(s8]
=
<
XL
-
<
=
=
L
o
<
o
=
(2
x

LEARNING

About This E-Book

EPUB is an open, industry-standard format for e-books. However, support for EPUB and
its many features varies across reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings that you can customize often
include font, font size, single or double column, landscape or portrait mode, and figures that
you can click or tap to enlarge. For additional information about the settings and features on
your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the e-book in single-column, landscape mode and adjust
the font size to the smallest setting. In addition to presenting code and configurations in the
reflowable text format, we have included images of the code that mimic the presentation
found in the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code image” link. Click the
link to view the print-fidelity code image. To return to the previous page viewed, click the
Back button on your device or app.

Learning React

Kirupa Chinnathambi

vy Addison-Wesley

Boston ¢ Columbus ¢ Indianapolis * New York ¢ San Francisco * Amsterdam * Cape Town
Dubai * London * Madrid * Milan « Munich ¢ Paris « Montreal * Toronto ¢ Delhi
Mexico City * Sao Paulo * Sidney * Hong Kong ¢ Seoul Singapore ¢ Taipei * Tokyo

Learning React
Copyright © 2017 Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-134-54631-5

ISBN-10: 0-134-54631-8

Library of Congress Control Number: 2016917161
Printed in the United States of America

First printing: November 2016

Acquisitions Editor
Mark Taber

Development Editor
Chris Zahn

Copy Editor
Abigail Manheim

Indexer
Erika Millen

Technical Reviewers
Trevor McCauley
Kyle Murray

Cover Designer
Chuti Prasertsith

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author

and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales(@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearsoned.com

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition,
which provides several special online-only features:

= The complete text of the book

= Bonus material on animating content with React Motion and making Ajax/server-related
calls

= Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any
modern web browser that supports HTML5.

To get access to the Learning React Web Edition all you need to do is register this book:
1. Go to www.informit.com/register
2. Sign in or create a new account.
3. Enter ISBN: 9780134546315
4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your Account page.
Click the Launch link to access the product.

http://www.informit.com/register

To my dad!

(Who always believed in me—even if what I was often doing made no sense to him...or to me
for that matter! :P)

Contents

1 Introducing React
Old School Multi-Page Design

New School Single-Page Apps

Meet React
Automatic Ul State Management
Lightning-fast DOM Manipulation
APIs to Create Truly Composable Uls
Visuals Defined Entirely in JavaScript
Just the V in an MVC Architecture

Conclusion

2 Building Your First React App

Dealing with JSX
Getting Your React On

Displaying Your Name
It’s All Still Familiar
Changing the Destination

Styling It Up!

Conclusion

3 Components in React

A Quick Review of Functions
Changing How We Deal with the Ul
Meet the React Component
Creating a Hello, World! Component
Specifying Properties

Dealing with Children
Conclusion

4 Styling in React

Displaying Some Vowels

Styling React Content Using CSS
Understand the Generated HTML
Just Style It Already!

Styling Content the React Way

Creating a Style Object
Actually Styling Our Content
You Can Omit the “px” Suffix

Making the Background Color Customizable
Conclusion

5 Creating Complex Components

From Visuals to Components
Identifying the Major Visual Elements
Identifying the Components

Creating the Components
The Card Component

The Square Component
The Label Component

Passing Properties, Again!
Why Component Composability Rocks

Conclusion

6 Transferring Properties (Props)

Problem Overview
Detailed Look at the Problem
Meet the Spread Operator

Properly Transferring Properties

Conclusion

7 Meet JSX—Again!
What Happens with JSX?
JSX Quirks to Remember
You Can Only Return A Single Root Node

You Can’t Specify CSS Inline
Reserved Keywords and className

Comments

Capitalization, HTML Elements, and Components
Your JSX Can Be Anywhere

Conclusion

8 Dealing with State
Using State

Our Starting Point
Getting Our Counter On
Setting the Initial State Value
Starting Our Timer and Setting State
Rendering the State Change
Optional: The Full Code

Conclusion

9 Going from Data to Ul

The Example
Your JSX Can Be Anywhere—Part II

Dealing with Arrays in the Context of JSX

Conclusion

10 Working with Events
Listening and Reacting to Events

Starting Point
Making the Button Click Do Something
Event Properties
Doing Stuff With Event Properties
More Eventing Shenanigans
Listening to Regular DOM Events
The Meaning of this Inside the Event Handler

React..Why? Why?!
Browser Compatibility

Improved Performance
Conclusion

11 The Component Lifecycle
Meet the Lifecycle Methods

See the Lifecycle Methods in Action
The Initial Rendering Phase

The Updating Phase
The Unmounting Phase

Conclusion

12 Accessing DOM Elements
Meet Refs

Conclusion

13 Creating a Single-Page App Using React Router

The Example

Building the App
Displaying the Initial Frame
Displaying the Home Page
Interim Cleanup Time
Displaying the Home Page Correctly
Creating the Navigation Links
Adding the Stuff and Contact Views
Creating Active Links

Conclusion

14 Building a Todo List App

Getting Started
Creating the Ul

Creating the Functionality
Initializing our State Object
Handling the Form Submit
Populating Our State
Displaying the Tasks

Adding the Finishing Touches
Conclusion

15 Setting Up Your React Development Environment

Meet the Tools

Node.js
Babel

webpack
Your Code Editor

It Is Environment Setup Time!
Setting up our Initial Project Structure

Installing and Initializing Node.js
Installing the React Dependencies
Adding our JSX File

Going from JSX to JavaScript
Building and Testing Our App

Conclusion
16 The End

Index

Acknowledgments

First, none of this would be possible without the support and encouragement of my awesome
wife, Meena. If she didn’t put her goals on hold to allow me to spend six months designing,
writing, and re-writing everything you see here, me writing this book would have been a
distant dream.

Next, I’d like to thank my parents for always encouraging me to aimlessly wander and enjoy
free time to do what I liked—such as teaching complete strangers over the internet in the late
1990s how to do cool things with programming. I wouldn’t be half the rugged
indoorsman/scholar/warrior I am today without them both :P

On the publishing side, writing the words you see here is the easy part. Getting the book into
your hands is an amazingly complex process. The more I learn about all the moving pieces
involved, the more impressed I am at all the individuals who work tirelessly behind the scenes
to keep this amazing machinery running. To everyone at Pearson who made this possible,
thank you! There are a few people I'd like to explicitly call out, though. First, I’d like to thank
Mark Taber for continuing to give me opportunities to work together, Chris Zahn for
patiently addressing my numerous questions/concerns, Abby Manheim for turning my
version of English into something human-understandable, and Loretta Yates for helping
make the connections a long time ago that made all of this happen. The technical content of
this book has been reviewed in great detail by my long-time friends and online collaborators,
Kyle Murray (aka Krilnon) and Trevor McCauley (aka senocular). I can’t thank them
enough for their thorough (and frequently, humorous!) feedback.

About the Author

Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on kirupa.com. In the
years since then, he has written hundreds of articles, written a few books (none as good as this
one, of course!), and recorded a bunch of videos you can find on YouTube. When he isn’t
writing or talking about web development, he spends his waking hours helping make the Web
more awesome as a Program Manager in Microsoft. In his non-waking hours, he is probably
sleeping...or writing about himself in the third person.

You can find him on Twitter (twitter.com/kirupa), Facebook (facebook.com/kirupa), or e-mail
(kirupa@kirupa.com). Feel free to contact him anytime.

http://kirupa.com
http://twitter.com/kirupa
http://facebook.com/kirupa
mailto:kirupa@kirupa.com

1. Introducing React

Ignoring for a moment that web apps today both look and feel nicer than they did back in the
day, there is something even more fundamental that has changed. The way we architect and
build web apps is very different now. To highlight this, let’s take a look at the app shown in

Figure 1-1.

A Virauus vekicula
—
—

St Hewet

EIIII
115
I

1
Just your typical web app!

Figure 1-1 An app.

This app is a simple catalog browser for something. Like any app of this sort, you have your
usual set of pages revolving around a home page, a search results page, a details page, and so
on. In the following sections, let’s look at the two approaches we have for building this app.
Yes, in some mysterious fashion, this leads to us getting an overview of React as well!

Onwards!

Old School Multi-Page Design

If you had to build this app a few years ago, you may have taken an approach that involved
multiple, individual pages. The flow would have looked something like what is shown in

Figure 1-2.

searchresuls. hfu

order. hfu

Figure 1-2 Multi-page design.

For almost every action that changes what the browser displays, the web app will navigate you
to a whole different page. This is a big deal beyond the less-than-stellar user experience that
users will see as pages get torn down and redrawn. This has a big impact on how you
maintain your app state. Outside of storing some user data via cookies and some server-side
mechanism, you simply don’t need to care. Life is good.

New School Single-Page Apps

Today, going with a web app model that requires navigating between individual pages seems
dated..like, really dated, like what is shown in Figure 1-3.

’Q S0....does this cém/ze vz USB?

Figure 1-3 The individual page model is a bit dated—Ilike this steam engine.

Source: New Catechism of the Steam Engine, 1904

Instead, modern apps tend to adhere to what is known as a Single-page app (SPA) model. This
is a world where you never navigate to different pages or ever even reload a page. Instead, the
different views of your app are loaded and unloaded into the same page itself.

For our app, this may look something like Figure 1-4.

— o
— O Dowmee sl
m '_‘: TR
-

Figure 1-4 Single-page app.

As users interact with our app, we replace the contents of the dotted red region with the data
and HTML that matches what the user is trying to do. The end result is a much more fluid
experience. You can even use a lot of visual techniques to have your new content transition in
nicely just like you might see in cool apps on your mobile device or desktop. This sort of
stuff is simply not possible when navigating to different pages.

All of this may sound a bit crazy if you’ve never heard of single-page apps before, but there
is a very good chance you’ve run into some of them in the wild. If you’ve ever used popular
web apps like Gmail, Facebook, Instagram, or Twitter, you were using a single-page app. In
all those apps, the content gets dynamically displayed without requiring you to refresh or
navigate to a different page.

Now, I am making these single-page apps seem really complicated. That’s not entirely the
case. Thanks to a lot of great improvements in both JavaScript and a variety of third party
frameworks and libraries, building single-page apps has never been easier. That doesn’t mean

there is no room for improvement, though.
When building single-page apps, there are three major issues that you’ll encounter:

= In a single-page application, the bulk of your time will be spent keeping your data in
sync with your Ul For example, if a user loads new content, do we explicitly clear out
the search field? Do we keep the active tab on a navigation element still visible? Which
elements do we keep on the page, and which do we destroy?

These are all problems unique to single-page apps. When navigating between pages in
the old model, we just assumed everything in our UI would be destroyed and just built
back up again. This was never a problem.

» Manipulating the DOM is really REALLY slow. Manually querying elements, adding
children (see Figure 1-5 below), removing subtrees, and performing other DOM
operations are some of the slowest things you can do in your browser. Unfortunately, in
a single-page app, you’ll be doing a lot of this. Manipulating the DOM is the primary
way you are able to respond to user actions and display new content.

‘windnw‘
document
html
body
div div script
div - & The newly
cloned element
/ \ and its children!
p img

Figure 1-5 Adding children.

» Working with HT ML templates can be a pain. Navigation in a single-page app is
nothing more than you dealing with fragments of HTML to represent whatever it is you
wish to display. These fragments of HTML are often known as templates, and using

JavaScript to manipulate them and fill them out with data gets really complicated really
quickly.

To make things worse, depending on the framework you are using, the way your
templates look and interact with data can vary wildly. For example, this is what using a
template in Mustache looks like:

Click here to view code image

view = {
title: "Joe",
calc: () {
2 + 4;
}
i

output = Mustache.render ("{{title}} spends {{calc}}", view);

Sometimes, your templates may look like some clean HTML that you can proudly show off in
front of the class. Other times, your templates might be unintelligible, with a boatload of
custom tags designed to help map your HTML elements to some data.

Despite these shortcomings, single-page apps aren’t going anywhere. They are a part of the
present, and they will fully form the future of how web apps are built. That doesn’t mean that
we have to tolerate these shortcomings. To address this, meet React!

Meet React

Facebook (and Instagram) decided that enough is enough. Given their abundance of
experience with single-page apps, they released a library called React (the React logo is
shown in Figure 1-6) to not only address these shortcomings, but to also change how we think
about building single-page apps.

THs G the React logo!
(1 dlow't-kuour why it és here either)
Figure 1-6 The React logo.
In the following sections, let’s look at the big things React brings to the table.

Automatic UI State Management

With single-page apps, keeping track of your Ul and maintaining state is hard—and very
time-consuming. With React, you need to worry only about one thing: the final state your UI
is in. It doesn’t matter what state your UI started out in. It doesn’t matter what series of steps
your users may have taken to change the UI. All that matters is where your Ul ended up (see

Figure 1-7).

I
-

The eud state (& what
React cares aboyt!

Figure 1-7 The final or end state of your Ul is what matters in React.

React takes care of everything else. It figures out what needs to happen to ensure your Ul is
represented properly, so all of that state management stuff is no longer your concern.

Lightning-fast DOM Manipulation

Because DOM modifications are really slow, you never modify the DOM directly using
React. Instead, you modify an in-memory virtual DOM instead. Figure 1-8 symbolizes that in-
memory virtual DOM.

'window !

e p———)

\document;
/html\
_head body |
meta i« meta | title 1 link div script

/1NN

img ' hl p div

|
The virtual DOM looke Mﬁ/{mf like this. I aleor

wot gotng for be this colorful :(
Figure 1-8 Imagine an in-memory virtual DOM.

Manipulating this virtual DOM is extremely fast, and React takes care of updating the real
DOM when the time is right. It does so by comparing the changes between your virtual DOM
and the real DOM, figuring out which changes actually matter, and making the least amount of
DOM changes needed to keep everything up-to-date in a process called reconciliation.

APIs to Create Truly Composable Uls

Instead of treating the visual elements in your app as one monolithic chunk, React encourages
you to break your visual elements into smaller and smaller components.

Just like everything else in programming, it is a good idea to have things be modular,
compact, and self-contained. React extends that well-established idea to how we should think
about user interfaces as well. Many of React’s core APIs make it easier to create smaller
visual components that can later be combined with other visual components to make larger
and more complex visual components—kind of like Russian Matryoshka dolls (see Figure 1-
9).

Figure 1-9 Russian Matryoshka dolls by Gnomz007.

Source: https://commons.wikimedia.org/wiki/File:Russian-Matroshka no bg.jpg

This is one of the major ways React simplifies (and changes) how we think about building the
visuals for our web apps.

Visuals Defined Entirely in JavaScript

While this sounds ridiculously crazy and outrageous, hear me out. Besides using a really
weird syntax, HTML templates traditionally suffered from another major problem. The
variety of things you can do inside them other than simply displaying data is limited. If you
wanted to choose which piece of Ul to display based on a particular condition, for example,
you had to write JavaScript somewhere else in your app or use some weird framework-
specific templating command to make it work.

For example, here is what a conditional statement inside an EmberJS template looks like:

Click here to view code image

{{#1f person}}

Welcome back, {{person.firstName}} {{person.lastName}}!
{{else}}

Please log in.
{{/1f}}

What React does is pretty neat. By having your UI defined entirely in JavaScript, you get to
use all of the rich functionality JavaScript provides for doing all sorts of things inside your
templates (as you will see in a few chapters). You are limited only by what JavaScript supports
as opposed to any limitations imposed by your templating framework.

https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

Now, when you think of visuals defined entirely in JavaScript, you are probably thinking
something horrible involving quotation marks, escape characters, and a whole lot of
createElement calls. Don’t worry. React gives you the option to specify your visuals
using an HTML-like syntax known as JSX that lives fully alongside your JavaScript. Instead
of writing code to define your Ul, you are basically specifying markup:

ReactDOM.render (

<diwv>
<hl>Batman</hl>
<hl>Iron Man</hl>
<hl1>Nicolas Cage</hl>
<hl>Mega Man</hl>

</div>,

destination

) 7

This same code defined in JavaScript would look like this:

Click here to view code image

ReactDOM.render (React.createElement (
"d.j_V" ,

4
React.createElement (
Ilhlll,
4

"Batman"

)
React.createElement (
Ilhlll,
4

"Iron Man"

)
React.createElement (
Ilhlll,

4
"Nicolas Cage"

)
React.createElement (
Ilhlll,

4
"Mega Man"

)

), destination);

Yikes! By using JSX, you are able to define your visuals very easily using a syntax that is
very familiar, while still getting all the power and flexibility that JavaScript provides. Best of
all, in React, your visuals and JavaScript often live in the same location. You no longer have
to jump between multiple files to define the look and behavior of one visual component. This
is templating done right.

Just the V in an MVC Architecture

We are almost done here! React is not a full-fledged framework that has an opinion on how
everything in your app should behave. Instead, React works primarily in the View layer where
all of its worries and concerns revolve around your visual elements and keeping them up to
date. This means you are free to use whatever you want for the M and C part of your MVC
architecture. This flexibility enables you to pick and choose what technologies you are
familiar with, and this makes React useful not only for new web apps you create but also for
existing apps you’d like to enhance without removing and refactoring a whole bunch of code.

Conclusion

As new web frameworks and libraries go, React is quite the runaway success. It not only deals
with the most common problems developers faced when building single-page apps, it throws
in a few additional tricks that make building the visuals for your single-page apps much
MUCH easier. Since it came out in 2013, React has steadily found its way into popular web
sites and apps that you probably use. Besides Facebook and Instagram, some of the notable
ones include the BBC, Khan Academy, PayPal, Reddit, The New York Times, Yahoo, and
many more: https://github.com/facebook/react/wiki/Sites-Using-React

The intent of this chapter is to provide you with an introduction to what React does and why it
does it. In tutorials in subsequent chapters we’ll dive deeper into everything you’ve seen here
and cover the technical details that will help you successfully use React in your own projects.
Stick around.

https://github.com/facebook/react/wiki/Sites-Using-React

2. Building Your First React App

By now, thanks to the previous chapter, you probably know all about the backstory of React
and how it helps even your most complex user interfaces sing performantly. For all the
awesomeness that React brings to the table, getting started with it (kinda like this sentence) is
not the most straightforward thing. It has a steep learning curve filled with many small and

N BIG HURDLE
\Y

Swall hurdle

!

In this chapter, we start at the very beginning and get our hands dirty by building a simple
React app. We encounter some of these hurdles head-on, and some of these hurdles we skip
over—for now. By the end of this chapter, not only will we have built something you can
proudly show off to your friends and family, we’ll have set ourselves up nicely for diving
deeper into all that React offers in future chapters.

Dealing with JSX

Before we start building our app, there is an important thing we should cover first. React isn’t
like many JavaScript libraries you may have used. It isn’t very happy when you simply refer
to code you’ve written for it using a script tag. React is annoyingly special that way, and it has
to do with how React apps are built.

As you know, your web apps (and everything else your browser displays) are made up of
HTML, CSS, and JavaScript:

LOREMIPSUM

. | HIML, CSS, aud

e RT

- ==

| JavaScript
mB d

Q— Totally sweet web app!

It doesn’t matter if your web app was written using React or some other library like Angular,
Knockout, or jQuery. The end result has to be some combination of HTML, CSS, and
JavaScript. Otherwise, your browser really won’t know what to do.

Now, here is where the special nature of React comes in. Besides normal HTML, CSS, and
JavaScript, the bulk of your React code will be written in something known as JSX. JSX, as |
mentioned in Chapter 1, is a language that allows you to easily mix JavaScript and HTML-like
tags to define user interface (UI) elements and their functionality. That sounds cool and all
(and we will see JSX in action in just a few moments), but there is a slight problem. Your
browser has no idea what to do with JSX.

To build a web app using React, we need a way to take our JSX and convert it into plain old
JavaScript that your browser can understand.

If we didn’t do this, our React app simply wouldn’t work. That’s not cool. Fortunately, there
are two solutions to this:

= Set up a development environment around Node and a handful of build-tools. In this
environment, every time you perform a build, all of your JSX is automatically
converted into JS and placed on disk for you to reference like any plain JavaScript file.

= Let your browser rely on a JavaScript library to automatically convert JSX to
something it understands. You specify your JSX directly just like you would any old
piece of JavaScript, and your browser takes care of the rest.

Both of these solutions have a place in our world, but let’s talk about the impact of each.

The first solution, while a bit complicated and time-consuming at first, is the way modern web
development is done these days. Besides compiling (transpiling to be more accurate) your
JSX to JS, this approach enables you to take advantage of modules, better build tools, and a
bunch of other features that make building complex web apps somewhat manageable.

The second solution provides a quick and direct path where you initially spend more time
writing code and less time fiddling with your development environment. To use this solution,
all you do is reference a script file. This script file takes care of turning the JSX into JS on

page load, and your React app comes to life without you having to do anything special to your
development environment.

For our introductory look at React, we are going to use the second solution. You may be
wondering why we don’t use the second solution always. The reason is that your browser
takes a performance hit each time it spends time translating JSX into JS. That is totally
acceptable when learning how to use React, but that is totally not acceptable when deploying
your app for real-life use. Because of that un-acceptableness, we will revisit all of this and
look at the first solution and how to set up your development environment later, once you’ve
gotten your feet comfortably wet in React.

Getting Your React On

In the previous section, we looked at the two ways you have for ensuring your React app ends
up as something your browser understands. In this section, we are going to put all of those
words into practice. First, we will need a blank HT ML page that will act as our starting point.

If you don’t have a blank HTML page handy, feel free to use the following:

Click here to view code image

<!IDOCTYPE html>
<html>

<head>
<title>React! React! React!</title>
</head>

<body>
<script>

</script>
</body>

</html>

This page has nothing interesting or exciting going for it, but let’s fix that by adding a
reference to the React library. Just below the tit1e, add these two lines:

Click here to view code image

<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>

These two lines bring in both the core React library as well as the various things React needs
to work with the DOM. Without them, you aren’t building a React app at all. Now, we aren’t
done yet. There is one more library we need to reference. Just below these two script tags,
add the following line:

Click here to view code image

<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

What we are doing here is adding a reference to the Babel JavaScript compiler
(http://babeljs.io/). Babel does many cool things, but the one we care about is its capability to

http://babeljs.io/

turn JSX into JavaScript.
At this point, our HTML page should look as follows:

Click here to view code image

<IDOCTYPE html>

<html>
<head>
<title>React! React! React!</title>
<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-

core/5.8.23/browser.min.
js"></script>
</head>

<body>
<script>

</script>
</body>

</html>

If you preview your page right now, you’ll notice that this page is still blank with nothing
visible going on. That’s OK. We are going to fix that next.

Displaying Your Name
The first thing we are going to do is use React to display our name on screen. The way we do
that is by using a method called render. Inside your script tag, add the following:

Click here to view code image

ReactDOM.render (
<hl>Sherlock Holmes</hl>,
document.body
) ;

Don’t worry if none of this makes sense at this point. Our goal is to get something to display
on screen first, and we’ll make sense of what we did shortly afterwards. Now, before we
preview this in our page to see what happens, we need to designate this script block as
something that Babel can do its magic on. The way we do that is by setting the t ype attribute
on the script tag to a value of text /babel:

<script ="text/babel">
ReactDOM.render (
<hl>Sherlock Holmes</hl>,
document.body
)
</script>

Once you’ve made that change, now preview what you have in your browser. What you’ll see
are the words Sherlock Holmes printed in giant letters. Congratulations! You just built an app
using React.

As apps go, this isn’t all that exciting. Chances are your name isn’t even Sherlock Holmes.
While this app doesn’t have much going for it, it does introduce you to one of the most
frequently used methods you’ll use in the React universe—the ReactDOM. render method.

The render method takes two arguments:

= The HTML-like elements (aka JSX) you wish to output
= The location in the DOM that React will render the JSX into
Here is what our render method looks like:

ReactDOM.render (
<hl>Sherlock Holmes</hl>,
document.body

) ;

Our first argument is the text Sherlock Holmes wrapped inside some h1 tags. This HTML-
like syntax inside your JavaScript is what JSX is all about. While we will spend a lot more
time drilling into JSX a bit later, I should mention this up front—It is every bit as crazy as it
looks. Whenever I see brackets and slashes in JavaScript, a part of me dies on the inside
because of all the string escaping and quotation mark gibberish I will need to do. With JSX,
you do none of that. You just place your HTML-like content as-is just like what we’ve done
here. Magically (like the super-awesome kind involving dragons and laser beams), it all
works.

The second argument is document .body. There is nothing crazy or bizarre about this
argument. It simply specifies where the converted markup from the JSX will end up living in
our DOM. In our example, when the render method runs, the h1 tag (and everything inside
it) is placed in our document’s body element.

Now, the goal of this exercise wasn’t to display a name on the screen. It was to display your
name. Go ahead and modify your code to do that. In my case, the render method will look
as follows:
ReactDOM. render (
<hl>Batman</hl>,

document.body
)i

Well—it would look like that if my name was Batman! Anyway, if you preview your page
now, you will see your name displayed instead of Sherlock Holmes.

It’s All Still Familiar

While the JavaScript looks new and shiny thanks to JSX, the end result your browser sees is
nice, clean HTML, CSS, and JavaScript. To see this for yourself, let’s make a few alterations
to how our app behaves and looks.

Changing the Destination

The first thing we’ll do is change where our JSX gets output. Using JavaScript to place things
directly in your body element is never a good idea. A lot can go wrong—especially if you
are going to be mixing React with other JS libraries and frameworks. The recommended path
is to create a separate element that you will treat as a new root element. This element will
serve as the destination our render method will use. To make this happen, go back to the
HTML and add a div element with an 1d value of container.

Instead of showing you the full HTML for this one minor change, here is what just our body
element looks like:

<body>
<div ="container"></div>
<script ="text/babel">
ReactDOM.render (
<hl>Batman</hl>,
document.body
)
</script>
</body>

With our container div element safely defined, let’s modify the render method to use it
instead of document .body. Here is one way of doing this:

ReactDOM.render (
<hl>Batman</hl>,
document.querySelector ("#container™)
)i

Another way of doing this is by doing some things outside of the render method itself:

Click here to view code image

destination = document.querySelector ("#container");

ReactDOM.render (
<hl>Batman</hl>,
destination
)
Notice that the destination variable stores the reference to our container DOM element.
Inside the render method, we simply reference the same destination variable instead of
writing the full element-finding syntax as part of the argument itself. The reason I want to do
this is simple. I want to show you that you are still writing JavaScript and render is just
another boring old method that happens to take two arguments.

Styling It Up!

Time for our last change before we call it a day. Right now, our names show up in whatever
default h1 styling our browser provides. That is just terrible, so let’s fix it by adding some
CSS. Inside your head tag, add a st yle block with the following CSS:

#container ({

padding: 50px;
background-color: #EEE;
}
#container hl {
font-size: 48px;
font-family: sans-serif;
color: #0080AS8;
}

After you have added all of this, preview your page. Notice that our text appears with a little
more purpose than it did earlier when it relied entirely on the browser’s default styling (see
Figure 2-1).

react_tutorial.htm Preview

Batman

Figure 2-1 The result of adding the CSS.

The reason this works is that our DOM’s body, after running all of the React code, contains
our container element with an h1 tag inside it. It doesn’t matter that the h1 tag was defined
entirely inside JavaScript in this JSX syntax or that your CSS was defined well outside of the
render method. The end result is that your React app is still going to be made up of some
100% organic (and cage-free!) HTML, CSS, and JavaScript:

Click here to view code image

<!DOCTYPE html>
<html>

<head>
<title>React! React! React!</title>
<script src="https://fb.me/react-15.1.0.3s"></script>

<script ="https://fb.me/react-dom-15.1.0.3s"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

<style>

#container {
padding: 50px;
background-color: #EEE;

}

#container hl {
font-size: 144px;
font-family: sans-serif;
color: #0080a8;

}

</style>

</head>

<body>
<diwv ="container"></div>
<script ="text/babel">

destination = document.querySelector ("#container");

ReactDOM.render (React.createElement (
Ilhlll,

4
"Batman"

), destination);
</script>
</body>

</html>

Notice that there is nary a trace of React-like code in sight. Also, we should use the word nary
more often in everyday conversation!

Conclusion

If this is your first time building a React app, we covered a lot of ground here. One of the
biggest takeaways is that React is different than other libraries because it uses a whole new
language called JSX to define what the visuals will look like. We got a very small glimpse of
that here when we defined the h1 tag inside the render method.

JSX’s impact goes beyond how you define your Ul elements. It also alters how you build your
app as a whole. Because your browser can’t understand JSX in its native representation, you
need to use an intermediate step to convert that JSX into JavaScript. One approach is to build
your app to generate the transpiled JavaScript output to correspond to the JSX source.
Another approach (aka the one we used here) is to use the Babel library to translate the JSX
into JavaScript on the browser itself. While the performance hit of doing that is not
recommended for live/production apps, when familiarizing yourself with React, you can’t
beat the convenience.

In future chapters, we’ll spend some time diving deeper into JSX and going beyond the render
method as we look at all the important things that make React tick.

3. Components in React

Components are one of the things that make React, well, React! They are one of the primary
ways you have for defining the visuals and interactions that make up what people see when
they use your app. Let’s say Figure 3-1 shows what your finished app looks like.

e — —

LOREMIPSUM &

% — — i

Figure 3-1 Your hypothetical finished app.

This is the finished sausage. During development, viewed from the lens of you as a React
developer, things might look a little less appealing. Almost every part of this app’s visuals
would be wrapped inside a self-contained module known as a component. To highlight what
“almost every” means here, take a look at the diagram in Figure 3-2.

—— e — —

That's a lot of COMPONENTS!

Figure 3-2 Diagrammatic representation of the app components.

Each dotted line represents an individual component that is responsible for both what you see
as well as any interactions that it may be responsible for. Don’t let this scare you. While this
looks really complicated, as you will see shortly, it will start to make a whole lot of sense
once you’ve had a chance to play with components and some of the awesome things that they
do—or at least try really hard to do.

Onwards!

A Quick Review of Functions

In JavaScript, you have these things known as functions. They enable you to make your code
a bit cleaner and more reusable. Now, there is reason why we are taking some time to look at
functions, and it isn’t to annoy you—I swear! Functions, conceptually speaking, share a lot of
surface area with React components, and the easiest way to understand what components do is
by taking a quick look at functions first.

In a terrible world where functions do not exist, you may have some code that looks as
follows:
speed = 10;

time = 5;
alert (speed * time);

speedl = 85;
timel = 1.5;
alert (speedl * timel);

speed2 = 12;
time2 = 9;
alert (speed2 * time2);

speed3 = 42;
time3 = 21;
alert (speed3 * time3);
In a really chill world that involves functions, you can condense all of that duplicated text into
something simple like the following:

Click here to view code image

getDistance (speed, time) ({
result = speed * time;
alert (result);
}

Our getDistance function removes all of the duplicated code you saw earlier, and it takes
speed and t ime as arguments to enable you to customize the calculation that gets returned.

To call this function, all you have to do is this:

getDistance (10, 5);
getDistance (85, 1.5);
getDistance (12, 9);
getDistance (42, 21);

Doesn’t this look nicer? Now there is another great value functions provide. Your functions
(like the alert inside getDistance) can call other functions as part of their running. Here

is us using a formatDistance function to change what gets returned by getDistance:

Click here to view code image

formatDistance (distance) {
distance + "km";

g d wbN -
—

getDistance (speed, time) ({

6 result = speed * time;
7 alert (formatDistance (result));
8 }

This capability to have functions call other functions enables us to cleanly separate what
functions do. You don’t need to have one monolithic function that does everything under the
sun. You can distribute the functionality across many functions specialized for a particular
type of task.

Best of all, after you make changes to how your functions work, you don’t have to do
anything extra to see the results of those changes. If the function signature did not change, any
existing calls to that function will just magically work and automatically pick up any new
changes you made to the function itself. For example, our existing getDistance calls will
see the result of the formatDistance function even if the formatDistance function
didn’t exist when the calls were first defined. That’s pretty awesome.

In a nutshell, functions are awesome. I know that. You know that. That’s why all of the code we
write has them all over the place.

Changing How We Deal with the Ul

I don’t think anybody will disagree with the good things functions bring to the table. They
really make it possible to structure the code for your apps in a sane way. That same level of
care we use in writing our code isn’t always possible when it comes to writing our Uls. For
various technical and non-technical reasons, we’ve always tolerated a certain level of
sloppiness with how we typically work with our UI elements.

I realize that is a pretty controversial statement, so let me highlight what I mean by looking at
some examples. We are going to go back and look at the render method we used in the
previous chapter:

Click here to view code image

destination = document.querySelector ("#container");

ReactDOM.render (
<hl>Batman</hl>,
destination

) 7

What you see on the screen is the word Batman printed in giant letters—thanks to the h1

element. Let’s change things up a bit and say that we want to print the names of several other
superheroes. To do this, let’s modify our render method to now look as follows:

Click here to view code image

destination = document.querySelector ("#container");

ReactDOM.render (
<diwv>
<hl>Batman</hl>
<hl>Iron Man</hl>
<hl>Nicolas Cage</hl>
<hl>Mega Man</hl>
</div>,

destination
) 7

Notice what you see here. We emit a div that contains the four h1 elements with our
superhero names.

JSX Gotcha: Outputting Multiple Elements

There is an important JSX detail to call out here. The div that wraps our h1 elements

isn’t there because it looks like a good idea. It is there because it has to be there. In
React, you can’t output multiple adjacent elements as shown in the following:

Click here to view code image

destination = document.querySelector ("#container") ;

ReactDOM.render (
<hl>Batman</hl>
<hl>Iron Man</hl>
<hl1>Nicolas Cage</hl>
<hl>Mega Man</hl>,
destination

) &

Even though this is valid HTML, it isn’t valid in the eyes of the unholy alliance between
JSX and JavaScript. That may sound like a terrible limitation, but the workaround is
really easy. While you can only output one element, this one element can have as many
children as needed. That is why we wrap our h1 elements inside the div. We do this
because of how JSX gets turned into JavaScript. The details of that are something we
will look at later, but it isn’t important enough right this moment to distract us from
learning about components.

Ok, so what we have now are four h1 elements that each contain the name of a superhero.
What if we want to change our h1 element to something like an h3 instead? We can manually
update all of these elements as follows:

Click here to view code image

destination = document.querySelector ("#container");

ReactDOM.render (
<diwv>
<h3>Batman</h3>
<h3>Iron Man</h3>
<h3>Nicolas Cage</h3>
<h3>Mega Man</h3>
</div>,
destination
) ;

If you preview what we have, you’ll see something that looks a bit unstyled and plain (see
Figure 3-3).

Batman
Iron Man
Nicolas Cage

Mega Man

Figure 3-3 Plain vanilla super hero names.

We don’t want to go crazy with the styling here. All we want to do is just italicize all of these
names by using the <i> tag, so let’s manually update what we render by making this change:

Click here to view code image

destination = document.querySelector ("#container");

ReactDOM. render (
<div>
<h3><i>Batman</i></h3>
<h3><i>Iron Man</i></h3>
<h3><i>Nicolas Cage</i></h3>
<h3><i>Mega Man</i></h3>
</div>,
destination
) 7

We went through each h3 element and wrapped the content inside some i tags. Can you start
to see the problem here? What we are doing with our Ul is no different than having code that
looks as follows:

speed = 10;

time = 5;
alert (speed * time);

speedl = 85;
timel = 1.5;
alert (speedl * timel);

speed2 = 12;

time2 = 9;

alert (speed2 * time2);
speed3 = 42;
time3 = 21;

alert (speed3 * time3);

Every change we want to make to our h1 or h3 elements needs to be duplicated for every
instance of it. What if we want to do something even more complex than just modifying the
appearance of our elements? What if we want to represent something more complex than the
simple examples we are using so far? What we are doing right now won’t scale because
manually updating every copy of what we want to modify is time consuming. It is also boring.

Now, here is a crazy thought: What if everything awesome we looked at about functions can
somehow be applied to how we define our app’s visuals? Wouldn’t that solve all of the
inefficiencies we’ve highlighted in this section? Well, as it turns out, the answer to that “What
if” forms the core of what React is all about. It is time for you to meet the component.

Meet the React Component

The solution to all of our problems (even the existential ones we grapple with!) can be found
in React components. React components are reusable chunks of JavaScript that output (via
JSX) HTML elements. That sounds really pedestrian for something capable of solving great
problems and doing great things, but as we start to build components and gradually turn up
the complexity, you’ll see that components are really powerful and every bit as awesome as
I’ve portrayed them to you.

Let’s start by building a couple of components together. To follow along, start with a blank
React document:

Click here to view code image

<IDOCTYPE html>

<html>
<head>
<title>React Components</title>
<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-

core/5.8.23/browser.min.
js"></script>

</head>

<body>
<div ="container"></div>
<script ="text/babel">
</script>

</body>

</html>

There is nothing exciting going on this page. Nearly identical to what we had in our earlier
chapter, this page is pretty barebones, with just a reference to the React and Babel libraries
and a div element who proudly sports an id value of container.

Creating a Hello, World! Component

We are going to start really simple. What we want to do is use a component to help us print
the famous “Hello, world!” text to the screen. As we already know, by using just the render

method of ReactDOVM, the code would look as follows:

Click here to view code image

document.querySelector ("#container™)
) i

1 ReactDOM.render (

2 <diwv>

3 <p>Hello, world!</p>
4 </div>,

5

6

Let’s recreate all of this by using a component. You have several ways of creating
components in React, but the way we are going to create them initially is by using
React.createClass. Go ahead and add the following highlighted code just above our
existing render method:

Click here to view code image

var HelloWorld = React.createClass ({

1) ;

ReactDOM.render (
<div>
<p>Hello, world!</p>
</div>,
document.querySelector ("#container™)
)

What we have done is create a new component called Hel1oWorld. This HelloWorld
component doesn’t do anything right now. In fact, it is basically an empty JavaScript object at
this point. Inside this object, you can put all sorts of properties to further define what
HelloWorld does. Some properties you define are special and used by React to help your
components work their magic. One such mandatory property is render.

Go ahead and modify our HelloWorld component by adding a render property as shown
in the following:

Click here to view code image

HelloWorld = React.createClass ({
render: () A

}
1)

Just like the render method of we saw a few moments earlier as part of

ReactDOM. render, the render method inside a component is also responsible for
dealing with JSX. Let’s modify our render method to return Hello, componentized world!,
so go ahead and add the following highlighted lines:

Click here to view code image

HelloWorld = React.createClass ({
render: (OI|

(

<p>Hello, componentized world!</p>
)7

1) ;

What we’ve done is told our render method to return the JSX that represents our Hello,

componentized world! text. All that remains is to actually use this component. The way you
use a component once you’ve defined it is by calling it, and we are going to call it from our
old friend, the ReactDOM. render method:

Click here to view code image

ReactDOM.render (
<HelloWorld/>,
document.querySelector ("#container™)
)
That isn’t a typo! The JSX we use for calling our Hel1loWorld component is the very
HTML-like <HelloWorld/>.If you preview your page in your browser, you’ll see the text
Hello, componentized world! showing up on your screen. If you held your breath in
suspense, you can relax.
If you have difficulty relaxing after seeing the syntax we used for calling HelloWorld, stare
at the following circle for a few moments:

JuSt relax aud focus ou
i cirele!

Ok, back to reality. What we’ve done so far might seem crazy, but simply think of your
<HelloWorld/> component as a cool and new HTML tag whose functionality you have full

control over. This means you can do all sorts of HTML-ey things to it.
For example, go ahead and modify our ReactDOM. render method to look as follows:

Click here to view code image

ReactDOM.render (
<div>
<HelloWorld/>
</div>,
document.querySelector ("#container")
)7

We wrapped our call to the Hel1loWorld component inside a div element, and if you
preview this in your browser, everything still works. Let’s go one step further! Instead of
having just a single call to Hel1loWor1d, let’s make a bunch of calls. Modify our
ReactDOM. render method to now look as follows:

Click here to view code image

ReactDOM.render (
<diwv>
<HelloWorld/>
<HelloWorld/>
<HelloWorld/>
<HelloWorld/>
<HelloWorld/>
<HelloWorld/>
</div>,
document.querySelector ("#container™)
) ;

What you will see now is a bunch of Hello, componentized world! text instances appear. Let’s
do one more thing before we move on to something shinier. Go back to our HelloWorld

component declaration, and change the text we return to the more traditional Hello, world!
value:

Click here to view code image

HelloWorld = React.createClass ({
render: (OI|

(
<p>Hello, world!</p>

) ;
1) ;

Just make this one change and preview your example. This time around, all of the various
HelloWorld calls we specified earlier now return Hello, world! to the screen. There was no

manually modifying every HelloWoxr1d call. That’s a good thing!

Specifying Properties
Right now, our component does just one thing. It prints Hello, world! to our screen and only
that! That’s the equivalent of having a JavaScript function that looks like this:

getDistance () {
alert ("42km") ;
}

Except for one very particular case, that JavaScript function doesn’t seem very useful, does it?
The way to increase the usefulness of this function is by modifying it to take arguments:

Click here to view code image

getDistance (speed, time) ({
result = speed * time;
alert (result);

Now, your function can be used more generally for a variety of situations—not just one
where the output will be 42km.

Something similar applies to your components as well. Just like with functions, you can pass
in arguments that alter what your component does. There is a slight terminology update you
need to be on top of. What we call arguments in the function world are going to be known as
properties in the component world. Let’s see these properties in action!

We are going to modify our Hel1loWorld component to enable you to specify who or what
you greet besides the generic World. For example, imagine being able to specify Bono as
part of the Hel1loWor1d call and seeing Hello, Bono! appear on screen.

To add properties to a component, there are two parts you need to follow.

First Part: Updating the Component Definition

Right now, our HelloWorld component is hard coded to always send out Hello, world! as
part of its return value. The first thing we are going to do is change that behavior by having
return print out the value passed in by a property. We need a name to give our property, and
for this example, we are going to call our property greetTarget.

To specify the value of greetTarget as part of our component, here is the modification we
need to make:

Click here to view code image

HelloWorld = React.createClass ({
render: 0 o
(
<p>Hello, { .props.greetTarget} !</p>
)
}
b) i

The way you access a property is by calling it via the props property that every component

has access to. Notice how we specify this property. We place it inside curly brackets {and }.In

JSX, if you want something to get evaluated as an expression, you need to wrap that something
inside curly brackets. If you don’t do that, you’ll see the raw text
this.props.greetTarget printed out.

Second Part: Modifying the Component Call

Once you’ve updated the component definition, all that remains is to pass in the property
value as part of the component call. That is done by adding an attribute with the same name as
our property, followed by the value you want to pass in. In our example, that would involve
modifying the Hel1loWor1d call with the greetTarget attribute and the value we want to

give it.
Go ahead and modify our Hel1loWor1d calls as follows:

Click here to view code image

ReactDOM.render (
<div>

<HelloWorld greetTarget="Batman"/>
<HelloWorld greetTarget="Iron Man"/>
<HelloWorld greetTarget="Nicolas Cage"/>
<HelloWorld greetTarget="Mega Man"/>
<HelloWorld greetTarget="Bono"/>
<HelloWorld greetTarget="Catwoman"/>
</div>,
document.querySelector ("#container™)
)i
Each of our HelloWor1d calls now has the greetTarget attribute along with the name of
a superhero (or equivalent mythical being!) that we wish to greet. If you preview this example
in the browser, you’ll see the greetings happily printed out on screen.

One last thing to call out before we move on. You are not limited to just having a single
property on a component. You can have as many properties as you want, and your props

property will easily accommodate any property requests you have without making any fuss.

Dealing with Children

A few sections ago, I mentioned that our components (in JSX) are very similar to regular
HTML elements. We saw that for ourselves when we wrapped a component inside a div
element or specified an attribute and value as part of specifying properties. There is one more
thing you can do with components just like you can with many HTML elements. Your
components can have children.

What this means is that you can do something like this:

<CleverComponent foo="bar">
<p>Something!</p>
</CleverComponent>
You have a component very cleverly called CleverComponent, and it has a p element as a
child. From within CleverComponent, you have the capability to access the p child
element (and any children it may have) via the children property accessed by
this.props.children.

To make sense of all this, let’s fiddle with another really simple example. This time around,
we have a component called Buttoni fy that wraps its children inside a button. The
component looks like this:

Click here to view code image

Buttonify = React.createClass ({
render: (OI|

(
<div>
<button type={ .props.behavior}>{ .props.children}</button>
</div>
)

1) ;

The way you can use this component is by just calling it via the ReactDOM. render method
as shown here:

Click here to view code image

ReactDOM.render (
<div>
<Buttonify behavior="Submit">SEND DATA</Buttonify>
</div>,
document.querySelector ("#container™)
)7
When this code runs, given what the JSX in the But tonify component’s render method

looked like, what you will see are the words “SEND DATA” wrapped inside a button element.
With the appropriate styling, the result could look comically large like in Figure 3-4.

Why i this buttou co b1g?
Figure 3-4 A large send data button.

Anyway, getting back to the JSX, notice that we specify a custom property called behavior.
This property enables us to specify the but ton element’s t ype attribute, and you can see us
accessing it via this.props.behavior in the component definition’s render method.

There is more to accessing a component’s children than what we’ve seen here. For example,
if your child element is the root of a deeply nested structure, the this.props.children
property will return an array. If your child element is just a single element (like in our
example), the this.props.children property returns a single component NOT wrapped
inside an array. There are a few more things to call out, but instead of enumerating all the
various cases and boring you, we’ll naturally touch upon those cases as part of looking at
more elaborate examples later on.

Conclusion

If you want to build an app using React, you can’t wander too far without having to use a
component. Trying to build a React app without using a component is kinda like building a
JavaScript-based app without using functions. I am not saying that it can’t be done. It is just
one of those things you don’t do..kinda like the Bad Idea part of the popular Animaniacs
Good Idea / Bad Idea sketches you can find here: https://www.youtube.com/watch?
v=2dJOIf4mdus:

If this witty video doesn’t convince you why you should learn to embrace components, I don’t
know what will...except for maybe a future chapter on creating complex components! :P

https://www.youtube.com/watch?v=2dJOIf4mdus

4. Styling in React

For generations, mankind (and probably really smart dolphins) have styled their HTML
content using CSS (aka Cascading Style Sheets). Things were good. With CSS, you had a
good separation between the content and the presentation. The selector syntax gave you a lot
of flexibility in choosing which elements to style and which ones to skip. You couldn’t even
find too many issues to hate about the whole cascading thing that CSS is all about.

Well, don’t tell React that. While React doesn’t actively hate CSS, it has a different view when
it comes to styling content. As we’ve seen so far, one of React’s core ideas is to have our
app’s visual pieces be self-contained and reusable. That is why the HTML elements and the
JavaScript that impacts them are in the same bucket we call a component. We got a taste of that
in the previous chapter.

What about how the HTML elements look (aka their styling)? Where should that go? You can
probably guess where I am going with this. You can’t have a self-contained piece of UI when
the styling for it is defined somewhere else. That’s why React encourages you to specify how
your elements look right along side the HTML and the JavaScript. In this tutorial, you learn
all about this mysterious (and possibly scandalous!) approach to styling your content. Of
course, we also look at how to use CSS as well. There is room for both approaches—even if
React may sorta kinda not think so :P

Onwards!

Displaying Some Vowels

To learn how to style our React content, let’s work together on a (totally sweet and exciting!)
example that simply displays vowels on a page. First, you’ll need a blank HTML page that will
host our React content. If you don’t have one, feel free to use the following markup:

Click here to view code image

<IDOCTYPE html>

<html>
<head>
<title>Styling in React</title>
<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-

core/5.8.23/browser.min.
js"></script>

<style>
#container {
padding: 50px;
background-color: #FFF;
}
</style>
</head>

<body>
<div ="container"></div>

</body>
</html>

All this markup does is load in our React and Babel libraries and specify a div with an 1d
value of container. To display the vowels, we’re going to add some React-specific code.

Just below the container div element, add the following:

Click here to view code image

<script ="text/babel">

Letter = React.createClass ({
render: (OI|

(
<div>

{ .props.children}
</div>

destination = document.querySelector ("#container");

ReactDOM.render (

<diwv>
<Letter>A</Letter>
<Letter>E</Letter>
<Letter>I</Letter>
<Letter>0</Letter>
<Letter>U</Letter>

</div>,

destination

) ;
</script>

From what we learned about components, nothing here should be a mystery. We create a
component called Letter that is responsible for wrapping our vowels inside a div element.

All of this is anchored in our HTML via a script tag whose type designates it as something
Babel will know what to do with.

If you preview your page, you’ll see something boring that looks like Figure 4-1.

® [1 Styling in React X

C' | file:///Users/kirupa/Dropbox/Assets/WebSite/React/stylir

co—mp

Figure 4-1 A boring output of what you see.

Don’t worry, we’ll make it look a little less boring in a few moments. After we’ve had a run at
these letters, you will see something that looks more like Figure 4-2.

& B I B e

Figure 4-2 The letters arranged horizontally and with a yellow background.

E2

Our vowels will be wrapped in a yellow background, aligned horizontally, and sport a fancy
monospace font. Let’s look at how to do all of this in both CSS as well as React’s new-fangled
approach.

Styling React Content Using CSS

Using CSS to style our React content is actually as straightforward as you can imagine it to
be. Because React ends up spitting out regular HT ML tags, all of the various CSS tricks
you’ve learned over the years to style HI' ML still apply. There are just a few minor things to
keep in mind.

Understand the Generated HTML

Before you can use CSS, you need to first get a feel for what the HTML that React spits out is
going to look like. You can easily figure that out by looking at the JSX defined inside the
render methods. The parent render method is our ReactDOM based one, and it looks as

follows:

<div>
<Letter>A</Letter>
<Letter>E</Letter>
<Letter>I</Letter>
<Letter>0</Letter>
<Letter>U</Letter>
</div>

We have our various Letter components wrapped inside a div. Nothing too exciting here.
The render method inside our Letter component isn’t that much different either:
<div>

{this.props.children}
</div>

As you can see, each individual vowel is wrapped inside its own set of div tags. If you had to
play this all out (such as, previewing our example in a browser), the final DOM structure for
our vowels looks like Figure 4-3.

x O Elements Console Sources Network

L

» <head>..</head>
¥ <body=
¥ <div id="container'>
v <div data-reactid=".0">
<div data-reactid=".0.0">A</div>
<div data-reactid=".0.1">E</div>
<div data-reactid=".0.2">I</div>
<div data-reactid=".0.3">0</div>
<div data-reactid=".0.4">U</div>
</div>
</div>
Figure 4-3 The preview from inside the browser.

Ignore the data-reacroot attribute (that you may not even see depending on your version
of React!) on the container div, but pay attention to the rest of the things you see. What we
have is simply an HTML-ized expansion of the various JSX fragments we saw in the render
method a few moments ago with our vowels nested inside a bunch of div elements.

Just Style It Already!

Once you understand the HTML arrangement of the things you want to style, the hard part is
done. Now comes the fun and familiar part of defining style selectors and specifying the
properties you want to set. To affect our inner div elements, add the following inside our
style tag:

div div div {
padding: 10px;
margin: 10px;
background-color: #f£fde00;
color: #333;
display: inline-block;
font-family: monospace;
font-size: 32px;
text-align: center;

}

The div div div selector will ensure we style the right things. The end result will be our
vowels styled to look exactly like we saw earlier. With that said, a style selector of div div
div looks a bit odd, doesn’t it? It is too generic. In apps with more than three nested div

elements (which will be very common), you may end up styling the wrong things. It is at times
like this where you will want to change the HT ML that React generates to make our content
more easily style-able.

The way we are going to address this is by giving our inner div elements a class value of
letter. Here is where JSX differs from HTML. Make the following highlighted change:

Click here to view code image

var Letter = React.createClass ({

render: function() {
return (
<div ="letter">
{this.props.children}
</div>

) ;
}
1)

Notice that we designate the class value by using the c1assName attribute instead of the
class attribute. The reason has to do with the word class being a special keyword in

JavaScript. If that doesn’t make any sense why it is important, don’t worry about it for now.
We’ll cover that later.

Anyway, once you’ve given your div a className attribute value of letter, there is just
one more thing to do. Modify the CSS selector to target our div elements more cleanly:

.letter {
padding: 10px;
margin: 10px;
background-color: #f£fde00;
color: #333;
display: inline-block;
font-family: monospace;

font-size: 32px;
text-align: center;

}

As you can see, using CSS is a perfectly viable way to style the content in your React-based
apps. In the next section, we’ll look at how to style our content using the approach preferred
by React.

Styling Content the React Way

React favors an inline approach for styling content that doesn’t use CSS. While that seems a
bit strange at first, it is designed to help make your visuals more reusable. The goal is to have
your components be little black boxes where everything related to how your Ul looks and
works gets stashed there. Let’s see this for ourselves.

Continuing our example from earlier, remove the . letter style rule. Once you have done

this, your vowels will return to their unstyled state when you preview your app in the browser.
For completeness, you should remove the c1assName declaration from our Letter

component’s render function as well. There is no point having our markup contain things
we won’t be using.

Right now, our Letter component is back to its original state:

Click here to view code image

Letter = React.createClass ({
render: (OI|

(

<diwv>
{ .props.children}
</div>
)
}
}):

The way you specify styles inside your component is by defining an object whose content is
the CSS properties and their values. Once you have that object, you assign that object to the
JSX elements you wish to style by using the style attribute. This will make more sense once

we perform these two steps ourselves, so let’s apply all of this to style the output of our
Letter component.

Creating a Style Object
Let’s getright to it by defining our object that contains the styles we wish to apply:

Click here to view code image

Letter = React.createClass ({
render: 0 A
letterStyle = {
padding: 10,
margin: 10,
backgroundColor: "#ffdelOO0O",
color: "#333",
display: "inline-block",

fontFamily: "monospace",
fontSize: 32,
textAlign: "center"

)i

(

<div>
{ .props.children}
</div>
)7
}
b) i
We have an object called 1letterStyle, and the properties inside it are just CSS property

names and their value. If you’ve never defined CSS properties in JavaScript before (i.e., by
setting object.style), the formula for converting them into something JavaScript-

friendly is pretty simple:
= Single word CSS properties (like padding, margin, color) remain unchanged.

» Multi-word CSS properties with a dash in them (like background-color, font-
family, border-radius) are turned into one camelcase word with the dash
removed and the words following the dash capitalized. For example, using our example
properties, background-color would become backgroundColor, font-family
would become fontFamily, and border-radius would become borderRadius.

Our letterStyle object and its properties are pretty much a direct JavaScript translation

of the . letter style rule we looked at a few moments ago. All that remains now is to assign
this object to the element we wish to style.

Actually Styling Our Content

Now that we have our object containing the styles we wish to apply, the rest is very easy. Find
the element we wish to apply the style to and set the st y1e attribute to refer to that object. In
our case, that will be the div element returned by our Letter component’s render
function.

Take a look at the highlighted line to see how this is done for our example:

Click here to view code image

Letter = React.createClass ({
render: () |
letterStyle = {

padding: 10,
margin: 10,
backgroundColor: "#ffdelOO0O",
color: "#333",
display: "inline-block",
fontFamily: "monospace",
fontSize: "32",
textAlign: "center"

i

(
<div style={letterStyle}>

{this.props.children}
</div>
)
}
b) i
Our objectis called letterStyle, so that is what we specify inside the curly brackets to let

React know to evaluate the expression. That’s all there is to it. Go ahead and run the example
in the browser to ensure everything works properly and all of our vowels are properly styled.

For some extra validation, if you inspect the styling applied to one of the vowels using your
browser developer tool of choice, you’ll see that the styles are infact applied inline (see

Figure 4-4).
Styles Computed Event Listeners DOM Breakpoints Properties

+, X @

element.style {
padding: » 10px;
margin: » 10px;
background-color: | |#ffde0@;
color: WM#333;
display: inline-block;
font-family: monospace;
font-size: 32px;
text-align: center;

Figure 4-4 The styles are applied inline.

While this is no surprise, it might be difficult for those of us used to styles being inside style
rules to swallow. As they say, the Times They Are A Changin’
(https://www.youtube.com/watch?v=e7qQ6_RV4VQ).

You Can Omit the “px” Suffix

When programmatically setting styles, it’s a pain to deal with numbers that need a pixel value
suffix. In order to generate these values, you need to do some string concatenation on your
number to add a px. To convert from a pixel value back to a number, you need to parse out the
px. All of this isn’t extremely complicated or time consuming, but it is a distraction.

To help with this, React allows you to omit the px suffix for a bunch of CSS properties. If you
recall, our letterStyle objectlooks as follows:

Click here to view code image

var letterStyle = {
padding: 10,
margin: 10,
backgroundColor: "#f£fde00",

=S W N

https://www.youtube.com/watch?v=e7qQ6_RV4VQ

color: "#333",

display: "inline-block",
fontFamily: "monospace",
fontSize: "32",
textAlign: "center"

b=

O W 00 J oy Ul

1

Notice that for some of the properties with a numerical value such as padding, margin,
and fontSize, we didn’t specify the px suffix at all. That is because, at runtime, React will
add the px suffix automatically.

The only number-related properties React won’t add a pixel suffix to automatically are the
following properties: animationIterationCount, boxFlex, boxFlexGroup,
boxOrdinalGroup, columnCount, £fillOpacity, flex, flexGrow,
flexPositive, flexShrink, flexNegative, flexOrder, fontWeight,
lineClamp, l1ineHeight, opacity, order, orphans, stopOpacity,
strokeDashoffset, strokeOpacity, strokeWidth, tabSize, widows, zIndex,
and zoom. While I wish I could tell you that I walk around with this information memorized, I
actually just referred to this article: https://facebook.github.io/react/tips/style-props-value-
px.html Please hold your applause :P

While pixel values are great for many things, you may want to use percentages, ems, vh, etc.
to represent your values. For these non-pixel values, you still have to manually ensure the
suffix is dealt with. React won’t help you out there, so if you aren’t a fan of pixel values, this
nicety doesn’t gain you much.

Making the Background Color Customizable

The last thing we are going to do before we wrap things up is take advantage of how React
works with styles. By having our styles defined in the same vicinity as the JSX, we can make
the various style values easily customizable by the parent (aka the consumer of the
component). Let’s see this in action.

Right now, all of our vowels have a yellow background. Wouldn’t it be cool if we could
specify the background color as part of each Let ter declaration? To do this, in our
ReactDOM. render method, first add a bgcolor attribute and specify some colors as
shown in the following highlighted lines:

Click here to view code image

ReactDOM.render (
<diwv>
<Letter bgcolor="#58B3FF">A</Letter>
<Letter bgcolor="#FF605F">E</Letter>
<Letter bgcolor="#FFD52E">I</Letter>
<Letter bgcolor="#49DDBE">0</Letter>
<Letter bgcolor="#AE99FF">U</Letter>
</div>,
destination
)i

Next, we need to use this property. In our letterStyle object, set the value of

https://facebook.github.io/react/tips/style-props-value-px.html

backgroundColor to this.props.bgColor:

Click here to view code image

1 wvar letterStyle = {

2 padding: 10,

3 margin: 10,

4 backgroundColor: this.props.bgcolor,
5 color: "#333",

6 display: "inline-block",

7 fontFamily: "monospace",

8 fontSize: "32",

9 textAlign: "center"

10}

This will ensure that the backgroundColor value is inferred from what we set via the
bgColor attribute as part of the Letter declaration. If you preview this in your browser,
you will now see our same vowels sporting some totally sweet background colors as shown
in Figure 4-5.

@0 e /' [M React! React! React! %\
A

L%
~

C | file:///Users/kirupa/Dropbox/Assets/WebSite/React/styling_react_cus

Figure 4-5 Our vowels with background colors!

What we’ve just done is something that is going to be very hard to replicate using plain CSS.
Now, as we start to look at components whose contents change based on state or user
interaction, you’ll see more such examples where the React way of styling things has a lot of
good merit.

Conclusion

As we dive in further and learn more about React, you’ll see several more cases where React
does things quite differently than what we’ve been told is the correct way of doing things on
the web. In this tutorial, we saw React promoting inline styles in JavaScript as a way to style
content as opposed to using CSS style rules. Earlier, we looked at JSX and how the entirety of
your Ul can be declared in JavaScript using an XML-like syntax that sorta kinda looks like
HTML.

In all of these cases, if you look deeper beneath the surface, the reasons for why React
diverges from conventional wisdom makes a lot of sense. Building apps with their very
complex Ul requirements requires a new way of solving the challenges associated with
complex Uls. HTML, CSS, and JavaScript techniques that probably made a lot of sense when
dealing with web pages and documents may not be applicable in the web app world where
components are re-used inside other components.

With that said, you should pick and choose the techniques that make the most sense for your
situation. While I am biased towards React’s way of solving our UI development problems,
I’ll do my best to highlight alternate or conventional methods as well. Tying that back to what
we saw here, using CSS style rules with your React content is totally OK as long as you make
the decision knowing the things you gain as well as lose by doing so.

5. Creating Complex Components

In Chapter 3, you learned about components and all the awesome things that they do. You
learned that components are the primary ways through which React enables our visual
elements to behave like little reusable bricks that contain all of the HTML, JavaScript, and
styling needed to run themselves. Beyond reusability, there is another major advantage
components bring to the table. They make possible composability. You can combine
components to create more complex components.

In this chapter, we look at what all of this means. More specifically, we look at two things:
» The boring technical stuff that you need to know.

= The boring stuff you need to know about how to identify components when you look at
a bunch of visual elements.

OK, what you are going to learn isn’t actually that boring. I am just setting your expectations
really low :P

From Visuals to Components

The various examples we’ve looked at so far have been pretty basic. They were great for
highlighting technical concepts (see Figure 5-1), but they weren’t great for preparing you for

the real world.

Not represetative of the real world 22! Srsly?

Figure 5-1 Great for highlighting technical concepts, but...

In the real world, what you’ll be asked to implement in React will never be so simple as a list
of names or colorful blocks of vowels. Instead, you’ll be given a visual representation of
some complex user interface. That visual can take many forms—a scribble, diagram,
screenshot, video, redline, comp, etc. It is up to you to bring all of those static pixels to life,
and we are going to get some hands-on practice in doing just that.

What we are going to do is build a simple color palette card (see Figure 5-2).

#FF6663

#4! [aw a Siuple color palette card :P
Figure 5-2 A simple color palette card.

If you are not sure what these are, these are small rectangular cards that help you match a
color with a particular type of paint. You’ll frequently see them in home improvement stores
or anywhere paint is sold. Your designer friend probably has a giant closet dedicated to them
in their place. Anyway, our mission is to recreate one of these cards using React.

There are several ways to go about this, but [am going to show you a very systematic
approach that will help you simplify and make sense of even the most complex user
interfaces. This approach involves two steps:

1. Identify the major visual elements

2. Figure out what the components will be

Both of these steps sound really complex, but as we walk through this, you’ll see that it is
nothing to be worried about.

Identifying the Major Visual Elements

The first step is to identify all of the visual elements we are dealing with. No visual element is
too minor to omit—at least not initially. The easiest way to start identifying the relevant pieces
is to start with the obvious visual elements and then dive into the less obvious ones.

The first thing you will see in our example is the card itself (see Figure 5.3).

r--------------------l

#FF6663

Figure 5-3 The card.

Within the card, you’ll see that there are two distinct regions. The top region is a rectangular
area that displays a particular color. The bottom region is a white area that displays a hex
value.

Let’s call out these two visual elements and arrange them into a tree-like structure as shown in
Figure 5-4.

#FF6663

#FF6663

Figure 5-4 Tree-like structure.

Arranging your visuals into this tree-like structure (aka a visual hierarchy) is a good way to
get a better feel for how your visual elements are grouped. The goal of this exercise is to
identify the important visual elements and break them into a parent/child arrangement until
you can divide them no further.

Try to Ignore Implementation Details

While it is hard, do not think of implementation details yet. Don’t focus on dividing
your visual elements based on what combination of HTML and CSS would be required.
There is plenty of time for that later!

Continuing on, we can see that our colorful rectangle isn’t something that we can divide
further. That doesn’t mean we are done, though. We can further divide the label from the white
region that surrounds it. Right now, our visual hierarchy looks as shown in Figure 5-5 with
our label and white region occupying a separate spot in our tree.

#FF6663

.
/ N\

#FF6663

Figure 5-5 Dividing things further into the label and the white region that surrounds it.

At this point, we have nothing else to divide any further. We are done with identifying and
dividing up our visual elements, so the next step is to use what we’ve found here to help us
identify the components.

Identifying the Components

This is where things get a little interesting. We need to figure out which of the visual elements
we’ve identified will be turned into a component and which ones will not. Not every visual
element will need to be turned into a component, and we certainly don’t want to create only a
few extremely complex components either. There needs to be a balance (see Figure 5-6).

< > #FFGB63

#FF6663 (/““‘\

fou feur 700 MANY!!!
Figure 5-6 Not too few and not too many components.

There is an art to figuring out what visual elements become part of a component and which
ones don’t. The general rule is that our components should do just one thing. If you find that
your potential component will end up doing too many things, you probably want to break
your component into multiple components. On the flip side, if your potential component does
too little, you probably want to skip making that visual element a component altogether.

Let’s try to figure out which elements would make for good components in our example.
From looking at our visual hierarchy, right off the bat, both the card and the colored
rectangle seem like they fit the bill for making a great component. The card acts as the outer
container, and the colored rectangle simply displays a color.

That just puts a question mark around our label and the white region it is surrounded by
though (see Figure 5-7).

y #FF6663 A
’ \
/ \
! \
!
I I
\ '
\ #FFB6663
\ ’
\ ’
\ ’
A" i
b F 4
b F 4
. - i -

- e am e

Figure 5-7 Question mark around the label and the white space around it.

The important part here is the label itself. Without it, we can’t see the hex value. That leaves
just the white region. The purpose it serves is negligible. It is simply empty space, and the
responsibility for that can easily be handed off to our label itself. Brace yourself for what I
am about to say next. Sadly, our white rectangular region will not be turned into a component.

At this point, we have identified our three components, and the component hierarchy looks
as in Figure 5-8.

#FF6663 /

Figure 5-8 The three components.

An important thing to note is that the component hierarchy has more to do with helping us
define our code than it does with how the finished product will look. You’ll notice that it looks
a bit different than the visual hierarchy we started off with. For visual details, you should
always refer to your source material (aka your visual comps, redlines, screenshots, and other
related items). For figuring out which components to create, you should use the component
hierarchy.

Ok, now that we’ve identified our components and the relationship between all of them, it is
time to start bringing our color palette card to life.

Creating the Components

This is the easy part—sort of! It is time for us to start writing some code. The first thing we
need is a mostly-empty HTML page that will serve as our starting point:

Click here to view code image

<IDOCTYPE html>

<html>

<head>
<title>More Components!</title>
<script src="https://unpkg.com/react@l15.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

<style>
#container {
padding: 50px;
background-color: #FFF;

}
</style>
</head>

<body>
<div id="container"></div>
<script type="text/babel">

ReactDOM.render (
<diwv>

</div>,
document.querySelector ("#container™)
)
</script>
</body>

</html>

Take a moment to see what this page has going on. There isn’t much—just the bare minimum
needed to have React render an empty div into our container element.

After you’ve done this, it is time to define our three components. The names we will go with
for our components will be Card, Label, and Square. Go ahead and add the following
highlighted lines just above the ReactDOM. render function:

Click here to view code image

var Square = React.createClass ({
render: function () {
return (
<p>Nothing</p>
)i
}
1) ;

var Label = React.createClass ({
render: function () {
return (
<p>Nothing</p>
)i
}
1)

var Card = React.createClass ({

render: () A

}
1) ;

ReactDOM.render (
<diwv>

</div>,
document.querySelector ("#container™)
)7
Within our three components, we also threw in the render function that each component

absolutely needs to function. Other than that, our components are empty. In the following
sections, we will fix that by filling them in.

The Card Component

We are going to start at the top of our component hierarchy and focus on our Card
component first. This component will act as the the container that our Square and Label
components will live in.

To implement it, go ahead and make the following highlighted modifications:

Click here to view code image

1 Card = React.createClass ({

2 render: 0 |

3 cardStyle = {

4 height: 200,

5 width: 150,

6 padding: O,

7 backgroundColor: "#FFF",

8 WebkitFilter: "drop-shadow (Opx Opx 5px #666)",
9 filter: "drop-shadow (0Opx Opx 5px #666)"
10 }i
11
12 (
13 <div style={cardStyle}>
14
15 </div>
16)7
17 }
18 1)

While this seems like a lot of changes, the bulk of the lines are going into styling the output of
our Card component via the cardStyle object. Inside the object, notice that we specify a
vendor-prefixed version of the CSS filter property with WebkitFilter. That’s not the
interesting detail. The interesting detail is the capitalization. Instead of the first letter being
camelcased as webkitFilter, the W is actually capitalized. That isn’t how other normal CSS
properties are represented, so keep that in mind if you ever need to specify a vendor-prefixed
property.

The rest of the changes are pretty unimpressive. We return a div element, and that element’s

style attribute is set to our cardStyle object. Now, to see our Card component in action,
we need to display it in our DOM as part of the ReactDOM. render function. To make that
happen, go ahead and make the following highlighted change:

Click here to view code image

1 ReactDOM.render (
2 <div>

3 <Card/>

4 </div>,

5 document.querySelector ("#container")

6)i

All we are doing is telling the ReactDOM. render function to render the output of our

Card component by invoking it. If everything worked out properly, you’ll see the same thing
as in Figure 5-9 if you test your app.

© @ [More Components! X

C' | | localhost/complex_component_single.htm

Figure 5-9 The result of your test—the outline of the color palette card.

Yes, it is just the outline of our color palette card, but that is definitely more than what we
started out with just a few moments ago!

The Square Component

It’s time to go one level down in our component hierarchy and look at our Square
component. This is a pretty straightforward one, so make the following highlighted changes:

Click here to view code image

1 Square = React.createClass ({
2 render: 0 |

3 squareStyle = {

4 height: 150,

5 backgroundColor: "#FF6663"
6 i

7 (

8 <div ={squareStyle}>

9
10 </div>
11) ;
12 }
13 }):

Just like with our Card component, we are returning a div element whose style attribute
is setto a style object that defines how this component looks. To see our Square
component in action, we need to get it onto our DOM just like we did with the Card
component earlier. The difference this time around is that we won’t be calling the Square
component via our ReactDOM. render function. Instead, we’ll call the Square component
from inside the Card component. To see what I mean, go back to our Card component’s
render function, and make the following change:

Click here to view code image

Card = React.createClass ({
render: () {
cardStyle = {
height: 200,
width: 150,
padding: O,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow (Opx Opx 5px #666)",
filter: "drop-shadow (0Opx Opx 5px #666)"
}i

(
<diwv ={cardStyle}>
<Square/>
</div>
)7
}
1)

At this point, if you preview our app, you’ll see a colorful square making an appearance (see
Figure 5-10).

@00 [™ More Components! X \

© <> C' | localhost/complex_component_single.htm

Figure 5-10 The red portion appears.

The cool thing to call out is that we called our Square component from inside the Card

component! This is an example of component composability where one component relies on
the output of another component. The final thing you see is the result of these two components
colluding with each other. Isn’t collusion just beautiful—at least in this context?

The Label Component

The last component that remains is our Label. Go ahead and make the following highlighted
changes:

Click here to view code image

1 wvar Label = React.createClass ({
2 render: function() {

3 var labelStyle = {

4 fontFamily: "sans-serif",
5 fontWeight: "bold",

6 padding: 13,

7 margin: O

8 }i

9
10 return (
11 <p style={labelStyle}>#FF6663</p>

12) i

13 }

14 1)
The pattern of what we are doing should be routine to you by now. We have a st y1le object
that we assign to what we return. What we return is a p element whose content is the string
#FF6663. To have what we return ultimately make it to our DOM, we need to call our Label
component via our Card component. Go ahead and make the following highlighted change:

Click here to view code image

1 Card = React.createClass ({

2 render: 0 |

3 cardStyle = {

4 height: 200,

5 width: 150,

6 padding: O,

7 backgroundColor: "#FFF",

8 WebkitFilter: "drop-shadow (Opx Opx 5px #666)",
9 filter: "drop-shadow (0Opx Opx 5px #666)"
10 }i
11
12 (
13 <div style={cardStyle}>
14 <Square/>
15 <Label/>
16 </div>
17)7
18 }
19 1):

Notice that our Label component lives just under the Square component we added to our
Card component’s return function earlier. If you preview your app in the browser now, you
should see something that looks like Figure 5-11.

0O / [More Components! XN

'\: e

C | localhost/complex_component_single.htm

#FF6663

Figure 5-11 The label appears.

Yes, that’s right! Our color palette card is done and visible, thanks to the efforts of our Card,
Square, and Label components. That doesn’t mean we are done yet, though. There are a
few more things to cover.

Passing Properties, Again!

In our current example, we hard-coded the color value that is used by our Square and
Label components. That is an odd thing to do—which may or may not have been done
deliberately for dramatic effect, but fixing it is straightforward. It just involves us specifying a
property name and accessing it via this.props. We’ve seen all this before. What is
different is the number of times we will have to do this.

There is no way to properly specify a property on a parent component and have all
descendants automatically gain access to that property. There are many improper ways to deal
with this such as defining global objects, setting the value on a component property directly,
and so on. We won’t concern ourselves with such improper solutions right now. We aren’t
animals!

Anyway, the proper way to pass a property value to a child component is to have each
intermediate parent component pass on the property as well. To see this in action, take a look
at the highlighted changes to our current code where we move away from a hard-coded color

and define our card’s color using a color property instead:

Click here to view code image

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

var Square = React.createClass ({
render: function() |
var squareStyle = {
height: 150,
backgroundColor: this.props.color
i
return (
<div style={squareStyle}>

</div>
)7

1) ;

var Label = React.createClass ({
render: function () |
var labelStyle = {
fontFamily: "sans-serif",
fontWeight: "bold",
padding: 13,
margin: O

i

return (

<p style={labelStyle}>{this.props.color}</p>

)7
}

1)

var Card = React.createClass ({
render: function () |
var cardStyle = {
height: 200,
width: 150,
padding: O,
backgroundColor: "#FFE",

WebkitFilter: "drop-shadow (Opx Opx 5px #666)",

filter: "drop-shadow (0Opx Opx 5S5px #666)"
i

return (
<div style={cardStyle}>
<Square color={this.props.color}/>
<Label color={this.props.color}/>
</div>
) i

1) ;

ReactDOM.render (
<diwv>
<Card color="#FF6663"/>
</div>,
document.querySelector ("#container")
)

Once you have made this change, you can specify any hex color you want as part of calling
the Card component:

Click here to view code image

1 ReactDOM.render (

2 <div>

3 <Card color="#FFA737"/>

4 </div>,

5 document.querySelector ("#container")
6)

The resulting color palette card will feature the color you specified (see Figure 5-12).

#FFA737

Figure 5-12 The color for hex value #FFA737.

Now, let’s go back to the changes we made. Even though the color property is only
consumed by the Square and Label components, the parent Card component is
responsible for passing the property on to them. For even more deeply nested situations,
you’ll have more intermediate components that will be responsible for transferring
properties. It gets worse. When you have multiple properties that you would like to pass
around multiple levels of components, the amount of typing (or copying/pasting) you do
increases a lot as well. There are ways to mitigate this, and we’ll look at those mitigation
strategies in much greater detail in a future chapter.

Why Component Composability Rocks

When we are heads-down in React, we often tend to forgot that what we are ultimately
creating is just plain and boring HTML, CSS, and JavaScript. The generated HTML for our
color palette card looks as follows:

Click here to view code image

<diwv ="container">
<div =".0">
<diwv ="height:200px;
width:150px;
padding:0;

background-color: #FFF;
-webkit-filter:drop-shadow (Opx Opx 5px #666) ;
filter:drop-shadow (Opx Opx 5px #666) ;">

<diwv ="height:150px;
background-color: #FF6663; "></div>
<p ="font-family:sans-serif;

font-weight:bold;
padding:13px;
margin:0; ">#FF6663</p>
</div>
</div>
</div>

This markup has no idea of how it got there. It doesn’t know about which components were
responsible for what. It doesn’t care about component composability or the frustrating way
we had to transfer the color property from parent to child. That brings up an important point
to make.

If we had to generalize the end result of what components do, all they do is return blobs of
HT ML to whatever called it. Each component’s render function returns some HTML to
another component’s render function. All of this HTML keeps accumulating until a giant
blob of HTML is pushed (very efficiently) to our DOM. That simplicity is why component re-
use and composability works so well. Each blob of HTML works independently from other
blobs of HTML—especially if you specify inline styles as React recommends. This enables
you to easily create visual elements from other visual elements without having to worry about
anything. ANYTHING! Isn’t that pretty freaking awesome?

Conclusion

As you may have realized by now, we are slowly shifting focus towards the more advanced
scenarios that React thrives in. Actually, advanced isn’t the right word. The correct word is
realistic. In this chapter, we started by learning how to look at a piece of UI and identify the
components in a way that you can later implement. That is a situation you will find yourself in
all the time. While the approach we employed seemed really formal, as you get more
experienced with creating things in React, you can ratchet down the formality. If you can
quickly identify the components and their parent/child relationships without creating a visual
and component hierarchy, then that is one more sign that you are getting really good at
working with React!

Identifying the components is only one part of the equation. The other part is bringing those

components to life. Most of the technical stuff we saw here was just a minor extension of what
we’ve already seen earlier. We looked at one level of components in an earlier chapter, and
here we looked at how to work with multiple levels of components. We looked at how to pass
properties between one parent and one child in an earlier chapter, and here we looked at how
to pass properties between multiple parents and multiple children. Maybe in a future chapter
we’ll do something groundbreaking like drawing multiple color palette cards to the screen!
Or, we can maybe specify two properties instead of just a single one. Who knows?

6. Transferring Properties (Props)

There is a frustrating side to working with properties. We kinda saw this side in the previous
chapter. Passing properties from one component to another is nice and simple when you are
dealing with only one layer of components. When you wish to send a property across multiple
layers of components, things start getting complicated.

Things getting complicated is never a good thing, so in this chapter, let’s see what we can do
to make working with properties across multiple layers of components easy.

Problem Overview

Let’s say that you have a deeply nested component, and its hierarchy (modeled as awesomely
colored circles) looks like Figure 6-1.

Figure 6-1 The component hierarchy.

What you want to do is pass a property from your red circle all the way down to our purple
circles where it will be used. What we can’t do is the very obvious and straightforward thing
shown in Figure 6-2.

wOOH!!

\..
0

Figure 6-2 Can’t do this.

You can’t pass a property directly to the component or components that you wish to target.
The reason has to do with how React works. React enforces a chain of command where
properties have to flow down from a parent component to an immediate child component. This
means you can’t skip a layer of children when sending a property. This also means your
children can’t send a property back up to a parent. All communication is one-way from the
parent to the child.

Under these guidelines, passing a property from our red circle to our purple circle looks a
little bit like Figure 6-3.

S'@ﬁ T i

0 ®
X

Figure 6-3 The property is passed from parent to child.

Every component that lies on the intended path has to receive the property from its parent and
then re-send that property to its child. This process repeats until your property reaches its
intended destination. The problem is in this receiving and re-sending step.

If we had to send a property called color from the component representing our red circle to

the component representing our purple circle, its path to the destination would look
something like Figure 6-4.

color="purple” g

color={this.props.color}

color={this.props.color} \(. .

Figure 6-4 Sending the color property.

Now, imagine we have two properties that we need to send, as in Figure 6-5.

color="purple”
size="large"

Figure 6-5 Sending two properties.

color={this.props.color}
size={this.props.size}

color={this.props.color}
size={this.props.size}

What if we wanted to send three properties? Or four?

We can quickly see that this approach is neither scalable nor maintainable. For every
additional property we need to communicate, we are going to have to add an entry for it as
part of declaring each component. If we decide to rename our properties at some point, we
will have to ensure that every instance of that property is renamed as well. If we remove a
property, we need to remove the property from every component that relied on it. Overall,

these are the kinds of situations we try to avoid when writing code. What can we do about
this?

Detailed Look at the Problem

In the previous section, we talked at a high level about what the problem is. Before we can
dive into figuring out a solution, we need to go beyond diagrams and look at a more detailed
example with real code. We need to take a look at something like the following:

Click here to view code image

var Display = React.createClass ({
render: function() {
return (
<diwv>
<p>{this.props.color}</p>
<p>{this.props.num}</p>

<p>{this.props.size}</p>
</div>
)

1)

var Label = React.createClass ({
render: function () {
return (
<Display color={this.props.color}
num={this.props.num}
size={this.props.size}/>

1)

var Shirt = React.createClass ({
render: function () {
return (
<div>
<Label color={this.props.color}
num={this.props.num}
size={this.props.size}/>
</div>
) ;

1)

ReactDOM.render (
<div>
<Shirt color="steelblue" num="3.14" size="medium"/>
</div>,
document.querySelector ("#container™)
)

Take a few moments to understand what is going on. Once you have done that, let’s walk
through this example together.

What we have is a Shirt component that relies on the output of the Lalbbel component which
relies on the output of the Display component. (Try saying that sentence five time fast!)
Anyway, the component hierarchy can be seen in Figure 6-6.

ReactDOM. render()

Shirt

Label

Display

Figure 6-6 The component hierarchy.

When you run this code, what gets output is nothing special. It is just three lines of text (see
Figure 6-7).

/ steelblue

— —

Figure 6-7 The three lines of text.

The interesting part is how the text gets there. Each of the three lines of text that you see maps
to a property we specified at the very beginning inside ReactDOM. render:

Click here to view code image

<Shirt color="steelblue" num="3.14" size="medium"/>

The color, num, and size properties (and their values) make a journey all the way to the
Display component that would make even the most seasoned world traveler jealous. Let’s

follow these properties from their inception to when they get consumed, and I do realize that a
lot of this will be a review of what you’ve already seen. If you find yourself getting bored,
feel free to skip on to the next section. With that said, onwards and upwards!

Life for our properties starts inside ReactDOM. render when our Shirt component gets
called with the color, num, and size properties specified:

Click here to view code image

ReactDOM.render (
<diwv>
<Shirt color="steelblue" num="3.14" size="medium"/>
</div>,
document.querySelector ("#container™)
)7

We not only define the properties, we also initialize them with the values they will carry.
Inside the Shirt component, these properties are stored inside the props object. To transfer

these properties on, we need to explicitly access these properties from the props object and

list them as part of the component call. The following is an example of what that looks like
when our Shirt component calls our Label component:

Click here to view code image

Shirt = React.createClass ({

render: 0 o
(
<div>
<Label color={ .props.color}
num= { .props.num}
size={ .props.size}/>
</div>

)7
}
b) i
Notice that the color, num, and size properties are listed again. The only difference from
what we saw with the ReactDOM. render call is that the values for each property are taken
from their respective entry in the props object as opposed to being manually entered.

When our Label component goes live, it has its props object properly filled out with the
color, num, and size properties stored. You can probably see a pattern forming here. If
you need to let out a big yawn, feel free to.

The Label component continues the tradition by repeating the same steps and calling the
Display component:

Click here to view code image

Label = React.createClass ({

render: () {
(
<Display color=({ .props.color}
num= { .props.num}
size={ .props.size}/>

1) ;

Phew. All we wanted to do was have our Display component display some values for
color, num, and size. The only complication was that the values we wanted to display were
originally defined as part of ReactDOM. render. The annoying solution is the one you see

here where every component along the path to the destination needs to access and re-define
each property as part of passing it along. That’s just terrible. We can do better than this, and
you will see how in a few moments!

Meet the Spread Operator

The solution to all of our problems lies in something new to JavaScript known as the spread
operator. What the spread operator does is a bit bizarre to explain without some context, so
I’1l first give you an example and then bore you with a definition.

Take a look at the following snippet:

Click here to view code image

items — ["l", "2", "3"];

printStuff(a, b, c) {
console.log("Printing: " + a + " " + b+ " " + C);

}

We have an array called items that contains three values. We also have a function called
printStuff that takes three arguments. What we want to do is specify the three values from
our items array as arguments to the printStuff function. Sounds simple enough, right?
Here is one really common way of doing that:

Click here to view code image

printStuff (items[0], items[l], items[2]);

We access each array item individually and pass itin to our printStuff function. With the

spread operator, we now have an easier way. You don’t have to specify each item in the array
individually at all. You can just do something like this:

printStuff(...items);

The spread operator is the . . . characters before our items array, and using . . .items is
identical to listing items[0], items[1], and items [2] individually like we did earlier.
The printStuff function will run and print the numbers 1, 2, and 3 to our console. Pretty
cool, right?

Now that you’ve seen the spread operator in action, it’s time to define it. The spread operator
enables you to unwrap an array into its individual elements. The spread operator does a few
more things as well, but that’s not important for now. We are going to only use this particular
side of the spread operator to solve our property transferring problem!

Properly Transferring Properties

We just saw an example where we used the spread operator to avoid having to enumerate
every single item in our array as part of passing it to a function:

Click here to view code image

items — ["l", "2", "3"];

printStuff(a, b, c) {
console.log("Printing: " + a + " " + b+ " " + C);

}

// using the spread operator
printStuff(...items);

// without using the spread operator
printStuff (items[0], items[l], items[2]);

The situation we are facing with transferring properties across components is very similar to
our problem of accessing each array item individually. Allow me to elaborate.

Inside a component, our props object looks as follows:

props = {
color: "steelblue",
num: "3.14",
size: "medium"

}

As part of passing these property values to a child component, we manually access each item
from our props object:

Click here to view code image

<Display color={ .props.color}
num= { .props.num}
size={ .props.size}/>

Wouldn’t it be great if there was a way to unwrap an object and pass on the property/value
pairs just like we were able to unwrap an array using the spread operator?

As it turns out, there is a way. It actually involves the spread operator as well. I’ll explain how

later, but what this means is that we can call our Display component by using . . .props:
<Display />
By using . . .props, the runtime behavior is the same as specifying the color, num, and

size properties manually. This means our earlier example can be simplified as follows (pay
attention to the highlighted lines):

Click here to view code image

var Display = React.createClass ({
render: function () {
return (
<div>
<p>{this.props.color}</p>
<p>{this.props.num}</p>
<p>{this.props.size}</p>
</div>
)

1)

var Label = React.createClass ({
render: function() {
return (
<Display />
) ;

1) ;

var Shirt = React.createClass ({
render: function() {
return (
<diwv>
<Label />
</div>

ReactDOM. render (
<div>
<Shirt ="steelblue" ="3.14" ="medium" />
</div>,
document.querySelector ("#container")
)i

If you run this code, the end result is going to be unchanged from what we had earlier. The
biggest difference is that we are no longer passing in expanded forms of each property as part
of calling each component. This solves all the problems we originally set out to solve.

By using the spread operator, if you ever decide to add properties, rename properties, remove
properties, or do any other sort of property-related shenanigans, you don’t have to make a
billion different changes. You make one change at the spot where you define your property.
You make another change at the spot you consume the property. That’s it. All of the
intermediate components that merely transfer the properties on will remain untouched, for the
{...this.props} expression contains no details of what goes on inside it.

Conclusion

As designed by the ES6/ES2015 committee, the spread operator is designed to work only on
arrays and array-like creatures (aka that which has a Symbol.iterator property). The fact
that it works on object literals like our props object is due to React extending the standard.
As of now, no browser currently supports using the spread object on object literals. The
reason our example works is because of Babel. Besides turning all of our JSX into something
our browser understands, Babel also turns cutting-edge and experimental features into
something cross-browser friendly. That is why we are able to get away with using the spread
operator on an object literal, and that is why we are able to elegantly solve the problem of
transferring properties across multiple layers of components!

7. Meet JSX—Again!

As you probably noticed by now, we’ve been using a lot of JSX in the previous chapters. What

we really haven’t done is taken a good look at what JSX actually is. How does it actually
work? Why do we not just call it HTML? What quirks does it have up its sleeve? In this
chapter, we answer all of those questions and more! We do some serious backtracking (and
some forwardtracking!) to get a deeper look at what we need to know about JSX in order to
be dangerous.

What Happens with JSX?

One of the biggest things we’ve glossed over is trying to figure out what happens with our
JSX after we’ve written it. How does it end up as HT ML that we see in our browser? Take a
look at the following example where we define a component called Card:

Click here to view code image

Card = React.createClass ({
render: 0 A
cardStyle = {
height: 200,
width: 150,
padding: O,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow (Opx Opx 5px #666)",
filter: "drop-shadow (0Opx Opx 5px #666)"
}i

(
<div style={cardStyle}>

<Square color={ .props.color}/>
<Label color={ .props.color}/>
</div>

) i
}
b)
We can quickly spot the JSX here. It is the following four lines:

Click here to view code image

<diwv ={cardStyle}>
<Square ={this.props.color}/>
<Label ={this.props.color}/>
</div>

The thing to keep in mind is that our browsers have no idea what to do with JSX. They
probably think you are crazy if you ever even try to describe JSX to them. That is why we
have been relying on things like Babel to turn that JSX into something the browsers
understand: JavaScript.

What this means is that the JSX we write is for human (and well-trained cats’) eyes only.
When this JSX reaches our browser, it ends up getting turned into pure JavaScript:

Click here to view code image

React.createElement (

"div'",

{ style: cardStyle 1},

React.createElement (Square, { color: .props.color }),
React.createElement (Label, { color: .props.color })

) 7

All of those neatly nested HTML-like elements, their attributes, and their children all get
turned into a series of createElement calls with default initialization values. Here is what

our entire Card component looks like when it gets turned into JavaScript:

Click here to view code image

Card = React.createClass ({
displayName: "Card",

render: render () {
cardStyle = {
height: 200,
width: 150,
padding: O,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow (Opx Opx 5px #666)",
filter: "drop-shadow (0Opx Opx 5px #666)"
i

React.createElement (

"div'",

{ style: cardStyle 1},

React.createElement (Square, { color: .props.color }),
React.createElement (Label, { color: .props.color })

) ;
1) ;

Notice that there is no trace of JSX anywhere! All of these changes between what you wrote
and what our browser sees are part of the transpiling step we’ve talked about in the first
chapter. That transpilation is something that happens entirely behind-the-scenes thanks to
Babel, which we’ve been to perform this JSX - JS transformation entirely in the browser.
We’ll eventually look at using Babel as part of a more-involved build environment where we
will just generate a transformed JS file, but more on that when we get there in the future.

But yeah, there you have it. An answer to what exactly happens to all of our JSX. It gets turned
into sweet SWEET JavaScript.

JSX Quirks to Remember

As we’ve been working with JSX, you probably noticed that we ran into some arbitrary rules
and exceptions to what you can and can’t do. In this section, let’s put all of those quirks
together in one area and maybe even run into some brand new ones!

You Can Only Return A Single Root Node

This is probably the first quirk we ran into. In JSX, what you return or render can’t be made
up of multiple root elements:

Click here to view code image

ReactDOM.render (
<Letter>B</Letter>
<Letter>E</Letter>
<Letter>I</Letter>
<Letter>0</Letter>
<Letter>U</Letter>,
document.querySelector ("#container™)

) ;

If you want to do something like this, you need to wrap all of your elements into a single
parent element first:

Click here to view code image

ReactDOM.render (
<diwv>
<Letter>A</Letter>
<Letter>E</Letter>
<Letter>I</Letter>
<Letter>0</Letter>
<Letter>U</Letter>
</div>,
document.querySelector ("#container™)
)

This seemed like a bizarre requirement when we looked at it before, but you can blame
createElement for why we do this. With the render and return functions, what you

are ultimately returning is a single createElement call (which in turn might have many
nested createElement calls). Here is what our earlier JSX looks like when turned into
JavaScript:

Click here to view code image

ReactDOM.render (React.createElement (
"div",
null,
React.createElement (
Letter,
null,
"A"
)
React.createElement (
Letter,
null,
"E"
)
React.createElement (
Letter,
null,
"I"
)
React.createElement (
Letter,
null,
"O"
)
React.createElement (

Letter,

4
"U"
)
), document.querySelector ("#container™));

Having multiple root elements would break how functions return values and how
createElement works, so that is why you can specify only one return (root) element! You
can now sleep better knowing this.

You Can’t Specify CSS Inline

As we saw in Chapter 4, the style attribute in your JSX behaves differently from the style

attribute in HTML. In HTML, you can specify CSS properties directly as values on your
style attribute:

Click here to view code image

<div ="font-family:Arial;font-size:24px">
<p>Blah!</p>
</div>

In JSX, the style attribute can’t contain CSS inside it. Instead, it needs to refer to an object
that contains styling information instead:

Click here to view code image

Letter = React.createClass ({
render: () |
letterStyle = {

padding: 10,
margin: 10,
backgroundColor: .props.bgcolor,
color: "#333",
display: "inline-block",
fontFamily: "monospace",
fontSize: "32",
textAlign: "center"

i

(
<div style={letterStyle}>
{ .props.children}
</div>
)
}
1)

Notice that we have an object called 1etterStyle that that contains all of the CSS

properties (in camelcase JavaScript form) and their values. That object is what we then
specify to the style attribute.

Reserved Keywords and className

JavaScript has a bunch of keywords and values that you can’t use as identifiers. Those
keywords currently (as of ES2016) are:

break case class catch const continue

debugger default delete do else export
extends finally for function b I import
in instanceof new return super switch
this throw try typeot var void
while with vield

When you are writing JSX, you should be careful to not use these keywords as part of any
identifiers that you create as well. That can be difficult when certain really popular keywords
like class are commonly used in HTML despite also being in JavaScript’s reserved

keywords list.
Take a look at the following:

Click here to view code image

ReactDOM. render (

<div ="slideIn">
<p class="emphasis">Gabagool!</p>
<Label/>

</div>,

document.querySelector ("#container")
)
Ignoring JavaScript’s reservations about class (like what we’ve done here) won’t work.
What you need to do is use the DOM API version of the class attribute called className
instead:

Click here to view code image

ReactDOM.render (
<div className="slideIn">
<p className="emphasis">Gabagool!</p>
<Label/>
</div>,
document.querySelector ("#container™)
)

You can see the full list of supported tags and attributes at the following Facebook article
(https://facebook.github.io/react/docs/tags-and-attributes.html), and notice that all of the
attributes are camelcase. That detail is important, for using the lowercase version of an
attribute won’t work. If you are ever pasting a large chunk of HTML that you want JSX to deal
with, be sure to go back to your pasted HTML and make these minor adjustments to turn it
into valid JSX.

This brings up another point. Because of these minor deviations from HTML behavior, we
tend to say that JSX supports an HTML-like syntax as opposed to just saying that JSX supports
HTML. This is a deliberate React-ism. The clearest answer to the relationship between JSX
and HTML comes from React team member, Ben Alpert, who stated the following
(http://gr.ae/RUKaON) as part of a Quora answer:

...our thinking is that JSX’s primary advantage is the symmetry of matching closing

https://facebook.github.io/react/docs/tags-and-attributes.html
http://qr.ae/RUKaON

tags which makes [sic] code easier to read, not the direct resemblance to HTML or
XML. It’s convenient to copy/paste HTML directly, but other minor differences (in
self-closing tags, for example) make this a losing battle and we have a HTML to JSX
converter to help you anyway. Finally, to translate HTML to idiomatic React code, a
fair amount of work is usually involved in breaking up the markup into components
that make sense, so changing class to className is only a small part of that

anyway.

Comments

Just like it is a good idea to comment your HTML, CSS, and JavaScript, it is a good idea to
provide comments inside your JSX as well. Specifying comments in JSX is very similar to
how you would comment in JavaScript (https://www.kirupa.com/html5/comments.htm)
...except for one exception. If you are specifying a comment as a child of a tag, you need to
wrap your comment by the { and } curly brackets to ensure it is parsed as an expression:

Click here to view code image

ReactDOM.render (

<diwv ="glideIn">
<p ="emphasis">Gabagool!</p>
{/* I am a child comment */}
<Label/>

</div>,

document.querySelector ("#container™)
)7
Our comment in this case is a child of our div element. If you specify a comment wholly
inside a tag, you can just specify your single-or multi-line comment without having to use the
{ and } angle brackets:

Click here to view code image

ReactDOM.render (

<div —"slideIn">
<p ="emphasis">Gabagool!</p>
<Label

/* This comment
goes across
multiple lines */
className="colorCard" // end of line
/>
</div>,
document.querySelector ("#container™)
) ;

In this snippet, you can see an example of what both multi-line comments and a comment at
the end of a line look like. Now that you know all of this, you have one less excuse to not
comment your JSX :P

Capitalization, HTML Elements, and Components
Capitalization is important. To represent HT ML elements, ensure the HTML tag is lower-case:

Click here to view code image

https://www.kirupa.com/html5/comments.htm

ReactDOM.render (
<div>
<section>
<p>Something goes here!</p>
</section>
</div>,
document.querySelector ("#container™)
) 7

When wishing to represent components, the component name must be capitalized, both in JSX
as well as when you define them:

Click here to view code image

ReactDOM.render (
<div>
<MyCustomComponent />
</div>,
document.querySelector ("#container™)
)

If you get the capitalization wrong, React will not render your content properly. The
component will not be found. Trying to identify capitalization issues is probably the last thing
you’ll think about when things aren’t working, so keep this little tip in mind.

Your JSX Can Be Anywhere

In many situations, your JSX will not be neatly arranged inside a render or return
function like in the examples we’ve seen so far. Take a look at the following example:

Click here to view code image

swatchComponent = <Swatch color="#2F004F"></Swatch>;

ReactDOM.render (
<div>
{swatchComponent}
</div>,
document.querySelector ("#container™)
)

We have a variable called swatchComponent thatis initialized to a line of JSX. When our
swatchComponent variable is placed inside the render function, our Swatch component

gets initialized. All of this is totally valid, and we will do more such things in the future when
we learn how to generate and manipulate JSX using JavaScript.

Conclusion

With this chapter, we’ve finally pieced together in one location the various bits of JSX
information that the previous chapters introduced. The most important thing to remember is
that JSX is not HTML. It looks like HTML and behaves like it in many common scenarios, but
it is ultimately designed to be translated into JavaScript. This means you can do things that
you could never imagine doing using just plain HTML. Being able to evaluate expressions or
programmatically manipulate entire chunks of JSX is just the beginning. In upcoming
chapters, we’ll explore this intersection of JavaScript and JSX further.

8. Dealing with State

Up until this point, the components we’ve created have been stateless. They have properties
(aka props) that are passed in from their parent, but nothing (usually) changes about them
once the components come alive. Your properties are considered immutable once they have
been set. For many interactive scenarios, you don’t want that. You want to be able to change
aspects of your components as a result of some user interaction (or some data getting
returned from a server or a billion other things!)

What we need is another way to store data on a component that goes beyond properties. We
need a way to store data that can be changed. What we need is something known as state! In
this chapter you learn all about it and how you can use it to create stateful components.

Using State

If you know how to work with properties, you totally know how to work with states... sort of.
There are some differences, but they are too subtle to bore you with right now. Instead, let’s
just jump right in and see states in action by using them in a small example.

What we are going to is create a simple lightning counter example as shown in Figure 8-1.

600

LIGHTNING STRIKES

WORLDWIDE

Figure 8-1 The app you will be building.

What this example does is nothing crazy. Lightning strikes the earth’s surface about 100 times
a second (http://environment.nationalgeographic.com/environment/natural-
disasters/lightning-profile/). We have a counter that simply increments a number you see by
that same amount. Let’s create it.

http://environment.nationalgeographic.com/environment/natural-disasters/lightning-profile/

Our Starting Point

The primary focus of this example is to see how we can work with state. There is no point in
us spending a bunch of time creating the example from scratch and retracing paths that we’ve
walked many times already. That’s not the best use of anybody’s time.

Instead of starting from scratch, modify an existing HTML document or create a new one with
the following contents:

Click here to view code image

<!IDOCTYPE html>
<html>

<head>
<title>More State!</title>
<script src="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>
</head>

<body>
<div id="container"></div>
<script type="text/babel">
var LightningCounter = React.createClass ({
render: function () |
return (
<hl>Hello!</hl>
)
}
1)

var LightningCounterDisplay = React.createClass ({
render: function () {

var divStyle = {
width: 250,
textAlign: "center",
backgroundColor: "black™",
padding: 40,
fontFamily: "sans-serif",
color: "#999",
borderRadius: 10

i

return (
<div style={divStyle}>
<LightningCounter/>
</div>
)

1)

ReactDOM.render (
<LightningCounterDisplay/>,
document.querySelector ("#container™)

)

</script>

</body>
</html>

At this point, take a few moments to look at what our existing code does. First, we have a
component called LightningCounterDisplay:

Click here to view code image

LightningCounterDisplay = React.createClass ({
render: 0 A

divStyle = {
width: 250,
textAlign: "center",
backgroundColor: "black™",
padding: 40,
fontFamily: "sans-serif",
color: "#999",
borderRadius: 10

bi

(
<div style={divStyle}>
<LightningCounter/>
</div>
) i
}
b) i

The bulk of this component is the divStyle object that contains the styling information
responsible for the cool rounded background. The render function returns a div element
that wraps the LightningCounter component.

The LightningCounter component is where all the action is going to be taking place:

Click here to view code image

LightningCounter = React.createClass ({
render: 0 A

(
<hl>Hello!</hl>

)i
}
b) i
This component, as it is right now, has nothing interesting going for it. It just returns the word
Hello! That’s OK—we’ll fix this component up later.

The last thing to look at is our ReactDOM. render method:

Click here to view code image

ReactDOM.render (
<LightningCounterDisplay/>,
document.querySelector ("#container™)

) i

It just pushes the LightningCounterDisplay component into our container div
element in our DOM. That’s pretty much it. The end result is that you see the combination of

markup from our ReactDOM. render method and the LightningCounterDisplay
and LightningCounter components.

Getting Our Counter On

Now that we have an idea of what we are starting with, it’s time to make plans for our next
steps. The way our counter works is pretty simple. We are going to be using a
setInterval function that calls some code every 1000 milliseconds (aka 1 second). That
“some code” is going to increment a value by 100 each time it is called. Seems pretty
straightforward, right?

To make this all work, we are going to be relying on three APIs that our React Component
exposes:

mgetInitialState—This method runs just before your component gets mounted,
and it allows you to modify a component’s state object.

» componentDidMount—This method gets called just after our component gets
rendered (or mounted as React calls it).

» setState—This method allows you to update the value of the state object.

We’ll see these APIs in use shortly, but I wanted to give you a preview of them so that you can
spot them easily in a lineup!

Setting the Initial State Value
We need a variable to act as our counter, and let’s call this variable strikes. There are a
bunch of ways to create this variable. The most obvious one is the following:

strikes = 0 // P

We don’t want to do that, though. For our example, the st rikes variable is part of our

component’s state, and its value is what we display on screen. What we are going to do is use
the getInitialState method that we briefly saw a few moments ago and take care of

initializing our variable inside it. You’ll see in a few moments what result that has on our
component’s state.

Inside your LightningCounter component, add the following highlighted lines:

Click here to view code image

LightningCounter = React.createClass ({
getInitialState: () {
{
strikes: 0
}:
b
render: 0 |
(
<hl>{ .state.strikes}</hl>
) ;
}
1)

The getInitialState method automatically runs waaaay before your component gets
rendered, and what we are doing is telling React to return an object containing our strikes
property (initialized to 0). You may be wondering to whom or what we are returning this
object to? All of that is magic that happens under the covers. The object that gets returned is
set as the initial value for our component’s state object.

If we inspect the value of our state object after this code has run, it would look something
like the following:

state = {
strikes: 0
}
Before we wrap this section up, let’s visualize our strikes property. In our render
method, make the following highlighted change:

Click here to view code image

LightningCounter = React.createClass ({
getInitialState: () {
{

strikes: O
i
by

render: (OI|

(
<hl>{ .state.strikes}</hl>

)
}
1)

What we’ve done is replaced our default Hello! text with an expression that displays the value
stored by the this.state.strikes property. If you preview your example in the
browser, you will see a value of 0 displayed. That’s a start!

Starting Our Timer and Setting State

Next up is getting our timer going and incrementing our strikes property. Like we
mentioned earlier, we will be using the set Interval function to increase the strikes
property by 100 every second. We are going to do all of this immediately after our
component has been rendered using the built-in componentDidMount method.

The code for kicking off our timer looks as follows:

Click here to view code image

LightningCounter = React.createClass ({

getInitialState: () |
{
strikes: 0

i
b
componentDidMount : () {

setInterval (.timerTick, 1000);
b

render: (OI|

(
<hl>{ .state.strikes}</hl>

)i
}
b) i
Go ahead and add these highlighted lines to our example. Inside our componentDidMount
method that gets called once, our component gets rendered, we have our setInterval

method that calls a timerTick function every second (or 1000 milliseconds).

We haven’t defined our timerT1ick function, so let’s fix that by adding the following
highlighted lines to our code:

Click here to view code image

LightningCounter = React.createClass ({
getInitialState: () |
{
strikes: 0
i
b
timerTick: () |
.setState ({
strikes: .state.strikes + 100
1)
b

componentDidMount : 0 A

setInterval (.timerTick, 1000);
b
render: (OI|
(

<hl>{ .state.strikes}</hl>
) i
}
b) i
What our timerTick function does is pretty simple. It just calls setState. The
setState method comes in various flavors, but for what we are doing here, it just takes an
object as its argument. This object contains all the properties you want to merge into the state
object. In our case, we are specifying the st rikes property and setting its value to be 100

more than what it is currently.

How does timerTick maintain context?

In regular JavaScript, the timerTick function won’t maintain context. You have to do
extra work to support that. The reason it works in the React world is because of
something known as autobinding. Now, aren’t you glad you know that?

Rendering the State Change
If you preview your app now, you’ll see our strikes value start to increment by 100 every
second (see Figure 8-2).

2700

Figure 8-2 The strikes value increments by 100 every second.

Let’s ignore for a moment what happens with our code. That is pretty straightforward. The
interesting thing is how everything we’ve done ends up updating what you see on the screen.
That updating has to do with this React behavior: Whenever you call setState and update
something in the state object, your component’s render method gets automatically called.
This kicks off a cascade of render calls for any component whose output is also affected.
The end result of all this is that what you see in your screen in the latest representation of your
app’s Ul state. Keeping your data and Ul in sync is one of the hardest problems with Ul
development, so it’s nice that React takes care of this for us. It makes all of this pain of
learning to use React totally worth it—almost! :P

Optional: The Full Code

What we have right now is just a counter that increments by 100 every second. Nothing about
it screams Lightning Counter, but it does cover everything about states that I wanted you to
learn right now. If you want to optionally flesh out your example to look like my version that
you saw at the beginning, below is the full code for what goes inside our script tag:

Click here to view code image

LightningCounter = React.createClass ({
getInitialState: () |
{
strikes: 0
i
by

timerTick: () |
.setState ({
strikes: .state.strikes + 100

1)
b
componentDidMount: () |
setInterval (.timerTick, 1000);
b
render: 0 |
counterStyle = {
color: "#66FFFFE",
fontSize: 50
i

count = .state.strikes.toLocaleString() ;

return (
<hl style={counterStyle}>{count}</hl>
) 7

1)

var LightningCounterDisplay = React.createClass ({
render: function () {

var commonStyle = {
margin: O,
padding: O

}

var divStyle = {
width: 250,
textAlign: "center",
backgroundColor: "#020202",
padding: 40,
fontFamily: "sans-serif",
color: "#999999",
borderRadius: 10

i

var textStyles = {

emphasis: {
fontSize: 38,
...commonStyle

by

smallEmphasis: {
...commonStyle

by

small: {
fontSize: 17,
opacity: 0.5,
...commonStyle

}

return (
<div style={divStyle}>
<LightningCounter/>
<h2 style={textStyles.smallEmphasis}>LIGHTNING STRIKES</h2>
<h2 style={textStyles.emphasis}>WORLDWIDE</h2>
<p style={textStyles.small}>(since you loaded this example)</p>
</div>
)7

1)

ReactDOM.render (
<LightningCounterDisplay/>,
document.querySelector ("#container™)

)

If you make your code look like everything you see above and run the example again, you
will see our lightning counter example in all its cyan-colored glory. While you are at it, take a
moment to look through the code to ensure you don’t see too many surprises.

Conclusion

We just scratched the surface on what we can do to create stateful components. While using a
timer to update something in our state object is cool, the real action happens when we start
combining user interaction with state. So far, we’ve shied away from the large amount of
mouse, touch, keyboard, and other related things that your components will come into contact
with. In an upcoming chapter, we are going to fix that. Along the way, you’ll see us taking
what we’ve seen about states to a whole new level! If that doesn’t excite you, then I don’t know

what will :P

9. Going from Data to Ul

When you are building your apps, thinking in terms of props, state, components, JSX tags,
render methods, and other React-isms may be the last thing on your mind. Most of the time,
you are dealing with data in the form of JSON objects, arrays, and other data structures that
have no knowledge (or interest) in React or anything visual. Bridging the gulf between your
data and what you eventually see can be frustrating! Not to worry, though. This chapter helps
reduce some of those frustrating moments by running through some common scenarios
you’ll encounter!

The Example

To help make sense of everything you are about to see, we are going to need an example. It’s
nothing too complicated, so go ahead and create a new HTML document and throw the
following stuff into it:

Click here to view code image

<IDOCTYPE html>

<html>
<head>
<title>React! React! React!</title>
<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-

core/5.8.23/browser.min.
js"></script>

<style>
#container ({
padding: 50px;
background-color: #FFF;
}

</style>
</head>
<body>
<div ="container"></div>
<script ="text/babel">
Circle = React.createClass ({
render: 0 Ao

circleStyle = {
padding: 10,
margin: 20,
display: "inline-block",
backgroundColor: .props.bgColor,
borderRadius: "50%",
width: 100,
height: 100,
i

(
<div style={circleStyle}>

destination = document.querySelector ("#container");

ReactDOM.render (

<div>
<Circle bgColor="#F9C240"/>

</div>,
destination

) ;

</script>
</body>

</html>

Once you have your document set up, go ahead and preview what you have in your browser.
If everything went well, you will be greeted by a happy yellow circle (see Figure 9-1).

@ © @ ' [React! React! React! X

[localhost/React/data_to_ui.htm

Figure 9-1 If everything went well, you will get this yellow circle.

If you see what I see, great! Now, let’s take a moment to understand what our example is
doing. The bulk of what you see comes from the Circle component:

Click here to view code image

Circle = React.createClass ({
render: () |
circleStyle = {
padding: 10,
margin: 20,
display: "inline-block",
backgroundColor: .props.bgColor,
borderRadius: "50%",
width: 100,
height: 100,
i

(
<div style={circleStyle}>
</div>
) ;
}
1)

It is mostly made up of our circleStyle object that contains the inline style properties that
turn our boring div into an awesome circle. All the style values are hard-coded except for
the backgroundColor property. It takes its value from the bgColor prop that gets passed
in.

Going beyond our component, the way we ultimately display our circle is via our usual
ReactDOM. render method:

Click here to view code image

ReactDOM.render (
<diwv>
<Circle bgColor="#F9C240"/>
</div>,
destination
) 7

We have a single instance of our Circle component declared, and we declare it with the
bgColor prop set to the color we want our circle to appear in. Now, having our Circle
component be defined as-is inside our render method is a bit limiting - especially if you are
going to be dealing with data that could affect what our Circle component does. In the next
couple of sections, we’ll look at the ways we have for solving that.

Your JSX Can Be Anywhere—Part 11

In the “Meet JSX—Again”! chapter (Chapter 7), we learned that our JSX can actually live
outside of a render function and can be used as a value assigned to a variable or property. For
example, we can fearlessly do something like this:

Click here to view code image

theCircle = <Circle bgColor="#F9C240"/>;

ReactDOM.render (
<div>
{theCircle}
</div>,
destination

)7

The theCircle variable stores the JSX for instantiating our Circle component.
Evaluating this variable inside our ReactDOM. render function results in a circle getting
displayed. The end result is no different than what we had earlier, but having our Circle
component instantiation freed from the shackles of the render method gives us more
options to do crazy and cool things.

For example, you can go further and create a function that returns a Ci rcle component:

Click here to view code image

showCircle () ¢{
colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363"];
ran = Math.floor (Math.random() * colors.length);

// return a Circle with a randomly chosen color
<Circle bgColor={colors[ran]}/>;
i
In this case, the showCircle function returns a Circle component (boring!) with the value
for the bgColor prop set to a random color value (awesomesauce!). To have our example
use the showCircle function, all you have to do is evaluate it inside ReactDOM. render:

1 ReactDOM. render (
2 <div>

3 {showCircle () }
4 </div>,

5 destination

6) ;

As long as the expression you are evaluating returns JSX, you can put pretty much anything
you want inside the { and } curly brackets. That flexibility is really nice, because there are a
lot of things you can do when your JavaScript lives outside of the render function. ALOT

OF THINGS!

Dealing with Arrays in the Context of JSX

Now we are going to get to some fun stuff! When you are displaying multiple components,
you won’t always be able to manually specify them:

ReactDOM.render (
<div>
{showCircle ()}
{showCircle ()}
{showCircle ()}
</div>,
destination
)7

In many real-world scenarios, the number of components you display will be related to the
number of items in an array or array-like (aka iterator) object you are working with. That
brings along a few simple complications. For example, let’s say that we have an array called
colors that looks as follows:

Click here to view code image

var colors = ["#393E41", "#EO94F37", "#1C89BF", "#A1D363",
"#85FFCT", "#297373", "#FF8552", "#A40E4C"];

What we want to do is create a Circle component for each item in this array (and set the
bgColor prop to the value of each array item). The way we are going to do this is by
creating an array of Circle components:

Click here to view code image

var colors = ["#393E41", "#EO94F37", "#1C89BF", "#A1D363",
"#85FFCT", "#297373", "#FF8552", "#A40E4C"];

var renderData = [];

Hh

or (var i = 0; i < colors.length; i++) {
renderData.push (<Circle bgColor={colors[i]}/>);
}

In this snippet, we populate our renderData array with Circle components just like we
originally set out to do. So far so good. To display all of these components, React makes it
very simple. Take a look at the highlighted line for all you have to do:

Click here to view code image

var colors = ["#393E41", "#EO94F37", "#1C89BF", "#A1D363",
"#85FFCT", "#297373", "#FF8552", "#A40E4C"];

var renderData = [];

Hh

or (var i = 0; i < colors.length; i++) {
renderData.push (<Circle bgColor={colors[i]}/>);
}

ReactDOM.render (
<div>
{renderData}
</div>,
destination

) 7

In our render method, all we do is specify our renderData array as an expression that we
need to evaluate. We don’t need to take any other step to go from an array of components to
seeing something that looks like Figure 9-2 when you preview in your browser.

[React! React! React! E Kinupa

[y filesjlfUsersfkirupa/Drophox/Assets/WebSite/React/data_to_ui.htm & 1y

Figure 9-2 What you should see in your browser.

Ok, while our example seems to work, we aren’t done yet! There is actually one more thing
we need to do, and this is a subtle one. The way React makes Ul updates really fast is by
having a good idea of what exactly is going on in your DOM. It does this in several ways, but
one really noticeable way is by internally marking each element with some sort of an
identifier. This “marking” happens automatically when you explicitly specify elements in

your JSX.
When you create elements dynamically (such as what we are doing with our array of Circle

components), these identifiers are not automatically set. We need to do some extra work. That
extra work takes the form of a key prop whose value React uses to uniquely identify each

particular component.
For our example, we can do something like this:

Click here to view code image

(i =0; 1 < colors.length; i++) {
color = colors[i];
renderData.push (<Circle key={i + color} bgColor={color}/>);

}

On each component, we specify our key prop and set its value to a combination of color and
index position inside the colors array. This ensures that each component we dynamically
create ends up getting a unique identifier that React can then use to optimize any future Ul
updates. Now, we could just use the index position as the identifier, but if you have multiple
blocks of code where you are dynamically generating elements, you may get multiple
elements with duplicate index values.

Check Your Console Yo!
React is really good at telling you when you might be doing something wrong. For
example, if you dynamically create elements or components and don’t specify a key
prop on them, you will be greeted with the following warning in your console:

Warning: Each child in an array or iterator should have a unique “key” prop. Check
the top-level render call using <div>.

When you are working with React, it is a good idea to periodically check your console
for any messages it may have. Even if things seem to be working just fine, you’ll never
know what you might find :P

Conclusion

All the tips and tricks you’ve seen in this article are made possibly because of one thing: JSX
is JavaScript. This is what enables you to have your JSX live wherever JavaScript thrives. To
us, it looks like we are doing something absolutely bizarre when we specify something like
this:

Click here to view code image

(i =0; 1 < colors.length; i++) {
color = colors[i];
renderData.push (<Circle key={i + color} bgColor={color}/>);

}

Even though we are pushing pieces of JSX to an array, just like magic, everything works in
the end when renderData is evaluated inside our render method. I hate to sound like a
broken record, but this is because what our browser ultimately sees looks like this:

Click here to view code image

(i =0; 1 < colors.length; i++) {
color = colors[i];

renderData.push (React.createElement (Circle,

{
key: 1 + color,
bgColor: color
1))
}

When our JSX gets converted into pure JS, everything makes sense again. This is what allows
us to get away with putting our JSX in all sorts of uncomfortable (yet photogenic!) situations
with our data and still get the end result we want! Because, in the end, it’s all just JavaScript.

10. Working with Events

So far, most of our examples only did their work on page load. As you probably guessed, that
isn’t normal. In most apps, especially the kind of Ul-heavy ones we will be building, there is
going to be a ton of things the app does only as a reaction to something. That something could
be triggered by a mouse click, a key press, window resize, or a whole bunch of other gestures
and interactions. The glue that makes all of this possible is something known as events.

Now, you probably know all about events from your experience using them in the DOM
world. (If you don’t, then I suggest getting a quick refresher first:
https://www.kirupa.com/html5/javascript_events.htm.) The way React deals with events is a bit
different, and these differences can surprise you in various ways if you aren’t paying close
attention. Don’t worry. That’s why you have this book! We start off with a few simple
examples and then gradually look at increasingly more bizarre, complex, and (yes!) boring
things.

Listening and Reacting to Events

The easiest way to learn about events in React is to actually use them, and that’s exactly what
we are going to do! To help with this, we have a simple example made up of a counter that
increments each time you click on a button. Initially, our example will look like Figure 10-1.

0

+

Figure 10-1 Our example.

Each time you click on the plus button, the counter value will increase by 1. After clicking the
plus button a bunch of times, it will look sorta like Figure 10-2.

https://www.kirupa.com/html5/javascript_events.htm

+

N

Figure 10-2 After clicking the plus button a bunch of times (23?).

Under the covers, the way this example works is pretty simple. Each time you click on the
button, an event gets fired. We listen for this event and do all sorts of React-ey things to get
the counter to update when this event gets overheard.

Starting Point

To save all of us some time, we aren’t going to be creating everything in our example from
scratch. By now, you probably have a good idea of how to work with components, styles,
state, and so on. Instead, we are going to start off with a partially implemented example that
contains everything except the event-related functionality that we are here to learn.

First, create a new HTML document and ensure your starting point looks as follows:

Click here to view code image

<IDOCTYPE html>

<html>
<head>
<title>React! React! React!</title>
<script ="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script ="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-

core/5.8.23/browser.min.
js"></script>

<style>
#container {
padding: 50px;
background-color: #FFF;
}
</style>
</head>

<body>
<div ="container"></div>
<script ="text/babel">

</script>
</body>

</html>

Once your new HTML document looks like what you see above, it’s time to add our partially
implemented counter example. Inside our script tag below the container div, add the
following:

Click here to view code image

var destination = document.querySelector ("#container");

var Counter = React.createClass ({
render: function () {
var textStyle = {
fontSize: 72,
fontFamily: "sans-serif",
color: "#333",
fontWeight: "bold"
bi

return (
<div style={textStyle}>
{this.props.display}
</div>
)

1) ;

var CounterParent = React.createClass ({
getInitialState: function() {
return {
count: O
i
by
render: function () {
var backgroundStyle = {
padding: 50,
backgroundColor: "#FFC53A",
width: 250,
height: 100,
borderRadius: 10,
textAlign: "center"

i

var buttonStyle = {
fontSize: "lem",
width: 30,
height: 30,
fontFamily: "sans-serif",
color: "#333",
fontWeight: "bold",
lineHeight: "3px"

i

return (
<div style={backgroundStyle}>
<Counter display={this.state.count}/>
<button style={buttonStyle}>+</button>
</div>
)

1)

ReactDOM.render (
<div>
<CounterParent/>
</div>,
destination
) 7

Once you have added all of this, preview everything in your browser to make sure things get
displayed. You should see the beginning of our counter. Take a few moments to look at what
all of this code does. There shouldn’t be anything that looks strange. The only odd thing will
be that clicking the plus button won’t do anything. We’ll fix that right up in the next section.

Making the Button Click Do Something

Each time we click on the plus button, we want the value of our counter to increase by one.
What we need to do is going to look roughly like this:

1. Listen for the click event on the button and specify an event handler.

2. Implement the event handler where we increase the value of our this.state.count
property that our counter relies on.
We’ll just go straight down the list—starting with listening for the click event. In React, you
listen to an event by specifying everything inline in your JSX itself. More specifically, you
specify both the event you are listening for and the event handler that will get called, all inside
your markup. To do this, find the return function inside our CounterParent component,

and make the following highlighted change:

Click here to view code image

(

<diwv ={backgroundStyle}>

<Counter ={ .State.count} />

<button ={ .lncrease} ={buttonStyle}>+</button>
</div>

)7

What we’ve done is told React to call the increase function when the onC1ick event is
overheard. Next, let’s go ahead and implement the increase function—aka our event
handler. Inside our CounterParent component, add the following highlighted lines:

Click here to view code image

CounterParent = React.createClass({
getInitialState: () |
{
count: O
i
}s
increase: (e) {
.setState ({
count: .state.count + 1

}) i

bo
render: 0 A
backgroundStyle = {

padding: 50,
backgroundColor: "#FFC53A",
width: 250,
height: 100,
borderRadius: 10,
textAlign: "center"

b

buttonStyle = {

fontSize: "lem",

width: 30,

height: 30,

fontFamily: "sans-serif",

color: "#333",

fontWeight: "bold",

lineHeight: "3px"
i

(
<div style={backgroundStyle}>

<Counter display={ .state.count}/>
<button onClick={ .increase} style={buttonStyle}>+</button>
</div>

) ;
1)

All we are doing with these lines is making sure that each call to the increase function
increments the value of our this.state.count property by 1. Because we are dealing
with events, your increase function (as the designated event handler) will get access to the
event argument. We have set this event argument to be accessed by e, and you can see that by
looking at our increase function’s signature (aka what its declaration looks like). We’ll
talk about the various events and their properties in a little bit.

Now, go ahead and preview what you have in your browser. Once everything has loaded,

click on the plus button to see all of our newly added code in action. Our counter value should
increase with each click! Isn’t that pretty awesome?

Event Properties

As you know, our events pass what is known as an event argument to our event handler. This
event argument contains a bunch of properties that are specific to the type of event you are
dealing with. In the regular DOM world, each event has its own type. For example, if you are
dealing with a mouse event, your event and its event argument object will be of type
MouseEvent. This MouseEvent object will allow you to access mouse-specific

information, like which button was pressed or the screen position of the mouse click. Event
arguments for a keyboard-related event are of type KeyboardEvent. Your

KeyboardEvent object contains properties which (among many other things) allow you to
figure out which key was actually pressed. I could go on forever for every other Event type,
but you get the point. Each Event type contains its own set of properties that you can access
via the event handler for that event!

Why am I boring you with things you already know? Well...

Meet Synthetic Events

In React, when you specify an event in JSX like we did with onC11ck, you are not directly
dealing with regular DOM events. Instead, you are dealing with a React-specific event type
known as a SyntheticEvent. Your event handlers don’t get native event arguments of type
MouseEvent, KeyboardEvent, etc. They always get event arguments of type
SyntheticEvent that wrap your browser’s native event instead. What is the fallout of this
in our code? Surprisingly not a whole lot.

Each SyntheticEvent contains the following properties:

Property Name Type

bubbles boolean
cancelable boolean
currentTarget DOMEventTarget
defaultPrevented boolean
eventPhase number
isTrusted boolean
nativeEvent DOMEvent
preventDefault() void
isDefaultPrevented() boolean
isPropagationStopped void

target DOMEventTarget
timeStamp number

type string

These properties should seem pretty straightforward—and generic! The non-generic stuff
depends on what type of native event our SyntheticEvent is wrapping. This means that a
SyntheticEvent that wraps a MouseEvent will have access to mouse-specific properties
such as the following:

boolean altKey

number button

number buttons

number clientX

number clientY

boolean ctrlKey

boolean getModifierState (key)
boolean metaKey

number pageX

number pageY

DOMEventTarget relatedTarget
number screenX

number screenY

boolean shiftKey

Similarly, a SyntheticEvent that wraps a KeyboardEvent will have access to these
additional keyboard-related properties:

boolean altKey
number charCode
boolean ctrlKey
boolean getModifierState (key)
string key
number keyCode
string locale
number location
boolean metaKey
boolean repeat
boolean shiftKey
number which

In the end, all of this means that you still get the same functionality in the SyntheticEvent
world that you had in the vanilla DOM world.

Now, here is something I learned the hard way. Don’t refer to traditional DOM event
documentation when using Synthetic events and their properties. Because the
SyntheticEvent wraps your native DOM event, events and their properties may not map
one-to-one. Some DOM events don’t even exist in React. To avoid running into any issues, if
you want to know the name of a SyntheticEvent or any of its properties, refer to the
React Event System document (https://facebook.github.io/react/docs/events.html) instead.

Doing Stuff With Event Properties

By now, you’ve probably seen more about the DOM and SyntheticEvent stuff than you’d
probably like. To wash away the taste of all that text, let’s write some code and put all of this
newfound knowledge to good use. Right now, our counter example increments by one each
time you click on the plus button. What we want to do is increment our counter by ten when the
Shift key on the keyboard is pressed while clicking the plus button with our mouse.

https://facebook.github.io/react/docs/events.html

The way we are going to do that is by using the shiftKey property that exists on the
SyntheticEvent when using the mouse:

boolean altKey

number button

number buttons

number clientX

number clientY

boolean ctrlKey

boolean getModifierState (key)
boolean metaKey

number pageX

number pageY

DOMEventTarget relatedTarget
number screenX

number screenY

boolean shiftKey

The way this property works is simple. If the Shift key is pressed when this mouse event fires,
then the shiftKey property value is true. Otherwise, the shi ftKey property value is false.
To increment our counter by 10 when the Shift key is pressed, go back to our increase
function and make the following highlighted changes:

Click here to view code image

increase: (e) {
currentCount = .state.count;

(e.shiftKey) {
currentCount += 10;

} {

currentCount += 1;

}

.setState ({
count: currentCount
1)
s

Once you’ve made the changes, preview our example in the browser. Each time you click on
the plus button, your counter will increment by one just like it had always done. If you click
on the plus button with your Shift key pressed, notice that our counter increments by 10
instead.

The reason that all of this works is because we change our incrementing behavior depending
on whether the Shift key is pressed or not. That is primarily handled by the following lines:
(e.shiftKey) {

currentCount += 10;

} {

currentCount += 1;

}

If the shiftKey property on our SyntheticEvent event argument is true, we increment
our counter by 10. If the shiftKey value is false, we just increment by 1.

More Eventing Shenanigans

We are not done yet! Up until this point, we’ve looked at how to work with events in React in a
very simplistic way. In the real world, rarely will things be as direct as what we’ve seen. Your
real apps will be more complex, and because React insists on doing things differently, we’ll
need to learn (or re-learn) some new event-related tricks and techniques to make our apps
work. That’s where this section comes in. We are going to look at some common situations
you’ll run into and how to deal with them.

You Can’t Directly Listen to Events on Components

Let’s say your component is nothing more than a button or another type of UI element that
users will be interacting with. You can’t get away with doing something like what we see in
the following highlighted line:

Click here to view code image

CounterParent = React.createClass ({
getInitialState: () |
{
count: O
i
b
increase: () {
.setState ({
count: .state.count + 1
1)
b
render: 0 |
(
<div>
<Counter display={ .state.count}/>
<PlusButton onClick={ .lncrease} />
</div>
) ;

1) ;

On the surface, this line of JSX looks totally valid. When somebody clicks on our
PlusButton component, the increase function will get called. In case you are curious,
this is what our P1usButton component looks like:

Click here to view code image

PlusButton = React.createClass ({
render: () |
(
<button>
+
</button>
)7
}
1)

Our PlusButton component doesn’t do anything crazy. It only returns a single HTML
element!

No matter how you slice and dice this, none of this matters. It doesn’t matter how simple or
obvious the HTML we are returning via a component looks like. You simply can’t listen for
events on them directly. The reason is because components are wrappers for DOM elements.
What does it even mean to listen for an event on a component? Once your component gets
unwrapped into DOM elements, does the outer HT ML element act as the thing you are
listening for the event on? Is it some other element? How do you distinguish between listening
for an event and declaring a prop with a value?

There is no clear answer to any of those questions. It’s too harsh to say that the solution is to
simply not listen to events on components, either. Fortunately, there is a workaround where
we treat the event handler as a prop and pass it on to the component. Inside the component, we
can then assign the event to a DOM element and set the event handler to the the value of the
prop we just passed in. I realize that probably makes no sense, so let’s walk through an
example.

Take a look at the following highlighted line:

Click here to view code image

CounterParent = React.createClass ({

reéder: (OI|

(
<diwv>
<Counter display={ .state.count}/>
<PlusButton clickHandler={ .increase}/>
</div>

) ;
1)

In this example, we create a property called c1ickHandler whose value is the increase
event handler. Inside our P1usButton component, we can then do something like this:

Click here to view code image

PlusButton = React.createClass ({
render: 0 |
(
<button onClick={ .props.clickHandler}>
+
</button>
)7
}
1)

On our button element, we specify the onC1ick event and set its value to the
clickHandler prop. At runtime, this prop gets evaluated as our increase function, and

clicking the plus button ensures the increase function gets called. This solves our problem
while still allowing our component to participate in all this eventing goodness!

Listening to Regular DOM Events

If you thought the previous section was a doozy, wait till you see what we have here. Not all
DOM events have SyntheticEvent equivalents. It may seem like you can just add the on

prefix and capitalize the event you are listening for when specifying it inline in your JSX:

Click here to view code image

Something = React.createClass ({
handleMyEvent: (e) |

// do something
by

render: (OI|

(
<div onMyWeirdEvent={ .handleMyEvent}>Hello!</div>
)
}
1)

It doesn’t work that way! For those events that aren’t officially recognized by React, you have
to use the traditional approach that uses addEventListener with a few extra hoops to
jump through.

Take a look at the following section of code:

Click here to view code image

Something = React.createClass ({
handleMyEvent: (e) |

// do something
by

componentDidMount : 0 A

window.addEventListener ("someEvent", .handleMyEvent) ;
b

componentWillUnmount: 0 A

window.removeEventListener ("someEvent", .handleMyEvent) ;
by

render: (OI|

(
<div>Hello!</div>
)7
}
1) ;

We have our Something component that listens for an event called someEvent. We start
listening for this event under the componentDidMount method which is automatically
called when our component gets rendered. The way we listen for our event is by using
addEventListener and specifying both the event and the event handler to call:

Click here to view code image

Something = React.createClass ({
handleMyEvent: (e) |
// do something
b
componentDidMount: () {
window.addEventListener ("someEvent", .handleMyEvent) ;
b

componentWillUnmount: 0 A

window.removeEventListener ("someEvent", .handleMyEvent) ;

by
render: 0 |

(
<div>Hello!</div>

) ;
}
1) ;

That should be pretty straightforward. The only other thing you need to keep in mind is
removing the event listener when the component is about to be destroyed. To do that, you can
use the opposite of the componentDidMount method, the componentWillUnmount

method. Inside that method, put your removeEventListener call to ensure no trace of
our event listening takes place after our component goes away.

The Meaning of this Inside the Event Handler

When dealing with events in React, the value of this inside your event handler is different

from what you would normally see in the non-React DOM world. In the non-React world, the
value of this inside an event handler refers to the element that your event is listening on:

Click here to view code image

doSomething(e) {
console.log(y; //button element
}

foo = document.querySelector ("button") ;
foo.addEventListener ("click", doSomething,) ;

In the React world (when your components are created using React.createClass), the
value of this inside your event handler always refers to the component the event handler
lives in:

Click here to view code image

CounterParent = React.createClass ({

getInitialState: () |
{
count: O
i
b
increase: (e) {
console.log); // CounterParent component
.setState ({
count: .state.count + 1
1)
b
render: 0 |
(
<diwv>
<Counter display={ .state.count}/>
<button onClick={ .lncrease}>+</button>

</div>
)7
}

1)

In this example, the value of this inside the increase event handler refers to the
CounterParent component. It doesn’t refer to the element that triggered the event. You get
this behavior because React automatically binds all methods inside a componentto this.
This autobinding behavior only applies when your component is created using
React.createClass. If you are using ES6 classes to define your components, the value
of this inside your event handler is going to be undefined unless you explicitly bind it
yourself:

Click here to view code image

<button ={this.increase.bind(this) }>+</button>

There is no autobinding magic that happens with the new class syntax, so be sure to keep that
in mind if you aren’t using React.createClass to create your components.

React..Why? Why?!

Before we call it a day, let’s use this time to talk about why React decided to deviate from how
we’ve worked with events in the past. There are two reasons:

= Browser Compatibility

» Improved Performance
Let’s elaborate on these two reasons a little bit.

Browser Compatibility

Event handling is one of those things that mostly works consistently in modern browsers, but
once you go back to older browser versions, things get really bad really quickly. By
wrapping all of the native events as an object of type SyntheticEvent, React frees you
from dealing with event handling quirks that you would end up having to deal with otherwise.

Improved Performance

In complex Uls, the more event handlers you have, the more memory your app takes up.
Manually dealing with that isn’t difficult, but it is a bit tedious as you try to group events
under a common parent. Sometimes, that just isn’t possible. Sometimes, the hassle doesn’t
outweigh the benefits. What React does is pretty clever.

React never attaches event handlers to the DOM elements directly. It uses one event handler at
the root of your document that is responsible for listening to all events and calling the
appropriate event handler as necessary (see Figure 10-3).

event listener

/-N event handler

Figure 10-3 React uses one event handler at the root of your document.

This frees you from having to deal with optimizing your event handler-related code yourself.
If you’ve manually had to do that in the past, you can relax knowing that React takes care of
that tedious task for you. If you’ve never had to optimize event handler-related code yourself,
consider yourself lucky :P

Conclusion

You’ll spend a lot of time dealing with events, and this chapter threw a lot of things at you. We
started by learning the basics of how to listen to events and specify the event handler. Towards
the end, we were fully invested and looking at eventing corner cases that you will bump into if
you aren’t careful enough. You don’t want to bump into corners. That is never fun.

11. The Component Lifecycle

In the beginning, we started off with a very simple view of components and what they do. As
we learned more about React and did cooler and more involved things, it turns out our
components aren’t all that simple. They help deal with properties, state, events, and often are
responsible for the well-being of other components as well. Keeping track of everything
components do sometimes can be tough.

To help with this, React provides us with something known as lifecycle methods. Lifecycle
methods are (unsurprisingly) special methods that automatically get called as our component
goes about its business. They notify us of important milestones in our component’s life, and
we can use these notifications to simply pay attention or change what our component is about
to do.

In this chapter, we look at these lifecycle methods and learn all about what we can do with
them.

Meet the Lifecycle Methods

Lifecycle methods are not very complicated. We can think of them as glorified event handlers
that get called at various points in a component’s life, and just like event handlers, you can
write some code to do things at those various points. Before we go further, it is time for you
to quickly meet our lifecycle methods. They are:

s componentWillMount

= componentDidMount

s componentWillUnmount

= componentWillUpdate

» componentDidUpdate

» shouldComponentUpdate

s componentWillReceiveProps

We aren’t quite done yet. There are three more methods that we are going to throw into the
mix even though they aren’t strictly lifecycle methods, and they are:

sgetInitialState
m getDefaultProps
» render

Some of these names probably sound familiar to you, and some you are probably seeing for
the first time. Don’t worry. By the end of all this, you’ll be on a first name basis with all of
them! What we are going to do is look at these lifecycle methods from various angles—
starting with some code!

See the Lifecycle Methods in Action

Learning about these lifecycle methods is about as exciting as memorizing names for foreign
places (or distant star systems!) you have no plans to visit. To help make all of this more
bearable, I am going to first have you play with them through a simple example before we get
all academic and read about them.

To play with this example, go to the following URL:
https://www.kirupa.com/react/lifecycle_example.htm Once this page loads, you’ll see a
variation of the counter example we saw earlier (see Figure 11-1).

Figure 11-1 A variation on the counter example.

Don’t click on the button or anything just yet. If you have already clicked on the button, just
refresh the page to start the example from the beginning. There is a reason why I am saying
that, and it isn’t because my OCD is acting up :P We want to see this page as it is before we
interact with it!

Now, bring up your browser’s developer tools and take a look at the Console tab. In Chrome,
you’ll see something that looks like Figure 11-2.

https://www.kirupa.com/react/lifecycle_example.htm

: Console Animations Rendering

© V¥ top v [Preserve log

Filter .| Regex [Hide network messages

.. Errors Warnings Info Logs Debug Handled

getDefaultProps: Default prop time! embsg
getInitialState: Default state time! embe
componentWillMount: Component is about to mount! embeé
componentDidMount: Component just mounted! embe

Figure 11-2 The Console view in Chrome.

Notice what you see printed. You will see some messages, and these messages start out with
the name of what looks like a lifecycle method. If you click on the plus button once, notice
that your Console will show more lifecycle methods getting called (see Figure 11-3).

+ Console Animations Rendering

O ¥ top v [Preserve log

ilter .| Regex | | Hide network messages

..| Errors Warnings Info Logs Debug Handled

getDefaultProps: Default prop time! embe
getInitialState: Default state time! embe
componentWillMount: Component is about to mount! embe
componentDidMount: Component just mounted! embe
shouldComponentUpdate: Should component update? embe
shouldComponentUpdate: Component should update! embe
componentWillUpdate: Component is about to update! embe
componentDidUpdate: Component just updated! embe

Figure 11-3 More lifecycle methods getting called.

Play with this example for a bit. What this example does is allow you to place all of these
lifecycle methods in the context of a component that we’ve already seen earlier. As you keep
hitting the plus button, more lifecycle method entries will show up. Eventually, once your
counter approaches a value of 5, your example will just disappear with the following entry

showing up in your console: componentWillUnmount: Component is about to
be removed from the DOM! At this point, you have reached the end of this example. Of
course, to start over, you can just refresh the page!

Now that you’ve seen the example, let’s take a quick look at the component that is responsible
for all of this:

Click here to view code image

var CounterParent = React.createClass ({
getDefaultProps: function() {
console.log("getDefaultProps: Default prop time!");
return {};
b
getInitialState: function() {
console.log("getInitialState: Default state time!");
return {
count: O
i
b
increase: function () {
this.setState ({
count: this.state.count + 1
1)
b

componentWillUpdate: function (newProps, newState) {

console.log ("componentWillUpdate: Component is about to update!");
by
componentDidUpdate: function(currentProps, currentState) {

console.log ("componentDidUpdate: Component just updated!"™);

I

componentWillMount: function() {
console.log ("componentWillMount: Component is about to mount!");
by
componentDidMount: function() {
console.log ("componentDidMount: Component just mounted!");
by
componentWillUnmount: function() {

console.log ("componentWillUnmount: Component is about to be removed from the
DoM!™) ;
by
shouldComponentUpdate: function(newProps, newState) {
console.log ("shouldComponentUpdate: Should component update?");

1if (newState.count < 5) {
console.log ("shouldComponentUpdate: Component should update!");
return true;
} else {
ReactDOM.unmountComponentAtNode (destination);
console.log ("shouldComponentUpdate: Component should not update!");
return false;
}
by
componentWillReceiveProps: function (newProps) {
console.log ("componentWillReceiveProps: Component will get new props!");
by
render: function ()
var backgroundStyle = {
padding: 50,

border: "#333 2px dotted",
width: 250,

height: 100,

borderRadius: 10,
textAlign: "center"

i

(
<div style={backgroundStyle}>

<Counter display={ .state.count}/>
<button onClick={ .lncrease}>
+
</button>
</div>

)
}
1)

Take a few moments to look what all of this code does. It seems lengthy, but a bulk of it is just
each lifecycle method listed with a console. log statement defined. Once you’ve gone
through this code, play with the example one more time. Trust me. The more time you spend in
the example and figure out what is going on, the more fun you are going to have. The
following sections where we look at each lifecycle method across the rendering, updating,
and unmounting phases is going to be dreadfully boring. Don’t say I didn’t warn you.

The Initial Rendering Phase

When your component is about to start its life and make its way to the DOM, the following
lifecycle methods get called (see Figure 11-4).

Initial Render

begin | getDefaultProps
getInitialState
componentiillMount

render

end componentDidMount

p 4
<

Figure 11-4 The lifecycle methods called initially.

What you saw in your console when the example was loaded was a less colorful version of
what you saw here. Now, we are going to go a bit further and learn more about what each of
these lifecycle methods do.

getDefaultProps
This method allows you to specify the default value of this.props.It gets called before
your component is even created or any props from parents are passed in.

getInitialState

This method allows you to specify the default value of this.state before your component
is created. Just like getDefaultProps, ittoo gets called before your component is created.

componentWillMount

This is the last method that gets called before your component gets rendered to the DOM.
There is an important thing to note here. If you were to call setState inside this method,

your component will not re-render (aka have the render method get called and update what
gets displayed on screen).

render

This one should be very familiar to you by now. Every component must have this method
defined, and it is responsible for returning a single root node (which may have many child
nodes inside it). If you don’t wish to render anything (for some fancy optimization you might
be going for), simply return null or false.

componentDidMount

This method gets called immediately after your component renders and gets placed on the
DOM. At this point, you can safely perform any DOM querying operations without worrying
about whether your component has made it or not. If you have any code that depends on your
component being ready, you can specify all of that code here as well.

With the exception of the render method, all of these lifecycle methods can fire only once.
That’s quite different from the methods we are about to see next.

The Updating Phase

After your components get added to the DOM, they can potentially update and re-render when
a prop or state change occurs. During this time, a different collection of lifecycle methods
will get called. Yawn. Sorry...

Dealing with State Changes

First, let’s look at a state change! When a state change occurs, we mentioned earlier that your

component will call its render method again. Any components that rely on the output of this
component will also get their render methods called as well. This is done to ensure that our
component is always displaying the latest version of itself. All of that is true, but that is only a
partial representation of what happens.

When a state change happens, all the lifecycle methods in Figure 11-5 get called.

State Change

= shouldComponentUpdate
componentWillUpdate
render
componentDidUpdate

end

Figure 11-5 Lifecycle methods called when a state change happens.

What these lifecycle methods do is outlined in the following sections.

shouldComponentUpdate

Sometimes, you don’t want your component to update when a state change occurs. This
method allows you to control this updating behavior. If you use this method and return a true
value, the component will update. If this method returns a false value, this component will skip
updating.

That probably sounds a little bit confusing, so here is a simple snippet:

Click here to view code image

shouldComponentUpdate: (newProps, newState) {

(newState.id <= 2) {

console.log("Component should update!");

} {

console.log ("Component should not update!");

}
}
This method gets called with two arguments which we name newProps and newState.
What we are doing in this snippet of code is checking whether the new value of our id state

property is less than or equal to 2. If the value is less than or equal to 2, we return true to
indicate that this component should update. If the value is not less than or equal to 2, we return
false to indicate that this component should not update.

componentWillUpdate

This method gets called just before your component is about to update. Nothing too exciting
here. One thing to note is that you can’t change your state by calling this.setState from

this method.

render

If you didn’t override the update via shouldComponentUpdate (by returning false), the
code inside render will get called again to ensure your component displays itself properly.

componentDidUpdate

This method gets called after your component updates and the render method has been
called. If you need to execute any code after the update takes place, this is the place to stash it.

Dealing with Prop Changes

The other time your component updates is when its prop value changes after it has been
rendered into the DOM. In this scenario, the lifecycle methods in Figure 11-6 get called.

Props Change

begin componentWillReceiveProps
shouldComponentUpdate
componentWillUpdate
render

end componentDidUpdate

Figure 11-6 Lifecycle methods when the component’s prop value changes.

The only method that is new here is componentWillReceiveProps. This method returns

one argument, and this argument is an object that contains the new prop values that are about
to be assigned to it.

We saw the rest of the lifecycle methods earlier when looking at state changes, so let’s not
revisit them again. Their behavior is identical when dealing with a prop change.

The Unmounting Phase

The last phase we are going to look at is when your component is about to be destroyed and
removed from the DOM (see Figure 11-7).

Unmount

begin

componentWillUnmount

end

Figure 11-7 Only one lifecycle method is active when your component is about to be
destroyed and removed from the DOM.

There is only one lifecycle method that is active here, and that is
componentWillUnmount. You'll perform any cleanup-related tasks here such as
removing event listeners, stopping timers, etc. After this method gets called, your component
is removed from the DOM and you can say Bye! to it.

Conclusion

Our components are fascinating little things. On the surface they seem like they don’t have
much going on. Like a good documentary about the oceans, when we look a little deeper and
closer, it’s almost like seeing a whole other world. As it turns out, React is constantly
watching and notifying your component every time something interesting happens. All of this
is done via the (extremely boring) lifecycle methods that we spent this entire tutorial looking
at. Now, I want to reassure you that knowing what each lifecycle method does and when it gets
called will come in handy one day. Everything you’ve learned isn’t just trivial knowledge,
though your friends will be impressed if you can describe all of the lifecycle methods from
memory. Go ahead and try it the next time you see them.

12. Accessing DOM Elements

There will be times when you want to access properties and methods on an HTML element
directly. In our React-colored world where JSX represents everything that is good and pure
about markup, why would you ever want to deal directly with the horribleness that is HTML?
As you will find out (if you haven’t already), there are many cases where dealing with HTML
elements through the JavaScript DOM API directly is easier than fiddling with “the React
way” of doing things.

To highlight one such situation, take a look at the Colorizer example in Figure 12-1.

Figure 12-1 Colorizer example.

If you have access to a browser, you can view it live at the following location:
https://www.kirupa.com/react/examples/colorizer.htm

The Colorizer colorizes the (currently) white square with whatever color you provide it. To
see it in action, enter a color value inside the text field and click/tap on the go button. If you
don’t have any idea of what color to enter, yellow is a good one! Once you have provided a

https://www.kirupa.com/react/examples/colorizer.htm

color and submitted it, the white square will turn whatever color value you provided (see
Figure 12-2).

yellow u

Figure 12-2 The white square turns yellow.

That the square changes color for any valid color value you submit is pretty awesome, but it
isn’t what I want you to focus on. Instead, pay attention to the text field and the button after you
submit a value. Notice that the button gets focus, and the color value you just submitted is still
displayed inside the form. If you want to enter another color value, you need to explicitly
return focus to the text field and clear out whatever current value is present. Eww! That seems
unnecessary, and we can do better than that from a usability point of view!

Now, wouldn’t it be great if we could clear both the existing color value and return focus to
the text field immediately after you submit a color? That would mean that if we submitted a
color value of purple, what we would see afterwards would look like Figure 12-3.

Enter a color value

Figure 12-3 We get purple and the text field is ready for the next color.

The entered value of purple is cleared, and the focus is returned to the text field. This allows
us to enter additional color values and submit them easily without having to manually keep
jumping focus back and forth between the text field and the button. Isn’t that much nicer?

Getting this behavior right using JSX and traditional React techniques is hard. We aren’t even
going to bother with explaining how to go about that. Getting this behavior right by dealing
with the JavaScript DOM API on various HTML elements directly is pretty easy. Guess what
we are going to do? In the following sections, we use something known as refs that React
provides to help us access the DOM API on HTML elements. This chapter sounds really
REALLY boring, but it is going to be a fun one—I’m mostly sure of it.

Meet Refs

As you know very well by now, inside our various render methods, we’ve been writing

HTML-like things known as JSX. Our JSX is simply a description of what the DOM should
look like. It doesn’t represent actual HTML—despite looking a whole lot like it. Anyway, to
provide a bridge between JSX and the final HTML elements in the DOM, React provides us
with something funnily known as refs (short for references).

The way refs work is a little odd. The easiest way to make sense of it is to look at an example.
Let’s say we have a render method from our Colorizer example that looks as follows:

Click here to view code image

render: 0 A
squareStyle = {
backgroundColor: .state.bgColor
i

(
<div className="colorArea">
<div style={squareStyle} className="colorSquare"></div>

<form onSubmit={ .setNewColor}>
<input
onChange={ .colorValue}
placeholder="Enter a color value">
</input>
<button type="submit">go</button>
</form>
</div>

) i
}
Inside this render method, we are returning a big chunk of JSX representing (among other
things) the input element where we enter our color value. What we want to do is access the
input element’s DOM representation so that we can call some APIs on it using JavaScript.

The way we do that using refs is by setting the re f attribute on the element we would like to
reference the HTML of:

Click here to view code image

render: 0 A
squareStyle = {
backgroundColor: .state.bgColor
i

(
<div className="colorArea">
<div style={squareStyle} className="colorSquare"></div>

<form onSubmit={ .setNewColor}>
<input
ref={}
onChange={ .colorValue}
placeholder="Enter a color value">
</input>

<button type="submit">go</button>

</form>
</div>
) 7
}
Because we are interested in the input element, our ref attribute is attached to it. Right now,
our ref attribute is empty. What you typically set as the ref attribute’s value is a JavaScript

callback function. This function gets called automatically when the component housing this
render method gets mounted. If we set our ref attribute’s value to a simple JavaScript

function that stores a reference to the referenced DOM element, it would look something like
the following highlighted lines:

Click here to view code image

1 render: () |

2 squareStyle = {

3 backgroundColor: .state.bgColor

4 i

5

6 self = 9

7

8 (

9 <div className="colorArea">

10 <div style={squareStyle} className="colorSquare"></div>
11

12 <form onSubmit={ .setNewColor}>
13 <input

14 ref={

15 (el) {

16 self. input = el;

17 }

18 }

19 onChange={ .colorValue}
20 placeholder="Enter a color value">
21 </input>
22 <button type="submit">go</button>
23 </form>
24 </div>
25)
26}

The end result of this code running once our component mounts is simple: we can access the
HTML representing our input element from anywhere inside our component by calling
this. input.Take a few moments to see how the highlighted lines of code help do that.
Once you are done, we’ll walk through this code together.

First, our callback function looks as follows:

(el) |
self. input = el;
}

This anonymous function gets called when our component mounts, and a reference to the
final HTML DOM element is passed in as an argument. We capture this argument using the e 1
identifier, but you can use any name for this argument that you want. The body of this callback
function simply sets a custom property called input to the value of our DOM element. To

ensure we create this property on our component, we use the se1f variable to create a
closure where the this in question refers to our component as opposed to the callback
function itself. (Autobinding doesn’t happen automatically this time around!)

Taking a step back and looking at the bigger picture that ties everything together including the
render method we just saw, let’s look at the full Colorizer component with all of the
ref-related shenanigans highlighted:

Click here to view code image

Colorizer = React.createClass ({
getInitialState: () {
{
color: 7,
bgColor: "’
}

b
colorValue: (e) |

.setState ({color: e.target.value});
b
setNewColor: (e) {

.setState ({bgColor: .state.color});

. _input.value = "";
. _input.focus();

e.preventDefault () ;
by
render: () {
squareStyle = {
backgroundColor: .state.bgColor
i

self = 8
(

<div className="colorArea">
<div style={squareStyle} className="colorSquare"></div>

<form onSubmit={ .setNewColor}>
<input
ref={
(el) {

self. input = el;
}
}

onChange={ .colorValue}
placeholder="Enter a color value">
</input>
<button type="submit">go</button>
</form>

</div>
) 7

1)

Focusing just on what happens to our input element, when the form gets submitted and the
setNewColor method gets called, we clear the contents of our input element by calling

this. input.value = “”.We setfocus to our input element by calling

this. input.focus ().All of our ref- related work was simply to enable these two
lines where we needed some way to have this. input pointto the HTML element
representing our input element that we define in JSX. Once we figured that out, we just call

the value property and focus method the DOM API exposes on this element.

Simplifying Further with ES6 Arrow Functions
Learning React is hard enough, so I have tried to shy away from forcing you to use
ES6 techniques by default. When it comes to working with the ref attribute, using
arrow functions to deal with the callback function does simplify matters a bit. This is
one of those cases where I recommend you use an ES6 technique.
As you saw a few moments ago, to assign a property on our component to the
referenced HTML element, we did something like this:

Click here to view code image

<input

ref={

(el) A
self. input = el;
}
}

onChange={ .colorValue}

placeholder="Enter a color value">
</input>

To deal with scoping shenanigans, we created a sel f variable initialized to this to
ensure we created the input property on our component. That seems unnecessarily
messy.

Using arrow functions, we can simplify all of this down to just the following:

Click here to view code image

<input
ref={
(el) => . input = el
}
onChange={ .colorValue}
placeholder="Enter a color value">
</input>

The end result is identical to what we spent all of this time looking at, and because of
how arrow functions deal with scope, you can use this inside the function body and

reference the component without doing any extra work. No need for an outer self
variable equivalent!

Conclusion

In this tutorial, we saw how “easy” it is to access a DOM element directly. React used to
provide a much easier way of referencing elements. You could set the re fs attribute on an
element and initialize it to a string value:

Click here to view code image

<button ="myButton">Click me!</button>

You could then access this element after the component was mounted by doing something like
this.refs.myButton. Before you get really excited about using something like this over
our function callback approach with the re f attribute, this string-based approach is likely to
be deprecated. It works at the moment of this writing, but who knows when it will stop
working. Now, given that this is going away, you may be wondering why I told you about this.
To be frank, I really have no idea :P

13. Creating a Single-Page App Using React Router

Now that you’ve familiarized yourself with the basics of how to work with React, let’s kick
things up a few notches. What we are going to do is use React to build a simple, single-page
app (also referred to as SPA by the cool kids—and people living in Scandinavia). As we
talked about in Chapter 1 forever ago, single-page apps are different from the more
traditional multi-page apps that you see everywhere. The biggest difference is that navigating
a single-page app doesn’t involve going to an entirely new page. Instead, your pages
(commonly known as views in this context) typically load inline within the same page as
illustrated in Figure 13-1.

Figure 13-1 Single-page apps use load views inline rather than load new pages.

When you are loading content inline, things get a little challenging. The hard part is not
loading the content itself. That is relatively easy. The hard part is making sure that single-page

apps behave in a way that is consistent with what your users are used to. More specifically,
when users navigate your app, they expect that:

1. The URL displayed in the address bar always reflects the thing that they are viewing.
2. They can use the browser’s back and forward buttons—successfully.

3. They can navigate to a particular view (aka deep link) directly using the appropriate
URL.

With multi-page apps, these three things come for free. There is nothing extra you have to do
for any of it. With single-page apps, because you aren’t navigating to an entirely new page,
you have to do real work to deal with these three things that your users expect to just work.
You need to ensure that navigating within your app adjusts the URL appropriately. You need to
ensure your browser’s history is properly synchronized with each navigation to allow users
to use the back and forward buttons. If users bookmark a particular view or copy/paste a URL
to access later, you need to ensure that your single-page app takes the user to the correct place.

To deal with all of this, you have a bucket full of techniques commonly known as routing.
Routing is where you try to map URLs to destinations that aren’t physical pages, such as the
individual views in your single-page app. That sounds complicated, but fortunately there are a
bunch of JavaScript libraries that help us out with this. One such JavaScript library is the star
of this chapter, React Router (https://github.com/reactjs/react-router). React Router provides
routing capabilities to single-page apps built in React, and what makes it nice is that it extends
what you already know about React in familiar ways to give you all of this routing
awesomeness. In this chapter, you learn all about how it does that—and hopefully more!

The Example
Before we go further, let’s take a look at an example (see Figure 13-2).

https://github.com/reactjs/react-router

Simple SPA

Home Stuff Contact

HELLO

Cras facilisis urna ornare ex volutpat, et
convallis erat elementum. Ut aliquam, ipsum
vitae gravida suscipit, metus dui bibendum est,
eget rhoncus nibh metus nec massa.
Maecenas hendrerit laoreet augue nec
molestie. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur
ridiculus mus.

Duis a turpis sed lacus dapibus elementum
sed eu lectus.

Figure 13-2 A simple React app that uses React Router.

What you have here is a simple React app that uses React Router to provide all of the
navigation and view-loading goodness! While the screenshot of the app looks nice and all,
this is one of those cases where you want to play with the app to see more of what it does. Go
ahead and open this page (https://www.kirupa.com/react/examples/react_router_final.htm) in
its own browser window, click on the various navigation tabs to see the different views, and
use the back and forward buttons to see them working.

In the following sections, we are going to be building this app in pieces. By the end, not only
will you have recreated this app, you’ll hopefully have learned enough about React Router to
build cooler and more awesomer things.

Building the App

The first thing we need to do is get the boilerplate markup and code for our app up and
running. Create a new HTML document and add the following content into it:

Click here to view code image

<!IDOCTYPE html>
<html>

https://www.kirupa.com/react/examples/react_router_final.htm

<head>
<title>React! React! React!</title>
<script src="https://npmcdn.com/react@l15.3.0/dist/react.js"></script>
<script src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

<style>

</style>
</head>

<body>
<div id="container">
</div>

<script type="text/babel">
var destination = document.querySelector ("f#container");

ReactDOM.render (

<diwv>
Hello!

</div>,
destination

) 7

</script>
</body>

</html>

This starting point is almost the same as what you’ve seen for all of our other examples. This
is just a nearly blank app that happens to load the React and React-DOM libraries. If you
preview what you have in your browser, you’ll see a very lonely Hello! displayed.

Note: Still Keeping Things Simple

For now, we are continuing to rely on having our browser do all of the heavy lifting.
We’ll look into changing that up with a “modern” build process later, so enjoy the
simplicity for now :P

Next, because React Router isn’t a part of React itself, we need to add a reference to it. In our
markup, find where we have our existing script references and add the following highlighted
line:

Click here to view code image

<script src="https://npmcdn.com/react@l5.3.0/dist/react.js"></script>

<script src="https://npmcdn.com/react-dom@1l5.3.0/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.Jjs"></script>

<script src="https://npmcdn.com/react-router/umd/ReactRouter.min.js"></script>

By adding the highlighted line, we ensure the React Router library is loaded alongside the

core React, ReactDOM, and Babel libraries. At this point, we are in a good state to start
building our app and taking advantage of the sweet functionality React Router brings to the
table.

Displaying the Initial Frame

When building a single-page app, there will always be a part of your page that will remain
static. This static part, also referred to as an app frame, could just be one invisible HTML
element that acts as the container for all of your content, or it could include some additional
visual things like a header, footer, navigation, etc. In our case, our app frame will involve our
navigation header and an empty area for content to load in. To display this, we are going to
create a component that is going to be responsible for this.

Inside your script tag just above your ReactDOM. render call, go ahead and add the
following chunk of JSX and JavaScript:

Click here to view code image

App = React.createClass ({
render: (OI|

(
<div>
<hl>Simple SPA</hl>
<ul className="header">
Home</1li>
Stuff</1li>
Contact</1li>

<div className="content">

</div>
</div>

1)

Once you have pasted this, take a look at what we have here. What we have is a component
called App that returns some HTML. To see what this HTML looks like, modify your
ReactDOM. render call to reference this component instead of displaying the word Hello!
Go ahead and make the following highlighted change:
ReactDOM. render (
<div>
<App/>
</div>,

destination
) 7

Once you have done this, preview your app in the browser. You should see an unstyled
version of an app title and some list items (see Figure 13-3).

® © ® /') React! React! React! X

C' @ localhost/react_router.htm

Simple SPA

¢ Home
o Stuff
e Contact

Figure 13-3 Unstyled version.

I know that this doesn’t look all fancy and styled, but that’s OK for now. We will deal with that
later. Going a bit deeper, what we’ve done is just create a component called App and display it
via our ReactDOM. render call. The important thing to call out is that there is nothing
React Router - specific here. ABSOLUTELY NOTHING! This is straight-up React 101. Let’s
fix that by throwing React Router into the mix. Replace the contents of your

ReactDOM. render call with the following:

Click here to view code image

ReactDOM.render (
<ReactRouter.Router>
<ReactRouter.Route ="/" ={App}>

</ReactRouter.Route>
</ReactRouter.Router>,
destination
) 7

Ignore how strange everything looks for a moment, and just preview your app in the browser
after you’ve made this change. If everything worked out properly, you will see your App
component displayed just like you saw earlier. Now, let’s figure out why that is the case by

learning more about what exactly is going on here. This is where we deviate a bit from core
React concepts and learn things specific to React Router itself.

First, what we did is specify our Router component:

Click here to view code image

ReactDOM. render (
<ReactRouter.Router>
<ReactRouter.Route ="/" ={App}>

</ReactRouter.Route>
</ReactRouter.Router>,
destination
) 7

The Router component is part of the React Router API, and its job is to deal with all of the
routing-related logic our app will need. Inside this component, we specify what is known as
the routing configuration. That is a fancy term that people use to describe the mapping

between URLs and the views. The specifics of that are handled by another component called
Route:

Click here to view code image

ReactDOM. render (
<ReactRouter.Router>
<ReactRouter.Route ="/" ={App}>

</ReactRouter.Route>
</ReactRouter.Router>,
destination
) 7

The Route component takes several props that help define what to display at what URL. The
path prop specifies the URL we are interested in matching. In this case, it is the root, aka /.
The component prop allows you to specify the name of the component you wish to display.
For this example, it is our App component. Putting this all together, what this Route says is as
follows: If the URL you are on contains the root, go ahead and display the App component.

Because this condition is true when you preview your app, you see the result of what happens
when your App component renders.

Displaying the Home Page

As you can sorta kinda see, the way React Router provides you with all of this routing
functionality is by using concepts in React you are already familiar with—namely
components, props, and JSX. What we have right now for displaying our app’s frame is a
great example of this. Now, it’s time to go even further. What we want to do next is define the
content that we will display as part of our home view.

To do this, we are going to create a component called Home that is going to contain the
markup we want to display. Just above where you have your App component defined, add the
following:

Click here to view code image

Home = React.createClass ({
render: 0 A
(
<div>
<h2>HELLO</h2>
<p>Cras facilisis urna ornare ex volutpat, et

convallis erat elementum. Ut aliquam, ipsum vitae

gravida suscipit, metus dui bibendum est, eget rhoncus nibh
metus nec massa. Maecenas hendrerit laoreet augue

nec molestie. Cum sociis natoque penatibus et magnis

dis parturient montes, nascetur ridiculus mus.</p>

<p>Duis a turpis sed lacus dapibus elementum sed eu lectus.</p>
</div>
)i

1)

As you can see, our Home component doesn’t do anything special. It just returns a blob of
HTML. Now, what we want to do is display the contents of our Home component when the
page loads. This component is the equivalent of our app’s “home page.” The way we do this is
simple. Inside our App component, we have a div with a class value of content. We are
going to load our Home component inside there.

The obvious solution might look something like this:

Click here to view code image

App = React.createClass ({
render: () |
(
<div>
<hl>Simple SPA</hl>
<ul className="header">
Home</1li>
Stuff</1li>
Contact</1li>

<div className="content">
<Home/>
</div>
</div>

1)

Notice that we define our Home component inside that content div. If you preview your app,
things will even seem to work as expected (see Figure 13-4).

® © @® [React! React! React! X

C' (@ localhost/react_router.htm#/?_k=r744r5

Simple SPA

+ Home
¢ Stuff
¢ Contact

HELLO

Cras facilisis urna ornare ex volutpat, et convallis erat elementum. Ut aliquam, ipsum vitae §
Maecenas hendrerit laoreet augue nec molestie. Cum sociis natoque penatibus et magnis dis

Duis a turpis sed lacus dapibus elementum sed eu lectus.

Figure 13-4 Increased functionality.

You see your navigation header, and then you see the contents of our Home component. While

this approach works, it is actually the wrong thing to do. It is wrong because it complicates
our desire to load other pieces of content as the user is navigating around our app. We’ve
essentially hard-coded our app to only display the Home component. That’s a problem, but
we’ll come back to that in a little bit.

Interim Cleanup Time

Before we continue making progress on our app, let’s take a short break and make some
stylistic improvements to what we have so far.

Adding the CSS

Right now, our app looks very plain...and like something straight out of the 1800s. To fix this,
we are going to rely on our dear old friend, CSS. Inside the style tag, go ahead and add the
following style rules:

Click here to view code image

body {
background-color: #FFCCO0O0;
padding: 20px;

margin: 0;

}

hl, h2, p, ul, 1i {
font-family: Helvetica, Arial, sans-serif;

}

ul.header 1i {
display: inline;
list-style-type: none;
margin: 0;

}

ul.header {
background-color: #111;
padding: 0;

}

ul.header 1i a {
color: #FFF;
font-weight: bold;
text-decoration: none;
padding: 20px;
display: inline-block;

}

.content {
background-color: #FFF;
padding: 20px;

}

.content h2 {
padding: 0;
margin: 0;

}

.content 1i {
margin-bottom: 10px;

}

Yes, we are using CSS in its markup form. We aren’t doing the inline style object approach
that we saw in Chapter 4. The reason has to do with convenience. Our components aren’t
going to be re-used outside of our particular app, and we really want to take advantage of CSS
inheritance to minimize duplicated markup. Otherwise, if we didn’t use regular CSS, we’ll
end up with a bunch of giant style objects defined for almost every element in our markup.
That would make even the most patient among us annoyed when reading the code.

Anyway, once you have added all of this CSS, our app will start to look much better (see
Figure 13-5).

Simple SPA
HomeStfiContat

HELLO

Cras facilisis urna ornare ex volutpat, et convallis erat
elementum. Ut aliquam, ipsum vitae gravida suscipit,
metus dui bibendum est, eget rhoncus nibh metus nec
massa. Maecenas hendrerit laoreet augue nec molestie.
Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus.

Duis a turpis sed lacus dapibus elementum sed eu lectus.

Figure 13-5 CSS styling added.

There is still some more work to be done (for example, our navigation links disappeared
behind the black banner), but we’ll fix all of those up in a little bit.

Avoiding the ReactRouter Prefix

We have just one more cleanup related task before we return to our regularly scheduled
programming. Have you noticed that every single time we call something defined by the
React Router API, we prefix that something with the word ReactRouter?

Click here to view code image

<ReactRouter.Router>
<ReactRouter.Route path="/" component={App}>

</ReactRouter.Route>
</ReactRouter.Router>

That is a bit verbose to have to repeat for every API call we make, and this is going to be
more of a problem as we dive further into the React Router API and use more things from
inside it.

The fix for this involves using a new ES6 trick where you can manually specify which values

will automatically get prefixed. Towards the top of your script tag, add the following:

{ Router,
Route,
IndexRoute,
IndexLink,
Link } = ReactRouter;

Once you’ve added this code, every time you use one of the values defined inside the brackets,
the prefix ReactRouter will automatically be added for you when your app runs. This means,
you can now go back to your ReactDOM. render method and remove the ReactRouter

prefix from our Router and Route component instances:

Click here to view code image

ReactDOM.render (
<Router>
<Route path="/" component={App}>

</Route>
</Router>,
destination

) 7

If you preview your app now, nothing really should change. The end result is identical to what
you had before. The only difference is that our markup is a bit more compact.

Now, before we move on, you are probably wondering why the list of values that will
automatically be prefixed with ReactRouter contains a whole bunch of things beyond the
Router and Route values that we have used in our code so far. Think of these additional
values as a preview of the other parts of the React Router API we will be using shortly.
Spoiler alert! (Probably too late to mention that now, eh?)

Displaying the Home Page Correctly

We ended a few sections ago by saying that the way we currently have our home page
displayed is incorrect. Although you get the desired result when our page loads, this approach
doesn’t really make it easy for us to load anything other than the home page when users
navigate around. The call to our Home component is hard-coded inside App.

The correct solution involves letting React Router handle which component to call depending
on what your current URL structure is. This involves nesting Route components inside
Route components to better define the URL-to-view mapping. Go back to our

ReactDOM. render method, and make the following highlighted change:

Click here to view code image

ReactDOM.render (
<Router>
<Route path="/" component={App}>
<IndexRoute component={Home} />
</Route>
</Router>,
destination

) 7

Inside our root Route element, we are defining another Route element of type
IndexRoute (more on who this is in a second!) and setting its view to be our Home
component. There is one more change we need to make. Inside our App component, remove
the call to the Home component and replace it with the following highlighted line:

Click here to view code image

App = React.createClass ({
render: 0 |
(
<div>
<hl>Simple SPA</hl>
<ul className="header">
Home</1li>
Stuff</1li>
Contact</1li>

<div className="content">
{ .props.children}
</div>
</div>

1) ;

If you preview your page now, you will still see your Home content displayed. The difference
this time is that we are displaying the Home content properly in a way that doesn’t prevent
other content from being displayed instead. This is because of two things:
1. What gets displayed inside App is controlled by the result of
this.props.children instead of a hard-coded component.

2. Our Route element inside ReactDOM. render contains an IndexRoute element
whose sole purpose for existing is to declare which component will be displayed when
your app initially loads.

All of this may seem even more bizarre than what you expected a few moments ago, but
things will make more sense as we use these various APIs more in the following sections.

Creating the Navigation Links

Right now, we just have our frame and home view setup. There isn’t really anything else for a
user to do here outside of just seeing what we have set as the home page. Let’s fix that by
creating some navigation links. More specifically, let’s linkify the navigation elements we
already have:

Click here to view code image

App = React.createClass ({
render: () |
(
<div>
<hl>Simple SPA</hl>
<ul className="header">
Home</1li>
Stuff</1li>

Contact</1li>

<div className="content">
{ .props.children}
</div>
</div>

1) ;

If you aren’t sure why these elements aren’t visible when you preview your page, that’s
because they blended in with the black background once we added the CSS in. No biggie there.
We’ll fix that in a few, but first let’s talk about how we are going to turn these elements into
links.

The way you specify navigation links in React Router isn’t by directly using the tried and
tested a tag and throwing in a path via the href attribute. Instead, you specify your navigation
link using React Router’s I.ink components that are similar to a tags but offer a lot more
functionality. To see the Link component in action, go ahead and modify our existing
navigation elements to look like the following highlighted lines:

Click here to view code image

var App = React.createClass ({
render: function() {

return (
<div>
<hl>Simple SPA</hl1>
<ul ="header">
<Link ="/">Home</Link></1i>
<Link ="/stuff">Stuff</Link></11i>
<Link ="/contact">Contact</Link></1i>

<div ="content">
{this.props.children}
</div>
</div>

1) ;

Notice what have done here. Our Link components specify a prop called to. This prop
specifies the value of the URL we will display in the address bar. Indirectly, it also specifies
the location we will be telling React Router we are virtually navigating to. Our Home link
takes users to the root (/), the Stuff link takes users to a location called stuff, and the Contact
link takes users to a location called contact.

If you preview your page and click on the links (which will now be visible because the CSS
for them will have kicked in), you won’t see anything new display. You will just see your
Home content because that is all that we had specified earlier. With that said, you can see the
URLSs updating in the address bar. You’ll see your current page followed by a #/contact,
#/stuff, or #/ depending on which of the links you clicked. Oh, you’ll also see a random hash
added after the URL. That is progress!

Adding the Stuff and Contact Views

Our app is slowly taking its final shape...or it will get really close by the time we are done
with this section! What we are going to do next is define the components for our Stuff and
Contact views that we linked to earlier. In your code just below where you have your Home
component, go ahead and add in the following:

Click here to view code image

Contact = React.createClass ({

render: 0 A
(

<diwv>
<h2>GOT QUESTIONS?</h2>
<p>The easiest thing to is post on
our forums.
</p>

</div>

) ;
}
1) ;

Stuff = React.createClass ({
render: () {
(
<div>
<h2>STUFF</h2>
<p>Mauris sem velit, vehicula eget sodales vitae,
rhoncus eget sapien:</p>

Nulla pulvinar diam</1li>
Facilisis bibendum</1i>
Vestibulum vulputate
Eget erat
<1i>Id porttitor

</div>
) i
}
b) i

What we have just added are the Stuff and Contact components that simply render out

HTML. All that remains is for us to update our routing configuration to include these two
components and display them at the appropriate URL.

In our ReactDOM. render method, go ahead and add the following two highlighted lines:

Click here to view code image

ReactDOM. render (
<Router>
<Route =m"/" ={App}>
<IndexRoute ={Home} />
<Route ="stuff" ={Stuff} />
<Route ="contact" ={Contact} />
</Route>
</Router>,
destination

All we are doing here is updating our routing logic to display the Stuff component if the
URL contains the word stuff and to display the Contact component if the URL contains the

word contact. If you preview your page now, click on the Stuff and Contact links. If
everything worked out fine, you’ll see these views get loaded inside our app frame when you
navigate to them.

Note: A Little Bit About Route Matching

Our route configuration is nothing more than a series of rules that determine what to
do when a URL matches the conditions we have laid out. The fancy term for that is
route matching. The heuristic React Router uses to match URLs is fully explained in
the React Router documentation, but for our case, we have a simple nested route where
you can have multiple things that can match at the same time. Our outer route matches
if the URL contains /. Our inner routes then match if the URL happens to contain stuff
or contact.

What this means is simple. For each route that matches, the component that you
specified to display will appear. When you are navigating to a page like /stuff, the App
component will display because the / exists in the URL. The Stuff component then
displays because the path for stuff is in the URL as well. That is why when we navigate
to the Stuff or Contact pages, we see them in addition to our frame. You can have
deeply nested routes as well.

Take a look at the following configuration:

Click here to view code image

ReactDOM.render (
<Router>
<Route path="/" component={App}>
<IndexRoute component={Home} />
<Route path="stuff" component={Stuff}>
<Route path="blah" component={MyBlah} />
</Route>
<Route path="contact" component={Contact} />
</Route>
</Router>,
destination) ;

In this example, notice that our Route element whose path is stuff now contains a
nested route for a path containing blah. This means if you happened to have a URL that
is /stuff/blah, the MyB1ah component will be displayed in addition to the Stuff
component and the App component from the parent routes matching.

By nesting routes and following the route matching rules
(https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md),
you can display custom views depending on a variety of URL arrangements you may
expose in your app for your users to navigate to.

https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md

Creating Active Links

The last thing we are going to tackle is something that greatly increases the usability of our
app. Depending on which page you are currently displaying, we are going to highlight that
link with a blue background. For example, Figure 13-6 is what our app will look like when the
Stuff content is being displayed.

Simple SPA

Home Stuff Contact

STUFF

Mauris sem velit, vehicula eget sodales vitae, rhoncus eget
sapien:

1. Nulla pulvinar diam

Facilisis bibendum

2
3. Vestibulum vulputate
4. Eget erat

5

Id porttitor

Figure 13-6 The Stuff content.

The way you accomplish this in React Router is by setting a prop called activeClassName
on your Link instances with the name of the CSS class that will get set when that link is
currently active. To make this happen, go back to your App component and make the
highlighted changes:

Click here to view code image

var App = React.createClass ({
render: function () {
return (
<div>
<hl>Simple SPA</hl1>

<ul ="header">

<Link ="/n ="active">Home</Link></1i>
<Link ="/stuff" ="active">Stuff</Link></1i>
<Link ="/contact" ="active">Contact</Link></1i>

<div ="content">
{this.props.children}
</div>
</div>

1)

We specify the activeClassName prop and set it to a value of active. This ensures that
whenever a link is clicked (and its path becomes active), the link element’s class attribute at

runtime gets set to a value of active. To ensure our active links are styled differently, go
ahead and add the following CSS:

.active {
: #0099FF;
}

If you preview your app now, click on any of the links. Notice that the active link (and the
Home link) displays with a blue background. We aren’t done just yet, though. Our Home link
is always highlighted. It should only be highlighted when we load our Home page for the first
time or explicitly navigate to the Home link itself. To fix this, we need to change how we link
to our Home content. Instead of specifying our Home content with a Link element, we are
going to replace it with an ITndexLink element instead.

Go ahead and make this change:

Click here to view code image

var App = React.createClass ({

render: function() {
return (
<div>
<hl>Simple SPA</hl1>
<ul ="header">
<1li><IndexLink ="/n ="active">Home</IndexLink></1i>
<1i><Link ="/stuff" ="active">Stuff</Link></1i>
<Link ="/contact" ="active">Contact</Link></1i>

<div ="content">
{this.props.children}
</div>
</div>

1)

Once your Home navigation element is represented by an ITndexLink instead of a Link,
preview your app again. This time, when the app loads, you’ll notice that your Home link has
the cool blue background by default. When you navigate to the Stuff or Contact pages, the
Home link no longer has the highlight applied. And with this, your app is mostly good to go!

Conclusion

By now, we’ve covered a good chunk of the cool functionality React Router has for helping
you build your single-page apps. This doesn’t mean that there aren’t more interesting things
for you to take advantage of. Our app was pretty simple with very modest demands on what
routing functionality we needed to implement. There is a whole lot more that React Router
provides, so if you are building a more complex single-page app than what we’ve looked at
so far, you should totally spend an afternoon taking a look the full React Router
documentation (https://github.com/reactjs/react-router/) and examples.

https://github.com/reactjs/react-router/

14. Building a Todo List App

If creating the Hello, World! example was a celebration of you getting your feet wet with
React, creating the quintessential Todo List app is a celebration of you approaching React
mastery! In this chapter, we tie together a lot of the concepts and techniques you’ve learned to

create something that works as follows: https://www.kirupa.com/react/examples/todo.htm
You start off with a blank app that allows you to enter tasks for later (see Figure 14-1).

Figure 14-1 A blank app with task entry.

The way this Todo List app works is pretty simple. Type in a task or whatever you want into
the text field and press Add (or hit Enter/Return). Once you’ve submitted your task, you will
see it appear as an entry. You can keep adding tasks to add additional entries and have them all

show up (see Figure 14-2).

https://www.kirupa.com/react/examples/todo.htm

Sit at the bottom of apple tree

Avoid getting hit by falling

apple

Explain gravity

Figure 14-2 You can add tasks and have them show up.

Pretty simple, right? In the following sections, we build this app from scratch and learn (in
awesomely painstaking detail) how things work along the way.

Getting Started

By now, you know the drill. We need a starting point, so go ahead and create a new HTML
document. Inside it, add the following content into it:

Click here to view code image

<IDOCTYPE html>
<html>

<head>
<title>React! React! React!</title>
<script src="https://npmcdn.com/react@15.3.0/dist/react.js"></script>
<script src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
Jjs"></script>

<style>

</style>
</head>

<body>

<div ="container">
</div>

<script ="text/babel">
destination = document.querySelector ("#container");

ReactDOM.render (

<diwv>
Hello!

</div>,
destination

) 7

</script>
</body>

</html>

If you preview all of this in the browser, you will see the word Hello! appear. If you see that,
then you are in good shape. It’s time to start building our Todo List app!

Creating the Ul

Right now, our app doesn’t do a whole lot. We’ll fix that by first getting the various Ul
elements up and running. That isn’t very complicated for our app! The first thing we are
going to do to is get our input field and button to appear. This is all done by using the div,

form, input, and button elements!

All of that will live inside a component we are going to call TodoList.Go ahead and add
the following code above where you have your ReactDOM. render method:

Click here to view code image

TodoList = React.createClass ({
render: 0 |
(
<div className="todoListMain">
<div className="header">
<form>
<input placeholder="enter task">
</input>
<button type="submit">add</button>
</form>
</div>
</div>
)
}
1)

Inside your ReactDOM. render method, we need to call our newly added TodoList
component to render it. Go ahead and replace your existing JSX with the following:

ReactDOM.render (
<div>
<TodoList/>
</div>,
destination

)7

Save your changes and preview what you have right now in your browser. You’ll see
something that looks like Figure 14-3.

@ © [" React! React! React! x
C | | localhost/todo_tutorial.htm
add

Figure 14-3 What you should see in the browser.

If you are surprised at what you see, take a few moments to look at the JSX we defined inside
the TodoList component. There shouldn’t be anything surprising there. We just defined a
handful of HTML elements that look really REALLY boring. Speaking of that, let’s make our
HTML elements look less boring by introducing them to so some CSS!

Inside your style block, add the following:

Click here to view code image

body {
padding: 50px;
background-color: #66CCFF;
font-family: sans-serif;

}

.todoListMain .header input {
padding: 10px;
font-size: 1l6px;
border: 2px solid #FFF;

}

.todoListMain .header button {
padding: 10px;
font-size: 1l6px;
margin: 10px;
background-color: #0066FF;
color: #FFF;

border: 2px solid #0066FF;
}

.todoListMain .header button:hover {
background-color: #003399;
border: 2px solid #003399;
cursor: pointer;

}

Once you’ve added all of this, preview your app now. Because our HTML elements had the
appropriate className values set on them, our CSS will kick in and our example will now

look like Figure 14-4.

‘ ®oe® / [React! React! React! X \@
= > C [D localhost/todo_tutorial.htm

enter task add

Figure 14-4 The improved example.

At this point, our app looks pretty good. It doesn’t do much, but at least we are making
progress. In the next section, we will start to make our app actually do things.

Creating the Functionality

The actual implementation of our Todo List app functionality is not as crazy as you might
think. Let’s take a high-level view of how it works. The most important piece of data is the text
you enter into the text field. Each time you enter some text and submit the form, that text gets
visually displayed in a list below any previous pieces of text you submitted. So far, this makes
sense, right?

All of this is done by simply taking advantage of React’s state functionality. Inside our state

object, we have an array that is responsible for storing everything you enter (see Figure 14-

5).

Find Tony Stark

Ask him to help The Avengers

Stored i au array

Figure out why Hulk and Thor — uside L

aren't returning my calls 057@{4

Get address for good
shawarma place

Figure 14-5 Our tasks are stored in an array. I know. Not very exciting :-(

Each time this array of items gets updated with new text that you submit, we update what you
see with the newly submitted text. The rest of the work is just around setting up events and
event handlers to ensure we can submit the form and know exactly what text to add to our
array of items. In the following sections, we are going to turn all of this English we’ve seen
here into React-flavored JavaScript and JSX!

Initializing our State Object

The first thing we are going to do is initialize our state object with the array that will be
responsible for storing all of the submitted text. Inside our TodoList component, add the
following highlighted lines:

Click here to view code image

var TodoList = React.createClass ({
getInitialState: function() {

items: []
3
|
render: 0 A

(
<div className="todoListMain">
<div className="header">
<form>
<input placeholder="enter task">
</input>
<button type="submit">add</button>
</form>
</div>
</div>
) ;
}
1)

What we are doing here is specifying the getInitialState method that gets called before

our component renders. Inside that method, we create an empty array called i tems that we
can then access via this.state.items from anywhere inside this component.

Handling the Form Submit

We add new items to our todo list when you submit the form either by pressing the Add button
or hitting Enter/Return on your keyboard. This behavior is mostly builtin to HTML and our
browsers know all about how to deal with this. We don’t have to write any special code for
dealing with the Enter/Return key or listening for a press on the Add button. The only thing
we need to worry about is dealing with what happens when the form actually gets submitted.

To do that, we listen to the onSubmit event on our form element. This event is fired every

time the form is submitted, and that includes hitting the Enter/Return key or fiddling with any
element that has a t ype attribute of submit on it. When the form is submitted and that event

gets overheard, we will need to call an event handler. Let’s give that event handler a name of
addItem.

Putting all of this together, inside your TodoList component’s render function, make the
following highlighted change:

Click here to view code image

render: function () {

return (
<div ="todoListMain">
<div ="header">
<form ={this.addItem}>
<input ="enter task">
</input>
<button ="submit">add</button>
</form>
</div>

</div>
) 7

As we had hoped to do, we just linked our form element’s onSubmit event to the addItem

event handler. This event handler doesn’t exist, but we are going to fix that by adding the
following highlighted lines:

Click here to view code image

var TodoList = React.createClass ({
getInitialState: function() {
return {
items: []
i
b

addItem: function (e) {

I

render: function () {
return (
<div ="todoListMain">
<div ="header">
<form ={this.addItem}>
<input ="enter task">
</input>
<button ="submit">add</button>
</form>
</div>
</div>

) ;
1)

Our addItem event handler/function doesn’t do a whole lot right now, but the important
thing is that it exists! Next, we’ll fix the part where it doesn’t do a whole lot.

Populating Our State

Right now, our TodoList component’s state object contains the i tems array. What we

need to do is populate this array with the text that you enter into the input field. That means we
need a way to access our input element from within React. The way we are going to do that

is by setting a re f attribute (as you saw in Chapter 12) on our input element and storing the
reference to the HTML element that gets generated.

Inside our TodoList component’s render method, add the following line:

Click here to view code image

render: (OI|

(
<div className="todoListMain">
<div className="header">

<form onSubmit={ .addItem}>
<input ref={(a) => . _inputElement = a}
placeholder="enter task">
</input>
<button type="submit">add</button>
</form>
</div>

</div>

)
}
When this highlighted code runs, which is immediately after this component mounts, the
_inputElement property will store a reference to the generated input element. Now that
we have done this, we can treat this element like we would any DOM element we might have
found using querySelector or equivalent function in the non-React world. What we are
going to do next is populate our items array!

Go ahead and modify the addItem method by adding the following lines:

Click here to view code image

addItem: (e) {
itemArray = .state.items;

itemArray.push (
{

text: . _inputElement.value,
key: Date.now ()
}
);

.setState ({
items: itemArray

});

e.preventDefault () ;
}

This looks like a lot of code you just added, but all we are doing here is putting into
JavaScript our earlier stated goal of populating our items array with text from our input
field. Let’s walk through this code in greater detail.

The first thing we do is create an array called i temArray that stores a reference to our
state object’s items property:

Click here to view code image

itemArray = .state.items;

Once we have this array, we add to it our recently submitted text entry from our input
element:

Click here to view code image

itemArray.push (
{

text: . _inputElement.value,
key: Date.now ()
}
)

Notice that we aren’t just adding the text entry from our input element. We are instead
adding an object made up of the text and key properties. The text property stores our
input element’s text value. The key property stores the current time. This sounds like a
bizarre thing to do, but as you recall from Chapter 9, the goal is to have this key value be

unique for every entry that gets submitted. This is important because (spoiler alert!) we will
be using the data in this array to eventually generate some Ul elements. This key value is what
React will use to uniquely identify each generated Ul element, so by generating the key using
Date.now (), we ensure a certain level of uniqueness. Because this is an important (yet easy
to overlook) detail, we will revisit all of this again in a few moments.

Anyway, getting back on track, once we are done with the itemArray, all that remains is to
setour state object’s items property to it:
.setState ({

items: itemArray

1)

Almost done here! The last thing we do in this method is the following:

e.preventDefault () ;

The preventDefault method ensures we override the default onSubmit event. The reason

we do this is a bit obscure, but it is to ensure the following: all we want to do when we submit
the form is call the addItem method. If we didn’t stop the default behavior, our app will
correctly call addItem as desired when we submit the form. It will also trigger our
browser’s default POST behavior—which we definitely don’t want. By stopping the
onSubmit event from performing the default behavior, we get our desired behavior of calling
the addItem method without any of the unwanted side effects like an unnecessary POST

action that might refresh your page.

Displaying the Tasks

We are almost done here! The last-ish thing we are going to do is visualize the tasks that
currently live inside our state object’s i tems array. This is going to involve creating a
whole new component called TodoItems, passing around some props, using the map
function, and doing other awesome andrenaline-inducing things (Figure 14-6).

OH
HO N

HO

I
Chewdcal structure for

Adrenaline (aka Epinephrine)
Figure 14-6 Adrenaline!
Anyway, the first thing we are going to do is define our TodoItems component. In your
code, just above where you have the TodoL1ist component defined, go ahead and add the
following in:

Click here to view code image

var TodoItems = React.createClass ({
render: function () |

}
1) ;

There is nothing going on right now, but that’s OK.

Next, what we are going to do is call this component from inside the TodoList component’s
render method. Not only that, we are going to specify a prop and pass in our TodoList
component’s state object that contains our items array. Doing all of this is really simple, so
go ahead and add the following highlighted line to your TodoList component’s render
method:

Click here to view code image

render: function() {
return (
<div className="todoListMain">
<div className="header">
<form onSubmit={this.addItem}>
<input ref={(a) => this. inputElement = a}
placeholder="enter task">
</input>
<button type="submit">add</button>

</form>
</div>
<TodoItems ={this.state.items}/>
</div>
) ;
}

All we did here is instantiate our TodoItems component and pass in our items state
property to a prop called entries. At this point, if you run our app in the browser, nothing
visible will happen. Our TodoItems component is ready to render, and it has access to all of
the tasks that were submitted. The only problem is that it doesn’t really do anything with all of
that, but we are going to fix that up next.

Getting back to our TodoItems component, the first thing we are going to do is create a
new variable to store our passed in array of tasks. To do that, add the following highlighted
line:

Click here to view code image

TodoItems = React.createClass ({
render: 0 o
todoEntries = .props.entries;

}
b) i
We just added a variable called todoEntries, and it stores the value from the entries
prop that we passed in based on the TodoList component’s this.state.items value.
Sweet! Now, our todoEntries variable stores an array containing a bunch of objects that
each store a task and a key. All that remains is to create the HTML elements that will be used
to display our data.

In the first step towards accomplishing that, add the following highlighted lines of code to
create the 11 elements:

Click here to view code image

TodoItems = React.createClass ({
render: 0 o
todoEntries = .props.entries;

createTasks (item) {
<1li key={item.key}>{item.text}</1i>

listItems = todoEntries.map (createTasks) ;
}
1) ;

We are using the map function to iterate every item inside todoEntries and call the
createTasks function to create a list element for each entry:

Click here to view code image

createTasks (item) {
<1i key={item.key}>{item.text}</1i>

To reiterate a point we made earlier, since these list elements are dynamically created, we
need to help React keep track of them by specifying the key attribute and giving each a
unique value. We already solved this part of the problem when we stored our tasks initially, as
you recall:

Click here to view code image

itemArray.push (
{

text: . _inputElement.value,
key: Date.now ()
}
)

Because of our earlier planning, we take the easy street right now by assigning our key
attribute the item. key value that each item in our todoEntries array already contains.
Our list element’s visible content is simply the text value stored by i tem. text. There is no
extra explanation needed for how we use that one. Quite refreshing, isn’t it?
Putting all of this together, this collection of list elements is fully processed and stored by our
listItems variable. All that remains at this point is to go from list elements inside an array
to list elements rendered on the screen. To accomplish that, go ahead and add the following
highlighted lines:

Click here to view code image

TodoItems = React.createClass ({
render: 0 A
todoEntries = .props.entries;

createTasks (item) {
<1li key={item.key}>{item.text}</1i>

listItems = todoEntries.map (createTasks);

(
<ul className="theList">
{listItems}

) &

1) ;

What we are doing is returning an ul element whose contents are the list elements stored by
listItems. After you’ve added this, save your document and preview your app. You’ll see
something that looks like Figure 14-7 after entering a few tasks.

Finish laundry|

Figure 14-7 List element for the list items.

Our app works! Every task you submit shows up in its own list item. Take a few deep breaths
and relax for a few moments. This is awesome progress, and all we have left are a few little
things here and there that need to be wrapped up.

Adding the Finishing Touches

We are almost done here! First, what we have right now doesn’t look exactly like the example
we started out with. Our list of tasks looks a bit plain, but that can be fixed with some CSS
magic. Inside your style block, add the following style rules just below where your existing

style rules live:

Click here to view code image

.todoListMain .thelList {
list-style: none;
padding-left: 0;
width: 255px;

}

.todoListMain .theList 11 {
color: #333;
background-color: rgba(255,255,255,.5);
padding: 15px;
margin-bottom: 15px;
border-radius: 5px;

}

If you preview your app now, you’ll see that the entered tasks look exactly as you expected
them to:

Hi, mom!!]]

Am | done yet?

Learning about React is
awesome though!

Hi, mom!!!

Next, have you noticed that whatever you enter into the input field doesn’t go away after you
submit the form? You have to manually clear out the field each time after submitting a
task...like an animal! That is annoying, but the fix for it is quite simple. Inside our TodoList
component’s addI tem method, add the following highlighted line:

Click here to view code image

addItem: function(e) {
var itemArray = this.state.items;

itemArray.push (
{
text: this. inputElement.value,
key: Date.now ()
}
)7

this.setState ({
items: itemArray

1)
this. inputElement.value = "";

e.preventDefault () ;
}

All we are doing here is clearing our input element’s value property when the form is
submitted and the addTItem method gets called. This ensures that we no longer have to
manually clear out our input field between each task we would like to submit. Simple bimple!

Conclusion

Our Todo app is pretty simple in what it does, but by building it from scratch, we covered
almost every little interesting detail React brings to the table. More importantly, we created an
example that shows how the various concepts we learned individually play together. That is
actually the important detail. Now, here is a quick question for you: does everything we’ve
done in this chapter make sense?

If everything we’ve done in this chapter makes sense then you are in good shape to tell your
friends and family that you are close to mastering React! If there are areas that you find
confusing, I suggest you go back and re-read the chapters which address your confusion.

15. Setting Up Your React Development Environment

The last major React-related topic we look at is less about React and more about setting up
your development environment to build a React app. Up until now, we’ve been building our
React apps by including a few script files:

Click here to view code image

<script ="https://npmcdn.com/react@l5.3.0/dist/react.js"></script>
<script ="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
<script ="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.

js"></script>

These script files not only loaded the React libraries, but they also loaded Babel to help our
browser do what needs to be done when it encountered bizarre things like JSX (see Figure 15-
1).

JIX

LOREMIPSUM

I
m B
Growser

Figure 15-1 Our React approach.

To review what we mentioned earlier when talking about this approach, the downside is
performance. As part of your browser doing all of the page-loading related things it normally
does, it is also responsible for turning your JSX into actual JavaScript. That JSX to JavaScript

conversion is a time-consuming process that is fine during development. It isn’t fine if every
user of your app has to pay that performance penalty.

The solution is to set up your development environment where your JSX to JS conversion is
handled prior to the user loading the page (see Figure 15-2).

Coe. Edltor

LOREMIPSUM

7A)

Figure 15-2 JSX to JavaScript conversion as part of your app building process.

With this solution, your browser is loading your app and dealing with an already converted
(and potentially optimized) JavaScript file. Good stuff, right? Now, the only reason why we
delayed talking about all of this until now is for simplicity. Learning React is difficult enough.

Adding the complexity of build tools and setting up your environment as part of learning
React is just not cool. Now that you have a solid grasp of everything React does, it’s time to
change that with this chapter.

In the following sections, we look at one way to set up your development environment using a
combination of Node, Babel, and webpack. If all of this sounds bizarre to you, don’t worry.
You’ll be on a first name basis with all of these tools by the end of it.

Note: Things May Change

Build tools and their dependencies change all the time. That is great news for us, but it
makes publishing information about it a challenge! This chapter contains the latest
information based on current (aka when this was written!) best-practices, but this
information may change. If you find that some tools and instructions aren’t working
they way they are described, please check out the (more frequently updated) online
version of this article at the following location:
https://www.kirupa.com/react/setting_up_react_environment.htm

Meet the Tools

Ok, it is time to move further away from generalities (and sweet diagrams). It is time to get
serious—er. It is time to meet the tools that we are going to be relying on to properly set up
our development environment.

Node.js

For the longest time, JavaScript was something you wrote to primarily have things happen in
your browser. Node.js changes all of this. Node.js allows you to use JavaScript to create
applications that run on the server and have access to APIs and system resources that your
browser couldn’t even dream of. It is basically a full-fledged application development
runtime whose apps (instead of being written in Java, C#, C++, etc.) are built and run entirely
on JavaScript.

For our purposes, we are going to be relying on Node.js (well, the Node Package Manager,
aka NPM) to manage dependencies and tie together the steps needed to go from JSX to
JavaScript. Think of Node.js as the glue that makes our development environment work.

Babel

This one should be familiar to us! Simply put, Babel is a JavaScript transpiler. It turns your
JavaScript into...um...JavaScript. That sounds really bizarre, so let me clarify. If you are using
the latest JavaScript features, older browsers might not know what to do when they encounter

a new function or property. If you are writing JSX, well...no browser will know what to do
with that!

What Babel does is take your new-fangled JS or JSX and turn into a form of JS that most
browsers can understand. We’ve been using its in-browser version to transform our JSX into
JavaScript all this time. In a few moments, you’ll see how we can integrate Babel as part of
our build process to generate an actual browser-readable JS file from our JSX.

https://www.kirupa.com/react/setting_up_react_environment.htm

webpack

The last tool we will be relying on is webpack. It is known as a module bundler. Putting the
fancy title aside, a lot of the frameworks and libraries your app includes have a lot of
dependencies where different parts of the functionality you rely on might only be a subset of
larger components.

You probably don’t want all of that unnecessary code, and tools like webpack play an
important role to enable you to only include the relevant code needed to have your app work.
They often bundle all of the relevant code (even if it comes from various sources) into a

single file (see Figure 15-3).

\[- SINGLE FILE!

Files your code relies ou!

Figure 15-3 Files packed into a single file.

We’ll be relying on webpack to bundle up the relevant parts of the React library, our JSX
files, and any additional JavaScript into a single file. This also extends to CSS (LESS/SASS)
files and other types of assets your app uses, but we’ll focus on just the JavaScript side here.

Your Code Editor

No conversation about your development environment can happen without talking about the
most important tool in all of this, your code editor (see Figure 15-4).

Figure 15-4 Your code editor.

It doesn’t matter whether you use Sublime, Atom, VisualStudio Code, TextMate, Coda, or any
other tool. You will spend some non-trivial amount of time in your code editor not just to
build your React app but to also configure the various configuration files that Node, Babel,
and WebPack need.

It Is Environment Setup Time!

At this point, you should have a vague idea of what we are trying to do...the dream we are
trying to achieve! We even looked at the various tools that will play a role in making this
dream a reality. Now, it is time for the hard work to actually make everything happen.

Setting up our Initial Project Structure

The first thing we are going to do is set up our project. Go to your Desktop and create a new
folder called MyTotallyAwesomeApp. Inside this folder, create two more folders called dev
and output. Your folder arrangement will look a little bit like Figure 15-5.

Y
B MyTotallyAwesomeApp

e
- dev

[
B output

Figure 15-5 Our current folder arrangement.

What we are doing here is pretty simple. Inside our dev folder, we will place all of our
unoptimized and unconverted JSX, JavaScript, and other script-related content. In other
words, this is where the code you are writing and actively working on will live. Inside our
output folder, we will place the result of running our various build tools on the script files
found inside the dev folder. This is where Babel will convert all of our JSX files into JS. This
is also where webpack will resolve any dependencies between our script files, and place all of
the important script content into a single JavaScript file.

The next thing we are going to do is create the HTML file that we will point our browser to.
Inside the MyTotallyAwesomeApp folder, use your code editor to create a new HTML file
called index.html with the following contents:

Click here to view code image

<!DOCTYPE html>
<html>

<head>
<title>React! React! React!</title>
</head>

<body>
<div id="container"></div>

<script src="output/myCode.js"></script>
</body>

</html>

Be sure to save your file after adding this content in. Now, speaking of the content, our
markup is pretty simple. Our document’s body is just an empty div element with an id value
of container and a script tag that points to the final JavaScript file (myCode.js) that will
get generated inside the output folder:

Click here to view code image

<script src="output/myCode.js"></script>

Besides those two things, our HTML file doesn’t have a whole lot going for it. If we had to
visualize the relationship of everything right now, it looks a bit like Figure 15-6.
e

B MyTotallyAwesomeApp
dev

output

[S
|
[
|
E
‘- {J} myCode.js

E index.html

Figure 15-6 What your current project structure looks like.

I’ve dotted the line to the myCode.js file in our output folder because that file doesn’t exist
there yet. We are pointing to something in our HTML that currently is non-existent, but that
won’t stay that way for long.

Installing and Initializing Node.js

Our next step is to install Node.js. Visit the Node.js site (https://nodejs.org/) to install the
version that is appropriate for your operating system (see Figure 15-7).

https://nodejs.org/

Download for OS X (x64)

v4.4.5 LTS v6.2.2 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the LTS schedule.

Figure 15-7 The download buttons on the Node.js site.

I tend to always install the latest version, so you should go with that as well. The download
and installation procedure isn’t particularly exciting. Once you have Node.js installed, test to
make sure it is truly installed by launching the Terminal (on Mac), Command Prompt (on
Windows), or equivalent tool of choice and typing in the following and pressing Enter:

node -v

If everything worked out properly, you will see a version number displayed that typically
corresponds to the version of Node.js you just installed. If you are getting an error for
whatever reason, follow the troubleshooting steps listed here
(https://github.com/npm/npm/wiki/Troubleshooting).

Next, we are going to initialize Node.js on our MyTotallyAwesomeApp folder. To do this,
first navigate to the MyTotallyAwesomeApp folder using your Terminal or Command
Prompt. On OS X, this will look like Figure 15-8.

® @ MyTotallyAwesomeApp — -bash — 79x14

Kirupas-MacBook-Pro:~ kirupa$ cd Desktop/MyTotallyAwesomeApp/
Kirupas-MacBook-Pro:MyTotallyAwesomeApp kirupas ||

Figure 15-8 Navigate to the MyTotallyAwesomeApp folder.

https://github.com/npm/npm/wiki/Troubleshooting

Now, go ahead and initialize Node.js by entering the following:
npm init

This will kick off a series of questions that will help set up Node.js on our project. The first
question will ask you to specify your project name. Hitting Enter will allow you to specify the
default value that has already been selected for you. That is all great, but the default name is
our project folder, which is MyTotallyAwesomeApp. If you hit Enter, because it contains
capital letters, it will throw an error (see Figure 15-9).

. @ MyTotallyAwesomeApp — npm TERM_PROGRAM=Apple_Terminal ANDROID_HO...

Kirupas-MacBook-Pro:MyTotallyAwesomeApp kirupa%s npm init =]
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See "npm help json® for definitive documentation on these fields
and exactly what they do.

Use "npm install <pkg> --save’ afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

name: (MyTotallyAwesomeApp)

Sorry, name can no longer contain capital letters.
name: (MyTotallyAwesomeApp) |

Figure 15-9 Our project folder name includes capital letters, triggering an error.

Go ahead and enter the lowercase version of the name, mytotallyawesomeapp. Once you’ve
done that, press Enter. For the remaining questions, just hit Enter to accept all the default
values. The end result of all of this is a new file called package.json that will be created in
your MyTotallyAwesomeApp folder (see Figure 15-10).

i

B MyTotallyAwesomeApp

[

- dev

output

|
|
|
.

= (’) myCode.js
[T] index.htmi
o package.json

Figure 15-10 The package.json file shows up in your folder.

If you open the contents of package.json in your code editor, you’ll see something that looks
similar to the following:

Click here to view code image

{

"name": "mytotallyawesomeapp",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
by
"author": "",
"license": "ISC"

}

Don’t worry too much about the contents of this file, but just know that one of the results of

you calling npm init is that you have a package.json file created with some weird
properties and values that Node.js totally knows what to do with.

Installing the React Dependencies

What we are going to do next is install our React dependencies so that we can use the React
and React DOM libraries in our code. If you are coming from a pure web development
background, this is going to sound strange. Just bear with me on this.

In your Terminal or Command Prompt, enter the following to install our React dependencies:

Click here to view code image

npm install react react-dom --save

Once you Enter this, a lot of weird stuff will show up on your screen. You may even see a
bunch of warnings, but they should be safe to ignore. What is happening is that the React and
React-DOM libraries (and stuff that they depend on) is getting downloaded from a giant
repository of Node.js packages found here: https://www.npmjs.com/

If you take a look at your MyTotallyAwesomeApp folder, you’ll see a folder called
node_modules. Inside that folder, you’ll see a bunch of various modules (aka what Node.js
calls what we mere mortals just call libraries). Let’s update our visualization of our current
file/folder structure to look like Figure 15-11.

https://www.npmjs.com/

Lo
B MyTotallyAwesomeApp

-,
- W dev
 i—
= H node_modules

~ W output

F L ¥

> {i} myCode.js
- E index.html
— Q package.json

Figure 15-11 The updated folder structure.

The list of modules you see right now is just the beginning. We’ll be adding a few more by
the time you reach the end of this, so don’t get too attached the number of items you see inside
our node_modules folder :P

Adding our JSX File

Things are about to get (more!) interesting. Now that we’ve told Node.js all about our interest
in React, we are one step closer towards building a React app. We are going to further enter
these waters by adding a JSX file that is a modified version of the example we saw in Chapter
3 when looking at Components.

Inside our dev folder, using the code editor, create a file called index.jsx with the following
code as its contents:

Click here to view code image

import React from "react";
import ReactDOM from "react-dom";

var HelloWorld = React.createClass ({

render:

(
<p>Hello,

) 7

P

ReactDOM.render (

<div>
<HelloWorld
<HelloWorld
<HelloWorld
<HelloWorld
<HelloWorld
<HelloWorld

</div>,

0 f

{ .props.greetTarget} ! </p>

greetTarget="Batman"/>
greetTarget="Iron Man"/>
greetTarget="Nicolas Cage"/>
greetTarget="Mega Man"/>
greetTarget="Bono"/>
greetTarget="Catwoman" />

document.querySelector ("#container™)

) 7

Notice that the bulk of the JSX we added is pretty much unmodified from what we had earlier.
The only difference is that what used to be script references for getting the React and React

DOM libraries into our app has now been replaced with import statements pointing to our
react and react-dom Node.js packages we added a few moments ago:

Click here to view code image

import React from "react";

import ReactDOM

Now, you are probably eagerly wondering when we can build our app and get it all working
in our browser. Well, there are still a few more steps left. Figure 15-12 shows what the current

from "react-dom";

visualization of our project looks like.

[

B MyTotallyAwesomeApp
ey
Wl cev
I— (I) index.jsx

e
n node modules

[

B output

- = a= e

- (I) myCode.js
E index.html
O package.json

Figure 15-12 The current project.

Our index.html file is looking for code from the myCode.js file which still doesn’t exist. We
added our JSX file, but we know that our browser doesn’t know what to do with JSX. We need
to go from index.jsx in our dev folder to myCode.js in the output folder. Guess what we are
going to do next?

Going from JSX to JavaScript

The missing step right now is turning our JSX into JavaScript that our browser can
understand. This involves both webpack and Babel, and we are going to configure both of
them to make this all work.

Setting up webpack

Since we are in Node.js territory and both webpack and Babel exist as Node packages, we
need to install them both just like we installed the React-related packages.

To install webpack, enter the following in your Terminal / Command Prompt:

npm install webpack --save

This will take a few moments while the webpack package (and its large list of dependencies)

gets downloaded and placed into our node_modules folder. After you’ve done this, we need

to add a configuration file to specify how webpack will work with our current project. Using
your code editor, add a file called webpack.config.js inside our MyTotallyAwesomeApp

folder (see Figure 15-13).

|,

B MyTotallyAwesomeApp
ey
W e
I— (I) index.jsx

]
H node modules

(=

B output

F_--

- (I) myCode.js

E index.html

O webpack.config.js

Figure 15-13 Adding webpack.config.js.

Inside this file, we will specify a bunch of JavaScript properties to define where our original,
unmodified source files live and where to output the final source files. Go ahead and add the
following JavaScript into webpack.config.js:

Click here to view code image

webpack = require ("webpack") ;
path = require ("path");

DEV = path.resolve (dirname, "dev");
OUTPUT = path.resolve (dirname, "output");

config = {
entry: DEV + "/index.jsx",
output: {

path: OUTPUT,
filename: "myCode.js"
}
i

module.exports = config;

Take a few moments to see what this code is doing. We defined two variables called DEV and
OUTPUT that refer to folders of the same name in our project. Inside the config object, we
have two properties called entry and output that use our DEV and OUTPUT variables to
help map our index.jsx file to become myCode.js.

Setting up Babel

The last piece in our current setup is to transform our index.jsx file to become regular
JavaScript in the form of myCode.js. This is where Babel comes in. To install Babel, let’s go
back to our trusty Terminal / Command Prompt and enter the following Node.js command:

Click here to view code image

npm install babel-loader babel-preset-es2015 babel-preset-react --save

With this command, we install the babel-loader, babel-preset-es2015, and babel-preset-
react packages. Now we need to configure Babel to work with our project. This is a two-step
process.

The first step is to specify which Babel presets we want to use. There are several ways of
doing this, but my preferred way is to modify package.json and add the following
highlighted content:

Click here to view code image

{

"name": "mytotallyawesomeapp",

"version": "1.0.0",

"description": "",

"main": "index.js",

"scripts": |
"test": "echo \"Error: no test specified\" && exit 1"

by

"author": "",

"license": "ISC",

"dependencies":
"babel-loader": ""6.2.4",
"babel-preset-es2015": "76.9.0",
"babel-preset-react": ""6.5.0",
"react": "~15.1.0",

"react-dom": "715.1.0",
"webpack": "~1.13.1"
b
"babel": {
"presets": [
"es2015",
"react"
]
}
}

In the highlighted lines, we specify our babel object and specify the es2015 and react preset
values.

The second step is to tell webpack about Babel. In our webpack.config.js file, go ahead and
add the following highlighted lines:

Click here to view code image

var webpack = require ("webpack");
var path = require ("path");

var DEV = path.resolve(_ dirname, "Dev");
var OUTPUT = path.resolve(dirname, "output");

var config = {
entry: DEV + "/index.]jsx",
output: {

path: OUTPUT,
filename: "myCode.js"
by
module: {
loaders: [{
include: DEV,
loader: "babel",
}]
}
i

module.exports = config;

We added the module and loaders objects that tell webpack to pass the index.jsx file defined in
our entry property to turn into JavaScript through Babel. With this change, we’ve pretty much
gotten our development environment setup for building a React app.

Building and Testing Our App

The last (and hopefully most satisfying) step in all of this is building our app and having the
end-to-end workflow work. To build our app, what you type varies on whether you are on the
Terminal or on the Command Prompt.

For the Terminal on the Mac, enter the following:

./node modules/.bin/webpack

In the Command Prompt on Windows, enter this instead:

node modules)\.bin\webpack.cmd

This command runs webpack and does all the things we’ve specified in our
webpack.config.js and package.json configuration files. Your output in your Terminal /
Command Prompt will look something like Figure 15-14.

& & MyTotallyawesomeApp — -bash — 80x=24

Kirupas-MacBook-Pro:MyTotallyAwesomehpp kirupa$./node_modules/.bin/webpack 8
Hash: dd8d28426768160012083
Version: webpack 1.13.1
Time: 1022ms
Asset Size Chunks Chunk Names
myCode.js 781 kB @ [emitted] main
+ 168 hidden modules
Kirupas-MacBook-Pro:MyTotallyAwesomedpp kirupas JI

Figure 15-14 The webpack output.

Besides seeing something that vaguely looks like a successful build displayed in cryptic text
form, go to your MyTotallyAwesomeApp folder. Open your index.html file in your browser.
If everything was set up properly, you’ll see our simple React app displaying (see Figure 15-
15).

® ©® Y React! React! React! X

C [localhost/index.html

Hello, Batman!
Hello, Iron Man!
Hello, Nicolas Cage!
Hello, Mega Man!
Hello, Bono!

Hello, Catwoman!

Figure 15-15 The simple React app displaying.

If you venture into the Output folder and look at myCode.js, you’ll see a fairly hefty
(~700Kb) file with a lot of JavaScript made up of the relevant React, ReactDOM, and your app
code all organized there.

From this point, you can build your app, add new assets, and make the typical changes you
normally would. The only difference between what we had been doing throughout this book
and what we are doing now is simple—what your browser cares about is generated for you by
the various build tools and packager. Your browser is no longer taking all of this React
JSX/ES6/etc. stuff and converting it into normal HTML/CSS/JS on the fly during page load.

Conclusion

Well...that just happened! In the preceding many sections, we followed a bunch of bizarre and
incomprehensible steps to get our build environment set up to build our React app. What
we’ve seen is just a very small part of everything you can do when you put Node, Babel, and
webpack together. The unfortunate thing is that covering all of that goes well beyond the
scope of learning React, but if you are interested in this, you should definitely invest time in
learning the ins and outs of all of these build tools. There are a lot of cool things you can do.

For more information on those cool things, check out the following links:
= Babel: https://babeljs.io/
» npm Documentation: https://docs.npmjs.com/
= webpack module bundler: https://webpack.github.io/
= React Tooling Integration: https://facebook.github.io/react/docs/tooling-integration.html

= Bower: https://bower.io/

https://babeljs.io/
https://docs.npmjs.com/
https://webpack.github.io/
https://facebook.github.io/react/docs/tooling-integration.html
https://bower.io/

16. The End

So..here we are. After 15 chapters, we’ve covered a lot of ground when it comes to learning
how to use React to build cool things. A while ago, we started off by discussing the problems
associated with building complex Uls and how React was going to make that a breeze.
Hopefully in the chapters since, you got a really good idea of how you can use React to
accomplish this.

While we may be done with the formal content in this book, this doesn’t mean that our
interaction is over. If you ever have any questions or run into any issues working with React,
I’d like to hear from you. The easiest way to contact me is by posting on the forums at
http://forum.kirupa.com, but you can also ping me via Twitter (@kirupa) or send me an e-
mail (kirupa@kirupa.com). I’ll do my best to respond to you as quickly as I can.

See you all next time!
Cheers,

7

http://forum.kirupa.com
mailto:kirupa@kirupa.com

Index

Symbols
{ } (curly brackets), 33, 86-87
... (spread) operator
explained, 78
transferring properties with, 78-80

A
accessing
DOM elements
ES6 arrow functions, 141
references, 137-141
when to use, 135-137
properties, 33
active links, creating, 159-160
activeClassName property, 159-161
addEventListener function, 118-119
addItem event handler, 170, 171, 177-178
Alpert, Ben, 86
Animaniacs Good Idea / Bad Idea sketches, 36
APIs (application programming interfaces), 9
app frames, 147-149
application programming interfaces (APIs), 9
apps
catalog browser app
multi-page design, 2—3
SPA (single-page app) model, 3—6
creating with React Router
app frame, 147-149
boilerplate markup and code, 146-147
Contact component, 157-158
CSS (Cascading Style Sheets), 151-153
example, 144-145
Home component, 149-151
home page, displaying, 149-151, 154155
Link component, 156
navigation links, 155-156, 159-160

overview, 143-144
ReactRouter prefix, 153—154
render method, 148-149, 154
Route component, 149
route matching, 158
Router component, 149
Stuff component, 157158
first React app
blank HTML page, creating, 15-16
destination, changing, 18—19
name, displaying, 16-18
styles, 19-20
MyTotallyAwesomeApp
index.jsx file, 191-192
initial project structure, 184—186

Node.js initialization, 187-189
React dependencies, 190-191
testing, 197-198

Todo List app
addItem event handler, 171, 177-178
app functionality, 168
form submission, 169-170
functionality, 168
initial code listing, 164-165
overview, 163-164
render method, 166, 171, 173-174
state object initialization, 169
state object population, 171-172
styles, 167, 176-178
task display, 173—176
Todoltems component, 173—-176
UI (user interface), 165-168

architecture (MVC), 11

arguments. See properties

arrays of components, 103-105

arrow functions (ES6), 141

attributes. See properties

autobinding, 95

automatic Ul state management, 7—8

avoiding ReactRouter prefix, 153-154

B

Babel
overview, 182
referencing, 16, 86
website, 198
background color, customizing, 4547
backgroundColor property (letterStyle object), 46
bgcolor attribute, 46
blank HT ML pages, creating, 15-16
Bower, 198
browser compatibility, 120
building apps. See apps
button counter
event handler, 110-112
event listening
regular DOM events, 117-119
SyntheticEvent type, 116117
event properties, 114-115
initial code listing, 108—110
lifecycle methods
componentDidMount method, 129
componentDidUpdate method, 131
componentWillMount method, 129
componentWillReceiveProps method, 132
componentWillUnmount method, 132
componentWillUpdate method, 131
getDefaultProps method, 128
getlnitial State method, 128
initial code listing, 124127
initial rendering phase, 127-129
render method, 129, 131
shouldComponentUpdate method, 130-131
unmounting phase, 132
updating phase, 129-132
overview, 107-108
SyntheticEvent type, 112—-114
this keyword, 119-120
Buttonify component, 35-36

C

calling functions, 25
camelcase, 86
capitalization (JSX), 87-88
Card component, 58—-59
Cascading Style Sheets. See CSS (Cascading Style Sheets)
catalog browser app
multi-page design, 2—3
SPA (single-page app) model, 3—6
changing destination, 18-19
child components
overview, 34-36
passing properties to, 63—65
transferring properties to
component hierarchy and, 69-74
problems with, 69-77
spread operator (...), 78-80
Circle component
array of, 103—-105
circleStyle object, 101
initial code listing, 99-102
render method, 102
showCircle function, 102-103
theCircle variable, 102
circleStyle object, 101
class names, 85-86
CleverComponent, 34
code editors, 183-184
color of background, customizing, 45-47
color palette card
Card component, 58-59
component definitions, 56-58
component identification, 53-56
generated HTML, 66
Label component, 61-63
overview, 49-51
properties, passing to child components, 63—-65
Square component, 60-61
visual element identification, 51-53

Colorizer component
behavior of, 135-137
references, 137-141
comments, 86—87
compiler. See Babel
component hierarchy, 55-56, 69-70
componentDidUpdate method, 131
components
arrays of, 103—105
Buttonify, 35-36
capitalization of, 87-88
child components, 34-36
Circle
array of, 103—-105
circleStyle object, 101
initial code listing, 99-102
render method, 102
showCircle function, 102-103
theCircle variable, 102
CleverComponent, 34
color palette card
Card component, 58-59
component definitions, 56—58
component identification, 53-56
generated HTML, 66
Label component, 61-63
overview, 49-51
properties, passing to child components, 63—65
Square component, 60-61
visual element identification, 51-53
Colorizer
behavior of, 135137
references, 137-141
component hierarchy, 55-56, 69-70
composability. See also color palette card
advantages of, 66
definition of, 49
overview, 49-51
Contact, 157-158

CounterParent
event handler, 110-112
event listening, 116-119

event properties, 114-115
initial code listing, 108—110
overview, 107-108
this keyword, 119-120
creating
Card component, 58-59
component definitions, 56—58
component identification, 53-56
generated HTML, 66
Label component, 61-63
overview, 49-51
properties, 63—65
Square component, 60-61
visual element identification, 51-53
definition of, 23-24, 29
events. See events
generated HTML, 40-41
HelloWorld component
creating, 30—32
properties, 32—34
Home, 149-151
Label, 77
Letter, 37-39
lifecycle methods
button counter example, 124-127
componentDidMount method, 129
componentDidUpdate method, 131
componentWillMount method, 129
componentWillReceiveProps method, 132
componentWillUnmount method, 132
componentWillUpdate method, 131
definition of, 123
getDefaultProps method, 128
getlnitial State method, 128
initial rendering phase, 127-129
overview, 123-124
render method, 129, 131

shouldComponentUpdate method, 130-131
unmounting phase, 132
updating phase, 129-132
Lightning CounterDisplay
componentDidMount method, 93, 94-95
full code listing, 96-98
getlnitial State method, 93-94
initial code, 90-92
initial state value, setting, 93-94
overview, 89-90
setInterval function, 93
setState method, 93, 95
state change, rendering, 96
strikes variable, 93-94
timerTick function, 94-95
Link, 156
multiple components, displaying, 103—105
PlusButton, 116117
properties
specifying, 33-34
transferring. See transferring properties
Route, 149
Router, 149
Shirt, 74-77
Stuff, 157-158
styling with CSS, 41-42
styling with React
customizable background color, 45-47
overview, 42
px suffix, omitting, 45
style object, creating, 43
styles, applying, 43-45
Todoltems, 173—-176
TodoList
addItem event handler, 171, 177-178
app functionality, 168
form submission, 169-170
functionality, 168
initial code listing, 164-165
overview, 163-164

render method, 166, 171, 173-174
state object initialization, 169
state object population, 171-172
styles, 167, 176-178
task display, 173—176
UI (user interface), 165-168
component WillMount method, 129
component WillReceiveProps method, 132
component WillUnmount method, 132
component WillUpdate method, 131
composability of components
advantages of, 66
color palette card example
Card component, 58-59
component definitions, 56—58
component identification, 53-56
generated HTML, 66
Label component, 61-63
overview, 49-51
properties, passing to child components, 6365
Square component, 60-61
visual element identification, 51-53
definition of, 49
overview, 49-51
configuring development environment
index.jsx file, 191-192
initial project structure, 184—186
Node.js, 187-189
React dependencies, 190-191
webpack, 193-195
console warnings, 105
Contact component, 157-158
container elements, 18
CounterParent component
event handler, 110-112
event listening, 116119
event properties, 114-115
initial code listing, 108—110
overview, 107-108
this keyword, 119-120

counters
button counter
event handler, 110-112
event listening, 116-119
event properties, 114~L5
initial code listing, 108—-110
lifecycle methods, 124-127
overview, 107-108
SyntheticEvent type,
this keyword, 119 ﬂ)
Lightning CounterDisplay
componentDidMount method, 93, 94-95
full code listing, 96-98
getlnitial State method, 93-94
initial code, 90-92
initial state value, setting, 93-94
overview, 89-90
setInterval function, 93
setState method, 93, 95
state change, rendering, 96
strikes variable, 93-94
timerTick function, 94-95
createClass method, 30
createElement function, 82-84
CSS (Cascading Style Sheets)
applying, 40-42
first React app, 19-20
HTML versus JSX, 84-85
SPA (single-page app) example, 151-153
Todo List app, 167, 176-178
curly brackets ({ }), 33, 86-87
customizing background color, 4547

-114

D
DE. See development environment
deep links, 144
dependencies, installing, 190-191
design

multi-page design, 2—3

SPA (single-page app) model, 3—6

destination, changing, 18-19
destination variable, 18-19
dev folder, 184-185
development environment
advantages of, 179-181
Babel, 182
building apps, 197-198
code editors, 183-184
Node.js
installing, 187-189
overview, 182
setup
index.jsx file, 191-192
initial project structure, 184—186
Node.js, 187-189
React dependencies, 190-191
webpack, 193-195
webpack, 183
displaying
home page, 149151, 154-155
multiple components, 103—105
name, 16—18
tasks in Todo List app, 173-176
div element
first React app, 18
HelloWorld component, 32
styling with CSS, 41-42
documentation
npm documentation, 198
React Router, 161
document.body argument (render method), 17
DOM elements, accessing
ES6 arrow functions, 141
references, 137-141
when to use, 135-137
DOM manipulation, 8

—

E

editors (code), 183-184
elements

capitalization in JSX, 87-88
div
first React app, 18
HelloWorld component, 32
styling with CSS, 41-42
DOM elements, accessing
ES6 arrow functions, 141
references, 137-141
when to use, 135-137
form, 169-170
inefficiencies with UI elements, 26—29
outputting multiple, 27
transferring properties with, 138—139
ellipses (...) operator
explained, 78
transferring properties with, 78-80
EmberJS templates, 10
environment. See development environment
errors in ranges, 105
ES6 arrow functions, 141
event handlers
addItem, 170
overview, 110-112
this keyword, 119-120
events
browser compatibility, 120
button counter
event handler, 110-112
event listening, 116-119

event properties, 114-115
initial code listing, 108—-110
overview, 107-108
this keyword, 119-120

definition of, 107

event handlers
addItem, 170
overview, 110-112
this keyword, 119-120

KeyboardEvent type, 112
listening to, 116—119

()

MouseEvent type, 112
onSubmit, 169-170
performance, 120-121
SyntheticEvent type, 112—-114

F
files, index.jsx, 191-192
first React app
blank HTML page, creating, 14—15
destination, changing, 18—19
name, displaying, 16-18
styles, 19-20
folders
dev, 184-185
node_modules, 190
output, 184-185
form submission, 169-170
formatDistance function, 25
forum.kirupa.com, 199
frames (app), 147-149
functions. See also methods
addEventListener, 118—-119
calling, 25
createElement, 82-84
ES6 arrow functions, 141
explained, 24-26
formatDistance, 25
getDistance, 32—-33
increase, 110-112, 115
printStuff, 78
removeEventListener, 119
setInterval, 93
showCircle, 102-103
timerTick, 94-95

G
generated HT ML

color palette card, 66

Letter component, 40-41
getDefaultProps method, 128

getDistance function, 32-33
getInitialState method, 93-94, 128, 169

H

HelloWorld component
creating, 30-32
properties, 32—34
help, forum.kirupa.com, 199
hierarchies
component hierarchy, 55-56, 69-70
visual hierarchy, 52
Home component, 149-151
home page, displaying, 149-151, 154-155
HT ML elements, capitalization in JSX, 87-88
HT ML templates, 6

I
identifying
components, 53—56
visual elements, 51-53
increase function, 110-112, 115
index.html file, 185-186
index.jsx file, 191-192
initial project structure, 184-186
initial rendering phase (lifecycle methods), 127-129
initial state value, 93-94
initializing
Node.js, 187-189
state object, 169
inline styles
applying, 43-45
Circle component, 101
customizable background color, 45-47
overview, 42
px suffix, omitting, 45
style object, creating, 43
input element, 138-139
_input property, 139-140
installing
Babel, 195-196

Node.js, 187-189

React dependencies, 190-191

webpack, 193-195
itemArray, creating, 172

J

JavaScript
JSX-to-JavaScript transformation. See also development environment
Babel, 182
overview, 81-83
test app, 197-198
webpack, 183, 193-196
visuals defined in, 9-11
JSX
arrays, 103—105
capitalization, 87-88
class names, 85-86
comments, 86—87
CSS (Cascading Style Sheets) and, 84-85
explained, 1011, 14-15
first React app
blank HTML page, creating, 14—15
destination, changing, 18—19
name, displaying, 16-18
styles, 19-20
index.jsx file, 191-192
JSX-to-JavaScript transformation. See also development environment
Babel, 182
overview, 81-83
test app, 197-198
webpack, 183, 193-196
location in code, 88
methods. See methods
reserved keywords, 85-86
root nodes, returning, 83—84
style attribute, 84-85
JSX-to-JavaScript transformation. See also development environment
Babel, 182
test app, 197-198
webpack, 183, 193-196

K

KeyboardEvent type, 112
keywords

table of, 85-86

this, 119-120

L
Label component, 61-63, 77

Letter component
generated HTML, 40-41
overview, 37-39
styling with CSS, 41-42
styling with React
customizable background color, 45-47
letter Style object, creating, 43
overview, 42
px suffix, omitting, 45
styles, applying, 4345
letterStyle object
creating, 43
customizable background color, 45-47
overview, 85
px suffix, omitting, 45
style attribute, 43-45
lifecycle methods
button counter example, 124-127
componentDidMount method, 129
componentDidUpdate method, 131
componentWillMount method, 129
componentWillReceiveProps method, 132
componentWillUnmount method, 132
componentWillUpdate method, 131
definition of, 123
getDefaultProps method, 128
getlnitial State method, 128
initial rendering phase, 127-129
overview, 123-124
render method, 129, 131
shouldComponentUpdate method, 130-131

unmounting phase, 132
updating phase
prop changes, 131-132
state changes, 129-131
Lightning CounterDisplay component
componentDidMount method, 93
full code listing, 96-98
getlnitial State method, 93-94
initial code, 90-92
initial state value, setting, 93-94
overview, 89-90
setInterval function, 93
setState method, 93
state change, rendering, 96
strikes variable, 93-94
timerTick function, 94-95
Link component, 156
links
active links, 159-160
deep links, 144
navigation links, 155-156
listening to events
regular DOM events, 117-119

SyntheticEvent type, 116117
listItems variable, 175-176
logo (React), 7

M

matching routes, 158
Matryoshka dolls analogy, 9
messages, console warnings, 105
methods. See also functions
addItem, 170, 171, 177-178
button counter example, 124-127

componentDidUpdate, 131
componentWillMount, 129
componentWillReceiveProps, 132
componentWillUnmount, 132
componentWillUpdate, 131

createClass, 30
definition of, 123
getDefaultProps, 128
getDefaultProps method, 128
getlnitial State, 93-94, 128, 169
initial rendering phase, 127-129
overview, 123-124
preventDefault, 172
render
Card component, 59
Circle component, 102, 104-106
Colorizer component, 138
first React app, 1618
HelloWorld component, 30—32
initial rendering phase, 129
Label component, 62
Lightning Counter Display component, 92
overview, 26, 129, 131
SPA (single-page app) example, 148-149, 154
Square component, 60-61
Todo List app, 166
TodoList component, 171, 173-174
updating phase, 131
setNewColor, 141
setState, 93, 95
shouldComponentUpdate, 130-131
unmounting phase, 132
updating phase, 129-132
MouseEvent type, 112
multi-page design, 2-3
multiple components, displaying, 103—105
multiple elements, outputting, 27
MVC architecture, 11
MyTotallyAwesomeApp
index.jsx file, 191-192
initial project structure, 184—186

Node.js initialization, 187-189

React dependencies, 190-191
testing, 197-198

N

names
class names, 85-86
displaying, 1618
navigation links, creating, 155-156
Node Package Manager (NPM). See Node.js
node_modules folder, 190
Node.js
initializing, 187189
installing, 187-189
overview, 182
nodes (root), returning, 83-84
NPM (Node Package Manager). See Node.js
npm documentation, 198

O

objects
circleStyle object, 101
letter Style
creating, 43
customizable background color, 45-47
overview, 85
px suffix, omitting, 45
style attribute, 43-45
props, 79
state object
initializing, 169
populating, 171-172
onClick event handler, 110-112
onSubmit event, 169-170
operators, spread (...)
explained, 78
transferring properties with, 78-80
output folder, 184-185
outputting multiple elements, 27

P
palette card. See color palette card
passing properties

color palette card example, 63-65

component hierarchy and, 69-74
problems with, 74-77
spread operator (...)
example, 78-80
explained, 78
performance, events and, 120-121

PlusButton component, 116-117

populating state object, 171-172
preventDefault method, 172
printStuff function, 78
properties
accessing, 33
activeClassName, 159-161
bgcolor, 46
event properties, 114-115
HelloWorld component, 32—-34
prop changes, 131-132
ref, 138-139
specifying
component call, 34
component definition, 33
style, 4345, 84-85
SyntheticEvent type, 113—114
transferring
color palette card example, 63-65
component hierarchy and, 69-74
problems with, 74-77
spread operator (...), 78-80
vendor-prefixed properties, 59
props object, 79
px suffix, omitting, 45

Q-R
React dependencies, installing, 190-191
React Event System document, 114
React Router
creating SPAs (single-page apps) with

active links, 159-160

app frame, 147-149

boilerplate markup and code, 146-147

Contact component, 157-158
CSS (Cascading Style Sheets), 151-153
displaying, 149-151
example, 144-145
Home component, 149-151
home page, displaying, 154—155
Link component, 156
navigation links, 155-156
overview, 143-144
ReactRouter prefix, 153—154
render method, 148-149, 154
Route component, 149
route matching, 158
Router component, 149
Stuff component, 157-158
documentation, 161
referencing, 147
React Tooling Integration, 198
ReactRouter prefix, 153-154
reconciliation, 8
ref attribute, 138-139
references, 137-141
referencing
Babel JavaScript compiler, 16
React library, 15
React Router, 147
regular DOM events, listening to, 117-119
removeEventListener function, 119
render method
Card component, 59
Circle component, 102, 104-106
Colorizer component, 138
first React app, 1618
HelloWorld component, 30—32
initial rendering phase, 129
Label component, 62
Lightning Counter Display component, 92
overview, 26
SPA (single-page app) example, 148-149, 154
Square component, 60-61

Todo List app, 166
TodoList component, 171, 173-174
updating phase, 131
renderData array, 104
rendering state change, 96
reserved keywords, 85-86
root nodes, returning, 83-84
Route component, 149
route matching, 158
Router component, 149
routing, 144, 149. See also React Router
Russian Matryoshka dolls analogy, 9

S

setInterval function, 93
setNewColor method, 141
setState method, 93, 95
setting up development environment
index.jsx file, 191-192
initial project structure, 184—186
Node.js, 187-189
React dependencies, 190-191
webpack, 193-195
shiftKey property (SyntheticEvent), 114-115
Shirt component, 74-77
shouldComponentUpdate method, 130-131
showCircle function, 102-103
simple catalog browser app
multi-page design, 2—3
SPA (single-page app) model, 3—6
single-page app (SPA). See SPA (single-page app)
SPA (single-page app)
creating with React Router
active links, 159-160
app frame, 147-149
boilerplate markup and code, 146-147
Contact component, 157-158
CSS (Cascading Style Sheets), 151-153
example, 144-145
Home component, 149-151

home page, displaying, 149-151, 154155
Link component, 156
navigation links, 155-156
overview, 143-144
ReactRouter prefix, 153—154
render method, 148-149, 154
Route component, 149
route matching, 158
Router component, 149
Stuff component, 157-158
model, 3-6
specifying properties
component call, 34
component definition, 33
spread operator (...)
explained, 78
transferring properties with, 78-80
Square component, 60-61
state change, rendering, 96
state management
lifecycle methods, 129-131
Lightning CounterDisplay
componentDidMount method, 93, 94-95
getlnitial State method, 93
initial code, 90-92
initial state value, setting, 93-94
overview, 89-90
setInterval function, 93
setState method, 93, 95
strikes variable, 93-94
Lightning Counter Display component
full code listing, 96-98
initial code, 90-92
overview, 89-90
setInterval function, 93
state change, rendering, 96
timerTick function, 94-95
UI (user interface), 7-8
state object. See also state management
initializing, 169

populating, 171-172
strikes variable, 93-94
Stuff component, 157-158
style attribute, 43-45, 84-85
styles
CSS (Cascading Style Sheets)
applying, 40-42
HTML versus JSX, 84-85
SPA (single-page app) example, 151-153
Todo List app, 167, 176-178
first React app, 19-20
inline approach
Circle component, 101
customizable background color, 45-47
overview, 42
px suffix, omitting, 45
style object, creating, 43
styles, applying, 4345
overview, 37
submitting forms, 169-170
support, forum.kirupa.com, 199
swatchComponent variable, 88
SyntheticEvent type, 112-114

T
tasks, displaying in Todo List app, 173-176
templates
EmberJS templates, 10
HTML templates, 6
theCircle variable, 102
this keyword, 119-120
timerTick function, 94-95
todoEntries variable, 174
Todoltems component, 173-176
TodoList component
addItem event handler, 171, 177-178
app functionality, 168
form submission, 169-170
functionality, 168
initial code listing, 164-165

overview, 163-164
render method, 166, 171, 173-174
state object initialization, 169
state object population, 171-172
styles, 167, 176-178
task display, 173—176
Todoltems component, 173—-176
UI (user interface), 165-168
tools
Babel, 182
code editors, 183-184
Node.js
installing, 187-189
overview, 182
webpack
installing, 193-195
overview, 183
transferring properties
color palette card example, 63-65
component hierarchy and, 69-74
problems with, 74-77
spread operator (...)
example, 78-80
explained, 78
transpilation from JSX to JavaScript. See also development environment
Babel, 182
overview, 81-83
test app, 197-198
webpack, 183, 193-196

U

UI (user interface). See also events
Circle component example
array of, 103-105
initial code listing, 99-102
render method, 102
showCircle function, 102-103
theCircle variable, 102
inefficiencies with, 26-29
state management, 7—8

Todo List app, 165168
unmounting phase (lifecycle methods), 132
updating phase (lifecycle methods)

prop changes, 131-132

state changes, 129-131

\%
variables
destination, 18—19
listltems, 175-176
strikes, 93-94
swatchComponent, 88
theCircle, 102
todoEntries, 174
vendor-prefixed properties, 59
views, 143
virtual DOM, 8
visual hierarchy, 52
visuals
defining in JavaScript, 9-11
identifying, 51-53
visual hierarchy, 52

[@))

W-X-Y-Z
WebkitFilter property, 59
webpack
installing, 193-195
overview, 183
website, 198

Addison-VWesley Learning Series

LEARNING L LEARNING TR
meLnene SQL AMOULARIS| [Seammoms o s PROGRAM

Badda Whelid --’-1
Visit informit.com/learningseries for a complete list of available publications.

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you've learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

© 'mlnﬂ. | + Addison-Wesley =S,

Pearson

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

* Download available product updates.

* Access bonus material when applicable,

* Receive exclusive offers on new editions and related products.

(Just check the box to hear from us when setting up your account.)

+ Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformlT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformiT.com—The Trusted Technology Learning Source
InformiT is the online home of information technology brands at Pearson, the world's foremost
education company. At InformiT.com you can

* Shop our books, eBooks, software, and viden training

* Take advantage of our special offers and promaotions (informit.com/promations)

= Sign up for spedial offers and content newsletters (informit.com/newsletters),

* Read free articles and blogs by information technology experts.

* Access thousands of free chapters and video lessons.

Connect with InformlT-Visit informit.com/community
Learn about InformlT community events and programs.

nonon
informir.com

the trusiad tachnology earming souwos

Addion-Wesley « Cizco Press « |1BM Press « Microsoft Press « Pearson [T Certification « Prentice Hall » Que » Samg » WMware Press

LEARNING PEARSON

ALWAYS

Code Snippets

var view = {
title: "Joe",
cale: function {) {
return 2 + 4;

}
}i

var output = Mustache.render ("{{title}} spends {{calc}}", view);

{{#if person}}
Welcome back, <bs{{person.firstName}} {{person.lastName}}!

{{else}}

Please log in.

{{7if}}

ReactDOM. render (React.createElament (
rdiv"®,
nuall,
React.createElaement (
"hiw,
null,
"Batman"

React.createElement {
*hl=.
null,
"Iron Man"™
} .
React.createElaement (
|-|]:1:|_|1|r
nall,
"Nicolas Cage"
} .
React.createElement {
"hi",
null,
"Mega Man™
)

}, destination) ;

<IDOCTYPE html>
<html =

<head>
<titlesReact! React! Reactl!e</titlexs

</heads>

<body>
<sCcripts

</scripts
</bodys=

</html >

<script src="https://unpkg.com/react®15.3.2/dist/react.js"></script>
<gcript src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></scripts>

<gcript sroc="https://cdnijs.cloudflare.com/ajax/libs/babel-core/5.8.23 /browser . .min.
js"s»</8cripts>

<!DOCTYPE html>
<html>

<heads
<titlesReact! React! React!</titles
<script src="https://unpkg.com/react®l5.3.2/dist/react.js"></scripts>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.je"></scripts

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></scripts>

</head>

<body=
<8cripts

</script>
</body>

</html >

ReactDOM. render (
<hls=Batmane</hl>,
document . querySelector ("#container")

s

var destination = document.querySelector ("#container");

ReactDOM. render (
<hl>Batman</hl>,
destination

¥

<!DOCTYPE html>
<html=

<heads
<titlesReact! React! React!</titles
<script src="https://unpkg.com/react®@l5.3.2/dist/react.js"></scripts>
<script src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></scripts

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

<styles

#container {
padding: 50px;
background-color: H#EEE;

}

#container hl {
font-gize: 144px;
font-family: sans-serif;
color: #0080a8;

}

</style>
</head>

<body>
<div id="container"s</divs
<script type="text/babel"s
var destination = document.querySelector ("#container”);

ReactDOM.render (React.createElement (
"hiw,
null,
"Batman"
), destination);
</script>
</body=>

</html >

function getDistance(speed, time)} {
var result = speed * time;
alert({result) ;

O -1 o o W b

function formatDilstance{distance) {
return distance + "kKm";

function getDistance (speed, time) {
var result = speed * time;
alert (formatDistance (result)) ;

var destination = document.querySelector ("#container");

ReactDOM. render (
<hl>Batman</hl>,
destination

¥

var destination = document.querySelector ("#container");

ReactDOM. render (

<divs
<hl>=Batman</hl>
<hls>Iron Man</hl>
<hlsNicolas Cage</hls
<hl>Mega Man</hls

</divs,

destination

3

var destination = document.querySelector ("#container");

ReactDOM. render (
<hl>Batman</hl>
<hl>Iron Man</hl>
<hl=Nicolas Cage</hl>
<hl=Mega Man</hls,
destination

var destination = document.querySelector ("#container");

ReactDOM. render (

«divs
<h3>Batman</h3>
<h3=Iron Man</h3i>
<h3sNicolas Cage</his
<h3sMega Man</h23s

</divs,

destination

3

var destination = document.querySelector ("#container");

ReactDOM. render (

<divs
<h3is<isBatman</i></h3>
<h3><i>Iron Man</i=</h3>
<h3s<i>Nicoclas Cage</i></his
<h3><izMega Man</i=</h3>

</divs,

destination

¥

<!DOCTYPE html>
<html>

<heads>
ctitlesReact Componentse</titles
<script src="https://unpkg.com/react®15.3.2/dist/react.js"></scripts>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"s</scripts>
</head>

<bodys
cdiv id="container"s</divs

<script type="text/babel">

</script>
</body>

</html»

o N = W b

ReactDOM. render {
edivs
<p=Hello, world!</p>
</divs,
document . querySelector ("#container")

1

var HelloWorld = React.createClass ({

RF

ReactDOM.render |
<divs
<p>Hello, world!</p>
</divs,
document . querySelector ("#container")

Y3

var HelloWorld = React.createClass ({
render: function() {

}
b

var HelloWorld = React.createClass({
render: function() {
return {
<p>Hello, componentized world!</p>
)i
}
D

ReactDOM.render (
<HelloWorld/>,
document .querySelector ("#container")

Y3

ReactDOM. render (
<cdivs

<HelloWorld/s
</divs,
document . querySelector ("f#icontainer")

T

ReactDOM. render (
<divs

<HelloWorld/>
<HelloWorld/>

<HelloWorld/s
«HelloWorld/ -
<HelloWorld/s
<HelloWorld/>
</divs,
document . querySelector ("#container")

s

var HelloWorld = React.createClass({
render: function() {
return {
<p>Hello, world!</p>
) ;
}
D

function getDistance(speed, time} {
var result = speed * time;
alert (result) ;

var HelloWorld = React.createClass({
render: function{) {
return {
<p>Hello, {this.props.greetTarget}!</p>
)i
}
}

ReactDOM. render (

<divs
<HelloWorld greetTarget="Batman"/>
<HelloWorld greetTarget="Iron Man"/>
<HelloWorld greetTarget="Nicolas Cage"/>
<HelloWorld greetTarget="Mega Man"/>
<HelloWorld greetTarget="Bono"/>
<HelloWorld greetTarget="Catwoman"/>

</divs,

document .gquerySelector ("#icontainer")

-

var Buttonify = React.createﬂlaas{{
render: function{) {
return {
<divs
<button type={this.props.behavior}s>{this.props.children}</buttons
</divs>

ReactDOM. render (
<divs
<Buttonify behavior="Submit">SEND DATA</Buttonifys
</divs,
document . querySelector ("#container”)

¥

<!DOCTYPE html>
<html=

<heads
<title>Styling in Reacte</title>
<script src="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></scripts

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.j8"s</8cripts>

<style>
#container {
padding: E0px;
background-color: #FFF;
!
</style>
</head>

zbodys
<div id="container"s</divs>

</body>

</html =

<gcript type="text/babel">

var Letter = React.createﬂlaas{{
render: function({) {
return
<divs
{this.props.children}
</divs

!

1 ;

var destination = document.querySelector ("#container");

ReactDOM. render (

<divs
<LettersA«/Letters
<Letter>E«/Letters>
<Letter>I</Letters
<Letter>0«</Letters
<LettersU</Letters

</divs,

destination

!

</scripts

var Letter = React.createClass ({
render: function() {
return (
<div className="letter"s
{this.props.children}
</fdivs
)i
}
b

var Letter = Eeact.createﬂlass{{
render: function{) {
return {
<divs
{this.props.children}
e /divs

var Letter = React.createClass ({
render: function{) {
var letterStyle = {

padding: 10,
margin: 10,
backgroundColor: "#ffde00",
color: "#333",
display: "inline-block",
fontFamily: "monospace”,
fontSize: 32,
textAlign: "center"

bi

return {
<divs
{this.props.children}
<fdivs
)i
}
b

var Letter = React.createClass ({
render: function() {
var letterStyle = |

}i

padding: 10,

margin: 10,
backgroundColor: "#ffde0O",
color: "#333",

display: "inline-block",
fontFamily: "monospace",
fontSize: "32",

textAlign: "center"

return {

}:
}
D

<div style={lettersStyle}>
{this.props.children}
</divs

W 0D =1 o N &= W by

-
=

var letterStyle = |

padding: 10,

margin: 10,
backgroundColor: "#ffdel0",
color: "#333F,

display: "inline-block",
fontFamily: "monospace",
fontSize: "32°%,

textAlign: "center"”

ReactDOM.render {

=divs
<Letter bgcolor="#58B3FF">A</Letters
<Letter bgcolor="#FF605F">E</Letters>
<Letter bgcolor="#FFD52E">I</Letter>
<Letter bgcolor="#49DD8E">0</Letters
<Letter bgcolor="#AE99FF">U</Letters

</div>,

destination

Yi

[T- T - TR T ST R S U X Qe

[
[=]

var letterStyle = {

padding: 10,

margin: 10,

backgroundColor: this.props.bgecolor,
color: "#333",

display: "inline-block",

fontFamily: "monospace",

fontSize: "3i2v,

textAlign: "center"

< !DOCTYPE htmls
<html=

<heads

<titlesMore Components!e</titles
<gcript src="https://unpkg.com/react®l5.3.2/dist/react.js"=</script=>

<gcript src="https://unpkg.com/react-dom@l5.2.2/dist/react-dom.js"></8cripts

<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.je"s</scripts

<stvles
#container {
padding: EO0px;
background-color: #FFF;
H
</styles>
</heads

<body=
<div id="container"s</divs
<script tvpe="text/babel"s

ReactDOM. render |
zdives

</divs,
document . query8elector ("#container")
15
</scripts>
</body=>

</html =

var Square = React.createClass (|
render: function() {
return
<p>Nothing</p>
)i
}
b

var Label = React.createClass ({
render: function() {
return (
<p=Nothing</p>
) ;
}
D

var Card = React.craataclass{{
render: function() {

return {

13
}
b

ReactDOM.render (
<divs

<fdiv>,
document .querySelector ("#container")

Y.

W O =] B N &= W b

e e T o T T T R = T S R
0 =] O N e W R O

var Card = React.createClass ({
render: function{() {
var cardStyle = {
height: 200,
width: 150,
padding: 0,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow(Opx Opx Spx #666)",
filter: "drop-shadow(0Opx Opx S5px #666)"

}i

return {
<div style={cardStyle}>

</div>
);
}
b

=T ¥ 4 BN R S T % T]

ReactDOM.render (
<divs
<Card/>
</divs,
document .querySelector ("#container")
)}

WO @ =] oh N s b B

e S
W M=o

var Square = React.createClass ({
render: function() {

P

var squareStyle = {
height: 150,
backgroundColor: "#FF6663"
};
return (
<div style={squareStyle}>

</div>
);

var Card = React.createClass ({
render: function() {
var cardStyle = {
height: 200,
width: 150,
padding: 0,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow(0px Opx Spx #666)",
filter: "drop-shadow(0Opx Opx 5px #666)"

}:

return (
<div style={cardStyle}-
<Square/>
</divs>
)i
}
¥

W@ =] oh U W W b

L e el
e W R = O

var Label = React.createClass({
render: function() {
var labelStyle = {
fontFamily: "sans-serif”,
fontWeight: "bold",
padding: 13,
margin: 0

}:

return |
<p stvle={labelStyle}>#FF6663</p>
)

D

W o =] & N o W b =

oI T o T e T e~ T = T = T =R
LT- T - I - A I O -]

var Card = React.createClass ({
render: function() {

var cardStyle = {
height: 200,
width: 150,
padding: 0,
backgroundColor: "#FFF",
WebkitFilter: "drop-shadow(Opx Opx 5px #666)",
filter: "drop-shadow(0px Opx 5px #666)"

}:

return |
<div style={cardStyle}-
<Square/>
<Label />
</divs
)i

D

W@ =] o e W R

B B B3 B B e el e b et b el ek ek e
T Y Y e T TR - IR I T, T U T S

L]
an N

B B B2
LTI+ = TN |

var Square = React.createClass ({
render: function{) {
var squareStyle = {
height: 150,
backgroundColor: this.props.color
}i
return|
«div style={squareStyle}>

:fdiv>
&
}
b

var Label = React.createClass({
render: function() {
var labelStyle = {
fontFamily: "sane-serif",
fontWeight: "bold",
padding: 13,
margin: 0
}i

return
<p style={labelStyle}>{this.props.color}</p>
14
}
D ;

o
3l
3z
33
34
35
E1
ey
Y
3s
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
5E

var Card = React.createClass ({

b

render: function() {
var cardStyle = {

height: 200,
width: 150,
padding: 0O,

backgroundColor: "#FFF",
WebkitFilter: "drop-shadow(0Opx Opx S5px #666) ",
filter: "drop-shadow(0px Opx 5px #666)"

}i

return
<div style={cardStyle}>
<Square color={this.props.color}/>
<Label color={this.props.color}/>
</fdivs
}i
}

’

ReactDOM.render (

};

cdivs
<Card color="#FF6663"/>
<fdivs>,
document . querySelector ("#container™)

=T ¥ B SR TS T % T]

ReactDOM.render (
<divs
<Card color="#FFA737"/>
cfdivs,
document .querySelector ("#container")
}i

<div id="container"s
<div data-reactid=".0">
<div stvle="height:200px;
width:150px;
padding:0;
background-color : #FFF;
-webkit-filter:drop-shadow (0px Opx 5px #666) ;
filter:drop-shadow{0Opx Opx 5px #666)} ;">
<div style="height:150px;
background-color: #FF6663; "></divs
<p style="font-family:sans-serif;
font-weight:bold;
padding:13px;
margin:0; ">#FF6663</p>
</divs
</div>
</divs

var Display = React.createClass({
render: function{) {
return{
<divs
<p>={this.props.color}</p>
<p>{this.props.num}</p>
<p>{this.props.size}</p>
</divs

s

1 ;

var Label = React.createﬂlass[{
render: function()} {
return
<Display color={this.props.color}
num={ this.props.num}
gize={this.props.size}/>

var Shirt = React.createﬂlass[{
render: function() {

return {
<divs=

<Label color={this.props.color}

num={ this.props.num}

gsize={this.props.size}/>

</divs

i

1 ;

ReactDOM.render {
<divs
<Shirt color="steelblue" num="3.14" size="medium"/>
</divs,
document . querySelector ("#container™)

s

<Shirt color="steelblue" num="3.14" size="medium"/>

ReactDOM.render (
<divs
<Shirt color="steelblue"” num="3.14" size="medium" />
efdivs,
document .querySelector ("#container")

)i

var Shirt = React.createClass ({
render: function() {
return {
<div>
<Label color={this.props.color}
num={ this.props.num}
size={this.props.size}/>
</divs
)i
}
Ni

var Label = React.createClass({
render: function({) {
return {
<Display color={this.props.color}
nun={ this.props.num}
size={this.props.size}/>
)i

b

var items - [lllll ; ||2|| s ||3||] :

function printstuff{a, b, c) {
console.log{"Printing: " +a + " " + b + " " &+ C};

}

printStuff (items[0], items[l], items[Z]);

Var items —_ ["l"‘- “2"‘- II3II] :

function printstuff{a, b, c) {
console.log("Printing: " + a + " " + b+ " " 4+ C};

}

// using the spread operator
printStuff{...items) ;

// without using the spread operator
printStuff (items [0], items([1l], items[2]);

<Display color={this.props.color}
num={ this.props.num)
gize={this.props.size}/>

var Display = React.createClass({
render: function() |{
return(
cdivs
<p>{this.props.color}</p>
<p>{this.props.num}</p>
<p>{this.props.size}</p>
</div>
i
}
b;

var Label = React.createClass ({
render: function() {
return |
<Display {...this.props}/s
) ;
}
b

var Shirt = React.createClass ({
render: function() {
return (
<divs
<Label {...this.props}/»
</divs
}:
}
1

ReactDOM.render (
«divs
<Shirt color="steelblue” num="3.14" gize="medium"/»
efdiv>,
document .querySelector ("#container”)

Y1

var Card = React.createClass({
render: function(} {
var cardStyle = {

height: 200,
width: 150,
padding: 0,

backgroundColor: "#FFF",
WebkitFilter: "drop-shadow (0px Opx 5px #666)",
filter: "drop-shadow(0px Opx 5px #666)"

}i

return
«div style={cardsStyle}-
<Square color={this.props.color}/>
<Label color={this.props.color}/>
</divs

«div stvle={cardstyle}:
<Square color={this.props.color}/=
<Label color={this.props.color}/>
c/divs

return React.createElement (
rdiv"®,
{ style: cardstyle },
React.createElement (Square, { color: this.props.color }),
React.createElement (Label, { color: this.props.color })

}i

var Card = Eeact.createﬂlass{{
displayName: "Card",

render: function render() {
var cardStyle = {

height: 200,
width: 150,
padding: 0,

backgroundColor: "#FFF",
WebkitFilter: "drop-shadow(0px 0px 5px #666)",
filter: "drop-shadow(0Opx Opx 5px #666) "

}

return React.createElement (
"di‘f";
{ style: cardStyle },
React.createElement (Square, { color: this.props.color }),
React.createElement (Label, { color: this.props.color })

ReactDOM. render (
<LettersB</Letters
<LettersE</Letters

<Letter>I</Letters
<Letter>0</Letters

<Letter>U</Letters,
document . querySelector ("#container")

ReactDOM. render (
cdivs
<LettersA</Letters
<Letter>E</Letters

<Letter>I</Letters
<Letter>0«</Letters

<Letter>U</Letters
</divs,
document . querySelector ("#container")

e

ReactDOM. render (React.createElement (
rdiv"®,
null,
React.createElemeaent (
Letter,
nuall,
mp m
.
React.createElement {
Letter,
null,
ng
o
React.createElement {
Letter,
nall,
mm
.
React.createElement (
Letter,
mall,
Tel
.
React.createElement {
Letter,
null,
my ™
)

)}, document.gquerySelector ("H#container™)) ;

<div style="font-family:Arial;font-size:24px">
<p=Blah!</p>
</divs

var Letter = React.createclass{{

render: function() {

var letterStyvle
padding: 10,

|
y i

margin: 10,

backgroundColor: this.props.bgcolor,
color: "§#333F7

display: "inline-block",

fontFamily: "monospace”,

fontSize: "32°%,

textAlign: "center"

}i

return {
«div style={letterStyle}-
{this.props.children}
</div>

ReactDOM. render
<div class="g8lideln"-
<p class="emphasis">Gabagool!</p=
<Label />
</divs,
document . quervsSelector ("#container")

T

ReactDOM. render (
<div className="glidelIn"=
<p className="emphasis">Gabagool!</p>
<Label />
<fdivs,
document . querySelector ("#container")

I

ReactDOM.render {
<div class="glideIn">
<p class="emphasis">Gabagool | </p>
{/* I am a child comment */}
<Label />
-:,""'Ii.']fl.‘I.I".-:»t
document .querySelactor ("#container")

Yi

ReactDOM. render (
<div class="glidelIn"=
<p class="emphasis">CGabagool!</p>
<Label
/* This comment
goes across
multiple lines */
className="colorCard" // end of line
/=
</divs,
document . querySelector ("#container™)

¥

ReactDOM. render (
«divs
<sections>
<p>Something goes here!</p>
</sections
c/divs,
document .querySelector ("f#container")

fik

ReactDOM. render (
cdivs
«<MyCustomComponent
</divs,
document . querySelector ("#container")

i

var swatchComponent = <Swatch color="#2F004F"></Swatchs>;

ReactDOM.render (
zdivs
{ swatchComponent }
</divs,
document . querySelector ("#container")

¥k

<!DOCTYPE html=
<html=

<heads
<titlesMore State!</titles
<gcript src="https://unpkg.com/react®l5.3.2/dist/react.js"=</script=>
<gcript src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></8cripts>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.je"s</script>
</heads
<bodys
cdiv id="container"se</divs
<script type="text/babel">
var LightningCounter = React.createClass({
render: function() {
return {
<hl=Hello!</hl>
e

o

var LightningCounterDisplay = React.createClass ({
render: function() {

var divStyle = {
width: 250,
textAlign: "center",
backgroundColor: "black",
padding: 40,
fontFamily: "sans-serif",
color: "#999",
borderRadius: 10

return{
<div style={divStyle}>
<LightningCounter/>
</divs
}i
}
D

ReactDOM.render |
<LightningCounterDisplay/>,
document . querySelector ("#container")
L
</scripts
</body>

</html =

var LightningCounterDisplay = React.createClass({
render: function{) {
var divStyle = {
width: 250,

textAlign: "center"®,
backgroundColor: "black",

padding: 40,

fontFamily: "sans-serif",
color: "#5557,
borderRadius: 10

¥

return {
«div style={divstyle}>
<LightningCounter/>
</divs

var LightningCounter = React.createClass(/{
render: functionf{) ({
return {

<hl=>Hello!</hl>

ReactDOM. render (
<LightningCounterDisplay/>,
document . querySelector ("#container")

s

var LightningCounter = React.createClass ({
getInitialState: function() {

return {
strikes: 0
}:
3
render: function() {
return {

<hl>{this.state.strikes}</hl>
)i
}
b

var LightningCounter = React.createClass ({
getInitialState: function() {
return {
strikes: 0
}i
}
render: function() {
return {
<hl>{this.state.strikes}</hl>
)i
}
b

var LightningCounter = React.createClass ({
getInitialState: function() {
return {
strikes: 0
i
1,
componentDidMount: function() {
setInterval (this.timerTick, 1000);
}I’
render: function() {
return {
<hl>{this.state.strikes}</hl>
)
}
D

var LightningCounter = React.createClass ({
getInitialState: function() {
return {
strikes: 0
}i
ks
timerTick: function(} {
this.setState ({
strikes: this.state.strikes + 100

b
i
componentDidMount: function() {
setInterval (this.timerTick, 1000);
b
render: function() {
return {
<hl>{this.state.strikes}</hl>

)i
}
b

var LightningCounter = React.createClass({
getInitialState: function() {
return {
strikes: 0
}i
I
timerTick: function{)} {
this.setState ({
strikes: this.state.strikes + 100

1
¥

componentDidMount: function () {
setInterval (this.timerTick, 1000);
ki
render: function{} {
var counterStyle = {
color: "#66FFFF",
fontSize: 50

¥

var count = this.state.strikes.toLocaleString();

return {
<hl style={counterstyle}s{count}</hl>

}i

var LightningCounterDisplay = React.createClass({
render: function{) {

var commonStyle = {
margin: 0,
padding: 0©

}

var divStyle = {
width: 250,
textAlign: "center",
backgroundColor: "#020202",
padding: 40,
fontFamily: "sans-serif",
color: "#99999g9"
borderRadius: 10

¥

var textStyles = {

emphasis: {
fontSize: 38,
.. .commonStyle

}e

smallEmphasis: {
.. .commonStyle

|7

small: {
fontSize: 17,
opacity: 0.5,
.. .commonStyle

return{
«div style={divStyle}>
<LightningCounter/>
<h2 style={textStyles.smallEmphasis}>LIGHTNING STRIKES</h2>
<h2 style={textStyles.emphasis}>WORLDWIDE</h2>
<p style={textStyles.small}> (since you loaded this example)</p>
</divs
)i
J
}3;

ReactDOM. render {
<LightningCounterDisplay/>,
document . querySelector ("#container")

i

<!DOCTYPE html>
<html =

<head:
<titlesReact! React! React!</titles
<script src="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></scripts>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.j8"s</8cript>

<styles
#container {
padding: E0px;
background-color: #FFF;
1
</style>
</heads
<bodys
<div id="container"s</divs
<script type="text/babel">
var Circle = React.createclass{{
render: function() {
var circleStyle = {
padding: 10,
margin: 20,
display: "inline-block",
backgroundColor: this.propse.bgColor,
borderRadius: "50%",
width: 100,
height: 100,

return {
<div style={circleStyle}>
efdivs
}i
}
1

var destination = document.gquerySelector ("#container");

ReactDOM.render |

«divs
<Circle bgColor="#F9C240"/>

</divs,
destination

HE

</scripts
</body>

</html =

var Circle = React.createClass({
render: function() {
var circleStyle = {

padding: 10,
margin: 20,
display: "inline-block",
backgroundColor: this.props.bgColor,
borderRadius: "&50%",

width: 100,
height: 100,
}i
return {

«div style={circleStyle}=
</divs

ReactDOM. render (
cdlvs
<Circle bgColor="#F9C240"/>
</divs,
destination

I

var theCircle = <Circle bgColor="#F9C240"/>;

ReactDOM.render (
<divs
{theCircle}
</divs,
destination

};

function showCircle() {
var colors = ["#393E41", "HES4F37T", "#1C8SEBF", "#A1D3s3"];
var ran = Math.floor (Math.random() * colors.length) ;

// return a Circle with a randomly chosen color
return <Circle bgColor={colors[ran] }/>;

}

var colors = ["#393E41", "H#ES4F37", "#1CB8SEF", "#AlD363",
"$BE5FFCT", "#28%7373", "#FFBL52", "HA40E4C"];

var colors = ["#393E41", "H#E94F37", "#1CBSEF", "#AlD363",
"#85FFC7", "#297373", "#FFB8552", "H#A40E4C"];

var renderData = [];

for (var i = 0; i < colors.length; i++) {
renderData.push (<Circle thelcr:{colcrs[i]}f:J;

}

var colors = ["#393E41", "H#E94F37", "#1CBSBF", "#AlD363",
"#BS5FFC7", "#297373", "§FFB552", "#A40E4C"];

var renderData = [];

for (var i = 0; i <« colors.length; i++) {
renderData.push (<Circle bgColor={colors[i] }/>);

}

ReactDOM.render (
=divs
{renderData}
<fdivs,
destination

Yi

for (var i = 0; 1 < colore.length; i++) {
var color = ceolore[i];
renderData.push (<Circle key={i + color} bgColor={color}/>);

}

for {(var i = 0; i < colors.length; i++) {
var color = colors|[i];
renderData.push (<Circle key={i + color} bgColor={color}/=);

}

for {var 1 = 0; i < colors.length; i++) {
var color = colors|[i];

renderData.push (React.createElement (Circle,
keyv: 1 + color,
bgColor: color

M ;

<!DOCTYPE html>
<html =

<heads>
ctitlesReact! React! Reactle/titles
<script src="https://unpkg.com/react®@l5.3.2/dist/react.js"></scripts>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></scripts>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.je"=</script>

<gtyles
#container {
padding: 50px;
background-color: #FFF;
}
</style>
</heads>

<body=
<div id="container"s</divs

<script type="text/babel">

</scripts
</body>

</html >

var destination = document.querySelector ("ficontainer") ;

var Counter = React.createclass{{
render: function({} {
var textStyle = {
fontSize: 72,
fontFamily: "sans-serif",
color: "#333",
fontWeight: "bold"

}i

return
<div style={textStyle}>
{this.prope.display}
< /divs
}:
1
}y

var CounterParent = React.createclass{{
getInitialState: function{} {
return {
count: 0
}:
ki
render: function() {
var backgroundStyle = |
padding: 50,
backgroundColor: "#FFCE3A",
width: 250,
height: 100,
borderRadius: 10,
textAlign: "center"

var buttonStyle = {
fontSize: "lem",
width: 30,
height: 20,
fontFamily: "sans-serif",
color: "#333",
fontWeight: "bold",
lineHeight: "3px"

}i

return {
<div style={backgroundStyle}-
<Counter display={this.state.count}/>
<button style={buttonStyle}s+</button>
</divs
)i
}
}3;

ReactDOM. render (
<divs
<CounterParent/>
<fdivs,
destination

i

return (
<div style={backgroundStyle}>
<Counter display={this.state.count}/>
<button onClicks{this.increase} styles={buttonStyle}>+</button>
<fdivs

.

var CounterParent = React.createClass({
getInitialState: function() {
return {
count: 0
};
3
increase: functicn(e) {
this.setState ({
count: this.state.count + 1

b
ki

render: function() {
var backgroundStyle = {

padding: 50,
backgroundCelor: "#FFCS53A",
width: 250,
height: 100,
borderRadius: 10,
texthAlign: "center"

bi

var buttonStyle = {
fontsize: "lem",
width: 30,
height: 30,
fontFamily: "sans-serif”,
color: "#333n,
fontWeight: "bold",
lineHeight: "3px"

}i

return {
<div style={backgroundStyle}>
<Counter display={this.state.count}/>
<button onClick={this.increase} style={buttonStyle}s>+</buttons
</fdivs
)i
}
b

increase: function(e) {
var currentCount = this.state.count;

if (e.shiftKey) {
currentCount += 10;

} else {
currentCount += 1;

this.setsState ({
count: currentCount

T

var CounterParent = React.createClass({
getInitialState: function() {
return {
count: 0
}i
b

increase: function() {
this.setState({
count: this.state.count + 1
D ;
b
render: function() {
return
<divs
<Counter display={this.state.count}/>
<PlusButton onClick={this.increase}/>
<fdiv=
)
}
b

var PlusButton = Eeact.createclass{{
render: function{) {
return
<putton:

+
< /buttons

var CounterParent = React.createClass({

render: function() {
return |
<div>
<Counter display={this.state.count}/>
<PlusButton clickHandler={this.increase}/>
</divs
)i
}
b

var PlusButton = React.createClass ({
render: function{) {
return (
<button onClick={this.props.clickHandler}>
+
</buttons>
)i
}
b

var Something = React.createClass({
handleMyEvent: function(e) {
// do something
A
render: function{) {
return |
<div onMyWeirdEvent={this.handleMyEvent}>Hello!</div>

var Something = React.createﬂlass{{
handleMyEvent: function(e) {
// do something
¥

componentDidMount: function () {
window.addEventListener ("someEvent", this.handleMyEvent) ;

1
componentWillUnmount: function() {
window.removeEventListener ("someEvent", this.handleMyEvent) ;

b

render: function{) {
return
<divsHello!</div>

var Something = React.createClass({
handleMyEvent: function(e) {
// do something
b
componentDidMount: function() {
window.addEventListener ("someEvent", this.handleMyEvent) ;
i
componentWillUnmount: function () {
window.removeEventListener ("gsomeEvent", this.handleMyEvent) ;
ki
render: function() {
return
cdivsHello!</divs
):
}
3

function doSomething(e) {
console.log{this); //button element

}

var foo = document.querySelector ("button"} ;
foo.addEventListener ("click", doSomething, false);

var CounterParent = React.createclass{{

getInitialState: function{) {

return {

count: O

K
b
increase: function {(e) {

console.log({this}; // CounterParent component

this.setState({
count: this.state.count + 1

1 ;
I

render: function(} {
return {
<div>
<Counter display={this.state.count}/>
<button onClick={this.increase}=+</button-
</divs

<button onClick={this.increase.bind(this) }>+</button>

var CounterParent = React.createClass({
getDefaul tProps: function{]{
congole.log("getDefaul tProps: Default prop time!");
return {};
Vi
getInitialState: function() {
congole.log("getInitialState: Default state time!");
return {
count: 0
ki
b
increase: function({) {
this.setState ({
gount: this.state.count + 1

i

componentWillUpdate: function(newProps, newState) {

congole. log ("componentWillUpdate: Component is about to update!");
k
componentDidUpdate: function(currentProps, currentState) {

console. log ("componentDidUpdate: Component just updated!");
b
componentWillMount: function({) {

conscle.log ("componentWillMount: Component is about to mount!™);
b
componentDidMount: function() {

congole. log ("componentDidMount: Component just mounted! ") ;

b

componentWillUnmount: function() {

conscle. log ("componentWillUnmount: Component is about to be removed from the
DoM!I™) ;

}
shouldComponentUpdate: function(newProps, newState) {
console. log ("shouldComponentUpdate: Should component update?") :

if (newState.count < 5) {
congole. log ("shouldComponentUpdate: Component should update!l™);
return true;

} else {
ReactDOM.unmountComponentAtNode (destination) ;
congole. log ("shouldComponentUpdate: Component should not updatel!l");
return false;

}
b

componentWillReceiveProps: function (newProps) {
congole.log ("componentWillReceiveProps: Component will get new props!");
)
render: function{() {
var backgroundStyle = {

padding: &0,

border: "#333 2px dotted",

width: 250,

height: 100,

borderRadius: 10,

textAlign: "center"”

¥

return {
<div style={backgroundstyle}>
<Counter display={this.state.count}/>
<button onClick={this.increase}s
+
</buttons
</divs

shouldComponentUpdate: function(newProps, newState) |

if (newState.id <= 2) {
console. log ("Component should update!") ;

return true;
} else {
console. log ("Component should not update!");

return false;

}
}

render: function() {
var squareStyle = {
backgroundColeor: this.state.bgColor

};

return {
<div className="colorArea"s>
«div style={squareStyle} className="colorSquare"s</divs

<form onSubmit={this.setNewColor}s
<input
onChange={this.colorValue}
placeholder="Enter a coclor value"s
</inputs>
<button type="submit"sgo</buttons
</forms
</divs

¥

render: function() {
var squareStyle = |
backgroundColor: this.state.bgColor

}i

return {
<div className="colorArea"s
«div style={squareStyle} className="colorSquare"s</div>

<form onSubmit={this.setNewColor}>
<input
ref={}
onChange={this.colorValue}
placeholder="Enter a color value"s
</input>
<button type="submit"sgo</buttons>
</form=
</divs
)i
}

Wwom =] o e W B

B B2 B B B B B e e e b e ek b e el e
g N e W OE O WD =] N WO

render: function() {
var squareStyle = {
backgroundColor: this.state.bgColor

}i
var self = this;

return (
<div className="colorArea"s
<div style={squareStyle} className="colorSquare"></div>

<form onSubmit={this.setNewColor}>
<input
ref={
function(el} {
self. input = el;

}
}

onChange={this.colorvValue}
placeholder="Enter a color value">

</input>

<button type="submit">go</buttons

</ forms
</div>
} i
}

var Colorizer = React.createClass({
getInitialState: function{() {
return {
color: "',
bgColor: ''

}
H

colorValue: function(e} {
this.setstate ({color: e.target.value});
b
setNewColor: function(e){
this.setstate ({bgColor: this.state.color});

this. input.value = "";
this._ input.focus();

e.preventDefault () ;
b
render: function() {
var squareStyle = {
backgroundCelor: this.state.bgColor

}i
var self = this;

return |
<div className="colorArea"s
<div style={squareStyle} className="colorSquare"></divs

<form onSubmit={this.setNewColor}>
<input
ref={
function(el) {
self. input = el;

}
}

onChange={this.colorValue}
placeholder="Enter a color value'"s

</input>

<button type="submit">go</buttons

</form>
</divs
)i
}
i E

<input
ref={
function{el} {

self. input = el;

)

onChange={this.colorValue}
placeholder="Enter a color value"s

</inputs

<input
ref={
(el) => this. input = el
}
onChange={this.colorValue}
placeholder="Enter a color value"s

</inputs

<button refs="myButton"sClick me!</buttons

<!DOCTYPE html=
<html=

<heads
<titlesReact! React! React!</titles
<script src="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></script>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel -core/5.8.23/browser.min
.js"></8cripts>

<gtyles

</style>
</head>

<bodys

<div id="container"»

</divs

<gscript tvpe="text/babel"s
var destination = document.querySelector ("#container") ;

ReactDOM.render

=divs
Hello!

</divs,
destination

)i

</scripts
</body>

</html =

cscript srce"https
<Bcript src="https

<script src="https
.je"s</script>
<geript srec="https

://unpkg .com/react®15.3.2/dist/react.{s8"></8cript>
: / /unpkg .com/react-dom@l5.3.2/dist/react-dom.js"></script>
://cdnjs.cloudflare.com/ajax/l1ibs/babel-core/5.8.23 /browser.min

: / /npmedn. com/react-router /umd/ReactRouter .min. je"></scripts

var App = React.createClass({
render: function{) {
return {
<divs

<hl=Simple SPA</hls>
<1l className="header"s

<lisHome</1i>
<li=Stuff</lix
Contact</1i=

</uls

<div className="content">

e /divs
< /divs

ReactDOM.render (
<ReactRouter.Routers
<ReactRouter .Route path="/" ccmponent:{hpp};

</ReactRouter .Routes>
</ReactRouter.Routers,
destination

Yi

ReactDOM.render {
<ReactRouter.Router>
<ReactRouter .Route path="/" component={App}>

</ReactRouter.Routes
</ReactRouter.Routers,
destination

}:

ReactDOM.render {
<ReactRouter.Routers
<ReactRouter .Route path="/" ccmponent:{hpp};

</ReactRouter.Routes
</ReactRouter.Routers,
destination

Yi

var Home = React.createclass{{
render: function{) {
return |
<divs
<h2>HELLO</h2>
<p>Cras facilisis urna ornare ex volutpat, et

convallis erat elementum. Ut aliquam, ipsum vitae
gravida suscipit, metus dui bibendum est, eget rhoncus nibh

metus nec massa. Maecenas hendrerit laoreet augue
nec molestie. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus.</p>

<p>Duis a turpis sed lacus dapibus elementum sed eu lectus.</p>

</divs>

var App = React.createClass({
render: function() {

return {
edivs
<hl>Simple SPA</hl>
<ul className="header"»
Home</1li>
<li=gtuff</1li-
clisContacte/1ix

<div className="content">
<Home/ >
<fdivs
</div>

b

body {
background-color: #FFCCQO;
padding: 20pX;
margin: 0;

}

hi, ha, p; ul1, 1i 4
font-family: Helvetica, Arial, sans-serif;

}

ul .header 1i {
display: inline;
list-style-type: none;
margin: 0;

}

ul .header {
background-color: #111;
padding: 0;

}

ul .header 1i a {
color: #FFF;

font-weight: bold;
text-decoration: none:

padding: 20pX;
display: inline-block;

}

.content {
background-color: #FFF;
padding: 20px;

}

.content hz {
padding: 0;
margin: 0;

}

.content 1i {
margin-bottom: 10px;

}

<ReactRouter .Routers
<ReactRouter .Route path="/" component={App}=

</ReactRouter .Routes
< /ReactRouter.Routers

ReactDOM. render (
<Routers:
<Route path="/" component={App}>

</Routes
</Routers,
destination

ti

ReactDOM.render (
<Routers
<Route path="/" component={App}>
<IndexRoute component={Home}/>
</Route>
</Routers,
destination

Yi

var App = React.createClass({
render: function() {

return {
edivs
<hl>Simple SPA</hl>
<ul className="header"»
Home</1li>
<li=Stuff
clisContacte/1ix

<div className="content">
{this.props.children}
<fdivs
</div>

b

var App = React.createClass({
render: function{) {
return {
cdivs
<hl>Simple SPA</hl>
<ul claseName="header"»
Home
<li=gtuff</li-
<lisContacte/11i>

<div claesName="content"s
{this.props.children}
<fdivs
</div>

¥

var App = React.createClass|({
render: function() {
return
edivs
<hl>Simple SPA</hl>
<ul className="header">
<liz<Link to="/"sHome</Link>
<li»<Link to="/stuff"=Stuff</Links></1i-
clis<lLink to="/contact"sContacte/Linkse</1ix
</ful>
<div className="content">
{this.props.children}
<fdivs
</div>

b

var Contact = React.createﬂlass{{
render: function()} {
return
<divs
<h2>C30T QUESTIONS?</h2>
<p>The easiest thing to do is post on
our forums</a=.
</p>
</divs

i

1

var Stuff = React.createClass({
render: function{)} {
return f{
<divs
<h2>S8TUFF</h2>
<p>Mauris sem velit, wvehicula eget sodales vitae,
rhoncus eget sapien:</p>
<0l
<li=Nulla pulvinar diam</lis
<lisFacilisis bibendume</1i>
<lisVestibulum vulputate</lis
<lizEget erat</lis
Id porttitor</1lix
<fol>
</divs

ReactDOM. render (
<Routers
<Route path="/" component={App}>
<IndexRoute component={Home}/>
<Route path="stuff" component={Stuff} />
<Route path="contact" component={Contact} />
</Route>
</Routers>,
destination

Y3

ReactDOM.render (
<Routers>
<Route path="/" component={RZpp}=
<IndexRoute component={Home} />
<Route path="stuff" component={stuff}:
<Route path="blah" component={MyBlah}/>
</Routes>
<Route path="contact" component={Contact} /=
</Routes
</Routers,

destination) ;

var App = React.createClass|({
render: function() |{
return
edivs
<hl>Simple SPA</hl>
<ul className="header">
<liz<Link to="/" activeClassName="active">Home</Link>
<li=<Link to="/stuff" activeClassName="active"=Stuff</Link></11i>
<Link to="/contact" activeClassName="active"sContact</Link></11i>

<div className="content">
{this.props.children}
</divs
</divs

¥

var App = React.createClass|({
render: function() {
return
edivs
<hl>Simple SPA</hl>
<ul className="header">
<liz<IndexLink to="/" activeClassName="active">Home</IndexLink></1i>
<li»<Link to="/stuff" activeClassName="active"=Stuff</Link=</1i>
clis<Link to="/contact" activeClassName="active"sContacte/Links</11x

<div className="content"s
{this.props.children}
<fdivs
</div>

b

<!DOCTYPE html>
<html =

<heads>
ctitlesReact! React! React!e</titles
<gcript src="https://unpkg.com/react@ls.3.2/dist/react.je"></scripts
<script src="https://unpkg.com/react-dom@l5.3.2/dist/react-dom.js"></scripts>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></8cripts>

<styvles

</styles
</heads>

<bodys

<div id="container"»

</divs

<script type="text/babel">
var destination = document.querySelector ("#container") ;

ReactDOM.render {
=divs
Hello!
</divs,
destination
}i
</scripts
</body>

</html »

var TodoList = React.createﬂlass{{
render: function() ({
return (
<div className="todoListMain">
<div className="header"=
<form:-
<input placeholder="enter task">
</inputs>
<button type="submit"sadd</buttons:
< /form=
<fdivs
</divs

body {
padding: 50px;
background-color: #66CCFF;
font-family: sans-serif;

1

.todoListMain .header input {
padding: 1l0px;
font-gize: 16px;
border: 2px solid #FFF;

1

.todoListMain .header button {
padding: 1l0px;
font-gize: lepx;
margin: 10px;
background-color: #0066FF;
color: #FFF;
border: 2px solid #00&66FF;

.todoListMain .header button:hover {
background-color: #003399;
border: 2px solid #003399;
Cursor: pointer;

var TodoList = React.createClass ({
getInitialState: function() {
return {
items: []
b
h
render: function() {
return
<div className="todoListMain">
«div clasesName="header":»
<form:
<input placeholder="enter task"=s
</ inputs
<button type="submit"s>add</button>
</forms
</divs
</divs
)i
}
b

render: function() {
return (
<div className="todoListMain"»
<div className="header">
<form onSubmit={this.addItem}>
<input placeholder="enter task"»
</input>
<button type="submit">add</button>
</forms
</fdivs
</divs>
)i
}

var TodoList = React.createClass ({
getInitialState: function() {
return {
items: []

b
b

addItem: function(e) {

b

render: function() {

return |
<div className="todoListMain"s

<div className="header"»
<form onSubmit={this.addItem}>
<input placehoclder="enter task"s
</inputs
<button type="gubmit"s>add</button>
</ forms
</divs
</div>
) i
}
B

render: function() {
return {
<div className="todoListMain">
<div className="header"s
<form onSubmit={this.addItem}>
<input ref={(a) => this._inputElement = a}
placeholder="enter task":
</inputs
<button type="submit"sadd</button-
</ forms
efdivs
</div>
) i

addItem: function(e) {
var itemArray = this.state.items;

itemArray.push {

{

text: this._ inputElement.value,
key: Date.now()

}
)i

this.set8tate({
items: itemArray

});

e.preventDefault () ;

}

var itemArray = this.state.items;

itemArray.push (

{

text: this. inputElement.value,
key: Date.nowl)

}
Y

var Todoltems = Eeact.createclass{{
render: function() {

}
1

render: function() {
return |
<div className="todoListMain">
<div className="header">
<form onSubmit={this.addItem}>
<input ref-{ (a) => this._inputElement = a}
placeholder="enter task"s
</inputs
<button type="submit"sadde</buttons
</forms
<fdivs
<TodoItems entries={this.state.items}/>
</div>
)i
}

var TodoItems = React.createClass({
render: function() {
var todeoEntries = this.props.entries;

D

var TodoItems = React.createClass ({
render: function() {

var todeoEntries = this.props.entries;

function createTasks(item) {
return <li key={item.key}>{item.text}</1i>

}
var listItems = todoEntries.map (createTasks);

¥

function createTasks(item) ({
return <li key={item.key}={item.text}</1i>

J

itemArray.push (

{

text: this. inputElement.value,
key: Date.nowl)

}
Y

var TodoItems = React.createClass({
render: function() {
var todoEntries = this.props.entries;

function createTasks(item) {
return <li key={item.key}>{item.text}</1li>

}

var listItems = todoEntries.map (createTasks);

return (
<ul className="theList">
{listItems}
<ful>
)i
}
B

.todoListMain .theList {
list-style: none;
padding-left: 0;
width: 2E5E5px;

}

.todoListMain .theList 1i {
color: #333;
background-color: rgba{255,6255,6 255, .5};
padding: 15px;
margin-bottom: 15px;
border-radius: 5pX;

addItem: function(e) {
var itemArray = this.state.items;

itemArray.push (

{

text: this._ inputElement.value,
key: Date.now()

}
)i

this.setState ({
items: itemArray

13F;

this._ inputElement.value = "";

e.preventDefault () ;

}

<gcript src="https://unpkg.com/react@l5.3.2/dist/react.js"></script>
<gcript src="https://unpkg.com/react-dom215.3.2/dist/react-dom.js"></scripts>

<gcript src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.je"=</zcript=

<!DOCTYPE html>=
<html =

<heads
<titlesReact! React! React!</titles

</heads

<body>
<cdiv id="container"></divs>

<gcript src="output/myCode.js"></script:
</body>

</html >

<gcript src="output/myCode.js"></script>

"name": "mytotallyawesomeapp",

"vergion": "1.0.0",
"description®": "",
"main": "index.js",
"ecripta": {
"tegt": "echo \"Error: no test specified\" && exit 1"
1r;uthr::ur": Wl

"license": "ISC"

npm install react react-dom --save

import React from "react";
import ReactDOM from "react-dom";

var HelloWorld = React.createClass({
render: function() {
return {
<p>Hello, {this.props.greetTarget}!</p>
}i

1 ;

ReactDOM.render {

<divs
<HelloWorld greetTarget="Batman"/=
<HelloWorld greetTarget="Iron Man"/>
<HelloWorld greetTarget="Nicolas Cage"/»
<HelloWorld greetTarget="Mega Man"/-
<HelloWorld greetTarget="Bono"/>
<HelloWorld greetTarget="Catwoman"/>

</divs,

document . querySelector ("#container")

X

import React from "react";
import ReactDOM from "react-dom";

var webpack = require ("webpack") ;
var path = require("path");

var DEV = path.resolve(dirname, "dev");
var OUTPUT = path.resolve(dirname, "output");

var config = {
entry: DEV + "/index.jsx",
output: {
path: OUTPUT,
filename: "myCode.js"

}
Hi

module.exportes = config;

npm install babel-loader babel-preset-es2015 babel-preset-react --save

"name": "mytotallyawesomeapp"”,
"yergicn”: "1.0.0",
"description®": ",
"main": "index.js",
"geripte”: {
"test": "echo \"Error: no test specified\"
7
"author": "",
"license": "ISC",
"dependencies": {
"babel -loader": ""6.2.4",
*"babel -preset-es2015": "*6.9.0",
"babel -preset-react": "“6.5.0",
"react": "*15.1.0",
"react-dom": "“15.1.0",
*webpack": "*1.13.1"
b
"babel": {
"presets": [
"ag2015",
"react"

&& exit 1"

var webpack = require("webpack") ;
var path = require("path");

var DEV = path.resolve(dirname, "Dev");
var OUTPUT = path.resolve(__dirname, "output");

var config = {
entry: DEV + "/index.jsx",
output: {
path: OUTPUT,
filename: "myCode.js"

}s

module: {
loaders: [{
include: DEV,

loader: "babel”,
}
}
}i

module.exports = config;

	About This E-Book
	Title Page
	Copyright Page
	Accessing the Free Web Edition
	Dedication Page
	Contents
	Acknowledgments
	About the Author
	1. Introducing React
	Old School Multi-Page Design
	New School Single-Page Apps
	Meet React
	Automatic UI State Management
	Lightning-fast DOM Manipulation
	APIs to Create Truly Composable UIs
	Visuals Defined Entirely in JavaScript
	Just the V in an MVC Architecture

	Conclusion

	2. Building Your First React App
	Dealing with JSX
	Getting Your React On
	Displaying Your Name
	It’s All Still Familiar
	Changing the Destination
	Styling It Up!

	Conclusion

	3. Components in React
	A Quick Review of Functions
	Changing How We Deal with the UI
	Meet the React Component
	Creating a Hello, World! Component
	Specifying Properties
	Dealing with Children

	Conclusion

	4. Styling in React
	Displaying Some Vowels
	Styling React Content Using CSS
	Understand the Generated HTML
	Just Style It Already!

	Styling Content the React Way
	Creating a Style Object
	Actually Styling Our Content
	You Can Omit the “px” Suffix
	Making the Background Color Customizable

	Conclusion

	5. Creating Complex Components
	From Visuals to Components
	Identifying the Major Visual Elements
	Identifying the Components

	Creating the Components
	The Card Component
	The Square Component
	The Label Component
	Passing Properties, Again!

	Why Component Composability Rocks
	Conclusion

	6. Transferring Properties (Props)
	Problem Overview
	Detailed Look at the Problem
	Meet the Spread Operator
	Properly Transferring Properties
	Conclusion

	7. Meet JSX—Again!
	What Happens with JSX?
	JSX Quirks to Remember
	You Can Only Return A Single Root Node
	You Can’t Specify CSS Inline
	Reserved Keywords and className
	Comments
	Capitalization, HTML Elements, and Components
	Your JSX Can Be Anywhere

	Conclusion

	8. Dealing with State
	Using State
	Our Starting Point

	Getting Our Counter On
	Setting the Initial State Value
	Starting Our Timer and Setting State
	Rendering the State Change

	Optional: The Full Code
	Conclusion

	9. Going from Data to UI
	The Example
	Your JSX Can Be Anywhere—Part II
	Dealing with Arrays in the Context of JSX
	Conclusion

	10. Working with Events
	Listening and Reacting to Events
	Starting Point
	Making the Button Click Do Something
	Event Properties
	Doing Stuff With Event Properties
	More Eventing Shenanigans
	Listening to Regular DOM Events
	The Meaning of this Inside the Event Handler

	React...Why? Why?!
	Browser Compatibility
	Improved Performance

	Conclusion

	11. The Component Lifecycle
	Meet the Lifecycle Methods
	See the Lifecycle Methods in Action
	The Initial Rendering Phase
	The Updating Phase
	The Unmounting Phase

	Conclusion

	12. Accessing DOM Elements
	Meet Refs
	Conclusion

	13. Creating a Single-Page App Using React Router
	The Example
	Building the App
	Displaying the Initial Frame
	Displaying the Home Page
	Interim Cleanup Time
	Displaying the Home Page Correctly
	Creating the Navigation Links
	Adding the Stuff and Contact Views
	Creating Active Links

	Conclusion

	14. Building a Todo List App
	Getting Started
	Creating the UI
	Creating the Functionality
	Initializing our State Object
	Handling the Form Submit
	Populating Our State
	Displaying the Tasks
	Adding the Finishing Touches

	Conclusion

	15. Setting Up Your React Development Environment
	Meet the Tools
	Node.js
	Babel
	webpack
	Your Code Editor

	It Is Environment Setup Time!
	Setting up our Initial Project Structure
	Installing and Initializing Node.js
	Installing the React Dependencies
	Adding our JSX File
	Going from JSX to JavaScript
	Building and Testing Our App

	Conclusion

	16. The End
	Index
	Code Snippets

