

Drupal 7
Multi-sites Configuration

Run multiple websites from a single instance
of Drupal 7

Matt Butcher

 BIRMINGHAM - MUMBAI

Drupal 7 Multi-sites Configuration

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2012

Production Reference: 1190312

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-800-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author
Matt Butcher

Reviewers
Surendra Mohan

Veturi JV Subramanyeswari

Acquisition Editor
Sarah Cullington

Lead Technical Editor
Hithesh Uchil

Technical Editors
Vanjeet D'souza

Vrinda Amberkar

Project Coordinator
Yashodhan Dere

Proofreader
Mario Cecere

Indexer
Tejal Daruwale

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Matt Butcher is an Expert Developer at HP Cloud, where he deals with PHP and
Drupal development. He is a member of the Emerging Technologies Lab at Loyola
University, Chicago, where he is currently finishing a Ph.D. in philosophy.

He has written six other books for Packt Publishing, including Drupal 7 Module
Development (co-authored with five others), Drupal 6 JavaScript and jQuery, Learning
Drupal 6 Module Development, and Mastering OpenLDAP. He has also contributed
articles to various websites and scholarly journals. He actively contributes to several
Open Source projects.

My sincere thanks to Matt Farina, Greg Dunlap, John Albin Wilkins,
Sam Boyer, Ken Rickard, Larry Garfield, and Greg Leroux for
fielding various questions during the authoring of this book. Some
of the ideas in this book were inspired by Brian Tully, Theresa Suma,
and Chachi Kruel at ConsumerSearch.

Thanks to the technical reviewers who made this book better with
their thoughtful comments. The team at Packt has been great to work
with, and for this book Sarah Cullington and Yashodhan Dere (and
their team) have worked tirelessly to bring it to fruition.

And, of course, thanks to Angie, Annabelle, Claire, and Katherine
who gave up a portion of our family time to let me write this book.
The book's done, kids. We're going to the zoo!

About the Reviewers

Surendra Mohan is a Service Delivery Manager at a well known software
consulting European MNC in India.

He completed his BE in 2004 from VTU, Belgaum, in the branch of ISE. He started
his career as a Software Engineer with .NET technology. Later he moved into the
area of HR/Recruitment/IT Consulting/Software Development/Web Development
via Global Solutions while exploring open source web technologies such as Drupal,
Ubercart, and so on, handling various roles as a Programmer, Technical Lead, Project
Lead, Technical Architect, and other such roles, finally landing as Service Delivery
Manager on Drupal.

I would like to thank the person who introduced me to Packt
Publishing for giving me such an excellent opportunity to get
associated with them. I would like to thank my family for motivating
me and providing me complete support while reviewing this book.

Sree (a.k.a. Veturi JV Subramanyeswari) is currently working as Drupal
Architect at a well known software consulting MNC in India. Prior to joining this
company, she served few Indian MNCs, many start ups, R&D sectors in various roles
such as Programmer, Tech Lead, Research Assistant, and so on.

She has around eight years of working experience in web technologies covering
media and entertainment, publishing, healthcare, enterprise architecture,
manufacturing, public sector, defense communication, gaming, and other such areas.

She has reviewed other technical books such as Building Powerful and Robust Websites
with Drupal 6, Learning Drupal 6 Module Development, PHP Team Development, Drupal
6 Site Blueprints, Drupal 6 Attachment Views, Drupal E-Commerce with Ubercart 2.x,
Drupal 7 First Look, and many more published by Packt Publishing.

I would like to thank my family and friends who supported me in
completing my reviews on time with good quality.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Multi-site Drupal	 5

Drupal is a multi-site Content Management System	 5
From one site to many	 6
Why multi-site?	 7

Running different software on the same site	 8
Making the most of shared hosting	 8
Easing server administration	 8
Staging or testing before deploying to a live site	 9
Sharing a single code base	 9
Running secure and standard (unsecured) tools on the same server	 9
Efficient development	 10

Drupal and multi-site	 10
A quick guide to choosing the right multi-site configuration	 12

Setting up a server	 13
Installing a Drupal Virtual Machine with Vagrant	 14

Installing our tailored Vagrant project	 14
Basic configuration for this book	 16
Connecting to the new Virtual Machine	 16

Configuring a server (without VirtualBox and Vagrant)	 17
Domain names and IP addresses	 18

Using a hosts file	 19
Web servers	 21

Apache	 21
Configuring Apache for a Drupal Multi-site	 22
A note on using virtual hosting for each domain	 23

Configuring MySQL	 24
Summary	 25

Table of Contents

[ii]

Chapter 2: Installing Drupal for Multi-site	 27
Manual setup	 27
Downloading Drupal	 28
Installing the first host	 29

Telling Drupal about our sites	 29
Creating a site folder	 30

Domain name directories	 31
Domains with subdirectories	 32
The sites.php special configuration file	 32

Settings	 34
The files/ folder	 35
The web installer	 37

Creating the other sites	 40
Getting installation help	 41
Summary	 42

Chapter 3: Settings, Modules, and Themes	 43
Configuring sites	 43

Creating a shared configuration file	 44
A word of warning about sharing settings	 47

Configuring modules	 47
Sharing modules	 48
Unshared modules	 50

A note on using different versions of the same module	 52
Modules and sharing (in summary)	 52

Themes	 53
Subthemes and sharing	 55

Summary	 58
Chapter 4: Updating Multi-site Drupal	 59

Updating Drupal	 59
Making backups	 60

Filesystem backups	 60
Database backups	 62

Putting Drupal in maintenance mode	 63
Downloading and installing Drupal	 65

Fetching a new version	 66
Overwriting the existing files	 66
Checking the default.settings.php file	 68

Running update.php	 69
Taking the sites out of maintenance mode	 70

Updating themes and modules	 71
A minor complication	 72

Summary	 72

Table of Contents

[iii]

Chapter 5: Advanced Multi-sites	 73
Favicons and robots	 73
Shared authentication	 75

OpenID and other authentication services	 75
LDAP and Directory services	 76
Using the Services module	 77
Using Bakery for SSO	 77
Sharing a user database	 78

Shared content	 78
Sharing content with Services and Deploy	 79
Domain Access as a multi-site alternative	 79
The Virtual Site module	 80

Shared structure	 80
Searching across sites	 81
Summary	 82

Index	 83

Preface
Drupal is a flexible Content Management System (CMS). One important feature
that it provides is its ability to run multiple websites from one single installation of
the Drupal software. This book is about that specific feature. From installation to
configuration, then to maintenance and updating, this book focuses on the nuances
of what is called "multi-site" Drupal.

The book takes a practical hands-on approach, showing, by example, how to run
several sites, each with its own theme, content, and users.

What this book covers
Chapter 1, Multi-site Drupal, introduces the broad concept of multi-site, discussing
several ways that servers can be configured to run multiple sites. The first half of the
chapter focuses on determining which sort of multi-site configuration is best for your
needs. The second half focuses on setting up a server environment.

Chapter 2, Installing Drupal for Multi-site, covers the process of installing Drupal once,
and then configuring several sites to all run on this one Drupal instance. Multi-site
configuration can be tricky, but we will methodically walk through the process.

Chapter 3, Settings, Modules, and Themes, focuses on adding features to multi-sites.
Sometimes features (provided by Drupal modules) are shared across sites, while
other times only one of the sites will have a particular feature. We will discuss how
this can be achieved. We also look at installing and configuring themes so that each
site can have its own distinct look and feel.

Chapter 4, Updating Multi-site Drupal, focuses on maintenance tasks. When running
multiple sites on a single installation, it can sometimes be tricky to run software
updates. This chapter teaches you how to navigate the pitfalls of multi-site
configurations in order to keep your site secure, safe, and stable.

Preface

[2]

Chapter 5, Advanced Multi-sites, covers several advanced topics. We will look at ways
to enhance multi-site capabilities, and share limited data between sites. This survey
of available add-on modules points multi-site managers to a trove of resources that
can take your multi-site to the next level.

What you need for this book
This book assumes basic knowledge of installing and running Drupal. The reader
should be comfortable working in a web browser and also have a rudimentary
understanding of working from the command line. While this book uses examples
from Linux and Mac operating systems, the concepts apply equally well to
Windows environments.

Advanced readers will also have the option to work with VirtualBox and Vagrant
to quickly experiment with multi-site on its own virtual server running within your
normal desktop environment.

Who this book is for
This book is written with the site builder in mind. Those comfortable with running
websites and familiar with Drupal will find this book useful. Optional advanced
topics will provide experienced site builders with additional tools to broaden their
Drupal and web administration knowledge.

As most Drupal installations run on Linux-like operating systems, the examples
herein target that environment. However, Windows users will also be able to run the
same installation on Windows.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "And thirdly, the vagrant up command
tells vagrant to install, boot, and configure our server."

A block of code is set as follows:

<VirtualHost *:80>
 ServerAdmin ops@example.com
 DocumentRoot /var/www/
 # Lots more below.

Preface

[3]

Any command-line input or output is written as follows:

$ cd sites/books.local

$ mkdir files

$ chown www-data files

$ chmod 755 files

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
carry out this same step in your web browser by going to http://drupal.org and
going to the Download and Extend page".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Use the #PacktDrupalMS hashtag on Twitter to discuss the book
with the author, fellow readers, and Packt.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Multi-site Drupal
In this first chapter we will learn about the basics of multi-site hosting, including
what it is and how it works. We will cover the necessary aspects of networking and
web serving. The following are the main topics we will cover:

•	 What multi-site configurations are, and how they differ from standard
single-site configurations

•	 How Drupal's multi-site implementation fits into the picture
•	 Why and when multi-site configurations are useful
•	 How domain names and IP addresses are configured for multi-site
•	 How web servers handle multi-site
•	 How to configure the Apache server for multi-site
•	 How to use Vagrant and VirtualBox to quickly build a test environment

By the end of this chapter, we will not only have conceptual knowledge of multi-site
configurations, but we'll also have a virtual host configured with Linux, Apache,
MySQL, and PHP, and even a shiny new copy of Drupal. This will prepare us for the
next chapter, when we dive into Drupal installation.

Drupal is a multi-site Content
Management System
Drupal is a web-based Content Management System (CMS). Its purpose is to
provide a flexible and powerful system for building a wide variety of websites.
To that end, it not only has a flexible content management core, but also provides
a modular system in which add-on modules can hook into just about any piece of
Drupal. With over seven thousand modules available, Drupal has become a choice
tool for constructing robust and feature-rich websites.

Multi-site Drupal

[6]

It should be evident already that Drupal can do many things. This book is focused
on one of those things. A single instance of Drupal can be used to run more than
one website. This means you can install the Drupal software once and have it
drive more than one website. This feature is called multi-site hosting. Over the
course of this book, we will learn how to install, configure, and manage a multi-site
Drupal instance.

This first chapter covers the basics of running multiple sites. It is conceptually
divided into two sections: The first is focused on what multi-site hosting is all
about, and the second is on how we can start building a multi-site capable server.

In the first part we look at several common ways of building a multi-site—some of
which are Drupal-specific, and some of which are not. By the end of this section you
will be familiar with the problems that are solved by multi-site installations, as well
as what options there are for hosting multiple sites on a single server.

While there are several ways to host multiple sites on the server, this book is focused
only on one particular method: Using Drupal's built-in multi-site capabilities to host
several sites on one copy of Drupal's code. After reading about other methods, you
may discover that one of those suits you better, and where possible I have inserted
references detailing those other methods. But for those who see Drupal's multi-site
capability as meeting their needs, the remainder of this chapter (and the rest of the
book) walks through the process of setting up such a platform.

In the second part of the chapter we will configure a local testing environment. It
is not necessary that you run an environment identical to this, but by using Virtual
Box and Vagrant to set up a standard virtual machine, this book will create an
environment that you should be able to replicate should you so desire. (We will learn
more about VirtualBox, as well as manual configuration, later in this chapter.)

To get started, let's look at the relationship between a website and the server
that runs it.

From one site to many
In the earliest days of the web it was assumed that each web address
(www.example.com) would map to a specific physical server with a specific
IP address. This server would be named "www" and its principal purpose would
be to serve web pages for a single website. And when the Internet was still
relatively young, this was a safe assumption. But the web became far more
popular than originally expected, and it experienced explosive growth. One
thing that became clear during this period of growth was that it is tremendously
useful to be able to run more than one website on a single piece of hardware.

Chapter 1

[7]

Web servers adapted, adding the capability to map a single IP address of a single
server to more than one domain name. So, for example, a single piece of server
hardware could handle both www.example.com and www.anotherexample.com.
Many web hosting providers thrived (and still do) by hosting multiple customers'
sites on a single physical server.

Over the last decade and a half, server technologies have become more sophisticated.
Virtualization of servers, cloud computing, distributing one site over multiple
servers, and edge-side caching are just a few of the technologies that have changed
the landscape. The initial assumption that one server would host one website has
long-since passed away.

Historical reasons have led to the development of multi-site technologies, but for
what reasons do people run multi-site installations? And how do you know when
you need one?

Why multi-site?
Earlier, I mentioned that multi-site technologies were developed as a response to
the needs of system administrators and developers. But what are those reasons?
What problems are solved by multi-site configurations? There are many different
reasons why people choose to host multiple sites on the same server. Here are
several examples:

•	 Running different software on the same site
•	 Leveraging shared hosting
•	 Easing server administration
•	 Staging and testing a site before it is public
•	 Sharing a single code base for several sites
•	 Running secure (HTTPS) and standard (HTTP) sites on the same server
•	 Building an efficient development environment

Below, we will take a look at each of these examples, understanding what each need
is, and how a solution works. But I will state here at the outset that not all of these
examples are best addressed with Drupal's multi-site feature.

Multi-site Drupal

[8]

Running different software on the same site
It is not uncommon to break up a large site into parts and place each part on a
separate subdomain. For example, say we have a popular news site located at
www.example.com. But this site also has a successful blog. Instead of residing
under www.example.com, the blog may be reachable at the separate domain
blog.example.com. While this appears to be an isolated site, it may be running
on the same hardware. Often, subdomain configurations such as this are done
when the two parts of the site run different software. For instance the main site
may run on Drupal while the blog site may run on WordPress.

This is not the sort of configuration that Drupal's multi-site feature is built
for. Drupal does not natively run other applications. But there are other
multi-site configurations (for example, Apache's virtual hosting) that can
neatly accomplish this.

Making the most of shared hosting
Sometimes a single operator will run more than one website, and these websites may
be completely independent of each other. But to make the most of an existing hosting
provider, the operator may choose to run both websites on the same host. This
minimizes hosting costs and maintenance hours, but still allows the administrator to
host different sites.

I do this, and in my case I have a single account with a web host, and I host multiple
sites under that one account. This way I pay one monthly fee regardless of how
many sites I operate from that account. And since my sites run Drupal, I take
advantage of Drupal's multi-site capabilities.

Easing server administration
Maintaining a server is work. A server requires maintenance and upkeep. And the
more servers one maintains, the more effort is required to keep everything running
smoothly. For that reason, some choose multi-site configurations just to reduce the
amount of maintenance work involved in keeping a server running. It also lowers
the cost of server hardware, Internet connectivity, and utilities. But this trade off is
not without its drawbacks. When a multi-site server goes down, all of the sites on
that server will be inaccessible. (A common way of addressing this hazard is to run
at least one other redundant server.)

The main method used for setting up this sort of configuration is called virtual
hosting, and Apache, Nginx, and other popular web servers support this out of
the box. It is a layer higher than Drupal's multi-site feature (though the two can
sometimes be used in conjunction).

Chapter 1

[9]

Staging or testing before deploying to
a live site
It is common practice to stage or run quality assurance (QA) testing on server
software before pushing it into production. This requires running an identical
code base, but on a different set of servers. In an ideal development environment,
separate configurations could be stored in such a way that they could be tracked in
version control, require little or no configuration when deploying to each of these
environments, and pose no security risks.

Drupal's multi-site configuration is often used for this, since staging, QA, and
production sites can share the same code base, even with different configuration
files. Sites can seamlessly be deployed from one environment to the next.

Sharing a single code base
Taking a step beyond merely easing server administration, even more effort can
be saved by sharing not just a server, but the web-serving software as well. Some
CMS systems—Drupal is a prime example—can run multiple sites from a single
installation of the software. This means that instead of running one instance of
Drupal per site, a single download and installation of Drupal can operate several
sites. And this eases maintenance and management further: Code only needs to be
updated in one place. Modules and themes only need to be placed in one location.
In short, it eases not only general system administrative tasks, but also application
maintenance tasks.

Running secure and standard (unsecured)
tools on the same server
The HTTP protocol on which the web runs is not itself a secure protocol. Data
transmitted over plain HTTP is not encrypted or signed. But HTTPS uses the Secure
Sockets Layer/Transport Layer Security (SSL/TLS) mechanism to encrypt and sign
content. By leveraging multi-site technologies, it is possible to run two sites on the
same domain—one accessible over HTTP, and the other accessible over HTTPS.
Often, this is done to provide one level of service for "anonymous" traffic and other
tools and services for authenticated users.

This level of configuration is tricky, and requires support in the web server
software. Typically, Drupal's built-in multi-site tools are not helpful for this kind of
configuration, though there are other Drupal add-on modules that can be very handy
in this scenario.

Multi-site Drupal

[10]

Efficient development
So far, the examples have been centered on serving sites to visitors, but there is
another problem space that can be addressed with multi-site configuration. This
is site development. Site developers may work on more than one site at a time.
Sometimes they work on both the released version of a site, and the upcoming
next-generation version. Sometimes they work on several different projects, each
with its own site. Regardless, it is much easier to have the option of running multiple
sites on a development server, or even on a local workstation.

In my own development, I run a local virtual server (Oracle's VirtualBox), which
in turn runs Linux, Apache, MySQL, PHP, and three or four different websites at
a time. Running all of these sites in one place makes it easy to manage. In fact, the
process has become so efficient for me that I sometimes create a separate site (on
the same server) just to test out a new feature or two. As this book proceeds, I will
discuss several of the tricks I use for keeping this process simple and effective.

As we will see later, there are other ways of using Drupal's multi-site options to
provide sophisticated development environments, such as providing each person
on a team with their own configuration file, while still keeping all code (including
settings files) in a Version Control System (VCS). This can be a useful way of
improving the efficiency of site development when more than one person is working
on the same site.

There are other reasons, of course, for running multi-site installations. The examples
shown earlier point out some of the situations in which multi-site technologies
come in handy. As we've seen, there are multiple ways of implementing a multi-site
configuration, and Drupal isn't always the perfect solution for a multi-site challenge.

To get a better idea for which situations are a good fit for Drupal, we need to learn a
little more about what are Drupal's multi-site's strong points, and its weaknesses.

Drupal and multi-site
As we have seen, there is more than one way to map multiple sites onto one server.
Do we use Apache with virtual hosting? Several virtualized servers on a single
physical server? Machine instances in a cloud? Or do we do it with Drupal itself?
Each method has its own advantages and limitations.

Chapter 1

[11]

In this book we are going to focus on just one strategy. We are going to examine
how to use Drupal's built-in multi-site support to take one instance of Drupal and
serve more than one site. If you are using Drupal for your web CMS, there are some
distinct advantages to this method:

•	 It is probably the easiest configuration to set up and maintain.
•	 Drupal itself needs to be installed into only one place on your server. This

means less data duplication.
•	 Many Drupal modules can augment Drupal's multi-site handling, giving you

advanced capabilities.

The combination of added features and simplified administration is a boon for
would-be multi-site administrators. But there are a few drawbacks to using Drupal's
multi-site method, and these should be considered before you begin building a
multi-site installation.

In fact, there are two limitations that deserve very clear mention:

•	 Security: Since the sites in a multi-site installation share the same code
(and the same directory locations), they share the same files. Thus, if a person
has access to the server's file system for one site, that person has access to the
same files that are used for all of the sites on that multi-site installation. This
makes it a less-than-secure fit for cases where different people are managing
different sites.

•	 Sharing: While Drupal's multi-sites share the same Drupal source code, they
do not share the same database data. Nodes, users, and comments in one
site are not accessible to the other site. Typically, this is a good thing, but
in situations where you want sites to share information, this can become a
hurdle that multi-site was not designed to clear.

If security between sites is an issue for your configuration—if the different sites are
managed by different people—then Drupal's built-in multisite is not the best solution
for your needs. Instead, consider using something like Apache's virtual hosting, with
each site getting its own distinct Drupal instance. While you will lose the advantages
enumerated above, your sites will be protected from mishaps.

On the other hand, if your sites need to access each other's data (or if you really have
one site that listens on multiple domains, but serves the same basic content), you
may be better off with another Drupal configuration. The powerful Domain Access
module for Drupal (http://drupal.org/project/domain_access) provides a
sophisticated suite of tools for building a single Drupal site that handles different
domains. Domain Access is a complex module—a topic worthy of another book this
size—so it could not be covered in this book. The best place to start with Domain
Access is on the site given above.

Multi-site Drupal

[12]

It is possible to configure multiple instances of Drupal to share
common database tables, but this is not only a complicated
setup, but also one with known security and stability issues.
This is discussed in more detail in the last chapter.

The sweet spot for Drupal's built-in multi-site support is handling multiple
distinct sites (each with its own content, users, and so on) while sharing a single code
base. Modules, themes, and even to some extent files can be shared in a
multi-site configuration. But nodes, users, and comments are not shared. Later in
the book, we will see some ways of sharing a limited amount of data (such as
allowing users to log in to all sites using the same username and password). This
sharing, however, will not achieve the same level of flexibility that the Drupal
Domain Access module provides.

A quick guide to choosing the right multi-site
configuration
It is one thing to state the advantages and disadvantages to Drupal's multi-site
feature, but another to determine whether or not Drupal is a good fit for your own
needs. Here is a quick guide to determining whether Drupal multi-site is the right
choice for a given scenario.

Goal Method(s)
Multiple sites should share the same code, but
have separate data

Drupal's multi-site configuration

Multiple sites should share no code or data,
but live on the same web server

Virtual hosting with the web server

Multiple sites (or domains) should share the
same code and the same data, though they
may have different layouts and styles

Drupal with the Domain Access module

Sites should not even share the same
operating system or file system, but should
run on the same hardware

Virtualized servers or cloud platforms

Again, this is a book about using Drupal's multi-site support and these other three
methods are not covered. But Drupal itself can run in any of the environments
mentioned above. If you're interested in the other three configurations, you may
find it best to start at http://www.drupal.org/documentation and read the
documentation, or head to http://groups.drupal.org and find others with
similar needs to your own.

Chapter 1

[13]

So far we've been focused on what multi-site hosting is about and which
configurations are right in which scenarios. But now it's time to narrow the
focus and start working on practical matters.

Setting up a server
Now we are ready to move from questions about what a multi-site is to the
actual setup and configuration of a multi-site server. Here, we will be creating an
environment that, in the next chapter, will run our Drupal-based multi-site.

The first thing we will need is a server. You may choose to use your local computer
as a temporary server. Or you may use a server provided by an Internet Service
Provider (ISP). Or you can use a separate dedicated piece of hardware. But for our
purposes, we will be creating what is called a virtual server—a complete operating
system that runs inside of our current operating system. This server will run its own
Linux operating system.

As we configure things below, we will be using Apache on Ubuntu Linux. While
Apache configurations work essentially the same on all platforms, different
operating systems and distributions organize the files in their own ways. You
may wish to consult your operating system's documentation to learn about
these differences.

If you are running your sites on a shared-hosting or managed-hosting
platform, chances are that you will not need to configure Apache.
Instead, you should work with your hosting provider to set up
virtual hosting.

In what is left of this chapter, we will focus on creating an environment in which to
run our Drupal multi-site. I am going to walk through two ways of doing this:

•	 First, we can install a virtual machine pre-configured for this book. We do
this with the open source VirtualBox and Vagrant tools, along with a custom
Drupal Vagrant profile. This route is great for testing things out on your
local workstation. It is a great way of building "disposable" sites that we can
develop with. They can be created and deleted without impacting your local
"host" computer. It's like having your own personal development server(s),
but without the hardware cost.

Multi-site Drupal

[14]

•	 Second, we can begin with an established server running Apache, MySQL,
and PHP. From there, we can just focus on tuning Apache and creating a few
MySQL databases. Note, though, that this route will require you to handle
getting the rest of the server configured. However, if you are hosting your
sites on a managed service provider or shared hosting account, your hosting
provider will probably do all of this for you at your request.

In the next section we will look at the VirtualBox and Vagrant method for running
a development environment locally. If this is not to your taste, you can skip and
move ahead.

Installing a Drupal Virtual Machine
with Vagrant
Building a multi-site Drupal installation does not require running Virtual Box and
Vagrant. However, I find this sort of virtual machine configuration to be ideal for
experimenting with technologies and development environments. And for the sake
of this book, using a pre-packaged configuration such as this allows us to quickly
setup nearly identical environments.

Drupal.org hosts a project called Drupal Vagrant (http://drupal.org/project/
vagrant) designed to get you running on a full LAMP (Linux Apache MySQL PHP)
stack with Drupal in a matter of minutes.

For this book, there is a special version of the Drupal Vagrant project (http://
drupal.org/sandbox/mbutcher/1356522). It has been tuned and tailored exactly
for this book, and you can use it to build an isolated and disposable environment
from which you can follow along.

The full instructions for installing this custom version are available at the previous
URL, but here is an abbreviated version.

Installing our tailored Vagrant project
The following tools are required to get started:

•	 VirtualBox: This is an open source virtualization environment. It allows you
to run "virtual" servers inside of your normal operating system.
http://www.virtualbox.org

•	 Vagrant: This is a tool for managing VirtualBox servers. Because it makes it
easy to build complex sites with a command or two, we will be using this.
http://vagrantup.com

Chapter 1

[15]

•	 Git: Git is a tool for handling revisions of source code or configuration files.
Many popular software packages, including Drupal, store code inside of
Git repositories.
http://git-scm.com/

You will need to make sure all three of those are installed according to the directions
on their respective websites. While this configuration should work on Linux, Mac,
and Windows, there have been recent bugs in the Windows 7 version of VirtualBox.
Usually, if you stay with the 32-bit version of VirtualBox, things will work fine on
Windows as well.

Next you will need to get a copy of the MultiSite Vagrant profile created for
this book. The best way to get it is to retrieve it from Drupal.org's Git server
(explained here: http://drupal.org/project/1356522/git-instructions).
If that doesn't work, you can try to retrieve a Git snapshot and work from there
(http://lb.cm/4FJ).

Now you will need to start configuring things. For simplicity's sake, I am assuming
that we are working from a UNIX-like shell. Analogous commands are available in
Windows, too.

$ cd multisite_vagrant
$ vagrant box add base http://files.vagrantup.com/lucid32.box
$ vagrant up

The first line in the code puts us in the right directory to begin. Next, we install a
basic Ubuntu Linux server profile. This is used for building virtual servers. And
thirdly, the vagrant up command tells vagrant to install, boot, and configure our
server. It is normal for each of these two Vagrant commands to take a long time.

Once the vagrant up command has finished, your host (local computer) will have a
virtual machine running with the following:

•	 A minimal Ubuntu Lucid server
•	 Apache 2.2
•	 MySQL 5.1
•	 PHP 5.3
•	 Lots of extra tools (such as Xdebug, phpMyAdmin, and xhprof)

Drupal 7, Drush (the Drupal Shell) and a few common modules will also be
downloaded, but they are not yet installed. We will talk about these more in
the next chapter.

Multi-site Drupal

[16]

Basic configuration for this book
In addition to the basic installation, the MultiSite Vagrant profile also creates three
hostname entries and three databases for you.

In the course of this book, we will be creating three independent sites. These sites
will be called Books.local, Cooks.local, and Looks.local. Each will have its own
database in MySQL too (books_local, cooks_local, and looks_local). The basic
host names and databases have already been set up for you. When you ran vagrant
up, a script did the necessary configuration in the VM.

But there is still one thing for you to do. You should add the following to your local
computer's hosts file (/etc/hosts in UNIX-like operating systems):

33.33.33.10 books.local looks.local cooks.local

This tells your local machine that all of these hostnames can be accessed on your
virtual machine.

If you are interested in learning more about the change to the hosts file, it is
explained later in the chapter. But as we are focused here on configuring Vagrant
we will finish the configuration first.

Connecting to the new Virtual Machine
Now that we have a new virtual machine set up, we can interact with it in
several ways.

•	 The File System: When the virtual machine is running, all of the files in
the multisite_vagrant project are accessible to the virtual machine. That
means you can edit them on your host, and have those changes immediately
reflected on the virtual server.

•	 SSH: The virtual machine is running SSH. Typing the command vagrant
ssh will open an SSH connection to your virtual machine, and you can move
around on the command line as you would on any Linux box. (Windows
users will need PuTTy for this to work. The http://vagrantup.com/
website has instructions.)

•	 Web: The virtual machine is running Apache. We set up the site to listen on
books.local, cooks.local, and looks.local. So pointing your browser
to http://books.local/server-status should bring up an Apache status
page. And the same is true of the other two domains.

Chapter 1

[17]

So immediately you have three ways to connect to your server. You can also connect
to other ports on your virtual server (including MySQL's), but the above cover the
common cases.

Finally, before we move on, here are a few Vagrant commands you should know:

•	 vagrant halt: Shutdown the virtual server. You can start its back up with
vagrant up.

•	 vagrant suspend: Put your virtual host to sleep. This is very useful, and I
highly recommend doing this instead of halting. But it does require around a
gigabyte of hard disk space.

•	 vagrant resume: Wake your virtual machine up again (after a
vagrant suspend).

•	 vagrant provision: Re-run the Vagrant build. While it doesn't re-install
Linux or reconfigure the core services, it will re-run all of our configuration
scripts. With this, we can reconfigure the server without completely
rebuilding it from scratch.

•	 vagrant destroy: This will ruthlessly delete your virtual machine. You can
then rebuild from scratch using vagrant up. It is useful for "do overs".

Vagrant is one option for quickly starting with this book. But since some
environments will require manual customization, in the next few sections I will
walk through a manual process of configuring hostnames, Apache and MySQL.

If you are running Vagrant you don't need to do these parts. You can skip ahead
to the Summary section.

Configuring a server (without VirtualBox
and Vagrant)
In the previous section we create a virtual server from an existing profile. This made
it easy to get an entire server environment configured and running without dealing
with the nuances of configuration.

But this is often not an option. Sometimes it is necessary to configure a server
manually. This part of the chapter covers manual configuration. Here we walk
through the following setup:

•	 Mapping domain names to IP addresses
•	 Setting up a webserver (specifically Apache)
•	 Configuring MySQL

Multi-site Drupal

[18]

This is a book about building a website, not necessarily about administering a server,
so in these sections we will cover only the basic requirements. If you are building
production servers, you are encouraged to find other resources more specific to
server administration. That said, the following pages should help you prepare a basic
server environment.

First, we will look at networking and domain names—a crucial part of our multi-site
configuration—then we will move on to web server configuration. By the end of the
chapter we will be ready to install Drupal itself.

Domain names and IP addresses
The first thing we need to be able to do is correctly correlate the many sites in a
multi-site configuration so that each site is accessible separately. Largely, we are
concerned with the process of mapping multiple domain names to a single server.
Chances are, if you've ever run a website before you will be familiar at least in part,
with the concepts here, but to make sure we're off to a solid start, I will give a very
brief explanation of how domain names need to be configured, and how they are
related to an IP address. But the process of configuring a TCP/IP stack varies from
environment to environment. Here we will only look at configuring host names
through a system's hosts file—a file resident on the operating system that tells the
networking layer how to find certain domain names.

In the TCP/IP networking stack, the function of an IP address is to provide a location
identifier for a network interface on a network. When your computer makes a
request for a network resource, the request is sent from your computer's networking
interface out over the network. Routers, switches, and other pieces of network
equipment transport the message over a series of network links until it arrives at the
remote networking interface, at which point that computer handles the request. It
then returns data through its network interface, and that message is again relayed
through the network back to the initial requesting interface on your computer.

One helpful analogy for this process is the physical mail delivery service. A network
interface plays (roughly) the role of a mail box. When you drop a letter in the box,
it is picked up by the postal service, and channeled through a series of post offices
(much like the switches and routers). Finally, it is delivered to the destination post
box. And a letter in reply follows that same process back.

Just as a mailbox has a postal address, a network interface on a TCP/IP network
has an IP address. This is used by the network to determine crucial things about
the network interface, such as what network it is on, and where in that network
it is located.

Chapter 1

[19]

A domain name is conceptually one level higher. A given IP address can have more
than one domain name, just as a large building may have one address, but many
businesses occupying it. And when a business moves to a different building, the
address will change, but the business name does not. Analogously, the relationship
between a domain name and an IP address is not necessarily permanent. The domain
can move from one address to another.

But something on the network needs to know how to map a domain name to an
IP address. This role is often handled by a series of servers called Domain Name
Service (DNS) servers. A DNS server is responsible for mapping a subset of the total
domain names to IP addresses. There are thousands upon thousands of DNS servers
on the Internet. Each is responsible for a certain portion of IP address-to-domain-
name mappings. And the DNS system is structured in such a way that when a client
requests information on a mapping, it will get an answer even if the authoritative
DNS server is on the other side of the planet.

So when you type in a URL in your browser, chances are good that one of the first
things your browser does is send the domain name (www.example.com) off to a
remote DNS server, which will respond with an IP address (10.21.77.101). From
there, your computer's networking software will know how to send requests out to
that remote host.

IP addresses and domains
It is possible for a single computer to have more than one IP
address. And it is possible for a web server, like Apache, to listen for
traffic on more than one address. Because of Apache's flexibility, it
is possible for Drupal to piggyback on this functionality, and handle
sites on multiple IP addresses.

In a multi-site configuration, then, one of the things you will need to handle
(regardless of what software you use to host your website) is ensuring that all of
the sites on your multi-site have domain names configured. Sometimes this means
changing a DNS server on your local network, or requesting that your network
admin do this for you. When using a web hosting provider, you can often request
that they handle this mapping for you. And sometimes this means requesting a
change from your domain name's registrar (the place in charge of handling your
domain name registration—places like GoDaddy or Verisign).

Using a hosts file
While the nuances of configuring DNS are beyond the scope of this chapter, we can
take a shortcut that will allow us to proceed with our own development.

Multi-site Drupal

[20]

When building multi-domain sites, you may not need to change any remote DNS
servers. You may be able to simply add or modify an entry in your system's hosts
file. This file contains a set of domain name mappings specific to your computer
only. But be warned: when you use this method, it will only impact the computer
on which you make the change. Other computers will not have the same mapping.

Once you are done building and need to make the site public,
you will need to configure a DNS server. Contact your network
administrator or web service provider to find out how to add
your mappings to their DNS services.

In the case where you are running multiple local sites on your computer, you can
map these names like this:

127.0.0.1 localhost books.local looks.local cooks.local

The format of the snippet above is this: The IP address goes first. Your computer
always has a self-referential address of 127.0.0.1 (the loopback address). Next
come one or more domain names separated by spaces. So the example above
says that four domain names (localhost, books.local, looks.local, and cooks.
local) all reside on this computer. Any traffic to any of these domains should be
"looped back" to the computer itself and handled locally.

If you are following the VirtualBox/Vagrant installation method,
we made a similar configuration, but assigned 33.33.33.10 to the
hostnames books.local, looks.local, and cooks.local
instead of to 127.0.0.1.

The bottom line is this: To use a multi-site configuration with multiple domains,
something (a DNS server or a host's file) must be able to handle that lookup from each
and every domain name you wish to use to an IP address on your server.

Chapter 1

[21]

Web servers
Once networking is configured, we can move to the next layer and work with
the web server. In a nutshell, a web server's responsibility is to listen for network
requests that use the HTTP or HTTPS protocols, and then respond to these requests.
Sometimes responding is as simple as delivering a static response or sending the
contents of a file on the file system. Images are often served like this. Other times
the web server may need to coordinate with other software on the system. Other
software may generate the response and feed that back to the web server, which then
sends the data back to the client. The original Common Gateway Interface (CGI)
worked in this way, and many contemporary web technologies still do. On some
servers, like Nginx, PHP is executed this way. Finally, sometimes the web server
itself processes and executes code which generates the content. Apache's mod_php
module executes PHP code in this way. Most web servers, including Apache, Nginx,
IIS, and Lighttpd ("lighty") can support the situation where one single computer
handles requests for multiple domain names. That is, most web servers can handle
multi-site configurations. The exact configuration differs from server to server, so
you will need to consult your web server's documentation to learn more. Here we
will focus mainly on Apache.

Apache
The Apache server is one of the most popular web servers used on the Internet.
Web hosting providers use it. It comes installed on Mac OS X and is readily
available on most versions of Unix, as well as on Linux. A special version of it
runs on Windows, as well.

If you are looking to set up a local server environment on
Windows, you may wish to look at Acquia's pre-configured
Windows/MySQL/PHP/Drupal stack available at
http://acquia.com.

Apache supports running multiple sites on a single web server through a method
called virtual hosting. In this system, a single Apache server can act as if it were
multiple servers. And it can do this even if there is only one IP address on the
system. For example, to handle two sites, we might configure Apache to have two
virtual hosts—one for each site. Each virtual host can then have its own configuration
file (or its own section in a larger configuration file) tailored to that site's needs.
When Apache receives a request, it looks at the HTTP headers to figure out which
virtual host should handle the request, and it hands it processes accordingly.

Multi-site Drupal

[22]

With its long history and devoted development community, Apache has been
built to be remarkably flexible. Multi-site configurations in Apache can be quite
sophisticated, and many books have been written about building complex services
with Apache. But with domain-aware systems like Drupal, Apache's virtual hosting
tools aren't even necessary. A much simpler Apache configuration can handle the
necessary HTTP details, while Drupal itself can handle the domain mapping.

For a sophisticated site, you may find it most beneficial to configure Apache to take
advantage of virtual hosting, but for this book we will err on the side of simplicity
and use only a bare-bones Apache configuration.

Configuring Apache for a Drupal Multi-site
In the last section we looked at setting up a local Vagrant-based virtual machine.
Now we will turn our attention back to manual configuration. If you are already
running Vagrant, this part of the configuration has been done for you (and you
can see it in /etc/apache2/sites-available/books.local.conf on your
virtual machine).

We are not going to walk through the entire process of configuring Apache. Instead,
I assume that Apache is already working. We will focus on fine-tuning the existing
configuration. We will assume the following about Apache:

•	 It is installed and configured to listen on port 80.
•	 It is correctly serving web pages.
•	 The Apache mod_rewrite module is enabled.
•	 It is correctly executing PHP using mod_php.

The first thing we need to do is locate the Apache configuration for the default
host. By default, Apache comes with a single host configured. On Ubuntu, which is
configured with virtual hosting in mind, the file /etc/apache2/sites-available/
default.conf contains the default host's configuration. Sometimes this information
is in a file called apache-vhost.conf or just httpd.conf.

Apache is usually configured to support virtual hosting out of the
box. Even though we are creating three sites, we will create only
one virtual host (or re-use the default one).

You do not have to edit the default virtual host. If you are comfortable making a new
(single) virtual host for our three sites, feel free to do so. The configuration below
applies equally to a single default virtual host or a new virtual host.

Chapter 1

[23]

The default host configuration typically begins like this:

<VirtualHost *:80>
 ServerAdmin ops@example.com
 DocumentRoot /var/www/
 # Lots more below.

Most of our configuration will happen between the first and third lines above.
Take note of the location of the Document Root. (You can change it if you want.)
We will need to make sure that Drupal is installed at the document root. That is, in
the example above, if /var/www is the document root, /var/www/index.php should
point to Drupal's index.php file.

Next, after ServerAdmin, insert these two lines:

ServerName books.local
ServerAlias books.local cooks.local looks.local

These tell Apache that this server is named books.local and that it will answer to
the names books.local, cooks.local, and looks.local. These are the domains
for the three sites we are going to build in this book. Of course, if you were
creating the sites example.com and anotherexample.com, you would enter those
hostnames here.

Once this configuration is done, you can restart Apache.

A note on using virtual hosting for
each domain
In the previous section we configured Apache without using its built-in virtual
hosting to handle each site in the multi-site configuration. We let Apache treat all
domains as if they were the same, and in the next chapter we will use Drupal to
distinguish sites based on domain names.

If you are running a virtual host for each site, which is a good idea in many
circumstances, you will need to do something that may seem counterintuitive.
You must point all of your sites to the same document root—the one and only
place where Drupal lives. This is done because all sites will use the same installation
of Drupal.

In many other respects, you will be able to take advantage of Apache's host-specific
configuration. You can still, for example, create separate access logs for each
virtual host.

Next we will configure MySQL.

Multi-site Drupal

[24]

Configuring MySQL
In the previous section we configured Apache. Now we will set up MySQL with
three databases—one for each of our sites. Again, if you are using the Vagrant-based
virtual host, you will not need to do this part. It has been done already.

Again, we will assume that MySQL is already set up and running, and we will also
assume that you can access the MySQL database as a privileged user and create user
accounts and databases.

The first thing to do is create three new databases, one for each site. We will call
these databases books_local, cooks_local, and looks_local to correspond to our
three hostnames.

From a MySQL monitor (such as mysql on the command line), issue the
following command:

CREATE DATABASE books_local;
CREATE DATABASE cooks_local;
CREATE DATABASE looks_local;

That is all that is required to create our databases. But we need to explicitly grant
permissions for another MySQL user to access these databases. We will configure
our Drupal sites to use this account to authenticate to the database. You can create
a separate account for each site if you'd like, but we will just create one.

GRANT ALL
 ON books_local.*
 TO 'drupal'@'localhost'
 IDENTIFIED BY 'secret';
GRANT ALL
 ON looks_local.*
 TO 'drupal'@'localhost'
 IDENTIFIED BY 'secret';
GRANT ALL
 ON cooks_local.*
 TO 'drupal'@'localhost'
 IDENTIFIED BY 'secret';

This will give the user drupal, whose password is secret, sufficient privileges to
access all three of our databases. Notice that the Drupal account has been restricted
to connections from the localhost. This is designed to prevent a remote user from
connecting as our Drupal user.

Chapter 1

[25]

It is a good idea to test these credentials using another MySQL client. This will
help us preemptively troubleshoot. Here is an example from a UNIX shell using
the mysql client.

$ mysql -u drupal -p secret books_local
mysql> SHOW TABLES;
Empty set (0.00 sec)

The snippet above shows that we connected to the database with our credentials,
then successfully executed the SHOW TABLES SQL statement.

At this point, MySQL should be ready for Drupal, and we are done preparing
the environment.

Summary
In this chapter we explored the basics of multi-site configurations. Then we
turned toward practical matters and walked first through the configuration of a
Vagrant-based virtual machine for local testing, and then through the manual
steps of configuring Apache and MySQL.

In the next chapter we will turn our full attention to Drupal, where we will install
our three sites.

Installing Drupal for Multi-site
In the previous chapter we set up a server environment for running Drupal. In this
chapter, we are going to install Drupal and create three different sites. We will cover:

•	 Downloading and installing the code
•	 Creating a default site
•	 Adding two additional sites

While we are setting up three sites, there is nothing special about that number.
A multi-site can have two or more sites.

Manual setup
When preparing our environment for setting up a Drupal multi-site, we first walked
through a setup using a special Vagrant virtual machine profile. Then we looked at
the manual configurations necessary for Apache and for MySQL. Specifically, we
set up an Apache virtual host capable of listening for all three of our hosts (books.
local, cooks.local, and looks.local). Then we created three databases in
MySQL: books_local, cooks_local, and looks_local.

It is best to create one database per site. Only when absolutely
necessary should you install multiple Drupal sites into the
same database instance. For example, if you are only allocated
a single database instance for multiple sites, you can use
Drupal's database prefix feature, which is documented online at
http://drupal.org/documentation.

Installing Drupal for Multi-site

[28]

Running the custom Vagrant profile gives us not only a complete Linux/Apache/
MySQL/PHP stack, but also pre-configures the environment for Drupal. And since
Vagrant runs its own virtual server, all of this is done without changing the host
system. Not only does Vagrant set up the requisite databases, but it also automates
the process of downloading the latest version of Drupal 7 (Vagrant downloads, but
does not install).

For a manual installation, though, this is something we will need to do on our own.
We will walk through this process in this section. Vagrant users can skim or skip
ahead to the The web installer section.

Downloading Drupal
In this section we are going to download Drupal and put it in the correct location
on the file system. Again, if you have installed the Vagrant profile, this step is
unnecessary. This is because the profile already downloaded and unpacked the
most recent version of Drupal 7. Here we will see the manual version of the process
Vagrant does automatically.

Other Operating Systems
In the last chapter we focused on a Linux setup, but at this point
it does not matter which operating system is running. While the
commands shown here are on a UNIX shell, the same process
is applicable to Windows and OS X. If you are using a database
other than a MySQL-like database, you should consult Drupal's
documentation to make sure there are no configuration nuances
particular to that database.

Drupal is available for download from http://drupal.org/project/drupal. At
the time of this writing, Drupal 7.12 is the current release. We will download it and
move the contents to the web server's document root (/var/www in the configuration
we created earlier). Following is how it is done in a UNIX shell:

$ cd /tmp

$ wget http://ftp.drupal.org/files/projects/drupal-7.12.tar.gz

$ tar -zxf drupal-7.12.tar.gz

$ mv /drupal-7.12 /var/www

Chapter 2

[29]

The command fetches a recent copy of Drupal using the wget command-line
HTTP client. You can carry out this same step in your web browser by going to
http://drupal.org and going to the Download and Extend page. Next, we
uncompress and unpack the archive in one step. Then we move the contents of
the archive to the document root we configured earlier. Recall that in the last
section, when we configured Apache we declared that the server's document root
(DocumentRoot) was /var/www. That is where our Drupal files must go.

The Vagrant profile's document root
In the Vagrant profile, the document root is in /vagrant/
public/drupal/www, which is available on both the host
computer and the virtual machine. Drupal is installed there.

Once you are done, double check to make sure that /var/www/.htaccess and /var/
www/index.php exist. While those are not the only two files in the directory, they
are both very important. If they are missing, something in those four steps has
gone awry.

We have three databases ready and Drupal is now located in the correct place, but
it is not technically installed. To install Drupal, we will need to perform a pair of
minor tasks on the command line (or through a graphical file manager) and then run
Drupal's web-based installer.

Installing the first host
With the Drupal source code in the document root and the databases created in
MySQL, we are ready to install our first site. There are two parts to installing
Drupal. The first is done through the operating system, and involves creating a
few directories and a file.

If you are manually installing, you will need to copy the settings file and then create
a files directory with the correct permissions.

If you are using the Vagrant installation discussed in the last chapter then you do not
need to do either of these things. Vagrant does them for you.

Telling Drupal about our sites
Drupal stores most of its data inside of the database. But some things can (or must)
be stored in a file on the filesystem. For example, information about connecting to the
database must be stored in a file.

Installing Drupal for Multi-site

[30]

Here is where things get interesting for a multi-site installation. Each of our sites
will share the same copy of Drupal. But they will not share the same database. Each
will have its own. In fact, sites will not share configuration files at all. Each site must
have its own configuration files. Sites also will not share many other assets, including
uploaded files and certain generated data.

In cases where a database prefix is used, multi-site works by creating
separate sets of database tables for each site. This is complicated and
has both security and stability implications. Consequently, it should
only be done when no other option is available.

So we have two questions to answer: First, how do we tell Drupal what sites we
want to run? Second, how do we pass Drupal site-specific configuration data?

The answer to the first is that we create special directories for each site. And the
answer to the second is that we create a settings file in each directory.

Creating a site folder
The most sophisticated element of Drupal's multi-site configuration is also its most
mundane. Telling Drupal about the sites we want to host is a matter of creating
directories. But a lot of information can be encoded in this folder's name. To
understand this, let's take a look at Drupal's default configuration.

Inside of the Drupal code, there is a directory called sites/. If you have done any
administration work on Drupal before, this is a directory with which you will be
familiar, for all non-core code goes somewhere beneath this directory. In the generic
Drupal installation there are two directories inside of sites/. The first, all/ is
commonly considered to be the place where downloaded themes and modules go.
The second, default/, is commonly considered the place for configuration and for
custom modules and themes. While these assumptions hold for a generic single-host
site, they don't necessarily mean the same thing for a multi-site.

The all/ directory is the location for information shared across all sites. We will
come back to this and treat it in detail in the next chapter.

The default/ directory is the location Drupal looks for, for site configuration
information if no other site configurations are found. In that way, it is the default site.
You can place settings, modules, themes, and files all in subdirectories in this folder,
and they will be considered to be part of the default site.

Chapter 2

[31]

But here's the big tip for building multi-site Drupal: You can create
other directories inside of sites/, and Drupal will assign these
directories special meaning. More specifically, besides all/ and
default/, Drupal will assume that all other directories represent
a hostname or a hostname pattern.

Domain name directories
Here is an example of domain name directories. If we created a directory called
sites/www.example.com/, Drupal would assume that we were describing a domain
called www.example.com. When a request for http://www.example.com comes into
Drupal and the above directory exists, Drupal will assume that it should answer
the request using the configuration files found in the sites/www.example.com/
directory. But if that server got a request for http://www.anotherexample.com or
even http://example.com, it would answer that request from the configuration in
sites/default/, for neither of those domains match sites/www.example.com/.

What if we wanted to declare a host that answered to both www.example.com and
example.com? Here, Drupal packs another surprise. It treats a directory as a domain
name part, not necessarily a complete domain name. So if we were to create a
directory called sites/example.com/, it would be used for both http://example.
com and http://www.example.com. And it could also be used for any other
request for a hostname that ends in example.com, including web.example.com and
another.www.example.com.

Drupal always searches with respect to specificity. The more specific match always
matches over the more general. So say we have the directories sites/www.example.
com/, sites/example.com/, and sites/com/. (sites/com/ is a valid site entry in
Drupal.) A request for www.example.com would always go to the site described in
the sites/www.example.com/ folder because that is the most specific match.

Keep in mind, as you create these domains, that Drupal will only ever answer
domains on requests that Apache passes through. That is, Apache has to be
configured to handle these domains before Drupal will even get a chance to handle
requests on that domain. We configured Apache for this in the last chapter. By
combining Apache host configurations and Drupal sites directories, you can build
sophisticated domain mappings without worrying about bogus mappings.

Installing Drupal for Multi-site

[32]

Domains with subdirectories
Our sites are built on the mapping in the previous section—host names to
folders—but Drupal can even provide one more layer of matching.

In some circumstances, instead of splitting sites by domain name, you may wish to
host them on the same domains, but in different URI paths. That is, you may want
http://www.example.com/site1 to be one site, and http://www.example.com/
site2 to be another site. Drupal supports this configuration as well. But in a way
that might be a little confusing.

You won't create a sites/www.example.com/ folder and then site1/ and site2/
folders. Instead, you will convert the slashes in the URL into dots, and create a single
directory for each site: sites/www.example.com.site1/ and sites/www.example.
com.site2/. As Drupal performs its site search, it will do a similar conversion of
directory names to dotted folder names. And again the same specificity rules apply:
If a site directory called www.example.com also exists, a request for http://www.
example.com/sitel will match the sites/www.example.com.site1 directory
because it is the most specific.

The sites.php special configuration file
Finally, there is one more way to map hostnames to directories. Drupal 7 supports
a special mapping file, sites/sites.php. In this file you can declare an array of
mappings from site names to site folders. For example, say we have an old domain
name, paperbacks.local, which we want to map onto the books.local site. We
can do this by creating the sites.php file in the sites/ directory and adding this:

<?php
sites['paperbacks.local'] = 'books.local';

This will effectively answer all traffic on paperbacks.local as if it were traffic
from the books.local site. While this technique can occasionally come in handy
(especially for development servers), many times you are better off using a
redirect in Apache's configuration files rather than serving the same content
through two domains.

This is a lot of information to digest, but here are the most important points
to remember:

•	 The sites/ folder in Drupal is where Drupal looks for site-specific
configurations

•	 Directories (besides all/ and default/) should be named to match
host names

Chapter 2

[33]

•	 When there are multiple directory names that might match a requested
hostname, Drupal will choose the most specific one

If you are in the thick of configuration and need a refresher on this information,
check out the sites/default/default.settings.php file, which has a summary
of this information.

Considering all of this, it is time to create our first site folder. And here we have
some options.

How do we decide which to choose?

We are creating three sites in total: books.local, cooks.local, and looks.local.
So when creating our first site, we could choose from at least three different options:

•	 We could use the sites/default/ directory as the main one for our
books.local site. This will make books.local a truly default site.

•	 We could create a sites/local/ directory, which we will assume maps to
books.local, but which will also map to any other hostnames that end with
.local. Since we would later create more specific directories for sites/
cooks.local and sites/looks.local, creating things this way would not
stop us from achieving our goal.

•	 Finally, we could just create sites/books.local/, which would be specific
to our site.

How do we decide which to do? First, none of these is wrong. Each may have its uses
in a given situation. But sometimes one solution is better than the others.

On a production site, it is often best to have something configured in the default site
(sites/default/). Sometimes this may be a permanently disabled site. Sometimes
it really will be the site that should be treated as the default. But it is best to take
measures to prevent the possibility of someone reaching the default site and finding
a Drupal installer ready for installation.

In the Vagrant profile Apache is configured to only direct
specific domains to Drupal. As long as those domains have site
directories, there is no chance of the default site being run.

On a development site, specificity may be preferable. (The Vagrant version has been
configured thus.) You may not want a default instance because you may want to
keep all of your sites in their own subfolders for ease of use. It is much easier to find
a site's configuration when it has a fully named directory. The innocuous sites/
default/ folder can become an accidental hiding place.

Installing Drupal for Multi-site

[34]

Again, though, there are no wrong answers here. Just make sure you keep security in
mind. As we continue, we will use sites/books.local/ for the reason I mentioned
above: This is more explicit and easier for us to find. While this folder already
exists in the Vagrant file, to create it manually we will just need to execute a few
commands. Starting from the document root, we only need to do this:

$ cd sites/

$ mkdir books.local

That will create our new books.local/ directory inside of the sites/ directory.
The next step is to create a few necessary files inside of this directory.

Settings
All of the site-specific content for our books.local site is going to go inside of the
sites/books.local/ directory we just created. And the first thing to place in this
directory is the settings file.

If you are familiar with Drupal already, you have probably worked with the
settings.php file. This is the file that holds the database configuration, many
PHP configuration directives, and occasionally Drupal variables that need to be
accessed very early in the bootstrapping process. Each of the sites in our multi-site
configuration must have its own settings.php file. And the best way to get started
on this is to simply copy the default settings file. Assuming you are already in the
sites/ directory, here is the UNIX command you would run to copy the file:

$ cp default/default.settings.php books.local/settings.php

$ chmod 777 books.local/settings.php

The first command copies the default file into the books.local/ directory. Note that
the name of this file must be settings.php. The second command sets the mode (file
permissions) on the file to 777, which effectively grants any UNIX user read, write,
and execute permissions on the file. Normally, this is a dangerous mode to assign to
a file, but we do this here just long enough to allow the installer to run. The installer
must be able to read and write the file. It will then try to lock down the file for us by
changing its mode to something appropriately restrictive.

If you are using the Vagrant profile, this has been done for you
already by the Vagrant installation scripts.

Finally, if you wish, you can edit the settings.php file, setting the appropriate
database connection details. This will save you some time in the web installer.
However, if you prefer to configure this through the web interface, you may do so.

Chapter 2

[35]

Here is an example configuration section that connects to the books_local database
we created in the last chapter. If you are using the Vagrant profile, this has already
been generated for you, and you can look at the file in vagrant/public/drupal/
www/sites/books.local/settings.php.

$databases['default']['default'] = array(
 'driver' => 'mysql',
 'database' => 'books_local',
 'username' => 'drupal',
 'password' => 'secret',
 'host' => 'localhost',
);

The code tells Drupal that the default database for this host is books_local, with
the user drupal and the password secret. Finally, it tells Drupal to connect to the
database on the localhost. If your database server were on a remote host, you
would put that host name here instead.

The settings.php file is actually a PHP source code file. But in
spite of the fact that all PHP coding constructs can be used here,
only configuration directives should be used.

While the database section of the configuration file can be set up to serve more
sophisticated purposes (such as connecting to multiple database servers), we are
concerned with multi-site right now. So we will forgo a full discussion of database
configuration. The INSTALL files that come in the Drupal source code explain many
of the other database configuration options.

At this point our settings file is ready, and we can proceed.

The files/ folder
We have only one more thing to do before running the web installer. We need to
create a directory where Drupal will be able to write content. Certain data such as
file uploads, image thumbnails, and aggregated CSS and JavaScript files need to
be stored on the filesystem instead of within the database. So Drupal will need a
directory into which it can write these files. Traditionally, this is the files/ directory
(though you can rename it if you want to go through the extra configuration hassle).
By default, Drupal will look inside of a site directory for a subdirectory named
files/. In a default Drupal instance, then, this would be in sites/default/files/.

Installing Drupal for Multi-site

[36]

Older versions of Drupal stored the files/ directory directly in
Drupal's root directory. That sometimes caused confusion with
multi-site configurations.

Again, with a multi-site configuration, we need each site to have its own files/
directory. We will create files/ in sites/books.local/. In addition to creating the
directory, we need to set permissions on this directory so that Drupal can write to it.
In UNIX, the web server (which runs Drupal) runs as a particular user. That user will
need to be able to write into sites/books.local/files/.

If you are running PHP as a CGI or as a FastCGI, consult the
documentation to discover which user runs those processes. That
is the user that will need to own the files directory.

The safest way to configure the files/ directory permissions is to modify the
directory's owner to be the web server user, and then give that user write access. In
the following example, the web server is running as www-data (the username used
on Debian and Ubuntu Linux. Other common user names are apache, http, and the
special UNIX user nobody.)

$ cd sites/books.local

$ mkdir files

$ chown www-data files

$ chmod 755 files

The four preceding commands, do the following:

1.	 Make sure we are in the right directory.
2.	 Next, create the files/ directory.
3.	 The chown (change owner) command sets the owner to the web server's

www-data user.
4.	 And finally the chmod command changes the mode to 755, which allows

the owner all permissions (7), while giving others only read and execute
access (5).

Chapter 2

[37]

The files in the files/ directory are treated as public files (files that are
generally accessible). Drupal 7 also adds support for private files directories.
Private files directories are stored outside of the web server root, and can have
any name necessary. If you need to create private files directories, consult
Drupal's documentation. The process is no different for multi-sites than for
single-site installations.

With our files directory configured, we are ready to move on to the
web-based installation.

The web installer
We have configured the base directory for our books.local site and created a
settings.php and a files/ directory. And in the last chapter we configured
Apache to handle directing requests for books.local to our Drupal multi-site
instance. So we should now be able to run the Drupal web installer.

Vagrant does not run the web installer
To this point, our entire manual configuration has been handled in the
Vagrant profile. But this step is not done automatically. So regardless
of whether you have been following a manual process or using the
Vagrant profile, you will need to run the Drupal web installer.

Just as with a normal installation of Drupal, the installer can be run at http://
books.local/install.php. We will very quickly walk through the installer.

On the first screen, we are asked to select either a standard or minimal installation.
Neither choice will impact multi-site configuration, so we will go with the
default, Standard.

Installing Drupal for Multi-site

[38]

Clicking Save and continue will bring up the next installer screen, which allows us
to choose a language bundle. By default, Drupal only comes with English, and we
will leave that default selected, hitting Save and continue to proceed.

The next stage of the installation is typically the database configuration screen.
However, in the previous section we already set our database parameters, so
that step will be skipped automatically, forwarding us to the big step—the
installation process.

The installer will sequentially install Drupal's core and then the module files.
Largely, this is a matter of creating tables in the database and then inserting
necessary content, such as settings and defaults.

Chapter 2

[39]

Once this is done, we are presented with a final installation step—adding
site information.

This lengthy form is for adding necessary information about the site, including
the site's name and an e-mail address for notifications, information about the
administrative user, and default information about site settings such as time
zone information.

The user you create here is a special user. It will have unrestricted access to Drupal
data, along with maximal permissions. Like UNIX's root user, this first user will be
very powerful. For that reason, it is recommended that this user not be associated
with an individual, but be given a generic name like "admin." The account can then
be used for administrative tasks, but not daily use by the CMS.

Installing Drupal for Multi-site

[40]

When setting up a multi-site Drupal installation, it is allowable to direct the
administration e-mail from all sites to the same e-mail address. However, there is
a trick that facilitates this and will make your life easier: Many e-mail servers will
allow you to insert a tag into your e-mail address that can be used to sort mail on
your mail reading client. For example, if my administrative e-mail account is admin@
example.com, I can add this tag in by adding a plus sign (+) after the name portion
of my address, and then putting the tag between the plus sign and the at-sign (@):
admin+books@example.com. Drupal allows this syntax. On your mail client, then,
you can set up filters to sort, flag, or otherwise process e-mail by tag.

Once this form is filled out and submitted, Drupal should display a success message,
like this:

Clicking on Visit your new site will take us to the default home page of the newly
installed books.local site.

Note that we will be automatically logged in as the user we created above, which
allows us to begin the task of setting up and configuring our site. But instead of
continuing configuration of books.local, we will move on to create our other
two sites.

Creating the other sites
We spent a long time walking through the process of creating the books.local site.
The good news is that the process for creating the other sites is the same. Rather than
repeating the process in detail, we will look at the process again in summary form,
this time doing two sites at once.

Chapter 2

[41]

Recall that our remaining sites are cooks.local and looks.local, and that we have
already created the databases cooks_local and looks_local, one for each site.

Let's begin, in the Drupal sites/ directory, we need to create two directories,
cooks.local and looks.local.

Each directory needs a settings.php file. The easiest way to proceed is to copy the
settings.php from books.local and change the database information:

$databases['default']['default'] = array(
 'driver' => 'mysql',

 'database' => 'cooks_local',

 'username' => 'drupal',

 'password' => 'secret',
 'host' => 'localhost',
);

The lines that typically need changing are highlighted above. And these will need to
be set in each site's settings.php file.

Remember that these settings files must be writable by the web server. Also, each of
the sites directories must have a files/ directory with permissions set so that the
web server can write to these directories.

In turn, each site's web-based installer must be run. The installers will be available on
http://cooks.local/install.php and http://looks.local/install.php.

At the end of this installation process, we have three different sites installed. While
they share a codebase, they have different database backends. This means that each
site can have content isolated from the others.

That is all there is to creating a multi-site Drupal installation. While some additional
care needs to be taken while setting things up, the installation process is not
necessarily harder.

Getting installation help
Sometimes installations fail. This can happen for a variety of reasons. Sometimes
the environment does not fulfill one of Drupal's requirements. Sometimes there is a
permissions problem either on the file system or the databases. And sometimes bugs
in code turn up. This can be a frustrating experience. Where do you turn for help?

Installing Drupal for Multi-site

[42]

Following are the best resources for trouble shooting a Drupal installation, in order:

•	 The README.txt and INSTALL.txt documents: These come packaged
with Drupal, and provide a surprising amount of information that will help
troubleshoot installation issues. There are even database-specific installation
documents (INSTALL.mysql.txt, INSTALL.pgsql.txt, and so on) with
information tailored to your selected database environment.

•	 The online Drupal installation manual: http://drupal.org/
documentation/install. This covers the installation process in depth,
with many extra notes for exceptional circumstances.

•	 Community support: Available in the form of Drupal Groups
(http://groups.drupal.org) and Drupal's IRC (#drupal on
Freenode.net). Drupal Groups are forum-based, while the IRC
rooms are a great way to connect with people and chat.

•	 Local community meet-ups: Through Drupal Groups (http://groups.
drupal.org) you may be able to find a local Drupal Users Group or
similar meet-up. These groups often provide a great venue for getting
informal support.

These resources will help you through installation difficulties. Drupal has a vast
user base with hundreds of thousands of successful installations. It is unlikely that
you will come away from these resources with an unanswered question about
installing Drupal.

Summary
This chapter focused on installing Drupal. We spent most of the time looking at
the first site, paying attention to the details as we walked through the process of
installing the books.local site. From there, we installed the other two sites in rapid
succession, and by the end of the chapter we had three sites running on a single copy
of Drupal's code.

In the next chapter we will work with Drupal's module and theme systems, seeing
how a multi-site installation works with these.

Settings, Modules, and
Themes

In the previous chapter we installed three sites into our one Drupal multi-site, but
we did not configure any of these three. In this chapter we will look at configuring
Drupal, with a special focus on using Drupal modules and themes. In particular,
we will see how Drupal can share modules and themes when we want, but also
keep certain modules and themes restricted only to a specific site. We will cover
the following:

•	 Configuring each site separately
•	 Sharing configurations
•	 Installing shared modules
•	 Installing unshared (single-site) modules
•	 Installing themes and subthemes

Configuring sites
We wrapped up the last chapter by running the Drupal web installer for all three
sites, giving each its own database, site name, and configuration. In this chapter we
will pick up where we left off.

The important thing to be aware of, given our multi-site configuration, is that each
site will have completely distinct settings.

In Drupal, there are typically two places where settings information is stored. The
first is in the settings.php file, and as we saw from the previous chapter, each site
has its own.

Settings, Modules, and Themes

[44]

The second place is in the database. Settings are stored in the database table named
variables. This general table stores a wide variety of information in key/value
pairs. Again, as we saw in the previous chapter, each site has its own database.

By default, there is no shared location in which configuration common to all sites can
be stored. This means that if you have an assortment of configuration data that you
want to share across sites, you have two options:

•	 Duplicate the data: You can set the same information for each site
•	 Create a shared settings file: You can add a little logic to each settings file

that will direct each Drupal instance to load a shared settings file

There are ways to share database tables, but this is a very dangerous
practice, and is discouraged by Drupal developers. It would be
particularly bad practice to attempt to share the variables table.
In the final chapter, we will see some alternatives for efficiently and
securely sharing content across sites.

Let's take a quick look at how we can share settings using settings files.

Creating a shared configuration file
Most of the time it is best to keep site configuration separate for each site. But with
tightly related sites, it is sometimes most expedient to share some configuration. The
best example of this is when a staging and a production site run on the same server.

Let's say we want to set the site slogan to be the same for all three sites. We want it to
say "Quality Information".

Normally, we would set this information through the administrative interface by
going to Administration | Configuration | Site information and entering our site
slogan in the Slogan field. But we could also hard-code a slogan by adding the
following line to the end of the settings.php file:

$conf['site_slogan'] = "Quality Information";

Chapter 3

[45]

By setting this for the Books site, we will see it displayed on the front page:

Once we have hard-coded this value in the settings file, it
cannot be overridden through the administrative interface.
For this reason, putting settings in the settings.php files
should only be used when absolutely necessary.

Our goal, in this trivial example, is to set the site slogan so that it is always the same
on all three sites. And we want to create a shared configuration file to do so. This will
require adding a little logic to the end of all three of our settings.php files.

if (file_exists('sites/all/shared-settings.php')) {
 include 'sites/all/shared-settings.php';
}

Now the settings files will each try to load the file sites/all/shared-settings.
php. As a safety precaution, we first check to see if the file exists before loading it.
That way, a missing file doesn't cause the entire site (or, in this case, all three sites)
to fail.

Now we can create this shared settings file in sites/all/shared-settings.php.
Here is what the file looks like:

<?php
 /**
 * @file
 * Shared settings for all multi-sites.
 */
 global $conf;

 $conf['site_slogan'] = "Quality Information";

Settings, Modules, and Themes

[46]

There are four things to note about this file:

•	 First, like settings.php, we need to explicitly include the <?php at the
beginning so that the PHP interpreter is switched on.

•	 Second, we begin the file with a Drupal-standard documentation block. This
is just good form, making it easy for others to see what this file is here for. It
can also be parsed by the Drupal documentation generator (or by Doxygen,
the tool upon which it is based).

•	 The third thing to notice is this very important line:
global $conf;

Without it, our attempts to share configuration will silently fail. This tells
PHP to share the same $conf variable that the site's settings.php file is
using. Drupal is smart enough to know that for the Books site, this shares
the books.local/settings.php, and for the Looks site, it should share
the $conf variable with looks.local/settings.php and so on. (This is
a simple vestige of the fact that the settings file loads the shared settings
file. There's nothing magical about the association.)

•	 Finally, the fourth thing is the configuration directive itself. As you will
have noticed, this is exactly the same as the one I showed earlier. We've just
moved it from settings.php to shared-settings.php.
$conf['site_slogan'] = "Quality Information";

But this time, the site_slogan will be added to the configuration of each of
our three sites. So now we will see Quality Information not just on the Books
site, but also on the other two. For example, here is the Looks site using the
previous configuration:

Chapter 3

[47]

So with a few extra lines at the bottom of each settings file, we can create a shared
space for declaring settings.

A word of warning about sharing settings
Sharing settings can be a great idea when it comes to simple information, like
labels and slogans, and even themes. But there are certain configurations that
should typically not be shared, like primary databases, caches, and hash keys.
Sharing these can have odd side effects, like the data from one site showing up
in another unexpectedly.

Also, keep in mind that the only thing that is actually shared through this
mechanism is the data in the settings file. For example, we could tell all three sites to
use the same maintenance theme by adding this line to the shared settings file:

$conf['maintenance_theme'] = 'bartik'

But each site may still configure the Bartik theme differently. Only the one value—
which theme to use as the administrative theme—is set in the shared configuration.
The rest of Bartik's configuration information is left site-specific.

With these caveats in mind, though, we can share settings across sites.

Let's continue on by looking at modules.

Configuring modules
If you have worked on Drupal before, you have likely heard the following advice
given about where you should put your modules:

•	 Modules that are downloaded from Drupal.org (or elsewhere) should be
stored in sites/all/modules/

•	 Modules that you have created should go in sites/default/modules/

The fact that this is a common suggestion does not mean it is
the only suggested method, or even the best. There are several
competing conventions for how you should organize modules.
Each has its advantages and disadvantages.

This advice is convenient for situations in which there is only one site. But for
multi-site configurations, things get more complicated.

Settings, Modules, and Themes

[48]

The sites/all/ directory houses data that is shared among all of your sites. The
sites/default/ directory houses data used only for the default site (and in our
current configuration, we're not using this directory). And the sites/SITENAME/
folders (sites/books.local/, sites/cooks.local/, and sites/looks.local/)
contain data specific to the named site.

This all has very practical implications for our sites:

•	 If a module is stored in sites/all/modules/, then all of our sites will have
access to the module

•	 If a module is stored in sites/books.local/modules/, then only the Books
site will have access to that module

•	 If a module is stored in sites/default/modules/ (and we have no
default site), then no sites will be able to access the module

The same goes for themes and theme/ directories. It should be clear, then, that at
least some of the more conventional methods for structuring module directories
simply do not apply well to a multi-site configuration.

Another common pattern that works better is to store your custom modules in a
subdirectory called custom/. This directory can be stored in sites/all/modules/
custom/ or sites/SITENAME/modules/custom/ or both. Likewise, modules from
Drupal.org are stored in contrib/ directories. The Vagrant profile automatically
creates and utilizes a contrib/ directory for add-on modules.

Let's take a look at how this works out.

Sharing modules
The Media module is a popular module for managing media such as images, videos,
and audio files. Information about this module can be found at http://drupal.
org/project/media. Let's install this module as a shared module—one that can be
used by all of our sites.

The first thing to do is to get the module. You can download it from the URL and
then uncompress the file and place its contents in sites/all/modules/contrib/. If
you are using the Vagrant profile or have installed Drush (the Drupal Shell), you can
run this command from the top level of your Drupal installation (the directory that
has index.php and the sites/ directory in it).

$ drush dl media

Chapter 3

[49]

Vagrant users should run vagrant ssh to connect to the VM and
then run the command from within the VM's /vagrant/public/
drupal/www directory.

Once this command has run, you should be able to find the directory sites/all/
modules/contrib/media/.

Logging in as the administrator on the Books site, we can check for this module
in Administration | Modules:

All three of these modules—File entity, Media, and Media Internet Sources—come
with the Media module. Let's enable all three by checking the box and then pressing
the Save Configuration button at the bottom of the screen. (You may be prompted
to install Chaos Tools, too. That can be retrieved at http://drupal.org/project/
ctools).

Once they have been enabled, all of these modules should have checkmarks instead
of empty check boxes.

Settings, Modules, and Themes

[50]

Now that those are installed, let's look at the module administration for Looks.
You will need to log in there (as the administrator for that site) and then go to
Administration | Modules.

Notice that while the same modules are present on the page, these modules have not
been installed on the Looks site.

So modules are shared in one sense: the same module files are available to every site
in our multi-site. But, in another sense, they are not shared. Each site can enable or
disable a module, and each site can have different configurations of a module.

Unshared modules
Sometimes you would like to have modules available on one site (or a few sites), but
not to all. This may be for security reasons, simplicity, or performance.

Drupal allows you to accomplish this by storing modules in site configuration
directories. Here we will walk though an example.

Let's say we want to install the Field Text Formatter (textformatter) module, which
provides field formatters for text fields and taxonomy term fields. However, we only
want this module to be on the Cooks site.

To do this, we will store the module in sites/cooks.local/modules/contrib/.
This directory was not created automatically, so we will need to create it now. In a
UNIX shell, this is done as follows:

$ cd sites/cooks.local

$ mkdir –p modules/contrib

Chapter 3

[51]

Now we have our destination. As before, there are two ways we can install the
package. We can manually download it from Drupal.org (http://drupal.org/
project/textformatter) and then uncompress it in the sites/cooks.local/
modules/contrib/ directory. Or we can use Drush and have it do the work for us:

$ drush dl \

--destination=sites/cooks.local/modules/contrib \

textformatter

Note that the command has been broken into three lines for the
sake of formatting, but normally you will run it on a single line.

Most importantly, in order to get Drush to write the module into the Cooks site we
need to add the --destination option, specifying the relative path to the cooks.
local modules site.

Now if we log into the Cooks site as an administrator and go to Administration |
Modules, we should see the Field Text Formatter module:

We can check the Enabled box and press the Save Configuration button as well.
Now we have that module installed on cooks.local.

Now let's look at the Books site. Logging in on that site as the administrator, we can
go to Administration | Modules and look for the Field Text Formatter module. But
it will not be there. For when we install a module directly into a site's modules folder,
it is not accessible to the other sites.

There is no standard way of sharing a module between some but not all sites.
Typically, the safest way to make a module accessible to just some of the sites is to
install it once in each site that will use it. This can make maintenance a little more
difficult, but it will accomplish the task.

Settings, Modules, and Themes

[52]

A note on using different versions of the
same module
What do you do if one site requires a specific version of a module, while one of the
other sites requires a different version of the same module?

Because of the way Drupal is constructed, you cannot install two versions of the
same module in the sites/all/modules/ directory. Attempting to do this will lead
to fatal errors or, even worse, subtle bugs that arise from certain loading errors.

Likewise, it is not a good idea to install one version of a module in sites/all/
modules/ and another version of the module in sites/SITENAME/modules/. While
Drupal itself will try to always load the site-specific version, there is no assurance
that other modules will respect the same order of precedence that Drupal uses.

The best way of handling this situation is to install the modules in site-specific
directories. So if Books were to require version 7.x-1.0 of some module while Looks
required 7.x-1.1, the best way to proceed is this:

•	 Version 7.x-1.0 is installed in sites/books.local/modules/contrib/
•	 Version 7.x-1.1 is installed in sites/looks.local/modules/contrib/

This way, there is no chance that Drupal or any other module will confuse two
different versions of the same module, as each site will have access only to its
own version.

Modules and sharing (in summary)
We have walked through the various nuances of configuring modules in multi-site
configurations. Before moving on to themes (which largely follow the same rules),
here is a brief summary of the important points:

•	 Modules that are shared between all sites should go somewhere inside of
sites/all/modules/.

•	 Modules that should be accessible to one site but not all should go inside of
that site's modules directory, for example sites/books.local/modules/.

•	 When two sites require different versions of the same module, it is best to
store the different versions inside of the site directories, and not store the
module in sites/all/modules/, as that may cause errors or obscure bugs.

•	 And as a reminder, it is useful to separate modules inside of their respective
module directories, into contrib/ and custom/ folders. This eases
maintenance and readability.

Chapter 3

[53]

Themes
In the section on modules, we saw how modules can be shared (to a certain extent)
by placing them in sites/all/modules/, or how they can be installed for only a
specific site by placing them in sites/SITENAME/modules/, where SITENAME is
replaced by the site's name.

The same holds for themes. Multi-site themes can go in sites/all/themes, while
site-specific themes can go in sites/SITENAME/themes/.

We can see this by first installing a theme into the sites/all/themes/ directory.
Let's begin with the BlueMasters theme. This is a stand-alone theme, which means
it does not depend on a base theme. So we can install it in the usual ways. Either
download it and uncompress it into sites/all/themes, or use Drush to do this
for you:

$ drush dl bluemasters

Now when we log into Books as an administrator we can go to the Appearance
page and see Blue Masters there. And if we go to the Cooks site, log in, and visit the
Appearance settings, we will see the same thing:

Settings, Modules, and Themes

[54]

Now let's enable BlueMasters on Cooks. Click on Enable and Set Default to enable
the theme and simultaneously set it as the site theme for our Cooks site. Now we can
once again compare the Books and the Cooks theme pages:

Notice how the Books site still lists BlueMasters as disabled, while the Cooks site has
it enabled and set as default.

Just as with modules, when we talk about sharing a theme between sites, what we mean
is that both sites have access to the theme. But while they share access to the theme's
code and images, stylesheets and templates, they do not share configuration data.

This can get tricky! Changing a template in a shared theme will
change the template on all sites. But adding CSS or other styling
through the administration interface typically will not result in
sharing across sites.

Chapter 3

[55]

The important detail that distinguishes when theme data is shared and when it is
not is this:

•	 Anything that is stored in a code file (templates, CSS, info files, and so on)
is shared

•	 Anything stored in the database (enabled status, settings, certain information
about classes, or IDs) is site-specific

This can introduce some tedious nuances, as it is common practice to set some
data through the administrative UI (storing it in the database) and then tweak CSS
stylesheets to make use of that data. This strategy may not always work as desired
on a multi-site setup, since the CSS files are shared across all three sites.

This is made slightly more complex by the addition of site-specific modules, which
may have theme data accessible to one site, but not others. For modules can inject
markup, styles, and JavaScript into the theme in a way that can significantly alter a
site's appearance (and this is good). This can have tricky side-effects, though, when a
theme is shared across sites, but modules are not.

This all sounds complex—it is—but there is a remedy: subthemes. We will start to
move in that direction by looking at a few ready-made subthemes.

Subthemes and sharing
Since Drupal 6 it has been possible to base one theme on another theme. That is,
we can start with a base theme, which defines major pieces of the site's layout
and styling, but doesn't necessarily provide the final details. Then we can add a
derivative theme (a subtheme) that begins with a base theme and fills in the details.
It can even override things in the base theme that should be different.

The prevailing theory among Drupal theme developers is that when you are building
your own theme, it is often best to begin with a base theme and build your own
custom subtheme.

Now let's look at a practical example. The AdaptiveTheme (http://drupal.org/
project/adaptivetheme) base theme has recently become fairly popular.
It provides a base theme that supports a broad range of devices, including desktop
and laptop computers, but also mobile devices like tablets and smart phones.

Settings, Modules, and Themes

[56]

Which base theme?

Drupal.org has many base themes to choose from. Zen, the most
popular, has received much acclaim from those who build custom
themes. AdaptiveTheme is a relative newcomer, but has many
ready-to-use subthemes. Tao, Omega, and Fusion Core are also
popular. There are also base themes built on various grid layouts,
such as the 960.gs system. If you are planning to build your own
theme, take a look at the popular base themes and see which, if
any, work best for you.

Let's install this base theme. We'll put it in the sites/all/themes/ folder. Here's
how to do it with Drush:

$ drush dl adaptivetheme

This actually installs three themes:

•	 AT Core: The base AdaptiveTheme theme
•	 AT Subtheme: A template project for building your own subtheme
•	 AT Admin: A fully functioning subtheme built on AT Core and intended to

be used as an admin theme

When it comes to theming our user-facing site, none of these themes really provides
us with what we want. This, for example, is what the site looks like with AT Core set
as the theme:

Chapter 3

[57]

What is important about base themes, though, isn't what the base theme looks like,
but what it provides for subthemes.

To see how this works, let's download a couple of subthemes. Here we are going to
throw in a twist. We will install one subtheme on Cooks, and one on Looks.

Cooks will be using the Corolla subtheme (http://drupal.org/project/corolla)
and Looks will be using Pixture Reloaded (http://drupal.org/project/pixture_
reloaded).

$ drush dl --destination=sites/cooks.local/themes corolla

$ drush dl --destination=sites/looks.local/themes pixture_reloaded

If you do this by hand, you will need to create the themes directories
for these two sites. Drush, on the other hand, will do it for you.

Next, I can go to each of my two sites—Cooks and Looks—and (as admin) go to the
Appearance page and enable these themes as default.

Here is a screenshot of Looks running Pixture Reloaded, and Cooks running Corolla:

Settings, Modules, and Themes

[58]

In this screenshot we can see how different the two themes are (even with
no content). Yet both were built on the same base theme.

But there's something even more important going on here, the base theme was
shared, but the subthemes are not. Since subthemes never actually alter the files
in the base theme, this works very well. We can gain the advantage of having one
shared theme at the core, but when it comes to tailoring each site to its audience, we
split our subthemes.

Both Corolla and Pixture Reloaded are intended to be finished products. The
assumption is that you won't need to dive into the code of these themes and start
changing CSS or template files. In fact, if possible, you should avoid doing so.

However, there will be times when you will want to start with some theme
(typically a base theme) and build your own style.

The best way to do this in a multi-site configuration (assuming you want to use the
same base for more than one site) is to do as we did earlier, that is:

•	 Share a common base theme by putting it in sites/all/themes
•	 For each site's theme, put that theme in sites/SITENAME/themes (where

SITENAME is the name of the particular site)

This strategy is good for minimizing the confusion between sites and their themes,
and it gives you the freedom to modify a site's theme without worrying about
unintended consequences to other sites.

You should now be at the point where you can install and manage themes on
a multi-site Drupal instance. That takes us through the subject matter of the
present chapter.

Summary
In this chapter we looked at how each site could be configured. We started out by
looking at site settings, and saw how they are separate by default, but can be shared
to a limited extent. Then we moved on to modules and themes. We saw that in a
multi-site configuration, modules and themes can be shared, or they can be stored in
just one site. We also saw how even shared modules can have different configurations
on different sites. We looked at themes, focusing on the complications that arise
between the tight coupling of a site's database data and its theme files. We looked at
using site-specific subthemes, focusing on how that could mitigate the problem.

In the next chapter we are going to turn our attention to site administration. There,
we will see once again how sharing code, but not database data, can introduce some
subtle challenges.

Updating Multi-site Drupal
In previous chapters we have looked primarily at installation. In the first chapter,
we prepared a system for installation. In the second chapter we installed Drupal and
created three sites. And in the previous chapter we installed modules and themes.
In this chapter, we are going to turn our attention to keeping Drupal up-to-date.

In this chapter, we will look at:

•	 Performing updates through the administrative web interface
•	 Updating Drupal's core in a multi-site configuration
•	 Updating modules and themes

While this is similar to the process used for a single site, there are some extra
precautions and considerations. Performing updates in the proper order can
prevent major multi-site outages.

Updating Drupal
There are two different "magnitudes" of upgrades. There are major upgrades and
minor updates. A major upgrade updates Drupal from one major version (say,
Drupal 6) to a newer one (Drupal 7). Because major Drupal versions indicate
substantial changes, such upgrades are often time consuming, requiring many steps
both before and after the actual installation of the software. We are not going to
cover such upgrades.

Minor updates move from one point release to another newer point release. A point
release is a software update that contains only bug fixes and minor feature changes.
Its major version number remains the same, but its minor version (its point number)
is incremented.

Updating Multi-site Drupal

[60]

Drupal's current major version number is 7, and its minor version number
(as of time of writing) is 12, so we have version 7.12.

Updating minor releases is much simpler than major upgrades, and should also
be done regularly. Since most minor versions are released for security or stability
reasons, they are typically quite important. In this section, we will look at updating
Drupal multi-site configurations. The process differs from upgrading a single-site
instance in that there are more steps, and the order of steps must be done carefully.

Since a multi-site runs only one copy of Drupal, all of the sites
on a multi-site install must be updated at the same time.

Multi-site updates differ from single-site updates in one crucial way: while Drupal's
code needs to be updated only once, each individual site needs to go through the
updating process. To keep site impact to a minimum (and to avoid catastrophes),
doing these updates requires a special process.

Making backups
Anytime you are upgrading Drupal—single site or multi-site—you should make
backup copies of everything.

Backing up Drupal is done in two stages. First, we must backup the files on the
filesystem, and next we must backup the database.

Filesystem backups
We will use a UNIX-style shell to backup our files, but the same process can be done
using a graphical front end to your filesystem.

Generally, it is best to backup the directory that contains Drupal, rather than
just subdirectories inside of that directory. With a multi-site configuration,
backing up the main Drupal directory will give us one large backup file
containing the following:

•	 The main Drupal code
•	 Each of our sites/ directories
•	 The files stored in the files/ directory under each site

Chapter 4

[61]

Given the setup we have walked through from Chapter 1, Multi-site Drupal, onwards,
generating this backup is straightforward. Complex installations that use file sharing
systems like NFS, Gluster, or network directories may handle the relationship
between directories in complex ways. For example, the files directories may be
mounted on different drives or even servers. In such situations the simple command
here will not work for those. But unless you or your system administrator has
done something like that, we can run a basic UNIX command to backup the entire
directory.

In a graphical file browser (such as Explorer on Windows
or Finder on Mac) it is often possible to generate a
compressed archive of a directory with a few mouse clicks.
The following process, though, uses the command line.
Either process will work.

Here I am using the Vagrant image discussed in the first few chapters. On a
manually installed environment you may need to adjust the initial path.

$ cd /vagrant/public/drupal

$ tar –zcf drupal-backup.tgz www/

$ cp drupal-backup.tgz ~

In the first command, we simply change into the correct directory. We just want to
backup the www/ directory in which we placed Drupal in Chapter 2, Installing Drupal
for Multi-site.

Second, we run the tar command. This creates a single file called drupal-backup.
tgz and then compresses all of the data from www/ into this file.

The name TAR is short for Tape Archive. Originally, this
program was intended for copying data onto a tape backup
system. By default, TAR archives are not compressed. You
use the –z flag to tell tar to zip the file, too.

The process of creating this file might take a few moments, and the resulting file
may be surprisingly large. The simple site we have constructed is 5.5 MB on my
filesystem. Production sites routinely grow to hundreds of megabytes.

The third command illustrates an important point: Once you have created a backup
file, move it somewhere safe. The command just moves it to the user's home directory
(represented by ~). That is a decent place. But leaving the file near Drupal is
dangerous, as that is the place where we will be upgrading things. Accidentally
overwriting or deleting our backup file could be disastrous.

Updating Multi-site Drupal

[62]

Now we have our file system backup. Should you ever need to unpack it, you can
use the tar –zxf drupal_backup.tgz command, that will extract the contents into a
directory called www/.

Database backups
Backing up the files can be done all at once. But backing up the database is a little
more complex.

We have three databases that need to be backed up, namely, books_local, cooks_
local, and looks_local. While it is tempting to back all three up into the same file,
that is typically not the best idea, for it leaves us in a situation in which we must
either restore all three databases at once or manually break up the backup file into
pieces. The former could cause data loss, and since database dump files may be
hundreds of thousands of lines long the latter is impractical.

Since the databases are actually upgraded one at a time, it is more likely that only
one will fail at a time. For that reason, it is better to simply make three backups, one
for each database.

The Drupal module called Backup and Migrate can ease and
even automate the process of generating database backups. Learn
more at http://drupal.org/project/backup_migrate.

We will be creating our backups on the command line, though most MySQL
graphical front-ends can also do this.

Graphical Front-ends For MySQL
Popular Open Source MySQL front-ends include the web-based
phpMyAdmin (which is installed but unconfigured in Vagrant)
and the Mac OS X client Sequel Pro. Each of these has its own way
of generating backups.

To generate a backup you will need to be able to connect to the MySQL database,
and you will need to be able to authenticate as a user with permissions to run a full
backup. Both your MySQL root user and your Drupal user should have sufficient
permissions. Here we will use the root account:

$ mysqldump –h localhost –u root –p \

books_local > books_local_backup.mysql

Chapter 4

[63]

The command has been broken into two lines for readability, but typically
it is run on one line.

The command connects to a host (-h HOSTNAME) as user root (-u root), asks for
a password prompt (-p), and then specifies the name of the database to dump
(books_local). Using a shell redirect (>), we tell the shell to write the output of the
command to the books_local_backup.mysql file.

As it stands, the resulting file will be an uncompressed plain text file full of SQL
statements. Essentially, it is all of the SQL commands (in order) required to rebuild
the database one statement at a time.

Should you ever need to restore the database, the typical way to do so is to issue a
command like mysql –h localhost –u root –p < books_local_backup.mysql.
This essentially does the reverse. It reads back in each line, executing it with the
mysql program.

Repeat the dump for each database, storing the results in separate files:

$ mysqldump –h localhost –u root –p \

cooks_local > cooks_local_backup.mysql

$ mysqldump –h localhost –u root –p \

looks_local > looks_local_backup.mysql

Again, it is safest to place these files far away from the directory in which Drupal
resides. We don't want to accidentally lose our backups.

With our data backed up, we are ready to run the next steps.

Putting Drupal in maintenance mode
Quite possibly the biggest disadvantage to a multi-site Drupal installation is that
since all of the sites share the same code, anything that prevents the one copy of the
code from operating will take all of the sites offline.

And this has steep implications when updating. We need to put all of our sites
into maintenance mode before we go any further. And all of them ought to stay in
maintenance mode until the very end of the upgrade process (though you can
cut a few corners if you must).

Updating Multi-site Drupal

[64]

For this reason, it is common to do multi-site maintenance at times that will not
inconvenience your users, for even a minor update could take up to an hour. Most
of the time, the most time-consuming aspect is generating the backups, and we have
done that already. However, if anything goes wrong, all of the sites will be down
until the issue is resolved.

With all of this in mind, the next step in our process is to log into Drupal as the
administrator and go to Administration | Configuration | Maintenance mode and
select the checkbox that says Put site into maintenance mode.

Make sure you press the Save configuration button after doing so.

It is very important that you are logged in as the administrative
account (user #1) to perform this step. Otherwise, permission
issues could put your site into an uncertain state, locking out
users and perhaps even generating fatal errors.

Chapter 4

[65]

We must repeat this process for each of the Books, Cooks, and Looks sites. All
of them need to be in maintenance mode before we proceed. Once a site is in
maintenance mode, it is very important that you stay logged in on each site.

As long as you are logged in as an administrator and the site is in maintenance
mode, you will see a notice like this:

Otherwise, the site will continue to look and act normally for you. But this is not
what site visitors will see. Instead, they will see a page that looks like this (the exact
theme the users see is something you can customize):

Once all three sites are in maintenance mode, we can move on to the next step.

Downloading and installing Drupal
The next step of the process is similar to a regular installation. We need to fetch the
latest version of Drupal, and then we need to overwrite our current installation with
the new files.

Updating Multi-site Drupal

[66]

Fetching a new version
This process should be familiar to you already. You can use your web browser to
go to Drupal.org and download the newest version, or you can use any number of
tools to do this for you. For example, you can use Drush, if you have it installed. (It is
already installed and configured in the Vagrant profile).

$ drush dl drupal

The command will download and unpack the latest stable version of Drupal into
its own directory. In the examples, though, I will assume that Drupal has been
downloaded through a web browser or a command-line tool like wget, and has not
yet been unpacked.

Overwriting the existing files
The next step is to copy the new files into place. This can be dangerous, and if you
have made any changes to files that came with Drupal, you will need to be very
careful about what you do here.

Two of the most commonly modified files in Drupal are .htaccess
and robots.txt. Be very careful if you have made any changes to
these, for if they are misconfigured, they can cause major problems
with your site. A missing or broken .htaccess file can leave your
site vulnerable to attacks, and a misconfigured robots.txt file can
damage your search rankings with engines like Google and Bing.

There are a few different ways of copying a new version of Drupal.

The process that I've found to be the best blend of efficiency and accuracy is to put
the updated version of Drupal in a new place, and then copy the files from one to the
other, comparing as needed.

In the Vagrant profile, we store Drupal in vagrant/public/drupal/www/, so when
we unpack the contents of the TAR archive, we will put them in the vagrant/
public/drupal directory:

$ cd /vagrant/public/drupal

$ tar -zxvf drupal-7.12.tar.gz

Now we will have a new directory called drupal-7.12, which will contain the entire
contents of Drupal. We can quickly see what changes were made by using the UNIX
diff command:

$ diff –ru www drupal-7.12

Chapter 4

[67]

The command compares the drupal-7.12 directory with the www directory
(which holds our existing site code.

The results of that command will look something like this (though probably
a lot longer):

diff -ru www/modules/system/system.base.css drupal-7.12/modules/
system/system.base.css
--- www/modules/system/system.base.css 2011-11-30 20:59:37.000000000
-0800
+++ drupal-7.12/modules/system/system.base.css 2011-12-14
17:33:27.000000000 -0800
@@ -157,12 +157,9 @@
 .progress .percentage {
 float: right; /* LTR */
 }
-.progress-disabled {
- float: left; /* LTR */
-}
 /* Throbber */
 .ajax-progress {
- float: left; /* LTR */
+ display: inline-block;
 }
 .ajax-progress .throbber {
 background: transparent url(../../misc/throbber.gif) no-repeat 0px
-18px;
@@ -171,6 +168,9 @@
 margin: 2px;
 width: 15px;
 }
+.ajax-progress .message {
+ padding-left: 20px;
+}
 tr .ajax-progress .throbber {
 margin: 0 2px;
 }

The code is only a few lines from the real diff, which extends dozens of pages long.
But this will give you a detailed list of every change between versions.

Lines that begin with a plus sign (+) are those that the new version will add, while
lines that begin with a minus (-) will be removed.

Updating Multi-site Drupal

[68]

If all looks good, we can copy all of the files at once. Or if you have made changes
to your local copy of Drupal, you will need to comb through the diff and find out
what you need to apply and what you don't.

Patch it!
The output generated by diff is in the format of a patch file. You can
use the UNIX patch command to work with the output of diff. One
workflow for patching is to save the output of diff to a file, hand
edit the patches, and then apply the results with the patch command.
A word of warning though, make sure your existing Drupal is backed
up. A mistake in a patch can render your site useless.

For our purposes, we have made no changes to Drupal, so we can just copy the
files over:

$ cp -a drupal-7.12/* www

Note that the command will NOT copy the .gitignore and the .htaccess files. To
get those as well, execute this command:

$ cp -a drupal-7.12/.htaccess www

$ cp -a drupal-7.12/.gitignore www

Now we should have the most recent version of Drupal's code.

Checking the default.settings.php file
Finally, we should pay special attention to the file sites/default/default.
settings.php. Recall that in Chapter 2, Installing Drupal for Multi-site we used
default.settings.php as the template for each site's settings.php file. The
default file contains useful information about the common settings that are
supported, and what they do.

This file rarely changes, but when it does, it is typically because some major
configuration parameter has been changed. A quick check of this file can help
us catch any such changes. (You may find it easiest to use the diff program
discussed earlier to run diff www/sites/all/default/default.settings.php
drupal-7.12/sites/all/default/default.settings.php.)

If you see any major differences, such as a new parameter with documentation
indicating that it is critical, you should follow the documentation provided therein
and fix each of your sites' settings.php file. That said do not fret about moving
minor changes (like changes in the wording of settings documentation). Since the
default settings file is left in place, you can always refer back to it at a later time
if necessary.

Chapter 4

[69]

Running update.php
Often Drupal updates come with more than just code changes. They come with
changes that need to be made in the database. So the next step is to run the
update.php script.

You must be logged in as an administrator to run update.php. Earlier we put the site
in maintenance mode, and I suggested there that we needed to stay logged in. So it
should be unnecessary to try to log in again.

Now we can run the update tool on our Books site at the URL
http://books.local/update.php.

Running the updater should bring us first to the overview page (the previous
screenshot) which will suggest the same steps we have already taken. Once we
press the Continue button, it will walk us through the update process.

Updating Multi-site Drupal

[70]

If the Drupal updater requires updates, you should execute them. If there are no
updates, the Drupal updater will display a message indicating this, and direct you
back to the site. When the installer mentions "updates", what it means is database
updates. Sometimes an update will add more information to the database, or remove
unnecessary configuration data. Also, it may alter, add, or remove database tables
(that is, it may make schema changes). Failure to apply all database updates may
result in errors or even database corruption.

Since the updates are database updates, and since they alter only the databases of the
site upon which update.php was run, it is absolutely imperative that update.php be
run on each of your multi-sites.

In Chapter 1, Multi-site Drupal and Chapter 2, Installing Drupal for
Multi-site I suggested that attempting to share database tables across
multi-site instances can cause stability issues. Nowhere is this more
prominent than when updating. Shared tables can become corrupted
when updates change their data or structure. Occasionally, shared
databases using prefixed tables can also be corrupted when add-on
modules fail to honor prefixing rules. For these reasons, it is always
preferable to store each site in its own database.

Furthermore, each Drupal instance can have different modules installed (and core
comes with dozens of modules). If a module is not enabled on a site, it will not
show up as needing an update. However, another site on the multi-site might use
a module that needs an update. Therefore, just because one site update required no
database updates does not mean that the other sites won't need a database update.

Once the updater has been run on each site we can take a look through the site,
ensure that all is running well, and begin the last stage of the update.

Should an update fail, you may first wish to look online for information about your
particular failure. You may also look to the Drupal community to help you solve the
problem. In the worst case, you may have to restore your site by first restoring the
backed-up files, and then restoring the database from your database dump file (see
the Database backups section for the precise command to run).

If all went well, as it typically does, your sites are ready to be re-activated.

Taking the sites out of maintenance mode
Thus far we have made backups, updated the code, and run the database updater
where necessary. We are now done, and should have a functional and up-to-date
Drupal site. It is time to take the site off of maintenance mode.

Chapter 4

[71]

Go back to Administration | Configuration | Maintenance mode and uncheck the
box labeled Put site into maintenance mode. Press the Save configuration button to
save this change and put your site back into regular mode.

This step must be repeated for every site (since every site is in maintenance mode).

Our sites are now all updated. And as we've seen while walking through the process,
the important thing to keep in mind as we go is that we have one copy of the code
and three different databases. Whenever we perform a task during updating, it's
important that we determine whether it must be done once or three times. Keeping
this distinction in mind will help answer that question.

Updating themes and modules
On any given Drupal site, at least several add-on modules and themes will be used.
(I've seen sites with over 300 add-on modules.) It is important to keep those up to
date, too.

On any of our sites, we can check at a glance whether or not there are newer modules
available by going to Administration | Reports | Available updates.

The process for updating modules and themes is largely the same as performing a
site update:

1.	 Put all of the sites in maintenance mode.
2.	 Download all of the modules and themes that you want to update.
3.	 Unpack them and put them into their appropriate locations. We have been

placing our contributed modules in sites/all/modules/contrib/ and our
themes in sites/all/themes/.

4.	 Run update.php as we did before.
5.	 Bring all of the sites back out of maintenance mode.

This is the normal workflow for updating, and you can refer back to the Updating
Drupal section for details.

Often the updates can be done from the command line, should you so desire, with
Drush. To update the code for all of your modules and themes, you can run drush
updatecode, and then for each site run drush updatedb. The only downside to
using Drush for this task is that module owners do not always test with Drush, and
(sometimes spurious) error messages may occur during a Drush update that would
not otherwise arise during a browser-based update.

Updating Multi-site Drupal

[72]

A minor complication
There is one minor complication to the previous process, that is it assumes that
all of the modules and themes are shared between all of the sites. But what if
the sites have their own modules? For example, what if the Cooks site has a
recipes module that Looks and Books do not have? This module would reside
in sites/cooks.local/modules instead of sites/all/modules.

This will require several modifications to the process:

•	 Instead of checking the Available updates report for just one site, you will
need to check all three.

•	 When downloading modules and themes, you will need to make sure to put
each module and theme in the right directory. This will include your sites/
SITENAME/modules and sites/SITENAME/themes directories.

•	 Finally, make sure to run update.php on each site, for we cannot infer from
one site that there are no updates on the other sites if sites have their own
modules and themes.

Keeping a multi-site Drupal instance up to date is a little more challenging than
maintaining just a single site (though it is still easier than maintaining multiple
single sites). With a little diligence, though, the process can be managed.

Summary
In this chapter we have focused on the process of keeping our sites up to date. We
first looked at updating Drupal's core, and then we turned our attention to updating
modules and themes.

The important aspect of updating a multi-site is to make sure we prevent an
update on one site from causing errors on the other sites. For that reason, we were
careful to put sites in maintenance mode before updating code and running the
database updater.

In the next chapter we will look at some advanced configuration options for multi-
site Drupal installations.

Advanced Multi-sites
In the previous chapters we have seen how to install, configure, and update
multi-site Drupal. In this chapter we are going to look at various strategies for
accomplishing advanced configurations.

Rather than explaining the details of a module or two, this chapter addresses specific
topics with general explanations and module suggestions. Each module discussed
here comes with its own documentation on how it is used.

These are the feature categories that we will look at in this chapter:

•	 Handling favicons and robots
•	 Sharing authentication across sites
•	 Sharing content across sites
•	 Sharing structural elements across sites
•	 Cross-site search

Favicons and robots
There are certain files that various web agents expect to find at predefined URLs
on your server. Drupal provides some of these files at fixed locations within the
Drupal distribution. That is, these files are actual files stored on the filesystem, not
paths whose content Drupal generates. This can cause issues when working with
multi-site Drupal instances, since often each site needs its own copy of these files. In
this section we will look at modules that solve this problem for two specific types of
file, namely, favicons and robots files.

Advanced Multi-sites

[74]

Favicons ("Favorite Icons"), the little images that show up on browser tabs and in
bookmarks, are one example. Some web agents assume these files will be accessible
at your site's root with the name favicon.ico, for example http://example.com/
favicon.ico.

Drupal allows you to specify a favicon in a theme's settings, but
it relies on the user agent to find out where the favicon is located
(by reading part of an HTML document). It does not create a file
at the path /favicon.ico.

In a multi-site configuration, we want Drupal to provide a different favicon for
each site. And we want this file to be served at the expected URL. This is best
accomplished by using the Favicon module (http://drupal.org/project/favicon).
It will allow each site to declare its own favicon, and each site will handle requests
for the favicon at the canonical /favicon.ico URL.

Some web agents—notably search engine crawlers—look for a file called robots.
txt. Search crawlers expect to find information in this file that tells them what
parts of the site should be indexed. The contents of this file can figure prominently
in search engine optimization, and a well-configured robots file can substantially
improve a site's appearance in search engine results on the likes of Google and Bing.

By default, Drupal only supports a single robots.txt file that is served out for all
of the sites in a multi-site. But many multi-site configurations need something more
complex. URL patterns are likely to be different from site to site, and a one-size-fits-
all robots file is untenable. Each site may need to provide its own robots file.

For this reason, there is a contributed module called RobotsTxt (http://drupal.
org/project/robotstxt) that provides an administrative interface on each site,
which you can use to set site-specific robots directives.

Use this on single-site installations, too!
Since Drupal core comes with a robots.txt file, it will try to overwrite
this file each time you perform an upgrade. To avoid a search crawler
catastrophe, you may find it better to install the RobotsTxt module and
store your robot configuration in the database.

Similar Drupal modules exist for dealing with features that web agents expect to find
at specific paths. The sitemap module (http://drupal.org/project/xmlsitemap)
is another example. It allows each site to have a specific set of rules to generate the
robust sitemap files that Google, Bing, and other search engines use to discover the
content on your site.

Chapter 5

[75]

Shared authentication
One often-desired feature on multi-site installations is to share user accounts across
sites. The term "user accounts" is ambiguous, though. Do we want Single Sign On
(SSO), where the same username and password work in various sites, or do we
want something more—like having entire user profiles synchronized across our
multi-sites?

Often, loosely affiliated sites will share authentication credentials, allowing one to
use the same credentials to log in on multiple sites, yet each site will have its own
user-specific profile where the user can, for example, set a profile picture or write a
biography. This method is sometimes called Single (or Shared) Sign On (SSO).

Sites with a stronger affiliation may require a greater degree of integration. A user
may have a single robust user profile available to all of the sites on this tightly knit
network. But this requires more work than simply validating credentials for login.

It is not the case that one of these is better than the other. The requirements of any
given set of sites will determine which of these two methods is most appropriate.

Here is a brief survey of several different approaches to sharing authentication
credentials across multiple sites. Most of these solutions were designed to work
beyond multi-site configurations. To that end, they can be used to authenticate
between different servers. But all of them should also work with a multi-site as
discussed in this book.

Before providing an overview of several methods, I will give one word of warning:
There is no simple solution. Each method documented here requires significant work,
the details of which are beyond the scope of this book.

OpenID and other authentication services
First, let's begin with the least sophisticated. Drupal comes with a module called
OpenID. This allows users to use a specific shared ID (an Open ID) and use it on
many different sites. OpenID shares the least amount of information between sites.
Only the OpenID identifier (usually a URL) is shared. Users can even have different
usernames on different sites.

Google, Facebook, and others have expressed support for this model, and obtaining
an OpenID is easy. In this model, when a user supplies a login ID, the Drupal site
interacts with a remote OpenID server. The user is prompted to authenticate to the
OpenID server (not the Drupal server), and that server then informs Drupal when
the user successfully authenticates.

Advanced Multi-sites

[76]

If you use an external OpenID provider, you can enable and use the OpenID module.
This will allow your users to sign into each multisite with the same OpenID account,
though each site will actually have its own user account record. This same OpenID
account can be used not only on your sites, but on other Internet sites that support
OpenID authentication. For this reason it is considered "open", as it is not limited to
only a few sites.

OpenID isn't the only solution for authentication services. Similar configurations can
be achieved using Twitter, Google, Facebook, and other backends. You can search
the Drupal.org module listing for modules that provide integration with your service
of choice.

LDAP and Directory services
Another alternative is to use a local directory server or authentication service
like LDAP, ActiveDirectory, CAS, or Kerberos. Under this setup, accounts are
maintained on a separate server, and Drupal communicates with these servers to
verify credentials.

Unlike OpenID, though, these servers know more about the user, and can share this
information with Drupal and other servers. In other words, they are often used for
much more than simple authentication. This method can be very powerful for large
internal networks (like corporations and educational institutions), but is probably
overly complex for a simple multi-site.

One advantage to this solution is that accounts can be handled independently.
Dedicated servers with strictly enforced access control policies are desirable if
security is an important goal. Another advantage is that support for LDAP, Active
Directory (which is a flavor of LDAP), CAS, and Kerberos enjoy widespread support.
From operating systems to servers to client programs, many tools can perform
authentication and authorization using these services.

But the disadvantage is that maintaining directory or authentication servers adds
another layer of complexity to your configuration. Often, managing directory and
authentication services is as complex (if not more complex) than managing a web
server application stack.

LDAP support is provided in the LDAP module (http://drupal.org/
project/ldap) and related modules, while Kerberos support is found in
the Kerberos Authentication module (http://drupal.org/project/
kerberos_authentication). CAS (Central Authentication Service) can
be found at http://drupal.org/project/cas.

Chapter 5

[77]

For detailed LDAP documentation, see the LDAP manual at
http://drupal.org/node/997082.

Using the Services module
The Services module (http://drupal.org/project/services) provides an
underlying framework for sharing Drupal data with other sites. It provides a
sophisticated mechanism for authenticating remote clients and granting those clients
programmatic access to Drupal information. Using Representational State Transfer
(REST), provides an HTTP-based API (Application Programming Interface) to
which other network programs can connect.

In short, it makes it possible for other programs (including other Drupal instances) to
connect to Drupal and access data.

And with the help of the Services SSO Client (http://drupal.org/project/
services_sso_client) and Services SSO Server Helper (http://drupal.org/
project/services_sso_server_helper) modules, it can be used for shared
authentication.

This is a promising approach, though configuring the Services module can be
tedious and time consuming, as it requires detailed knowledge of Drupal's internal
data structures and (on many occasions) code. The SSO Client and Server Helper
modules are under active development at the time of this writing, but as they
stabilize this may become the best way to share sign-in data between sites on a
general multi-site configuration.

Using Bakery for SSO
Drupal.org shares authentication information across http://drupal.org,
http://groups.drupal.org, and other sites. How does it accomplish this?
Several members of the core infrastructure team built and manage a module
called Bakery (http://drupal.org/project/bakery). This module can share
authentication information between multiple sites, provided all of the sites are
under the same second-level domain. That is, you can share authentication between
http://www.example.com and http://dev.example.com, but you couldn't
share authentication between http://www.example.com and http://www.
anotherexample.com.

Why this limitation? Because Bakery relies heavily on browser cookies for storing
shared tokens, yet by design cookies can only be shared with sites underneath a
given top domain.

Advanced Multi-sites

[78]

The domain restriction is the biggest limitation of Bakery. But given the deep
commitment of the Drupal community, Bakery is well-maintained and stable.

Sharing a user database
The last method of shared authentication is sharing database tables between all of the
instances. The strategy here is to have a single database (or copy of the user tables)
that is shared among all of the multi-site instances.

While this method has been around for years, it remains fraught with difficulties.
Upgrading is tremendously complex, and there are security issues with sharing
such data in this way. A couple of modules were created to streamline this
functionality, but the latest of these, SSO (http://drupal.org/project/sso)
is no longer maintained.

If you are interested in attempting to share database tables, the best place to start is in
the Advanced and multisite installation section of the complete Installation Guide,
which has a section entitled Share tables across instances (not recommended)
(http://drupal.org/node/22267). However, this method ought to be considered
a last resort.

Shared content
Shared authentication is a popular but tricky problem to solve. Another
often-requested feature for multi-site installations is sharing content.

The multi-site design was not initially intended to share content. In fact, it
was intended to not share content. Be that as it may, there are a few ways of
accomplishing this.

As with shared authentication, one possibility is to attempt to share database tables
between different sites on a multi-site. On occasion, users report having attempted
this method on their own sites. But this method is also fraught with difficulties.
Security is difficult, updates require special care, and there is constant danger of
what is called a "race condition", where two different sites vie for control of the same
resource. Consequently, this method should be avoided.

There are a few other more reliable methods, though.

Chapter 5

[79]

Sharing content with Services and Deploy
The Services module (http://drupal.org/project/services) discussed in
the previous section provides all of the architecture required for sharing content.
However, it doesn't provide an easy-to-use interface for sharing. But the Deploy
module (http://drupal.org/project/deploy), which is built on Services, can be
used to move content from one server to another.

Deploy is a good fit if you want to synchronize content from one site to another. The
canonical case for Deploy is running a staging server (where content is authored)
and a live server (where users come to view the content), and deploying content
from the staging server onto the live server as it is ready.

Since Deploy is workflow-based, it requires substantial effort to configure and
maintain. The Drupal 7 release has not yet stabilized, so investing in Deploy will
require experience in PHP coding.

Domain Access as a multi-site alternative
If sharing content is a high priority, the best solution is to move away from the core
multi-site configuration discussed in this book. Built as a more sophisticated method
of hosting multiple domains on a single Drupal instance, Domain Access (http://
drupal.org/project/domain) uses only one database. Instead of creating separate
Drupal installations (one for each site) Domain Access creates a single Drupal
instance that can listen on multiple hostnames, reacting differently depending on
which hostname the client requests.

Sites can look entirely different, having unique navigation, themes, and content. But
content can also be shared. In addition, there is only one administration interface for
all of the sites. This is great in cases where one person or group must manage all of
the sites, but if various sites are managed by different administrators, it can be tricky
(and sometimes impossible) to grant the right level of permissions to the different
administrators.

Because it is stable, continually maintained, and widely used, the Domain Access
module is the best choice if content sharing is a requirement for your multi-site
configuration. But be aware that it is complicated and requires detailed knowledge of
Drupal concepts and components.

Advanced Multi-sites

[80]

The Virtual Site module
Finally, another promising (but currently incomplete) module will provide a
different way to run a single site and configure it to act as different sites under
different conditions. The Virtual Site module (http://drupal.org/project/
virtual_site), which was developed for Drupal 6 and is currently being updated,
promises just this.

By adjusting which configuration parameters it uses based on the nature of the
request (what domain, what browser type, and so on), the Virtual Site module can
use different configuration parameters. For example, it can support different themes,
different site names, and different menus.

Virtual Site and Domain Access have substantial feature overlap.
While Domain Access is clearly more stable and more frequently
used, the Virtual Site module does have some interesting features,
such as the robust support for declaring conditions.

Unlike Drupal's built-in multi-site capability, Virtual Site can switch on conditions
other than domain name. For example, it can be configured to serve a different "site"
to mobile browsers than to desktop browsers.

But Virtual Site shares one database (and one set of nodes, comments, users, and
so on) for all of the virtual sites it hosts. In this way it is on the opposite end of the
spectrum from the built-in multi-site, which uses separate databases for each site.

Currently, Virtual Site for Drupal 7 is still under active development. It is not ready
for production use. Hopefully, though, it will soon stabilize and be a viable solution
for multi-site developers.

Shared structure
Sometimes multi-sites do not need to share content, but would benefit from sharing
content types, permissions, views, contexts, formats, and other structural data.
Typically, this data is stored in the database, and since Drupal multi-sites typically
do not share the same database tables, they cannot automatically share this data.

However, the Features module (http://drupal.org/project/features) provides
this capability. Features is a tool that transforms certain Drupal structures into
versioned modules.

Chapter 5

[81]

Features is by no means specific to multi-site configurations.
Most commonly, it is used to share features between completely
unrelated sites.

Let's imagine a practical scenario. Imagine that we have created a blog. On one of
the sites in our multi-site we have defined the content type, the permissions, and the
views necessary for this blog. But now we want to use this exact blog structure on
all of the sites on the multi-site. This is what Features allows us to do. We can create
a new Feature (a process done through the administrative interface) on our first site,
assigning content types, permissions, views, and even blocks to this feature.

Once the Feature is completely built, we can export it, which generates a module
containing all of the code necessary for replicating the exact same structure on
another site. By putting this module in our sites/all/modules folder we can
make it available to all of the sites on our multi-site setup. To turn the feature on
for one of the other sites, we can simply go to the Modules screen in Drupal's
administration. The module will appear in the list of available modules, and all
we need to do is enable it.

Features is a great tool for sharing Drupal structure across sites. While it is relatively
stable on Drupal 7, it is still in its beta stages. Even so, it provides a fantastic toolset
for sharing across sites.

While Features is not designed to share content, there are various projects that will
likely extend Features' capabilities to do this. In the future, Features may be a good
candidate for limited sharing of content between sites.

Searching across sites
The last topic to cover in this chapter is site search. The core Drupal server comes
with a built-in search engine. This engine can index all of the content on a site,
allowing visitors to search for content.

Because it stores all of its information in the database, each Drupal site in a multi-site
setup can have its own search engine.

But what if we want to provide a single search instance that can search content
across all of our sites? In this case, when a user searches on our fabled books.local
site, that user would see looks.local and cooks.local content as well.

This particular form of cross-site searching cannot be done with the built-in search
engine. However, since Drupal's search is pluggable, we can use an add-on module
to provide this service.

Advanced Multi-sites

[82]

The most popular search engine alternative for Drupal 7 is the Apache Solr module
(http://drupal.org/project/apachesolr). This module relies on an external
Apache Solr server (http://lucene.apache.org/solr/) to handle the technical
details of searching.

Because it requires an external server (which you will need to set up and manage),
Solr is harder to maintain than the built-in Drupal search. But it integrates well with
multi-site Drupal. Each site in a multi-site can be configured to use the same Solr
instance, and that one Solr instance can search data for all of your sites.

Hosted Solr
Acquia (http://acquia.com) provides a hosted Solr service for
Drupal sites. Once you have signed up for their search services, you
can configure your multi-sites to store content on their Solr servers.
This alleviates the burden of running your own copy of Solr.

In addition to the Drupal Apache Solr module, there are several other search
alternatives, such as the Xapian module (http://drupal.org/project/xapian),
that can be used to access external search services.

When it comes to running a search service within Drupal, and not relying upon
an external server, options are limited. The new Zend Lucene project (http://
drupal.org/project/zend_lucene) may at some point provide multi-site search
capabilities, but at this time of writing it does not.

Summary
The purpose of this short chapter has been to point beyond a simple multi-site
configuration to various modules that can extend multi-site capabilities. We briefly
looked at authentication, shared content, shared structure, and cross-site searching.

Drupal's multi-site capabilities can make it easier to host many websites. As we've
seen throughout the book, there are challenges to setting up multi-site, but the
benefits outweigh those challenges.

Finally, we have diligently focused on the multi-site capabilities built into Drupal.
But as I said at the beginning, multi-site is only one way of hosting multiple Drupal
sites. Wisely choosing the best strategy for your needs will make both immediate set
up and long-term maintenance easier. Multi-site may indeed be the best fit for your
own needs, but if not, take a look at some of the other options Drupal provides, from
simply hosting multiple instances of Drupal separately to using Domain Access for
deep sharing of content. Thousands upon thousands of websites rely upon Drupal.
And this is largely due to Drupal's tremendous flexibility.

Index
A
Acquia

about 82
URL 82

ActiveDirectory 76
AdaptiveTheme 56
all/ directory 30
Apache

about 10, 21
configuring, for Drupal multi-site 22, 23

Apache Solr module 82
Application Programming Interface (API)

77
AT Admin 56
AT Core 56
AT Subtheme 56

B
Backup and Migrate module 62
backups

creating 60
database 62, 63
filesystem 60, 61

Bakery
about 77
using, for SSO 77, 78

base theme 55-57
Bing 66, 74
BlueMasters theme 53, 54

C
Central Authentication Service (CAS) 76
commands, Vagrant

about 17
vagrant destroy 17
vagrant halt 17
vagrant provision 17
vagrant resume 17
vagrant suspend 17

Common Gateway Interface (CGI) 21
configuring

MySQL 24
content

sharing, with Deploy module 79
sharing, with Services module 79

Content Management System (CMS) 5
cross-site searching 81

D
database backups 62, 63
default/ directory 30
default.settings.php file

checking 68
Deploy module

about 79
content, sharing with 79

different versions
using, on same module 52

document root, Vagrant profile 29
domain

virtual hosting, using for 23
with subdirectories 32

[84]

Domain Access
about 79
as multi-site alternative 79

Domain Access module 11
domain name 18, 19
domain name directories

about 31
example 31

Domain Name Service (DNS) 19
downloading

Drupal 28, 65
Drupal

about 5
and multi-site 10-12
backups, creating 60
downloading 28, 65
first host, installing 29
informing, about other sites 29, 30
installation help, getting 41
installing 65
modules, configuring 47
modules, sharing 48-50
modules, updating 71
multi-site 7
multi-site configuration, selecting 12, 13
multi-site configurations versus standard

single-site configurations 6, 7
multi-site Content Management System 6
other sites, creating 40
placing, in maintenance mode 63-65
server, configuring without VirtualBox and

Vagrant 17, 18
server, setting up 13, 14
setting up, manually 27, 28
shared authentication 75
sites, configuring 43, 44
subthemes 55-58
themes 53, 54
themes, updating 71
unshared modules 50, 51
URL, for documentation 27
web servers 21

Drupal, for web CMS
advantages 11

Drupal Groups
URL 42

Drupal installation
default.settings.php file, checking 68
existing files, overwriting 66, 67
new version, fetching 66
resources, for trouble shooting 42

Drupal multi-site
about 7, 10
Apache, configuring for 22, 23
different software, running on same site 8
disadvantages 11
efficient development 10
secure tools, running on same server 9
server administration, easing 8
shared hosting 8
single code base, sharing 9
standard tools, running on same server 9
testing, before deploying to live site 9

Drupal Virtual Machine
installing, with Vagrant 14

Drush 48, 56, 66

F
Facebook 75, 76
FastCGI 36
Favicon module 74
favicons

about 74
handling 74

Favorite Icons. See favicons
Features module 80, 81
Field Text Formatter module 50
File entity module 49
files/ folder 35
filesystem backups 60, 61

G
Git

about 15
URL 15

GoDaddy 19
Google 66, 74-76
graphical front-end

for MySQL 62

[85]

H
hosts file

about 18
using 19

HTTP protocol 9
HTTPS 9

I
IIS 21
installing

Drupal 65
subthemes 55, 56
tailored Vagrant project 14, 15
themes 53, 54
unshared modules 50, 51

INSTALL.txt document 42
Internet Service Provider (ISP) 13
IP address 18

K
Kerberos 76

L
LAMP 14
LDAP 76
LDAP module 76
Lighttpd 21
Linux 10
Linux Apache MySQL PHP. See LAMP

M
maintenance mode

Drupal, placing in 63-65
Media Internet Sources module 49
Media module 48, 49
modules

and sharing 52
configuring 47
sharing 48-50
updating 71

multi-site
and Drupal 10-12

multi-site configuration
selecting 12, 13
versus standard single-site configurations

6, 7
multi-site Content Management System 6
multi-site Drupal

major upgrade 59
minor updates 59, 60
updating 59, 60

multi-site hosting 6
MySQL

about 10
configuring 24
graphical front-end 62

N
new virtual machine

connecting to 16, 17
Nginx 21

O
online Drupal installation manual

URL 42
OpenID 75

P
patch command 68
PHP 10
Pixture Reloaded 57
point release 59

Q
quality assurance (QA) 9

R
README.txt document 42
Representational State Transfer (REST) 77
robots

about 74
handling 74

RobotsTxt module 74

[86]

S
search engine crawlers 74
server

configuring, without VirtualBox and
Vagrant 17, 18

setting up 13, 14
server administration

easing 8
Services module

about 77, 79
content, sharing with 79
using 77

Services SSO Client module 77
Services SSO Server Helper module 77
settings file 34
settings.php file 43
shared authentication

about 75, 78
Bakery, using for SSO 77, 78
Directory services 76
LDAP 76
OpenID 75, 76
Services module, using 77
user database, sharing 78

shared configuration file
creating 44-47

shared content 78
shared hosting 8
shared settings file

creating 44
shared structure 80, 81
sharing settings

warning 47
Single Sign On (SSO) 75
site folder

creating 30
sites

configuring 43, 44
searching across 81, 82
taking, out of maintenance mode 70

site search 81, 82
sites.php configuration file 32, 33
SSH 16
SSO

about 75
Bakery, using for 77, 78

standard single-site configurations
versus multi-site configurations 6, 7

subthemes
and sharing 55-58
installing 55, 56

T
tailored Vagrant project

installing 14, 15
Tape Archive. See TAR
TAR 61
tar command 61
TCP/IP networking stack 18
textformatter module. See Field Text

Formatter module
themes

about 53
installing 53, 54
updating 71

Twitter 76

U
unshared modules

about 50
installing 50, 51

update.php file
running 69, 70

user database
sharing 78

V
Vagrant

about 14
commands 17
Drupal Virtual Machine, installing with 14
URL 14

vagrant destroy command 17
vagrant halt command 17
Vagrant profile

document root 29
vagrant provision command 17
vagrant resume command 17
vagrant suspend command 17
Verisign 19
Version Control System (VCS) 10

[87]

VirtualBox
about 10, 14
URL 14

virtual hosting
about 21
using, for each domain 23

virtual server 13
Virtual Site module 80

W
Web 16
web installer 37, 38

web servers
about 21
Apache 21

wget command 29

X
Xapian module 82

Z
Zen 56
Zend Lucene project 82

Drupal 7
ISBN: 978-1-84951-286-2 Paperback: 416 pages

Create and operate any type of website quickly
and efficiently

1.	 Set up, configure, and deploy a
Drupal 7 website

2.	 Easily add exciting and powerful features

3.	 Design and implement your website's look
and feel

4.	 Promote, manage, and maintain your
live website

5.	 Extended media coverage

Drupal 7 Development by Example
Beginner's Guide
ISBN: 978-1-84951-680-8 Paperback: 270 pages

Follow the creation of a Drupal website to learn, by
example, the key concepts of Drupal 7 development
and HTML5

1.	 A hands-on, example-driven guide to
programming Drupal websites

2.	 Discover a number of new features for
Drupal 7 through practical and interesting
examples while building a fully functional
recipe sharing website

3.	 Learn about web content management,
multi-media integration, and e-commerce
in Drupal 7

Please check www.PacktPub.com for information on our titles

Drupal 7 Business Solutions
ISBN: 978-1-84951-664-8 Paperback: 378 pages

Build powerful website features for your business

1.	 Build a Drupal 7 powered website for your
business rapidly

2.	 Add blogs, news, e-commerce, image galleries,
maps, surveys, polls, and forums to your
website to beat competition

3.	 Complete example of a real world site with
clear explanation

Drupal 7 Themes
ISBN: 978-1-84951-276-3 Paperback: 320 pages

Create new themes for your Drupal 7 site with a clean
layout and powerful CSS styling

1.	 Learn to create new Drupal 7 themes

2.	 No experience of Drupal theming required

3.	 Discover techniques and tools for creating and
modifying themes

4.	 The first book to guide you through the new
elements and themes available in Drupal 7

Please check www.PacktPub.com for information on our titles

Thank you for buying
Drupal 7 Multi-sites Configuration

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Multi-site Drupal
	Drupal is a multi-site Content Management System
	From one site to many
	Why multi-site?
	Running different software on the same site
	Making the most of shared hosting
	Easing server administration
	Staging or testing before deploying to
a live site
	Sharing a single code base
	Running secure and standard (unsecured) tools on the same server
	Efficient development

	Drupal and multi-site
	A quick guide to choosing the right multi-site configuration

	Setting up a server
	Installing a Drupal Virtual Machine
with Vagrant
	Installing our tailored Vagrant project
	Basic configuration for this book
	Connecting to the new Virtual Machine

	Configuring a server (without VirtualBox and Vagrant)
	Domain names and IP addresses
	Using a hosts file

	Web servers
	Apache
	Configuring Apache for a Drupal Multi-site
	A note on using virtual hosting for
each domain

	Configuring MySQL
	Summary

	Chapter 2: Installing Drupal for Multi-site
	Manual setup
	Downloading Drupal
	Installing the first host
	Telling Drupal about our sites
	Creating a site folder
	Domain name directories
	Domains with subdirectories
	The sites.php special configuration file

	Settings
	The files/ folder
	The web installer

	Creating the other sites
	Getting installation help
	Summary

	Chapter 3: Settings, Modules, and Themes
	Configuring sites
	Creating a shared configuration file
	A word of warning about sharing settings

	Configuring modules
	Sharing modules
	Unshared modules
	A note on using different versions of the
same module

	Modules and sharing (in summary)

	Themes
	Subthemes and sharing

	Summary

	Chapter 4: Updating Multi-site Drupal
	Updating Drupal
	Making backups
	Filesystem backups
	Database backups

	Putting Drupal in maintenance mode
	Downloading and installing Drupal
	Fetching a new version
	Overwriting the existing files
	Checking the default.settings.php file

	Running update.php
	Taking the sites out of maintenance mode

	Updating themes and modules
	A minor complication

	Summary

	Chapter 5
: Advanced Multi-sites
	Favicons and robots
	Shared authentication
	OpenID and other authentication services
	LDAP and Directory services
	Using the Services module
	Using Bakery for SSO
	Sharing a user database

	Shared content
	Sharing content with Services and Deploy
	Domain Access as a multi-site alternative
	The Virtual Site module

	Shared structure
	Searching across sites
	Summary

	Index

