Olga Filipova

Vue.js 2 and Bootstrap 4
Web Development

Build Responsive SPAs with Bootstrap 4, Vue.js 2,
and Firebase

LI Pack



Vue.js 2 and Bootstrap 4 Web
Development

Build Responsive SPAs with Bootstrap 4, Vue.js 2,
and Firebase

Olga Filipova

BIRMINGHAM - MUMBAI



Vue.js 2 and Bootstrap 4 Web Development

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017
Production reference: 1250917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78829-092-0

www . packtpub.com



Credits

Author
Olga Filipova

Reviewer
Jan-Christian Nikles

Commissioning Editor
Kunal Chaudhari

Acquisition Editor
Reshma Raman

Content Development Editor
Nikhil Borkar

Technical Editor
Jijo Maliyekal

Copy Editor
Safis Editing

Project Coordinator
Ulhas Kambali

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa



About the Author

Olga Filipova was born in Kyiv, in Ukraine. She grew up in a family of physicists,
scientists, and professors. She studied system analysis in the National University of
Ukraine Kyiv Polytechnic Institute. At the age of 20, she moved to Portugal, where
she did her bachelors' and masters' degrees in computer science from the University
of Coimbra. During her studies, she participated in the research and development
of European projects and became an assistant teacher of operating systems and
computer graphics subjects. After obtaining her masters' degree, she started working
at Feedzai. At that time, it was a small team of four, starting the development of a
product from scratch, and now, it is one of the most successful Portuguese start-
ups. At some point, her main responsibility became to develop a library written in
JavaScript whose purpose was to bring data from the engine to the web interface.
This marked Olga's main direction in tech: web development. At the same time, she
continued her teaching practice, giving a course of professional web development to
the local professional education center in Coimbra.

In 2013, along with her brother and her husband, she started an educational project
based in Ukraine. This project's name is EdEra and it has grown up from a small
platform of online courses into a big player at the Ukrainian educational system
scene. Currently, EdEra is moving towards an international direction and preparing
an awesome online course about IT. Don't miss it!

In 2014, Olga, with her husband and daughter, moved from Portugal to Berlin, where
she started working at Meetrics as a frontend engineer and, after a year, became

the team lead of an amazing team of frontend software developers. Currently Olga
works in a fintech company called OptioPay as a lead frontend engineer.

Olga is happily married to an awesome guy called Rui, who is also a software
engineer. Rui studied with Olga at the university of Coimbra and worked with her
at Feedzai. Olga has a smart and beautiful daughter, Taissa, a fluffy cat, Patusca, and
two fluffiest chinchillas, Barabashka and Cheburashka.



Acknowledgments

I would like to thank the people and the teams that surround me.

First of all, a huge thank you goes to the Packt team. You are amazing in supporting
this process and striving for quality and delivery. Thank you, Nikhil, for being with
me all this time and providing me with all the necessary and just-in-time feedback.

My Meetrics team not only gave me an invaluable moral support but also helped
me with the book's content. Safi did a UI/UX investigation and helped me with the
initial mockups for the application. Jan Christian made a thorough technical review
of the book. His deep technical understanding helped me improve the code and his
attention to tiny details helped me improve my writing and my way of expressing
and approaching some subjects. Thanks a lot!

My EdEra team has given me great help and support. My friends from EdEra Berlin,
thank you for helping me with ideas, thank you for listening and brainstorming with
me, and thank you for helping me with CSS. Oleg, Jenia, and Nadia, you are awesome!

How can you create a great application if you are a total noob in design? You can't!
But if you have friends who can help you with design, you are the happiest person
on Earth. Thank you, Vanessa, for helping me with the application design and thank
you, Filipe for helping me with its implementation. Thank you, Carina, for the
fantastic logo!

Thank you, Marina for your friendship and for being the first person who heard the
idea of ProFitOro and encouraged me to go ahead.

Thank you, mom and dad, for being with me and believing in me. Thank you my
wonderful brother, Ilia, for being an inspiring example for me. Thank you Ukraine,
for being with me in my heart. Thank you Portugal, for being my second Ukraine.
Thank you Berlin, for being such a great city that helps people in being creative.

Thank you, my little Taissa, for being the reason for me to work and try my best. I
know that you are proud of me, and this is something that drives me.

Thank you, my beloved husband, Rui, for reviewing all my chapters. Thank you for
your patience. Thank you for your love.



About the Reviewer

Jan-Christian Nikles had already started tinkering around with computers in his
teenage years and had developed a strong passion for it. After graduating from high
school, he first followed a different path and studied audio engineering, since music
plays a big role in his life.

He worked in this business for several years, mostly in television production. But
soon enough, he found his way back to his old passion.

Graduating in media computer science at the Beuth University of Applied Science,
Berlin, in 2013, Jan worked in multiple companies —agency work, early-stage start-
ups, and, most recently, at Meetrics. While coming from a fullstack background
originally, he specialized in frontend development with cutting-edge technologies.
The fast paced JavaScript ecosystem both overwhelmed and fascinated him, but

his fascination lasted eventually. He saw the whole thing starting from Vanilla JS,
over the big, messy jQuery era, leading to very sophisticated frameworks that make
JavaScript development such a pleasure these days. Jan lives and works in Berlin,
Germany, always looking for new and interesting projects.



www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

*  On demand and accessible via a web browser


http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this book's
Amazon page at https://www.amazon.com/dp/1788290925.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless in
improving our products!









I dedicate this book to my daughter, Taissa.






Table of Contents

Preface \4
Chapter 1: Please Introduce Yourself — Tutorial 1
Hello, user 1
Creating a project in the Firebase console 2
Adding a first entry to the Firebase application database 3
Scaffolding a Vue.js application 4
Connecting the Vue.js application to the Firebase project 6
Adding a Bootstrap-powered markup 10
Adding a form using Bootstrap 13
Making things functional with Vue.js 14
Adding utility functions to make things look nicer 17
Exercise 19
Extracting message cards to their own component 19
Exercise 21
Deploying your application 22
Extra mile — connecting your Firebase project to a custom domain 24
Summary 25
Chapter 2: Under the Hood — Tutorial Explained 27
Vue.js 28
Vue project — getting started 31
Including directly in script 31

CDN 31

NPM 31
Vue-cli 31

Vue directives 32
Conditional rendering 33

Text versus HTML 34
Loops 37

[il



Table of Contents

Binding data 38
Handling events 41
Vue components 46
Exercise 52
Vue router 53
Vuex state management architecture 57
Bootstrap 66
Bootstrap components 67
Bootstrap utilities 70
Bootstrap layout 70
Combining Vue.js and Bootstrap 7
Exercise 73
Combining Vue.js and Bootstrap continued 74
What is Firebase? 75
Summary 78
Chapter 3: Let's Get Started 79
Stating the problem 80
Gathering requirements 81
Personas 82
User stories 84
Retrieving nouns and verbs 85
Nouns 86
Verbs 86
Mockups 88
The first page — login and register 90
The main page displaying the Pomodoro timer 91
Workout during the break 92
Settings 93
Statistics 94
Workouts 95
Logo 96
Summary 97
Chapter 4: Let It Pomodoro! 99
Scaffolding the application 99
Defining ProFitOro components 101
Exercise 106
Implementing the Pomodoro timer 106
SVG and trigopnometry 107
Exercise 16
Implementing the countdown timer component 117

Lii]



Table of Contents

Responsiveness and adaptiveness of the countdown
timer using Bootstrap

119

Countdown timer component — let's count down time! 122
Exercise 128
Pomodoro timer 128
Exercise 131
Introducing workouts 133
Summary 135
Chapter 5: Configuring Your Pomodoro 137
Setting up a Vuex store 137
Defining actions and mutations 145
Setting up a Firebase project 149
Connecting the Vuex store to the Firebase database 150
Exercise 155
Summary 155
Chapter 6: Please Authenticate! 157
AAA explained 157
How does authentication work with Firebase? 158
How to connect the Firebase authentication API to a web
application 161
Authenticating to the ProFitOro application 162
Making the authentication Ul great again 168
Managing the anonymous user 171
Personalizing the Pomodoro timer 173
Updating a user's profile 177
Summary 182
Chapter 7: Adding a Menu and Routing Functionality Using
vue-router and Nuxt.js 183
Adding navigation using vue-router 185
Exercise - restrict the navigation according to the authentication 188
Using Bootstrap navbar for navigation links 189
Code splitting or lazy loading 194
Server-side rendering 196
Nuxt.js 196
Adding links with nuxt-link 200
Exercise — making the menu button work 203
Nuxt.js and Vuex store 203
Nuxt.js middleware 204
Exercise — finish 'em all! 205
Summary 206

[iii ]



Table of Contents

Chapter 8: Let's Collaborate — Adding New Workouts

Using Firebase Data Storage and Vue.js 207
Creating layouts using Bootstrap classes 208
Making the footer nice 210
Storing new workouts using the Firebase real-time database 211
Storing images using the Firebase data storage 216

Let's search! 220
Using a Bootstrap modal to show each workout 223
Exercise 227
It's time to apply some style 227
Summary 231

Chapter 9: Test Test and Test 233
Why is testing important? 235
What is Jest? 236
Getting started with Jest 236

Coverage 239
Testing utility functions 240
Mocking with Jest 242
Testing Vuex store with Jest 246
Testing mutations 247
Asynchronous testing with Jest — testing actions 248
Making Jest work with Vuex, Nuxt.js, Firebase,
and Vue components 254
Testing Vue components using Jest 256
Snapshot testing with Jest 259
Summary 263

Chapter 10: Deploying Using Firebase 265
Deploying from your local machine 265
Setting up CI/CD using CircleClI 268
Setting up staging and production environments 276
What have we achieved? 279
Summary 280

Index 283

[iv]



Preface

This book is about web development using Vue.js, Bootstrap, and Firebase. We will
start with a simple tutorial, followed by the detailed explanation of it, and then,

we will create a fully functional application from scratch. The application itself is

a simple Pomodoro timer with integrated office workouts during the Pomodoro
breaks. Throughout the book, you will go through the whole software development
process, starting from the definition of requirements, user stories, and mockups,
proceeding to the basic scaffolding, and followed by enriching the application with
complex features such as authentication, routing, collaborative content, and finishing
thorough testing and deployment. You will learn how to use Firebase to implement
the authentication and storage for your Vue application and, in the end, how to
deploy it. You will enjoy using Bootstrap along with your Vue application in order
to easily implement complex components and achieve their responsiveness. You
will revisit your trigonometry knowledge by having fun in using it with SVG and
Vue.js to build a reactive timer component. So, technology-wise, we will cover as the
following topics:

* Vue s data binding and single file components

* Routing using vue-router

* Server-side rendering and code splitting using nuxt.js

* Testing with jest

* Real-time databases with Firebase

* Authentication using Firebase Authentication

* Deployment using Firebase

* Combining SVG, trigonometry, and Vue.js in reactive components

In the end, you will have your fully functional and fun Pomodoro application ready
to use on a daily basis and to keep you fit at your workplace.

[v]



Preface

What this book covers

Chapter 1, Please Introduce Yourself — Tutorial, covers a tutorial that implements a
"Hello, I am <name>" page. It uses Vue.js, combined with Bootstrap, for the basic
form and Firebase for basic storage.

Chapter 2, Under the Hood - Tutorial Explained, explains the technologies used in the
first chapter — Vue.js, Bootstrap, and Firebase. Not only does it cover each framework
or service but it also explains how these tools can work together.

Chapter 3, Let's Get Started, describes what is going to be implemented during the
course of the book. It describes the application and its requirements. It contains some
user stories and defines the functionality of the application.

Chapter 4, Let it Pomodoro!, covers the bootstrapping phase of the Vue.js application
using the Webpack loader. It adds the basic functionality to the Pomodoro timer. It
also explains how to use Bootstrap's grid along with basic Vue.js directives.

Chapter 5, Configuring Your Pomodoro, enriches the application with configuration

and personalization. It also covers data storage and retrieval mechanisms using the
Firebase database and the Vuex state management architecture. It covers the usage of
Bootstrap modals and forms along with the component system of Vue.js.

Chapter 6, Please Authenticate!, adds the authentication based on the Firebase auth API
to the application. On the visualization layer, it explains how to build forms powered
by Bootstrap.

Chapter 7, Adding a Menu and Routing Functionality Using vue-router and Nuxt.js,
explains how to embed the navigation menu into the application using Bootstrap's
elements and a routing functionality with the Vue router. It also describes how to
use nuxt.js in order to achieve server-side rendering, code splitting, and routing in
Vue applications.

Chapter 8, Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.
js, adds collaborative content to the application. Again, it uses Bootstrap-powered
forms, Vue.js to add reactivity to these forms, and Firebase to store the collaborative
content.

Chapter 9, Test Test and Test, describes how to add unit and end-to-end tests to the
Vue.js application.

Chapter 10, Deploying Using Firebase, covers the process of deployment of the
application using the Firebase hosting solution.

[vil




Preface

What you need for this book

The requirements for this book are as follows:

* A computer with an active internet connection
* Text editor/IDE
* Nodejs

Who this book is for

This book is for web developers or for someone who wants to become one. You will
build a full-stack web application from scratch until its deployment. Even if you are
an experienced programmer, you will probably find something new for yourself. If
you are working with Vue.js, you will find out how to connect a Vue.js application to
the Google Firebase backend. If you work with Bootstrap, you will learn how nicely
it plays along with a Vue.js application. If you already work with Vue.js, Bootstrap,
and Firebase, you will find out how to leverage the power of these three things to
easily build complex applications. If you already use these technologies together,
you will have fun building yet another application during the course of this book.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Now run npm install inside the newly created directory "

A block of code is set as follows:

//LandingPage.vue
export default {
components: {
Logo,
Authentication,
GoToAppLink,
Tagline

[ vii ]




Preface

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

//LandingPage.vue
export default {
components: {
Logo,
Authentication,
GoToAppLink,
Tagline
}
}

Any command-line input or output is written as follows:

# npm install sass-loader node-sass --save-dev

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

%j%‘\ Warnings or important notes appear in a box like this.
p— ~\| -
(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

[ viii ]



Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WIinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Vue.js-2-and-Bootstrap-4-Web-Development. We also

have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

[ix]



Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the

changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/Vuejs2andBootstrap4WebDevelopment
ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[x]




Please Introduce
Yourself — Tutorial

Hello, user

Hello dear reader, my name is Olga. Would you like to introduce yourself as well?
Open https://pleaseintroduceyourself.xyz/ and leave a message for me and
the other readers.

The page itself doesn't look like anything special. It's just a web page that allows
users to write a message, and then, this message is immediately displayed along
with the other users' messages in a reverse chronological order:

& & & Secure hipsipleaseintroduceyourseil.yz

Hello! Nice to meet you!

Pioase introduc

Hella | am Olga

I created this page using Vue js,
Bootstrap and Firebase. The tutorial of
this web page is described in the first
part of the "Web Development with
Bootstrap and Vue js® book. If you are
reading it at the moment, thanks a lot! |
am also the author of "Learning Vue js 2°
Book. | Hke Vue.js very much, | also love
studying and teaching, reading and
writing, skiing and diving. It's a great
pleasure meeting you!

Hello, | am a Vue Js fan

Vue (pronounced [viw, like view) is a
progressive framework for building user
interfaces. Unlike other monolithic
frameworks, Ve is designed from the
ground up to

Incrementally adoptable.

existing projects. On the other hand, Vue
is alsa perfectly capable of pawering
sophisticated Single-Page Applications
when used in combination with modern
tegling and supperting libraries.

Hello | am Dina

Great to ses you here!

Hello | am Taissa

Nice 1o meet you

Hello! 1 am Rul

Have a great day

The please introduce yourself page

[11]




Please Introduce Yourself — Tutorial

Do you want to know how long it took me to create this page? It took me around half
an hour, and I am not only talking about writing the HTML markup or reversing the
order of the messages but also about the database setup, deployment, and hosting.

You probably noticed that the very first message never changes, and it's actually my
message where I wrote that I love to learn and teach. This is indeed true. That's why
I will devote this chapter to teaching you how to create the exact same page in just 15
minutes. Are you ready? Let's go!

Creating a project in the Firebase
console

If you still don't have a Google account but you really want to continue with this
tutorial, then well, I am really sorry, but you will have to create one this time.
Firebase is a service powered by Google, so a Google account is more than required.

If you already have your account, log in to the Firebase console:
https://console.firebase.google.com/.

Let's start by creating your new Firebase project. Click on the Add project button.
Give it a meaningful name and select your country from the list. Once you are done,
click on CREATE PROJECT:

Create a project X
Project name

PleaselntroduceYourself|

Country/region (@

Germany -

CANCEL CREATE PROJECT

Create a project using the Firebase console

[2]



Chapter 1

You're done! Now, you can use the Firebase-powered backend for your application,
including a real-time database, authentication mechanism, hosting, and analytics.

Adding a first entry to the Firebase

application database

Let's add the first database entry. Click on the Database tab on the left-hand side.
You should see a dashboard similar to this one:

:‘ Firebase PleaseintroduceYourself =

Overview Realtime Database
DATA RULES BACKUPS

& Analyties
25 Authentication €5 hitps /pleaseintioduceyoursell-Abbaa frebaseio com/ e A
i aaabee W  Default security rules require users to be authenticated LEARN MORE DISMIZS
B stonage
& Hesting pleaseintroduceyoursell-dbbda: null
) Functions
B TestLab
#{  Crash Reporting

Real-time database on the Firebase project dashboard

Let's add an entry called messages and the very first message as a key-value object
containing title, text, and timestamp by clicking on the plus sign:

please‘lntroduceyourself-4bb4a: X

- Name + X

Name + x
L/ Name Value [Hello! I am the reader | x
{Name Value [This is a nice tutorial | X
- Name Value [1493876895264 | x

CANCEL ADD

Adding the first value to the Firebase real-time database

[31]



Please Introduce Yourself - Tutorial

Click on the ADD button, and your database will persist the added entry. Add

as many message entries as you wish or leave it like that. Now, for the sake of
simplicity, let's change the rules of our database and make it readable and writable
for everyone. Beware! Never do this for something in production for public usage.
In this example, we just want to test some Firebase features, but your future
applications must be smart and secure. Click on the RULES tab and type the
following rules in the opened text area:

{

"rules": {
".read": true,
".write": true

}
}

So, your RULES tab now looks like this:

Realtime Database

DATA RULES BACKUPS USAGE

Unpublished changes | PUBLISH DISCARD

v Default security rules require users to be authenticated

1 ¥

2w “rules”: {

3 ".read": true,
4 ".write": true
5 e

6}

Rules tab after changing the rules

Click on the PUBLISH button and you're done! Now, it would be interesting to
start using this data within our application. However, first we have to create this
application and connect it to our project.

Scaffolding a Vue.js application

In this section, we will create a Vue.js application and connect it to the Firebase
project that we created in the previous step. Make sure you have Node.js installed on
your system.

[4]



Chapter 1

You must also install Vue.js. Check out the instructions page from the official
Vue documentation at https://vuejs.org/v2/guide/installation.html.
Alternatively, simply run the npm install command:

$ npm install -g vue-cli

Now, everything is ready to start scaffolding our application. Go to the folder where
you want your application to reside and type the following line of code:

vue init webpack please-introduce-yourself

It will ask you several questions. Just choose the default answer and hit Enter
for each of them. After the initialization, you are ready to install and run your
application:

cd please-introduce-yourself

npm install

npm run dev

If everything is fine, the following page will automatically open in your
default browser:

& (@ localhost:B0B0/#/ ¥

Welcome to Your Vue.js App

Essential Links

Core Docs  Forum  Gitter Chat  Twitter
Docs for This Template

Ecosystem

vue-router vuex vue-loader awesome-vue

Default Vue.js application after installing and running

If not, check the Vuejs official installation page again.

[51]



https://vuejs.org/v2/guide/installation.html

Please Introduce Yourself — Tutorial

Connecting the Vue.js application to the
Firebase project

To be able to connect your application to the Firebase project, you must install
Firebase and VueFire. Run the npm install command while being in the root
directory of your new application:

cd please-introduce-yourself

npm install firebase vuefire --save

Now, you can use Firebase's powerful features inside your application. Let's check if
it worked! We just have to do the following;:

* Import Firebase

* Create a config object containing the Firebase app ID, project domain,
database domain, and some other stuff needed to connect it to our project

*  Write the code that will use the Firebase API and the created config file to
connect to the Firebase project.

e Useit

Where do we get the necessary information for the configuration of our Firebase
instance? Go to the Firebase console, click on the cog to the right of the Overview
tab, and select Project Settings. Now, click on the Add Firebase to your web app
button:

There are currently no apps in the project PleaselntroduceYourself

Add Firebase to Add Firebase to Add Firebase to
your i0S app your Android app your web app

Click on the Add Firebase to your web app button

[6]



Chapter 1

A popup with all the information we need will open:

Add Firebase to your web app X

Copy and paste the snippet below at the bottom of your HTML, before other script tags

<script sre="https://www.gstatic.com/firebasejs/3.8.8/firebase.js"></script>
<script>
// Initialize Firebase
var config = {
apikey: .
authDomain: "pleaseintroduceyourself-4bbda.firebaseapp.com”,
databaseURL: "https://pleaseintroduceyourself-4bb4a.firebaseio.com”,
projectId: “pleaseintroduceyourself-4bbda”,
storageBucket: "pleaseintroduceyourself-4bbda.appspot.com”
messagingSenderId: '

5

firebase.initializeApp(config);
</script> COPY

All the information needed for the config object is here

OK, now, just leave this popup open, go to your Vue application, and open the

main. js file that resides in the src directory of your application. Here, we need to
tell our Vue application that it will use VueFire. In this way, we will be able to use all
the features provided by Firebase inside our application. Add the following lines to
the import section of the main. js file:

//main.js
import VueFire from 'vuefire'
Vue.use (VueFire)

Great! Now, open the App . vue file. Here, we will import Firebase and initialize our
Firebase application inside the Vue application. Add the following lines of code
inside the <script> tags:

//RApp.vue
<scripts>
import Firebase from 'firebase'

let config = ({
apiKey: 'YOUR API KEY',
authDomain: 'YOUR AUTH DOMAIN',
databaseURL: 'YOUR DATABASE URL',
projectId: 'YOUR PROJECT ID',
storageBucket: 'YOUR_STORAGE_BUCKET',
messagingSenderId: 'YOUR_MESSAGING SENDER_ID'

}

let app = Firebase.initializeApp (config)
</scripts>

[71



Please Introduce Yourself — Tutorial

Copy what's needed for the config object information from the popup that we
opened in the previous step.

Now, we will obtain the reference to our messages database object. It is pretty simple
using the Firebase API:

//RApp.vue
<scripts>

<. 00>

let db = app.database()

let messagesRef = db.ref ('messages')
</scripts>

We're almost done. Now, we just have to export the messages object in the Vue data
object so that we are able to use it inside the template section. So, inside the export
section, add an entry with the firebase key and point messages to messagesRef:

export default {
firebase:
messages: messagesRef
b
}

Now, inside the <template> tag, we will use a v-for directive to iterate through the
messages array and print all the information about each message. Remember that
each message is composed of title, text,and timestamp.So, add the following
<div> to the template:

//RApp.vue

<div v-for="message in messages">
<h4>{{ message.title }}</h4>
<p>{{ message.text }}</p>
<p>{{ message.timestamp }}</p>

</div>

In the end, your App . vue component will look like this:

//RApp.vue
<template>
<div id="app">
<div v-for="message in messages">
<h4>{{ message.title }}</h4>
<p>{{ message.text }}</p>
<p>{{ message.timestamp }}</p>
</div>

</div>

[8]




Chapter 1

</template>

<scripts
import Firebase from 'firebase'

let config = {
apiKey: 'YOUR API KEY',
authDomain: 'YOUR AUTH DOMAIN',
databaseURL: 'YOUR DATABASE URL',
projectId: 'YOUR PROJECT ID',
storageBucket: 'YOUR STORAGE BUCKET',
messagingSenderId: 'YOUR MESSAGING SENDER ID'

let app = Firebase.initializeApp (config)
let db = app.database()
let messagesRef = db.ref ('messages')
export default {
name: 'app',
firebase:
messages: messagesRef

}
}

</script>

If you had chosen the default linter settings on the app initialization, the code that
you will copy from Firebase and paste into your application will not pass linter.
That's because the default linter settings of Vue-cli initialization would require the
use of single quotes and no use of semicolon at the end of the line. By the way, Evan
You is particularly proud of this no semicolon rule. So, bring him this pleasure;
remove all the semicolons from the copied code and replace the double quotes with
single quotes.

Aren't you curious to check out the page? If you are not running your application
already, switch inside the application folder and run it:

cd please-introduce-yourself

npm run dev

[o]



Please Introduce Yourself — Tutorial

I am pretty sure that you are seeing the following screenshot:

Hello! | am the reader

This is a nice tutorial

1493070095264

The Vue.js web application displaying the information from the Firebase database

Congratulations! You have successfully completed the first part of our tutorial,
connecting the Vue.js application to the Firebase real-time database.

Adding a Bootstrap-powered markup

Let's add basic styling to our application by adding Bootstrap and using its classes.

First of all, let's include Bootstrap's css and Js files from Bootstrap's cbN. We will use
the upcoming version 4, which is still in alpha. Open the index.html file and add
the necessary 1ink and script tags inside the <head> section:

//index.html
<link
rel="gtylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/
bootstrap.min.css"crossorigin="anonymous" >

<script src="https://code.jquery.com/jquery-3.2.1.min.
js"crossorigin="anonymous"></script>

<script src="https://npmcdn.com/tetherel.2.4/dist/js/tether.min.js">
</script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/
js/bootstrap.min.js"crossorigin="anonymous">

</script>

You've probably noticed that I added jQuery and Tether dependencies as well; this is
because Bootstrap depends on them.

Now, we can use Bootstrap classes and components in our application. Let's start by
adding a bit of styling using Bootstrap's classes.

[10]



Chapter 1

I will wrap the whole app div tag into the jumbotron class, and then, I will wrap the
content of it into the container class. So, the template will look a bit different:

//RApp.vue
<template>
<div id="app" class="jumbotron"s>
<div class="container">
<hl>Hello! Nice to meet you!</hl>
<hr />
<div v-for="message in messages">
<..00>
</div>
</div>
</div>

</template>

Check out the page; doesn't it look different? Now, I would like to wrap up the
content of each message into the card class. Cards seem to be an appropriate
container for this kind of things. Check out the official Bootstrap documentation
regaﬂﬁng(ﬁrdsathttps://v4—alpha.getbootstrap.com/components/cardﬁ
I will add div tag with a card-group class and put all the cards with messages
inside this container. Thus, I don't need to be worried about the positioning and
layout. Everything becomes responsive just by itself! So, the markup for the
messages will look like this:

//RApp.vue
<template>
<..00>
<div class="card-group">
<div class="card" v-for="message in messages">
<div class="card-block">
<h5 class="card-title">{{ message.title }}</h5>
<p class="card-text">{{ message.text }}</p>
<p class="card-text"><small class="text-muted">Added on
{{ message.timestamp }}</small></p>
</div>
</div>
</div>

</template>

[11]


https://v4-alpha.getbootstrap.com/components/card/
https://v4-alpha.getbootstrap.com/components/card/

Please Introduce Yourself - Tutorial

Check out the page. It's almost looking nice! In a few steps, we were able to nicely
display the messages that are stored in our Firebase database. Try to add another
message using the Firebase real-time database dashboard. Keep the web page open!
Fill in the Firebase database fields:

® O @ b riesseinvrogucevoursst - Res x 1| Oiga [ Flease introduce Yoursel! x Oige.

&« & | [ https-/fconscle firebase google.comjproject pleasa-intraduca-yourseli-4_. | & | (@ localhost:B0A0/#( r

= Firebase

Realtime Database

Hello! Nice to meet you!

DATA RULES USAGE

Hello! | am the reader
©3  hitpsy/pleaseiniroduceyourself-bbda firebaseio.com/ e O This Is a nice tutorial

Added on 1483070086284
pleaseintraduceyourself-4bb4a

I-—m'!llﬂ" b
— Name |1 | N

Name [title | Value [Hello! 1 am wlga | =
J i

Name [text | Value [Tsn't Firabase graat?
|———Nlm' [timestamp | Value [1493157632796 *

CANCEL ADD

a0

Adding an entry to the Firebase database

Now, click on the ADD button. The new message automatically appears on your
web page:

[ Piease introduce Yourselt ® Diga

C | @ locathost: 80804/ -4

Plon

Realtime Database

Hello! Nice to meet you!

DATA WLES B

Hello! | am the reader Hello! | am Olga
G hitps://planssintroduceyourseli-Abbda firsbassio com/ ° e : This is @ nice twtorial Isn't Firebase great?
Added on 1493070095264 Added on 1403157622796

pleaseintroduceyourselt-4bbda
= messages
o0
=1

|- text: “Tsn't Firebase great?”

|- timestamp: 1493157632796
— title: "Hello! I am Olga”

Once we click on the ADD button, the new message immediately appears on our web page

[12]




Chapter 1

Isn't it great? Now, we can add as many messages as we want. We can also delete
them and manipulate them, and all changes will be automatically propagated to
our web page. This is pretty nice, but do we really want to keep playing with our
backend database to see something changing on the web page? Of course, not! We
want the users of our page to be able to add their messages using our page and not
our database dashboard. Let's go back to our Vue.js application and add a form that
will allow us to add new messages.

Adding a form using Bootstrap

Let's add a simple form to our application that will enable us to add new messages
to our message board. Check Bootstrap's documentation regarding forms at
https://v4-alpha.getbootstrap.com/components/forms/.

Let's add a form just before the list of messages. This form will contain the input for
the title, the text area for the message, and the submit button. It will look like this:

//RApp.vue
<template>
<div id="app" class="jumbotron"s>
<div class="container">
<hl>Hello! Nice to meet you!</hl>
<hr />
<form>
<div>
<input maxlength="40" autofocus placeholder=
"Please introduce yourself :)" />
</div>
<div>
<textarea placeholder="Leave your message!" rows="3">
</textarea>
</div>
<button type="submit">Send</button>
</form>
<hr />
<. 00>
</div>
</div>

</template>

[13]



https://v4-alpha.getbootstrap.com/components/forms/
https://v4-alpha.getbootstrap.com/components/forms/

Please Introduce Yourself — Tutorial

Look at the page. Doesn't look that beautiful, does it?

Hello! Nice to meet you!

Please introduce yourst

Leave your message!

Send

Our form doesn't look so beautiful

In fact, let's be honest, it just looks ugly! However, with Bootstrap classes, it is really
easy to fix it. If we add the form-control class to the input and textarea elements,
the form-group class to each div tag that surrounds these elements, and probably
the btn btn-primary class to the submit button...well, we will have something

nicer!

Hello! Nice to meet youl!

Please introduce yourself :)

Leave your message!

The form looks really nice with the Bootstrap classes

OK, so now we have a nice-looking form, but if we try to fill it out, nothing will
happen. We have to make it functional, and for that, we will use the power of Vue,js.

Making things functional with Vue.js

So, what do we want to achieve with our form? We want the new message to be
created. This message has to be composed of title, text, and the timestamp. We also
want to add this message to our messages reference array.

[14]



Chapter 1

Let's call this new message newMessage and add it to the data attributes of App . vue:

//RApp.vue
<scripts>
<...>
export default {
data () {
return {
newMessage: {
title: '',
text: '',

timestamp: null

</script>

Now, let's bind the title and the text of this newMessage object to input and
textarea of our form. Let's also bind a method called addMessage to the submit
handler of our form so that the whole form's markup looks like this:

<template>
<. ..>
<form @submit="addMessage">
<div class="form-group"s>
<input class="form-control
"v-model="newMessage.title"maxlength="40"
autofocus placeholder="Please introduce yourself :)" />
</div>
<div class="form-group"s>
<textarea class="form-control"v-model="newMessage.text"
placeholder="Leave your message!" rows="3"></textarea>
</div>
<button class="btnbtn-primary" type="submit">Send</buttons>
</form>
<. ..>

</template>

[15]



Please Introduce Yourself — Tutorial

Well, we have bound the "addMessage" method to the submit callback of the
form, but we haven't defined this method yet! So, let's define it. Add the methods
object to our App . vue export section and define the addMessage method inside it.
This method will receive the event attribute from our form and will just grab the
newMessage object and push it into the messagesRef array. Doesn't it sound easy?

//RApp.vue
<scripts>
export default {
<...>
methods: {
addMessage (e) {
e.preventDefault ()
this.newMessage.timestamp = Date.now()
messagesRef.push(this.newMessage)
}
}
}

</script>

Now, open the page, fill in the form, and hit the Send button. You'll see your
message immediately appearing on the list of messages:

Hello! Nice to meet you!

Hello!

| love you

Hello! | am the reader Hello! | am Olga Hello!

This is a nice tutorial Isn't Firebase great? | love you

Added on 1483070085264 Added on 1493157632796 Added on 1493241493824

The message we introduce in the form is immediately propagated to the messages list

[16]



Chapter 1

There is still something we need to fix. We don't want the values we fill the form
with to remain there after our message is added to the messages list. So, we need to
clear it inside the addMessage method. Probably, some basic check, at least for the
title, would also be nice. So, rewrite the method as follows:

//RApp.vue
addMessage (e) {
e.preventDefault ()
if (this.newMessage.title === '') {
return

}

this.newMessage.timestamp = Date.now/()
messagesRef .push (this.newMessage)
this.newMessage.text = '!'
this.newMessage.title = '!
this.newMessage.timestamp = null

}

Now, if you start adding more messages, things look a bit weird. The way we're
displaying the messages is probably not the best way for our case. Do you remember
we wrapped up our message cards into div with the card-group class? Let's try to
replace it with the card-columns class and check whether it looks better. In fact, it
does. Let's keep it like that.

Adding utility functions to make things
look nicer

We already have a fully functional single-page application, but it still lacks some
awesomeness. For example, it's not really beautiful that the time appears as a
timestamp. Let's write the utility function that will transform our timestamp into
something beautiful.

We will use the Moment.js library (https://momentjs.com/). Install it in the
application folder:

npm install moment --save

Create a folder and call it utils. Add a file called utils.js to this folder.
Import moment and write the following function:

//utils.js
import moment from 'moment'

function dateToString (date) {
if (date) {
return moment (date) . format ("MMMM Do YYYY, h:mm:ss a')

[17]



Please Introduce Yourself — Tutorial

}

return''

}
Export it in the end of the file:

//utils.js
<. ..>

export { dateToString }

Let's import this function to App . vue and use it to format our timestamp. Open the
App.vue file and add the import statement at the beginning of the script section:

//RApp.vue

<scripts>
import Firebase from 'firebase'
import { dateToString } from './utils/utils'’
<...>

</script>

In order to be able to use this function within the Vue template, we have to export it
in the methods section. Just add a new entry to the methods object:

//RApp.vue
<scripts>
export default {

<...>
methods: {
dateToString: dateToString,
<...>
</script>

Since we use ES6, we can just write the following lines of code:

methods:
dateToString

}

Now, we can use this method inside the template section. Just wrap the message.
timestamp binding object in the dataTostring method:

<p class="card-text"><small class="text-muted">Added on {{
dateToString (message.timestamp) }}</small></p>

Check out the page! Now, you can see beautiful dates instead of Unix timestamps.

[18]



Chapter 1

Exercise

I have a small exercise for you. You saw how easy it was to add a utility function to
transform the timestamp into the nicely formatted date. Now, create another utility
function and call it reverse. This function should be used to display the array of
messages in the reversed order, so the most recent messages should appear first.
Check the code for this chapter in case you're in doubt.

Extracting message cards to their own
component

You probably noticed that the first message of the demo application is always there.
It's not moved by other, fresh message items. So, it seems that it's kind of a special
message, and it's treated in a special way. In fact, it is. If you want to make a card
sticky, just add it before the card element that iterates through other messages.

You can also add some class to this card to show that it's really special. In my case,

I added Bootstrap's card-outline-success class that outlines the element in a nice
green color:

//BApp.vue
<div class="card-columns">
<div class="card card-outline-success">
<div class="card-block">
<h5 class="card-title">Hello!</h5>
<p class="card-text">This is our fixed card!</p>
<p class="card-text"><small class="text-muted">
Added on {{ dateToString(Date.now()) }}</small></p>
</div>
</div>
<div class="card" v-for="message in messages">
<div class="card-block">
<h5 class="card-title">{{ message.title }}</h5>
<p class="card-text">{{ message.text }}</p>

<p class="card-text"><small class="text-muted">
Added on {{ dateToString(message.timestamp) }}</small></p>

</div>
</div>
</div>

Now, you have a nice sticky card with a color that differs from other cards' color.
But... don't you see any problem? We have the very same code repeated twice in our
template. I'm pretty sure that you are aware of the rule of thumb of any developer:
DRY —don't repeat yourself!

[19]



Please Introduce Yourself — Tutorial

Let's extract the card to an individual component. It's really easy. Add a component
called card.vue to the components folder. The code for this component is really
simple:

//Card.vue
<template>
<div class="card">
<div class="card-block">
<h5 class="card-title">{{ title }}</h5>
<p class="card-text">{{ text }}</p>
<p class="card-text"><small class="text-muted">
{{ footer }}</small></p>
</divs>
</div>
</template>

<scripts>
export default {
props: ['title', 'text', 'footer']
}

</script>

Now, let's invoke this component from 2App.vue with different values for title, text,
and footer. First of all, it should be imported and exported in the Vue components
object:

//RApp.vue
<scripts>
<..0.0>
import Card from './components/Card'
<..00>
export default {
<..00>
components: {
Card

}

</scripts>

[20]




Chapter 1

Now, we can use the <card> element within our template. We need to bind title, text,
and footer. Footer is actually the text that says Added on .... So, the markup for the
first card will look like this:

//RApp.vue
<template>
<div class="card-columns">
<card class="card-outline-success":title="'Hello!'"
:text="'This is our fixed card!'":footer="
'Added on ' + dateToString(Date.now())"></card>
</divs>
</divs>
</template>

The list of other messages will follow the same logic. For each message from the
messages array, we will bind the corresponding message's entries (title, text, and
timestamp). So, the markup for the list of message cards will look like this:

<div class="card-columns">

<. 00>
<card v-for="message in messages"
:title="message.title":text="message.text":footer="
'Added on ' + dateToString(message.timestamp) "></card>

</div>

</div>

As you can see, we have replaced fourteen lines of code with only two lines! Of
course, our component also contains some lines of code, but now, we can reuse it
again and again.

Exercise

The way we've extracted the card code into its individual component is, without
any doubt, great, but the way we are binding attributes for the first message is a bit
ugly. What if at some point we need to change the message's text? First of all, it's not
easy to find the text inside the markup. Also, it is pretty difficult to manage the text
inside the markup attributes, because we have to be really careful not to mess up
with double/single quotes. And, admit it, it's just ugly. Your task for this exercise is
to extract title, text, and date for the first message into something nicer (for example,
export it in the data object) and bind it the same way we bind other messages. If you
have doubts regarding this exercise, check out this chapter's code.

[21]




Please Introduce Yourself — Tutorial

~ Don't be confused by the v-bind directive in the provided code.

% We've been using it already, just its shortened version— the name

=" of a bound property written after the semicolon. So, for example,
v-bind:messages is the same as :messages.

Deploying your application
Well, now that we have a fully working application in our hands, it's time to make it
public. In order to do this, we will deploy it to Firebase.

Start by installing Firebase tools:
npm install -g firebase-tools

Now, you have to tell your Firebase tools that you are actually a Firebase user who
has an account. For this, you have to log in using Firebase tools. Run the following
command:

firebase login
Follow the instructions to log in.

Now, you must initialize Firebase in your application. From the application root, call
the following;:

firebaseinit

You will be asked some questions. Select the third option for the first question:

¥hat Firebase (LI features do you want to setuy
Data Jeploy Fir e Realtime D e R

Select the Hosting option for the first question

Select the PleaseIntroduceYourself project from the list of projects to associate to
the application.

[22]



Chapter 1

Initialization is over. Check whether the file called firebase.json has been created
in the project's folder. This file can contain an innumerous number of configurations.
Check out the official Firebase documentation in this regard at https://firebase.
google.com/docs/hosting/full-config. For us, the very basic indication of

the public directory to be deployed would be enough. The directory where

vue-cli builds the production-ready assets is called dist; therefore, we will want
the content of this directory to be deployed. So, add the following line of code to
your firebase.json file:

{

"hosting": {
"public": "dist",
"ignore": [

"firebase.json",

ll**/'*lll

"**/node _modules/**"

}
}

Do not forget to save your firebase.json file. Let's now build and deploy our
application. Sounds like a big devops task, right? It's not really huge. Run npm build
and then firebase deploy:

npm run build

firebase deploy

How difficult is it? After the successful deployment, Firebase will output the URL
of your project. Now, you can start playing with it and send it to your friends. It's
probably not the most beautiful URL in the world, right? Maybe you would like to
connect it to your domain? Of course, it is possible!

[23]


https://firebase.google.com/docs/hosting/full-config

Please Introduce Yourself - Tutorial

Extra mile — connecting your Firebase
project to a custom domain

It's fairly easy to connect the Firebase project to a custom domain. First of

all, of course, you need to buy this domain. For this application, I bought the
pleaseintroduceyourself domain with the cheapest top-level domain, .xyz. It cost me
a bit more than a dollar per year on GoDaddy (https://godaddy . com). After you
have your domain, it's really easy. Go to the Firebase web console of the project.
Click on the Hosting tab on the left-hand side. Then, click on the CONNECT
DOMAIN button:

Hosting
DASHBOARD USAGE
Domain
CONNECT DOMAIN
Domain Type Status
pleaseintroduceyourself-4bb4a.firebaseapp.com Default

Click on the CONNECT DOMAIN button

In the popup, input your domain name:

Connect domain

o Add domain 2 Verify ownership 3 Golive

Enter the exact domain name you want people to see when they visit your site. It can be a domain
(yourdomain.com) or a subdomain (app.yourdormnain.com)

Domain

pleaseintroduceyourself.xyz

D Redirect pleaseintroduceyourself.xyz to an existing website @

CANCEL CONTINUE

Input your domain name

[24]



https://godaddy.com)
https://godaddy.com)

Chapter 1

It will suggest that you add a TXT DNS record to your domain. Just open your DNS
provider page, select your domain, find out how to add DNS records, and add the
record with the TXT type. In my case, with GoDaddy, the record adding section looks
like this:

Type * Host * TXT Value *

TXT = pleaseintroduceyourself.xyz google-site-verification=VoIN9cl
TTL *

1/2 Hour =

Adding the DNS TXT record to our domain

After the handshake is established (mind, it might take some time), Firebase will
propose you the final step —adding the A record to your domain. Follow the exact
same procedure as in the previous step; just instead of records of type TxT, add
records of type A.

It will take some time until the changes are completely propagated. In my case, it
took around an hour. After a while, you will be able to open your new page with the
https://<your domains.<your top level domain> address.In my case, as you
already know, it's https://pleaseintroduceyourself.xyz/.

Summary

In this chapter, we followed a tutorial where we have developed a single-page
application from scratch. We used the Vue.js framework to structure our application,
the Bootstrap framework to apply style to it, and the Firebase platform to manage the
application's persistence layer and hosting.

In spite of being able to achieve a considerable result (a fully functional deployed
application), we did everything without a deep understanding of what is going on
behind the scenes. The tutorial didn't explain what Vue.js, Bootstrap, or Firebase
was. We just took it for granted.

[25]



Please Introduce Yourself — Tutorial

In the next chapter, we will understand the underlying technologies in detail.
We will do the following;:

Take a closer look at the Vue.js framework, starting from a basic
understanding and then covering topics such as directives, data binding,
components, routing, and so on

Have a deeper look at the Bootstrap framework, and check what is possible
to achieve using it and how to do it

Get to know the Firebase platform better; we'll gain some basic
understanding about it and go through more complex topics such as data
storage or functions

Check out different techniques to use these three different projects to add
simplicity, power, and flexibility to our applications

[26]



Under the Hood — Tutorial
Explained

In the previous chapter, we built a simple single-page application from scratch.
We used Vue.js to implement the application's functionality, Bootstrap to make it
beautiful, and Firebase to manage the backend part of the application.

In this chapter, we will get to know all these technologies in depth and see how
and why they can work nicely together. We will mostly discuss Vue.js since this
will be our number one framework to build our application. Then, we will touch
on Bootstrap and Firebase to get a basic understanding of how powerful these
technologies are. Having said that, in this chapter we will:

* Discuss the Vue.js framework, reactivity, and data binding. Not only will
we cover Vue.js' basics, but we will also dig into topics such as directives,
components, routing, and so on.

* Discuss the Bootstrap framework. We will see what is possible to achieve
with it, discuss how it can be useful to lay out an application, and discuss
how its components can enrich your application with useful self-contained
functionality.

* Discuss the Firebase platform. We will see what it is, what functionalities
it provides, and how to use its API to bring those functionalities to the
application.

*  Check how all the mentioned technologies can be combined together in order
to achieve simplicity in the development of complex things.

[27]



Under the Hood - Tutorial Explained

Vue.js

The official Vue.js website suggests that Vue is a progressive JavaScript framework:

The Progressive
JavaScript Framework

GET STARTED ( ciTHUB )

Screenshot from the official Vue.js website

What does that mean? In a very simplified way, I can describe Vue.js as a JavaScript
framework that brings reactivity to web applications.

It's undeniable that each and every application has some data and some interface.
Somehow, the interface is responsible for displaying data. Data might or might not
change during runtime. The interface usually has to react somehow to those changes.
The interface might or might not have some interactive elements that might or might
not be used by the application's users. Data usually has to react to those interactions,
and consequently, other interface elements have to react to the changes that have
been done to the data. All of this sounds complex. Part of this complex architecture
can be implemented on the backend side, closer to where data resides; the other part
of it might be implemented on the frontend side, closer to the interface.

Vue js allows us to simply bind data to the interface and relax. All the reactions that
must happen between data and the interface will happen on their own. Let's look
at a very simple example where we will bind a message to the page title. Start by
defining a simple HTML structure:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Vue.js - binding data</title>
</head>
<body>
<div id="app">
<hl>Hello, reader! Let's learn Vue.js</hl>

[28]



Chapter 2

</div>
</body>
</html>

Now, let's initialize a Vue.js instance on this page and bind its data to the <h1>
element. For this simple example, we will use a standalone vue. js file. Download

it from the Vuejs official page at https://vuejs.org/js/vue.js. Import it within
the <script> tag. Let's now initialize a Vue instance. The minimum that a Vue.js
instance needs is the element to be attached to and the data object. We want to attach
our Vue instance to the main <div> tag with the app ID. Let's also create a data object
containing an entry for the name:

var data = {name:'Olga'}
Let's create our Vue.js instance with this data:

new Vue ({
el: '#app',
data

1

Let's now bind data to our HTML element. We will do this using double curly
brackets ({{}}). Once the element has been attached to the vue instance, everything
that is inside of it becomes special —even the curly brackets. Everything that you put
inside the double curly brackets will be interpreted and evaluated. So, if you put, for
example, 2 + 2 inside the curly brackets, 4 will be rendered on the page. Just try it.
Any expression, any statement will be compiled and calculated. Don't be too excited
though; don't start writing chunks of JavaScript code inside those brackets. Let's
leave the computation to the script logic that is written where script resides. Use the
brackets to access the data that you pass to your vue instance. So, in our case, if you
insert { {name}} anywhere inside your HTML markup, you will see the name that
we passed to the Vue instance within the data object. Let's, for example, replace the
word reader inside the <h1> element by { {name} }:

<hl>Hello, {{name}}! Let's learn Vue.js</hl>

If you refresh the page, you will see that the name we passed to the Vue instance is
rendered. Try to change the data.name attribute in the developer tools console. You
will see the changes immediately propagated. What we see here is a one-way data
binding — the changes that happen to data are reactively propagated to the element
to which the data is bound. Vue.js also supports two-way data binding; so, the
changes that happen to the element on the page are also propagated to the data to
which the element is bound.

[29]



Under the Hood - Tutorial Explained

To achieve this, just bind the given piece of data to the element using the v-model
attribute. Let's, for example, add a text input to the page and bind it to the data
attribute name:

<input type="text"v-model="name">

Now, once you start typing in the text input, the change is immediately propagated
to any other element bound to this piece of data:

What's your name? | QOlga the best

Hello, Olga the best! Let's learn Vue.js

The data changes are reactively propagated through all the bound elements
The complete code for the HTML markup and JavaScript code looks like this:

<body>
<div id="app">
<div>
<label for="name">What's your name? </labels>
<input id="name" type="text" v-model="name">
</div>
<hl>Hello, <strong>{{name}}</strong>! Let's learn Vue.js</hl>
</div>
<script src="vue.js"></scripts>
<scripts
var data = {name:'Olga'}

new Vue ({
el: '#app',
data
hH
</script>
</body>

As you can see, there is nothing difficult at all. All you need is to pass data to the
Vue instance and bind it to the elements of your page. The Vue framework does
everything else. In the upcoming chapters, we will find out what else is possible
using Vue.js and how to Bootstrap a Vue.js project.

[30]



Chapter 2

Vue project — getting started

So, now that we know what Vue. js is for and what its main focus is, we would like to
get our hands dirty and start a Vue.js project and explore all the Vue.js features with it.
There are plenty of ways of including Vue into the project. Let's explore all of them.

Including directly in script

You can use Vue.js by just downloading it and including it within the <script>
tag. Actually, we've done it in the previous section. So, if you have a project already
running and want to use some Vue,js features, you can simply include the vue. js
file and use it.

CDN

If you don't want to bother downloading and managing Vue versions yourself, you
can simply use the CDN version. Just include https://unpkg.com/vue script in your
project and you are good to go! It will always be in sync with the latest Vue version:

<script src="https://unpkg.com/vue"></scripts>

NPM

If you are all into the Node.js development, you can simply add an npm dependency
to your package.json file. Just run npm install on your project‘s root:

npm install vue --save

Vue-cli

Vue provides a nice and clean command-line interface that is perfect for
bootstrapping new projects. First of all, you must install vue-cli:

npm install --global vue-cli

Now, you can start a fresh new project using the Vue command-line interface. Check
out the vue-cli repository for the detailed documentation at https://github.com/
vuejs/vue-cli.

As you can see, it is possible to setup a project using different templates —starting
from a simple single HTML page project and going to a complex webpack project
setup. The command that should be used for scaffolding a Vue project is as follows:

vue init <template-name><project-name>

[31]


https://unpkg.com/vue

Under the Hood - Tutorial Explained

The following templates are available:

* webpack: This is a full-featured webpack setup with vue-loader.
It supports hot reload, linting, testing, all kind of pre-processors, and so on.
* webpack-simple: This is a simple webpack setup that is useful for
quick prototyping.
* browserify: This is a full-featured browserify setup with vueify that also
supports hot reload, linting, and unit testing.

* browserify-simple: This is a simple browserify setup with vueify that can be
used for quick prototyping.

* simple: This generates a simple HTML page that includes Vue,js. It is perfect
for quick feature exploration.

It is also possible to create custom templates. Check out the documentation at
https://github.com/vuejs/vue-cli#icustom-templates and try it.

In this book, we will use the webpack template. We will include some loaders, and
we will use linters, unit, and end-to-end testing techniques. To bootstrap a project
using the webpack template, simply run the following line of code:

vue init webpack my-project

Now that we know how to scaffold a project with vue-cli, let's check what Vue offers
besides what we already explored in the previous section.

Vue directives

Vue directives are no more than just attributes attached to your HTML elements.
These directives provide some extra functionality to your template.

All these directives start with the prefix v-. Why? Because it's Vue! You have already
used some of them in the previous section. Now, we will see what directives exist
and what you can do with them.

[32]




Chapter 2

Conditional rendering

Open our Hello page and remove user's input. Something not really beautiful
is happening:

What's your name?| |

Hello, ! Let's learn Vue.js

"Hello,!"

It would be interesting to render the Hello, name message conditionally, depending
on the user input. If there is a name, render it; if there's no name, don't render.

For example, only render the Hello, name message if there's a name. Directives
v-show and v-if are used exactly for the conditional render. Open the index.html
file of this example and let's change it. Wrap the Hello, <strong>{{name}}</
strong> ! part into span and add a v-show attribute with the name value:

<hl><span v-show="name">Hello, <strong>{{name}}</strong>! </span>Let's
learn Vue.js</hl>

Now, if you refresh the page and remove the input completely, the message will only
say Let's learn Vue.js:

What's your name? | |

Let's learn Vue.js

The v-show attribute allows conditional rendering

[33]



Under the Hood - Tutorial Explained

Try to replace the v-show directive with the v-if directive. The end result will be
quite the same. Why do both exist then? Check out the developer tools' elements tab
and try to add or remove the text in the input. You will see that in the case of v-show,
the conditional span will just gain a display:none property if the condition does not
verify. In the case of v-if, the element disappears completely:

What's your name? What's your name?
Let's learn Vue.js Let's learn Vue.js
v-show v-if

[x £| Elements Profiles Console > ¢ X [k £| Elements Profiles Console Source

<div id="app"> <div id="app">
<diveu</div> <divu</div>
<hl> <hl>
<span style="display: none;"> == $@ i :
"Hello, " "Let's learn Vue.js"

<strong></strong> </h1l>
npen </div>
</span> <script src="vue.js"></script>
"Let’s learn Vue.js" <script>.</script>
</h1> </body>
</div> </html>

Using the v-show attribute manipulates the display CSS property, whereas using the v-if attribute adds/
removes an element completely

When do we use either attribute? If you have a lot of elements that should be visible
depending on some data (this data is really dynamic, so it will happen a lot during
the runtime), I would advise using the v-show attribute, because adding or removing
elements in DOM is a rather expensive operation that might affect the application's
performance and even the DOM itself. On the other hand, if the elements should

be conditionally rendered only once, let's say, at the application startup, use the

v-1if attribute. If some elements should not appear, they will just not be rendered.
Thus, the number of elements on the page will be reduced. Consequently, the
computational cost of the application will be also reduced, as, now, it has fewer
elements to go through and compute.

Text versus HTML

I am sure you know pretty well from the previous chapter how to bind some data
using the mustache syntax { {}}.

[34]




Chapter 2

Since this is a technical book about programming, we have to have a cat here ¢3!
A cat is pretty easy to render. Its Unicode is U+1F638; thus, we just have to add the
&#x1f638; code to our HTML:

<div>&#x1£638;</div>

And, surely, we will have a cat:

Hello, Olga! Let's learn Vue.js

What's your name?| Qiga

> 4

Emoji cat saying hello to us

It's nice, but if we want to replace the cat with a dog, we will have to use Google to
look for another Unicode representing a dog and replace it. If at some point we want
to replace it with a unicorn, we will have to run the same procedure. Moreover, just
by looking at our code, we will not be able to say what we are actually rendering
unless we know all emoji codes by &hearts;. It might be a good idea to map the
names of the emojis to their codes.

Let's add a map of some of them. Open your HTML file and add the following lines
of code to the <script> area:

//index.html
<scripts>
const animalCodes = {
dog: '&#x1f436;"',
cat: '&#x1f638;',
monkey: '&#x1£435;'"',
unicorn: '&#x1£984;"
}
const data = {
animalCodes

}

new Vue ({
el: '#app',
data

3]

</scripts>

[35]



Under the Hood - Tutorial Explained

Now, you can bind the values of this map to your HTML elements. Let's try to do it
using the mustache annotation:

<div>{{animalCodes.cat}}</div>

Refresh the page. The result is not exactly the same as we expected, is it?

Hello, Olga! Let's learn Vue.js

What's your name? Olga

&H#x11638;

The code is rendered instead of the actual cat emoji

This is happening because mustache interpolation actually interpolates text. Using
mustache interpolation is the same as using the v-text directive:

<div v-text="animalCodes.cat"></div>

What we actually want to render here is not the text; we want the value of the
Unicode for the emoji being rendered as HTML! This is also possible with Vue.js.
Just replace a v-text directive with the v-html directive:

<div v-html="animalCodes.cat"></div>

Now, we will get our cat back, and we know exactly what we are rendering when we
are looking at the code.

So, remember to use the v-text directive or mustache annotation for text
interpolation and the v-html directive for interpolating pure HTML.

[36]



Chapter 2

Loops
In the previous section, we put a cat on our page. In this section, I would like to have
a whole zoo! Imagine that our zoo has a cat fgig, adog (,9 , a monkey , and, of

course, a unicorn % ‘.We would like to display our zoo in an ordered list. Of course,
you can write a simple markup that will look like this:

<ol>
<li>&#x1f638;</1i>
<li>&#x1f436;</1i>
<li>&#x1f435;</11i>
<li>&#x1£f984;</11i>
</ol>

However, this makes your code unreadable, and if you want to add more animals to
your zoo or remove one of them, you would have to know all these codes by heart.
In the previous section, we added a map for emoji animals Unicode. Let's use it in
our markup. You already learned that we must use a v-html directive so that the
codes are interpolated as HTML. Hence, our markup will look like this:

<div id="app">
<ol>
<li v-html="animalCodes.cat"></1li>
<li v-html="animalCodes.dog"></1i>
<li v-html="animalCodes.monkey"></1li>
<li v-html="animalCodes.unicorn"></1i>
</ol>
</div>

It looks better, but still there's something we could improve. Imagine if you want

to render all the animals from the emoji world! There are plenty of them. For each
animal, you will have to repeat the code of the list item. Every time you would like to
reorder the list, remove some elements, or add new ones, you will have to deal with
this markup. Wouldn't it be nice if we just had an array of animals that we want to
render and then somehow iterate over it and render what's inside of it? Of course, it
would! It is possible using the v- for directive. Create an array of animals using the
following lines of code:

const animals = ['dog', 'cat', 'monkey', 'unicorn']

[37]



Under the Hood - Tutorial Explained

Export it in the vue data object:

var data = {
name: 'Olga’',
animals,
animalCodes

}

Now, you can use this array in the v- for directive and replace multiple <11i>
elements by only one:

<ol>
<h2><span>{{name}}! </spansHere's your Zoo</h2>
<li v-for="animal in animals" v-html="animalCodes[animal]"></1li>

</ol>
The result will be quite nice:

Hello, Olga! Let's learn Vue.js

What's your name? Olga
Olga! Here's your Zoo

e

[ |

e

2. =

@
L3

Emoji zoo rendered using the v-for directive

Binding data

We dealt a lot with rendering different data using Vue.js in the previous section;
so now, you are already familiar with different ways of binding it. You know how
to interpolate data as text and as HTML, and you know how to iterate over arrays
of data.

[38]



Chapter 2

We've also seen that two-way data binding is achieved using the v-model directive.
We used it to bind a name to the input element:

<input id="name" type="text" v-model="name">

The v-model directive can only be used with the input, select, and textarea
elements. It also accepts some modifiers to be used with. Modifiers are special
keywords that affect the input in some way. There are three modifiers that can be
used with this directive:

* .lazy: This will only update the data on a change event (try it with our input
and you'll see that changes in the input will only affect other parts where the
name is used when the Enter button is pressed and not on each key press)

* .number: This will cast your input to number

* .trim: This will trim the user's input

It is also possible to chain the modifiers:
<input id="name" type="text"v-model.lazy.trim="name">

So now, we know nearly everything about binding data to the elements. What if

we want to bind some data to the elements' properties? Imagine, for example, the
dynamic value for the image's source property or class property depending on some
data value. How could we do that?

For this, Vue provides a v-bind directive. With this directive, you can bind whatever
you want!

As an example, let's show a sad picture when the name is not defined and a glad
picture when the name is defined. For this, ['ve created two pictures, glad.png and
sad.png, and put them into the images folder of my application. I will also export
their paths into the data object:

//index.html
var data = {
name: 'Olga’',
animals,
animalCodes,
sadSrc: 'images/sad.png',
gladSrc: 'images/glad.png’

[39]




Under the Hood - Tutorial Explained

Now, I can create an image and bind its source using v-bind:src, and I'll provide

a JavaScript expression as the value. This expression will check the value of the
name. If it's defined, the glad image will be applied, and if not, the sad image will be
applied instead:

<img width="100%" v-bind:src="name ? gladSrc : sadSrc">

The shortcut for the v-bind directive is :, so we can just write the following line
of code:

<img width="100%" :src="name ? gladSrc : sadSrc">

Here is how our page looks when the value of name is defined:

Hello, Olga! Let’s learn
Vue.js

What's your name? Olga

Olga! Here's your Zoo

€9

-4
'_ﬂ.ﬂ.‘

2,

Happy face image appears when the name is defined

[40]



Chapter 2

If you remove the name from the input field, the image will automatically change!
Open the page and try to remove the text from the input field and add it again.
Continue removing and adding, and you will see how fast the image is changed to
the corresponding one. This is how the page looks when the name is undefined:

Let's learn Vue.js

What's your nameT

Here's your Zoo

£9

> 4
J-n 'h(

‘e
2.

Once the input is cleaned, the image source is immediately changed

Basically, you can do exactly the same with any property binding, for example, class:

<label for="name" v-bind:class="{green: name, red: !name}">What's your
name? </labels>

You can also bind properties to pass to the children components. We will see how to
do it in the section about components.

Handling events

Besides the direct form of data binding to the elements, we want to handle some
events because this is what our users do on the page — trigger some events so that
they happen. They click, they hover, they submit forms—and all these events must
be handled somehow by us. Vue provides a very nice way of attaching listeners to
events on any DOM element and provides methods that can handle those events.
The good thing about these methods is that they have direct access to Vue data using
the this keyword. In this way, we can use methods to manipulate data, and since
this data is reactive, all the changes will be immediately propagated to the elements
to which this data is bound.

[41]



Under the Hood - Tutorial Explained

In order to create a method, you just have to add a methods object to the export
section of your Vue application. In order to attach this method to any event listener,
use the v-on directive with the corresponding event after the colon. Here is

an example:

v-on:sumbit="handleSubmit"
v-on:click="handleClick™"

v-on:hover="handleHover"

The shortcut for this directive is @, so we could rewrite all these directives as follows:

@sumbit="handleSubmit"
@click="handleClick"
@hover="handleHover"

It should sound familiar to you. Do you remember the tutorial that we followed
in the Chapter 1, Please Introduce Yourself — Tutorial? Do you remember that we
were listening on the submit method of the message, adding form and calling
addMessage? Check it out. Our form with its submit directive looked like this:

//please-introduce-yourself/src/App.vue
<template>

<form @submit="addMessage">

<...>

</form>
</template>

Then, inside the methods section, we actually had the addMessage method defined:

//please-introduce-yourself/src/App.vue
<scripts>
<...>

export default {

<...>
methods: {
addMessage (e) {
<. ..>
b
b
}
</scripts>

Does it start to make more sense now?

[42]


https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=5fa73aed-2440-8f0f-7fdd-58ff21983283
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=5fa73aed-2440-8f0f-7fdd-58ff21983283

Chapter 2

Just to understand it better, let's add some methods to our zoo page! Wouldn't it be
nice if you could compose your own zoo? Let's add a multiple select element that
will contain all possible options, and your zoo will be populated from something that
you actually choose! So, let's do the following:

* Add more animals to our animalCodes map

* Add another array called animalsForzoo

* Use this new array in our ordered list that displays the zoo

* Add a multiple select box composed of the keys of the animalCodes map

e Attach a @change listener to this select box that will call the
populateAnimalsForZoo method

* Create a populateAnimalsForzoo method that will populate the
animalsForZoo array with the selected options from our multiple select
element

Doesn't it sound easy? Of course, it does! Let's get started. So, at first, add more
animals to our animalCodes map:

var animalCodes =
dog : '&#x1f436; ",
cat . '&#x1£638; "',
monkey : '&#x1£435;"',
unicorn : '&#x1£984;',
tiger : '&#x1f42f; ",
mouse : '&#x1£424d; "',
rabbit : '&#x1£f430;"',
cow : '&#x1f42e; ",
whale : '&#x1£433; ",
horse : '&#x1£434; ",
pig : '&#x1£437;"',
frog : '&#x1£438; "',
koala : '&#x1f43c;!

}

Let's also rethink our animals array and generate it out of our map. In this

way, every time we need to add some new animal, we just add its key-value
name-unicode to the mapping object instead of maintaining both object and array.
So, our animals array will look like this:

var animals = Object.keys (animalCodes)

[43]




Under the Hood - Tutorial Explained

Now, we need another empty array. Let's call it animalsForZoo, and let's populate
our zoo from this new array. Since it is empty, our zoo will also be empty. However,
we are about to create a method that will populate this array. So, creating an array is
easy, and don't forget to export it in a data object:

<scripts>
<. ..>
var animalsForZoo = []
var data = {
name: 'Olga’',
animals,
animalCodes,
animalsForZoo,
sadSrc: 'images/sad.png',
gladSrc: 'images/glad.png'
}
new Vue ({
el: '#app',
data
3

</scripts>

Don't forget to replace the usage of the animals array in our zoo display with the
new animalsForZoo array:

<ols>
<1li v-for="animal in animalsForZoo"><span class="animal"
v-html="animalCodes [animal] "></span></1li>

</ol>

I know that now you are worried that your zoo on the page is empty, but give us a
couple of minutes and we will take care of that!

First of all, let's create a multiple select element that will be populated based on the
animals array:

<select multiple="multiple" name="animals" id="animals">
<option v-for="animal in animals"
:value="animal">{{animal}}</option>

</select>

Now, finally, we will attach an event listener to our select box. Let's attach a listener
to the change event. Let's tell it to call the populateAnimalsForzoo method. Our
directive will look like this:

@change="populateAnimalsForZoo"

[44]




Chapter 2

The whole select element will obtain a new attribute:

<select @change="populateAnimalsForZoo" multiple="multiple"
name="animals" id="animals">

<option v-for="animal in animals"
:value="animal">{{animal}}</option>
</select>

Great! But there's no such method as populateAnimalsForZoo. But there's us!
Let's create it. This method will just iterate through the checked options of the
animals selected as input and push them into the animalsForzZoo array:

new Vue ({

el: '#app',
data,
methods: {
populateAnimalsForZoo (ev) {
this.animalsForZoo = []

const selected =
option:checked')
for (var i = 0; i < selected.length; i++)

this.animalsForZoo.push(selected[i] .value)

document.querySelectorAll ('#animals

}
1)

Check out how the whole HTML and JavaScript code look after all these changes in

the chapter2/examplel-vue-intro/index.html file. This is how our testing page
looks after the changes:

Hello, Olga! Let's learn Vue.js

What's your name? Oiga

Olga! Select your animals

Olga! Here's your Zoo

-

. @

The zoo is being populated based on the user's choice

[45]



Under the Hood - Tutorial Explained

The page is messy, right? However, look how many things you have already learned
just by using this page. And, admit it, it's a fun learning process! And we are not
done with it yet.

Now that you have learned how to add methods and event listeners, I will teach
you how we could have done the exact same thing without this method and
v-bind:change. Remove all the code we just added and just add v-model to our
select element with the animalsForZoo value:

<select v-model="animalsForZoo" multiple="multiple" name="animals"
id="animals">
<option v-for="animal in animals"
:value="animal">{{animal}}</option>
</select>

Now, everything we have just done inside the method is handled automatically by
Vue! Isn't it great?

Vue components

We came to this chapter having a midsize HTML page in our hands that contains a
lot of different parts. We could have thought of more things, for example, adding
interactivity to each animal of our zoo, adding the possibility of feeding animals, or
having some interesting facts about each animal showing up every time you hover
over the animal's icon. At some point, let's face it, the HTML file along with its
JavaScript will become unmaintainable.

Can you also see that our visualization layer (HTML) works along with our logical
layer (JavaScript)? So, they kind of form blocks, items, bricks... For example, we have
a piece of code that is responsible for the Hello name section. We have another block
that contains our zoo. Each animal in the zoo is another item.

Call these things whatever you want, but they are undeniably separated pieces of
structure and logic that, when brought together, form the whole puzzle. If you build
a wall from a unique piece of material and decide to change some parts of the wall, it
will not be the easiest task.

[46]



Chapter 2

So, imagine, you build this wall and incorporate some yellow stars, blue polygons,
red squares, and so on into it. Then, you decide that your yellow stars should be
black. You have to change all your stars. Then, you decide that your green ellipsis
should be a smiling face instead. What now? Change all ellipses, but first you have to
find all the places in the wall that contain those ellipses. This is your wall, try to find
all ellipses in it:

ki O L

The wall built as a whole piece with incorporated parts of different colors and forms

Now, imagine that each piece actually resides on its individual brick. You can change
them, add them, and remove them as much as you want. If you want to change the
appearance of some of the wall elements, you just change this one brick and all the
wall pieces containing this brick will change, because all in all, it's just another brick in
the wall. So, instead of having the wall full of incorporated strange pieces, you have
four bricks, and you change them whenever you need to change the piece of wall
that relies on that brick:

If you need to change the appearance of an element in the wall, you just change the corresponding brick

[47]



Under the Hood - Tutorial Explained

The wall is composed of bricks. These bricks are our components. What if we could
also have components built with HTML, CSS, and JavaScript and our application
could be built of those components? Did I just say "what if"? There's no "what if."
We already have it. Vue.js supports component-based application structure. It's
really easy to create components with Vue.js. The only three things you have to do
are as follows:

1. Create a component, and give it a template, data, methods, and whatever
you need to give to it.

Register it in the Vue app under the components object.

Use it within the application's template.

For example, let's create a component that will simply render a header element
saying Hello. Let's call it Hel1loComponent. It will only contain the template string;:

var HelloComponent = {
template: '<hl>Hello!</hl>'

Now, we can register this component inside our Vue application initialization code:

new Vue ({
el: '#app',
components: {

HelloComponent

|3)

Now, this component can actually be used inside the HTML section of the Vue
application's element:

<div id="app">
<hello-component></hello-component>
</divs>

So, the whole section will look something like this:

<body>
<div id="app">
<hello—component></hello—component>
</div>
<script src="vue.js"></scripts>
<scripts>
var HelloComponent = {

[48]



Chapter 2

template: '<hl>Hello!</hl>'

}

new Vue ({

el: '#app',
components: {
HelloComponent
}
)
</scripts>
</body>

Someone might ask, "What's so powerful in these components?" The amount of
written code is actually the same as if I would have just written a piece of HTML
that does the same. What's the point? Yes, sure, but in this example, our component
had just one template inside. A template composed of one line only. We could have
a huge template in there, and we could have some methods in this component and

also its own data! Let's, for example, add an input for the name to this component
and the name to its data object:

var HelloComponent = {
template: '<div>' +
'<input v-model="name" />' +
'<hl>Hello! <strong>{{name}}</strong></hl>' +
'</divs>"',
data() {
return {
name: ''

}
}
}

If you need to reuse this component, you can do it as many times as you want:

<div id="app">
<hello-component></hello-component>
<hello-component></hello-component>

<hello-component></hello-component>
</div>

[49]



Under the Hood - Tutorial Explained

Then, you will end up with three independent components on your page:

Olga

Hello Olga!

Rui

Hello Rui!

Taissa

Hello Taissa!

Using components helps avoid repeated code

These components are very nice, but there's still a big amount of code written within
the same JavaScript code block. We declare components all in one place, and if there
are too many of them, the application will become unmanageable again. Besides
that, this HTML code within the template string is also not the most maintainable
thing ever.

Well, if you are thinking so, I have some good news for you. Each component can be
stored in its own file with its own HTML, JavaScript, and CSS code. These are special
files with the .vue extension. Inside each file, there's a <script > section for the
JavaScript code, a <style> section for the CSS code, and a<templates section for the
HTML code. Isn't it convenient? Such components are called single-file components.
Have a look at the first chapter's code —there's a main component called 2pp . vue
and there's also the MessageCard.vue component created by us. Isn't it nice?

If you want to use single-file components in your application, you must scaffold this
application using some modular bundler, for example, webpack. We already talked
about vue-cli and how easy it is to bootstrap a Vue application using the webpack
template. Let's port the messy page with zoo to the webpack bundled application.
Run the initialization and installation scripts:

vue init webpack zoo
cd zoo
npm install

npm run dev

[50]



Chapter 2

Now, open the App . vue file and let's fill it up with our messy zoo application.
The <script> section looks like this:

<scripts>
<. 00>
var data = {
name: 'Olga’',
animals,
animalCodes,
animalsForZoo,
sadSrc: '../static/images/sad.png’,
gladSrc: '../static/images/glad.png’
}
export default {
name: 'app',
data () {
return data
}
}

</scripts>

Note the highlighted areas. I've copied the images into the static folder. Another
important thing is that the data inside the component should be used as a function
that returns an object and not as an object itself. Since the data object will still be one
single instance across multiple components, the whole data object with its properties
must be assembled in a dedicated function.

The rest of the script is completely the same.

The template area of the component is pretty much the same as the HTML structure
from the previous example. Check out the code in the chapter2/example3-
components-started folder.

Let's extract some of the functionality into the individual component. What do you
think if we extract the zoo to its individual component? Create a Zoo . vue file in
the components folder. Copy the template for the animals list to this component's
<templates> area:

//Zoo.vue
<template>
<div v-if="animals.length > 0">
<h2><span v-if="name">{{name}}! </spansHere's your Zoo</h2>
<ol>
<li v-for="animal in animals"><span class="animal"
v-html="animalCodes [animal] "></span></li>
</ol>
</div>
</template>

[51]




Under the Hood - Tutorial Explained

Now, we should tell this component that it will receive animals, name,
and animalCodes properties from the parent component that will call the
following component:

//Zoo.vue
<scripts>
export default {
props: ['animals', 'animalCodes', 'name']
}

</script>

Now, open the main App . vue component, import the Zoo component, and export it
in the components object:

//RApp.vue
<scripts>
import Zoo from './components/Zoo'
<...>
export default {
name: 'app',
components: {
Zoo

}
}

</script>

Now, we can use this component inside the template! So, replace the whole div tag
that contains our zoo with just the following code:

//RApp.vue

<template>
<...>
<zZoo :animals="animalsForZoo"
:animalCodes="animalCodes" :name="name"></zo00>

<. o0.0>

</template>

Check out the page! Everything works as it did earlier!

Exercise

Extract an animal to the individual component and call it inside the zoo within the
v-for directive. Each animal has to have a small functionality that will display

a small description when clicking its face (on c1lick). I am pretty sure you will
easily solve this exercise. If you need help, check out this chapter's code inside the
example4—components/zoodhfckmy.

[52]



Chapter 2

Vue router

Single Page Applications (SPA) are great. They came to make our life easier.

And it definitely is. With a bit of JavaScript code, you can achieve all the
functionality that had to be done on the server side before, and the whole page
should have been replaced just to display the result of that functionality. It is a
golden era for web developers now. However, there is a problem that SPAs are
trying to solve —navigation. History API and the pushState method (https://
developer.mozilla.org/en-US/docs/Web/API/History API) are already solving
it, but it has been a long process until it became an established technology.

Our users are used to controlling their where I am and where I want to be using
browsers' navigation buttons. If the whole functionality is located on the same page,
how will these buttons help with the navigation? How do you use Google analytics
to check which page (that, in fact, is the same) is being accessed more by your users?
The whole concept is totally different. Of course, these kinds of applications are a
lot faster because the number of requests is significantly reduced, and of course, our
users are grateful for that, but they are not changing their web surfing habits just
because we changed the way we implement things. They still want to go back. They
expect that if they refresh the page, the page will open on exactly the same place
where they were right before hitting the refresh button. They expect that they will
understand where they are just by looking at the page's URL and checking what's
behind the slash. For example, if it's http: //mySite/store then it's a store; if it's
http://mySite/settings, then most likely I'm somewhere where I can check my
current settings and change them.

There are a lot of ways to achieve navigation without having to transform
single-page applications into multiple-page applications. You can include an extra
layer of logic on your application and change window.location.href every time a
different URL is required — this will cause the page to refresh, which is not nice. You
can also use HTML5 history APL It would not be the simplest thing to maintain,
but it might work.

We all know that good developers are lazy, right? Being lazy means not solving
problems that are already solved by someone else. This problem of navigation

is being solved by many frameworks and libraries. Not only can you use some
third-party libraries that help you deal with the routing in your application, but
you can also use the mechanisms provided by the framework of your choice. Vue.
js is one of the frameworks that offers a way of dealing with routing. You just map
the URL path to your components and everything just works! Check out the official
documentation of vue-router library at https://router.vuejs.org/en/.

[53]



https://developer.mozilla.org/en-US/docs/Web/API/History_API)
https://developer.mozilla.org/en-US/docs/Web/API/History_API)
http://mySite/settings
https://router.vuejs.org/en/
https://router.vuejs.org/en/

Under the Hood - Tutorial Explained

In order to be able to use vue-router, you must install it for your project:

npm install vue-router -save

Optionally, vue-router usage can be selected on the Vue project initialization with
vue init.

Now, you can use Vue router in your application. Just tell Vue to use it:

//main.js
import Vue from 'vue'
import VueRouter from 'vue-router'

Vue.use (VueRouter)

Let's create a simple routing example. We will have three components, one of
which we consider as the Home component, meaning that it should be shown when
someone navigates to the root route /. Let's call the second one Hello component
and the third one Bye component. Open the example5-router-started code files
from Chapter 2, Under the Hood - Tutorial Explained. You will find all the described
components in the components directory:

<template>
<hl=Welcome to your application</hl3
/template>

The structure of the example application where we are going to try Vue router

[54]




Chapter 2

Now, we must create a router instance. The constructor receives the options object
as a parameter. This object can contain different configurable values. The most
important one is the array of routes. Each entry of this array should consist of an
object that indicates the path of the route and its corresponding component.

First, we will import all the needed components, and then, our router instance will
look like this:

//main.js

import Home from '@/components/Home'
import Hello from '@/components/Hello'
import Bye from '@/components/Bye'

<...>

var router = new Router ({
mode: 'history',
routes: [

{

name: 'home',
component: Home,
path: '/!'

name: 'hello’',
component: Hello,
path: '/hello’

b

{
name: 'bye',
component: Bye,
path: '/bye’

}

]

3]

If you want to understand better what the mode: history option is, check out the
domﬂnenkﬁkn1pageathttps://router.vuejs.org/en/essentials/history—
mode . html that explains it in a really nice manner. Now, we have to pass the router
option to our Vue application. This option will point to our new router instance:

//main.js

new Vue ({
el: '#app',
template: '<App/>',
components: { App },
router

3]

[55]


https://router.vuejs.org/en/essentials/history-mode.html
https://router.vuejs.org/en/essentials/history-mode.html

Under the Hood - Tutorial Explained

Now, the whole application knows that we use this router. One more important step:
we need to include the router component into the main component's template. For
this, it is enough to just include the <router-views tag in the App.vue component's
template:

//RApp.vue
<template>
<div id="app">
<img src="./assets/logo.png">
<router-view></router-view>
</div>
</template>

Check out in more detail the router-view component at https://router.vuejs.
org/en/api/router-view.html.

Voila! Run the application if you haven't done so already:
npm run dev

Open the page at http://localhost:8080 and check that it is displaying

our home page component. Then, type http://localhost:8080/hello and
http://localhost :8080/bye in the browser's address bar. Check that the content
of the page actually changes according to the URL path:

: I;'-,' locathas HOE I || € H IG; locathass B0 I L | @ localhost 8080/

Welcome to your application Hello! Bye!

Basic routing with vue-router

Of course, you are already thinking about how to create a simple menu, pointing an
anchor <a> element to your defined paths in the router. Don't think too much. Just
use a <router-1link> component with the to attribute pointing to the path of your
choice. For example, to display a simple navigational menu for our router example
application, we could write something like this:

//RApp.vue
<template>
<div id="app">
<router-1link to="/">Home</router-link>

[56]


http://localhost:8080
http://localhost:8080/bye

Chapter 2

<router-link to="hello">Hello</router-link>
<router-link to="bye">Bye</router-link>
<router-views</router-views
</div>
</template>

Alternatively, if you don't want to write your paths all over again, you can reference
your routes by name and use the v-bind: to directive or simply use :to:

//BApp.vue
<template>
<div id="app">
<router-link :to="{name: 'home'}">Home</router-link>
<router-link :to="{name: 'hello'}">Hello</router-link>
<router-link :to="{name: 'bye'}">Bye</router-link>
<router-views</router-views
</div>
</template>

Check how the code looks in the example6-router folder.

Open the page and check whether all the links actually work! Click on them several
times and check whether you will actually go back if you click on the browser's go
back button. Isn't it fantastic?

Vuex state management architecture

Do you remember our example with the Zoo and animal components? There

was some data that had to be propagated from the main component to the

child component of the child component. If this grandchild component had the
possibility of somehow changing data, this change would have to be propagated
from the child component to its parent component and so on until data reaches
the main component. Don't think that you would do it simply with a v-model
binding attribute. Vue has some restrictions regarding binding data to the children
components via props. It is strictly one way. So, if the parent component changes
the data, the child component's bindings will be affected, but it will never happen
the other way around. Check out Vue's official documentation in regarding this at
https://vuejs.org/v2/guide/components.html#One-Way-Data-Flow.

[57]



Under the Hood - Tutorial Explained

If you don't believe me, let's try it. Imagine that in our zoo page example, we would
extract the introduction part to the separate component. I am talking about this part
of our messy zoo page:

What's your name?| Clga

What if we'd like to extract this part to the separate component?

It seems easy. We have to declare a component, let's say Introduction, tell it that it
will receive the name property, and just copy-paste HTML from App . vue to this new
component. Inside App . vue, we will import this new component and export it inside
the components object of the Vue instance. Of course, we will replace the HTML that
we already copied to the new component with the <introductions tag and bind the
name property to it. Isn't it easy? Our Introduction.vue file will look like this:

//Introduction.vue
<template>
<divs>
<label for="name" :class="{green: name, red: !name}">
What's your name? </labels
<input id="name" type="text" v-model.trim="name">
</div>
</template>
<scripts>
export default {
props: ['name']
}

</scripts>
Our App . vue file will import, export, and call:

//RApp.vue
<template>
<div id="app" class="jumbotron">
<...>
<introduction :name="name"></introduction>
<...>
</div>
</template>

<scripts>

<...>

[58]



Chapter 2

import Introduction from './components/Introduction'

<...>
export default {
components: {
200,
Introduction

}

</script>

Check out this code in the code bundle of the Chapter 2, Under the Hood - Tutorial
Explained in the example7-events-started/zoo folder. Run npm install and npm
run inside this folder:

cd example7-events-started/zoo

npm install

npm run dev
Check out the page. It looks like it did before. Try to change the name inside the

input. First of all, it doesn't change in other places where it should change, and
second, our dev tools console is full of warnings and errors:

Elements Console » ® 19 H x

v B Preserve log
i
tt

Hello, Let's

learn Vue.js

What's your name?
[Olgal|Select your animals

horse
pig
frog
koala

Here's your Zoo

_
1. ::t%

The name is not updated where it should have been updated, and the console is full of errors

[59]


https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=cc609a84-5d59-ba8b-b64b-58ff21d2c99c
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=cc609a84-5d59-ba8b-b64b-58ff21d2c99c

Under the Hood - Tutorial Explained

It seems the documentation is right: we can't change the value of data passed as
property to the child component. What can we do then? We can emit events and
attach event listeners to the component, and change the data on the event. How do
we do this? It's simple. First of all, let's call the property being passed by something
that is not name, for example, initialName. Then, open the Introduction
component and create a data function that will bind this component's name

object to initialvalueprops. In this way, we are at least telling Vue that it is

not our intention to try to change parent's data from the child. So, script of the
Introduction.vue component will look like this:

//Introduction.vue
<scripts>
export default {
props: ['initialName'],
data () {
return {
name: this.initialName

}
}
}

</script>
We also have to change the way we bind name to the component inside App . vue:

//RApp.vue
<introduction :initialName="name"></introductions>

Now, if you check the page, you will at least see that Vue doesn't complain anymore
about something illegal that we try to do. However, still, if we try to change the
name, the changes are not propagated to the parent, which is quite understandable;
these changes only affect the data of the component itself. Now, we have to attach
the event to the input element. This event will call a method that will finally emit
the event to the parent component:

//Introduction.vue
<template>
<divs>
< ..>
<input id="name" type="text"
v-model.trim="name"@input="onInput">
</div>
</template>
<scripts>
export default {

<. .. >

[60]



Chapter 2

methods:
onInput () {
this.$emit ('nameChanged', this.name)

}
}
}

</script>

Now, the only thing we have to do is to bind the nameChanged event listener to the
<introduction> component and call the method that will change the name of the
App.vue data object:

//RApp.vue
<template>
<...>
<introduction @nameChanged="onNameChanged" :initialName="name"></
introductions>
<...>
</template>
<scripts>
export default {

<...>

methods: {

onNameChanged (newName) {
this.name = newName

}
}
}

</script>

Check the page. Now, everything works as before! Check the code for this solution
inside the example7-events/zoo code folder for this chapter.

Well, it was not very difficult, but do we want to emit all these events every time we
need to update the state? And what if we have components inside the components?
And what if we have other components inside those components? Will it be the
events handling hell? And if we have to change something, will we have to go to all
those components? Argh! Wouldn't it be great to have the application's data in some
kind of centralized storage that would provide a simple API for its management and
then we could just call this storage's methods in order to retrieve and update the
data? Well, this is exactly what Vuex is for! Vuex is a centralized state management
inspired by Redux. Check out its official documentation at http://vuex.vuejs.
org/en/.

[61]


http://vuex.vuejs.org/en/
http://vuex.vuejs.org/en/

Under the Hood - Tutorial Explained

Now, in a nutshell, the three most important parts of a Vuex store are state, getters,
and mutations:

* State: This is an initial state of the application, basically the data of the
application

* Getters: These are exactly what you think, functions that return data from
the store

e  Mutations: These are functions that can mutate data on the store

A store can also have actions. These things are like wrappers for mutations with
a bit more capacity. If you want to check what are they about, refer to the official
documentation at http://vuex.vuejs.org/en/mutations.html.

Let's add the Vuex store to our zoo application to check how it works. First of all, we
need to install vuex. Open the code for Chapter 2, Under the Hood — Tutorial Explained
from the example8-store-started/zoo folder and run npm install:

cd example8-store-started/zoo

npm install vuex --save

Let's create our store. Start by creating a folder named store with the index. js file
inside. We will put all our store data inside this file. Before doing this, tell Vue that
we will use Vuex:

//store/index.js
import Vue from 'vue'
import Vuex from 'vuex'

Vue.use (Vuex)

Now, we can create a new Vuex instance. It should receive state, getters,
and mutations. Let's define them:

//store/index.js
import Vue from 'vue'
import Vuex from 'vuex'

Vue.use (Vuex)

const state = {

}

const getters = {

}

const mutations = {

[62]



http://vuex.vuejs.org/en/mutations.html
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=cc609a84-5d59-ba8b-b64b-58ff21d2c99c
https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=cc609a84-5d59-ba8b-b64b-58ff21d2c99c

Chapter 2

export default new Vuex.Store ({
state,
getters,
mutations

)
Nice! Now, let's add all the data that resides in our application to the state:

//store/index.js
const animalCodes = {
dog: '&#x1f436;',
<...>
koala: '&#x1f43c;'
}
const animalsDescriptions = {
dog: 'I am a dog, I bark',
<...>
koala: 'I am a koala, I love eucalyptus!'

}

const animals = Object.keys (animalCodes)
const state = {

name: 'Olga’',

animals,

animalCodes,

animalsDescriptions,

animalsForZoo: [],

sadSrc: '../static/images/sad.png',
gladSrc: '../static/images/glad.png'

}

Now, if you inject the store on the Vue application initialization, all the components
and their children will have access to the this. $store instance. Let's inject it:

//main.js

import Vue from 'vue'

import App from './App'
import store from './store'

new Vue ({
el: '#app',
template: '<App/>',
components: { App },
store

1)

[63]



Under the Hood - Tutorial Explained

Now, if we replace all the data with computed properties from the store in App . vue
(except animalsForzoo, which is bound as a property for our zoo), the application
will look quite the same:

//RApp.vue
<scripts>
import Zoo from './components/Zoo'
import Introduction from './components/Introduction'

export default {
name: 'app',
components: {
Z00,
Introduction
b
data () {
return {
animalsForZoo: []

}
b
computed: {
name () {
return this.$store.state.name
3
animals () {
return this.$store.state.animals
3
animalCodes () {
return this.$store.state.animalCodes
3
sadsrc () {
return this.$store.state.sadSrc
3
gladsrc () {
return this.$store.state.gladSrc
}
3
methods: {
onNameChanged (newName) {
this.name = newName

}

</script>

[64]




Chapter 2

If you open the page, nothing has changed. However, our changing name interaction
doesn't work again!

Let's add mutation to change the name. Mutations are just methods that receive a
state as first argument and anything you call them with as other parameters. So, let's
call our mutation updateName and pass newName to it as a second argument:

//store/index.js
const mutations = {
updateName (state, newName) {
state.name = newName

}
}

Now, we can use this mutation to access the this.$store.mutation property inside
the component responsible for updating the name — Introduction.vue. We have to
just change the onInput method:

//Introduction.vue
methods:
onInput (ev) {
this.$store.commit ('updateName', ev.currentTarget.value)

}
}

By the way, we can also remove the properties and pass the name directly from the
store, just like we did in the App . vue component. Then, you can remove the name
binding to the introduction component inside the App . vue component's template.
Now, you can replace the properties that are bound to the Zoo component by
computed properties coming from the store. See how elegant the code becomes!

For example, look at this line of code:

<introductions></introductions>

Doesn't it look better than the following line of code:

<introduction @nameChanged="onNameChanged" :initialName="name"></
introductions>

Check out the final code for this chapter in the example8-store/zoo code folder
for Chapter 2, Under the Hood - Tutorial Explained. Note that we have used a very
simplified version. We have not even used any getters. For a more sophisticated
use, we would create getters and actions, and they would have been located in
their own actions.js and getters. js files. We would also use mapGetters and
mapActions helpers. However, for basic understanding, what we have done is
enough. Refer to the official documentation to find out more about Vuex store and
how to use it.

[65]


https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=cc609a84-5d59-ba8b-b64b-58ff21d2c99c

Under the Hood - Tutorial Explained

Bootstrap

Now that we know almost everything about Vue.js, let's talk about Bootstrap.
Check out the official Bootstrap page at https://v4-alpha.getbootstrap.com/.

B

Bootstrap is the most popular HTML, CSS, and JS framework in the
world for building responsive, mobile-first projects on the web.

Download Bootstrap

vl 0.0-alpha.6

Bootstrap —framework for responsive projects

In a nutshell, Bootstrap gives you a broad set of classes that allow building nearly
everything with any layout in an easy and effortless way.

Bootstrap provides with you four most important things:

* Easy layouts building at https://v4-alpha.getbootstrap.com/layout/
overview/

* Broad range of classes to style nearly any web element at https://v4-
alpha.getbootstrap.com/content/

* Self-contained components such as alerts, budges, modals, and so on at
https://v4-alpha.getbootstrap.com/components/

* Some utilities for styling images, figures, for positioning, styling, and adding
borders at https://v4-alpha.getbootstrap.com/utilities/

How to install Bootstrap? It can be installed from the CDN:

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" integrity="sha384-
rwoIResjU2yc3z8GV/NPeZWAV56rSmL1dC3R/AZzGRNGXQQKNKkoFVhFQhNUWEyJ "
crossorigin="anonymous" >

<script src="https://code.jquery.com/jquery-3.1.1.slim.min.

js" integrity="sha384-A7FZj7v+d/sdmMgp/nOQwliLvUsJEDHW+k90mg/a/
EheAdgtzNs3hpfag6Ed950n" crossorigin="anonymous"></scripts>

<script src="https://cdnjs.cloudflare.com/ajax/libs/tether/1.4.0/js/
tether.min.js" integrity="sha384-DztdAPBWPRXSA/3eYEEUWrWCy7G5KFbe8fFjk
5JAIXUYHKkDx6QinlDkWx51bBrb" crossorigin="anonymous"></scripts>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/
js/bootstrap.min.js" integrity="sha384-vBWWzlZJ8ea9aCX4pEW3rVHjgjt7zpk
NpZk+02D9phzyeVkE+jo0ieGizgPLForn" crossorigin="anonymous"></script>

[66]


https://v4-alpha.getbootstrap.com/
https://v4-alpha.getbootstrap.com/
https://v4-alpha.getbootstrap.com/components/
https://v4-alpha.getbootstrap.com/components/
https://v4-alpha.getbootstrap.com/utilities/

Chapter 2

This is, actually, exactly what we have in the PleaseIntroduceYourself application
from Chapter 1, Please Introduce Yourself - Tutorial, and in the messy zoo application
from this chapter.

Bootstrap components

Bootstrap has a lot of components that can be used just out of the box.

I will not talk about all of them in this chapter, because we will have several
opportunities to discover them during the course of the book. Let's look at some of
them just to have an idea.

Let's look at the alert components. As you might know, alerts are nice elements that
appear on the page when you have successfully filled in some form. Alerts are also
those angry red elements that tell you that you've done something wrong. What
would you need to create an alert element on the page that would disappear after
some time or give the possibility to the user to close it by clicking on the x button?
You would probably create a div, add some class to it, and add a bit of JavaScript
that would remove the element from the DOM tree after a grace period. Using
Bootstrap, you just add alert class to your div and add another class such as
alert-warning or alert-info to specify which kind of alert it is:

<div class="alert alert-success" role="alert">
<strong>Hello!</strong> You have successfully opened this page!

</div>

<div class="alert alert-info" role="alert"s>

<strongs>Hey!</strong> Important information - this alert cannot
be closed.

</div>
<div class="alert alert-warning" role="alert">

<strongs>Warning!</strong> It might be raining tonight, take your
umbrella!
</div>
<div class="alert alert-danger alert-dismissible fade show"
role="alert">
<button type="button" class="close" data-dismiss="alert"
aria-label="Close">
<span aria-hidden="true">&times;</span>
</buttons>
<strong>Failure!</strong> Since you don't like this
failure alert you can simply close it.
</div>

[67]



https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=5fa73aed-2440-8f0f-7fdd-58ff21983283

Under the Hood - Tutorial Explained

This code will produce nice alert boxes that look like this:

Hello! You have successfully opened this page!

Hey! Important information - this alert cannot be closed.

Warning! It might be raining tonight, take your umbrella!

Failure! Since you don't like this failure alert you can
simply close it.

Bootstrap alerts —success, info, warning, and danger

Even a simple element like a button can be styled in hundreds of different ways
using Bootstrap. Again, you can have buttons indicating success, danger zone, being
informative, or just gray. There's a possibility of grouping buttons and making them
look like a link. The code is pretty easy:

<button type="button" class="btn btn-primary">Primary</button>
<button type="button" class="btn btn-secondary">Secondary</button>
<button type="button" class="btn btn-success">Success</button>
<button type="button" class="btn btn-info">Info</buttons>

<button type="button" class="btn btn-link">Link</buttons>

<button type="button" class="btn btn-primary btn-sm">Small button</
buttons>

This code will produce buttons as shown here:

m Secondary Success B9 Small button

Bootstrap buttons

Check out more about Bootstrap's buttons on the official documentation page at
https://v4-alpha.getbootstrap.com/components/buttons/.

[68]



https://v4-alpha.getbootstrap.com/components/buttons/
https://v4-alpha.getbootstrap.com/components/buttons/

Chapter 2

One of my favorite things about Bootstrap is that you might have a trivial element,
but then you add some of the Bootstrap's classes to it and it suddenly becomes clean
and nice. For example, create a simple page with some <h1> and <p> elements:

<div>
<hl>Jumbotron</hl>
<p>
Lorem ipsum dolor sit amet..
</p>
</divs>

It will look normal, simple. Now, add the container class to the parent div. Isn't it
much nicer? Also, add the jumbotron class to it.

The page looked like this earlier:

Jumbotron

Lorem ipsum deler sit amet, consectetur adipiscing elit. Duis semper erat ac est semper
leonvallis. Nune mauris dui, interdum sed ullameorper a, hendrerit congue enim.
Maecenas semper id velit In posuere. Suspendisse Id convallis neque, vel rutrum massa.
ICurabitur suscipit est et lectus convallis, nec faucibus ipsum sagittis. Morbi et turpis eu
lquam aliquam facilisis at quis lectus. Integer ultricies justo vitae mauris sollicitudin
molestie. Sed vitae suscipit ex. Sed rhoncus orci et mi congue, luctus fermentum purus
[vehicula. Morbi in suscipit eros, sit amet maximus libero. Praesent posuere sem
bibendum lacus fringilla, eget bibendum massa auctor. Cras vulputate metus ante, vel
lobartis magna hendrerit vel.

The content inside the div before adding Bootstrap classes

All of a sudden, the same page looks like this:

Jumbotron

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis
semper erat ac est semper convallis. Nunc mauris dui,
interdum sed ullamcorper a, hendrerit congue enim. Maecenas
semper id velit in posuere. Suspendisse id convallis neque, vel
rutrum massa. Curabitur suscipit est et lectus convallis, nec
faucibus ipsum sagittis. Morbi et turpis eu guam aliqguam
facilisis at quis lectus. Integer ultricies justo vitae mauris
sollicitudin molestie. Sed vitae suscipit ex. Sed rhoncus orci et
mi congue, luctus fermentum purus vehicula. Morkbi in suscipit
eros, sit amet maximus libero. Praesent posuere sem
bibendum lacus fringilla, eget bibendum massa auctor. Cras
vulputate metus ante, vel lobortis magna hendrerit vel.

The content inside the div after adding Bootstrap classes

[69]


https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=5fa73aed-2440-8f0f-7fdd-58ff21983283

Under the Hood - Tutorial Explained

Actually, if you check our PleaseIntroduceYourself example from Chapter 1,
Please Introduce Yourself — Tutorial (chapterl/please-introuce-yourself/src/
App.vue), you will see that this exact class was used for the parent element.

There are a lot of different components: popovers, tooltips, modals, and so on.
We will use all of them during the course of the book.

Bootstrap utilities

Do you want to have responsive floats (elements that flow to the left or to the right)?
Just add the float-1left and float-right classes to your elements, and you don't
have to be worried about it anymore:

<div class="float-left">Float left on all viewport sizes</divs<br>
<div class="float-right">Float right on all viewport sizes</divs<brs>

<div class="float-none"s>Don't float on all viewport sizes</div><br>

Just insert this code into your HTML page (or simply check out the index.html file
in the examplell-responsive-floats folder), open it, and resize your window.

You can easily control the sizing and spacing with simple classes. Check
out https://v4-alpha.getbootstrap.com/utilities/sizing/ and
https://v4-alpha.getbootstrap.com/utilities/spacing/.

You can even enable flex-box behavior just by adding the d-f1lex class to your
container. The d comes from display. With more classes attached to your flex element,
you can control alignment and direction of your flex-box. Check it out at
https://v4-alpha.getbootstrap.com/utilities/flexbox/.

There are a lot more utilities to explore, and we will get into most of them during
our journey.

Bootstrap layout

Using Bootstrap, it is easy to control the layout of your system:

Bootstrap includes several components and options for laying out your project,
including wrapping containers, a powerful flexbox grid system, a flexible media
object, and responsive utility classes.

- From Bootstrap
(https ://v4-alpha.getbootstrap. com/layout/overview/)

[70]



https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=5fa73aed-2440-8f0f-7fdd-58ff21983283
https://v4-alpha.getbootstrap.com/utilities/spacing/
https://v4-alpha.getbootstrap.com/utilities/spacing/
https://v4-alpha.getbootstrap.com/utilities/spacing/
https://v4-alpha.getbootstrap.com/utilities/spacing/
https://v4-alpha.getbootstrap.com/utilities/flexbox/
https://v4-alpha.getbootstrap.com/utilities/flexbox/

Chapter 2

Bootstrap's grid system is pretty powerful and easy to understand. It is just a row
composed of columns. Everything is controlled by classes that have pretty self-
descriptive names such as row and col. If you just give your columns col class,
every column inside the row element will have the same size. If you want to have
columns of different sizes, play with the fact that the row can be composed of 12
columns. So, if you want to make some columns, let's say half of your row, give it a
class col-6:

<div class="row">
<div class="col">this is a column with class col</div>
<div class="col-6">this is a column with class col-6</div>
<div class="col-2">this is a column with class col-2</div>
</div>

This code will produce results similar to this:

this is a column with class this is a column with class col-6 thisis a

col column
with class
col-2

Grid layout system combining row and col classes

The interesting part is that if you resize your window, your layout will not break. It
will resize accordingly. You don't have to implement any CSS black magic in order
to achieve that! That is why Bootstrap is a big .

Combining Vue.js and Bootstrap

When we were talking about Vue, we devoted a big section to its components. When
we talked about Bootstrap, we also talked about components. Doesn't it ring the
same bell? Maybe we could create Vue components out of Bootstrap components?
Maybe we can! Actually, we have already done it! Open the code of the first chapter's
PleaseIntroduceYourself application. Check what we have inside the components
folder. There's something that we called MessageCard.vue. Actually, this is an
implemented Vue component for Card Bootstrap's component (https://v4-alpha.
getbootstrap. com/components/card/)!

Open the examplel3-vue-bootstrap-components-started/components folder.
Let's use this project as a playground to create the Vue component based on the
Bootstrap alert component. Run npm install and run:

cd examplel3-vue-bootstrap-components-started/components
npm install

npm run dev

[71]




Under the Hood - Tutorial Explained

Let's create a Vue component called Alert. This component will contain the
necessary code to simulate Bootstrap's alert component behavior.

Create a file named Alert . vue inside the components folder and add template tags.
Our alert will definitely have the alert class. However, its additional class (alert-
danger, alert-info, etc.) should be something configurable. Also, its title and text
should be something passed by bound properties from the parent component. Thus,
the template for the alert component will look like this:

//Alert .vue
<template>
<div class="alert":class="additionalClass" role="alert">
<strong>{{title}}</strong>{{text}}
</divs>
</template>

Let's implement the additionalClass property as a computed property that will
be calculated based on the type property passed by the parent component. So, the
script for the Alert component will look like this:

//Alert.vue
<scripts>
export default {
props: ['type', 'title', 'text'],
computed: {
additionalClass () {
if (!this.type) {
return 'alert-success'
}
return 'alert-' + this.type
}
b
name: 'alert!'

}

</scripts>

Then, we can call it from our main App . vue component:

//RApp.vue
<template>
<div id="app" class="container"s>
<img src="./assets/logo.png">
<alert :title="title" :text="text"></alert>
</div>

[72]




Chapter 2

</template>

<scripts
import
export
data

Alert from './components/Alert’
default {

(O

return {

}
j

name:

title: 'Vue Bootstrap Component',
text: 'Isn\'t it easy?'

lappl,

components: {
Alert

}
}

</script>

You will end up with a nice alert on your page:

Vue Bootstrap Component Isn't it easy?

We just created our Alert Vue Bootstrap component

Exercise

Enable a default value for the title of the alert component. So, if the title is

not passed, it will say Success by default. Also, bind the type property to the

component on its creation inside the App . vue parent component. Export this

property as a computed property depending on some arbitrary value. For example,
based on some random number, if it's divisible by 3, the type should be danger; if it's
divisible by 5, the type should be info; and so on.

Check it out yourself. Go to the examplel3-vue-bootstrap-components/

components folder and have a look, in particular, at the App . vue and components/
Alert.vue components.

[73]



Under the Hood - Tutorial Explained

Combining Vue.js and Bootstrap continued

So, we know how to create Vue components based on Bootstrap components.
Doesn't it feel like now it would be great to create all the Bootstrap components as
Vue components and just use them in our Vue applications without having to think
about Bootstrap classes whatsoever? Imagine Vue components such as <button-
success></button-success> Or <button :type="success"s></buttons>. We could
even create a whole library of Vue components based on Bootstrap! The question is,
should we do it if it already exists? Yes, someone has already done all the work for
us. These are the people who have done the work:

Mathieu
mathletOx

Pooya Parsa
pil

Vizo
vizo

Core team of bootstrap-vue

These nice people have developed something called Bootstrap-Vue and
that's something that does exactly what you think — it contains a full set of
Bootstrap components implemented as Vue.js components. Check it out at
https://bootstrap-vue.github.io/.

[74]


https://bootstrap-vue.github.io/
https://bootstrap-vue.github.io/
https://bootstrap-vue.github.io/docs/components/alert

Chapter 2

Let's check, for example, how the alert component is implemented at https://
bootstrap-vue.github.io/docs/components/alert. It's a little bit more detailed
than our alert. The data is passed within the component's tags and not as properties,
like in our case, which also makes it more flexible. We will use it a lot while
developing our application throughout the book.

What is Firebase?

To understand what is Firebase let's open its website https://firebase.google.
com/. This is what we see:

# Firebase Products Use Cases Pricing Docs Support Q,  Search GO TO CONSOLE  } ?

Firebase helps you build better mobile
apps and grow your business.

GET STARTED ° WATCH THE VIDEQ

Build apps fast, without Backed by Google, trusted One console, with products
managing infrastructure by top apps that work together

Google Firebase landing page

Firebase for Google is yet another cloud service, like AWS for Amazon or Azure for
Microsoft, a bit simpler though, because Google already has Google Cloud Platform,
which is huge.

If you feel like you want to choose between Firebase and AWS, do not forget that
you will most likely Google it. In any case, someone has already done this for you
so here you have this question on Quora at https://www.quora.com/Which-is-
better-cloud-server-Amazon-AWS-or-Firebase.

[75]


https://bootstrap-vue.github.io/docs/components/alert
https://www.quora.com/Which-is-better-cloud-server-Amazon-AWS-or-Firebase
https://www.quora.com/Which-is-better-cloud-server-Amazon-AWS-or-Firebase

Under the Hood - Tutorial Explained

I would say that it's more similar to Heroku — it allows you to easily deploy your
applications and integrate them with analytics tools. If you have read the Learning
Vue.js 2 book (https://www.packtpub.com/web-development/learning-vuejs-2),
then you already know how much I love Heroku. I even have Heroku socks!

Hl .f....llﬂ Ili_/f-

M '1"'1' l'

i \u\

a\.l i)

My beautiful Heroku socks

However, I find Google Firebase console also quite nice and simple to use. It also
provides a backend as a service. This backend is shared for your web and mobile
applications, which comes as a huge help when developing cross-platform and
cross-device applications. Firebase provides the following services:

* Authentication: This uses Firebase API for authenticating users using
different providers (Facebook, Google, e-mail, and so on).

* Database: This uses Firebase database API to store and retrieve your data.
No need to choose between different database providers, and no need to
establish connection. Just use the API out of the box.

* Hosting: This hosts and deploys your application using simple shell
commands.

* Storage: This hosts static files using a simple APL

[76]



Chapter 2

Again, if you think about how to integrate your Vue application with Firebase APIs,
stop thinking about it because someone has already done the job for you. After
creating your project using the Firebase console, you can simply use a vuefire
wrapper for Firebase to connect to your database and fetch your data. Check it out at
https://github.com/vuejs/vuefire. Actually, this is exactly what we did in our
PleaseIntroduceYourself application from the first chapter. Check out the code
that is located inside the App . vue component:

//PleaseIntroduceYourself/src/App.vue
<scripts>
import Firebase from 'firebase'’

let config = {
apiKey: '... ',

messagingSenderId: '...'

}

let app = Firebase.initializeApp (config)
let db = app.database()
let messagesRef = db.ref ('messages')

export default {

firebase: {
messages: messagesRef.limitToLast (100)
}
}

</script>

Everything that is exported in the Firebase object becomes accessible via the this
keyword, the same way as we access the data or computed properties. We will
use vuefire in the application that we will develop throughout the book to better
understand how it works.

[77]


https://github.com/vuejs/vuefire
https://github.com/vuejs/vuefire

Under the Hood - Tutorial Explained

Summary

In this chapter, we familiarized ourselves with Vue.js, Bootstrap and Firebase.
We have also analyzed tools that integrate Vue.js with Bootstrap and Vue.js
with Firebase.

Thus, now, we are familiar with Vue.js applications that are built using single-file
components, Bootstrap's grid system, components, and CSS helpers to make our
lives easier and to make Google Firebase console with its possibilities.

Also, we know how to initialize Vue.js project, and use Vue directives, components,
store and routing.

You also learned how to leverage Bootstrap's grid system to achieve the
responsibility of our application's layout.

And last but not least, you learned how to use the Firebase API within the Vue
application using vuefire bindings.

With the end of this chapter, the first introduction part of our journey also comes to
an end.

In the next chapter, we will actually dive deep inside the implementation. As a scuba
diving tank, we will take everything that you have learned so far!

So, we will start developing the application that we will build during the whole book
until it's ready for deployment. We will:

* Define what the application will do and its requirements

* Define whom we are building the application for

*  Build basic mockups for the application

* Scaffold the application using Vue command-line interface

Are you as excited as much as I am? Then, let's go to the next chapter!

[78]



Let's Get Started

In the previous chapter, we discussed the three main technologies that we will use
throughout this book to build our application. We explored a lot about Vue.js; we
introduced some of the functionalities of Bootstrap, and we checked what we can
achieve using the Google Firebase console. We know how to start an application from
scratch using Vue.js. We know how to make it beautiful with the help of Bootstrap,
and we know how to use Google Firebase to deploy it to live! What does that mean?
It means that we are 100 percent ready to start developing our application!

Coding an application is a fun, challenging, and exciting process... only if we know
what we are going to code, right? In order to know what we will code, we have to
define the concept of the application, its requirements, and its target users. In this
book, we will not go through the whole process of design building as for this, you
have plenty of other books, because it's a big science.

In this book, particularly in this chapter, and before diving into the implementation,
we will at least define a set of personas and user stories. Thus, in this chapter, we will
do the following:

* State the problem we are going to solve with our application

* Define some personas and user stories

* Retrieve nouns and verbs from user stories

* Draw the mockups that will define the main screens and areas of our
application

[79]




Let’s Get Started

Stating the problem

There are many time-management techniques in the world. Several gurus and
professionals have given a great amount of talks on how to effectively manage
your time so that you are efficient and all your KPI values are above any possible
benchmarks of productivity. Some of these talks are really amazing. When it
comes to time-management talks, I always suggest Randy Pausch's talk at
https://youtu.be/oTugjssqgOTO.

Speaking of time-management techniques, there is one popular technique

I particularly like, which I find very simple to use. It's called Pomodoro
(https://en.wikipedia.org/wiki/Pomodoro_Technigue). This technique
consists of the following principles:

*  You work during a certain period without any interruptions. This period can
be 20 to 25 minutes and it's called Pomodoro

* After the working Pomodoro, you have a 5 minute break. During this break,
you can do whatever you want — check e-mails, social networks, and so on

* After working four Pomodoros with short breaks, you have the right to a
longer break that can last from 10 to 15 minutes

There are numerous implementations of the Pomodoro timer. Some of them allow
you to configure the amount of time for working Pomodoros and for the short

and long breaks. Some of them block social network pages during the working
Pomodoros; some of them produce noises. In the book Learning Vue.js 2, we also built
a simple Pomodoro timer that produced brown noise during the working period and
showed random kittens during the short breaks.

If you are reading this book, then most likely you are a developer and you spend

a big part of your day sitting or maybe standing because standing desks are quite
popular nowadays. How often do you change your position during the working day
(or night)? Do you have problems with your back? Do you go to the gym? Are you
fond of jogging? How often do you work out at home? Being a developer requires a
lot of concentration, and it's common for us to forget a bit about ourselves.

In this book, we will build a Pomodoro timer again. This time, it will not only try

to solve a time-management problem, but also solve a fitness-management issue.
Instead of allowing you to do whatever you want during the breaks or displaying
some random kittens, it will tell you to do a simple workout. The workouts vary
from very simple head-rotation exercises to push-ups and burpees. The users can
choose a set of their favorite workouts depending on the kind of office they work in.
The users can also add new workouts. Workouts can also be rated.

[80]


https://en.wikipedia.org/wiki/Pomodoro_Technique
https://en.wikipedia.org/wiki/Pomodoro_Technique

Chapter 3

So, the main principles of the Pomodoro timer that we will implement are as follows:

Work without interruptions. Concentrate on what you're doing.
Exercise during the breaks.

Collaborate and add new exciting exercises that can be used by you and by
other users of the application.

Gathering requirements

Now that we know what we are going to build, let's define a list of requirements
for the application. The application is all about displaying a timer and displaying
workouts. So, let's define what it must be able to do. Here's my list of functional
requirements:

The application should display a countdown timer.

The countdown timer can be from 25 to 0 minutes, from 5 to 0 minutes,
or from 10 to 0 minutes.

It shall be possible to start, pause, and stop the timer at any moment of the
application's execution.

The application shall produce some sounds when the time reaches 0 and the
next period of break or the working Pomodoro starts.

The application shall display a workout during the short and long breaks. It
shall be possible to skip the current workout and switch to the next one. It shall
also be possible to skip workouts completely during a break and just stare at
kittens. It shall also be possible to mark the given workout as done.

The application must offer an authentication mechanism. Authenticated
users can configure the Pomodoro timer, add new workouts to the system,
and visualize their statistics.

Statistics for the authenticated users display the number of workouts
performed daily, weekly, and monthly.

Authenticated users are able to configure Pomodoro timers like
the following:

°  Choose a value between 15 and 30 for the long working
Pomodoro timer
Choose a value between 5 and 10 for the short break timer

Choose a value between 10 and 15 for the long break timer

[81]



Let’s Get Started

* Authenticated users are able to configure their set of favorite workouts
to display.

* Authenticated users are able to create new workouts and add them to
the system.

* Each workout consists of four parts: title, description, image, and rating.
I also have a very basic list consisting of two items of non-functional requirements:

* The application should use persistent storage to store its data— Firebase's
real-time database in our case

* The application shall be responsive and run on multiple platforms
and devices

I guess that this is already enough for the functionality of our Pomodoro. Alternatively,
since it's about fitness, maybe we can call it PoFIToro? Or, maybe, since we get some
nice profit for our body, let's call it ProFitOro.

Personas

Usually, before developing an application we have to define its target users.

For this, multiple questionnaires are conducted with the potential users of the
application. The questionnaires usually include questions about the user's personal
data, such as age, sex and so on. There should also be questions about the user's
usage patterns — operating system, desktop or mobile, and so on. And of course,
there should be questions about the application itself. For example, for the ProFitOro
application, we could ask the following questions:

* How many hours per day do you spend in the office?

* For how long do you sit in the office during your working day?

* How often do you do sport activities such as jogging, fitness workouts,
and so on?

* Do you work from the office or from home?
* Is there any area in your work place where you could do push-ups?
* Do you have problems with your back?

After all questionnaires are collected, the users are divided into categories by similar
patterns and personal data. After that, each user's category forms one single persona.
I will leave here four personas for the ProFitOro application.

[82]



Chapter 3

Let's start with a fictitious character called Alex Bright:

Alex Bright

Age: 32 years old.

Sex: Male

Education: MSc

Occupation: Software engineer, full-time employment

Usage patterns: Works in an office, uses a laptop running Ubuntu and an iPhone.
Favorite browser: Google Chrome

Health and fitness: Once per month does 5 km jogging. Periodically feels back pain
Let's move on to our next fictitious persona— Anna Kuznetsova.

Anna Kuznetsova

Age: 22 years old.

Sex: Female

Education: BSc

Occupation: Student

Usage patterns: Works mostly from home using her desktop running Windows as
well as an Android phone.

Favorite browser: Mozilla Firefox

Health and fitness: Goes to a fitness studio three times per week. Doesn't have any
health issues

At the time of writing this book, a friend of mine had just entered our apartment for
a visit. His name is Duarte, but we make fun of him calling him Dwart. Immediately
after he showed up, the following persona was born (mind that our friend Duarte is
very far from being 45):

Duwart Azevedo
Age: 45 years old
Sex: Male
Education: PhD

Occupation: VP engineer, full-time employment

[83]



Let’s Get Started

Usage patterns: Works in an office, often from co-working spaces and from home
sometimes. Uses a MacBook Pro and iPhone, and spends a lot of time sitting
while working.

Health and fitness: Regularly does workouts at home. Sometimes feels pain in
his back.

My husband Rui works for an online fitness company called Gymondo. There, they
have a great fitness instructor called Steve. He pushes you to your very limits. Every
time I do workouts with this guy, I can't even walk after. That's how the following
persona was born:

Steve Wilson

Age: 35 years old

Sex: Male

Occupation: Fitness instructor, full-time employment

Usage patterns: Windows desktop at home

Health and fitness: Never feels pain, trains every day and every hour

We can see that a common thing for our users is that all of them spend some time
in the same position (sitting), their work requires some concentration and probably
time-management techniques, and they need to change their position sometimes in
order to prevent problems with their backs.

User stories

After we've defined our users, let's write some user stories. When it comes to writing
user stories, I just close my eyes and imagine that I am this person. Let's try out this
mind exercise starting with Dwart Azevedo:

Dwart Azevedo

Dwart's working day consists of meetings, calls, video conferences, and paperwork.
Today, he was really busy with interviews and meetings. Finally, he got a few hours
for his paperwork that has been waiting for him for the whole week. Dwart wants to
spend these hours in the most productive way. He opens the ProFitOro application,
clicks on start, and starts working. After his paperwork is done, he clicks on stop,
checks his statistics in ProFitOro, and feels happy. Even though his working time
consisted of two hours only, he was able to finish everything he planned to finish.

[84]




Chapter 3

Thus, we can come up with a formal user story like this:

As an authenticated user, I would like to check out my statistics page at ProFitOro in order to
see the completeness of my working day.

Let's move on to our fitness instructor, Steve Wilson.

Steve Wilson

Steve is a fitness instructor. He knows everything about the human body, nutrition
facts and how to do workouts correctly. He has a lot of friends — programmers that
use the ProFitOro application. He comes home after his working day, logs in and
opens the ProFitOro application, clicks on the Workouts section, and adds new
exercises for the back.

Thus, a new formal user story can sound like this:

As a fitness instructor, I would like to easily add new exercises in order to enrich the
ProFitOro application with more workouts.

Let's move on to our student Anna Kuznetsova.
Anna Kuznetsova

Anna is a student. Currently, she's going through her exam period. She needs to
study for her exams every day. It's not an easy task —to concentrate on books when
it's summer and all your friends are out having fun. Someone has told her about

the ProFitOro application, so she starts using it without registration. After a while,
she realizes that it actually helps her concentrate. After using it for some hours, she
would like to check how much she has been working and how many exercises she
has done. However, this information is not available to non-registered users. So, she
clicks on the Register button on the first page of the application, registers with her
e-mail, and now, she can access her statistical data.

Thus, another user story appears:

As a non-registered user, I would like to be able to register myself in order to be able to log in
to the application and have access to my statistics data.

Retrieving nouns and verbs

Retrieving nouns and verbs from the user stories is a very fun task that helps you
realize what parts your application consists of. For those who like Unified Modeling
Language (UML), after you retrieve the nouns and verbs from your user stories, you'll
have the classes and entity-relationship diagrams almost done! Do not underestimate
the number of nouns and verbs to retrieve. Write them all down —literally! You can
remove the words that don't make sense after. So, let's do it.

[85]



Let’s Get Started

Nouns

The nouns that I was able to retrieve out of my user stories are the following:

*  Working day

* Meeting

e Call

¢ Interview
* Hour

* Day

*  Week

* Application

¢ Statistics

*  Working time
* Plan

* Fitness

¢ Instructor

*  Human body
¢ Nutrition

*  Workout

* Section

* Exercise

e E-mail
e Data
* Page

* Registration

Verbs

The verbs that I was able to retrieve from the user stories are the following;:

* Consist
* Bebusy
* Open

* Spend time
* Start

[86]



Chapter 3

* Pause

* Stop

e Check

* Finish

* Plan

e Add

¢ Create

* Register

e Authenticate
* Login
e Concentrate

The fact that we have verbs such as register, login, and authenticate and nouns such
as e-mail, and registration mean that the application will probably be used with and
without registration. This means that the first page would probably contain the login
and registration area, and somehow, it should also contain a link to the application
that is possible to use without any authentication beforehand.

Then, we have verbs such as start, pause, and stop. These are the main actions

that are applicable to our Pomodoro timer. We can start the application, we can
pause it, and of course, we can stop it at any time of our working day. By the way,
working day is one of our retrieved nouns. So, this means that the main page of our
application will contain the countdown timer that will have the possibility of being
started, paused, and stopped.

We have a lot of nouns related to fitness —fitness itself, human body, exercise,
workout, and so on. This is actually what we are trying to achieve with this
application —to train our body while we have a Pomodoro break. So, doing an
exercise while taking a break from work. Note that there are also verbs such as
check and finish. So, the exercise can be finished and something can be checked,
indicating that the user has finished exercising. That's why, this Pomodoro interval
representation should contain a checkbox. It should also contain a link that leads to
the next exercise in case you spend less time on the current one. It might also have a
skip button in case you are totally not into the exercise during this interval.

Check out the noun statistics. It doesn't mean that we have to talk about averages,
sampling, population, and other stuff that you learned in school some years ago.
The noun statistics in our context means that the user should be able to access their
statistical data about the workouts performed during the day, week, or month (check
out that there are actually Day and Week nouns in the nouns list). So, there will be
another screen that will display the user's statistics.

[87]



Let’s Get Started

Plan and working time. Something can be planned and probably configured.

It makes sense —some users might feel that for them, the working time should

be 30 minutes and not 25. Some might need smaller working intervals, such as

15 or 20 minutes. These values should be configurable. Thus, we come yet to another
screen — configuration. In this screen, the users will be able to reset their passwords
and configure their Pomodoro timers for working time, and short and long

time breaks.

Check out the verbs create and add joined with the noun workout. We already
discussed that workouts that appear during the Pomodoro breaks are a result of
a collaborative work of the users of the application. So, there should be a section
(check that the word section is also present in our list of nouns) that allows
visualizing existing workouts and creating new ones.

So, as a result of the previous analysis, we will reach out to six important areas
of the ProFitOro application:

* The first page where the user can register or login. This page also allows the
user to start using the application without being authenticated.

* The main page where the Pomodoro timer resides.

* The main page with the timer of Pomodoro's break that displays a workout
to be performed during this break.

* The area where it is possible to change the user settings such as username
and profile picture, and configure the Pomodoro timer.

* The section where it is possible to observe the statistical data regarding the
performed workouts during the day, week, or month.

* The section that displays all the existing workouts and allows the user to add
a new workout.

Now that we already have an idea of how to outline our application, we can start
thinking about creating some mockups to have a better feeling about it and anticipate
possible issues as early as possible.

Mockups

Now that we have all our nouns and verbs, we can start making connections
between all the sections of our application. We can actually start preparing some
mockups. Sit down with someone, discuss, explain your idea, and collect feedback.
Ask questions. Answer questions. Use a whiteboard, use post-its. Use paper: draw,
discard, and redraw again.

[88]



Chapter 3

I have a good friend called Safura. She is a working student currently studying
computer science in Berlin, and we work together in the same team. She is interested in
the UI/UX topic. Actually, she will write her master's thesis in the Human-Computer
Interaction (HCI) area. So, we sat together, and I explained the idea of ProFitOro to
her. You cannot imagine the number of questions she asked. Then, we started to draw.
And to redraw. "And what if....?" redraw again.

This is how the first mockups on paper looked:

Timer Poue-Workinp-Loaacd [in
l' ot a |

D ! ©

do
[ @ Mabiky 05V [{Hs |

¥ et ek o m
fun Lacls

Mede by 0,5V

The first mockups on paper for the ProFitOro application

After all the brainstorming and drawing and redrawing, Safura prepared
some nice mockups for me. She used WireframeSketcher for this purpose
(http://wireframesketcher.com/).

[89]




Let’s Get Started

The first page — login and register
The very first page that the user sees is the page that allows them to log in, register,
or start using ProFitOro without any registration. This is how it looks:

Browser

G @ [ | &

&r Pomodoro

Enjoyable Application For Office Workouts!

readya Member? Log into your account

\ \
\ ]

e lost my password or Start without registration!

“ This version will not allow you to personalalise your

user profile and add your workouts.

[C] Remember me on this computer

Don't have an account yet? Sign up here!

The login page of ProFitOro application

The wording, colors, and figures are not final yet. The most important part of your
mockups is the positioning of the elements. You will still work with designers, and
you will still have to implement this using your favorite programming language
(which is JavaScript/ HTML/ CSS for us). Mockups help you remember the
important details of your application.

[90]




Chapter 3

The main page displaying the Pomodoro timer

The next mockup of the application shows when the Pomodoro timer is started:

Browser

P @ w[hteyl

] & D)

@rr
== FiT
[

aa) [aa] [aa] [aa]

Sektings Statistics Workouts Log out

25:00

> n m

Copyright @

‘Working out sharpens your memory! (some random Facts about benefits of workouts) Created By: Workout Lovers

Main screen of the application —working timer is started

As you can see, we are aiming at having a simple and clean interface. There are four
links in the header area. They are as follows:

* Link to the settings page: It will open the personal settings for the user.
User can change personal data such as password, profile photo, and
Pomodoro timer settings.

* Link to the statistics page: It will open the popup containing statistical

user's data.

* Link to the workouts: This will open the page containing all the available
workouts. This page will also provide the possibility to add new workouts.

* Link to logout

These links are only enabled for registered and authenticated users. For anonymous
users, these links will be disabled.

[91]



Let’s Get Started

Workout during the break

When the working Pomodoro is over, the small break of five minutes begins. During
this break, the user is offered the possibility of doing a small simple workout:

Browser

G @ @ Rt~ | @ D

@ aa] [aa] [aa] [aa]
[ J

Settings Statistics Workouts Log out

05:00

> Il R

Workout Description

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis

nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
Fugiat nulla pariatur.

Feeling lazy today?

show me kittens!
. vy
Copyright © Working out sharpens your memory! (some random Facts about benefits of workouts) Created By: Workout Lovers

During the short break, the user is offered a possibility of doing a small workout
As you can see, the workout area offers the following:

* First of all, you can just finish your exercise and click on Done!. This action
will store your workout to your statistical data.

» If, for some reason, you do not want to do the suggested exercise but you still
want to do something, then you can click on Next. This will offer you a new
randomly selected workout.

* If, for some reason, you feel tired and don't want to exercise at all, then you
can click on the Show me kittens! button that will render the area with
random kittens at which you can stare until the end of your break period.

[92]




Chapter 3

Settings

If the user wants to change the configuration of their personal settings or their
Pomodoro interval's time, the user has to proceed to the Settings area. This area

looks like this:

X ®

QaE @

Account Settings

Change your User name

Change your email

Change your password

Set your Pomodoro timer as desired

O Oo

Change Prafile Picture

Copyright ©

Working out sharpens your memory! (some random facts about workouts)

Created By: Olga Filipova

ProFitOro's settings area

As you can see, the Settings area allows us to change the user's personal data and to
configure Pomodoro's timings.

[93]




Let’s Get Started

Statistics

If the user wants to check their statistics and click on the Statistic menu button, a
popup will open, with some charts showing what workouts have been done by the
user daily, weekly, and monthly:

Browser
D@ [l ] @
)
@ o) o g
@ [aa]
@Por0 Settings Statistics Workouts Log out
s ~
Your Workout Statistics
Show me my Statistics for:
pN vy
Copyright @ Working out sharpens your memory! (some random Facts about benefits of workouts) Created By: Workout Lovers
Statistic data popup

[94]




Chapter 3

Workouts

Finally, if you feel that you might have an idea for a workout that is not present in
the application, you can always open the Workouts section and add a new workout:

Browser
G @ @ [l ] & D)
1o laa] [aa] [oa] laa]
: FiT
[l Settings Statistics Workouts Log out
e I
‘Workout Settings
@ Search )
Add your own Workout here:
Cive ita Name:
Description:
Add Image:
- vy
Copyright © ‘Working out sharpens your memory! (some random facts about benefits of workouts) Created By: Workout Lovers

Workouts section

As you can see, in the Workouts section, users can visualize the whole list of
workouts, search for them, and compile their own list of workouts. By default, all the
workouts that are listed in the application will form your daily routine. However, in
this area, it is possible to toggle their selection. The configuration will be stored for

each user.

[95]



Let’s Get Started

It is also possible to create new workouts. Adding a new workout consists of
providing a title, description, and an image.

These mockups are not dictating the final look of the application. They just assist
us to define what to do first and how to place the elements. During the process, the
final positioning and look will probably change a lot. Nevertheless, we have our
strict guideline, and this is the most important outcome for this stage of the project
management and development.

Logo

You have probably noticed that all the screens contain a nice logo. This logo was
designed by a very good friend of mine, a great graphic designer called Carina.

I have already mentioned this logo in the Learning Vue.js 2 book, but I would love
to mention it again. Here it is:

ol
PRO
-

@D OR0

The ProFitOro logotype designed by my friend Carina

Isn't it nice? Doesn't it reflect what our application will allow us to do—use the
Pomodoro technique combined with small workouts? We even defined ProFitOro's
motto:

Take breaks during work. Exercise during breaks.

[96]



Chapter 3

Summary

In this chapter, we applied the very basic principles of designing an application's
user interface. We brainstormed, defined our personas and wrote user stories,
retrieved nouns and verbs from these stories, and ended up with some nice mockups
for our application.

In the next chapter, we will start implementing our ProFitOro. We will use Vue.js
to scaffold the application and split it into important components. Thus, in the next
chapter we will do the following;:

* Scaffold the ProFitOro application using vue-cli with the webpack template

* Split the application into the components and create all the necessary
components for the application

* Implement a basic Pomodoro timer using Vue.js and Bootstrap

[97]







Let It Pomodoro!

The previous chapter ended with a nice set of mockups for the ProFitOro
application. We have previously defined what the application should do; we have
also determined an average user profile, and we are ready to implement it. In this
chapter, we will finally start coding. So, in this chapter, we will do the following:

* Scaffold ProFitOro using vue-cli with the webpack template
* Define all the needed application's components

* Create placeholders for all the components

* Implement a component that will be responsible for rendering the Pomodoro
timer using Vue.js and Bootstrap

* Revisit the basics of trigonometric functions (you were not expecting
that, right?)

Scaffolding the application

Before everything, let's make sure that we are on the same page, at least regarding
the node version. The version of Node.js I'm using is 6.11.1.

Let's start by creating a skeleton for our application. We will use vue-cli with the
webpack template. If you don't remember what vue-cli is about and where it comes
from, check the official Vue documentation in this regard at https://github.com/
vuejs/vue-cli. If for some reason you still haven't installed it, proceed with its
installation:

npm install -g vue-cli

[99]



Let It Pomodoro!

Now, let's bootstrap our application. I'm sure you remember that, in order to
initialize the application with vue-c1i, you must run the vue init command
followed by the name of the template to be used and the name of the project itself.
We are going to use the webpack template, and our application's name is profitoro.
So, let's initialize it:

vue init webpack profitoro

During the initialization process you will be asked some questions. Just keep hitting
Enter to answer the default Yes to all of them; Yes because for this application we
will need everything: linters, vue-router, unit testing, end-to-end testing, everything.
This is gonna be huge!

Your console output should look nearly the same as mine:

(master *+%)$ vue init webpack profitoro

[7 Install vue-router? Yes

[7 Use ESLint to lint your code? Y

? Pick an ESLint pres

[7 Setup unit tests with Karma + Mocha
Setup eZe tests with Nightwotch?

vue-cli . Generated “profitoro”.

To get started:

cd profitoro
npm install
L T

Documentation can be found at https://vuejs-templates.github.io/webpack

Console output on application's initialization

Now, run npm install inside the newly created profitoro directory:

cd profitoro

npm install

Let's install the sass loader because we are going to use the sass preprocessor
to style our application:

npm install sass-loader node-sass --save-dev
Finally, we are ready to run it:

npm run dev

[100]




Chapter 4

Your new Vue application is ready to be worked on. In order to have a clean
playground for our ProFitOro, remove everything related to the Hello component
that are installed, along with the default installation process. As an alternative, just
open the code files of Chapter 4, Let it Pomodoro! and get the boilerplate code from the

chapter4/1/profitoro folder.

Defining ProFitOro components

Our application consists of two main screens.

One of the screens is the so-called Landing page; this page consists of the

following parts:

* Alogo
* Atagline

¢ An authentication section

* Alink to the application to be used without being registered

Schematically, this is how our components are positioned on the screen:

Browser

P @ fa|http:)...

S

Logo

Tagline

Authentication

GoToAppLink

Landing page that contains logo, tagline, authentication section, and a link to the application

[101]



Let It Pomodoro!

The second screen is the main application screen. This screen contains three parts:

e A header
e A footer

e The content

The content part contains the Pomodoro timer. If the user is authenticated, it will
contain settings, workouts, and statistics as well:

Browser

P @ W [httpy)... ] @& )

Header

PomodorcTimer

Workouts
Content

Settings

Statistics

Footer

Main application's screen that contains header, footer, and content

Let's create a folder called components and subfolders called main, 1anding,
and common for the corresponding sub-components.

Components for the landing and main pages will reside in the components folder;
the remaining 11 components will be distributed between the respective subfolders.

For each defined component file, add the template, script, and style sections.
Add the lang="sass" attribute to the style tag because, as I already mentioned,
we are going to use the sass preprocessor to style our components. So, for example,
HeaderComponent . vue will look as follows:

//HeaderComponent .vue
<template>
<div>Header</div>

[102]



Chapter 4

</template>
<scripts
export default {

}
</script>
<style scoped lang="sass">

</style>

As a result, we have 13 placeholders for our components ready to be filled with the
necessary data. These components are going to be used and reused. This is because
Vue components are re-usable components, and that is why they are so powerful.
During the development process, we will inevitably add more components and
subcomponents, but here is our base:

components
v cCommon
Logo.vue
landing
Authentication.vue
GoToAppLink.wu
Tagline.vue
main
sections
Timer.vue

nponent.vue
nponent.vue
|ponent.vue
LandingPage.vue
MainContent.vue
App.vue

13 base components for ProFitOro
Check our bootstrapped components in the chapter4/2/profitoro folder.

Let's also prepare our LandingPage and MainContent components by filling

them with the needed subcomponents. Before that, add an index. js file to every
subfolder and export the corresponding subfolder's content in it. This will enable an
easier import afterwards. Thus, start with the folder common and add index. js file
with the following content:

//common/index.js
export {default as Logo} from './Logo'

[103]



Let It Pomodoro!

Repeat the same operation for the folders sections, main, and landing.

Now we can compose our landing page and main content components. Let's start
with LandingPage . vue. This component consists of a logo, an authentication section,
a link to the app, and a tagline. Import all these components, export them to the
components object, and use them in the template! The fact that we have exported
these components in the index. js file allows us to import them as follows:

//LandingPage.vue
import {Authentication, GoToAppLink, Tagline} from './landing'
import {Logo} from './common'

Now we can use these imported components in the components object of the
LandingPage component. By the way, have you ever seen so many words component
in the same phrase? "Component, component, component" and the exported object
looks as the following;:

//LandingPage.vue
export default {
components: {
Logo,
Authentication,
GoToAppLink,
Tagline
}
}

After being exported within the components object, all these components can be
used inside the template. Note that everything that is CamelCased will become
KebabCased inside the template. So, our GoToAppLink will look like go-to-app-
link. Thus, our components inside the template will look as follows:

<logo></logo>

<tagline></tagline>
<authentications></authentications
<go-to-app-link></go-to-app-link>

Hence, our whole LandingPage component will have the following code for now:

//LandingPage.vue
<template>
<div>
<logo></logo>
<tagline></tagline>

[104]




Chapter 4

<authentication></authentication>
<go-to-app-link></go-to-app-link>
</div>
</template>
<scripts

import {Authentication, GoToAppLink, Tagline} from './landing'

import {Logo} from './common'
export default {
components: {
Logo,
Authentication,
GoToAppLink,
Tagline

}
</script>
<style scoped lang="sass">

</style>
Let's tell App . vue to render this component:

//BApp.vue
<template>
<div id="app">
<hl>Welcome to Profitoro</hls>
<landing-page></landing-page>
</div>
</template>

<scripts

import LandingPage from './components/LandingPage'

export default {

name: 'app',
components: {
LandingPage
}
}
</script>

[105]



Let It Pomodoro!

Check the page. Can you see your components? I'm sure, you can:

& @ localhost:8080

Welcome to Profitoro

Logo

Tagline
Authentication
Go To App

LandingPage component

Now, we only have to implement the corresponding components and our landing
page is ready!

Exercise

Do the same for the MainContent component—import and export all necessary
subcomponents and add them to the template. After that, call the MainContent
component in the App . vue, just like we just did with the LandingPage component.
If in doubt, check the code in the chapter4/3/profitoro folder.

Implementing the Pomodoro timer

One of the most important components of our application is, without any doubt, the
Pomodoro timer. It performs the main functionality of the application. So, it might be
a good idea to implement it in the first place.

I am thinking of some kind of a circular timer. Something like this:

221

Circular timer to be implemented as a Pomodoro timer

[106]



Chapter 4

As time passes, the highlighted sector will move counterclockwise and the time
will count down as well. To implement this kind of structure, I am thinking of
three components:

*  SvgCircleSector: This component will just receive an angle as a property
and color the corresponding sector of the SVG circle.

*  CountDownTimer: This component will receive the number of seconds to
countdown, implement the timer and calculate the angle to pass to the
SvgCircularComponent on each timer update.

*  PomodoroTimer: We have already bootstrapped this component. This
component will be responsible to call the CountDownTimer component
with the initial time and update it to the corresponding number of seconds
depending on the current working Pomodoro or break interval.

SVG and trigonometry

Let's start by defining our svgCircleSector component. This component will
receive angle and text as properties and draw an SVG circle with a highlighted
sector of a given angle. Create a folder called timer inside the components/main/
sections folder and then create an SvgCircleSector.vue file in it. Define the
needed sections for template, script, and style. You can also export props with
the angle and text properties that this component will receive from its parent:

//SvgCircleSector.vue
<template>
<div>
</div>
</template>
<scripts>
export default {
props: ['angle', 'text']
}
</scripts>
<style scoped lang="scss">
</style>

[107]



Let It Pomodoro!

So, how do we draw a circle using the SVG and by highlighting its sector? First of
all, let's draw two circles: one inside the other. Let's make the bigger one of 100px
radius and the smaller one of 90px radius. Essentially, we have to provide the center,
x and y coordinates, the radius (r), and the £i11 attributes. Check the documentation
regarding the circles in SVG at https://developer.mozilla.org/en-US/docs/
Web/SVG/Element /circle. We will end up with something like this:

<svg width="200" height="200" xmlns="http://www.w3.0rg/2000/svg">
<circle r="100" cx="100" cy="100" fill="gray"></circle>
<circle r="90" cx="100" cy="100" fill="lightgray"></circle>
</svg>

Thus, we've obtained our two circles, one inside the other:

Two circles drawn with the SVG circle element

Now, in order to draw a circle's highlighted sector, we will use the path SVG element
(https://developer.mozilla.org/en—US/docs/Web/SVG/Element/path)

With the SVG path element, you are able to draw whatever you want. Its main
attribute, called g, is basically a way to program your path using, let's say, the
SVG domain-specific language. For example, this is how to draw a triangle inside
our circles:

<path d="M100,100 VO LO,100 HO z"></path>

What do these codes stand for? M means move, L. means line, Vv means vertical line,

H means horizontal line, and z means stop the path here. So, we tell our path to first
move to 100,100 (the circle center), then to draw a vertical line until it reaches

the 0 point of the y axis, then to draw a line to the 0, 100 x,yy coordinates, then

to draw a horizontal line until it reaches the 100 x coordinate, and then to stop.

Our two-dimension coordinates area is composed of the x and y axes, where x starts
at 0 and goes up until 200 from the left to the right and y starts at 0 and goes up until
200 from top to bottom.

[108]




Chapter 4

This is how the (x, y) coordinates look for the center and extreme points of our small
circle coordinate system:

100,0

0,100 100,100 200,100 —-—h@

100,200

Marked points represent the (x,y) coordinates of our SVG circle with the center at (100,100)

Thus, if we start at (100,100), draw a vertical line to (100,0), and then draw a line
to (0, 100) and then draw a horizontal line until (100,100), we end up with a right
triangle drawn in the upper-left quadrant of our circle:

Path draws a triangle inside the circle

This was just a small introduction into the path SVG element and what is achievable
with it. However, we still need to draw a circle sector and not just a triangle.

In order to draw a sector using path, we can use a command 2 inside a 4 attribute.

A means arc. It's probably the most complicated command of the path. It receives the

following information: rx, ry, x-axis-rotation, large-arc-flag, sweep-flag, x, y.

[109]



Let It Pomodoro!

The first four attributes in our case can always be 100, 100, 0, 0. If you want to
understand why, check the w3c documentation regarding arc path attributes at
https://www.w3.0org/TR/SVG/paths.html#PathDataEllipticalArcCommands.

For us, the most important attributes are the last three ones. The sweep-flag means
the orientation of the arc; it can be either 0 or 1 for clockwise and counterclockwise
orientation. In our case, it will always be 0 because this is how we want our arc to

be drawn (counterclockwise). As for the last x and y values, these are the values that
determine where the arc will stop. So, for example, if we want to draw the upper-left
sector at 90 degrees, we would stop the arc at the (0, 100) coordinates—x is 0 and y is
100 —thus our d attribute will look as follows:

d="M100,100 L100,0 Al100,100 O 0,0 0,100 z"

The whole SVG element containing two circles and the sector would look like this:

<svg width="200" height="200" xmlns="http://www.w3.0rg/2000/svg">
<circle r="100" cx="100" cy="100" fill="gray"></circle>
<circle r="90" cx="100" cy="100" fill="lightgray"></circle>
<path id="sector" fill="darkgray" opacity="0.6" d="M100,100
L100,0 A100,100 0 0,0 O, 100 z"></path>

</svg>

This code produces the following result:

Sector of 90 degrees drawn with path SVG element

[110]



Chapter 4

We must actually define this d attribute as a dynamic attribute on which the
computed value will depend. To express this, we must use v-bind with an attribute
following the semicolon: v-bind:d, or just simply, :d. Let's name the corresponding
property path and add it to the exported object computed of our component:

//SvgCircleSector.vue
<template>
<div>
<svg class="timer" width="200" height="200"
xmlns="http://www.w3.0rg/2000/svg">
<. ..>
<path class="segment" :d="path"></path>
</svg>
</div>
</template>
<scripts>
function calcPath (angle)
let d
d = "M100,100 L100,0 A100,100 O 0,0 O, 100 z"
return d
}
export default {
props: ['angle', 'text'],
computed: {
path () {
return calcPath(this.angle)
}
}
}

</scripts>

Iintroduced a function called calcpath that will determine our path string.
For now, it returns the path that will highlight the 90 degree area.

We are almost done. We can actually draw a segment, but what is missing is the
ability to draw a segment for any angle. Our SvgCircleSector component will
receive an angle as a property. This angle will not always equal 90 degrees. We
should come up with a formula that will calculate the end x and y coordinates, given
the angle. If you are not interested in revisiting basic trigonometry, just skip this
part and proceed to the end of this section.

[111]




Let It Pomodoro!

This is how I calculate the x, y coordinates for the angles that are less than 180 degrees:

To calculate (x,y) for angle a, we need to calculate the a and b sides of the right triangle

From the figure, we can see that:

x = 100 - b
y = 100 - a

Thus, we just need to calculate a and b. This is an easy task. We can calculate the

legs of the right triangle knowing the angle and the hypotenuse. The hypotenuse c is
equal to the circle's radius (100 in our case). The leg a, which is adjacent to the angle,
isequal to ¢ * cosa and the leg b, which is the opposite to the angle's leg, is equal to
c * sino. Thus:

100 - 100 * sina
100 - 100 * cosoa

X
Y

[112]




Chapter 4

For the angle that is greater than 180 degrees, we have the following scheme:

=

\

For the angle greater than 180°, we also have to calculate the sides of the right triangle

Can I tell you a secret? I am really bad at drawing these kind of schemes. I tried
everything from sketches on paper to drawing using Gimp. Everything was looking
really ugly. Fortunately, I have my brother Illia who created these graphics in five
minutes using Sketch. Thank you very much, Ilushka!

Back to our case. In this case, the angle of the right triangle equals 270° - o. Our x

equals 100 + bandyequals 100 + a. Here are the simple calculations:

oo oo 9 o0
1]

c * gsin (270
c * sin (180

-¢ * sin

-c * cosa

(90

c * cos (270
c * cos (180

-c * cos

-c * sino

(90

+

a)
(90 - a))
a)

a)
(90 - a))
a)

[113]



Let It Pomodoro!

Therefore:
x = 100 + (-100 * sina) = 100 - 100*sino
y = 100 + (-100 * cosa) = 100 - 100*coso

This is exactly the same as for the angles that are less than 180 degrees!

This is what the JavaScript code for the calculations of the x, y coordinates will
look like:

function calcEndPoint (angle)
let x, vy
x = 100 - 100 * Math.sin(Math.PI * angle / 180)

}

Now,

y = 100 - 100 * Math.cos(Math.PI * angle / 180)

return {
X,y
}

we can finally define a function that will determine a d string attribute for

the path element depending on the angle. This function will call the calcEndpPoint
function and will return a string containing a final 4 attribute:

function calcPath (angle) {

}

let d
let {x, y} = calcEndPoint (angle)
if (angle <= 180) {
d = “M100,100 L100, O A100,100 0 0,0 s${x}, s${y} z°
} else {

= M100,100 L100, 0 A100,100 0 0,0 100, 200 A100,100 0 0,
s{x}, s{y} z~

return d

To finalize our component, let's introduce a text SVG element that will just render
a text property passed to the component. It should also be possible to draw a circle
without any text; therefore, let's make this element conditional. We achieve it using

the v-

if directive:

//SvgCircleSector.vue

<template>

<div>
<svg class="timer" width="200" height="200"
xmlns="http://www.w3.0rg/2000/svg" >

<.o0.0>

[114]



Chapter 4

<text v-if="text != ''" class="text" x="100" y="100">

{{text}}
</text>
</svg>
</div>
</template>

Let's also extract the styling for the big and small circles, and for the path and text to
the style section. Let's define meaningful classes so that our template will look as
follows:

//SvgCircleSector.vue
<template>
<div>
<svg class="timer" width="200" height="200"
xmlns="http://www.w3.0rg/2000/svg" >
<circle class="bigCircle" r="100" cx="100"
cy="100"></circle>
<circle class="smallCircle" r="90" cx="100"
cy="100"></circle>
<path class="segment" :d="path"></path>
<text v-if="text != ''" class="text" x="100" y="100">
{{text}}
</text>
</svg>
</div>
</template>

Inside the style tags, let's define variables for colors and use them for our circles.
Extracting colors to the variables will help us to change them easily in the future, if
we decide to change the color scheme of our application. Thus, the styling for our
SVG component will look like the following:

//SvgCircleSector.vue

<style scoped lang="scss">
$big-circle-color: gray;
$small-circle-color: lightgray;
$segment-color: darkgray;
$text-color: black;

.bigCircle {
fill: sbig-circle-color;
}
.smallCircle {
fill: $small-circle-color;
}
.segment {
fill: Ssegment-color;opacity: 0.6;

}

[115]




Let It Pomodoro!

.text {
font-gize: lem;
stroke-width: 0;
opacity: .9;
fill: Stext-color;

}

</style>

Exercise

Until now, we were using an absolute size for our circle; it always had a radius of
100 pixels. Use the viewBox and preserveAspectRatio attributes applied to the svg
element to make our circle responsive. Play with it; invoke this component in the
PomodoroTimer component with different angle property to see how it works. I was
able to come up with this kind of crazy page:

Crazy page composed of lots of SVG circles with sector defined by a given angle

[116]



Chapter 4

Check the code in the chapter4/4/profitoro folder. Particularly, pay attention

to the svgCircleSector.vue component that resides inside the components/
sections/timer folder and to the PomodoroTimer.vue component where the circle
component is being called plenty of times with different angle properties.

Implementing the countdown timer
component

Now that we have a fully functional component that renders a circle with

a highlighted area given an angle, we will implement the CountDownTimer
component. This component will receive a number of seconds to count down as a
property. It will contain the controls element: a set of buttons that will allow you to
start, pause and stop the timer. Once the timer is started, the seconds will be counted
down and the angle will be recalculated accordingly. This recalculated angle is
passed to the svgCircleSector component as well as the calculated text. The text
will contain the number of minutes and seconds that are left on the timer to end.

To start, create a CountDownTimer .vue file inside the components/main/sections/
timer folder. Let's invoke the svgCircleSector component from this component
with some arbitrary values for the angle and text properties:

//CountDownTimer.vue
<template>
<div class="container">
<div>

<svg-circle-sector :angle="30" :text="'Hello'"></svg-circle-
sector>

</divs>
</divs>
</template>
<scripts>
import SvgCircleSector from './SvgCircleSector'
export default {
components: {
SvgCircleSector
}
}
</script>
<style scoped lang="scss">

</style>

[117]



Let It Pomodoro!

Open the page. It's a bit huge. It doesn't even fit on my screen:

O D owaren

Welcome to Profitoro

teacer

Hello

Our component doesn't fit on my screen

However, if I open it on a mobile, it renders without any problem and actually
looks nice:

essee yodafone P ¥ 11:42 @ 99 % .
& 192168.43.68.8080

Welcome to Profitoro

Our component actually fits quite well on the mobile screen

It happens because our circle is responsive. If you try to resize your browser, you
will see that the circle resizes accordingly. Its width is always 100% of the browser.
When the height of the page is bigger than the width (which is the case of the mobile
browser) it looks nice, but when the width is greater than the height (as in the case of
the desktop screen), it looks really big and ugly. So, our circle is responsive but not
really adaptive. But we are using Bootstrap! Bootstrap is a big friend when it comes
to responsiveness and adaptiveness.

[118]



Chapter 4

Responsiveness and adaptiveness of the
countdown timer using Bootstrap

In order to achieve adaptiveness to any device, we will build our layout using the
Bootstrap grid system at https://v4-alpha.getbootstrap.com/layout/grid/.

Mind that this URL is for the alpha version, and the next version
Ve will be available on the official website.

This system is based on a twelve-column row layout. The row and col classes
include different tiers, one for each media query. Thus, the same element can have
different relative sizes based on the device size. The names of these classes are self-
explanatory. The wrapping row class name is row. Then, each column may have a
class called col. This is, for example, a simple row with four columns of equal size:

<div class="row">
<div class="col">Column 1</div>
<div class="col">Column 2</div>
<div class="col">Column 3</div>
<div class="col">Column 4</div>

</div>

This code will produce the following result:

Column 1 Column 2 Column 3 Column 4

Bootstrap row with four equal-sized columns

The class col can be combined with the size that you want to give to your column:

<div class="col-*">Column l</divs>

Here, * can be anything from 1 to 12 since each row can contain up to twelve
columns. Here's the example of a row with four columns of different sizes:

<div class="row">
<div class="col-6">Column l</divs>
<div class="col-3">Column 2</divs>
<div class="col-2">Column 3</divs>
<div class="col-1">Column 4</divs>
</div>

[119]



Let It Pomodoro!

So, the first column will occupy half of the row, the second will be the fourth part of
the row, the third one is 1/6th part of the row, and the last on is 1/12th part of the
row. Here's what it looks like:

Column 1 Column 2 | Column 3 ‘ Column ‘
a4

Bootstrap row with different-sized columns

Don't mind the black borders; I've added them so the column width becomes more
obvious. Bootstrap will draw your layout without any borders, unless you tell it to
include them.

Bootstrap also provides a technique for offsetting columns for a given number of
columns at https://v4-alpha.getbootstrap.com/layout/grid/#offsetting-
columns.

Mind that this URL is for the alpha version, and the next version will
s be available on the official website.

This is how, for example, we make two columns, one of which is of the size 6 and the
other is of the size 2 with an offset of 4:

<div class="row">
<div class="col-6">Column 1l</divs>
<div class="col-2 offset-4">Column 2</div>

</div>

Here's what it looks like:

o |

Row with two columns, one of which is displayed with an offset of size 4

You can even play with the columns and change their order by playing with push-*
and pull-* classes. For more information, visit https://v4-alpha.getbootstrap.
com/layout/grid/#push-and-pull.

Mind that this URL is for the alpha version, and the next version
s will be available on the official website

[120]



Chapter 4

These classes play almost the same role as the offset - * classes; they allow more
flexibility for your columns. For example, if we want to render a column of size 3
and a column of size 9 and change their order, we will need to push the column of
size 3 for 9 positions and pull column of size 9 for 3 positions:

<div class="row">
<div class="col-3 push-9">Column l</div>
<div class="col-9 pull-3">Column 2</div>

</div>

This code will produce the following layout:

|| Column 2 | Column 1 ||

Changed columns order using push-* and pull-* classes

Try all these examples and check that, however you resize your page, the
proportions of your layout will always be the same. This is a powerful feature of
Bootstrap's layouts; you don't even have to bother making your layout responsive.
What about the different devices that I mentioned in the first paragraph of this
section? Until now, we were exploring classes called col-*, offset-*, push-*, and
pull-*. Bootstrap also provides this set of classes for each kind of media query.

There are five types of devices in Bootstrap:

XS Extra small devices Portrait phones (<544px)

sm Small devices Landscape phones (=544px - <768px)
md Medium devices Tablets (2768px - <992px)

Ig Large devices Desktops (2992px - <1200px)

x1 Extra-large devices Desktops (=1200px)

In order to indicate the desired behavior on a given device, you just pass the device
designation between the class name and its size. So, for example, if you want two
columns of size 8 and 4, respectively, to transform into two stacked columns on
mobile, you could do something like the following:

<div class="row">
<div class="col-sm-12 col-md-8">Column 1l</div>
<div class="col-sm-12 col-md-4">Column 2</div>
</div>

[121]




Let It Pomodoro!

If you open this code in the browser and try to resize the page, you will see that once
the size is less than 544 pixels, the columns will stack:

| Column 1 | Column 2

Column 1

Column 2

Two-column layout becomes a stacked equal-sized column layout on a small screen

So what should we do with our timer? I would say that it can occupy the whole
width (100%) on small devices, 2/3 of the width on medium-width devices, become
half of the width on large devices, and 1/3 of the width of extra-large devices. So, it
will require the following classes:

e col-sm-12 for small devices
¢ col-md-8 for medium-width devices
* col-1g-6 for large devices

* col-xI-4 for extra-large devices

I also want my circle to appear in the center of the screen. For this, I will use the
justify-content-center class, applied to the row:

<div class="row justify-content-center">
<svg-circle-sector class="col-sm-12 col-md-8 col-1g-6 col-xl-4"
:angle="30" :text="'Hello'"></svg-circle-sector>

</div>

Open the page and try to resize it and simulate different devices, testing the
portrait and landscape view. Our circle resizes accordingly. Check the code in the
chapter4/5/profitoro folder; particularly, pay attention to the components/
CountDownTimer.vue component.

Countdown timer component — let's count
down time!

We have already achieved the responsiveness of the countdown timer component.
Let's finally make it a real countdown timer component. Let's start by adding
controls: start, pause, and stop buttons. For now, I will make them look like

links. For this, I will use the btn-1ink class of Bootstrap at https://v4-alpha.
getbootstrap.com/components/buttons/.

[122]




Chapter 4

Mind that this URL is for the alpha version, and the next version will
i be available on the official website.

I will also use the Vue's v-on directive to bind a method on each button click at
https://vuejs.org/v2/api/#v-on:

<button v-on:click="start">Start</buttons>

Alternatively, we could simply use:

<button @click="start">Start</button>

Hence, the code for buttons will look like the following:

<div class="controls">
<div class="btn-group" role="group">

<button @click="start" type="button"
class="btn btn-link">Start</button>

<button @click="pause" type="button"
class="btn btn-link">Pause</button>

<button @click="stop" type="button"
class="btn btn-link">Stop</button>

</divs>
</divs>

Add the text-center class to the wrapping container div, so the buttons are
centrally aligned. Now, with the control buttons, our timer looks like this:

Start Pause Stop

Countdown timer with control buttons

[123]




Let It Pomodoro!

When we started discussing this component, we said that it will receive the time in
seconds to countdown from its parent. Let's add a property called time and let's pass
this property from the parent component:

//CountDownTimer.vue

<scripts>
<...>
export default {
props: ['time']
<...>
}
</script>

For now, let's export this property as a computed hard-coded property in the
PomodorTimer component and bind it to the CountDownTimer component. Let's
hardcode it to 25 minutes, or 25 * 60 seconds:

//PomodoroTimer.vue
<template>
<div>
<count-down-timer :time="time"></count-down-timers>
</div>
</template>
<scripts>
import CountDownTimer from './timer/CountDownTimer'
export default {
computed: {
time () {
return 25 * 60
}
Y
components: {
CountDownTimer

}
}

</scripts>

Ok, so our countdown component receives the time in seconds. How will it update the
angle and the text? Since we cannot change the parent's property (time), we need

to introduce a value belonging to this component and then we will be able to change

it inside the component and compute angle and text values based on this value. Let's
introduce this new value and call it timestamp. Put it inside the data function of the
countdown component:

//CountDownTimer.vue
data () {
return {
timestamp: this.time
}
b

[124]




Chapter 4

Let's now add a computed value for the angle. How do we calculate the angle based
on the timestamp in seconds? If we knew the value in degrees for each second, then
we would just multiply this value by the number of needed seconds:

angle = DegreesPerSecond * this.timestamp

Knowing the initial time in seconds, it's easy to calculate the number of degrees for
each second. Since the whole circumference has 360 degrees, we just need to divide
360 by the initial time:

DegreesPerSecond = 360/this.time

Last, but not least, since our timer is a counterclockwise timer, we need to pass the
inverse angle to the svgCircleSector component, so our final computed value for
the angle will look like this:

computed: {
angle () {
return 360 - (360 / this.time * this.timestamp)

}
}

Replace the hardcoded angle binding in the template by the value of the angle:

<svg-circle-sector :angle="angle"></svg-circle-sectors>

Play with the value of timestamp; try to set it from o * 60to 25 * 60. You will see
how the highlighted area changes accordingly:

timestamp: 5 * 60

The circle's highlighted area changes accordingly with the given timestamp

[125]



Let It Pomodoro!

I'm not sure about you, but I am tired of seeing this Hello. Let's do something

about it. The text of the timer should display the number of minutes and seconds
remaining until the end of the countdown time; it corresponds to the un-highlighted
area of the timer circle. This is a pretty easy calculation. If we divide our timestamp
by 60 and obtain the whole part of the division, we will get the current number of
minutes. If we obtain the rest of this division, we will obtain the current number of
seconds. The text should display minutes and seconds divided by the colon (:). So,
let's add these three computed values:

//CountDownTimer.vue
computed: {
angle () {
return 360 - (360 / this.time * this.timestamp)
b

minutes ()
return Math.floor (this.timestamp / 60)
¥

seconds () {
return this.timestamp % 60
¥

text () {
return ~“${this.minutes}:${this.seconds}"
}

b

Note that we are using ESé6 templates for computing our text (https://developer.
mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals)

Finally, replace the hardcoded string Hello from the property binding with the
text value:

<svg-circle-sector :angle="angle" :text="text"></svg-circle-sector>

Isn't it much better now?

timestamp: 20 * 60

. timestamp: 5 * 60

The text of the timer changes according to the remaining time

[126]




Chapter 4

Well, the only missing thing now is to actually start the timer and make it
countdown. We already invoked the start, pause, and stop methods on each
of the corresponding button clicks. Let's create these methods:

//CountDownTimer.vue
methods:

start () {
}I

pause () {
}I

stop () {
}

b

What should happen inside these methods? The start method should set an interval

that each second will decrease the timer by one second. The pause method should
pause this interval and the stop method should clear this interval and reset the
timestamp. Introduce a new variable called interval in the data function of the
component and add the needed methods:

//CountDownTimer.vue
data () {
return {
timestamp: this.time,
interval: null
}
b
<...>
methods: {
start () {
this.interval = setInterval(() => ({
this.timestamp--
if (this.timestamp === 0) {
this.timestamp = this.time
}
}. 1000)
b
pause () {
clearInterval (this.interval)
b
stop () {
clearInterval (this.interval)
this.timestamp = this.time

}
}

[127]




Let It Pomodoro!

And... we are done! Open the page, click on the control buttons, play with different
values for the initial time, and check how nicely it works! Check the code for the
CountDownTimer component in the chapter4/6/profitoro folder.

Exercise

Our countdown timer looks really nice, but it still has some problems. First of all,
the text doesn't look that nice. When the number of minutes or seconds is less than
9, it displays the corresponding text without the trailing o, for example, 5:5 for 5
minutes and 5 seconds. This doesn't look exactly like time. Introduce a method, let's
call it 1eftpad, that will add an extra o for this kind of cases. And please, try to not
to break the internet! (https://www.theregister.co.uk/2016/03/23/npm left
pad_chaos/)

Another problem with our timer is that we can click on any button at any time. If
you click a lot on the start button, the result will be unexpectedly ugly. Introduce
three data variables — isStarted, isPaused, and isStopped— that will be toggled
on each method accordingly. Bind the disabled class to the control buttons. This
class should be activated based on the mentioned variable's values. So, the behaviour
should be the following:

* The start button should be disabled if the timer is already started and is not
paused.

* The pause and stop buttons should be disabled if the timer is not started.
They should also be disabled if the timer is already paused or stopped.

To bind the class conditionally, use v-bind:className={expression}, or simply
the : className={expression} notation. For example:

<button :class="{disabled: isStarted}">Start</buttons>

To check it for yourself, have a look at the chapter4/7/profitoro directory,
particularly at the components/CountDownTimer.vue component.

Pomodoro timer

So, we already have a fully functional countdown timer. We are more than close

to the final purpose of our application with the countdown timer that is able to
countdown any given amount of time. We just have to implement a Pomodoro timer
based on it. Our Pomodoro timer has to initialize the countdown component with
the working Pomodoro time and reset it to the resting time once Pomodoro is done.
After the break is over, it has to reset it again to the working Pomodoro time. and so
on. Don't forget that the break after three regular pomodoros is slightly bigger than
the usual one.

[128]



Chapter 4

Let's create a config file with these values so we can easily change it whenever

we need to test the application with different timings. So, we need to specify the
workingPomodoro, shortBreak, and longBreak values. Let's also specify the
number of working pomodoros until the long break. By default, it will be three, but in
case you are a workaholic, you can specify a longer Pomodoro break only after 23485
regular Pomodoros (don't do that, I still need you!). So, our config file is a regular

. js file and its content looks like the following:

//src/config.js

export default {
workingPomodoro: 25,
shortBreak: 5,
longBreak: 10,
pomodorosTillLongBreak: 3

}

Import this file in the PomodoroTimer component. Let's also define the essential data
for this component. So, the Pomodoro timer has three main states; it is either in its
working state, or it's on a short break, or it's on a long break. It should also count

the amount of Pomodoros until the long break. So, our data for the PomodoroTimer
component will look like the following:

//PomodoroTimer.vue
data () {
return {
isWorking: true,
isShortBreak: false,
isLongBreak: false,
pomodoros: 0

}
}

Now, we can compute the value of time based on the current state of the Pomodoro
timer. For this, we just need to multiply the number of minutes corresponding to the
current interval by 60. We need to define which interval in minutes is the correct one
and base our decision on the current state of the application. Here it comes, our nice
if-else construction for the computed value:

//PomodoroTimer.vue
computed: {
time () {
let minutes

if (this.isWorking)
minutes = config.workingPomodoro

[129]




Let It Pomodoro!

} else if (this.isShortBreak) ({
minutes = config.shortBreak

} else if (this.isLongBreak) ({
minutes = config.longBreak

return minutes * 60

}

This is more than clear, right? Now, we must write the code that will toggle
between working Pomodoro, short break, and long break. Let's call this method
togglePomodoro. What should this method do? First of all, the isWorking state
should be set to true or false depending on the previous value (this.isWorking
= !this.isWorking). Then, we should reset both isShortBreak and isLongBreak
values. Then we have to check whether the state of isWworking is false, which
means that we are currently on a break. If yes, we have to increase the number

of pomodoros performed until that moment. And then we need to set one of the
breaking states to true depending on the number of pomodoros. Here's the method:

//PomodoroTimer .vue
methods: {
togglePomodoro ()
// toggle the working state
this.isWorking = !this.isWorking

// reset break states
this.isShortBreak = this.isLongBreak = false

// we have switched to the working state, just return
if (this.isWorking) {
return

// we have switched to the break state, increase the number of
pomodoros and choose between long and short break
this.pomodoros ++

this.isLongBreak = this.pomodoros %
config.pomodorosTillLongBreak === 0

this.isShortBreak = !this.isLongBreak

[130]



Chapter 4

Now, we just have to find a way to call this method. When should it be called?

It's clear that this method should be called each time that the countdown timer
reaches its zero, but how can we be aware of that? Somehow, the countdown timer
component has to communicate to its parent that it has stopped at zero. Luckily for
us, with Vue.js, components can emit events using the this. $emit method. So, we
will trigger this event from the countdown component and bind its handler to the
component invoked from the PomodoroTimer. Let's call this event finished. Open
the CountDownTimer.vue component and find a place where we check that the
decreased timestamp has reached its zero value. At this point, we have to shout Hey,
parent! I have finished my task! Give me another one. This is a simple code:

// CountDownTimer.vue

<...>

if (this.timestamp <= 0) {
this.$emit ('finished"')
this.timestamp = this.time

}

Binding this event is more than simple. It's like any other event; just use @ followed
by the event name attached to the component inside the template of PomodoroTimer:

<count-down-timer @finished="togglePomodoro" :time="time"></count-
down-timers

Check the application's page now. Try to play with the timing values in the config
file. Check that everything works.

Exercise

Have you already started to use your fresh Pomodoro timer for your daily routine?
If yes, I am sure that while the timer is doing its job, you are very happily navigating
other tabs and doing other things. Have you noticed that the time is taking longer
than it should? Our browsers are really clever; in order to not screw up with

your CPU, they stay pretty idle in the inactive tabs. This actually makes perfect
sense. Why should inactive tabs perform complex calculations or run some crazy
animations based on setIntervals and setTimeout functions if you are not looking
at them? While it makes perfect sense in terms of performance, it doesn't make much
sense for our application.

[131]



Let It Pomodoro!

It should countdown 25 minutes no matter what. For this exercise, improve our
countdown timer so that it always counts down the exact number of seconds passed
to it, even if it is open in the hidden or inactive browser tab. Google it; you will see a
whole internet of Stackoverflow results:

Go gle setinterval inactive tabs L Q

All Videos Shopping Images News More Settings Tools

About 21.100 results (0,36 seconds)

javascript - setinterval slows down with tab/window inactive - Stack ...
https://stackoverflow.com/questions/.../setinterval-slows-down-with-tab-window-inacti... =

May 6, 2014 - | build a web app and | use setinterval with 500ms timer for some clock ... Yes, that's a
true observation (well ...ish, the JS thread just gets less ...

You visited this page on 6/7/17.

How can | make setinterval also work when a tab is inactive in Chrome?
https://stackoverflow.com/.../how-can-i-make-setinterval-also-work-when-a-tab-is-ina... =
May 8, 2011 - | have a setinterval running a piece of code 30 times a second. ... On most browsers
inactive tabs have low priority execution and this can affect ...

You visited this page on 6/7/17.

javascript - setinterval doesn't slow down on inactive tab - Stack Overflow
https://stackoverflow.com/questions/.../setinterval-doesnt-slow-down-on-inactive-tab ~

Feb 12, 2017 - Since javascript is a runtime compilation code( Compiled by browser at runtime, browser
has to work on it}. When you navigate to other tab, the page ...

javascript - setinterval() is not working properly for inactive tab - Stack ...
stackoverflow.com/questions/.../setinterval-is-not-working-properly-for-inactive-tab ~
Nov 19, 2014 - | made a plunker, and | edited my time, but the timer just keeps going ...

jquery - How can | fix setinterval issues when tab is inactive? - Stack ...
https:f/stackoverflow.com/.../how-can-i-fix-setinterval-issues-when-tab-is-inactive ~

Feb 18, 2012 - | am learning jQuery by writing a slideshow plugin which | will release ... Where is your
code ... It's in the description, but the direct link is: ..

Go gle >

The internet full of the results googling the strange behaviour of setInerval in the inactive tabs

Another thing that I would like you to do for this exercise is to add a watcher for the
time property in the CountDownTimer component that will restart the timer. This
will allow us to be more precise with the timer resets whenever the time is changed
in the PomodoroTimer component. Check the Vue documentation in this regard, at
https://vuejs.org/v2/guide/computed. html#Watchers.

[132]



Chapter 4

For both tasks, take a look at the chapter4/8/profitoro application's folder

to check for yourself. The only component where the changes are applied is the
CountDownTimer.vue component. Pay attention to the setInterval function and
how the timestamp is updated.

Introducing workouts

I have been so enthusiastic writing this chapter, calculating sine, cosine, drawing SVG,
implementing a timer, and taking care of the inactive tabs and stuff that I almost forgot
to do my workout! I like planks and pushups, what about you? By the way, haven't
you also forgotten that workouts are a part of our application? During the breaks, we
are supposed to do simple exercises and not just check our social networks!

We will implement full-fledged workouts and their management in the next
chapters; for now, let's just leave a nice placeholder for the workout and hard code
one exercise in this placeholder (I vote for pushups since the book is mine, but you
can add the workout or exercise of your own preference). Open the PomodoroTimer.
vue component and wrap up a countdown component into a div with a class row.
We will make this row contain two columns, one of which will be the countdown
timer, and the other is a conditionally rendered element containing a workout. Why
conditionally? Because we only need this element displayed during the Pomodoro
breaks. We will use the v-show directive so that the containing element will always
be present, and only the display property will change. The markup will thus look
like the following;:

//PomodoroTimer.vue
<div class="container"s>
<div class="row">
<div v-show="!isWorking" class="col-sm-4">
WORKOUT TIME!
</div>
<count-down-timer class="col-sm-8" @finished="togglePomodoro"
:time="time"></count-down-timers
</div>

</div>

Note col-sm-4 and col-sm-8. Again, I want the columns to look different on bigger
devices and stacked on small ones!

[133]



Let It Pomodoro!

What element should we use to display our workout? For some reason, I like
Bootstrap's jumbotrons (https://v4-alpha.getbootstrap.com/components/
jumbotron/) very much, so I will use a jumbotron containing a header element for
the workout's title, the lead element for the workout's description, and an image
element to display the workout's image.

, Mind that the URL of Bootstrap's Jumbotron component is for the
alpha version, and the next version will be available on the official
’ website

So, my markup structure for displaying the workout looks like the following:

//PomodoroTimer .vue
<div class="jumbotron">
<div class="container">
<img class="img-fluid rounded" src="IMAGE SOURCE" alt="">
<h2>Push-ups</h2>
<lead>
Description: lorem ipsum
</lead>
</div>

</div>

Feel free to add another nice workout for you in this section, so you are able to
exercise until you finish reading the book. Check the code for this section in the
section4/9/profitoro folder.

This is how my Pomodoro looks on my laptop's screen:

Push-ups

Description: lorem ipsum

Start Pause Stop

Pomodoro timer on the laptop's screen

[134]



Chapter 4

This is how it looks on the mobile screen:

* Push-ups

Descrigtion: lorem ipsum

Pomodoro timer on the mobile screen

It's not that beautiful, of course, but it's responsive and adaptive, and we haven't
done any CSS black magic for it!

Summary

In this chapter, we have done a lot of things. We have implemented the main
functionality of our Pomodoro timer, and now it is fully functional, configurable,
usable, and responsive. We bootstrapped our ProFitOro application, separated

it into components, created a skeleton for each of the defined components, and
fully implemented one of them. We even revisited some trigonometry, because
math is everywhere. We implemented our timer and we made it work, even on

the hidden and inactive tabs. We made the application responsive and adaptive to
different device sizes using the powerful Bootstrap layout classes. Our application is
functional, but it is far from beautiful. Don't mind these shades of gray though; let's
stick to them for now. In the end of the book, you will get your beautiful ProFitOro
styles, I promise you!

[135]



Let It Pomodoro!

We are ready to continue our journey in the world of technology. In the next chapter,
we will learn how to configure our Pomodoro and how to store the configuration
and usage statistics using Firebase. Thus, in the next chapter we will:

* Get back to Vuex centralized state management architecture and combine
it with the Google Firebase storage system to store the application's critical
data, such as configuration and statistics

* Implement the configuration of ProFitOro

* Implement the storing, retrieval, and displaying of ProFitOro usage
statistics data

[136]




Configuring Your Pomodoro

In the previous chapter, we implemented the main feature of our ProFitOro
application - the Pomodoro timer. We even added a hardcoded workout, so we can
exercise during our breaks. Actually, I already started using ProFitOro. While I'm
writing these words, the Pomodoro clock counts down - tick tick tick tick.

In this chapter, we are going to explore the Firebase Realtime Database's possibilities
and its API. We are going to manage storing, retrieving, and updating usage
statistics and configuration of our application. We will use the Vuex store to bring
the application's data from the database to the frontend application.

To bring this possibility to the Ul, we will use Vue's reactivity combined with the
power of Bootstrap. Thus, in this chapter we are going to implement the statistics
and settings ProFitOro components using;:

¢ Firebase Realtime Database

* Vue s reactive data bindings and Vuex state management

* The power of Bootstrap to make things responsive

Setting up a Vuex store

Before starting with real data from the database, let's set up the Vuex store for our
ProFitOro. We will use it to manage the Pomodoro timer configuration, user settings,
such as the username, and a profile picture URL. We will also use it to store and
retrieve the application's usage statistics.

From Chapter 2, Hello User Explained, you already know how the Vuex store works.
We must define data that will represent the application's state and then we must
provide all the needed getters to get the data and all the needed mutations to update
the data. Once all this is set, we will be able to access this data from the components.

[137]




Configuring Your Pomodoro

After the application's store is ready and set up, we can connect it to the real-time
database and slightly adjust the getters and mutations to operate the real data.

First of all, we need to tell our application that it will use the Vuex store. To do that,
let's add the npm dependency for vuex:

npm install vuex --save

Now, we need to define a basic structure of our store. Our Vuex store will contain
the following;:

* State: The initial state of the application's data.

e Getters: Methods that retrieve the state's attributes.

* Mutations: Methods that provide a way to change the state.

* Actions: Methods that can be dispatched to invoke mutations. The only
difference between actions and mutations is that actions can be asynchronous
and we might need them for our application.

Sounds pretty easy, right? Just create a folder called store and create JavaScript files
for all the things that we have just indicated. Also create the index. js file that will
instantiate a Vuex store with all these things. Here is your structure:

> tree src/store
src/store

— actions.js
— getters.js
— index. js

— mutations.js
L— state.js

@ directories, 5 files

The structure of the store folder

When we first mentioned the Vuex store in Chapter 2, Hello User Explained, we
simplified the structure and introduced all the store's components in the same file.
Now, we will follow the nice modular structure and let everything reside in its own
place. We could even go further and separate the state into the modules (one for
configuration, another one for settings, and so on) but it would probably be overkill
for the complexity level of ProFitOro. However, if you want to check how to separate
your store into logical modules, check the section about modules in this great
documentation about Vuex: https://vuex.vuejs.org/en/.

[138]


https://vuex.vuejs.org/en/

Chapter 5

Nevertheless, let's continue with our store. After having created the structure, import
all of the store's components into index.js and create a Vuex instance, passing all
of them as parameters. Do not forget to import Vuex and to tell Vue to use it! Thus,
the entry point of our store will look as follows:

//store/index.js

import Vue from 'vue'

import Vuex from 'vuex'

import state from './state'

import getters from './getters'
import mutations from './mutations’
import actions from './actions'

Vue.use (Vuex)

export default new Vuex.Store ({
state,
getters,
mutations,
actions

3]

The only thing that matters now, so our setup is totally complete, is to get our
application to know that it is now using this store. In this way, the store will become
available in all the components. The only thing that you need to do to make it
possible is to import our store in the application's entry point (main.js) and to pass
it to the Vue instance:

//main.js

import Vue from 'vue'
import App from './App'
import store from './store'

new Vue ({
el: '#app',
template: '<App/>',
components: { App },
store

[139]



Configuring Your Pomodoro

Now we are totally ready to start our magic with the store. Have you been missing
coding? Well, here you go! Let's start by replacing the config file that we've created
as a container for the Pomodoro timing properties with the state and the getters of
our store. Just copy all the configuration elements of the config file to our state and
create a getter for it:

//store/state.js

const config = {
workingPomodoro: 25,
shortBreak: 5,
longBreak: 10,
pomodorosTillLongBreak: 3

}

export default {
config

}

Let's now move to getters. Getters are not just regular functions. Behind the scenes,
they receive the state as a parameter, so you can access the data of the application's
state, without any effort of dependency injections, because it has already been
managed for you by Vuex. So, just create a function that receives the state as a
parameter and returns any of the state's data! If needed, inside the getter, you can
perform any operations on the data. So, the getter for the config file could look
something like this:

//store/getters.js
function getConfig (state) ({
return state.config

}

Since we are using ES6, it can be rewritten in a more succinct and elegant way:
//store/getters.js
var getConfig = (state) => state.config

Then, it can be exported:

//store/getters.js
export default {
getConfig: getConfig

}

[140]




Chapter 5

Alternatively, we can simply use:

//store/getter.js
export default {
getConfig

}
The whole thing can actually be written as:

//store/getters.js
export default {
getConfig: state => state.config

}

How amazingly simple is that? At the time I started working with JavaScript (don't
ask me when, I don't like to feel old myself), I could barely imagine that such syntax
would ever be possible.

You can now use your new getter inside any application's component. How? Do
you remember how easy it was to access the state using the this.$store.state
attribute? In the same way, inside the computed data function, you can access
your getters:

computed:
config () f{
return this.$store.getters.getConfig

}
b

From now on, this.config can be used in all the component's computed values
and methods. Let's imagine now, that inside the same component, we need to use
more than one getter. Imagine, for example, that we create getters for each of the
config's values. So, for every value you would have to repeat this tedious code:
this.$store.getters.bla-bla-bla. Argh! There must an easier way... and
there is. Vuex is kind enough to provide us with a helper object which is called
mapGetters. If you simply import this object into your component, you can invoke
your getters using mapGetters with the ES6 spread operator:

import { mapGetters } from 'vuex'

export default {
computed: {
.. .mapGetters ([
'getConfig'
1)

[141]




Configuring Your Pomodoro

Alternatively, if you want to map your getters methods to some other names, just use
an object:

import { mapGetters } from 'vuex'

export default {
computed: {
. .mapGetters ({
config: 'getConfig!'

1)
}

So, this is what we are going to do. We are going to use the mapGetters helper inside
the PomodoroTimer component and we will remove the reference to the imported
config file (also, do not forget to remove the file itself; we don't want dead code in
our code base). We will replace all the references to config with this.config. So,
our PomodoroTimer script's section will look as follows:

//PomodoroTimer.vue
<scripts
//
import { mapGetters } from 'vuex'
/] ...
export default {
data () {
//
b

computed: {
...mapGetters ({
config: 'getConfig!'
H.
time () {
let minutes
if (this.isWorking)
minutes = this.config.workingPomodoro
} else if (this.isShortBreak) {
minutes = this.config.shortBreak
} else if (this.isLongBreak) ({
minutes = this.config.longBreak

return minutes * 60

}

}

// ...

methods: {
togglePomodoro () {

[142]




Chapter 5

//
this.isLongBreak = this.pomodoros %
this.config.pomodorosTillLongBreak === 0
}
}
}
</script>

Check your page, everything should work the same way it has been working before.
What is the advantage of this new approach? —someone might ask, —we've

been here for half a chapter setting up this store and its methods, getters, actions,
whatever... In the end, we have the exact same behavior. What for? Well, do

you remember that the whole aim of this chapter is to be able to configure and
reconfigure the Pomodoro timing settings and to store them in the database? If we
had to introduce the database reference and all the operations of retrieving and
storing data inside our components, our life would be harder. Imagine that at some
point Firebase does not suit your needs and you wish to switch to another data
source, or even a different technology, let's say Elasticsearch or even MongoDB. You
would have to change your component and its methods, as well as its computed
values. Doesn't it sound like hell to maintain all that?

Having your data to reside inside the store and with your getters being responsible
for retrieving them will enable you to only have to change your getters if you
decide to change the underlying data source. Your components will always be

left untouched! It's an abstraction of the data and logic layers of your application.
Abstractions are a very cool thing in the software engineering field.

Let's define a basic markup for the Settings.vue component. Check our mockups.
This component will contain two main areas:

* Personal settings configuration area

* Pomodoro timer settings configuration area

Again, I will use Bootstrap grid classes to help me build a nice, responsive layout.

I want it to make two stack columns on small devices, two equal-size columns on
medium sized devices, and two different sized columns on large devices. Thus, I will
use the row class for the wrapping div and corresponding col-*-* classes for the
two main areas of our Settings component:

// Settings.vue
<div class="row justify-content-center">
<div class="col-sm-12 col-md-6 col-1g-4">
<div class="container"s>
<h2>Account settings</h2>
account settings

[143]




Configuring Your Pomodoro

</div>
</div>
<div class="col-sm-12 col-md-6 col-1g-8">
<div class="container"s>
<h2>Set your pomodoro timer</h2>
pomodoro timer configuration
</div>
</div>
</div>

Let's concentrate for now only on the Pomodoro timing settings configuration.
I created a component called SetTimer.vue. This component just contains a
number-type input and emits a method whenever its value changes. Within the
Pomodoro settings container, I will render this component three times using
different values from the imported mapGetters helper:

//Settings.vue
<template>
<...>
<div class="row justify-content-center align-items-center">
<div class="col-md-5 col-sm-10">
<set-timer :value="config.workingPomodoro"></set-timer>
<div class="figure-caption">Pomodoro</div>
</div>
<div class="col-md-4 col-sm-10">
<set-timer :value="config.longBreak"></set-timer>
<div class="figure-caption">Long break</div>
</div>
<div class="col-md-3 col-sm-10">
<set-timer :value="config.shortBreak"></set-timer>
<div class="figure-caption">Short break</div>
</div>
</div>
<...>

</template>

[144]




Chapter 5

With some CSS magic for the SetTimer component, I am able to render three input
circles like the following;:

Set your pomodoro timer
25 10 5
Short break
Long break
Pomodoro

Input balls that allow us to set timers for different Pomodoro interval

You can find the corresponding code in the chapter5/1/profitoro folder. In
particular, check the setTimer.vue component inside the components/main/
sections/timer folder and how it's being called with the corresponding values
inside the settings.vue component.

Defining actions and mutations

It's great that our components can now get data from the store, but it would be
probably even more interesting if our components were also able to change the data
in the store. On the other hand, we all know that we cannot modify the store's state
directly.

The state should not be touched by any of the components. However, you also
remember from our chapter about the Vuex store that there are special functions
that can mutate the store. They are even called mutations. These functions can do
whatever they/you want with the Vuex store data. These mutations can be called
using the commit method applied to the store. Under the hood, they essentially
receive two parameters - the state and the value.

[145]



Configuring Your Pomodoro

I will define three mutations - one for each of the timer's definitions. These mutations
will update the corresponding attribute of the config object with a new value. Thus,
my mutations look as follows:

//store/mutations.js
export default {
setWorkingPomodoro (state, workingPomodoro) {
state.config.workingPomodoro = workingPomodoro

setShortBreak (state, shortBreak) {
state.config.shortBreak = shortBreak

b

setLongBreak (state, longBreak) {
state.config.longBreak = longBreak

}
}

Now we can define actions. Actions will basically call our mutations, so it can be
considered as duplicate work. However, keep in mind that the difference between
actions and mutations is that actions can actually be asynchronous, so it might come
in handy when we connect our actions to the database. For now, let's just tell the
actions to verify the received values before committing them. The actions method
receives the store and a new value. Since the store provides us with the essential
method called commit, which is called with the name of the needed mutation, we
can define each action as follows:

actionName ({commit}, newValue) {
commit ('mutationName', newValue)

We can write {commit} as a parameter and use the commit function
M right away, because we are using ES6 and object destructing just works
Q perfectly for us (https://developer.mozilla.org/en/docs/
Web/JavaScript/Reference/Operators/Destructuring
assignment).

Thus, my actions look like this:

//store/actions.js
export default {
setWorkingPomodoro ({commit}, workingPomodoro) {
if (workingPomodoro) {
commit ('setWorkingPomodoro', parselnt (workingPomodoro, 10))

}

b

setShortBreak ({commit}, shortBreak) ({
if (shortBreak)

[146]



Chapter 5

commit ('setShortBreak', parselnt (shortBreak, 10))

}
I
setLongBreak ({commit}, longBreak) ({
if (longBreak) ({
commit ('setLongBreak', parselnt (longBreak, 10))

}

Now, let's go back to the settings.vue component. This component should
import actions and call them when needed, right? How do we import actions? Do
you remember the mapGetters helper? There is a similar helper for actions called
mapActions. So, we can just import it along with the mapGetters helper and use it
with a spread operator (..) inside the methods object:

//Settings.vue
<scripts>
import {mapGetters, mapActions} from 'vuex'
<...>
export default {
<...>
methods: {
...mapActions (['setWorkingPomodoro', 'setShortBreak',
'setLongBreak'])

}

</script>

Now, we have to invoke the needed actions whenever the values of the set -
timer inputs change. In the previous paragraph, we discussed that the SetTimer
component emits the changevalue event. So, the only thing we have to do now is
to bind this event to all three set-timer components and call the corresponding
methods:

<div class="col-md-5 col-sm-10">
<set-timer :value="config.workingPomodoro"
@valueChanged="setWorkingPomodoro"></set-timer>
<div class="figure-caption">Pomodoro</div>
</div>
<div class="col-md-4 col-sm-10">
<set-timer :value="config.longBreak"
@valueChanged="setLongBreak"></set-timer>
<div class="figure-caption">Long break</div>
</div>

[147]



Configuring Your Pomodoro

<div class="col-md-3 col-sm-10">

<set-timer :value="config.shortBreak"
@valueChanged="setShortBreak"></set-timer>

<div class="figure-caption">Short break</div>
</div>

Open the page and try to change the values of each timer setting.

If you are using the Chrome browser and still haven't installed Vue developer
tools, please do it. You will see how handy and lovely it is! Just follow this link:
https://goo.gl/22khXD.

Having installed the Vue devtools extension, you will immediately see how the
values are being changed in the Vuex store:

O ®

Short break
Long break

Pomodoro

Performance  Application  Security AdBlock Audits Vue

config: Object getConfig: Object
longBreak:{15 longBreak: (15
pomodorosTillLongBreak: 3 pomodorosTillLongBreak: 3
shortBreak: 3 shortBreak: (3
workingPomodoro: {38 workingPomodoro: 3@

Once the values are changed in the input boxes, they are immediately changed in the Vuex store

Check the final code for this section in the chapters/2/profitoro folder. Pay
attention to the actions.js and mutations. js files inside the store folder and to
the settings.vue component.

[148]



Chapter 5

Setting up a Firebase project

I hope that you still remember how to set up Firebase projects from the first chapters
of this book. Open your Firebase console at https://console. firebase.google.
com, click on the Add project button, name it, and choose your country. The Firebase
project is ready. Wasn't that easy? Let's now prepare our database. The following
data will be stored in it:

* Configuration: The configuration of our Pomodoro timer values
» Statistics: Statistical data of the Pomodoro usage

Each of these objects will be accessible via a special key that will correspond to
a user's ID; this is because, in the next chapter, we are going to implement an
authentication mechanism.

The configuration object will contain values - workingPomodoro, longBreak and
shortBreak - that are already familiar to us.

Let's add a configuration object to our database with some fake data:

{

"configuration":

"test": {
"workingPomodoro": 25,
"shortBreak": 5,
"longBreak": 10

}
}
}

You can even create this as a simple JSON file and import it to your database:

Import JSON

A\ Al data at this location will be overwritten

Data (JSON)

Upload file (.json}) BROWSE

CANCEL IMPORT

Import JSON file to your real-time Firebase database

[149]



Configuring Your Pomodoro

Congratulations, your real-time database is ready! Keep in mind that, by default,
the security rules will not allow you to access your data from the exterior unless you
are authenticated. Let's, for now, remove these rules. We will add them later, once
we have implemented our authentication mechanism. Click on the RULES tab and
replace the existing ones with this object:

{

"rules": {
".read": true,
".write": true

}
}

Now we are ready to access our real-time database from our Vue application.

Connecting the Vuex store to the
Firebase database

So, now we have to connect our Vuex store to the Firebase database. We could use
the native Firebase API for binding the state data to the database data, but why
would we deal with promises and stuff if someone already did that for us? This
someone is called Eduardo and he has created Vuexfire - Firebase bindings for Vuex
(https://github.com/posva/vuexfire). If you were at the vueconf2017 conference
in Wroclaw, you probably remember this guy:

@® vuexfire

{ ref }) =>{
, ref)

Eduardo talking about Vue and Firebase during the Vue conference

[150]




Chapter 5

Vuexfire comes with Firebase mutations and actions that will do all the behind the
scenes jobs for you, while you just export them within your mutations and actions
objects. So, to start with, install both firebase and vuexfire:

npm install vue firebase vuexfire -save

Import firebase and firebaseMutations in your store's index. js entry point:

//store/index.js
import firebase from 'firebase'
import { firebaseMutations } from 'vuexfire'

Now, we need to obtain the reference to the Firebase application. Firebase comes
with an initialization method, initializeApp, which receives an object composed
of lots of application settings data - app ID, authentication domain, and so on. For
now, we have to at least provide the database URL. In order to get your database
URL, just go to your Firebase project settings and click on the Add Firebase to your
web app button:

There are currently no apps in the project Profitoro

Add Firebase to Add Firebase to Add Firebase to
your i0S app your Android app your web app

Click on the Add Firebase to your web app button

Copy the database URL, or even the whole configuration object, and paste it to your
store's index. js file:

//store/index.js
let app = firebase.initializeApp ({
databaseURL: 'https://profitoro-ad0f0.firebaseio.com'

1

You are now ready to obtain the reference to the configuration object. Once we
implement the authentication mechanism, we will use the authenticated user's ID
to get the current user's configuration from the database. For now, let's use our
hardcoded ID test:

let configRef = app.database().ref('/configuration/test')

[151]



Configuring Your Pomodoro

I will export the configRef reference using the spread operator in the state object.
So, this reference becomes accessible by the actions:

//store/index.js
export default new Vuex.Store ({
state: {
...state,
configRef
}
|3

In order to make the whole Vuexfire magic work, we have to also export
firebaseMutations within the mutations object:

//store/index.js
export default new Vuex.Store ({
mutations: {
..mutations,
...firebaseMutations
b

actions

H
So, our whole store/index.js now looks like the following:

//store/index.js

import Vue from 'vue'

import Vuex from 'vuex'

import state from './state'

import getters from './getters'

import mutations from './mutations'

import actions from './actions'

import firebase from 'firebase'

import { firebaseMutations } from 'vuexfire'
Vue.use (Vuex)

// Initialize Firebase
let config = ({
databaseURL: 'https://profitoro-ad0f0.firebaseio.com’
}
let app = firebase.initializeApp (config)
let configRef = app.database().ref('/configuration/test")

export default new Vuex.Store({
state: {
. .state,

[152]



Chapter 5

configRef
getters,
mutations: {
..mutations,
...firebaseMutations

actions

3]

Let's go to our actions now. It is very important that before doing anything else,
we bind our database reference to the corresponding state's attribute. In our case,
we must bind the state's config object to its corresponding reference configRef.
For that, our friend Eduardo provides us with the actions enhancer called
firebaseAction that implements the bindFirebaseRef method. Just call this
method and you don't have to worry about promises and their callbacks.

Open action.js and import firebaseAction enhancer:

//store/actions.js
import { firebaseAction } from 'vuexfire'

Let's now create an action called bindconfig, where we will actually bind two
things together using the bindFirebaseRef method:

//store/actions.js
bindConfig: firebaseAction(({bindFirebaseRef, state}) => {
bindFirebaseRef ('config', state.configRef)

1

When should this action be dispatched? Probably on the Settings.vue component
creation, since this component is responsible for rendering the config state. Thus,
inside the settings.vue we bind the state of the created component and inside of
it, we just call the bindConfig action:

//Settings.vue
export default {

//. ..
methods:
. .mapActions (['setWorkingPomodoro', 'setShortBreak',
'setLongBreak', 'bindConfig'])
b
created () {

this.bindConfig()

}
}

[153]



Configuring Your Pomodoro

If you open the page now, you will see that everything remains the same. The only
difference is that, now, we are using the data coming from our real-time database
and not from the hardcoded config object. You can check it by completely deleting
the content of the config object inside the state store's object and ensuring that
everything is still be working.

If you try to change the input values and then refresh the page, you will see that the
applied changes are not saved. This happens because we did not update the database
reference. So let's update it! The good thing about it is that we don't need to change
anything inside our components; we just have to slightly change our actions. We will
use the update method called on the reference. Please check the Firebase real-time
database documentation on reading and writing data: https://firebase.google.
com/docs/database/web/read-and-write.

So, we will pass the state object to each of the actions and call the update method
on state.configRef, passing to it the corresponding changed attribute. So, it might
look as simple as the following code snippet:

//store/actions.js
setWorkingPomodoro ({commit, state}, workingPomodoro) {
state.configRef.update ({workingPomodoro})

b

Do not forget to perform the needed checks, parse the updated attribute to an
integer, and also check if configRef is available. If it's not available, just call the
commit method with the corresponding mutation's name. Check the final code

for this section in the chapter5/3/profitoro folder. Pay special attention to the
store/index.js and store/actions.js files and to the Settings.vue component.

If you open your page and change the Pomodoro timer values and keep looking at
your Firebase console database tab you will see the differences immediately!

Realtime Database

DATA RULES BACKUPS USAGE

Set your pomodoro timer @D hipsiprofitoro-ado0 firobase

profitoro-adoto
= configuration
= test
27 12 4 | longBreak: 12
| shartBreak: 4

workingPomadore: 27

The changes applied to the Pomodoro timer configuration boxes are propagated immediately
to the real-time database

[154]



https://firebase.google.com/docs/database/web/read-and-write

Chapter 5

If you change values directly in the database, you will also see that the changes are
immediately propagated to your view.

Exercise

You have learned how to connect the real-time Firebase database to your Vue
application and used this knowledge to update the configurations for Pomodoro
timers. Now, apply your knowledge to the statistics area. For the sake of simplicity,
just display the total amount of Pomodoros executed since the user started using the
application. For that you will need to do the following;:

1. Add another object called statistics containing the totalPomodoros
attribute that initially equals 0 in your Firebase database.

Create an entry in the store's state to hold the statistics data.

Map totalPomodoros of the statistics state's object to the Firebase reference
using the firebaseAction enhancer and the bindFirebaseRef method.

Create an action that will update the totalPomodoros reference.

5. Call this action whenever it has to be called inside the PomodoroTimer
component.

6. Display this value inside the Statistics.vue component.

Try to do it yourself. It shouldn't be difficult. Follow the same logic we applied in

the settings.vue component. If in doubt, check the chapter5/4/profitoro folder,
particularly the store's files - index. js, state.js and actions.js. Then check how
the corresponding actions have been used inside the PomodoroTimer component and
how it is rendered in the statistics component. Good luck!

Summary

In this chapter, you learned how to use the real-time Firebase database with the Vue
application. You learned how to use Vuexfire and its methods to correctly bind our

Vuex store state to the database reference. We were not only able to read and render
the data from the database but we were also able to update it. So, in this chapter, we
saw Vuex, Firebase, and Vuexfire in action. I guess we should be proud of ourselves.

However, let's not forget that we have used a hardcoded user ID in order to get
the user's data. Also, we had to expose our database to the world by changing the
security rules, which doesn't seem right either. It seems that it's time to enable the
authentication mechanism!

[155]



Configuring Your Pomodoro

And we will do it in the next chapter! In the next chapter, we are going to learn

how to set up the authentication mechanism using the Firebase authentication
framework. We will learn how to use it in our application using Vuefire (Firebase
bindings for Vue: https://github.com/vuejs/vuefire). We will also implement
the very initial view of our application responsible for providing a way of registering
and performing the login. We will use Bootstrap form elements in order to make

this screen responsive and adaptive to all screen sizes. So, let's move on to the next
chapter! Do not forget to do some pushups first!

[156]



Please Authenticate!

In the previous chapter, we connected our ProFitOro application to the real-time
database. Whenever a user updates the Pomodoro timer settings, these are stored in
the database and immediately propagated between the components that use them.
Since we had no authentication mechanism, we had to use a fake user in order to be
able to test our changes. In this chapter, we are going to have real users!

We will use the Firebase authentication API in this regard. So in this chapter, we are
going to do the following;:

* Discuss the meaning of AAA and the difference between authentication
and authorization

* Explore the Firebase authentication API

* Create a page for sign-in and login, and connect it with the Firebase
authentication API

* Connect the user's settings with the user's authentication

AAA explained

Triple-A, or AAA, stands for Authentication, Authorization, and Accounting.
Initially, this term was invented as a term to describe the security network protocol;
however, it can be easily applied to any system, web resource, or site.

So, what does AAA mean and why should we bother?

Authentication is the process of uniquely identifying the users of a system.
An authenticated user is a user whose access to a system is granted. Usually,
the authentication is done via some username and password. When you have
to provide your username and password to open your Facebook page, you are
authenticating yourself.

[157]



Please Authenticate!

Your passport is a way of authenticating yourself at the airport. The passport control
agent will look at your face and then check your passport. So anything that allows
you to pass is a part of your authentication. It can be a special word (password) that
is only known by you and the system or it can be something that you port (passport)
with you that can help the system to uniquely identify you.

Authorization is a way to control what resources each user has rights (permissions)
to access. If you are developing Facebook applications, you have access to the
developer's page, whereas usual users don't have access to this page.

Accounting measures resources allocated for each user. If you have a Dropbox
business standard account, you can use up to 2 TB of storage space, whereas having
a normal free Dropbox account gives you only 2 GB of space.

For our application, we should be concerned with the first two As of Triple-A -
Authentication and Authorization. In computer science, we often use term auth,
referring rather to authentication or authorization or even to both of them at the
same time. So we will implement auth, where auth refers to both authentication and
authorization. What is the difference between these two terms in the context of our
ProFitOro application? Well, authentication will allow users to log in to the system,
so this is easy. What about authorization?

Do you remember that we decided that only authenticated users will have access to the
configuration of Pomodoro settings and statistical data? This is authorization. Later on,
we might go further and implement a special role - fitness trainer. The users with this
role will have access to the workouts area and be able to add new workouts.

In this chapter, we will use the Firebase authentication mechanism to add the
possibility of signing in and logging in to our application and to control what users
have access to.

How does authentication work with
Firebase?

In the previous chapter, you learned how to use the Firebase API to create a Firebase
application instance and use it through your application. We were able to access the
database, read it, and store data in it.

The way you work with the Firebase authentication API is very similar. You create a
Firebase instance, providing a config object to it, and you use the firebase.auth ()
method to access different methods related with the authentication. Check your
Firebase console's Authentication tab:

[158]



Chapter 6

= Firebase

Authentication WEB SETUP

USERS SIGN-IN METHOD TEMPLATES

Q Search by email address, phone numb.. ADD USER G

Identifier

No users for this project yet

There are no users yet but we will fix it in a minute!
The Firebase SDK provides several ways for users to authenticate:

* Email and password based authentication: The classic way for
authenticating users. Firebase provides a way to sign in users with
email/password and log them in. It also provides methods to reset
the user password.

* Federated entity provider authentication: The way of authenticating
users with an external entity provider, such as Google, Facebook, Twitter,
or GitHub.

* Phone number authentication: The way of authenticating users by
sending them an SMS with a code that they will have to input to confirm
their identity.

* Custom auth system integration: The way of integrating an already existing
auth solution with the Firebase authentication API

* Anonymous user authentication: The way of providing Firebase features
(such as access to the Firebase database) without being authenticated.
We can, for example, use this anonymous account to provide access to
the default configuration stored in the database.

[159]



Please Authenticate!

For our application, we will use the first and the last methods, so we will allow users
to sign in and log in using their email and password combination and we will allow
anonymous users to use the basic functionality of the application.

You should explicitly activate both methods in your Firebase console. Just open the
Authentication tab of your Firebase project, click on the sign-in method link, and
enable these two methods:

Authentication WEB SETUP

USERS SIGN-IN METHOD TEMPLATES
— ..

Sign-in providers

Provider Status

FEsso

LS Disabl

"

\ Goog C

n Facebook Disahl
Twitter D

L

Q GitHub Disabl

Explicitly enable email/ password and the anonymous sign-in methods
The workflow of using the Firebase authentication API is the following:

1. Create all the necessary methods for the sign-in and login.
2. Implement all the necessary UI for your authentication.
3. Connect changes in the UI to the authentication methods.
Did you spot something nice in step 3? Connect changes in the Ul to the authentication

methods. You remember that we are dealing with a reactive data binding framework,
don't you? So this is going to be fun!

[160]



Chapter 6

How to connect the Firebase
authentication API to a web application

In order to connect your application to the Firebase authentication API, you should
start by creating a Firebase application instance:

let config = {
apiKey: 'YourAPIKey',
databaseURL: 'YourDBURL',
authDomain: 'YourAuthDomain'

}

let app = firebase.initializeApp (config)

You can find the necessary keys and URLSs in the popup that opens if you click on the
Web Setup button:

Add Firebase to your web app X

Copy and paste the snippet below at the bottom of your HTML, before ather script tags

1pt src="https://www.gstatic.com/firebasejs/4.1.3/firebase.js ></script

itialize Firebase

var config = {
apikey: [N
authDomain Fito L R
databaselRL -
projectId: "profitoro .
storageBucket: “profitoro-adéfé.appspot.com”,
messagingSenderld:

bs

firebase.initializeApp(config); m

The setup config to use Firebase in a web application

Now you can use the app instance to access the auth () object and its methods.
Check out the official Firebase documentation regarding the authentication API:
https://firebase.google.com/docs/auth/users.

The most important part of the API for us is the methods to create and sign in a user,
and the method that listens to the changes in the authentication state:

app.auth() .createUserWithEmailAndPassword (email, password)

Or:

app.auth() .signInWithEmailAndPassword (email, password)

[161]



Please Authenticate!

The method that listens to the changes in the authentication state of the application
is called onauthStateChanged. You can set the important properties inside of this
method considering the state your application needs to have depending on the user
being logged in or not:

app.auth() .onAuthStateChanged ( (user) => {
if (user) {
// user is logged in
} else {
// user is logged out
}
3]

That is all! In our application, we just have to provide a visual way to pass the
username and the password to the API.

Authenticating to the ProFitOro
application

Let us now make signing in and logging in to our ProFitOro application possible!
First, we have to set up the Firebase instance and figure out where we should put
all the methods related to authentication. The Firebase application initialization
has already been done inside the store/index. js file. Just add the apiKey and
authDomain configuration entries if you still do not have them included in the
config:

// store/index.js

let config = {
apiKey: 'YourAPIKey',
databaseURL: 'https://profitoro-ad0f0.firebaseio.com',
authDomain: 'profitoro-ad0fo0.firebaseapp.com'’

}

let firebaseApp = firebase.initializeApp (config)

I will also export firebaseApp within the store's state property using the spread ...
operator:

//store/index.js
export default new Vuex.Store ({
state: {
...state,
firebaseApp

b

<. o0.0>

|3)

[162]




Chapter 6

I will also add a user property to our state so we can reset it on the
onAuthStateChanged listener's handler:

// store/state.js
export default {
config,
statistics,
user,
isAnonymous: false

}

Let us also create a small mutation that will reset the value of the user object to the
given value:

// store/mutations.js
export default {
<. 00>
setUser (state, value) {
state.user = value
}
}

Now we are totally ready to create the needed actions. I will create four actions that
are indispensable for our application:

* createUser: This action will call the Firebase auth
createUserWithEmailAndPassword with the given email and password

* authenticate: This action will call the Firebase auth
signInWithEmailAndPassword method to sign in the user with the given
email and password

* logout: This action will call the Firebase auth signout method

* bindAuth: This action will just set up the onauthStateChanged callback
and commit the setUser mutation

To start with, let us implement these actions in a very easy way, without any
callbacks attached. So they will look like this:

// store/actions.js
createUser ({state}, {email, password}) {
state.firebaselApp.auth() .createUserWithEmailAndPassword (email,
password) .catch(error => {
console.log(error.code, error.message)
3]
b

authenticate ({state}, {email, password}) {

[163]



Please Authenticate!

state.firebaseApp.auth() .signInWithEmailAndPassword (email,
password)

1

logout ({state}) {
state.firebaselApp.auth() .signOut ()

1

bindAuth ({commit, state}) ({
state.firebaselpp.auth () .onAuthStateChanged ( (user) => ({

commit ('setUser', user)

3]

1

Great! Now let's attach the bindauth action to the created method of the main App.
vue component:

// RApp.vue
methods: {
. .mapActions (['bindStatistics', 'bindConfig', 'bindAuth'])

b
created () {

this.bindAuth()

this.bindConfig()

this.bindStatistics ()

}

Now, once the application is created, the listener to the authentication state will

be bound immediately. What can we do with it? Right now, the only component

that the App . vue component shows immediately is the main content component.
However, if the user is not logged in, we should actually show the landing page
component to offer the possibility to the user to sign in or log in. We can do it easily
using the v-if directive bound to the user property. If the user is defined, let's show
the main content component; otherwise, let's show the landing page component.
How easy is that? Our App . vue component's template will look like this:

// RApp.vue
<template>
<div id="app">
<landing-page v-if="!user"></landing-page>
<main-content v-if="user"></main-contents>
</div>
</template>

[164]



Chapter 6

If you open the page now, you will see that the landing page is displayed:

' | @ localhost:8080
Logo
Tagline
Authentication
Go To App

When the application is started, the landing page is displayed because the user is not logged in

All the relevant code up to this part is in the chapter6/1/profitoro folder. Pay
special attention to the store's files (index.js, actions.js, mutations.js,
state.js) and to the App.vue component.

Now we are stuck on the landing page that just displays some placeholder text and
there is no way to proceed to the application because we cannot log in!

Well, this is quite easy to solve: let's create a simple form to sign up and log in in the
Authentication.vue component and connect it with our actions.

So I will add the component's data that will hold the email for registering, email for
login, and the corresponding passwords:

// Authentication.vue
export default {
data () {
return {
registerEmail: '',
registerPassword: '',
loginEmail: '',
loginPassword: '!

}
}
}

I will also add a very simple markup that will display the inputs for the
corresponding data:

<template>
<div>
<hl>Register</hl>
<input v-model="registerEmail" type="text" placeholder="email"s>
<input v-model="registerPassword" type="password"
placeholder="password">
<button>Register!</buttons>
<hl>Login</hl>

[165]



Please Authenticate!

<input v-model="loginEmail" type="text" placeholder="email"s

<input v-model="loginPassword" type="password"
placeholder="password">

<button>Log in!</buttons>
</div>
</template>

Let's now import the necessary actions (authenticate and createUser) and create
methods that will call these actions:

// Authentication.vue
<scripts
import {mapActions} from 'vuex'

export default {
<...>
methods: {
...mapActions(['createUser', 'authenticate']l),
onRegisterClick () {

this.createUser({email: this.registerEmail, password:
this.registerPassword})

¥

onLoginClick () {
this.authenticate({email: this.loginEmail, password:
this.loginPassword})

}
}

</script>

Now we just have to attach the event binding the v-on: click directive to the
corresponding buttons:

// Authentication.vue
<template>
<div>
<hl>Register</hl>
<input v-model="registerEmail" type="text"
placeholder="email">

<input v-model="registerPassword" type="password"
placeholder="password">

[166]




Chapter 6

<button @click="onRegisterClick">Register!</button>
<hl>Login</hl>
<input v-model="loginEmail" type="text" placeholder="email"s

<input v-model="loginPassword" type="password"
placeholder="password">

<button @click="onLoginClick">Log in!</buttons>
</div>
</template>

Let's also add a button to our HeaderComponent . vue component. This button should
allow the user to log out. This is very easy; we don't even have to create any method,
we just have to bind the event to the actual action. So the whole markup and the
needed script will look as simple as this:

// HeaderComponent .vue
<template>
<div>
<button @click="logout">Logout</button>
</div>
</template>
<scripts
import {mapActions} from 'vuex'

export default {
methods: {
...mapActions(['logout'])

}

</script>

And...that's it! Open the page and try to register in your application! It works! Once
you are logged in, not only you will see the Pomodoro timer but you will also be able
to see the logout button. Click on it and check that you are actually thrown out of the
application to the landing page. Try to log in again. Everything works like a charm.

[167]



Please Authenticate!

Do not forget to open your Firebase console and check the Authentication tab. You
should see all your registered users there:

Authentication WEBSETUP @
USERS SIGN-IN METHOD TEMPLATES
Q Search by email address, phone number, or user UID (G
Identifier Providers Created Isn\qned User UID 4
chudaol+1@gmail.com Julg, Jul g, 1HZQAgG38LBTL922B0
chudaol+2@gmail.com Jul 10, Jul 10, HINhVLUXL7dj4cJ55G
chudaol+3@gmail.com Jul 10, Jul 10, TEDTkhP&heQfaSB4m..
chudaol@gmail.com Jul 8, Jul 10, cUjsbm28V2QuYyZ2V.
Rows perpage: 50 Td4of4 < >

Monitor your registered users through the Firebase console's Authentication tab

Congratulations! You just used the Firebase authentication API to implement a full
authentication mechanism for your application. You can find the corresponding code
in the chapteré6/2/profitoro folder. Pay special attention to the Authentication.
vue and HeaderComponent . vue components.

Making the authentication Ul great again

We have just implemented the authentication mechanism for our ProFitOro
application. That's great, but the Ul of our authentication page looks as if we've used
a time machine and gone back 20 years to the early days of the internet. Let's fix it
using our powerful friend - Bootstrap.

First of all, I would like to make my landing page layout a two-column grid layout,
so the whole sign-in/login belongs to the left column and the button that leads the
user to the application without being registered stays on the right side. However, I
would like these two columns to be stacked on mobile devices.

[168]




Chapter 6

This is nothing new for you; I suppose that you remember how to use Bootstrap's
grid layout in order to achieve this behavior: https://v4-alpha.getbootstrap.
com/layout/grid/. So, in our LandingPage component, I will just wrap the
authentication and go-to-app-1ink components into the div with the row class and

add the corresponding col-* classes to these components:

// LandingPage.vue
<template>
<div>
<...>
<div class="container row justify-content-center">

<div class="col-sm-12 col-md-6 col-1g-6">
<authentication></authentication>
</divs>
<div class="col-sm-12 col-md-6 col-1g-6">
<go-to-app-link></go-to-app-link>
</divs>
</divs>
</divs>
</template>

That's it! Now you have a nice two-column layout, which transforms into the
single-column layout on small-sized devices:

—

H Go To App
Register | ]
email password Register!

.

Login
email password Log in!

This is how our layout looks on the desktop device

As you can see, on the desktop device, we have a nice two-column layout. If you
resize your browser to the size of a mobile device, the right column jumps behind the

left column:

-
Register
email password Register!
-
Login
email password Log in!
[Go To App)

This is how our layout looks on the mobile device

[169]


https://v4-alpha.getbootstrap.com/layout/grid/

Please Authenticate!

Now let's have a look at our Authentication.vue component. In order to make it
nicer than a 20-year-old web page, let's apply Bootstrap's magic to it. To do so, we
will use the classes of Bootstrap's forms: https://v4-alpha.getbootstrap.com/
components/forms/.

We will wrap the whole form into the <form> tag and each of the inputs into the div
with the form-group class. We will also add the class form-control to each of the
inputs. So the input for email, for example, will look as follows:

<div class="form-group">
<input class="form-control" v-model="email" type="email"
placeholder="email">

</divs>

As a small exercise, do the following:
* Make it only one form that has a button to switch between the login

and sign-up forms

* Make it only one method that would call one of the actions depending on
which state the form is in at the moment

* Explore Bootstrap's utilities classes to remove all the borders except the

bottom border and to remove the round corners from them: https://v4-
alpha.getbootstrap.com/utilities/borders/

In the end, your form should look like the following;:

Already a member? Log in here! Don't have an account? Sign up here!
email email
password password
LOGIN SIGN UP
Don't have an account? Sign up here! Already a member? Log in here!

This is how both forms should be looking at the end. They should be toggled with a bottom button

Try to achieve it by yourself. To check your work, have a look at the chapteré/3/
profitoro folder. In particular, check the code of the Authentication.vue
component. It is very different!

[170]


https://v4-alpha.getbootstrap.com/components/forms/
https://v4-alpha.getbootstrap.com/utilities/borders/
https://v4-alpha.getbootstrap.com/utilities/borders/

Chapter 6

Managing the anonymous user

ProFitOro allows unregistered users to use the application as well. The only
difference is that these unregistered users are not allowed to configure their
settings as well, as they do not have access to their statistical data. They also cannot
manage workouts. So, this is where we meet the second A of the triple-A definition
- authorization. How can we manage these users? How can they actually enter the
application if we only allow our users to sign up and log in? Well, for some reason,
we have prepared the part that says Go to App. Let me remind you how it looks in
the mockups:

Browser

& @ [l | & D)

& Pomodoro

Enjoyable Application for Office Workouts!

Already a Member? Log into your account

| |
| I

Fvatostmy password or Start without registration!

“ This version will not allow you to personalalise your

user profile and add your workouts.

[[] Remember me on this computer

D't have an aceount yat? Sign up hera!

Start without registration! button in the initial mockups

[171]



Please Authenticate!

Luckily for us, the Firebase authentication API provides a method to sign in the
anonymous user. The returned user object contains the isAnonymous attribute,
which will allow us to manage the resources that can or can't be accessible to this
anonymous user. So let's add the action called authenticateAnonymous and call the
corresponding Firebase auth method within it:

// store/actions.js
authenticateAnonymous ({state}) {
state.firebaseApp.auth() .signInAnonymously () .catch(error => {
console.log(error.code, error.message)
1)
b

Here we are! Now let's just slightly modify a mutation that sets the user and the
isAnonymous state's attribute to the corresponding one in the user object:

// store/mutations.js
setUser (state, value) ({
state.user = value
state.isAnonymous = value.isAnonymous

}

Let's also modify the binding configuration and statistics actions and execute the
actual binding only if the user is set and only if the user is not anonymous:

// state/actions.js
bindConfig: firebaseAction(({bindFirebaseRef, state}) => {
if (state.user && !state.isAnonymous) {
bindFirebaseRef ('config', state.configRef)
}
1

bindStatistics: firebaseAction(({bindFirebaseRef, state}) => {
if (state.user && !state.isAnonymous) {
bindFirebaseRef ('statistics', state.statisticsRef)

}
|3)

We are done with the backend! Now let's implement this button! There are only three
steps to achieve it. Open the GoToAppLink.vue component, import the mapActions
helper, add the button, and use the v-on:click directive to bind the event listener to
it that will call the corresponding action:

// GoToAppLink.vue
<template>
<div>
<button @click="authenticateAnonymous">
START WITHOUT REGISTRATION
</button>
</divs>

[172]




Chapter 6

</template>
<scripts
import {mapActions} from 'vuex'

export default {
methods: {
...mapActions(['authenticateAnonymous'])

}
}

</script>

How easy is that? Now, as a small exercise, with the help of Bootstrap, try to make
things look like the following;:

Already @ member? Log in here!

email
password START WITHOUT REGISTRATION
OR This version will not allow you to personalise your profile
LOGIN or add new workouts

Don't have an account? Sign up here!

Use the corresponding Bootstrap classes to make our buttons look like this and to align the columns vertically

Check Bootstrap's classes for alignment: https://v4-alpha.getbootstrap.com/
layout/grid/#alignment. Check as well the helper classes to get rid of rounded
corners. Check yourself by having a look at the code in the chapteré/4 /profitoro
folder. Pay special attention to the GoToAppLink.vue component and to the store's
components, such as action.js and mutations.js.

Personalizing the Pomodoro timer

Well, now that we can already sign in new users and log in the existing ones,
probably we should think about taking advantage of our authentication mechanism
because right now we are actually not doing anything with it. We just sign up and
we just log in. Yes, we also can hide or show some content based on the user's
authentication, but this is not enough. The whole point of all this effort was to be able
to store and retrieve the user's custom configuration for the Pomodoro timer and the
user's statistical data.

[173]



Please Authenticate!

Until now, we have been using a hardcoded database object with the key test in
order to access the user's data, but now, since we already have our real users, it's
time to populate the database with real users' data and use it in our application.
Actually, the only thing we have to do is to replace this hardcoded value with the
actual user's ID. So, for example, our code to bind the config reference was looking
like this:

// store/actions.js
bindConfig: firebaseAction(({bindFirebaseRef, state}) => {
if (state.user && !state.isAnonymous) {
bindFirebaseRef ('config', state.configRef)

}
1.

Here, the reference state.configRef has been defined in the store's entry point
index.js:

// store/actions.js

let firebaseApp = firebase.initializeApp (config)
let db = firebaseApp.database ()

let configRef = db.ref('/configuration/test')

Now, we cannot actually instantiate our database references within the store's entry
point, because at this point (no pun intended), we still don't know whether or not
our user is authenticated. So the best thing to do is to pass this code to the actual
bindConfig function and to replace this test with the real user's uid:

// store/action.js
bindConfig: firebaseAction(({bindFirebaseRef, state}) => {
if (state.user && !state.isAnonymous) {
let db = firebaseApp.database()
bindFirebaseRef ('config',
db.ref (~/configuration/${state.user.uid}"))

}
1.

Now, my dear attentive user, I know that you are exclaiming "but how the hell is the
configuration with the user's uid stored?" Very well noticed: it's not. We still have to
store it on our user's first sign-up. We actually have to store both configuration and
statistics.

The Firebase database provides a method to write new data to the database that is
called set. So you basically obtain the reference (just like in the case of reading data)
and set the data you need to write:

firebaseApp.database().ref(“/configuration/s{state.user.uid}“).set(
state.config

) ;

[174]



Chapter 6

This will create a new entry with a given user ID in our configuration table and set
the default state's config data. So we will have to call this method on the new user
creation. We will still have to bind the database references to our state objects. In
order to reduce the amount of code, I created a method, bindFirebaseReference,
that receives the reference and the string that represents the key of the state to which
it should be bound. This method will analyze whether or not the entry for the given
reference already exists in the database and will create it if needed. For that, Firebase
provides a nice method that can be applied to nearly everything - this method is
called once and it receives a callback with a snapshot to whatever it has been applied
to. So, inside this callback, we can analyze whether or not this snapshot has a child
with a given name, or even if it has a value or it's null. If the value is already set,

we will bind our state to it. If not, we will create a new entry. Check out the official
Firebase documentation in this regard: https://firebase.google.com/docs/

database/web/read-and-write. This is what the once method and its callback
looks like:

- userId = firebase . tUser.uid;
firebase.dat ' + userId).once( 'value') :n(function(snapshot) {

var username = snapshot.val().username;

How to use the once method to check whether the data exists in the database

Disregarding the existence or not of data, our binding reference method should call
the Firebase bindings. So it will look as the following;:

// store/actions.js

bindFirebaseReference: firebaseAction(({bindFirebaseRef, state},
{reference, toBind}) => {

return reference.once('value') .then(snapshot => {
if (!snapshot.val()) {
reference.set(state[toBind])
}
bindFirebaseRef (toBind, reference)
|3
1

I also replaced both methods that were binding config and statistics by only one:

// store/actions.js
bindFirebaseReferences: firebaseAction(({bindFirebaseRef, state,
commit, dispatch}, user) => {

let db = state.firebaseApp.database ()

let configRef = db.ref (~/configuration/${user.uid}”)

let statisticsRef = db.ref (~/statistics/${user.uid}")

[175]



https://firebase.google.com/docs/database/web/read-and-write

Please Authenticate!

dispatch('bindFirebaseReference’, {reference: configRef, toBind:
‘config'}) .then(() => {
commit ('setConfigRef', configRef)
3
dispatch('bindFirebaseReference’, {reference: statisticsRef, toBind:
'statistics'}).then(() => {
commit ('setStatisticsRef', statisticsRef)
3

1

This method is being called from the bindauth method. So now we can remove the
calls to the actions to bind config and statistics from the created method of our
App.vue. We also don't need the instantiation of references in the store/index.js
since both references are instantiated within this new method. And we have to add
two mutations that will set the references to the state so we don't need to change
our Pomodoro configuration settings actions since they are using both references to
update the data.

Check what the code looks like in the chaptere6/5/profitoro folder. Check out
the slight changes in the App . vue component, and check what the store's files are
looking like now (index.js, mutations.js, state.js, and especially actions.js).

Play with your application. Sign up, log in, change the Pomodoro timer
configuration, log out, and check that it works. Check your Firebase

console - the Realtime Database tab and Authentication tab. Check that whatever
you change, you have your data consistent everywhere - in your database, in
your Authentication tab, and, most importantly, in your application (because the
application is what your users are going to see, right?):

Realtime Database Logout : Firebase  Profitors = Authentication Go 1o docs

- Q5sR — \densifier ; Crested 5 griin 4+

a n

longBreak: 18
pomodorosTillLongBreak: 3
shortBreak: 5 2
workingPomodoro: 25

=~ UaD90k4XsgPoCMAGOEI7140KHHF
longBreak: 19

e

pomodorosTillLongBreak: 3 chudacke4
shortBreak: 5
workingPomodore: 25

=~ XSy9upobZbMAXZALMCIEUESIT3 | SHof
longBreak: 18 ﬁ
pomoderosTillLongBreak: 3
shortBreak: 3

workingPomodoro: 28

= dy7XgnepXsbGhcHYRWqivLOHZH3

Start P

pomederoslasiMonth: @
pomoedorosLastWeek: @

pomedorosToday: @

V5]

Check that the data is consistent everywhere

[176]




Chapter 6

So now we can sign up a new user, log in as an existing user, and log in as an
anonymous user. We provide a nice value to the authenticated users - to be able to
configure their Pomodoro timer and to check their statistical data. Of course, our
application is still far from being perfect - we don't validate the input, we accept any
values in the Pomodoro configuration area, which is not right, and we don't display
the possibility of changing passwords on the startup page. BUT we have our solid
skeleton, which enables us to build a solid and nice application on its base. So let us
move on!

Updating a user's profile

Wouldn't it be funny if we could welcome our user by displaying a welcome
message saying something like Welcome Olga? But our users do not have names;
they only have emails and passwords - two essential authentication components
that are passed during the sign-up process. So, how can we do that? Well, if you
have read with some attention the Firebase documentation regarding authentication
(https://firebase.google.com/docs/auth/web/manage-users), you might have
spotted these nice methods:

Update a user's profile

You can update a user's basic profile information—the user's display name and profile photo URL—with
the updateProfile method. For example:

var user = firebase.auth().currentUser;

user.updateProfile({

error) {
r IppE

Set a user's email address
You can set a user's email address with the updateEmail method. For example:

var user = firebase.auth().currentUs

user.updateEmail(

Firebase methods for updating a user's profile and email address

Let's use these methods to update our user's profile and user's profile picture!

[177]



Please Authenticate!

We will define three new actions - one that will update the user's display name

by calling the Firebase updateProfile method, one that will update the user's
profile picture's URL by calling the same method, and another one that will call the
updateEmail method. Then we will create the necessary markup in the Settings.
vue component that will bind those actions on the corresponding input's update.
Sounds easy, right? Believe me, it's as easy to implement as it actually sounds.

So, let's define our actions. They will look like the following;:

// store/actions.js
updateUserName ({state, commit}, displayName) {
state.user.updateProfile({
displayName
})
b
updatePhotoURL ({state}, photoURL) {
state.user.updateProfile({
photoURL
})
b
updateUserEmail ({state}, email) {
state.user.updateEmail (email) .then(() => {
// Update successful.
}, error => {
console.log(error)
})
b

Great! Now let's switch to our Settings.vue component, which will be responsible
for rendering the needed data to change the account settings and for updating this
data by calling the needed actions when needed. So first of all, I will add three
entries to the data function that will be set to the current user object's corresponding
attributes once the component is created:

// Settings.vue
data () {
return {
displayName: '',
email: '',
photoURL: 'static/tomato.png'
}
b
computed: {
. .mapGetters ({user: 'getUser'})

b

[178]




Chapter 6

created () {

this.displayName = this.user.displayName

this.email = this.user.email

this.photoURL = this.user.photoURL ? this.user.photoURL : this.
photoURL

}

Now this data can be used within the corresponding actions. So, let's import the
needed actions and create the corresponding methods:

// Settings.vue

methods:

...mapActions(['updateUserName', 'updateUserEmail',
'updatePhotoURL']),

onChangeUserName () {

this.updateUserName (this.displayName)

¥

onChangeUserEmail () {
this.updateUserEmail (this.email)

¥

onProfilePicChanged () {
this.updatePhotoURL (this.photoURL)

}

Now we can add the needed markup full of the inputs to which we will bind the
data using the v-model data binding directive! We will also call the corresponding
methods on each input's update:

// Settings.vue
<form>
<div class="form-group">
<figure class="figure">
<img :src="photoURL" alt="Avatar">
<input type="text" v-model="photoURL" @
change="onProfilePicChanged">
</figure>
</divs>
<div class="form-group">
<input @change="onChangeUserName" v-model="displayName"
type="text" placeholder="Change your username">
</div>
<div class="form-group">
<input @change="onChangeUserEmail" v-model="email" type="text"
placeholder="Change your username"s>
</div>
</form>

[179]



Please Authenticate!

And...we are done!

As a small exercise, do the following: add a figure caption behind our image that
says Change profile picture. The input element for the new picture URL should only
be visible when the user clicks on this figure caption. Once the URL's updating is
done, the input should become invisible again.

The result should look like the following:

Account settings

Change profile picture

olga

chudaol+112@gmail.com

This is how it looks before the user clicks the Change profile picture caption
Initially, it contains the default user picture.

After the user clicks on the caption, the input for changing the picture's URL appears:

Account settings

|
Change profile picture.
|https:/sconte nt~frx5A1q

olga

chudaol+112@gmail.com

After the user clicks on the figure caption, the input appears

[180]



Chapter 6

After the user changes the profile picture URL, the input is hidden again:

Account settings

[

Change profile picture

olga

chudaol+112@gmail.com

After the user changes the URL for the profile picture, the input disappears

My advice: add an additional property to the Settings.vue component's data, set
it to true when the user clicks on the caption, and reset it to false when the value
inside the input is changed.

Also, don't forget about our initial aim for this section - add a welcoming message
inside the Header .vue component. This welcoming message should contain the
user's display name. It should look something like this:

Welcome olga Logout

Welcoming message mentioning the user's name

Note that if you decide to change your email, you will have to log out and log in
again; otherwise, you will get some Firebase security errors in your console.

The final code for this chapter can be found in the chapteré/6/profitoro folder.
Note that I split both the account settings and the Pomodoro settings with two
individual components (AccountSettings.vue and PomodoroTimerSettings.vue).
It makes things easier to maintain. Pay attention to the store's components as well.
Check the Header . vue component and how it actually displays the welcoming
message.

[181]




Please Authenticate!

Summary

In this chapter, we have learned how to combine the Firebase real-time database and
authentication API to update a user's settings. We have built a user interface that
allows a user to update their profile settings. In just a few minutes, we have built the
full authentication and authorization part of our application. I don't know about you,
but I feel totally amazed about it.

In the next chapter, we will finally get rid of this huge page that contains all the
parts of our application - the Pomodoro timer itself, statistics data, and the settings
configuration view. We will explore one really nice and important feature of Vue

- vue-router. We will combine it with Bootstrap's navigation system in order to
achieve a nice and smooth navigation. We will also explore such a hot topic as code
splitting in order to achieve lazy loading for our application. So, let's go!

[182]



Adding a Menu and Routing
Functionality Using
vue-router and Nuxt.js

In the previous chapter, we added a very important feature to our application -
authentication. Now, our users are able to register, log in to the application, and
manage their resources once they are logged in. So, now they can manage the
configuration of the Pomodoro timer and their account's settings. They also have
access to their statistics data once they are logged in. We have learned how to use
Firebase's authentication API and connect the Vue application to it. I must say, the
previous chapter has been extensive in learning and a very backend oriented chapter.
I enjoyed it a lot and I hope you enjoyed it as well.

[183]



Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Despite having this complex feature of authentication and authorization, our
application still lacks navigation. For simplicity reasons, we are currently displaying
all the application's parts on the main page. This is... ugly:

Statistics

Total Pomodoros: 0

Account settings

Change prafile picture
olga
chudaol+112@gmail.com

Footer

Start Pause Stop

Set your pomodoro timer

Pomodoro

Welcome olga Logout

10 5

Short break

Long break

Admit it, this is ugly

In this chapter, we are not going to make things beautiful. What we are going to do
is make things navigable so that all parts of the application are accessible through
navigation. We are going to apply the vue-router mechanism in order to achieve
the natural browser's navigation and we are going to use Bootstrap's navbar in order
to have the corresponding buttons to navigate to each section easily. Thus, in this

chapter we are going to:

* Explore vue-router again to achieve the navigation of the ProFitOro

application

* Use Bootstrap's navbar to render the navigation bar

* Explore code splitting techniques to load each part of the application only

when it's needed

* And, finally, we are going to explore the Nuxt.js template, rebuild our
application using it, and achieve routing in an unobtrusive and enjoyable

way

[184]




Chapter 7

Adding navigation using vue-router

I hope you still remember from the second chapter what vue-router is, what it does,
and how it works. Just to remind you:

Vue-router is the official router for Vue.js. It deeply integrates with Vue.js core to
make building Single Page Applications with Vue.js a breeze.

-(From the official documentation of vue-router)

The vue-router is very easy to use, and we don't need to install anything - it
already comes with the default scaffolding of Vue applications with a webpack
template. In a nutshell, if we have Vue components that should represent the routes,
this is what we have to do:

* Tell Vue to use vue-router
* Create a router instance and map each component to its path
* Pass this instance to the options of a Vue instance or component

* Render it using the router-view component

[ Check the official vue-router documentation: https://router. ]
s

vuejs.org

When you create your router, you should pass the array of routes to it. Each array
item represents the mapping of a given component to some path:

{

name: 'home',
component : HomeComponent,
path: '/

}

ProFitOro only has four possible routes - the Pomodoro timer itself, which we can
consider as the home page, views with settings and statistics, and the view with
collaborative workouts. Thus, our router looks very simple and easy to understand:

// router/index.js

import Vue from 'vue'

import Router from 'vue-router'

import {PomodoroTimer, Settings, Statistics, Workouts} from '@/
components/main/sections’

Vue.use (Router)

[185]



Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

export default new Router ({

mode: 'history',

routes: [

]
3]

Now, if you import the created router in the ContentComponent view, pass it to

the options of the component and render the router-view component, you will be
able to see the Vue routing in action! You can also delete all the component imports,
because the only thing that ContentComponent should actually import now is the
router which will be responsible for everything else. So, Content Component will look

{

name: 'home'’',

component : PomodoroTimer,
path: '/

name: 'settings’',
component : Settings,
path: '/settings'

name: 'statistics',
component: Statistics,
path: '/statistics'

name: 'workouts',
component : Workouts,
path: '/workouts'

}

as follows:

// ContentComponent .vue
<template>
<div class="container">

<router-views</router-view>

</div>
</template>
<scripts
import router from '@/router’

export default {

}

router

</script>

[186]




Chapter 7

()penthepag&typelocalhost:8080/settings,localhost:8080/statistic&
localhost:8080/workouts in the browser's address bar and you will see how the
views appear according to what you are actually trying to access. You must admit
that this was really easy.

Now let's add the links, because we want to navigate by clicking some buttons and
not by introducing the navigation URL in the browser address bar, right?

Adding navigation links with vue-router is fairly easy. Use the provided router-
link component with the attribute to that points the link to the desired path:

<router-link to="/">Home</router-1links>

Let's add these links in our Header component. This is the component that should
be responsible for the navigation representation. So, in the template section of our
HeaderComponent . vue, add the following:

// HeaderComponent .vue
<template>
<router-link to="/">Home </router-links>
<router-link to="statistics">Statistics </router-links>
<router-link to="workouts"sWorkouts </router-links>
<router-link to="settings">Settings </router-link>
</template>

Don't forget to import the router and export it in the component's options:

// HeaderComponent.vue
<scripts>

/...

import router from '@/router’

export default {
//

router

}

</scripts>

[187]



Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

With a bit of playing around with Bootstrap classes, we get something like this:

Welcome clga Home Statistics Workouts Settings Logout

10:00

Start

Footer

Navigating ProFitOro using vue-router

This is, in a nutshell, the basics covering routing and navigation using vue-router
and its components. You can find the final code for this part in the chapter7/1/
profitoro folder. Pay special attention to the router itself (router/index.js),
ContentComponent .vue and the HeaderComponent . vue files.

Exercise - restrict the navigation according to
the authentication

Don't forget that we have to restrict the navigation links according to the
authentication state of the user. If the user is authenticated anonymously, we
shouldn't show the navigation links at all. However, there should be a button that
enables users to go back to the main page. So, this button should invoke a logout
functionality and just display a different text, let's say, Go to the start page. You
already know how to conditionally render Vue components. Our router links are no
more than just regular components, so apply the conditional rendering mechanism
to them based on the value of the user and its property as isAnonymous.

Check the solution for this exercise in the chapter7/2/profitoro folder. Pay
attention to the HeaderComponent component.

[188]



Chapter 7

Using Bootstrap navbar for navigation
links

Our current navigation bar is great - it's functional, but not responsive. Luckily
for us, Bootstrap has a navbar component that implements responsiveness

and adaptiveness for us. We just have to wrap our navigation elements with

some Bootstrap classes and then sit back and check our beautiful navigation

bar that collapses on mobile devices and expands on desktop devices. Check
Bootstrap's documentation regarding the navbar component: https://v4-alpha.
getbootstrap.com/components/navbar/.

Keep in mind that this URL is for the alpha version. The next
s stable version 4 will be available on the official website.

These are the classes we are going to use to transform our simple navigation bar into
a Bootstrap-managed responsive navigation bar:

* navbar: This wraps the whole navigation bar element

* navbar-toggleable-*: This should also wrap the whole navigation bar
element and will tell it when to toggle between expanded/collapsed state
(for example, navbar-toggleable-md would make navigation bar collapse
on medium-size devices)

* navbar-toggler: This is a class for the button that will be clicked to open the
collapsed menu on small devices

* navbar-toggler-*: This tells the toggler element where to be positioned,
for example, navbar-toggler-right

* navbar-brand: This is a class for the navigation bar element that will
represent a brand (can be logo and/ or text)

* collapse navbar-collapse: These are classes that will wrap the navigation
bar elements that should be collapsed on small devices

* nav-item: This is a class for each of the navigation bar items

* nav-1link: Thisis a class for the nested element of the nav-item items; this
will finally be an anchor that will lead you to the given link

[189]


https://v4-alpha.getbootstrap.com/components/navbar/
https://v4-alpha.getbootstrap.com/components/navbar/

Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

There are lots of other classes to define a color scheme for your navigation bar, as
well as its positioning, alignment, and so on. Check the documentation and try them
all. I will just change the markup of the Header component. So, it will look like the
following;:

// HeaderComponent.vue
<template>
<div>
<nav class="navbar navbar-toggleable-md navbar-light">
<button class="navbar-toggler navbar-toggler-right"
type="button" data-toggle="collapse" data-target="#navbarHeader"
aria-controls="navbarHeader" aria-expanded="false" aria-label="Toggle
navigation">
<span class="navbar-toggler-icon"></span>
</buttons>
<div class="navbar-brand">
<logo></logo>
</div>
<div class="collapse navbar-collapse" id="navbarHeader"s
<ul class="navbar-nav ml-auto">
<li class="nav-item">
<router-1link class="nav-link" to="/">Home
</router-1link>
</1lis
<li class="nav-item">
<router-link class="nav-link" to="settings">Settings
</router-link>
</1i>
<li class="nav-item">
<router-link class="nav-link" to="statistics">
Statistics </router-links>
</1lis
<li class="nav-item">
<router-1link class="nav-1link" to="workouts"sWorkouts
</router-link>
</1lis
</ul>
<form class="form-inline my-2 my-1lg-0">
<button class="btn btn-secondary" @click="onLogout">
Logout</button>
</form>
</div>
</navs>
</div>

</template>

[190]




Chapter 7

You have probably noticed that I used our router-1ink elements with nav-1ink
classes inside the navigation items. It turns out that they play really nicely together.
So, we mixed the Vue routing mechanism with Bootstrap's navigation bar and
achieved an elegant solution for responsive routing in our Vue application. Now, our
header looks as great as this:

R ; par .
P=—414 Home Settings Statistics Workouts  Logout

18:00

Start Pause Stop

ProFitOro's navigation bar on desktop device

If we open our ProFitOro on a mobile device, we will see a nice toggle button instead
of the menu:

@@ =
-

Start Pause Stop

This is how ProFitOro's menu looks on a mobile device

[191]




Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

If we click on the toggle button on the mobile device, the menu will expand vertically:

&l PrO ——
ﬂ_m_ —

Logout

17:49

Pause Stop

This is how an expanded ProFitOro menu looks on a mobile device

This works nicely with alpha version of Bootstrap 4, however, if

you use Bootstrap 4 Beta you will see some inconsistencies. Some

classes were dropped, some classes were added. In order to make it
s\l to look exactly the same, do the following;:

~
Q * replace the navbar-tooglable-md class with the

navbar-expand-1g

* replace btn-secondary buttons' class with button-
outline-secondary swap the toggler button and brand
element

The functionality of conditional rendering based on the authentication has

been dropped. I will re-add it, but instead of hiding the elements when the user

is anonymous, I will make them disabled. This will bring extra value to the
application - an unregistered user will constantly be reminded that there is some
nice functionality that he can use if he registers. Thus, I will bind the disabled
Bootstrap class to the router-1ink elements. This class will be activated if the user is
anonymous. So, each of our router links will look like the following:

// HeaderComponent.vue
<router-link class="nav-link" :class="{disabled:user.isAnonymous}"
to="settings">Settings </router-link>

[192]



Chapter 7

If you open the page now and enter the application as an anonymous user you will
see that the links appear as disabled:

Home Go to the start page

For an unauthorized user the links appear as disabled

But, our user is smart, we all know that, right? Our user will do exactly the same
thing that you are considering doing right now (if you haven't already done it) - open
the developer tools console, go to the elements tab, edit the markup and remove the
class disabled. Ba-dum-tsss, now you can click on the navigation links!

So, we need also to protect it on the router side. Fortunately for us, vue-router
instance provides a hook method called beforeEach. This method receives both

the next and previous routes and, inside it, you can evaluate them and invoke the
next () method that will proceed to the next route or replace the path being invoked,
depending on the condition.

Additionally, each route item can include the meta attribute where we can pass

a condition on which this route can or cannot be invoked. Check the vue-router
documentation in this regard: https://router.vuejs.org/en/advanced/meta.
html.

So, let's add a meta attribute requiresauth to each of three route items and use the
beforeEach method like this:

// router/index.js
router.beforeEach((to, from, next) => {
if (to.matched.some(record => record.meta.requiresAuth)) {
if (!lstore.state.user || store.state.user.isAnonymous) {
next ({
path: '/!
1
} else {
next ()
}
} else {
next ()
}
1

Et voild, from now on, even if you explicitly type one of the conditional routes URLs
in the browser's address bar while being unauthorized, you will be redirected to the
home page!

[193]


https://router.vuejs.org/en/advanced/meta.html

Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Check the final code for this part in the chapter7/3/profitoro folder. Pay special
attention to the router itself (router/index.js) and to the Header component.

Code splitting or lazy loading

When we build our application to deploy for production, all the JavaScript is
bundled into a unique JavaScript file. It's very handy, because once the browser loads
this file, the whole application is already on the client side and no one is worried
about loading more things. Of course, this is only valid for SPAs.

Our ProFitOro application (at least at this stage) benefits from such bundling
behavior - it's small, it's a single request, everything is in place and we don't need to
request anything from the server for any of the JavaScript files.

However, this kind of bundling might have some downsides. I am pretty sure that you
have already built or have already seen huge JavaScript applications. There'll always
be some point when loading huge bundles will become unbearably slow, especially
when we want these apps to run on both desktop and mobile environments.

An obvious solution for this problem would be to split the code in such a way that
different chunks of code are loaded only when they are needed. This is quite a
challenge for single page applications and this is why we have a huge community
working on web development nowadays.

Right now, some simple techniques already exist in the web development world that
can be used to split the code in webpack applications. Check the official webpack
documentation to find out more about it: https://webpack.js.org/guides/code-
splitting/.

In order to use code splitting in a Vue.js application, you don't need to do anything
complex. There is no need to reconfigure your webpack configuration files and there is
no need to rewrite your components. Check this documentation entry regarding lazy
loading routes: https://router.vuejs.org/en/advanced/lazy-loading.html.

TL;DR: in order to lazy load your routes, you just need to change
the way you are importing them. So, consider the following code:

~\l import PomodoroTimer from '@/components/main/
sections/PomodoroTimer' To lazy load your routes, you would
write the following instead: const PomodoroTimer = () =>

import ('@/components/main/sections/PomodoroTimer')

The rest of the code remains totally unchanged!

[194]



https://webpack.js.org/guides/code-splitting/
https://router.vuejs.org/en/advanced/lazy-loading.html
https://router.vuejs.org/en/advanced/lazy-loading.html

Chapter 7

Thus, we just change the way that we import components in our router:

// router/index.js

const PomodoroTimer = () => import ('@/components/main/sections/
PomodoroTimer')

const Settings = () => import ('@/components/main/sections/Settings')
const Statistics = () => import ('@/components/main/sections/
Statistics')

const Workouts = () => import ('@/components/main/sections/Workouts')

That's it! Check the page and ensure that everything still works as intended. Check
the network panel. You will see that now it will request different JavaScript bundles
for different route views!

If you compare the network requests with the previous version, you will see that
there are now actually four requests - 0.js,1.9s,2.js, and 3.js - compared to
the previous single app . js request:

Name Status Type Initiator Size Time
_ | iquery.js 200 script (index) 68.0 KB 30 ms
_ | tetherjs 200 script (index) 247 KB 29 ms
_ | bootstrap.js 200 script (index) 45.8 KB 29 ms
[ ! appis 200 script (index) 45MB | 322 ms

A single request for app.js bundle before code splitting

After the code splitting, if we navigate through the application's navigation links, we
will see the following:

Name Status Type Initiator Size Time

| | 1.js 200 script app.js:743 7T.0KB 4 ms
0.js 200 script app.js:743 94.4 KB 6 ms

1 3.s 200 script app.is:743 14.3 KB 6ms
2.js 200 script app.js:743 13.1 KB 6 ms

Considerably smaller JavaScript chunk is being requested for every route

Pay attention to the chunk sizes. Don't you agree that for big projects the code
splitting technique might actually increase the application's performance? Check the
router's code in the chapter7/3.1/profitoro folder.

[195]



Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Server-side rendering

Server-side rendering (SSR) recently became yet another popular abbreviation in
the web development world. Used in addition to code splitting techniques, it helps
you to boost the performance of your web application. It also positively affects your
SEO, since all the content comes at once, and crawlers are able to see it immediately,
contrary to cases where the content is being built in the browser after the initial
request.

I found a great article about SSR that compares server and client side rendering
(although it's from 2012). Check it out: http://openmymind.net/2012/5/30/
Client-Side-vs-Server-Side-Rendering/.

It's fairly easy to bring server-side rendering to your Vue application - check the
official documentation in this regard: https://ssr.vuejs.org.

It is important that our applications are performant; it is also important that SEO
works. However, it is also important not to abuse the tools and not to introduce
implementation overhead and overkill. Do we need SSR for the ProFitOro
application? To answer this question let's think about our content. If there is a lot

of content which is being brought to the page and is being used as a base for the
initial rendering then the answer is probably yes. Well, this is not the case for our
application. We have a simple login page, our ProFitOro timer, and a couple of
configuration settings. The only view where it might make sense in the future is the
one that contains workouts. But for now, let's not complicate things. You can try out
server-side rendering techniques for Vue applications with our ProFitOro, but keep
in mind that it's not something that should be used all the time. Learn the differences
between server-side rendering and pre-rendering as well (https://github.com/
chrisvfritz/prerender-spa-plugin) and check how our application could
actually benefit from both of these techniques.

Nuxt.js

While we were busy defining our router object, router links, code splitting and
learning things about the server-side rendering, someone implemented a way of
developing Vue.js applications without being worried about all these things at all.
Just write your code. All the things like routing, code splitting and even server-side
rendering will be handled behind the scenes for you! If you are wondering what the
hell it is, let me introduce you to Nuxt.js: https://nuxtjs.org.

[196]


http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-Rendering/
http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-Rendering/
https://ssr.vuejs.org
https://github.com/chrisvfritz/prerender-spa-plugin)
https://nuxtjs.org

Chapter 7

So, what is Nuxt.js?
Nuxt.js is a framework for creating Universal Vue.js Applications.
Its main scope is Ul rendering while abstracting away the client/server distribution.

What's so great about it? Nuxt.js introduces the concept of pages - basically, pages
are also Vue components, but each one of the pages represents a route. Once you
define your components inside the pages folder they become routes without any
additional configuration.

In this chapter, we will totally migrate our ProFitOro to the Nuxt architecture.
So, brace yourself; we are going to make lots of changes! At the end of the chapter,
our efforts will be rewarded with a piece of nice, elegant code.

The Nuxt application has a single config file, where you can define the necessary
webpack configuration, as well as meta, 1inks and additional scripts for your
index.html file. This is because Nuxt will generate your index.html automatically
during the build process, so you don't have to have it in your application's root
directory. In this config file, you can also define a transition that should happen on
each route change.

The way to create a Nuxt application is very similar to creating any Vue application
- all Nuxt,js functionality is built in the nuxt -starter template: https://github.
com/nuxt-community/starter-template. So, creating the Vue.js application with a
Nuxt template is just:

vue init nuxt/starter <project-name>

Let's create a profitoro-nuxt project and see how it works. Run the
following command:

vue init nuxt/starter profitoro-nuxt
Click Enter to answer to the questions.
Enter the generated folder, install the dependencies, and run the application:

cd profitoro-nuxt
npm install

npm run dev

[197]



https://github.com/nuxt-community/starter-template

Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Open the page on localhost:3000 and make sure that you see this:

NUXT

Universal Vue.js Application

The initial default page of the Nuxt application

Let's explore the folders' structure and the code. There's a folder called pages where
you can find the index.vue page. There's also a folder called components - here
we will store our components. There is a nuxt . config. js file where all the basic
configuration is stored. In a nutshell, that's it.

Let's work on the pages folder. What components of our ProFitOro application
can we define as pages? It's fairly easy to identify them, since we already have our
defined routes. So, I would say that we can identify the following pages:

* index.vue: This will check if the user is logged in and render either the login
page or the Pomodoro timer page

* login.vue: This page is identical to our current LandingComponent . vue

* pomodoro.vue: This will be the page that contains the Pomodoro timer
component

* settings.vue: This page will represent our Settings.vue component

* statistics.vue: This page will be responsible for rendering the
Statistics.vue component

* workouts.vue: This page will be responsible for managing the workouts

Let's create placeholders for all these pages. This is what my directory structure
inside the pages folder looks like:

— pages

— index.vue

— login.vue

— pomodoro.vue
— settings.vue
— statistics.vue

L workouts.vue

[198]




Chapter 7

This is the initial content of the 1ogin.vue page:

//login.vue
<template>
<div>
login
</divs>
</template>
<scripts>

</script>
<style scopeds

</style>
All the other pages are very similar to this one, except the index.vue page:

//index.vue
<template>
<divs>
<pomodoro></pomodoro>
<login></login>
</div>
</template>
<scripts>
import login from './login'
import pomodoro from './pomodoro’

export default {
components: {login, pomodoro}
}
</script>
<style>
</style>

If you open this application in your browser and try to type different paths
(Localhost:3000/pomodoro, localhost:3000/settings, and so on) in the
browser's address bar, you will see how it actually renders the corresponding
pages. How nice is that? We didn't have to define any routes or any additional
configuration in order to achieve this behavior! Check the code for this part in the
chapter7/4/profitoro-nuxt folder.

[199]




Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Adding links with nuxt-link

Just like vue-router provides a component called router-1ink, Nuxt provides a
very similar component called nuxt -1ink. Let's change our HeaderComponent using
nuxt-links instead of router-links and let's include this component inside our pages.

Before doing that, let's install sass-1loader, because, if you remember, we are using
the sass pre-processor for our CSS and our HeaderComponent is actually heavily
relying on that. So, go ahead and run the following:

npm install --save-dev node-sass sass-loader

I've also re-included Bootstrap styles, using its sass styles instead of plain CSS. Check
out the assets/styles folder in the chapter7/5/profitoro-nuxt folder. Run npm
install inside this folder and use this as your working directory for this part.

LeﬂsnowlannlOurHeaderComponent.vueandI@go.vuetothecomponents/
common folder. Our logo's markup will change. Before it was wrapped inside the
router-1link component and pointing to the home page. Instead of using router-
1link we will use the nuxt-1ink component:

//components/common/Logo.vue
<template>
<nuxt-link to="/">
<img class="logo" :src="src" alt="ProFitOro"s>
</nuxt-link>
</template>

Note that we are binding the src attribute to the src value. We will get our source
from the assets folder. In the Nuxt application, we can use the ~ notation to
indicate the root directory of the application. Using this notation actually facilitates
the usage of the relative paths. Thus, the source data attribute for the logo will look
like the following:

// components/common/Logo.vue
<scripts
export default {
data () {
return {
src: require('~/assets/profitoro logo.svg')
}
}
}

</script>

[200]




Chapter 7

Our logo is ready; now it's time to check the HeaderComponent component and
replace all the router links with nuxt-1links.

Open the just copied HeaderComponent . vue component and remove all the data used
from the Vuex store for now and leave only the import of the Logo component:

//components/common/HeaderComponent . vue
<scripts>
import Logo from '~/components/common/Logo'

export default {
components: {
Logo

}

</scripts>

Also, remove all the references to any data inside the markup, leave only the links
and replace them with nuxt -1ink components. So, our links section will look like
the following:

//components/common/HeaderComponent . vue
<ul class="navbar-nav ml-auto">
<li class="nav-item">
<nuxt-link class="nav-link" to="/">Home </nuxt-link>
</1li>
<li class="nav-item">
<nuxt-link class="nav-1link" to="settings">Settings </nuxt-link>
</1li>
<li class="nav-item">
<nuxt-link class="nav-link" to="statistics">Statistics
</nuxt-link>
</1li>
<li class="nav-item">
<nuxt-link class="nav-1link" to="workouts">Workouts </nuxt-link>
</1li>
</ul>
<form class="form-inline my-2 my-1lg-0">
<button class="btn btn-secondary" s>Logout</buttons>
</form>

[201]




Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

hnportHeaderComponenttoourpages(settings,statistics,pomodoroand
workouts):

//pages/pomodoro.vue
<template>
<div class="container"s>
<header-component></header-component>
pomodoro
</div>
</templates>
<scripts>
import HeaderComponent from '~/components/common/HeaderComponent'
export default {
components: {
HeaderComponent

}
</scripts>
<style scoped lang="scss">
@import "../assets/styles/main";
</style>

Open the page. Check that our links haven't changed at all:

:”EF-F Home Settings Statistics Workouts | Logout

pomodoro

Our links look absolutely the same!

Check that even our responsiveness is still there. If you resize your page, you will see
the Bootstrap's menu button:

PRO —
OF.T

pomodoro

Menu button is still there as well

[202]



Chapter 7

The most important part, of course, is that the routing works! Click on the links and
check that the pages change.

Have you also noticed a nice transition happening when you change from one page
to another?

am i t Statistics v Logaut

The transition happens automatically, we haven't written any extra code for it to happen!

You can find the final code up to this point in the chapter7/6 /profitoro-nuxt
folder.

Exercise — making the menu button work

As we have already checked, our responsive menu button is still there. However, if
you click on it, nothing happens! This is because this button's behavior is defined in
the bootstrap.js dependency and we still haven't included it. Use nuxt . config.
js to include the necessary JavaScript files to make the menu button great again.

After you're done, check my solution in the chapter7/7/profitoro-nuxt folder.
In particular, check the head section of the nuxt .config.js file.

Nuxt.js and Vuex store

Well, there will not be anything new in this section - the Vuex store can be used in
the exact same way it has been used before. Ah, wait. Inside the Nuxt application, we
have to export the function that returns Vuex store and not an instance itself. Check
the official documentation in this regard: https://nuxtjs.org/guide/vuex-store.
So, basically, we will not use the following code:

export default new Vuex.Store ({
state,
getters,
mutations:

}’...

actions

1
Instead, we have to do the following:

export default () => Vuex.Store ({
state,
getters,

[203]


https://nuxtjs.org/guide/vuex-store
https://nuxtjs.org/guide/vuex-store

Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

mutations:

}’...

actions

3]

Let's also use this opportunity to initialise the Firebase application in a separate file
and use it as a singleton for our application. So, move the firebaseApp initialization
to its individual firebase/index. js file and replace all the occurrences of the
state.firebaseApp with the imported firebaseApp instance.

Last, but not least, don't forget to install the required vuexfire and firebase
dependencies:

npm install --save vuexfire firebase

Check the code for this part in the chapter7/8/profitoro-nuxt folder. In
particular, pay special attention to the store and firebase folders.

Nuxt.js middleware

Do you remember how we had to introduce the beforeEach method to the vue
router instance in order to prevent some routes from being rendered if the user is
not authenticated? There is a very similar mechanism for Nuxt.js. You just have to
define a so-called middleware where you can redirect the request based on some
conditions (for example, on the value of the isAuthenticated attribute from the
Vuex store) and then tell the pages that they have to rely on the authentication
middleware. Then, every time that an attempted routing to the given page occurs,
the middleware's function will run and do whatever it demands to do.

Let's add this kind of middleware to our ProFitOro Nuxt application. Create a file
authentication.js inside the folder middleware and add the following content:

//middleware/authenticated.js
export default function ({ store, redirect }) {
if (!store.getters.isAuthenticated) ({
return redirect ('/")
}
}

[204]




Chapter 7

This piece of code is responsible for checking the isAuthenticated property and
redirecting the user to the home page in case it's either false or undefined.

Now, add the property middleware to the settings, statistics, and workouts pages:

<template>
<...>

</template>

<scripts>

/). ..
export default {
middleware: 'authenticated',

/] ..
}

</script>

Open the page and try to click on the corresponding links for the pages to which we
just added the middleware. It will not work! Try to remove the middleware code for
some of the pages and check that the routing then works. Isn't it fantastic?

Check the code for this part in the chapter7/9/profitoro-nuxt folder. Check the
middleware/index. js file and Vue pages inside the pages folder.

Exercise — finish 'em all!

Well, we've done a lot in order to make our ProFitOro into a Nuxt.js application, but
our functionality is still not totally there. We still have to copy lots of components.
So, please do it. Right now, it's just a matter of a good copy-paste. So, please do it
and make sure that our ProFitOro works fine.

If in doubt, check the chapter7/10/profitoro-nuxt folder. You will probably

run into the issue of trying to login with an Enter key and finding yourself being an
anonymous user. This is a minor issue that will be fixed in the next chapters. For
now, please, every time you try to login with your valid credentials, just don't forget
to click the LOGIN button!

[205]




Adding a Menu and Routing Functionality Using vue-router and Nuxt.js

Summary

In this chapter we have added basic routing to our application using different tools.
First, we learned how to use vue-router to achieve routing functionality and then we
used the Nuxt.js template to build a brand new application using old components and
styles. We have used the concept of pages offered by Nuxt vue in order to achieve the
same routing functionality as with vue-router and have transformed our ProFitOro
application into a Nuxt application in an easy and unobtrusive way. We have
significantly reduced the amount of code and learned something new. Total winners!

In this chapter we have also used Bootstrap's navbar to display our navigation
routes in a nice and responsive way, and learned that even with the most drastic
refactoring, the functionality and responsiveness stays with us when we use the
Bootstrap approach. Once again - great success!

Our application is almost fully functional, however, it still lacks its main
functionality - workouts. For now, during the Pomodoro intervals we are showing a
hardcoded pushups workout.

Are you using the ProFitOro application while reading this book? If yes, I guess
I will recognize you on the street - you will have huge muscles after doing so
many pushups.

It's time to add more workouts to our application, don't you think? If you remember
the requirements, workouts are the subject of collaborative work. So, we will add
this functionality in the next chapter. We will use Firebase's data storage mechanism
in order to store the workouts' images, the real-time database to store the

workouts' objects, Bootstrap's cards layout to display different workouts and

the Bootstrap-powered form in order to add new workouts to our application.

[206]



Let's Collaborate — Adding
New Workouts Using
Firebase Data Storage
and Vue.js

In the previous chapter, we learned how to add some basic navigation to the Vue
application using both vue-router and Nuxt . js. We have redesigned our ProFitOro
application, transforming it into a Nuxt-based application. Now our application is
functional, it has an authentication mechanism, and it is navigable. However, it still
lacks one of the most important features - workouts. In this chapter, we are going to
implement the workout management page. Do you still remember its requirements
from Chapter 2, Under the Hood - Tutorial Explained?

This page should allow users to see the existing workouts in the database, select

or deselect them to be shown up during the Pomodoro breaks, rate them, and

even add new workouts. We are not going to implement all these features.
However, we are going to implement enough for you to continue this application
and finish its implementation with great success! So, in this chapter we are going to
do the following:

* Define a responsive layout for the workout management page, which will
consist of two essential parts - a searchable list of all the workouts as well as
the possibility of adding a new workout to the list

* Store new workouts using the Firebase database and data storage mechanism
to store workout images

[207]



Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

* Use a Bootstrap modal to display every individual workout

* Make our footer nicer using responsive layout and the fixed-bottom class

Creating layouts using Bootstrap classes

Before we start implementing a layout for our workouts page, let me remind you
what the mockup looks like:

Browser

A @ fa [Rdl- ] @ D

@er o] [aa] [sa) ™
-

Settings Statistics Workouts Log out

s ~

‘Workout Settings
@SeE'c" )

[ad] [ad)] [ad] [aa)

Add your own Workout here:

Give it a Name:

Description:
Add Image:
oy
AN S/
Copyright © Waorking out sharpens your memory! (some random Facts about benefits of workouts) Created By: Workout Lovers

This is how we have defined things initially in our mockups

We will do some things slightly differently - something similar to what we have
done in the settings page. Let's create the two-column layout that will stack on
mobile devices. So, this mockup will be valid for mobile screens but it will display
two columns on desktop devices.

[208]




Chapter 8

Let's add two components - Workout sComponent . vue and NewWorkout Component .
vue - inside the components/workouts folder. Add some dummy text to the templates
of these new components and let's define our two-column layout in the workouts. vue
page. You certainly remember that in order to have stack columns on small devices
and different-sized columns on other devices, we have to use the col-*-<number>
notation, where * represents the size of the device (sm for small, md for medium, 1g

for large, and so on) and the number represents the size of the column, which might
ranges from 1 to 12. Since we want our layout to stack on small devices (this means
that the size of the column should be 12) and be two equal-sized columns on medium
and large devices, I came up with the following layout definition:

// pages/workouts.vue
<template>
<div class="container"s>
<header-component ></header-component >
<div class="row justify-content-center"s
<div class="col-sm-12 col-md-6 col-1g-6">
<workouts-component></workouts-component>
</div>
<div class="col-sm-12 col-md-6 col-1g-6">
<new—workout—component></new—workout—component>
</div>
</div>
<footer-component ></footer-component >
</div>

</template>

Don't forget to import both the Workout sComponent . vue and
NewWorkoutComponent . vue components to the workouts. vue page:

// pages/workouts.vue
<scripts>
YV
import { NewWorkoutComponent, WorkoutComponent, WorkoutsComponent }
from '~/components/workouts’
export default {
components: {
/...
NewWorkoutComponent,
WorkoutsComponent

}

</scripts>

[209]



Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

Now we have a two-column responsive layout:

i Home Settings Statistics Workouts | Logout

Add new workout
Foofer

Two-column responsive layout for the workout management page

Check the code for this implementation in the chapters/1/profitoro folder.
In particular, pay attention to the content of components/workouts folder and to
the workouts.vue page.

Making the footer nice

Aren't you tired of this hardcoded word "Footer" always lying around beneath
our content?

-

wl iicuts Add new workout

Logout

The ugly flying hardcoded Footer always glued to our content
Let's do something with it! If you check our mockups, we have three columns there:

*  One column for the copyright information
* Another one for the fact of the day

* And the last for the author information

You already know what to do, right? Again, we want these columns to be equally
distributed on mediumand large-sized devices, and stack on mobile devices.
Thus, our code will look like this:

// components/common/FooterComponent .vue
<template>
<div class="footer">
<div class="container row">
<div class="copyright col-1g-4 col-md-4 col-sm-
12">Copyright</div>
<div class="fact col-1g-4 col-md-4 col-sm-12">Working out
sharpens your memory</div>
<div class="author col-1g-4 col-md-4 col-sm-12"><span
class="bold">Workout Lovers</span></div>
</divs>
</div>
</templates>

[210]



Chapter 8

Let's keep the fact of the day section hardcoded for now. Well, now our footer looks
a bit nicer. At least it's not just the word "Footer" lying around:

@@ fome Settings Statistics Workouts | Logout

workouts Add new workout
| Copyright Working out sharpens your memory Workout Lovers |

Our footer is not just the word Footer anymore but it's still glued to the main content

However, it's still stuck to the main content, which is not really nice. It would be
great if our footer was fixed to the viewport's bottom. It's a common problem, and
you will find a lot of articles on the internet asking for this question and providing
solutions: https://stackoverflow.com/questions/18915550/fix-footer-to-
bottom-of -page. Fortunately for us, we are using Bootstrap and it comes with a
series of utility classes for sticky top, fixed bottom, and so on.

Al

~ In order to make your footer fixed with Bootstrap, just add this
class to it: fixed-bottom

Once you add this class to your footer, you will see how it becomes stuck to the
bottom of the viewport. Try to resize the viewport, moving the bottom of the page
up and down, and you will see that our footer goes along the bottom.

Check the code for this section in the chapters/2/profitoro folder. The only
change was in the HeaderComponent . vue component, which is located in the
components/common folder.

Storing new workouts using the Firebase
real-time database

Before starting this section, check the code in the chapters/3/profitoro folder.
Both the Wworkouts and NewWorkout components are filled with a markup.

Q Don't forget to run npm install and npm run dev!

[211]


https://stackoverflow.com/questions/18915550/fix-footer-to-bottom-of-page
https://stackoverflow.com/questions/18915550/fix-footer-to-bottom-of-page

Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

It doesn't work yet, but it displays something:

:FF‘" Home Settings Statistics Workouts Logout
Manage workouts Add your workout

Search for workouts Name it

Pus... Pus... Pus... Pus... Add an image

Choose Files No file chosen

vl vl el - -
Pus... Pus... Pus...

Workout management page with some content

In this section, we are going to add workout objects to our workouts resource in
the Firebase database. After that, we can finally learn how to store images using the
Firebase data storage mechanism.

First, let's add Firebase bindings just like we've done for statistics and configuration
objects. Open the action. js file and find the bindFirebaseReferences method.
Here, we should add the binding for the workouts resource. So, this method now
contains three bindings:

// state/actions.js
bindFirebaseReferences: firebaseAction(({state, commit, dispatch},
user) => {

let db = firebaseApp.database ()

let configRef = db.ref (>/configuration/${user.uid}")

let statisticsRef = db.ref (>/statistics/${user.uid}")

let workoutsRef = db.ref ('/workouts')

dispatch('bindFirebaseReference', {reference: configRef, toBind:
'config'}) .then(() => {
commit ('setConfigRef', configRef)
1
dispatch('bindFirebaseReference', {reference: statisticsRef,
toBind: 'statistics'}).then(() => {
commit ('setStatisticsRef', statisticsRef)
Iy

dispatch('bindFirebaseReference', {reference: workoutsRef, toBind:
'workouts'}) .then(() => {
commit ('setWorkoutsRef', workoutsRef)

H

[212]



Chapter 8

We should also unbind them once the application is unloaded:

//state/actions.js

unbindFirebaseReferences: firebaseAction(({unbindFirebaseRef, commit})
commit ('setConfigRef', null)
commit ('setStatisticsRef', null)
commit ('setWorkoutsRef', null)

try {
unbindFirebaseRef ('config"')
unbindFirebaseRef ('statistics')
unbindFirebaseRef ('workouts')

} catch (error) f{
return

}

|3)

Let's also add workoutsRef and workouts attributes to our state. Last but not least,
don't forget to implement the mutation called setWorkoutsRef:

// state/mutations.js
setWorkoutsRef (state, value) {
state.workoutsRef = value

}

Now, having the workoutsRef stored in our state, we can implement the action that
will update it with newly created workouts. After this, we will be able to use this
action inside the NewWorkout component and populate our workout database.

Check the Firebase documentation regarding reading and writing into the real-time
database: https://firebase.google.com/docs/database/web/read-and-write
Scroll down until you find the "new post creation" example:

{uid, username, picture, title, b

().child( posts’).p

New post creation example in Firebase database documentation

[213]



https://firebase.google.com/docs/database/web/read-and-write
https://firebase.google.com/docs/database/web/read-and-write

Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

Don't you find this case extremely similar to ours? Each workout added by the user
has its name, description, and a picture (or maybe even more than one picture).
Workouts also belong to the users that created them. So, maybe we can do something
very similar to this. It will also be useful to have a resource for user-workouts that
contains workouts for each user. It might come in handy if we decide to implement
the possibility for each user to delete their workouts. Before copying this code, let's
just agree on the workout object data structure. What should it contain? Since it's
coming from the NewWorkout component, it will already bring the workout's name,
description, and image URLs. Should we enrich it with anything else inside the
action? Probably, we should add the name and UID of the user who added it, the
date when it was created, and the rating attribute. This should be more than enough
for now. So, our workout data structure will look like this:

{
name: 'string',
description: 'string',
pictures: ['string'l],
username: 'string',
uid: 'string',
rate: 'number',

date: 'timestamp'

}

The name, description, username, and uid attributes are strings. The pictures
attribute should be an array of URL strings, rating should be a number and let's
store our date attribute in the form of a timestamp.

. It's good that we are implementing both the frontend and the backend
% parts, so we agree on a data schema between ourselves. If you ever
= work in a team that has frontend and backend developers, don't forget
to agree on a data schema before any implementation takes place!

So, we know that the description, name, and picture URL should be populated inside
the NewWorkout component. Thus, let's populate everything else inside our action
method. In the end, it will look really similar to the Firebase example:

// store/actions.js
createNewWorkout ({commit, state}, workout) {
if (!workout)
return

[214]




Chapter 8

workout.username = state.user.displayName
workout.uid = state.user.uid

workout.date = Date.now()

workout.rate = 0

// Get a key for a new Workout.

let newWorkoutKey = state.workoutsRef.push() .key

// Write the new post's data simultaneously in the posts list and

the user's post list.
let updates = {}

updates['/workouts/' + newWorkoutKey] = workout

updates['/user-workouts/' + state.user.uid + '/' + newWorkoutKey]
workout

return firebaseApp.database() .ref () .update (updates)

b

Note again that we are introducing a new resource called user-workouts.
We can bind this resource to our state the exact same way we have done with
the statistics and configuration user data. If we decide to implement the deletion

of user resources, it might become handy.

Now, let's move to our NewWorkout component. Here, we just need to bind some
Vue models to the corresponding inputs and the click event to the Submit button.
The click event on the Apply button should be bound to the createNewWorkout
action, invoking it along with the corresponding data. Don't worry about the

pictures yet, we will deal with them in the next section.

At this point, we can replace the hardcoded array of workouts in the workouts

component with the state workouts object:

//Components/Workouts .vue
//
<scripts>
import {mapState} from 'vuex'
export default {
computed: {
...mapState (['workouts'])

}
}
</script>

Y

[215]




Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

Check how your newly created workouts immediately appear in the workouts
section!

Check the final code for this section in the chapters/4/profitoro folder.
Pay attention to the store files (actions.js, mutations.js) and to the
NewWorkoutComponent and WorkoutsComponent components inside the
components/workouts folder.

Storing images using the Firebase data
storage

Firebase cloud storage allows you to upload and retrieve different content

(files, videos, images, and so on). In a very similar way, Firebase provides a way
of accessing and managing your database, where you can access and manage your
storage buckets. You can upload Blobs, strings in Base64, file objects, and so on.

First of all, you should tell your Firebase application that you are going to use Google
cloud storage. Thus, you need to add a storageBucket attribute to your application
configuration object. Check your application's settings on the Google Firebase console
and copy the storageBucket reference to the firebase/index. js file:

// Initialize Firebase

import firebase from 'firebase'

Y

let config = {
apiKey: 'YOUR API KEY',
databaseURL: 'https://profitoro-ad0f0.firebaseio.com',
authDomain: 'profitoro-adofo.firebaseapp.com',
storageBucket: 'gs://profitoro-ad0£f0.appspot.com!’

}

Y

Now your firebase application knows what storage bucket to use. Let's also open the
data storage tab of the Firebase console and add a folder for our workout images.
Let's call it...workouts:

[216]




Chapter 8

= Firebase Profitoro = Gotodocs 3

Storage

FILES RULES

wse

GD gs://profitoro-ad0f0.appspot.com 4 UPLOAD FILE

D Mame Size Type Last modified

Y Default security rules require users to be authenticated LEARN MORE DISMISS

D = Folder -

Creating a folder called "workouts" in the Firebase data storage tab

Everything is now ready to start using our cloud storage bucket.

First of all, we have to obtain the reference to our workouts folder so we can modify
it. Check the Firebase API documentation regarding bucket reference creation:
https://firebase.google.com/docs/storage/web/create-reference. In our
case, the reference will look like this:

firebaseApp.storage () .ref () .child ('workouts')

Where should we use it? Somehow, before storing workouts, we should store the
picture files, obtain their cloud URLs, and assign these URLs to the workouts'
pictures property. So, here is our plan:

* Create a method that uploads files and returns those files' download URLs

* Use this method before dispatching the createNewWorkout action to assign
the URLSs to the picture's property of the workout object

[217]


https://firebase.google.com/docs/storage/web/create-reference
https://firebase.google.com/docs/storage/web/create-reference

Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

Let's create a method that will upload a file and return its downloadURL.

Check the Firebase documentation to learn how to use its API to upload files:
https://firebase.google.com/docs/storage/web/upload-files. Have a
look at the Upload from a Blob or File section. You will see that we should use
the method "put" on a cloud storage reference, providing it with a file object.
This will be a promise that is resolved with a snapshot object:

var file = ... // use the Blob or File API
ref.put (file) .then (function (snapshot) {
console.log('Uploaded a blob or file!');

3N

What is this snapshot object? This is a representation of your file stored on

the cloud. It contains a lot of information, but the most important for us is its
downloadURL attribute. So, our promise will look quite similar to the example
promise but it will return snapshot . downloadURL. So, open the actions.js file
and create a new method called uploadImage. This method will receive a file object,
create a child reference on our workout cloud folder reference with this file's name,
and then put a file and resolve with the downloadURL. So, it will look like this:

function uploadImage (file) ({
let ref = firebaseApp.storage() .ref().child('workouts"')
return ref.child(file.name) .put (file) .then (snapshot => {
return snapshot.downloadURL
})
}

Don't you see a little problem here? What will happen if two different users submit
different pictures under the same name? Then these pictures will just override each
other. As a small exercise, think of a way to avoid this problem.

Al

~ Hint: Have a look at this npm package:
CZE https://www.npmjs.com/package/uuid

So, we have our promise that uploads the file and returns its downloadURL.
However, this is not yet our final action. Our final action method should upload an
array of files, because that is what we get from our multiple file input - an array of
file objects. Thus, our final promise will just return the result of all the promises and
it will look as simple as the following:

uploadImages ({state}, files) {
return Promise.all(files.map( uploadImage))

}

[218]



https://firebase.google.com/docs/storage/web/upload-files
https://firebase.google.com/docs/storage/web/upload-files

Chapter 8

This action can now be used inside the NewWorkout component before calling the
createNewWorkout action.

First of all, we need to bind the pictures property to the file input element. The
obvious choice would be to bind the property pictures to the input using the
v-model directive:

<input v-model="pictures" type="file" multiple class="form-control-
file" id="imageFile">

Is it so obvious though? The v-model directive determines the two-way data binding,
but how would we set data to it? The data of the file input is either FileObject or
FileList. How would we set it? It seems that applying two-way data binding to this
element doesn't make sense.

You can't actually bind reactive data to the file inputs, but you can set
% your data inside the change event:

L
https://forum.vuejs.org/t/vuejs2-file-input/633/2

Thus, we have to listen to the change event and set our data on each change. Let's
bind this event to the filesChange method:

// NewWorkoutComponent .vue

<input @change="filesChange ($event.target.files)" type="file" multiple
class="form-control-file" id="imageFile">

Now let's create this method and just assign this.pictures to the parameter we
receive. Well, not just assign, because we receive a FileList object which is not
exactly an array which you can iterate over. Thus, we need to transform it into a
simple array of File objects.

Al

~ We can use the ES6 spread operator for this:
Q filesArray = [...fileListObject]

Thus, our filesChange method will look as follows:

// NewWorkoutComponent .vue
export default {

methods:
/] ...
filesChange (files) {
this.pictures = [...files]

[219]




Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

/...
}
}

Now we can finally update our onCreateNew method. First, it should dispatch the
uploadImages action and on promise resolution dispatch the createNewWorkout
action, assigning the result of the promise to the pictures array. Now this method
will look as follows:

// NewWorkoutComponent .vue
onCreateNew (ev) {
ev.preventDefault ()
ev.stopPropagation ()
this.uploadImages (this.pictures) .then(picUrls => {
this.createNewWorkout ({
name: this.name,
description: this.description,
pictures: picUrls
|3
this.reset ()
)
}

Don't forget to import the uploadImages action. Also, create a reset method that
will reset all the data to its initial state.

Create some workouts with images and enjoy the result!

Let's search!

So now we can create workouts and see them being displayed in the list of workouts.
However, we have this nice search input, and it's doing nothing: (. Nevertheless,

we are using Vue.js so it's really easy to implement this search. We just have to
create a searchTerm data attribute and bind it to the search input and then filter the
workouts array by this searchTerm. So, I will add the computed property, let's call it
workoutsToDisplay, and this property will represent a filtered workouts property
(the one that we import from the Vuex store's state) by its name, description, and
username properties. So, it will give us the possibility of searching by all these terms:

// WorkoutsComponent .vue
<scripts>
/] ...
export default {
/] ...

[220]




Chapter 8

computed: {
. .mapState (['workouts']),
workoutsToDisplay () {

return this.workouts.filter (workout => {
let name = workout.name.toLowerCase ()
let description = workout.description.toLowerCase ()
let username = workout.username.toLowerCase ()
let term = this.searchTerm.toLowerCase ()

return name.indexOf (term) >= 0 || description.indexOf (term)
>= 0 || username.indexOf (term) >= 0

H

}
/...

}

</script>

Don't forget to add the searchTerm property to the component's data and bind it to
the search input element:

<template>
<divs>
<div class="form-group">

<input v-model="searchTerm" class="input" type="search"
placeholder="Search for workouts"s>

</div>
</div>
</template>
<scripts
// ...
export default {
data () {
return {
name: '"',
username: '',
datecreated: '',
description: '"',
pictures: [I,
rate: 0,
searchTerm: ''

}

</script>

[221]



Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

And, of course, instead of iterating over the workouts array to display the workout
cards, we should now iterate over the workoutsToDisplay array. So just edit slightly
the v- for directive of the card div:

v-for="workout in workoutsToDisplay"

Open the page and try to search! If I search by the user's name, only workouts
created by this user will be displayed:

olga
“ -5
Push-ups Plank Stretch

Squats Chair

Makes sense, since I created all the existing workouts until now

If I search by the name of the workout, let's say, push-up, only this workout will
appear in the list:

pus|

Push-ups

Searching by the workout's name

[222]



Chapter 8

We're almost done! The only thing we have to do now is to show a randomly chosen
workout from the list of workouts instead of hardcoded data during the resting
periods of our Pomodoro. Try to do it yourself in the pomodoro. vue page.

You can now create new workouts and they will immediately appear in the
workouts section. They also appear in our main page during the Pomodoro breaks.

Great job! Check the code for this part in the chapters/5/profitoro folder. Pay
special attention to the new actions inside the store/actions. js file and to the
Workouts and NewWorkout components inside the components/workouts folder.
Check how the random workout is being selected and displayed in the pomodoro.
vue page.

Using a Bootstrap modal to show each
workout

Now we can see all the existing workouts on the page, which is great. However,
our users would really like to have a look at each of the workouts in detail - see
the workouts' descriptions, rate them, see who has created them and when, and so
on. It's unthinkable to put all this information in the tiny card element, so we need
to have a way of magnifying each element in order to be able to see its detailed
information. A Bootstrap modal is a great tool that provides this functionality.
Check the Bootstrap documentation regarding the modal APIL: https://v4-alpha.
getbootstrap.com/components/modal/.

Note that Bootstrap 4, at the time of writing, is in its alpha stage and

that's why at some point this link might not work anymore, so just
’ search for the relevant information on the official Bootstrap website.

Basically, we need to have an element that will trigger a modal and a modal markup
itself. In our case, each of the small workout cards should be used as a modal trigger;
WorkoutComponent will be our modal component. So, just add data-toggle and
data-target attributes to the card element inside the Workouts component:

// WorkoutsComponent . vue
<div class="card-columns">
<div data-toggle="modal" data-target="#workoutModal"
v-for="workout in workouts" class="card"s>
<img class="card-img-top img-fluid" :src="workout.pictures &&
workout .pictures.length && workout.pictures[0]"
:ralt="workout .name">

[223]



https://v4-alpha.getbootstrap.com/components/modal/

Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

<div class="card-block">
<p class="card-text">{{ workout.name }}</p>
</div>
</div>
</div>

Now let's work on the Workout Component component. Let's assume that it will
receive the following properties:

* name

* description
* username

e datecreated
* rate

* pictures
Thus, we can build a very simple markup for our modal, something like this:

<template>
<div class="modal fade" id="workoutModal" tabindex="-1"
role="dialog" aria-hidden="true">
<div class="modal-dialog" role="document">
<div class="modal-content">
<div class="modal-header">
<h5 class="modal-title">{{ name }}</h5>
<button type="button" class="close" data-dismiss="modal"
aria-label="Close">
<span aria-hidden="true">&times;</span>
</button>
</div>
<div class="modal-body">
<div class="text-center">
<img :src="pictures && pictures.length && pictures[0]"
class="img-fluid" :alt="name">
</div>
<p>{{ description }}</p>
</divs>
<div class="modal-footer"s>
<p>Created on {{ datecreated }} by {{ username }}</p>
</div>
</div>
</div>
</div>
</template>

[224]



Chapter 8

Keep in mind that this modal needs to have the exact same ID attribute by which it is
being targeted from the toggling element.

Don't forget to specify the required properties under the props attribute:

// WorkoutComponent .vue
<scripts
export default {
props: ['name', 'description', 'username', 'datecreated', 'rate',
'pictures']
}

</script>
Now this component can be imported into the Workouts component and used there:

// WorkoutsComponent .vue
<template>
<div>
<. 00>
<div class="card-columns">
<. 00>
</div>
<workout-component
:name="name"
:description="description"
:username="username"
:datecreated="datecreated"
:pictures="pictures"
trate="rate">
</workout -component>
</div>
</templates>

If you click on some of the small cards now, the empty modal will open:

Llmman  Cnkting

%

ui At

1 Created on by

The modal works! But it's empty

[225]




Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

We definitely should still do something, so the data of the chosen element is
propagated to the component's data. Let's add a method that will do this job and
bind it to the c1lick event of the card element:

// WorkoutsComponent .vue

<div data-toggle="modal" data-target="#workoutModal" v-for="workout in
workouts" class="card" @click="onChosenWorkout (workout) ">

The method will just copy the workout's data to the corresponding component's data:

// WorkoutsComponent.vue - methods section
onChosenWorkout (workout)
this.name = workout.name
this.description = workout.description
this.username = workout.username
this.datecreated = workout.date
this.rate = workout.rate
this.pictures = workout.pictures

}
It looks a little bit better now!

| p——

Stretch x

Stretch your legs, 30 seconds each, repeat 3 times

Created on 1502303942341 by olga

Data binding just works!

[226]




Chapter 8

It looks nice, all the data is here, but it's still not perfect. Think how we could
improve it.

Exercise

Make the date that appears on the modal's footer human-readable. Do it in such a
way that the footer appears like this:

Created on Aug 9th 17 by olga

Workout modal's footer with human-readable data

Try to use existing tools and not reinvent the wheel.

QIQ Think of the moment.js library:

https://momentjs.com/

Check for yourself and the final code until this moment in the chapters/6/
profitoro folder. Pay attention to the Workouts and Workout components in the
components/workout folder.

It's time to apply some style

Our application is fully functional now; it can be used right away. Of course, it is
still not perfect. It lacks validations and some functionality, several requirements
have not been implemented yet, and the most important thing...it lacks beauty! It's
all gray, it doesn't have style...we are humans, we love beautiful things, don't we?
Everyone implements styles in their own way. I strongly recommend that if you
want to use this application, please find your own style and theme for it, and please
implement it and share with me. I would love to see it.

As for me, since I am not a designer, I asked my good friend Vanessa (https://www.
behance.net/MeegsyWeegsy) to create a nice design for the ProFitOro application.
She did a great job! Since I was busy writing this book, I had no time to implement
Vanessa's design, therefore I asked my good friend, Filipe (https://github.com/
£11090302), to help me with it. Filipe did a great job as well! Everything looks
exactly how Vanessa implemented it. We have used scss, so it must be familiar to
you since we've been using it already in this application as a preprocessor.

[227]



Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

You can reuse the existing style to override some variables in order to create your
own theme. Please check the final code in the chapters8/7/profitoro folder. All
styles are located inside the assets/styles directory. It has the following structure:

— base

— _colors.scss

— _fontSizes.scss

— _module.scss

— _vwvariables.zcss

— Ccomponents

— _button.scss

— _input.scss

— _module.scss

—— main.scss

— utils

— _mizins.scss

— _module.zcss

— _utils.scss

— wvendors

— _flex.scss

— _module.scss

— bootstrap
_mixins.scss
_wvariables.s=scas
bootstrap.scss
mixins

— _alert.scss

— _background-variant.scss

—— _badge.scss

—— _border-radius.scss
— _breakpoints.scss
— _buttons.scss

— _cards.scss

— _clearfix.scss

— _float.scss

— _forms.scss

— _gradients.scss

— _grid-framework.scss
— _grid.scss

— _hover.scss

— _image.scss

— _list-group.sScss
— _lists.scss

— _nav-divider.scss
— _navbar-align.scss
— _pagination.scss
—— _reset-text.scss
— _resize.scss

— _screen-reader.scss
— _size.scss

— _table-row.scss

— _text-emphasis.scss
— _text-hide.scss

— _text-truncate.scss
— _transforms.=scss
— wisibkility.scss

Directory structure

As for the final look, here is what it looks like.

[228]



Chapter 8

This is the main page with the Pomodoro timer:

gm
Fi
DR

a-1s

Workout Lovers

Main page that contains the Pomodoro timer

Here is what the Settings page looks like:

Change profile picture

clga

Home Settings Statistics Warkouts

Set your pomodoro timer

Long break
Pomodoro

chudaol Egmail com

Shart break

Workout Lovers

Look and feel of the Settings page

[229]




Let's Collaborate - Adding New Workouts Using Firebase Data Storage and Vue.js

And finally, here is what the Workouts page looks like:

e
@ PrO
== FiT’
@ ok
Manage your workouts Add your workout
Search for workouts Name it

h Deseribe it
Push-ups Plank Stretch Add an image

Choose Files Mo file chosen

b b e

Squats Chair

Look and feel of the Workouts page

You will still have to implement the Statistics page - right now, it just shows the total
amount of completed Pomodoros:

Statistics

Total Pomodoros: 4

Statistics page is not fully complete, only showing the total amount of completed Pomodoros

There's still some work to do, but don't you agree that we have done great work so
far? Not only do we have a fully functioning configurable Pomodoro timer, we can
also already use it to do small workouts during our working day. How great is that?

[230]




Chapter 8

Summary

In this chapter, we have finally implemented the workout management page. Now
we can see all the workouts stored in the database and create our own workouts. We
have learned how to use the Google Firebase data storage system and API to store
static files and we were able to store newly created workouts in the Firebase real-
time database. We have also learned how to use a Bootstrap modal and used it to
display each workout in a nice modal popup.

In the next chapter, we will do the most important job of every software
implementation process - we will test what we have done so far. We will use Jest
(https://facebook.github.io/jest/) to test our application. After that, we will
finally deploy our application and define future work. Are you ready for testing your
work? Then turn the page!

[231]






Test Test and Test

In the previous chapter, we implemented the workout management page. We
learned how to use the Google Firebase data storage mechanism to store static files
and we again used the real-time database to store the workout objects. We used
Bootstrap to build a responsive layout for the workout' management page and we
learned how to use Bootstrap's modal component to display each individual workout
in a nice popup. Now we have a totally responsible application. Thanks to Bootstrap,
we had to implement nothing special to have a nice mobile representation. Here's
what adding new workouts looks like on a mobile screen:

eee00 oZ-de T 17:00 [ Aok B

< @ 1d0f0.firebaseapp.c =

-

\dd your workout

(_choose Files )i 1 photo

Adding a new workout on a mobile screen

[233]




Test Test and Test

And this is what our modal looks like on a mobile device:

essco 02-de T 17:01 @ 7 61% M

& @ -adofo.firebaseapp.co :

Have a small power nap :)

Created on Aug 10th 17 by olga

Workout modal displayed on a mobile device

Now it's time to test our application. We are going to use Jest (https://facebook.
github.io/jest/) to build unit tests and run snapshot testing. In this chapter, we
are going to do the following;:

* Learn how to configure our Vue.js application to work with Jest
¢ Test Vuex stores using Jest assertions

[234]



Chapter 9

* Learn how to mock complex objects with the jest .mock and
jest . fn methods

* Learn how to implement snapshot testing for Vue components

Why is testing important?

Our ProFitOro application works just fine, doesn't it? We have opened it so many
times in the browser, we have checked all the implemented features, so it just works,
right? Yes, that's true. Now go to your settings page and try to change the values of
the timer to something strange. Try it with negative values, try it with huge values,
try it with strings, and try it with empty values...do you think that can be called a
nice user experience?

> 1l N

You wouldn't like to work during this number of minutes, would you?

Have you tried to create a strange workout? Have you tried to introduce a huge
workout name at its creation and see how it displays? There are thousands of corner
cases and all of them should be carefully tested. We want our application to be
maintainable, reliable, and something that offers an amazing user experience.

[235]



Test Test and Test

What is Jest?

You know that Facebook guys are never tired of creating new tools. React, redux,
react-native and all this reactive family was not enough for them and they created

a really powerful, easy-to-use testing framework called Jest: https://facebook.
github.io/jest/. Jest is pretty cool because it's self-contained enough for you

to not to be distracted by extensive configuration or by looking for asynchronous
testing plugins, mocking libraries, or fake timers to use along with your favorite
framework. Jest is all in one, although pretty lightweight. Besides that, on every run,
it only runs those tests that have been changed since the last test run, which is pretty
elegant and nice because it's fast!

Initially created for testing React applications, Jest turned out to be suitable for other
purposes, including Vue.js applications.

Check out the great talk given by Roman Kuba during the Vue.js conference in June
2017 in Poland (https://youtu.be/pgp0PsPBO_0), where he explains in a nutshell
how to test Vue components with Jest.

Our application is not just a Vue application, it is a Nuxt application that uses Vuex
stores and Firebase in it. All these dependencies make it a little bit more difficult to
test because of all the things we have to mock and because of the Nuxt application
particularities themselves. However, it is possible and after everything is set up, the
joy of writing tests is enormous! Let's go!

Getting started with Jest

Let's start by testing a small sum function and check that it correctly sums
two numbers.

The first step would be, of course, to install Jest:
npm install jest
Create a directory test and add a file called sum. js with the following content:

// test/sum.js
export default function sum (a, b) {
return a + b

}

[236]


https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://youtu.be/pqp0PsPBO_0

Chapter 9

Now add a test spec file for this function:

// sum.spec.js
import sum from './sum'

describe('sum', () => {
it ('create sum of 2 numbers', () => {
expect (sum (15, 8)) .toBe(23)
H
})

We need a command to run tests. Add an entry "test" to the package. json file that
will call a command jest:

// package.json
"scripts": {
YV

"test": "jest"

}

Now if you run npm test, you will see some errors:

sum,spec.js
e Test suite failed to run

/Users/chuda/Projects/vuejs/profitoro/test/sum,spec.js:1
({"Object.<anonymous>":function(module,exports,require,__dirname,__filename,global,jest){import sum from './sum';

AAAAAN
SyntaxError: Unexpected token import

Errors in the test output with when we run tests with Jest

This happens because our Jest is not aware we are using ES6! So, we need to add the
babel-jest dependency:

npm install babel-jest --save-dev

After babel-jest is installed, we have to add a .babelrc file with the following content:

// .babelrc

{

"presets": ["es2015"]

[237]




Test Test and Test

Aren't you annoyed about your IDE warnings regarding describe, it, and other
globals that are not being recognized? Just add an entry jest: true to your
.eslintrc.js file

// .eslintrc.js
module.exports =
root: true,
parser: 'babel-eslint',
env: {
browser: true,
node: true,
jest: true
b
extends: 'standard',
// required to lint *.vue files
plugins: [
"html'
1,
// add your custom rules here
rules: {},
globals: {}

}

Now if you run npm test, the tests are passing!

> ProFitOro®@1.0.0 test /Users/chuda/Projects/vuejs/profitoro
> jest

sum. spec.js

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: @ total

Time: 1.75s

Congratulations! You've just set up and run your first Jest test!

[238]



Chapter 9

Coverage

Unit tests help to guarantee that the pieces (units) of code that they are checking
work for any possible and impossible input. Every written unit test covers the
corresponding piece of code as a blanket, protecting this code from future failures
and making ourselves comfortable with our code's functionality and maintainability.
There are different types of code coverage: statement coverage, line coverage, branch
coverage, and so on. The more the code is covered, the more stable it is and the more
comfortable we are. That's why, while we are writing unit tests, it is very important
to check the code coverage every time we run it. It's easy to check the code coverage
with Jest. You don't need to install any external tool or write extra configuration. Just
execute the test command with the coverage flag:

npm test -- --coverage

You will magically see this beautiful coverage output:

lprofitoro$ npm test -- --coverage

> ProFitOro@1.0.0 test /Users/chuda/Projects/vuejs/profitoro
> jest "--coverage"

sum.spec.js

Test Suites: assed, 1 total
Tests: assed, 1 total
Snapshots:

All files 100 | 100 |
sum. js 100 | 100 |

Running Jest tests with coverage

Works like a charm, right?

Find the code in the chapter9/1/profitoro directory. Don't forget to run npm
install onit.

[239]



Test Test and Test

Testing utility functions

Let's test our code now! Let's start with utils. Create a file called utils.spec.js and
import the leftpad function:

import { leftPad } from '~/utils/utils'’
Have a look at this function again:

// utils/utils.js
export const leftPad = value => {
if (('' + value).length > 1) {
return value

return '0' + value

}

This function should return the input string if this string's length is greater than 1. If
the string's length is 1, it should return the string with a preceding o.

Seems quite easy to test it, right? We would write two test cases:

// test/utils.spec.js
describe ('utils', () => {
describe ('leftPad', () => {
it ('should return the string itself if its length is more than 1°',
O => {
expect (leftPad('01')) .toEqual('01"')
3]
it ('should add a 0 from the left if the entry string is of the
length of 1', () => {
expect (leftPad('0')) .toEqual('00"')
3]
3]
3]

Argh...if you run this test, you will get an error:

[240]



Chapter 9

profitoro$ npm test -- --coverage

> ProFitOro@1.0.0 test /Users/chuda/Projects/vuejs/profitoro
> jest "--coverage"

utils.spec.js
e Test suite failed to run

Cannot find module '~/utils/utils' from 'utils.spec.js’'

node_module t-resolve/build/index. js
test/utils.spec.

Of course, poor Jest, it is not aware of the aliases we've been using in our Nuxt
application. The ~ notation for it equals nothing! Luckily for us, it is easy to fix. Just
add the jest entry to the package. json file with a name mapper entry inside it:

// package.json

"Jest": {
"moduleNameMapper": {
"L (.*)4§": "<rootDir>/$1"
}
}
Now Jest will know that everything that starts with ~ should be mapped to the root
directory. If you run npm test -- --coverage now, you will see that the tests

are passing!

profitoro$ npm test -- --coverage

> ProFitOro@1.0.@ test /Users/chuda/Projects/vuejs/profitoro
> jest "--coverage"

sum.spec.js
utils.spec.js

Test Suites: 2 passed, 2 total
3 passed, 3 total
@ total

All files
test
sum. js
utils

After mapping the root directory alias, tests run without any problem

[241]




Test Test and Test

The code coverage, however, is really low. It's because we have another function in our
utils to be tested. Check the utils. js file. Can you see the number0ofSecondsFromNow
method? It also needs some test coverage. It calculates the time that has passed from
the given input time until now. How should we deal with this Date.now? We can't
predict the test result because we can't guarantee that the moment of now of test
running will be the same as when we check it. Every millisecond matters. Easy! We
should mock the Date . now object!

Mocking with Jest

Turns out that even something that seems impossible (stopping time) is possible with
Jest. Mocking the Date . now object is fairly easy using the jest. fn () function.

Check the documentation about mocking with Jest:

http://facebook.github.io/jest/docs/en/snapshot-testing.html#tests-
should-be-deterministic

We can mock the Date.now function by just invoking bate.now = jest.fn(() =>
2000).

Now we can easily test the 'numberofSecondsFromNow' function:

// test/utils.spec.js
import { leftPad, numberOfSecondsFromNow } from '~/utils/utils'’
/] ...
describe ('numberOfSecondsFromNow', () => {
it ('should return the exact number of seconds from now', () => {
Date.now = jest.fn(() => 2000)
expect (numberOfSecondsFromNow (1000) ) . toEqual (1)
})
})

The coverage is better now but it could be perfect if we could cover our funny beep
function. What should we test in it? Let's try to test that when the beep function is
invoked, the Audio.play method is called. Mocked functions have a special property
called mock that contains all the information about this function — the number of
calls that have been performed on it, the information that has been passed to them,
and so on. Thus, we can mock the audio.prototype.play method like this:

let mockAudioPlay = jest.fn()
Audio.prototype.play = mockAudioPlay

[242]




Chapter 9

After invoking the beep method, we can check the number of performed calls on the
mock like this:

expect (mockAudioPlay.mock.calls.length) .toEqual (1)

Or we can assert that the mock has been called like this:

expect (mockAudioPlay) . toHaveBeenCalled ()

The whole test might look like the following:

describe ('beep', () => {
it ('should call the Audio.play functuon', () => {
let mockAudioPlay = jest.fn()

Audio.prototype.play = mockAudioPlay

beep ()
expect (mockAudioPlay.mock.calls.length) .toEqual (1)
expect (mockAudioPlay) . toHaveBeenCalled ()
3]
3]

In order to avoid side effects due to mocking the native function, we might want to
reset our mock after the test:

it ('should call the Audio.play functuon', () => {
//

expect (mockAudioPlay) . toHaveBeenCalled ()
mockAudioPlay.mockReset ()

3]

Check the Jest documentation in this regard: https://facebook.github.io/jest/
docs/en/mock-function-api.html#mockfnmockreset

Alternatively, you might configure your Jest settings to reset mocks automatically
after each test. For this, add the clearMocks attribute to the Jest config object inside
the package. json file:

//package.json

"jest": |
"clearMocks": true,
"moduleNameMapper": {
"Ao(.*)8": "<rootDirs>/$1"

[243]



Test Test and Test

Yay! The tests are passing. Check the coverage. It looks quite nice; however, the
branch coverage is still not perfect:

profitoro$ npm test -- --coverage

> ProFitOro@1.0.0 test /Users/chuda/Projects/vuejs/profitoro
> jest "--coverage"

utils.spec.js
sum. spec.js

: 2 passed, 2 total
5 passed, 5 total

All files
test
sum. js
utils

Branch coverage in for the utils js file is only 75%

Why is this happening? First of all, check the column Uncovered Lines.
It shows us the line that hasn't been covered by the test. It's line 22 of the
numberOfSecondsFromNow method:

export const numberOfSecondsFromNow = startTime => {
const SECOND = 1000
if (!startTime)
return 0
}

return Math.floor ((Date.now() - startTime) / SECOND)

}

As an alternative, you can check the coverage folder inside your project's directory
and open the 1cov-report/index.html file in the browser to check in a more visual
way what exactly is going on:

[244]




Chapter 9

1x
2%
1x

WO~ U B Wk =

11 1x

19 1x
20 1x
21 1x

24 1x

28 1x
29 1x
30 1x

All files / utils utils.js

91.67% Statements 11712 75% Branches 3/4 100% Functions 3/3 91.67% Lines 11712

/%
* Adds a trailing @ on the left of the given value
# @param {string|number} value
* @returns {string}
*/
export const leftPad = value => {
if (('' + value).length > 1) {

return value
¥
return '@’ + value
}
S ok

* Returns number of seconds between a given start time and now
* @param {timestamp} startTime
* @returns {number} the number of seconds
*/
export const number0fSecondsFromNow = startTime == {
const SECOND = 1888
B if (!startTime) {
return @
}
return Math.floor((Date.now() - startTime) / SECOND)
}

// courtesy of https://stackoverflow.com/a/23395136

export const beep = () == {
var snd = new Audio('data:audio/wav;base64,//uQRAAAAWMSLWUIYAASYkXgoQwAEaYLWTKWOAIOWWS /|
snd.play()

}

Code coverage HTML shows the covered and uncovered lines in a nice visual way

Here, you can clearly see that line 22 is marked as red, which means it has not been
covered by tests. Well, let's cover it! Just add a new test covering the case when the
startTime property is not passed to this method and ensure that it returns o:

// test/utils.js
describe ('numberOfSecondsFromNow', () => {
it ('should return 0 if no parameter is passed', () => {

b

i

1

expect (numberOfSecondsFromNow () ) . toEqual (0)

t ('should return the exact number of seconds from now', () => {

Date.now = jest.fn(() => 2000)
expect (numberOfSecondsFromNow (1000) ) . toEqual (1)

[245]




Test Test and Test

Run the tests with the coverage flag now. OMG! Isn't it just fantastic?

profitoro$ npm test -- --coverage

> ProFitOro@1.0.@ test /Users/chuda/Projects/vuejs/profitoro
> jest "--coverage"

utils.spec.js
sum. spec. js

Test Suites: 2 passed, 2 total
6 passed, 6 total
@ total

__________________________ |

% Lines I|Uncovered Lines |
________________ I
All files

sum.js
utils
utils.js

|
|
|
|
test ; |
|
|
|
|

100% code coverage, isn't it fantastic?

The final code for this section can be found in the chapter9/2/profitoro folder.

Testing Vuex store with Jest

Let's now try to test our Vuex store. The most critical parts of our store to test are
our actions and mutations because they can actually mutate the store's state. Let's
start with the mutations. Create the mutations.spec.js file in the test folder and
import mutations.js

// test/mutations.spec.js
import mutations from '~/store/mutations’

We are ready to write unit tests for our mutation functions.

[246]



Chapter 9

Testing mutations

Mutations are very simple functions that receive a state object and set some of its
attribute to the given value. Thus, testing mutations is fairly easy —we have just
to mock the state object and pass it to the mutation we want to test with a value
we want to set. In the end, we have to check whether the value has been actually
set. Let's, for example, test the mutation setWorkingPomodoro. This is what our
mutation looks like:

// store/mutations.js
setWorkingPomodoro (state, workingPomodoro) {
state.config.workingPomodoro = workingPomodoro

}

In our test, we need to create a mock for the state object. It doesn't need to represent
the complete state; it needs to at least mock the workingPomodoro property of the
state's config object. Then we will call the mutation, passing it our mocked state and
the new value for the workingPomodoro and we will assert that this value has been
applied to our mock. Thus, these are the steps:

1. Create a mock for the state object:
let state = {config: {workingPomodoro: 1}}

2. Call the mutation with a new value:
mutations.setWorkingPomodoro (state, 30)

3. Assert that the value has been set to the mocked object: expect (state.
config) .toEqual ({workingPomodoro: 30})

The complete code for this test looks like the following:

// test/mutations.spec.js
import mutations from '~/store/mutations’

describe ('mutations', () => {
describe ('setWorkingPomodoro', () => {
it ('should set the workingPomodoro property to 30', () => {
let state = {config: {workingPomodoro: 1}}

mutations.setWorkingPomodoro (state, 30)
expect (state.config) .toEqual ({workingPomodoro: 30})

[247]




Test Test and Test

The exact same mechanism should be applied to test the rest of the mutations. Go
ahead and finish them all!

Asynchronous testing with Jest — testing
actions

Let's move on to the more complex stuff to test— our actions! Our actions are mostly
asynchronous and they use complex Firebase application objects inside. This makes

them quite challenging to test but we do love challenges, don't we? Let's have a look
at the first action in the actions. s file. It's the uploadImages action that looks

like this:

uploadImages ({state}, files) {
return Promise.all (files.map(this. uploadImage))

}

What could we possibly test here? We could, for example, test that the _uploadImage
function has been called the exact same number of times as the size of the array of
images that was passed. For this, we must mock the _uploadImage method. In order
to do that, let's export it as well in our actions:

// store/actions.js

function uploadImage (file) {
/] ...

}

export default {
_uploadImage,
uploadImages ({state}, files) {
return Promise.all(files.map (this. uploadImage))
}
/] ...
}

Now we can mock this method and check the number of times the mock has been
called. The mocking itself is pretty easy; we just need to assign the actions. _
uploadImage to the jest.fn():

// test/actions.spec.js
it ('should call method uploadImage 3 times', () => {
actions. uploadImage = jest.fn()

3]

[248]




Chapter 9

From now on, our actions._uploadImage has a special magical property called
mock that we have already talked about. This object gives us the opportunity of
accessing the number of calls being done on the _uploadImage method:

actions. uploadImage.mock.calls
So, to assert that the number of calls is three, we can just run the following assertion:

expect (actions. uploadImage.mock.calls.length) .toEqual(3)

Ry Check the full documentation regarding mocking functions in Jest here:
Q https://facebook.github.io/jest/docs/mock-functions.
html#content

Very well, but where should we call this expectation? The uploadImages function

is asynchronous; it returns a promise. Somehow, we could sneak into the future and
listen to the promise resolution and call our assertion there. Shall we define some
callbacks and invoke them once the promise is resolved? No, no need for that. Just call
your function and run the assertions inside the then callback. Thus, our test will look
as simple as follows:

// test/actions.spec.js
import actions from '~/store/actions’

describe ('actions', () => {
describe ('uploadImages', () => {
it ('should call method uploadImage 3 times', () => {
actions. uploadImage = jest.fn()

actions.uploadImages ({}, [1, 2, 3]).then(() => {
expect (actions. uploadImage.mock.calls.length).toEqual (3)

H

3]
3]

It just works!

[249]




Test Test and Test

Let's now create a more complex mock - for our firebaseApp. How do we decide
what and how to mock? Just look at the code and check what's being done. So let's,
for example, check the createNewWorkout method:

// store/actions.js

createNewWorkout ({commit, state}, workout) {
YV
let newWorkoutKey = state.workoutsRef.push() .key
let updates = {}

updates ['/workouts/' + newWorkoutKey] = workout
updates['/user-workouts/' + state.user.uid + '/' + newWorkoutKey] =
workout

return firebaseApp.database() .ref () .update (updates)

}

What's going on here? Some new key is generated by the state's workoutsReference
and then the object called updates is created. This object contains two entries —one
for each of the Firebase database resources that held the workout object.

Then Firebase's database update method is called with this object. Thus, we have to
mock the database's update method so we can check the data that it's being called
with. We have also to inject this mock somehow into the big Firebase application
mock. Create a folder to hold our mock files and call it mocks . Add two files

to this directory — firebaseMocks.js and firebaseAppMock. js. Create an empty
function for the update method in the firebaseMocks file:

// __mocks__/firebaseMocks.js
export default {
update: () => {}

}

Create a mock for the firebaseApp object that will call the mocked update function
inside its database method:

// __mocks /firebaseAppMock.]js
import firebaseMocks from './firebaseMocks'
export default {
database: () => {
return {
ref: function () {
return {
update: firebaseMocks.update

}
}

[250]



Chapter 9

}

In order to test the createNewWorkout method, we will use the jest .mock function
to bind the Firebase object to its mock. Check the detailed documentation regarding
the jest .mock function:

http://facebook.github.io/jest/docs/en/jest-object.
html#jestmockmodulename-factory-options.

We need to bind our mock before importing the actions.js module. In this way,
it will already use the mocked object. Thus, our import section will look like
the following:

// test/actions.spec.js
import mockFirebaseApp from '~/ mocks /firebaseAppMock'
jest.mock('~/firebase', () => mockFirebaseApp)

import actions from '~/store/actions’

Let's see what is going on with a workout object so we know what and how to mock
and have a deterministic test. We have these lines:

// actions.js
workout .username = state.user.displayName
workout .uid = state.user.uid

So, our mock of the state object must contain the user object with the predefined
displayName and uid. Let's create it:

let state = {
user:
displayName: 'Olga’',
uid: 1

H
What happens next?

workout .date = Date.now ()
workout.rate = 0

Once again, we need to mock the Date .now object. Let's do the same as we did in the
utils test spec:

Date.now = jest.fn(() => 2000)

[251]



Test Test and Test

Let's read our method further. It contains a line that generates the newWorkoutKey
variable based on the workoutsRef state's object:

let newWorkoutKey = state.workoutsRef.push() .key

Let's mock the workoutsRef in our state mock as well:

let state = {
user: {
displayName: 'Olga’',
uid: 1
b
workoutsRef: {
push: function () {
return {
key: 59
}
}
b}

Now we know that when we call the addNewWorkout method, in the end it is

expected to call the Firebase database update method with an object that will

contain two entries - one with a key /user-workouts/1/59 and another with
a key /workouts/59, both with the same entry for the workout object:

{

'date': 2000,

'rate': 0,
'uid': 1,
'username': 'Olga’

}

So, first we need to create a spy. A spy is a special function that will replace the
function we bind it to and spy on whatever has been happening with this function.
Again, you don't need to install any external plugin or library for spies. Jest provides
them out of the box.

Check out Jest spies in the official documentation:

http://facebook.github.io/jest/docs/jest-object.
html#jestspyonobject-methodname

[252]



Chapter 9

So, we want to spy on the update mock function. Let's create a spy on it:

const spy = jest.spyOn (firebaseMocks, 'update')

In the end, our assertion will look like this:

expect (spy) . toHaveBeenCalledWith ({
' /user-workouts/1/59"': {
'date': 2000,

'rate': 0,
'uid': 1,
'username': 'Olga’

|
' /workouts/59"':
'date': 2000,

'rate': O,
'uid': 1,
'username': 'Olga’

}
1)

The whole test will look like the following;:

describe ('createNewWorkout', () => {
it ('should call update with', () => {
const spy = jest.spyOn (firebaseMocks, 'update')
Date.now = jest.fn(() => 2000)
let state = {
user: {

displayName: 'Olga’',
uid: 1
b
workoutsRef:
push: function () {
return {
key: 59

}
b

actions.createNewWorkout ({state: state}, {})
expect(spy).toHaveBeenCalledWith({
' /user-workouts/1/59"': {
'date': 2000,

[253]




Test Test and Test

'rate': O,
'uid': 1,
'username': 'Olga’

b,
' /workouts/59': {
'date': 2000,

'rate': O,
'uid': 1,
'username': 'Olga’

3]
3]

Now you know how to create mocks on different Firebase methods and how to
create spies on them, you can create the rest of test specifications to test the rest of the
actions. Check out the code for this section in the chapter9/3/profitoro folder.

Let's move forward and learn how we can actually test our Vue components
with Jest!

Making Jest work with Vuex, Nuxt.js,
Firebase, and Vue components

It's not the easiest task to test Vue components that rely on the Vuex store and Nuxt.
js. We have to prepare several things.

First of all, we must install jest-vue-preprocessor in order to tell Jest that Vue
components files are valid. We must also install babel-preset-stage-2, otherwise
Jest will complain about the ES6 spread operator. Run the following command:

npm install --save-dev jest-vue-preprocessor babel-preset-stage-2

Once the dependencies are installed, add the stage-2 entry to the .babelrc file:

// .babelrc

{

"presetgs": ["es2015", "stage-2"]

}

[254]



Chapter 9

Now we need to tell Jest that it should use the babel-jest transformer for the
regular JavaScript files and the jest-vue-transformer for the Vue files. In order to
do so, add the following to the jest entry in the package . json file:

// package.json
"jest": |
"transform": {
"*.+\\.js$": "<rootDir>/node modules/babel-jest",
".*\\. (vue)$": "<rootDir>/node modules/jest-vue-preprocessor"

}
}

We use some images and styles in our components. This might result in some errors
because Jest doesn't know what these SVG files are about. Let's add yet another entry
to the moduleNameMapper Jest entry in the package. json file

// package.json

"jest": {
"moduleNameMapper": {
"\\. (jpg|jpeg|png|gif|eot |otf |webp|svg|ttf|woff |woff2|mp4|webm|wa
v|mp3 |m4alaac|oga)$": "<rootDir>/ mocks /fileMock.js",
"\\. (css|scss)s$": "<rootDir>/ mocks /styleMock.js",
//

}
}

We are doing this because we don't really want to test pictures or CSS/SCSS files.

Add styleMock.js and fileMock.js to the _ mocks_  directory with the
following content:

// styleMock.js
module.exports = {}

// fileMock.js
module.exports = 'test-file-stub'

Check out the official documentation for more details in this regard:
https://facebook.github.io/jest/docs/webpack.html.

[255]



https://facebook.github.io/jest/docs/webpack.html

Test Test and Test

Add name mappers for both Vue and Vuex files:

// package.json

"jest": |
//
"moduleNameMapper": {
//
"“yue$": "vue/dist/vue.common.js",
"“yuex$": "vuex/dist/vuex.common.js",
"Ao(.*)8": "<rootDirs>/$1"

}
b

As a last step of configuration, we need to map the names for the Vue files. Jest

is dumb and it can't understand that we are actually importing the Vue file if we
are importing it without its extension. Thus, we must tell it that whatever is being
imported from the components or pages folder is a Vue file. So, in the end of these
configuration steps, our moduleNamMapper entry for jest will look as follows:

"jestm: |
/...
"moduleNameMapper": {
"\\. (jpg|jpeg|png|gif|eot |otf|webp|svg|ttf|woff |woff2|mp4 |webm|wav
|mp3|m4a|aac|oga)$": "<rootDir>/ mocks /fileMock.js",
"\\. (css|scss)s$": "<rootDir>/ mocks /styleMock.js",
"“vue$": "vue/dist/vue.common.js",
"“yvuex$": "vuex/dist/vuex.common.js",
"“~/(components |pages) (.*)$": "<rootDir>/$1/$2.vue",
"L (L*)8": "<rootDirs/s1"

}
}

We are now ready to test our components. You can find the final code with all these
configuration steps in the chapter9/4/profitoro folder.

Testing Vue components using Jest

Let's start by testing the Header component. Since it depends on the Vuex store
which, in its turn, highly depends on Firebase, we must do the exact same thing we
just did to test our Vuex actions —mock the Firebase application before injecting
the store into the tested component. Start by creating a spec file HeaderComponent .
spec.js and paste the following to its import section:

import Vue from 'vue'

import mockFirebaseApp from '~/ mocks /firebaseAppMock'
jest.mock('~/firebase', () => mockFirebaseApp)

import store from '~/store’

import HeaderComponent from '~/components/common/HeaderComponent'

[256]



Chapter 9

Note that we first mock the Firebase application and then import our store.

Now, to be able to properly test our component with the mocked store, we need to
inject the store into it. The best way to do that is to create a vue instance with the
HeaderComponent in it:

// HeaderComponent.spec.js
let $mounted

beforeEach(() => {
$mounted = new Vue ({
template: '<header-component ref="headercomponent"></header-
component>"',

store: store(),
components: {
'header-component': HeaderComponent

}) . $mount ()

3]

Note that we have bound the reference to the mounted component. Now we
will be able to access our header component by invoking $mounted. $refs.
headercomponent:

let $headerComponent = $mounted.$refs.headercomponent

What can we test in this component? It actually doesn't have so many functionalities.
It has a method onLogout which calls the 1ogout action and pushes the / path to the
component's $router property. So, we could actually mock the $router property,
call the onLogout method, and check this property's value. We can also spy on the
logout action and check that it has been called. Thus, our test for the onLogout
method of the component can look like the following:

// HeaderComponent.spec.js

test ('onLogout', () => {
let S$headerComponent = Smounted.S$refs.headercomponent
$headerComponent. $router = []

const spy = jest.spyOn ($SheaderComponent, 'logout')
SheaderComponent . onLogout ()

expect (spy) . toHaveBeenCalled ()

expect ($headerComponent.$router) . toEqual (['/'])

[257]



Test Test and Test

Run the tests. You will see a lot of errors related to the Nuxt component not being
properly registered:

Vue errors regarding the nuxt-link component

Well, if you can live with these errors, just live with them. Otherwise, run your tests
in production mode:

// package.json
"test": "NODE_ENV=production jest"

1
Y Be aware that if you run your tests in production mode, you can actually

miss some relevant errors.

Congratulations! You were able to test a Vue component that depends on Nuxt,
Vuex and Firebase with Jest! Check the code for this test in the chapter9/5/
profitoro directory.

[258]



Chapter 9

Snapshot testing with Jest

One of the coolest features of Jest is snapshot testing. What is snapshot testing?

When our components are being rendered, they produce some HTML markup,
right? It would be really important that once your application is stable, none of the
newly added functionality breaks the already existing stable markup, don't you
think? That's why snapshot testing exists. Once you generate a snapshot for some
component, it will persist in the snapshot folder and on each test run, it will compare
the output with the existing snapshot. Creating a snapshot is really easy. After you
mount your component, you should just call the expectation toMatchSnapshot on
this component's HTML:

let $html = S$mounted.S$el.outerHTML
expect ($html) . toMatchSnapshot ()

I will run snapshot testing for all the pages inside one test suite file. Before doing
that, I will mock the getters of our Vuex store because there are some pages that use
the user object, which is not initialized, thus resulting in an error. So, create a file
gettersMock inside our _mocks__ folder and add the following content:

// __mocks /gettersMock.js
export default {
getUser: () => {
return {displayName: 'Olga'}
}
getConfig: () => {
return {
workingPomodoro: 25,
shortBreak: 5,
longBreak: 10,
pomodorosTillLongBreak: 3
}
b
getDisplayName: () => {
return 'Olga'
b
getWorkouts: () => {
return []
b
getTotalPomodoros: () => {
return 10
b
isAuthenticated: () => {
return false
}
}

[259]



Test Test and Test

Let's go back to the imports. As we've already figured out, Jest is not really great in
figuring out what is what in our imports, thus it will complain about relative imports
(those that start from the dot, for example, in our index. js files inside each of

the components folders). Let's replace all those relative import paths with their
absolute equivalent:

// components/landing/index.js
export {default as Authentication} from '~/components/landing/
Authentication'

/...
I've also added one more mapping to the name mapper entry inside the package.
json jest entry:

"jest": |
"moduleNameMapper": {
/). ..
"""~/ (components/) (common |landing |workouts) $": "<rootDir>/$1/$2"
/). ..

}

Great! Create a pages . snapshot . spec. js file and import all the necessary mock
objects and all the pages. Don't forget to bind the corresponding mocks to Vuex
getters functions and to the Firebase application object. Your import section should
look like the following:

// pages.snapshot.spec.js

import Vue from 'vue'

import mockFirebaseApp from '~/ mocks /firebaseAppMock'
import mockGetters from '~/ mocks /getterMocks'
jest.mock('~/firebase', () => mockFirebaseApp)
jest.mock('~/store/getters', () => mockGetters)
import store from '~/store’

import IndexPage from '~/pages/index'

import AboutPage from '~/pages/about!’

import LoginPage from '~/pages/login'

import PomodoroPage from '~/pages/pomodoro’
import SettingsPage from '~/pages/settings’'
import StatisticsPage from '~/pages/statistics’'
import WorkoutsPage from '~/pages/workouts'

[260]



Chapter 9

We will create a test spec for each of the pages. We will bind each page component
in the same way as we have bound the Header component. We will export the
components that we want to test as components of a Vue instance and mount this
Vue instance after being created. Thus, the index component binding will look

as follows:

// pages.snapshot.spec.js
let $mounted = new Vue ({
template: '<index-page></index-page>',
store: store(),
components: {
'index-page': IndexPage
}

}) . $mount ()

The only thing that you have to do now is to execute the snapshot expectation.
Thus, the full test spec for the index page will look as follows:

// pages.snapshot.spec.js
describe ('pages', () => {
test ('index snapshot', () => {
let $mounted = new Vue ({
template: '<index-page></index-page>',
store: store(),
components: {
'index-page': IndexPage
}
}) . $mount ()
let $html = $mounted.$el.outerHTML
expect ($html) . toMatchSnapshot ()
})
})

[261]



Test Test and Test

Repeat the exact same steps for all the pages. Run the tests! Check the coverage. Now
we are talking! We've actually touched almost all the components of our application!
Look at this:

IUncovered Lines |
................ |

FooterComponent . vue
eaderComponent . vue
Logo.vue
index. js
components/landing
Authenticotion.vue
LogoText . vue

components/settings

PomodoroTimerSettings.vue
SetTimer.vue
components/timer

SvglircleSector.vue

WorkoutComponent . vue

index. js
poges
about . vue
index.vue
Login.vue

I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
|
I
|
I
I
I
I
I
I
I
I
I
I
I
|
|
I
|
I
|
I
I
I
|
I
|

Almost all the components and files of our application appear in the coverage report!

The most important thing, which is actually the whole purpose of the snapshot
testing, is the generated folder called _ snapshots__inside the test folder. Here, you
will find the newly generated snapshots of all the HTML markup of all your pages.
These snapshots look like this:

[262]



Chapter 9

Jest snapshots of the ProFitOro pages

Every time you do something that will affect your markup, the tests will fail. If you
really want to update snapshots, run the tests with the update flag:

npm test -- --u

I find snapshot testing a really fun and exciting feature!

It is very important that you commit your snapshot files! Check the
Al detailed documentation regarding the snapshot testing in the official Jest

Q website:
https://facebook.github.io/jest/docs/snapshot-testing.
html

The final code for this chapter can be found in the chapter9/6/profitoro folder.

Summary

In this chapter, we used very hot technology to test our Vue application. We used
Jest and learned how to create mocks, test components, and run snapshot testing
with it.

In the next chapter, we will finally see our application live! We will deploy it
using Google Firebase Hosting and provide the necessary CI/CD tooling so our
application is deployed and tested automatically each time it is pushed to the
master branch. Are you ready to see your work live, up and running? Let's go!

[263]







10

Deploying Using Firebase

In the previous chapter, we set up the testing framework for our application's code,
which will allow us from now on to cover it with unit tests and snapshot tests. In
this chapter, we are going to make our application live! We will also set up the
Continuous Integration (CI) and Continuous Deployment (CD) environments.
Hence, in this chapter we are going to learn how to do the following;:

* Deploy to Firebase hosting using Firebase tools locally

* Set up the CI workflow using CircleCI

* Set up both staging and production environments using Firebase
and CircleCI

Deploying from your local machine

In this section, we are going to deploy our application using the Firebase
command-line tools. We have already done it. Check the Google Firebase
documentation for a quick start: https://firebase.google.com/docs/hosting/
quickstart

Basically, if you haven't yet installed Firebase tools, do it now!
npm install -g firebase-tools
Now switch inside your project's directory and initialize a Firebase project:

firebase init

[265]


https://firebase.google.com/docs/hosting/quickstart
https://firebase.google.com/docs/hosting/quickstart

Deploying Using Firebase

From the drop-down menu that appears, choose hosting.

1
‘Q It's not really obvious, so keep in mind that to actually choose

something from the list, you have to press Space.

You're obout to initiaolize a Firebose project in this directory:

SUsers/chuda/Projects
Before we get storted, keep in mind:
® You are initiclizing in on existing Firebase project directory

ich Flrebﬂa (LT fegtures do you want to setup for this folder? Press Spoce to select features, then Enter to confirm your choices.
lo

sting: Cn \-,u'rr and deploy F\—_ ase Hosting sites

Press Space to select the Hosting feature

After that, select your ProFitOro project from the list and after that, indicate the
folder dist for the build's output directory:

= Project Setup
First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add,
but for now we'll just set up a default project.

? Select a default Firebase project for this directory: Profitoro (profitoro-ad@f@)

- Hosting Setup

Your public directory is the folder (relative to your project directory) that
will contain Hosting assets to be uploaded with firebase deploy. If you
have a build process for your assets, use your build's output directory.

7 What do you want to use as your public directory? dist

Type dist for the public directory of your assets

Answer No to the next question and you are done! Make sure that Firebase creates
both firebase.json and . firebaserc files in your project's folder.

[266]



Chapter 10

This is what the firebase. json file looks like:

// firebase.json

{
"hosting": {
"public": "dist"
}
}

And this is what your . firebaserc file will look like:

.firebasercs

{
"projects": {
"default": "profitoro-adOfo"
}
}

You are done! Now if we generate our static assets with the npm run generate
command, these assets will end up in the dist folder. If you run firebase deploy
after that, your application will be immediately deployed!

So, go ahead and run the following:

npm run generate

firebase deploy
If you run into some errors or issues, please do the following:

* Make sure your Firebase CLI is up to date
* If necessary, re-authenticate with firebase login --reauth

* In case of error, try adding the project with firebase use --add
Congrats! Your application is up and running!

You might ask why we would bother with the whole Nuxt routing
and server-side rendering if, in the end, we are just generating static
assets to deploy. The thing is that, unfortunately, Firebase only hosts
% static files. In order to be able to run a node server, we should have
used another container, such as, for example, Heroku: https://
stackoverflow.com/questions/30172320/firebase-
hosting-with-own-server-node-js.

[267]




Deploying Using Firebase

There is another thing that you should be aware of: it turns out that now it's not
possible to run our application locally; if we try to do that, we will get a webpack error:

__ WEBPACK_IMPORTED_MODULE_1__ firebase___default.a.auth is not
a function

webpack error when we try to run the application locally

For some reason, our actions. js file tries to import the £irebase. json instead
of the Firebase application index. js file located inside the £irebase directory.
This is quite simple to fix. Rename the Firebase directory firebaseapp - in the
end, it's what's located inside. Please find the code corresponding to this section

in the chapter10/1/profitoro folder. Pay attention to the new firebase.json
and . firebaserc files in the root directory and that all the imports of the Firebase
application changed to the firebaseapp folder.

Setting up CI/CD using CircleCl

Right now, if we want to deploy our application, we first have to run tests locally
to ensure that everything is okay and nothing is broken and then deploy it using
the firebase deploy command. Ideally, all of this should be automated. Ideally,
if we push our code to the master branch, everything should just happen without
our intervention. The process of automated deployment with automated test
checks is called Continuous Deployment. This term means exactly what it sounds
like - your code is being deployed continuously. There are lots of tools that allow
you to automatically deploy your code to production once you hit the button or just
push to the master branch. Starting with the good old but reliable Jenkins, going to
Codeship, CloudFlare, CircleC], Travis...the list is endless! We will use CircleCl,
because it integrates nicely with GitHub. If you want to check how to deploy with
Travis, check out my previous book on Vue.js:

https://www.packtpub.com/web-development/learning-vuejs-2

First of all, you should host your project on GitHub. Please follow the GitHub
documentation to learn how to initialize your repository:

https://help.github.com/articles/adding-an-existing-project-to-
github-using-the-command-line/

Or just fork mine:

https://github.com/chudaol/profitoro

[268]



https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://github.com/chudaol/profitoro
https://github.com/chudaol/profitoro

Chapter 10

Once your repository is online, create your account on CircleClI:
https://circleci.com

Using the CircleCI web interface, create a new project and select your repository
from the list. After that, select the Linux operating system and Node for language:

= Projects » Add Projects » chudaol/profitoro

c@) Operating System

A Linux ®OosX
Platform
PROJECTS 2.0 mew 1.0
. The new version of our platform enables the most The classic version of our platform offers all the
- power, flexibility and control available to speed up standard features over 100,000 developers have
L your builds. This version offers more for all and is adopted.
ially ideal for Dock: jects. Learn more
Qg especially ideal for Docker projects. Learn more
e Getting started on 2.0 involves reviewing sample Getting started on 1.0 involves first an automated
configurations to help you compose your own attempt to infer your settings and if that fails, it
config file. requires setting up a basic configuration file.

Language
L1 Clojure £x Elixir L Go L1 Gradle (Java) £ Maven (Java) £ Node
£ Ruby £ Scala L2 Other

CircleClI project configuration

Now we must add a CircleCI configuration to our project so the first knows what to
do once we push. Create the .circleci folder with a file named config.yml along
with the following content:

// .circleci/config.yml
# Javascript Node CircleCI 2.0 configuration file
#
# Check https://circleci.com/docs/2.0/language-javascript/ for more
details
#
version: 2
jobs:

build:

docker:

[269]


https://circleci.com
https://circleci.com

Deploying Using Firebase

# specify the version you desire here
- image: circleci/node:7.10

# Specify service dependencies here if necessary

# CircleCI maintains a library of pre-built images

# documented at https://circleci.com/docs/2.0/circleci-
images/

# - image: circleci/mongo:3.4.4

working directory: ~/repo

steps:
- checkout

# Download and cache dependencies
- restore cache:
keys:
- vl-dependencies-{{ checksum "package.json" }}
# fallback to using the latest cache if no exact match
is found
- vl-dependencies-

- run: npm install

- save_cache:
paths:
- node modules
key: vl-dependencies-{{ checksum "package.json" }}

# run tests!
- run: npm test

Commit and push your changes to master. Go to the CircleCI interface and click on
the Start building button:

Mext Steps
‘You're almost there! We're going to walk you through setting up a configuration file, committing it, and turning on our listener so that CircleCl can test your commits

Want to skip ahead? Jump right into our documer

n, set up a yml file, and kick off your build with the butten below.

T Create a folder named . circleci andadd a file config.yml (sothat the filepath bein _circleci/config.yml ).

i Populate the config.yml with the contents of the sample .yml (shown below), Copy to clipboard
3 Update the sample yml to reflect your project’s configuration,
4 Push this change up to GitHub,

5 Start building! This will launch your project on CircleCl and make our webhooks listen for updates to your work

Click on the Start building button

[270]



Chapter 10

If you are as lucky as I am, you will see the following successful output:

% Spin up Environment
i Checkout code

% Restoring Cache

i Sawing Cache

o

npm test

| #  npm install

Builds » chudaol » profitoro » master » 1
ef968dd added circleci cenfig

Test Summary Queve (00:54)

Show containers:  AIl(1) Successiul (1}  Failed (0]

_L,

Autifacts

TEST

Configuration

& Rebuld

Build Timing

CircleCI success!

Let's add a status badge to our README . md file so it appears on GitHub. Go to your

CircleClI project settings (click on the cog near the project's name):

Projects

BUILDS

WORKFLOWS
) chudaol
INSIGHTS
Project
u profitoro

PROJECTS

Parallelism

Tx

Team

Settings

ke

Click on the cog near the project's name to open your project's Settings tab

[271]




Deploying Using Firebase

In the Settings section, select Notifications | Status Badges:

Settings » chudaol » profitoro

PROJECT SETTINGS
Status badges for chudaol/profitoro
Overview
Org Settings
Use this tool to easily create embeddable status badges. Perfect for your project's README or wiki!

BUILD SETTINGS

Branch
Build Environment
Default H
Adjust Parallelism
. AP1 Token
Environment Variables
Advanced Settings None ;
Test Commands Preview
&) PassED
NOTIFICATIONS
~ Embed Code
Chat Notifications
Webhook Motifications Markdown v
Status Badges [[CircleCl]

(https://circleci.com/gh/chudacl/profitoro.svg?

PERMISSIONS style=svg)]
(https://circleci.com/gh/chudacl/profitoro)
Checkout S5H keys

Navigate to Settings | Notifications | Status Badges

Copy and paste the markdown code to your README . md file so it looks as follows:

// README.md
# Profitoro

[! [CircleCI] (https://circleci.com/gh/chudaol/profitoro.svg?style=svg)]
(https://circleci.com/gh/chudaol/profitoro)

> Take breaks during work. Exercise during breaks.

Commit and push your changes to master!

[272]




Chapter 10

If you now open your GitHub repository, you will see this nice badge saying PASSED:

EE README.md

Profitoro
=) PASSED

Take breaks during work. Exercise during breaks.

CircleCI badge shows a nice message: Passed

But our whole point is not only to see a nice green badge, it is to actually be able

to deploy to the Firebase hosting container. In order to do that, we must configure
CircleCl. We do that by adding the deploy section to the config.yml file. Check

the documentation at https://circleci.com/docs/2.0/configuration-
reference/#deploy. To be able to deploy to the Firebase hosting, we need to be
logged in. It's obvious that CircleClI is not, in any case, logged in to our Firebase
account. Luckily for us, that's easy to solve. We need to generate a CI token and then
use it in our deploy command.

A Firebase CI token can be generated using the firebase
i login:ci command.

Just run this command in your console:

firebase login:ci

You will get output similar to this:

Visit this URL on any device to log in:

Htp aCCoL 1 om/0/oauth, ient gmd
ormprojects. readonl ttpsE3AR2| rebase
ost%3A9085
Waiting for authentication...

v Success! Use this token to login on a CI server:

L/dFACT  JaY-1z Syr@7c

Example: firebase deploy --token "$FIREBASE_TOKEN"

Output of the Firebase login:ci command

[273]




Deploying Using Firebase

Go to the web interface of your CircleCI and find the settings of your project. On the
left-hand side, you will see the tab called Build settings. Click on the Environment
Variables link and the Environment Variables section will pop up. Click on the
Add Variable button and add the variable named FIREBASE TOKEN with a value of
YOUR_GENERATED_TOKEN:

Add an Environment Variable X

To disable string substitution you need to escape the § characters by prefixing them with \ . For example,
avalue like usd$ would be entered as usd\$ .

Name

FIREBASE_TOKEN

Value

YOUR_GENERATED_TOKEN|

Cancel Add Variable

Add a new environment variable to your CircleCI project settings

Let's now add a deploy step to the config.yml file. Before doing that, remember
that we have to invoke the firebase deploy command. Well, for this, we should
have installed the Firebase tools globally on the CircleCI server. Instead of polluting
the CircleCI server with some globally installed software, let's install it as a dev
dependency and then invoke the command from the node_modules folder. Hence, as a
first step, install firebase-tools as a dev dependency:

npm install --save-dev firebase-tools

Now we can finally add the deploy step. During this step, we must generate

assets with the npm run generate command and run firebase deploy with our
token (the command would be firebase deploy --token=<YOUR FIREBASE
TOKEN>). We don't have to specify the token itself, because we've already created an
environment variable for it, so the command will look like the following;:

firebase deploy --token=$FIREBASE TOKEN

[274]



Chapter 10

The whole deploy entry will look as follows:

// .circleci/config.yml
jobs:
build:
#...

steps:
- checkout

#...
# deploy!
- deploy:
command: |
if [ "${CIRCLE BRANCH}" == "master" ]; then
npm run generate
./node modules/.bin/firebase deploy --
token=$FIREBASE TOKEN --non-interactive
fi

Push the changes. Check your CircleCI console. After successful deployment, check

your Firebase console on the Hosting tab and make sure that the last deployment has
been done exactly at this moment:

" Firebase Profitoro *  Hosting

A Overview e Status Time Deploy
) c ' Aug 22,2017 chudaol@gmail.com
al  Analytics W Curren 2:28 PM
Aug 22,2017 chudaol@gmail.com
4 Deployed N ri ? ey
2% Authentication 6:59PM y

Make sure that the last deployment has been done on exactly this moment!

Isn't that fantastic? Every time you push new changes to master, they will be tested
first, and only if all the tests pass will they be deployed to your Firebase hosting
provider! How long did it take us to set up all this? 20 minutes? Yay!

[275]



Deploying Using Firebase

Setting up staging and production
environments

You probably know that it's not very good practice to deploy to production right
away. Even if the tests pass, we have to check whether everything is right first and
that's why we need a staging environment.

Let's create a new project on the Firebase console and call it profitoro-staging.
Let's now add a new environment to our project using the Firebase command-line
tool. Just run this command in your console:

firebase use -add

Select the right project:

profitoro$ firebase use --add

? Which project do you want to add?
aasd-d22f8
fir-demo-project

pleaseintroduceyourself-4bbda
profitoro-ad@f@

> profitoro-staging
test-484ac

Select a newly created profitoro-staging project
Type the alias staging in the next step:
What alias do you want to use for this project? (e.g. staging) staging
Check that a new entry has been added to your . firebaserc file:

// .firebaserc

{

"projects": {
"default": "profitoro-adofo",
"staging": "profitoro-staging"

}
}

If you now locally run the command firebase use stagingand firebase deploy
after it, your project will be deployed to our newly created staging environment.

If you want to switch and deploy to your production environment, just run the
command firebase use default followed by the firebase deploy command.

[276]




Chapter 10

Now we need to reconfigure our CircleCI workflow. What we want to achieve is to
deploy the assets to the staging server automatically and then run manual approval
in order to deploy to production. For that, we will use the workflow configuration
with manual approval. Please check the CircleCI official documentation page in this
regard:https://circleci.com/docs/z.O/workf1ows/#holding—a—workflow—
for-a-manual -approval.

We will end up with two very similar jobs - the first one will be called build and it
will contain the exact same content as before, with the only difference being that the
deploy step will use the alias staging:

version: 2
jobs:
build:
docker
#...

# deploy to staging!
- deploy:
command: |
if [ "${CIRCLE BRANCH}" == "master" ]; then
npm run generate
./node modules/.bin/firebase use staging

./node_modules/.bin/firebase deploy --
token=$FIREBASE TOKEN --non-interactive

fi

The second job will be called deploy, and it will perform the exact same steps as the
staging job (just to be totally sure that everything is okay). The only difference is
that it will use the default alias before deploying:

build:
#...
deploy:
docker:
#
# deploy to production!
- deploy:
command: |
if [ "${CIRCLE_BRANCH}" == "master" ]; then
npm run generate
./node modules/.bin/firebase use default

./node_modules/.bin/firebase deploy --
token=$FIREBASE TOKEN --non-interactive

fi

[277]



Deploying Using Firebase

After that, we will add a new entry called workflows that will look as follows:

// .circleci/config.yml
jobs:
build:
#...
deploy:
#...
workflows:
version: 2
build-and-approval-deploy:
jobs:
- build
- hold:
type: approval
requires:
- build
- deploy:
requires:
- hold

Commit and push to master. Check your CircleCI console. After successful
deployment to the staging environment, click on the Workflow tab and check
that it's actually ON HOLD:

Workflows » chudacl » profitoro » master

Recent Mybranches AN branches  Showing 1-3

@ chudaclpeafitora o e
master O oNHou master / build-and-appeoval-deploy §/min ago

@ otteched workspace and not running tests on deplaying to p

© cance

Workflow is ON HOLD

Check your staging environment website and ensure that everything is all right.

[278]




Chapter 10

After being totally sure that everything is okay, we can promote our build to
production. Click on your workflow and click on the Approve button:

master / build-and-approval-deploy 10/min aga 01:55

3 jobs in this workflow

O hod @ deploy

Now we can manually approve the production deployment

After a while, there will be great success! Isn't it fantastic?

Even though this is out of the scope of this book, keep in mind that
M you don't want to screw up your production database while running
Q some checks on your staging environment. Therefore, for staging to
be real staging and production to be real production, we should have
also set up a staging database.

Check the code for this section in the chapter10/2/profitoro folder. The only two
things you need to pay attention to are the . firebaserc configuration file and the
configuration for the CircleClI that resides in the .circleci/config.yml directory.

What have we achieved?

Dear reader, we've been on a huge journey. We have built our responsive application
from the very start until its deployment. We used nice technologies such as Vue.js,
Bootstrap 4, and Google Firebase to build our application. Not only did we use all
these technologies and learn how they play together, we actually followed the whole
process of software development.

We started from the business idea, definition of requirements, definition of user
stories, and creation of mockups. We continued with the actual implementation -
both frontend and backend. We did thorough testing using Jest and we ended up
with the deployment of our application into two different environments. Even more
than just a deployment - we've implemented a CD strategy that will perform the
deployment process for us automatically.

[279]



Deploying Using Firebase

The most important thing - we've ended up with a fully functional application that
will allow us to manage our time during work and stay fit!

Check it out live:

https://profitorolife.com/

I even created a Facebook page:

https://www.facebook.com/profitoro/

If you liked the ProFitOro logotype, send some love and thanks to my friend Carina:
car.marge@gmail.com

If you liked the way the mockups were created, you should thank my friend and
colleague Safi:

https://github.com/Safure

If you liked the design and the illustration of ProFitOro, check out the other works of
my friend Vanessa (https://www.behance.net/MeegsyWeegsy) and talk to her in
case you feel she might help you as well.

If you liked the way the design was implemented with SCSS, give some likes to my
friend Filipe (https://github.com/£i1090302).

Summary

In this chapter, we used CircleCI and Firebase to guarantee continuous quality of
our continuously deployed software. As I already mentioned, it's so nice to see
something that you've created from scratch up and running!

However, our work is not finished yet. There are so many improvements to make.
We need validations. We need to write more tests to increase our code coverage!
We need more workouts and we need them to look beautiful. We probably need
some back office where someone responsible can check every added workout and
approve it before it actually ends up in the list of workouts visible to everyone.

[280]



https://profitorolife.com/
https://profitorolife.com/
https://github.com/Safure
https://github.com/Safure

Chapter 10

We need a proper statistics page with some beautiful graphics. We need to optimize
the image rendering. We need to show more than one picture for each of the
workouts. We probably need to add video support for the workouts. We also need to
work a bit on the workout screen that appears once the Pomodoro working timer is
over. Right now, it looks like this:

Push-ups

Feeling Lazy today? > 1 N

SHOW ME SOME KITTENS!

There are a lot of buttons here! None of them actually works :(
There are three buttons and none of them work.

So, as you can see, although we have finished the book and we have a functional
piece of software, we still have some work to do. Actually, this makes me really
happy, because it makes me feel that I don't have to say goodbye just now.

Share your ideas with me, do something amazing and share it with me, create some
pull requests or issues on GitHub. I will be glad to answer you. Please email me if
you have any questions, suggestions, or thoughts at chudaclegmail . com.

Thank you for reading this book and... go to work...out!

[281]


mailto:chudaol@gmail.com




A

accounting 158
actions

defining 145-148
alert component

reference 75
anonymous user

managing 171-173
application

deploying 22, 23

scaffolding 99, 100
asynchronous testing

Jest, using 248-254
authentication

about 157

working, with Firebase 158
authentication API, Firebase

reference 161,177
authentication Ul

enhancing 168, 169, 170
authorization 158

Bootstrap

about 66

components 67-70

functionalities 66

layout 70, 71

reference 66

used, for adding form 13, 14

used, for checking adaptiveness of
countdown timer component 119-122

used, for checking responsiveness of
countdown timer component 119-122

Index

utilities 70

Vue.js, combining with 71-74
Bootstrap classes

used, for creating layouts 208, 209
Bootstrap modal

reference 223

used, for displaying workout 223-227
Bootstrap navbar

using, for navigation links 189-194
Bootstrap-powered markup

adding 10-13
Bootstrap-Vue

reference 74
buttons, Bootstrap

reference 68,123

Cc

CamelCased 104
Card Bootstrap's component
reference 71
cards, Bootstrap documentation
reference 11
CI/CD
setting up, Circle Cl used 268-275
Circle CI
reference 269, 277
used, for setting up CI/CD 268-275
classes for alignment, Bootstrap
reference 173
code splitting 194, 195
components
message cards, extracting to 19-21
of Bootstrap 67-70
of Vue 46-51

[283]




Continuous Deployment (CD) 265
Continuous Integration (CI) 265
countdown timer component
adaptiveness 120
down time, counting 122-127
responsiveness 119
custom domain
Firebase project, connecting to 24, 25
custom templates, vue-cli
reference 32

D

database entry
adding, to Firebase application
database 3, 4

E

element 29

F

file uploading
reference 218
Firebase
about 2,75
services 76
Firebase API documentation
reference 217
Firebase application database
database entry, adding 3, 4
Firebase authentication API

connecting, to web application 161, 162

workflow 160
Firebase console

project, creating in 2, 3

reference 2, 149
Firebase database

Vuex store, connecting to 150-155
Firebase data storage

used, for storing images 216-223
Firebase project

connecting, to custom domain 24, 25

setting up 149, 150

Vuejs application, connecting to 6-10

Firebase real-time database
documentation, reference 213
used, for storing workouts 211-216

Firebase real-time database documentation
reference 154

Firebase SDK
anonymous user authentication 159
custom auth system integration 159
email based authentication 159
federated entity provider

authentication 159
password based authentication 159
phone number authentication 159
flex-box
reference 70

footer
customizing 210, 211

form
adding, Bootstrap used 13, 14

forms, Bootstrap documentation
reference 13

functionalities, Bootstrap
references 66

functional requirements
gathering 81, 82

G

GoDaddy
reference 24
Google Firebase
reference 265

H

Heroku
reference 267
History API
reference 53
Human-Computer Interaction (HCI) 89

images
storing, Firebase data storage used 216-223

[284]




J

Jest
about 236
asynchronous testing 248-254
coverage 239
documentation, reference 243
mocking, reference 242
mocking with 242-246
reference 234, 236
used, for snapshot testing 259-263
used, for testing Vue components 256-258
used, for testing Vuex store 246
using 236, 237
working, with Firebase 254-256
working, with Nuxt.js 254-256
working, with Vue components 254-256
working, with Vuex 254-256
jest.mock function
reference 251
Jest spies
reference 252
jumbotrons
reference 134

K

KebabCased 104

L

layouts

creating, Bootstrap classes used 208, 209
lazy loading

about 194, 195

reference 194
local machine

deploying from 265-268

menu button
working 203
message cards
extracting, to components 19-21

mobile screen

workouts, adding 233, 234

mock 242
mocking functions

reference 249

mockups

about 88

login page 90

logo 96

Pomodoro timer, displaying 91
Settings area 93

statistics 94

workout, during break 92
workouts 95

mode* history option

reference 55

moment.js library

reference 227

mutations, Vuex store

defining 145-148
reference 62

N

navbar component

reference 189

navigation

adding, vue-router used 185-188
restricting, according to authentication 188

navigation links

Bootstrap navbar, using 189-193

nouns

retrieving 86

npm package

reference 218

Nuxt.js

about 196-199
and Vuex store 203, 204
URL 196

Nuxt.js middleware 204, 205
nuxt-link

used, for adding links 200-202

nuxt-starter template

about 197
reference 197

[285]




(0

offsetting columns
reference 120
one-way data binding 29

P

path SVG element
reference 108

personas 82-84

please introduce yourself page
about 1,2
reference 1

Pomodoro technique
reference 80

Pomodoro timer
about 128-132
countdown timer component,

implementing 117, 118

implementing 106, 107
main principles 81
personalizing 173-176
SVG and trigonometry 107-116

prerender-spa-plugin
reference 196

problem
stating 80

ProFitOro application
authenticating to 162-168
reference 268

ProFitOro components
defining 101-106

project

creating, in Firebase console 2,3

pull-* class
reference 120

push-* class
reference 120

R

responsive application 280
router-view component
reference 56

S

server-side rendering (SSSR)
about 196
reference 196
services, Firebase
authentication 76
database 76
hosting 76
storage 76
Single Page Applications (SPA) 53
snapshot testing
Jest, using 259-263
reference 263
staging and production environments
setting up 276-279
style
applying 227-230

T

template literals
reference 126
templates, vue-cli
browserify 32
browserify-simple 32
simple 32
webpack 32
webpack-simple 32
testing
importance 235
two-way data binding 29

U

Unified Modeling Language (UML) 85
user profile

updating 177-181
user stories 84, 85

utility functions
testing 240, 242

\'

verbs
retrieving 86-88
v-on directive
reference 123

[286]



Vue
components 46-51
Vue application
URL 196
vue-cli
about 31
reference 31, 99
Vue components
testing, with Jest 256-258
Vue directives
about 32
conditional rendering 33, 34
data, binding 38, 40, 41
events, handling 41-46
loops 37, 38
text, versus HTML 34-36
Vue documentation
reference 5
vuefire wrapper
reference 77
Vue instance 29
Vue.js
about 28
combining, with Bootstrap 71-74
functionalities, adding 14-17
including, in script 31
reference 29, 268
utility functions, adding 17, 18
Vue.js application
connecting, to Firebase project 6-10
scaffolding 4, 5
Vue project
about 31
CDN version, using 31
npm dependency, adding to package.json
file 31
vue-router
reference 193
used, for adding navigation 185-188

Vue router 53-56
Vuex
reference, for modules 138
Vuexfire
reference 150
Vuex state management architecture 57-65
Vuex store
actions 138
connecting, to Firebase database 150-155
getters 62, 138
mutations 62, 138
reference 203
setting up 137-145
state 62,138
testing, actions 248, 249
testing, Jest used 246
testing, mutations 247

w

watchers
reference 133
web application
Firebase authentication API, connecting
to 161, 162
webpack documentation
reference 194
WireframeSketcher
reference 89
workout
about 133, 135
displaying, with Bootstrap modal 223-227
storing, with Firebase real-time
database 211-215

[287]



	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Please Introduce 
Yourself – Tutorial
	Hello, user
	Creating a project in the Firebase console
	Adding a first entry to the Firebase application database

	Scaffolding a Vue.js application
	Connecting the Vue.js application to the Firebase project

	Adding a Bootstrap-powered markup
	Adding a form using Bootstrap

	Making things functional with Vue.js
	Adding utility functions to make things 
look nicer
	Exercise

	Extracting message cards to their own component
	Exercise


	Deploying your application
	Extra mile – connecting your Firebase project to a custom domain
	Summary

	Chapter 2: Under the Hood – Tutorial Explained
	Vue.js
	Vue project – getting started
	Including directly in script
	CDN
	NPM
	Vue-cli

	Vue directives
	Conditional rendering
	Text versus HTML
	Loops
	Binding data
	Handling events

	Vue components
	Exercise
	Vue router
	Vuex state management architecture

	Bootstrap
	Bootstrap components
	Bootstrap utilities
	Bootstrap layout

	Combining Vue.js and Bootstrap
	Exercise
	Combining Vue.js and Bootstrap continued

	What is Firebase?
	Summary

	Chapter 3: Let's Get Started
	Stating the problem
	Gathering requirements
	Personas
	User stories
	Retrieving nouns and verbs
	Nouns
	Verbs

	Mockups
	The first page – login and register
	The main page displaying the Pomodoro timer
	Workout during the break
	Settings
	Statistics
	Workouts
	Logo

	Summary

	Chapter 4: Let It Pomodoro!
	Scaffolding the application
	Defining ProFitOro components
	Exercise

	Implementing the Pomodoro timer
	SVG and trigonometry
	Exercise

	Implementing the countdown timer component
	Responsiveness and adaptiveness of the countdown timer using Bootstrap
	Countdown timer component – let's count down time!
	Exercise

	Pomodoro timer
	Exercise


	Introducing workouts
	Summary

	Chapter 5: Configuring Your Pomodoro
	Setting up a Vuex store
	Defining actions and mutations
	Setting up a Firebase project
	Connecting the Vuex store to the Firebase database
	Exercise
	Summary

	Chapter 6: Please Authenticate!
	AAA explained
	How does authentication work with Firebase?
	How to connect the Firebase authentication API to a web application
	Authenticating to the ProFitOro application
	Making the authentication UI great again
	Managing the anonymous user
	Personalizing the Pomodoro timer
	Updating a user's profile
	Summary

	Chapter 7: Adding a Menu and Routing Functionality Using 
vue-router and Nuxt.js
	Adding navigation using vue-router
	Exercise - restrict the navigation according to the authentication

	Using Bootstrap navbar for navigation links
	Code splitting or lazy loading
	Server-side rendering
	Nuxt.js
	Adding links with nuxt-link
	Exercise – making the menu button work
	Nuxt.js and Vuex store
	Nuxt.js middleware
	Exercise – finish 'em all!

	Summary

	Chapter 8: Let's Collaborate – Adding New Workouts Using Firebase Data Storage 
and Vue.js
	Creating layouts using Bootstrap classes
	Making the footer nice
	Storing new workouts using the Firebase real-time database
	Storing images using the Firebase data storage
	Let's search!

	Using a Bootstrap modal to show each workout
	Exercise

	It's time to apply some style
	Summary

	Chapter 9: Test Test and Test
	Why is testing important?
	What is Jest?
	Getting started with Jest
	Coverage

	Testing utility functions
	Mocking with Jest

	Testing Vuex store with Jest
	Testing mutations
	Asynchronous testing with Jest – testing actions

	Making Jest work with Vuex, Nuxt.js, Firebase, and Vue components
	Testing Vue components using Jest
	Snapshot testing with Jest
	Summary

	Chapter 10: Deploying Using Firebase
	Deploying from your local machine
	Setting up CI/CD using CircleCI
	Setting up staging and production environments
	What have we achieved?
	Summary

	Index



