

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB	and
its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or	app
settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize	often
include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and	figures	that
you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings	and	features	on
your	reading	device	or	app,	visit	the	device	manufacturer ’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the

presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and	adjust
the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and	configurations	in	the
reflowable	text	format,	we	have	included	images	of	the	code	that	mimic	the	presentation
found	in	the	print	book;	therefore,	where	the	reflowable	format	may	compromise	the
presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view	code	image”	link.	Click	the
link	to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,	click	the
Back	button	on	your	device	or	app.

Learning	React

Kirupa	Chinnathambi

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•	Cape	Town
Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi

Mexico	City	•	Sao	Paulo	•	Sidney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei	•	Tokyo

Learning	React

Copyright	©	2017	Pearson	Education,	Inc.

All	rights	reserved.	No	part	of	this	book	shall	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	by	any	means,	electronic,	mechanical,	photocopying,	recording,	or	otherwise,
without	written	permission	from	the	publisher.	No	patent	liability	is	assumed	with	respect	to
the	use	of	the	information	contained	herein.	Although	every	precaution	has	been	taken	in	the
preparation	of	this	book,	the	publisher	and	author	assume	no	responsibility	for	errors	or
omissions.	Nor	is	any	liability	assumed	for	damages	resulting	from	the	use	of	the
information	contained	herein.

ISBN-13:	978-0-134-54631-5

ISBN-10:	0-134-54631-8

Library	of	Congress	Control	Number:	2016917161

Printed	in	the	United	States	of	America

First	printing:	November	2016

Acquisitions	Editor
Mark	Taber

Development	Editor
Chris	Zahn

Copy	Editor
Abigail	Manheim

Indexer
Erika	Millen

Technical	Reviewers
Trevor	McCauley
Kyle	Murray

Cover	Designer
Chuti	Prasertsith

Trademarks

All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or	service	marks	have	been
appropriately	capitalized.	Pearson	cannot	attest	to	the	accuracy	of	this	information.	Use	of	a
term	in	this	book	should	not	be	regarded	as	affecting	the	validity	of	any	trademark	or	service
mark.

Warning	and	Disclaimer

Every	effort	has	been	made	to	make	this	book	as	complete	and	as	accurate	as	possible,	but	no
warranty	or	fitness	is	implied.	The	information	provided	is	on	an	“as	is”	basis.	The	author

and	the	publisher	shall	have	neither	liability	nor	responsibility	to	any	person	or	entity	with
respect	to	any	loss	or	damages	arising	from	the	information	contained	in	this	book.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to	your
business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our	corporate
sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	United	States,	please	contact	intlcs@pearsoned.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearsoned.com

Accessing	the	Free	Web	Edition

Your	purchase	of	this	book	in	any	format	includes	access	to	the	corresponding	Web	Edition,
which	provides	several	special	online-only	features:

	The	complete	text	of	the	book
	Bonus	material	on	animating	content	with	React	Motion	and	making	Ajax/server-related
calls
	Updates	and	corrections	as	they	become	available

The	Web	Edition	can	be	viewed	on	all	types	of	computers	and	mobile	devices	with	any
modern	web	browser	that	supports	HTML5.
To	get	access	to	the	Learning	React	Web	Edition	all	you	need	to	do	is	register	this	book:

1.	Go	to	www.informit.com/register
2.	Sign	in	or	create	a	new	account.
3.	Enter	ISBN:	9780134546315
4.	Answer	the	questions	as	proof	of	purchase.
5.	The	Web	Edition	will	appear	under	the	Digital	Purchases	tab	on	your	Account	page.
Click	the	Launch	link	to	access	the	product.

http://www.informit.com/register

To	my	dad!
(Who	always	believed	in	me—even	if	what	I	was	often	doing	made	no	sense	to	him...or	to	me

for	that	matter!	:P)

Contents

1	Introducing	React
Old	School	Multi-Page	Design
New	School	Single-Page	Apps
Meet	React

Automatic	UI	State	Management
Lightning-fast	DOM	Manipulation
APIs	to	Create	Truly	Composable	UIs
Visuals	Defined	Entirely	in	JavaScript
Just	the	V	in	an	MVC	Architecture

Conclusion

2	Building	Your	First	React	App
Dealing	with	JSX
Getting	Your	React	On
Displaying	Your	Name
It’s	All	Still	Familiar

Changing	the	Destination
Styling	It	Up!

Conclusion

3	Components	in	React
A	Quick	Review	of	Functions
Changing	How	We	Deal	with	the	UI
Meet	the	React	Component

Creating	a	Hello,	World!	Component
Specifying	Properties
Dealing	with	Children

Conclusion

4	Styling	in	React
Displaying	Some	Vowels
Styling	React	Content	Using	CSS

Understand	the	Generated	HTML
Just	Style	It	Already!

Styling	Content	the	React	Way

Creating	a	Style	Object
Actually	Styling	Our	Content
You	Can	Omit	the	“px”	Suffix
Making	the	Background	Color	Customizable

Conclusion

5	Creating	Complex	Components
From	Visuals	to	Components

Identifying	the	Major	Visual	Elements
Identifying	the	Components

Creating	the	Components
The	Card	Component
The	Square	Component
The	Label	Component
Passing	Properties,	Again!

Why	Component	Composability	Rocks
Conclusion

6	Transferring	Properties	(Props)
Problem	Overview
Detailed	Look	at	the	Problem
Meet	the	Spread	Operator
Properly	Transferring	Properties
Conclusion

7	Meet	JSX—Again!
What	Happens	with	JSX?
JSX	Quirks	to	Remember

You	Can	Only	Return	A	Single	Root	Node
You	Can’t	Specify	CSS	Inline
Reserved	Keywords	and	className
Comments
Capitalization,	HTML	Elements,	and	Components
Your	JSX	Can	Be	Anywhere

Conclusion

8	Dealing	with	State
Using	State

Our	Starting	Point
Getting	Our	Counter	On

Setting	the	Initial	State	Value
Starting	Our	Timer	and	Setting	State
Rendering	the	State	Change

Optional:	The	Full	Code
Conclusion

9	Going	from	Data	to	UI
The	Example
Your	JSX	Can	Be	Anywhere—Part	II
Dealing	with	Arrays	in	the	Context	of	JSX
Conclusion

10	Working	with	Events
Listening	and	Reacting	to	Events

Starting	Point
Making	the	Button	Click	Do	Something
Event	Properties
Doing	Stuff	With	Event	Properties
More	Eventing	Shenanigans
Listening	to	Regular	DOM	Events
The	Meaning	of	this	Inside	the	Event	Handler

React...Why?	Why?!
Browser	Compatibility
Improved	Performance

Conclusion

11	The	Component	Lifecycle
Meet	the	Lifecycle	Methods

See	the	Lifecycle	Methods	in	Action
The	Initial	Rendering	Phase
The	Updating	Phase
The	Unmounting	Phase

Conclusion

12	Accessing	DOM	Elements
Meet	Refs

Conclusion

13	Creating	a	Single-Page	App	Using	React	Router
The	Example
Building	the	App

Displaying	the	Initial	Frame
Displaying	the	Home	Page
Interim	Cleanup	Time
Displaying	the	Home	Page	Correctly
Creating	the	Navigation	Links
Adding	the	Stuff	and	Contact	Views
Creating	Active	Links

Conclusion

14	Building	a	Todo	List	App
Getting	Started
Creating	the	UI
Creating	the	Functionality

Initializing	our	State	Object
Handling	the	Form	Submit
Populating	Our	State
Displaying	the	Tasks
Adding	the	Finishing	Touches

Conclusion

15	Setting	Up	Your	React	Development	Environment
Meet	the	Tools

Node.js
Babel
webpack
Your	Code	Editor

It	Is	Environment	Setup	Time!
Setting	up	our	Initial	Project	Structure
Installing	and	Initializing	Node.js
Installing	the	React	Dependencies
Adding	our	JSX	File
Going	from	JSX	to	JavaScript
Building	and	Testing	Our	App

Conclusion

16	The	End

Index

Acknowledgments

First,	none	of	this	would	be	possible	without	the	support	and	encouragement	of	my	awesome
wife,	Meena.	If	she	didn’t	put	her	goals	on	hold	to	allow	me	to	spend	six	months	designing,
writing,	and	re-writing	everything	you	see	here,	me	writing	this	book	would	have	been	a
distant	dream.
Next,	I’d	like	to	thank	my	parents	for	always	encouraging	me	to	aimlessly	wander	and	enjoy
free	time	to	do	what	I	liked—such	as	teaching	complete	strangers	over	the	internet	in	the	late
1990s	how	to	do	cool	things	with	programming.	I	wouldn’t	be	half	the	rugged
indoorsman/scholar/warrior	I	am	today	without	them	both	:P
On	the	publishing	side,	writing	the	words	you	see	here	is	the	easy	part.	Getting	the	book	into
your	hands	is	an	amazingly	complex	process.	The	more	I	learn	about	all	the	moving	pieces
involved,	the	more	impressed	I	am	at	all	the	individuals	who	work	tirelessly	behind	the	scenes
to	keep	this	amazing	machinery	running.	To	everyone	at	Pearson	who	made	this	possible,
thank	you!	There	are	a	few	people	I’d	like	to	explicitly	call	out,	though.	First,	I’d	like	to	thank
Mark	Taber	for	continuing	to	give	me	opportunities	to	work	together,	Chris	Zahn	for
patiently	addressing	my	numerous	questions/concerns,	Abby	Manheim	for	turning	my
version	of	English	into	something	human-understandable,	and	Loretta	Yates	for	helping
make	the	connections	a	long	time	ago	that	made	all	of	this	happen.	The	technical	content	of
this	book	has	been	reviewed	in	great	detail	by	my	long-time	friends	and	online	collaborators,
Kyle	Murray	(aka	Krilnon)	and	Trevor	McCauley	(aka	senocular).	I	can’t	thank	them
enough	for	their	thorough	(and	frequently,	humorous!)	feedback.

About	the	Author

Kirupa	Chinnathambi	has	spent	most	of	his	life	trying	to	teach	others	to	love	web
development	as	much	as	he	does.
In	1999,	before	blogging	was	even	a	word,	he	started	posting	tutorials	on	kirupa.com.	In	the
years	since	then,	he	has	written	hundreds	of	articles,	written	a	few	books	(none	as	good	as	this
one,	of	course!),	and	recorded	a	bunch	of	videos	you	can	find	on	YouTube.	When	he	isn’t
writing	or	talking	about	web	development,	he	spends	his	waking	hours	helping	make	the	Web
more	awesome	as	a	Program	Manager	in	Microsoft.	In	his	non-waking	hours,	he	is	probably
sleeping...or	writing	about	himself	in	the	third	person.
You	can	find	him	on	Twitter	(twitter.com/kirupa),	Facebook	(facebook.com/kirupa),	or	e-mail
(kirupa@kirupa.com).	Feel	free	to	contact	him	anytime.

http://kirupa.com
http://twitter.com/kirupa
http://facebook.com/kirupa
mailto:kirupa@kirupa.com

1.	Introducing	React

Ignoring	for	a	moment	that	web	apps	today	both	look	and	feel	nicer	than	they	did	back	in	the
day,	there	is	something	even	more	fundamental	that	has	changed.	The	way	we	architect	and
build	web	apps	is	very	different	now.	To	highlight	this,	let’s	take	a	look	at	the	app	shown	in
Figure	1-1.

Figure	1-1	An	app.

This	app	is	a	simple	catalog	browser	for	something.	Like	any	app	of	this	sort,	you	have	your
usual	set	of	pages	revolving	around	a	home	page,	a	search	results	page,	a	details	page,	and	so
on.	In	the	following	sections,	let’s	look	at	the	two	approaches	we	have	for	building	this	app.
Yes,	in	some	mysterious	fashion,	this	leads	to	us	getting	an	overview	of	React	as	well!
Onwards!

Old	School	Multi-Page	Design
If	you	had	to	build	this	app	a	few	years	ago,	you	may	have	taken	an	approach	that	involved
multiple,	individual	pages.	The	flow	would	have	looked	something	like	what	is	shown	in
Figure	1-2.

Figure	1-2	Multi-page	design.

For	almost	every	action	that	changes	what	the	browser	displays,	the	web	app	will	navigate	you
to	a	whole	different	page.	This	is	a	big	deal	beyond	the	less-than-stellar	user	experience	that
users	will	see	as	pages	get	torn	down	and	redrawn.	This	has	a	big	impact	on	how	you
maintain	your	app	state.	Outside	of	storing	some	user	data	via	cookies	and	some	server-side
mechanism,	you	simply	don’t	need	to	care.	Life	is	good.

New	School	Single-Page	Apps
Today,	going	with	a	web	app	model	that	requires	navigating	between	individual	pages	seems
dated...like,	really	dated,	like	what	is	shown	in	Figure	1-3.

Figure	1-3	The	individual	page	model	is	a	bit	dated—like	this	steam	engine.
Source:	New	Catechism	of	the	Steam	Engine,	1904

Instead,	modern	apps	tend	to	adhere	to	what	is	known	as	a	Single-page	app	(SPA)	model.	This
is	a	world	where	you	never	navigate	to	different	pages	or	ever	even	reload	a	page.	Instead,	the
different	views	of	your	app	are	loaded	and	unloaded	into	the	same	page	itself.
For	our	app,	this	may	look	something	like	Figure	1-4.

Figure	1-4	Single-page	app.

As	users	interact	with	our	app,	we	replace	the	contents	of	the	dotted	red	region	with	the	data
and	HTML	that	matches	what	the	user	is	trying	to	do.	The	end	result	is	a	much	more	fluid
experience.	You	can	even	use	a	lot	of	visual	techniques	to	have	your	new	content	transition	in
nicely	just	like	you	might	see	in	cool	apps	on	your	mobile	device	or	desktop.	This	sort	of
stuff	is	simply	not	possible	when	navigating	to	different	pages.
All	of	this	may	sound	a	bit	crazy	if	you’ve	never	heard	of	single-page	apps	before,	but	there
is	a	very	good	chance	you’ve	run	into	some	of	them	in	the	wild.	If	you’ve	ever	used	popular
web	apps	like	Gmail,	Facebook,	Instagram,	or	Twitter,	you	were	using	a	single-page	app.	In
all	those	apps,	the	content	gets	dynamically	displayed	without	requiring	you	to	refresh	or
navigate	to	a	different	page.
Now,	I	am	making	these	single-page	apps	seem	really	complicated.	That’s	not	entirely	the
case.	Thanks	to	a	lot	of	great	improvements	in	both	JavaScript	and	a	variety	of	third	party
frameworks	and	libraries,	building	single-page	apps	has	never	been	easier.	That	doesn’t	mean

there	is	no	room	for	improvement,	though.
When	building	single-page	apps,	there	are	three	major	issues	that	you’ll	encounter:

	In	a	single-page	application,	the	bulk	of	your	time	will	be	spent	keeping	your	data	in
sync	with	your	UI.	For	example,	if	a	user	loads	new	content,	do	we	explicitly	clear	out
the	search	field?	Do	we	keep	the	active	tab	on	a	navigation	element	still	visible?	Which
elements	do	we	keep	on	the	page,	and	which	do	we	destroy?
These	are	all	problems	unique	to	single-page	apps.	When	navigating	between	pages	in
the	old	model,	we	just	assumed	everything	in	our	UI	would	be	destroyed	and	just	built
back	up	again.	This	was	never	a	problem.
	Manipulating	the	DOM	is	really	REALLY	slow.	Manually	querying	elements,	adding
children	(see	Figure	1-5	below),	removing	subtrees,	and	performing	other	DOM
operations	are	some	of	the	slowest	things	you	can	do	in	your	browser.	Unfortunately,	in
a	single-page	app,	you’ll	be	doing	a	lot	of	this.	Manipulating	the	DOM	is	the	primary
way	you	are	able	to	respond	to	user	actions	and	display	new	content.

Figure	1-5	Adding	children.

	Working	with	HTML	templates	can	be	a	pain.	Navigation	in	a	single-page	app	is
nothing	more	than	you	dealing	with	fragments	of	HTML	to	represent	whatever	it	is	you
wish	to	display.	These	fragments	of	HTML	are	often	known	as	templates,	and	using

JavaScript	to	manipulate	them	and	fill	them	out	with	data	gets	really	complicated	really
quickly.
To	make	things	worse,	depending	on	the	framework	you	are	using,	the	way	your
templates	look	and	interact	with	data	can	vary	wildly.	For	example,	this	is	what	using	a
template	in	Mustache	looks	like:

Click	here	to	view	code	image

var	view	=	{
		title:	"Joe",
		calc:	function	()	{
				return	2	+	4;
		}
};

var	output	=	Mustache.render("{{title}}	spends	{{calc}}",	view);

Sometimes,	your	templates	may	look	like	some	clean	HTML	that	you	can	proudly	show	off	in
front	of	the	class.	Other	times,	your	templates	might	be	unintelligible,	with	a	boatload	of
custom	tags	designed	to	help	map	your	HTML	elements	to	some	data.
Despite	these	shortcomings,	single-page	apps	aren’t	going	anywhere.	They	are	a	part	of	the
present,	and	they	will	fully	form	the	future	of	how	web	apps	are	built.	That	doesn’t	mean	that
we	have	to	tolerate	these	shortcomings.	To	address	this,	meet	React!

Meet	React
Facebook	(and	Instagram)	decided	that	enough	is	enough.	Given	their	abundance	of
experience	with	single-page	apps,	they	released	a	library	called	React	(the	React	logo	is
shown	in	Figure	1-6)	to	not	only	address	these	shortcomings,	but	to	also	change	how	we	think
about	building	single-page	apps.

Figure	1-6	The	React	logo.

In	the	following	sections,	let’s	look	at	the	big	things	React	brings	to	the	table.

Automatic	UI	State	Management
With	single-page	apps,	keeping	track	of	your	UI	and	maintaining	state	is	hard—and	very
time-consuming.	With	React,	you	need	to	worry	only	about	one	thing:	the	final	state	your	UI
is	in.	It	doesn’t	matter	what	state	your	UI	started	out	in.	It	doesn’t	matter	what	series	of	steps
your	users	may	have	taken	to	change	the	UI.	All	that	matters	is	where	your	UI	ended	up	(see
Figure	1-7).

Figure	1-7	The	final	or	end	state	of	your	UI	is	what	matters	in	React.

React	takes	care	of	everything	else.	It	figures	out	what	needs	to	happen	to	ensure	your	UI	is
represented	properly,	so	all	of	that	state	management	stuff	is	no	longer	your	concern.

Lightning-fast	DOM	Manipulation
Because	DOM	modifications	are	really	slow,	you	never	modify	the	DOM	directly	using
React.	Instead,	you	modify	an	in-memory	virtual	DOM	instead.	Figure	1-8	symbolizes	that	in-
memory	virtual	DOM.

Figure	1-8	Imagine	an	in-memory	virtual	DOM.

Manipulating	this	virtual	DOM	is	extremely	fast,	and	React	takes	care	of	updating	the	real
DOM	when	the	time	is	right.	It	does	so	by	comparing	the	changes	between	your	virtual	DOM
and	the	real	DOM,	figuring	out	which	changes	actually	matter,	and	making	the	least	amount	of
DOM	changes	needed	to	keep	everything	up-to-date	in	a	process	called	reconciliation.

APIs	to	Create	Truly	Composable	UIs
Instead	of	treating	the	visual	elements	in	your	app	as	one	monolithic	chunk,	React	encourages
you	to	break	your	visual	elements	into	smaller	and	smaller	components.
Just	like	everything	else	in	programming,	it	is	a	good	idea	to	have	things	be	modular,
compact,	and	self-contained.	React	extends	that	well-established	idea	to	how	we	should	think
about	user	interfaces	as	well.	Many	of	React’s	core	APIs	make	it	easier	to	create	smaller
visual	components	that	can	later	be	combined	with	other	visual	components	to	make	larger
and	more	complex	visual	components—kind	of	like	Russian	Matryoshka	dolls	(see	Figure	1-
9).

Figure	1-9	Russian	Matryoshka	dolls	by	Gnomz007.
Source:	https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

This	is	one	of	the	major	ways	React	simplifies	(and	changes)	how	we	think	about	building	the
visuals	for	our	web	apps.

Visuals	Defined	Entirely	in	JavaScript
While	this	sounds	ridiculously	crazy	and	outrageous,	hear	me	out.	Besides	using	a	really
weird	syntax,	HTML	templates	traditionally	suffered	from	another	major	problem.	The
variety	of	things	you	can	do	inside	them	other	than	simply	displaying	data	is	limited.	If	you
wanted	to	choose	which	piece	of	UI	to	display	based	on	a	particular	condition,	for	example,
you	had	to	write	JavaScript	somewhere	else	in	your	app	or	use	some	weird	framework-
specific	templating	command	to	make	it	work.
For	example,	here	is	what	a	conditional	statement	inside	an	EmberJS	template	looks	like:
Click	here	to	view	code	image

{{#if	person}}
		Welcome	back,	{{person.firstName}}	{{person.lastName}}!
{{else}}
		Please	log	in.
{{/if}}

What	React	does	is	pretty	neat.	By	having	your	UI	defined	entirely	in	JavaScript,	you	get	to
use	all	of	the	rich	functionality	JavaScript	provides	for	doing	all	sorts	of	things	inside	your
templates	(as	you	will	see	in	a	few	chapters).	You	are	limited	only	by	what	JavaScript	supports
as	opposed	to	any	limitations	imposed	by	your	templating	framework.

https://commons.wikimedia.org/wiki/File:Russian-Matroshka_no_bg.jpg

Now,	when	you	think	of	visuals	defined	entirely	in	JavaScript,	you	are	probably	thinking
something	horrible	involving	quotation	marks,	escape	characters,	and	a	whole	lot	of
createElement	calls.	Don’t	worry.	React	gives	you	the	option	to	specify	your	visuals
using	an	HTML-like	syntax	known	as	JSX	that	lives	fully	alongside	your	JavaScript.	Instead
of	writing	code	to	define	your	UI,	you	are	basically	specifying	markup:

ReactDOM.render(
		<div>																			
				<h1>Batman</h1>							
				<h1>Iron	Man</h1>					
				<h1>Nicolas	Cage</h1>	
				<h1>Mega	Man</h1>					
		</div>,																	
		destination
);

This	same	code	defined	in	JavaScript	would	look	like	this:
Click	here	to	view	code	image

ReactDOM.render(React.createElement(
		"div",
		null,
		React.createElement(
				"h1",
				null,
				"Batman"
),
		React.createElement(
				"h1",
				null,
				"Iron	Man"
),
		React.createElement(
				"h1",
				null,
				"Nicolas	Cage"
),
		React.createElement(
				"h1",
				null,
				"Mega	Man"
)
),	destination);

Yikes!	By	using	JSX,	you	are	able	to	define	your	visuals	very	easily	using	a	syntax	that	is
very	familiar,	while	still	getting	all	the	power	and	flexibility	that	JavaScript	provides.	Best	of
all,	in	React,	your	visuals	and	JavaScript	often	live	in	the	same	location.	You	no	longer	have
to	jump	between	multiple	files	to	define	the	look	and	behavior	of	one	visual	component.	This
is	templating	done	right.

Just	the	V	in	an	MVC	Architecture
We	are	almost	done	here!	React	is	not	a	full-fledged	framework	that	has	an	opinion	on	how
everything	in	your	app	should	behave.	Instead,	React	works	primarily	in	the	View	layer	where
all	of	its	worries	and	concerns	revolve	around	your	visual	elements	and	keeping	them	up	to
date.	This	means	you	are	free	to	use	whatever	you	want	for	the	M	and	C	part	of	your	MVC
architecture.	This	flexibility	enables	you	to	pick	and	choose	what	technologies	you	are
familiar	with,	and	this	makes	React	useful	not	only	for	new	web	apps	you	create	but	also	for
existing	apps	you’d	like	to	enhance	without	removing	and	refactoring	a	whole	bunch	of	code.

Conclusion
As	new	web	frameworks	and	libraries	go,	React	is	quite	the	runaway	success.	It	not	only	deals
with	the	most	common	problems	developers	faced	when	building	single-page	apps,	it	throws
in	a	few	additional	tricks	that	make	building	the	visuals	for	your	single-page	apps	much
MUCH	easier.	Since	it	came	out	in	2013,	React	has	steadily	found	its	way	into	popular	web
sites	and	apps	that	you	probably	use.	Besides	Facebook	and	Instagram,	some	of	the	notable
ones	include	the	BBC,	Khan	Academy,	PayPal,	Reddit,	The	New	York	Times,	Yahoo,	and
many	more:	https://github.com/facebook/react/wiki/Sites-Using-React
The	intent	of	this	chapter	is	to	provide	you	with	an	introduction	to	what	React	does	and	why	it
does	it.	In	tutorials	in	subsequent	chapters	we’ll	dive	deeper	into	everything	you’ve	seen	here
and	cover	the	technical	details	that	will	help	you	successfully	use	React	in	your	own	projects.
Stick	around.

https://github.com/facebook/react/wiki/Sites-Using-React

2.	Building	Your	First	React	App

By	now,	thanks	to	the	previous	chapter,	you	probably	know	all	about	the	backstory	of	React
and	how	it	helps	even	your	most	complex	user	interfaces	sing	performantly.	For	all	the
awesomeness	that	React	brings	to	the	table,	getting	started	with	it	(kinda	like	this	sentence)	is
not	the	most	straightforward	thing.	It	has	a	steep	learning	curve	filled	with	many	small	and
big	hurdles:

In	this	chapter,	we	start	at	the	very	beginning	and	get	our	hands	dirty	by	building	a	simple
React	app.	We	encounter	some	of	these	hurdles	head-on,	and	some	of	these	hurdles	we	skip
over—for	now.	By	the	end	of	this	chapter,	not	only	will	we	have	built	something	you	can
proudly	show	off	to	your	friends	and	family,	we’ll	have	set	ourselves	up	nicely	for	diving
deeper	into	all	that	React	offers	in	future	chapters.

Dealing	with	JSX
Before	we	start	building	our	app,	there	is	an	important	thing	we	should	cover	first.	React	isn’t
like	many	JavaScript	libraries	you	may	have	used.	It	isn’t	very	happy	when	you	simply	refer
to	code	you’ve	written	for	it	using	a	script	tag.	React	is	annoyingly	special	that	way,	and	it	has
to	do	with	how	React	apps	are	built.
As	you	know,	your	web	apps	(and	everything	else	your	browser	displays)	are	made	up	of
HTML,	CSS,	and	JavaScript:

It	doesn’t	matter	if	your	web	app	was	written	using	React	or	some	other	library	like	Angular,
Knockout,	or	jQuery.	The	end	result	has	to	be	some	combination	of	HTML,	CSS,	and
JavaScript.	Otherwise,	your	browser	really	won’t	know	what	to	do.
Now,	here	is	where	the	special	nature	of	React	comes	in.	Besides	normal	HTML,	CSS,	and
JavaScript,	the	bulk	of	your	React	code	will	be	written	in	something	known	as	JSX.	JSX,	as	I
mentioned	in	Chapter	1,	is	a	language	that	allows	you	to	easily	mix	JavaScript	and	HTML-like
tags	to	define	user	interface	(UI)	elements	and	their	functionality.	That	sounds	cool	and	all
(and	we	will	see	JSX	in	action	in	just	a	few	moments),	but	there	is	a	slight	problem.	Your
browser	has	no	idea	what	to	do	with	JSX.
To	build	a	web	app	using	React,	we	need	a	way	to	take	our	JSX	and	convert	it	into	plain	old
JavaScript	that	your	browser	can	understand.
If	we	didn’t	do	this,	our	React	app	simply	wouldn’t	work.	That’s	not	cool.	Fortunately,	there
are	two	solutions	to	this:

	Set	up	a	development	environment	around	Node	and	a	handful	of	build-tools.	In	this
environment,	every	time	you	perform	a	build,	all	of	your	JSX	is	automatically
converted	into	JS	and	placed	on	disk	for	you	to	reference	like	any	plain	JavaScript	file.
	Let	your	browser	rely	on	a	JavaScript	library	to	automatically	convert	JSX	to
something	it	understands.	You	specify	your	JSX	directly	just	like	you	would	any	old
piece	of	JavaScript,	and	your	browser	takes	care	of	the	rest.

Both	of	these	solutions	have	a	place	in	our	world,	but	let’s	talk	about	the	impact	of	each.
The	first	solution,	while	a	bit	complicated	and	time-consuming	at	first,	is	the	way	modern	web
development	is	done	these	days.	Besides	compiling	(transpiling	to	be	more	accurate)	your
JSX	to	JS,	this	approach	enables	you	to	take	advantage	of	modules,	better	build	tools,	and	a
bunch	of	other	features	that	make	building	complex	web	apps	somewhat	manageable.
The	second	solution	provides	a	quick	and	direct	path	where	you	initially	spend	more	time
writing	code	and	less	time	fiddling	with	your	development	environment.	To	use	this	solution,
all	you	do	is	reference	a	script	file.	This	script	file	takes	care	of	turning	the	JSX	into	JS	on

page	load,	and	your	React	app	comes	to	life	without	you	having	to	do	anything	special	to	your
development	environment.
For	our	introductory	look	at	React,	we	are	going	to	use	the	second	solution.	You	may	be
wondering	why	we	don’t	use	the	second	solution	always.	The	reason	is	that	your	browser
takes	a	performance	hit	each	time	it	spends	time	translating	JSX	into	JS.	That	is	totally
acceptable	when	learning	how	to	use	React,	but	that	is	totally	not	acceptable	when	deploying
your	app	for	real-life	use.	Because	of	that	un-acceptableness,	we	will	revisit	all	of	this	and
look	at	the	first	solution	and	how	to	set	up	your	development	environment	later,	once	you’ve
gotten	your	feet	comfortably	wet	in	React.

Getting	Your	React	On
In	the	previous	section,	we	looked	at	the	two	ways	you	have	for	ensuring	your	React	app	ends
up	as	something	your	browser	understands.	In	this	section,	we	are	going	to	put	all	of	those
words	into	practice.	First,	we	will	need	a	blank	HTML	page	that	will	act	as	our	starting	point.
If	you	don’t	have	a	blank	HTML	page	handy,	feel	free	to	use	the	following:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
</head>

<body>
		<script>

		</script>
</body>

</html>

This	page	has	nothing	interesting	or	exciting	going	for	it,	but	let’s	fix	that	by	adding	a
reference	to	the	React	library.	Just	below	the	title,	add	these	two	lines:
Click	here	to	view	code	image

<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>

These	two	lines	bring	in	both	the	core	React	library	as	well	as	the	various	things	React	needs
to	work	with	the	DOM.	Without	them,	you	aren’t	building	a	React	app	at	all.	Now,	we	aren’t
done	yet.	There	is	one	more	library	we	need	to	reference.	Just	below	these	two	script	tags,
add	the	following	line:
Click	here	to	view	code	image

<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

What	we	are	doing	here	is	adding	a	reference	to	the	Babel	JavaScript	compiler
(http://babeljs.io/).	Babel	does	many	cool	things,	but	the	one	we	care	about	is	its	capability	to

http://babeljs.io/

turn	JSX	into	JavaScript.
At	this	point,	our	HTML	page	should	look	as	follows:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>
</head>

<body>
		<script>

		</script>
</body>

</html>

If	you	preview	your	page	right	now,	you’ll	notice	that	this	page	is	still	blank	with	nothing
visible	going	on.	That’s	OK.	We	are	going	to	fix	that	next.

Displaying	Your	Name
The	first	thing	we	are	going	to	do	is	use	React	to	display	our	name	on	screen.	The	way	we	do
that	is	by	using	a	method	called	render.	Inside	your	script	tag,	add	the	following:
Click	here	to	view	code	image

ReactDOM.render(
		<h1>Sherlock	Holmes</h1>,
		document.body
);

Don’t	worry	if	none	of	this	makes	sense	at	this	point.	Our	goal	is	to	get	something	to	display
on	screen	first,	and	we’ll	make	sense	of	what	we	did	shortly	afterwards.	Now,	before	we
preview	this	in	our	page	to	see	what	happens,	we	need	to	designate	this	script	block	as
something	that	Babel	can	do	its	magic	on.	The	way	we	do	that	is	by	setting	the	type	attribute
on	the	script	tag	to	a	value	of	text/babel:

<script	type="text/babel">
		ReactDOM.render(
				<h1>Sherlock	Holmes</h1>,
				document.body
);
</script>

Once	you’ve	made	that	change,	now	preview	what	you	have	in	your	browser.	What	you’ll	see
are	the	words	Sherlock	Holmes	printed	in	giant	letters.	Congratulations!	You	just	built	an	app
using	React.

As	apps	go,	this	isn’t	all	that	exciting.	Chances	are	your	name	isn’t	even	Sherlock	Holmes.
While	this	app	doesn’t	have	much	going	for	it,	it	does	introduce	you	to	one	of	the	most
frequently	used	methods	you’ll	use	in	the	React	universe—the	ReactDOM.render	method.
The	render	method	takes	two	arguments:

	The	HTML-like	elements	(aka	JSX)	you	wish	to	output
	The	location	in	the	DOM	that	React	will	render	the	JSX	into

Here	is	what	our	render	method	looks	like:
ReactDOM.render(
		<h1>Sherlock	Holmes</h1>,
		document.body
);

Our	first	argument	is	the	text	Sherlock	Holmes	wrapped	inside	some	h1	tags.	This	HTML-
like	syntax	inside	your	JavaScript	is	what	JSX	is	all	about.	While	we	will	spend	a	lot	more
time	drilling	into	JSX	a	bit	later,	I	should	mention	this	up	front—It	is	every	bit	as	crazy	as	it
looks.	Whenever	I	see	brackets	and	slashes	in	JavaScript,	a	part	of	me	dies	on	the	inside
because	of	all	the	string	escaping	and	quotation	mark	gibberish	I	will	need	to	do.	With	JSX,
you	do	none	of	that.	You	just	place	your	HTML-like	content	as-is	just	like	what	we’ve	done
here.	Magically	(like	the	super-awesome	kind	involving	dragons	and	laser	beams),	it	all
works.
The	second	argument	is	document.body.	There	is	nothing	crazy	or	bizarre	about	this
argument.	It	simply	specifies	where	the	converted	markup	from	the	JSX	will	end	up	living	in
our	DOM.	In	our	example,	when	the	render	method	runs,	the	h1	tag	(and	everything	inside
it)	is	placed	in	our	document’s	body	element.
Now,	the	goal	of	this	exercise	wasn’t	to	display	a	name	on	the	screen.	It	was	to	display	your
name.	Go	ahead	and	modify	your	code	to	do	that.	In	my	case,	the	render	method	will	look
as	follows:

ReactDOM.render(
		<h1>Batman</h1>,
		document.body
);

Well—it	would	look	like	that	if	my	name	was	Batman!	Anyway,	if	you	preview	your	page
now,	you	will	see	your	name	displayed	instead	of	Sherlock	Holmes.

It’s	All	Still	Familiar
While	the	JavaScript	looks	new	and	shiny	thanks	to	JSX,	the	end	result	your	browser	sees	is
nice,	clean	HTML,	CSS,	and	JavaScript.	To	see	this	for	yourself,	let’s	make	a	few	alterations
to	how	our	app	behaves	and	looks.

Changing	the	Destination
The	first	thing	we’ll	do	is	change	where	our	JSX	gets	output.	Using	JavaScript	to	place	things
directly	in	your	body	element	is	never	a	good	idea.	A	lot	can	go	wrong—especially	if	you
are	going	to	be	mixing	React	with	other	JS	libraries	and	frameworks.	The	recommended	path
is	to	create	a	separate	element	that	you	will	treat	as	a	new	root	element.	This	element	will
serve	as	the	destination	our	render	method	will	use.	To	make	this	happen,	go	back	to	the
HTML	and	add	a	div	element	with	an	id	value	of	container.
Instead	of	showing	you	the	full	HTML	for	this	one	minor	change,	here	is	what	just	our	body
element	looks	like:

<body>
		<div	id="container"></div>
		<script	type="text/babel">
				ReactDOM.render(
						<h1>Batman</h1>,
						document.body
);
		</script>
</body>

With	our	container	div	element	safely	defined,	let’s	modify	the	render	method	to	use	it
instead	of	document.body.	Here	is	one	way	of	doing	this:

ReactDOM.render(
		<h1>Batman</h1>,
		document.querySelector("#container")
);

Another	way	of	doing	this	is	by	doing	some	things	outside	of	the	render	method	itself:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<h1>Batman</h1>,
		destination
);

Notice	that	the	destination	variable	stores	the	reference	to	our	container	DOM	element.
Inside	the	render	method,	we	simply	reference	the	same	destination	variable	instead	of
writing	the	full	element-finding	syntax	as	part	of	the	argument	itself.	The	reason	I	want	to	do
this	is	simple.	I	want	to	show	you	that	you	are	still	writing	JavaScript	and	render	is	just
another	boring	old	method	that	happens	to	take	two	arguments.

Styling	It	Up!
Time	for	our	last	change	before	we	call	it	a	day.	Right	now,	our	names	show	up	in	whatever
default	h1	styling	our	browser	provides.	That	is	just	terrible,	so	let’s	fix	it	by	adding	some
CSS.	Inside	your	head	tag,	add	a	style	block	with	the	following	CSS:

#container	{

		padding:	50px;
		background-color:	#EEE;
}
#container	h1	{
		font-size:	48px;
		font-family:	sans-serif;
		color:	#0080A8;
}

After	you	have	added	all	of	this,	preview	your	page.	Notice	that	our	text	appears	with	a	little
more	purpose	than	it	did	earlier	when	it	relied	entirely	on	the	browser ’s	default	styling	(see
Figure	2-1).

Figure	2-1	The	result	of	adding	the	CSS.

The	reason	this	works	is	that	our	DOM’s	body,	after	running	all	of	the	React	code,	contains
our	container	element	with	an	h1	tag	inside	it.	It	doesn’t	matter	that	the	h1	tag	was	defined
entirely	inside	JavaScript	in	this	JSX	syntax	or	that	your	CSS	was	defined	well	outside	of	the
render	method.	The	end	result	is	that	your	React	app	is	still	going	to	be	made	up	of	some
100%	organic	(and	cage-free!)	HTML,	CSS,	and	JavaScript:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
		<script	src="https://fb.me/react-15.1.0.js"></script>

		<script	src="https://fb.me/react-dom-15.1.0.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>
				#container	{
						padding:	50px;
						background-color:	#EEE;
				}
				#container	h1	{
						font-size:	144px;
						font-family:	sans-serif;
						color:	#0080a8;
				}
		</style>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">
				var	destination	=	document.querySelector("#container");

				ReactDOM.render(React.createElement(
						"h1",
						null,
						"Batman"
),	destination);
		</script>
</body>

</html>

Notice	that	there	is	nary	a	trace	of	React-like	code	in	sight.	Also,	we	should	use	the	word	nary
more	often	in	everyday	conversation!

Conclusion
If	this	is	your	first	time	building	a	React	app,	we	covered	a	lot	of	ground	here.	One	of	the
biggest	takeaways	is	that	React	is	different	than	other	libraries	because	it	uses	a	whole	new
language	called	JSX	to	define	what	the	visuals	will	look	like.	We	got	a	very	small	glimpse	of
that	here	when	we	defined	the	h1	tag	inside	the	render	method.
JSX’s	impact	goes	beyond	how	you	define	your	UI	elements.	It	also	alters	how	you	build	your
app	as	a	whole.	Because	your	browser	can’t	understand	JSX	in	its	native	representation,	you
need	to	use	an	intermediate	step	to	convert	that	JSX	into	JavaScript.	One	approach	is	to	build
your	app	to	generate	the	transpiled	JavaScript	output	to	correspond	to	the	JSX	source.
Another	approach	(aka	the	one	we	used	here)	is	to	use	the	Babel	library	to	translate	the	JSX
into	JavaScript	on	the	browser	itself.	While	the	performance	hit	of	doing	that	is	not
recommended	for	live/production	apps,	when	familiarizing	yourself	with	React,	you	can’t
beat	the	convenience.
In	future	chapters,	we’ll	spend	some	time	diving	deeper	into	JSX	and	going	beyond	the	render
method	as	we	look	at	all	the	important	things	that	make	React	tick.

3.	Components	in	React

Components	are	one	of	the	things	that	make	React,	well,	React!	They	are	one	of	the	primary
ways	you	have	for	defining	the	visuals	and	interactions	that	make	up	what	people	see	when
they	use	your	app.	Let’s	say	Figure	3-1	shows	what	your	finished	app	looks	like.

Figure	3-1	Your	hypothetical	finished	app.

This	is	the	finished	sausage.	During	development,	viewed	from	the	lens	of	you	as	a	React
developer,	things	might	look	a	little	less	appealing.	Almost	every	part	of	this	app’s	visuals
would	be	wrapped	inside	a	self-contained	module	known	as	a	component.	To	highlight	what
“almost	every”	means	here,	take	a	look	at	the	diagram	in	Figure	3-2.

Figure	3-2	Diagrammatic	representation	of	the	app	components.

Each	dotted	line	represents	an	individual	component	that	is	responsible	for	both	what	you	see
as	well	as	any	interactions	that	it	may	be	responsible	for.	Don’t	let	this	scare	you.	While	this
looks	really	complicated,	as	you	will	see	shortly,	it	will	start	to	make	a	whole	lot	of	sense
once	you’ve	had	a	chance	to	play	with	components	and	some	of	the	awesome	things	that	they
do—or	at	least	try	really	hard	to	do.
Onwards!

A	Quick	Review	of	Functions
In	JavaScript,	you	have	these	things	known	as	functions.	They	enable	you	to	make	your	code
a	bit	cleaner	and	more	reusable.	Now,	there	is	reason	why	we	are	taking	some	time	to	look	at
functions,	and	it	isn’t	to	annoy	you—I	swear!	Functions,	conceptually	speaking,	share	a	lot	of
surface	area	with	React	components,	and	the	easiest	way	to	understand	what	components	do	is
by	taking	a	quick	look	at	functions	first.
In	a	terrible	world	where	functions	do	not	exist,	you	may	have	some	code	that	looks	as
follows:

var	speed	=	10;
var	time	=	5;
alert(speed	*	time);

var	speed1	=	85;
var	time1	=	1.5;
alert(speed1	*	time1);

var	speed2	=	12;
var	time2	=	9;
alert(speed2	*	time2);

var	speed3	=	42;
var	time3	=	21;
alert(speed3	*	time3);

In	a	really	chill	world	that	involves	functions,	you	can	condense	all	of	that	duplicated	text	into
something	simple	like	the	following:
Click	here	to	view	code	image

function	getDistance(speed,	time)	{
				var	result	=	speed	*	time;
				alert(result);
}

Our	getDistance	function	removes	all	of	the	duplicated	code	you	saw	earlier,	and	it	takes
speed	and	time	as	arguments	to	enable	you	to	customize	the	calculation	that	gets	returned.
To	call	this	function,	all	you	have	to	do	is	this:

getDistance(10,	5);
getDistance(85,	1.5);
getDistance(12,	9);
getDistance(42,	21);

Doesn’t	this	look	nicer?	Now	there	is	another	great	value	functions	provide.	Your	functions
(like	the	alert	inside	getDistance)	can	call	other	functions	as	part	of	their	running.	Here
is	us	using	a	formatDistance	function	to	change	what	gets	returned	by	getDistance:
Click	here	to	view	code	image

1			function	formatDistance(distance)	{
2					return	distance	+	"km";
3			}
4
5			function	getDistance(speed,	time)	{

6							var	result	=	speed	*	time;
7							alert(formatDistance(result));
8			}

This	capability	to	have	functions	call	other	functions	enables	us	to	cleanly	separate	what
functions	do.	You	don’t	need	to	have	one	monolithic	function	that	does	everything	under	the
sun.	You	can	distribute	the	functionality	across	many	functions	specialized	for	a	particular
type	of	task.
Best	of	all,	after	you	make	changes	to	how	your	functions	work,	you	don’t	have	to	do
anything	extra	to	see	the	results	of	those	changes.	If	the	function	signature	did	not	change,	any
existing	calls	to	that	function	will	just	magically	work	and	automatically	pick	up	any	new
changes	you	made	to	the	function	itself.	For	example,	our	existing	getDistance	calls	will
see	the	result	of	the	formatDistance	function	even	if	the	formatDistance	function
didn’t	exist	when	the	calls	were	first	defined.	That’s	pretty	awesome.
In	a	nutshell,	functions	are	awesome.	I	know	that.	You	know	that.	That’s	why	all	of	the	code	we
write	has	them	all	over	the	place.

Changing	How	We	Deal	with	the	UI
I	don’t	think	anybody	will	disagree	with	the	good	things	functions	bring	to	the	table.	They
really	make	it	possible	to	structure	the	code	for	your	apps	in	a	sane	way.	That	same	level	of
care	we	use	in	writing	our	code	isn’t	always	possible	when	it	comes	to	writing	our	UIs.	For
various	technical	and	non-technical	reasons,	we’ve	always	tolerated	a	certain	level	of
sloppiness	with	how	we	typically	work	with	our	UI	elements.
I	realize	that	is	a	pretty	controversial	statement,	so	let	me	highlight	what	I	mean	by	looking	at
some	examples.	We	are	going	to	go	back	and	look	at	the	render	method	we	used	in	the
previous	chapter:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<h1>Batman</h1>,
		destination
);

What	you	see	on	the	screen	is	the	word	Batman	printed	in	giant	letters—thanks	to	the	h1
element.	Let’s	change	things	up	a	bit	and	say	that	we	want	to	print	the	names	of	several	other
superheroes.	To	do	this,	let’s	modify	our	render	method	to	now	look	as	follows:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<div>
				<h1>Batman</h1>
				<h1>Iron	Man</h1>
				<h1>Nicolas	Cage</h1>
				<h1>Mega	Man</h1>
		</div>,

		destination
);

Notice	what	you	see	here.	We	emit	a	div	that	contains	the	four	h1	elements	with	our
superhero	names.

JSX	Gotcha:	Outputting	Multiple	Elements
There	is	an	important	JSX	detail	to	call	out	here.	The	div	that	wraps	our	h1	elements
isn’t	there	because	it	looks	like	a	good	idea.	It	is	there	because	it	has	to	be	there.	In
React,	you	can’t	output	multiple	adjacent	elements	as	shown	in	the	following:

Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<h1>Batman</h1>
		<h1>Iron	Man</h1>
		<h1>Nicolas	Cage</h1>
		<h1>Mega	Man</h1>,
		destination
);

Even	though	this	is	valid	HTML,	it	isn’t	valid	in	the	eyes	of	the	unholy	alliance	between
JSX	and	JavaScript.	That	may	sound	like	a	terrible	limitation,	but	the	workaround	is
really	easy.	While	you	can	only	output	one	element,	this	one	element	can	have	as	many
children	as	needed.	That	is	why	we	wrap	our	h1	elements	inside	the	div.	We	do	this
because	of	how	JSX	gets	turned	into	JavaScript.	The	details	of	that	are	something	we
will	look	at	later,	but	it	isn’t	important	enough	right	this	moment	to	distract	us	from
learning	about	components.

Ok,	so	what	we	have	now	are	four	h1	elements	that	each	contain	the	name	of	a	superhero.
What	if	we	want	to	change	our	h1	element	to	something	like	an	h3	instead?	We	can	manually
update	all	of	these	elements	as	follows:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<div>
				<h3>Batman</h3>
				<h3>Iron	Man</h3>
				<h3>Nicolas	Cage</h3>
				<h3>Mega	Man</h3>
		</div>,
		destination
);

If	you	preview	what	we	have,	you’ll	see	something	that	looks	a	bit	unstyled	and	plain	(see
Figure	3-3).

Figure	3-3	Plain	vanilla	super	hero	names.

We	don’t	want	to	go	crazy	with	the	styling	here.	All	we	want	to	do	is	just	italicize	all	of	these
names	by	using	the	<i>	tag,	so	let’s	manually	update	what	we	render	by	making	this	change:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

ReactDOM.render(
		<div>
				<h3><i>Batman</i></h3>
				<h3><i>Iron	Man</i></h3>
				<h3><i>Nicolas	Cage</i></h3>
				<h3><i>Mega	Man</i></h3>
		</div>,
		destination
);

We	went	through	each	h3	element	and	wrapped	the	content	inside	some	i	tags.	Can	you	start
to	see	the	problem	here?	What	we	are	doing	with	our	UI	is	no	different	than	having	code	that
looks	as	follows:

var	speed	=	10;
var	time	=	5;
alert(speed	*	time);

var	speed1	=	85;
var	time1	=	1.5;
alert(speed1	*	time1);

var	speed2	=	12;
var	time2	=	9;
alert(speed2	*	time2);
var	speed3	=	42;
var	time3	=	21;
alert(speed3	*	time3);

Every	change	we	want	to	make	to	our	h1	or	h3	elements	needs	to	be	duplicated	for	every
instance	of	it.	What	if	we	want	to	do	something	even	more	complex	than	just	modifying	the
appearance	of	our	elements?	What	if	we	want	to	represent	something	more	complex	than	the
simple	examples	we	are	using	so	far?	What	we	are	doing	right	now	won’t	scale	because
manually	updating	every	copy	of	what	we	want	to	modify	is	time	consuming.	It	is	also	boring.
Now,	here	is	a	crazy	thought:	What	if	everything	awesome	we	looked	at	about	functions	can
somehow	be	applied	to	how	we	define	our	app’s	visuals?	Wouldn’t	that	solve	all	of	the
inefficiencies	we’ve	highlighted	in	this	section?	Well,	as	it	turns	out,	the	answer	to	that	“What
if”	forms	the	core	of	what	React	is	all	about.	It	is	time	for	you	to	meet	the	component.

Meet	the	React	Component
The	solution	to	all	of	our	problems	(even	the	existential	ones	we	grapple	with!)	can	be	found
in	React	components.	React	components	are	reusable	chunks	of	JavaScript	that	output	(via
JSX)	HTML	elements.	That	sounds	really	pedestrian	for	something	capable	of	solving	great
problems	and	doing	great	things,	but	as	we	start	to	build	components	and	gradually	turn	up
the	complexity,	you’ll	see	that	components	are	really	powerful	and	every	bit	as	awesome	as
I’ve	portrayed	them	to	you.
Let’s	start	by	building	a	couple	of	components	together.	To	follow	along,	start	with	a	blank
React	document:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React	Components</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">

		</script>
</body>

</html>

There	is	nothing	exciting	going	on	this	page.	Nearly	identical	to	what	we	had	in	our	earlier
chapter,	this	page	is	pretty	barebones,	with	just	a	reference	to	the	React	and	Babel	libraries
and	a	div	element	who	proudly	sports	an	id	value	of	container.

Creating	a	Hello,	World!	Component
We	are	going	to	start	really	simple.	What	we	want	to	do	is	use	a	component	to	help	us	print
the	famous	“Hello,	world!”	text	to	the	screen.	As	we	already	know,	by	using	just	the	render
method	of	ReactDOM,	the	code	would	look	as	follows:
Click	here	to	view	code	image

1			ReactDOM.render(
2					<div>
3							<p>Hello,	world!</p>
4					</div>,
5					document.querySelector("#container")
6);

Let’s	recreate	all	of	this	by	using	a	component.	You	have	several	ways	of	creating
components	in	React,	but	the	way	we	are	going	to	create	them	initially	is	by	using
React.createClass.	Go	ahead	and	add	the	following	highlighted	code	just	above	our
existing	render	method:
Click	here	to	view	code	image

var	HelloWorld	=	React.createClass({	
																																					
});																																		

ReactDOM.render(
		<div>
				<p>Hello,	world!</p>
		</div>,
		document.querySelector("#container")
);

What	we	have	done	is	create	a	new	component	called	HelloWorld.	This	HelloWorld
component	doesn’t	do	anything	right	now.	In	fact,	it	is	basically	an	empty	JavaScript	object	at
this	point.	Inside	this	object,	you	can	put	all	sorts	of	properties	to	further	define	what
HelloWorld	does.	Some	properties	you	define	are	special	and	used	by	React	to	help	your
components	work	their	magic.	One	such	mandatory	property	is	render.
Go	ahead	and	modify	our	HelloWorld	component	by	adding	a	render	property	as	shown
in	the	following:
Click	here	to	view	code	image

var	HelloWorld	=	React.createClass({
		render:	function()	{	

		}																				
});

Just	like	the	render	method	of	we	saw	a	few	moments	earlier	as	part	of
ReactDOM.render,	the	render	method	inside	a	component	is	also	responsible	for
dealing	with	JSX.	Let’s	modify	our	render	method	to	return	Hello,	componentized	world!,
so	go	ahead	and	add	the	following	highlighted	lines:
Click	here	to	view	code	image

var	HelloWorld	=	React.createClass({
		render:	function()	{
				return	(
						<p>Hello,	componentized	world!</p>	
);																																			
		}
});

What	we’ve	done	is	told	our	render	method	to	return	the	JSX	that	represents	our	Hello,
componentized	world!	text.	All	that	remains	is	to	actually	use	this	component.	The	way	you
use	a	component	once	you’ve	defined	it	is	by	calling	it,	and	we	are	going	to	call	it	from	our
old	friend,	the	ReactDOM.render	method:
Click	here	to	view	code	image

ReactDOM.render(
		<HelloWorld/>,	
		document.querySelector("#container")
);

That	isn’t	a	typo!	The	JSX	we	use	for	calling	our	HelloWorld	component	is	the	very
HTML-like	<HelloWorld/>.	If	you	preview	your	page	in	your	browser,	you’ll	see	the	text
Hello,	componentized	world!	showing	up	on	your	screen.	If	you	held	your	breath	in
suspense,	you	can	relax.
If	you	have	difficulty	relaxing	after	seeing	the	syntax	we	used	for	calling	HelloWorld,	stare
at	the	following	circle	for	a	few	moments:

Ok,	back	to	reality.	What	we’ve	done	so	far	might	seem	crazy,	but	simply	think	of	your
<HelloWorld/>	component	as	a	cool	and	new	HTML	tag	whose	functionality	you	have	full
control	over.	This	means	you	can	do	all	sorts	of	HTML-ey	things	to	it.
For	example,	go	ahead	and	modify	our	ReactDOM.render	method	to	look	as	follows:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<HelloWorld/>
		</div>,
		document.querySelector("#container")
);

We	wrapped	our	call	to	the	HelloWorld	component	inside	a	div	element,	and	if	you
preview	this	in	your	browser,	everything	still	works.	Let’s	go	one	step	further!	Instead	of
having	just	a	single	call	to	HelloWorld,	let’s	make	a	bunch	of	calls.	Modify	our
ReactDOM.render	method	to	now	look	as	follows:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<HelloWorld/>
				<HelloWorld/>
				<HelloWorld/>
				<HelloWorld/>
				<HelloWorld/>
				<HelloWorld/>
		</div>,
		document.querySelector("#container")
);

What	you	will	see	now	is	a	bunch	of	Hello,	componentized	world!	text	instances	appear.	Let’s
do	one	more	thing	before	we	move	on	to	something	shinier.	Go	back	to	our	HelloWorld
component	declaration,	and	change	the	text	we	return	to	the	more	traditional	Hello,	world!
value:
Click	here	to	view	code	image

var	HelloWorld	=	React.createClass({
		render:	function()	{
				return	(
						<p>Hello,	world!</p>	
);
		}
});

Just	make	this	one	change	and	preview	your	example.	This	time	around,	all	of	the	various
HelloWorld	calls	we	specified	earlier	now	return	Hello,	world!	to	the	screen.	There	was	no
manually	modifying	every	HelloWorld	call.	That’s	a	good	thing!

Specifying	Properties
Right	now,	our	component	does	just	one	thing.	It	prints	Hello,	world!	to	our	screen	and	only
that!	That’s	the	equivalent	of	having	a	JavaScript	function	that	looks	like	this:

function	getDistance()	{
		alert("42km");
}

Except	for	one	very	particular	case,	that	JavaScript	function	doesn’t	seem	very	useful,	does	it?
The	way	to	increase	the	usefulness	of	this	function	is	by	modifying	it	to	take	arguments:
Click	here	to	view	code	image

function	getDistance(speed,	time)	{
				var	result	=	speed	*	time;
				alert(result);
}

Now,	your	function	can	be	used	more	generally	for	a	variety	of	situations—not	just	one
where	the	output	will	be	42km.
Something	similar	applies	to	your	components	as	well.	Just	like	with	functions,	you	can	pass
in	arguments	that	alter	what	your	component	does.	There	is	a	slight	terminology	update	you
need	to	be	on	top	of.	What	we	call	arguments	in	the	function	world	are	going	to	be	known	as
properties	in	the	component	world.	Let’s	see	these	properties	in	action!
We	are	going	to	modify	our	HelloWorld	component	to	enable	you	to	specify	who	or	what
you	greet	besides	the	generic	World.	For	example,	imagine	being	able	to	specify	Bono	as
part	of	the	HelloWorld	call	and	seeing	Hello,	Bono!	appear	on	screen.
To	add	properties	to	a	component,	there	are	two	parts	you	need	to	follow.

First	Part:	Updating	the	Component	Definition
Right	now,	our	HelloWorld	component	is	hard	coded	to	always	send	out	Hello,	world!	as
part	of	its	return	value.	The	first	thing	we	are	going	to	do	is	change	that	behavior	by	having
return	print	out	the	value	passed	in	by	a	property.	We	need	a	name	to	give	our	property,	and
for	this	example,	we	are	going	to	call	our	property	greetTarget.
To	specify	the	value	of	greetTarget	as	part	of	our	component,	here	is	the	modification	we
need	to	make:
Click	here	to	view	code	image

var	HelloWorld	=	React.createClass({
		render:	function()	{
				return	(
						<p>Hello,	{this.props.greetTarget}!</p>	
);
		}
});

The	way	you	access	a	property	is	by	calling	it	via	the	props	property	that	every	component
has	access	to.	Notice	how	we	specify	this	property.	We	place	it	inside	curly	brackets	{and	}.	In
JSX,	if	you	want	something	to	get	evaluated	as	an	expression,	you	need	to	wrap	that	something
inside	curly	brackets.	If	you	don’t	do	that,	you’ll	see	the	raw	text
this.props.greetTarget	printed	out.

Second	Part:	Modifying	the	Component	Call
Once	you’ve	updated	the	component	definition,	all	that	remains	is	to	pass	in	the	property
value	as	part	of	the	component	call.	That	is	done	by	adding	an	attribute	with	the	same	name	as
our	property,	followed	by	the	value	you	want	to	pass	in.	In	our	example,	that	would	involve
modifying	the	HelloWorld	call	with	the	greetTarget	attribute	and	the	value	we	want	to
give	it.
Go	ahead	and	modify	our	HelloWorld	calls	as	follows:
Click	here	to	view	code	image

ReactDOM.render(
		<div>

				<HelloWorld	greetTarget="Batman"/>
				<HelloWorld	greetTarget="Iron	Man"/>
				<HelloWorld	greetTarget="Nicolas	Cage"/>
				<HelloWorld	greetTarget="Mega	Man"/>
				<HelloWorld	greetTarget="Bono"/>
				<HelloWorld	greetTarget="Catwoman"/>
		</div>,
		document.querySelector("#container")
);

Each	of	our	HelloWorld	calls	now	has	the	greetTarget	attribute	along	with	the	name	of
a	superhero	(or	equivalent	mythical	being!)	that	we	wish	to	greet.	If	you	preview	this	example
in	the	browser,	you’ll	see	the	greetings	happily	printed	out	on	screen.
One	last	thing	to	call	out	before	we	move	on.	You	are	not	limited	to	just	having	a	single
property	on	a	component.	You	can	have	as	many	properties	as	you	want,	and	your	props
property	will	easily	accommodate	any	property	requests	you	have	without	making	any	fuss.

Dealing	with	Children
A	few	sections	ago,	I	mentioned	that	our	components	(in	JSX)	are	very	similar	to	regular
HTML	elements.	We	saw	that	for	ourselves	when	we	wrapped	a	component	inside	a	div
element	or	specified	an	attribute	and	value	as	part	of	specifying	properties.	There	is	one	more
thing	you	can	do	with	components	just	like	you	can	with	many	HTML	elements.	Your
components	can	have	children.
What	this	means	is	that	you	can	do	something	like	this:

<CleverComponent	foo="bar">
		<p>Something!</p>
</CleverComponent>

You	have	a	component	very	cleverly	called	CleverComponent,	and	it	has	a	p	element	as	a
child.	From	within	CleverComponent,	you	have	the	capability	to	access	the	p	child
element	(and	any	children	it	may	have)	via	the	children	property	accessed	by
this.props.children.
To	make	sense	of	all	this,	let’s	fiddle	with	another	really	simple	example.	This	time	around,
we	have	a	component	called	Buttonify	that	wraps	its	children	inside	a	button.	The
component	looks	like	this:
Click	here	to	view	code	image

var	Buttonify	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<button	type={this.props.behavior}>{this.props.children}</button>
						</div>
);
		}
});

The	way	you	can	use	this	component	is	by	just	calling	it	via	the	ReactDOM.render	method
as	shown	here:

Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<Buttonify	behavior="Submit">SEND	DATA</Buttonify>
		</div>,
		document.querySelector("#container")
);

When	this	code	runs,	given	what	the	JSX	in	the	Buttonify	component’s	render	method
looked	like,	what	you	will	see	are	the	words	“SEND	DATA”	wrapped	inside	a	button	element.
With	the	appropriate	styling,	the	result	could	look	comically	large	like	in	Figure	3-4.

Figure	3-4	A	large	send	data	button.

Anyway,	getting	back	to	the	JSX,	notice	that	we	specify	a	custom	property	called	behavior.
This	property	enables	us	to	specify	the	button	element’s	type	attribute,	and	you	can	see	us
accessing	it	via	this.props.behavior	in	the	component	definition’s	render	method.
There	is	more	to	accessing	a	component’s	children	than	what	we’ve	seen	here.	For	example,
if	your	child	element	is	the	root	of	a	deeply	nested	structure,	the	this.props.children
property	will	return	an	array.	If	your	child	element	is	just	a	single	element	(like	in	our
example),	the	this.props.children	property	returns	a	single	component	NOT	wrapped
inside	an	array.	There	are	a	few	more	things	to	call	out,	but	instead	of	enumerating	all	the
various	cases	and	boring	you,	we’ll	naturally	touch	upon	those	cases	as	part	of	looking	at
more	elaborate	examples	later	on.

Conclusion
If	you	want	to	build	an	app	using	React,	you	can’t	wander	too	far	without	having	to	use	a
component.	Trying	to	build	a	React	app	without	using	a	component	is	kinda	like	building	a
JavaScript-based	app	without	using	functions.	I	am	not	saying	that	it	can’t	be	done.	It	is	just
one	of	those	things	you	don’t	do...kinda	like	the	Bad	Idea	part	of	the	popular	Animaniacs
Good	Idea	/	Bad	Idea	sketches	you	can	find	here:	https://www.youtube.com/watch?
v=2dJOIf4mdus:
If	this	witty	video	doesn’t	convince	you	why	you	should	learn	to	embrace	components,	I	don’t
know	what	will...except	for	maybe	a	future	chapter	on	creating	complex	components!	:P

https://www.youtube.com/watch?v=2dJOIf4mdus

4.	Styling	in	React

For	generations,	mankind	(and	probably	really	smart	dolphins)	have	styled	their	HTML
content	using	CSS	(aka	Cascading	Style	Sheets).	Things	were	good.	With	CSS,	you	had	a
good	separation	between	the	content	and	the	presentation.	The	selector	syntax	gave	you	a	lot
of	flexibility	in	choosing	which	elements	to	style	and	which	ones	to	skip.	You	couldn’t	even
find	too	many	issues	to	hate	about	the	whole	cascading	thing	that	CSS	is	all	about.
Well,	don’t	tell	React	that.	While	React	doesn’t	actively	hate	CSS,	it	has	a	different	view	when
it	comes	to	styling	content.	As	we’ve	seen	so	far,	one	of	React’s	core	ideas	is	to	have	our
app’s	visual	pieces	be	self-contained	and	reusable.	That	is	why	the	HTML	elements	and	the
JavaScript	that	impacts	them	are	in	the	same	bucket	we	call	a	component.	We	got	a	taste	of	that
in	the	previous	chapter.
What	about	how	the	HTML	elements	look	(aka	their	styling)?	Where	should	that	go?	You	can
probably	guess	where	I	am	going	with	this.	You	can’t	have	a	self-contained	piece	of	UI	when
the	styling	for	it	is	defined	somewhere	else.	That’s	why	React	encourages	you	to	specify	how
your	elements	look	right	along	side	the	HTML	and	the	JavaScript.	In	this	tutorial,	you	learn
all	about	this	mysterious	(and	possibly	scandalous!)	approach	to	styling	your	content.	Of
course,	we	also	look	at	how	to	use	CSS	as	well.	There	is	room	for	both	approaches—even	if
React	may	sorta	kinda	not	think	so	:P
Onwards!

Displaying	Some	Vowels
To	learn	how	to	style	our	React	content,	let’s	work	together	on	a	(totally	sweet	and	exciting!)
example	that	simply	displays	vowels	on	a	page.	First,	you’ll	need	a	blank	HTML	page	that	will
host	our	React	content.	If	you	don’t	have	one,	feel	free	to	use	the	following	markup:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>Styling	in	React</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>
				#container	{
						padding:	50px;
						background-color:	#FFF;
				}
		</style>
</head>

<body>
		<div	id="container"></div>

</body>

</html>

All	this	markup	does	is	load	in	our	React	and	Babel	libraries	and	specify	a	div	with	an	id
value	of	container.	To	display	the	vowels,	we’re	going	to	add	some	React-specific	code.
Just	below	the	container	div	element,	add	the	following:
Click	here	to	view	code	image

<script	type="text/babel">

		var	Letter	=	React.createClass({
				render:	function()	{
								return	(
										<div>
												{this.props.children}
										</div>
);
						}
		});

		var	destination	=	document.querySelector("#container");

		ReactDOM.render(
				<div>
						<Letter>A</Letter>
						<Letter>E</Letter>
						<Letter>I</Letter>
						<Letter>O</Letter>
						<Letter>U</Letter>
				</div>,
				destination
);

</script>

From	what	we	learned	about	components,	nothing	here	should	be	a	mystery.	We	create	a
component	called	Letter	that	is	responsible	for	wrapping	our	vowels	inside	a	div	element.
All	of	this	is	anchored	in	our	HTML	via	a	script	tag	whose	type	designates	it	as	something
Babel	will	know	what	to	do	with.
If	you	preview	your	page,	you’ll	see	something	boring	that	looks	like	Figure	4-1.

Figure	4-1	A	boring	output	of	what	you	see.

Don’t	worry,	we’ll	make	it	look	a	little	less	boring	in	a	few	moments.	After	we’ve	had	a	run	at
these	letters,	you	will	see	something	that	looks	more	like	Figure	4-2.

Figure	4-2	The	letters	arranged	horizontally	and	with	a	yellow	background.

Our	vowels	will	be	wrapped	in	a	yellow	background,	aligned	horizontally,	and	sport	a	fancy
monospace	font.	Let’s	look	at	how	to	do	all	of	this	in	both	CSS	as	well	as	React’s	new-fangled
approach.

Styling	React	Content	Using	CSS
Using	CSS	to	style	our	React	content	is	actually	as	straightforward	as	you	can	imagine	it	to
be.	Because	React	ends	up	spitting	out	regular	HTML	tags,	all	of	the	various	CSS	tricks
you’ve	learned	over	the	years	to	style	HTML	still	apply.	There	are	just	a	few	minor	things	to
keep	in	mind.

Understand	the	Generated	HTML
Before	you	can	use	CSS,	you	need	to	first	get	a	feel	for	what	the	HTML	that	React	spits	out	is
going	to	look	like.	You	can	easily	figure	that	out	by	looking	at	the	JSX	defined	inside	the
render	methods.	The	parent	render	method	is	our	ReactDOM	based	one,	and	it	looks	as
follows:

<div>
		<Letter>A</Letter>
		<Letter>E</Letter>
		<Letter>I</Letter>
		<Letter>O</Letter>
		<Letter>U</Letter>
</div>

We	have	our	various	Letter	components	wrapped	inside	a	div.	Nothing	too	exciting	here.
The	render	method	inside	our	Letter	component	isn’t	that	much	different	either:

<div>
		{this.props.children}
</div>

As	you	can	see,	each	individual	vowel	is	wrapped	inside	its	own	set	of	div	tags.	If	you	had	to
play	this	all	out	(such	as,	previewing	our	example	in	a	browser),	the	final	DOM	structure	for
our	vowels	looks	like	Figure	4-3.

Figure	4-3	The	preview	from	inside	the	browser.

Ignore	the	data-reacroot	attribute	(that	you	may	not	even	see	depending	on	your	version
of	React!)	on	the	container	div,	but	pay	attention	to	the	rest	of	the	things	you	see.	What	we
have	is	simply	an	HTML-ized	expansion	of	the	various	JSX	fragments	we	saw	in	the	render
method	a	few	moments	ago	with	our	vowels	nested	inside	a	bunch	of	div	elements.

Just	Style	It	Already!
Once	you	understand	the	HTML	arrangement	of	the	things	you	want	to	style,	the	hard	part	is
done.	Now	comes	the	fun	and	familiar	part	of	defining	style	selectors	and	specifying	the
properties	you	want	to	set.	To	affect	our	inner	div	elements,	add	the	following	inside	our
style	tag:

div	div	div	{
		padding:	10px;
		margin:	10px;
		background-color:	#ffde00;
		color:	#333;
		display:	inline-block;
		font-family:	monospace;
		font-size:	32px;
		text-align:	center;
}

The	div	div	div	selector	will	ensure	we	style	the	right	things.	The	end	result	will	be	our
vowels	styled	to	look	exactly	like	we	saw	earlier.	With	that	said,	a	style	selector	of	div	div
div	looks	a	bit	odd,	doesn’t	it?	It	is	too	generic.	In	apps	with	more	than	three	nested	div
elements	(which	will	be	very	common),	you	may	end	up	styling	the	wrong	things.	It	is	at	times
like	this	where	you	will	want	to	change	the	HTML	that	React	generates	to	make	our	content
more	easily	style-able.
The	way	we	are	going	to	address	this	is	by	giving	our	inner	div	elements	a	class	value	of
letter.	Here	is	where	JSX	differs	from	HTML.	Make	the	following	highlighted	change:
Click	here	to	view	code	image

var	Letter	=	React.createClass({
		render:	function()	{
						return	(
								<div	className="letter">	
										{this.props.children}
								</div>
);
				}
});

Notice	that	we	designate	the	class	value	by	using	the	className	attribute	instead	of	the
class	attribute.	The	reason	has	to	do	with	the	word	class	being	a	special	keyword	in
JavaScript.	If	that	doesn’t	make	any	sense	why	it	is	important,	don’t	worry	about	it	for	now.
We’ll	cover	that	later.
Anyway,	once	you’ve	given	your	div	a	className	attribute	value	of	letter,	there	is	just
one	more	thing	to	do.	Modify	the	CSS	selector	to	target	our	div	elements	more	cleanly:

.letter	{
		padding:	10px;
		margin:	10px;
		background-color:	#ffde00;
		color:	#333;
		display:	inline-block;
		font-family:	monospace;

		font-size:	32px;
		text-align:	center;
}

As	you	can	see,	using	CSS	is	a	perfectly	viable	way	to	style	the	content	in	your	React-based
apps.	In	the	next	section,	we’ll	look	at	how	to	style	our	content	using	the	approach	preferred
by	React.

Styling	Content	the	React	Way
React	favors	an	inline	approach	for	styling	content	that	doesn’t	use	CSS.	While	that	seems	a
bit	strange	at	first,	it	is	designed	to	help	make	your	visuals	more	reusable.	The	goal	is	to	have
your	components	be	little	black	boxes	where	everything	related	to	how	your	UI	looks	and
works	gets	stashed	there.	Let’s	see	this	for	ourselves.
Continuing	our	example	from	earlier,	remove	the	.letter	style	rule.	Once	you	have	done
this,	your	vowels	will	return	to	their	unstyled	state	when	you	preview	your	app	in	the	browser.
For	completeness,	you	should	remove	the	className	declaration	from	our	Letter
component’s	render	function	as	well.	There	is	no	point	having	our	markup	contain	things
we	won’t	be	using.
Right	now,	our	Letter	component	is	back	to	its	original	state:
Click	here	to	view	code	image

var	Letter	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										{this.props.children}
								</div>
);
				}
});

The	way	you	specify	styles	inside	your	component	is	by	defining	an	object	whose	content	is
the	CSS	properties	and	their	values.	Once	you	have	that	object,	you	assign	that	object	to	the
JSX	elements	you	wish	to	style	by	using	the	style	attribute.	This	will	make	more	sense	once
we	perform	these	two	steps	ourselves,	so	let’s	apply	all	of	this	to	style	the	output	of	our
Letter	component.

Creating	a	Style	Object
Let’s	get	right	to	it	by	defining	our	object	that	contains	the	styles	we	wish	to	apply:
Click	here	to	view	code	image

var	Letter	=	React.createClass({
		render:	function()	{
						var	letterStyle	=	{											
								padding:	10,																
								margin:	10,																	
								backgroundColor:	"#ffde00",	
								color:	"#333",														
								display:	"inline-block",				

								fontFamily:	"monospace",				
								fontSize:	32,															
								textAlign:	"center"									
						};																												

						return	(
								<div>
										{this.props.children}
								</div>
);
				}
});

We	have	an	object	called	letterStyle,	and	the	properties	inside	it	are	just	CSS	property
names	and	their	value.	If	you’ve	never	defined	CSS	properties	in	JavaScript	before	(i.e.,	by
setting	object.style),	the	formula	for	converting	them	into	something	JavaScript-
friendly	is	pretty	simple:

	Single	word	CSS	properties	(like	padding,	margin,	color)	remain	unchanged.
	Multi-word	CSS	properties	with	a	dash	in	them	(like	background-color,	font-
family,	border-radius)	are	turned	into	one	camelcase	word	with	the	dash
removed	and	the	words	following	the	dash	capitalized.	For	example,	using	our	example
properties,	background-color	would	become	backgroundColor,	font-family
would	become	fontFamily,	and	border-radius	would	become	borderRadius.

Our	letterStyle	object	and	its	properties	are	pretty	much	a	direct	JavaScript	translation
of	the	.letter	style	rule	we	looked	at	a	few	moments	ago.	All	that	remains	now	is	to	assign
this	object	to	the	element	we	wish	to	style.

Actually	Styling	Our	Content
Now	that	we	have	our	object	containing	the	styles	we	wish	to	apply,	the	rest	is	very	easy.	Find
the	element	we	wish	to	apply	the	style	to	and	set	the	style	attribute	to	refer	to	that	object.	In
our	case,	that	will	be	the	div	element	returned	by	our	Letter	component’s	render
function.
Take	a	look	at	the	highlighted	line	to	see	how	this	is	done	for	our	example:
Click	here	to	view	code	image

var	Letter	=	React.createClass({
		render:	function()	{
						var	letterStyle	=	{
								padding:	10,
								margin:	10,
								backgroundColor:	"#ffde00",
								color:	"#333",
								display:	"inline-block",
								fontFamily:	"monospace",
								fontSize:	"32",
								textAlign:	"center"
						};

						return	(
								<div	style={letterStyle}>	

										{this.props.children}
								</div>
);
				}
});

Our	object	is	called	letterStyle,	so	that	is	what	we	specify	inside	the	curly	brackets	to	let
React	know	to	evaluate	the	expression.	That’s	all	there	is	to	it.	Go	ahead	and	run	the	example
in	the	browser	to	ensure	everything	works	properly	and	all	of	our	vowels	are	properly	styled.
For	some	extra	validation,	if	you	inspect	the	styling	applied	to	one	of	the	vowels	using	your
browser	developer	tool	of	choice,	you’ll	see	that	the	styles	are	infact	applied	inline	(see
Figure	4-4).

Figure	4-4	The	styles	are	applied	inline.

While	this	is	no	surprise,	it	might	be	difficult	for	those	of	us	used	to	styles	being	inside	style
rules	to	swallow.	As	they	say,	the	Times	They	Are	A	Changin’
(https://www.youtube.com/watch?v=e7qQ6_RV4VQ).

You	Can	Omit	the	“px”	Suffix
When	programmatically	setting	styles,	it’s	a	pain	to	deal	with	numbers	that	need	a	pixel	value
suffix.	In	order	to	generate	these	values,	you	need	to	do	some	string	concatenation	on	your
number	to	add	a	px.	To	convert	from	a	pixel	value	back	to	a	number,	you	need	to	parse	out	the
px.	All	of	this	isn’t	extremely	complicated	or	time	consuming,	but	it	is	a	distraction.
To	help	with	this,	React	allows	you	to	omit	the	px	suffix	for	a	bunch	of	CSS	properties.	If	you
recall,	our	letterStyle	object	looks	as	follows:
Click	here	to	view	code	image

	1		var	letterStyle	=	{
	2				padding:	10,
	3				margin:	10,
	4				backgroundColor:	"#ffde00",

https://www.youtube.com/watch?v=e7qQ6_RV4VQ

	5				color:	"#333",
	6				display:	"inline-block",
	7				fontFamily:	"monospace",
	8				fontSize:	"32",
	9				textAlign:	"center"
10		};=

Notice	that	for	some	of	the	properties	with	a	numerical	value	such	as	padding,	margin,
and	fontSize,	we	didn’t	specify	the	px	suffix	at	all.	That	is	because,	at	runtime,	React	will
add	the	px	suffix	automatically.
The	only	number-related	properties	React	won’t	add	a	pixel	suffix	to	automatically	are	the
following	properties:	animationIterationCount,	boxFlex,	boxFlexGroup,
boxOrdinalGroup,	columnCount,	fillOpacity,	flex,	flexGrow,
flexPositive,	flexShrink,	flexNegative,	flexOrder,	fontWeight,
lineClamp,	lineHeight,	opacity,	order,	orphans,	stopOpacity,
strokeDashoffset,	strokeOpacity,	strokeWidth,	tabSize,	widows,	zIndex,
and	zoom.	While	I	wish	I	could	tell	you	that	I	walk	around	with	this	information	memorized,	I
actually	just	referred	to	this	article:	https://facebook.github.io/react/tips/style-props-value-
px.html	Please	hold	your	applause	:P
While	pixel	values	are	great	for	many	things,	you	may	want	to	use	percentages,	ems,	vh,	etc.
to	represent	your	values.	For	these	non-pixel	values,	you	still	have	to	manually	ensure	the
suffix	is	dealt	with.	React	won’t	help	you	out	there,	so	if	you	aren’t	a	fan	of	pixel	values,	this
nicety	doesn’t	gain	you	much.

Making	the	Background	Color	Customizable
The	last	thing	we	are	going	to	do	before	we	wrap	things	up	is	take	advantage	of	how	React
works	with	styles.	By	having	our	styles	defined	in	the	same	vicinity	as	the	JSX,	we	can	make
the	various	style	values	easily	customizable	by	the	parent	(aka	the	consumer	of	the
component).	Let’s	see	this	in	action.
Right	now,	all	of	our	vowels	have	a	yellow	background.	Wouldn’t	it	be	cool	if	we	could
specify	the	background	color	as	part	of	each	Letter	declaration?	To	do	this,	in	our
ReactDOM.render	method,	first	add	a	bgcolor	attribute	and	specify	some	colors	as
shown	in	the	following	highlighted	lines:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<Letter	bgcolor="#58B3FF">A</Letter>	
				<Letter	bgcolor="#FF605F">E</Letter>	
				<Letter	bgcolor="#FFD52E">I</Letter>	
				<Letter	bgcolor="#49DD8E">O</Letter>	
				<Letter	bgcolor="#AE99FF">U</Letter>	
		</div>,
		destination
);

Next,	we	need	to	use	this	property.	In	our	letterStyle	object,	set	the	value	of

https://facebook.github.io/react/tips/style-props-value-px.html

backgroundColor	to	this.props.bgColor:
Click	here	to	view	code	image

	1		var	letterStyle	=	{
	2				padding:	10,
	3				margin:	10,
	4				backgroundColor:	this.props.bgcolor,	
	5				color:	"#333",
	6				display:	"inline-block",
	7				fontFamily:	"monospace",
	8				fontSize:	"32",
	9				textAlign:	"center"
10		};

This	will	ensure	that	the	backgroundColor	value	is	inferred	from	what	we	set	via	the
bgColor	attribute	as	part	of	the	Letter	declaration.	If	you	preview	this	in	your	browser,
you	will	now	see	our	same	vowels	sporting	some	totally	sweet	background	colors	as	shown
in	Figure	4-5.

Figure	4-5	Our	vowels	with	background	colors!

What	we’ve	just	done	is	something	that	is	going	to	be	very	hard	to	replicate	using	plain	CSS.
Now,	as	we	start	to	look	at	components	whose	contents	change	based	on	state	or	user
interaction,	you’ll	see	more	such	examples	where	the	React	way	of	styling	things	has	a	lot	of
good	merit.

Conclusion
As	we	dive	in	further	and	learn	more	about	React,	you’ll	see	several	more	cases	where	React
does	things	quite	differently	than	what	we’ve	been	told	is	the	correct	way	of	doing	things	on
the	web.	In	this	tutorial,	we	saw	React	promoting	inline	styles	in	JavaScript	as	a	way	to	style
content	as	opposed	to	using	CSS	style	rules.	Earlier,	we	looked	at	JSX	and	how	the	entirety	of
your	UI	can	be	declared	in	JavaScript	using	an	XML-like	syntax	that	sorta	kinda	looks	like
HTML.
In	all	of	these	cases,	if	you	look	deeper	beneath	the	surface,	the	reasons	for	why	React
diverges	from	conventional	wisdom	makes	a	lot	of	sense.	Building	apps	with	their	very
complex	UI	requirements	requires	a	new	way	of	solving	the	challenges	associated	with
complex	UIs.	HTML,	CSS,	and	JavaScript	techniques	that	probably	made	a	lot	of	sense	when
dealing	with	web	pages	and	documents	may	not	be	applicable	in	the	web	app	world	where
components	are	re-used	inside	other	components.
With	that	said,	you	should	pick	and	choose	the	techniques	that	make	the	most	sense	for	your
situation.	While	I	am	biased	towards	React’s	way	of	solving	our	UI	development	problems,
I’ll	do	my	best	to	highlight	alternate	or	conventional	methods	as	well.	Tying	that	back	to	what
we	saw	here,	using	CSS	style	rules	with	your	React	content	is	totally	OK	as	long	as	you	make
the	decision	knowing	the	things	you	gain	as	well	as	lose	by	doing	so.

5.	Creating	Complex	Components

In	Chapter	3,	you	learned	about	components	and	all	the	awesome	things	that	they	do.	You
learned	that	components	are	the	primary	ways	through	which	React	enables	our	visual
elements	to	behave	like	little	reusable	bricks	that	contain	all	of	the	HTML,	JavaScript,	and
styling	needed	to	run	themselves.	Beyond	reusability,	there	is	another	major	advantage
components	bring	to	the	table.	They	make	possible	composability.	You	can	combine
components	to	create	more	complex	components.
In	this	chapter,	we	look	at	what	all	of	this	means.	More	specifically,	we	look	at	two	things:

	The	boring	technical	stuff	that	you	need	to	know.
	The	boring	stuff	you	need	to	know	about	how	to	identify	components	when	you	look	at
a	bunch	of	visual	elements.

OK,	what	you	are	going	to	learn	isn’t	actually	that	boring.	I	am	just	setting	your	expectations
really	low	:P

From	Visuals	to	Components
The	various	examples	we’ve	looked	at	so	far	have	been	pretty	basic.	They	were	great	for
highlighting	technical	concepts	(see	Figure	5-1),	but	they	weren’t	great	for	preparing	you	for
the	real	world.

Figure	5-1	Great	for	highlighting	technical	concepts,	but...

In	the	real	world,	what	you’ll	be	asked	to	implement	in	React	will	never	be	so	simple	as	a	list
of	names	or	colorful	blocks	of	vowels.	Instead,	you’ll	be	given	a	visual	representation	of
some	complex	user	interface.	That	visual	can	take	many	forms—a	scribble,	diagram,
screenshot,	video,	redline,	comp,	etc.	It	is	up	to	you	to	bring	all	of	those	static	pixels	to	life,
and	we	are	going	to	get	some	hands-on	practice	in	doing	just	that.
What	we	are	going	to	do	is	build	a	simple	color	palette	card	(see	Figure	5-2).

Figure	5-2	A	simple	color	palette	card.

If	you	are	not	sure	what	these	are,	these	are	small	rectangular	cards	that	help	you	match	a
color	with	a	particular	type	of	paint.	You’ll	frequently	see	them	in	home	improvement	stores
or	anywhere	paint	is	sold.	Your	designer	friend	probably	has	a	giant	closet	dedicated	to	them
in	their	place.	Anyway,	our	mission	is	to	recreate	one	of	these	cards	using	React.
There	are	several	ways	to	go	about	this,	but	I	am	going	to	show	you	a	very	systematic
approach	that	will	help	you	simplify	and	make	sense	of	even	the	most	complex	user
interfaces.	This	approach	involves	two	steps:

1.	Identify	the	major	visual	elements

2.	Figure	out	what	the	components	will	be
Both	of	these	steps	sound	really	complex,	but	as	we	walk	through	this,	you’ll	see	that	it	is
nothing	to	be	worried	about.

Identifying	the	Major	Visual	Elements
The	first	step	is	to	identify	all	of	the	visual	elements	we	are	dealing	with.	No	visual	element	is
too	minor	to	omit—at	least	not	initially.	The	easiest	way	to	start	identifying	the	relevant	pieces
is	to	start	with	the	obvious	visual	elements	and	then	dive	into	the	less	obvious	ones.
The	first	thing	you	will	see	in	our	example	is	the	card	itself	(see	Figure	5.3).

Figure	5-3	The	card.

Within	the	card,	you’ll	see	that	there	are	two	distinct	regions.	The	top	region	is	a	rectangular
area	that	displays	a	particular	color.	The	bottom	region	is	a	white	area	that	displays	a	hex
value.
Let’s	call	out	these	two	visual	elements	and	arrange	them	into	a	tree-like	structure	as	shown	in
Figure	5-4.

Figure	5-4	Tree-like	structure.

Arranging	your	visuals	into	this	tree-like	structure	(aka	a	visual	hierarchy)	is	a	good	way	to
get	a	better	feel	for	how	your	visual	elements	are	grouped.	The	goal	of	this	exercise	is	to
identify	the	important	visual	elements	and	break	them	into	a	parent/child	arrangement	until
you	can	divide	them	no	further.

Try	to	Ignore	Implementation	Details
While	it	is	hard,	do	not	think	of	implementation	details	yet.	Don’t	focus	on	dividing
your	visual	elements	based	on	what	combination	of	HTML	and	CSS	would	be	required.
There	is	plenty	of	time	for	that	later!

Continuing	on,	we	can	see	that	our	colorful	rectangle	isn’t	something	that	we	can	divide
further.	That	doesn’t	mean	we	are	done,	though.	We	can	further	divide	the	label	from	the	white
region	that	surrounds	it.	Right	now,	our	visual	hierarchy	looks	as	shown	in	Figure	5-5	with
our	label	and	white	region	occupying	a	separate	spot	in	our	tree.

Figure	5-5	Dividing	things	further	into	the	label	and	the	white	region	that	surrounds	it.

At	this	point,	we	have	nothing	else	to	divide	any	further.	We	are	done	with	identifying	and
dividing	up	our	visual	elements,	so	the	next	step	is	to	use	what	we’ve	found	here	to	help	us
identify	the	components.

Identifying	the	Components
This	is	where	things	get	a	little	interesting.	We	need	to	figure	out	which	of	the	visual	elements
we’ve	identified	will	be	turned	into	a	component	and	which	ones	will	not.	Not	every	visual
element	will	need	to	be	turned	into	a	component,	and	we	certainly	don’t	want	to	create	only	a
few	extremely	complex	components	either.	There	needs	to	be	a	balance	(see	Figure	5-6).

Figure	5-6	Not	too	few	and	not	too	many	components.

There	is	an	art	to	figuring	out	what	visual	elements	become	part	of	a	component	and	which
ones	don’t.	The	general	rule	is	that	our	components	should	do	just	one	thing.	If	you	find	that
your	potential	component	will	end	up	doing	too	many	things,	you	probably	want	to	break
your	component	into	multiple	components.	On	the	flip	side,	if	your	potential	component	does
too	little,	you	probably	want	to	skip	making	that	visual	element	a	component	altogether.
Let’s	try	to	figure	out	which	elements	would	make	for	good	components	in	our	example.
From	looking	at	our	visual	hierarchy,	right	off	the	bat,	both	the	card	and	the	colored
rectangle	seem	like	they	fit	the	bill	for	making	a	great	component.	The	card	acts	as	the	outer
container,	and	the	colored	rectangle	simply	displays	a	color.
That	just	puts	a	question	mark	around	our	label	and	the	white	region	it	is	surrounded	by
though	(see	Figure	5-7).

Figure	5-7	Question	mark	around	the	label	and	the	white	space	around	it.

The	important	part	here	is	the	label	itself.	Without	it,	we	can’t	see	the	hex	value.	That	leaves
just	the	white	region.	The	purpose	it	serves	is	negligible.	It	is	simply	empty	space,	and	the
responsibility	for	that	can	easily	be	handed	off	to	our	label	itself.	Brace	yourself	for	what	I
am	about	to	say	next.	Sadly,	our	white	rectangular	region	will	not	be	turned	into	a	component.
At	this	point,	we	have	identified	our	three	components,	and	the	component	hierarchy	looks
as	in	Figure	5-8.

Figure	5-8	The	three	components.

An	important	thing	to	note	is	that	the	component	hierarchy	has	more	to	do	with	helping	us
define	our	code	than	it	does	with	how	the	finished	product	will	look.	You’ll	notice	that	it	looks
a	bit	different	than	the	visual	hierarchy	we	started	off	with.	For	visual	details,	you	should
always	refer	to	your	source	material	(aka	your	visual	comps,	redlines,	screenshots,	and	other
related	items).	For	figuring	out	which	components	to	create,	you	should	use	the	component
hierarchy.
Ok,	now	that	we’ve	identified	our	components	and	the	relationship	between	all	of	them,	it	is
time	to	start	bringing	our	color	palette	card	to	life.

Creating	the	Components
This	is	the	easy	part—sort	of!	It	is	time	for	us	to	start	writing	some	code.	The	first	thing	we
need	is	a	mostly-empty	HTML	page	that	will	serve	as	our	starting	point:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>More	Components!</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>
				#container	{
						padding:	50px;
						background-color:	#FFF;
				}
		</style>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">

				ReactDOM.render(
						<div>

						</div>,
						document.querySelector("#container")
);
		</script>
</body>

</html>

Take	a	moment	to	see	what	this	page	has	going	on.	There	isn’t	much—just	the	bare	minimum
needed	to	have	React	render	an	empty	div	into	our	container	element.
After	you’ve	done	this,	it	is	time	to	define	our	three	components.	The	names	we	will	go	with
for	our	components	will	be	Card,	Label,	and	Square.	Go	ahead	and	add	the	following
highlighted	lines	just	above	the	ReactDOM.render	function:
Click	here	to	view	code	image

var	Square	=	React.createClass({	
		render:	function()	{											
				return(
						<p>Nothing</p>													
);																											
		}																														
});																														
																																	
var	Label	=	React.createClass({		
		render:	function()	{											
				return	(
						<p>Nothing</p>													
);																											
		}																														
});																														
																																	
var	Card	=	React.createClass({			

		render:	function()	{											
						return	(
																																	
);																									
				}																												
});																														

ReactDOM.render(
		<div>

		</div>,
		document.querySelector("#container")
);

Within	our	three	components,	we	also	threw	in	the	render	function	that	each	component
absolutely	needs	to	function.	Other	than	that,	our	components	are	empty.	In	the	following
sections,	we	will	fix	that	by	filling	them	in.

The	Card	Component
We	are	going	to	start	at	the	top	of	our	component	hierarchy	and	focus	on	our	Card
component	first.	This	component	will	act	as	the	the	container	that	our	Square	and	Label
components	will	live	in.
To	implement	it,	go	ahead	and	make	the	following	highlighted	modifications:
Click	here	to	view	code	image

	1		var	Card	=	React.createClass({
	2			render:	function()	{
	3							var	cardStyle	=	{																																
	4									height:	200,																																			
	5									width:	150,																																				
	6									padding:	0,																																				
	7									backgroundColor:	"#FFF",																							
	8									WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",	
	9									filter:	"drop-shadow(0px	0px	5px	#666)"								
10							};																																															
11
12							return	(
13									<div	style={cardStyle}>																								
14																																																								
15									</div>																																									
16);
17					}
18		});

While	this	seems	like	a	lot	of	changes,	the	bulk	of	the	lines	are	going	into	styling	the	output	of
our	Card	component	via	the	cardStyle	object.	Inside	the	object,	notice	that	we	specify	a
vendor-prefixed	version	of	the	CSS	filter	property	with	WebkitFilter.	That’s	not	the
interesting	detail.	The	interesting	detail	is	the	capitalization.	Instead	of	the	first	letter	being
camelcased	as	webkitFilter,	the	W	is	actually	capitalized.	That	isn’t	how	other	normal	CSS
properties	are	represented,	so	keep	that	in	mind	if	you	ever	need	to	specify	a	vendor-prefixed
property.
The	rest	of	the	changes	are	pretty	unimpressive.	We	return	a	div	element,	and	that	element’s

style	attribute	is	set	to	our	cardStyle	object.	Now,	to	see	our	Card	component	in	action,
we	need	to	display	it	in	our	DOM	as	part	of	the	ReactDOM.render	function.	To	make	that
happen,	go	ahead	and	make	the	following	highlighted	change:
Click	here	to	view	code	image

	1		ReactDOM.render(
	2			<div>
	3					<Card/>	
	4			</div>,
	5			document.querySelector("#container")
	6);

All	we	are	doing	is	telling	the	ReactDOM.render	function	to	render	the	output	of	our
Card	component	by	invoking	it.	If	everything	worked	out	properly,	you’ll	see	the	same	thing
as	in	Figure	5-9	if	you	test	your	app.

Figure	5-9	The	result	of	your	test—the	outline	of	the	color	palette	card.

Yes,	it	is	just	the	outline	of	our	color	palette	card,	but	that	is	definitely	more	than	what	we
started	out	with	just	a	few	moments	ago!

The	Square	Component
It’s	time	to	go	one	level	down	in	our	component	hierarchy	and	look	at	our	Square
component.	This	is	a	pretty	straightforward	one,	so	make	the	following	highlighted	changes:
Click	here	to	view	code	image

	1		var	Square	=	React.createClass({
	2				render:	function()	{
	3						var	squareStyle	=	{										
	4								height:	150,															
	5								backgroundColor:	"#FF6663"	
	6						};																											
	7						return(
	8							<div	style={squareStyle}>			
	9																																			
10							</div>																						
11);
12				}
13		});

Just	like	with	our	Card	component,	we	are	returning	a	div	element	whose	style	attribute
is	set	to	a	style	object	that	defines	how	this	component	looks.	To	see	our	Square
component	in	action,	we	need	to	get	it	onto	our	DOM	just	like	we	did	with	the	Card
component	earlier.	The	difference	this	time	around	is	that	we	won’t	be	calling	the	Square
component	via	our	ReactDOM.render	function.	Instead,	we’ll	call	the	Square	component
from	inside	the	Card	component.	To	see	what	I	mean,	go	back	to	our	Card	component’s
render	function,	and	make	the	following	change:
Click	here	to	view	code	image

var	Card	=	React.createClass({
		render:	function()	{
						var	cardStyle	=	{
								height:	200,
								width:	150,
								padding:	0,
								backgroundColor:	"#FFF",
								WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",
								filter:	"drop-shadow(0px	0px	5px	#666)"
						};

						return	(
								<div	style={cardStyle}>
										<Square/>	
								</div>
);
				}
});

At	this	point,	if	you	preview	our	app,	you’ll	see	a	colorful	square	making	an	appearance	(see
Figure	5-10).

Figure	5-10	The	red	portion	appears.

The	cool	thing	to	call	out	is	that	we	called	our	Square	component	from	inside	the	Card
component!	This	is	an	example	of	component	composability	where	one	component	relies	on
the	output	of	another	component.	The	final	thing	you	see	is	the	result	of	these	two	components
colluding	with	each	other.	Isn’t	collusion	just	beautiful—at	least	in	this	context?

The	Label	Component
The	last	component	that	remains	is	our	Label.	Go	ahead	and	make	the	following	highlighted
changes:
Click	here	to	view	code	image

	1		var	Label	=	React.createClass({
	2				render:	function()	{
	3						var	labelStyle	=	{																		
	4								fontFamily:	"sans-serif",									
	5								fontWeight:	"bold",															
	6								padding:	13,																						
	7								margin:	0																									
	8						};																																		
	9
10						return	(
11								<p	style={labelStyle}>#FF6663</p>	

12);
13				}
14		});

The	pattern	of	what	we	are	doing	should	be	routine	to	you	by	now.	We	have	a	style	object
that	we	assign	to	what	we	return.	What	we	return	is	a	p	element	whose	content	is	the	string
#FF6663.	To	have	what	we	return	ultimately	make	it	to	our	DOM,	we	need	to	call	our	Label
component	via	our	Card	component.	Go	ahead	and	make	the	following	highlighted	change:
Click	here	to	view	code	image

	1		var	Card	=	React.createClass({
	2				render:	function()	{
	3								var	cardStyle	=	{
	4										height:	200,
	5										width:	150,
	6										padding:	0,
	7										backgroundColor:	"#FFF",
	8										WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",
	9										filter:	"drop-shadow(0px	0px	5px	#666)"
10								};
11
12								return	(
13										<div	style={cardStyle}>
14												<Square/>
15												<Label/>	
16										</div>
17);
18						}
19		});

Notice	that	our	Label	component	lives	just	under	the	Square	component	we	added	to	our
Card	component’s	return	function	earlier.	If	you	preview	your	app	in	the	browser	now,	you
should	see	something	that	looks	like	Figure	5-11.

Figure	5-11	The	label	appears.

Yes,	that’s	right!	Our	color	palette	card	is	done	and	visible,	thanks	to	the	efforts	of	our	Card,
Square,	and	Label	components.	That	doesn’t	mean	we	are	done	yet,	though.	There	are	a
few	more	things	to	cover.

Passing	Properties,	Again!
In	our	current	example,	we	hard-coded	the	color	value	that	is	used	by	our	Square	and
Label	components.	That	is	an	odd	thing	to	do—which	may	or	may	not	have	been	done
deliberately	for	dramatic	effect,	but	fixing	it	is	straightforward.	It	just	involves	us	specifying	a
property	name	and	accessing	it	via	this.props.	We’ve	seen	all	this	before.	What	is
different	is	the	number	of	times	we	will	have	to	do	this.
There	is	no	way	to	properly	specify	a	property	on	a	parent	component	and	have	all
descendants	automatically	gain	access	to	that	property.	There	are	many	improper	ways	to	deal
with	this	such	as	defining	global	objects,	setting	the	value	on	a	component	property	directly,
and	so	on.	We	won’t	concern	ourselves	with	such	improper	solutions	right	now.	We	aren’t
animals!
Anyway,	the	proper	way	to	pass	a	property	value	to	a	child	component	is	to	have	each
intermediate	parent	component	pass	on	the	property	as	well.	To	see	this	in	action,	take	a	look
at	the	highlighted	changes	to	our	current	code	where	we	move	away	from	a	hard-coded	color

and	define	our	card’s	color	using	a	color	property	instead:
Click	here	to	view	code	image

	1		var	Square	=	React.createClass({
	2				render:	function()	{
	3						var	squareStyle	=	{
	4								height:	150,
	5								backgroundColor:	this.props.color	
	6						};
	7						return(
	8								<div	style={squareStyle}>
	9
10								</div>
11);
12				}
13		});
14
15		var	Label	=	React.createClass({
16				render:	function()	{
17						var	labelStyle	=	{
18								fontFamily:	"sans-serif",
19								fontWeight:	"bold",
20								padding:	13,
21								margin:	0
22						};
23
24						return	(
25								<p	style={labelStyle}>{this.props.color}</p>	
26);
27				}
28		});
29
30		var	Card	=	React.createClass({
31				render:	function()	{
32								var	cardStyle	=	{
33										height:	200,
34										width:	150,
35										padding:	0,
36										backgroundColor:	"#FFF",
37										WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",
38										filter:	"drop-shadow(0px	0px	5px	#666)"
39								};
40
41								return	(
42										<div	style={cardStyle}>
43												<Square	color={this.props.color}/>	
44												<Label	color={this.props.color}/>		
45										</div>
46);
47						}
48		});
49
50		ReactDOM.render(
51				<div>
52						<Card	color="#FF6663"/>	
53				</div>,
54				document.querySelector("#container")
55);

Once	you	have	made	this	change,	you	can	specify	any	hex	color	you	want	as	part	of	calling
the	Card	component:
Click	here	to	view	code	image

	1		ReactDOM.render(
	2				<div>
	3						<Card	color="#FFA737"/>	
	4				</div>,
	5				document.querySelector("#container")
	6);

The	resulting	color	palette	card	will	feature	the	color	you	specified	(see	Figure	5-12).

Figure	5-12	The	color	for	hex	value	#FFA737.

Now,	let’s	go	back	to	the	changes	we	made.	Even	though	the	color	property	is	only
consumed	by	the	Square	and	Label	components,	the	parent	Card	component	is
responsible	for	passing	the	property	on	to	them.	For	even	more	deeply	nested	situations,
you’ll	have	more	intermediate	components	that	will	be	responsible	for	transferring
properties.	It	gets	worse.	When	you	have	multiple	properties	that	you	would	like	to	pass
around	multiple	levels	of	components,	the	amount	of	typing	(or	copying/pasting)	you	do
increases	a	lot	as	well.	There	are	ways	to	mitigate	this,	and	we’ll	look	at	those	mitigation
strategies	in	much	greater	detail	in	a	future	chapter.

Why	Component	Composability	Rocks
When	we	are	heads-down	in	React,	we	often	tend	to	forgot	that	what	we	are	ultimately
creating	is	just	plain	and	boring	HTML,	CSS,	and	JavaScript.	The	generated	HTML	for	our
color	palette	card	looks	as	follows:
Click	here	to	view	code	image

<div	id="container">
		<div	data-reactid=".0">
				<div	style="height:200px;
																width:150px;
																padding:0;
																background-color:#FFF;
																-webkit-filter:drop-shadow(0px	0px	5px	#666);
																filter:drop-shadow(0px	0px	5px	#666);">
						<div	style="height:150px;
																		background-color:#FF6663;"></div>
						<p	style="font-family:sans-serif;
																font-weight:bold;
																padding:13px;
																margin:0;">#FF6663</p>
				</div>
		</div>
</div>

This	markup	has	no	idea	of	how	it	got	there.	It	doesn’t	know	about	which	components	were
responsible	for	what.	It	doesn’t	care	about	component	composability	or	the	frustrating	way
we	had	to	transfer	the	color	property	from	parent	to	child.	That	brings	up	an	important	point
to	make.
If	we	had	to	generalize	the	end	result	of	what	components	do,	all	they	do	is	return	blobs	of
HTML	to	whatever	called	it.	Each	component’s	render	function	returns	some	HTML	to
another	component’s	render	function.	All	of	this	HTML	keeps	accumulating	until	a	giant
blob	of	HTML	is	pushed	(very	efficiently)	to	our	DOM.	That	simplicity	is	why	component	re-
use	and	composability	works	so	well.	Each	blob	of	HTML	works	independently	from	other
blobs	of	HTML—especially	if	you	specify	inline	styles	as	React	recommends.	This	enables
you	to	easily	create	visual	elements	from	other	visual	elements	without	having	to	worry	about
anything.	ANYTHING!	Isn’t	that	pretty	freaking	awesome?

Conclusion
As	you	may	have	realized	by	now,	we	are	slowly	shifting	focus	towards	the	more	advanced
scenarios	that	React	thrives	in.	Actually,	advanced	isn’t	the	right	word.	The	correct	word	is
realistic.	In	this	chapter,	we	started	by	learning	how	to	look	at	a	piece	of	UI	and	identify	the
components	in	a	way	that	you	can	later	implement.	That	is	a	situation	you	will	find	yourself	in
all	the	time.	While	the	approach	we	employed	seemed	really	formal,	as	you	get	more
experienced	with	creating	things	in	React,	you	can	ratchet	down	the	formality.	If	you	can
quickly	identify	the	components	and	their	parent/child	relationships	without	creating	a	visual
and	component	hierarchy,	then	that	is	one	more	sign	that	you	are	getting	really	good	at
working	with	React!
Identifying	the	components	is	only	one	part	of	the	equation.	The	other	part	is	bringing	those

components	to	life.	Most	of	the	technical	stuff	we	saw	here	was	just	a	minor	extension	of	what
we’ve	already	seen	earlier.	We	looked	at	one	level	of	components	in	an	earlier	chapter,	and
here	we	looked	at	how	to	work	with	multiple	levels	of	components.	We	looked	at	how	to	pass
properties	between	one	parent	and	one	child	in	an	earlier	chapter,	and	here	we	looked	at	how
to	pass	properties	between	multiple	parents	and	multiple	children.	Maybe	in	a	future	chapter
we’ll	do	something	groundbreaking	like	drawing	multiple	color	palette	cards	to	the	screen!
Or,	we	can	maybe	specify	two	properties	instead	of	just	a	single	one.	Who	knows?

6.	Transferring	Properties	(Props)

There	is	a	frustrating	side	to	working	with	properties.	We	kinda	saw	this	side	in	the	previous
chapter.	Passing	properties	from	one	component	to	another	is	nice	and	simple	when	you	are
dealing	with	only	one	layer	of	components.	When	you	wish	to	send	a	property	across	multiple
layers	of	components,	things	start	getting	complicated.
Things	getting	complicated	is	never	a	good	thing,	so	in	this	chapter,	let’s	see	what	we	can	do
to	make	working	with	properties	across	multiple	layers	of	components	easy.

Problem	Overview
Let’s	say	that	you	have	a	deeply	nested	component,	and	its	hierarchy	(modeled	as	awesomely
colored	circles)	looks	like	Figure	6-1.

Figure	6-1	The	component	hierarchy.

What	you	want	to	do	is	pass	a	property	from	your	red	circle	all	the	way	down	to	our	purple
circles	where	it	will	be	used.	What	we	can’t	do	is	the	very	obvious	and	straightforward	thing
shown	in	Figure	6-2.

Figure	6-2	Can’t	do	this.

You	can’t	pass	a	property	directly	to	the	component	or	components	that	you	wish	to	target.
The	reason	has	to	do	with	how	React	works.	React	enforces	a	chain	of	command	where
properties	have	to	flow	down	from	a	parent	component	to	an	immediate	child	component.	This
means	you	can’t	skip	a	layer	of	children	when	sending	a	property.	This	also	means	your
children	can’t	send	a	property	back	up	to	a	parent.	All	communication	is	one-way	from	the
parent	to	the	child.
Under	these	guidelines,	passing	a	property	from	our	red	circle	to	our	purple	circle	looks	a
little	bit	like	Figure	6-3.

Figure	6-3	The	property	is	passed	from	parent	to	child.

Every	component	that	lies	on	the	intended	path	has	to	receive	the	property	from	its	parent	and
then	re-send	that	property	to	its	child.	This	process	repeats	until	your	property	reaches	its
intended	destination.	The	problem	is	in	this	receiving	and	re-sending	step.
If	we	had	to	send	a	property	called	color	from	the	component	representing	our	red	circle	to
the	component	representing	our	purple	circle,	its	path	to	the	destination	would	look
something	like	Figure	6-4.

Figure	6-4	Sending	the	color	property.

Now,	imagine	we	have	two	properties	that	we	need	to	send,	as	in	Figure	6-5.

Figure	6-5	Sending	two	properties.

What	if	we	wanted	to	send	three	properties?	Or	four?
We	can	quickly	see	that	this	approach	is	neither	scalable	nor	maintainable.	For	every
additional	property	we	need	to	communicate,	we	are	going	to	have	to	add	an	entry	for	it	as
part	of	declaring	each	component.	If	we	decide	to	rename	our	properties	at	some	point,	we
will	have	to	ensure	that	every	instance	of	that	property	is	renamed	as	well.	If	we	remove	a
property,	we	need	to	remove	the	property	from	every	component	that	relied	on	it.	Overall,
these	are	the	kinds	of	situations	we	try	to	avoid	when	writing	code.	What	can	we	do	about
this?

Detailed	Look	at	the	Problem
In	the	previous	section,	we	talked	at	a	high	level	about	what	the	problem	is.	Before	we	can
dive	into	figuring	out	a	solution,	we	need	to	go	beyond	diagrams	and	look	at	a	more	detailed
example	with	real	code.	We	need	to	take	a	look	at	something	like	the	following:
Click	here	to	view	code	image

var	Display	=	React.createClass({
		render:	function()	{
				return(
						<div>
								<p>{this.props.color}</p>
								<p>{this.props.num}</p>

								<p>{this.props.size}</p>
						</div>
);
		}
});

var	Label	=	React.createClass({
		render:	function()	{
				return	(
						<Display	color={this.props.color}
														num={this.props.num}
														size={this.props.size}/>
);
		}
});

var	Shirt	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<Label	color={this.props.color}
																	num={this.props.num}
																	size={this.props.size}/>
								</div>
);
				}
});

ReactDOM.render(
		<div>
				<Shirt	color="steelblue"	num="3.14"	size="medium"/>
		</div>,
		document.querySelector("#container")
);

Take	a	few	moments	to	understand	what	is	going	on.	Once	you	have	done	that,	let’s	walk
through	this	example	together.
What	we	have	is	a	Shirt	component	that	relies	on	the	output	of	the	Label	component	which
relies	on	the	output	of	the	Display	component.	(Try	saying	that	sentence	five	time	fast!)
Anyway,	the	component	hierarchy	can	be	seen	in	Figure	6-6.

Figure	6-6	The	component	hierarchy.

When	you	run	this	code,	what	gets	output	is	nothing	special.	It	is	just	three	lines	of	text	(see
Figure	6-7).

Figure	6-7	The	three	lines	of	text.

The	interesting	part	is	how	the	text	gets	there.	Each	of	the	three	lines	of	text	that	you	see	maps
to	a	property	we	specified	at	the	very	beginning	inside	ReactDOM.render:
Click	here	to	view	code	image

<Shirt	color="steelblue"	num="3.14"	size="medium"/>

The	color,	num,	and	size	properties	(and	their	values)	make	a	journey	all	the	way	to	the
Display	component	that	would	make	even	the	most	seasoned	world	traveler	jealous.	Let’s
follow	these	properties	from	their	inception	to	when	they	get	consumed,	and	I	do	realize	that	a
lot	of	this	will	be	a	review	of	what	you’ve	already	seen.	If	you	find	yourself	getting	bored,
feel	free	to	skip	on	to	the	next	section.	With	that	said,	onwards	and	upwards!
Life	for	our	properties	starts	inside	ReactDOM.render	when	our	Shirt	component	gets
called	with	the	color,	num,	and	size	properties	specified:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<Shirt	color="steelblue"	num="3.14"	size="medium"/>	
		</div>,
		document.querySelector("#container")
);

We	not	only	define	the	properties,	we	also	initialize	them	with	the	values	they	will	carry.
Inside	the	Shirt	component,	these	properties	are	stored	inside	the	props	object.	To	transfer

these	properties	on,	we	need	to	explicitly	access	these	properties	from	the	props	object	and
list	them	as	part	of	the	component	call.	The	following	is	an	example	of	what	that	looks	like
when	our	Shirt	component	calls	our	Label	component:
Click	here	to	view	code	image

var	Shirt	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<Label	color={this.props.color}	
																	num={this.props.num}					
																	size={this.props.size}/>	
								</div>
);
				}
});

Notice	that	the	color,	num,	and	size	properties	are	listed	again.	The	only	difference	from
what	we	saw	with	the	ReactDOM.render	call	is	that	the	values	for	each	property	are	taken
from	their	respective	entry	in	the	props	object	as	opposed	to	being	manually	entered.
When	our	Label	component	goes	live,	it	has	its	props	object	properly	filled	out	with	the
color,	num,	and	size	properties	stored.	You	can	probably	see	a	pattern	forming	here.	If
you	need	to	let	out	a	big	yawn,	feel	free	to.
The	Label	component	continues	the	tradition	by	repeating	the	same	steps	and	calling	the
Display	component:
Click	here	to	view	code	image

var	Label	=	React.createClass({
		render:	function()	{
				return	(
						<Display	color={this.props.color}	
														num={this.props.num}						
														size={this.props.size}/>		
);
		}
});

Phew.	All	we	wanted	to	do	was	have	our	Display	component	display	some	values	for
color,	num,	and	size.	The	only	complication	was	that	the	values	we	wanted	to	display	were
originally	defined	as	part	of	ReactDOM.render.	The	annoying	solution	is	the	one	you	see
here	where	every	component	along	the	path	to	the	destination	needs	to	access	and	re-define
each	property	as	part	of	passing	it	along.	That’s	just	terrible.	We	can	do	better	than	this,	and
you	will	see	how	in	a	few	moments!

Meet	the	Spread	Operator
The	solution	to	all	of	our	problems	lies	in	something	new	to	JavaScript	known	as	the	spread
operator.	What	the	spread	operator	does	is	a	bit	bizarre	to	explain	without	some	context,	so
I’ll	first	give	you	an	example	and	then	bore	you	with	a	definition.
Take	a	look	at	the	following	snippet:

Click	here	to	view	code	image

var	items	=	["1",	"2",	"3"];

function	printStuff(a,	b,	c)	{
		console.log("Printing:	"	+	a	+	"	"	+	b	+	"	"	+	c);
}

We	have	an	array	called	items	that	contains	three	values.	We	also	have	a	function	called
printStuff	that	takes	three	arguments.	What	we	want	to	do	is	specify	the	three	values	from
our	items	array	as	arguments	to	the	printStuff	function.	Sounds	simple	enough,	right?
Here	is	one	really	common	way	of	doing	that:
Click	here	to	view	code	image

printStuff(items[0],	items[1],	items[2]);

We	access	each	array	item	individually	and	pass	it	in	to	our	printStuff	function.	With	the
spread	operator,	we	now	have	an	easier	way.	You	don’t	have	to	specify	each	item	in	the	array
individually	at	all.	You	can	just	do	something	like	this:

printStuff(...items);

The	spread	operator	is	the	...	characters	before	our	items	array,	and	using	...items	is
identical	to	listing	items[0],	items[1],	and	items[2]	individually	like	we	did	earlier.
The	printStuff	function	will	run	and	print	the	numbers	1,	2,	and	3	to	our	console.	Pretty
cool,	right?
Now	that	you’ve	seen	the	spread	operator	in	action,	it’s	time	to	define	it.	The	spread	operator
enables	you	to	unwrap	an	array	into	its	individual	elements.	The	spread	operator	does	a	few
more	things	as	well,	but	that’s	not	important	for	now.	We	are	going	to	only	use	this	particular
side	of	the	spread	operator	to	solve	our	property	transferring	problem!

Properly	Transferring	Properties
We	just	saw	an	example	where	we	used	the	spread	operator	to	avoid	having	to	enumerate
every	single	item	in	our	array	as	part	of	passing	it	to	a	function:
Click	here	to	view	code	image

var	items	=	["1",	"2",	"3"];

function	printStuff(a,	b,	c)	{
		console.log("Printing:	"	+	a	+	"	"	+	b	+	"	"	+	c);
}

//	using	the	spread	operator
printStuff(...items);

//	without	using	the	spread	operator
printStuff(items[0],	items[1],	items[2]);

The	situation	we	are	facing	with	transferring	properties	across	components	is	very	similar	to
our	problem	of	accessing	each	array	item	individually.	Allow	me	to	elaborate.
Inside	a	component,	our	props	object	looks	as	follows:

var	props	=	{
		color:	"steelblue",
		num:	"3.14",
		size:	"medium"
}

As	part	of	passing	these	property	values	to	a	child	component,	we	manually	access	each	item
from	our	props	object:
Click	here	to	view	code	image

<Display	color={this.props.color}
								num={this.props.num}
								size={this.props.size}/>

Wouldn’t	it	be	great	if	there	was	a	way	to	unwrap	an	object	and	pass	on	the	property/value
pairs	just	like	we	were	able	to	unwrap	an	array	using	the	spread	operator?
As	it	turns	out,	there	is	a	way.	It	actually	involves	the	spread	operator	as	well.	I’ll	explain	how
later,	but	what	this	means	is	that	we	can	call	our	Display	component	by	using	...props:

<Display	{...props}/>

By	using	...props,	the	runtime	behavior	is	the	same	as	specifying	the	color,	num,	and
size	properties	manually.	This	means	our	earlier	example	can	be	simplified	as	follows	(pay
attention	to	the	highlighted	lines):
Click	here	to	view	code	image

var	Display	=	React.createClass({
		render:	function()	{
				return(
						<div>
								<p>{this.props.color}</p>
								<p>{this.props.num}</p>
								<p>{this.props.size}</p>
						</div>
);
		}
});

var	Label	=	React.createClass({
		render:	function()	{
				return	(
						<Display	{...this.props}/>			
);
		}
});

var	Shirt	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<Label	{...this.props}/>	
								</div>
);
				}
});

ReactDOM.render(
		<div>
				<Shirt	color="steelblue"	num="3.14"	size="medium"/>
		</div>,
		document.querySelector("#container")
);

If	you	run	this	code,	the	end	result	is	going	to	be	unchanged	from	what	we	had	earlier.	The
biggest	difference	is	that	we	are	no	longer	passing	in	expanded	forms	of	each	property	as	part
of	calling	each	component.	This	solves	all	the	problems	we	originally	set	out	to	solve.
By	using	the	spread	operator,	if	you	ever	decide	to	add	properties,	rename	properties,	remove
properties,	or	do	any	other	sort	of	property-related	shenanigans,	you	don’t	have	to	make	a
billion	different	changes.	You	make	one	change	at	the	spot	where	you	define	your	property.
You	make	another	change	at	the	spot	you	consume	the	property.	That’s	it.	All	of	the
intermediate	components	that	merely	transfer	the	properties	on	will	remain	untouched,	for	the
{...this.props}	expression	contains	no	details	of	what	goes	on	inside	it.

Conclusion
As	designed	by	the	ES6/ES2015	committee,	the	spread	operator	is	designed	to	work	only	on
arrays	and	array-like	creatures	(aka	that	which	has	a	Symbol.iterator	property).	The	fact
that	it	works	on	object	literals	like	our	props	object	is	due	to	React	extending	the	standard.
As	of	now,	no	browser	currently	supports	using	the	spread	object	on	object	literals.	The
reason	our	example	works	is	because	of	Babel.	Besides	turning	all	of	our	JSX	into	something
our	browser	understands,	Babel	also	turns	cutting-edge	and	experimental	features	into
something	cross-browser	friendly.	That	is	why	we	are	able	to	get	away	with	using	the	spread
operator	on	an	object	literal,	and	that	is	why	we	are	able	to	elegantly	solve	the	problem	of
transferring	properties	across	multiple	layers	of	components!

7.	Meet	JSX—Again!

As	you	probably	noticed	by	now,	we’ve	been	using	a	lot	of	JSX	in	the	previous	chapters.	What
we	really	haven’t	done	is	taken	a	good	look	at	what	JSX	actually	is.	How	does	it	actually
work?	Why	do	we	not	just	call	it	HTML?	What	quirks	does	it	have	up	its	sleeve?	In	this
chapter,	we	answer	all	of	those	questions	and	more!	We	do	some	serious	backtracking	(and
some	forwardtracking!)	to	get	a	deeper	look	at	what	we	need	to	know	about	JSX	in	order	to
be	dangerous.

What	Happens	with	JSX?
One	of	the	biggest	things	we’ve	glossed	over	is	trying	to	figure	out	what	happens	with	our
JSX	after	we’ve	written	it.	How	does	it	end	up	as	HTML	that	we	see	in	our	browser?	Take	a
look	at	the	following	example	where	we	define	a	component	called	Card:
Click	here	to	view	code	image

var	Card	=	React.createClass({
		render:	function()	{
						var	cardStyle	=	{
								height:	200,
								width:	150,
								padding:	0,
								backgroundColor:	"#FFF",
								WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",
								filter:	"drop-shadow(0px	0px	5px	#666)"
						};

						return	(
								<div	style={cardStyle}>
										<Square	color={this.props.color}/>
										<Label	color={this.props.color}/>
								</div>
);
				}
});

We	can	quickly	spot	the	JSX	here.	It	is	the	following	four	lines:
Click	here	to	view	code	image

<div	style={cardStyle}>
		<Square	color={this.props.color}/>
		<Label	color={this.props.color}/>
</div>

The	thing	to	keep	in	mind	is	that	our	browsers	have	no	idea	what	to	do	with	JSX.	They
probably	think	you	are	crazy	if	you	ever	even	try	to	describe	JSX	to	them.	That	is	why	we
have	been	relying	on	things	like	Babel	to	turn	that	JSX	into	something	the	browsers
understand:	JavaScript.
What	this	means	is	that	the	JSX	we	write	is	for	human	(and	well-trained	cats’)	eyes	only.
When	this	JSX	reaches	our	browser,	it	ends	up	getting	turned	into	pure	JavaScript:
Click	here	to	view	code	image

return	React.createElement(
		"div",
		{	style:	cardStyle	},
		React.createElement(Square,	{	color:	this.props.color	}),
		React.createElement(Label,	{	color:	this.props.color	})
);

All	of	those	neatly	nested	HTML-like	elements,	their	attributes,	and	their	children	all	get
turned	into	a	series	of	createElement	calls	with	default	initialization	values.	Here	is	what
our	entire	Card	component	looks	like	when	it	gets	turned	into	JavaScript:
Click	here	to	view	code	image

var	Card	=	React.createClass({
		displayName:	"Card",

		render:	function	render()	{
				var	cardStyle	=	{
						height:	200,
						width:	150,
						padding:	0,
						backgroundColor:	"#FFF",
						WebkitFilter:	"drop-shadow(0px	0px	5px	#666)",
						filter:	"drop-shadow(0px	0px	5px	#666)"
				};

				return	React.createElement(
						"div",
						{	style:	cardStyle	},
						React.createElement(Square,	{	color:	this.props.color	}),
						React.createElement(Label,	{	color:	this.props.color	})
);
		}
});

Notice	that	there	is	no	trace	of	JSX	anywhere!	All	of	these	changes	between	what	you	wrote
and	what	our	browser	sees	are	part	of	the	transpiling	step	we’ve	talked	about	in	the	first
chapter.	That	transpilation	is	something	that	happens	entirely	behind-the-scenes	thanks	to
Babel,	which	we’ve	been	to	perform	this	JSX→JS	transformation	entirely	in	the	browser.
We’ll	eventually	look	at	using	Babel	as	part	of	a	more-involved	build	environment	where	we
will	just	generate	a	transformed	JS	file,	but	more	on	that	when	we	get	there	in	the	future.
But	yeah,	there	you	have	it.	An	answer	to	what	exactly	happens	to	all	of	our	JSX.	It	gets	turned
into	sweet	SWEET	JavaScript.

JSX	Quirks	to	Remember
As	we’ve	been	working	with	JSX,	you	probably	noticed	that	we	ran	into	some	arbitrary	rules
and	exceptions	to	what	you	can	and	can’t	do.	In	this	section,	let’s	put	all	of	those	quirks
together	in	one	area	and	maybe	even	run	into	some	brand	new	ones!

You	Can	Only	Return	A	Single	Root	Node
This	is	probably	the	first	quirk	we	ran	into.	In	JSX,	what	you	return	or	render	can’t	be	made
up	of	multiple	root	elements:

Click	here	to	view	code	image

ReactDOM.render(
		<Letter>B</Letter>
		<Letter>E</Letter>
		<Letter>I</Letter>
		<Letter>O</Letter>
		<Letter>U</Letter>,
		document.querySelector("#container")
);

If	you	want	to	do	something	like	this,	you	need	to	wrap	all	of	your	elements	into	a	single
parent	element	first:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<Letter>A</Letter>
				<Letter>E</Letter>
				<Letter>I</Letter>
				<Letter>O</Letter>
				<Letter>U</Letter>
		</div>,
		document.querySelector("#container")
);

This	seemed	like	a	bizarre	requirement	when	we	looked	at	it	before,	but	you	can	blame
createElement	for	why	we	do	this.	With	the	render	and	return	functions,	what	you
are	ultimately	returning	is	a	single	createElement	call	(which	in	turn	might	have	many
nested	createElement	calls).	Here	is	what	our	earlier	JSX	looks	like	when	turned	into
JavaScript:
Click	here	to	view	code	image

ReactDOM.render(React.createElement(
		"div",
		null,
		React.createElement(
				Letter,
				null,
				"A"
),
		React.createElement(
				Letter,
				null,
				"E"
),
		React.createElement(
				Letter,
				null,
				"I"
),
		React.createElement(
				Letter,
				null,
				"O"
),
		React.createElement(

				Letter,
				null,
				"U"
)
),	document.querySelector("#container"));

Having	multiple	root	elements	would	break	how	functions	return	values	and	how
createElement	works,	so	that	is	why	you	can	specify	only	one	return	(root)	element!	You
can	now	sleep	better	knowing	this.

You	Can’t	Specify	CSS	Inline
As	we	saw	in	Chapter	4,	the	style	attribute	in	your	JSX	behaves	differently	from	the	style
attribute	in	HTML.	In	HTML,	you	can	specify	CSS	properties	directly	as	values	on	your
style	attribute:
Click	here	to	view	code	image

<div	style="font-family:Arial;font-size:24px">
				<p>Blah!</p>
</div>

In	JSX,	the	style	attribute	can’t	contain	CSS	inside	it.	Instead,	it	needs	to	refer	to	an	object
that	contains	styling	information	instead:
Click	here	to	view	code	image

var	Letter	=	React.createClass({
		render:	function()	{
						var	letterStyle	=	{
								padding:	10,
								margin:	10,
								backgroundColor:	this.props.bgcolor,
								color:	"#333",
								display:	"inline-block",
								fontFamily:	"monospace",
								fontSize:	"32",
								textAlign:	"center"
						};

						return	(
								<div	style={letterStyle}>
										{this.props.children}
								</div>
);
				}
});

Notice	that	we	have	an	object	called	letterStyle	that	that	contains	all	of	the	CSS
properties	(in	camelcase	JavaScript	form)	and	their	values.	That	object	is	what	we	then
specify	to	the	style	attribute.

Reserved	Keywords	and	className
JavaScript	has	a	bunch	of	keywords	and	values	that	you	can’t	use	as	identifiers.	Those
keywords	currently	(as	of	ES2016)	are:

When	you	are	writing	JSX,	you	should	be	careful	to	not	use	these	keywords	as	part	of	any
identifiers	that	you	create	as	well.	That	can	be	difficult	when	certain	really	popular	keywords
like	class	are	commonly	used	in	HTML	despite	also	being	in	JavaScript’s	reserved
keywords	list.
Take	a	look	at	the	following:
Click	here	to	view	code	image

ReactDOM.render(
		<div	class="slideIn">
				<p	class="emphasis">Gabagool!</p>
				<Label/>
		</div>,
		document.querySelector("#container")
);

Ignoring	JavaScript’s	reservations	about	class	(like	what	we’ve	done	here)	won’t	work.
What	you	need	to	do	is	use	the	DOM	API	version	of	the	class	attribute	called	className
instead:
Click	here	to	view	code	image

ReactDOM.render(
		<div	className="slideIn">
				<p	className="emphasis">Gabagool!</p>
				<Label/>
		</div>,
		document.querySelector("#container")
);

You	can	see	the	full	list	of	supported	tags	and	attributes	at	the	following	Facebook	article
(https://facebook.github.io/react/docs/tags-and-attributes.html),	and	notice	that	all	of	the
attributes	are	camelcase.	That	detail	is	important,	for	using	the	lowercase	version	of	an
attribute	won’t	work.	If	you	are	ever	pasting	a	large	chunk	of	HTML	that	you	want	JSX	to	deal
with,	be	sure	to	go	back	to	your	pasted	HTML	and	make	these	minor	adjustments	to	turn	it
into	valid	JSX.
This	brings	up	another	point.	Because	of	these	minor	deviations	from	HTML	behavior,	we
tend	to	say	that	JSX	supports	an	HTML-like	syntax	as	opposed	to	just	saying	that	JSX	supports
HTML.	This	is	a	deliberate	React-ism.	The	clearest	answer	to	the	relationship	between	JSX
and	HTML	comes	from	React	team	member,	Ben	Alpert,	who	stated	the	following
(http://qr.ae/RUKaON)	as	part	of	a	Quora	answer:

...our	thinking	is	that	JSX’s	primary	advantage	is	the	symmetry	of	matching	closing

https://facebook.github.io/react/docs/tags-and-attributes.html
http://qr.ae/RUKaON

tags	which	makes	[sic]	code	easier	to	read,	not	the	direct	resemblance	to	HTML	or
XML.	It’s	convenient	to	copy/paste	HTML	directly,	but	other	minor	differences	(in
self-closing	tags,	for	example)	make	this	a	losing	battle	and	we	have	a	HTML	to	JSX
converter	to	help	you	anyway.	Finally,	to	translate	HTML	to	idiomatic	React	code,	a
fair	amount	of	work	is	usually	involved	in	breaking	up	the	markup	into	components
that	make	sense,	so	changing	class	to	className	is	only	a	small	part	of	that
anyway.

Comments
Just	like	it	is	a	good	idea	to	comment	your	HTML,	CSS,	and	JavaScript,	it	is	a	good	idea	to
provide	comments	inside	your	JSX	as	well.	Specifying	comments	in	JSX	is	very	similar	to
how	you	would	comment	in	JavaScript	(https://www.kirupa.com/html5/comments.htm)
...except	for	one	exception.	If	you	are	specifying	a	comment	as	a	child	of	a	tag,	you	need	to
wrap	your	comment	by	the	{	and	}	curly	brackets	to	ensure	it	is	parsed	as	an	expression:
Click	here	to	view	code	image

ReactDOM.render(
		<div	class="slideIn">
				<p	class="emphasis">Gabagool!</p>
				{/*	I	am	a	child	comment	*/}	
				<Label/>
		</div>,
		document.querySelector("#container")
);

Our	comment	in	this	case	is	a	child	of	our	div	element.	If	you	specify	a	comment	wholly
inside	a	tag,	you	can	just	specify	your	single-or	multi-line	comment	without	having	to	use	the
{	and	}	angle	brackets:
Click	here	to	view	code	image

ReactDOM.render(
		<div	class="slideIn">
				<p	class="emphasis">Gabagool!</p>
				<Label
						/*	This	comment
									goes	across
									multiple	lines	*/
									className="colorCard"	//	end	of	line
				/>
		</div>,
		document.querySelector("#container")
);

In	this	snippet,	you	can	see	an	example	of	what	both	multi-line	comments	and	a	comment	at
the	end	of	a	line	look	like.	Now	that	you	know	all	of	this,	you	have	one	less	excuse	to	not
comment	your	JSX	:P

Capitalization,	HTML	Elements,	and	Components
Capitalization	is	important.	To	represent	HTML	elements,	ensure	the	HTML	tag	is	lower-case:
Click	here	to	view	code	image

https://www.kirupa.com/html5/comments.htm

ReactDOM.render(
		<div>
				<section>
						<p>Something	goes	here!</p>
				</section>
		</div>,
		document.querySelector("#container")
);

When	wishing	to	represent	components,	the	component	name	must	be	capitalized,	both	in	JSX
as	well	as	when	you	define	them:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<MyCustomComponent/>
		</div>,
		document.querySelector("#container")
);

If	you	get	the	capitalization	wrong,	React	will	not	render	your	content	properly.	The
component	will	not	be	found.	Trying	to	identify	capitalization	issues	is	probably	the	last	thing
you’ll	think	about	when	things	aren’t	working,	so	keep	this	little	tip	in	mind.

Your	JSX	Can	Be	Anywhere
In	many	situations,	your	JSX	will	not	be	neatly	arranged	inside	a	render	or	return
function	like	in	the	examples	we’ve	seen	so	far.	Take	a	look	at	the	following	example:
Click	here	to	view	code	image

var	swatchComponent	=	<Swatch	color="#2F004F"></Swatch>;

ReactDOM.render(
		<div>
				{swatchComponent}
		</div>,
		document.querySelector("#container")
);

We	have	a	variable	called	swatchComponent	that	is	initialized	to	a	line	of	JSX.	When	our
swatchComponent	variable	is	placed	inside	the	render	function,	our	Swatch	component
gets	initialized.	All	of	this	is	totally	valid,	and	we	will	do	more	such	things	in	the	future	when
we	learn	how	to	generate	and	manipulate	JSX	using	JavaScript.

Conclusion
With	this	chapter,	we’ve	finally	pieced	together	in	one	location	the	various	bits	of	JSX
information	that	the	previous	chapters	introduced.	The	most	important	thing	to	remember	is
that	JSX	is	not	HTML.	It	looks	like	HTML	and	behaves	like	it	in	many	common	scenarios,	but
it	is	ultimately	designed	to	be	translated	into	JavaScript.	This	means	you	can	do	things	that
you	could	never	imagine	doing	using	just	plain	HTML.	Being	able	to	evaluate	expressions	or
programmatically	manipulate	entire	chunks	of	JSX	is	just	the	beginning.	In	upcoming
chapters,	we’ll	explore	this	intersection	of	JavaScript	and	JSX	further.

8.	Dealing	with	State

Up	until	this	point,	the	components	we’ve	created	have	been	stateless.	They	have	properties
(aka	props)	that	are	passed	in	from	their	parent,	but	nothing	(usually)	changes	about	them
once	the	components	come	alive.	Your	properties	are	considered	immutable	once	they	have
been	set.	For	many	interactive	scenarios,	you	don’t	want	that.	You	want	to	be	able	to	change
aspects	of	your	components	as	a	result	of	some	user	interaction	(or	some	data	getting
returned	from	a	server	or	a	billion	other	things!)
What	we	need	is	another	way	to	store	data	on	a	component	that	goes	beyond	properties.	We
need	a	way	to	store	data	that	can	be	changed.	What	we	need	is	something	known	as	state!	In
this	chapter	you	learn	all	about	it	and	how	you	can	use	it	to	create	stateful	components.

Using	State
If	you	know	how	to	work	with	properties,	you	totally	know	how	to	work	with	states...	sort	of.
There	are	some	differences,	but	they	are	too	subtle	to	bore	you	with	right	now.	Instead,	let’s
just	jump	right	in	and	see	states	in	action	by	using	them	in	a	small	example.
What	we	are	going	to	is	create	a	simple	lightning	counter	example	as	shown	in	Figure	8-1.

Figure	8-1	The	app	you	will	be	building.

What	this	example	does	is	nothing	crazy.	Lightning	strikes	the	earth’s	surface	about	100	times
a	second	(http://environment.nationalgeographic.com/environment/natural-
disasters/lightning-profile/).	We	have	a	counter	that	simply	increments	a	number	you	see	by
that	same	amount.	Let’s	create	it.

http://environment.nationalgeographic.com/environment/natural-disasters/lightning-profile/

Our	Starting	Point
The	primary	focus	of	this	example	is	to	see	how	we	can	work	with	state.	There	is	no	point	in
us	spending	a	bunch	of	time	creating	the	example	from	scratch	and	retracing	paths	that	we’ve
walked	many	times	already.	That’s	not	the	best	use	of	anybody’s	time.
Instead	of	starting	from	scratch,	modify	an	existing	HTML	document	or	create	a	new	one	with
the	following	contents:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>More	State!</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">
				var	LightningCounter	=	React.createClass({
						render:	function()	{
								return	(
										<h1>Hello!</h1>
);
						}
				});

				var	LightningCounterDisplay	=	React.createClass({
								render:	function()	{

										var	divStyle	=	{
												width:	250,
												textAlign:	"center",
												backgroundColor:	"black",
												padding:	40,
												fontFamily:	"sans-serif",
												color:	"#999",
												borderRadius:	10
										};

										return(
												<div	style={divStyle}>
														<LightningCounter/>
												</div>
);
								}
				});

				ReactDOM.render(
						<LightningCounterDisplay/>,
						document.querySelector("#container")
);
		</script>

</body>

</html>

At	this	point,	take	a	few	moments	to	look	at	what	our	existing	code	does.	First,	we	have	a
component	called	LightningCounterDisplay:
Click	here	to	view	code	image

var	LightningCounterDisplay	=	React.createClass({
				render:	function()	{

						var	divStyle	=	{
								width:	250,
								textAlign:	"center",
								backgroundColor:	"black",
								padding:	40,
								fontFamily:	"sans-serif",
								color:	"#999",
								borderRadius:	10
						};

						return(
								<div	style={divStyle}>
										<LightningCounter/>
								</div>
);
				}
});

The	bulk	of	this	component	is	the	divStyle	object	that	contains	the	styling	information
responsible	for	the	cool	rounded	background.	The	render	function	returns	a	div	element
that	wraps	the	LightningCounter	component.
The	LightningCounter	component	is	where	all	the	action	is	going	to	be	taking	place:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		render:	function()	{
				return	(
						<h1>Hello!</h1>
);
		}
});

This	component,	as	it	is	right	now,	has	nothing	interesting	going	for	it.	It	just	returns	the	word
Hello!	That’s	OK—we’ll	fix	this	component	up	later.
The	last	thing	to	look	at	is	our	ReactDOM.render	method:
Click	here	to	view	code	image

ReactDOM.render(
		<LightningCounterDisplay/>,
		document.querySelector("#container")
);

It	just	pushes	the	LightningCounterDisplay	component	into	our	container	div
element	in	our	DOM.	That’s	pretty	much	it.	The	end	result	is	that	you	see	the	combination	of

markup	from	our	ReactDOM.render	method	and	the	LightningCounterDisplay
and	LightningCounter	components.

Getting	Our	Counter	On
Now	that	we	have	an	idea	of	what	we	are	starting	with,	it’s	time	to	make	plans	for	our	next
steps.	The	way	our	counter	works	is	pretty	simple.	We	are	going	to	be	using	a
setInterval	function	that	calls	some	code	every	1000	milliseconds	(aka	1	second).	That
“some	code”	is	going	to	increment	a	value	by	100	each	time	it	is	called.	Seems	pretty
straightforward,	right?
To	make	this	all	work,	we	are	going	to	be	relying	on	three	APIs	that	our	React	Component
exposes:

	getInitialState—This	method	runs	just	before	your	component	gets	mounted,
and	it	allows	you	to	modify	a	component’s	state	object.
	componentDidMount—This	method	gets	called	just	after	our	component	gets
rendered	(or	mounted	as	React	calls	it).
	setState—This	method	allows	you	to	update	the	value	of	the	state	object.

We’ll	see	these	APIs	in	use	shortly,	but	I	wanted	to	give	you	a	preview	of	them	so	that	you	can
spot	them	easily	in	a	lineup!

Setting	the	Initial	State	Value
We	need	a	variable	to	act	as	our	counter,	and	let’s	call	this	variable	strikes.	There	are	a
bunch	of	ways	to	create	this	variable.	The	most	obvious	one	is	the	following:

var	strikes	=	0	//	:P

We	don’t	want	to	do	that,	though.	For	our	example,	the	strikes	variable	is	part	of	our
component’s	state,	and	its	value	is	what	we	display	on	screen.	What	we	are	going	to	do	is	use
the	getInitialState	method	that	we	briefly	saw	a	few	moments	ago	and	take	care	of
initializing	our	variable	inside	it.	You’ll	see	in	a	few	moments	what	result	that	has	on	our
component’s	state.
Inside	your	LightningCounter	component,	add	the	following	highlighted	lines:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		getInitialState:	function()	{	
				return	{																				
						strikes:	0																
				};																										
		},																												
		render:	function()	{
				return	(
						<h1>{this.state.strikes}</h1>
);
		}
});

The	getInitialState	method	automatically	runs	waaaay	before	your	component	gets
rendered,	and	what	we	are	doing	is	telling	React	to	return	an	object	containing	our	strikes
property	(initialized	to	0).	You	may	be	wondering	to	whom	or	what	we	are	returning	this
object	to?	All	of	that	is	magic	that	happens	under	the	covers.	The	object	that	gets	returned	is
set	as	the	initial	value	for	our	component’s	state	object.
If	we	inspect	the	value	of	our	state	object	after	this	code	has	run,	it	would	look	something
like	the	following:

var	state	=	{
		strikes:	0
}

Before	we	wrap	this	section	up,	let’s	visualize	our	strikes	property.	In	our	render
method,	make	the	following	highlighted	change:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		getInitialState:	function()	{
				return	{
						strikes:	0
				};
		},
		render:	function()	{
				return	(
						<h1>{this.state.strikes}</h1>	
);
		}
});

What	we’ve	done	is	replaced	our	default	Hello!	text	with	an	expression	that	displays	the	value
stored	by	the	this.state.strikes	property.	If	you	preview	your	example	in	the
browser,	you	will	see	a	value	of	0	displayed.	That’s	a	start!

Starting	Our	Timer	and	Setting	State
Next	up	is	getting	our	timer	going	and	incrementing	our	strikes	property.	Like	we
mentioned	earlier,	we	will	be	using	the	setInterval	function	to	increase	the	strikes
property	by	100	every	second.	We	are	going	to	do	all	of	this	immediately	after	our
component	has	been	rendered	using	the	built-in	componentDidMount	method.
The	code	for	kicking	off	our	timer	looks	as	follows:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		getInitialState:	function()	{
				return	{
						strikes:	0
				};
		},
		componentDidMount:	function()	{						
				setInterval(this.timerTick,	1000);	
		},																																			
		render:	function()	{

				return	(
						<h1>{this.state.strikes}</h1>
);
		}
});

Go	ahead	and	add	these	highlighted	lines	to	our	example.	Inside	our	componentDidMount
method	that	gets	called	once,	our	component	gets	rendered,	we	have	our	setInterval
method	that	calls	a	timerTick	function	every	second	(or	1000	milliseconds).
We	haven’t	defined	our	timerTick	function,	so	let’s	fix	that	by	adding	the	following
highlighted	lines	to	our	code:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		getInitialState:	function()	{
				return	{
						strikes:	0
				};
		},
		timerTick:	function()	{															
				this.setState({																					
						strikes:	this.state.strikes	+	100	
				});																																	
		},																																				
		componentDidMount:	function()	{
				setInterval(this.timerTick,	1000);
		},
		render:	function()	{
				return	(
						<h1>{this.state.strikes}</h1>
);
		}
});

What	our	timerTick	function	does	is	pretty	simple.	It	just	calls	setState.	The
setState	method	comes	in	various	flavors,	but	for	what	we	are	doing	here,	it	just	takes	an
object	as	its	argument.	This	object	contains	all	the	properties	you	want	to	merge	into	the	state
object.	In	our	case,	we	are	specifying	the	strikes	property	and	setting	its	value	to	be	100
more	than	what	it	is	currently.

How	does	timerTick	maintain	context?
In	regular	JavaScript,	the	timerTick	function	won’t	maintain	context.	You	have	to	do
extra	work	to	support	that.	The	reason	it	works	in	the	React	world	is	because	of
something	known	as	autobinding.	Now,	aren’t	you	glad	you	know	that?

Rendering	the	State	Change
If	you	preview	your	app	now,	you’ll	see	our	strikes	value	start	to	increment	by	100	every
second	(see	Figure	8-2).

Figure	8-2	The	strikes	value	increments	by	100	every	second.

Let’s	ignore	for	a	moment	what	happens	with	our	code.	That	is	pretty	straightforward.	The
interesting	thing	is	how	everything	we’ve	done	ends	up	updating	what	you	see	on	the	screen.
That	updating	has	to	do	with	this	React	behavior:	Whenever	you	call	setState	and	update
something	in	the	state	object,	your	component’s	render	method	gets	automatically	called.
This	kicks	off	a	cascade	of	render	calls	for	any	component	whose	output	is	also	affected.
The	end	result	of	all	this	is	that	what	you	see	in	your	screen	in	the	latest	representation	of	your
app’s	UI	state.	Keeping	your	data	and	UI	in	sync	is	one	of	the	hardest	problems	with	UI
development,	so	it’s	nice	that	React	takes	care	of	this	for	us.	It	makes	all	of	this	pain	of
learning	to	use	React	totally	worth	it—almost!	:P

Optional:	The	Full	Code
What	we	have	right	now	is	just	a	counter	that	increments	by	100	every	second.	Nothing	about
it	screams	Lightning	Counter,	but	it	does	cover	everything	about	states	that	I	wanted	you	to
learn	right	now.	If	you	want	to	optionally	flesh	out	your	example	to	look	like	my	version	that
you	saw	at	the	beginning,	below	is	the	full	code	for	what	goes	inside	our	script	tag:
Click	here	to	view	code	image

var	LightningCounter	=	React.createClass({
		getInitialState:	function()	{
				return	{
						strikes:	0
				};
		},
		timerTick:	function()	{
				this.setState({
						strikes:	this.state.strikes	+	100
				});
		},
		componentDidMount:	function()	{
				setInterval(this.timerTick,	1000);
		},
		render:	function()	{
				var	counterStyle	=	{
						color:	"#66FFFF",
						fontSize:	50
				};

				var	count	=	this.state.strikes.toLocaleString();

				return	(
						<h1	style={counterStyle}>{count}</h1>
);
		}
});

var	LightningCounterDisplay	=	React.createClass({
				render:	function()	{
						var	commonStyle	=	{
								margin:	0,
								padding:	0
						}
						var	divStyle	=	{
								width:	250,
								textAlign:	"center",
								backgroundColor:	"#020202",
								padding:	40,
								fontFamily:	"sans-serif",
								color:	"#999999",
								borderRadius:	10
						};

						var	textStyles	=	{
								emphasis:	{
										fontSize:	38,
										...commonStyle
								},
								smallEmphasis:	{
										...commonStyle
								},
								small:	{
										fontSize:	17,
										opacity:	0.5,
										...commonStyle
								}
						}

						return(
								<div	style={divStyle}>
										<LightningCounter/>
										<h2	style={textStyles.smallEmphasis}>LIGHTNING	STRIKES</h2>
										<h2	style={textStyles.emphasis}>WORLDWIDE</h2>
										<p	style={textStyles.small}>(since	you	loaded	this	example)</p>
								</div>
);
				}
});

ReactDOM.render(
		<LightningCounterDisplay/>,
		document.querySelector("#container")
);

If	you	make	your	code	look	like	everything	you	see	above	and	run	the	example	again,	you
will	see	our	lightning	counter	example	in	all	its	cyan-colored	glory.	While	you	are	at	it,	take	a
moment	to	look	through	the	code	to	ensure	you	don’t	see	too	many	surprises.

Conclusion
We	just	scratched	the	surface	on	what	we	can	do	to	create	stateful	components.	While	using	a
timer	to	update	something	in	our	state	object	is	cool,	the	real	action	happens	when	we	start
combining	user	interaction	with	state.	So	far,	we’ve	shied	away	from	the	large	amount	of
mouse,	touch,	keyboard,	and	other	related	things	that	your	components	will	come	into	contact
with.	In	an	upcoming	chapter,	we	are	going	to	fix	that.	Along	the	way,	you’ll	see	us	taking
what	we’ve	seen	about	states	to	a	whole	new	level!	If	that	doesn’t	excite	you,	then	I	don’t	know
what	will	:P

9.	Going	from	Data	to	UI

When	you	are	building	your	apps,	thinking	in	terms	of	props,	state,	components,	JSX	tags,
render	methods,	and	other	React-isms	may	be	the	last	thing	on	your	mind.	Most	of	the	time,
you	are	dealing	with	data	in	the	form	of	JSON	objects,	arrays,	and	other	data	structures	that
have	no	knowledge	(or	interest)	in	React	or	anything	visual.	Bridging	the	gulf	between	your
data	and	what	you	eventually	see	can	be	frustrating!	Not	to	worry,	though.	This	chapter	helps
reduce	some	of	those	frustrating	moments	by	running	through	some	common	scenarios
you’ll	encounter!

The	Example
To	help	make	sense	of	everything	you	are	about	to	see,	we	are	going	to	need	an	example.	It’s
nothing	too	complicated,	so	go	ahead	and	create	a	new	HTML	document	and	throw	the
following	stuff	into	it:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>
				#container	{
						padding:	50px;
						background-color:	#FFF;
				}
		</style>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">
				var	Circle	=	React.createClass({
						render:	function()	{
										var	circleStyle	=	{
												padding:	10,
												margin:	20,
												display:	"inline-block",
												backgroundColor:	this.props.bgColor,
												borderRadius:	"50%",
												width:	100,
												height:	100,
										};

										return	(
												<div	style={circleStyle}>

												</div>
);
								}
				});

				var	destination	=	document.querySelector("#container");

				ReactDOM.render(
						<div>
								<Circle	bgColor="#F9C240"/>
						</div>,
						destination
);
		</script>
</body>

</html>

Once	you	have	your	document	set	up,	go	ahead	and	preview	what	you	have	in	your	browser.
If	everything	went	well,	you	will	be	greeted	by	a	happy	yellow	circle	(see	Figure	9-1).

Figure	9-1	If	everything	went	well,	you	will	get	this	yellow	circle.

If	you	see	what	I	see,	great!	Now,	let’s	take	a	moment	to	understand	what	our	example	is
doing.	The	bulk	of	what	you	see	comes	from	the	Circle	component:
Click	here	to	view	code	image

var	Circle	=	React.createClass({
		render:	function()	{
						var	circleStyle	=	{
								padding:	10,
								margin:	20,
								display:	"inline-block",
								backgroundColor:	this.props.bgColor,
								borderRadius:	"50%",
								width:	100,
								height:	100,
						};

						return	(
								<div	style={circleStyle}>
								</div>
);
				}
});

It	is	mostly	made	up	of	our	circleStyle	object	that	contains	the	inline	style	properties	that
turn	our	boring	div	into	an	awesome	circle.	All	the	style	values	are	hard-coded	except	for
the	backgroundColor	property.	It	takes	its	value	from	the	bgColor	prop	that	gets	passed
in.
Going	beyond	our	component,	the	way	we	ultimately	display	our	circle	is	via	our	usual
ReactDOM.render	method:
Click	here	to	view	code	image

ReactDOM.render(
		<div>
				<Circle	bgColor="#F9C240"/>
		</div>,
		destination
);

We	have	a	single	instance	of	our	Circle	component	declared,	and	we	declare	it	with	the
bgColor	prop	set	to	the	color	we	want	our	circle	to	appear	in.	Now,	having	our	Circle
component	be	defined	as-is	inside	our	render	method	is	a	bit	limiting	-	especially	if	you	are
going	to	be	dealing	with	data	that	could	affect	what	our	Circle	component	does.	In	the	next
couple	of	sections,	we’ll	look	at	the	ways	we	have	for	solving	that.

Your	JSX	Can	Be	Anywhere—Part	II
In	the	“Meet	JSX—Again”!	chapter	(Chapter	7),	we	learned	that	our	JSX	can	actually	live
outside	of	a	render	function	and	can	be	used	as	a	value	assigned	to	a	variable	or	property.	For
example,	we	can	fearlessly	do	something	like	this:
Click	here	to	view	code	image

var	theCircle	=	<Circle	bgColor="#F9C240"/>;

ReactDOM.render(
		<div>
				{theCircle}
		</div>,
		destination

);

The	theCircle	variable	stores	the	JSX	for	instantiating	our	Circle	component.
Evaluating	this	variable	inside	our	ReactDOM.render	function	results	in	a	circle	getting
displayed.	The	end	result	is	no	different	than	what	we	had	earlier,	but	having	our	Circle
component	instantiation	freed	from	the	shackles	of	the	render	method	gives	us	more
options	to	do	crazy	and	cool	things.
For	example,	you	can	go	further	and	create	a	function	that	returns	a	Circle	component:
Click	here	to	view	code	image

function	showCircle()	{
		var	colors	=	["#393E41",	"#E94F37",	"#1C89BF",	"#A1D363"];
		var	ran	=	Math.floor(Math.random()	*	colors.length);

		//	return	a	Circle	with	a	randomly	chosen	color
		return	<Circle	bgColor={colors[ran]}/>;
};

In	this	case,	the	showCircle	function	returns	a	Circle	component	(boring!)	with	the	value
for	the	bgColor	prop	set	to	a	random	color	value	(awesomesauce!).	To	have	our	example
use	the	showCircle	function,	all	you	have	to	do	is	evaluate	it	inside	ReactDOM.render:

1			ReactDOM.render(
2					<div>
3						{showCircle()}	
4				</div>,
5				destination
6);

As	long	as	the	expression	you	are	evaluating	returns	JSX,	you	can	put	pretty	much	anything
you	want	inside	the	{	and	}	curly	brackets.	That	flexibility	is	really	nice,	because	there	are	a
lot	of	things	you	can	do	when	your	JavaScript	lives	outside	of	the	render	function.	A	LOT
OF	THINGS!

Dealing	with	Arrays	in	the	Context	of	JSX
Now	we	are	going	to	get	to	some	fun	stuff!	When	you	are	displaying	multiple	components,
you	won’t	always	be	able	to	manually	specify	them:

ReactDOM.render(
		<div>
				{showCircle()}
				{showCircle()}
				{showCircle()}
		</div>,
		destination
);

In	many	real-world	scenarios,	the	number	of	components	you	display	will	be	related	to	the
number	of	items	in	an	array	or	array-like	(aka	iterator)	object	you	are	working	with.	That
brings	along	a	few	simple	complications.	For	example,	let’s	say	that	we	have	an	array	called
colors	that	looks	as	follows:

Click	here	to	view	code	image

var	colors	=	["#393E41",	"#E94F37",	"#1C89BF",	"#A1D363",
														"#85FFC7",	"#297373",	"#FF8552",	"#A40E4C"];

What	we	want	to	do	is	create	a	Circle	component	for	each	item	in	this	array	(and	set	the
bgColor	prop	to	the	value	of	each	array	item).	The	way	we	are	going	to	do	this	is	by
creating	an	array	of	Circle	components:
Click	here	to	view	code	image

var	colors	=	["#393E41",	"#E94F37",	"#1C89BF",	"#A1D363",
														"#85FFC7",	"#297373",	"#FF8552",	"#A40E4C"];

var	renderData	=	[];																														
																																																		
for	(var	i	=	0;	i	<	colors.length;	i++)	{									
		renderData.push(<Circle	bgColor={colors[i]}/>);	
}																																																	

In	this	snippet,	we	populate	our	renderData	array	with	Circle	components	just	like	we
originally	set	out	to	do.	So	far	so	good.	To	display	all	of	these	components,	React	makes	it
very	simple.	Take	a	look	at	the	highlighted	line	for	all	you	have	to	do:
Click	here	to	view	code	image

var	colors	=	["#393E41",	"#E94F37",	"#1C89BF",	"#A1D363",
														"#85FFC7",	"#297373",	"#FF8552",	"#A40E4C"];

var	renderData	=	[];

for	(var	i	=	0;	i	<	colors.length;	i++)	{
		renderData.push(<Circle	bgColor={colors[i]}/>);
}

ReactDOM.render(
		<div>
				{renderData}	
		</div>,
		destination
);

In	our	render	method,	all	we	do	is	specify	our	renderData	array	as	an	expression	that	we
need	to	evaluate.	We	don’t	need	to	take	any	other	step	to	go	from	an	array	of	components	to
seeing	something	that	looks	like	Figure	9-2	when	you	preview	in	your	browser.

Figure	9-2	What	you	should	see	in	your	browser.

Ok,	while	our	example	seems	to	work,	we	aren’t	done	yet!	There	is	actually	one	more	thing
we	need	to	do,	and	this	is	a	subtle	one.	The	way	React	makes	UI	updates	really	fast	is	by
having	a	good	idea	of	what	exactly	is	going	on	in	your	DOM.	It	does	this	in	several	ways,	but
one	really	noticeable	way	is	by	internally	marking	each	element	with	some	sort	of	an
identifier.	This	“marking”	happens	automatically	when	you	explicitly	specify	elements	in
your	JSX.
When	you	create	elements	dynamically	(such	as	what	we	are	doing	with	our	array	of	Circle
components),	these	identifiers	are	not	automatically	set.	We	need	to	do	some	extra	work.	That
extra	work	takes	the	form	of	a	key	prop	whose	value	React	uses	to	uniquely	identify	each

particular	component.
For	our	example,	we	can	do	something	like	this:
Click	here	to	view	code	image

for	(var	i	=	0;	i	<	colors.length;	i++)	{
		var	color	=	colors[i];																																						
		renderData.push(<Circle	key={i	+	color}	bgColor={color}/>);	
}

On	each	component,	we	specify	our	key	prop	and	set	its	value	to	a	combination	of	color	and
index	position	inside	the	colors	array.	This	ensures	that	each	component	we	dynamically
create	ends	up	getting	a	unique	identifier	that	React	can	then	use	to	optimize	any	future	UI
updates.	Now,	we	could	just	use	the	index	position	as	the	identifier,	but	if	you	have	multiple
blocks	of	code	where	you	are	dynamically	generating	elements,	you	may	get	multiple
elements	with	duplicate	index	values.

Check	Your	Console	Yo!
React	is	really	good	at	telling	you	when	you	might	be	doing	something	wrong.	For
example,	if	you	dynamically	create	elements	or	components	and	don’t	specify	a	key
prop	on	them,	you	will	be	greeted	with	the	following	warning	in	your	console:
Warning:	Each	child	in	an	array	or	iterator	should	have	a	unique	“key”	prop.	Check
the	top-level	render	call	using	<div>.
When	you	are	working	with	React,	it	is	a	good	idea	to	periodically	check	your	console
for	any	messages	it	may	have.	Even	if	things	seem	to	be	working	just	fine,	you’ll	never
know	what	you	might	find	:P

Conclusion
All	the	tips	and	tricks	you’ve	seen	in	this	article	are	made	possibly	because	of	one	thing:	JSX
is	JavaScript.	This	is	what	enables	you	to	have	your	JSX	live	wherever	JavaScript	thrives.	To
us,	it	looks	like	we	are	doing	something	absolutely	bizarre	when	we	specify	something	like
this:
Click	here	to	view	code	image

for	(var	i	=	0;	i	<	colors.length;	i++)	{
		var	color	=	colors[i];
		renderData.push(<Circle	key={i	+	color}	bgColor={color}/>);
}

Even	though	we	are	pushing	pieces	of	JSX	to	an	array,	just	like	magic,	everything	works	in
the	end	when	renderData	is	evaluated	inside	our	render	method.	I	hate	to	sound	like	a
broken	record,	but	this	is	because	what	our	browser	ultimately	sees	looks	like	this:
Click	here	to	view	code	image

for	(var	i	=	0;	i	<	colors.length;	i++)	{
		var	color	=	colors[i];

		renderData.push(React.createElement(Circle,

				{
						key:	i	+	color,
						bgColor:	color
				}));
}

When	our	JSX	gets	converted	into	pure	JS,	everything	makes	sense	again.	This	is	what	allows
us	to	get	away	with	putting	our	JSX	in	all	sorts	of	uncomfortable	(yet	photogenic!)	situations
with	our	data	and	still	get	the	end	result	we	want!	Because,	in	the	end,	it’s	all	just	JavaScript.

10.	Working	with	Events

So	far,	most	of	our	examples	only	did	their	work	on	page	load.	As	you	probably	guessed,	that
isn’t	normal.	In	most	apps,	especially	the	kind	of	UI-heavy	ones	we	will	be	building,	there	is
going	to	be	a	ton	of	things	the	app	does	only	as	a	reaction	to	something.	That	something	could
be	triggered	by	a	mouse	click,	a	key	press,	window	resize,	or	a	whole	bunch	of	other	gestures
and	interactions.	The	glue	that	makes	all	of	this	possible	is	something	known	as	events.
Now,	you	probably	know	all	about	events	from	your	experience	using	them	in	the	DOM
world.	(If	you	don’t,	then	I	suggest	getting	a	quick	refresher	first:
https://www.kirupa.com/html5/javascript_events.htm.)	The	way	React	deals	with	events	is	a	bit
different,	and	these	differences	can	surprise	you	in	various	ways	if	you	aren’t	paying	close
attention.	Don’t	worry.	That’s	why	you	have	this	book!	We	start	off	with	a	few	simple
examples	and	then	gradually	look	at	increasingly	more	bizarre,	complex,	and	(yes!)	boring
things.

Listening	and	Reacting	to	Events
The	easiest	way	to	learn	about	events	in	React	is	to	actually	use	them,	and	that’s	exactly	what
we	are	going	to	do!	To	help	with	this,	we	have	a	simple	example	made	up	of	a	counter	that
increments	each	time	you	click	on	a	button.	Initially,	our	example	will	look	like	Figure	10-1.

Figure	10-1	Our	example.

Each	time	you	click	on	the	plus	button,	the	counter	value	will	increase	by	1.	After	clicking	the
plus	button	a	bunch	of	times,	it	will	look	sorta	like	Figure	10-2.

https://www.kirupa.com/html5/javascript_events.htm

Figure	10-2	After	clicking	the	plus	button	a	bunch	of	times	(23?).

Under	the	covers,	the	way	this	example	works	is	pretty	simple.	Each	time	you	click	on	the
button,	an	event	gets	fired.	We	listen	for	this	event	and	do	all	sorts	of	React-ey	things	to	get
the	counter	to	update	when	this	event	gets	overheard.

Starting	Point
To	save	all	of	us	some	time,	we	aren’t	going	to	be	creating	everything	in	our	example	from
scratch.	By	now,	you	probably	have	a	good	idea	of	how	to	work	with	components,	styles,
state,	and	so	on.	Instead,	we	are	going	to	start	off	with	a	partially	implemented	example	that
contains	everything	except	the	event-related	functionality	that	we	are	here	to	learn.
First,	create	a	new	HTML	document	and	ensure	your	starting	point	looks	as	follows:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
		<script	src="https://unpkg.com/react@15.3.2/dist/react.js"></script>
		<script	src="https://unpkg.com/react-dom@15.3.2/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>
				#container	{
						padding:	50px;
						background-color:	#FFF;
				}
		</style>
</head>

<body>
		<div	id="container"></div>
		<script	type="text/babel">

		</script>
</body>

</html>

Once	your	new	HTML	document	looks	like	what	you	see	above,	it’s	time	to	add	our	partially
implemented	counter	example.	Inside	our	script	tag	below	the	container	div,	add	the
following:
Click	here	to	view	code	image

var	destination	=	document.querySelector("#container");

var	Counter	=	React.createClass({
		render:	function()	{
						var	textStyle	=	{
								fontSize:	72,
								fontFamily:	"sans-serif",
								color:	"#333",
								fontWeight:	"bold"
						};

						return	(
								<div	style={textStyle}>
										{this.props.display}
								</div>
);
				}
});

var	CounterParent	=	React.createClass({
		getInitialState:	function()	{
				return	{
						count:	0
				};
		},
		render:	function()	{
						var	backgroundStyle	=	{
								padding:	50,
								backgroundColor:	"#FFC53A",
								width:	250,
								height:	100,
								borderRadius:	10,
								textAlign:	"center"
						};

						var	buttonStyle	=	{
								fontSize:	"1em",
								width:	30,
								height:	30,
								fontFamily:	"sans-serif",
								color:	"#333",
								fontWeight:	"bold",
								lineHeight:	"3px"
						};

						return	(
								<div	style={backgroundStyle}>
										<Counter	display={this.state.count}/>
										<button	style={buttonStyle}>+</button>
								</div>
);
				}

});

ReactDOM.render(
		<div>
				<CounterParent/>
		</div>,
		destination
);

Once	you	have	added	all	of	this,	preview	everything	in	your	browser	to	make	sure	things	get
displayed.	You	should	see	the	beginning	of	our	counter.	Take	a	few	moments	to	look	at	what
all	of	this	code	does.	There	shouldn’t	be	anything	that	looks	strange.	The	only	odd	thing	will
be	that	clicking	the	plus	button	won’t	do	anything.	We’ll	fix	that	right	up	in	the	next	section.

Making	the	Button	Click	Do	Something
Each	time	we	click	on	the	plus	button,	we	want	the	value	of	our	counter	to	increase	by	one.
What	we	need	to	do	is	going	to	look	roughly	like	this:

1.	Listen	for	the	click	event	on	the	button	and	specify	an	event	handler.
2.	Implement	the	event	handler	where	we	increase	the	value	of	our	this.state.count
property	that	our	counter	relies	on.

We’ll	just	go	straight	down	the	list—starting	with	listening	for	the	click	event.	In	React,	you
listen	to	an	event	by	specifying	everything	inline	in	your	JSX	itself.	More	specifically,	you
specify	both	the	event	you	are	listening	for	and	the	event	handler	that	will	get	called,	all	inside
your	markup.	To	do	this,	find	the	return	function	inside	our	CounterParent	component,
and	make	the	following	highlighted	change:
Click	here	to	view	code	image

		.
		.
		.
return	(
		<div	style={backgroundStyle}>
				<Counter	display={this.state.count}/>
				<button	onClick={this.increase}	style={buttonStyle}>+</button>	
		</div>
);

What	we’ve	done	is	told	React	to	call	the	increase	function	when	the	onClick	event	is
overheard.	Next,	let’s	go	ahead	and	implement	the	increase	function—aka	our	event
handler.	Inside	our	CounterParent	component,	add	the	following	highlighted	lines:
Click	here	to	view	code	image

var	CounterParent	=	React.createClass({
		getInitialState:	function()	{
				return	{
						count:	0
				};
		},
		increase:	function(e)	{									
				this.setState({															
						count:	this.state.count	+	1	

				});																											
		},																														
		render:	function()	{
						var	backgroundStyle	=	{
								padding:	50,
								backgroundColor:	"#FFC53A",
								width:	250,
								height:	100,
								borderRadius:	10,
								textAlign:	"center"
						};

						var	buttonStyle	=	{
								fontSize:	"1em",
								width:	30,
								height:	30,
								fontFamily:	"sans-serif",
								color:	"#333",
								fontWeight:	"bold",
								lineHeight:	"3px"
						};

						return	(
								<div	style={backgroundStyle}>
										<Counter	display={this.state.count}/>
										<button	onClick={this.increase}	style={buttonStyle}>+</button>
								</div>
);
				}
});

All	we	are	doing	with	these	lines	is	making	sure	that	each	call	to	the	increase	function
increments	the	value	of	our	this.state.count	property	by	1.	Because	we	are	dealing
with	events,	your	increase	function	(as	the	designated	event	handler)	will	get	access	to	the
event	argument.	We	have	set	this	event	argument	to	be	accessed	by	e,	and	you	can	see	that	by
looking	at	our	increase	function’s	signature	(aka	what	its	declaration	looks	like).	We’ll
talk	about	the	various	events	and	their	properties	in	a	little	bit.
Now,	go	ahead	and	preview	what	you	have	in	your	browser.	Once	everything	has	loaded,
click	on	the	plus	button	to	see	all	of	our	newly	added	code	in	action.	Our	counter	value	should
increase	with	each	click!	Isn’t	that	pretty	awesome?

Event	Properties
As	you	know,	our	events	pass	what	is	known	as	an	event	argument	to	our	event	handler.	This
event	argument	contains	a	bunch	of	properties	that	are	specific	to	the	type	of	event	you	are
dealing	with.	In	the	regular	DOM	world,	each	event	has	its	own	type.	For	example,	if	you	are
dealing	with	a	mouse	event,	your	event	and	its	event	argument	object	will	be	of	type
MouseEvent.	This	MouseEvent	object	will	allow	you	to	access	mouse-specific
information,	like	which	button	was	pressed	or	the	screen	position	of	the	mouse	click.	Event
arguments	for	a	keyboard-related	event	are	of	type	KeyboardEvent.	Your
KeyboardEvent	object	contains	properties	which	(among	many	other	things)	allow	you	to
figure	out	which	key	was	actually	pressed.	I	could	go	on	forever	for	every	other	Event	type,
but	you	get	the	point.	Each	Event	type	contains	its	own	set	of	properties	that	you	can	access
via	the	event	handler	for	that	event!
Why	am	I	boring	you	with	things	you	already	know?	Well...

Meet	Synthetic	Events
In	React,	when	you	specify	an	event	in	JSX	like	we	did	with	onClick,	you	are	not	directly
dealing	with	regular	DOM	events.	Instead,	you	are	dealing	with	a	React-specific	event	type
known	as	a	SyntheticEvent.	Your	event	handlers	don’t	get	native	event	arguments	of	type
MouseEvent,	KeyboardEvent,	etc.	They	always	get	event	arguments	of	type
SyntheticEvent	that	wrap	your	browser ’s	native	event	instead.	What	is	the	fallout	of	this
in	our	code?	Surprisingly	not	a	whole	lot.
Each	SyntheticEvent	contains	the	following	properties:

These	properties	should	seem	pretty	straightforward—and	generic!	The	non-generic	stuff
depends	on	what	type	of	native	event	our	SyntheticEvent	is	wrapping.	This	means	that	a
SyntheticEvent	that	wraps	a	MouseEvent	will	have	access	to	mouse-specific	properties
such	as	the	following:

boolean	altKey
number	button
number	buttons
number	clientX
number	clientY
boolean	ctrlKey
boolean	getModifierState(key)
boolean	metaKey
number	pageX
number	pageY
DOMEventTarget	relatedTarget
number	screenX
number	screenY
boolean	shiftKey

Similarly,	a	SyntheticEvent	that	wraps	a	KeyboardEvent	will	have	access	to	these
additional	keyboard-related	properties:

boolean	altKey
number	charCode
boolean	ctrlKey
boolean	getModifierState(key)
string	key
number	keyCode
string	locale
number	location
boolean	metaKey
boolean	repeat
boolean	shiftKey
number	which

In	the	end,	all	of	this	means	that	you	still	get	the	same	functionality	in	the	SyntheticEvent
world	that	you	had	in	the	vanilla	DOM	world.
Now,	here	is	something	I	learned	the	hard	way.	Don’t	refer	to	traditional	DOM	event
documentation	when	using	Synthetic	events	and	their	properties.	Because	the
SyntheticEvent	wraps	your	native	DOM	event,	events	and	their	properties	may	not	map
one-to-one.	Some	DOM	events	don’t	even	exist	in	React.	To	avoid	running	into	any	issues,	if
you	want	to	know	the	name	of	a	SyntheticEvent	or	any	of	its	properties,	refer	to	the
React	Event	System	document(https://facebook.github.io/react/docs/events.html)	instead.

Doing	Stuff	With	Event	Properties
By	now,	you’ve	probably	seen	more	about	the	DOM	and	SyntheticEvent	stuff	than	you’d
probably	like.	To	wash	away	the	taste	of	all	that	text,	let’s	write	some	code	and	put	all	of	this
newfound	knowledge	to	good	use.	Right	now,	our	counter	example	increments	by	one	each
time	you	click	on	the	plus	button.	What	we	want	to	do	is	increment	our	counter	by	ten	when	the
Shift	key	on	the	keyboard	is	pressed	while	clicking	the	plus	button	with	our	mouse.

https://facebook.github.io/react/docs/events.html

The	way	we	are	going	to	do	that	is	by	using	the	shiftKey	property	that	exists	on	the
SyntheticEvent	when	using	the	mouse:

boolean	altKey
number	button
number	buttons
number	clientX
number	clientY
boolean	ctrlKey
boolean	getModifierState(key)
boolean	metaKey
number	pageX
number	pageY
DOMEventTarget	relatedTarget
number	screenX
number	screenY
boolean	shiftKey	

The	way	this	property	works	is	simple.	If	the	Shift	key	is	pressed	when	this	mouse	event	fires,
then	the	shiftKey	property	value	is	true.	Otherwise,	the	shiftKey	property	value	is	false.
To	increment	our	counter	by	10	when	the	Shift	key	is	pressed,	go	back	to	our	increase
function	and	make	the	following	highlighted	changes:
Click	here	to	view	code	image

increase:	function(e)	{
		var	currentCount	=	this.state.count;	

		if	(e.shiftKey)	{																				
				currentCount	+=	10;																
		}	else	{																													
				currentCount	+=	1;																	
		}																																				

		this.setState({
				count:	currentCount																
		});
},

Once	you’ve	made	the	changes,	preview	our	example	in	the	browser.	Each	time	you	click	on
the	plus	button,	your	counter	will	increment	by	one	just	like	it	had	always	done.	If	you	click
on	the	plus	button	with	your	Shift	key	pressed,	notice	that	our	counter	increments	by	10
instead.
The	reason	that	all	of	this	works	is	because	we	change	our	incrementing	behavior	depending
on	whether	the	Shift	key	is	pressed	or	not.	That	is	primarily	handled	by	the	following	lines:

if	(e.shiftKey)	{
		currentCount	+=	10;
}	else	{
		currentCount	+=	1;
}

If	the	shiftKey	property	on	our	SyntheticEvent	event	argument	is	true,	we	increment
our	counter	by	10.	If	the	shiftKey	value	is	false,	we	just	increment	by	1.

More	Eventing	Shenanigans
We	are	not	done	yet!	Up	until	this	point,	we’ve	looked	at	how	to	work	with	events	in	React	in	a
very	simplistic	way.	In	the	real	world,	rarely	will	things	be	as	direct	as	what	we’ve	seen.	Your
real	apps	will	be	more	complex,	and	because	React	insists	on	doing	things	differently,	we’ll
need	to	learn	(or	re-learn)	some	new	event-related	tricks	and	techniques	to	make	our	apps
work.	That’s	where	this	section	comes	in.	We	are	going	to	look	at	some	common	situations
you’ll	run	into	and	how	to	deal	with	them.

You	Can’t	Directly	Listen	to	Events	on	Components
Let’s	say	your	component	is	nothing	more	than	a	button	or	another	type	of	UI	element	that
users	will	be	interacting	with.	You	can’t	get	away	with	doing	something	like	what	we	see	in
the	following	highlighted	line:
Click	here	to	view	code	image

var	CounterParent	=	React.createClass({
		getInitialState:	function()	{
				return	{
						count:	0
				};
		},
		increase:	function()	{
				this.setState({
						count:	this.state.count	+	1
				});
		},
		render:	function()	{
				return	(
						<div>
								<Counter	display={this.state.count}/>
								<PlusButton	onClick={this.increase}/>	
						</div>
);
		}
});

On	the	surface,	this	line	of	JSX	looks	totally	valid.	When	somebody	clicks	on	our
PlusButton	component,	the	increase	function	will	get	called.	In	case	you	are	curious,
this	is	what	our	PlusButton	component	looks	like:
Click	here	to	view	code	image

var	PlusButton	=	React.createClass({
		render:	function()	{
						return	(
								<button>
										+
								</button>
);
				}
});

Our	PlusButton	component	doesn’t	do	anything	crazy.	It	only	returns	a	single	HTML
element!

No	matter	how	you	slice	and	dice	this,	none	of	this	matters.	It	doesn’t	matter	how	simple	or
obvious	the	HTML	we	are	returning	via	a	component	looks	like.	You	simply	can’t	listen	for
events	on	them	directly.	The	reason	is	because	components	are	wrappers	for	DOM	elements.
What	does	it	even	mean	to	listen	for	an	event	on	a	component?	Once	your	component	gets
unwrapped	into	DOM	elements,	does	the	outer	HTML	element	act	as	the	thing	you	are
listening	for	the	event	on?	Is	it	some	other	element?	How	do	you	distinguish	between	listening
for	an	event	and	declaring	a	prop	with	a	value?
There	is	no	clear	answer	to	any	of	those	questions.	It’s	too	harsh	to	say	that	the	solution	is	to
simply	not	listen	to	events	on	components,	either.	Fortunately,	there	is	a	workaround	where
we	treat	the	event	handler	as	a	prop	and	pass	it	on	to	the	component.	Inside	the	component,	we
can	then	assign	the	event	to	a	DOM	element	and	set	the	event	handler	to	the	the	value	of	the
prop	we	just	passed	in.	I	realize	that	probably	makes	no	sense,	so	let’s	walk	through	an
example.
Take	a	look	at	the	following	highlighted	line:
Click	here	to	view	code	image

var	CounterParent	=	React.createClass({
				.
				.
				.
		render:	function()	{
				return	(
						<div>
								<Counter	display={this.state.count}/>
								<PlusButton	clickHandler={this.increase}/>	
						</div>
);
		}
});

In	this	example,	we	create	a	property	called	clickHandler	whose	value	is	the	increase
event	handler.	Inside	our	PlusButton	component,	we	can	then	do	something	like	this:
Click	here	to	view	code	image

var	PlusButton	=	React.createClass({
		render:	function()	{
						return	(
								<button	onClick={this.props.clickHandler}>	
										+
								</button>
);
				}
});

On	our	button	element,	we	specify	the	onClick	event	and	set	its	value	to	the
clickHandler	prop.	At	runtime,	this	prop	gets	evaluated	as	our	increase	function,	and
clicking	the	plus	button	ensures	the	increase	function	gets	called.	This	solves	our	problem
while	still	allowing	our	component	to	participate	in	all	this	eventing	goodness!

Listening	to	Regular	DOM	Events
If	you	thought	the	previous	section	was	a	doozy,	wait	till	you	see	what	we	have	here.	Not	all
DOM	events	have	SyntheticEvent	equivalents.	It	may	seem	like	you	can	just	add	the	on
prefix	and	capitalize	the	event	you	are	listening	for	when	specifying	it	inline	in	your	JSX:
Click	here	to	view	code	image

var	Something	=	React.createClass({
		handleMyEvent:	function(e)	{
				//	do	something
		},
		render:	function()	{
						return	(
								<div	onMyWeirdEvent={this.handleMyEvent}>Hello!</div>
);
				}
});

It	doesn’t	work	that	way!	For	those	events	that	aren’t	officially	recognized	by	React,	you	have
to	use	the	traditional	approach	that	uses	addEventListener	with	a	few	extra	hoops	to
jump	through.
Take	a	look	at	the	following	section	of	code:
Click	here	to	view	code	image

var	Something	=	React.createClass({
		handleMyEvent:	function(e)	{
				//	do	something
		},
		componentDidMount:	function()	{
				window.addEventListener("someEvent",	this.handleMyEvent);
		},
		componentWillUnmount:	function()	{
				window.removeEventListener("someEvent",	this.handleMyEvent);
		},
		render:	function()	{
						return	(
								<div>Hello!</div>
);
				}
});

We	have	our	Something	component	that	listens	for	an	event	called	someEvent.	We	start
listening	for	this	event	under	the	componentDidMount	method	which	is	automatically
called	when	our	component	gets	rendered.	The	way	we	listen	for	our	event	is	by	using
addEventListener	and	specifying	both	the	event	and	the	event	handler	to	call:
Click	here	to	view	code	image

var	Something	=	React.createClass({
		handleMyEvent:	function(e)	{
				//	do	something
		},
		componentDidMount:	function()	{																													
				window.addEventListener("someEvent",	this.handleMyEvent);	
		},																																																										
		componentWillUnmount:	function()	{

				window.removeEventListener("someEvent",	this.handleMyEvent);
		},
		render:	function()	{
						return	(
								<div>Hello!</div>
);
				}
});

That	should	be	pretty	straightforward.	The	only	other	thing	you	need	to	keep	in	mind	is
removing	the	event	listener	when	the	component	is	about	to	be	destroyed.	To	do	that,	you	can
use	the	opposite	of	the	componentDidMount	method,	the	componentWillUnmount
method.	Inside	that	method,	put	your	removeEventListener	call	to	ensure	no	trace	of
our	event	listening	takes	place	after	our	component	goes	away.

The	Meaning	of	this	Inside	the	Event	Handler
When	dealing	with	events	in	React,	the	value	of	this	inside	your	event	handler	is	different
from	what	you	would	normally	see	in	the	non-React	DOM	world.	In	the	non-React	world,	the
value	of	this	inside	an	event	handler	refers	to	the	element	that	your	event	is	listening	on:
Click	here	to	view	code	image

function	doSomething(e)	{
		console.log(this);	//button	element
}

var	foo	=	document.querySelector("button");
foo.addEventListener("click",	doSomething,	false);

In	the	React	world	(when	your	components	are	created	using	React.createClass),	the
value	of	this	inside	your	event	handler	always	refers	to	the	component	the	event	handler
lives	in:
Click	here	to	view	code	image

var	CounterParent	=	React.createClass({
		getInitialState:	function()	{
				return	{
						count:	0
				};
		},
		increase:	function(e)	{
				console.log(this);	//	CounterParent	component

				this.setState({
						count:	this.state.count	+	1
				});
		},
		render:	function()	{
						return	(
								<div>
										<Counter	display={this.state.count}/>
										<button	onClick={this.increase}>+</button>
								</div>
);
				}

});

In	this	example,	the	value	of	this	inside	the	increase	event	handler	refers	to	the
CounterParent	component.	It	doesn’t	refer	to	the	element	that	triggered	the	event.	You	get
this	behavior	because	React	automatically	binds	all	methods	inside	a	component	to	this.
This	autobinding	behavior	only	applies	when	your	component	is	created	using
React.createClass.	If	you	are	using	ES6	classes	to	define	your	components,	the	value
of	this	inside	your	event	handler	is	going	to	be	undefined	unless	you	explicitly	bind	it
yourself:
Click	here	to	view	code	image

<button	onClick={this.increase.bind(this)}>+</button>

There	is	no	autobinding	magic	that	happens	with	the	new	class	syntax,	so	be	sure	to	keep	that
in	mind	if	you	aren’t	using	React.createClass	to	create	your	components.

React...Why?	Why?!
Before	we	call	it	a	day,	let’s	use	this	time	to	talk	about	why	React	decided	to	deviate	from	how
we’ve	worked	with	events	in	the	past.	There	are	two	reasons:

	Browser	Compatibility
	Improved	Performance

Let’s	elaborate	on	these	two	reasons	a	little	bit.

Browser	Compatibility
Event	handling	is	one	of	those	things	that	mostly	works	consistently	in	modern	browsers,	but
once	you	go	back	to	older	browser	versions,	things	get	really	bad	really	quickly.	By
wrapping	all	of	the	native	events	as	an	object	of	type	SyntheticEvent,	React	frees	you
from	dealing	with	event	handling	quirks	that	you	would	end	up	having	to	deal	with	otherwise.

Improved	Performance
In	complex	UIs,	the	more	event	handlers	you	have,	the	more	memory	your	app	takes	up.
Manually	dealing	with	that	isn’t	difficult,	but	it	is	a	bit	tedious	as	you	try	to	group	events
under	a	common	parent.	Sometimes,	that	just	isn’t	possible.	Sometimes,	the	hassle	doesn’t
outweigh	the	benefits.	What	React	does	is	pretty	clever.
React	never	attaches	event	handlers	to	the	DOM	elements	directly.	It	uses	one	event	handler	at
the	root	of	your	document	that	is	responsible	for	listening	to	all	events	and	calling	the
appropriate	event	handler	as	necessary	(see	Figure	10-3).

Figure	10-3	React	uses	one	event	handler	at	the	root	of	your	document.

This	frees	you	from	having	to	deal	with	optimizing	your	event	handler-related	code	yourself.
If	you’ve	manually	had	to	do	that	in	the	past,	you	can	relax	knowing	that	React	takes	care	of
that	tedious	task	for	you.	If	you’ve	never	had	to	optimize	event	handler-related	code	yourself,
consider	yourself	lucky	:P

Conclusion
You’ll	spend	a	lot	of	time	dealing	with	events,	and	this	chapter	threw	a	lot	of	things	at	you.	We
started	by	learning	the	basics	of	how	to	listen	to	events	and	specify	the	event	handler.	Towards
the	end,	we	were	fully	invested	and	looking	at	eventing	corner	cases	that	you	will	bump	into	if
you	aren’t	careful	enough.	You	don’t	want	to	bump	into	corners.	That	is	never	fun.

11.	The	Component	Lifecycle

In	the	beginning,	we	started	off	with	a	very	simple	view	of	components	and	what	they	do.	As
we	learned	more	about	React	and	did	cooler	and	more	involved	things,	it	turns	out	our
components	aren’t	all	that	simple.	They	help	deal	with	properties,	state,	events,	and	often	are
responsible	for	the	well-being	of	other	components	as	well.	Keeping	track	of	everything
components	do	sometimes	can	be	tough.
To	help	with	this,	React	provides	us	with	something	known	as	lifecycle	methods.	Lifecycle
methods	are	(unsurprisingly)	special	methods	that	automatically	get	called	as	our	component
goes	about	its	business.	They	notify	us	of	important	milestones	in	our	component’s	life,	and
we	can	use	these	notifications	to	simply	pay	attention	or	change	what	our	component	is	about
to	do.
In	this	chapter,	we	look	at	these	lifecycle	methods	and	learn	all	about	what	we	can	do	with
them.

Meet	the	Lifecycle	Methods
Lifecycle	methods	are	not	very	complicated.	We	can	think	of	them	as	glorified	event	handlers
that	get	called	at	various	points	in	a	component’s	life,	and	just	like	event	handlers,	you	can
write	some	code	to	do	things	at	those	various	points.	Before	we	go	further,	it	is	time	for	you
to	quickly	meet	our	lifecycle	methods.	They	are:

	componentWillMount
	componentDidMount
	componentWillUnmount
	componentWillUpdate
	componentDidUpdate
	shouldComponentUpdate
	componentWillReceiveProps

We	aren’t	quite	done	yet.	There	are	three	more	methods	that	we	are	going	to	throw	into	the
mix	even	though	they	aren’t	strictly	lifecycle	methods,	and	they	are:

	getInitialState
	getDefaultProps
	render

Some	of	these	names	probably	sound	familiar	to	you,	and	some	you	are	probably	seeing	for
the	first	time.	Don’t	worry.	By	the	end	of	all	this,	you’ll	be	on	a	first	name	basis	with	all	of
them!	What	we	are	going	to	do	is	look	at	these	lifecycle	methods	from	various	angles—
starting	with	some	code!

See	the	Lifecycle	Methods	in	Action
Learning	about	these	lifecycle	methods	is	about	as	exciting	as	memorizing	names	for	foreign
places	(or	distant	star	systems!)	you	have	no	plans	to	visit.	To	help	make	all	of	this	more
bearable,	I	am	going	to	first	have	you	play	with	them	through	a	simple	example	before	we	get
all	academic	and	read	about	them.
To	play	with	this	example,	go	to	the	following	URL:
https://www.kirupa.com/react/lifecycle_example.htm	Once	this	page	loads,	you’ll	see	a
variation	of	the	counter	example	we	saw	earlier	(see	Figure	11-1).

Figure	11-1	A	variation	on	the	counter	example.

Don’t	click	on	the	button	or	anything	just	yet.	If	you	have	already	clicked	on	the	button,	just
refresh	the	page	to	start	the	example	from	the	beginning.	There	is	a	reason	why	I	am	saying
that,	and	it	isn’t	because	my	OCD	is	acting	up	:P	We	want	to	see	this	page	as	it	is	before	we
interact	with	it!
Now,	bring	up	your	browser ’s	developer	tools	and	take	a	look	at	the	Console	tab.	In	Chrome,
you’ll	see	something	that	looks	like	Figure	11-2.

https://www.kirupa.com/react/lifecycle_example.htm

Figure	11-2	The	Console	view	in	Chrome.

Notice	what	you	see	printed.	You	will	see	some	messages,	and	these	messages	start	out	with
the	name	of	what	looks	like	a	lifecycle	method.	If	you	click	on	the	plus	button	once,	notice
that	your	Console	will	show	more	lifecycle	methods	getting	called	(see	Figure	11-3).

Figure	11-3	More	lifecycle	methods	getting	called.

Play	with	this	example	for	a	bit.	What	this	example	does	is	allow	you	to	place	all	of	these
lifecycle	methods	in	the	context	of	a	component	that	we’ve	already	seen	earlier.	As	you	keep
hitting	the	plus	button,	more	lifecycle	method	entries	will	show	up.	Eventually,	once	your
counter	approaches	a	value	of	5,	your	example	will	just	disappear	with	the	following	entry

showing	up	in	your	console:	componentWillUnmount:	Component	is	about	to
be	removed	from	the	DOM!	At	this	point,	you	have	reached	the	end	of	this	example.	Of
course,	to	start	over,	you	can	just	refresh	the	page!
Now	that	you’ve	seen	the	example,	let’s	take	a	quick	look	at	the	component	that	is	responsible
for	all	of	this:
Click	here	to	view	code	image

var	CounterParent	=	React.createClass({
		getDefaultProps:	function(){
				console.log("getDefaultProps:	Default	prop	time!");
				return	{};
		},
		getInitialState:	function()	{
				console.log("getInitialState:	Default	state	time!");
				return	{
						count:	0
				};
		},
		increase:	function()	{
				this.setState({
						count:	this.state.count	+	1
				});
		},
		componentWillUpdate:	function(newProps,	newState)	{
						console.log("componentWillUpdate:	Component	is	about	to	update!");
		},
		componentDidUpdate:	function(currentProps,	currentState)	{
						console.log("componentDidUpdate:	Component	just	updated!");
		},
		componentWillMount:	function()	{
						console.log("componentWillMount:	Component	is	about	to	mount!");
		},
		componentDidMount:	function()	{
						console.log("componentDidMount:	Component	just	mounted!");
		},
		componentWillUnmount:	function()	{
						console.log("componentWillUnmount:	Component	is	about	to	be	removed	from	the
DOM!");
		},
		shouldComponentUpdate:	function(newProps,	newState)	{
				console.log("shouldComponentUpdate:	Should	component	update?");

				if	(newState.count	<	5)	{
						console.log("shouldComponentUpdate:	Component	should	update!");
						return	true;
				}	else	{
						ReactDOM.unmountComponentAtNode(destination);
						console.log("shouldComponentUpdate:	Component	should	not	update!");
						return	false;
				}
		},
		componentWillReceiveProps:	function(newProps){
				console.log("componentWillReceiveProps:	Component	will	get	new	props!");
		},
		render:	function()	{
						var	backgroundStyle	=	{
								padding:	50,

								border:	"#333	2px	dotted",
								width:	250,
								height:	100,
								borderRadius:	10,
								textAlign:	"center"
						};

						return	(
								<div	style={backgroundStyle}>
										<Counter	display={this.state.count}/>
										<button	onClick={this.increase}>
												+
										</button>
								</div>
);
				}
});

Take	a	few	moments	to	look	what	all	of	this	code	does.	It	seems	lengthy,	but	a	bulk	of	it	is	just
each	lifecycle	method	listed	with	a	console.log	statement	defined.	Once	you’ve	gone
through	this	code,	play	with	the	example	one	more	time.	Trust	me.	The	more	time	you	spend	in
the	example	and	figure	out	what	is	going	on,	the	more	fun	you	are	going	to	have.	The
following	sections	where	we	look	at	each	lifecycle	method	across	the	rendering,	updating,
and	unmounting	phases	is	going	to	be	dreadfully	boring.	Don’t	say	I	didn’t	warn	you.

The	Initial	Rendering	Phase
When	your	component	is	about	to	start	its	life	and	make	its	way	to	the	DOM,	the	following
lifecycle	methods	get	called	(see	Figure	11-4).

Figure	11-4	The	lifecycle	methods	called	initially.

What	you	saw	in	your	console	when	the	example	was	loaded	was	a	less	colorful	version	of
what	you	saw	here.	Now,	we	are	going	to	go	a	bit	further	and	learn	more	about	what	each	of
these	lifecycle	methods	do.

getDefaultProps
This	method	allows	you	to	specify	the	default	value	of	this.props.	It	gets	called	before
your	component	is	even	created	or	any	props	from	parents	are	passed	in.

getInitialState
This	method	allows	you	to	specify	the	default	value	of	this.state	before	your	component
is	created.	Just	like	getDefaultProps,	it	too	gets	called	before	your	component	is	created.

componentWillMount
This	is	the	last	method	that	gets	called	before	your	component	gets	rendered	to	the	DOM.
There	is	an	important	thing	to	note	here.	If	you	were	to	call	setState	inside	this	method,
your	component	will	not	re-render	(aka	have	the	render	method	get	called	and	update	what
gets	displayed	on	screen).

render
This	one	should	be	very	familiar	to	you	by	now.	Every	component	must	have	this	method
defined,	and	it	is	responsible	for	returning	a	single	root	node	(which	may	have	many	child
nodes	inside	it).	If	you	don’t	wish	to	render	anything	(for	some	fancy	optimization	you	might
be	going	for),	simply	return	null	or	false.

componentDidMount
This	method	gets	called	immediately	after	your	component	renders	and	gets	placed	on	the
DOM.	At	this	point,	you	can	safely	perform	any	DOM	querying	operations	without	worrying
about	whether	your	component	has	made	it	or	not.	If	you	have	any	code	that	depends	on	your
component	being	ready,	you	can	specify	all	of	that	code	here	as	well.
With	the	exception	of	the	render	method,	all	of	these	lifecycle	methods	can	fire	only	once.
That’s	quite	different	from	the	methods	we	are	about	to	see	next.

The	Updating	Phase
After	your	components	get	added	to	the	DOM,	they	can	potentially	update	and	re-render	when
a	prop	or	state	change	occurs.	During	this	time,	a	different	collection	of	lifecycle	methods
will	get	called.	Yawn.	Sorry...

Dealing	with	State	Changes
First,	let’s	look	at	a	state	change!	When	a	state	change	occurs,	we	mentioned	earlier	that	your
component	will	call	its	render	method	again.	Any	components	that	rely	on	the	output	of	this
component	will	also	get	their	render	methods	called	as	well.	This	is	done	to	ensure	that	our
component	is	always	displaying	the	latest	version	of	itself.	All	of	that	is	true,	but	that	is	only	a
partial	representation	of	what	happens.
When	a	state	change	happens,	all	the	lifecycle	methods	in	Figure	11-5	get	called.

Figure	11-5	Lifecycle	methods	called	when	a	state	change	happens.

What	these	lifecycle	methods	do	is	outlined	in	the	following	sections.

shouldComponentUpdate
Sometimes,	you	don’t	want	your	component	to	update	when	a	state	change	occurs.	This
method	allows	you	to	control	this	updating	behavior.	If	you	use	this	method	and	return	a	true
value,	the	component	will	update.	If	this	method	returns	a	false	value,	this	component	will	skip
updating.
That	probably	sounds	a	little	bit	confusing,	so	here	is	a	simple	snippet:
Click	here	to	view	code	image

shouldComponentUpdate:	function(newProps,	newState)	{

		if	(newState.id	<=	2)	{

				console.log("Component	should	update!");

				return	true;
		}	else	{
				console.log("Component	should	not	update!");

				return	false;
		}
}

This	method	gets	called	with	two	arguments	which	we	name	newProps	and	newState.
What	we	are	doing	in	this	snippet	of	code	is	checking	whether	the	new	value	of	our	id	state
property	is	less	than	or	equal	to	2.	If	the	value	is	less	than	or	equal	to	2,	we	return	true	to
indicate	that	this	component	should	update.	If	the	value	is	not	less	than	or	equal	to	2,	we	return
false	to	indicate	that	this	component	should	not	update.

componentWillUpdate
This	method	gets	called	just	before	your	component	is	about	to	update.	Nothing	too	exciting
here.	One	thing	to	note	is	that	you	can’t	change	your	state	by	calling	this.setState	from
this	method.

render
If	you	didn’t	override	the	update	via	shouldComponentUpdate	(by	returning	false),	the
code	inside	render	will	get	called	again	to	ensure	your	component	displays	itself	properly.

componentDidUpdate
This	method	gets	called	after	your	component	updates	and	the	render	method	has	been
called.	If	you	need	to	execute	any	code	after	the	update	takes	place,	this	is	the	place	to	stash	it.

Dealing	with	Prop	Changes
The	other	time	your	component	updates	is	when	its	prop	value	changes	after	it	has	been
rendered	into	the	DOM.	In	this	scenario,	the	lifecycle	methods	in	Figure	11-6	get	called.

Figure	11-6	Lifecycle	methods	when	the	component’s	prop	value	changes.

The	only	method	that	is	new	here	is	componentWillReceiveProps.	This	method	returns
one	argument,	and	this	argument	is	an	object	that	contains	the	new	prop	values	that	are	about
to	be	assigned	to	it.
We	saw	the	rest	of	the	lifecycle	methods	earlier	when	looking	at	state	changes,	so	let’s	not
revisit	them	again.	Their	behavior	is	identical	when	dealing	with	a	prop	change.

The	Unmounting	Phase
The	last	phase	we	are	going	to	look	at	is	when	your	component	is	about	to	be	destroyed	and
removed	from	the	DOM	(see	Figure	11-7).

Figure	11-7	Only	one	lifecycle	method	is	active	when	your	component	is	about	to	be
destroyed	and	removed	from	the	DOM.

There	is	only	one	lifecycle	method	that	is	active	here,	and	that	is
componentWillUnmount.	You’ll	perform	any	cleanup-related	tasks	here	such	as
removing	event	listeners,	stopping	timers,	etc.	After	this	method	gets	called,	your	component
is	removed	from	the	DOM	and	you	can	say	Bye!	to	it.

Conclusion
Our	components	are	fascinating	little	things.	On	the	surface	they	seem	like	they	don’t	have
much	going	on.	Like	a	good	documentary	about	the	oceans,	when	we	look	a	little	deeper	and
closer,	it’s	almost	like	seeing	a	whole	other	world.	As	it	turns	out,	React	is	constantly
watching	and	notifying	your	component	every	time	something	interesting	happens.	All	of	this
is	done	via	the	(extremely	boring)	lifecycle	methods	that	we	spent	this	entire	tutorial	looking
at.	Now,	I	want	to	reassure	you	that	knowing	what	each	lifecycle	method	does	and	when	it	gets
called	will	come	in	handy	one	day.	Everything	you’ve	learned	isn’t	just	trivial	knowledge,
though	your	friends	will	be	impressed	if	you	can	describe	all	of	the	lifecycle	methods	from
memory.	Go	ahead	and	try	it	the	next	time	you	see	them.

12.	Accessing	DOM	Elements

There	will	be	times	when	you	want	to	access	properties	and	methods	on	an	HTML	element
directly.	In	our	React-colored	world	where	JSX	represents	everything	that	is	good	and	pure
about	markup,	why	would	you	ever	want	to	deal	directly	with	the	horribleness	that	is	HTML?
As	you	will	find	out	(if	you	haven’t	already),	there	are	many	cases	where	dealing	with	HTML
elements	through	the	JavaScript	DOM	API	directly	is	easier	than	fiddling	with	“the	React
way”	of	doing	things.
To	highlight	one	such	situation,	take	a	look	at	the	Colorizer	example	in	Figure	12-1.

Figure	12-1	Colorizer	example.

If	you	have	access	to	a	browser,	you	can	view	it	live	at	the	following	location:
https://www.kirupa.com/react/examples/colorizer.htm
The	Colorizer	colorizes	the	(currently)	white	square	with	whatever	color	you	provide	it.	To
see	it	in	action,	enter	a	color	value	inside	the	text	field	and	click/tap	on	the	go	button.	If	you
don’t	have	any	idea	of	what	color	to	enter,	yellow	is	a	good	one!	Once	you	have	provided	a

https://www.kirupa.com/react/examples/colorizer.htm

color	and	submitted	it,	the	white	square	will	turn	whatever	color	value	you	provided	(see
Figure	12-2).

Figure	12-2	The	white	square	turns	yellow.

That	the	square	changes	color	for	any	valid	color	value	you	submit	is	pretty	awesome,	but	it
isn’t	what	I	want	you	to	focus	on.	Instead,	pay	attention	to	the	text	field	and	the	button	after	you
submit	a	value.	Notice	that	the	button	gets	focus,	and	the	color	value	you	just	submitted	is	still
displayed	inside	the	form.	If	you	want	to	enter	another	color	value,	you	need	to	explicitly
return	focus	to	the	text	field	and	clear	out	whatever	current	value	is	present.	Eww!	That	seems
unnecessary,	and	we	can	do	better	than	that	from	a	usability	point	of	view!
Now,	wouldn’t	it	be	great	if	we	could	clear	both	the	existing	color	value	and	return	focus	to
the	text	field	immediately	after	you	submit	a	color?	That	would	mean	that	if	we	submitted	a
color	value	of	purple,	what	we	would	see	afterwards	would	look	like	Figure	12-3.

Figure	12-3	We	get	purple	and	the	text	field	is	ready	for	the	next	color.

The	entered	value	of	purple	is	cleared,	and	the	focus	is	returned	to	the	text	field.	This	allows
us	to	enter	additional	color	values	and	submit	them	easily	without	having	to	manually	keep
jumping	focus	back	and	forth	between	the	text	field	and	the	button.	Isn’t	that	much	nicer?
Getting	this	behavior	right	using	JSX	and	traditional	React	techniques	is	hard.	We	aren’t	even
going	to	bother	with	explaining	how	to	go	about	that.	Getting	this	behavior	right	by	dealing
with	the	JavaScript	DOM	API	on	various	HTML	elements	directly	is	pretty	easy.	Guess	what
we	are	going	to	do?	In	the	following	sections,	we	use	something	known	as	refs	that	React
provides	to	help	us	access	the	DOM	API	on	HTML	elements.	This	chapter	sounds	really
REALLY	boring,	but	it	is	going	to	be	a	fun	one—I’m	mostly	sure	of	it.

Meet	Refs
As	you	know	very	well	by	now,	inside	our	various	render	methods,	we’ve	been	writing
HTML-like	things	known	as	JSX.	Our	JSX	is	simply	a	description	of	what	the	DOM	should
look	like.	It	doesn’t	represent	actual	HTML—despite	looking	a	whole	lot	like	it.	Anyway,	to
provide	a	bridge	between	JSX	and	the	final	HTML	elements	in	the	DOM,	React	provides	us
with	something	funnily	known	as	refs	(short	for	references).
The	way	refs	work	is	a	little	odd.	The	easiest	way	to	make	sense	of	it	is	to	look	at	an	example.
Let’s	say	we	have	a	render	method	from	our	Colorizer	example	that	looks	as	follows:
Click	here	to	view	code	image

render:	function()	{
		var	squareStyle	=	{
				backgroundColor:	this.state.bgColor
		};

		return	(
				<div	className="colorArea">
						<div	style={squareStyle}	className="colorSquare"></div>

						<form	onSubmit={this.setNewColor}>
								<input
										onChange={this.colorValue}
										placeholder="Enter	a	color	value">
								</input>
								<button	type="submit">go</button>
						</form>
				</div>
);
}

Inside	this	render	method,	we	are	returning	a	big	chunk	of	JSX	representing	(among	other
things)	the	input	element	where	we	enter	our	color	value.	What	we	want	to	do	is	access	the
input	element’s	DOM	representation	so	that	we	can	call	some	APIs	on	it	using	JavaScript.
The	way	we	do	that	using	refs	is	by	setting	the	ref	attribute	on	the	element	we	would	like	to
reference	the	HTML	of:
Click	here	to	view	code	image

render:	function()	{
		var	squareStyle	=	{
				backgroundColor:	this.state.bgColor
		};

		return	(
				<div	className="colorArea">
						<div	style={squareStyle}	className="colorSquare"></div>

						<form	onSubmit={this.setNewColor}>
								<input
												ref={}	
												onChange={this.colorValue}
												placeholder="Enter	a	color	value">
								</input>
								<button	type="submit">go</button>

						</form>
				</div>
);
}

Because	we	are	interested	in	the	input	element,	our	ref	attribute	is	attached	to	it.	Right	now,
our	ref	attribute	is	empty.	What	you	typically	set	as	the	ref	attribute’s	value	is	a	JavaScript
callback	function.	This	function	gets	called	automatically	when	the	component	housing	this
render	method	gets	mounted.	If	we	set	our	ref	attribute’s	value	to	a	simple	JavaScript
function	that	stores	a	reference	to	the	referenced	DOM	element,	it	would	look	something	like
the	following	highlighted	lines:
Click	here	to	view	code	image

	1		render:	function()	{
	2				var	squareStyle	=	{
	3						backgroundColor:	this.state.bgColor
	4				};
	5
	6					var	self	=	this;	
	7
	8					return	(
	9							<div	className="colorArea">
10									<div	style={squareStyle}	className="colorSquare"></div>
11
12									<form	onSubmit={this.setNewColor}>
13											<input
14															ref={
15																					function(el)	{						
16																							self._input	=	el;	
17																					}																			
18																			}
19															onChange={this.colorValue}
20															placeholder="Enter	a	color	value">
21											</input>
22											<button	type="submit">go</button>
23									</form>
24						</div>
25);
26		}

The	end	result	of	this	code	running	once	our	component	mounts	is	simple:	we	can	access	the
HTML	representing	our	input	element	from	anywhere	inside	our	component	by	calling
this._input.	Take	a	few	moments	to	see	how	the	highlighted	lines	of	code	help	do	that.
Once	you	are	done,	we’ll	walk	through	this	code	together.
First,	our	callback	function	looks	as	follows:

function(el)	{
				self._input	=	el;
}

This	anonymous	function	gets	called	when	our	component	mounts,	and	a	reference	to	the
final	HTML	DOM	element	is	passed	in	as	an	argument.	We	capture	this	argument	using	the	el
identifier,	but	you	can	use	any	name	for	this	argument	that	you	want.	The	body	of	this	callback
function	simply	sets	a	custom	property	called	_input	to	the	value	of	our	DOM	element.	To

ensure	we	create	this	property	on	our	component,	we	use	the	self	variable	to	create	a
closure	where	the	this	in	question	refers	to	our	component	as	opposed	to	the	callback
function	itself.	(Autobinding	doesn’t	happen	automatically	this	time	around!)
Taking	a	step	back	and	looking	at	the	bigger	picture	that	ties	everything	together	including	the
render	method	we	just	saw,	let’s	look	at	the	full	Colorizer	component	with	all	of	the
ref-related	shenanigans	highlighted:
Click	here	to	view	code	image

var	Colorizer	=	React.createClass({
				getInitialState:	function()	{
						return	{
										color:	’’,
										bgColor:	’’
						}
				},
				colorValue:	function(e)	{
						this.setState({color:	e.target.value});
				},
				setNewColor:	function(e){
						this.setState({bgColor:	this.state.color});

						this._input.value	=	"";	
						this._input.focus();				

						e.preventDefault();
				},
				render:	function()	{
						var	squareStyle	=	{
								backgroundColor:	this.state.bgColor
						};

						var	self	=	this;	

						return	(
								<div	className="colorArea">
										<div	style={squareStyle}	className="colorSquare"></div>

										<form	onSubmit={this.setNewColor}>
												<input
																ref={																					
																						function(el)	{						
																								self._input	=	el;	
																						}																			
																				}																					
																onChange={this.colorValue}
																placeholder="Enter	a	color	value">
												</input>
												<button	type="submit">go</button>
										</form>
								</div>
);
				}
});

Focusing	just	on	what	happens	to	our	input	element,	when	the	form	gets	submitted	and	the
setNewColor	method	gets	called,	we	clear	the	contents	of	our	input	element	by	calling

this._input.value	=	“”.	We	set	focus	to	our	input	element	by	calling
this._input.focus().	All	of	our	ref-	related	work	was	simply	to	enable	these	two
lines	where	we	needed	some	way	to	have	this._input	point	to	the	HTML	element
representing	our	input	element	that	we	define	in	JSX.	Once	we	figured	that	out,	we	just	call
the	value	property	and	focus	method	the	DOM	API	exposes	on	this	element.

Simplifying	Further	with	ES6	Arrow	Functions
Learning	React	is	hard	enough,	so	I	have	tried	to	shy	away	from	forcing	you	to	use
ES6	techniques	by	default.	When	it	comes	to	working	with	the	ref	attribute,	using
arrow	functions	to	deal	with	the	callback	function	does	simplify	matters	a	bit.	This	is
one	of	those	cases	where	I	recommend	you	use	an	ES6	technique.
As	you	saw	a	few	moments	ago,	to	assign	a	property	on	our	component	to	the
referenced	HTML	element,	we	did	something	like	this:

Click	here	to	view	code	image

<input
				ref={
										function(el)	{
												self._input	=	el;
										}
								}
				onChange={this.colorValue}
				placeholder="Enter	a	color	value">
</input>

To	deal	with	scoping	shenanigans,	we	created	a	self	variable	initialized	to	this	to
ensure	we	created	the	_input	property	on	our	component.	That	seems	unnecessarily
messy.
Using	arrow	functions,	we	can	simplify	all	of	this	down	to	just	the	following:

Click	here	to	view	code	image

<input
				ref={
										(el)	=>	this._input	=	el
								}
				onChange={this.colorValue}
				placeholder="Enter	a	color	value">
</input>

The	end	result	is	identical	to	what	we	spent	all	of	this	time	looking	at,	and	because	of
how	arrow	functions	deal	with	scope,	you	can	use	this	inside	the	function	body	and
reference	the	component	without	doing	any	extra	work.	No	need	for	an	outer	self
variable	equivalent!

Conclusion
In	this	tutorial,	we	saw	how	“easy”	it	is	to	access	a	DOM	element	directly.	React	used	to
provide	a	much	easier	way	of	referencing	elements.	You	could	set	the	refs	attribute	on	an
element	and	initialize	it	to	a	string	value:
Click	here	to	view	code	image

<button	refs="myButton">Click	me!</button>

You	could	then	access	this	element	after	the	component	was	mounted	by	doing	something	like
this.refs.myButton.	Before	you	get	really	excited	about	using	something	like	this	over
our	function	callback	approach	with	the	ref	attribute,	this	string-based	approach	is	likely	to
be	deprecated.	It	works	at	the	moment	of	this	writing,	but	who	knows	when	it	will	stop
working.	Now,	given	that	this	is	going	away,	you	may	be	wondering	why	I	told	you	about	this.
To	be	frank,	I	really	have	no	idea	:P

13.	Creating	a	Single-Page	App	Using	React	Router

Now	that	you’ve	familiarized	yourself	with	the	basics	of	how	to	work	with	React,	let’s	kick
things	up	a	few	notches.	What	we	are	going	to	do	is	use	React	to	build	a	simple,	single-page
app	(also	referred	to	as	SPA	by	the	cool	kids—and	people	living	in	Scandinavia).	As	we
talked	about	in	Chapter	1	forever	ago,	single-page	apps	are	different	from	the	more
traditional	multi-page	apps	that	you	see	everywhere.	The	biggest	difference	is	that	navigating
a	single-page	app	doesn’t	involve	going	to	an	entirely	new	page.	Instead,	your	pages
(commonly	known	as	views	in	this	context)	typically	load	inline	within	the	same	page	as
illustrated	in	Figure	13-1.

Figure	13-1	Single-page	apps	use	load	views	inline	rather	than	load	new	pages.

When	you	are	loading	content	inline,	things	get	a	little	challenging.	The	hard	part	is	not
loading	the	content	itself.	That	is	relatively	easy.	The	hard	part	is	making	sure	that	single-page

apps	behave	in	a	way	that	is	consistent	with	what	your	users	are	used	to.	More	specifically,
when	users	navigate	your	app,	they	expect	that:

1.	The	URL	displayed	in	the	address	bar	always	reflects	the	thing	that	they	are	viewing.
2.	They	can	use	the	browser ’s	back	and	forward	buttons—successfully.
3.	They	can	navigate	to	a	particular	view	(aka	deep	link)	directly	using	the	appropriate
URL.

With	multi-page	apps,	these	three	things	come	for	free.	There	is	nothing	extra	you	have	to	do
for	any	of	it.	With	single-page	apps,	because	you	aren’t	navigating	to	an	entirely	new	page,
you	have	to	do	real	work	to	deal	with	these	three	things	that	your	users	expect	to	just	work.
You	need	to	ensure	that	navigating	within	your	app	adjusts	the	URL	appropriately.	You	need	to
ensure	your	browser ’s	history	is	properly	synchronized	with	each	navigation	to	allow	users
to	use	the	back	and	forward	buttons.	If	users	bookmark	a	particular	view	or	copy/paste	a	URL
to	access	later,	you	need	to	ensure	that	your	single-page	app	takes	the	user	to	the	correct	place.
To	deal	with	all	of	this,	you	have	a	bucket	full	of	techniques	commonly	known	as	routing.
Routing	is	where	you	try	to	map	URLs	to	destinations	that	aren’t	physical	pages,	such	as	the
individual	views	in	your	single-page	app.	That	sounds	complicated,	but	fortunately	there	are	a
bunch	of	JavaScript	libraries	that	help	us	out	with	this.	One	such	JavaScript	library	is	the	star
of	this	chapter,	React	Router	(https://github.com/reactjs/react-router).	React	Router	provides
routing	capabilities	to	single-page	apps	built	in	React,	and	what	makes	it	nice	is	that	it	extends
what	you	already	know	about	React	in	familiar	ways	to	give	you	all	of	this	routing
awesomeness.	In	this	chapter,	you	learn	all	about	how	it	does	that—and	hopefully	more!

The	Example
Before	we	go	further,	let’s	take	a	look	at	an	example	(see	Figure	13-2).

https://github.com/reactjs/react-router

Figure	13-2	A	simple	React	app	that	uses	React	Router.

What	you	have	here	is	a	simple	React	app	that	uses	React	Router	to	provide	all	of	the
navigation	and	view-loading	goodness!	While	the	screenshot	of	the	app	looks	nice	and	all,
this	is	one	of	those	cases	where	you	want	to	play	with	the	app	to	see	more	of	what	it	does.	Go
ahead	and	open	this	page	(https://www.kirupa.com/react/examples/react_router_final.htm)	in
its	own	browser	window,	click	on	the	various	navigation	tabs	to	see	the	different	views,	and
use	the	back	and	forward	buttons	to	see	them	working.
In	the	following	sections,	we	are	going	to	be	building	this	app	in	pieces.	By	the	end,	not	only
will	you	have	recreated	this	app,	you’ll	hopefully	have	learned	enough	about	React	Router	to
build	cooler	and	more	awesomer	things.

Building	the	App
The	first	thing	we	need	to	do	is	get	the	boilerplate	markup	and	code	for	our	app	up	and
running.	Create	a	new	HTML	document	and	add	the	following	content	into	it:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

https://www.kirupa.com/react/examples/react_router_final.htm

<head>
		<title>React!	React!	React!</title>
		<script	src="https://npmcdn.com/react@15.3.0/dist/react.js"></script>
		<script	src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>

		</style>
</head>

<body>

		<div	id="container">

		</div>

		<script	type="text/babel">
				var	destination	=	document.querySelector("#container");

				ReactDOM.render(
						<div>
								Hello!
						</div>,
						destination
);
		</script>
</body>

</html>

This	starting	point	is	almost	the	same	as	what	you’ve	seen	for	all	of	our	other	examples.	This
is	just	a	nearly	blank	app	that	happens	to	load	the	React	and	React-DOM	libraries.	If	you
preview	what	you	have	in	your	browser,	you’ll	see	a	very	lonely	Hello!	displayed.

Note:	Still	Keeping	Things	Simple
For	now,	we	are	continuing	to	rely	on	having	our	browser	do	all	of	the	heavy	lifting.
We’ll	look	into	changing	that	up	with	a	“modern”	build	process	later,	so	enjoy	the
simplicity	for	now	:P

Next,	because	React	Router	isn’t	a	part	of	React	itself,	we	need	to	add	a	reference	to	it.	In	our
markup,	find	where	we	have	our	existing	script	references	and	add	the	following	highlighted
line:
Click	here	to	view	code	image

<script	src="https://npmcdn.com/react@15.3.0/dist/react.js"></script>
<script	src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min
.js"></script>
<script	src="https://npmcdn.com/react-router/umd/ReactRouter.min.js"></script>	

By	adding	the	highlighted	line,	we	ensure	the	React	Router	library	is	loaded	alongside	the

core	React,	ReactDOM,	and	Babel	libraries.	At	this	point,	we	are	in	a	good	state	to	start
building	our	app	and	taking	advantage	of	the	sweet	functionality	React	Router	brings	to	the
table.

Displaying	the	Initial	Frame
When	building	a	single-page	app,	there	will	always	be	a	part	of	your	page	that	will	remain
static.	This	static	part,	also	referred	to	as	an	app	frame,	could	just	be	one	invisible	HTML
element	that	acts	as	the	container	for	all	of	your	content,	or	it	could	include	some	additional
visual	things	like	a	header,	footer,	navigation,	etc.	In	our	case,	our	app	frame	will	involve	our
navigation	header	and	an	empty	area	for	content	to	load	in.	To	display	this,	we	are	going	to
create	a	component	that	is	going	to	be	responsible	for	this.
Inside	your	script	tag	just	above	your	ReactDOM.render	call,	go	ahead	and	add	the
following	chunk	of	JSX	and	JavaScript:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										Home
										Stuff
										Contact
								
								<div	className="content">

								</div>
						</div>
)
		}
});

Once	you	have	pasted	this,	take	a	look	at	what	we	have	here.	What	we	have	is	a	component
called	App	that	returns	some	HTML.	To	see	what	this	HTML	looks	like,	modify	your
ReactDOM.render	call	to	reference	this	component	instead	of	displaying	the	word	Hello!
Go	ahead	and	make	the	following	highlighted	change:

ReactDOM.render(
		<div>
				<App/>	
		</div>,
		destination
);

Once	you	have	done	this,	preview	your	app	in	the	browser.	You	should	see	an	unstyled
version	of	an	app	title	and	some	list	items	(see	Figure	13-3).

Figure	13-3	Unstyled	version.

I	know	that	this	doesn’t	look	all	fancy	and	styled,	but	that’s	OK	for	now.	We	will	deal	with	that
later.	Going	a	bit	deeper,	what	we’ve	done	is	just	create	a	component	called	App	and	display	it
via	our	ReactDOM.render	call.	The	important	thing	to	call	out	is	that	there	is	nothing
React	Router	-	specific	here.	ABSOLUTELY	NOTHING!	This	is	straight-up	React	101.	Let’s
fix	that	by	throwing	React	Router	into	the	mix.	Replace	the	contents	of	your
ReactDOM.render	call	with	the	following:
Click	here	to	view	code	image

ReactDOM.render(
		<ReactRouter.Router>																											
				<ReactRouter.Route	path="/"	component={App}>	
																																																	
				</ReactRouter.Route>																									
		</ReactRouter.Router>,																									
		destination
);

Ignore	how	strange	everything	looks	for	a	moment,	and	just	preview	your	app	in	the	browser
after	you’ve	made	this	change.	If	everything	worked	out	properly,	you	will	see	your	App
component	displayed	just	like	you	saw	earlier.	Now,	let’s	figure	out	why	that	is	the	case	by
learning	more	about	what	exactly	is	going	on	here.	This	is	where	we	deviate	a	bit	from	core
React	concepts	and	learn	things	specific	to	React	Router	itself.
First,	what	we	did	is	specify	our	Router	component:
Click	here	to	view	code	image

ReactDOM.render(
		<ReactRouter.Router>			
				<ReactRouter.Route	path="/"	component={App}>

				</ReactRouter.Route>
		</ReactRouter.Router>,	
		destination
);

The	Router	component	is	part	of	the	React	Router	API,	and	its	job	is	to	deal	with	all	of	the
routing-related	logic	our	app	will	need.	Inside	this	component,	we	specify	what	is	known	as
the	routing	configuration.	That	is	a	fancy	term	that	people	use	to	describe	the	mapping
between	URLs	and	the	views.	The	specifics	of	that	are	handled	by	another	component	called
Route:
Click	here	to	view	code	image

ReactDOM.render(
		<ReactRouter.Router>
				<ReactRouter.Route	path="/"	component={App}>	

				</ReactRouter.Route>																									
		</ReactRouter.Router>,
		destination
);

The	Route	component	takes	several	props	that	help	define	what	to	display	at	what	URL.	The
path	prop	specifies	the	URL	we	are	interested	in	matching.	In	this	case,	it	is	the	root,	aka	/.
The	component	prop	allows	you	to	specify	the	name	of	the	component	you	wish	to	display.
For	this	example,	it	is	our	App	component.	Putting	this	all	together,	what	this	Route	says	is	as
follows:	If	the	URL	you	are	on	contains	the	root,	go	ahead	and	display	the	App	component.
Because	this	condition	is	true	when	you	preview	your	app,	you	see	the	result	of	what	happens
when	your	App	component	renders.

Displaying	the	Home	Page
As	you	can	sorta	kinda	see,	the	way	React	Router	provides	you	with	all	of	this	routing
functionality	is	by	using	concepts	in	React	you	are	already	familiar	with—namely
components,	props,	and	JSX.	What	we	have	right	now	for	displaying	our	app’s	frame	is	a
great	example	of	this.	Now,	it’s	time	to	go	even	further.	What	we	want	to	do	next	is	define	the
content	that	we	will	display	as	part	of	our	home	view.
To	do	this,	we	are	going	to	create	a	component	called	Home	that	is	going	to	contain	the
markup	we	want	to	display.	Just	above	where	you	have	your	App	component	defined,	add	the
following:
Click	here	to	view	code	image

var	Home	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<h2>HELLO</h2>
										<p>Cras	facilisis	urna	ornare	ex	volutpat,	et

										convallis	erat	elementum.	Ut	aliquam,	ipsum	vitae
										gravida	suscipit,	metus	dui	bibendum	est,	eget	rhoncus	nibh
										metus	nec	massa.	Maecenas	hendrerit	laoreet	augue
										nec	molestie.	Cum	sociis	natoque	penatibus	et	magnis
										dis	parturient	montes,	nascetur	ridiculus	mus.</p>

										<p>Duis	a	turpis	sed	lacus	dapibus	elementum	sed	eu	lectus.</p>
								</div>
);
				}
});

As	you	can	see,	our	Home	component	doesn’t	do	anything	special.	It	just	returns	a	blob	of
HTML.	Now,	what	we	want	to	do	is	display	the	contents	of	our	Home	component	when	the
page	loads.	This	component	is	the	equivalent	of	our	app’s	“home	page.”	The	way	we	do	this	is
simple.	Inside	our	App	component,	we	have	a	div	with	a	class	value	of	content.	We	are
going	to	load	our	Home	component	inside	there.
The	obvious	solution	might	look	something	like	this:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										Home
										Stuff
										Contact
								
								<div	className="content">
										<Home/>	
								</div>
						</div>
)
		}
});

Notice	that	we	define	our	Home	component	inside	that	content	div.	If	you	preview	your	app,
things	will	even	seem	to	work	as	expected	(see	Figure	13-4).

Figure	13-4	Increased	functionality.

You	see	your	navigation	header,	and	then	you	see	the	contents	of	our	Home	component.	While
this	approach	works,	it	is	actually	the	wrong	thing	to	do.	It	is	wrong	because	it	complicates
our	desire	to	load	other	pieces	of	content	as	the	user	is	navigating	around	our	app.	We’ve
essentially	hard-coded	our	app	to	only	display	the	Home	component.	That’s	a	problem,	but
we’ll	come	back	to	that	in	a	little	bit.

Interim	Cleanup	Time
Before	we	continue	making	progress	on	our	app,	let’s	take	a	short	break	and	make	some
stylistic	improvements	to	what	we	have	so	far.

Adding	the	CSS
Right	now,	our	app	looks	very	plain...and	like	something	straight	out	of	the	1800s.	To	fix	this,
we	are	going	to	rely	on	our	dear	old	friend,	CSS.	Inside	the	style	tag,	go	ahead	and	add	the
following	style	rules:
Click	here	to	view	code	image

body	{
		background-color:	#FFCC00;
		padding:	20px;

		margin:	0;
}
h1,	h2,	p,	ul,	li	{
		font-family:	Helvetica,	Arial,	sans-serif;
}
ul.header	li	{
		display:	inline;
		list-style-type:	none;
		margin:	0;
}
ul.header	{
		background-color:	#111;
		padding:	0;
}
ul.header	li	a	{
		color:	#FFF;
		font-weight:	bold;
		text-decoration:	none;
		padding:	20px;
		display:	inline-block;
}
.content	{
		background-color:	#FFF;
		padding:	20px;
}
.content	h2	{
		padding:	0;
		margin:	0;
}
.content	li	{
		margin-bottom:	10px;
}

Yes,	we	are	using	CSS	in	its	markup	form.	We	aren’t	doing	the	inline	style	object	approach
that	we	saw	in	Chapter	4.	The	reason	has	to	do	with	convenience.	Our	components	aren’t
going	to	be	re-used	outside	of	our	particular	app,	and	we	really	want	to	take	advantage	of	CSS
inheritance	to	minimize	duplicated	markup.	Otherwise,	if	we	didn’t	use	regular	CSS,	we’ll
end	up	with	a	bunch	of	giant	style	objects	defined	for	almost	every	element	in	our	markup.
That	would	make	even	the	most	patient	among	us	annoyed	when	reading	the	code.
Anyway,	once	you	have	added	all	of	this	CSS,	our	app	will	start	to	look	much	better	(see
Figure	13-5).

Figure	13-5	CSS	styling	added.

There	is	still	some	more	work	to	be	done	(for	example,	our	navigation	links	disappeared
behind	the	black	banner),	but	we’ll	fix	all	of	those	up	in	a	little	bit.

Avoiding	the	ReactRouter	Prefix
We	have	just	one	more	cleanup	related	task	before	we	return	to	our	regularly	scheduled
programming.	Have	you	noticed	that	every	single	time	we	call	something	defined	by	the
React	Router	API,	we	prefix	that	something	with	the	word	ReactRouter?
Click	here	to	view	code	image

<ReactRouter.Router>
		<ReactRouter.Route	path="/"	component={App}>

		</ReactRouter.Route>
</ReactRouter.Router>

That	is	a	bit	verbose	to	have	to	repeat	for	every	API	call	we	make,	and	this	is	going	to	be
more	of	a	problem	as	we	dive	further	into	the	React	Router	API	and	use	more	things	from
inside	it.
The	fix	for	this	involves	using	a	new	ES6	trick	where	you	can	manually	specify	which	values

will	automatically	get	prefixed.	Towards	the	top	of	your	script	tag,	add	the	following:
var	{	Router,
						Route,
						IndexRoute,
						IndexLink,
						Link	}	=	ReactRouter;

Once	you’ve	added	this	code,	every	time	you	use	one	of	the	values	defined	inside	the	brackets,
the	prefix	ReactRouter	will	automatically	be	added	for	you	when	your	app	runs.	This	means,
you	can	now	go	back	to	your	ReactDOM.render	method	and	remove	the	ReactRouter
prefix	from	our	Router	and	Route	component	instances:
Click	here	to	view	code	image

ReactDOM.render(
		<Router>
				<Route	path="/"	component={App}>

				</Route>
		</Router>,
		destination
);

If	you	preview	your	app	now,	nothing	really	should	change.	The	end	result	is	identical	to	what
you	had	before.	The	only	difference	is	that	our	markup	is	a	bit	more	compact.
Now,	before	we	move	on,	you	are	probably	wondering	why	the	list	of	values	that	will
automatically	be	prefixed	with	ReactRouter	contains	a	whole	bunch	of	things	beyond	the
Router	and	Route	values	that	we	have	used	in	our	code	so	far.	Think	of	these	additional
values	as	a	preview	of	the	other	parts	of	the	React	Router	API	we	will	be	using	shortly.
Spoiler	alert!	(Probably	too	late	to	mention	that	now,	eh?)

Displaying	the	Home	Page	Correctly
We	ended	a	few	sections	ago	by	saying	that	the	way	we	currently	have	our	home	page
displayed	is	incorrect.	Although	you	get	the	desired	result	when	our	page	loads,	this	approach
doesn’t	really	make	it	easy	for	us	to	load	anything	other	than	the	home	page	when	users
navigate	around.	The	call	to	our	Home	component	is	hard-coded	inside	App.
The	correct	solution	involves	letting	React	Router	handle	which	component	to	call	depending
on	what	your	current	URL	structure	is.	This	involves	nesting	Route	components	inside
Route	components	to	better	define	the	URL-to-view	mapping.	Go	back	to	our
ReactDOM.render	method,	and	make	the	following	highlighted	change:
Click	here	to	view	code	image

ReactDOM.render(
		<Router>
				<Route	path="/"	component={App}>
						<IndexRoute	component={Home}/>	
				</Route>
		</Router>,
		destination
);

Inside	our	root	Route	element,	we	are	defining	another	Route	element	of	type
IndexRoute	(more	on	who	this	is	in	a	second!)	and	setting	its	view	to	be	our	Home
component.	There	is	one	more	change	we	need	to	make.	Inside	our	App	component,	remove
the	call	to	the	Home	component	and	replace	it	with	the	following	highlighted	line:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										Home
										Stuff
										Contact
								
								<div	className="content">
										{this.props.children}	
								</div>
						</div>
)
		}
});

If	you	preview	your	page	now,	you	will	still	see	your	Home	content	displayed.	The	difference
this	time	is	that	we	are	displaying	the	Home	content	properly	in	a	way	that	doesn’t	prevent
other	content	from	being	displayed	instead.	This	is	because	of	two	things:

1.	What	gets	displayed	inside	App	is	controlled	by	the	result	of
this.props.children	instead	of	a	hard-coded	component.

2.	Our	Route	element	inside	ReactDOM.render	contains	an	IndexRoute	element
whose	sole	purpose	for	existing	is	to	declare	which	component	will	be	displayed	when
your	app	initially	loads.

All	of	this	may	seem	even	more	bizarre	than	what	you	expected	a	few	moments	ago,	but
things	will	make	more	sense	as	we	use	these	various	APIs	more	in	the	following	sections.

Creating	the	Navigation	Links
Right	now,	we	just	have	our	frame	and	home	view	setup.	There	isn’t	really	anything	else	for	a
user	to	do	here	outside	of	just	seeing	what	we	have	set	as	the	home	page.	Let’s	fix	that	by
creating	some	navigation	links.	More	specifically,	let’s	linkify	the	navigation	elements	we
already	have:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										Home				
										Stuff			

										Contact	
								
								<div	className="content">
										{this.props.children}
								</div>
						</div>
)
		}
});

If	you	aren’t	sure	why	these	elements	aren’t	visible	when	you	preview	your	page,	that’s
because	they	blended	in	with	the	black	background	once	we	added	the	CSS	in.	No	biggie	there.
We’ll	fix	that	in	a	few,	but	first	let’s	talk	about	how	we	are	going	to	turn	these	elements	into
links.
The	way	you	specify	navigation	links	in	React	Router	isn’t	by	directly	using	the	tried	and
tested	a	tag	and	throwing	in	a	path	via	the	href	attribute.	Instead,	you	specify	your	navigation
link	using	React	Router ’s	Link	components	that	are	similar	to	a	tags	but	offer	a	lot	more
functionality.	To	see	the	Link	component	in	action,	go	ahead	and	modify	our	existing
navigation	elements	to	look	like	the	following	highlighted	lines:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										<Link	to="/">Home</Link>											
										<Link	to="/stuff">Stuff</Link>					
										<Link	to="/contact">Contact</Link>	
								
								<div	className="content">
										{this.props.children}
								</div>
						</div>
)
		}
});

Notice	what	have	done	here.	Our	Link	components	specify	a	prop	called	to.	This	prop
specifies	the	value	of	the	URL	we	will	display	in	the	address	bar.	Indirectly,	it	also	specifies
the	location	we	will	be	telling	React	Router	we	are	virtually	navigating	to.	Our	Home	link
takes	users	to	the	root	(/),	the	Stuff	link	takes	users	to	a	location	called	stuff,	and	the	Contact
link	takes	users	to	a	location	called	contact.
If	you	preview	your	page	and	click	on	the	links	(which	will	now	be	visible	because	the	CSS
for	them	will	have	kicked	in),	you	won’t	see	anything	new	display.	You	will	just	see	your
Home	content	because	that	is	all	that	we	had	specified	earlier.	With	that	said,	you	can	see	the
URLs	updating	in	the	address	bar.	You’ll	see	your	current	page	followed	by	a	#/contact,
#/stuff,	or	#/	depending	on	which	of	the	links	you	clicked.	Oh,	you’ll	also	see	a	random	hash
added	after	the	URL.	That	is	progress!

Adding	the	Stuff	and	Contact	Views
Our	app	is	slowly	taking	its	final	shape...or	it	will	get	really	close	by	the	time	we	are	done
with	this	section!	What	we	are	going	to	do	next	is	define	the	components	for	our	Stuff	and
Contact	views	that	we	linked	to	earlier.	In	your	code	just	below	where	you	have	your	Home
component,	go	ahead	and	add	in	the	following:
Click	here	to	view	code	image

var	Contact	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<h2>GOT	QUESTIONS?</h2>
										<p>The	easiest	thing	to	do	is	post	on
										our	forums.
										</p>
								</div>
);
				}
});

var	Stuff	=	React.createClass({
		render:	function()	{
						return	(
								<div>
										<h2>STUFF</h2>
										<p>Mauris	sem	velit,	vehicula	eget	sodales	vitae,
										rhoncus	eget	sapien:</p>
										
												Nulla	pulvinar	diam
												Facilisis	bibendum
												Vestibulum	vulputate
												Eget	erat
												Id	porttitor
										
								</div>
);
				}
});

What	we	have	just	added	are	the	Stuff	and	Contact	components	that	simply	render	out
HTML.	All	that	remains	is	for	us	to	update	our	routing	configuration	to	include	these	two
components	and	display	them	at	the	appropriate	URL.
In	our	ReactDOM.render	method,	go	ahead	and	add	the	following	two	highlighted	lines:
Click	here	to	view	code	image

ReactDOM.render(
		<Router>
				<Route	path="/"	component={App}>
						<IndexRoute	component={Home}/>
						<Route	path="stuff"	component={Stuff}	/>					
						<Route	path="contact"	component={Contact}	/>	
				</Route>
		</Router>,
		destination
);

All	we	are	doing	here	is	updating	our	routing	logic	to	display	the	Stuff	component	if	the
URL	contains	the	word	stuff	and	to	display	the	Contact	component	if	the	URL	contains	the
word	contact.	If	you	preview	your	page	now,	click	on	the	Stuff	and	Contact	links.	If
everything	worked	out	fine,	you’ll	see	these	views	get	loaded	inside	our	app	frame	when	you
navigate	to	them.

Note:	A	Little	Bit	About	Route	Matching
Our	route	configuration	is	nothing	more	than	a	series	of	rules	that	determine	what	to
do	when	a	URL	matches	the	conditions	we	have	laid	out.	The	fancy	term	for	that	is
route	matching.	The	heuristic	React	Router	uses	to	match	URLs	is	fully	explained	in
the	React	Router	documentation,	but	for	our	case,	we	have	a	simple	nested	route	where
you	can	have	multiple	things	that	can	match	at	the	same	time.	Our	outer	route	matches
if	the	URL	contains	/.	Our	inner	routes	then	match	if	the	URL	happens	to	contain	stuff
or	contact.
What	this	means	is	simple.	For	each	route	that	matches,	the	component	that	you
specified	to	display	will	appear.	When	you	are	navigating	to	a	page	like	/stuff,	the	App
component	will	display	because	the	/	exists	in	the	URL.	The	Stuff	component	then
displays	because	the	path	for	stuff	is	in	the	URL	as	well.	That	is	why	when	we	navigate
to	the	Stuff	or	Contact	pages,	we	see	them	in	addition	to	our	frame.	You	can	have
deeply	nested	routes	as	well.
Take	a	look	at	the	following	configuration:

Click	here	to	view	code	image

ReactDOM.render(
		<Router>
				<Route	path="/"	component={App}>
						<IndexRoute	component={Home}	/>
						<Route	path="stuff"	component={Stuff}>
								<Route	path="blah"	component={MyBlah}/>
						</Route>
						<Route	path="contact"	component={Contact}	/>
				</Route>
		</Router>,
		destination);

In	this	example,	notice	that	our	Route	element	whose	path	is	stuff	now	contains	a
nested	route	for	a	path	containing	blah.	This	means	if	you	happened	to	have	a	URL	that
is	/stuff/blah,	the	MyBlah	component	will	be	displayed	in	addition	to	the	Stuff
component	and	the	App	component	from	the	parent	routes	matching.
By	nesting	routes	and	following	the	route	matching	rules
(https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md),
you	can	display	custom	views	depending	on	a	variety	of	URL	arrangements	you	may
expose	in	your	app	for	your	users	to	navigate	to.

https://github.com/reactjs/react-router/blob/master/docs/guides/RouteMatching.md

Creating	Active	Links
The	last	thing	we	are	going	to	tackle	is	something	that	greatly	increases	the	usability	of	our
app.	Depending	on	which	page	you	are	currently	displaying,	we	are	going	to	highlight	that
link	with	a	blue	background.	For	example,	Figure	13-6	is	what	our	app	will	look	like	when	the
Stuff	content	is	being	displayed.

Figure	13-6	The	Stuff	content.

The	way	you	accomplish	this	in	React	Router	is	by	setting	a	prop	called	activeClassName
on	your	Link	instances	with	the	name	of	the	CSS	class	that	will	get	set	when	that	link	is
currently	active.	To	make	this	happen,	go	back	to	your	App	component	and	make	the
highlighted	changes:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>

								<ul	className="header">
										<Link	to="/"	activeClassName="active">Home</Link>											
										<Link	to="/stuff"	activeClassName="active">Stuff</Link>					
										<Link	to="/contact"	activeClassName="active">Contact</Link>	
								
								<div	className="content">
										{this.props.children}
								</div>
						</div>
)
		}
});

We	specify	the	activeClassName	prop	and	set	it	to	a	value	of	active.	This	ensures	that
whenever	a	link	is	clicked	(and	its	path	becomes	active),	the	link	element’s	class	attribute	at
runtime	gets	set	to	a	value	of	active.	To	ensure	our	active	links	are	styled	differently,	go
ahead	and	add	the	following	CSS:

.active	{
		background-color:	#0099FF;
}

If	you	preview	your	app	now,	click	on	any	of	the	links.	Notice	that	the	active	link	(and	the
Home	link)	displays	with	a	blue	background.	We	aren’t	done	just	yet,	though.	Our	Home	link
is	always	highlighted.	It	should	only	be	highlighted	when	we	load	our	Home	page	for	the	first
time	or	explicitly	navigate	to	the	Home	link	itself.	To	fix	this,	we	need	to	change	how	we	link
to	our	Home	content.	Instead	of	specifying	our	Home	content	with	a	Link	element,	we	are
going	to	replace	it	with	an	IndexLink	element	instead.
Go	ahead	and	make	this	change:
Click	here	to	view	code	image

var	App	=	React.createClass({
		render:	function()	{
				return	(
						<div>
								<h1>Simple	SPA</h1>
								<ul	className="header">
										<IndexLink	to="/"	activeClassName="active">Home</IndexLink>	
										<Link	to="/stuff"	activeClassName="active">Stuff</Link>
										<Link	to="/contact"	activeClassName="active">Contact</Link>
								
								<div	className="content">
										{this.props.children}
								</div>
						</div>
)
		}
});

Once	your	Home	navigation	element	is	represented	by	an	IndexLink	instead	of	a	Link,
preview	your	app	again.	This	time,	when	the	app	loads,	you’ll	notice	that	your	Home	link	has
the	cool	blue	background	by	default.	When	you	navigate	to	the	Stuff	or	Contact	pages,	the
Home	link	no	longer	has	the	highlight	applied.	And	with	this,	your	app	is	mostly	good	to	go!

Conclusion
By	now,	we’ve	covered	a	good	chunk	of	the	cool	functionality	React	Router	has	for	helping
you	build	your	single-page	apps.	This	doesn’t	mean	that	there	aren’t	more	interesting	things
for	you	to	take	advantage	of.	Our	app	was	pretty	simple	with	very	modest	demands	on	what
routing	functionality	we	needed	to	implement.	There	is	a	whole	lot	more	that	React	Router
provides,	so	if	you	are	building	a	more	complex	single-page	app	than	what	we’ve	looked	at
so	far,	you	should	totally	spend	an	afternoon	taking	a	look	the	full	React	Router
documentation	(https://github.com/reactjs/react-router/)	and	examples.

https://github.com/reactjs/react-router/

14.	Building	a	Todo	List	App

If	creating	the	Hello,	World!	example	was	a	celebration	of	you	getting	your	feet	wet	with
React,	creating	the	quintessential	Todo	List	app	is	a	celebration	of	you	approaching	React
mastery!	In	this	chapter,	we	tie	together	a	lot	of	the	concepts	and	techniques	you’ve	learned	to
create	something	that	works	as	follows:	https://www.kirupa.com/react/examples/todo.htm
You	start	off	with	a	blank	app	that	allows	you	to	enter	tasks	for	later	(see	Figure	14-1).

Figure	14-1	A	blank	app	with	task	entry.

The	way	this	Todo	List	app	works	is	pretty	simple.	Type	in	a	task	or	whatever	you	want	into
the	text	field	and	press	Add	(or	hit	Enter/Return).	Once	you’ve	submitted	your	task,	you	will
see	it	appear	as	an	entry.	You	can	keep	adding	tasks	to	add	additional	entries	and	have	them	all
show	up	(see	Figure	14-2).

https://www.kirupa.com/react/examples/todo.htm

Figure	14-2	You	can	add	tasks	and	have	them	show	up.

Pretty	simple,	right?	In	the	following	sections,	we	build	this	app	from	scratch	and	learn	(in
awesomely	painstaking	detail)	how	things	work	along	the	way.

Getting	Started
By	now,	you	know	the	drill.	We	need	a	starting	point,	so	go	ahead	and	create	a	new	HTML
document.	Inside	it,	add	the	following	content	into	it:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
		<script	src="https://npmcdn.com/react@15.3.0/dist/react.js"></script>
		<script	src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
		<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.23/browser.min.
js"></script>

		<style>

		</style>
</head>

<body>

		<div	id="container">

		</div>

		<script	type="text/babel">
				var	destination	=	document.querySelector("#container");

				ReactDOM.render(
						<div>
								Hello!
						</div>,
						destination
);
		</script>
</body>

</html>

If	you	preview	all	of	this	in	the	browser,	you	will	see	the	word	Hello!	appear.	If	you	see	that,
then	you	are	in	good	shape.	It’s	time	to	start	building	our	Todo	List	app!

Creating	the	UI
Right	now,	our	app	doesn’t	do	a	whole	lot.	We’ll	fix	that	by	first	getting	the	various	UI
elements	up	and	running.	That	isn’t	very	complicated	for	our	app!	The	first	thing	we	are
going	to	do	to	is	get	our	input	field	and	button	to	appear.	This	is	all	done	by	using	the	div,
form,	input,	and	button	elements!
All	of	that	will	live	inside	a	component	we	are	going	to	call	TodoList.	Go	ahead	and	add
the	following	code	above	where	you	have	your	ReactDOM.render	method:
Click	here	to	view	code	image

var	TodoList	=	React.createClass({
		render:	function()	{
						return	(
								<div	className="todoListMain">
										<div	className="header">
												<form>
														<input	placeholder="enter	task">
														</input>
														<button	type="submit">add</button>
												</form>
										</div>
								</div>
);
				}
});

Inside	your	ReactDOM.render	method,	we	need	to	call	our	newly	added	TodoList
component	to	render	it.	Go	ahead	and	replace	your	existing	JSX	with	the	following:

ReactDOM.render(
		<div>
				<TodoList/>	
		</div>,
		destination

);

Save	your	changes	and	preview	what	you	have	right	now	in	your	browser.	You’ll	see
something	that	looks	like	Figure	14-3.

Figure	14-3	What	you	should	see	in	the	browser.

If	you	are	surprised	at	what	you	see,	take	a	few	moments	to	look	at	the	JSX	we	defined	inside
the	TodoList	component.	There	shouldn’t	be	anything	surprising	there.	We	just	defined	a
handful	of	HTML	elements	that	look	really	REALLY	boring.	Speaking	of	that,	let’s	make	our
HTML	elements	look	less	boring	by	introducing	them	to	so	some	CSS!
Inside	your	style	block,	add	the	following:
Click	here	to	view	code	image

body	{
		padding:	50px;
		background-color:	#66CCFF;
		font-family:	sans-serif;
}
.todoListMain	.header	input	{
		padding:	10px;
		font-size:	16px;
		border:	2px	solid	#FFF;
}
.todoListMain	.header	button	{
		padding:	10px;
		font-size:	16px;
		margin:	10px;
		background-color:	#0066FF;
		color:	#FFF;

		border:	2px	solid	#0066FF;
}

.todoListMain	.header	button:hover	{
		background-color:	#003399;
		border:	2px	solid	#003399;
		cursor:	pointer;
}

Once	you’ve	added	all	of	this,	preview	your	app	now.	Because	our	HTML	elements	had	the
appropriate	className	values	set	on	them,	our	CSS	will	kick	in	and	our	example	will	now
look	like	Figure	14-4.

Figure	14-4	The	improved	example.

At	this	point,	our	app	looks	pretty	good.	It	doesn’t	do	much,	but	at	least	we	are	making
progress.	In	the	next	section,	we	will	start	to	make	our	app	actually	do	things.

Creating	the	Functionality
The	actual	implementation	of	our	Todo	List	app	functionality	is	not	as	crazy	as	you	might
think.	Let’s	take	a	high-level	view	of	how	it	works.	The	most	important	piece	of	data	is	the	text
you	enter	into	the	text	field.	Each	time	you	enter	some	text	and	submit	the	form,	that	text	gets
visually	displayed	in	a	list	below	any	previous	pieces	of	text	you	submitted.	So	far,	this	makes
sense,	right?
All	of	this	is	done	by	simply	taking	advantage	of	React’s	state	functionality.	Inside	our	state

object,	we	have	an	array	that	is	responsible	for	storing	everything	you	enter	(see	Figure	14-
5).

Figure	14-5	Our	tasks	are	stored	in	an	array.	I	know.	Not	very	exciting	:-(

Each	time	this	array	of	items	gets	updated	with	new	text	that	you	submit,	we	update	what	you
see	with	the	newly	submitted	text.	The	rest	of	the	work	is	just	around	setting	up	events	and
event	handlers	to	ensure	we	can	submit	the	form	and	know	exactly	what	text	to	add	to	our
array	of	items.	In	the	following	sections,	we	are	going	to	turn	all	of	this	English	we’ve	seen
here	into	React-flavored	JavaScript	and	JSX!

Initializing	our	State	Object
The	first	thing	we	are	going	to	do	is	initialize	our	state	object	with	the	array	that	will	be
responsible	for	storing	all	of	the	submitted	text.	Inside	our	TodoList	component,	add	the
following	highlighted	lines:
Click	here	to	view	code	image

var	TodoList	=	React.createClass({
		getInitialState:	function()	{	

				return	{																				
						items:	[]																	
				};																										
		},																												
		render:	function()	{
						return	(
								<div	className="todoListMain">
										<div	className="header">
												<form>
														<input	placeholder="enter	task">
														</input>
														<button	type="submit">add</button>
												</form>
										</div>
								</div>
);
				}
});

What	we	are	doing	here	is	specifying	the	getInitialState	method	that	gets	called	before
our	component	renders.	Inside	that	method,	we	create	an	empty	array	called	items	that	we
can	then	access	via	this.state.items	from	anywhere	inside	this	component.

Handling	the	Form	Submit
We	add	new	items	to	our	todo	list	when	you	submit	the	form	either	by	pressing	the	Add	button
or	hitting	Enter/Return	on	your	keyboard.	This	behavior	is	mostly	builtin	to	HTML	and	our
browsers	know	all	about	how	to	deal	with	this.	We	don’t	have	to	write	any	special	code	for
dealing	with	the	Enter/Return	key	or	listening	for	a	press	on	the	Add	button.	The	only	thing
we	need	to	worry	about	is	dealing	with	what	happens	when	the	form	actually	gets	submitted.
To	do	that,	we	listen	to	the	onSubmit	event	on	our	form	element.	This	event	is	fired	every
time	the	form	is	submitted,	and	that	includes	hitting	the	Enter/Return	key	or	fiddling	with	any
element	that	has	a	type	attribute	of	submit	on	it.	When	the	form	is	submitted	and	that	event
gets	overheard,	we	will	need	to	call	an	event	handler.	Let’s	give	that	event	handler	a	name	of
addItem.
Putting	all	of	this	together,	inside	your	TodoList	component’s	render	function,	make	the
following	highlighted	change:
Click	here	to	view	code	image

render:	function()	{
		return	(
				<div	className="todoListMain">
						<div	className="header">
								<form	onSubmit={this.addItem}>	
										<input	placeholder="enter	task">
										</input>
										<button	type="submit">add</button>
								</form>
						</div>
				</div>
);
}

As	we	had	hoped	to	do,	we	just	linked	our	form	element’s	onSubmit	event	to	the	addItem
event	handler.	This	event	handler	doesn’t	exist,	but	we	are	going	to	fix	that	by	adding	the
following	highlighted	lines:
Click	here	to	view	code	image

var	TodoList	=	React.createClass({
		getInitialState:	function()	{
				return	{
						items:	[]
				};
		},
		addItem:	function(e)	{	
																									
		},																					
		render:	function()	{
				return	(
						<div	className="todoListMain">
								<div	className="header">
										<form	onSubmit={this.addItem}>
												<input	placeholder="enter	task">
												</input>
												<button	type="submit">add</button>
										</form>
								</div>
						</div>
);
		}
});

Our	addItem	event	handler/function	doesn’t	do	a	whole	lot	right	now,	but	the	important
thing	is	that	it	exists!	Next,	we’ll	fix	the	part	where	it	doesn’t	do	a	whole	lot.

Populating	Our	State
Right	now,	our	TodoList	component’s	state	object	contains	the	items	array.	What	we
need	to	do	is	populate	this	array	with	the	text	that	you	enter	into	the	input	field.	That	means	we
need	a	way	to	access	our	input	element	from	within	React.	The	way	we	are	going	to	do	that
is	by	setting	a	ref	attribute	(as	you	saw	in	Chapter	12)	on	our	input	element	and	storing	the
reference	to	the	HTML	element	that	gets	generated.
Inside	our	TodoList	component’s	render	method,	add	the	following	line:
Click	here	to	view	code	image

render:	function()	{
				return	(
						<div	className="todoListMain">
								<div	className="header">
								<form	onSubmit={this.addItem}>
												<input	ref={(a)	=>	this._inputElement	=	a}	
																			placeholder="enter	task">											
												</input>
												<button	type="submit">add</button>
										</form>
								</div>
						</div>

);
		}

When	this	highlighted	code	runs,	which	is	immediately	after	this	component	mounts,	the
_inputElement	property	will	store	a	reference	to	the	generated	input	element.	Now	that
we	have	done	this,	we	can	treat	this	element	like	we	would	any	DOM	element	we	might	have
found	using	querySelector	or	equivalent	function	in	the	non-React	world.	What	we	are
going	to	do	next	is	populate	our	items	array!
Go	ahead	and	modify	the	addItem	method	by	adding	the	following	lines:
Click	here	to	view	code	image

addItem:	function(e)	{
		var	itemArray	=	this.state.items;			
																																						
		itemArray.push(
				{																																	
						text:	this._inputElement.value,	
						key:	Date.now()																	
				}																																	
);																																		
																																						
		this.setState({																					
				items:	itemArray																		
		});																																	
																																						
		e.preventDefault();																	
}

This	looks	like	a	lot	of	code	you	just	added,	but	all	we	are	doing	here	is	putting	into
JavaScript	our	earlier	stated	goal	of	populating	our	items	array	with	text	from	our	input
field.	Let’s	walk	through	this	code	in	greater	detail.
The	first	thing	we	do	is	create	an	array	called	itemArray	that	stores	a	reference	to	our
state	object’s	items	property:
Click	here	to	view	code	image

var	itemArray	=	this.state.items;

Once	we	have	this	array,	we	add	to	it	our	recently	submitted	text	entry	from	our	input
element:
Click	here	to	view	code	image

itemArray.push(
		{
				text:	this._inputElement.value,
				key:	Date.now()
		}
);

Notice	that	we	aren’t	just	adding	the	text	entry	from	our	input	element.	We	are	instead
adding	an	object	made	up	of	the	text	and	key	properties.	The	text	property	stores	our
input	element’s	text	value.	The	key	property	stores	the	current	time.	This	sounds	like	a
bizarre	thing	to	do,	but	as	you	recall	from	Chapter	9,	the	goal	is	to	have	this	key	value	be

unique	for	every	entry	that	gets	submitted.	This	is	important	because	(spoiler	alert!)	we	will
be	using	the	data	in	this	array	to	eventually	generate	some	UI	elements.	This	key	value	is	what
React	will	use	to	uniquely	identify	each	generated	UI	element,	so	by	generating	the	key	using
Date.now(),	we	ensure	a	certain	level	of	uniqueness.	Because	this	is	an	important	(yet	easy
to	overlook)	detail,	we	will	revisit	all	of	this	again	in	a	few	moments.
Anyway,	getting	back	on	track,	once	we	are	done	with	the	itemArray,	all	that	remains	is	to
set	our	state	object’s	items	property	to	it:

this.setState({
		items:	itemArray
});

Almost	done	here!	The	last	thing	we	do	in	this	method	is	the	following:
e.preventDefault();

The	preventDefault	method	ensures	we	override	the	default	onSubmit	event.	The	reason
we	do	this	is	a	bit	obscure,	but	it	is	to	ensure	the	following:	all	we	want	to	do	when	we	submit
the	form	is	call	the	addItem	method.	If	we	didn’t	stop	the	default	behavior,	our	app	will
correctly	call	addItem	as	desired	when	we	submit	the	form.	It	will	also	trigger	our
browser’s	default	POST	behavior—which	we	definitely	don’t	want.	By	stopping	the
onSubmit	event	from	performing	the	default	behavior,	we	get	our	desired	behavior	of	calling
the	addItem	method	without	any	of	the	unwanted	side	effects	like	an	unnecessary	POST
action	that	might	refresh	your	page.

Displaying	the	Tasks
We	are	almost	done	here!	The	last-ish	thing	we	are	going	to	do	is	visualize	the	tasks	that
currently	live	inside	our	state	object’s	items	array.	This	is	going	to	involve	creating	a
whole	new	component	called	TodoItems,	passing	around	some	props,	using	the	map
function,	and	doing	other	awesome	andrenaline-inducing	things	(Figure	14-6).

Figure	14-6	Adrenaline!

Anyway,	the	first	thing	we	are	going	to	do	is	define	our	TodoItems	component.	In	your
code,	just	above	where	you	have	the	TodoList	component	defined,	go	ahead	and	add	the
following	in:
Click	here	to	view	code	image

var	TodoItems	=	React.createClass({
		render:	function()	{

		}
});

There	is	nothing	going	on	right	now,	but	that’s	OK.
Next,	what	we	are	going	to	do	is	call	this	component	from	inside	the	TodoList	component’s
render	method.	Not	only	that,	we	are	going	to	specify	a	prop	and	pass	in	our	TodoList
component’s	state	object	that	contains	our	items	array.	Doing	all	of	this	is	really	simple,	so
go	ahead	and	add	the	following	highlighted	line	to	your	TodoList	component’s	render
method:
Click	here	to	view	code	image

render:	function()	{
		return	(
				<div	className="todoListMain">
						<div	className="header">
								<form	onSubmit={this.addItem}>
										<input	ref={(a)	=>	this._inputElement	=	a}
																	placeholder="enter	task">
										</input>
										<button	type="submit">add</button>

								</form>
						</div>
						<TodoItems	entries={this.state.items}/>	
				</div>
);
}

All	we	did	here	is	instantiate	our	TodoItems	component	and	pass	in	our	items	state
property	to	a	prop	called	entries.	At	this	point,	if	you	run	our	app	in	the	browser,	nothing
visible	will	happen.	Our	TodoItems	component	is	ready	to	render,	and	it	has	access	to	all	of
the	tasks	that	were	submitted.	The	only	problem	is	that	it	doesn’t	really	do	anything	with	all	of
that,	but	we	are	going	to	fix	that	up	next.
Getting	back	to	our	TodoItems	component,	the	first	thing	we	are	going	to	do	is	create	a
new	variable	to	store	our	passed	in	array	of	tasks.	To	do	that,	add	the	following	highlighted
line:
Click	here	to	view	code	image

var	TodoItems	=	React.createClass({
		render:	function()	{
				var	todoEntries	=	this.props.entries;	

		}
});

We	just	added	a	variable	called	todoEntries,	and	it	stores	the	value	from	the	entries
prop	that	we	passed	in	based	on	the	TodoList	component’s	this.state.items	value.
Sweet!	Now,	our	todoEntries	variable	stores	an	array	containing	a	bunch	of	objects	that
each	store	a	task	and	a	key.	All	that	remains	is	to	create	the	HTML	elements	that	will	be	used
to	display	our	data.
In	the	first	step	towards	accomplishing	that,	add	the	following	highlighted	lines	of	code	to
create	the	li	elements:
Click	here	to	view	code	image

var	TodoItems	=	React.createClass({
		render:	function()	{
				var	todoEntries	=	this.props.entries;									
																																																		
				function	createTasks(item)	{																		
						return	<li	key={item.key}>{item.text}		
				}																																													
																																																		
				var	listItems	=	todoEntries.map(createTasks);	
		}
});

We	are	using	the	map	function	to	iterate	every	item	inside	todoEntries	and	call	the
createTasks	function	to	create	a	list	element	for	each	entry:
Click	here	to	view	code	image

function	createTasks(item)	{
		return	<li	key={item.key}>{item.text}
}

To	reiterate	a	point	we	made	earlier,	since	these	list	elements	are	dynamically	created,	we
need	to	help	React	keep	track	of	them	by	specifying	the	key	attribute	and	giving	each	a
unique	value.	We	already	solved	this	part	of	the	problem	when	we	stored	our	tasks	initially,	as
you	recall:
Click	here	to	view	code	image

itemArray.push(
		{
				text:	this._inputElement.value,
				key:	Date.now()
		}
);

Because	of	our	earlier	planning,	we	take	the	easy	street	right	now	by	assigning	our	key
attribute	the	item.key	value	that	each	item	in	our	todoEntries	array	already	contains.
Our	list	element’s	visible	content	is	simply	the	text	value	stored	by	item.text.	There	is	no
extra	explanation	needed	for	how	we	use	that	one.	Quite	refreshing,	isn’t	it?
Putting	all	of	this	together,	this	collection	of	list	elements	is	fully	processed	and	stored	by	our
listItems	variable.	All	that	remains	at	this	point	is	to	go	from	list	elements	inside	an	array
to	list	elements	rendered	on	the	screen.	To	accomplish	that,	go	ahead	and	add	the	following
highlighted	lines:
Click	here	to	view	code	image

var	TodoItems	=	React.createClass({
		render:	function()	{
				var	todoEntries	=	this.props.entries;

				function	createTasks(item)	{
						return	<li	key={item.key}>{item.text}
				}

				var	listItems	=	todoEntries.map(createTasks);

				return	(
						<ul	className="theList">	
								{listItems}												
																										
);																									
		}
});

What	we	are	doing	is	returning	an	ul	element	whose	contents	are	the	list	elements	stored	by
listItems.	After	you’ve	added	this,	save	your	document	and	preview	your	app.	You’ll	see
something	that	looks	like	Figure	14-7	after	entering	a	few	tasks.

Figure	14-7	List	element	for	the	list	items.

Our	app	works!	Every	task	you	submit	shows	up	in	its	own	list	item.	Take	a	few	deep	breaths
and	relax	for	a	few	moments.	This	is	awesome	progress,	and	all	we	have	left	are	a	few	little
things	here	and	there	that	need	to	be	wrapped	up.

Adding	the	Finishing	Touches
We	are	almost	done	here!	First,	what	we	have	right	now	doesn’t	look	exactly	like	the	example
we	started	out	with.	Our	list	of	tasks	looks	a	bit	plain,	but	that	can	be	fixed	with	some	CSS
magic.	Inside	your	style	block,	add	the	following	style	rules	just	below	where	your	existing
style	rules	live:
Click	here	to	view	code	image

.todoListMain	.theList	{
		list-style:	none;
		padding-left:	0;
		width:	255px;
}

.todoListMain	.theList	li	{
		color:	#333;
		background-color:	rgba(255,255,255,.5);
		padding:	15px;
		margin-bottom:	15px;
		border-radius:	5px;
}

If	you	preview	your	app	now,	you’ll	see	that	the	entered	tasks	look	exactly	as	you	expected
them	to:

Next,	have	you	noticed	that	whatever	you	enter	into	the	input	field	doesn’t	go	away	after	you
submit	the	form?	You	have	to	manually	clear	out	the	field	each	time	after	submitting	a
task...like	an	animal!	That	is	annoying,	but	the	fix	for	it	is	quite	simple.	Inside	our	TodoList
component’s	addItem	method,	add	the	following	highlighted	line:
Click	here	to	view	code	image

addItem:	function(e)	{
		var	itemArray	=	this.state.items;

		itemArray.push(
				{
						text:	this._inputElement.value,
						key:	Date.now()
				}
);

		this.setState({
				items:	itemArray
		});

		this._inputElement.value	=	"";	

		e.preventDefault();
}

All	we	are	doing	here	is	clearing	our	input	element’s	value	property	when	the	form	is
submitted	and	the	addItem	method	gets	called.	This	ensures	that	we	no	longer	have	to
manually	clear	out	our	input	field	between	each	task	we	would	like	to	submit.	Simple	bimple!

Conclusion
Our	Todo	app	is	pretty	simple	in	what	it	does,	but	by	building	it	from	scratch,	we	covered
almost	every	little	interesting	detail	React	brings	to	the	table.	More	importantly,	we	created	an
example	that	shows	how	the	various	concepts	we	learned	individually	play	together.	That	is
actually	the	important	detail.	Now,	here	is	a	quick	question	for	you:	does	everything	we’ve
done	in	this	chapter	make	sense?
If	everything	we’ve	done	in	this	chapter	makes	sense	then	you	are	in	good	shape	to	tell	your
friends	and	family	that	you	are	close	to	mastering	React!	If	there	are	areas	that	you	find
confusing,	I	suggest	you	go	back	and	re-read	the	chapters	which	address	your	confusion.

15.	Setting	Up	Your	React	Development	Environment

The	last	major	React-related	topic	we	look	at	is	less	about	React	and	more	about	setting	up
your	development	environment	to	build	a	React	app.	Up	until	now,	we’ve	been	building	our
React	apps	by	including	a	few	script	files:
Click	here	to	view	code	image

<script	src="https://npmcdn.com/react@15.3.0/dist/react.js"></script>
<script	src="https://npmcdn.com/react-dom@15.3.0/dist/react-dom.js"></script>
<script	src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23/browser.min.
js"></script>

These	script	files	not	only	loaded	the	React	libraries,	but	they	also	loaded	Babel	to	help	our
browser	do	what	needs	to	be	done	when	it	encountered	bizarre	things	like	JSX	(see	Figure	15-
1).

Figure	15-1	Our	React	approach.

To	review	what	we	mentioned	earlier	when	talking	about	this	approach,	the	downside	is
performance.	As	part	of	your	browser	doing	all	of	the	page-loading	related	things	it	normally
does,	it	is	also	responsible	for	turning	your	JSX	into	actual	JavaScript.	That	JSX	to	JavaScript

conversion	is	a	time-consuming	process	that	is	fine	during	development.	It	isn’t	fine	if	every
user	of	your	app	has	to	pay	that	performance	penalty.
The	solution	is	to	set	up	your	development	environment	where	your	JSX	to	JS	conversion	is
handled	prior	to	the	user	loading	the	page	(see	Figure	15-2).

Figure	15-2	JSX	to	JavaScript	conversion	as	part	of	your	app	building	process.

With	this	solution,	your	browser	is	loading	your	app	and	dealing	with	an	already	converted
(and	potentially	optimized)	JavaScript	file.	Good	stuff,	right?	Now,	the	only	reason	why	we
delayed	talking	about	all	of	this	until	now	is	for	simplicity.	Learning	React	is	difficult	enough.

Adding	the	complexity	of	build	tools	and	setting	up	your	environment	as	part	of	learning
React	is	just	not	cool.	Now	that	you	have	a	solid	grasp	of	everything	React	does,	it’s	time	to
change	that	with	this	chapter.
In	the	following	sections,	we	look	at	one	way	to	set	up	your	development	environment	using	a
combination	of	Node,	Babel,	and	webpack.	If	all	of	this	sounds	bizarre	to	you,	don’t	worry.
You’ll	be	on	a	first	name	basis	with	all	of	these	tools	by	the	end	of	it.

Note:	Things	May	Change
Build	tools	and	their	dependencies	change	all	the	time.	That	is	great	news	for	us,	but	it
makes	publishing	information	about	it	a	challenge!	This	chapter	contains	the	latest
information	based	on	current	(aka	when	this	was	written!)	best-practices,	but	this
information	may	change.	If	you	find	that	some	tools	and	instructions	aren’t	working
they	way	they	are	described,	please	check	out	the	(more	frequently	updated)	online
version	of	this	article	at	the	following	location:
https://www.kirupa.com/react/setting_up_react_environment.htm

Meet	the	Tools
Ok,	it	is	time	to	move	further	away	from	generalities	(and	sweet	diagrams).	It	is	time	to	get
serious—er.	It	is	time	to	meet	the	tools	that	we	are	going	to	be	relying	on	to	properly	set	up
our	development	environment.

Node.js
For	the	longest	time,	JavaScript	was	something	you	wrote	to	primarily	have	things	happen	in
your	browser.	Node.js	changes	all	of	this.	Node.js	allows	you	to	use	JavaScript	to	create
applications	that	run	on	the	server	and	have	access	to	APIs	and	system	resources	that	your
browser	couldn’t	even	dream	of.	It	is	basically	a	full-fledged	application	development
runtime	whose	apps	(instead	of	being	written	in	Java,	C#,	C++,	etc.)	are	built	and	run	entirely
on	JavaScript.
For	our	purposes,	we	are	going	to	be	relying	on	Node.js	(well,	the	Node	Package	Manager,
aka	NPM)	to	manage	dependencies	and	tie	together	the	steps	needed	to	go	from	JSX	to
JavaScript.	Think	of	Node.js	as	the	glue	that	makes	our	development	environment	work.

Babel
This	one	should	be	familiar	to	us!	Simply	put,	Babel	is	a	JavaScript	transpiler.	It	turns	your
JavaScript	into...um...JavaScript.	That	sounds	really	bizarre,	so	let	me	clarify.	If	you	are	using
the	latest	JavaScript	features,	older	browsers	might	not	know	what	to	do	when	they	encounter
a	new	function	or	property.	If	you	are	writing	JSX,	well...no	browser	will	know	what	to	do
with	that!
What	Babel	does	is	take	your	new-fangled	JS	or	JSX	and	turn	into	a	form	of	JS	that	most
browsers	can	understand.	We’ve	been	using	its	in-browser	version	to	transform	our	JSX	into
JavaScript	all	this	time.	In	a	few	moments,	you’ll	see	how	we	can	integrate	Babel	as	part	of
our	build	process	to	generate	an	actual	browser-readable	JS	file	from	our	JSX.

https://www.kirupa.com/react/setting_up_react_environment.htm

webpack
The	last	tool	we	will	be	relying	on	is	webpack.	It	is	known	as	a	module	bundler.	Putting	the
fancy	title	aside,	a	lot	of	the	frameworks	and	libraries	your	app	includes	have	a	lot	of
dependencies	where	different	parts	of	the	functionality	you	rely	on	might	only	be	a	subset	of
larger	components.
You	probably	don’t	want	all	of	that	unnecessary	code,	and	tools	like	webpack	play	an
important	role	to	enable	you	to	only	include	the	relevant	code	needed	to	have	your	app	work.
They	often	bundle	all	of	the	relevant	code	(even	if	it	comes	from	various	sources)	into	a
single	file	(see	Figure	15-3).

Figure	15-3	Files	packed	into	a	single	file.

We’ll	be	relying	on	webpack	to	bundle	up	the	relevant	parts	of	the	React	library,	our	JSX
files,	and	any	additional	JavaScript	into	a	single	file.	This	also	extends	to	CSS	(LESS/SASS)
files	and	other	types	of	assets	your	app	uses,	but	we’ll	focus	on	just	the	JavaScript	side	here.

Your	Code	Editor
No	conversation	about	your	development	environment	can	happen	without	talking	about	the
most	important	tool	in	all	of	this,	your	code	editor	(see	Figure	15-4).

Figure	15-4	Your	code	editor.

It	doesn’t	matter	whether	you	use	Sublime,	Atom,	VisualStudio	Code,	TextMate,	Coda,	or	any
other	tool.	You	will	spend	some	non-trivial	amount	of	time	in	your	code	editor	not	just	to
build	your	React	app	but	to	also	configure	the	various	configuration	files	that	Node,	Babel,
and	WebPack	need.

It	Is	Environment	Setup	Time!
At	this	point,	you	should	have	a	vague	idea	of	what	we	are	trying	to	do...the	dream	we	are
trying	to	achieve!	We	even	looked	at	the	various	tools	that	will	play	a	role	in	making	this
dream	a	reality.	Now,	it	is	time	for	the	hard	work	to	actually	make	everything	happen.

Setting	up	our	Initial	Project	Structure
The	first	thing	we	are	going	to	do	is	set	up	our	project.	Go	to	your	Desktop	and	create	a	new
folder	called	MyTotallyAwesomeApp.	Inside	this	folder,	create	two	more	folders	called	dev
and	output.	Your	folder	arrangement	will	look	a	little	bit	like	Figure	15-5.

Figure	15-5	Our	current	folder	arrangement.

What	we	are	doing	here	is	pretty	simple.	Inside	our	dev	folder,	we	will	place	all	of	our
unoptimized	and	unconverted	JSX,	JavaScript,	and	other	script-related	content.	In	other
words,	this	is	where	the	code	you	are	writing	and	actively	working	on	will	live.	Inside	our
output	folder,	we	will	place	the	result	of	running	our	various	build	tools	on	the	script	files
found	inside	the	dev	folder.	This	is	where	Babel	will	convert	all	of	our	JSX	files	into	JS.	This
is	also	where	webpack	will	resolve	any	dependencies	between	our	script	files,	and	place	all	of
the	important	script	content	into	a	single	JavaScript	file.
The	next	thing	we	are	going	to	do	is	create	the	HTML	file	that	we	will	point	our	browser	to.
Inside	the	MyTotallyAwesomeApp	folder,	use	your	code	editor	to	create	a	new	HTML	file
called	index.html	with	the	following	contents:
Click	here	to	view	code	image

<!DOCTYPE	html>

<html>

<head>
		<title>React!	React!	React!</title>
</head>

<body>
		<div	id="container"></div>

		<script	src="output/myCode.js"></script>
</body>

</html>

Be	sure	to	save	your	file	after	adding	this	content	in.	Now,	speaking	of	the	content,	our
markup	is	pretty	simple.	Our	document’s	body	is	just	an	empty	div	element	with	an	id	value
of	container	and	a	script	tag	that	points	to	the	final	JavaScript	file	(myCode.js)	that	will
get	generated	inside	the	output	folder:
Click	here	to	view	code	image

<script	src="output/myCode.js"></script>

Besides	those	two	things,	our	HTML	file	doesn’t	have	a	whole	lot	going	for	it.	If	we	had	to
visualize	the	relationship	of	everything	right	now,	it	looks	a	bit	like	Figure	15-6.

Figure	15-6	What	your	current	project	structure	looks	like.

I’ve	dotted	the	line	to	the	myCode.js	file	in	our	output	folder	because	that	file	doesn’t	exist
there	yet.	We	are	pointing	to	something	in	our	HTML	that	currently	is	non-existent,	but	that
won’t	stay	that	way	for	long.

Installing	and	Initializing	Node.js
Our	next	step	is	to	install	Node.js.	Visit	the	Node.js	site	(https://nodejs.org/)	to	install	the
version	that	is	appropriate	for	your	operating	system	(see	Figure	15-7).

https://nodejs.org/

Figure	15-7	The	download	buttons	on	the	Node.js	site.

I	tend	to	always	install	the	latest	version,	so	you	should	go	with	that	as	well.	The	download
and	installation	procedure	isn’t	particularly	exciting.	Once	you	have	Node.js	installed,	test	to
make	sure	it	is	truly	installed	by	launching	the	Terminal	(on	Mac),	Command	Prompt	(on
Windows),	or	equivalent	tool	of	choice	and	typing	in	the	following	and	pressing	Enter:

node	-v

If	everything	worked	out	properly,	you	will	see	a	version	number	displayed	that	typically
corresponds	to	the	version	of	Node.js	you	just	installed.	If	you	are	getting	an	error	for
whatever	reason,	follow	the	troubleshooting	steps	listed	here
(https://github.com/npm/npm/wiki/Troubleshooting).
Next,	we	are	going	to	initialize	Node.js	on	our	MyTotallyAwesomeApp	folder.	To	do	this,
first	navigate	to	the	MyTotallyAwesomeApp	folder	using	your	Terminal	or	Command
Prompt.	On	OS	X,	this	will	look	like	Figure	15-8.

Figure	15-8	Navigate	to	the	MyTotallyAwesomeApp	folder.

https://github.com/npm/npm/wiki/Troubleshooting

Now,	go	ahead	and	initialize	Node.js	by	entering	the	following:
npm	init

This	will	kick	off	a	series	of	questions	that	will	help	set	up	Node.js	on	our	project.	The	first
question	will	ask	you	to	specify	your	project	name.	Hitting	Enter	will	allow	you	to	specify	the
default	value	that	has	already	been	selected	for	you.	That	is	all	great,	but	the	default	name	is
our	project	folder,	which	is	MyTotallyAwesomeApp.	If	you	hit	Enter,	because	it	contains
capital	letters,	it	will	throw	an	error	(see	Figure	15-9).

Figure	15-9	Our	project	folder	name	includes	capital	letters,	triggering	an	error.

Go	ahead	and	enter	the	lowercase	version	of	the	name,	mytotallyawesomeapp.	Once	you’ve
done	that,	press	Enter.	For	the	remaining	questions,	just	hit	Enter	to	accept	all	the	default
values.	The	end	result	of	all	of	this	is	a	new	file	called	package.json	that	will	be	created	in
your	MyTotallyAwesomeApp	folder	(see	Figure	15-10).

Figure	15-10	The	package.json	file	shows	up	in	your	folder.

If	you	open	the	contents	of	package.json	in	your	code	editor,	you’ll	see	something	that	looks
similar	to	the	following:
Click	here	to	view	code	image

{
		"name":	"mytotallyawesomeapp",
		"version":	"1.0.0",
		"description":	"",
		"main":	"index.js",
		"scripts":	{
				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
		},
		"author":	"",
		"license":	"ISC"
}

Don’t	worry	too	much	about	the	contents	of	this	file,	but	just	know	that	one	of	the	results	of

you	calling	npm	init	is	that	you	have	a	package.json	file	created	with	some	weird
properties	and	values	that	Node.js	totally	knows	what	to	do	with.

Installing	the	React	Dependencies
What	we	are	going	to	do	next	is	install	our	React	dependencies	so	that	we	can	use	the	React
and	React	DOM	libraries	in	our	code.	If	you	are	coming	from	a	pure	web	development
background,	this	is	going	to	sound	strange.	Just	bear	with	me	on	this.
In	your	Terminal	or	Command	Prompt,	enter	the	following	to	install	our	React	dependencies:
Click	here	to	view	code	image

npm	install	react	react-dom	--save

Once	you	Enter	this,	a	lot	of	weird	stuff	will	show	up	on	your	screen.	You	may	even	see	a
bunch	of	warnings,	but	they	should	be	safe	to	ignore.	What	is	happening	is	that	the	React	and
React-DOM	libraries	(and	stuff	that	they	depend	on)	is	getting	downloaded	from	a	giant
repository	of	Node.js	packages	found	here:	https://www.npmjs.com/
If	you	take	a	look	at	your	MyTotallyAwesomeApp	folder,	you’ll	see	a	folder	called
node_modules.	Inside	that	folder,	you’ll	see	a	bunch	of	various	modules	(aka	what	Node.js
calls	what	we	mere	mortals	just	call	libraries).	Let’s	update	our	visualization	of	our	current
file/folder	structure	to	look	like	Figure	15-11.

https://www.npmjs.com/

Figure	15-11	The	updated	folder	structure.

The	list	of	modules	you	see	right	now	is	just	the	beginning.	We’ll	be	adding	a	few	more	by
the	time	you	reach	the	end	of	this,	so	don’t	get	too	attached	the	number	of	items	you	see	inside
our	node_modules	folder	:P

Adding	our	JSX	File
Things	are	about	to	get	(more!)	interesting.	Now	that	we’ve	told	Node.js	all	about	our	interest
in	React,	we	are	one	step	closer	towards	building	a	React	app.	We	are	going	to	further	enter
these	waters	by	adding	a	JSX	file	that	is	a	modified	version	of	the	example	we	saw	in	Chapter
3	when	looking	at	Components.
Inside	our	dev	folder,	using	the	code	editor,	create	a	file	called	index.jsx	with	the	following
code	as	its	contents:
Click	here	to	view	code	image

import	React	from	"react";
import	ReactDOM	from	"react-dom";

var	HelloWorld	=	React.createClass({

		render:	function()	{
				return	(
						<p>Hello,	{this.props.greetTarget}!</p>
);
		}
});

ReactDOM.render(
		<div>
				<HelloWorld	greetTarget="Batman"/>
				<HelloWorld	greetTarget="Iron	Man"/>
				<HelloWorld	greetTarget="Nicolas	Cage"/>
				<HelloWorld	greetTarget="Mega	Man"/>
				<HelloWorld	greetTarget="Bono"/>
				<HelloWorld	greetTarget="Catwoman"/>
		</div>,
		document.querySelector("#container")
);

Notice	that	the	bulk	of	the	JSX	we	added	is	pretty	much	unmodified	from	what	we	had	earlier.
The	only	difference	is	that	what	used	to	be	script	references	for	getting	the	React	and	React
DOM	libraries	into	our	app	has	now	been	replaced	with	import	statements	pointing	to	our
react	and	react-dom	Node.js	packages	we	added	a	few	moments	ago:
Click	here	to	view	code	image

import	React	from	"react";
import	ReactDOM	from	"react-dom";

Now,	you	are	probably	eagerly	wondering	when	we	can	build	our	app	and	get	it	all	working
in	our	browser.	Well,	there	are	still	a	few	more	steps	left.	Figure	15-12	shows	what	the	current
visualization	of	our	project	looks	like.

Figure	15-12	The	current	project.

Our	index.html	file	is	looking	for	code	from	the	myCode.js	file	which	still	doesn’t	exist.	We
added	our	JSX	file,	but	we	know	that	our	browser	doesn’t	know	what	to	do	with	JSX.	We	need
to	go	from	index.jsx	in	our	dev	folder	to	myCode.js	in	the	output	folder.	Guess	what	we	are
going	to	do	next?

Going	from	JSX	to	JavaScript
The	missing	step	right	now	is	turning	our	JSX	into	JavaScript	that	our	browser	can
understand.	This	involves	both	webpack	and	Babel,	and	we	are	going	to	configure	both	of
them	to	make	this	all	work.

Setting	up	webpack
Since	we	are	in	Node.js	territory	and	both	webpack	and	Babel	exist	as	Node	packages,	we
need	to	install	them	both	just	like	we	installed	the	React-related	packages.
To	install	webpack,	enter	the	following	in	your	Terminal	/	Command	Prompt:

npm	install	webpack	--save

This	will	take	a	few	moments	while	the	webpack	package	(and	its	large	list	of	dependencies)
gets	downloaded	and	placed	into	our	node_modules	folder.	After	you’ve	done	this,	we	need
to	add	a	configuration	file	to	specify	how	webpack	will	work	with	our	current	project.	Using
your	code	editor,	add	a	file	called	webpack.config.js	inside	our	MyTotallyAwesomeApp
folder	(see	Figure	15-13).

Figure	15-13	Adding	webpack.config.js.

Inside	this	file,	we	will	specify	a	bunch	of	JavaScript	properties	to	define	where	our	original,
unmodified	source	files	live	and	where	to	output	the	final	source	files.	Go	ahead	and	add	the
following	JavaScript	into	webpack.config.js:

Click	here	to	view	code	image

var	webpack	=	require("webpack");
var	path	=	require("path");

var	DEV	=	path.resolve(__dirname,	"dev");
var	OUTPUT	=	path.resolve(__dirname,	"output");

var	config	=	{
		entry:	DEV	+	"/index.jsx",
		output:	{
				path:	OUTPUT,
				filename:	"myCode.js"
		}
};

module.exports	=	config;

Take	a	few	moments	to	see	what	this	code	is	doing.	We	defined	two	variables	called	DEV	and
OUTPUT	that	refer	to	folders	of	the	same	name	in	our	project.	Inside	the	config	object,	we
have	two	properties	called	entry	and	output	that	use	our	DEV	and	OUTPUT	variables	to
help	map	our	index.jsx	file	to	become	myCode.js.

Setting	up	Babel
The	last	piece	in	our	current	setup	is	to	transform	our	index.jsx	file	to	become	regular
JavaScript	in	the	form	of	myCode.js.	This	is	where	Babel	comes	in.	To	install	Babel,	let’s	go
back	to	our	trusty	Terminal	/	Command	Prompt	and	enter	the	following	Node.js	command:
Click	here	to	view	code	image

npm	install	babel-loader	babel-preset-es2015	babel-preset-react	--save

With	this	command,	we	install	the	babel-loader,	babel-preset-es2015,	and	babel-preset-
react	packages.	Now	we	need	to	configure	Babel	to	work	with	our	project.	This	is	a	two-step
process.
The	first	step	is	to	specify	which	Babel	presets	we	want	to	use.	There	are	several	ways	of
doing	this,	but	my	preferred	way	is	to	modify	package.json	and	add	the	following
highlighted	content:
Click	here	to	view	code	image

{
		"name":	"mytotallyawesomeapp",
		"version":	"1.0.0",
		"description":	"",
		"main":	"index.js",
		"scripts":	{
				"test":	"echo	\"Error:	no	test	specified\"	&&	exit	1"
		},
		"author":	"",
		"license":	"ISC",
		"dependencies":	{
				"babel-loader":	"^6.2.4",
				"babel-preset-es2015":	"^6.9.0",
				"babel-preset-react":	"^6.5.0",
				"react":	"^15.1.0",

				"react-dom":	"^15.1.0",
				"webpack":	"^1.13.1"
		},
		"babel":	{					
				"presets":	[
						"es2015",		
						"react"				
]												
		}														
}

In	the	highlighted	lines,	we	specify	our	babel	object	and	specify	the	es2015	and	react	preset
values.
The	second	step	is	to	tell	webpack	about	Babel.	In	our	webpack.config.js	file,	go	ahead	and
add	the	following	highlighted	lines:
Click	here	to	view	code	image

var	webpack	=	require("webpack");
var	path	=	require("path");

var	DEV	=	path.resolve(__dirname,	"Dev");
var	OUTPUT	=	path.resolve(__dirname,	"output");

var	config	=	{
		entry:	DEV	+	"/index.jsx",
		output:	{
				path:	OUTPUT,
				filename:	"myCode.js"
		},
		module:	{														
				loaders:	[{										
								include:	DEV,				
								loader:	"babel",	
				}]																			
		}																						
};

module.exports	=	config;

We	added	the	module	and	loaders	objects	that	tell	webpack	to	pass	the	index.jsx	file	defined	in
our	entry	property	to	turn	into	JavaScript	through	Babel.	With	this	change,	we’ve	pretty	much
gotten	our	development	environment	setup	for	building	a	React	app.

Building	and	Testing	Our	App
The	last	(and	hopefully	most	satisfying)	step	in	all	of	this	is	building	our	app	and	having	the
end-to-end	workflow	work.	To	build	our	app,	what	you	type	varies	on	whether	you	are	on	the
Terminal	or	on	the	Command	Prompt.
For	the	Terminal	on	the	Mac,	enter	the	following:

./node_modules/.bin/webpack

In	the	Command	Prompt	on	Windows,	enter	this	instead:
node_modules\.bin\webpack.cmd

This	command	runs	webpack	and	does	all	the	things	we’ve	specified	in	our
webpack.config.js	and	package.json	configuration	files.	Your	output	in	your	Terminal	/
Command	Prompt	will	look	something	like	Figure	15-14.

Figure	15-14	The	webpack	output.

Besides	seeing	something	that	vaguely	looks	like	a	successful	build	displayed	in	cryptic	text
form,	go	to	your	MyTotallyAwesomeApp	folder.	Open	your	index.html	file	in	your	browser.
If	everything	was	set	up	properly,	you’ll	see	our	simple	React	app	displaying	(see	Figure	15-
15).

Figure	15-15	The	simple	React	app	displaying.

If	you	venture	into	the	Output	folder	and	look	at	myCode.js,	you’ll	see	a	fairly	hefty
(~700Kb)	file	with	a	lot	of	JavaScript	made	up	of	the	relevant	React,	ReactDOM,	and	your	app
code	all	organized	there.
From	this	point,	you	can	build	your	app,	add	new	assets,	and	make	the	typical	changes	you
normally	would.	The	only	difference	between	what	we	had	been	doing	throughout	this	book
and	what	we	are	doing	now	is	simple—what	your	browser	cares	about	is	generated	for	you	by
the	various	build	tools	and	packager.	Your	browser	is	no	longer	taking	all	of	this	React
JSX/ES6/etc.	stuff	and	converting	it	into	normal	HTML/CSS/JS	on	the	fly	during	page	load.

Conclusion
Well...that	just	happened!	In	the	preceding	many	sections,	we	followed	a	bunch	of	bizarre	and
incomprehensible	steps	to	get	our	build	environment	set	up	to	build	our	React	app.	What
we’ve	seen	is	just	a	very	small	part	of	everything	you	can	do	when	you	put	Node,	Babel,	and
webpack	together.	The	unfortunate	thing	is	that	covering	all	of	that	goes	well	beyond	the
scope	of	learning	React,	but	if	you	are	interested	in	this,	you	should	definitely	invest	time	in
learning	the	ins	and	outs	of	all	of	these	build	tools.	There	are	a	lot	of	cool	things	you	can	do.
For	more	information	on	those	cool	things,	check	out	the	following	links:

	Babel:	https://babeljs.io/
	npm	Documentation:	https://docs.npmjs.com/
	webpack	module	bundler:	https://webpack.github.io/
	React	Tooling	Integration:	https://facebook.github.io/react/docs/tooling-integration.html
	Bower:	https://bower.io/

https://babeljs.io/
https://docs.npmjs.com/
https://webpack.github.io/
https://facebook.github.io/react/docs/tooling-integration.html
https://bower.io/

16.	The	End

So...here	we	are.	After	15	chapters,	we’ve	covered	a	lot	of	ground	when	it	comes	to	learning
how	to	use	React	to	build	cool	things.	A	while	ago,	we	started	off	by	discussing	the	problems
associated	with	building	complex	UIs	and	how	React	was	going	to	make	that	a	breeze.
Hopefully	in	the	chapters	since,	you	got	a	really	good	idea	of	how	you	can	use	React	to
accomplish	this.
While	we	may	be	done	with	the	formal	content	in	this	book,	this	doesn’t	mean	that	our
interaction	is	over.	If	you	ever	have	any	questions	or	run	into	any	issues	working	with	React,
I’d	like	to	hear	from	you.	The	easiest	way	to	contact	me	is	by	posting	on	the	forums	at
http://forum.kirupa.com,	but	you	can	also	ping	me	via	Twitter	(@kirupa)	or	send	me	an	e-
mail	(kirupa@kirupa.com).	I’ll	do	my	best	to	respond	to	you	as	quickly	as	I	can.
See	you	all	next	time!
Cheers,

http://forum.kirupa.com
mailto:kirupa@kirupa.com

Index

Symbols
{	}	(curly	brackets),	33,	86–87
…	(spread)	operator
explained,	78
transferring	properties	with,	78–80

A
accessing
DOM	elements
ES6	arrow	functions,	141
references,	137–141
when	to	use,	135–137

properties,	33
active	links,	creating,	159–160
activeClassName	property,	159–161
addEventListener	function,	118–119
addItem	event	handler,	170,	171,	177–178
Alpert,	Ben,	86
Animaniacs	Good	Idea	/	Bad	Idea	sketches,	36
APIs	(application	programming	interfaces),	9
app	frames,	147–149
application	programming	interfaces	(APIs),	9
apps
catalog	browser	app
multi-page	design,	2–3
SPA	(single-page	app)	model,	3–6

creating	with	React	Router
app	frame,	147–149
boilerplate	markup	and	code,	146–147
Contact	component,	157–158
CSS	(Cascading	Style	Sheets),	151–153
example,	144–145
Home	component,	149–151
home	page,	displaying,	149–151,	154–155
Link	component,	156
navigation	links,	155–156,	159–160

overview,	143–144
ReactRouter	prefix,	153–154
render	method,	148–149,	154
Route	component,	149
route	matching,	158
Router	component,	149
Stuff	component,	157–158

first	React	app
blank	HTML	page,	creating,	15–16
destination,	changing,	18–19
name,	displaying,	16–18
styles,	19–20

MyTotallyAwesomeApp
index.jsx	file,	191–192
initial	project	structure,	184–186
Node.js	initialization,	187–189
React	dependencies,	190–191
testing,	197–198

Todo	List	app
addItem	event	handler,	171,	177–178
app	functionality,	168
form	submission,	169–170
functionality,	168
initial	code	listing,	164–165
overview,	163–164
render	method,	166,	171,	173–174
state	object	initialization,	169
state	object	population,	171–172
styles,	167,	176–178
task	display,	173–176
TodoItems	component,	173–176
UI	(user	interface),	165–168

architecture	(MVC),	11
arguments.	See	properties
arrays	of	components,	103–105
arrow	functions	(ES6),	141
attributes.	See	properties
autobinding,	95
automatic	UI	state	management,	7–8
avoiding	ReactRouter	prefix,	153–154

B
Babel
overview,	182
referencing,	16,	86
website,	198

background	color,	customizing,	45–47
backgroundColor	property	(letterStyle	object),	46
bgcolor	attribute,	46
blank	HTML	pages,	creating,	15–16
Bower,	198
browser	compatibility,	120
building	apps.	See	apps
button	counter
event	handler,	110–112
event	listening
regular	DOM	events,	117–119
SyntheticEvent	type,	116–117

event	properties,	114–115
initial	code	listing,	108–110
lifecycle	methods
componentDidMount	method,	129
componentDidUpdate	method,	131
componentWillMount	method,	129
componentWillReceiveProps	method,	132
componentWillUnmount	method,	132
componentWillUpdate	method,	131
getDefaultProps	method,	128
getInitialState	method,	128
initial	code	listing,	124–127
initial	rendering	phase,	127–129
render	method,	129,	131
shouldComponentUpdate	method,	130–131
unmounting	phase,	132
updating	phase,	129–132

overview,	107–108
SyntheticEvent	type,	112–114
this	keyword,	119–120

Buttonify	component,	35–36

C
calling	functions,	25
camelcase,	86
capitalization	(JSX),	87–88
Card	component,	58–59
Cascading	Style	Sheets.	See	CSS	(Cascading	Style	Sheets)
catalog	browser	app
multi-page	design,	2–3
SPA	(single-page	app)	model,	3–6

changing	destination,	18–19
child	components
overview,	34–36
passing	properties	to,	63–65
transferring	properties	to
component	hierarchy	and,	69–74
problems	with,	69–77
spread	operator	(…),	78–80

Circle	component
array	of,	103–105
circleStyle	object,	101
initial	code	listing,	99–102
render	method,	102
showCircle	function,	102–103
theCircle	variable,	102

circleStyle	object,	101
class	names,	85–86
CleverComponent,	34
code	editors,	183–184
color	of	background,	customizing,	45–47
color	palette	card
Card	component,	58–59
component	definitions,	56–58
component	identification,	53–56
generated	HTML,	66
Label	component,	61–63
overview,	49–51
properties,	passing	to	child	components,	63–65
Square	component,	60–61
visual	element	identification,	51–53

Colorizer	component
behavior	of,	135–137
references,	137–141

comments,	86–87
compiler.	See	Babel
component	hierarchy,	55–56,	69–70
componentDidMount	method,	93,	94–95,	118,	129
componentDidUpdate	method,	131
components
arrays	of,	103–105
Buttonify,	35–36
capitalization	of,	87–88
child	components,	34–36
Circle
array	of,	103–105
circleStyle	object,	101
initial	code	listing,	99–102
render	method,	102
showCircle	function,	102–103
theCircle	variable,	102

CleverComponent,	34
color	palette	card
Card	component,	58–59
component	definitions,	56–58
component	identification,	53–56
generated	HTML,	66
Label	component,	61–63
overview,	49–51
properties,	passing	to	child	components,	63–65
Square	component,	60–61
visual	element	identification,	51–53

Colorizer
behavior	of,	135–137
references,	137–141

component	hierarchy,	55–56,	69–70
composability.	See	also	color	palette	card
advantages	of,	66
definition	of,	49
overview,	49–51

Contact,	157–158

CounterParent
event	handler,	110–112
event	listening,	116–119
event	properties,	114–115
initial	code	listing,	108–110
overview,	107–108
this	keyword,	119–120

creating
Card	component,	58–59
component	definitions,	56–58
component	identification,	53–56
generated	HTML,	66
Label	component,	61–63
overview,	49–51
properties,	63–65
Square	component,	60–61
visual	element	identification,	51–53

definition	of,	23–24,	29
events.	See	events
generated	HTML,	40–41
HelloWorld	component
creating,	30–32
properties,	32–34

Home,	149–151
Label,	77
Letter,	37–39
lifecycle	methods
button	counter	example,	124–127
componentDidMount	method,	129
componentDidUpdate	method,	131
componentWillMount	method,	129
componentWillReceiveProps	method,	132
componentWillUnmount	method,	132
componentWillUpdate	method,	131
definition	of,	123
getDefaultProps	method,	128
getInitialState	method,	128
initial	rendering	phase,	127–129
overview,	123–124
render	method,	129,	131

shouldComponentUpdate	method,	130–131
unmounting	phase,	132
updating	phase,	129–132

LightningCounterDisplay
componentDidMount	method,	93,	94–95
full	code	listing,	96–98
getInitialState	method,	93–94
initial	code,	90–92
initial	state	value,	setting,	93–94
overview,	89–90
setInterval	function,	93
setState	method,	93,	95
state	change,	rendering,	96
strikes	variable,	93–94
timerTick	function,	94–95

Link,	156
multiple	components,	displaying,	103–105
PlusButton,	116–117
properties
specifying,	33–34
transferring.	See	transferring	properties

Route,	149
Router,	149
Shirt,	74–77
Stuff,	157–158
styling	with	CSS,	41–42
styling	with	React
customizable	background	color,	45–47
overview,	42
px	suffix,	omitting,	45
style	object,	creating,	43
styles,	applying,	43–45

TodoItems,	173–176
TodoList
addItem	event	handler,	171,	177–178
app	functionality,	168
form	submission,	169–170
functionality,	168
initial	code	listing,	164–165
overview,	163–164

render	method,	166,	171,	173–174
state	object	initialization,	169
state	object	population,	171–172
styles,	167,	176–178
task	display,	173–176
UI	(user	interface),	165–168

componentWillMount	method,	129
componentWillReceiveProps	method,	132
componentWillUnmount	method,	132
componentWillUpdate	method,	131
composability	of	components
advantages	of,	66
color	palette	card	example
Card	component,	58–59
component	definitions,	56–58
component	identification,	53–56
generated	HTML,	66
Label	component,	61–63
overview,	49–51
properties,	passing	to	child	components,	63–65
Square	component,	60–61
visual	element	identification,	51–53

definition	of,	49
overview,	49–51

configuring	development	environment
index.jsx	file,	191–192
initial	project	structure,	184–186
Node.js,	187–189
React	dependencies,	190–191
webpack,	193–195

console	warnings,	105
Contact	component,	157–158
container	elements,	18
CounterParent	component
event	handler,	110–112
event	listening,	116–119
event	properties,	114–115
initial	code	listing,	108–110
overview,	107–108
this	keyword,	119–120

counters
button	counter
event	handler,	110–112
event	listening,	116–119
event	properties,	114–115
initial	code	listing,	108–110
lifecycle	methods,	124–127
overview,	107–108
SyntheticEvent	type,	112–114
this	keyword,	119–120

LightningCounterDisplay
componentDidMount	method,	93,	94–95
full	code	listing,	96–98
getInitialState	method,	93–94
initial	code,	90–92
initial	state	value,	setting,	93–94
overview,	89–90
setInterval	function,	93
setState	method,	93,	95
state	change,	rendering,	96
strikes	variable,	93–94
timerTick	function,	94–95

createClass	method,	30
createElement	function,	82–84
CSS	(Cascading	Style	Sheets)
applying,	40–42
first	React	app,	19–20
HTML	versus	JSX,	84–85
SPA	(single-page	app)	example,	151–153
Todo	List	app,	167,	176–178

curly	brackets	({	}),	33,	86–87
customizing	background	color,	45–47

D
DE.	See	development	environment
deep	links,	144
dependencies,	installing,	190–191
design
multi-page	design,	2–3
SPA	(single-page	app)	model,	3–6

destination,	changing,	18–19
destination	variable,	18–19
dev	folder,	184–185
development	environment
advantages	of,	179–181
Babel,	182
building	apps,	197–198
code	editors,	183–184
Node.js
installing,	187–189
overview,	182

setup
index.jsx	file,	191–192
initial	project	structure,	184–186
Node.js,	187–189
React	dependencies,	190–191
webpack,	193–195

webpack,	183
displaying
home	page,	149–151,	154–155
multiple	components,	103–105
name,	16–18
tasks	in	Todo	List	app,	173–176

div	element
first	React	app,	18
HelloWorld	component,	32
styling	with	CSS,	41–42

documentation
npm	documentation,	198
React	Router,	161

document.body	argument	(render	method),	17
DOM	elements,	accessing
ES6	arrow	functions,	141
references,	137–141
when	to	use,	135–137

DOM	manipulation,	8

E
editors	(code),	183–184
elements

capitalization	in	JSX,	87–88
div
first	React	app,	18
HelloWorld	component,	32
styling	with	CSS,	41–42

DOM	elements,	accessing
ES6	arrow	functions,	141
references,	137–141
when	to	use,	135–137

form,	169–170
inefficiencies	with	UI	elements,	26–29
outputting	multiple,	27
transferring	properties	with,	138–139

ellipses	(…)	operator
explained,	78
transferring	properties	with,	78–80

EmberJS	templates,	10
environment.	See	development	environment
errors	in	ranges,	105
ES6	arrow	functions,	141
event	handlers
addItem,	170
overview,	110–112
this	keyword,	119–120

events
browser	compatibility,	120
button	counter
event	handler,	110–112
event	listening,	116–119
event	properties,	114–115
initial	code	listing,	108–110
overview,	107–108
this	keyword,	119–120

definition	of,	107
event	handlers
addItem,	170
overview,	110–112
this	keyword,	119–120

KeyboardEvent	type,	112
listening	to,	116–119

MouseEvent	type,	112
onSubmit,	169–170
performance,	120–121
SyntheticEvent	type,	112–114

F
files,	index.jsx,	191–192
first	React	app
blank	HTML	page,	creating,	14–15
destination,	changing,	18–19
name,	displaying,	16–18
styles,	19–20

folders
dev,	184–185
node_modules,	190
output,	184–185

form	submission,	169–170
formatDistance	function,	25
forum.kirupa.com,	199
frames	(app),	147–149
functions.	See	also	methods
addEventListener,	118–119
calling,	25
createElement,	82–84
ES6	arrow	functions,	141
explained,	24–26
formatDistance,	25
getDistance,	32–33
increase,	110–112,	115
printStuff,	78
removeEventListener,	119
setInterval,	93
showCircle,	102–103
timerTick,	94–95

G
generated	HTML
color	palette	card,	66
Letter	component,	40–41

getDefaultProps	method,	128

getDistance	function,	32–33
getInitialState	method,	93–94,	128,	169

H
HelloWorld	component
creating,	30–32
properties,	32–34

help,	forum.kirupa.com,	199
hierarchies
component	hierarchy,	55–56,	69–70
visual	hierarchy,	52

Home	component,	149–151
home	page,	displaying,	149–151,	154–155
HTML	elements,	capitalization	in	JSX,	87–88
HTML	templates,	6

I
identifying
components,	53–56
visual	elements,	51–53

increase	function,	110–112,	115
index.html	file,	185–186
index.jsx	file,	191–192
initial	project	structure,	184–186
initial	rendering	phase	(lifecycle	methods),	127–129
initial	state	value,	93–94
initializing
Node.js,	187–189
state	object,	169

inline	styles
applying,	43–45
Circle	component,	101
customizable	background	color,	45–47
overview,	42
px	suffix,	omitting,	45
style	object,	creating,	43

input	element,	138–139
_input	property,	139–140
installing
Babel,	195–196

Node.js,	187–189
React	dependencies,	190–191
webpack,	193–195

itemArray,	creating,	172

J
JavaScript
JSX-to-JavaScript	transformation.	See	also	development	environment
Babel,	182
overview,	81–83
test	app,	197–198
webpack,	183,	193–196

visuals	defined	in,	9–11
JSX
arrays,	103–105
capitalization,	87–88
class	names,	85–86
comments,	86–87
CSS	(Cascading	Style	Sheets)	and,	84–85
explained,	10–11,	14–15
first	React	app
blank	HTML	page,	creating,	14–15
destination,	changing,	18–19
name,	displaying,	16–18
styles,	19–20

index.jsx	file,	191–192
JSX-to-JavaScript	transformation.	See	also	development	environment
Babel,	182
overview,	81–83
test	app,	197–198
webpack,	183,	193–196

location	in	code,	88
methods.	See	methods
reserved	keywords,	85–86
root	nodes,	returning,	83–84
style	attribute,	84–85

JSX-to-JavaScript	transformation.	See	also	development	environment
Babel,	182
test	app,	197–198
webpack,	183,	193–196

K
KeyboardEvent	type,	112
keywords
table	of,	85–86
this,	119–120

L
Label	component,	61–63,	77
Letter	component
generated	HTML,	40–41
overview,	37–39
styling	with	CSS,	41–42
styling	with	React
customizable	background	color,	45–47
letterStyle	object,	creating,	43
overview,	42
px	suffix,	omitting,	45
styles,	applying,	43–45

letterStyle	object
creating,	43
customizable	background	color,	45–47
overview,	85
px	suffix,	omitting,	45
style	attribute,	43–45

lifecycle	methods
button	counter	example,	124–127
componentDidMount	method,	129
componentDidUpdate	method,	131
componentWillMount	method,	129
componentWillReceiveProps	method,	132
componentWillUnmount	method,	132
componentWillUpdate	method,	131
definition	of,	123
getDefaultProps	method,	128
getInitialState	method,	128
initial	rendering	phase,	127–129
overview,	123–124
render	method,	129,	131
shouldComponentUpdate	method,	130–131

unmounting	phase,	132
updating	phase
prop	changes,	131–132
state	changes,	129–131

LightningCounterDisplay	component
componentDidMount	method,	93
full	code	listing,	96–98
getInitialState	method,	93–94
initial	code,	90–92
initial	state	value,	setting,	93–94
overview,	89–90
setInterval	function,	93
setState	method,	93
state	change,	rendering,	96
strikes	variable,	93–94
timerTick	function,	94–95

Link	component,	156
links
active	links,	159–160
deep	links,	144
navigation	links,	155–156

listening	to	events
regular	DOM	events,	117–119
SyntheticEvent	type,	116–117

listItems	variable,	175–176
logo	(React),	7

M
matching	routes,	158
Matryoshka	dolls	analogy,	9
messages,	console	warnings,	105
methods.	See	also	functions
addItem,	170,	171,	177–178
button	counter	example,	124–127
componentDidMount,	93,	94–95,	118,	129
componentDidUpdate,	131
componentWillMount,	129
componentWillReceiveProps,	132
componentWillUnmount,	132
componentWillUpdate,	131

createClass,	30
definition	of,	123
getDefaultProps,	128
getDefaultProps	method,	128
getInitialState,	93–94,	128,	169
initial	rendering	phase,	127–129
overview,	123–124
preventDefault,	172
render
Card	component,	59
Circle	component,	102,	104–106
Colorizer	component,	138
first	React	app,	16–18
HelloWorld	component,	30–32
initial	rendering	phase,	129
Label	component,	62
LightningCounterDisplay	component,	92
overview,	26,	129,	131
SPA	(single-page	app)	example,	148–149,	154
Square	component,	60–61
Todo	List	app,	166
TodoList	component,	171,	173–174
updating	phase,	131

setNewColor,	141
setState,	93,	95
shouldComponentUpdate,	130–131
unmounting	phase,	132
updating	phase,	129–132

MouseEvent	type,	112
multi-page	design,	2–3
multiple	components,	displaying,	103–105
multiple	elements,	outputting,	27
MVC	architecture,	11
MyTotallyAwesomeApp
index.jsx	file,	191–192
initial	project	structure,	184–186
Node.js	initialization,	187–189
React	dependencies,	190–191
testing,	197–198

N
names
class	names,	85–86
displaying,	16–18

navigation	links,	creating,	155–156
Node	Package	Manager	(NPM).	See	Node.js
node_modules	folder,	190
Node.js
initializing,	187–189
installing,	187–189
overview,	182

nodes	(root),	returning,	83–84
NPM	(Node	Package	Manager).	See	Node.js
npm	documentation,	198

O
objects
circleStyle	object,	101
letterStyle
creating,	43
customizable	background	color,	45–47
overview,	85
px	suffix,	omitting,	45
style	attribute,	43–45

props,	79
state	object
initializing,	169
populating,	171–172

onClick	event	handler,	110–112
onSubmit	event,	169–170
operators,	spread	(…)
explained,	78
transferring	properties	with,	78–80

output	folder,	184–185
outputting	multiple	elements,	27

P
palette	card.	See	color	palette	card
passing	properties
color	palette	card	example,	63–65

component	hierarchy	and,	69–74
problems	with,	74–77
spread	operator	(…)
example,	78–80
explained,	78

performance,	events	and,	120–121
PlusButton	component,	116–117
populating	state	object,	171–172
preventDefault	method,	172
printStuff	function,	78
properties
accessing,	33
activeClassName,	159–161
bgcolor,	46
event	properties,	114–115
HelloWorld	component,	32–34
prop	changes,	131–132
ref,	138–139
specifying
component	call,	34
component	definition,	33

style,	43–45,	84–85
SyntheticEvent	type,	113–114
transferring
color	palette	card	example,	63–65
component	hierarchy	and,	69–74
problems	with,	74–77
spread	operator	(…),	78–80

vendor-prefixed	properties,	59
props	object,	79
px	suffix,	omitting,	45

Q-R
React	dependencies,	installing,	190–191
React	Event	System	document,	114
React	Router
creating	SPAs	(single-page	apps)	with
active	links,	159–160
app	frame,	147–149
boilerplate	markup	and	code,	146–147

Contact	component,	157–158
CSS	(Cascading	Style	Sheets),	151–153
displaying,	149–151
example,	144–145
Home	component,	149–151
home	page,	displaying,	154–155
Link	component,	156
navigation	links,	155–156
overview,	143–144
ReactRouter	prefix,	153–154
render	method,	148–149,	154
Route	component,	149
route	matching,	158
Router	component,	149
Stuff	component,	157–158

documentation,	161
referencing,	147

React	Tooling	Integration,	198
ReactRouter	prefix,	153–154
reconciliation,	8
ref	attribute,	138–139
references,	137–141
referencing
Babel	JavaScript	compiler,	16
React	library,	15
React	Router,	147

regular	DOM	events,	listening	to,	117–119
removeEventListener	function,	119
render	method
Card	component,	59
Circle	component,	102,	104–106
Colorizer	component,	138
first	React	app,	16–18
HelloWorld	component,	30–32
initial	rendering	phase,	129
Label	component,	62
LightningCounterDisplay	component,	92
overview,	26
SPA	(single-page	app)	example,	148–149,	154
Square	component,	60–61

Todo	List	app,	166
TodoList	component,	171,	173–174
updating	phase,	131

renderData	array,	104
rendering	state	change,	96
reserved	keywords,	85–86
root	nodes,	returning,	83–84
Route	component,	149
route	matching,	158
Router	component,	149
routing,	144,	149.	See	also	React	Router
Russian	Matryoshka	dolls	analogy,	9

S
setInterval	function,	93
setNewColor	method,	141
setState	method,	93,	95
setting	up	development	environment
index.jsx	file,	191–192
initial	project	structure,	184–186
Node.js,	187–189
React	dependencies,	190–191
webpack,	193–195

shiftKey	property	(SyntheticEvent),	114–115
Shirt	component,	74–77
shouldComponentUpdate	method,	130–131
showCircle	function,	102–103
simple	catalog	browser	app
multi-page	design,	2–3
SPA	(single-page	app)	model,	3–6

single-page	app	(SPA).	See	SPA	(single-page	app)
SPA	(single-page	app)
creating	with	React	Router
active	links,	159–160
app	frame,	147–149
boilerplate	markup	and	code,	146–147
Contact	component,	157–158
CSS	(Cascading	Style	Sheets),	151–153
example,	144–145
Home	component,	149–151

home	page,	displaying,	149–151,	154–155
Link	component,	156
navigation	links,	155–156
overview,	143–144
ReactRouter	prefix,	153–154
render	method,	148–149,	154
Route	component,	149
route	matching,	158
Router	component,	149
Stuff	component,	157–158

model,	3–6
specifying	properties
component	call,	34
component	definition,	33

spread	operator	(…)
explained,	78
transferring	properties	with,	78–80

Square	component,	60–61
state	change,	rendering,	96
state	management
lifecycle	methods,	129–131
LightningCounterDisplay
componentDidMount	method,	93,	94–95
getInitialState	method,	93
initial	code,	90–92
initial	state	value,	setting,	93–94
overview,	89–90
setInterval	function,	93
setState	method,	93,	95
strikes	variable,	93–94

LightningCounterDisplay	component
full	code	listing,	96–98
initial	code,	90–92
overview,	89–90
setInterval	function,	93
state	change,	rendering,	96
timerTick	function,	94–95

UI	(user	interface),	7–8
state	object.	See	also	state	management
initializing,	169

populating,	171–172
strikes	variable,	93–94
Stuff	component,	157–158
style	attribute,	43–45,	84–85
styles
CSS	(Cascading	Style	Sheets)
applying,	40–42
HTML	versus	JSX,	84–85
SPA	(single-page	app)	example,	151–153
Todo	List	app,	167,	176–178

first	React	app,	19–20
inline	approach
Circle	component,	101
customizable	background	color,	45–47
overview,	42
px	suffix,	omitting,	45
style	object,	creating,	43
styles,	applying,	43–45

overview,	37
submitting	forms,	169–170
support,	forum.kirupa.com,	199
swatchComponent	variable,	88
SyntheticEvent	type,	112–114

T
tasks,	displaying	in	Todo	List	app,	173–176
templates
EmberJS	templates,	10
HTML	templates,	6

theCircle	variable,	102
this	keyword,	119–120
timerTick	function,	94–95
todoEntries	variable,	174
TodoItems	component,	173–176
TodoList	component
addItem	event	handler,	171,	177–178
app	functionality,	168
form	submission,	169–170
functionality,	168
initial	code	listing,	164–165

overview,	163–164
render	method,	166,	171,	173–174
state	object	initialization,	169
state	object	population,	171–172
styles,	167,	176–178
task	display,	173–176
TodoItems	component,	173–176
UI	(user	interface),	165–168

tools
Babel,	182
code	editors,	183–184
Node.js
installing,	187–189
overview,	182

webpack
installing,	193–195
overview,	183

transferring	properties
color	palette	card	example,	63–65
component	hierarchy	and,	69–74
problems	with,	74–77
spread	operator	(…)
example,	78–80
explained,	78

transpilation	from	JSX	to	JavaScript.	See	also	development	environment
Babel,	182
overview,	81–83
test	app,	197–198
webpack,	183,	193–196

U
UI	(user	interface).	See	also	events
Circle	component	example
array	of,	103–105
initial	code	listing,	99–102
render	method,	102
showCircle	function,	102–103
theCircle	variable,	102

inefficiencies	with,	26–29
state	management,	7–8

Todo	List	app,	165–168
unmounting	phase	(lifecycle	methods),	132
updating	phase	(lifecycle	methods)
prop	changes,	131–132
state	changes,	129–131

V
variables
destination,	18–19
listItems,	175–176
strikes,	93–94
swatchComponent,	88
theCircle,	102
todoEntries,	174

vendor-prefixed	properties,	59
views,	143
virtual	DOM,	8
visual	hierarchy,	52
visuals
defining	in	JavaScript,	9–11
identifying,	51–53
visual	hierarchy,	52

W-X-Y-Z
WebkitFilter	property,	59
webpack
installing,	193–195
overview,	183
website,	198

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Accessing the Free Web Edition
	Dedication Page
	Contents
	Acknowledgments
	About the Author
	1. Introducing React
	Old School Multi-Page Design
	New School Single-Page Apps
	Meet React
	Automatic UI State Management
	Lightning-fast DOM Manipulation
	APIs to Create Truly Composable UIs
	Visuals Defined Entirely in JavaScript
	Just the V in an MVC Architecture

	Conclusion

	2. Building Your First React App
	Dealing with JSX
	Getting Your React On
	Displaying Your Name
	It’s All Still Familiar
	Changing the Destination
	Styling It Up!

	Conclusion

	3. Components in React
	A Quick Review of Functions
	Changing How We Deal with the UI
	Meet the React Component
	Creating a Hello, World! Component
	Specifying Properties
	Dealing with Children

	Conclusion

	4. Styling in React
	Displaying Some Vowels
	Styling React Content Using CSS
	Understand the Generated HTML
	Just Style It Already!

	Styling Content the React Way
	Creating a Style Object
	Actually Styling Our Content
	You Can Omit the “px” Suffix
	Making the Background Color Customizable

	Conclusion

	5. Creating Complex Components
	From Visuals to Components
	Identifying the Major Visual Elements
	Identifying the Components

	Creating the Components
	The Card Component
	The Square Component
	The Label Component
	Passing Properties, Again!

	Why Component Composability Rocks
	Conclusion

	6. Transferring Properties (Props)
	Problem Overview
	Detailed Look at the Problem
	Meet the Spread Operator
	Properly Transferring Properties
	Conclusion

	7. Meet JSX—Again!
	What Happens with JSX?
	JSX Quirks to Remember
	You Can Only Return A Single Root Node
	You Can’t Specify CSS Inline
	Reserved Keywords and className
	Comments
	Capitalization, HTML Elements, and Components
	Your JSX Can Be Anywhere

	Conclusion

	8. Dealing with State
	Using State
	Our Starting Point

	Getting Our Counter On
	Setting the Initial State Value
	Starting Our Timer and Setting State
	Rendering the State Change

	Optional: The Full Code
	Conclusion

	9. Going from Data to UI
	The Example
	Your JSX Can Be Anywhere—Part II
	Dealing with Arrays in the Context of JSX
	Conclusion

	10. Working with Events
	Listening and Reacting to Events
	Starting Point
	Making the Button Click Do Something
	Event Properties
	Doing Stuff With Event Properties
	More Eventing Shenanigans
	Listening to Regular DOM Events
	The Meaning of this Inside the Event Handler

	React...Why? Why?!
	Browser Compatibility
	Improved Performance

	Conclusion

	11. The Component Lifecycle
	Meet the Lifecycle Methods
	See the Lifecycle Methods in Action
	The Initial Rendering Phase
	The Updating Phase
	The Unmounting Phase

	Conclusion

	12. Accessing DOM Elements
	Meet Refs
	Conclusion

	13. Creating a Single-Page App Using React Router
	The Example
	Building the App
	Displaying the Initial Frame
	Displaying the Home Page
	Interim Cleanup Time
	Displaying the Home Page Correctly
	Creating the Navigation Links
	Adding the Stuff and Contact Views
	Creating Active Links

	Conclusion

	14. Building a Todo List App
	Getting Started
	Creating the UI
	Creating the Functionality
	Initializing our State Object
	Handling the Form Submit
	Populating Our State
	Displaying the Tasks
	Adding the Finishing Touches

	Conclusion

	15. Setting Up Your React Development Environment
	Meet the Tools
	Node.js
	Babel
	webpack
	Your Code Editor

	It Is Environment Setup Time!
	Setting up our Initial Project Structure
	Installing and Initializing Node.js
	Installing the React Dependencies
	Adding our JSX File
	Going from JSX to JavaScript
	Building and Testing Our App

	Conclusion

	16. The End
	Index
	Code Snippets

