in the console:

p.important
color: red !important;
font-size: 2em !important;

p.unimportant {
color: red;
font-size: 2em;

}

You can, for instance, use the following snippet of the HTML code to see the effect of
the !important statements in your browser:
<p class="important"

style="color:green; font-size:4em;">important</p>

<p class="unimportant"
style="color:green;font-size:4em; ">unimportant</p>

Your HTML document should also include the important.less and less. js files,
as follows:

<link rel="stylesheet/less" type="text/css"
href="important.less">

<script src="less.js" type="text/javascript"></scripts>

Finally, the result will look like that shown in the following screenshot:

important

unimportant

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

In Less, you can use the ! important statement not only for properties, but also with mixins.
When ! important is set for a certain mixin, all properties of this mixin will be declared with
the ! important statement. You can easily see this effect when inspecting the properties of
the p. important selector, both the color and size property got the ! important statement
after compiling the code.

There's more...

You should use the ! important statements with care as the only way to overrule an

I important statement is to use another ! important statement. The ! important
statement overrules the normal CSS cascading, specificity rules, and even the inline styles.
Any incorrect or unnecessary use of the ! important statements in your Less (or CCS) code
will make your code messy and difficult to maintain.

In most cases where you try to overrule a style rule, you should give preference to selectors
with a higher specificity and not use the ! important statements at all.

With Less V2, you can also use the ! important statement when declaring your variables.
A declaration with the ! important statement can look like the following code:

@main-color: darkblue !important;

See also

» You can read more about the cascade, specificity, and inheritance of style rules in
CSS athttp://reference.sitepoint.com/css/inheritancecascade

» Read the first chapter of my book, Less Web Development Essentials, Bass Jobsen,
Packt Publishing, April 2014, available at http://www.packtpub.com/web-
development/less-web-development-essentials

Using mixins with multiple parameters

As also seen in the Setting the properties of CSS styles with mixins recipe in Chapter 1,
Getting to Grips with the Basics of Less and the Using parametric mixins recipe in Chapter

3, Using Variables and Mixins, mixins can take arguments, which are variables passed to the
block of selectors when it is mixed in. The mixin in the recipe in Chapter 1, Getting to Grips
with the Basics of Less, accepts a single parameter as argument only, but mixins can be built
to accept more than one parameter. In this section, you will learn how to use mixins with more
than one parameter.

www.it-ebooks.info

http://reference.sitepoint.com/css/inheritancecascade
http://www.packtpub.com/web-development/less-web-development-essentials
http://www.packtpub.com/web-development/less-web-development-essentials
http://www.it-ebooks.info/

Chapter 6

Getting ready

For this recipe, you will have to create a Less file, for instance, mixins. less. You can compile
thismixins. less file with the command-line 1essc compiler, as described in the Installing
the lessc compiler with npm recipe in Chapter 1, Getting to Grips with the Basics of Less.

How to do it...

1. Create the mixins.less file and write down the following Less code into it:

.mixin (@color; @background: black;) {
background-color: @background;
color: @color;

}

div {

.mixin(red; white;) ;

}

2. Compile the mixins.less file by running the command shown in the console,
as follows:

lessc mixins.less

3. Inspect the CSS code output on the console, and you will find that it looks like that
shown, as follows:

div {
background-color: #ffffff;
color: #f£f0000;

}

In Less, parameters are either semicolon-separated or comma-separated. Using a semicolon
as a separator will be preferred because the usage of the comma will be ambiguous. The
comma separator is not used only to separate parameters, but is also used to define a csv
list, which can be an argument itself.

The mixin in this recipe accepts two arguments. The first parameter sets the @ecolor variable,
while the second parameter sets the @background variable and has a default value that
has been set to black. In the argument list, the default values are defined by writing a

colon behind the variable's name, followed by the value. Parameters with a default value are
optional when calling the mixins. So the . color mixin in this recipe can also be called with
the following line of code:

.mixin (red) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Because the second argument has a default value set to black, the .mixin (red) ; call
also matches the .mixin (@color; @background:black) {} mixin, as described in the
Building a switch to leverage arsument matching recipe.

Only variables set as parameter of a mixin are set inside the scope of the mixin. You can see
this when compiling the following Less code:

.mixin (@color:blue) {
color2: @color;

}

@color: red;

div {
colorl: @color;
.mixin;

}

The preceding Less code compiles into the following CSS code:

div {
colorl: #££0000;
color2: #0000ff;

}

As you can see in the preceding example, setting @color inside the mixin to its default value
does not influence the value of @color assigned in the main scope. So lazy loading is applied
on only variables inside the same scope; nevertheless, you will have to note that variables
assigned in a mixin will leak into the caller. The leaking of variables can be used to use mixins
as functions, as described in the Using mixins as functions recipe.

Consider the mixin definition in the following Less code:

.mixin (@font-family: "Helvetica Neue", Helvetica, Arial,
sans-serif;)
font-family: @font-family;

}

The semicolon added at the end of the list prevents the fonts after the "Helvetica Neue"
font name in the csv list from being read as arguments for this mixin. If the argument list
contains any semicolon, the Less compiler will use semicolons as a separator. In the CSS3
specification, among others, the border and background shorthand properties accepts csv.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Also, note that the Less compiler allows you to use the named parameters when calling
mixins. This can be seen in the following Less code that uses the @color variable as a
named parameter:

.mixin(@width:50px; @color: yellow) {
width: @width;
color: @color;

}

span {
.mixin (@color: green) ;

}

The preceding Less code will compile into the following CSS code:
span {
width: 50px;
color: #008000;

}

Note that in the preceding code, #008000 is the hexadecimal representation for the
green color. When using the named parameters, their order does not matter.

» You can look up the allowed values for a certain CSS property at
http://cssvalues.com/

Using duplicate mixin names

When your Less code contains one or more mixins with the same name, the Less compiler
compiles them all into the CSS code. If the mixin has parameters (see the Building a switch to
leverage argument matching recipe) the number of parameters will also match.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Use your favorite text editor to create and edit the Less files used in
this recipe.

www.it-ebooks.info

http://cssvalues.com/
http://www.it-ebooks.info/

Advanced Less Coding

How to do it...

1. Create afile called mixins. less that contains the following Less code:

.mixin ()
height :50px;

}

.mixin (@color) {
color: @color;

.mixin (ewidth)
color: green;
width: @width;

.mixin (@color; ewidth) {
color: @color;
width: @width;

.selector-1 {
.mixin(red) ;

.selector-2 {
.mixin(red; 500px) ;

}

2. Compile the Less code from step 1 by running the following command in the console:

lessc mixins.less

3. After running the command from the previous step, you will find the following Less
code output on the console:

.selector-1 {
color: #Ef£f0000;
color: green;
width: #££0000;

}

.selector-2 {
color: #f£f0000;
width: 500px;

148

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The .selector-1 selector contains the .mixin (red) ; call. The .mixin (red) ; call does
not match the .mixin () {}; mixin as the number of arguments does not match. On the
other hand, both .mixin (@color) {}; and .mixin (@width) {}; match the color. For this
reason, these mixins will compile into the CSS code. The .mixin (red; 500px) ; call inside
the . selector-2 selector will match only the .mixin (ecolor; @width) {}; mixin, so all
other mixins with the same .mixin name will be ignored by the compiler when building the
.selector-2 selector.

The compiled CSS code for the . selector-1 selector also contains the width: #££0000;
property value as the .mixin (@width) {}; mixin matches the call too. Setting the width
property to a color value makes no sense in CSS but the Less compiler does not check for this
kind of errors. In this recipe, you can also rewrite the .mixin (ewidth) {}; mixin, as follows:
.mixin (@width) when (ispixel (@width)){};.

There's more...

Maybe you have noted that the . selector-1 selector contains two color properties. The Less
compiler does not remove duplicate properties unless the value also is the same. The CSS code
sometimes should contain duplicate properties in order to provide a fallback for older browsers.

In the case that you are using more than one library with prebuilt mixins, as described in
Chapter 7, Leveraging Libraries with Prebuilt Mixins, duplicate mixin names could mess

up your CSS code and will give you unexpected and unwanted results. Using namespaces,
as described in the Using namespaces to make your code reusable and portable recipe in
Chapter 1, Getting to Grips with the Basics of Less, prevent equal-named mixins of different
libraries from touching each other.

Note that the .mixin (ecolor; ewidth) {}; mixin does not match the .mixin (red) ;
caller in the example code of this recipe, but this mixin should indeed match and will

be compiled into the CSS when the second argument sets a default value. So, the

.mixin (green) ; call will match the .mixin (@color; @width: 50px) {}; mixin.

See also

» You can use CSSlint, as described in the Analyzing your code with CSS Lint recipe in
Chapter 11, Compiling Less Real Time for Development Using Grunt, to check your
code for errors

» Using guarded mixins, as described in the Using mixin guards (as an alternative for
the if...else statements) recipe, can also help you to avoid the CSS syntax errors

» You can read more about the built-in function, such as the ispixel () function
in the Evaluating the type of a value recipe in Chapter 4, Leveraging the Less
Built-in Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Building a switch to leverage argument

matching

The Less mixin will compile into the final CSS code only when the number of arguments of
the caller and the mixins match. This feature of Less can be used to build switches. Switches
enable you to change the behavior of a mixin conditionally. In this recipe, you will create a
mixin, or better yet, three mixins with the same name.

Getting ready

Use the command-line 1essc compiler, as described in the Installing the lessc compiler with
npm recipe in Chapter 1, Getting to Grips with the Basics of Less, to evaluate the effect of
this mixin. The compiler will output the final CSS to the console. You can use your favorite text
editor to edit the Less code.

This recipe makes use of browser-vendor prefixes, such as the -ms-transform prefix. CSS3
introduced vendor-specific rules, which offer you the possibility to write some additional CSS,
applicable for only one browser. These rules allow browsers to implement proprietary CSS
properties that would otherwise have no working standard (and might never actually become
the standard). To find out which prefixes should be used for a certain property, you can consult
the Can | use database (available at http://caniuse.com/).

How to do it...

1. Create a switch.less Less file, and write down the following Less code into it:

@browserversion: ie9;

.mixin(ie9; @degrees)
transform:rotate (@degrees) ;
-ms-transform:rotate (@degrees) ;
-webkit-transform:rotate (@degrees) ;

.mixin(iel0; @degrees)
transform:rotate (@degrees) ;
-webkit-transform:rotate (@degrees) ;

.mixin(@ ; @degrees) {
transform:rotate (@degrees) ;

div {

.mixin (@browserversion; 70deg) ;

}

150

www.it-ebooks.info

http://caniuse.com/
http://www.it-ebooks.info/

Chapter 6

2. Compile the Less code from step 1 by running the following command in the console:

lessc switch.less

3. Inspect the compiled CSS code that has been output to the console, and you will find
that it looks like the following code:
div {
-ms-transform: rotate (70deg) ;
-webkit-transform: rotate (70deg) ;
transform: rotate (70deg) ;

}

4. Finally, run the following command and you will find that the compiled CSS will indeed
differ from that of step 2:

lessc --modify-var="browserversion=ielO" switch.less
Now the compiled CSS code will look like the following code snippet:

div {
-webkit-transform: rotate (70deg) ;
transform: rotate (70deg) ;

}

The switch in this recipe is the @browserversion variable that can easily be changed just
before compiling your code. Instead of changing your code, you can also set the --modify-
var option of the compiler.

Depending on the value of the ebrowserversion variable, the mixins that match will

be compiled, and the other mixins will be ignored by the compiler. The .mixin (iel0; @
degrees) { } mixin matches the .mixin (ebrowserversion; 70deg) ; call only when the
value of the @browserversion variable is equal to ie10. Note that the first ie10 argument
of the mixin will be used only for matching (argument = iel0)and does not assign any
value.

You will note that the .mixin (@ ; @degrees) {} mixin will match each call no matter
what the value of the @browserversion variable is. The .mixin (ie9, 70deg) ; call
also compiles the .mixin(@ ; @degrees) {} mixin. Although this should result in the
transform: rotate (70deg) ; property output twice, you will find only one. Since the
property got exactly the same value twice, the compiler outputs the property only once.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

There's more...

Not only switches, but also mixin guards, as described in the Using mixin guards (as an
alternative for the if...else statements) recipe, can be used to set some properties conditionally.

Note that the compiled CSS code will always be stateless. After compilation, the same CSS
code will be loaded independently of the browser you use to interpret the CSS code. Of
course, the results and the interpretation of the compiled style rules can differ depending
on the browser used.

At compilation time, the compiler knows nothing about the browser environment, so setting
@browserversion to ie9 will compile code that can be read by Internet Explorer 9, but
other browsers will interpret exactly the same code. When compiling browser-specific styles,
you should only serve these styles to specific browsers. The client-side 1ess.js compiler, as
described in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting
to Grips with the Basics of Less, compiles your Less code again for every browser request,
which allows you to set some variables dynamically with the modi fy-var option of the
compiler. The - -modify-var option sets the value of a Less variable, the variable has been
assigned at the end of the code, which means that it will override anything defined in your
Less file. Note that you should not use the client-side compiler in production environments for
performance reasons.

Note that mostly browser-specific styles are not compiled at all. Autoprefix postprocessors help
you to create a single file with prefixes to support different browsers. Web browsers ignore
properties that are not supported. Since Version 2 of Less, you can use the autoprefix plugin
to add your vendor prefixes automatically.

Current versions of Less also support JavaScript evaluating; JavaScript code put between
back quotes will be evaluated by the compiler, as can be seen in the following Less code
example:

@string: "example in lower case";
p {
&:after { content: "“@{string}.toUpperCase () ";

}
}

The preceding code will be compiled into CSS, as follows:

p:after {
content: "EXAMPLE IN LOWER CASE";

}

152

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

When using client-side compiling, JavaScript evaluating can also be used to get some
information from the browser environment, such as the screen width (screen.width), but as
mentioned already, you should not use client-side compiling for production environments.

Because you can't be sure that future versions of Less still support JavaScript evaluating, and
alternative compilers not written in JavaScript cannot evaluate the JavaScript code, you should
always try to write your Less code without JavaScript.

» The Less autoprefix plugin can be found at https://github.com/less/less-
plugin-autoprefix

» In Chapter 11, Compiling Less Real Time for Development Using Grunt, you can read
how to add the vendor prefixes with Grunt

» The -prefix-free JavaScript script, which can be found at http://leaverou.
github.io/prefixfree/, can be used as an alternative for the autoprefixed
CSS code

Avoiding individual parameters to leverage

the @arguments variable

In the Less code, the @argument s variable has a special meaning inside mixins. The @
arguments variable contains all arguments passed to the mixin. In this recipe, you will use
the @arguments variable together with the the CSS url () function to set a background
image for a selector.

Getting ready

You can inspect the compiled CSS code in this recipe after compiling the Less code with the
command-line 1essc compiler. Alternatively, you can inspect the results in your browser using
the client-side 1less. js compiler. When inspecting the result in your browser, you will also
need an example image that can be used as a background image. Use your favorite text editor
to create and edit the Less files used in this recipe.

How to do it...

1. Create a background. less file that contains the following Less code:

.background (@color; @image; @repeat: no-repeat; @position:
top right;)
{

}

background: @arguments;

www.it-ebooks.info

https://github.com/less/less-plugin-autoprefix
https://github.com/less/less-plugin-autoprefix
http://leaverou.github.io/prefixfree/
http://leaverou.github.io/prefixfree/
http://www.it-ebooks.info/

Advanced Less Coding

div {
.background (#000; url("./images/bg.png")) ;
width:300px;
height :300px;

}

2. Finally, inspect the compiled CSS code, and you will find that it will look like the
following code snippet:

div {
background: #000000 url("./images/bg.png") no-repeat top
right;
width: 300px;
height: 300px;

}

The four parameters of the .background () mixin are assigned as a space-separated list
to the @arguments variable. After that, the @argument s variable can be used to set the
background property. Also, other CSS properties accept space-separated lists, for example,
the margin and padding properties.

Note that the @arguments variable does not contain only the parameters that have been set
explicit by the caller, but also the parameters set by their default value. You can easily see this
when inspecting the compiled CSS code of this recipe. The .background (#000; url("./
images/bg.png")) ; caller doesn't set the @erepeat or @position argument, but you will
find their values in the compiled CSS code.

In this recipe, the background image has been set with the CSS url () function. Less also
enables you to embed your images with the data URIs, as described in the Embedding images
with data URIs recipe in Chapter 4, Leveraging the Less Built-in Functions. In this recipe,

you can do this by replacing .background (#000; url (images/bg.png)) ; with the
.background (#000; data-uri (images/bg.png)) ; call.

» Inthe Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips with
the Basics of Less, you can read how to use the 1essc compiler

» Also read the Downloading, installing, and integrating less.js recipe in Chapter 1,
Getting to Grips with the Basics of Less

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Using the Q@rest... variable to use mixins

with a variable number of arguments

As you can also see in the Using mixins with multiple parameters and Using duplicate mixin
names recipes, only matching mixins are compiled into the final CSS code. In some situations,
you don't know the number of parameters or want to use mixins for some style rules no matter
the number of parameters. In these situations, you can use the special . . . syntax or the @
rest. .. variable to create mixins that match independent of the number of parameters.

Getting ready

You will have to create a file called rest . less, and this file can be compiled with the
command-line Lessc compiler, as described in the Installing the lessc compiler with nom
in Chapter 1, Getting to Grips with the Basics of Less. You can edit the Less code with your
favorite editor.

How to do it...

1. Create afile called rest . less that contains the following Less code:

.mixin(@a...)

{

.set (ea) when (iscolor(ea)) {
color: @a;

}

.set (ea) when (length(ea) = 2) {
margin: @a;

}

.set (@a) ;

.mixin(red) ;

p {
.mixin (2px;4px) ;

}

2. Compile the rest . less file from step 1 using the following command in the console:

lessc rest.less

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

3. Inspect the CSS code output to the console that will look like the following code:

p {

color: #££0000;
}
p {

margin: 2px 4px;

}

The special . . . syntax (three dots) can be used as an argument for a mixin. Mixins with
the . .. syntax in their argument list match any number of arguments. When you put a
variable name starting with an @ in front of the . . . syntax, all parameters are assigned
to that variable.

You will find a list of examples of mixins that use the special . . . syntax as follows:

» .mixin(e@a; ...){}:This mixin matches 1-N arguments

» .mixin(...) {}:This mixin matches O-N arguments; note that mixin () without
any argument matches only O arguments

» .mixin(e@a: 1; @rest...){}:This mixin matches O-N arguments; note that the
first argument is assigned to the @a variable, and all other arguments are assigned
as a space-separated list to erest

Because the @rest . . . variable contains a space-separated list, you can use the Less built-in
list function, as described in the Working with lists recipe in Chapter 4, Leveraging the Less
Built-in Functions, to evaluate them.

There's more...

In this recipe, the . set (@a) ; caller is nested in the .mixin (@a. ..) mixin, this caller calls
mixins with guards, as described in the Using mixin guards (as an alternative for the if...else
statements) recipe, to compile the Less code conditional.

Using mixins as functions

People who are used to functional programming expect a mixin to change or return a value.
In this recipe, you will learn to use mixins as a function that returns a value.

In this recipe, the value of the width property inside the div.small and div.big selectors
will be set to the length of the longest side of a right-angled triangle based on the length of
the two shortest sides of this triangle using the Pythagoras theorem.

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Getting ready

The best and easiest way to inspect the results of this recipe will be compiling the Less code
with the command-line Lessc compiler, as described in the Installing the lessc compiler with
npm in Chapter 1, Getting to Grips with the Basics of Less. You can edit the Less code with
your favorite editor.

How to do it...

1. Create afile called pythagoras. less that contains the following Less code:
.longestSide (@a, @b)

{

@length: sqgrt(pow(@a,2) + pow(@b,2)) ;
}
div {

&.small {
.longestSide (3,4) ;
width: @length;

}

&.big {
.longestSide (6,7) ;
width: @length;

}

}

2. Compile the pythagoras. less file from step 1 using the following command in the
console:

lessc pyhagoras.less

3. Inspect the CSS code output on the console after compilation and you will see that it
looks like the following code snippet:

div.small {
width: 5;
}
div.big {
width: 9.21954446;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Variables set inside a mixin become available inside the scope of the caller. This specific
behavior of the Less compiler was used in this recipe to set the @l ength variable and to
make it available in the scope of the div.small and div.big selectors and the caller.

As you can see, you can use the mixin in this recipe more than once. With every call, a new
scope is created and both selectors get their own value of @length.

Also, note that variables set inside the mixin do not overwrite variables with the same name
that are set in the caller itself. Take, for instance, the following code:

.mixin() {
@variable: 1;

}

.selector {
@variable: 2;
.mixin;
property: @variable;

}
The preceding code will compile into the CSS code, as follows:

.selector {
property: 2;

}

There's more...

Note that variables won't leak from the mixins to the caller in the following two situations:
» Inside the scope of the caller, a variable with the same name already has been
defined (lazy loading will be applied)
» The variable has been previously defined by another mixin call (lazy loading will not
be applied)

When using mixins as functions, you can also call them in the global scope, which will make
the variables available for the global scope too. Note that these global variables can also be
used in other mixins, as can be seen when compiling the following Less code:

.mixin() {
@v: 300;

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

.use-global-variable() {
property: @v;

}

.mixin;

p {
.use-global-variable;

}

The preceding Less code will compile into the following CSS code:

p {
property: 300;

}

Nesting other rules inside the mixin used as a function will also be possible. When using
guards, as described in the Using mixin guards (as an alternative for the if...else statements)
recipe, with these nested rules, you are able to make these mixin functions conditional, as
can been seen in the following example Less code:

.mixin(@a)
.test (ea) when (@a < 5) {
@size: 5px;
1
.test (ea) when (@a >= 5) {
@size: 50px;
1
.test (@a) ;
!
p {
.mixin(6) ;
size: @size;

}

The preceding Less code will compile into the following CSS code; also note the usage of the
second .test (@a) ; caller nested inside the .mixin (@a) {} mixin:

p {
size: 50px;

}

You can find more examples of the usage of nested mixins as a function in the Changing the
background color dynamically recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

When using mixins as a function, you cannot use nested media queries to set your variables
conditionally based on those media queries. Media queries are evaluated when the CSS code
loads in the browser; at compile time, media queries make no sense and cannot be evaluated.
For this reason, consider the following Less code:

.mixin () {
emedia (all) {
@width: 50%;
}
@emedia (print)
@width: 100%;
}
}
p {
.mixin;
width: ewrite;

}

The preceding code snippet should be rewritten to the Less code, as shown in the following
code snippet:

.mixin(all) {
@width: 50%;

}

.mixin (print) {
@width: 100%;

p {
emedia (all) {
.mixin(all) ;
width: @width;
}
@emedia (print)
.mixin (print) ;
width: @width;

160

www.it-ebooks.info

http://www.it-ebooks.info/

The rewritten Less code will compile into the following CSS code, as follows:

emedia (all) {
p {
width: 50%;
}
}
@emedia (print)
p {
width: 100%;
}
}

Chapter 6

» Read more about the Pythagoras theorem at http://www.mathcentre.ac.uk/

resources/uploaded/mc-ty-pythagoras-2009-1.pdf

Passing rulesets to mixins

Since Version 1.7, Less allows you to pass complete rulesets as an argument for mixins.
Rulesets, including the Less code, can be assigned to variables and passed into mixins, which
also allow you to wrap blocks of the CSS code defined inside mixins. In this recipe, you will

learn how to do this.

Getting ready

For this recipe, you will have to create a Less file called keyframes. less, for instance. You
can compile this mixins . less file with the command-line 1essc compiler, as described in
the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips with the Basics

of Less. Finally, inspect the Less code output to the console.

www.it-ebooks.info

http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-pythagoras-2009-1.pdf
http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-pythagoras-2009-1.pdf
http://www.it-ebooks.info/

Advanced Less Coding

How to do it...

1.

2.

162

Create the keyframes. less file, and write down the following Less code into it:

// Keyframes
.keyframe (@name; @roules) {
@-webkit-keyframes @name
@roules () ;
}
@-o-keyframes @name {
@roules () ;
}
@keyframes @name
@roules () ;

}

.keyframe (progress-bar-stripes; {
from { background-position: 40px 0; }
to { background-position: 0 0; }

3N

Compile the keyframes. less file by running the following command shown in
the console:

lessc keyframes.less

Inspect the CSS code output on the console and you will find that it looks like the
following code:

@-webkit-keyframes progress-bar-stripes
from {
background-position: 40px 0;
}
to {
background-position: 0 0;
}
}
@-o-keyframes progress-bar-stripes {
from {
background-position: 40px 0;
}
to {
background-position: 0 0;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

@keyframes progress-bar-stripes
from {
background-position: 40px 0;
}
to {
background-position: 0 0;
}
}

Rulesets wrapped between curly brackets are passed as an argument to the mixin. As you
can read in the Setting the properties of CSS styles with mixins recipe in Chapter 1, Getting
to Grips with the Basics of Less, a mixin's arguments are assigned to a (local) variable. When
you assign the ruleset to the @ruleset variable, you are enabled to call @ruleset () ; to
"mixin" the ruleset.

Note that the passed rulesets can contain the Less code, such as built-in functions too. You
can see this by compiling the following Less code:

.mixin (@color; @rules)
{
@othercolor: green;
@emedia (print) {
@rules () ;

p {
.mixin (red; {color: lighten (@othercolor, 20%) ;
background—color:darken(@color,20%);H

}
The preceding Less code will compile into the following CSS code:

emedia (print) {
p {
color: #00e600;
background-color: #990000;
}
}

A group of CSS properties, nested rulesets, or media declarations stored in a variable is
called a detached ruleset. Less offers support for the detached rulesets since Version 1.7.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

As you could see in the last example in the previous section, rulesets passed as an argument
can be wrapped in the emedia declarations too. This enables you to create mixins that, for
instance, wrap any passed ruleset into a @media declaration or class. Consider the example
Less code shown here:

.smallscreens-and-olderbrowsers (@rules)
{
.1t-ie9 & {
@rules () ;
}
@media (min-width:768px)
@rules () ;

}

nav {
float: left;
width: 20%;
.smallscreens-and-olderbrowsers ({
float: none;
width:100%;
3N
}

The preceding Less code will compile into the CSS code, as follows:

nav {
float: left;
width: 20%;

}

.1t-ie9 nav {
float: none;
width: 100%;

}

@media (min-width: 768px)
nav {

float: none;
width: 100%;

164

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The style rules wrapped in the .1t-1ie9 class can, for instance, be used with Paul Irish's
<html> conditional classes' technique or Modernizr. Now you can call the . smallscreens-
and-olderbrowsers () { } mixin anywhere in your code and pass any ruleset to it. All
passed rulesets get wrapped in the . 1t-ie9 class or the emedia (min-width: 768px)
declaration now. When your requirements change, you possibly have to change only these
wrappers once.

» You can read more about Paul Irish's <html> conditional classes technique at
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-
hacks-answer-neither/

» The Modernizr library can be found at http://modernizr.com/

Using mixin guards (as an alternative for the

if...else statements)

Most programmers are used to and familiar with the if..else statements in their code. Less
does not have these if..else statements. Less tries to follow the declarative nature of CSS
when possible and for that reason uses guards for matching expressions. In Less, conditional
execution has been implemented with guarded mixins. Guarded mixins use the same logical
and comparison operators as the emedia feature in CSS does.

Getting ready

You can compile the Less code in this recipe with the command-line 1essc compiler, as
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less. Also, check the compiler options; you can find them by running the
lessc command in the console without any argument. In this recipe, you will have to use the
-modify-var option.

How to do it...

1. Create a Less file named guards. less, which contains the following Less code:
@color: white;
.mixin (@color) when (luma(@color) >= 50%)

color: black;

}

.mixin (@color) when (luma(@color) < 50%) {

www.it-ebooks.info

http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://modernizr.com/
http://www.it-ebooks.info/

Advanced Less Coding
color: white;

}

p {
.mixin (@color) ;

}

2. Compile the Less code in the guards. less using the command-line lessc
compiler with the following command entered in the console:

lessc guards.less

3. Inspect the output written on the console, which will look like the following code:

p {
color: black;

}

4. Compile the Less code with different values set for the @color variable
and see how to output change. You can use the command as follows:

lessc --modify-var="color=green" guards.less
The preceding command will produce the following CSS code:

p {

color: white;

}
5. Now, refer to the following command:
lessc --modify-var="color=lightgreen" guards.less

With the color set to light green, it will again produce the following CSS code:

p {

color: black;

}

The use of guards to build an if..else construct can easily be compared with the switch
expression, which can be found in the programming languages, such as PHP, C#, and pretty
much any other object-oriented programming language.

166

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Guards are written with the when keyword followed by one or more conditions. When the
condition(s) evaluates true, the code will be mixed in. Also note that the arguments should
match, as described in the Building a switch to leverage argument matching recipe, before
the mixin gets compiled.

The syntax and logic of guards is the same as that of the CSS emedia feature.

A condition can contain the following comparison operators:

>, >=, =, =<,and <
s

Additionally, the keyword true is the only value that evaluates as true.

Two or more conditionals can be combined with the and keyword, which is equivalent to the
logical and operator or, on the other hand, with a comma as the logical or operator. The
following code will show you an example of the combined conditionals:

.mixin(@a; @color) when (@a<10) and (luma(@color) >= 50%) { }
The following code contains the not keyword that can be used to negate conditions:

.mixin(@a; @color) when not (luma(@color) >= 50%) { }

There's more...

Inside the guard conditions, (global) variables can also be compared. The following Less code
example shows you how to use variables inside guards:

@a: 10;
.mixin() when (@a >= 10) {}

The preceding code will also enable you to compile the different CSS versions with the same
code base when using the modify-var option of the compiler. The effect of the guarded
mixin described in the preceding code will be very similar with the mixins built in the Building
a switch to leverage argument matching recipe.

Note that in the preceding example, variables in the mixin's scope overwrite variables from
the global scope, as can be seen when compiling the following code:

@a: 10;
.mixin(@a) when (@a < 10) {property: @a;}
selector {

.mixin (5) ;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

The preceding Less code will compile into the following CSS code:

selector ({
property: 5;

}

When you compare guarded mixins with the if..else constructs or switch expressions in
other programming languages, you will also need a manner to create a conditional for the
default situations. The built-in Less default () function can be used to create such a default
conditional that is functionally equal to the else statement in the if...else constructs or the
default statement in the switch expressions. The default () function returns true when
no other mixins match (matching also takes the guards into account) and can be evaluated as
the guard condition.

» You can find a detailed example of using the default () function with guarded
mixins in the Using the default() function recipe in Chapter 4, Leveraging the Less
Built-in Functions

» The so-called is functions, which are already described in the Evaluating the type of
a value recipe in Chapter 4, Leveraging the Less Built-in Functions, are also suitable
for evaluation in guard conditions; in this recipe, you will also find an example of
using the iscolor () (and default ()) function(s) with guarded mixins

» Since Version 1.5 of Less, you can also apply guards on the CSS selectors directly;
you can read more about this in the Applying guards to the CSS selectors recipe

Building loops leveraging mixin guards

Mixin guards, as described besides others in the Using mixin guards (as an alternative for the
if...else statements) recipe, can also be used to dynamically build a set of CSS classes. In this
recipe, you will learn how to do this.

Getting ready

You can use your favorite editor to create the Less code in this recipe.

168

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

1. Create a shadesofblue.less Less file, and write down the following Less code
into it:
.shadesofblue (@number; @blue:100%) when (@number > 0)

{

.shadesofblue (@number - 1, @blue - 10%) ;

@classname: e (%(".color-%a",@number)) ;
@{classname} {
background-color: rgb(0, 0, @blue);
height :30px;
}
}

.shadesofblue (10) ;

2. You can, for instance, use the following snippet of the HTML code to see the effect
of the compiled Less code from the preceding step:

<div class="color-1"></div>
<div class="color-2"></divs>
<div class="color-3"></divs>
<div class="color-4"></div>
<div class="color-5"></div>
<div class="color-6"></divs>
<div class="color-7"></divs>
<div class="color-8"></divs>
<div class="color-9"></divs>
<div class="color-10"></div>

Your HTML document should also include the shadesofblue.less and less.js
files, as follows:

<link rel="stylesheet/less" type="text/css"
href="shadesofblue.less">

<script src="less.js" type="text/javascript"></scripts>

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

3. Finally, the result will look like that shown in this screenshot:

The CSS classes in this recipe are built with recursion. The recursion here has been done by
the . shadesofblue () { } mixin calling itself with different parameters. The loop starts with
the . shadesofblue (10) ; call. When the compiler reaches the . shadesofblue (@number
- 1, @eblue - 10%) ; line of code, it stops the current code and starts compiling the
.shadesofblue () {} mixin again with @number decreased by one and @blue decreased
by 10 percent. The process will be repeated till enumber < 1. Finally, when the @number
variable becomes equal to 0, the compiler tries to call the . shadesofblue (0, 0) ; mixin,
which does not match the when (@number > 0) guard. When no matching mixin is found,
the compiler stops, compiles the rest of the code, and writes the first class into the CSS code,
as follows:

.color-1 {
background-color: #00001la;
height: 30px;

}

Then, the compiler starts again where it stopped before, at the . shadesofblue (2,20) ;
call, and writes the next class into the CSS code, as follows:

.color-2 {
background-color: #000033;
height: 30px;

}

The preceding code will be repeated until the tenth class.

170

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

There's more...

When inspecting the compiled CSS code, you will find that the height property has been
repeated ten times, too. This kind of code repeating can be prevented using the :extend
Less pseudo class, as described in the Using extend to merge selectors recipe in Chapter 5,
Extending and Referencing. The following code will show you an example of the usage of the
:extend Less pseudo class:

.baseheight
height: 30px;
}
.mixin(@i: 2) when(e@i > 0) {
.mixin(ei - 1);
.classe{i} {
width: 10*@i;
&:extend (.baseheight) ;
}
}

.mixin() ;

Alternatively, in this situation, you can create a more generic selector, which sets the height
property as follows:

div[class®="color"-] {
height: 30px;

}

Recursive loops are also useful when iterating over a list of values. Max Mikhailov, one of the
members of the Less core team, wrote a wrapper mixin for recursive Less loops, which can be
found at https://github.com/seven-phases-max. This wrapper contains the . for and
. —each mixins that can be used to build loops. The following code will show you how to write
a nested loop:

@import "for";
#nested-loops {
.for(3, 1); .-each(ei) {
.for(0, 2); .-each(ej) {
x: (10 * @i + @j);

www.it-ebooks.info

https://github.com/seven-phases-max
http://www.it-ebooks.info/

Advanced Less Coding

The preceding Less code will produce the following CSS code:

#nested-loops
x: 30;

31;

32;

20;

21;

22;

10;

11;

12;

XoXoX oMW X X XX

}

Finally, you can use a list of mixins as your data provider in some situations. The following
Less code gives an example about using mixins to avoid recursion:

.data() {
.- ("dark"; black);
.-("light"; white);
.- ("accent"; pink);

div {

.data() ;

.- (eclass-name; @color) {
@class: e(@class-name) ;
&.@{class} {

color: @color;

}
The preceding Less code will compile into the CSS code, as follows:

div.dark {
color: black;

}
div.light {
color: white;

div.accent {
color: pink;

172

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

See also

A more complex variant of this recursive code can be found in the Using
mathematical functions recipe in Chapter 4, Leveraging the Less Built-in Functions

In the There's more... section of the Using the built-in functions of Less recipe in
Chapter 1, Getting to Grips with the Basics of Less, you will find another example
of this kind of recursion

Recursive loops are also used in the Building a grid with grid classes recipe in
Chapter 8, Building a Layout with Less

Mikhailov's mixins that provide you a for (each) structure can be found at
https://github.com/seven-phases-max/less.curious/blob/master/
articles/generic-for.md

Applying guards to the CSS selectors

Since Version 1.5 of Less, guards can be applied not only on mixins, but also on the CSS
selectors. This recipe will show you how to apply guards on the CSS selectors directly to create
conditional rulesets for these selectors.

Getting ready

The easiest way to inspect the effect of the guarded selector in this recipe will be using the
command-line 1essc compiler. How to use the command-line 1essc compiler has been
described in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips
with the Basics of Less.

How to do it...

1.

Create a Less file named darkbutton. less that contains the following code:

@dark: true;

button when (@dark) {
background-color: black;
color: white;

}

Compile the darkbutton. less file with the command-line 1essc compiler by
entering the following command into the console:

lessc darkbutton.less

www.it-ebooks.info

https://github.com/seven-phases-max/less.curious/blob/master/articles/generic-for.md
https://github.com/seven-phases-max/less.curious/blob/master/articles/generic-for.md
http://www.it-ebooks.info/

Advanced Less Coding

3. Inspect the CSS code output on the console, which will look like the following code:

button {
background-color: black;
color: white;

}

4. Now try the following command and you will find that the button selector is not
compiled into the CSS code:

lessc --modify-var="dark=false" darkbutton.less

The guarded CSS selectors are ignored by the compiler and so not compiled into the CSS code
when the guard evaluates false. Guards for the CSS selectors and mixins leverage the same

comparison and logical operators. You can read in more detail how to create guards with

these operators in Using mixin guards (as an alternative for the if...else statements) recipe.

Note that the true keyword will be the only value that evaluates true. So the following
command, which sets @dark equal to 1, will not generate the button selector as the
guard evaluates false:

lessc --modify-var="dark=1" darkbutton.less
The following Less code will give you another example of applying a guard on a selector:

@width: 700px;
div when (@width >= 600px) {
border: 1lpx solid black;

}
The preceding code will output the following CSS code:

div {
border: 1lpx solid black;

}

On the other hand, nothing will be output when setting @ewidth to a value smaller than
600 pixels.

174

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

You can also rewrite the preceding code with the & feature referencing the selector, as follows:

@width: 700px;
div {
& when (@width >= 600px) {
border: 1lpx solid black;

}
}

Although the CSS code produced of the latest code does not differ from the first, it will enable
you to add more properties without the need to repeat the selector. You can also add the code
in a mixin, as follows:

.conditional-border (@width: 700px) {
& when (@width >= 600px) {
border: 1lpx solid black;

}

width: @width;

}

Creating color contrasts with Less

Color contrasts play an important role in the first impression of your website or web
application. Color contrasts are also important for web accessibility. Using high contrasts
between background and text will help the visually disabled, color blind, and even people with
dyslexia to read your content more easily.

In Chapter 4, Leveraging the Less Built-in Functions, you can find some examples that use

the built-in contrast () function of Less. This contrast () function returns a light (white

by default) or dark (black by default) color depending on the input color. The contrast
function can help you to write a dynamical Less code that always outputs the CSS styles

that create enough contrast between the background and text colors. Setting your text

color to white or black depending on the background color enables you to meet the highest
accessibility guidelines for every color. A sample can be found at http://www.msfw.com/
accessibility/tools/contrastratiocalculator.aspx, which shows you that either
black or white always gives enough color contrast.

When you use Less to create a set of buttons, for instance, you don't want some buttons with
white text while others have black text. In this recipe, you solve this situation by adding a
stroke to the button text (text shadow) when the contrast ratio between the button background
and button text color is too low to meet your requirements.

www.it-ebooks.info

http://www.msfw.com/accessibility/tools/contrastratiocalculator.aspx
http://www.msfw.com/accessibility/tools/contrastratiocalculator.aspx
http://www.it-ebooks.info/

Advanced Less Coding

Getting ready

You can inspect the results of this recipe in your browser using the client-side less.js
compiler, as described in the Downloading, installing, and integrating less.js recipe in
Chapter 1, Getting to Grips with the Basics of Less. You will have to create some HTML
and Less code, and you can use your favorite editor to do this. You will have to create
the following file structure:

index.html

js

L less.js

less

L contraststrokes.less

How to do it...

1. Create a Less file named contraststrokes.less, and write down the following
Less code into it:

@safe: green;

@danger: red;

@warning: orange;

@buttonTextColor: white;
@ContrastRatio: 7; //AAA, small texts

.setcontrast (@backgroundcolor) when (luma (@backgroundcolor)
=< luma (@buttonTextColor)) and
(((luma (@buttonTextColor) +5) /
(luma (@backgroundcolor)+5)) < @ContrastRatio) {
color:@buttonTextColor;
text-shadow: 0 0 2px black;

}

.setcontrast (@backgroundcolor) when (luma (@backgroundcolor)
=< luma (@buttonTextColor)) and
(((luma (@buttonTextColor) +5) /
(luma (@backgroundcolor)+5)) >= @ContrastRatio) {

color:@buttonTextColor;

.setcontrast (@backgroundcolor) when (luma (@backgroundcolor)
>= luma (@buttonTextColor)) and
(((luma (@backgroundcolor) +5) /
(luma (@buttonTextColor) +5)) < @ContrastRatio) {

176

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

color:@buttonTextColor;
text-shadow: 0 0 2px white;
}
.setcontrast (@backgroundcolor) when (luma (@backgroundcolor)
>= luma (@buttonTextColor)) and
(((luma (@backgroundcolor) +5) /
(luma (@buttonTextColor) +5)) >= @ContrastRatio) ({

color:@buttonTextColor;

button {
padding:10px;
border-radius:10px;
color: @buttonTextColor;
width:200px;

.safe {
.setcontrast (@safe) ;
background-color: @safe;

}

.danger {
.setcontrast (@danger) ;
background-color: @danger;

}

.warning {
.setcontrast (@warning) ;
background-color: @warning;

}

Create an HTML file, and save this file as index.html. Write down the following
HTML code into this index.html file:

<!DOCTYPE htmls>
<html>
<head>
<meta charset="utf-8">
<title>High contrast buttons</title>
<link rel="stylesheet/less" type="text/css"
href="contraststrokes.less">
<script src="less.min.js"
type="text/javascript"></scripts>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

<body>
<button style="background-color:green;">safe</button>
<button class="safe">safe</buttons

<button style="background-color:red;">danger</button>
<button class="danger">danger</button>

<button style="background-color:orange;">

warning</buttons>
<button class="warning">warning</buttons>
</body>
</html>

3. Now load the index.html file from step 2 in your browser. When all has gone well,
you will see something like what's shown in the following screenshot:

safe safe

1
|

On the left-hand side of the preceding screenshot, you will see the original colored buttons,
and on the right-hand side, you will find the high-contrast buttons.

The main purpose of this recipe is to show you how to write dynamical code based on the
color contrast ratio.

Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of recommendations
to make web content more accessible. They have defined the following three conformance
levels:

» Conformance Level A: In this level, all Level A success criteria are satisfied

» Conformance Level AA: In this level, all Level 2 and AA success criteria are satisfied

» Conformance Level AAA: In this level, all Level &, AA, and AAA success criteria
are satisfied

178

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you focus only on the color contrast aspect, you will find the following paragraphs in the
WCAG 2.0 guidelines. You can find a link to these guidelines in the See also section.

» 1.4.1 Use of Color: Color is not used as the only visual means of conveying
information, indicating an action, prompting a response, or distinguishing a visual
element. (Level »)

» 1.4.3 Contrast (Minimum): The visual presentation of text and images of text has a
contrast ratio of at least 4.5:1 (Level 2n)

» 1.4.6 Contrast (Enhanced): The visual presentation of text and images of text has a
contrast ratio of at least 7:1 (Level AnR)

The contrast ratio can be calculated with a formula that can be found at http://www.
w3 .org/TR/WCAG20/#contrast-ratiodef:

(L1 +0.05)/ (L2 + 0.05)

In the preceding formula, L1 is the relative luminance of the lighter of the colors, and L2 is
the relative luminance of the darker of the colors.

In Less, the relative luminance of a color can be found with the built-in 1uma () function. In
the Less code of this recipe are the four guarded . setcontrast () {} mixins. The guard
conditions, such as (luma (@backgroundcolor) =< luma (@buttonTextColor))
are used to find which of the @backgroundcolor and @buttonTextColor colors is the
lighter one. Then the (((luma ({the lighter color})+5)/(luma ({the darker
color})+5)) < @ContrastRatio) condition can, according to the preceding formula,
be used to determine whether the contrast ratio between these colors meets the requirement
(eContrastRatio) or not. When the value of the calculated contrast ratio is lower than
the value set by the @ContrastRatio, the text-shadow: 0 0 2px {color}; ruleset
will be mixed in, where {color} will be white or black depending on the relative luminance
of the color set by the @buttonTextColor variable.

There's more...

In this recipe, you added a stroke to the web text to improve the accessibility. First, you will
have to bear in mind that improving the accessibility by adding a stroke to your text is not a
proven method. Also, automatic testing of the accessibility (by calculating the color contrast
ratios) cannot be done.

Other options to solve this issue are to increase the font size or change the background color
itself. You can read how to change the background color dynamically based on color contrast
ratios in the Changing the background color dynamically recipe.

www.it-ebooks.info

http://www.w3.org/TR/WCAG20/#contrast-ratiodef:
http://www.w3.org/TR/WCAG20/#contrast-ratiodef:
http://www.it-ebooks.info/

Advanced Less Coding

When you read the exceptions of the 1.4.6 Contrast (Enhanced) paragraph of the WCAG 2.0
guidelines, you will find that large-scale text requires a color contrast ratio of 4.5 instead of 7.0
to meet the requirements of the AAA Level. Large-scaled text is defined as at least 18 point

or 14 point bold or font size that would yield the equivalent size for Chinese, Japanese, and
Korean (CJK) fonts. To try this, you could replace the text-shadow properties in the Less code
of step 1 of this recipe with the font-size, 14pt, and font-weight, bold; declarations. After this,
you can inspect the results in your browser again. Depending on, among others, the values
you have chosen for the @buttonTextColor and @ContrastRatio variables, you will find
something like the following screenshot:

On the left-hand side of the preceding screenshot, you will see the original colored buttons,
and on the right-hand side, you will find the high-contrast buttons. Note that when you set the
@ContrastRatio variable to 7.0, the code does not check whether the larger font indeed
meets the 4.5 contrast ratio requirement.

» You can read more about adding strokes to the web text at http://css-tricks.
com/adding-stroke-to-web-text/. The complete text of the Web Content
Accessibility Guidelines (WCAG) 2.0, including a discussion on the techniques to meet
this guidelines can be found at http://www.w3.0org/TR/WCAG20/.

Changing the background color dynamically

When you define some basic colors to generate, for instance, a set of button elements, you
can use the built-in contrast () function to set the font color. The built-in contrast ()
function provides the highest possible contrast, but does not guarantee that the contrast ratio
is also high enough to meet your accessibility requirements. In this recipe, you will learn how
to change your basic color automatically to meet the required contrast ratio.

180

www.it-ebooks.info

http://css-tricks.com/adding-stroke-to-web-text/
http://css-tricks.com/adding-stroke-to-web-text/
http://www.w3.org/TR/WCAG20/
http://www.it-ebooks.info/

Chapter 6

Getting ready

You can inspect the results of this recipe in your browser using the client-side less.js
compiler, as described in the Downloading, installing, and integrating less.js recipe in Chapter
1, Getting to Grips with the Basics of Less. Use your favorite editor to create the HTML and
Less code in this recipe. You will have to create the following file structure:

index.html

js

L less.js

less

L backgroundcolors.less

How to do it...

1.

Create a Less file named backgroundcolors.less, and write down the following
Less code into it:

@safe: green;

@danger: red;

@warning: orange;
@ContrastRatio: 7.0; //AAA
@precision: 1%;
@buttonTextColor: black;
@threshold: 43;

.setcontrastcolor (@startcolor) when (luma(@buttonTextColor)
< @threshold) {
.contrastcolor (@startcolor) when (luma(@startcolor) < 100
) and (((luma(@startcolor)+5)/
(luma (@buttonTextColor)+5)) < @ContrastRatio) {
.contrastcolor (lighten (@startcolor,@precision)) ;
}
.contrastcolor (@startcolor) when (@startcolor =
color ("white")), (((luma (e@estartcolor)+5) /
(luma (@buttonTextColor)+5)) >= @ContrastRatio) {
@contrastcolor: @startcolor;

}

.contrastcolor (@startcolor) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

.setcontrastcolor (@startcolor) when (default()) {
.contrastcolor (@startcolor) when (luma(@startcolor) < 100
) and (((luma (@buttonTextColor) +5)/
(luma (@startcolor) +5)) < @ContrastRatio) ({

.contrastcolor (darken (@startcolor,@precision)) ;

}

.contrastcolor (@startcolor) when (luma(@startcolor) = 100
), (((luma (@buttonTextColor) +5) / (luma (@startcolor) +5))
>= @ContrastRatio) {
@contrastcolor: @startcolor;

}

.contrastcolor (@startcolor) ;

button {
padding:10px;
border-radius:10px;
color:@buttonTextColor;
width:200px;

.safe {
.setcontrastcolor (@safe) ;
background-color: @contrastcolor;

}

.danger {
.setcontrastcolor (@danger) ;
background-color: @contrastcolor;

}

.warning {
.setcontrastcolor (@warning) ;
background-color: @contrastcolor;

}

2. Create an HTML file and save this file as index.html. Write down the following
HTML code into this index.html file:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>High contrast buttons</title>

182

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<link rel="stylesheet/less" type="text/css"
href="backgroundcolors.less">

<script src="less.min.js"
type="text/javascript"></scripts>
</head>
<body>
<button style="background-color:green;">safe</button>
<button class="safe">safe</buttons>

<button style="background-color:red;">danger</button>
<button class="danger">danger</button>

<button style="background-color:orange;">warning
</button>
<button class="warning">warning</buttons
</body>
</html>

3. Now load the index.html file from step 2 in your browser. When all has gone well,
you will see something like the following screenshot:

safe

danger

J warning

On the left-hand side of the preceding figure, you will see the original colored buttons, and on
the right-hand side, you will find the high contrast buttons.

The guarded .setcontrastcolor () {} mixins are used to determine the color set
depending upon whether the @buttonTextColor variable is a dark color or not. When
the color set by @buttonTextColor is a dark color, with a relative luminance below the
threshold value set by the @ethreshold variable, the background colors should be made
lighter. For light colors, the background colors should be made darker.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Inside each .setcontrastcolor () {} mixin, a second set of mixins has been defined.
These guarded .contrastcolor () { } mixins construct a recursive loop, as described in the
Building loops leveraging mixin guards recipe. In each step of the recursion, the guards test
whether the contrast ratio that is set by the @ContrastRatio variable has been reached

or not. When the contrast ratio does not meet the requirements, the @startcolor variable
will darken or lighten by the number of percent set by the @precision variable with the
built-in darken () and 1ighten () functions. You can read more about the darken () and
lighten () functions in the Creating color a variants with the darken() and lighten() functions
recipe in Chapter 4, Leveraging the Less Built-in Functions. When the required contrast ratio
has been reached or the color defining the @startcolor variable has become white or
black, the modified color value of @startcolor will be assigned to the @contrastcolor
variable. The guarded .contrastcolor () { } mixins are used as functions, as described

in the Using mixins as functions recipe to assign the @contrastcolor variable that will be
used to set the background-color property of the button selectors.

A small value of the @precision variable will increase the number of recursions (possible)
needed to find the required colors as there will be more and smaller steps needed. With the
number of recursions also, the compilation time will increase. When you choose a bigger
value for @precision, the contrast color found might differ from the start color more than
needed to meet the contrast ratio requirement.

When you choose, for instance, a dark button text color, which is not black, all or some base
background colors will be set to white. The chances of finding the highest contrast for white
increase for high values of the @ContrastRatio variable. The recursions will stop when
white (or black) has been reached as you cannot make the white color lighter. When the
recursion stops on reaching white or black, the colors set by the mixins in this recipe don't
meet the required color contrast ratios.

» You can read more about guarded mixins in Using mixin guards (as an alternative
for the if...else statements) recipe

» Inthe Creating color contrasts with Less recipe, you can read more about the Web
Content Accessibility Guidelines (WCAG) 2.0 and the formula used to calculate the
color contrast ratios

184

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Aggregating values under a single property

The merge feature of Less enables you to merge property values into a list under a single
property. Each list can be either space-separated or comma-separated. The merge feature
can be useful to define a property that accepts a list as a value. For instance, the background
accepts a comma-separated list of backgrounds.

Getting ready

For this recipe, you will need a text editor and a Less compiler. In Chapter 1, Getting to Grips
with the Basics of Less, you can read how to use and install the less. js client-side or
command-line 1essc compiler.

How to do it...

1. Create afile called defaultfonts. less that contains the following Less code:

.default-fonts() {
font-family+: Helvetica, Arial, sans-serif;
}

p {
font-family+: "Helvetica Neue";

.default-fonts () ;

}

2. Compile the defaultfonts.less file from step 1 using the following command in
the console:

lessc defaultfonts.less

3. Inspect the CSS code output on the console after compilation and you will see that it
looks like the following code:

p {
font-family: "Helvetica Neue", Helvetica, Arial, sans-
serif;

}

When the compiler finds the plus sign (+) before the assignment sign (:), it will merge the
values into a CSV list and will not create a new property into the CSS code.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Less Coding

Since Version 1.7 of Less, you can also merge the property's values separated by a space
instead of a comma. For space-separated values, you should use the + _sign instead of a +
sign, as can be seen in the following code:

.text-overflow(@text-overflow: ellipsis) {
text-overflow+ : @text-overflow;

}

p, .text-overflow ({
.text-overflow() ;
text-overflow+ : ellipsis;

}

The preceding Less code will compile into the CSS code, as follows:

P,
.text-overflow {
text-overlow: ellipsis ellipsis;

}

Note that the text-overflow property doesn't force an overflow to occur; you will have to
explicitly set, for instance, the overflow property to hidden for the element.

» The text-overflow property, especially the second value of the list, is not
currently well-supported. You can check it's support at http://caniuse.com/
text-overflow or read more at https://developer.mozilla.org/en-US/
docs/Web/CSS/text-overflow.

186

www.it-ebooks.info

http://caniuse.com/text-overflow
http://caniuse.com/text-overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflow
http://www.it-ebooks.info/

Leveraging Libraries
with Prebuilt Mixins

In this chapter, we will cover the following topics:

» Importing and downloading prebuilt mixin libraries
» Using namespacing with prebuilt libraries

» Creating background gradients

» Building unlimited gradients with Less Hat

» Building a layout with the CSS3 flexbox module

» Getting retina-ready with Preboot

» Generating font-face declarations with Clearless

» Improving your website's SEO with 3L mixins

» Leveraging sprite images with Pre

» Creating bidirectional styling without code duplication
» Creating animations with animations.css

» Creating animations with More. less

» Building semantic grids with semantic.gs

» Building an alternative for fluid grids with Frameless

» Building a fluid responsive grid system

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Introduction

Less enables you to write your CSS code effectively with the DRY principle of software
programming in mind, but Less does not dictate to you in regard to how to build your CSS
code. CSS3 extends the old CSS with new selectors, text effects, background gradients, and
animations. The power of CSS3, the new functionalities, and the high acceptance of mobile
devices using HTML5 and CSS3 make them the standard for modern web design. On the
other hand, CSS3 makes coding CSS more complex, and some properties are related to
others or can be set to lists of values. To support the wide range of browsers, you can't ignore
vendor-prefixes, as described in the Using mixins to set properties recipe in Chapter 3, Using
Variables and Mixins. Less provides you with mixins to set these properties, but you will have
to create these mixins yourself. Happily, you do not have to reinvent the wheel for every new
project. Others already have written many mixins that you can reuse in your projects. In this
chapter, you can read about libraries with prebuilt mixins and learn how to use them.

Not all libraries used in this chapter have been updated recently; you can still use them, and
they are useful to understand how to use and create a set of reusable mixins for your project.
All code in the recipes of this chapter has been tested and works with the latest version of
Less available at the time of writing this book. If the mixins used in these recipes do not
exactly compile into the desired style for your elements, you could probably try to write your
own version than use the mixin and try to fix the problems.

You can find an overview of the mixin libraries at http: //lesscss.org/
usage/#frameworks-using-less. Please note that some of these libraries focus on
creating single and concise declarations for cross-browser prefixes. In the Automatically prefix
your code with Grunt recipe in Chapter 11, Compiling Less Real Time for Development Using
Grunt you can learn how to autoprefix automatically after preproccessing.

Since Version 2 of Less, you can use the Less autoprefix plugin to prefix your compiled CSS
code. Even when the autoprefixing has been built-in, there will be many use cases for the
mixin libraries, and they will help you to meet the DRY principle of software programming.
These libraries can provide you with mixins that can be used for code shortcuts in your code.

Most libraries described in this chapter can be installed with Bower, too. Bower is a package
manager for the Web. Bower can be found at http://bower.io/. A Less plugin that tries
first to resolve your imported Less files from bower components/directory can be found
athttps://github.com/Mercateo/less-plugin-bower-resolve/.

188

www.it-ebooks.info

http://lesscss.org/usage/#frameworks-using-less
http://lesscss.org/usage/#frameworks-using-less
http://bower.io/
https://github.com/Mercateo/less-plugin-bower-resolve/
http://www.it-ebooks.info/

Chapter 7

Importing and downloading prebuilt mixin

libraries

In this recipe, you will download and install Less Elements. Less Elements is a library with
prebuilt mixins that focuses on consolidating cross-browser prefixes into single, concise
declarations. In the Using namespacing with prebuilt libraries and Creating background
gradients recipes, you will find some other use cases for this library.

Getting ready

First, download Less Elements from http://lesselements.com/; the file should be saved
and unzipped into the same directory with your other Less files. You can use the steps that are
shown after the following command:

mkdir less
cd less
wget "https://github.com/dmitryf/elements/archive/master.zip"

unzip master.zip

Now, create an index.html page and a less/greyscalegradient.less file. You

can compile your Less code using the client-side 1ess. js compiler, as described in the
Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to Grips with

the Basics of Less, also, add a copy of 1ess. js into the js/ directory, which is your working
directory. Finally, you should end up with the following file and directory structure:

index.html

is

L less.js

less
elements-master
I: elements.less

README . md

greyscalegradient. less

www.it-ebooks.info

http://lesselements.com/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

How to do it...

Perform the following steps:

1. Use your favorite editor to edit the 1less/greyscalegradient . less file, and write
down the following code into this file:

@import "elements-master/elements.less";
div.gradient {
.bw-gradient (#eee, 125, 255);
line-height: 50px;
color:black;

}

2. Create and edit the index.html file, and make sure you include less/
greyscalegradient.less from step 1, and of course, the 1less.js compiler,
as follows:

<link rel="stylesheet/less" type="text/css"
href="less/greyscalegradient.less">
<script src="js/less.js" type="text/javascript"></script>

Note that you do not have to include the elements. less file in index.html. The
elements.less has been imported already in the less/greyscalegradient.
less file, which makes explicit including unnecessary.

3. Finally, inspect the results by loading the index . html file into your web browser.
You will find that it looks like the following screenshot:

The Less Element file provides the .bw-gradient () mixin, which can be used in your
Less code. This .bw-gradient () mixin helps you to create a horizontal grayscale gradient
and needs three parameters set. The first parameter defines the fallback color, and the
second and third parameters are the start and end brightness parameters, which range
from O to 255.

190

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There's more...

When using prebuilt mixins, you don't have to rely on only one library. You can combine as
many libraries as you need. In some situations, two or more libraries get mixins with the same
name, which gives you unexpected results. You can use namespaces to prevent collisions of
mixins with the same name.

Of course, you can also build your own library with mixins, which enables you to reuse your
CSS over project boundaries. In this recipe, the vertical alignment of the text has been set
with a 50 pixels declaration line-height. Although the vertical alignment of elements inside the
div elements seems trivial at first, it is not in CSS. There are many solutions for this problem.
When you define the vertical alignment inside a mixin, for instance, as shown in the following
code, you only have to change that mixin when your insights or requirements change:

.verticalAlignment (@availableHeight:50px) {

}

line-height: @availableHeight;

See also

>

The Using namespaces to make your code reusable and portable recipe in
Chapter 1, Getting to Grips with the Basics of Less

The Using namespacing with prebuilt libraries recipe explains how to prevent
collisions of mixins with the same name

A full list of mixins provided by Less Elements can also be found at
http://lesselements.com/

Six methods for vertical centering with CSS can be found at
http://www.vanseodesign.com/css/vertical-centering/

In this recipe, the @import directive was used to import elements. less of Less
Elements; you can read more about this directive in the Importing files with the
@import directive recipe in Chapter 8, Building a Layout with Less

www.it-ebooks.info

http://lesselements.com/
http://www.vanseodesign.com/css/vertical-centering/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Using namespacing with prebuilt libraries

In this recipe, you will learn how to use different mixin libraries together and use namespaces
to prevent collisions between mixins with the same name.

Getting ready

In this recipe, two mixin libraries are used: Less Elements, which can be downloaded from
https://github.com/dmitryf/elements/archive/master.zip, and the Less Hat
library, which can be downloaded from https://github.com/madebysource/lesshat/
archive/v3.0.2.zip.

Unzip both the ZIP archives into your working directory, and use the command-line lessc
compiler, as described in the Installing the lessc compiler with npm recipe in Chapter 1,
Getting to Grips with the Basics of Less, to compile your Less code.

How to do it...

Write down the Less code shown here into a file, and compile the file with the command-line
lessc compiler:

#lesselements
@import "elements-master/elements.less";
}
#lesshat {
@import "lesshat-master/build/lesshat.less";
}
div.drop-shadow
#lesselements > .drop-shadow(0, 1lpx, 20px, 0.2);
}
img.drop-shadow {
#lesshat > .drop-shadow(l6 16 10 black) ;

}
Finally, you will find that the preceding Less code will compile into the CSS code, as follows:

div.drop-shadow {

-webkit-box-shadow: 0 1lpx 2px rgba (0, 0, 0, 0.2);
-moz-box-shadow: 0 1lpx 2px rgba (0, 0, 0, 0.2);
box-shadow: 0 1lpx 2px rgba(0, 0, 0, 0.2);

}

img.drop-shadow {
-webkit-filter: drop-shadow(lé6px 1l6px 10px #000000) ;
-moz-filter: drop-shadow(l6px 1l6px 10px #000000) ;
-ms-filter: drop-shadow(lé6px 1l6px 10px #000000) ;
filter: drop-shadow(lé6px lé6px 10px #000000) ;

192

www.it-ebooks.info

https://github.com/dmitryf/elements/archive/master.zip
https://github.com/madebysource/lesshat/archive/v3.0.2.zip
https://github.com/madebysource/lesshat/archive/v3.0.2.zip
http://www.it-ebooks.info/

Chapter 7

Both the Less Elements and Less Hat libraries have a mixin named drop-shadow. Although
the name of these mixins is the same and both can accept four arguments, they compile into
quite different CSS code.

The .drop-shadow () mixin of the Less Elements library generates a CSS box-shadow
property, while the .drop-shadow () mixin of the Less Hat library sets drop shadow

with the £ilter property on. The £ilter property can only be applied on an image. The
CSS filter with drop shadow is very similar to the CSS drop-shadow property except that
some browsers can provide hardware acceleration for the CSS £ilter property for better
performance.

In this recipe, both libraries are imported into their own namespaces. Mixins can now only be
called with their namespace using the #namespace > mixin syntax, and therefore prevent
you from using the wrong mixin or mix up two or more mixins with the same name.

With the @eimport directive, you can import the Less code from different files into your project
file. The project file, including the imported code, can be compiled into the CSS code once.

The complete code of the imported file can be wrapped by placing the @import directive
inside the namespace declaration. In contrast to the CSS eimport directive, the Less
directive is allowed anywhere in your code and not only at the beginning.

Consider the following Less code that does not use namespaces:

@import "elements-master/elements.less";
@import "lesshat-master/build/lesshat.less";
div.drop-shadow

.drop-shadow (0, 1px, 2px, 0.2);

}

In the preceding Less code, both drop-shadow mixins were compiled for the drop-
shadow (16 16 10 black) call, which results in the following CSS code:

div.drop-shadow
-webkit-box-shadow: 0 1lpx 2px rgba (0, 0, 0, 0.2);
-moz-box-shadow: 0 1lpx 2px rgba (0, 0, 0, 0.2);
box-shadow: 0 1lpx 2px rgba(0, 0, 0, 0.2);
-webkit-filter: drop-shadow(0 1lpx 2px 0.2px);
-moz-filter: drop-shadow(0 1lpx 2px 0.2px) ;
-ms-filter: drop-shadow(0 1lpx 2px 0.2px) ;
filter: drop-shadow(0 1lpx 2px 0.2px) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

As you can see in the preceding code, the div-drop-shadow selector put the properties
from both mixins together, which makes no sense. You should not use both the box-shadow
and the filter with the drop-shadow property for the same selector. Also, the effect of
the input parameters becomes unexpected. In this recipe, you saw that namespaces prevent
these problems.

As you have seen, every library can easily be wrapped in a namespace. Some libraries,
such as Twitter's Bootstrap, already have wrapped mixins with commonly used names in a
namespace. The background gradient mixins of Twitter's Bootstrap are already wrapped in
the #gradient namespace.

The Less Hat mixin library also comes with an alternative solution for conflicting mixin names.
The Less Hat mixin library offers you a so-called prefixed version. In the prefixed version of the
Less Hat library, all mixin names start with the . rh- prefix. As long as other libraries and your
own code do not use the same prefix, all mixin names will be unique.

Note that namespaced mixins are called in the scope (the global scope, mostly) of the caller.
This means that variables set inside the namespace are no longer available inside the mixin.
Consider the following Less code. it will generate a SyntaxError : variable evar, which

is an undefined error:

#namespace-1 {
@var: 1;
.mixin () {
selector ({
property: @var;
}
}
}

#namespace-1 > .mixin();

See also

» You can read more about the @import directive in the Importing files with the
@import directive recipe in Chapter 8, Building a Layout with Less

» Namespaces are introduced in the Using namespaces to make your code reusable
and portable recipe in Chapter 1, Getting to Grips with the Basics of Less

» You can read more about the CSS f£ilter property with drop shadows
athttps://developer.mozilla.org/en-US/docs/Web/CSS/filter#drop-
shadow ()

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/CSS/filter#drop-shadow()
https://developer.mozilla.org/en-US/docs/Web/CSS/filter#drop-shadow()
http://www.it-ebooks.info/

Chapter 7

Creating background gradients

In the Importing and downloading prebuilt mixin libraries recipe, you can read how to create a
grayscale gradient with the Less Elements library. In this recipe, you will learn how to create a
colored gradient with the Less Elements library.

Getting ready

For this recipe, you will have to create the index.html and less/gradient. less files.
You can compile your Less code using the client-side 1ess. js compiler, as described in the
Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to Grips with the
Basics of Less also, add a copy of 1ess. js into your working directory. Finally, you should
end up with the following file and directory structure:

index.html

js

L less.js

less
elements-master
t:: elements.less

README . md

gradient.less

You will also have to download and unzip the Less Elements library into your working directory.
The Less Elements library can be found at http://www.lesselements.com/. Read the
Importing and downloading prebuilt mixins libraries recipe to find out how to install the Less
Elements library.

How to do it...

1. Use your favorite editor to edit the 1ess/gradient . less file, and write down the
following code into this file:

@import "elements-master/elements.less";
div.gradient {
.gradient (red, red, blue);
line-height: 50px;
color:white;

}

www.it-ebooks.info

http://www.lesselements.com/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

2. Create and edit the index.html file, making sure you include less/gradient.
less from step 1 and of course, the less. js file, as follows:
<link rel="stylesheet/less" type="text/css"
href="less/gradient.less">
<script src="js/less.js" type="text/javascript"></script>

3. Finally, inspect the results by loading the index .html file into your web browser.
You will find that it looks like the following screenshot:

Gradient background

The Less Elements file provides you with the .gradient () mixin that can be used in your
Less code. This .gradient () mixin helps you to create a horizontal gradient and needs a
three-parameter set. All parameters should be defined as colors; the first parameter defines
the fallback color and the second parameter sets the top color, while the third and last
parameter sets the bottom color of the gradient.

Whoever studies the compiled CSS code will find that there are a lot of style rules needed to
support older browsers. Older browsers don't support the official W3C syntax. Also, the way
of defining the angle of the gradient has changed over time. The official syntax will now be
as follows:

background-image: linear-gradient([<angle> | to <side-or-corners>
,1? <color-stop> [, <color-stop>]+);

Note that gradients can be applied on both the background-image and background
properties because the background property is only a shorthand notation to set the
individual background values, including the background-image property, in a single place
in the style sheet.

Because the 1inear-gradient () function returns an image, it can be used to set the
background-image property. Instead of the 1inear-gradient () function, you can use
the repeating-linear-gradient (), radial-gradient (), Or repeating-radial-
gradient () functions to set the background-image property.

Fallback for older browsers can be split into two parts.

The first part includes browsers that do not support the new angle definition. This can be
solved by calculating the old angle from the new angle as follows: c1d = (450 - new)%
360 degrees. The same is true for the keyword version of direction, for instance, to right
should be written as left in the old degree system.

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The second part includes browsers that do not support the gradient functions at all. Internet
Explorer 9 and lower versions do not support the gradient functions; fallback for these
browsers can be provided by adding an SVG gradient image. This SVG gradient image can
be set by either data-uri or £ilter. Both Less Elements and Twitter's Bootstrap use the
filter method, while the Less Hat mixin library uses the data-uri method. You can read
more about the data-uri methods in the Embedding images with data URIs recipe

in Chapter 4, Leveraging the Less Built-in Functions.

Filters are beyond the scope of this book, but you can read more about
them athttp://msdn.microsoft.com/en-us/library/ie/
ms530752 (v=vs.85) .aspx. The filter property used by Windows
- Internet Explorer Version 4 through 9 should not be confused with the
% standard CSS filter property.

The standard CSS f£ilter property is also mentioned in the Using
namespacing with prebuilt libraries recipe, and more information can
be found at https://developer.mozilla.org/en-US/docs/
Web/Ccss/filter.

If you are proficient at using gradients, you might have come across a third issue. Old versions
of webkit browsers, such as Safari, only support the webkit-gradient () function. Note
that the Safari 4 web browser was the first one that supported the CSS gradients; see also
https://www.webkit.org/blog/175/introducing-css-gradients/.

When adding fallbacks for older browsers, and especially the £i1ter variant, you also will
have to note that the calculation of the gradient might cost some computation time. Older
browsers mostly run on older hardware, too. Additional computation time may slow down
your website for these older browsers.

X Background gradients are, for the most part, not a part of the basic functionality
% of your website, and so are suitable for applying graceful degradation; see
i http://www.w3.org/wiki/Graceful degredation versus
progressive enhancement for more information on this.

A simple solution that applies graceful degradation is to only declare a background-color
property as a fallback. You could define, for instance, the following mixin:

.gradient (ecolor: #F5F5F5, @start: #EEE, @stop: #FFF)
background-color: @color;

background-image: linear-gradient (to bottom, @start-color
@start-percent, @end-color @end-percent) ;

background-repeat: repeat-x;

}

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ie/ms530752(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/ms530752(v=vs.85).aspx
https://developer.mozilla.org/en-US/docs/Web/CSS/filter
https://developer.mozilla.org/en-US/docs/Web/CSS/filter
https://www.webkit.org/blog/175/introducing-css-gradients/
http://www.w3.org/wiki/Graceful_degredation_versus_progressive_enhancement
http://www.w3.org/wiki/Graceful_degredation_versus_progressive_enhancement
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

It has already been made clear that you should only use the mixins from the libraries
discussed in this chapter if the results fit your requirements. For a graceful degradation
approach, it is better to write your own mixin.

Also, other libraries provide you with mixins to create background gradients. Twitter's Bootstrap,
as discussed in Chapter 9, Using Bootstrap with Less, comes with different mixins for different
types of gradients; these mixins are already wrapped inside a #gradient namespace and
include a . striped () mixin. The striped mixin will comprise the following code and show you
some kind of alternative for the repeating-linear-gradient () function:

.striped(@color: rgba (255,255,255, .15); @angle: 45deg)
background-image: -webkit-linear-gradient (@angle, @color 25%,
transparent 25%, transparent 50%, @color 50%, @color 75%,
transparent 75%, transparent) ;
background-image: linear-gradient (@angle, @color 25%,
transparent 25%, transparent 50%, @color 50%, @color 75%,
transparent 75%, transparent) ;

Both the autoprefixing method discussed in the Automatically prefix your code
with Grunt recipe in Chapter 11, Compiling Less Real Time for Development
Using Grunt, and the Less Autoprefix plugin add only browsers
% prefixes, and none of the fallback methods discussed in this recipe are
g applied on the CSS code. Both methods are derived from the PostCSS/
autoprefixer, which only adds prefixes, not polyfills. PostCSS/
autoprefixer recommends that you use the graceful degradation strategy.

» An article that gives insights into the change between the old and new syntax for the
CSS gradients, including the new degree system, can be found at http://www.
codeproject.com/Articles/494653/Using-Unprefixed-CSS-Gradients-
in-Modern-Browsers

» Also, Chris Coyier of css-trick.com can tell you even more about gradients at
http://css-tricks.com/css3-gradients/

» The following sources will provide more information on the gradient functions:
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-
gradient and https://developer.mozilla.org/en-US/docs/Web/CSS/
repeating-linear-gradient

» The Less Autoprefix plugin can be found at https://github.com/less/
less-plugin-autoprefix

198

www.it-ebooks.info

http://www.codeproject.com/Articles/494653/Using-Unprefixed-CSS-Gradients-in-Modern-Browsers
http://www.codeproject.com/Articles/494653/Using-Unprefixed-CSS-Gradients-in-Modern-Browsers
http://www.codeproject.com/Articles/494653/Using-Unprefixed-CSS-Gradients-in-Modern-Browsers
css-trick.com
http://css-tricks.com/css3-gradients/
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/repeating-linear-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/repeating-linear-gradient
https://github.com/less/less-plugin-autoprefix
https://github.com/less/less-plugin-autoprefix
http://www.it-ebooks.info/

Chapter 7

» Finally, you can read more about the PostCSS/autoprefixer plugin at
https://github.com/postcss/autoprefixer/

Building unlimited gradients with Less Hat

In the Creating background gradients recipe, you can read how to create a background
gradient with the Less Elements library. In this recipe, you will create a background gradient
with the Less Hat mixin library. The Less Hat library advertises on its website the ability to
create unlimited gradients.

Getting ready

For this recipe, you will have to download the Less Hat mixin library, which can be done at
http://lesshat.madebysource.com/. Use your favorite text editor to edit the Less code.
The Less code can be compiled with the client-side 1ess. js compiler and be inspected in
your browser. You should include the 1ess.js compiler in your HTML document, as described
in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to Grips with
the Basics of Less.

How to do it...

1. First, download and unzip the Less Hat mixin library from http://lesshat.
madebysource.com/ into your working directory.

2. Secondly, create a gradient.less file, and write out the following Less code into it:

@import "lesshat-master/build/lesshat.less";
div.gradient {
.background-image (linear-gradient (to right, #1e5799
%,#2989d8 50%,#207cca 78%,#7db9%e8 100%)) ;

line-height: 50px;
color:white;

}

3. Then, create an HTML file named index.html and include the client-side 1less.js
compiler and the gradient . less file by adding the following lines of the HTML code
into the head section:
<link rel="gstylesheet/less" type="text/css"

href="less/gradient.less">
<script src="js/less.js" type="text/javascript"></script>

Write down the following snippet of HTML code into the body section of index.html
to display the gradient:

<div class="gradient"s>Example Gradient</divs>

www.it-ebooks.info

https://github.com/postcss/autoprefixer/
http://lesshat.madebysource.com/
http://lesshat.madebysource.com/
http://lesshat.madebysource.com/
gradient.less
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

4. Finally, load index.html in your browser, and you will find that it looks like the
following screenshot:

Example Gradient

5. Visit the Ultimate CSS Gradient Generator from ColorZilla at http://www.
colorzilla.com/gradient-editor/ and generate some splendid gradients.
Copy the W3C syntax of the generated gradients into the .background-image ()
mixin in the index.html file. Reload the file in your browser.

With the Less Hat .background-image () mixin, you can create prefixed linear or radial
gradients. The input parameter for this mixin should be the official W3C syntax for linear or
radial gradients. See also the How it works... section in the Creating background gradients
recipe for more information about this syntax. Keeping this in mind, the Less code of your
caller can look like the following code:

.background-image (linear-gradient (to bottom, #fb83fa 0%, #e93cec
100%)) ;

Note that you do not need to have to escape or interpolate the value (see also the Value
escaping with the ~"value" syntax recipe in Chapter 3, Using Variables and Mixins) to set
the argument. The mixin has no support for the repeating-linear-gradient and
repeating-radial-gradient CSS functions.

Instead of a single gradient function, the input can also be a comma-separated list of the
gradient functions. That's why they mention the ability to create unlimited gradients. If possible,
the .background-image () mixin also generates an SVG fallback for older browsers.

200

www.it-ebooks.info

http://www.colorzilla.com/gradient-editor/
http://www.colorzilla.com/gradient-editor/
http://www.it-ebooks.info/

Chapter 7
Finally, the preceding example's caller will compile into the following CSS code:

background-image: url (data:image/svg+xml;

base64,PD94b
..z4=);

background-image: -webkit-linear-gradient (top, #fb83fa 0%, #e93cec
100%) ;

background-image: -moz-linear-gradient (top, #fb83fa 0%, #e93cec
100%) ;

background-image: -o-linear-gradient (top, #fb83fa 0%, #e93cec
100%) ;

background-image: linear-gradient (to bottom, #fb83fa 0%, #e93cec
100%) ;

In this recipe, you saw that the background-image mixin of Less Hat is very robust because
it accepts the complete W3C syntaxes. Now, you may wonder how to write such a robust mixin
in Less yourself.

Most of the mixins of Less Hat are written in JavaScript. The 1ess. js compiler itself is written in
JavaScript and evaluates the native JavaScript calls, placed between back quotes, in your Less
code. For more details about using active JavaScript in Less, see the There's more... section in
the Replacing a text within a string recipe in Chapter 4, Leveraging the Less Built-in Functions.

Coding JavaScript is beyond the scope of this book. Also, note that using native JavaScript in
your Less code depreciates it. The JavaScript calls make your code less compatible with future
versions of Less, and also less portable for alternative compilers not written in JavaScript.

» If you want to learn more about JavaScript, you can read Object-Oriented JavaScript,
Stoyan Stefanov, Packt Publishing, July 2008, see https://www.packtpub.com/
web-development /object-oriented-javascript

» If you are already familiar with JavaScript, you can study the source code of Less Hat to
find out how to deploy Less mixins leveraging JavaScript. The source code of the Less
Hat library can be found at https://github.com/madebysource/lesshat

201

www.it-ebooks.info

https://www.packtpub.com/web-development/object-oriented-javascript
https://www.packtpub.com/web-development/object-oriented-javascript
https://github.com/madebysource/lesshat
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Building a layout with the CSS3 flexbox

module

The CSS Flexible box module level 3, called flexbox for short, enables you to arrange elements
inside a container based on the available space. The flexbox module gives you the power

to build dynamic and responsive layouts easily, without the need to use floats. The flexbox
layouts will likely play an important role in modern web design in the future, but currently, the
support for different browsers varies. The module has only a recommendation status now, and
the flexbox syntax has been changed globally three times over the last few years. As an impact
of these changes, you should adapt your Less code to support older browsers, too. More
information of this change can be found at http://css-tricks.com/old-flexbox-
and-new-flexbox/.

In this recipe, you will learn how to build the flexbox layouts with the Less Hat library. The Less
Hat flexbox mixins offer cross-browser support, but do not support older syntaxes. Leveraging
the Less Hat library, you will build a responsive navigation menu with flexboxes.

Getting ready

Use a modern browser with full support for flexible boxes to test the code of this recipe.

You will find more about browser support of the CSS Flexible box module level 3 at
http://caniuse.com/#feat=£f1lexbox. Because you will inspect the results in the
browser, you should use the client-side 1ess.js compiler to compile the Less code into the
CSS code. In the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting
to Grips with the Basics of Less, you can read how to use and install the client-side 1less.js
compiler. Use your favorite editor to edit the Less code of this recipe.

R If you are not familiar with the CSS Flexible box module already, it's strongly
5 recommended that you read more about it before starting this recipe.
Q An excellent article, titled A Complete Guide to Flexbox, can be found at
http://css-tricks.com/snippets/css/a-guide-to-flexbox/.

202

www.it-ebooks.info

http://css-tricks.com/old-flexbox-and-new-flexbox/
http://css-tricks.com/old-flexbox-and-new-flexbox/
http://caniuse.com/#feat=flexbox
http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://www.it-ebooks.info/

Chapter 7

How to do it...

1. First, download and unzip the Less Hat mixin library from http://lesshat.
madebysource.com/ into your working directory.

2. Secondly, create a navigation. less file, and write out the following Less code
into it:
@import "lesshat-master/build/lesshat.less";
nav > ul {
list-style: none;
margin: 0;
background: black;
.display(flex) ;
.flex-direction (column) ;

@media all and (min-width: 768px)
.justify-content (space-around) ;
.flex-direction (row) ;

}

@media all and (min-width: 970px)
.justify-content (flex-end) ;

}

1i {
padding: 20px;

a {
color: white;
&:hover({
color: red;

}

3. Then, create an HTML file named index.html and include the client-side 1less.js
compiler and the navigation.less file into it by adding the following lines of the
HTML code into the head section:
<link rel="stylesheet/less" type="text/css"

href="less/navigation.less">
<script src="js/less.js" type="text/javascript"></script>

203

www.it-ebooks.info

http://lesshat.madebysource.com/
http://lesshat.madebysource.com/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Write down the following snippet of the HTML code into the body section of index.
html to display the navigation:

<nav role="navigation">

<lis>Menu item 1</1i>
Menu item 2 (long text)
<lis>Three
</uls>
</navs>

4. Finally, load the index.html file in your browser, and you will find that, depending
on your screen width, it looks like what's shown in the following screenshot:

Menu item 1 denu i 2 (long tex Three

5. Finally, resize your browser window to see the effect of the media queries. On screen
widths smaller than 768 pixels, the navigation should look like what's shown in the
following screenshot:

Menu item 1

Menu item 2 (long text

The Less Hat mixins for flexible boxes enable you to build your flexbox designs without taking
care of browser prefixing. You can code your Less code using the newest W3C standard syntax
for flexboxes. More information about the syntax can be found at http://www.w3.org/TR/
css3-flexbox/.

The navigation menu built in this recipe has three states.

204

www.it-ebooks.info

http://www.w3.org/TR/css3-flexbox/
http://www.w3.org/TR/css3-flexbox/
http://www.it-ebooks.info/

Chapter 7

The first step is declaring the display property of the nav > ul selector as a flexbox. This had
been done with the following call in the Less code:

nav > ul {
.display(flex) ;

}

Because the coding is mobile first, in the first state, the navigation items should stack under
each other. The items stack £lex-direction has been set to the column value using the
following Less code:

nav > ul {
.flex-direction (column) ;

}

In the second state, for screens wider than 768 pixels, the navigation should start floating.
In Less, flex-direction has been set to the row value, as can be seen in the following
Less code:

@emedia all and (min-width: 768px) {
.justify-content (space-around) ;
.flex-direction (row) ;

}

In the preceding code, the . justify-content (space-around) ; call centers the navigation.
For wider screens, the navigation will be moved to the right-hand side (assuming left-to-right
(Itr) text direction, see also the Creating bidirectional styling without code duplication recipe)

by deploying the following Less code, which includes the second media query:

@emedia all and (min-width: 970px) {
.justify-content (flex-end) ;

}

Although some people claim that the CSS Flexible box module is only intended for small
blocks and not for the overall website layout, it's possible to set up your page layout with
(nested) flexboxes. You could try the following Less code:

@import "lesshat-master/build/lesshat.less";
nav > ul {

list-style: none;

margin: 0;

background: black;

.display(flex) ;

.flex-direction(column) ;

@emedia all and (min-width: 768px) {

.justify-content (space-around) ;

205

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

.flex-direction (row) ;
}
@media all and (min-width: 970px)
.justify-content (flex-end) ;
}
1i {
padding: 20px;
a {
color: white;
&:hover({
color: red;

.main {
.display(flex) ;
.flex-direction (column) ;
section {
background-color:blue;

}

@media all and (min-width: 768px)
.flex-direction (row) ;
section {
.flex-grow(3) ;

}
aside {
.flex-grow (1) ;

}

The compiled CSS code of the preceding Less code can be used with the following snippet
of HTML code:

<nav role="navigation"s>

Menu item 1l</1i>

Menu item 2 (long text)
Three</1li>

</navs>

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

<div class="main" role="content"s>
<section>
<nav role="navigation"s>

Menu item 1l</1li>
Menu item 2 (long text)
Three</1li>

</navs>

Content</sections>
<aside>Subcontent</aside>
</div>

Loaded in your browser, the result of the preceding code should look like the following
screenshot:

Menu item 1 Menu item 2 (long text) Three

Menu item 1 denu item 2 (long text) Three

There's more...

Although the CSS Flexible box module level 3 is very powerful, syntax changes over time
make its deployment complicated when you have to support older browsers. The mixin
libraries, such as the Less Hat library, can be used to set the right browser prefixes for the
Flexible box module.

Modernizr is a JavaScript library that detects which HTML5 and CSS3 features a browser
supports. Modernizr can also be used to detect which version of the flexbox syntax is
supported. Modernizr adds a class hamed flexbox to the html tag on browsers that support
flexbox or, otherwise, a no- flexbox class. Modernizr is also able to detect the syntax version
by adding the f1lexboxlegancy class for the old syntax and the flexboxtweener class for
the syntax used by the Internet Explorer 10 browser. With Modernizr, you can write fallbacks
for browsers that do not support flexboxes or just support an older flexbox syntax.

207

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Alternatively, you can create an inline-block fallback by defining the display property,
as follows:

.flexbox {
display: inline-block;
display: -webkit-flex;
display: -moz-flex;
display: -ms-flex;
display: flex;

}

Older browsers will ignore the nonsupported flex values and fall back on the display:
inline-block; declaration. In Chapter 8, Building a Layout with Less, you will learn how to
build a web page layout using this technique.

» A complete guide to code flexboxes in CSS can be found at http://css-tricks.
com/snippets/css/a-guide-to-flexbox/

» You can read more about cross-browser support at http://dev.opera.com/
articles/advanced-cross-browser-flexbox/

» The Modernizr JavaScript library can be found at http://modernizr.com/

Getting retina ready with Preboot

The Preboot library of the Less variables and mixins has been created by Mark Otto (@
mdo), and can be seen as the precursor of Twitter's Bootstrap. In this recipe, you will use the
Preboot library to create retina-ready images.

Although many improvements of the mixins and code are brought back from Bootstrap to the
second version of Preboot, Bootstrap is more powerful to start a project in most situations.
You can read more about Bootstrap in Chapter 9, Using Bootstrap with Less.

Getting ready

You can download the Preboot library from http://getpreboot.com/. Unzip the ZIP
archive into your working directory, and use the command-line 1essc compiler, as described
in the Installing the lessc compiler with npm recipe in Chapter 1, Getting to Grips with the
Basics of Less to compile your Less code.

208

www.it-ebooks.info

http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://dev.opera.com/articles/advanced-cross-browser-flexbox/
http://dev.opera.com/articles/advanced-cross-browser-flexbox/
http://modernizr.com/
http://getpreboot.com/
http://www.it-ebooks.info/

Chapter 7

How to do it...

Create a Less file that contains the following Less code, and use the command-line 1lessc
compiler to compile this file into the CSS code:

@import "preboot-master/less/preboot.less";
.selector(
.retina-image ("/img/bg.png", "/img/bge2x.png", 100px, 100px) ;

}

Then, you will find that the preceding Less code will compile into the following CSS code:

.selector {
background-image: url ("/img/bg.png") ;

}

@media only screen and (-webkit-min-device-pixel-ratio: 2), only
screen and (min--moz-device-pixel-ratio: 2), only screen and
(-o-min-device-pixel-ratio: 2/1), only screen and
(min-device-pixel-ratio: 2), only screen and
(min-resolution: 192dpi), only screen and (min-resolution:
2dppx) {

.selector {
background-image: url ("/img/bge@2x.png") ;
background-size: 100px 100px;
}
}

High-density devices have more pixels per inch or centimeter than normal displays. Apple
introduced the term Retina for its double-density displays. If you zoom-in on an image

(or scale it up), it will become blurred. This is the problem web designers have to solve when
designing for high-density devices. You might be wondering, "what has this to do with Less?"
CSS, in combination with media queries, can help you to prevent your images blur on
high-density display.

To understand what happens, you have to realize that the CSS pixels are, in fact, device-
independent. The CSS pixels are used to give elements in the browser psychical dimensions.
On normal screens, a CSS pixel matches a device pixel. High-density displays have more
device pixels in a CSS pixel—in the case of retina, four times the number of pixels. More and
smaller pixels make it impossible to see the individual pixels with the human eye.

So, on a retina display, an image of a 300 CSS pixels width requires 600 device pixels in order
to keep the same physical size. Now, you can prevent your images from blurring so as to use
a with a higher bitmap resolution (CSS pixels) and scale it with HTML or CSS.

209

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

On normal displays, your HTML code will look like the following code:

On a retina display, you will show the same image with the following code:

Currently, there is a convention to give the high-density images @2x in their name,
for example, example@2x . png.

The mixin in this recipe does not set an img tag, but sets the image as a background-
image property. Note that setting all your images as background is not a good idea with
respect to usability. Website usability guidelines require that all images that are not part of
the design and have a contextual meaning be placed inside an img tag and have a proper
alt attribute that describes them.

The media queries check among others for min-device-pixel-ratio > 2. The pixel ratio
may vary depending on the device type and brand. Visit http://www.devicepixelratio.
com/ to get an impression of the different pixel ratios used.

When using the .retina-image () mixin of this recipe, you should also realize that Less
does not merge or group media queries. The number of bytes of the compiled CSS grows
with the length of the media queries times the number of retina images you have added with
the .retina-image () mixin. If you want to add many retina images, you should consider
grouping them all inside the retina media queries. This can be archived by creating a CSS file
with retina images and import this CSS file into your Less project file.

See also

The recipe does not wrap the images in data-uri (see also the Embedding images with
data URIs recipe in Chapter 4, Leveraging the Less Built-in Functions). You do not need
data-uri here because, according to the tests at http://timkadlec.com/2012/04/
media-query-asset-downloading-results/, media queries also prevent the images
from loading if the media query does not match. For this reason, loading the retina images
does not require an additional HTTP request.

210

www.it-ebooks.info

http://www.devicepixelratio.com/
http://www.devicepixelratio.com/
http://timkadlec.com/2012/04/media-query-asset-downloading-results/
http://timkadlec.com/2012/04/media-query-asset-downloading-results/
http://www.it-ebooks.info/

Chapter 7

Generating font-face declarations with

Clearless

The efont - face CSS rule allows authors to specify fonts that are not installed on the user's
system to display text on their web pages.

Getting ready

For this recipe, you will need to generate the EQOT, WOFF, and TTF formats of a font. You can
use, for instance, the Webfont generator at http://www. fontsquirrel .com/tools/
webfont -generator to get the different formats of a TTF font file. You should save the
generated font files with the same name and different extension in your working directory.
Make sure you do not choose any copyrighted fonts unless you are willing to pay for it.

You can inspect the fonts in your browser, so use the client-side 1less.js compiler, as
described in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting
to Grips with the Basics of Less, to compile the Less code of this recipe in your browser. The
Less code will use mixins from the Clearless library.

How to do it...

1. Start with downloading and unzipping the Clearless library into your working directory.
You can find the Clearless files at http://clearleft.github.io/clearless/.

2. Secondly, download a (free) font from http://www.fontsquirrel.com/ or use
their Webfont generator, as described in the Getting ready section of this recipe.
Save the font files in a fonts directory in your working directory.

. Inthis recipe, the 3Dumb font will be used. You can find this font
% athttp://www.fontsquirrel.com/fonts/3Dumb. Use the
S download @font-face kit button on this page to download the
files. Unzip these file into the font directory.

3. Then, create a fontface. less file, and write out the following Less code into it:

@import "clearleft-clearless-63e2363/mixins/all.less";

.font-face('3Dumb', '../fonts/web
fonts/3dumb_regular macroman/3Dumbwebfont') ;
h1 {

font-family: "3Dumb";

}

www.it-ebooks.info

http://www.fontsquirrel.com/tools/webfont-generator
http://www.fontsquirrel.com/tools/webfont-generator
http://clearleft.github.io/clearless/
http://www.fontsquirrel.com/
http://www.fontsquirrel.com/fonts/3Dumb
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

4.

6.

Now, create an HTML file named index.html and include the client-side less.
js compiler and the fontface. less file into it by adding the following lines of the
HTML code into the head section:

<link rel="stylesheet/less" type="text/css"
href="less/fontface.less">

<script src="js/less.js" type="text/javascript"></script>

Write down the following snippet of the HTML code into the body section of the
index.html file to display the gradient:

<h1l>A heading in the 3Dumb font</hls>

After the first four steps, you should end up with a file and directory structure:

— fonts
L— web fonts

L— 3dumb_regular macroman
3Dumb-demo. html
3Dumb-webfont.eot
3Dumb-webfont.svg
3Dumb-webfont.ttf
3Dumb-webfont.woff

—— index.html
— jS
L less.js
L less
— clearleft-clearless-63e2363
L— mixins
L— all.less
L— arrows.less
—— grids.less
—— helpers.less
—— icons.less

—— resets.less

— settings.less
— sprites.less
L— typography.less
L README.md

L fontface.less

Finally, load the index.html file in your browser; it should look like the following
screenshot:

A heading tn the BBumb font

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The . font-face () mixin should be called once for each font you want to include. The caller
should not be called inside a selector because the @font - face rule defines a font available
for the document. The selector can use the defined fonts with the font - family property.
To use the declared font inside a selector, you can use the name of the font, set as the first
parameter of the . font-face () call, as a value for the font - family property.

The . font-face () mixin accepts five parameters, the last three of which are optional

and used to set the font weights and styles. The optional last parameter is set to normal by
default. The first parameter, as already mentioned, sets the name for the font, and the second
parameter should be set to the path/URL of the font, including the font name without the

file extensions.

Finally, the . font-face('3Dumb', '../fonts/web fonts/3dumb regular

macroman/3Dumbwebfont ') ; call used in this recipe will compile into the following
CSS code:

@font-face {

font-family: '3Dumb’';

src: url('../fonts/web fonts/3dumb_regular macroman/3Dumb-
webfont.eot!') ;

src: url('../fonts/web fonts/3dumb_regular macroman/3Dumb-
webfont.eot?#iefix') format ('embedded-opentype!'),
url('../fonts/web fonts/3dumb_regular macroman/3Dumb-
webfont.woff') format ('woff'), url('../fonts/web
fonts/3dumb_regular macroman/3Dumb-webfont.ttf')
format ('truetype') ;

font-weight: normal;

font-style: normal;

}

There's more...

The efont - face rule declarations can also be used to integrate iconized fonts into your
project. Using iconized fonts instead of images for icons will reduce the number of HTTP
requests. Just like image sprites, as described in the Leveraging sprite images with Pre recipe,
there is only a single file that has to be downloaded. Another advantage of iconized fonts is
that they are scalable with CSS. Also, coloring the icons or even adding drop-shadows can be
done by leveraging CSS.

_ Anexample of iconized fonts is the Glyphicons library, which is also

% used by Twitter's Bootstrap, and another example is the Font Awesome
s font. You can find these fonts at http://glyphicons.com/ and
http://fortawesome.github.io/Font-Awesome/.

www.it-ebooks.info

http://glyphicons.com/ and http://fortawesome.github.io/Font-Awesome/
http://glyphicons.com/ and http://fortawesome.github.io/Font-Awesome/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Most iconized fonts include some CSS code to integrate them into your web projects.
To integrate an iconized font in your Less code, you will have to perform the following steps:

1. Firstly, create rules, as described in this recipe:

@import "clearleft-clearless-63e2363/mixins/all.less";
.font-face('MyFont', '../fonts/MyFont -webfont');

2. Then, create a base class using, for instance, the following code:

21

.icon {
font-family: 'MyFont';
speak: none;
font-style: normal;
font-weight: normal;
font-variant: normal;
text-transform: none;
line-height: 1;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;

}

Note that using a base class in this situation should be preferred over using the
:extend () pseudo class, as described in the Using extend to reduce the compiled
CSS size recipe in Chapter 5, Extending and Referencing, because the list of sectors
grows with the number of classes in step 3. Alternatively, you could use the CSS
attribute selectors to avoid the base class in your HTML code. Depending on the
class prefix in step 3, you can use the [class”="icon-"], [class*=" icon-"]
selector instead of the . icon selector.

Finally, create a class for each icon, as can been seen in the following lines of the
example Less code:

.icon-euro { &:before { content: "\20ac"; } }
.icon-minus { &:before { content: "\2212"; } }
.icon-cloud { &:before { content: "\2601"; } }

Note that the icons are added to the content with the :before pseudo class.
You can read more about the :before and :after pseudo classes in the
There's more... section of the Improving your website's SEO with 3L mixins recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

See also

» You can read more about custom web fonts and the @font - face rule at
http://css-tricks.com/snippets/css/using-font-face/.

» Use the Icomoon app to build your own iconized fonts. You can find the lcomoon
app at https://icomoon.io/app/.

Improving your website's SEO with 3L

mixins

In modern web design, search engine optimization (SEQ) cannot be ignored. The Lots of
Love for Less, or, in short, 3L, mixins library provides you with a lot of mixins for single-line
declarations that can also be found in other libraries. 3L also contains a mixin called SEO
helper. This . seo-helper () mixin generates the CSS code that makes common mistakes
about SEO in your web pages visible.

Getting ready

First, download the latest version of the 3L library from http://mateuszkocz.github.
io/31/. The compiled CSS code of this recipe can be loaded into an existing web page to
make common SEO issues visible. Use a modern browser to load the Less code together
with the client-side 1less. js compiler in a web page. In the Downloading, installing, and
integrating less.js recipe in Chapter 1, Getting to Grips with the Basics of Less, you can read
about how to use and install the client-side 1less. js compiler.

How to do it...

1. First, download and unzip the 3L library into your working directory. You can find the
3Lfilesat http://mateuszkocz.github.io/31/.

2. Then, create an seo. less file and write out the following Less code into it:

@import "3l-master/3L/3L.less";
.seo-helper () ;

3. Thirdly, create an HTML file named index.html and include the client-side
less.js compiler and the seo.less file into it. The index.html file should
look like the following code:
<!DOCTYPE html>
<html>

<head>
<meta name="description" content="">

www.it-ebooks.info

http://css-tricks.com/snippets/css/using-font-face/
https://icomoon.io/app/
http://mateuszkocz.github.io/3l/
http://mateuszkocz.github.io/3l/
http://mateuszkocz.github.io/3l/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<link rel="stylesheet/less" type="text/css"
href="less/seo.less">
<script src="js/less.js"
type="text/javascript"></scripts>
</head>
<body>
<div>
<p></p>

</div>
</body>
</html>

Note that this HTML document has no title and an empty meta description (content
attribute), and contains an empty <p> tag and an tag without an alt attribute.

4. Finally, load the index.html file in your browser, and you will see that it looks like
the following screenshot:

You've left description empty!
You don't have a <title>!

—

You don't have a <title>!

This recipe will show you that you can add the following lines of code to the HTML files of your
projects to make some common errors visible:

<link rel="stylesheet/less" type="text/css" href="less/seo.less">
<script src="js/less.js" type="text/javascript"></script>

The compiled CSS code of the seo. 1less file will be as follows:

img:not ([alt]),
img[alt=""],
imglalt®=" "],
al[href=""7],
al[href®=" "],
alhref="#"],
al[rel*="nofollow"],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

div:empty,
span:empty,
li:empty,
p:empty,
td:empty,
th:empty,
*[title=""],
* [class=""],
* [id=""] {
outline: 2px solid red !important;
outline-offset: 3px !important;
}
head,
title:empty,
link,
meta {
display: block;
}
title:empty:before {
content: "You've left the <title> empty!";
}
link:before {
content: "You don't have a <title>!";
}
title ~ link ({
display: none;
}
meta [name="description"] [content=""] :before,
meta [name="description"] [content=" "] :before ({
content: "You've left description empty!";

}

Of course, you can study the source files of the 3L library to find out how to code this in Less.
Further interesting parts of the CSS code are the :empty pseudo class and code that results
inthe "You don't have a <title>!" message, because there is no title selector to
attach this message. The "You don't have a <titles>!" message is always declared
and attached to the 1ink :before selector, but the message will be hidden when there is a
title selector due to the following lines of the CSS code:

title ~ link ({
display: none;
}

Note that the ~ combinator in the title ~ 1ink selector is a general sibling combinator;
here, it selects all the 1ink selectors proceeded by a title selector. A 1ink selector will
always be available; otherwise, you would be unable to include the seo. less file.

217

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

There's more...

You should judge yourself if the . seo-helper () mixin is really useful for your projects.
Useful or not, however, this recipe will show you another use case for Less (and CSS) other
than styling. The compiled CSS displays warnings such as no title in the HTML code.

CSS cannot manipulate or change the HTML DOM structure, but the :before and :after
pseudo classes make it possible to add some content leveraging to the content property.
You can use the same technique to make the URLs of hyperlinks visible in the printed version
of your HTML document using the following Less code:

emedia (print) {
al[href] :after
content: " (" attr(href) m")";
}
}

See also

» Read more about the basics of search engine friendly design and development
athttp://moz.com/beginners-guide-to-seo/basics-of-search-
engine-friendly-design-and-development

» Additional information about child and sibling selectors can be found at
http://css-tricks.com/child-and-sibling-selectors/

» A more extended description of the : empty pseudo class, including some
examples, can be found at https://developer.mozilla.org/en-US/docs/
Web/CSS/ :empty

Leveraging sprite images with Pre

Sprite images can help to reduce the number of the HTTP requests needed to load your
website. In this recipe, you will use the Pre.less mixin library. Pre.less is a CSS
framework that provides useful mixins. The util module of Pre. less contains mixins for
sprite images that will be used in this recipe.

Getting ready

In this recipe, you will create some social media buttons with a mouse-over effect. You can
download the example sprite images with a social media button at http://crunchify.
com/social-media-css-sprite-example-for-your-wordpress-blog/, Or create
a sprite image yourself.

www.it-ebooks.info

http://moz.com/beginners-guide-to-seo/basics-of-search-engine-friendly-design-and-development
http://moz.com/beginners-guide-to-seo/basics-of-search-engine-friendly-design-and-development
http://css-tricks.com/child-and-sibling-selectors/
https://developer.mozilla.org/en-US/docs/Web/CSS/:empty
https://developer.mozilla.org/en-US/docs/Web/CSS/:empty
http://crunchify.com/social-media-css-sprite-example-for-your-wordpress-blog/
http://crunchify.com/social-media-css-sprite-example-for-your-wordpress-blog/
http://www.it-ebooks.info/

Chapter 7

The image should look like the following screenshot:

When you create the sprite image yourself, you will have to use a square grid for your images.
Each square should contain one image; a bigger image might overlap more than one grid
square, but make sure the overlapping grid squares form a square of squares, too. Evaluate
the result of your sprite image in your browser, and use the client-side less. js, as described
in the Downloading, installing, and integrating less.js recipe in Chapter 1, Getting to Grips with
the Basics of Less, to compile your CSS code into the Less code.

% In this recipe, you will make use of the Pre. less mixin library that can
i be downloaded from https://github.com/yuanyan/pre

How to do it...

1. Create/download a sprite image, as described in the Getting ready section
of this recipe.

2. Download and unzip the Pre. less mixin library into your working directory.

Create a project. less file that contains the following Less code:

@import "pre-master/dist/pre.less";
@sprite-default-size: 23px;
@sprite-default-margin: O0px;
@sprite-image-base-path: "../images";
@sprite-image: "social-iconsl.png";

a{

display:inline-block;

&.twitter {
.sprite-img(@sprite-image, 1,2);
&:hover {

.sprite-img(@sprite-image, 1,1);
}
}

&.facebook {
.sprite-img(@sprite-image, 2,2);
&:hover {

.sprite-img(@sprite-image, 2,1);

www.it-ebooks.info

https://github.com/yuanyan/pre
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

220

}
}
display:inline-block;
&.rss |
.sprite-img(@sprite-image, 3,2);
&:hover {
.sprite-img(@sprite-image, 3,1);

}

&.google {
.sprite-img(@sprite-image, 4,2);
&:hover {

.sprite-img(@sprite-image, 4,1);

}

You can, for instance, use the following snippet of the HTML code to see how the

compiled CSS code styles your social media buttons in your browser:

<p class="important"
style="color:green;font-size:4em;">important</p>

<p class="unimportant"
style="color:green;font-size:4em; ">unimportant</p>

Your HTML document should also include the project.less and less. js files,
as follows:

<link rel="stylesheet/less" type="text/css"
href="project.less">

<script src="less.js" type="text/javascript"></scripts>

Finally, load the HTML file into your browser, and you will find that it looks like the

following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The compiled CSS code sets the sprite image as the value of a background-image
property of the selector. After this, with the starting point of the background image set by
the background-image property, due to the square grid, it is easy to calculate the position
of a certain image. For the Google icon in the example sprite image, you will have to set the
starting point to three times the size of a square of the grid to the right-hand side, and one
time the size of a square of the down grid.

As you have probably noted, the same e@esprite-image variable had been used repeatedly
as an argument for the . sprite-img () mixins. The Pre.less mixin library provides you
with an alternative syntax that allows you to set the sprite image only once. The following Less
code will show you an example of this alternative syntax for sprite images:

af
.sprite-background ("icons-32.png")
.twitter(
.sprite-position(1,1);

}

There's more...

The mixins in this recipe use an equal dimensioned square grid. The Spritebox tool at
http://www.spritebox.net/ allows you to create a Less mixin for any sprite image.

A spritebox mixin, including retina support, will look like the following code:

.spritebox (@left, @top, @height, @width) {
background-image: url (spritebox-sprite@2x.png) ;
background-repeat: no-repeat;
background-position: @left @top;
height: @height;
width: @width;

@media only screen and (-webkit-min-device-pixel-ratio: 1.5),

only screen and (-moz-min-device-pixel-ratio: 1.5),

only screen and (-o-min-device-pixel-ratio: 3/2),

only screen and (min-device-pixel-ratio: 1.5) {
background-image: url (spritebox-sprite@2x.png) ;
background-size: 476px 748px;

}

221

www.it-ebooks.info

http://www.spritebox.net/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

The main proposal of using images sprite is to reduce the number of HTTP requests when
loading your website. Instead of loading many images, the browser will have to load only one
single sprite image. In the Embedding images with data URIs recipe in Chapter 4, Leveraging
the Less Built-in Functions, you can read how to embed your images in your CSS with data
URIs and base 64 encoding.

At first sight, leveraging data URIs to embed your inline images in your CSS seems a better
alternative for sprite images because these embedded images no longer require any extra
HTTP request. Nevertheless, this theoretical assumption should be read with care. For
instance, the blog post at http://www.mobify.com/blog/css-sprites-vs-data-
uris-which-is-faster-on-mobile/ prescribes that image sprites, which load faster
on mobile devices, are still should preferred for larger images.

In this recipe, you create icons using a sprite image. Iconized fonts, as described in the
Generating font-face declarations with Clearless recipe can be a good alternative to creating
a list of icons. Iconized font can be easily styled with CSS.

» A more detailed explanation of using square grids for your sprites can be found
athttp://www.smashingmagazine.com/2012/04/11/css-sprites-
revisited/

Creating bidirectional styling without code

duplication

Some languages, including Arabic, Farsi, Hebrew, and Urdu, are written from right-to-left
(rtl). In this recipe, you will learn how to write Less code that can be compiled for rt1 and
ltr languages by leveraging the Less-bidi mixin library.

Getting ready

For this recipe, you will have to download the Less-bidi mixin library from https://github.
com/danielkatz/less-bidi. The Less code will be compiled in the browser by using the
client-side less.js compiler, as described in the Downloading, installing, and integrating
less.js recipe in Chapter 1, Getting to Grips with the Basics of Less.

222

www.it-ebooks.info

http://www.mobify.com/blog/css-sprites-vs-data-uris-which-is-faster-on-mobile/
http://www.mobify.com/blog/css-sprites-vs-data-uris-which-is-faster-on-mobile/
http://www.smashingmagazine.com/2012/04/11/css-sprites-revisited/
http://www.smashingmagazine.com/2012/04/11/css-sprites-revisited/
https://github.com/danielkatz/less-bidi
https://github.com/danielkatz/less-bidi
http://www.it-ebooks.info/

Chapter 7

How to do it...

In this recipe, you will create the Less and HTML code for the example shown at
https://github.com/danielkatz/less-bidi, as follows:

1. Download and unzip the Less-bidi mixin library into your working directory.
2. Then, create a bidi . less file that contains the following Less code:

@import "less-bidi-master/src/bidi.less";

.ler
.style(1ltr) ;

}

.rtl
.style(rtl);

}

.style(@bidi) ({
.bidi-direction() ;
.bidi-text-shadow (2px, 2px, 1px, silver) ;
font-size:lem;
h1 {

.bidi-margin-start (20px) ;
margin-bottom: 10px;

}

.two-col article {
.bidi-float (start) ;
width: 70%;

}

.two-col nav {
.bidi-float (end) ;

}

3. Inthis step, you will have to create an index.html file that includes the bidi.less
and less. jsfiles, as follows:

<link rel="stylesheet/less" type="text/css"
href="bidi.less">

<script src="less.js" type="text/javascript"></scripts>

After this, write down the following HTML structure into the body section of the
index.html file.

223

www.it-ebooks.info

https://github.com/danielkatz/less-bidi
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

4. Finally, load the HTML file into your browser, and you will find that it looks like the
following screenshot:

LTR

Lorem ipsum dolor sit amet, qui ex delicata oportere Navigation
vulputate. Sea saepe causae eripuit ea. At mei

tamquam mediocritatem, sea magna fastidii vulputate

ei, et stet wisi eripuit per. Est ne falli inermis

habemus, in eam tritani accumsan, elitr adipisci

philosophia mei an. Quo et enim inani vocent.

| PP | VO

v qem ,CSS now nk nan anw nww an | 7avn waan CSS ar mns
IMAR M7 MPRIowY ATEPND [NIXINS ,manws mmwsras o
mueR angna aprnnt ane 8 03 C8S ni meab 92 nmwasnn

98

When you change the text direction of your website from 1txr to rt1 or vice versa, you will
have to make, at the very least, the following changes to the properties in your Less code:
» text direction
» float
» clear

These attributes should change the value from right to left and vice versa. So, for instance,
float:left becomes float:right.

Alternatively, you can use the Less-bidi mixin library, which enables you to compile the CSS
code for different text directions without the need to change your code. To accomplish this,
you can use a switch, as described in Building a switch to leverage argument matching recipe
of Chapter 6, Advanced Less Coding.

The Less-bidi mixin library provides you with solutions for more than only the preceding three
properties mentioned. The library, for instance, has also a mixin to change text -shadow
when the text direction changes.

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The text direction is set to rt1 or 1tr with the direction property, which can be seen when
you inspect the compiled source of the code from this recipe. The compiled CSS code of the
. 1tr selector will look like the following code:

Jler |
direction: 1ltr;
text-shadow: 2px 2px 1lpx #c0c0cO;
font-size: lem;

}

As you saw, you will also have to change the floating direction of the elements. Changing the
floating direction will be of special interest for layouts based on floats, such as the grid system
of Twitter's Bootstrap. The CSS layouts based on the inline-block declaration and layouts build
with flexbox, as described in the Building a layout with the CSS3 flexbox module recipe, will
not require any adaptation when changing the text direction.

When using flexible boxes, the justify-content property defines how to arrange items

in the current row. Instead of 1eft or right, this property accepts the flex-start and
flex-end values. Depending on the text direction, the end is on the left or right-hand side

of the available space. Less-bidi uses the same strategy for the .bidi-text-align () and
.bidi-float () mixins, which accepts an argument that should be set to start or end, too.

» Inthe situation that a block of text contains both left-to-right and right-to-left text, you
should use the direction property, together with the unicode-bidi property.
You can read more about the unicode-bidi property at https://developer.
mozilla.org/en-US/docs/Web/CSS/unicode-bidi

» HTML itself also contains a bdi element; see http://www.w3.org/TR/HTML-
markup/bdi.html, and there is a dir attribute that can be used to set the text
direction. More information about the dir attribute can be found at http://
www.w3.0rg/TR/html401/struct/dirlang.html. The bdi elementand dir
attribute are used together with the CSS style rules often.

» Aclear summary about the CSS direction property can be found at
http://css-tricks.com/almanac/properties/d/direction/.

» When working on international projects, it can be useful to keep bidirectional styling
in mind from the start. At http://blog.dictionary.com/righttoleft/,
you can read how and when Twitter supports right-to-left languages and why some
language are written from right to left, or even from bottom to top.

» The Less css-flip plugin generates left-to-right (LTR) or right-to-left (RTL)
CSS from your Less code. This plugin can be found at: https://github.com/
bassjobsen/less-plugin-css-£flip

225

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/CSS/unicode-bidi
https://developer.mozilla.org/en-US/docs/Web/CSS/unicode-bidi
http://www.w3.org/TR/HTML-markup/bdi.html
http://www.w3.org/TR/HTML-markup/bdi.html
http://www.w3.org/TR/html401/struct/dirlang.html
http://www.w3.org/TR/html401/struct/dirlang.html
http://css-tricks.com/almanac/properties/d/direction/
http://blog.dictionary.com/righttoleft/
https://github.com/bassjobsen/less-plugin-css-flip
https://github.com/bassjobsen/less-plugin-css-flip
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Creating animations with animations.css

CSS3 makes it possible to animate transitions from one CSS style configuration to another.
CSS animation can even replace Flash animations, animated images, and JavaScript in your
projects. In this recipe, you will learn how to integrate animate.css in your Less code.

Getting ready

A cross-browser library of the CSS animations is animate. css. Download the uncompressed
version of animate.css from https://github.com/daneden/animate.css. You can
use your favorite text editor to create a Less version of animate. css. Test the CSS animation
in your browsers using the client-side 1ess. js compiler, as described in the Downloading,
installing, and integrating less.js recipe in Chapter 1, Getting to Grips with the Basics of Less.

How to do it...

CSS animation have brought about many new things for web designers using CSS. On the
other hand make vendor-prefixes coding them complex. Mixins help you to build animations
fast and efficiently, as follows:

1. Openthe animate.css file with a text editor. Firstly, remove the .animated,
.animated.infinite, and animated.hinge classes at the beginning of the file.
Then, add the following Less code into this file:

// The Animation

.animation (@name)
-webkit-animation-name: @name;
-moz-animation-name: @name;
-o-animation-name: @name;
animation-name: @name;

}

// Duration and mode
.animated (@duration: 1ls; emode: both;) {
-webkit-animation-duration: @duration;
-moz-animation-duration: @duration;
-o-animation-duration: @duration;
animation-duration: @duration;

-webkit-animation-fill-mode: @mode;
-moz-animation-fill-mode: @mode;
-o-animation-fill-mode: @mode;
animation-fill-mode: @mode;

226

www.it-ebooks.info

https://github.com/daneden/animate.css
http://www.it-ebooks.info/

Chapter 7

.animation-iteration-count (@count: 1)

-webkit-animation-duration: @count;
-moz-animation-iteration-count: @count;
-o-animation-iteration-count: @count;
animation-iteration-count: @count;

}

2. Then save this file as animate.less.

Notice that the mixins used in the preceding code come from https://github.
com/jonschlinkert/animate.less, which is a fork of the original animate.
css project. Unfortunately, the code is not up to data at the time of writing this book.

3. Secondly, create animation. less, which imports the animate. less file from the
previous step that should contain the following Less code:

@import "animate.css/animate.less";

body > header {

color:red;

.animation (flip); // animation

.animated (10s); // duration

.animation-iteration-count (infinite); // number of iterations

}

4. Then, you will have to create an index.html file, which contains the following lines
of HTML code in the head section:
<link rel="stylesheet/less" type="text/css" href="less/animation.
less>
<script src="js/less.js" type="text/javascript"></scripts>

5. Now, write down the following HTML snippet into the body section:

<header>Site header</headers

6. Finally, you can load this index.html file in your browser to see the header
"flipping". Also try to replace .animation (£1ip) with one of the other animations
that animate . css does provide you. You can also test and find these animations at
http://daneden.github.io/animate.css/.

A CSS animation has two parts. The first part sets the name of the animation, the

duration, and some other properties. The name of the animation refers to the name of the
@keyframes at-rule. The @keyframes at-rules describe the different states of the animation.
A ekeyframes at-rule should contain at least a start state and an end state, but it is also
possible to add other states between the start and end of the animation.

227

www.it-ebooks.info

https://github.com/jonschlinkert/animate.less
https://github.com/jonschlinkert/animate.less
http://daneden.github.io/animate.css/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins
A simple animation, written without any prefix, can look as follows:

hl {
animation-duration: 10s;
animation-name: trafficlight;
}
@keyframes trafficlight(
from {
color: red;
}
to {
color: green;
}
}

To add a third color to this animation, you can rewrite the ekeyframes declaration as shown
in the following code:

@keyframes trafficlight
o {
color: red;
}
50% {
color: orange;
}
100% {
color: green;

}

Inside the ekeyframes at-rule, you can use the CSS transform property. The transform
property applies transformation, such as move, scale, turn, spin, or stretch to an element.

After reading the preceding text, you should inspect the source of the animate. less file
again. Now, you should realize that animate . css provides you with a list of predefined and
prefixed @keyframes at-rules that you can use to build your animations in Less (or CSS).

Both the animation and the transformation enable you to set a timing function using the CSS
animation-timing-function or transition-timing-function property. Both timing functions accepts
keywords, such as linear, ease or ease-in, as input. The timing function can also be set using
the CSS cubic-bezier () function.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

See also

» CSS tricks has created a screencast video about using CSS animations, which can be
watched at http://css-tricks.com/video-screencasts/97-intro-to-
css-animations/

» A guide about using CSS transitions can be found at https://developer.
mozilla.org/en-US/docs/Web/Guide/CSS/Using CSS transitions

» You can create your own cubic-bezier () functions at http://cubic-bezier.
com/

Creating animations with More.less

More. less is a mixin library that can help you to create cross-browser CSS animations.
More.less includes all animate . css animations, see the Creating animations with
animations.css recipe of this chapter for more information about animate.css.

Getting ready

Download and unzip the More . less mixin library into the 1ess subdirectory of your working
directory. You can download the ZIP file at https://github.com/weinitz/More.less/
archive/master. zip. In this recipe you will build some CSS animation. You should watch
these animations in your browser. The Less code in this recipe can be compiled into client-
side CSS code, leveraging the 1ess. js compiler. In Chapter 1, Getting to Grips with the
Basics of Less, of this book, you can read how to download and install this compiler.

How to do it...

1. The bundled animations of More . less are saved as more/animation/{name}/
(in|out) /name. less. Create a new file more/animation/orbit.less, and
write down the following Less code into it:

@keyframes orbit
25% {
transform: scale(0.75,0.75) translateY(-50px)
translateX (100px) ;

transform: scale(l,1) translateX(200px);

229

www.it-ebooks.info

http://css-tricks.com/video-screencasts/97-intro-to-css-animations/
http://css-tricks.com/video-screencasts/97-intro-to-css-animations/
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Using_CSS_transitions
http://cubic-bezier.com/
http://cubic-bezier.com/
https://github.com/weinitz/More.less/archive/master.zip
https://github.com/weinitz/More.less/archive/master.zip
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

transform: scale(1.5,1.5) translateY(100px)translateX(100px) ;

}

#animation {
.orbit () {
#animation > .name (orbit) ;

Notice that you will have to add the prefix @keyframes at-rules yourself;
L see also the There's more... section of this recipe.

2. Secondly create a animation. less file that contains the following Less code:

@import "More.less-master/more.less";
@import "More.less-master/more/animation/orbit.less";
@import "More.less-master/more/animation/special.less";

body
background-color: black;

}

.earth {
position: absolute;
top:150px;
left:150px%;
#shape > .circle(180px) ;
#gradient > .horizontal (blue,silver);
.box-shadow (-2px 3px 54px darkblue) ;
#animation .rotate();
#animation > .init (10s);

#animation > .infinite;

}

.moon {
position: absolute;
top:100px;
left:100px;

#shape > .circle(80px) ;
#gradient > .horizontal (yellow,silver) ;
.box-shadow (-2px 3px 54px gold) ;
#animation > .init(2s);

#animation > .infinite;

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

#animation > .orbit();

}

Then create an index.html file that includes the animation. less file from the
previous step. This index.html file should contain the following HTML code:

<!DOCTYPE html>
<html>
<head>
<title>Gradients with Less Elements</title>
<meta name="viewport" content="width=device-width,
initialscale=1.0">

<link rel="stylesheet/less" type="text/css" href="animation.
less">

<script src="js/less.js" type="text/javascript"></scripts>
</head>
<body>
<div class="earth"s></div>
<div class="moon"></divs>
</body>
</html>

Finally, load index.html in your browser, and find that the animation will look like
what's shown in the following figure:

231

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

The More . less mixins are already namespaced. See the Using namespacing with prebuilt
libraries recipe of this chapter to read more about namespace. The orbit @keyframes
declaration can be easily called with the #animation > .orbit () ; caller. Also, other
animation properties can be set in the same way.

Also, creating the circles and gradients can be done by calling respectively the namespaced
#shape > .circle() and #gradient > .horizontal () mixins inside the .moon and
.earth selectors.

Finally, you should notice that the transform property accepts a space separated list of values
as can be seen in the following declaration:

transform: scale(0.75,0.75) translateY(-50px) translateX (100px) ;

The preceding code enables you to apply different translations on the same element for a
state described in a @keyframes at-rule.

There's more...

In this recipe, you have added some @keyframes rules to create the rotate animation.
Adding new animation in this manner is not an example of Don't Repeat Yourself (DRY).

The ekeyframes rules requires many vendor-prefixes that generate many code duplications.
The More or Less library, which can be found at https://github.com/pixelass/more-
or-1less, provides you with a special mixin for keyframes. This .keyframes () mixin should
be wrapped inside a selector and will look like the following code:

& {
.keyframes(testanimation);.—frames(@—...){
0% {
left: 0;
@{-}transform: translate(10px, 20px);
}
100% {
left: 100%;
@{-}transform: translate(100px, 200px) ;
}
}
}
232

www.it-ebooks.info

https://github.com/pixelass/more-or-less
https://github.com/pixelass/more-or-less
http://www.it-ebooks.info/

Chapter 7

Building semantic grids with semantic.gs

HTML5 introduced many new semantic HTML tags, such as footer, header, section, among
others; nevertheless, many modern CSS grid systems are build with non-semantic div tags
and CSS classes. Critics even say that building your grids with div tags does not differ from
the old-school table layouts. The semantic.gs mixins library provides you with a simple
manner to build a twelve-column semantic grid. Grids can be used as the skeleton of a
responsive website.

Using grids in web design will help both the web designer and the web developer to prevent
inconsistencies from occurring between the original design and the final implementation
in HTML.

Getting ready

For this recipe, you have to download the latest version of the semantic.gs mixins, which
can be found at https://github.com/tylertate/semantic.gs/zipball/master.
After editing the Less files with a text editor, you can test the result in your browser. The
client-side less.js compiler is used to compile the Less code, as described in Chapter 1,
Getting to Grips with the Basics of Less.

How to do it...

In this recipe, you will rebuild the example that is also shown on the home page of the
semantic.gs website. The media queries in the example code are changed so that the
compiled CSS code will follow the mobile-first approach.

1. Use your favorite editor to create a semantic. less file, and write down the following
code into this file:
@import "tylertate-semantic.gs-22e0e79/stylesheets/less/grid.
less";
@column-width: 60;
@gutter-width: 20;
@columns: 12;
@total-width: 100%;

header { .column(12); }
article { .column(12); }
aside { .column(12); }

@media (min-width: 960px) {

article { .column(9); }
aside { .column(3); }

233

www.it-ebooks.info

https://github.com/tylertate/semantic.gs/zipball/master
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

2. Create and edit the index.html file, which should contain the following HTML code:

< !DOCTYPE html>

<html>

<head>

<title>Semantic Grid</title>

<meta name="viewport" content="width=device-width, initial
scale=1.0">

<link rel="stylesheet/less" type="text/css" href="semantic.less">
<script src="js/less.min.js" type="text/javascript"></script>
</head>

<body>

<header>This is a header</header>

<article>This is an article</articles

<aside>This is an aside</aside>

</body>

</html>

3. Finally, load the index.html file in your browser. You will find that the aside tags
float on the left-hand side of the article as expected.

The semantic.gs mixins provide you an easy way to build a responsive grid without classes,
and that is it. It is good to realize that using a grid does not have to break the semantic
structure of your website.

Creating a responsive layout with the semantic.gs mixins is easy and straightforward. You
can set the number of columns with the @columns variable; also, the column width and the
gutter size are set by variables.

You will also have to notice that the grid had some limitations. In the recipe, the column size
of the compiled CSS is fixed although the columns stack for screen width below 960 pixel,
their width will be set to 960 (12 x(@column-width + @gutter-width)). The gutter is set with
the margin property. This issue can be partly solved by setting the @cotal-width variable
to 100% after that the column widths (and margin) are also calculated as a percentage of the
total available width and the grid had become fluid.

Twitter's Bootstrap as discussed in Chapter 9, Using Twitter Bootstrap with Less also builds its
grid with div elements and classes. But Bootstrap also includes Less variables and mixins to
quickly generate semantic layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

You can download Bootstrap's Less files at. After that, you can import bootstrap
your project file and write down the following Less code into it:

import (reference) "bootstrap.less";

@grid-columns: 12;
@grid-gutter-width: 30px;
@grid-float-breakpoint: 768px;

// Reset the box-sizing

*
’

*:pbefore,
*:after {
.box-sizing (border-box) ;

}

.wrapper {
.make-row () ;

header
.make-xg-column (12) ;
}

article {
.make-sm-column (8) ;
}

aside {
.make-sm-column (4) ;

}
}

Chapter 7

.lessinto

The compiled CSS code of the preceding Less code can be used with the index.html
file you have created in this recipe. Notice that you will have to wrap the layout in <div
class="wrapper"> to use the CSS code. Also, the .box-sizing (border-box) ;

call is required. As you will see, the result will be a layout similar to that you already had

created with the semantic.gs mixins.

» Onthe semantic.gs website at http://semantic.gs/, you can find

other examples of how to build the fluid, nested, and responsive layout with

the semantic.gs mixins

» More information about Twitter's Bootstrap can be found at

http://www.getbootstrap.com/

www.it-ebooks.info

235

http://semantic.gs/
http://www.getbootstrap.com/
http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

Building an alternative for fluid grids with

Frameless

The Frameless grid offers you an alternative to fluid grids. The grid does not add more pixels
when the screen width increases, but adds additional columns for wider screens. In this recipe,
you will build a site navigation that stacks into two columns on small screens with centers
floated on wider screens and moves to the right-hand side of the layout for wide screens.

Getting ready

You will need to download the Less template for the Frameless grid for this recipe. You can
download this Less template at https://github.com/jonikorpi/Frameless/blob/
master/frameless.less. To see how the navigation acts for different screen widths and
browser zoom levels, you should load the HTML code into your browser and compile the Less
code with the client-side 1less. js compiler.

You can read how to use the client-side less. js compiler in the Downloading, installing and
integrating less.js recipe of Chapter 1, Getting to Grips with the Basics of Less. For client-side
compiling, you will have to create an index.html file that loads the frameless-example.
less file and the less. js compiler with the following code in the head section:

<link rel="stylesheet/less" type="text/css" href="frameless-example.
less">

<script src="less.js" type="text/javascript"></scripts>

How to do it...

1. First save the Less template as described in the Getting ready section into your
working directory.

2. Then create the frameless-example. less file, and write down the following
Less code into it:

@import "frameless.less";
body {
font-size: (@font-size - 2)/l6*lem;

}

#container

{

margin: auto;
width: @4cols;

}

236

www.it-ebooks.info

https://github.com/jonikorpi/Frameless/blob/master/frameless.less
https://github.com/jonikorpi/Frameless/blob/master/frameless.less
http://www.it-ebooks.info/

Chapter 7

nav {
ul {
list-style:none;

}

1i {
padding:5px;
background-color:darkred;
color:white;

float:left;

width: @2cols;

}

}

//wide phone
@media screen and (min-width: 40em)
#container

{

width: @8cols;
}

nav {

width: @8cols;

}
}

// > tablet

@media screen and (min-width: 60em) {
body {

background-color: red;

font-size: (@font-size + 2)/l6*lem;

}

#container ({
width: @l2cols;
}

nav {
float:right;

}

}

Create the index.html file as described in the Getting ready section, and write
down the following snippet of HTML code in the body part of this file:
<div id="container">
<navs>

<lisiteml</1i>

237

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

<lisitem2</1i>
<lisitem3</1i>
<lis>itemd4</1i>

</navs>
</div>

4. Now, you can load the index.html file from step 3 into your browser; when all goes
well, you should see something like what's shown in the following figure:

Menu item 1

5. Resize your browser window, and see what happens with the navigation.

6. Finally try the zoom function of your browser with your window size fixed.

Apart from the fact that the Frameless grid does not have a fixed number of columns in the
grid, the code also differs from other solutions by defining sizes, dimensions, and widths in
ems instead of pixels (or points).

An em is a font-relative length, officially defined as" being equal to the computed value of
the font -size property of the element on which it is used." Only when used to set the
font-size property, it refers to the computed value of the font -size property of the
parent element.

So using ems as the unit allows the media queries to respond appropriately when people
zoom the web page. Most modern browsers also scale pixel-based units on zooming by the
user, so it is not easy to see the difference at first sight.

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Consider the media query that is shown here:
@media (min width:500px) { //your styles}

When increasing your base font size from 16 to 32 pixels, the preceding media query still only
reacts when the screen width becomes greater than 500 pixels. In the preceding media query,
there is no relation between the increased font size and the break point of 500 pixels defined

by the media query. Now, consider using ems as follows:

@media (min width:31.25em) { //your styles}

Setting the base size font to 16 pixels means that 1 em also is approximating 16 pixels, and
the preceding media query responds at 31.25*16 = 500 pixels. After zooming in to a font size
of 32 pixels, the value of 1 em also changes to 32 pixels, and the media query will respond
now at a screen width of 32.25*32 = 1,000 pixels, which is properly related to the zoomed
font size.

The Frameless grid code defines the base font size set font -size property on the body
selector as follows:

@font-size: 16;

@em: @font-size*lem; // Shorthand for outputting ems, e.g.
"12/@em"

body {
font-size: (@font-size - 2)/16*lem;

}

Notice that relative units, including em units, in media queries are based on the initial value,
which means that units are never based on the results of declarations. The initial value is that
set by the user in the browser settings.

Column sizes in the Frameless grid are also defined in the em unit as follows:

@lcols: (1 * (ecolumn + @gutter) - @gutter) / @em; @lcol:
@lcols;

@2cols: (2 * (ecolumn + @gutter) - @gutter) / @em;

@3cols: (3 * (ecolumn + @gutter) - @gutter) / @em;

The number of columns that can be defined this way will be endless, but sizes larger than the
largest possible container width make no sense.

239

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

See also

» Mark Nugent wrote a excellent introduction and guide to the Frameless grid. You can
find his article at http://marknugent . tumblr.com/post/47212935858/a-
guide-tutorial-to-the-frameless-grid-how-to.

» In 2012, Lyza Gardner wrote an article about proportional media queries. You
can find this article at http://blog.cloudfour.com/the-ems-have-it-
proportional-media-queries-ftw/.

» Another well-written blog post about pixels versus em or rem in media queries can be
found at http://codeboxers.com/em-vs-px-vs-rem-in-media-queries/.

Building a fluid responsive grid system

When building website layouts, especially fluid layouts with float, you will have to round some
widths up or down. Unfortunately, not all browsers round numbers in the same way. Different
rounding of width can break your layout. This problem has also been described as the sub-
pixel rounding issue. The Zen Grid system solves this sub-pixel rounding issue.

Getting ready

The Zen Grid has no original Less version, but porting it to Less is possible. You can download
some example code at https://github.com/bassjobsen/LESS-Zen-Grid. After
downloading the example code, you can edit the files with your favorite text editor.

With the client-side less.js compiler, you can inspect the result of this recipe in your
browser. To get more insight into the idea behind the Zen grid, compiling the Less code with
command-line 1essc will be recommended too. In the Installing the lessc compiler with npm
recipe in Chapter 1, Getting to Grips with the Basics of Less, you can read how to install and
use the command-line compiler.

How to do it...

In this recipe, you will build a simple layout that has got a main area with a side bar and a
three-column footer.

1. Firstly, download and unzip the required files, which can be found at https://
github.com/bassjobsen/LESS-Zen-Grid/archive/master. zip, into your
working directory.

240

www.it-ebooks.info

http://marknugent.tumblr.com/post/47212935858/a-guide-tutorial-to-the-frameless-grid-how-to
http://marknugent.tumblr.com/post/47212935858/a-guide-tutorial-to-the-frameless-grid-how-to
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://codeboxers.com/em-vs-px-vs-rem-in-media-queries/
https://github.com/bassjobsen/LESS-Zen-Grid
https://github.com/bassjobsen/LESS-Zen-Grid/archive/master.zip
https://github.com/bassjobsen/LESS-Zen-Grid/archive/master.zip
http://www.it-ebooks.info/

Chapter 7

2. Then, openthe less/zen. less file and replace its content with the following
Less code:

@import "variables.less";
@import "boxsizing.less";
@import "mixins.less";

@zen-columns: 12; // Set the total number of columns in the grid.

@zen-gutters: 40px; // Set the gutter size. A half-gutter is used
on each side of each column.

.container {

.zen-grid-container;

> article {

.zen-grid-item(9, 1);

}

> aside {

.zen-grid-item (3, 10);

}

> footer {

.zen-new-row () ;
section {
:nth-child (1) {.zen-grid-item(4, 1);}
:nth-child(2) {.zen-grid-item(4, 5);}
:nth-child(3) {.zen-grid-item(4, 9);}

~— R R RV

}
}

3. Change the body section of the index.html file so that it contains the following
HTML code:

<div class="container">
<articles>
Tha main content. We like semantic HTML ordering.
</article>
<aside>
An aside.
</aside>
<footer>
<section>First column</sections>
<section> The main content. We like semantic HTML
ordering.</section>
<gsection>Third column</section>
</footers

</div>

241

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging Libraries with Prebuilt Mixins

4. Finally, load the index.html file from the previous step into your browser and find
that your layout should look like that shown in the following figure:

Tha main content. We like semantic HTML ordering. An aside.
First column Second column Third column

The Less code in this recipe has been spread over different files. There's a file for mixins and
a file for variables. The organization of your code over different files seems good practice in
most cases; you can find examples of it in Chapter 8, Building a Layout with Less, of this book
or when inspecting the source of the Twitter's Bootstrap project.

The Zen grid solves this by positioning every float relative to its container, rather than the float
before it. The preceding can easily been seen when inspecting the compiled CSS code of the
.container > article selector; this CSS code will look as shown in the following code:

.container > article {
float: left;
width: 75%;
margin-left: 0%;
margin-right: -100%;
padding: 0 20px;

}

The margin-right: -100%; declaration creates space for overflow and prevents wrapping.
The space due to the negative right margin is also visible in the layout model that is shown in
the following figure:

margin
border
padding
132 5 255x p -463
38
position: static display: block Z: auto
box-sizing: borderbox

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The project file also imports the boxzing. less file. This file contains a .box-sizing()
mixin and the following Less code that calls this mixin:

// Reset the box-sizing

*
’

*:pbefore,
*:after {
.box-sizing (border-box) ;

}

Declaring the box-sizing property as border-box will make using the grid easier. In the
border-box model, the calculation of the width of an element includes the width of the
border and the padding, so assigning some padding or a border to an element will not break
your grid calculations.

In this chapter, many grid systems are discussed, and it is not easy to say one is better than
the other. Your choice can depend on personal favors and project requirement. The Zen Grid
is used in many projects, but its Less implementation is not used regularly. This recipe shows
you in the first place that it is possible and is not necessarily a recommendation to use it for
your projects.

Also notice that construction of the grid changes the flow of your content.

Also the grid mixins of the semantic.gs project, as described in the Building semantic
grids with semantic.gs recipe of this chapter have got a solution to solve the sub-pixel
rounding problem.

» More information about the sub-pixel rounding issue can be found at
http://tylertate.com/blog/2012/01/05/subpixel-rounding.html

243

www.it-ebooks.info

http://tylertate.com/blog/2012/01/05/subpixel-rounding.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout
with Less

In this chapter, you will learn to do the following:

» Using CSS Reset with Less

» Importing and organizing your Less files

» Importing files with the @import directive

» Building a grid with grid classes

» Creating responsive grids

» Building a semantic grid with mixins

» Applying the flexbox grid on your design

» Integrating a navigation menu into the layout

» Repositioning your content

Introduction

In the recipes of this chapter, you will learn how to create a layout for your website or web
application with Less. The grid forms the base of the layout. Grids help web designers and
developers to work together and make deploying responsive layouts easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

In the course of time, different ways to deploy layouts on the Web saw the light. For years,
tables have been used (rather, misused) to build HTML layouts. Newer techniques leverage
the CSS float property to arrange elements. The CSS float property is a positioning
property that keeps HTML elements in the flow of the document instead of applying the
text-wrap property to it. Other layouts are built with the display: inline-block
property. HTML elements with the display: inline-block property are positioned like
lines of text. Twitter's Bootstrap, as we will see in Chapter 9, Using Bootstrap with Less, uses
the float technique, while <bold>Cardinal</bold> gives an example of the inline-
block technique. Cardinal can be found at http://cardinalcss.com.

Even the CSS display: table declaration can be used to build a responsive layout,
as can be seen at https://github.com/mdo/table-grid, butin this chapter,
you will build a grid layout with the CSS3 flexbox module.

A short introduction on the CSS Flexible box module level 3 can also be found in the
Building a layout with the CSS3 flexbox module recipe of Chapter 7, Leveraging Libraries
with Prebuilt Mixins.

Every technique mentioned just now has its pros and cons. Saying you should prefer one
over the other is not easy. Some people predict the CSS Flexible box module to be the most
modern, and so the preferred technique is to build your layouts. The recipes in this chapter
will show you how to build a grid layout with flexboxes, but | do not necessarily advise you to do
so. The CSS Flexible box module is intended to describe the spatial position of child elements
in relation to their parent, but flexboxes also intend to position only a single Ul element and
not the entire page layout. When using flexboxes for page layout, the browser has to do a

lot of repainting of what can result in bad, slow, or unexpected rending of elements, which
has also been described at http://jakearchibald.com/2014/dont-use-flexbox-
for-page-layout/. On the other hand, others such as Paul Irish claim the opposite. You
can read more about this at http://updates.html5rocks.com/2013/10/Flexbox-
layout-isn-t-slow. The cons of the flexbox layouts are that it dramatically reduces the
complexity of fluid grids. When you choose a technique, you should always carefully consider
the pros and cons and make sure you are optimizing for the real bottlenecks.

Finally, you will notice that the Flexbox module has been intended to lay out major regions
of an application. The CSS3 Grid Layout module, in contrast to the Flexbox module, can be
applied to high-level HTML elements such as header, footer, and main. At the moment of
writing this book, only a few browsers support the Grid Layout module.

Besides the flexbox layout, this chapter pays attention to CSS Resets, organizing your Less
code and files, importing files in Less, and building a navigation menu for your site.

246

www.it-ebooks.info

http://cardinalcss.com
https://github.com/mdo/table-grid
http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/
http://jakearchibald.com/2014/dont-use-flexbox-for-page-layout/
http://updates.html5rocks.com/2013/10/Flexbox-layout-isn-t-slow
http://updates.html5rocks.com/2013/10/Flexbox-layout-isn-t-slow
http://www.it-ebooks.info/

Chapter 8

Using CSS Reset with Less

HTML elements without styles are styled with the default browser styles. Different browsers
style HTML elements differently, by default, which is one of the most important reasons of
having cross-browser issues. CSS Reset sets the default style of HTML elements to the same
value (or output) for all browsers.

Getting ready

When you start a project, you should also think about the CSS Reset that you will have to use.
Writing CSS Reset yourself seems like reinventing the wheel again. On the other hand, using

a random CSS Reset code without any research may cause unwanted effects or unnecessary
process time for your project. Your choice should depend on using HTML5 or not, the browsers
that you will have to support, and so on. At http://www.cssreset .com/, you can find and
download the most popular CSS Resets. To make a motivated choice, you can read the Which
CSS Reset Should | Use? section on that website, too.

Download the CSS file (with the . css extension) of the CSS Reset of your choice and save
this file into your working directory. You can use the command-line 1essc compiler to see how
CSS Reset compiles into your final CSS code.

How to do it...

Now, perform the following steps:
1. Download the CSS Reset, and rename this file so that it gets the . 1ess extension.
For instance, reset . css should be renamed to reset . less.
2. Create a main project file for your project and save this file as project.less.
Write the following Less code at the beginning of this file:

@import "reset.less";

Files with the . css extensions are imported as usual CSS. Renaming the file to the . less
extension will guarantee that the code is processed by the compiler. Remember that a valid
CSS code is also a valid Less code. You can read more about importing files in the Importing
files with the @import directive recipe of this chapter. Instead of renaming the file to the

. less extension, you can also use the less keyword as follows:

@import (less) "reset.css";

247

www.it-ebooks.info

http://www.cssreset.com/
http://www.it-ebooks.info/

Building a Layout with Less

Importing the code as CSS without any keyword or using the inline keyword does not invoke
the compiler, and it means that your code is not reusable. Importing regular CSS also means
that the compiled CSS code contains a regular CSS @import statement, which requires an
additional and unnecessary HTTP request.

If the CSS Reset code does not exactly meet your requirements after it is imported, you will
have two choices. You can adopt the CSS Reset code itself (and maintain your own version) or
override the defaults later in your CSS, if necessary.

Although CSS Resets are very useful, they should be used with care. For instance, resetting
the form elements of a project without forms makes no sense. One should also consider the
difference between resetting and normalizing into an account. Resets mostly set the default
styles for all the elements, while normalizers only try to fix problems and retain other useful
default browser styles.

There's more...

In this section, we'll discuss using the box-sizing property of the CSS Box model, and also
about importing files with the @import directive.

Using the box-sizing property with Less

When building grids and layouts, it is useful to pay some attention to the box-sizing
property. The box-sizing property sets the CSS Box model and is used to calculate

the width and height of an element. The default value of the box-sizing property is
content -box; this model does not take borders and padding into account when calculating
dimensions. On the other hand, the border-box model calculates dimensions that include
border and padding. The difference between these two models can be easily made clear with
a simple example. Consider the following Less code:

// Box sizing
.box-sizing (@boxmodel) {
-webkit-box-sizing: @boxmodel;
-moz-box-sizing: @boxmodel;
box-sizing: @boxmodel;
}
.container
&.fit |
.box-sizing (border-box) ;
}
> div {
background-color: black;
border: 5px red solid;
width:50%;
float:left;
color:white;
padding:10px;

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

.box-sizing(inherit) ;

}
}

The compiled CSS code of the preceding Less code can be applied to the following
HTML snippet:

<div class="container"s>
<div>col 1</div>
<div>col 2</div>

</div>

<div class="container fit"s>
<div>col 3</div>
<div>col 4</div>

</div>

When you load the preceding code into your browser, it will look like what is shown in the
following screenshot:

The reference keyword used in this recipe in the @import (reference) "mixins.
less"; line of code lets the compiler process the file without any output. As you can see in
the compiled CSS code, the .color () mixin was processed (called from forms. less), but
the .thisClassShouldNOTOutput class was not compiled into the final CSS code.

The last line of code in the project. less file uses the inline keyword as @import
(inline) "not-less-compatible.css";.The inline keyword lets the compiler
include external files, but not process them. Some CSS code contains code that may not be
compatible with Less. In such cases, you can use the inline keyword to put all your CSS
code into one single file; this will reduce the number of HTTP requests that appear when you
load your page. Less compatible code can contain nonstandard CSS such as comments on
unusual or other CSS hacks. The not-less-compatible. css file in this recipe contains an
example of such a hack.

See also

» An overview of CSS hacks can be found at http://browserhacks.com/; most of
these hacks can be useful but are not compatible with Less.

249

www.it-ebooks.info

http://browserhacks.com/
http://www.it-ebooks.info/

Building a Layout with Less

Importing and organizing your Less files

When starting a new project, it is important to think about how to organize your code. The best
thing about Less is it provides the ability to reuse your code and deploy the DRY 'principle.
Your file structure should also be optimized to take full advantage of these benefits.

Getting ready

In this recipe, you will set up a flexible file and directory structure that will enable you to easily
extend and reuse your code.

Before setting up your own project, you can study the file structure of some other projects.
You can look at the Less files of the following projects:’

» Twitter' Bootstrap at GitHub at https://github.com/twbs/bootstrap
» Cardinal at GitHub at https://github.com/cbracco/cardinal

How to do it...

1. First, create the file in your directory structure, as shown in the following figure:

— boxmodel.less

—— buttons.less

—— main.less

—— mixins
buttons.less
gradients.less
vendor-prefixes.less

L — mixins.less

— project.less

— reset.less
L variables.less

2. Theproject.less file includes all the Less code, including your custom code in
main.less, as follows:

@import "variables.less";
@import "mixins.less";
@import "reset.less";
@import "boxmodel.less";
@import "buttons.less";
@import "main.less";

250

www.it-ebooks.info

https://github.com/twbs/bootstrap
https://github.com/cbracco/cardinal
http://www.it-ebooks.info/

Chapter 8

3. Thevariables.less file will contain your project' variables and allow you to edit
them in a single place. This file can contain, for instance, the following Less code:

@boxmodel: border-box;

4. Themixins.less files import other files with mixins, which are grouped by the
element type or functionality. An example of the contents of this file can be found
in the following code:

@import "gradients.less";
@import "vendor-prefixes.less";

5. The vendor-prefixes.less file should contain the box-sizing mixin,
as shown here:

// Box sizing
.box-sizing (@boxmodel) {
-webkit-box-sizing: @boxmodel;
-moz-box-sizing: @boxmodel;
box-sizing: @boxmodel;

}

You can use the file and directory structure in this recipe for more than one project.
Every project has its own main. less file. Be careful not to overwrite your customized
main. less file when updating your project (see the There's more section of this recipe).

When you choose a CSS Reset, as discussed in the Using a CSS Reset with Less recipe of this
chapter, you will only have to replace the reset . 1less file. The project variables can be set in
the variables. less file or redeclared in the main. less file.

In files such as buttons. less, you can define the CSS classes for your buttons and mixins
to build these button classes, and they can be stored in mixins/buttons.less so that you
are able to reuse them.

You should pay some special attention for the vendor prefixes mixins in the vendor-
prefixes.less file. When using mixins to add vendor prefixes, such as the .box-sizing()
mixin in this recipe, you will only have to change the mixins when your requirements or insights
change. Instead of these mixins, you can also use the autoprefixer, as described in the
Automatically prefix your code with Grunt recipe in Chapter 11, Compiling Less Real Time for
Development using Grunt. When you replace the vendor prefixes mixins with the autoprefixer,
you also have to change the mixin calls everywhere in your code. The future version of Less may
consist of built-in prefixing.

251

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

Gradient mixins are placed in a separate file called gradient . less. This file can contain
Less code, such as the one shown in the following code:

.horizontal (@start-color: #555; @end-color: #333;
@start-percent: 0%; @end-percent: 100%) {
background-image: linear-gradient (to right,
@start-color @start-percent, @end-color @end-percent) ;
background-repeat: repeat-x;
filter: e(%("progid:DXImageTransform.Microsoft.gradient
(startColorstr='%d', endColorstr='%d', GradientType=1l)",
argb (@start-color) ,argb (@end-color))) ;

}

The CSS filter function used in the preceding mixin to support horizontal gradients for older
versions of the IE browser cannot be set with the autoprefixer. The autoprefixer only provides
prefixes and doesn't add alternative syntaxes. As can be seen in the Creating background
gradients recipe of Chapter 7, Leveraging Libraries with Prebuilt Mixins, mixin libraries can
provide mixins for single line declarations of such properties.

There's more...

You have already seen that you libraries with prebuilt mixins can be easily imported. When the
library changes, you will have nothing to change in your project code, unless the changes are
not backward-compatible. In the situation where you are building or using frameworks such
as Bootstrap or Cardinal, you should also account for the possibility to update the framework
code. A project file with variables that can be edited in a single place is useful, but when this
file is part of your framework, your customizations are easily overwritten when you update

the framework. You can prevent yourself from overwriting your customization by creating

a separate file structure for customizations, which includes redeclaration of customized
project variables.

Just like CSS in Less for variables, the last declaration wins can be applied. Less also
uses lazy loading of variable, which means that variables do not have to be declared
before being used.

Consider the situation when the main project file of your framework (famework . less)
looks as follows:

@import "variables.less";
//other imports

In this case, you can create a main file (project . less), which will look as shown here:

@import "framework.less";
@import "customvariables.less";

Inside the preceding structure, variables should only be redeclared in the
customvariables.less file.

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Importing files with the @import directive

You will know already that the eimport directive in CSS can be used to import other CSS files
into your CSS code. In Less, you can use the @import directive to import the Less code from
other files. The @import directive enables you to spread your Less code over more than

one file, which gives you the opportunity to build a logical and easy-to-maintain structure

of Less files.

Getting ready

In this recipe, you will create a main project file that will import your other project files.
You need to create the following files and directories:

forms. less

mixins.less
not-less-compatible.css
project.less
variables.less

You can edit the Less files with your favorite text editor and use the command-line lessc
compiler, as described in the Installing the lessc compiler with npm recipe in Chapter 1,
Getting to Grips with the Basics of Less, to compile the project.less file.

How to do it...

1. Start with editing the project. less file and write the following content into it:

@import "variables.less";

@import (reference) "mixins.less";

@import "forms.less";

@import (inline) "not-less-compatible.css";

2. Create the variables. less file imported in the project. less file with the
following code:

@labelBackgroundColor:blue;
mixins.less:
.color (@backgroundColor) {
background-color: @backgroundColor;

253

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

color: contrast (@backgroundColor) ;
}
.thisClassShouldNOTOutput {
property: notvisible;

}

3. Create the forms. less file imported in the project . less file with the following
code:

label {
.color (@labelBackgroundColor) ;

}

not-less-compatible.css:

/* Modern browsers only (not IE 7) */
htmls>/**/body {

background-color:red;

}

4. Finally, compile the project.less file with the command-line compiler as follows:

lessc project.less

5. After running the compiler, you will find the following CSS code will be returned as
output on the console:

/* Modern browsers only (not IE 7) */
html>/**/body {background-color:red;}

label
background-color: #0000ff;
color: #ffffff;

}

In the project. less file of this recipe, you see the @eimport directives with and without
keywords. Keywords used in this recipe are the reference and line keywords. Keywords
change the way the compiler imports the file. The meaning of keywords is discussed later
on. By default, which means without a keyword, the imported file will be processed by the
Less compiler into the CSS code. The @import directive can be anywhere in your Less code.
Because Less uses lazy loading, you can call a mixin before you import it, but Less also
applies the last declaration wins rule, which means that variables can be reassigned after
you import them. When you import a mixin with the same name (and the same matching
parameters) twice, both mixins are processed by the compiler. See the Using namespacing
with prebuilt libraries recipe of Chapter 7, Leveraging Libraries with Prebuilt Mixins. Using
namespaces, also described in the Using namespaces to make your code reusable and
portable recipe of Chapter 1, Getting to Grips with the Basic of Less, prevents the equally
named mixins of different imported files from touching each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The Less eimport directive differs from the CSS eimport directive, which only puts a
reference to the file in the code. You can use the css keyword to add the CSS @import
directive to your code. When using the @import (css) "file.css"; code, file.css
is not processed by the Less compiler and is written out at the beginning of the CSS code,
as follows:

@import "file.css";

Note that the Less compiler also takes the file extensions into account. The preceding code
means that @eimport (css) "file.css"; and @import "file.css"; of the Less code
will have the same effect. In both cases, the compiler ignores the code and adds a @import
directive to the compiled CSS code. There is also a 1ess keyword that forces the compiler to
process the file contents as Less code. Files without an extension, or an extension other than
.css, are treated as Less files by the compiler. Keywords overrule the file extension, so @
import (less) "file.css"; will be processed as Less, while @import (css) "file.
less"; will be treated as CSS.

The reference keyword used in this recipe in the @import (reference) "mixins.
less"; line of code allows the compiler to process the file without any output. As you
can see in the compiled CSS code, the .color () mixin has been processed (called from
forms.less), butthe .thisClassShouldNOTOutput class was not compiled into the
final CSS code.

The last line of code in the project. less file uses the @import (inline) "not-less-
compatible.css"; keyword. The inline keyword allows the compiler to include external files,
but does not process them. Some CSS code contains code that may not be Less-compatible.
In such cases, you can use the inline keyword to put all your CSS code into one single file,
which will reduce the number of HTTP requests when loading your page. Less-compatible
code can contain nonstandard CSS, such as comments on unusual or other CSS hacks. The
not-less-compatible.css file in this recipe contains an example of such a hack.

There's more...

Beside the keywords already mentioned in the previous section, two other keywords exist.

The once keyword imports a file only once—other imports of the same file are ignored by the
compiler—in contrast to the multiple keyword, which allows importing the same file more than
once. Note that importing with the multiple keyword could generate duplicate selectors and
properties. Importing a file only once is the default behavior of the Less compiler.

According the official documentation, which can be found at http://lesscss.org/
features/#import-options, you can summarize the list of keywords for the @import
directive as follows:

» reference: This use a Less file but does not output it
» inline: This includes the source file in the output but does not process it

255

www.it-ebooks.info

http://lesscss.org/features/#import-options
http://lesscss.org/features/#import-options
http://www.it-ebooks.info/

Building a Layout with Less

» less: This treats the file as a Less file, no matter what the file extension is

» css: This treats the file as a CSS file, no matter what the file extension is

» once: This only includes the file once (this is the default behavior)

» multiple: This includes the file multiple times
You can use file paths with the @import directive. By default, the path should be relative to
the current working directory. The - -include-path option can be used to set the paths
where the compiler should look for files to import. The - -include-path option accepts a
list of path separated by colons (or semicolons on Windows). When importing Less files, the

. less extension is not required since @import "bootstrap"; will have the same meaning
as @import "bootstrap.less";.

» An overview of CSS hacks can be found at http://browserhacks.com/. Most of
these hacks can be useful but are not compatible with Less.

Building a grid with grid classes

Grids are formed by rows and columns. A grid with 12 columns can be easily adopted for
different screen sizes. In this recipe, CSS classes are used to set the width of the grid items.
There are 12 classes for a grid of 12 columns, where each class has a width that spans a
number of columns. The total items that span the columns in a row should be equal to the
total number of columns in the grid. So, when your grid has 12 columns, a row can contain,
for instance, three items that span four columns, or one item that spans one column and
one item that spans 11 columns.

Getting ready

The code used in this recipe is based on the Flexbox library, which can be found at
http://flexboxgrid.com. The Flexbox library builds a grid, leveraging the CSS3
Flexible box module and using the same naming conventions as Twitter's Bootstrap.

Though it will be interesting to inspect the compiled code, the best way to test the grid you

will construct in this recipe will be to use it in your browser. Notice that the code in this recipe
uses the official W3C syntax for flexboxes, so you should use a browser that supports this
syntax (refer to http://caniuse.com/#feat=flexbox). Also, the box-sizing
property, as described in the There's more... section of the Using CSS Reset with Less recipe
of this chapter, should be supported by your browser. In the There's more... section of this
recipe, you can read how to add support for older browsers, too. The Less code can be
compiled with the client-side 1ess. js compiler, as described in the Downloading, installing,
and integrating less.js recipe in Chapter 1, Getting to Grips with the Basic of Less, when using
the browser to inspect the result.

256

www.it-ebooks.info

http://browserhacks.com/
http://flexboxgrid.com
refer to http://caniuse.com/#feat=flexbox
http://www.it-ebooks.info/

Chapter 8

If you are not familiar with the CSS Flexible box module already, it's
M strongly recommended that you read more about it before you start this
Q recipe. An excellent article titled A Complete Guide to Flexbox can be
found at http://css-tricks.com/snippets/css/a-guide-
to-flexbox/.

How to do it...

Now, perform the following steps:

1. Firstly, create a Less file called grid. less and write the Less code shown here
into this file:

/* variables */

@half-gutter-width: 0.5rem;
@gutter-compensation: -0.5rem;
@outer-margin: 2rem;
@grid-columns: 12;

/* mixins */

.grid () {
padding-right: @outer-margin;
padding-left: @outer-margin;

}

.row() {
box-sizing: border-box;
display: flex;
flex-direction: row;
flex-wrap: wrap;
margin-right: @gutter-compensation;
margin-left: @gutter-compensation;

.make-column (@col-number)

{

.col-@{col-number} {
flex-basis: ((100% / egrid-columns) * @col-number) ;
max-width: ((100% / @grid-columns) * @col-number) ;

257

www.it-ebooks.info

http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://css-tricks.com/snippets/css/a-guide-to-flexbox/
http://www.it-ebooks.info/

Building a Layout with Less

258

}

.make-cols (@col-number: @grid-columns) when (@col-number > 0)
.make-cols ((@col-number - 1));
.make-column (@col-number) ;

1
/* the grid */

.grid {
.grid() ;

}

.row
.row() ;

}

[class®="col-"], [class*=" col-"] {
box-sizing: border-box;
display: flex;
flex-direction: column;
flex-grow: O0;
flex-shrink: 0;
padding-right: @half-gutter-width;
padding-left: @half-gutter-width;
border: 2px solid tomato;

.make-cols () ;

Then, create an HTML file named index.html and include the client-side 1less.js
compiler and the grid.less file into it by adding the following lines of HTML code
to the head section:

<link rel="stylesheet/less" type="text/css"
href="less/grid.less">

<script src="js/less.js" type="text/javascript"s></scripts>

Write the following snippet of HTML code into the body of the index.html file to
make the grid visible in your browser:

<div class="grid"s>
<div class="row">

<div class="col-12"> </div>
</div>

<div class="row">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

<div class="col-6"> </div>
<div class="col-6"> </div>
</div>
<div class="row">
<div class="col-4"> </div>
<div class="col-4"> </div>
<div class="col-4"> </div>
</divs>
</div>

3. Finally, load the index.html file in your browser and you will find that it will look as
shown in the following screenshot:

Firstly, notice that the Less code in the first step of this recipe could better be split up over
different files, as described in the Importing and organizing your Less files recipe of this
chapter. You can create separate files for variables, mixins, and even the grid code.

As already mentioned, the code used in this recipe is inspired by the flexbox grid library. The
code has been simplified to keep the recipe clear and understandable. The flexbox grid library
is not built with Less at the time of writing this book; hopefully, it has been done by the time
you are reading this book. If no official Less version for the flexbox library is available yet, you
can find one at https://github.com/bassjobsen/flexboxgrid.

The .make-cols () mixin is probably the most interesting part of the code in this recipe. This
mixin calls itself recursively; finally, each recursion step calls the .make-column () mixin
that creates a CSS class for a grid item. You can read more about recursions in Less in the
Building loops leveraging mixins guards recipe of Chapter 6, Advanced Less Coding.

The general properties for the col-* classes are set with the [class®="col-"],
[class*=" col-"] selectors. These attribute selectors reduce the size of the CSS or make
an additional base class unnecessary. Some developers avoid attribute selectors because
they have a negative influence on the performance. Bottlenecks in CSS performance are
tested and described at http://benfrain.com/css-performance-revisited-
selectors-bloat-expensive-styles/. The partial attribute selector performance

is indeed worse for Microsoft's Internet Explorer web browser. Also note that the overall
performance of the CSS code never depends on a single selector, and calculations are
complex. When optimizing your CSS code, removing unused selectors will have a more
significant effect on the performance.

259

www.it-ebooks.info

https://github.com/bassjobsen/flexboxgrid
http://benfrain.com/css-performance-revisited-selectors-bloat-expensive-styles/
http://benfrain.com/css-performance-revisited-selectors-bloat-expensive-styles/
http://www.it-ebooks.info/

Building a Layout with Less

If you resize the browser window when looking at the results of this recipe, you will find that
the flexbox grid already acts in a fluid manner. When the size of the grid changes, the grid
items resize too and the aspect ratios are kept intact. To create a responsive design, you
probably also want to change the size of your grid items depending on the screen size. In the
Creating responsive grids recipe of this chapter, you will learn how to use CSS media queries
to create a responsive grid.

The Less code in this recipe does not add browser prefixes for properties to support older
browsers. Of course, you can write your own set of mixins to add these vendor prefixes to your
flexbox and content -box properties, but a better alternative in this situation seems to use
a mixin library with support for the CSS3 flexbox module. In the Building a layout with the
CSS3 flexbox module recipe of Chapter 7, Leveraging Libraries with Prebuilt Mixins, you can
read how to create cross-browser flexbox layout leveraging the Less Hat library.

Alternatively, you can use the autoprefixer, which can be found at https://github.com/
postcss/autoprefixer/. In contrast to Less, autoprefixer is a postprocessor for your CSS.

You can use the Less autoprefix plugin or read how to integrate the autoprefixer into your grunt
build process in the Automatic prefixing your code with Grunt recipe in Chapter 1, Getting to
Grips with the Basics of Less. The autoprefixer checks the Can | Use database.

The -prefix-free project, which can be found at http://leaverou.github.io/
prefixfree/, enables you to use unprefixed CSS properties. Because the -prefix-free project
code runs at the client side, just like the 1ess. js compiler, some people claim that you
should use it for production. Client-side code has a negative effect on end-user performance
in many cases.

On the other hand, Lea Vera, the author of the -prefix-free project says, "-prefix-free detects
which features need a prefix and only adds it if needed". With the -prefix-free library, you can
use smaller CSS files without any prefix and you don't have to update your code when some
new browser becomes available.

There are also prefix plugins available for some text editors.

» An online service that prefixes your CSS code can be found at http://prefixr.
com/.

» You can read an interview of Lea Vera, the author of the -prefix-free project, by Chris
Coyier of CSS-tricks.com at http://css-tricks.com/five-questions-with-
lea-verou/.

» The Can | Use database can be found at http://caniuse.com/.

260

www.it-ebooks.info

https://github.com/postcss/autoprefixer/
https://github.com/postcss/autoprefixer/
http://leaverou.github.io/prefixfree/
http://leaverou.github.io/prefixfree/
http://prefixr.com/
http://prefixr.com/
http://css-tricks.com/five-questions-with-lea-verou/
http://css-tricks.com/five-questions-with-lea-verou/
http://caniuse.com/
http://www.it-ebooks.info/

Chapter 8

Creating responsive grids

CSS media queries make it possible to only apply style rules when a certain condition is true.
For responsive designs, the screen width can be used as a condition to evaluate the media
queries. A typical media query looks like the following:

@media (min-width: 768px)
//style rules

}

The style rules inside the preceding media query will be only applied when the screen's width
is equal to or greater than 768 pixels.

Getting ready

In this recipe, you will have to use the code from the Building a grid with grid classes recipe of
this chapter. You will use the command-line 1essc compiler to create the CSS grid classes for
a mobile-first responsive grid.

How to do it...

Perform the following steps:

1. Copythe grid. less file from the first step of the Building a grid with grid classes
recipe of this chapter into a new . less file. Set the egrid-columns variable to 4
and change the .make-cols () and .make-column () mixins by adding a egrid
parameter. Finally, the .make-cols () and .make-column () mixins should look
like the following;:

.make-column (@grid; @col-number)

{

.col-e@{grid}-@{col-number}
flex-basis: ((100% / @grid-columns) * @col-number) ;
max-width: ((100% / e@grid-columns) * @col-number) ;

.make-cols (@grid; @col-number: @grid-columns) when (@col-number >
0) {

.make-cols (@grid; (@col-number - 1)) ;

.make-column (@grid; @col-number) ;

}

261

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

2. Secondly, create a project. less file that will contain the following Less code:

@import "grid.less";

@basefontsize: 16;

@sm-breakpoint: unit ((768px / @basefontsize), em);
.make-cols (xs) ;

@media (min-width: @sm-breakpoint)
.make-cols (sm) ;

}

Then, compile the project. less file by running the following command in
the console:

lessc project.less

In the next code, you will find the part of the compiled CSS code that contains the
styles for the columns of the grid. The other styles for the grid, including flexbox
properties, are not shown:

.col-xs-1 {
flex-basis: 25%;
max-width: 25%;

}

.col-xs-2 {
flex-basis: 50%;
max-width: 50

}

.col-xs-3 {
flex-basis: 7
max-width: 75%;

}

.col-xs-4 {
flex-basis: 100%;
max-width: 100%;

}

@emedia (min-width: 48em) {
.col-sm-1 {

flex-basis: 25%;
max-width: 25%;

}

.col-sm-2 {
flex-basis: 50%;
max-width: 50%;

}

.col-sm-3 {
flex-basis: 75%;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

max-width: 75%;

}

.col-sm-4 {
flex-basis: 100%;
max-width: 100%;

}

In this recipe, you created two grids — the xs (extra small) grid with the col-xs-* classes and
the sm (small) grid with the col-sm-* classes for screen sizes wider than 40 em. Notice that
the breakpoint has been set in the em unit instead of pixels. The em units let the media queries
appropriately respond to a change in font size such as when the user magnifies the page.

You can read more about using the em unit in media queries in the Building an alternative
for fluid grids with Frameless recipe of Chapter 7, Leveraging Libraries with Prebuilt Mixins.

To make the code act in a mobile-first manner, the .make-cols (xs) ; is not wrapped in
any media query. You can also use this strategy for other style rules. Start with the default
style rules without media queries and add more or other style rules for wider screen sizes
with media queries. The mobile-first strategy refers to earlier times when mobile browsers
did not support JavaScript or the full range of CSS (or CSS3) rules. This strategy is still true,
and the browser loads the default style rules first. Other style rules are loaded and applied if
the browser supports them. The mobile-first strategy also prevents the browser from loading
features and style rules that are never used in the situation where bandwidth and processing
power are limited.

» Aninsight into responsive design fundamentals can be found at https://
developers.google.com/web/fundamentals/layouts/.

» Read more about the mobile-first strategy at http://www.uxmatters.com/mt/
archives/2012/03/mobile-first-what-does-it-mean.php.

263

www.it-ebooks.info

https://developers.google.com/web/fundamentals/layouts/
https://developers.google.com/web/fundamentals/layouts/
http://www.uxmatters.com/mt/archives/2012/03/mobile-first-what-does-it-mean.php
http://www.uxmatters.com/mt/archives/2012/03/mobile-first-what-does-it-mean.php
http://www.it-ebooks.info/

Building a Layout with Less

Building a semantic grid with mixins

In the Building a grid with grid classes recipe of this chapter, you can read how to build a grid
with CSS grid classes. Using these grid classes on the div elements breaks the semantic
nature of HTMLD5. In this recipe, you will learn how to keep the HTML5 semantic tags intact
when deploying a grid.

Getting ready

In this recipe, you will have to use the code from the Building a grid with grid classes
and Creating responsive grids recipes of this chapter. You will use the command-line
lessc compiler.

How to do it...

You need to perform the following steps:

1. Leveraging the Less code from the Building a grid with grid classes and Creating
responsive grids recipes, you can create a file called grid. less that will contain
the following Less code:

@grid-columns: 4;
@basefontsize: 16px;
@sm-breakpoint: unit ((768px / @basefontsize), em);

.set-span (@col-number) {
flex-basis: ((100% / @grid-columns) * @col-number) ;
max-width: ((100% / e@grid-columns) * @col-number) ;

}

.griditem(@span; xs)
.set-span(@span) ;

}

.griditem(@span; sm)
@media (min-width: @sm-breakpoint)
.set-span(@span) ;
}

}

article {
.griditem(4,xs) ;
.griditem(2, sm) ;

}

264

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Then, compile the Less code from the first step using the command-line 1lessc
compiler. Run the following command in your console:

lessc grid.less

Find that the compiled CSS output in the console will look like the following:

article {
flex-basis: 100%;
max-width: 100%;
}
@media (min-width: 48em) {
article {
flex-basis: 50%;
max-width: 50%;

}

The Less compiler does not group equal media queries; this is why the loop in the Building a
grid with grid classes recipe was called inside a media query. When each iteration of the loop
creates a class that includes the corresponding media query, the compiled CSS will become
inefficient and contain many unnecessary media queries. The result of the preceding code is
that the mixins of the flexbox grid library do not define media queries. Moreover, the original
.make-column () mixin always creates a class.

To solve the issue in the preceding code, the .make-column () mixin has been split up into
two new mixins as follows:

.set-span (@col-number) {
flex-basis: ((100% / @grid-columns) * @col-number) ;
max-width: ((100% / @grid-columns) * @col-number) ;

.make-column (@class; @col-number)

.col-e{class}-@{col-number} {
.set-span (@col-number) ;

}

265

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

Now you can call the .set-span () mixin to set the flexbox properties without defining

a class. To solve the media query issue, a .griditem () helper mixin has been created.

The .griditem () helper mixin sets the required media query based on the @span input
parameter and the already defined @* -breakpoint variables. Notice that media queries are
still not grouped, but the number of media queries will be limited when you have to generate
all the grid classes.

Building your grid with responsive mixins instead of CSS classes helps you to write more
semantic HTML code. Also notice that grid items still should be wrapped in a row, and a row in
turn should have a grid as its parent. The need for these wrappers to set the flexbox properties
will mean you can't build a pure semantic layout.

The semantic.gs grid system enables you to build pure semantic grids. You can read more
about semantic.gs in the Building semantic grids with semantic.gs recipe of Chapter 7,
Leveraging Libraries with Prebuilt Mixins.

See also

» More information on the Semantic Grid System can also be found at
http://semantic.gs/.

» Onthe HTML5 doctor website at http://html5doctor. com/, you will find an
easy-to-understand HTML5 sectioning element flowchart to help you get to grips with
some of the semantic elements in HTML5.

Applying the flexbox grid on your design

In this recipe, you will learn how to build a layout using the flexbox library.

Getting ready

The flexbox grid library can be found at http://flexboxgrid.com/. The Less files for
this library are not yet available at the time of writing this book, but you can download the
Less code to build the grid from https://github.com/bassjobsen/flexboxgrid.
You can see how the layout is built in this recipe in your browser, and the Less code can be
compiled in your browser too, leveraging the client-side 1ess.js compiler.

266

www.it-ebooks.info

http://semantic.gs/
http://html5doctor.com/
https://github.com/bassjobsen/flexboxgrid
http://flexboxgrid.com/
http://www.it-ebooks.info/

Chapter 8

How to do it...

You need to perform the following steps:

1. Download the flexbox grid library from https://github.com/bassjobsen/
flexboxgrid and unzip this file into your working directory.

2. Create an index.html file and write the following HTML code into it:

<!DOCTYPE html>
<html>
<head>
<title>Gradients with Less Elements</title>
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<link rel="stylesheet/less" type="text/css"
href="nested.less">
<script src="js/less.min.js"
type="text/javascript"></scripts>
</head>
<body>
<div class="grid"s>
<header class="row">
<hl class="col-xs-12">Flexbox Grid System</hl>
</header>
<div class="row">
<!-- Main Body -->
<section class="col-xs-12 col-sm-9">
<ul class="row blocks">
<li class="col-xs-12 col-sm-6 col-md-4">1</1i>
<li class="col-xs-12 col-sm-6 col-md-4">2</1i>
<li class="col-xs-12 col-sm-6 col-md-4">3</1i>
<li class="col-xs-12 col-sm-6 col-md-4">4</1i>
<li class="col-xs-12 col-sm-6 col-md-4">5</1i>
<li class="col-xs-12 col-sm-6 col-md-4">6</1i>
<li class="col-xs-12 col-sm-6 col-md-4">7</1i>
<li class="col-xs-12 col-sm-6 col-md-4">8</1i>
<li class="col-xs-12 col-sm-6 col-md-4">9</1i>

</section>

<aside class="col-xs-12 col-sm-3">
<h2>Sidebar</h2>
<navs

<ul class="row">
<li class="col-xs-12">Item 1l

267

www.it-ebooks.info

https://github.com/bassjobsen/flexboxgrid
https://github.com/bassjobsen/flexboxgrid
http://www.it-ebooks.info/

Building a Layout with Less

<1li class="col-xs-12">Item 2</1li>
<1li class="col-xs-12">Item 3

</navs>
</aside>
</div>
</body>
</html>

3. Then, create the nested. less file that should be included in the index.html
file created in the first step. The nested. less file should contain the following
Less code:

@import "flexboxgrid/less/flexboxgrid.less";
header {

background-color: black;

color:white;

}

ul.blocks
padding: 0;

1i {
background-color: darkgreen;
color: white;
height: 100px;
padding: 10px;
font-size: 3em;
border: 2px solid;
}

}

4. Finally, load the index.html file in your browser and ensure that your layout looks
like what is shown in the following screenshot:

Flexbox Grid System

Also, resize your browser window to see the effect of the media queries.

268

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The flexbox grid library defines different grids for different screen sizes. For each grid,
there are a set of classes that set the column span for the grid items. The naming of the
grid classes is equal to that of Twitter's Bootstrap 3 (see Chapter 9, Using Twitter Bootstrap
with Less of this book).

This recipe also shows you that a grid row can be easily nested. The <ul class="row
blocks"> element defines a nested row. In the small (sm), medium (md), and large (1g)
grids, this nested row has a 9 divided by 12 equals 75 percent of the screen width due
to the col-sm-9 class of its parent.

In the Building a semantic grid with mixins recipe of this chapter, you can read how to use
mixins to set the properties of a grid item. Leveraging the mixins from this recipe, which are
not included in the Less code you have downloaded, you could also use the following Less
code to style the block structure:

.row.blocks 1i {
.griditem(12,xs);
.griditem(6,sm) ;
.griditem(4,md) ;

}

The compiled CSS of the preceding Less code will make the repeatedly usage of the
col-xs-12 col-sm-6 and col-md-4 classes in the navigation list unnecessary,
which will help you to keep your HTML clean and readable.

There's more...

As already mentioned, the Less code imported using the @import "flexboxgrid/less/
flexboxgrid.less"; declaration only contains the official and unprefixed W3C syntax for
the flexbox properties. You should use the autoprefixer as described in the Automatically prefix
your code with Grunt recipe of Chapter 11, Compiling Less Real Time for Development Using
Grunt, to prefix your code; you can do this by performing the following steps, which run the
Grunt build process of the flexbox grid library:

1. Copythe nested. less file to the flexboxgrid/less/ folder.

2. Delete the first @import "flexboxgrid/less/flexboxgrid.less"; line of
code from the copied nested. less file.

3. Write the following line of code at the end of the flexboxgrid. less file:

@import "flexboxgrid/less/nested.less";

4. Run the following command in your console:

grunt

269

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

5. Finally, use the generated css/flexboxgrid.min.css file in the index.html file
instead of including the nested.less file and the 1ess.js compiler.

Adding the browser prefixes, as described in the preceding steps, do not add flexbox support
for older browsers, such as Internet Explorer below version 9. For older browsers that don't
support flexbox, you can create a fallback. Tools such as Modernizr, which can be found
athttp://modernizr.com/, can be used to check for flexbox support. In the Reusing
Bootstrap's grid recipe of Chapter 9, Using Bootstrap with Less, you can read how to compile
Bootstrap's grid into a single file. Because the flexbox grid library uses the same naming
conventions for grid classes as that of Bootstrap, you could also consider using Bootstrap's
grid as a fallback for Internet Explorer 8.

» Read more about conditional style sheets by Paul Irish at http://www.
paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-
neither/.

Integrating a navigation menu in the layout

In this recipe, you will learn how to integrate a menu into a layout. Both the menu and the
layout are built with the CSS3 Flexible box module.

Getting ready

In the Building a layout with the CSS3 flexbox module recipe of Chapter 7, Leveraging
Libraries with Prebuilt Mixins, you can read how to build a responsive navigation menu with
the CSS3 Flexible box module. In this recipe, you will integrate this navigation menu in the
example layout created in the Applying the flexbox grid on your design recipe of this chapter.
Reading the preceding recipes mentioned in this chapter before you start is recommended.

Use a flex-box-ready browser to inspect the results of this recipe. You can check for support for
the flexbox module of your browser at http://caniuse.com/#feat=flexbox. The Less
code of this recipe can be compiled on the client side in your browser, leveraging the less.
js compiler.

270

www.it-ebooks.info

http://modernizr.com/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://www.paulirish.com/2008/conditional-stylesheets-vs-css-hacks-answer-neither/
http://caniuse.com/#feat=flexbox
http://www.it-ebooks.info/

Chapter 8

How to do it...

You need to perform the following steps:

1. Start with copying the files of the Applying the flexbox grid on your design recipe
of this chapter.

2. Thencreate a navigation.less file and write the following Less code into it:

nav#mainmenu > ul
list-style: none;
margin: 0;
padding: 0;
background: purple;
display: flex;
flex-direction: column;
@media all and (min-width: 48em) {
justify-content: space-around;
flex-direction: row;
}
@media all and (min-width: 62em) {
justify-content: flex-end;
}
1i {
padding: 20px;
a {
color: white;
&:hover({
color: red;

}
}
}
}

3. Thirdly, you have to create another Less file called project. less. This project.
less file should contain the following Less code:
@import "nested.less";

//from the Applying the Flexbox grid on your design recipe
@import '"navigation.less"; //from step 2

271

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

4. Openthe index.html file you copied from the Applying the flexbox grid on your
design recipe. Write the following HTML code between the <header> and <div
class="row" > tags:

<nav id="mainmenu" class="row" role="navigation"s>
<ul class="col-xs-12">
<lis>Menu item 1l</1i>
Menu item 2 (long text)
<lis>Three
</uls

</navs>

5. Don't forget to link the 1ess.js compiler and the project . less file from the third
step in the head section of the index . html file, as follows:
<link rel="stylesheet/less" type="text/css"
href="project.less">
<script src="js/less.js" type="text/javascript"></script>

6. Finally, save the modified index.html file and load it into your browser. The result
should look similar to what is shown in the following screenshot:

Flexbox Grid System

Meny ftem 1 M 172 (lon
o
Item 1

Item 2

P

The navigation menu from the Building a layout with the CSS3 flexbox module recipe
of Chapter 7, Leveraging Libraries with Prebuilt Mixins, was rewritten to fit the flexbox grid
layout. The .row and .col-xs-12 classes were added to the HTML code.

272

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Besides the flexbox syntax, as described in the following section, the Less code for the
navigation menu in second step has undergone a number of small changes. Of course, the
main selector has been changed as well. Also, see the em values inside the media query
condition. Notice that both the navigation menu's and the layout's Less code now define the
same values. For a better integration, these breakpoints should be declared as variables, too.

There's more...

Notice that the Less code to construct the navigation menu in the second step of this recipe
differs from the Less code used in the Building a layout with the CSS3 flexbox module
recipe. Instead of Less's Hat flexbox mixins, the official W3C syntax was used.

The flexbox grid library uses the autoprefixer to prefix the compiled CSS code.

In Chapter 7, Leveraging Libraries with Prebuilt Mixins, of this book, you can read more about
using mixin libraries. If you're using Less Hat already, rewrite this code instead of using the
autoprefixer. If you try to use both, you may get some odd results and code prefixed in two
different ways.

Alternatively, you can compile the Less code with the command-line compiler and the
Less autoprefix plugin, too.

» You can read more about flexbox in the CSS specifications at http://www.w3.org/
TR/css3-flexbox/.

» The Less autoprefix plugin can be found at https://github.com/less/less-
plugin-autoprefix.

Repositioning your content

The CSS3 flexbox module enables you to reposition your content with the position
property. This means that you can reorder the visual position of a child item of flexbox
without the need to change you source's HTML code. Besides the position property, the
flex-direction property can also be set to column-reverse or row-reverse to
reverse the position of all child items.

In this recipe, you will learn how to do this repositioning by leveraging the flexbox grid library.

273

www.it-ebooks.info

http://www.w3.org/TR/css3-flexbox/
http://www.w3.org/TR/css3-flexbox/
https://github.com/less/less-plugin-autoprefix
https://github.com/less/less-plugin-autoprefix
http://www.it-ebooks.info/

Building a Layout with Less

Getting ready

You can download the Less code to build the flexbox grid library from https://github.com/
bassjobsen/flexboxgrid. In this recipe, you will reuse the Less and HTML code from the
Integrating a navigation menu in the layout recipe of this chapter. The result can be easily seen
in your browser, so use the client-side less. js compiler to compile the Less code.

How to do it...

Now, perform the following steps:

1. Copy the HTML and Less files from the Integrating a navigation menu in the layout
recipe of this chapter.

2. Open the copied project. less file and write the following Less code at the end of
this file:

@media all and (min-width: 62em)
.row.blocks
.row-reverse () ;

}
}

3. Then, open the index.html file in your text editor and add the first-1g class to
the adjacent element that represents the sidebar of the layout. The adjacent element
should now look like the following;:

<aside class="col-xs-12 col-sm-3 first-1g">

4. Finally, open the modified and saved index.html file in your browser and ensure
that it looks like the following:

Flexbox Grid System

Sidebar

Item 1
Item 2
Item 3

274

www.it-ebooks.info

https://github.com/bassjobsen/flexboxgrid
https://github.com/bassjobsen/flexboxgrid
http://www.it-ebooks.info/

Chapter 8

Y . . .
‘Q Resize your browser's window or use the zoom function on your browser

to see what happens on smaller screen sizes.

On screens wider than 62 em (approximately 992 pixels), the sidebar moves to the left side

of the layout. The . row-reverse () mixin sets the CSS3 flex-direction property to the
row-reverse value. The row-reverse value does what its name says; it reverts all the items
in a flexbox. Besides the row-reverse and col -reverse values for the flex-direction
property, you can also set the position of an item in the flexbox with the order property.

The order property accepts integers as values; by default, order is set to 0. When the

text direction has been set to left to right (Itr), the items with the lowest order values are
positioned on the left-hand side of items with a higher order value. When the order value
of two items are equal, the items are positioned as declared in the HTML. The . first-*
classes have an order property with the value -1 assigned. As all the other items have their
order property set to 0, by default, items with . first-* class become the first item in the
flexbox. So, the . last-* classes set the order to 1, with all the other items possessing an
order of 0; this will move the items to the end of the flexbox.

Besides the position classes for items in flexbox, the flexbox grid library also offers classes to
set the position of the content inside a flexbox item itself. These classes include classes to
center the content or align it.

The .center-* classes of course centers the content. You should replace * with the
shorthand of the grid. You can test it by adding the .center-1g class to the 11 elements in
the list of blocks, as follows:

<li class="col-xs-12 col-sm-6 col-md-4 center-1lg">1l
<li class="col-xs-12 col-sm-6 col-md-4 center-1lg">2

Notice that if you add the . center-xs class instead of the . center-1g class, this will
center the content for all the grids, and so the . center-md class will center the content on
medium (md) or large (1g) grids. On the other hand, if you want to center the content only on
the medium grid, you will have to add both the .center-md and .start-1g classes. You
don't explicitly need to set the . start-xs class because flex-start is the default value
for the justify-content property.

275

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Layout with Less

The .start-* and .end-* classes also set the text-align property to start and end,
respectively. The start and end values for the text-align property are part of the Working
Draft (WD) W3C syntax for CSS3 at the time of writing this book (more information can be
found at http://dev.w3.org/csswg/css-text/#text-align-property). These
new property values make bidirectional text support easier; you can read more about
bidirectional text support in the Creating bidirectional styling without code duplication
recipe of Chapter 7, Leveraging Libraries with Prebuilt Mixins.

» The official website of the flexbox grid library can be found at
http://flexboxgrid.com/.

» The unofficial Less version of the flexbox grid library can be found at
https://github.com/bassjobsen/flexboxgrid.

» Read more about the renewed CSS3 text-align property at
https://developer.mozilla.org/en-US/docs/Web/CSS/text-align.

276

www.it-ebooks.info

http://dev.w3.org/csswg/css-text/#text-align-property
https://github.com/bassjobsen/flexboxgrid
https://developer.mozilla.org/en-US/docs/Web/CSS/text-align
http://flexboxgrid.com/
http://www.it-ebooks.info/

Using Bootstrap
with Less

In this chapter, you will learn the following topics:

» Downloading and installing Bootstrap

» Customizing Bootstrap with variables

» Making custom buttons

» Making custom panels

» Making custom navigation bars

» Extending components using :extend

» Reusing Bootstrap's grid

» Using Bootstrap classes and mixins

» Extending Bootstrap with your own mixins

» Making custom color schemes with 1pxdeep

» Autoprefixing Bootstrap's CSS

Introduction

Twitter's Bootstrap, or Bootstrap for short, is the most popular HTML, CSS, and JavaScript
framework to develop responsive, mobile-first projects on the Web.

You can use Bootstrap to build responsive websites and applications. This framework helps
you to develop faster and more efficient applications using proven CSS code and components.
Bootstrap uses a responsive grid with 12 columns and many other reusable components.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Bootstrap with Less

In this chapter, you will learn more about Bootstrap's CSS. It is built with the Less
preprocessor and Grunt. Using Less as a preprocessor makes Bootstrap's code reusable
and extendable. In this chapter, you will learn how to customize and extend Bootstrap by
leveraging Less.

Some of Bootstrap's components require JavaScript; Bootstrap ships with jQuery plugins for
these components. Configuring and extending these plugins is out of the scope of this book.

The code used for the recipes in this chapter is based on version 3 of Bootstrap. Version 4
of Bootstrap was expected to be released during 2015. Of course, version 4 will differ from
version 3, but many new features and changes, such as splitting up Less files and using the
autoprefixer, are already present since version 3.2, too. Learning and understanding how to
customize Bootstrap by leveraging Less will also help you to do the same with version 4.

Downloading and installing Bootstrap

In this recipe, you will learn how to install Bootstrap and start your first project.

Getting ready

You can download the required files from http://getbootstrap.com/getting-
started/#download. Choose the source version at this page, which includes the Less
source files, too.

For this recipe, you should have Node.js and Grunt installed on your system. You can read how
to install Node.js and the Node.js Package Manager in the Installing Node and Grunt recipe in
Chapter 11, Compiling Less Real Time for Development Using Grunt.

How to do it...

You need to perform the following steps:

1. Download the ZIP archive that contains the Bootstrap source files and unzip this file
into your working directory. Alternatively, run the following command in your console:

npm install bootstrap

2. Then, run this command in your console:

npm install

3. Now, you can compile Bootstrap by running this command:
grunt dist

278

www.it-ebooks.info

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Chapter 9

4. The compiled CSS code can be used in your HTML by adding the following line
of code:

<link rel="stylesheet" type="text/css" href="dist/bootstrap.css">

The grunt dist command invokes the grunt -contrib-1less task, among others. The
grunt-contrib-less task compiles the Less files from the 1ess directory into CSS. The
compiled CSS code will be saved in the dist /bootstrap.css file, and a minified copy of
this code will be saved in the dist /bootstrap.min.css file.

Since version 3.2 of Bootstrap, the build process also runs the autoprefixer postprocessor.

There's more...

You can also install Bootstrap with Bower by running the following command:

bower install bootstrap
Bower is a package manager that is optimized for frontend development.

The Grunt task not only compiles the Less code, but also bundles the required JavaScript
plugins. Bootstrap components such as the navigation bar will not work without these plugins.
Also, notice that JavaScript plugins depend on jQuery.

See also

» The official Bootstrap website can be found at http://getbootstrap.com
» More information on Node.js can be found at http://nodejs.org/
» Read more about Bower at http://bower.io/

» Read more about Grunt tasks in Chapter 11, Compiling Less Real Time for
Development Using Grunt.

279

www.it-ebooks.info

http://getbootstrap.com
http://nodejs.org/
http://bower.io/
http://www.it-ebooks.info/

Using Bootstrap with Less

Customizing Bootstrap with variables

In the 1ess directory of your Bootstrap installation, you will find the variables. less file.
The variables. less file is the sole place to edit and customize Bootstrap.

Getting ready

Download and install Bootstrap as described in the Downloading and installing Bootstrap
recipe of this chapter. The Less files are compiled by leveraging Grunt.

How to do it...

You need to do the following;:

1. Create an index.html file that loads the dist/css/bootstrap.css file
from your Bootstrap installation and contains the HTML code similar to what is
shown here:

<!DOCTYPE html>

<html>

<head>

<title>Bootstrap's Buttons</title>

<link rel="stylesheet" type="text/css"
href="bootstrap-master/dist/css/bootstrap.css">

</head>
<body>

<!-- Standard button -->

<button type="button"
class="btn btn-default"sDefault</button>

<!-- Provides extra visual weight and identifies the primary
action in a set of buttons -->

<button type="button"
class="btn btn-primary">Primary</buttons>

<!-- Indicates a successful or positive action -->

<button type="button"
class="btn btn-success">Success</button>

<!-- Contextual button for informational alert messages -->
<button type="button" class="btn btn-info">Info</buttons>

280

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<!-- Indicates caution should be taken with this action -->

<button type="button"
class="btn btn-warning">Warning</buttons>

<!-- Indicates a dangerous or potentially negative action -->

<button type="button"
class="btn btn-danger">Danger</buttons>

<!-- Deemphasize a button by making it look like a link while
maintaining button behavior -->

<button type="button"
class="btn btn-link"s>Link</buttons>

</body>
</html>

Load the index.html file from the first step in your browser, and it will look like
what is shown in the following screenshot:

Then, open the less/variables. less file with a text editor. Now, change the
brand color variables. After you make the changes, these variables should have
the following values assigned to them:

@brand-primary: orchid;
@brand-success: palegoldenrod;
@brand-info: olive;
@brand-warning: turquoise;
@brand-danger: thistle;

Run the following command in your console:
grunt dist

Finally, reload the index.html file in your browser and you will find that the
button now looks like what is shown in the following screenshot:

281

www.it-ebooks.info

http://www.it-ebooks.info/

Using Bootstrap with Less

All the colors that define Bootstrap's look and feel are declared in the variables. less file.
Other Bootstrap Less code uses these variables. As you By changing the default color values,
you will influence all the code, including the buttons, as you can see in this recipe.

There's more...

When you directly edit the original variables.less file, your customizations can be
overwritten when upgrading Bootstrap.

One way to solve the problem shown in the preceding code is to create a separated file

that will contain your customized variables. This file should be loaded after the original
variables.less file. Because of the last declaration wins rule used by Less, all the

variables in the code will use the value you assigned in the custom file instead of the value
assigned in the original code. You can read more about Less variables in the Declaring variables
with Less for commonly used values recipe in Chapter 1, Getting to Grips with the Basic of Less.

In a situation where you need to create a new file for your custom variables, your main
project can look like the following code:

@import "bootstrap.less";
@import "customvariables.less"

Note that since Bootstrap 3.2, the autoprefixer postprocessor has been added to the default
build process of Bootstrap. The autoprefixer postprocessor was added to automatically add
vendor prefixes to the CSS properties. Although some kind of backward compatibility for
Bootstrap 3 was guaranteed, there is a risk that not all your properties will be prefixed well when
you do not run the autoprefixer postprocessor. Compiling Bootstrap or the project file we just
discussed with the command-line 1essc compiler does not run the autoprefixer postprocessor.

The autoprefixing problem can be solved by using the default build process for your
modified code. Add the @import "customvariables.less" line of code to the original
bootstrap.less file after the @import "variables.less" line of code. Alternatively,
change the Grunt . js file so that it compiles your new project file instead of the original
bootstrap.less file. You should repeat both these solutions each time you update your
Bootstrap source code. You can run the following command in your console to compile
Bootstrap after the preceding changes take place:

grunt dist

Running the autoprefixer postprocessor with Grunt is described in the Automatically prefix
your code with Grunt recipe in Chapter 11, Compiling Less Real Time for Development Using
Grunt, and you can read more about vendor prefixes in the Using mixins to set properties
recipe in Chapter 3, Using Variables and Mixins.

282

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

See also

» On the Bootstrap website, you can also find a customizer. This customizer allows
you to set Bootstrap's variables and download a customized copy of Bootstrap.
Notice that the copies are built with this customizer to only include the CSS and
JavaScript files; Less files are not included. You can find Bootstrap's customizer
athttp://getbootstrap.com/customize/.

Making custom buttons

In the Customizing Bootstrap with variables recipe in this chapter, you can read how to change
Bootstrap's buttons by setting the brand color variables. In this recipe, you will learn how to
extend Bootstrap with one or more custom buttons by leveraging Less.

Getting ready

This recipe requires Bootstrap's source files. You can download these from
http://getbootstrap.com/getting-started/#download. To recompile
Bootstrap, your system should have Grunt up and running. Read more about Grunt in
Chapter 11, Compiling Less Real time for Development Using Grunt. You can edit the
source files with a text editor.

How to do it...

You need to perform the following steps:
1. Download and unzip the source files into your working directory from
http://getbootstrap.com/getting-started/#download

2. Openthe less/bootstrap.less file and write the following lines of Less code at
the end of this file:

.btn-custom
.button-variant (white; darkblue; green);

}
3. Then, recompile Bootstrap's CSS by running the following command in your console:
grunt dist

4. Now, you can include the newly generated CSS code into an HTML file with the
following line of code:

<link rel="stylesheet" type="text/css"
href="bootstrap-master/dist/css/bootstrap.css">

283

www.it-ebooks.info

http://getbootstrap.com/customize/
http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Using Bootstrap with Less

The HTML file should also contain the following snippet of HTML code:
<button class="btn btn-custom">Custom button</buttons

5. Finally, load the HTML file from the fourth step into your browser and you will find
that it looks like what is shown in the following screenshot:

Custom button

Bootstrap's buttons have two CSS classes—a base class that sets the default button
properties and a second class that provides buttons' styles, such as colors.

To add a custom button, you can generate a new style class with the .button-variant ()
mixin and reuse the base class. The .button-variant () mixin has three arguments. The
first argument defines the font color, the second argument defines the background color,
and the third argument defines the border color.

Bootstrap prefers the usage of base classes over the [class®="btn-"], [class*="
btn-"] attribute selectors because of performance issues in some browsers.

In addition, to the already mentioned base and style classes, Bootstrap provides size classes
for the button. You can add the .btn-1g, .btn-smor .btn-xs classes to your HTML code to
give your button the desired size. To use the Bootstrap button in your non-Bootstrap projects,
you can use the following Less code:

@import "bootstrap-master/less/variables.less";

@import "bootstrap-master/less/mixins/vendor-prefixes.less";
@import "bootstrap-master/less/mixins/tab-focus.less";

@import "bootstrap-master/less/mixins/opacity.less";

@import (reference) "bootstrap-master/less/buttons.less";
@import (reference) "bootstrap-master/less/mixins/buttons.less";

.btn-custom {

.btn;

.btn-1g;

.button-variant (white; darkblue; green) ;

284

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

See also

With Twitter's Bootstrap 3 Button Generator, which can be found at
http://twitterbootstrap3buttons.w3masters.nl/, you can see how the
different states of a button look for a chosen input color. Note that this generator only
generates CSS code.

Making custom panels

Bootstrap provides you with many CSS components to build your design. In the Making
custom buttons recipe, you can read about the button component. In this recipe, you will learn
how to use and reuse the panel component.

Getting ready

The steps here are similar to the Getting ready section of the Making custom buttons recipe.

How to do it...

You need to perform the following steps:

1. Download and unzip the source files into your working directory from
http://getbootstrap.com/getting-started/#download

2. Openthe less/bootstrap.less file and write the following lines of Less code at
the end of this file:

.panel-custom {
.panel-variant (black; white; purple; white);

}

3. Then, recompile Bootstrap's CSS by running the following command in your console:
grunt dist

4. Now, you can include the newly generated CSS code into an HTML file with the
following line of code:
<link rel="stylesheet" type="text/css" href="bootstrap-master/
dist/css/bootstrap.css">

The HTML file should also contain the following snippet of HTML code:

<div class="panel panel-custom">
<div class="panel-heading">
<h3 class="panel-title">Panel title</h3>
</div>

285

www.it-ebooks.info

http://twitterbootstrap3buttons.w3masters.nl/
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Using Bootstrap with Less

<div class="panel-body">
Panel content
</div>
<div class="panel-footer">Footer</div>
</div>

5. Finally, load the HTML file from the fourth step into your browser and you will find
that your custom panel looks like what is shown in the following screenshot:

Panel title

Panel content

Footer

Bootstrap's panels have different contextual states. States can be set with an additional CSS
class. Each panel contains the panel's base class and a class that sets the styles that present
the state. The state classes available by default are panel -primary, panel-success,
panel-info, panel-warning, and panel-danger

In this recipe, you extended the panel states with a new panel -custom state, leveraging
the .panel-variant () mixin. The .panel-variant () mixin accepts four parameters;
parameters define the colors to style the panels. The first parameter sets the general border
color, the second parameter sets the font color of the header, the third parameter sets the
background color of the header, and finally, the fourth and last parameter sets the border
color for the header of the panels.

There's more...

The .panel-variant () mixin cannot be used to change the panel's footer. The footers of
the different panel contextual states have a gray background color. The default background
color of the footers has been defined by @panel -footer-bg: #f5f5f5; inthe
variables.less file. To change the footer background color of the custom panel to red,
for instance, you can use the following Less code:

.panel-custom {

.panel-variant (black; white; purple; white);
.panel-footer

background-color: red;

}

}

286

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the Customizing Bootstrap with variables recipe of this chapter, you can read how to
change Bootstrap's default brand colors. These brand colors also influence the panel's look.
Inthe variables. less file, you will find that the panel colors are declared as shown in the
following code:

@panel-success-text: @state-success-text;
@panel-success-border: @state-success-border;
@panel-success-heading-bg: @state-success-bg;

See also

» A complete list of Bootstrap's components can be found at
http://getbootstrap.com/components/

Making custom navigation bars

The navigation bar, or navbar for short, is an important component used in many Bootstrap
projects. In this recipe, you will learn how to modify the inverse navbar by leveraging Less.
By default, Bootstrap contains two navbar styles, the default and inverse styles.

Getting ready

The steps here are similar to the Getting ready section of the Making custom buttons recipe.

How to do it...

1. Download and unzip the source files into your working directory from
http://getbootstrap.com/getting-started/#download

2. Openthe less/variables.less file and look up the variables starting with
@navbar-inverse

3. Change the variables starting with @navbar-inverse according to the following:

@navbar-inverse-color: black;
@navbar-inverse-bg: yellow;
@navbar-inverse-border: darkgreen;

Instead of editing less/variables.less, you can also write down the variables at
the end of the 1ess/bootstrap. less file.

4. Then, recompile Bootstrap's CSS by running the following command in your console:

grunt dist

287

www.it-ebooks.info

http://getbootstrap.com/components/
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Using Bootstrap with Less

5. Now you can include the newly generated CSS code into a HTML file with the following
lines of code:
<link rel="stylesheet" type="text/css" href="bootstrap-master/
dist/css/bootstrap.css">The HTML file should also contain the
following snippet of HTML code:
<nav class="navbar navbar-inverse" role="navigation"s>
<div class="container-fluid">
<!-- Brand and toggle get grouped for better mobile
display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed"
data-toggle="collapse" data-target="#bs-example-
navbar-collapse-1">
Toggle navigation</spans>
</spans>

</button>
Brand

</div>

<!-- Collect the nav links, forms, and other content
for toggling -->
<div class="collapse navbar-collapse" id="bs-example-
navbar-collapse-1">
<ul class="nav navbar-nav'"s>
<li class="active"s>Link</1li>
<lis>Link
<1li class="dropdown">
<a href="#" class="dropdown-toggle" data-
toggle="dropdown">Dropdown
<ul class="dropdown-menu" role="menu">
Action</1i>
Another action</1li>
Something else here
<li class="divider">
Separated link
<li class="divider">
One more separated
link</1i>
</uls>
</1li>
</uls

288

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<form class="navbar-form navbar-left" role="search">
<div class="form-group"s>

<input type="text" class="form-control"
placeholder="Search">

</div>
<button type="submit" class="btn btn-
default">Submit</buttons>

</forms>

<ul class="nav navbar-nav navbar-right"s
Link</1i>
<li class="dropdown">

<a href="#" class="dropdown-toggle" data-
toggle="dropdown" >Dropdown

<ul class="dropdown-menu" role="menu'"s>
Action</1li>
Another action
Something else here
<li class="divider"s>
Separated link

</1i>

</div><!-- /.navbar-collapse -->
</divs<!-- /.container-fluid -->

</navs

6. Your newly styled navigation bar should look like what's shown in the following
screenshot:

‘ Brand Link Dropdown ~ Search Submit Link Dropdown ~

The setup of the navbar is the same as the button and panel components, as described
in the Making custom buttons and Making custom panels recipes of this chapter; also,
the navbar component has a base class and another class that adds the style rules for
colors. By default, Bootstrap provides two style classes: the .default-navbar and
.inverse-navbar classes.

289

www.it-ebooks.info

http://www.it-ebooks.info/

Using Bootstrap with Less

In contrast to the button and panel components, there are no mixins to build the style
class for the navbar. In this recipe, you redeclared the navbar variables that changed the
.inverse-navbar class in the compiled CSS code. Because the navbar component was
intended to be used only once in a page, compiling an extra style class and keeping the
.default-navbar and . inverse-navbar classes intact makes no sense because you
can only use one.

Bootstrap's navbar is responsive by default on screens with a small width; the navbar will
be displayed vertically, as seen in the following screenshot:

Brand D

Link

Dropdown -

Search

Submit

Link

Dropdown -

When the screen width is larger than the egrid-float-breakpoint variable, the navbar
will collapse and become horizontal. You will find @grid-float-breakpoint in the
variables.less file too; this variable can also be changed. The default value of the @
grid-float-breakpoint variable has been set to 768px (equal to the smallest width

of the small (sm) grid intend for tablets).

290

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Note that Bootstrap's JavaScript plugin is required for the navbar. Bootstrap JavaScript's
plugin requires jQuery too. Discussing Bootstrap JavaScript plugins and jQuery is out of the
scope of this book, but you can activate the plugin by adding the following files of code at
the end of your HTML document:

<script src="//code.jquery.com/jquery-1.11.0.min.js"></script>
<script src="//code.jquery.com/jquery-migrate-
1.2.1.min.js"></script>

<!-- Latest compiled and minified JavaScript -->

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/
bootstrap.min.js"></script>

In this recipe, you only change the basic colors of the navbar. Other variables, such as the
@navbar-inverse-1link-color or @navbar-inverse-brand-color variables,
are also available to change the look of the navbar.

You can also change the . inverse-navbar class by changing the CSS properties.
You can, for instance, add a background gradient with the following Less code:

.navbar-inverse {
#gradient > .vertical (lighten(@navbar-default-
bg,10%) ,darken (@navbar-default-bg,10%)) ;

}

The .vertical () mixin is part of Bootstrap's mixins and wrapped in the #gradient
namespace.

The navbar with a background gradient will look like the following:

Brand Link Link Dropdown ~ Search Submit Link Dropdown «

» More information about Bootstrap jQuery plugins can be found at
http://getbootstrap.com/javascript/

» Read more about jQuery at http://jquery.com/

» Test different navbar styles at http://twitterbootstrap3navbars.
w3masters.nl/

291

www.it-ebooks.info

http://getbootstrap.com/javascript/
http://jquery.com/
http://twitterbootstrap3navbars.w3masters.nl/
http://twitterbootstrap3navbars.w3masters.nl/
http://www.it-ebooks.info/

Using Bootstrap with Less

Extending components using :extend

You can read more about the Less : extend pseudo class from the Using extend to merge
selectors recipe of Chapter 5, Extending and Referencing. In this recipe, you will see how to
use this pseudo class to make all the images in your Bootstrap project responsive by default.

Getting ready

Download the source version of Bootstrap from http://getbootstrap.com/getting-
started/#download

How to do it...

In Twitter's Bootstrap version 2, images (the img tag) were responsive by default. In Bootstrap
version 3, an image can only be made responsive by adding the . img-responsive
parameter to the img tag. You can use the following steps to make your images responsive

by default again:

1. Install the source version of Bootstrap as described in the Downloading and installing
Bootstrap recipe of this chapter.

2. Openthe less/bootstrap.less file and add the following Less code at the end
of this file:
img {
&:extend (.img-responsive) ;

}
3. Recompile Bootstrap by running the following command in the console:

grunt dist

Bootstrap has got a special class that makes images responsive. Responsive in this case
means that you set the width property of the image to 100%. All images will get the size of
their parent. The max-width property is set to 100% too; this prevents scaling a small image
up to a larger size than the original size. The . img-responsive parameter can easily be
applied on the img selector leveraging the : exend pseudo class. You can read more about
extending the selector in the Chapter 5, Extending and Referencing, of this book.

292

www.it-ebooks.info

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Chapter 9

There's more...

The compiled CSS code for the img selector will look like the following:

.img-responsive,
.thumbnail > img,
.thumbnail a > img,
.carousel-inner > .item > img,
.carousel-inner > .item > a > img,
img {

display: block;

width: 100% \9;

max-width: 100%;

height: auto;

}

When inspecting the preceding compiled CSS, you will find that the display property of the
img selector has been set to block. Block-level elements occupy the entire space of its parent
element, which seems to be the desired behavior of the responsive image. When you wrap
you images inside p elements, where display: inline-block seems to fit better, you
should consider making your image not responsive by default at all, or try the following

Less code:

p img {
display: inline-block;

}

Maybe, you have also seen the width: 100% \9; declaration, the \9; code is part of a so
called browser hack.

Finally, you will notice that you cannot easily extend all Bootstrap components. Bootstrap
components are intended to be used with CSS classes in your HTML code.

Consider the following Less code:

.parent .btn { color: white}

.btn { color: blue; }

button:extend(.btn all) {}
When compiling the preceding Less code into CSS code, you will find that it will contain the
following selector:

.parent .btn,
.parent button
color: white;

}

In most cases, your custom HTML should not have defined the .parent .btn structure.

293

www.it-ebooks.info

http://www.it-ebooks.info/

Using Bootstrap with Less

See also

» You can read more about inline versus block level in HTML at https://
developer.mozilla.org/en-US/docs/Web/HTML/Inline
elemente#Inline vs. block-level. W3C recommendations for the content of
the p element can be found at http://www.w3.org/TR/html-markup/p.html

» An overview of CSS hacks can be found at http://browserhacks.com/

Reusing Bootstrap's grid

In the Applying the flexbox grid on your design recipe in Chapter 8, Building a Layout with
Less, you can read how to use Bootstrap's grid as a fallback for the flexbox grid. In this recipe,
you will see how to create a CSS file that contains the style rules for Bootstrap's grid.

Getting ready

The steps here are similar to the Getting ready section of the Making custom buttons recipe.

How to do it...

Perform the following steps:

1. Create a bootstrapgrid.less file that contains the following lines of Less code:

@import (reference) "mixins.less";

@import (reference) "variables.less";

@import (reference) "mixins/vendor-prefixes.less";
*

.box-sizing (border-box) ;
}

*:before,
*:after {
.box-sizing (border-box) ;

}

@import "grid.less";
2. Then, compile the bootstrapgrid.less file from the second step into CSS by

running the following command in the console:

lessc bootstrapgrid.less bootstrapgrid.css
3. Finally, you can test the grid with the HTML code from the Applying the flexbox grid on

your design recipe of Chapter 8, Building a Layout with Less, and use it as a fallback
for the flexbox layout.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elemente#Inline_vs._block-level
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elemente#Inline_vs._block-level
https://developer.mozilla.org/en-US/docs/Web/HTML/Inline_elemente#Inline_vs._block-level
http://www.w3.org/TR/html-markup/p.html
http://browserhacks.com/
http://www.it-ebooks.info/

Chapter 9

The code in the bootstrapgrid. less file defines Bootstrap's grid classes. These classes
are intended to be used in your HTML code. You can, for instance, use the following HTML
code to create a layout with two columns on small devices and four columns on larger devices:

<div class="container"s>

<div class="row">

<div class="col-xs-6 col-sm-3">Column l</divs>
<div class="col-xs-6 col-sm-3">Column 2</divs>
<div class="col-xs-6 col-sm-3">Column 3</divs>
<div class="col-xs-6 col-sm-3">Column 4</divs>
</div>

</div>

Bootstrap uses a default grid of 12 columns and defines classes for different screen widths.
The .col-xs-6 class spans six columns on the extra small (xs) grid, while the .col-

sm-3 class spans three columns of the small (sm) grid. Because the grid uses a mobile-first
approach, you don't have to explicitly set classes for larger grids, unless they span a different
number of columns.

Notice that since Bootstrap 3.2, and also in version 4, vendor-prefix mixins are considered
depreciated in favor of the autoprefixer postprocessor integrated in the build process. You can
read more about using and integrating the autoprefixer postprocessor in your build process in
the Automatically prefix your code with Grunt recipe.

There's more...

You may notice that the Bootstrap fallback for the flexbox grid does not give the exact same
result, but on the other hand, your HTML code does not lose functionality in most cases. Both
solutions are responsive, but for instance, Bootstrap's breakpoints are defined in pixels, while
the flexbox grid defines its breakpoint in em units. Of course, you can try to fix all differences,
but the graceful degradation strategy can help you here.

Criticism of Bootstrap will tell you that the Bootstrap grid will break the semantic features
of HTML5. Bootstrap's grid mixins can be used to build a more semantic grid, however. You
can read how to do this in the There's more... section of the Building semantic grids with
semantic.gs recipe in Chapter 7, Leveraging Libraries with Prebuilt Mixins.

See also

» Read more about the graceful degradation strategy regarding support older browsers
athttps://www.w3.org/community/webed/wiki/Optimizing content
for_different browsers: the RIGHT way#Graceful degradation

295

www.it-ebooks.info

https://www.w3.org/community/webed/wiki/Optimizing_content_for_different_browsers:_the_RIGHT_way#Graceful_degradation
https://www.w3.org/community/webed/wiki/Optimizing_content_for_different_browsers:_the_RIGHT_way#Graceful_degradation
http://www.it-ebooks.info/

Using Bootstrap with Less

Using Bootstrap classes and mixins

Although Bootstrap is a complete CSS framework, you can use some of its components for
other non-Bootstrap projects. In this recipe, you will see how to reuse Bootstrap's pagination
component. Also, refer to Chapter 7, Leveraging Libraries with Prebuilt Mixins, which
describes how to use prebuilt mixin libraries.

Other examples of reusing Bootstrap's code can be found in other recipes of this book. In the
Declaring a class and mixin at once recipe in Chapter 3, Using Variables and Mixins, you can
read how to create a clearfix. The mixin for this clearfix can be found in the less/mixins/
clearfix.less file, which is included in Bootstrap's source files.

The There's more... section of the Building semantic grids with semantic.gs recipe in
Chapter 7, Using External Mixin Libraries, describes how to use Bootstrap's grid mixins
to build a semantic grid. Also, other recipes in this chapter describe how to use the grid,
button, or panel components for your projects.

Getting ready

The steps here are similar to the Getting ready section of the Making custom buttons recipe.

How to do it...

You need to perform the following steps:

1. Create a pagination.less file and write the following Less code into it:
@import "variables.less";
@import "mixins.less";
@import (reference) "pagination.less";

footer > ul {
.pagination;
.pagination-size (10px; 10px; 3em; 10px);
}

2. Compile the pagination. less file into CSS code with the following command:
lessc pagination.less pagination.css

3. Finally, include the compiled pagination.css file into an HTML page that contains
the following HTML code:

<footers>
<ul class="pagination">
«</1li>
<lis>1l</1i>

296

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<lis>2</1i>
<lis>3</1i>
<lis>4</1i>
<lis>5</1i>
»</1li>

</footers>

4. Now, you will find that your pagination looks like the following:

«1 23 45»

Bootstrap uses the files in the 1ess directory to compile the CSS classes for the framework.
The mixins to build these classes can be found in the 1ess/mixins directory. The mixins.
less file includes the mixins in the project. When building a custom version of Bootstrap, you
can comment out the mixins you do not use in the mixins. less file.

Not all Bootstrap mixins are suitable for reuse without the corresponding CSS classes. In this
recipe, you used the pagination-size () mixin, which can be found in the less/mixins/
pagination. less file. Without the .pagination class, the pagination-size ()

mixin makes no sense. On the other hand, you can use the .pagination class without the
pagination-size () mixin. In this recipe, you combined both the .pagination class and
the pagination-size () mixin into the pagination-footer > ul selector.

The pagination-size () mixin has to be called with four parameters: the first two
parameters set the padding, the third parameter sets the font size, and the fourth parameter
sets the border radius of the first and last element of the navigation.

The Less code used for this recipe imports the mixins. less file and also the files in the
less/mixins directory, where you expected that only l1ess/mixins/pagination.less
would be sufficient. The pagination-size () mixin also makes use of the .border-
left-radius () and .border-right-radius () mixins, which are defined in the 1ess/
mixins/border-radius.less file. Importing all the files guarantees that the mixins from
other files are also available. Notice that the reference keyword was used to ensure that
no output of the imported files would be compiled in the CSS code, as also explained in the
Importing files with the @import directive recipe of Chapter 8, Building a Layout with Less.
This is mostly not needed for mixins. Mixins with parentheses after them do not generate
output in the compiled CSS.

297

www.it-ebooks.info

http://www.it-ebooks.info/

Using Bootstrap with Less

Also, the complete variables.less file was imported. The variables in this file gave default
colors to Bootstrap's pagination. If you inspect the Less code in the variables.less file,
you will find that all the colors for the pagination are prefixed with @pagination, as can also
be seen in the following Less code:

//== Pagination

//

//##

@pagination-color: @link-color;
@pagination-bg: HEFE;
@pagination-border: #ddd;
@pagination-hover-color: @link-hover-color;
@pagination-hover-bg: @gray-lighter;
@pagination-hover-border: #ddd;
@pagination-active-color: HEFE;
@pagination-active-bg: @brand-primary;
@pagination-active-border: @brand-primary;
@pagination-disabled-color: @gray-1light;
@pagination-disabled-bg: HEFE;
@pagination-disabled-border: #ddd;

You can change these variables or redeclare them in the pagination. less file before you
compile them, so that they fit your needs.

Bootstrap's gradient mixins are wrapped in a special namespace; see also the Using
namespaces to make your code reusable and portable recipe in Chapter 1, Getting to Grips
with the Basic of Less, for easy reuse. Note that you could also wrap the complete Bootstrap
code in a namespace using the following code:

#bootstrap {
@import "bootstrap.less";

}

When reusing Bootstrap's code for your projects, you should keep in mind that you will have to
prefix your properties, too. See the Autoprefixing of Bootstrap's CSS recipe in this chapter for
more information about Bootstrap and the prefixing of CSS properties.

298

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Extending Bootstrap with your own mixins

You can easily extend Bootstrap with your own mixins. In this recipe, you will see how
to do this.

Getting ready

You will have to download the Bootstrap source code from http://getbootstrap.com/
getting-started/#download. You can use a text editor to edit the Less code.

How to do it...

Perform the following steps:

1. Download and unzip the source files into your working directory from
http://getbootstrap.com/getting-started/#download

2. Create a Less file called £igures. less and write the following Less code
into this file:

.figures () {
article {

figure ({
.center-block() ;
> img {
max-width:100%;
}

@media (min-width: @grid-float-breakpoint)
{

max-width:50%;
.pull-right () ;

}

}

.clearfix() ;

}

}

#maincontent {
.figures() ;

}

299

www.it-ebooks.info

http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

Using Bootstrap with Less

3. Then, openthe less/boostrap.less file and add the following line of code at the
end of this file:

@import "figures.less";

4. Now, recompile Bootstrap by running the following command in your console:
grunt dist

5. Create an index.html file that loads the compiled styles sheet from the /dist/
css/boostrap.css file and contains the following snippet of HTML code:

<div id="maincontent">

<articles

<figure></figure>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque
penatibus et magnis dis</p>

</article>

</div>

6. Finally, load the index.html file into your browser to inspect the results. Resize
your browser window to see the effect of the media query.

In this recipe, you wrote your own mixins, which leverage Bootstrap's variables and mixins.
If you change egrid-float-breakpoint for the project, not only does the behavior of
the Bootstrap code change, but the effect of the . figures () mixins is also adopted.

Also, the .pull-right () and .clearfix () mixins of Bootstrap are reused in the
custom code.

In Chapter 7, Leveraging Libraries with Prebuilt Mixins, of this book, you can read how to

use mixin libraries for your project. You can also use these libraries together with Bootstrap.
An interesting project, AnimateLESSHat . less, is found at https://github.com/
bluetidepro/AnimateLESSHat . less; this project builds animate. css, as discussed
in the Creating animations with animations.css recipe in Chapter 7, Leveraging Libraries with
Prebuilt Mixins, with the mixins from the Less Hat library. You can read more about the Less
Hat library in the Building unlimited gradients with Less Hat recipe of Chapter 7, Leveraging
Libraries with Prebuilt Mixins. The AnimateLESSHat . less library can be easily integrated
with Bootstrap, too.

300

www.it-ebooks.info

https://github.com/bluetidepro/AnimateLESSHat.less
https://github.com/bluetidepro/AnimateLESSHat.less
http://www.it-ebooks.info/

Chapter 9

To use animate-lesshat.less in your Bootstrap project, simply add this import into
bootstrap.less, as follows:

@import "animate-lesshat.less";

Note that AsnimateLESSHat . less also offers a version of prefixed mixins. The Less Hat
mixins add vendor prefixes to the compiled CSS; this works well when compiling the Less
code with the command-line 1essc compiler. When bundled with Bootstrap, the code is
not prefixed by the same or other mixins. Since version 3.2, Bootstrap has integrated the
autoprefixer postprocessor in its build process; see also the Autoprefixing Bootstrap's CSS
recipe in this chapter.

» You can read more about autoprefixing your properties with Grunt in Chapter 11,
Compiling Less Real Time for Development Using Grunt.

» The AnimateLESSHat.less mixin library can be found at https://github.com/
bluetidepro/AnimateLESSHat.less

» Finally, the Less Hat library can be found at http://lesshat.madebysource.
com/

Making custom color schemes with 1pxdeep

In the first recipe of this chapter, you read how to change the look and feel of your Bootstrap
theme. Choosing the right color scheme for your project is not easy. The 1pxdeep project will
help you to choose the right color scheme for your project.

Getting ready

For this recipe, you will have to download the Bootstrap source files. You should also download
the 1pxdeep files, which can be found at https://github.com/rriepe/lpxdeep.

You can edit the source files with a text editor. The Less code in the recipe will be compiled
with the Grunt build tool delivered with Bootstrap. Alternatively, you could also compile the
Less code with the command-line 1essc or client-side 1ess. js compilers, as discussed in
Chapter 1, Getting to Grips with the Basic of Less.

301

www.it-ebooks.info

https://github.com/bluetidepro/AnimateLESSHat.less
https://github.com/bluetidepro/AnimateLESSHat.less
http://lesshat.madebysource.com/
http://lesshat.madebysource.com/
https://github.com/rriepe/1pxdeep
http://www.it-ebooks.info/

Using Bootstrap with Less

How to do it...

Perform the following steps:

1. Visit the 1pxdeep website at https://github.com/rriepe/lpxdeep.

2. Then, choose Seed color; in this recipe, the #b97ec2 color will be used.

3. Download the 1pxdeep code after choosing your Seed color in the previous step.
4

The ZIP archive downloaded in the third step contains two files, scheme . less
and 1pxdeep.less. Copy these files to your Bootstrap directory.

5. Then, open bootstrap. less and write the following lines of Less code at
the end of this file:

@import "scheme.less"; // color scheme

@import "lpxdeep.less"; // lpxdeep theme

6. Next, recompile Bootstrap's CSS by running the following command in your console:
grunt dist

7. Now, you can use the dist/css/bootstrap.css file in your HTML file, which will
style your elements by confirming the chosen color scheme.

8. Download an example template at http://getbootstrap.com/getting-
started/#examples to test your color scheme.

The 1pxdeep project brings the concept of designing with colors schemes to Bootstrap. The
color schemes contain colors that are related to each other based on their relative visual
weight. This method makes your HTML independent of color choices. When you have to
rebrand your project, you will only have to change your color scheme.

The 1pxdeep project not only changes the basic brand colors of Bootstrap; it also defines four
basic colors with three variants. You can use the basic colors by adding an extra class to your
HTML. The colors have the .colorl, .color2, .color3, and .color4 class names.
Variant colors are named .colorla, .colorlb, and .colorlc.

The HTML code for a default button will look like the following code:
<button class="btn btn-default"s>

The preceding button can be compared with a default button, which will also color it according
to your scheme:

<button class="btn btn-default colorl"s>

302

www.it-ebooks.info

https://github.com/rriepe/1pxdeep
http://www.it-ebooks.info/

Chapter 9

The scheme . less file defines the color wheels used for your scheme. You can choose
another wheel by uncommenting the corresponding variable. The variable for the color, as
described in the preceding code, is also declared in the scheme. less file.

The 1pxdeep.less file assigns the colors defined in the scheme . 1ess file to color
Bootstrap's classes and variables. Because of this file redeclare among other the basic brand
color of Bootstrap, as discussed in the Customizing Bootstrap with variables recipe of this
chapter, you should import this file after the bootstrap.less file. The last declaration wins
rule will guarantee that all the Less code will use the newly defined colors.

There's more...

In Chapter 10, Less and WordPress, of this book, you will learn how to integrate Bootstrap
and Less with WordPress. In the Building a WordPress website with the JBST theme recipe
in Chapter 10, Less and WordPress, you will be introduced to the JBST WordPress theme.
The JBST 1pxdeep theme is a child theme of JBST based on the 1pxdeep project. Edit your
seed color in the setting found in your WordPress dashboard, recompile the required CSS
(the compiler will start automatically after it saves the seedcolor), and you will have your
WordPress website ready; its style will be based on the default color wheel settings of @
seedcolor and 1px deep.

See also

» The JBST 1pxdeep theme can be found at https://wordpress.org/themes/
jbst-1lpxdeep

Autoprefixing Bootstrap's CSS

Since version 3.2, Bootstrap has integrated the autoprefixer postprocessor into its build
process. This not only means that you have to compile Bootstrap with Grunt, but also that
the prefix mixins become depreciated. The prefix mixins found in the less/mixins/vedor-
prefixes. less file of the Bootstrap source file are not up to date since version 3.2,

and only add for backward compatibility reasons.

You can read more about using the autoprefixer postprocess in the Automatically prefix your
code with Grunt recipe in Chapter 11, Compiling Less Real Time for Development Using Grunt.

In some situations, you are not able to run Grunt and the autoprefixer. Some projects use
alternative compilers such as 1ess.php (http://lessphp.gpeasy.com/) to compile the
Bootstrap Less files. This recipe will show you some alternatives; you can try these when you
are not able the run the default prefixing process.

303

www.it-ebooks.info

https://wordpress.org/themes/jbst-1pxdeep
https://wordpress.org/themes/jbst-1pxdeep
http://lessphp.gpeasy.com/
http://www.it-ebooks.info/

Using Bootstrap with Less

Getting ready

If you cannot run the autoprefixer postprocessor for your Bootstrap project, first try to change
your workflow.

How to do it...

Here, you will find some alternatives to the autoprefixer. Each of them is a separate alternative.

The first alternative is if you are working on an existing project, you should consider why
you should update to a newer Bootstrap version in the first place. Note that support for the
autoprefixing mixins has been depreciated since version 3.2.

The second alternative or solution is you can maintain your own version of the autoprefixing
mixins, which also means you will have to replace property declarations, which requires
prefixing, by mixin calls in all Bootstrap Less code.

The third alternative deals with mixins and prefixes. Consider a declaration in the Bootstrap
Less code, as follows:

box-shadow: 0 5px 15px rgba(0,0,0,.5);

When the Bootstrap Less code contains such a declaration, you should replace it with the
mixin call, as shown here:

.box-shadow (0 5px 15px rgba(0,0,0,.5));

You will have to repeat this replacement for every property that requires prefixing. You should
keep the mixins in less/vendor-prefixes.less up to date and repeat the entire process
when updating to a newer version of Bootstrap. Of course, you can automate the process
described in the preceding step.

An example result of such a process can be found at https://github.com/bassjobsen/
Bootstrap-prefixed-Less/.

The next alternative is using the -prefix-free project found at http://leaverou.github.
io/prefixfree/. The -prefix-free project is a JavaScript library, which enables you to write
prefix-free Less/CSS code. Prefixes are added with JavaScript only when needed. To use
prefixfree.js, you simply include the script anywhere in your HTML document, as follows:

<script src="prefixfree.js"></script>

304

www.it-ebooks.info

https://github.com/bassjobsen/Bootstrap-prefixed-Less/
https://github.com/bassjobsen/Bootstrap-prefixed-Less/
http://leaverou.github.io/prefixfree/
http://leaverou.github.io/prefixfree/
http://www.it-ebooks.info/

Chapter 9

The second solution requires that you change the complete code of Bootstrap; you should
also keep the mixins in the less/vendor-prefixes.less file up to date. You can easily
write a test that compares your prefixed version with the version created with the autoprefixer.

The prefixfree.js solution runs client-side JavaScript, although the minified version

is small and compact. You could argue that client-side JavaScript has a negative effect on
the performance, and hence, user experience. Bootstrap 3 supports the Internet Explorer 8
browser, while prefixfree.js does not.

Since version 2 of Less, you can use plugins with Less. The Less autoprefix plugin can be
found at https://github.com/less/less-plugin-autoprefix. Autoprefix plugins are
not available for every alternative Less compiler.

Autoprefixers such as autoprefixer-php, which can be found at https://github.com/
vladkens/autoprefixer-php, still requires Node.js to be installed.

» A complete list of alternative compilers can be found at http://lesscss.org/
usage/#third-party-compilers

» Read how to compile Bootstrap with Less v2 and the autoprefix plugin at
http://bassjobsen.weblogs.fm/compile-bootstrap-less-v2-
autoprefix-plugin/

305

www.it-ebooks.info

https://github.com/less/less-plugin-autoprefix
https://github.com/vladkens/autoprefixer-php
https://github.com/vladkens/autoprefixer-php
http://lesscss.org/usage/#third-party-compilers
http://lesscss.org/usage/#third-party-compilers
http://bassjobsen.weblogs.fm/compile-bootstrap-less-v2-autoprefix-plugin/
http://bassjobsen.weblogs.fm/compile-bootstrap-less-v2-autoprefix-plugin/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

Less and WordPress

In this chapter, you will learn the following topics:

>

v

Installing WordPress

Developing your WordPress theme with Less
Integrating Bootstrap into your WordPress theme
Using Semantic Ul to theme your WordPress website
Customizing Roots . io with Less

Building a WordPress website with the JBST theme

Introduction

WordPress is the most popular content management system (CMS) around the Web. Over 60
million people have already chosen to build their website or blog with WordPress. WordPress
was written in PHP and is available for free. Although the WordPress core and many themes
and plugins are published under the GPL V2 license, some components may be charged
according to their policies. Components that are not free of charge are often called premium
or business components.

The first version of WordPress in 2003 was designed so you could create your own web blog.
Nowadays, WordPress is a complete CMS that enables you to build a website, or even a web
shop, with ease. WordPress has been based on PHP and MySQL and runs on many different
platforms. There are differences between WordPress.com and WordPress . org.

The WordPress . com blogging software is a host for your blog, while WordPress.org
refers to blogging software. In this book, we've been talking about the WordPress.org
blogging software.

www.it-ebooks.info

WordPress.com
WordPress.org
WordPress.com
WordPress.org
WordPress.org
http://www.it-ebooks.info/

Less and WordPress

Setting up a website with the WordPress software is easy and well-documented. Your website
will be up and running directly after the installation process. Once you install the website,
you can install plugins and themes to customize your website via the built-in dashboard.

In this chapter, you will learn how to improve your WordPress workflow by leveraging Less.
Note that this chapter will guide you through the process of integrating Less in to your
WordPress workflow. You will find many useful tools and resources. Because this book is about
Less, won't be able to discuss WordPress in detail. To learn more about WordPress, you can
read one of the many books on the subject published by Packt Publishing. These books can
be found at https://www.packtpub.com/all/?search=wordpress.

Installing WordPress

WordPress has a core that can be easily installed. Besides the core, WordPress has themes
for visual representation and plugins for additional functionalities.

Getting Ready

You can install WordPress on any server that supports PHP and MySQL. At the time of writing
this book, the minimal requirements for PHP and MySQL are as follows:

» PHP Version 5.2.4 or greater

» MySQL Version 5.0 or greater

You can download the latest version of WordPress from https://wordpress.org/
download/.

The installation process of WordPress has been refined and improved over the last few years.
Installing WordPress is really easy now. WordPress provides you with a 5-minute installation
guide at http://codex.wordpress.org/Installing WordPress#Famous 5-
Minute Install.

How to do it...

Globally, you will have to follow the ensuing steps:

1. Download and unzip the WordPress package.

2. Create a database for WordPress on your web server.

3. Upload the WordPress files to a public folder on your web server.
4. Run the WordPress installation script in your web browser.

You can also find these steps in the 5-minute installation guide mentioned in the
preceding section.

308

www.it-ebooks.info

https://www.packtpub.com/all/?search=wordpress
https://wordpress.org/download/
https://wordpress.org/download/
http://codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Install
http://codex.wordpress.org/Installing_WordPress#Famous_5-Minute_Install
http://www.it-ebooks.info/

Chapter 10

After installing WordPress, your website will run one of the default themes. A theme defines
the look and feel of your WordPress website. Each theme has at least one CSS file called
style.css. This file will not only define the CSS rules for your website, but also set the
theme name and version. The style. css file will look like the following code:

/*

Theme Name: Twenty Fourteen

Theme URI: http://wordpress.org/themes/twentyfourteen

Author: the WordPress team

Author URI: http://wordpress.org/

Description: In 2014, our default theme lets you create a
responsive magazine website with a sleek, modern design. Feature
your favorite homepage content in either a grid or a slider. Use
the three widget areas to customize your website, and change your
content's layout with a full-width page template and a contributor
page to show off your authors. Creating a magazine website with
WordPress has never been easier.

Version: 1.1

License: GNU General Public License v2 or later

License URI: http://www.gnu.org/licenses/gpl-2.0.html

Tags: black, green, white, light, dark, two-columns, three-
columns, left-sidebar, right-sidebar, fixed-layout, responsive-
layout, custom-background, custom-header, custom-menu, editor-
style, featured-images, flexible-header, full-width-template,
microformats, post-formats, rtl-language-support, sticky-post,
theme-options, translation-ready, accessibility-ready

Text Domain: twentyfourteen

This theme, like WordPress, is licensed under the GPL.
Use it to make something cool, have fun, and share what you've
learned with others.

*/

To customize your theme with Less, you should compile CSS that will replace the content of
style.css orload after style.css and overwrite and extend it. The functions.php
file in your theme folder also plays an important role. In this file, you can add or remove the
loading of style sheet files, among others. In the See also section of this recipe, you will find
a reference to the wp_enqueue_style function that can be used to add style sheets.

309

www.it-ebooks.info

http://www.it-ebooks.info/

Less and WordPress

There's more...

The WordPress plugins add new functionalities to your WordPress installation. Both plugins
and themes can add style sheets to your website and are therefore suitable to be integrated
with Less.

See also

» The free WordPress themes can be found in the WordPress theme directory at
https://wordpress.org/themes/.

» The WordPress plugin directory contains over 30,000 plugins to extend WordPress.
You will find the plugin directory at https://wordpress.org/plugins/.

» You can use the wp_enqueue_style function in the functions.php file to safely
add a CSS-style file to the generated WordPress page. You can read more about
this function at http://codex.wordpress.org/Function Reference/wp
enqueue_style.

Developing your WordPress theme with Less

In this recipe, you will learn how to extend and customize the Twenty Fourteen WordPress
theme with Less.

Getting ready

The Twenty Fourteen theme is a free WordPress theme shipped with the default WordPress

installation. For a fresh installation, this theme has been set as the default theme. However,
if you have activated another theme already, you will have to reactivate the Twenty Fourteen
theme in your dashboard. Navigate to Appearance | Theme Options in your dashboard and
do this now.

This recipe also requires that the command-line 1essc compiler, as described in Chapter
1, Getting to Grips with the Basics of Less, is installed. If the web server used for production
does not have the command-line 1essc compiler installed, you can compile the Less code
on your local machine and upload only the results to your web server.

How to do it...

1. Inthe main directory of your WordPress installation, navigate to wp-content/
themes/twentyfourteen/ and create a new subdirectory called 1less/ inside it.

www.it-ebooks.info

https://wordpress.org/themes/
http://codex.wordpress.org/Function_Reference/wp_enqueue_style
http://codex.wordpress.org/Function_Reference/wp_enqueue_style
https://wordpress.org/plugins/
http://www.it-ebooks.info/

Chapter 10

2. Open wp-content/themes/twentyfourteen/functions.php and find the line
of code under the // Load our main stylesheet comment; replace this with
the following code:
wp_enqueue_style('twentyfourteen-style',

get_template directory uri() . '/css/main.css', array(
'genericons'));

3. Then, create a new wp-content/themes/twentyfourteen/less/main.less
file and write the following Less code in it:

@import (less) "../style.css";
//your custom Less code here

4. Finally, compile the Less code by running the following command in your console:

lessc less/main.less css/main.css

Importing the original styles sheet with the @import directive and the 1ess keyword
imports the CSS code as the Less code and enables you to combine the original class and
ID selectors. This way, extending the original selectors will also be possible. In your code,
you can, for instance, use the following snippet:

.newselector {
&:extend (.secondary-navigation ul ul) ;
color: red;

}

Of course, you can also import any other library here, such as the mixin libraries, which
is described in Chapter 4, Leveraging the Less Built-in Functions. Alternatively, import
Bootstrap's Less code using the following @import directive:

@import "bootstrap.less";

You can read more about the @import directive in the Importing files with the @import
directive recipe in Chapter 8, Building a Layout with Less.

In this recipe, you used the command-line 1essc compiler, as described in Chapter 1,
Getting to Grips with the Basics of Less, to compile the Less code. The WP Less to CSS
plugin enables you to compile the Less code in your dashboard. This plugin can be found
athttps://wordpress.org/plugins/wp-less-to-css/. When you have the plugin
installed, you can find the Less compiler in your dashboard under the Settings | WP CSS to
Less option. Instead of 1less/main. less, you should create a wpless2css/wpless2css.
less file in your themes directory.

www.it-ebooks.info

https://wordpress.org/plugins/wp-less-to-css/
http://www.it-ebooks.info/

Less and WordPress

Note that this plugin compiles the Less code with the Less PHP compiler; this compiler may
differ or not be up to date with the regular Less compiler.

The compiler will look like what is shown in the following screenshot:

Options

#site-navigation {
background-color: #F2BF72; ‘ |
ul.nav-menu { I
.current_page_item a {
Custom Less code: color:darkblue:

Save All Changes

Less.php enables you to compile your Less code with PHP using the following code:

<?php

Sparser = new Less_ Parser();

Sparser-s>parseFile('/var/www/mysite/bootstrap.less', '/mysite/'
)i

$parser-s>parse('@color: #4D926F; #header { color: @color; } h2 {
color: @color; }');

Scss = S$parser->getCss() ;

Note that you cannot use an autoprefix based on Node . js when compiling your code with
a PHP Less processor. Alternatively, you could use the -prefix-free JavaScript library
with your non-prefixed CSS code. The -prefix-free JavaScript library can be found at
http://leaverou.github.io/prefixfree/.

Currently, there are two PHP Less compilers, as follows:
» Less.php is a Less compiler written in PHP, which can be found at

http://leafo.net/lessphp/.

» Also, Less.php is a PHP port of the official Less processor. Less . php can be
found at http://lessphp.gpeasy.com/.

» The Twenty Fourteen theme can be found at https://wordpress.org/themes/
twentyfourteen, and a demo can be found at https://twentyfourteendemo.
wordpress.com/

www.it-ebooks.info

http://leaverou.github.io/prefixfree/
http://leafo.net/lessphp/
http://lessphp.gpeasy.com/
https://wordpress.org/themes/twentyfourteen
https://wordpress.org/themes/twentyfourteen
https://twentyfourteendemo.wordpress.com/
https://twentyfourteendemo.wordpress.com/
http://www.it-ebooks.info/

Chapter 10

Integrating Bootstrap into your WordPress

theme

Plugins add additional functionalities to your WordPress website. The WordPress Twitter
Bootstrap CSS plugin adds, as its name tells you already, the Bootstrap CSS to your website.
This plugin ships with a built-in Less compiler that enables you to configure Bootstrap to fit
your needs by setting up the Bootstrap variables.

Getting ready

You can read more about Bootstrap and how to extend and configure it with Less in Chapter 9,
Using Bootstrap with Less. You need to download and install the WordPress Twitter Bootstrap
CSS plugin, which can be found at https://wordpress.org/plugins/wordpress-
bootstrap-css/. For this recipe, you need to activate a theme that does not use Bootstrap
already. You can use the Twenty Fourteen theme shipped with WordPress by default.

How to do it...

1. After installing the plugin, you will find a Twitter Bootstrap option in the side menu of
your dashboard. You should enable shortcodes and Less under the Bootstrap CSS
option. Also, choose the latest version of Bootstrap for this recipe. Then, start a new
blog post and write the following code inside the blog post text area:

[TBS_BUTTON color="success" type="submit" value="y"]My
Lovely Twitter Button[/TBS_BUTTON]

2. After this, inspect the blog post from step 1 in your browser and you will find a button
appearing in the Bootstrap style in your post. Your button should look like what is
shown in the following screenshot:

MY LOVELY TWITTER BUTTON

Optionally, you can carry out the next four steps, which will show you how to extend and
configure Bootstrap by leveraging the WordPress Twitter Bootstrap CSS plugin:

1. Configure the upgrade constants for your system using the ftpext method,
which will enable the plugin to use your filesystem. Instructions on how to do this
can be found at http://codex.wordpress.org/Editing wp-config.
php#WordPress Upgrade Constants

www.it-ebooks.info

https://wordpress.org/plugins/wordpress-bootstrap-css/
https://wordpress.org/plugins/wordpress-bootstrap-css/
http://codex.wordpress.org/Editing_wp-config.php#WordPress_Upgrade_Constants
http://codex.wordpress.org/Editing_wp-config.php#WordPress_Upgrade_Constants
http://www.it-ebooks.info/

Less and WordPress

2. Then, editthe /plugins/wordpress-bootstrap-css/resources/
bootstrap-3.2.0/less/bootstrap.less file and write the following code at
the end of this file:

.btn-custom
.button-variant (white; darkblue; green);

}

You can read more about this Less code snippet in the Making custom buttons recipe
in Chapter 9, Using Bootstrap with Less.

3. Make sure you have the Less compiler section of the plugin enabled, and then click
on the Save all settings button under the Bootstrap Less section. Clicking on this
button will recompile the CSS code.

4. Now, you will be able to use the following shortcode in your post:
[TBS_BUTTON color="custom" type="submit" value="y"]My Lovely
Twitter Button[/TBS_BUTTON]

5. The preceding shortcode will now show a custom button in your post, like the one
shown in the following screenshot:

MY LOVELY TWITTER BUTTON

The WordPress Twitter Bootstrap CSS plugin loads Bootstrap's CSS (and JavaScript) into
the HTML of your theme. You can use this plugin for any theme, but you should not use it
for themes that already load Bootstrap.

The built-in Less compiler recompiled the CSS code using the settings in the editor. These
settings are equal to the Bootstrap variables. When you edit the Less code yourself, as was
done in step 5 of this recipe, your custom code will also be compiled in CSS. You can (re)use
the Bootstrap variables and mixins in your custom code.

The button was added to the blog post with [TBS BUTTON] [/TBS_BUTTON], which is
a WordPress shortcode. You can read more about these shortcodes at http://codex.
wordpress.org/Shortcode.

314

www.it-ebooks.info

/plugins/wordpress-bootstrap-css/resources/bootstrap-3.2.0/less/bootstrap.less
/plugins/wordpress-bootstrap-css/resources/bootstrap-3.2.0/less/bootstrap.less
http://codex.wordpress.org/Shortcode
http://codex.wordpress.org/Shortcode
http://www.it-ebooks.info/

Chapter 10

There's more...

You can also use this plugin together with the Wp Less to CSS plugin, as described in the
There's more... section in the Developing your WordPress theme with Less recipe.

This recipe shows you how to integrate a Bootstrap-styled button into your blog post. This
button has only been used as an example. You can use the same process to use other
components of Bootstrap in your WordPress website. You can even build themes with
Bootstrap's grid layout.

To integrate Bootstrap and Less without the WordPress Twitter Bootstrap CSS plugin, read the
Developing your WordPress theme with Less recipe.

After downloading and uploading Bootstrap's Less code from the source code, which can be
downloaded from http://getbootstrap.com/getting-started/#download to your
themes directory, you can add the @import "bootstrap.less" directive to your project
file. You can do the same when using the WP Less to CSS plugin by adding the @import
"bootstrap.less" directive to the wpless2css/wpless2css. less file in your
themes directory.

Using Twitter's Bootstrap Shortcodes Ultimate Add-on plugin can provide you with a shortcode
for Bootstrap 3. The Shortcodes Ultimate plugin can be found at http://gndev.info/
shortcodes-ultimate/, and the Twitter's Bootstrap Shortcodes Ultimate Add-on

plugin can be found at https://wordpress.org/plugins/twitters-bootstrap-
shortcodes-ultimate.

Note that Twitter's Bootstrap shortcodes have a parameter help option,

where by if you setitequaltoy (help='y"), it will printa list of all

the parameters available in that shortcode.

» A complete list of shortcodes for the WordPress Twitter Bootstrap CSS plugin can
be found at https:///www.icontrolwp.com/our-wordpress-plugins/
wordpress-shortcodes-demo/

www.it-ebooks.info

http://getbootstrap.com/getting-started/#download
http://gndev.info/shortcodes-ultimate/
http://gndev.info/shortcodes-ultimate/
https://wordpress.org/plugins/twitters-bootstrap-shortcodes-ultimate
https://wordpress.org/plugins/twitters-bootstrap-shortcodes-ultimate
https:///www.icontrolwp.com/our-wordpress-plugins/wordpress-shortcodes-demo/
https:///www.icontrolwp.com/our-wordpress-plugins/wordpress-shortcodes-demo/
http://www.it-ebooks.info/

Less and WordPress

Using Semantic Ul to theme your WordPress

website

Semantic Ul helps you to build user interfaces for your web project. Semantic is tag-agnostic,
meaning you can use any HTML tag with Ul elements.

For instance, a grid with three columns will look like the following code:

<main class="ui three column grid"s>
<aside class="column">l</aside>
<gsection class="column">2</section>
<gsection class="column">3</section>
</main>

Semantic Ul consists of different components. These components are split up into elements,
collections, views, and modules.

The Semantic Ul theme is a developer theme for WordPress designed to be developed for your
specific application. It sets the basics, but you should tweak it so it meets your requirements.

Getting Ready

In this recipe, you will install a WordPress theme based on Semantic Ul. Download this theme
from https://github.com/ProjectCleverWeb/Semantic-UI-WordPress, activate it
in your WordPress dashboard, and perform the following steps:

1. Download https://github.com/projectcleverweb/Semantic-UI-
wordpress/archive/master.zip.

2. Unzip the theme file from step 1 to your wp-content /themes directory.

Navigate to the wp-content /themes/Semantic-UIl-wordpress-master
directory and run the following command in your console:

npm install && npm install gulp

4. Then, run the following command in the console:
Gulp build

5. Next, set the theme to active in your WordPress dashboard. When you have the
theme already activated before running the build process, you should deactivate it
(set another theme active) and then activate it again to make sure your theme files
load from the build directory.

www.it-ebooks.info

https://github.com/ProjectCleverWeb/Semantic-UI-WordPress
https://github.com/projectcleverweb/Semantic-UI-wordpress/archive/master.zip
https://github.com/projectcleverweb/Semantic-UI-wordpress/archive/master.zip
http://www.it-ebooks.info/

Chapter 10

6.

Turn the introduction page of £. After activating the theme, you will find the theme
options in your dashboard under Appearance | Theme Options. In the following
screenshot, you will see the Misc.. section of the theme's option:

Show "Powered By" Message

Enable Developer Notes

You should turn the Show First-Run option off.

This recipe requires that you have Node and npm installed, as described in Chapter 11,
Compiling Less Real Time for Development Using Grunt. In case your web server for
production runs in a different environment without Node installed, you can perform the steps
in this recipe on your local machine and upload the compiled code to your web server.

Visit the Semantic Ul website at http://semantic-ui.com/ to get an impression of the
possibilities that Semantic Ul has to offer. You can, for instance, inspect the comment view at
http://semantic-ui.com/views/comment.html.

How to do it...

1.

ok DN

Navigate to the wp-content/themes/Semantic-UI-wordpress-master/src/
assets/styles directory.

Remove the semantic.min.css file.
Rename the semantic.css file to semantic. tpl.
Create a new file called semantic.less.

Open the semantic. less file you created in step 2 with your text editor and write
the following Less code into it:

@import (less) "semantic.tpl";

#main-header-grid {

hl.ui.inverted.header {color:red;}

}

www.it-ebooks.info

http://semantic-ui.com/
http://semantic-ui.com/views/comment.html
http://www.it-ebooks.info/

Less and WordPress

6. Finally, run the following command in the console:
gulp build

7. You will find that the header text of your website will be colored red now. Your
website should now look like the following screenshot:

© Packt Publishing Limited.

Sample Page G

Sample Page

The Semantic Ul theme uses Gulp instead of Grunt to run the tasks of the build process. Both
Gulp and Grunt are JavaScript task managers. Gulp uses streams and code-over-configuration,
which should make the tasks more intuitive. You can read more about automatic tasks and
build systems in Chapter 11, Compiling Less Real Time for Development Using Grunt.

Gulp tasks compile any file with the . 1ess extension found in the src/assets/styles
directory by default. The theme comes with an already compiled version of semantic.css.In
this recipe, you imported this code using the 1ess keyword; see also the Importing files with the
@import directive recipe in Chapter 8, Building a Layout with Less. Importing the CSS code as
the Less code enables you to reuse the classes by extending a mixin in them. This method does
not enable you to reuse the mixins and variables used in Semantic Ul's Less code.

The Gulp task compiles the semantic.less fileintobuild/assets/styles/semantic.
css and also creates a minified version of this file called semantic.min.css atbuild/
assets/styles/. This minified version of the CSS code will load into the HTML code of

the theme.

There's more...

The complete Less code base of Semantic Ul can be found and downloaded from https://
github.com/Semantic-0Org/Semantic-UI. Note that you can compile the Less code of
each Semantic Ul component independent of the other components.

After downloading Semantic Ul's code base, you can copy the Less code into your themes
directory. Then, in semantic.less, you can import the components you need and compile
them into the semantic.min.css file.

www.it-ebooks.info

https://github.com/Semantic-Org/Semantic-UI
https://github.com/Semantic-Org/Semantic-UI
http://www.it-ebooks.info/

Chapter 10

See also

» Athttps://github.com/bassjobsen/Semantic-UI-WordPress, you can find
an example that shows you how to compile the semantic.min. css file with the
latest version of the Semantic Ul Less code.

Customizing Roots.io with Less

Roots is a WordPress starter theme that helps you to make better themes with HTML5
Boilerplate, Bootstrap, and Grunt. You can use a starter theme to build your own
WordPress theme.

After installing the Roots theme and visiting your website, you will probably recognize the
top navigation bar. Roots uses Bootstrap's default navigation bar. You can read more about
Bootstrap in Chapter 10, Less and WordPress of this book. In this recipe, you will customize
the navigation bar of the Roots theme.

Getting ready

You can download the Roots theme from https://github.com/roots/roots.
Download and unzip this file into the wordpress/wp-content /themes directory
of your WordPress installation, or alternatively, follow the ensuing steps.

To install the Roots theme, you should run the following commands in your console.
Run these commands in the wordpress/wp-content /themes directory of your
WordPress installation:

git clone git@github.com:roots/roots.git

npm install

grunt build
To run the first command, you need to create an account on Github first. You should also have

an SSH key generated. More information on this can be found at https://help.github.
com/articles/https-cloning-errors/.

More information about npm and Grunt can be found in Chapter 11,
i Compiling Less Real Time for Development Using Grunt.

www.it-ebooks.info

https://github.com/bassjobsen/Semantic-UI-WordPress
https://github.com/roots/roots
https://help.github.com/articles/https-cloning-errors/
https://help.github.com/articles/https-cloning-errors/
http://www.it-ebooks.info/

Less and WordPress

After the installation of the theme, as described in the preceding step, you should activate
the theme in WordPress, too. Log in to your WordPress Dashboard (http://localhost/
wordpress/wp-admin/). Then, choose Appearance | Theme Options, find the Roots
theme, and activate it.

When you visit your website after the preceding steps, you will find that it will look like the
following screenshot:

Less Home Blog Sample Page Gallery Shop Members Activity

Archives

January 2016

Sample Page

This is an example page. It's different from a blog post because it will stay in one place and will show up in your site
navigation (in most themes). Most people start with an About page that introduces them to potential site visitors. It
might say something like this:

Hi there! I'm a bike messenger by day, aspiring actor by night, and this is my blog. | live
in Los Angeles, have a great dog named Jack, and | like pifia coladas. (And gettin’
caught in the rain.)

July 2010
June 2010

...or something like this:

The XYZ Doohickey Company was founded in 1971, and has been providing quality
doohickeys to the public ever since. Located in Gotham City, XYZ employs over 2,000
people and does all kinds of awesome things for the Gotham community.

June 2009
May 2009

As a new WordPress user, you should go to your dashboard to delete this page and create new pages for your
content. Have fun!

The wp-config.php file is located in the root of your WordPress file directory and contains
your website's base configuration details. Before starting development with Roots, you should
add the following line of code to your wp-config. php file; you will find this file in the main
directory of your WordPress installation, that is, define ('WP_ENV', 'development') ;.
Add the code before the /* That's all, stop editing! Happy blogging. */
comment. Setting this constant allows the theme to load the uncompressed CSS files, which
are compiled with the grunt dev command.

320

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

How to do it...

1.

Navigate to the Roots themes folder and open the main. less file under /
wordpress/wp-content /themes/roots/assets/less/ with your favorite
text editor. Then, write the following line of Less code at the end of this file:

@import "custom/ navbar.less"; // Navbar styling
Then, create a new navbar. less file under the wordpress/wp-content/

themes/roots/assets/less/ custom/ file and write the following three lines
of the Less code into it:

@navbar-default-color: black;
@navbar-default-bg: yellow;
@navbar-default-border: darkgreen;

Now, recompile your CSS code by running the following command in the
command line:

grunt dev

Don't forget to set define ('WP_ENV', 'development') ; inyour
wp-config.php file.

Finally, reload your WordPress site and find that the navigation bar has become
yellow and will look like what is shown in the following screenshot:

LESS Home Blog | SamplePage Gallery Shop Members Activity

The Roots theme uses the Bootstrap frontend framework as the basis for their CSS. The /
wordpress/wp-content/themes/roots/assets/less/main. less path, which also
imports all Bootstrap Less code, will compile into the assets/css/main. css file and the
final theme will load this file into the website, as follows:

<link rel='stylesheet' id='roots css-css'

href="http://localhost/wp-
content/themes/roots/assets/css/main.css' type='text/css'
media='all' />

321

www.it-ebooks.info

http://www.it-ebooks.info/

Less and WordPress

Through the last declaration win strategy of Less, you can easily redeclare Bootstrap's
variables to change the look and feel of your Roots theme.

You can read more about the customization of the Bootstrap navigation bar in the Making
custom navigation bars recipe in Chapter 9, Using Bootstrap with Less.

There's more...

When you are happy with your result and want to take the website into production, you will
have to make Wp_ENV available for production in the wp-config.php file and run the
following command:

grunt dist
In contrast to the grunt dev command, the grunt dist command also creates minified

versions of your CSS code, runs the autoprefixer postprocessor, and prepares JavaScript.

See also

» More information about installing, configuring, and customizing the Roots theme can
be found at http://roots.io/roots-101/.

» HTML5 Boilerplate can be found at http://html5boilerplate.com/. HTML5
Boilerplate is a professional frontend template that builds fast, robust, and adaptable
web apps or sites.

» You can read more about Bootstrap in Chapter 9, Using Bootstrap with Less.

» In Chapter 11, Compiling Less Real Time for Development Using Grunt, you can read
how to set up your build process with Grunt.

Building a WordPress website with the JBST

theme

The JBST WordPress theme that can be found at https://wordpress.org/themes/
jbst/. It can be used as a starter to build your own custom theme. JBST has been built
with Bootstrap and has a built-in Less compiler.

Getting ready

Install and activate the JBST theme. Log in to the WordPress Dashboard of your demo website,
choose Appearance | Theme Options and then New, and search for JBST. After installing the
theme, your website will look like the following screenshot:

322

www.it-ebooks.info

http://roots.io/roots-101/
http://html5boilerplate.com/
https://wordpress.org/themes/jbst/
https://wordpress.org/themes/jbst/
http://www.it-ebooks.info/

1.

Chapter 10

Recent Posts

¥

Hi there! I'm a bike:
messenger by day,
aspiring actor by

N night, and this is my
blog. | Fve in Los
Angeles, have a great
dog named Jack, and
| e péfia coladas.
{And gettin’ caught in
the rain.)

r something e this:
The XYZ Doohickey Company was founded in 1971, and has been providing qualty doohickeys 1o
the public ever since. Located in Gotham City, XYZ employs over 2 000 people and does all kinds of

awesome things for the Gotham community.

As a rew WordPres:

you should go b your dashiboand o delete this page and creste rew pages for your content. Have !

Leave a Reply
Name (required)

Yo may use these HTML tags and altrbutes

Download the Bearpaw @font-face kit from http://www.fontsquirrel.
com/fonts/Bearpaw. Unzip this file and copy the BEARPAW -webfont.ttf,
BEARPAW -webfont.eot BEARPAW -webfont.woff and BEARPAW -webfont.
svg font files into the wp-content /themes/jbst/assets/fonts directory.

323

www.it-ebooks.info

http://www.fontsquirrel.com/fonts/Bearpaw
http://www.fontsquirrel.com/fonts/Bearpaw
http://www.it-ebooks.info/

Less and WordPress

2. Go to your WordPress Dashboard, choose Appearance | Less Compiler, and enter
the following Less code into the text area:

@custom-font-dir:"../themes/jbst/assets/fonts/";
.include-custom-font ('Bearpaw', 'BEARPAW -webfont') ;

@font-family-sans-serif: "Bearpaw", "Helvetica Neue",
Helvetica, Arial, sans-serif;

3. Then, click on the recompile Less code button and reload your website. You will
find that the font of the pages will have changed to Bearpaw, which will look like the
following screenshot:

LESS HoME BLOS SAMPLE PAGC saLcey SHoP MEMBCRS ACTITY [SeAacH l

SAMPLE PAGE i

* Beoé
® S4MPLE PRGC
* euicev
THIS 1§ AN EXAMPLE PAGE, (15 DFFERENT . SHop
FROM 4 BLOS POST BECAUSE IT Wil S14¥ N ® MCMBCRS
| ONE PLACC AND Wil SHOW UP N ¥OUR SITE . ATy
NAVIGATION (IN MOST THEMES), MOST PEOPLE

START Wit AN ABOUT PAGE THAT INTRODIXES RECENT POSTS

4. Optionally, you can also try to style the footer with the following variables:

@footer-bg-color
@footer-text-color
@footer-link-color
@footer-link-hover-color

Just like the Roots starters theme, as discussed in the Customizing Roots.io with Less recipe,
JBST has been built with Bootstrap. You can read more about Bootstrap in Chapter 9, Using
Bootstrap with Less. The built-in Less compiler of JBST allows you to overwrite any of the
Less variables of Bootstrap. You can find a complete list of these variables at http://
getbootstrap.com/customize/#less-variables. Besides the default Bootstrap
variables, JBST also defines a set of themes for the Less variables and mixins. The @
footer-* variable and the .include-custom-£font () mixin do not exist in Bootstrap,
but enable you to style every piece of your theme with Less.

324

www.it-ebooks.info

http://getbootstrap.com/customize/#less-variables
http://getbootstrap.com/customize/#less-variables
http://www.it-ebooks.info/

Chapter 10

Note that you are not restricted to variables and mixins to style your site. You can, for instance,
style the navigation bar using the following Less code in the Less editor:

.include-custom-font ('Bearpaw', 'BEARPAW -webfont') ;
#jbst-top-nav {
#gradient > .vertical (lighten (@navbar-default-bg,10%),
darken (@navbar-default-bg, 10%)) ;
font-family: Bearpaw;
font-size:2em;
.nav > 1i {
padding: 10px 0;
&:hover, &.active, &:focus ({

#gradient > .vertical (lighten(@navbar-default-link-hover-
bg,10%) ,darken (@navbar-default-link-hover-bg, 10%)) ;

a {
background: none;
}
}
a {
border-left: 1lpx solid lighten (@navbar-default-bg,10%) ;
border-right: 1lpx solid darken (@navbar-default-bg,10%) ;
padding: 10px 30px;

}

&:first-child a { border-left: 0 solid;}
&:last-child a { border-right: 0 solid;}
}
.container-fluid {
padding-left: 100px;
}
}

After compiling the preceding Less code with the built-in Less editor, the navigation bar of your
website should look similar to what is shown in the following screenshot:

HOME BLOG SAMPLE PAGE QALLERY SHoP MEMBERS

The Less code used to style the navigation bar contains not only JBST selectors, such as
the #jbst - top-nav selector, but also the Bootstrap mixins, such as the #gradient >
.vertical () mixin, and much other advanced Less code.

325

www.it-ebooks.info

http://www.it-ebooks.info/

Less and WordPress

To prevent overwriting customizations when updating a WordPress theme, creating a child
theme is a best practice. A Boilerplate for a JBST child theme can be found at https://
github.com/bassjobsen/Boilerplate-JBST-Child-Theme. Other JBST child themes
can be downloaded from the WordPress theme directory or from http://themes.jbst.eu/.

The Less code and settings of JBST are saved in the database and are not overwritten
when updating.

» Inthe Making custom color schemes with 1pxdeep recipe in Chapter 9, Using
Bootstrap with Less, you can read about the 1pxdeep project.

» The JBST 1pxdeep theme is a child theme of JBST based on the 1pxdeep project.
You can download the JBST 1pxdeep theme from https://wordpress.org/
themes/jbst-1pxdeep.

» Inthis recipe, the Bearpaw font has been used as an example; you can download
the efont - face kit of this font from http://www. fontsquirrel.com/fonts/
Bearpaw.

326

www.it-ebooks.info

https://github.com/bassjobsen/Boilerplate-JBST-Child-Theme
https://github.com/bassjobsen/Boilerplate-JBST-Child-Theme
http://themes.jbst.eu/
https://wordpress.org/themes/jbst-1pxdeep
https://wordpress.org/themes/jbst-1pxdeep
http://www.fontsquirrel.com/fonts/Bearpaw
http://www.fontsquirrel.com/fonts/Bearpaw
http://www.it-ebooks.info/

11

Compiling Less Real
Time for Development
Using Grunt

In this chapter, we will cover the following recipes:

» Installing Node and Grunt

» Installing Grunt plugins

» Utilizing the Gruntfile. js file

» Loading Grunt tasks

» Adding a configuration definition for a plugin
» Adding the Less compiler task

» Creating CSS source maps with the Less compiler task
» Cleaning and minimizing your code

» Adding the watch task

» Adding the connect and open task

» Adding the concurrent task

» Analyzing your code with CSS Lint

» Removing unused CSS code

» Compiling style guides with Grunt

» Automatically prefix your code with Grunt

» Installing the Grunt LiveReload plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

Introduction

This chapter introduces you to the Grunt Task Runner and the features it offers to make
your development workflow a delight. You will learn how to take advantage of its plugins to
set up your own flexible and productive Less workflow. Although there are many applications
available for compiling Less, Grunt is a more flexible, versatile, and cross-platform tool that
allows you to automate many development tasks, including Less compilation. It can not only
automate the Less compilation tasks, but it can also wrap any other mundane jobs, such as
linting and minifying and cleaning your code, into tasks and run them automatically for you.

By the end of this chapter, you will become comfortable using Grunt and its plugins to
establish a flexible workflow when working with Less. Using Grunt in your workflow is vital, as
you are first shown the installation requirements of the three major operating systems. You
will then be shown how to combine Grunt's plugins to establish a workflow for compiling Less
in real time. Grunt becomes a tool to automate integration testing, deployments, builds, and
development in which you can use. Finally, by understanding the automating process, you will
also learn how to use alternative tools such as Gulp (which is another frontend build tool that
runs on Node.js).

Installing Node and Grunt

Grunt is essentially a Node.js module and therefore requires Node.js to be installed. The
goal of this recipe is to show you how to install Node.js and Grunt on the three major
operating systems. This recipe will first show you how to gather the information needed
before you install Node.js. Then, it will explain how to install it along with Grunt on your
chosen operating system.

Getting ready

Before you download Node.js, you need to gather some information about your operating
system (OS) kernel. This information will help you to install the correct version of Node.js for
your OS architecture. The decision boils down to deciding whether to download and install
the 32-bit version or the 64-bit version of Node.js. Follow these steps to find out how.

If you are using Mac OS X, follow these steps:

1. First access the Terminal at Applications/Utilities/Terminal .app Or
directly through the spotlight using the command + Space bar keyboard shortcut and
typing in terminal.

2. Once the Terminal is open, type the uname -a command in order to print out the 0S
information. Look at the end of the output to see whether it reads RELEASE 1386
i386 or RELEASE X86 64 x86_ 64. Ifitis the latter, then it means that you are
running a 64-bit OS. Otherwise, it is a 32-bit kernel.

328

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11
If you are using Windows 7 or Windows 8, follow these steps:

1. Use the Windows logo + Pause/Break keyboard shortcut to open the System
Properties dialog box.

2. Under System, look for System type. It will tell you whether you are running a
32-bit or 64-bit Windows operating system. Use this information to decide whether
to download and install the 32-bit or the 64-bit version of Node.js.

If you are running a Linux distribution, such as Debian, Fedora, Ubuntu, Mageia, Mint Linux,
SUSE, or Red Hat, first open the Terminal using the Ctrl +Alt + T keyboard shortcut. Once the
Terminal is open, type the uname -a command to print your OS architecture. If the end of the
output reads x86_64 GNU/Linux, it indicates that you are running a 64-bit OS. If it reads
i386,1486, 1586, Or 1686, it means that you are running a 32-bit version of the kernel and
you would need to download the 32-bit version of Node.js.

Now that you have gathered the necessary information about your OS, continue to the next
section that explains how to install Node.js and Grunt on your operating system in detail.

How to do it...

If you are using a Mac or Windows system, you can use the Node.js installer. Simply go to
http://nodejs.org/download and download the installer for your system. For example,
if you use the 64-bit version of Mac 0S X, download the 64-bit Mac OS X Installer (.pkg). If
you are using the 64-bit version of Windows, then download and install the 64-bit Windows
Installer (.ms1i). Once you have downloaded the installer, open it and go through the
installation process. The installation process is almost the same as that of installing any other
application and will not take more than a couple of minutes. Once the installation is complete,
open the command line or Terminal and run the node -v and npm -v commands to make
sure that Node.js and its package manager have been successfully installed. If you see the
output for both commands, it means that you have successfully installed Node.js and its
package manager on your system.

If you are using a Linux distribution, however, the easiest way to install Node.js is to use the
Linux Binaries (. tar.gz) for your OS kernel's architecture. In order to install the binaries,
first go to http://nodejs.org/download and copy the Linux Binaries (.tar.gz)
download link for your OS kernel architecture by right-clicking on the link and choosing
Copy link address. At the time of writing this book, the URL for the 64-bit version reads
http://nodejs.org/dist/v0.10.24/node-v0.10.24-1inux-x64.tar.gz and
http://nodejs.org/dist/v0.10.24/node-v0.10.24-1inux-x86.tar.gz forthe
32-bit version of Node.js.

1. Open the Terminal and first add yourself to the /usr/local folder, which will
require the administrator password:

$ ME=$ (whoami) ; sudo chown -R $ME /usr/local

329

www.it-ebooks.info

http://nodejs.org/download
http://nodejs.org/download
http://nodejs.org/dist/v0.10.24/node-v0.10.24-linux-x64.tar.gz
http://nodejs.org/dist/v0.10.24/node-v0.10.24-linux-x86.tar.gz
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

2. Then goto the /usr/local/bin folder, make a folder called node and navigate to
it:

$ cd /usr/local/bin && mkdir node && cd $

3. The next step is to download and unarchive Node.js. Make sure to use the URL that
you copied from the download page in the wget command as shown here:

$ wget http://copied/url/from/nodejs.tar.gz -0 - | \ tar zxf -
--strip-components=1
4. The final step is to create the symbolic links for Node.js and npm:
$ In -s "/usr/local/bin/ node/bin/node"
$ In -s "/usr/local/bin/ node/lib/\ node modules/npm/bin/npm-

cli.js" ../npm

5. Check and see whether Node.js and npm are installed and run node -v && npm
—-v in the Terminal. If the installation is successful, the output should print the
versions of Node.js and npm:

v0.10.24
1.3.21

Now that you have installed Node.js and npm, you are finally ready to install Grunt. Installing
Grunt is as simple as running a single command, regardless of the operating system that you
are using. Just open the command line or the Terminal and execute the following command:

$ npm install -g grunt-cli

That's it! This command will install Grunt globally and make it accessible anywhere on your
system. Run the grunt --version command in the Terminal or the command line in order
to confirm that Grunt has been successfully installed. If the installation is successful, you
should see the version of Grunt in the Terminal's output:
$ grunt --version
grunt-cli v0.1.11
After installing Grunt, the next step is to set it up for your project:
1. Make a folder on your desktop and call it chapter1, then navigate to it and run npm
init toinitialize the setup process:
$ mkdir ~/Desktop/chapterl && cd $ && npm init
2. Press Enter for all the questions and accept the defaults. You can change the
settings later. This should create a file called package . json that contains some

information about the project and the project dependencies. In order to add Grunt
as a dependency, install the Grunt package as follows:

$ npm install grunt --save-dev

330

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

3. Now, if you look at the package . json file, you should see that Grunt is added to the
list of dependencies:

. ."devDependencies": {“grunt“: "~0.4.2"

In addition, you should see an extra folder created called node_modules
that contains Grunt and other modules that you will install later in this
e chapter.

In the preceding section, you installed Grunt (grunt -c1i) with the -g option. The -g option
installs Grunt globally on your system. Global installation requires superuser or administrator
rights on most systems. Only the globally installed packages that you have need to be run from
the command line. Everything that you will use with the require () function in your programs
should be installed locally in the root of your project. Local installation makes it possible to solve
your project's specific dependencies. More information about global versus local installation of
npm modules can be found at https://www.npmjs.org/doc/faqg.html.

There's more...

Node package managers are available for a wide range of operation systems, including
Windows, OSX, Linux, Sun0OS, and FreeBSD. A complete list of package managers can be
found at https://github.com/joyent /node/wiki/Installing-Node.js-via-
package-manager. Notice these package managers are not maintained by the Node.js core
team. Instead, each package manager has its own maintainer.

Installing Grunt plugins

Grunt plugins are the heart of Grunt. Every plugin serves a specific purpose and can also work
together with other plugins. In order to use Grunt to set up your Less workflow, you need to
install several plugins. You can find more information about these plugins in the following How
it works... section.

Getting ready

Before you install the plugins, you should first create some basic files and folders for the
project. Navigate to the root of the project using cd ~/Desktop/chapterl and run the
following to create the files and folders:

$ a="app/dev" ; mkdir -p $a/css ; mkdir $a/less
$ touch $a/less/app.less && touch $a/index.html

331

www.it-ebooks.info

https://www.npmjs.org/doc/faq.html
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

This simply creates some files that you are going to work with throughout the chapter. You do
not need to use the command line to create them, but in the end, you should end up with the
following folder and file structure:

— dpp
L— dew

55
index.html
less

L app.less
— node modules
- package.json

How to do it...

Grunt plugins are essentially Node.js modules that can be installed and added to the
package. json file in the list of dependencies using npm. To do this, follow the ensuing steps:

1. Navigate to the root of the project.
2. Install the modules using npm, as follows:

$ cd ~/Desktop/chapterl && npm install \
grunt-contrib-less \
grunt-contrib-watch \
grunt-contrib-connect \
grunt-contrib-less \
grunt-open grunt-concurrent \
load-grunt-tasks \
grunt-contrib-csslint \
grunt-uncss \
grunt-styleguide \
grunt-autoprefixer \

--save-dev

Notice the single space before the backslash in each line. For example,
on the second line, grunt-contrib-less \, there is a space before
+ the backslash at the end of the line. The space characters are necessary
% because they act as separators. The backslash at the end is used to
continue the commands on the next line. Also, notice the logical and
(&&). Using the logical &&, you can run two commands in one line. This
guarantees that the second command will run only if the first one succeeds.

332

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The npm install command will download all the plugins and place them in the
node_modules folder, in addition to including them in the package . json file.
The next step is to include these plugins in the Gruntfile. js file.

Grunt plugins can be installed and added to the package . json file using the npm install
command followed by the name of plugins separated by a space, followed by the --save-
dev flag:

$ npm install nameOfPluginl nameOfPlugin2 --save-dev

The --save-dev flag adds the plugin names and a tilde version range (see https://www.
npmjs.org/doc/misc/semver.html for more information on the version's syntax) to

the list of dependencies in the package. json file so that the next time you need to install
the plugins, all you need to do is run npm install. This command will look at the directory
from which it was called, look for the package . json file, and will automatically download

all the specified plugins. This makes porting workflows very easy; all it takes is copying the
package. json file and running npm install. Finally, the package. json file contains a JSON
object with metadata.

It is also worth explaining the long command that you have used to install the plugins in this
recipe. This command has two parts: the first part changes the directory to the chapteri1 folder
on your desktop and the second part installs the plugins that are continued on to the next line
by the backslash. The second part of the command is essentially equivalent to the following:

npm install grunt-contrib-less --save-dev

npm install grunt-contrib-watch --save-dev

npm install grunt-contrib-connect --save-dev

npm install load-grunt-tasks --save-dev

As you can see, it is very repetitive. However, both yield the same results; it is up to you to
choose the one that you feel more comfortable with.

The node_modules folder contains all the plugins that you install with npm. Every time you
runnpm install name-of-plugin, the plugin is downloaded and placed in the folder.

If you need to port your workflow, you do not need to copy all the contents of the folder. In
addition, if you are using a version control system such as git, you should add the node
modules folder to the .gitignore file so that the folder and its subdirectories are ignored.

333

www.it-ebooks.info

https://www.npmjs.org/doc/misc/semver.html
https://www.npmjs.org/doc/misc/semver.html
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

There's more...

Each Grunt plugin also has its own metadata set in a package . json file, and so plugins can
have different dependencies. For instance, the grunt -contrib-1less plugin, as described
in the Adding the Less compiler task recipe, has set its dependency of the Less compiler,
which can be seen as follows:

"dependencies": {
"less": "*1.7.0"

}

In the following list, you will find the plugins used in this chapter followed by a brief
description:

» load-grunt-tasks: This loads all the plugins listed in the package. json file

» grunt-contrib-watch: This watches your files for changes

» grunt-contrib-connect: This runs a simple, static local server

» grunt-contrib-less: This compiles Less files

» grunt-open: This opens URLs and files from a Grunt's task

» grunt-concurrent: This allows the execution of multiple tasks concurrently

» grunt-contrib-csslint: This analyzes your CSS code

» grunt-uncss: This removes unused CSS

» grunt-styleguide: This compiles style guides with Grunt

» grunt-autoprefixer: This parses CSS and adds vendor-prefixed CSS properties

using the Can | use database (see http://caniuse.com/ for more information)

In addition to installing plugins, you can remove them as well. You can remove a plugin using
the npm uninstall name-of-plugin command where name-of-plugin is the name
of the plugin that you wish to remove. For example, if a line in the list of dependencies of your
package. json file contains grunt -concurrent": "~0.4.2,thenyou can remove it
using the following command:

npm uninstall grunt-concurrent

Then you just need to make sure to remove the name of the plugin from your package.json
file so that it is not loaded by the 1oad-grunt -tasks plugin the next time you run a Grunt
task. Running npm prune after removing the items from the package . json file will also
remove the plugins. The prune command removes "extraneous" packages that are not listed
in the parent package's dependencies list.

www.it-ebooks.info

http://caniuse.com/
http://www.it-ebooks.info/

Chapter 11

Utilizing the Gruntfile.js file

The Gruntfile. js file is the main configuration file for Grunt that handles all the tasks and
task configurations. All the tasks and plugins are loaded using this file. In this recipe, you will
create this file and will learn how to load Grunt plugins using it.

Getting ready

First, you need to install Node and Grunt as described in the Installing Node and Grunt recipe
of this chapter. You will also have to install some Grunt plugins as described in the Installing
Grunt plugins recipe of this chapter.

How to do it...

Once you have installed Node and Grunt, follow these steps:

1.

In your Grunt project directory (the folder that contains the package. json file),
make a file, save it as Gruntfile.js, and add the following lines to it:
module.exports = function(grunt)
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
app: {
dev: 'app/dev'
I
//Add the Tasks configurations here.
3N

// Define Tasks here

Vi

This is the simplest form of the Gruntfile. js file that only contains two
information variables.

The next step is to load the plugins that you installed in the Installing Grunt plugins
recipe. Add the following line at the end of your Gruntfile. js file:

grunt . loadNpmTasks ('grunt-contrib-less') ;

In the preceding line of code, grunt -contrib-1less is the name of the plugin you
want to load.

335

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt
3. Finally, your Gruntfile. js file will look like this:

module.exports = function(grunt) {
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
app: {
dev: 'app/dev'
b
//Add the Tasks configurations here.
I
// Define Tasks here
grunt.loadNpmTasks ('grunt-contrib-less') ;
grunt.loadNpmTasks ('grunt-contrib-watch') ;
grunt.loadNpmTasks ('grunt-contrib-csslint') ;
grunt . loadNpmTasks ('grunt-styleguide!') ;

(
(
grunt .loadNpmTasks ('grunt-autoprefixer') ;
(
('grunt-uncss') ;

grunt . loadNpmTasks

Vi

That is all it takes to load all the necessary plugins. The next step is to add the configurations
for each task to the Gruntfile.js file.

Any Grunt plugin can be loaded by adding a line of JavaScript to the Gruntfile. js file,
as follows:

grunt . loadNpmTasks ('name-of-module') ;

This line should be added every time a new plugin is installed so that Grunt can access the
plugin's functions. However, it is tedious to load every single plugin that you install. In addition,
you will soon notice that as your project grows, the number of configuration lines will increase
as well. As described in the Loading Grunt tasks recipe of this chapter, you can also use the
load-grunt-tasks plugin to load your plugins automatically, based on the information in
your package . json file.

The Gruntfile. js file should be written in JavaScript or CoffeeScript. Grunt tasks rely

on configuration data defined in a JSON object passed to the grunt . initConfig method.
JavaScript Object Notation (JSON) is an alternative for XML and used for data exchange.
JSON describes name-value pairs written as "name" : "value";.All the JSON data is
separated by commas, with JSON objects written inside curly brackets and JSON arrays
inside square brackets. Each object can hold more than one name/value pair with each
array holding one or more objects.

336

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

You can also group tasks into one task. You alias groups of tasks using

the following line of code:
i

grunt.registerTask('alias', ['taskl', 'task2']);

Loading Grunt tasks

Instead of loading all the required Grunt plugins one by one, you can load them automatically
with the 1load-grunt-tasks plugin.

Getting ready

For this recipe, you need to install the 1oad-grunt-tasks plugin. You can install this by
using the following command in the root of your project:

$ npm install load-grunt-tasks --save-dev

How to do it...

Add the following line at the very beginning of your Gruntfile. js file after module . exports:
require ('load-grunt-tasks') (grunt) ;
Now your Gruntfile. js file should look like this:

module.exports = function(grunt) {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
app: {
dev: 'app/dev'
}r
//Add the Tasks configurations here.
I

// Define Tasks here

bi

337

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

The load-grunt-tasks plugin loads all the plugins specified in the package . json file. It
simply loads the plugins that begin with the grunt - prefix or any pattern that you specify. This
plugin will also read the dependencies/devDependencies/peerDependencies in your
package. json and load the Grunt tasks that match the provided patterns.

A pattern to load specifically can be added as a second parameter. The can load, for instance,
all the grunt -contrib tasks with the following code in your Gruntfile. js file:

require ('load-grunt-tasks') (grunt, {pattern: 'grunt-contrib-*'});

Adding a configuration definition for a plugin

Any Grunt task needs a configuration definition. The configuration definitions are usually
added to the Gruntfile. js file itself and are very easy to set up. In addition, it is very
convenient to define and work with them because they are all written in JSON format. This
makes it very easy to spot the configurations in the plugin's documentation examples and add
them to your Gruntfile.js file.

In this recipe, you will learn how to add the configuration for a Grunt task.

Getting ready

For this recipe, you will first need to create a basic Gruntfile. js file and install the plugin
you want to configure. If you want to install the grunt -example plugin, you can install it
using the following command in the root of your project:

$ npm install grunt-example --save-dev

How to do it...

Once you have created the basic Grunt file, follow these steps:

1. Asimple form of the task configuration is shown in the following code. Start by adding
it to your Gruntfile. js file wrapped inside grunt . initConfig{ }:

example: {

subtask: {

files: {
"app/dev/css/app.css":

"app/dev/less/app.less"

}
}
}

338

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

2. Also, add a name and path for your project by adding to following code, also wrapped
inside grunt . initConfig{}, tothe Gruntfile. js file:

app: {
dev: 'app/dev'

}
After following these steps, your Gruntfile. js file should look like this:

module.exports = function(grunt) {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
app: {
dev: 'app/dev'
}
example: {
subtask: {
files: {
"app/dev/css/app.css": "app/dev/less/app.less"
}
}
}
//Add the Tasks configurations here.
3N
// Define Tasks here

Vi

The Don't Repeat Yourself (DRY) principle can be applied to your Grunt configuration too. If
you look closely at the configuration definition, you will see the paths for the Less source and
compiled CSS are hardcoded. A better approach would be to use templates to specify the

paths. After you replace the values with template variables, your Less configuration will look
like this:

less:
dev: {
files:
"<«%= app.dev %>/css/app.css": "<%= app.dev %>/less/app.less"
}
}

}

If you decide to change the name of your development directory, for example, all you need
to do is change the app variable that is defined at the top of your Gruntfile. js file.

339

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

If you look closely at the task configuration, you will notice the files field that specifies
what files are going to be operated on. The files field is a very standard field that appears
in almost all Grunt plugins simply due to the fact that many tasks require some or many file
manipulations.

In addition, you should have noticed the template has been used using the <%= %> delimiter
to expand the value of the development directory:

))

"<%= app.dev %>/css/app.css": "<%= app.dev %>/less/app.less"

The <%= %> delimiter essentially executes inline JavaScript and replaces values, as you can
see in the following code:

"app/dev/css/app.css": "app/dev/less/app.less"

So, put simply, the value defined in the app object at the top of the Gruntfile.jsfileis
evaluated and replaced. It is also worth mentioning that the value for the template does not
necessarily have to be a string and can be a JavaScript literal.

See also

» Using the templates is key in order to avoid hardcoded values and inflexible
configurations; you can read more about templates in the Templates section
of Grunt's documentation at http://gruntjs.com/configuring-
tasks#templates

Adding the Less compiler task

The Less task is the core task that you will need for your Less development. It has several
features and options but at the heart of it is the Less compiler that can compile your Less files
to CSS. By the end of this recipe, you will have a good understanding of this plugin, how to add
it to your Gruntfile. js file, and how to take advantage of it.

Getting ready

The only requirement for this recipe is to have the Less plugin installed and loaded in your
Gruntfile.js file. If you have not installed this plugin in the Installing Grunt plugins recipe
of this chapter, you can do this using the following command in the root of your project:

$ npm install grunt-contrib-less --save-dev

340

www.it-ebooks.info

http://gruntjs.com/configuring-tasks#templates
http://gruntjs.com/configuring-tasks#templates
http://www.it-ebooks.info/

Chapter 11

How to do it...

The simplest form of the Less task configuration is shown in the following code. Start by
adding it to your Gruntfile. js file after app: {dev: 'app/dev'},:

less:
dev: {
files: {
"app/dev/css/app.css": "app/dev/less/app.less"
}
}
}

Now, your Gruntfile. js file should look like this:

module.exports = function(grunt) {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),

app: {
dev: 'app/dev'
}
less: {
dev: {
files: {
"app/dev/css/app.css": "app/dev/less/app.less"
}
}
}

//Add the Tasks configurations here.

3N

// Define Tasks here

}i

In the preceding code, the first file path (field's key) is the destination of the compiled CSS and
the second is the Less source files.

341

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

In addition to setting up the task configuration, you should run the grunt command to test
the Less task. When you run the grunt less command, Grunt will look for a configuration
called less inthe Gruntfile.js file. Once it finds it, it will run the task with some default
options if they are not explicitly defined. Successful tasks will end with the following message:

Done, without errors.

There's more...

In order to quickly test the current configuration, open the app. less file at app/dev/less/
app . less and add the following Less lines to it:

@bg-color : #000;
@text-color : #bada55;

body
background-color:@bg-color;
font-size: lem;
color: @text-color;

}

Then, open the Terminal in the directory that contains your Gruntfile. js file and run the
following grunt less command:

$ cd ~/Desktop/chapterl/ && grunt less
If the execution is successful, you should get the following message:

Running "less:dev" (less) task
File app/dev/css/app.css created.

Done, without errors.
In addition, you should be able to see the compiled CSS at app/dev/css/app.css:

body
background-color: #000000;
font-size: lem;
color: #bada55;

342

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The Less task, similar to any other Grunt task, allows you to define options for your task. For
example, if you need to include another folder that contains your Less source files, you can
use the paths option that specifies directories to look for @import directives:

less: {
dev: {
options: {
paths: ["<%= app.dev %>/less/src"]

b

files:
"<%= app.dev %$>/css/app.css": "<%= app.dev %>/less/app.less"

}
}
}

By default, the Less task sets the paths to the directory of the source but you can change it if
you choose to.

There are several other options that you can include in the Less task. Please refer to Grunt's
documentation for a full list of options, which is available at https://github.com/
gruntjs/grunt-contrib-less#options. An option can also be set at the global Less
task level so the option will be applied in all subtasks of Less.

In addition to options, Grunt also provides targets for every task to allow you to set different
configurations for the same task. In other words, if, for example, you needed to have two
different versions of the Less task with different source and destination folders, you could
easily use two different targets. Adding and executing targets are very easy. Adding more
builds just follows the JSON notation, as shown here:

less:
dev: {
options: {
paths: ["dev-assets/css"]

I
files: ({
"path/to/dev-result.css": "path/to/dev-source.less"
}
I
dist: {

options: {
paths: ["dist-assets/css"],
cleancss: true
I
files:
"path/to/result.min.css": "path/to/dist-source.less"

}

343

www.it-ebooks.info

https://github.com/gruntjs/grunt-contrib-less#options
https://github.com/gruntjs/grunt-contrib-less#options
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

In the preceding example, two builds are defined. The first one is named dev and the second
is called dist. Each of these targets belongs to the Less task but they use different options
and use different folders for the source and the compiled Less.

Moreover, you can run a particular target using grunt less:nameOfTarget, where
nameOfTarget is the name of the target that you are trying to use. So, for example, if
you needed to run the dist target, you will have to run grunt less:dist. However, if
you needed to run both targets, you could simply run grunt less and it would run both
the targets sequentially. Refer to Grunt's documentation at http://gruntjs.com/
configuring-tasks#task-configuration-and-targets for more details.

Creating CSS source maps with the Less

compiler task

In the Adding the Less compiler task recipe, you installed the Less task and read how

to configure this task. In the Using CSS source maps to debug your code recipe from
Chapter 2, Debugging and Documenting Your Less Code, you can read how to create a v3
CSS source map and use this source map to debug your code. This recipe describes how to
create these source maps automatically with the Less compiler task.

Getting ready

The only requirement for this recipe is to have the Less plugin installed and loaded in your
Gruntfile.js file. You can check the Adding the Less compiler task recipe of this chapter
to find out how to install this plugin.

How to do it...

Open the Gruntfile. js file that contains your Less task configuration. The grunt -
contrib-less task has options to turn the source maps on and set the output path. The
sourceMap option is Boolean, which can be set to true to enable source maps. With only
the sourceMap option set to true, the source map will be included inside the CSS file.
With the sourceMapFilename option, you can write the source map to a separate file
with the given filename. When setting both the options, the Less task configuration in your
Gruntfile.js file will look as follows:

less: {
dev: {
files:
"<%= app.dev %$>/css/app.css": "<%= app.dev %>/less/app.less"

}

options: {

W
IS
B

www.it-ebooks.info

http://gruntjs.com/configuring-tasks#task-configuration-and-targets
http://gruntjs.com/configuring-tasks#task-configuration-and-targets
http://www.it-ebooks.info/

Chapter 11

sourceMap: true,

sourceMapFilename: "<%= app.dev
%>/css/style.css.map"

}
}

For production, your final CSS code should be as short as possible in order to help your website
load faster. For this reason, you should not inline Less code in your CSS files for production.

¢ In the Adding the Less compiler task recipe of this chapter, you can
read how to define Grunt targets; you can define different targets that
’ add CSS source maps or not, depending of the type of the target.

Since Less v1.5, creating CSS v3 source maps are an option of the Less compiler. CSS helps
you to debug your Less code by creating a mapping between the output of your CSS code
and the original Less code. When inspecting your source with, for instance, Google Chrome,
you will see your CSS selectors refer to the Less file of the origin, including line numbers. The
following screenshot shows you an example of the additional information from the source
map. Here, you can see that the Styles tab shows the CSS selectors with references to the
Less files, including the line numbers.

Skyles | Computed Event Listeners DOM Breakpoints Properties

element.style { + i

1

div.other p { style.less:14
-webkit-transform: rotate{l88deg);
-ms-transform: rotate(l80deg):
trafrsfeorm—rotateIg8dests

1

body p { style.less:1

font-size: 32px;
border-radius: »18px;

1
p 1 user agent stylesheet
display: block;
-webkit-margin-before: lem;
-webkit-margin-after: lem;
-webkit-margin-start: @px;
-webkit-margin-end: Bpx;
i

345

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

Other options to set the output of your CSS source map include sourceMapURL

and sourceMapBasepath among others, which are described in more detail at
https://github.com/gruntjs/grunt-contrib-less#sourceMap. Also note
that these options of the grunt -contrib-less task do not exactly match the options
of the Less compiler.

There's more...

The cleaning and minimizing your code recipe of this chapter shows you how to clean and
minify your code. Unfortunately, the default code compressor of Less, clean-css, also
removes the reference to the source map in your CSS. Future versions of Less will solve this
problem, however. For now, you can use the alternative compressor by setting compress
instead of clean-css in your task options.

The grunt -recess Grunt task is an alternative for compiling, linting, and minifying your
Less and CSS code. More information about this plugin, which you can download, can be
found at https://www.npmjs.org/package/grunt -recess. At the time of writing

this book, neither grunt - recess nor the newer gulp-1less have support for CSS source
maps. The grunt -recess Grunt task does not support source maps at all, and gulp-1less
offers inline source maps only. Also, note that gulp-1less won't work with Grunt but uses the
alternative frontend builder Gulp.

Cleaning and minimizing your code

The Less compiler has two options for compressing and minimizing. The first option (-x or
- -compress) removes some whitespaces, and the second option (- -clean-css) uses
clean-css, which you can access at https://github.com/GoalSmashers/clean-
css. Note that you cannot use both the options together.

Getting ready

The only requirement for this recipe is to have the Less plugin installed and loaded in your
Gruntfile. js file. You can check the Installing Grunt plugins and Adding the Less compiler
task recipes of this chapter to find out how to install this plugin.

346

www.it-ebooks.info

https://github.com/gruntjs/grunt-contrib-less#sourceMap
https://www.npmjs.org/package/grunt-recess
https://github.com/GoalSmashers/clean-css
https://github.com/GoalSmashers/clean-css
http://www.it-ebooks.info/

Chapter 11

How to do it...

Open the Gruntfile. js file that contains your Less task configuration. Edit the grunt -
contrib-less options to set the compress or clean-css to true, as follows

less:
dev: {
files: {
"<%= app.dev %>/css/app.css": "<%= app.dev %>/less/app.less"

options: {
cleancss: true

}

Cleaning and compressing your final CSS is important to load the website faster. Also, you can
remove unused code, as discussed in the Removing unused CSS using Grunt recipe of this
chapter, to make the CSS code smaller and load your website faster.

There's more...

The Less compiler also has the possibility to pass an option to clean-css with
clean-option. On the other hand, you will find that grunt -contrib-less does not
support this option.

Adding the watch task

In this recipe, you will add the watch plugin. This plugin enables you to watch files and folders
for any changes and execute certain tasks upon any change. In this recipe, you will add the
watch task to watch for changes in the development folder and trigger the Less task every
time any of the Less files is changed.

Getting ready

The only requirement for this recipe is to have the watch plugin installed and loaded in your
Gruntfile.js file. If you have not installed this plugin in the Installing Grunt plugins recipe
of this chapter, you can do this using the following command in the root of your project:

$ npm install grunt-contrib-watch --save-dev

347

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

How to do it...

In order to add the watch configuration, add the following lines to your Gruntfile. js file
after the Less task configuration:

watch:
dev: {
options: {
livereload: true
I

files: ['<%=app.dev$>/**', 'l<%= app.dev %>/css/**'],
tasks: ['less']
|
b

Now your Gruntfile. js file will look like the following code:

module.exports = function(grunt) {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),

app: {
dev: 'app/dev'
b
less:
dev: {
files: {
"<%= app.dev %>/css/app.css": "<%= app.dev

%$>/less/app.less"

}
b

watch: {
dev: {
options: {
livereload: true
Y
files: ['<%=app.dev%>/**', 'l<%=
app.dev %>/css/**'],
tasks: ['less']
3
}
//Add the Tasks configurations here.
13N

// Define Tasks here

}i

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Notice that the Less and the watch tasks are separated by commas. As a

matter of fact, you can add as many tasks as you like as long as they are
s separated by commas. Also, if you read the Utilizing the Gruntfile.js file

recipe of the chapter, you will get a brief description of the JSON format.

Now you can ask Grunt to watch your development folder and compile it every time you make
a change. Navigate to the root of the project directory and run the watch task, as follows:

$ grunt watch

If everything is successful, you should see the following message in the terminal or the
command line:

Running "watch" task

Waiting...

Now every time you make a change to any of the files in the app/dev/ folder (except the

css folder), the watch task will trigger the Less task to compile your Less file. You can try it by

opening the app/dev/less/app. less file and adding a simple line and saving it. You will
see a message as soon as you save the file:

>> File "app/dev/less/app.less" changed.

Running "less:dev" (less) task

File app/dev/css/app.css created.

Done, without errors.
Completed in 0.587s at Sun Jan 12 2014 22:03:16 GMT-0500 (EST) -
Waiting...

It is as simple as that! Now, if you want to stop the watch task, just use the Ctrl + C keyboard
shortcut to terminate the process.

The watch task can continuously monitor files and folders specified in the task configuration
for changes and run other defined Grunt tasks upon any change. Grunt tasks can be easily
passed in to the watch task as an array, which is one of the reasons why working with the
watch task is such a breeze.

Similarly, the watched files and folders can also be listed in an array and included in the
task configuration.

349

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

Use globing patterns to effectively specify the files and folders that you want
Grunt to watch. For example, if you need to watch all the . 1less files in the
4 Less directory, use the 1ess/* . less pattern. However, if you need to
% watch all the Less files in the 1ess folder and all the 1ess subdirectories,
’ use the less/**/* . less pattern. Refer to Grunt's documentation
athttp://gruntjs.com/configuring-tasks#globbing-
patterns for more details.

The 1ivereload option enables you to dynamically refresh all the files that have changed.
This is very useful when combined with the connect task since the connect task also has a
livereload option that enables Grunt to refresh the browser upon any file change.

There's more...

The watch plugin is versatile and has many options and features that will take couple of pages
to fully explore. Make sure to visit its documentations at https://github.com/gruntjs/
grunt-contrib-watch for more details on the options and frequently asked questions.

Adding the connect and open task

The next tasks that you are going to add are the connect and open tasks. The connect plugin
provides a simple static development server that you can use to serve your static files. You
can use the 1ivereload option provided by the connect plugin along with the watch task
(see the Adding the watch task recipe) to automatically reload your browser as you work on
your project. In addition to the connect task, you will also add a small task using the open
plugin to open a URL that is unsurprisingly called the open task.

This recipe will show you how to set the connect task along with the open task to
automatically open served folders as you work on your project.

Getting ready

The only requirement for this recipe is to have the open and the connect plugins installed
and loaded in your Gruntfile. js file. If you haven't installed these plugins in the Installing
Grunt plugins recipe of this chapter, you can do this now using the following command in the
root of your project:

$ npm install grunt-contrib-connect grunt-open --save-dev

350

www.it-ebooks.info

http://gruntjs.com/configuring-tasks#globbing-patterns
http://gruntjs.com/configuring-tasks#globbing-patterns
https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch
http://www.it-ebooks.info/

Chapter 11

How to do it...

Add the following configuration to your Gruntfile. js file after the watch task (make sure to
add the comma after the end of the watch task configuration):

connect: {
server: {
options: {
port: 9001,
base: ['<%= app.dev %>'],
keepalive: true,
livereload: true

}

Now, in your Gruntfile. js file, the watch and the connect configurations should look like
this:

options: {
livereload: true
|

files: ['<%=app.dev$>/**', 'l<%= app.dev %>/css/**'],
tasks: ['less']
}
I
connect: {
server: {
options: {
port: 9001,
base: ['<%= app.dev %>'],
keepalive: true,
livereload: true

351

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

Next, add the configuration for the open task to your Gruntfile. js file after the connect
task configuration:

connect: {
server: ({
options: {
port: 9001,
base: ['<%= app.dev %>'],
keepalive: true,
livereload: true

}
b
open: {
all: {
path: 'http://localhost:<%= connect.server.options.port%>"'

}

The last step is to group the connect and open tasks into one task. You alias groups of tasks
use the following line of code:

grunt.registerTask ('serve', ['connect', 'open']);

Although the preceding code is correct, it is not going to run both
tasks. This is because of the fact that the connect task keeps running
(because of the keepalive: true option)and will block the open
’ task to open the URL. The Adding the concurrent task recipe will show
you how to solve this issue using the concurrent plugin.

The connect plugin, similar to any other Grunt plugin, has several options. The options used
in this recipe are given in the following list along with a short description:
» port: 9001: This specifies the port on which the server will be listening on.

» base: ['<%= app.dev %>']:This defines the directory from which files will
be served. Different base directories can be passed into the array but only the
last one will be able to be browsed.

» keepalive: true: This keeps the server running after Grunt's tasks have
been completed and it will not allow any other tasks to run after it.

352

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

» livereload: true: Thisinjects a live reload script into the page. Also, it enables
live page reloading when used with the 1ivereload option from the watch task.

There are several other options available that you can explore by visiting the project's
repository at https://github.com/gruntjs/grunt-contrib-connect

Adding the concurrent task

The concurrent task enables you to run several tasks concurrently. This is particularly useful
when working with tasks such as the connect or watch task that stay active and block the
tasks after them.

In this recipe, you will learn how to use the concurrent plugin to run the connect, open, and
watch tasks at the same time. This will allow you to run one command to start the server and
automatically open the browser window and watch the files for changes to reload the browser
as you save any of the files.

Getting ready

The only requirement for this recipe is to have the concurrent plugin installed and loaded in
your Gruntfile. js file. If you have not installed this plugin in the Installing Grunt plugins
recipe of this chapter, you can do this using the following command in the root of your project:

$ npm install grunt-concurrent --save-dev

How to do it...

Add the following configuration for the concurrent task to the Gruntfile. js file after the
open task:

open: {
all: {
path: 'http://localhost:<%= connect.server.options.port%>'
}
b
concurrent: {
dev: ['connect', 'open', 'watch'l],
options: {
logConcurrentOutput: true,
limit: 3

353

www.it-ebooks.info

https://github.com/gruntjs/grunt-contrib-connect
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

Next, group the connect, open, and watch tasks using the registerTask function and
call it dev:

grunt.registerTask('dev', ['concurrent']);

Then, add it to the end of the Gruntfile. js file before the last closing curly brace (}).
So, the collapsed version of your Gruntfile. js file will look this:

module.exports = function(grunt) {
require ('load-grunt-tasks') (grunt) ;
grunt.initConfig({
pkg: grunt.file.readJSON ('package.json'),
app: {
dev: 'app/dev'

b

less: { ... },
watch: { ... },
connect: { ... } ,
open: { ... },
concurrent { ... }

3N

grunt.registerTask('dev', ['concurrent']);

Vi

In order to test the server and the concurrent plugin, let's add some content to the app/dev/
index.html file:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<titles>WebProject</title>
<meta name="viewport" content="width=device-width, maximum-
scale=1.0" />
<link rel="gtylesheet" type="text/css" href="css/app.css">
</head>
<body>
<hl1>The server is running successfully !</hl>
</body>
</html>

Now change the directory to the root of your project and run the dev task:

$ cd ~/Desktop/chapterl && grunt dev

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Once you do this, after a couple of seconds a new browser window will open at
http://localhost:9001 serving the index.html file. Now, if you change and save

any file in the app/dev folder, the page will automatically be refreshed. Try it by changing the
app.less file at app/dev/less/app.less. You should see that the file gets automatically
reloaded and refreshed in the browser, as shown in the following screenshot:

WebProject

C [localhost:9001

The server is running successfully !

Finally, as always, you can stop the task using the Ctrl + C keyboard shortcut to stop the
running process.

The concurrent plugin is very similar to another plugin called the parallel plugin that enables
you to run blocking tasks. In addition, these plugins are also useful to speed up the building
processes that require several tasks to be executed at the same time. Please make sure

to visit the project's repository at https://github.com/sindresorhus/grunt-
concurrent to learn more about the plugin and the features that it has to offer.

Analyzing your code with CSS Lint

Less compiles into valid CSS, but note that "valid" does not always mean you will have
compiled code of the highest quality. Lint your final CSS code with CSS Lint; this will help
you to find possible issues and prevent you from making common mistakes. It not only
checks your code for possible errors, such as double or empty properties, but also checks
for compatibility and looks for problematic patterns or signs of inefficiency.

355

www.it-ebooks.info

https://github.com/sindresorhus/grunt-concurrent
https://github.com/sindresorhus/grunt-concurrent
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

CSS Lint applies a set of rules to your code; all rules are optional and you can even write
your own rules. It also has rules to check the maintainability and accessibility of your

code. Finally, CSS Lint applies some rules that are based on the principles of Object
Oriented CSS (00CSS). More information about OOCSS can be found at http://www.
smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-
css-oocss/.

Getting ready

The only requirement for this recipe is to have the CSS Lint plugin installed and loaded in the
Gruntfile.js file. If you have not installed this plugin in the Installing Grunt plugins recipe
of this chapter, you can do so using the following command in the root of your project:

$ npm install grunt-contrib-csslint --save-dev

How to do it...

All you need to do is add the following configuration for the CSS Lint task to your Gruntfile.
j s file:

csslint:
src: ['css/style.css']

}

The CSS Lint task lints your CSS code and checks a wide range of rules to validate it. You can
ignore some rules by setting it to false or even defining your own rules. A complete list of
rules can be found at https://github.com/CSSLint/csslint/wiki/Rules

To start with, your Less code may look as follows:

header {
hl
color: darkgreen;

}
}

Running the grunt csslint command will give you the result illustrated here:

Running "csslint:src" (csslint) task

356

www.it-ebooks.info

http://www.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://www.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
http://www.smashingmagazine.com/2011/12/12/an-introduction-to-object-oriented-css-oocss/
https://github.com/CSSLint/csslint/wiki/Rules
http://www.it-ebooks.info/

Chapter 11

Linting css/style.css ...ERROR

[L1:C8]

Heading (hl) should not be qualified. Headings should not be qualified
(namespaced) . (qualified-headings)

Warning: Task "csslint:src" failed. Use --force to continue.

Aborted due to warnings.

The qualified-headings rule checks whether your code defines all the heading elements
(h1-he) as top-level styles, which is a requirement of OOCSS. Some Less features can

break OOCSS rules. Note that you can visit http://blog.mediumequal smessage . com/
guidelines-using-oocss-and-css-preprocessors to find out more about this issue.

Set qualified-headings to false as follows:

csslint:
options: {
"qualified-headings": false

b

src: ['css/style.css']

}
By running the grunt csslint command, you will get the following result:

Running "csslint:src" (csslint) task

>> 1 file lint free.

Done, without errors.

The preceding message shows you that CSS Lint did not find any more errors. The Done,
without errors message is Grunt's default message when all tasks have run successfully.

357

www.it-ebooks.info

http://blog.mediumequalsmessage.com/guidelines-using-oocss-and-css-preprocessors
http://blog.mediumequalsmessage.com/guidelines-using-oocss-and-css-preprocessors
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

There's more...

Alternatively, you can use the Less Lint plugin called Grunt -1lesslint, which is a Grunt task
to validate the Less files with CSS Lint. More information about this plugin can be found at
https://www.npmjs.org/package/grunt-lesslint/.

Removing unused CSS using Grunt

When your project grows or when you are using CSS frameworks, such as Bootstrap, your
compiled CSS code can contain many selectors that are never used. This unused CSS code
will have a negative effect on the performance of your website. The unused CSS plugin can
remove this unused selector from your CSS code.

Getting ready

The only requirement for this recipe is to have the unused CSS plugin installed and loaded in
your Gruntfile. js file. If you have not installed this plugin in the Installing Grunt plugins
recipe of this chapter, you can do so using the following command in the root of your project:

$ npm install grunt-uncss -save-dev

How to do it...

You can add the following configuration for the watch task to your Gruntfile. js file:

uncss:
dist: {
files: {
'css/style.css' : ['index.html']
}
}
}

The preceding code only checks the index . html file for unused selectors. You can add a
list of HTML to check using and array as follows:

'css/style.css’
['index.html', 'aboutus.html', 'blog.html']

358

www.it-ebooks.info

https://www.npmjs.org/package/grunt-lesslint/
http://www.it-ebooks.info/

Chapter 11

The unused CSS plugin loads HTML by PhantomJS, and JavaScript is also executed. However,
you need to realize that the plugin cannot detect code that has been injected by JavaScript,
triggered by user interactions. Style sheet for this dynamically injected HTML code should be
added to the ignore option of this task. The unused CSS plugin also handles media queries,
but by default, UnCSS processes only style sheets with media queries such as all, screen, and
those without a media query. Other media queries can be set using the media option.

» You can find a complete list of options at https://github.com/addyosmani/
grunt-uncss#options

Compiling style guides with Grunt

In the Building style guides with StyleDocco recipe in Chapter 2, Debugging and Documenting
Your Less Code, you can see how style guides can help you, and content developers can
directly see the effect of your work. With the Grunt style guide plugin, you can automate the
process of creating style guides.

Getting ready

For this recipe, you need to have the style guide plugin installed and loaded in the
Gruntfile.js file. If you have not installed this plugin, which requires you to read the
Installing Grunt plugins recipe of this chapter, you can do so using the following command
in the root of your project:

$ npm install grunt-styleguide --save-dev

In this recipe, the style guide will be built with StyleDocco, which requires your Less code
to be commented with comments written in the Markdown syntax. Markdown is a plain text
formatting syntax, designed such that it can be easily converted in to HTML.

Athttp://stackoverflow.com/, the popular question and answer
¢ website, users are required to use Markdown to edit their questions,
answers, and comments. Visit http: //stackoverflow.com/
t editing-help or read Instant Markdown, Arturo Herrero, Packt
Publishing, to learn more about writing in Markdown.

359

www.it-ebooks.info

https://github.com/addyosmani/grunt-uncss#options
https://github.com/addyosmani/grunt-uncss#options
http://stackoverflow.com/
http://stackoverflow.com/editing-help
http://stackoverflow.com/editing-help
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

How to do it...

Firstly, add the following configuration for the concurrent task to your Gruntfile. js file:

styleguide: {
styledocco: {
options: {
framework: {
name: 'styledocco!
I
name: 'Style Guide',
template: {
include: ['plugin.css', 'app.js'l]

1,
files: {
'docs': 'less/*.less'

b
}

By including Markdown-styled comments, your Less code will look this:

This is a simple Base CSS

<div class="hl1">H1 type headers</div>

*/
.h1
font-size:30px;
font-weight :normal;
!
360

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Running the grunt styleguide task will write your style guide files to docs/index.html.
The following screenshot shows you how the style guide will look after running the
preceding tasks:

Search

Base

This is a simple Base C55

H1 type headers

<div class="h1">H1 type headers</div>

Automatically prefix your code with Grunt

Browser-specific prefixes can make CSS3, and therefore Less code, complex and more difficult
to maintain. Mixins (prebuilt) offer you the opportunity to write single-line declarations for
properties such as gradients and shadows. The autoprefixer plugin can prefix your code
automatically, which uses the Can | use database (available at http://caniuse.com/)in
order to find the prefixes that meet your requirements.

Getting ready

The only requirement for this recipe is to have the autoprefixer plugin installed and loaded in
your Gruntfile. js file. If you have not installed this plugin in the Installing Grunt plugins
recipe of this chapter, you can do so using the following command in the root of your project:

$ npm install grunt-autoprefixer --save-dev

361

www.it-ebooks.info

http://caniuse.com/
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

How to do it...

Add the following configuration for the concurrent task to the Gruntfile. js file:

autoprefixer:

single file: {
src: '<%=app.dev¥>css/style.css',
dest: '<%=app.dev%>css/style.css'
}

}

Notice that the preceding code will overwrite the original file. Multiple files can be prefixed
with the multiple files option.

The autoprefixer plugin parses CSS and adds vendor-prefixed CSS properties using the Can |
use database. This database contains information for each browser version and also includes
statics about the current usage of the different browser versions.

With the browser option, you can set the browser you will have to support. By default, the
browser option is set to an array, as follows:

['> 1%', 'last 2 versions', 'Firefox ESR', 'Opera 12.1']

The autoprefix task can also be updated to your CSS source map files. Creating a CSS source
map with Grunt is described in the Creating CSS source maps with the Less compiler task
recipe. You can set the path to your source map using the map option. If you do not set the
map option, then autoprefixer will look for the source map files automatically.

As an example, consider the following Less file:

p {
transform: rotate (180deg) ;

}

After compiling and running the autoprefixer task, your CSS code will look this:

p {
-webkit-transform: rotate (180deg) ;

-ms-transform: rotate (180deg) ;
transform: rotate (180deg) ;

362

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

There's more...

When using the autoprefixer task, you can define all your properties with a single declaration
using the official W3C rules, described at http://www.w3.org/Style/CSS/specs.
en.html.

Installing the Grunt LiveReload plugin

In the Adding the connect and open task and Adding the concurrent task recipes of this
chapter, you can find how to get a live preview of your changes to your code. Instead of using
grunt-concurrent, you can also achieve the same with the browser extensions from
LiveReload. Currently, extensions are available for Safari, Google Chrome, and Firefox. Notice
that the extension for Safari does not work with file URLs.

Getting ready

This recipe requires you to have the watch plugin, as described in the Adding the watch

task recipe, and the Less plugin, as described in the Adding the Less compiler task

recipe, installed. You will also need Safari, Google Chrome, or Firefox browser, and the free
LiveReload extension installed. More information about installing the browser extension can
be found at http://feedback.livereload.com/knowledgebase/articles/86242-
how-do-i-install-and-use-the-browser-extensions

How to do it...

Add the following configuration for the watch task to your Gruntfile. js file:

watch:
css: |
files: ['less/*.less'],
tasks: ['less:dev'],

options: {
livereload: true,
}
}
}

363

www.it-ebooks.info

http://www.w3.org/Style/CSS/specs.en.html
http://www.w3.org/Style/CSS/specs.en.html
http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions
http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions
http://www.it-ebooks.info/

Compiling Less Real Time for Development Using Grunt

For the Less task, you will have to add the following configuration code:

less:
dev: {
files:
"<%= app.dev %$>/css/app.css": "<%= app.dev

%$>/less/app.less"

}
}
}

Now you can create the following folder and file structure:

— app
L dev

Css
index.html
less
L app.less

— node modules

— package.json

Finally, load the index.html file in your browser with LiveReload enabled. The index.html
file should include your style sheet as follows:

<link rel="stylesheet" type="text/css" href="css/app.css">

Try the index file of the Adding the concurrent task recipe or add some content to it by
yourself. Add, for instance, an h1 tag and style this in the app . 1ess file with the following
code:

h1 {
color:red;

}

Now after changing and saving your app . less file, your browser will reload automatically and
show the results of your changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

The 1ivereload option of the watch task fires a signal to port 35729 after running the
less:dev dev task, evoked by a file change of a . 1ess file in the 1ess folder. The
LiveReload browser extension injects some JavaScript code into the HTML source as follows:

<script

src="http://127.0.0.1:35729/1livereload.js?ext=Firefox&extver=2.0.8
||>

The JavaScript code in the 1ivereload. js file reloads the browser triggered by signals
on port 35729. This process of reloading is very similar to the 1ivereload option of the
connect plugin, as described in the Adding the connect and open task recipe of this chapter.

365

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

1pxdeep
used, for creating custom color
schemes 301-303
3Dumb font
URL 211
3L mixins
used, for improving websites
SEO 215-218
@arguments variable
leveraging, individual parameters
avoided 153, 154
:extend() pseudo class 124
@font-face kit
URL 323, 326
font-face() mixin 213
@font-face rule
URL 215
limportant statement 142-144
@import directive
css 256
inline 255
less 256
multiple 256
once 256
reference 255
used, for importing files 253-255
@keyframes 227
& operator
used, for referencing parent
selectors 114-118
used, for selecting order 121-123
-prefix-free JavaScript scripT
URL 153

Index

@rest... variable
used, for using mixins with variable number
of arguments 155, 156
using 156
~value syntax
used, for escaping value 60-63

A

all keyword

extending with 128-131
alternative

building, for fluid grids with

Frameless 236-240

animate.css

URL 226
AnimateLESSHat.less mixin library

URL 301
animations

creating, animations.css used 226, 227

creating, More.less used 229-232
animations.css

used, for creating animations 226-228
argb() function 104
autoprefixer-php

URL 305
Autoprefix plugin

URL 198

background color

changing, dynamically 180-184
background gradients

creating 195-198

URL 197

www.it-ebooks.info

http://www.it-ebooks.info/

bdi element
URL 225
bi-directional styling

creating, without code duplication 222-225

Block Element Modifier (BEM) 117
Boilerplate
for JBST child theme, URL 326
Bootstrap
classes, using 296-298
CSS, autoprefixing 303, 304
customizer, URL 283
customizing, variables used 280-282
downloading 278
downloading, URL 278
extending, mixins used 299, 300
grid, reusing 294, 295
installing 279
integrating, into WordPress
theme 313-315
mixins, using 296-298
source files, URL 283
source version, URL 292
URL 279
Bootstrap jQuery plugin
URL 291
Bower
URL 13, 279
box-sizing property
using, with Less 248, 249
built-in convert() function 83
built-in functions
about 82
using 28-31
built-in replace() function 89
buttons
custom buttons, creating 283-285

C

Can | use database
URL 79
child and sibling selectors
URL 121,218
Chrome Developer Tools
used, for debugging code 41-44
class
and mixins, declaring at once 71-74

368

classes
using 296-298
clean-css
URL 346
Clean CSS
URL 137
Clearless
URL 211
used, for generating font-face
declarations 211-215
code
analyzing, CSS Lint used 355-358
cleaning 346, 347
commenting 44, 45
debugging, Chrome Developer Tool
used 41-44
debugging, CSS source maps
used 37-40
debugging, less.js used 34-37
making portable, namespaces used 31, 32
making reusable, namespaces used 31, 32
minimizing 346
prefixing, with Grunt 361, 362
writing 24, 25
color
information, obtaining 105-107
keywords, URL 98
two colors overlay creating, Less
used 110-112
color contrasts
creating, with Less 175-180
color() function
using 96-98
color objects
creating, RGB values used 100-105
color schemes
custom color schemes creating, 1pxdeep
used 301-303
color variant
creating, darken() function used 107, 109
creating, lighten() function used 107, 109
compilers
URL 305
complex relationships
creating, between properties 26-28
components
extending 292, 293

www.it-ebooks.info

http://www.it-ebooks.info/

concurrent task
adding 353-355
conditional style sheets
URL 270
configuration definition
adding, for plugin 338-340
connect task
adding 350, 352
content
repositioning 273, 275
content management system (CMS) 307
convert() function
used, for converting units 82, 83
cross browser support
URL 208
CSS
Color Module Level 3, URL 98
unused CSS removing, Grunt used 358, 359
URIs, URL 88
values, aggregating under 144
CSS3 flexbox module
used, for building layout 202-208
CSS3 Grid Layout module 246
CSS3 text-align property
URL 276
CSS, Bootstrap
autoprefixing 303-305
CSS direction property
URL 225
CSS filter property
URL 194, 197
CSS float property 246
CSS gradients
URL 198
CSS hacks
URL 249, 256, 294
CSS Lint
URL 356
used, for analyzing code 355-357
CSS performance
URL 259
CSS preprocessor
URL 40
CSS property
URL 147
CSS Reset
box-sizing property, using with Less 248, 249
using, with Less 247, 248

CSS selectors
guards, applying 173-175
CSS size
compiled CSS size reducing, extend
used 135-137
CSS source maps
creating, Less compiler task used 344-346
used, for debugging code 37-40
CSS styles
properties setting, mixins used 20-23
CSS transitions
URL 229
CSS tricks
URL 229
CSS validator
URL 44
cubic-bezier() functions
URL 229

D

darken() function

about 30

used, for creating a color variant 107-109
data URIs

used, for embedding images 86, 87
default() function

using 84, 85
design

flexbox grid, applying 266-270
Document Object Model (DOM) 24
Don't Repeat Yourself (DRY)

principle 10, 142, 339

duplicate mixin names

using 147, 149

extend

used, as mixin alternative 138

used, for merging selectors 124, 125

used, for reducing compiled CSS

size 135-137

used, inside ruleset 126-128
extending

with all keyword 128-131

with media queries 132-134

www.it-ebooks.info

http://www.it-ebooks.info/

F

files
importing, @import directive used 253-255
flexbox
about 202, 204
URL 208
flexbox grid
applying, on design 266-270
in CSS specification, URL 273
URL 256, 257
using, for page layout 246
flexbox grid library
unofficial Less version, URL 276
URL 266, 274, 276
flexbox library
URL 256
fluid grids
alternative building, Frameless used 236-239
fluid responsive grid system
building 240-243
Font Awesome 213
font-face declarations
generating, Clearless used 211-214
Frameless
used, for building alternative for
fluid grids 236-239
URL 240
functions
mixins used as 156-161

G

GIMP

URL 112
GitHub

Cardinal, URL 250

Twitter' Bootstrap, URL 250
GNU Image Manipulation Program (GNU) 112
graceful degradation

versus progressive enhancement, URL 79
graceful degradation strategy

URL 295

310

gradient functions

URL 198
gradients

unlimited gradients, building with

Less Hat 199-201

grid

building, grid classes used 256-260
Grunt

code, prefixing 361-363

documentation, URL 340, 343

installing 328-331

plugins, installing 331-334

tasks, loading 337, 338

unused CSS, removing 358
grunt-autoprefixer plugin 334
grunt-concurrent plugin 334
grunt-contrib-connect plugin 334
grunt-contrib-csslint plugin 334
grunt-contrib-less plugin 334
grunt-contrib-watch plugin 334
Gruntfile.js file

utilizing 335, 336
grunt-open plugin 334
grunt-recess Grunt task 346
grunt-styleguide plugin 334
grunt-uncss plugin 334
guards

applying, to CSS selectors 173-175
GulP

URL 16
Gulp Less plugin

URL 16

H

hsla() function 104
HTMLS5 Boilerplate
URL 322
HTML5 doctor
URL 266
HTTP
compression, URL 88
hue, saturation, lightness (HSL) 103

www.it-ebooks.info

http://www.it-ebooks.info/

Icomoon app

URL 215
if else statement

alternative, mixin guards using as 165-168
images

embedding, data URIs used 86, 87
individual parameters

avoiding, to leverage @arguments

variable 153, 154

inline versus block level

URL 294

J

JavaScript Object Notation (JSON) 336
JBST 1pxdeep theme

URL 326
JBST child themes

URL 326
JBST theme

URL 322

used, for building WordPress

website 322-326

jQuery

URL 291

L

layout
building, CSS3 flexbox module used 202-207
navigation menu, integrating 270-273
lazy loading
about 56
used, for redeclaring variables 66-68
Leaner CSS (Less)
about 9
box-sizing property, using 248, 249
built-in functions, using 28-31
code, commenting 44-46
CSS Reset, using 247, 248
for commonly-used values, variables
declaring for 17, 18
used, for creating color contrasts 175-180
used, for creating two colors overlay 110-112
used, for customizing Roots.io 319-322

used, for developing WordPress
theme 310-312
Less autoprefix plugin
in CSS specification, URL 273
URL 153
Less-bidi mixin library
URL 222
lessc compiler
installing, node package manager (npm)
used 14, 15
Less compiler task
adding 340-344
used, for creating CSS source maps 344-346
Less Elements
URL 189-192
Less files
importing 250-252
organizing 250, 252
Less Hat
library, URL 192, 202, 301
used, for building unlimited
gradients 199
less.js
downloading 10-13
installing 10-13
integrating 10-13
used, for debugging code 34-37
using, with Rhino 16, 17
Less plugin
URL 188
Less version
URL 240
lighten() function
used, for creating color variant 107-109
lists
working with 92, 93
LiveReload plugin
installing 363-365
load-grunt-tasks plugin 334
Lots of Love for Less. See 3L mixins
luminosity 30

Markdown
URL 50

n

www.it-ebooks.info

http://www.it-ebooks.info/

mathematical functions
using 94-96
media queries
extending with 132-134
mixin guards
building, loops leveraging 168-173
using, as if else statements
alternative 165-168
mixin libraries
prebuilt mixin libraries,
downloading 189-191
prebuilt mixin libraries, importing 189-191
URL 188
mixins
and class, declaring at once 71-74
rulesets, passing 161-164
selectors, using 74-77
URL 227
used, for creating semantic grid 264-266
used, for extending Bootstrap 299-301
used, for setting properties 68-71
using 296-298
using, as functions 156-159
using, with multiple parameters 144-147
using with variable number of arguments,
@rest... variables used 155, 156
mobile-first strategy
URL 263
Modernizr JavaScript library
URL 124, 208
Modernizr tool 123
More.less
used, for creating animations 229-232
URL 229
multiple parameters
mixins, using with 144-147

namespaces
using, to create portable code 31, 32
using, to create reusable code 31, 32
using, with prebuilt libraries 192-194
navbar styles
URL 291

312

navigation bars
custom navigation bars, creating 287
navigation menu
integrating, in layout 270-273
Node
installing 328-331
Node.js
URL 14,279
URL 329
node package manager (npm)
used, for installing lessc compiler 14-16
URL 331

0

object-oriented CSS (00CSS)
about 25
URL 25, 128, 356
Object-Oriented CSS (OOCSS)
URL 118
open task
adding 350, 352
order
selecting, & operator used 121-123

P

package managers
URL 331
panels
custom panels, creating 285-287
source files, URL 285
parallel plugin
URL 355
parametric mixin 20
parametric mixins
using 77-79
parent selectors
referencing, multiple times 118-120
referencing, & operator used 114-118
PHP Less compilers
Less.php 312
pixels
versus em or rem, URL 240

www.it-ebooks.info

http://www.it-ebooks.info/

plugin

configuration definition, adding 338, 339
plugins, Grunt

installing 331-334
PostCSS/autoprefixer plugin

URL 199
Pre

used, for leveraging sprite images 218-222
Preboot

used, for getting retina ready 208, 209
prebuilt libraries

namespacing, using with 192-194
prefix-free project

URL 260
progressive internet explorer (PIE) 79
properties

complex relationships, creating

between 26-28

setting, mixins used 68-71
pseudo class selectors

URL 118
Pythagoras theorem

URL 161

regular expressions
URL 92
replace() function 90, 91
responsive design fundamentals
URL 263
responsive grids
creating 261-263
retina
getting ready, Preboot used 208-210
RGB values
used, for creating color objects 100-104
Rhino
less.js used 16, 17
URL 16
Roots.io
customizing, Less used 319-322
Roots theme
URL 322
ruleset
extend used 126-128
passing, to mixins 161-164

S

Scalable and Modular Architecture for
CSS (SMACSS)
URL 118
search engine friendly design and
development
URL 218
selectors
merging, extend used 124, 125
using, inside mixins 74-77
semantic grid
building, mixins used 264-266
building, semantic.gs used 233-235
Semantic Grid System
URL 266
semantic.gs
URL 233, 235
semantic Ul
used, for theming WordPress
website 316-318
SEO helper 215
Shortcodes Ultimate plugin
URL 315
single base variable
variables, deriving from 56-59
single property
values, aggregating under 185, 186
SMACSS
URL 128
sourceMapBasepath 346
sourceMapURL 346
sprite images
leveraging, Pre used 218-222
Stackoverflow
URL 50
string
formatting 88, 89
text, replacing within 89-91
StyleDocco
URL 53
used, for building style guides 50-53
style guides
building, StyleDocco used 50-53
building, tdcss.js used 46-50
compiling, with Grunt 359, 360

313

www.it-ebooks.info

http://www.it-ebooks.info/

sub-pixel rounding issue
URL 243

switch leveraging argument matching
building 150-152

T

tasks, Grunt
loading 337, 338
tdcss.js
URL 50
used, for building style guides 46-49
test-driven development (TDD) 33
text
replacing, within string 89, 90, 91
text-overflow property
URL 186
Twenty Fourteen theme
URL 312
Twitter's Bootstrap
URL 235
Twitter's Bootstrap 3 Button Generator
URL 285

U

unicode-bidi property
URL 225
units
converting, convert() function used 82, 83

Vv

values
aggregating, under single property 185, 186
type, evaluating 99, 100
variables
declaring with Less, for commonly used
values 17
declaring with Less, for commonly used
values 18-20
deriving, from single base variable 56-59
interpolation, using 63-65
redeclaring, lazy loading based 66-68
used, for customizing Bootstrap 280-283

n

vertical centering
URL 191

w

W3C rules
URL 363
watch task
adding 347-349
URL 350
Web. Bower
URL 188
Web Content Accessibility Guidelines
(WCAG) 107
Web Content Accessibility Guidelines
(WCAG) 2.0
URL 180
Webfont generator
URL 211
websites SEO
improving, 3L mixins used 215-218
web text
URL 180
WordPress
installation guide, URL 308
installing 308, 309
latest version downloading, URL 308
plugin directory, URL 310
theme directory, URL 310
WordPress theme
Bootstrap, integrating into 313-315
developing, Less used 310-312

WordPress Twitter Bootstrap CSS plugin

URL 313
WordPress website
building, JBST theme used 322-326
theming, semantic Ul used 316-319
Working Draft (WD) 276

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Less Web Development Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www . packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

[open source

community experience distilled

PUBLISHING

Less Web Development

Essentials
ISBN: 978-1-78398-146-5 Paperback: 202 pages

Use CSS preprocessing to streamline the development
and maintenance of your web applications

1. Produce clear, concise, and well-constructed code
that compiles into standard compliant CSS.

Less Web Development
Essentials 2. Explore the core attributes of Less and learn how

to integrate them into your site.

3. Optimize Twitter's Bootstrap to efficiently develop
web apps and sites.

Instant LESS CSS

Preprocessor How-to
ISBN: 978-1-78216-376-3 Paperback: 80 pages

Practical, hands-on recipes to write more efficient CSS,
with the help of the LESS CSS Preprocessor library

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

| Fast | Focused

LESS CSS Preprocessor 2. Use mixins, functions, and variables to
How-to dynamically autogenerate styles, based
on minimal existing values.

_ 3. Use the power of LESS to produce style sheets
At ; dynamically, or incorporate precompiled versions
into your code.

4. Learn how to use existing mixin libraries, or to
create your own that you can reuse in future
projects.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Instant Responsive
Web Design

ISBN: 978-1-84969-925-9 Paperback: 70 pages

Learn the important components of responsive web
design and make your websites mobile-friendly

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

Short | Fast | Focused

Responsive Web Design 2. Learn how to make your websites beautiful
on any device.

3. Understand the differences between various
responsive philosophies.

Cary Simmans

4. Expand your skill set with the quickly growing
mobile-first approach.

Responsive Web Design

with HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device
Responsive Web Design or screen size.

with HTML5 and CSS3
2. Learn the main new features of HTML5 and

use CSS3s stunning new capabilities including
animations, transitions, and transformations.

3. Real world examples show how to progressively

enhance a responsive design while providing fall
backs for older browsers.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting to Grips with the Basics of Less
	Introduction
	Downloading, installing, and integrating less.js
	Installing the lessc compiler with npm
	Using less.js with Rhino
	Declaring variables with Less for
commonly used values
	Setting the properties of CSS styles with mixins
	Writing more intuitive code and making inheritance clear with nested rules
	Creating complex relationships between properties
	Using the built-in functions of Less
	Using namespaces to make your code reusable and portable

	Chapter 2: Debugging and Documenting Your Less Code
	Introduction
	Debugging your code with less.js
	Using CSS source maps to debug your code
	Using Chrome Developer Tools to debug
your code
	Commenting your code in Less
	Building style guides with tdcss.js
	Building style guides with StyleDocco

	Chapter 3: Using Variables and Mixins
	Introduction
	Deriving a set of variables from a single base variable
	Value escaping with the ~"value" syntax
	Using variable interpolation
	Redeclaring variables based on lazy loading
	Using mixins to set properties
	Declaring a class and mixin at once
	Using selectors inside mixins
	Using parametric mixins

	Chapter 4: Leveraging the Less Built-in Functions
	Introduction
	Converting units with the convert() function
	Using the default() function
	Embedding images with data URIs
	Formatting strings
	Replacing a text within a string
	Working with lists
	Using mathematical functions
	Using the color() function
	Evaluating the type of a value
	Creating color objects with RGB values
	Getting information about a color
	Creating a color variant with the darken()
and lighten() functions
	Creating overlays of two colors with Less

	Chapter 5: Extending and Referencing
	Introduction
	Referencing parent selectors with the & operator
	Referencing to the parent selector more than once
	Changing the selecting order with the & operator
	Using extend to merge selectors
	Using extend inside a ruleset
	Extending with the all keyword
	Extending with media queries
	Using extend to reduce the compiled
CSS size
	Using extend as an alternative for a mixin

	Chapter 6: Advanced Less Coding
	Introduction
	Giving your rules importance with the !important statement
	Using mixins with multiple parameters
	Using duplicate mixin names
	Building a switch to leverage argument matching
	Avoiding individual parameters to leverage the @arguments variable
	Using the @rest... variable to use mixins with a variable number of arguments
	Using mixins as functions
	Passing rulesets to mixins
	Using mixin guards (as an alternative for the if…else statements)
	Building loops leveraging mixin guards
	Applying guards to the CSS selectors
	Creating color contrasts with Less
	Changing the background color dynamically
	Aggregating values under a single property

	Chapter 7: Leveraging Libraries with Prebuilt Mixins
	Introduction
	Importing and downloading prebuilt mixin libraries
	Using namespacing with prebuilt libraries
	Creating background gradients
	Building unlimited gradients with Less Hat
	Building a layout with the CSS3 flexbox module
	Getting retina ready with Preboot
	Generating font-face declarations with Clearless
	Improving your website's SEO with 3L mixins
	Leveraging sprite images with Pre
	Creating bidirectional styling without code duplication
	Creating animations with animations.css
	Creating animations with More.less
	Building semantic grids with semantic.gs
	Building an alternative for fluid grids with Frameless
	Building a fluid responsive grid system

	Chapter 8: Building a Layout with Less
	Introduction
	Using CSS Reset with Less
	Importing and organizing your Less files
	Importing files with the @import directive
	Building a grid with grid classes
	Creating responsive grids
	Building a semantic grid with mixins
	Applying the flexbox grid on your design
	Integrating a navigation menu in the layout
	Repositioning your content

	Chapter 9: Using Bootstrap with Less
	Introduction
	Downloading and installing Bootstrap
	Customizing Bootstrap with variables
	Making custom buttons
	Making custom panels
	Making custom navigation bars
	Extending components using :extend
	Reusing Bootstrap's grid
	Using Bootstrap classes and mixins
	Extending Bootstrap with your own mixins
	Making custom color schemes with 1pxdeep
	Autoprefixing Bootstrap's CSS

	Chapter 10: Less and WordPress
	Introduction
	Installing WordPress
	Developing your WordPress theme with Less
	Integrating Bootstrap into your WordPress theme
	Using Semantic UI to theme your WordPress website
	Customizing Roots.io with Less
	Building a WordPress website with the JBST theme

	Chapter 11: Compiling Less Real Time for Development Using Grunt
	Introduction
	Installing Node and Grunt
	Installing Grunt plugins
	Utilizing the Gruntfile.js file
	Loading Grunt tasks
	Adding a configuration definition for a plugin
	Adding the Less compiler task
	Creating CSS source maps with the Less compiler task
	Cleaning and minimizing your code
	Adding the watch task
	Adding the connect and open task
	Adding the concurrent task
	Analyzing your code with CSS Lint
	Removing unused CSS using Grunt
	Compiling style guides with Grunt
	Automatically prefix your code with Grunt
	Installing the Grunt LiveReload plugin

	Index

