Drupal 7 Multilingual Sites

A hands-on, practical guide for configuring your Drupal 7 website
to handle all languages for your site users

PACKT *

Drupal 7 Multilingual Sites

A hands-on, practical guide for configuring your
Drupal 7 website to handle all languages for your
site users

Kristen Pol

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Drupal 7 Multilingual Sites

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2012
Production Reference: 1110412

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84951-818-5
www . packtpub.com

Cover Image by Kristen Pol (coverimage@kristen.org)

Credits

Author Proofreader
Kristen Pol Aaron Nash
Reviewers Indexer
Gabor Hojtsy Monica Ajmera Mehta
Jose Reyero
Graphics
Acquisition Editor Manu Joseph

Sarah Cullington
Production Coordinator
Technical Editors Prachali Bhiwandkar
Veronica Fernandes
Vishal D'souza Cover Work
Prachali Bhiwandkar

Project Coordinators
Yashodhan Dere

Jovita Pinto

About the Author

Kristen Pol grew up as the youngest sister to five brothers in a small town in rural
Central California. After high school and a few community colleges, she earned

a BA degree in mathematics and physics at UC Santa Cruz in 1994 and an MSEE

at Stanford University in 1995. After college, she worked as a Systems Engineer

at Hewlett Packard and then as a Java Application Architect at a web consulting
company in downtown Santa Cruz, California, during the dot-com boom.

She started her own software business in 2001. Initially, she focused on Java
applications, but in 2004 Drupal changed her life. Starting with version 4, she got
hooked on Drupal development and now she focuses pretty much exclusively on
Drupal and search engine optimization (SEO). She works with a wide variety of
clients throughout North America. She enjoys working on challenging websites that
require custom programming. Some of her more notable Drupal projects include
boomboomcards . com (social kindness game), naturebridge. org (non-profit
bringing kids to nature), thesoundpost . com (Canadian classical instrument shop),
and boomerangproject . com (school transition programs).

She is very active in the Drupal community. She has authored contributed modules
including Featured Content and SEO Friend, regularly attends the Santa Cruz
Drupal user group meetings, improves drupal.org documentation, gives talks at
Drupal camps and events, and helps out on the Drupal forums and issue queues.
When she's not doing Drupal, she enjoys photography, travel, hiking, and spending
time with her husband and two sons in beautiful Santa Cruz. Feel free to contact her
at kristen.org/contact.

Acknowledgement

First, I'd like to say a very BIG thank you to Gabor Hojtsy and Jose Reyero for
answering my questions and reviewing the book, and to Gabor for letting me use
some of his helpful illustrations. These two have contributed an enormous amount
of time and effort into improving the Drupal localization process. I'll buy you both a
beer at the next DrupalCon!

A special thanks to Aimee Degnan and John Storey for giving useful feedback on the
book, and to my local Drupal community, particularly the Santa Cruz user group
members who beta tested the book exercises, namely, Linda Donohue, Paul Ferlito,
Craig Harris, Mary Edith Ingraham, Jacob Miller, Forest Monsen, Murias O'Ceallagh,
Darren Odden, Scott Patterson, Heather Reed, Darryl Richman, Don Skaggs, Rob
Thorne, and Julia van der Wyk.

I'm also grateful to my very supportive husband, Josh Deutsch, and to my two
wacky boys, Jacob and Aaron. Jacob said that I should mention here that "they didn't
annoy me so that I could write the book." Well, at least that shows he had good
intentions. I'm exceedingly lucky to have Cerise Cazet, an awesome kid-sitter (and
video games for when she's not available!).

Next, I would like to thank the Drupal community at large for providing an
interesting and fun environment for being a geek and for creating cool websites. I
can't imagine working with any other framework. To keep things succinct, I haven't
included the names of the wonderful module creators and maintainers in the book,
but you know you rock!

Last of all, I'd like to give thanks to the people at Packt for making this happen. This
is my first book and I've learned a lot.

Oh! And, thanks to you for reading this.

About the Reviewers

Gabor Hojtsy is an open source enthusiast and contributor, most active as a
Drupal developer, working with and on the open source project itself at Acquia. He
started off contributing to open source in 2000 when he became an active contributor
to the PHP Documentation team. He became the lead to that team and the php.net
website team for years. He technically edited the first Hungarian PHP developer
book, led courses on web technologies, and co-organized various PHP and generic
web development conferences. He started working with and on Drupal in 2003, and
became devoted to the multilingual functionality and sometimes the lack thereof.
He has been an active contributor ever since, and was the co-organizer of the
international DrupalCon Szeged 2008. He is an active maintainer for Drupal 6, the
initiator of localize.drupal.org, Drupal's software localization site, and lead to
the Drupal 8 Multilingual Initiative.

When not geeking out, he is passionate about singing, music, and amateur acting,
especially when these are all combined.

Jose Reyero has been working on web development for more than 10 years.
He is a long time Drupal contributor and the original author and maintainer of
Internationalization and some other Drupal modules. He currently works as a
freelance consultant and Drupal developer in Leén, Spain.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

@ PACKT! 5"

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
e Fully searchable across every book published by Packt
e Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

I dedicate this book to my parents, Merleigh and Bill Jones, and to the memory of my dad,
A. John Pol. I love you.

Table of Contents

Preface 1
Chapter 1: Multilingual Overview, Use Cases, and Modules 7
Considerations and use cases 7
Different types of language support 8
Some things to think about 8
Example use cases 9
Simple blog site 9
Consulting company site 9
E-commerce site 9
Our demo site 10
Multilingual Drupal overview 10
Speaking the same language... terminology 10
Pieces of the multilingual puzzle 11
Interface 12
Content 13
Configuration 14
A look at the modules 14
Summary 15
Chapter 2: Setting up the Basics: Languages, Ul Translation,
and System Settings 17
Getting up and running 18
Using your own site 18
Using the demo site 18
Roles, users, and permissions 19
Working with languages 19
Adding languages with the Locale module 19
Detecting languages 21
URL 22
Session 22

User 22

Table of Contents

Browser 23
Default 23
Detection method order 23
Our choice 24
Switching between languages 24
Interface and string translations 25
Translating the interface 25
Automatic translation updates 27
Adding and fixing interface translations 29
Contributing translations back to the community 32
Translating English strings 33
Modifying the settings.php file 34
Using the String Overrides module 34
Creating a custom English language 34
Reusing custom translated strings 35
General system configuration 35
Updating regional settings 35
Date and time formats 36
Translating site variables 36
Customizing the contact form 38
Summary 39
Chapter 3: Working with Content 41
Nodes 41
Enabling multilingual support 41
Node translation model 43
Configuring node translation 44
Synchronizing shared fields 48
Extra content type options 49
Field translation model 50
Configuring field translation 51
Using the language switcher 54
Non-node entities 55
Comments 55
Language assignment 57
Comment display 58
Users 58
Taxonomy terms 59
Custom entities 61
Node listing and search pages 61
Home page 61
Taxonomy term pages 62
Search 62
Summary 63

Lii]

Table of Contents

Chapter 4: Configuring Blocks, Menus, Taxonomy, and Views 65
Blocks 65
Language-specific blocks 66
Translating blocks 67
Blocks provided by modules 68
Menus 69
Language-specific menus 71
Multilingual menus 72
Node pages 72
Pages with the same link 73
Pages with different links 74
Taxonomy terms 74
Taxonomy translation module 75
Language-independent terms 76
Language-specific terms 77
Localized terms 78
Mixed-language vocabulary 79
Updating the field label 80
Views 81
Multilingual views 81
Language-specific views 83
Nodes using field translation 83
Non-node views 84
Comments 84
Taxonomy terms 85
Users 86
Views text 87
Summary 88
Chapter 5: Panels, SEO, and More! 89
Panels 89
Panel panes 90
Language-specific panel pages 91
SEO 91
Multilingual and international SEO 91
Friendly URLs 92
Removing special characters from path aliases 93
Page title and meta tags 94
Meta Tags module 95
Meta Tags Quick module 96
Page Title module 96
Home page optimization 97

Duplicate pages 97

[iii]

Table of Contents

Translation management and workflow 99
Who can translate? 99
Content administration 99
Contributed modules 100

Lingotek Collaborative Translation module 100
Translation Management Tool module 100
Custom workflow 101

Theming and module development 101
RTL support 101
Interface and content languages 102
Custom CSS 102
String translation functions 104

Summary 105

Appendix: Modules, Resources, and Getting Involved 107

Modules used in the book 107
Chapter 2 108
Chapter 3 108
Chapter 4 109
Chapter 5 110

Module usage 110

More multilingual modules 112
Interface 112
Content 112
Configuration 112
Admin tools 113
Finding multilingual modules 113

Community resources 13
Groups, forums, and IRC 113
Documentation and guides 114
Articles, videos, and more 114

Getting involved 114

What's up for Drupal 8?7 115

Want more? 115

Index 117

[iv]

Preface

Recent estimates show at least 1.5 million websites run on Drupal, which calculates
to roughly two percent of all sites. Drupal is used to create personal, business,
government, and educational websites including high-profile ones such as
whitehouse.gov, duke.edu, and economist . com. Drupal adoption is following

a very positive trend; last year alone, the number of Drupal websites increased by
more than 33 percent.

Drupal's default installation is in English. But, as you'll soon see, it can be
configured to handle other languages as well. Creating a multilingual website
expands your audience, and studies have shown that users are more likely to
buy products and services on a website when content is presented in their native
language. Coupled with the fact that there are many more non-English native
speakers than English native speakers, you should see the full value of creating
a site that supports other languages.

After working through the book exercises, you will have the skills needed to create
a rich and robust multilingual Drupal 7 website. Enjoy!

What this book covers

Chapter 1, Multilingual Overview, Use Cases, and Modules, starts by exploring issues,
considerations, and example use cases for multilingual websites. Then, to get more
familiar with the topic, technical terminology, a Drupal architecture overview, and
a preview of Drupal 7 modules are covered.

Chapter 2, Setting up the Basics: Languages, Ul Translation, and System Settings, gets
us set up with a test site, so new languages can be added and detected. With
languages in place, the chapter addresses Drupal interface and string translation
as well as general system configuration such as countries, dates, and variables.

Preface

Chapter 3, Working with Content, is dedicated to handling content translation using
two different methods, namely, node translation and field translation. Use cases,
trade-offs, and issues are discussed for both methods. The chapter includes how
to work with built-in content pages such as the default home page.

Chapter 4, Configuring Blocks, Menus, Taxonomy, and Views, deals with configuring
these standard Drupal components. Language-independent, language-specific,
and multilingual configurations are handled, and implications of node-translated
versus field-translated content are discussed.

Chapter 5, Panels, SEO, and More!, goes into advanced topics including Panels, SEO,
translation management, theming, and module development.

Appendix, Modules, Resources, and Getting Involved, provides a list of modules used
in the book as well as additional multilingual modules and a handy overview table
on key module usage. Other resources provided include online documentation,
forums, ways to get involved, and plans for Drupal 8.

What you need for this book

For the book exercises, you will need to choose from the following options:

* Use an existing Drupal 7 website
* Create a Drupal 7 website from scratch (drupal.org/project/drupal)

* Use the Localized Drupal Distribution (drupal.org/project/
110n_install)

* Use the demo installation profile (drupal.org/project/
multilingual book demo)

Who this book is for

If you know the Drupal basics (such as creating content types, blocks, and menus)
and want to create a multilingual website for yourself, your company, or your
clients, then this book is for you. This book was beta tested by a few "newbie"
Drupalers and they were able to go through the exercises without much difficulty.

This book is also very valuable for experienced Drupalers who are new to
creating multilingual websites. There are many things to configure and the online
documentation is scattered and incomplete. By working through this book, you
will learn the intricacies of setting up a multilingual Drupal site, which will save
you a lot of time and headache.

[2]

Preface

Before you start

You are highly encouraged to read this section before you continue with Chapter 1,
Multilingual Overview, Use Cases, and Modules.

Exercise workflow tips

The book is written as a step-by-step tutorial. It is best to work through the exercises
in order. If you do jump ahead, just keep in mind that you might need to install and
configure additional modules that were addressed in earlier exercises.

It is also recommended that you disable the Overlay module when working through
the exercises for a simpler workflow. In many cases, you will need to flush all caches
after each configuration to ensure the system is using the latest settings. When
something doesn't work as expected, flush the caches and check again.

Working with modules

The module versions used for the book exercises are listed on the demo installation
profile project page (drupal.org/project/multilingual_book_demo). These
versions are bundled with the demo installation profile software. But, you do not
need to use the installation profile to work through the book exercises. If you use
different versions of the modules, just remember that you might experience different
behavior than what is shown in the book exercises. If any functionality changes
drastically, then notes will be added to the errata at kristen.org/errata.

The Drupal Internationalization module, used heavily in the book, is a package
of many submodules. If an exercise explains installing a module from the
Internationalization package, then you only need to download the package once
but you'll still need to enable the submodule that is listed.

Extra topics

A few topics that were not included in the book due to space constraints are
available at kristen.org/extra, so you are encouraged to look there before diving
into the chapters. In particular, there is a very useful table for seeing how to access
the various translation features at kristen.org/accesstable.

[31]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Drupal requires modules and themes
to use the t () function for text that will be displayed in the UL"

A block of code is set as follows:

Sconf ['locale custom strings en'][''] = array(
'Taxonomy' => 'Categories',
'Taxonomy term' => 'Category term',

)i

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

if (function exists('il8n_string')) {
$name = il8n_ string($key, $name);

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on Save".

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

[4]

Preface

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Multilingual Overview, Use
Cases, and Modules

Drupal is a big system with lots of moving parts. What exactly does it mean to make
a multilingual Drupal site? We certainly want to write content in languages other
than English. We need blocks and menus to be smart enough so we can use them

for different languages. What about Views? Sure, we want it smart too. What about
Panels? Yes, of course! What about a seemingly random message string coming from
a module we just installed? What about the Drupal Ul itself? And so on and so forth.

As you can see, we have a lot of things that need configuring if we want a fully
multilingual Drupal website. This book aims at showing you how to navigate
through the myriad of modules, configuration settings, and sometimes not-so-
intuitive methodologies to make it happen. The exercises in the book are hands-on
and organized to give structure to your localization process.

But before we start our exercises and break into a sweat, we need to understand

a few things. This chapter will give you an overview of what it means to build a
multilingual site in Drupal 7. We will explore a number of issues and considerations
when working with multiple languages, and check out some typical use cases. Then,
we'll take a look at some terminology and the different parts of the multilingual
Drupal puzzle, namely, interface, content, and configuration. The chapter concludes
with a preview of the modules we'll use in the coming chapters.

Considerations and use cases

Just like there is no one way to build a regular website, there is no one way to
build a multilingual website. Every site is different and has its own use cases

and multilingual demands. Check out amnesty.org, drupalcampmontreal .com,
wunderkraut .com, reyero.net, and thesoundpost.com as some unique examples
of multilingual Drupal websites.

Multilingual Overview, Use Cases, and Modules

Different types of language support

You can use as much of Drupal's language support as you need. If you simply want a
website that is only shown in German with no English text and no translations, then
you can certainly do that. Or, if you want to support content in several languages but
none of the content will be translated, you can do that too. For the book exercises,

we will be building a fully multilingual site that includes translation. The next figure
shows the different levels of language support you might need depending on your
site's use cases:

/" Multilingual site with translation

q Multilingual site h

‘ Foreign language site |

" -M J

Some things to think about

There are always plenty of things to worry about when designing a website. When
you decide to make your site multilingual, the list just gets bigger. This section is not
meant to be an exhaustive compilation of everything you need to be thinking about
before diving in, but it should help to get you started. We will consider many of
these items as we work through our hands-on exercises:

e Should you use a domain, a sub-domain, or a directory per language?

¢ Do you need translations of all content in all languages?

o If there isn't a translation available, should it show the source content?

e Will translations be done in-house or outsourced and by one person or
a team?

¢ Do you have special e-commerce needs while dealing with taxation
or currencies?

e Should the admin Ul have a different default language from the end-user UI?

[8]

Chapter 1

e Do any of your languages need Right-to-Left (RTL) theming support?
e Will the navigation be different for each language?
e Has the Drupal Ul been mostly translated for your chosen languages?

¢ What translation methods make sense for the site content?

Example use cases

Although there are many ways you can create a multilingual site based on your
language needs, the following are some examples to get you thinking more about
Drupal's language support.

Simple blog site

Jacob is a writer and has his own website where he blogs about his life and his
work. He is fluent in English and Italian, and has a family in Italy where he often
goes on vacations. He writes articles in English or Italian depending on the subject.
He sometimes translates the blogs so that they are available in both languages, but
not always. Jacob does freelance work in the United States. So his work-related
content only needs to be in English. He is the sole user for his website but he allows
comments to be left in both languages.

Consulting company site

AJ Consulting is a small consulting company in Santa Cruz, California. Drawing
from the large Hispanic community in the area, they have several bilingual
employees who are fluent in Spanish and English. They specialize in catering to
clients who need their services in either language. It is important that they maintain
all site content in both languages, so their bilingual employees are in charge of
translating content. All content must be approved by the owner prior to being
published. The only users of the website are company employees. The general public
is not allowed to leave comments anywhere on the site, but they can use the contact
form in either English or Spanish.

E-commerce site

Deutsch & Sons is an online store selling educational toys and books for young
children. They sell their products internationally but mostly within the United States,
Canada, and Mexico. To cater to their international market, they keep their product,
store, and customer support content in English, French, and Spanish. They have
different shipping and taxation handling based on the shipping country. Deutsch &
Sons does not have any staff translators, so they rely on third-party translators who
directly modify the site content.

[o]

Multilingual Overview, Use Cases, and Modules

\ This example shows functionality based on language and
~ location (country). These are independent features. You
Q might have an English-only site that needs location-based
functionality or a multilingual site that does not.

Our demo site

To make things more realistic, our demo site has elements from the examples
mentioned previously including blog articles, book content, comments, and user
roles that allow more than one content contributor. You can use the demo website
or your own site for the book exercises. The book is structured as a step-by-step
tutorial. So, for maximum understanding, the best strategy is to work through the
chapter exercises in order.

Multilingual Drupal overview

Drupal gets better and better with each release and its multilingual support is no
exception. Drupal core provides for basic language support and content translation
while contributed modules such as the Internationalization module package

pour on the awesome sauce. Also, with Gabor Hojtsy heading up the Drupal 8
Multilingual Initiative (hojtsy.hu/dsmi), we know that Drupal 8 is going to be
even more amazing.

Speaking the same language... terminology

Before we go multilingual, let's make sure we are all in sync in regards to
terminology. You should already be comfortable with the standard Drupal terms
before continuing. If words like node or entity or taxonomy aren't clear to you, check
out the Drupal glossary at drupal.org/glossary. But, there are also lots of fancy
words thrown around in the world of internationalization (see, I just used one!). So
what exactly do they all mean?

M The word definitions shown next are based on their use in
Q computing and software and, in some cases, are particular
to Drupal.

e Alocale is usually defined as a collection of user information that includes
language and location, but the core Locale module only deals with languages.

[10]

Chapter 1

¢ A numeronym is an abbreviated word where numbers are used to replace
letters. Numeronyms are shown in parentheses for some of the terms.

¢ Internationalization (i18n) is the procedure of creating software so that it
can handle multiple languages and geographical locations.

e Localization (L10n) is the action of updating software so that it can be
used for a particular language or region. The numeronym for localization
usually starts with an uppercase letter because a lowercase "L" looks like an
uppercase letter "I'" in some fonts, but module names always use lowercase
letters, for example, 110n_client.

e Translation is the process of converting text from a source language to
another language such that the meaning of the text is preserved as much
as possible.

e A translation set is a collection of objects that includes a source object and
all translated versions of the source object. For example, an English source
node along with its German and French translated nodes, comprise a
translation set.

e The term interface (or user interface or UlI) will be used to refer to all the
textual information coming from code which may be shown to the user on
the website.

e The word content will generally be used to represent information that
is captured in entities (nodes, comments, users, taxonomy terms, and
custom entities).

¢ The term config (or configuration) will typically be used to refer to the
ad hoc conglomeration of everything that is not considered "interface"
or "content."

e The abbreviation und comes from the ISO-639 specification and is short for
undetermined. You may come across this abbreviation in your database, in
code, and in data arrays.

Pieces of the multilingual puzzle

Now that we have our terms clear, let's take a step back and look at the big picture.
We will be configuring a lot of different things in the coming chapters. At a high
level, these can roughly be separated into the three distinct areas of interface,
content, and configuration as defined previously.

[11]

Multilingual Overview, Use Cases, and Modules

The book chapters are roughly divided into these parts with Chapter 2, Setting up the
Basics: Languages, UI Translation, and System Settings, focusing heavily on the user
interface, Chapter 3, Working with Content, on content, Chapter 4, Configuring Blocks,
Menus, Taxonomy, and Views, on standard configuration and Chapter 5, Panels, SEO,
and More!, on advanced configuration.

q Interface :D
Interface

When you create a Drupal site, you end up with a user interface that has lots of
textual information presented to you. Looking at the login block alone, there are the
Username and Password field labels, the Log in button text, and a couple of links
for creating an account and requesting a password. When we want to use Drupal in
another language, all these little bits of text need to be translated into that language
and the system needs to know what to do with them.

Content
Suuon

Create new account Request new password

Drupal requires modules and themes to use the t () function for text that will be
displayed in the UL (The 't' is short for 'translate'.) If I write a module and have the
text This is the best module EVER! in it and want that text string to be translated
into other languages, then I can use the text as follows:

print t('This is the best module EVER!');

This lets Drupal know that I want my string to be available for translation. Drupal
won't automatically translate the text for you unless it already has that exact string
stored away in some other Drupal code and someone has provided the translation.

Fortunately, a lot of Drupal core's Ul is already translated into many languages so
that part of the battle is won if you want to use one of those languages. You can

use the Localized Drupal Distribution install profile (drupal.org/project/110n_
install) to make it easier. The trickier part is when contributed modules or your
own code have strings in them that aren't yet translated like in the previous example,
or you find missing or broken translations in the core interface. This interface
translation process will be covered in Chapter 2, Setting up the Basics: Languages, Ul
Translation, and System Settings.

[12]

Chapter 1

Content

When talking about content in Drupal 7, we are mainly thinking about entities
(nodes, comments, users, and taxonomy terms). Sure, there are other bits of
content floating around the site in views headers, custom block bodies, and panel
panes, but we will lump those different non-entity bits in our all-encompassing
'configuration' bucket.

In Drupal 7, entities can have fields (similar to CCK in previous Drupal versions).
This has made content translation for nodes more flexible as well as more confusing.
In previous versions, if we wanted to translate nodes, we ended up with a separate
node for each translation. We can still do this in Drupal 7, but now we can also
translate fields with the help of the Entity Translation module where we are only
working with one node. In the field translation model, we can translate any of the
fields into our various languages. The following figure illustrates the differences
between these two methods:

4 Node translation N[Field translation h

(Title (de)] [Body (de)
(Title (en)] [Body (en)
(Title (pl)] [Body (p)

Photo (und)

\. AN /
\ de=German en=English pl=Polish und=undetermined /

One of the biggest issues with translating nodes in Drupal 7 is that we have to choose
between the node translation model and the field translation model for each content
type. This is one of the major hot buttons for the Drupal 8 Multilingual Initiative

and will definitely be addressed in Drupal 8. To better understand the trade-offs
involved, we will work with both of these models in Chapter 3, Working with Content.

Although core content translation is only available for nodes, field translation via the
Entity Translation module can be used for other core entities (comments, users, and
taxonomy terms) and some custom entities. For example, if you have a user Bio field
or a comment Internal notes field, you could choose to translate those fields.

[13]

Multilingual Overview, Use Cases, and Modules

One oddball to mention is taxonomy. You can use field translation for taxonomy
term fields and you can also translate vocabularies and terms with the Taxonomy
Translation module. The former falls under the "content" area whereas the latter is
in the "config" bucket, so it's a bit confusing. These methods will be explored in
Chapter 3, Working with Content, and Chapter 4, Configuring Blocks, Menus, Taxonomy,
and Views.

Configuration

Although interface and content translation are both pretty well-defined and
understood, the world of configuration is varied and sometimes complex. There is no
configuration API (though that will likely change in Drupal 8), so how we deal with
the multitude of config pieces is not very uniform.

Currently, Drupal core doesn't provide much multilingual support beyond

the basic foundation, so we end up using a lot of contributed modules. The
Internationalization module provides most of the help with 14 submodules. This
module has been around since Drupal 4 and is still a lifesaver for Drupal 7. There's
talk that much of the Internationalization module package functionality will end up
in Drupal 8 core.

Chapter 2, Setting up the Basics: Languages, Ul Translation, and System Settings, will
mainly focus on the UI, but we will also spend time on the configuration for system
functionality such as variables, dates, and the contact form. In Chapter 4, Configuring
Blocks, Menus, Taxonomy, and Views, and Chapter 5, Panels, SEO, and More!, we will
work through the multilingual configuration of blocks, menus, taxonomy, and views
and then move on to some more advanced topics including panels and SEO.

A look at the modules

In the Drupal community, the phrase "There's a module for that" is often used and
for good reason. Currently the drupal. org site boasts of more than 13,000 modules
that have been contributed by community members. Searching this multitude of
modules for the ones you need isn't easy, but fortunately taxonomy comes to our
rescue this time.

[14]

Chapter 1

The categorization of modules at drupal.org/project/modules includes a
Multilingual category amonyg its options. If we choose that term along with
restricting our modules to Drupal 7 versions, then we narrow down our list to only
about 50 modules. This is certainly a more manageable number! We won't use all of
these in the book, but check out the Appendix, Modules, Resources, and Getting Involved,
for a list of multilingual modules we will use as well as additional useful modules.
The module list includes project page URLs for all modules, so you will know where
to find them.

Summary

This chapter has provided us with a broad overview of the language support in
Drupal 7. Let's do a quick recap of what we covered.

First, we looked at the different ways to use Drupal's language support, and
considered some potential questions to ask before creating a multilingual website.
To further our knowledge, we considered a few realistic use cases for different web
audiences. We then learned the special terminology associated with the world of
Drupal localization.

With our vocabulary enhanced, we moved on to looking at the big pieces of the
Drupal 7 multilingual puzzle, namely, interface, content, and configuration.

The user interface strings that need translation come from core and contributed
modules and themes. For translating content, we narrowed in on data coming
from entities. And, for the last piece of the puzzle, we saw that the remaining
multilingual configuration involves many elements including handling blocks,
menus, taxonomy, and views. The chapter concluded with a preview of the Drupal
7 modules that we'll use very soon.

Now that we understand the big picture, it's time to get to work. In the next chapter,
we'll keep ourselves occupied with language settings, interface translation, and
general system configuration. If you are ready to go, let's move on and get busy.

[15]

Setting up the Basics:
Languages, Ul Translation,
and System Settings

In the previous chapter, we got our bearings as we learned about Drupal
internationalization at a conceptual level. Now we will get down to business
and begin our localization process.

This chapter starts with setting up a test site to use for the book exercises. Once the
site is ready, we'll add several new languages and configure language detection so
that we can view each language using different URLs. With the detection in place,

we will enable a switcher block to easily navigate between each language.

After the language settings are done, we'll move on to translating the Drupal
interface. First we will translate manually by grabbing files from localize.drupal.
org, and then we'll configure the site for automatic updates. Once the contributed
translations are in place, we will learn how to add and change translated Ul strings
as well as how to contribute these translations back to the Drupal community. The
last part of the interface translation section deals with changing English strings and
reusing strings on other sites.

The final section of the chapter will touch upon several general system configuration
areas. We'll update the default country, time zone settings, and date/time formats.
The chapter concludes with translating site variables and the general contact form.

Setting up the Basics: Languages, Ul Translation, and System Settings

Getting up and running

Before we get started, we obviously need a Drupal 7 website to work on. This section
gives you two options, namely, roll your own or install the demo.

Using your own site

You can use your own Drupal 7 site. It can be an existing site or one you create
from scratch. If you are creating a brand new site and weren't planning on using
a particular installation profile, you can get a head start by using the Localized
Drupal Distribution install profile at drupal . org/project/110n_install.

It is probably obvious, but it's best to run the site on a development machine and
not in a production environment. Once all the basic Drupal core modules are
configured, you will also want to set up the following additional modules to get
the most out of the exercises:

e Panels: A tool for creating pages with custom layouts

e Pathauto: Settings for creating path aliases automatically

e Views: A tool for creating custom pages and blocks

Using the demo site

If you'd prefer a jump-start, a full demo website can be created using a special install
profile, so that you can work through all the book exercises without setting up your
own site from scratch.

Instructions for downloading and installing the demo website are included on the
Drupal project page available at drupal.org/project/multilingual_book_demo.
The demo site contains additional modules including the modules listed previously
as well as the following;:

e Administration Menu: Toolbar for quick access to the site configuration

e Views Bulk Operations: Extra functionality for Views forms

e Views Slideshow: Slideshows of content coming from Views

These modules provide us with a starting point. As more modules are needed
for particular exercises, they will be listed so you can add them.

[18]

Chapter 2

Roles, users, and permissions

Although you might already have multiple users on your test site, for simplicity it
will be assumed that you are logged in as the super admin (user ID 1) for the book
exercises. The translation management section in Chapter 5, Panels, SEO, and More!,
will go into more detail on how to deal with roles and permissions.

Working with languages

If we want a multilingual site, the logical first step is to add more languages! In this
section, we will add languages to our site, configure how our languages are detected,
and set up ways to go between these languages.

Adding languages with the Locale module

Drupal has language support built into the core, but it's not fully turned on by
default. If you go to your site right now and navigate to Configuration | Regional
and language, you will see the Regional settings and Date and time config pages
for configuring default country, time zone, and date/time formats:

1. To get our languages hooked in, let's enable the core module, Locale. Now
go back to Configuration | Regional and language to see more options:

Regional settings
Date and time
Languages

Translate interface

2. Click on Languages and you'll see we only have English in our list so far:

ENGLISH MAME NATIVE MAME CODE DIRECTION EMABLED

English English en Left to right

3. Now let's add a language by clicking on the Add language link. You can add
a predefined language such as German or you can create a custom language.

[19]

Setting up the Basics: Languages, Ul Translation, and System Settings

4. For our purposes, we will work with predefined languages. So choose a
language and click on the Add language button.

~PREDEFINED LANGUAGE

Language name
German |Deutsch) j

Use the Custom language section below

Add language

Drupal will then redirect you to the main language admin page and your
new language will be added to the list.

5. Now you can simply repeat the process for each language. In my case,
I've added three new languages, namely, Arabic, German, and Polish:

EMGLISH NAME ~ NATIVE NAME CODE DIRECTION EMABLED ~ DEFAULT OPERATIONS
English English en Left to right - edit
Arabic aas gl | ar Right to left ™| edit delete
German Deutsch de Left to right ™| edit delete
Polish Polski pl Left to right ™| edit delete

The overview table shows the language's name (English and native), its code,
and its directionality. The language's direction can be Left to right (LTR)

or Right to left (RTL), with most languages using the former. 'Right to left'
just means that you start at the right side of the page and move towards the
left side when you are writing. RTL languages include Arabic, Hebrew, and
Syriac, which are written in their own alphabets.

You can choose which languages to enable, order them, and set the site
default. Links are provided to edit and delete each language. English only
has an edit link since it is the system language and cannot be deleted, but
English can be disabled if you use a non-English default. If we edit a lan-
guage, we can modify all the information from the overview table except
for the language's code since we need that as a consistent reference string.

[20]

Chapter 2

Do not change the default language once you have started
translating or translations might break.

Several of the book exercises depend on the String Translation
. module and the String Translation source language must
% be set correctly or translations might break. Install String
A= Translation from the Internationalization package (drupal.
org/project/il8n), go to Configuration | Regional and
language | Multilingual settings | Strings, select the Source
language, and click on Save configuration. Do not change
this setting once it's configured.

Detecting languages

We have our languages, so now what? If you click around your site, nothing looks
different. That's because we are looking at the English version of the site and we
haven't told Drupal how we want to deal with the other languages. We'll do that now.

Navigate to Configuration | Regional and language | Languages | Detection
and selection and you'll see we have a number of choices available to us:

URL Determine the language from the URL (Path prefix or domain).
Session Determine the language from a requestisession parameter,
User Follow the user's language preference.

Browser Determine the language from the browser's language settings,|
Default Use the default site language (English).

The Default detection method is enabled for us, but we can also enable the URL,
Session, User, and Browser options. If you want a cookie-based option, check out
the Language Cookie and Locale Cookie modules. Let's go over the core options in
more detail.

[21]

Setting up the Basics: Languages, Ul Translation, and System Settings

URL

If you enable this method, users can navigate to URLs such as example.com/de/
news or example.com/deutsch/news (when using the path prefix option) and
example.de/news, deutschexample.com/news, Or deutsch.example.com/news
(when using the domain option). Configuring domains requires web server changes,
but using path prefixes does not. This is a common configuration for multilingual
sites, and one we'll use shortly.

The language's path prefix can be changed when editing the language. If you want
to use path-prefixed URLs, then you should decide on your path prefixes before
translating content as changing path prefixes might break links (unless you set up
proper redirects). If desired, you can choose one language that does not have any
path prefix. This is common for the site's default language. For example, if German
is the default language and no path prefix is used, the news page would be accessed
as example.com/news whereas other languages would be accessed using a path
prefix (for example, example.com/en/news).

Session

The Session option is available if you want to store a user's language preference
inside their user session. It was actually proposed by some Drupal community
members that this method be removed from the set of choices as it caused a number
of issues in other code.

One reason you may not want to use this option is due to the possible inconsistency
between the content and the URL language. For example, you could enable both
URL and Session methods and order them so that the Session method is first. If

a user is at example.com/de and if the session is set to French, then the user will
see French content even though the URL corresponds with German. My advice is
to just skip this one, or, if you need it, at least make sure that it's ordered below

the URL option.

User

Once the Locale module is enabled, users can specify their preferred language
when they edit their account profile. If you enable the User method in the detection
settings, the user's profile language will be checked when deciding what language
to display. Note that the user profile language defaults to the site's default language.

[22]

Chapter 2

Language

(® English
Arabic [=l1)
German (Deutsch)

Falish [Polski)

Browser

Users can configure their browsers to specify which languages they prefer. If the
Browser method is enabled, Drupal will check the browser's request to find out the
language setting and use it for the language choice. This option may or may not be
useful depending on your site audience.

Default

The default site language is configured on the Configuration | Regional and language
| Languages settings page, and is used for the Default detection method. Although
you can't disable this method, you can reorder it if you choose. But, it makes the most
sense to keep it at the bottom of the list to use it as the fallback language.

Detection method order

It is important to note that the detection method order is critical to how detection
works. If you were to drag the Default method to the top of the list, then none of

the other methods would be used and the site would only use the default language.
Similarly, if you allow a user profile language and drag User to top of the list, then
the URL method would not matter even if it's enabled. Also, if URL detection is
ordered below Session, User, and Browser options, the user might see a UI language
that does not match up with the URL language, which could be confusing.

Make sure to think carefully about the order of these settings. If you use the URL
method, it's likely you will want it first. The Default method should be last. The
other detection method positions depend on your preference.

[23]

Setting up the Basics: Languages, Ul Translation, and System Settings

When using path-prefixed URLs, if one language does not have
M a prefix, then detection for that language will work differently.
Q For example, if the URL method is first, then no other detection
methods will trigger for any URLs with no path prefix such as
example.com/news or example.com/about-us.

Our choice

For our purposes, let's stick with URL detection and use the path-prefix option as
this is the easiest to configure (it doesn't require extra domains). This choice will keep
our URLSs in sync with our interface language, which is also user and SEO-friendly.

1. Check Enabled for the URL method and press the Save settings button.

2. Now click on Configure for that method and you'll see options for Path
prefix and Domain. We'll use the default option, that is Path prefix (for
example, example.com/de).

Don't panic on the next step. You won't see anything different in the Ul until
we finish our interface translation process later in the chapter.

3. Now change the URL in your browser to include the path prefix for one of
your languages. In my case, I'll try German and go to example.com/de. You
should be able to use the path prefixes for each of your configured languages.

Switching between languages

Most likely you don't want your users to have to manually type in a different URL to
switch between languages. Drupal core provides a language switcher block that you
can put somewhere convenient for your users.

To use the block, navigate to Structure | Blocks, find the Language switcher (User
interface text) block, position it where you'd like, and save your block settings. The
order of the languages in the block is based on the order configured at Configuration
| Regional and language | Languages. Once enabled, the language switcher block
looks like the following screenshot:

Languages

* Enplish
. ~=_-".-'-“
#« Deutsch
o Polski

[24]

Chapter 2

You can now easily switch between your site languages, and the language
chosen is highlighted. The UI won't look different when switching until we
finish the next section. Two alternatives to the core language switcher block
are provided by the Language Switcher and Language Switcher Drop-down
modules. Also, if you want country flag icons added next to each language,
you can install the Language Icons module.

Interface and string translations

Now that we have our languages configured and can switch between them, we
want to start viewing text in these languages. For my site, I chose Arabic, German,
and Polish. By going to localize.drupal.org, you can see that these three
languages are pretty well supported in Drupal because many of the core Ul strings
have been translated already.

Take a look to see what progress has been made for your languages. If you want
to use a language that hasn't been fully translated, you can always help with the
translations yourself and contribute them back to the community. That's what
Drupal is all about!

In this section, we'll learn how to translate the Ul using the manual process and
then by leveraging the Localization Update module. After our interface is in sync
with the contributed translations, we will translate new strings into our languages
and change existing translations that aren't to our liking. Finally, we'll find out how
to send these new translations back to localize.drupal.org so that others can
benefit from our hard work.

Translating the interface

For Drupal to know how to translate each interface string, it needs the mapping
of the English strings to their translated counterparts. This is handled by using
GNU gettext .po files, where po stands for portable object. A .po file looks like
the following:

#: admin menu.inc:261
msgid "Enable developer modules"
msgstr "Entwicklermodule aktivieren"

The msgid is the English string and the msgstr is the translated version in the target
language. The previous example is for a German translation and is in a file called
de.po (remember de is the language code for German).

[25]

Setting up the Basics: Languages, Ul Translation, and System Settings

So, what we need to do is grab . po files for our site so that Drupal can start translating:

1.

Go to localize.drupal.org and use the Quick navigation to find your
language. You will end up on the downloads page for that language where
the available translation files are listed. Since version numbers change
regularly, grab the latest 7.x version:

Drupal core 523 Download
[411.42 KB}
Drupal core 623 Download
[331.29 KB}
Drupal core 7.11 Download
{676.37 ¥B)

Click on the Download link for Drupal core (7.x version) and save your
file somewhere handy.

Repeat for each language and then navigate to Configuration | Regional
and language | Translate interface.

Now click on the Import tab to upload the . po files which you have
saved. Just import each one separately and assign the correct language
when importing:

Language file

A Goettaxt Portable Object (.po) file.

Import Into

| Gearman j

Choose the language you want to add strings into.

With the . po files imported, Drupal now knows how to translate many of the strings
in the UL The overview at Configuration | Regional and language | Translate
interface shows the translation progress for the site's enabled languages.

[26]

Chapter 2

LANGUAGE BUILT-IN INTERFACE
English [built-in) n/a

Arabic 4350/11431 {38.05%)
German 9482/11431 (B2.95%)

Now if I look at the login form with the German interface, the text strings are
in German. It's time to see for yourself! Switch between your languages to see
the transformation.

Benutzername *

Registrieren Neues Passwort anfordern

M If you want to have a different interface language for
Q your administration pages, check out the Administration
Language module.

Automatic translation updates

Ok, let's be honest. That was a bit tedious. What if I want to add more languages?
What about all my contributed modules that need translation. I, for one, don't
want to import each and every . po file for all my modules in all my languages!
Fortunately, we don't have to because the Localization Update module comes to
our rescue:

1. Go ahead and install the Localization Update module (drupal.org/
project/110n_update) and then navigate back to the Configuration |
Regional and language | Translate interface page.

2. We now have an Update tab! Click on the tab and then wait for a few
seconds (with bated breath).

[27]

Setting up the Basics: Languages, Ul Translation, and System Settings

3. Once the Update page loads, you'll see the translation status for your website
because the Localization Update module got all that information from
localize.drupal.org. Cool!

. panels-7.x-3.0-alphad.arpo®
Arabic T R Remote update available FiN
panels-7.x-3.0-alphal.de.po
German OB(3072011 - 15:00 Rermote update available ‘h
_ panels-7.x-3.0-alpha3.pl.po&
Palish 06/08/2011 - 14:57 Remote update available .j.\..

The rest of our translations can be pulled over at the touch of a button!

4. Click on Update translations and wait for a few minutes while Localization
Update does all the hard work for you.

Updating translation. o

Completed 1 of 33.

When the update is completed, all your translation status information will change
accordingly.

* Some projects might not have translations and translations are
only made available for non-development releases, for example,
7.x-1.0 and not 7.x-1.0-dev.

panels-7.x-3.0-alpha3.de.po@

German
08/30/2011 - 13:09 Up to date V{

To fully configure Localization Update, check out the config page at Configuration
| Regional and language | Languages | Translation updates. For example, you

can have the module update your site automatically on a daily or weekly schedule.
Awesome!

[28]

Chapter 2

Adding and fixing interface translations

Thanks to the Drupal community, we already have quite a bit of our interface
translated. As more translations are contributed to localize.drupal.org, we can
get these updates easily using the Localization Update module. What about strings
that haven't been translated yet? Well, how about translating those ourselves?

1. Let's start by doing this manually at the Configuration | Regional and
language | Translate interface | Translate page. There is a string translation
form provided where we can search for untranslated text in our site. If you
restrict the search to untranslated strings in English, the search results will
show all interface strings that need translation.

2. If you know what text you want to translate, then type some of the text into
the String contains box and click on the Filter button. Note that the search
text is case sensitive. In my case, I have the Meta Tags module installed, so
I can search for Add a meta tag. If you don't have Meta Tags installed, try a
different text string like Add or Configure or help.

String coantains

|Add a meta tag

Leave Blank to show all strings. The search is case sensitive.
Language Search in

| Alllanguages j| | Baoth translated a.rlduntransj|

Limit search to
| Alltext groups B | Fiter | (Reset

TEXT GROUP | STRING | CONTEXT | LANGUAGES | QPERATIONS

Add a meta tag default
Built-in interface 8 Meta tag detau ardapl edit delste

fanfd=

[29]

Setting up the Basics: Languages, Ul Translation, and System Settings

3. To translate one of the strings, click on the edit link and fill out the translation
form. Since I don't speak any of my new site languages, I will use Google
Translate (translate.google.com) to get the text. This is definitely not
recommended for a real site but will suffice for our demo.

Original text
Add a meta tag default

Arabic

il Wl iy anlle adlis)

German

Mata-Tag hinzufogen standardmalki

4. If you search again for your text in the translated strings, you will see that it
is marked as translated for the languages where you provided the text.

Add ta tag default
Built-in interface ame g getau arde pl edit delete
fl8nfde

So now you probably understand how you would change an existing translation.
Simply find the text you want to modify, click on the edit link and change the
strings as desired. This is a straightforward process, but navigating through the
long list of strings on the Translate page is cumbersome. Also, we may only want to
worry about text that we see directly on our site and translate as needed. To make
this process easier, we will need another handy module, that is Localization Client
(drupal.org/project/110n_client).

1. [Install the Localization Client module and flush your cache.

2. Now if you switch to another language, you will see a new toolbar at the
bottom of the page.

3. Click on TRANSLATE TEXT on the bottom right and a useful form opens.

‘\IQ The actual link text depends on the translation available for

TRANSLATE TEXT in the language you are working with.

[30]

Chapter 2

The left side of the form shows all the text accessible from the current page.
If the text is highlighted in green, there is a translation available and the
translated text is shown. If there is no translation, then the text is in its source
language, ready for you to translate.

SEITENTEXT | QUELLE | UBERSETZUNG NACH DEUTSCH

the page. This meta Mzeta-Tag hinzufugen standardmakig
tag is not...

Add a meta tag default
Meta-Tag hinzufigen

standardmaBig
Erweitart b
Blocks the Open
Directory Project
description of the

page from being used
in...

Canonical URL - Ubersetzung speichern

I

4. Click on the text and it will show up in the center column (marked QUELLE
in the previous screenshot because "quelle" means "source" in German).

5. Then put the translated text into the box on the right and click on the Save
translation button. If you want to use the source string as a template, click on
the Copy source button first and then make your changes.

M The actual button text depends on the translations available
Q for Save translation and Copy source in the language you
are working with.

It is important to note that you might encounter strings such as the following:

Use the @vocab name terms of the page being shown.

Take notice of the special use of the @ symbol, which indicates a string placeholder.
For this example, @vocab_name is a placeholder that should remain unaltered
because it will be filled in dynamically by the system. String placeholders can start
with e, !, or %. The following is an example using all three:

Date & time (!date %$time) can be changed on the
regional settings configuration page.

[31]

Setting up the Basics: Languages, Ul Translation, and System Settings

Be careful to preserve these placeholders when you perform translations. The
previous example in German might look similar to the following :

Datum & Uhrzeit (!date %time) finden Sie auf der
<a href="@url"sregionalen Einstellungen Konfiguration
Seite gedndert werden.

Contributing translations back to the
community

Now you know how to add and change translated Ul text on your site. If you want
to contribute your translations to the Drupal community, it's easy to do. Please do
this if your translations are accurate! It benefits everyone using that language:

1. If you are willing to share your translations, install the Localization Client
module and enable the sharing option at the Configuration | Regional and
language | Languages | Sharing page:

& Enable sharing translations with server

Address of localization server to use
hitp:¥ocalize.drupal.org

2. Next, figure out which roles will be translating content. If there will be more
than one translator, you'll probably want to add a dedicated translator role.

3. Update your permissions so the appropriate roles have the Submit
translations to localization server permission enabled.

4. Flush your cache and switch to a user with this role.

5. After you have logged in as a user who can share translations, edit the user's
profile page.
If you scroll down the page, you will have a new Localization Client section.

Follow the instructions for getting Your Localization Server API key.

[32]

Chapter 2

[% Create a key on a real site for real translations and not for testing.]

Your Localization Server APl key

This is & unigque key that will allow yvou to send translations
/7216elde332085bblbE3f9580c45428.

8. Save your key and translate away! Your translations are very welcome.
You can even update your drupal . org profile to show off your new
contributions:

i | contributed Drupal translations

Translating English strings

One thing that you might want to do is change some of your English interface strings
in some way. For example, maybe you want the lofty word "Taxonomy" changed to
"Categories" as well as any related text.

You can find all the strings with "Taxonomy" in them by using the Translate
interface form at Configuration | Regional and language | Translation interface |
Translate. Make sure to search for both uppercase and lowercase strings.

Once you have the strings to change, you need a way to change them since this
unfortunately can't be done out-of-the-box for English strings. I'll cover three
options, namely modifying the settings.php file, using the String Overrides
module, and creating a custom English language.

Flush your caches after trying any of these methods so the new
= text shows up.

[33]

Setting up the Basics: Languages, Ul Translation, and System Settings

Modifying the settings.php file
If you have a small number of strings to modify, then a quick way to change
the strings is to put them in an array in your settings.php file as follows:

Sconf ['locale custom strings en'][''] = array(
'Taxonomy' => 'Categories',
'Taxonomy term' => 'Category term',

Using the String Overrides module

Another option when working with a minimal number of strings is to use

the String Overrides module. Just install the module (drupal.org/project/
stringoverrides) and navigate to the config page at Configuration | Regional
and language | String overrides. Then fill in the original text on the left and the
replacement text on the right and click on Save configuration. Super easy!

EMABLED ORIGINAL REPLACEMENT
il Taxonomy Catenories
il Taxonomy tarm Catenory tarm

Creating a custom English language

If you plan on changing a lot of English strings, you can create a custom English
language to replace your English language. If English is your default language,
you can make the custom English language your default instead and then disable
English. Then, if you are using the Localization Client or the Translate Interface
page, you will be able to modify any of the English interface strings easily for
your custom English language.

One problem with this approach is that it is not recommended that you change your
default language once you have started translating content. Thus, a custom English
language should only be added at the beginning of a project or, at least, before the
localization process has begun or else the results might be bad.

For example, if you already have content in English and then create a new custom
English, you'll end up with some nodes with the original English language code
and some nodes with the new custom English language code (unless, of course,
you go back and update all the old English content). Tread carefully or things can
get confusing.

[34]

Chapter 2

Reusing custom translated strings

If you want to reuse your translated strings for other websites, you can export the
strings at Configuration | Regional and language | Translate interface | Export.
Just choose the type of strings to export and click on the Export button and you'll get
a .po file to save. Then you can import that .po file into your other Drupal websites
via the Configuration | Regional and language | Translate interface | Import
page. Neat!

General system configuration

We've made good progress by configuring our languages and translating our Drupal
interface. You are probably anxious to start translating your content, but there are a
few loose ends we should tie up first.

In this section, we'll configure some general system settings by updating the default
country, time zone, and date/time formats. We will then work with the Variable
Translation module to translate site information such as the site name and slogan.
The section concludes with creating contact forms for our new languages.

Updating regional settings
Navigate to the Configuration | Regional and language | Regional settings

page. You can choose your site's default country and first day of the week in
the Locale settings.

In the time zones section, you can set the Default time zone as well as configure
additional settings for your users. It's recommended that you allow users to set
their own time zone, but the other settings can be chosen based on preference:

Default time zone
America’Los Angeles: Thursday, February 23, 2012 - 15:36 -0800

[f] Users may set their own time zone,
| Remind users at login if their time zone is not set.
Only applied if users may set their own time zane.
Time zone for new users
(@) Default time zone,
) Empty time zone.

' Users may set their own time zone at registration.

Only applied if users may set their own time zane.

[35]

Setting up the Basics: Languages, Ul Translation, and System Settings

Date and time formats

We can change the date and time settings for each language. First go to the
Configuration | Regional and language | Date and time page and click on
the Localize tab. Then click on the edit link for a language, and adjust your
formats as desired:

DATETYPE | FORMAT
Long Tuesday, February 7, 2012 - 21:23 |7
Medium Tue, 02/07/2012- 2123 |7

Short 02007/2012- 2123 5]

Translating site variables

Drupal allows modules and themes to save data in a global variable table. This is
useful for saving permanent information without having to create custom database
tables. Some of the data in the variable table includes text strings that will be shown
to users.

For example, the site name and slogan are variables that might show up at the top of
the website depending on your theme. We want to be able to translate these strings
for our languages.

Awesome Drupal Books

Read the best Drupal books you can find...

Follow the given steps to translate your variables:

1. [Install the Variable Translation module from the Internationalization package
(drupal.org/project/i18n) and the Variable module (drupal.org/
project/variable). If you only choose Variable Translation for installation,
Drupal will show you what other modules need to be enabled due to
dependencies. In this case, you will need the Internationalization, Variable,
Variable Store, and Variable Realm modules.

[36]

Chapter 2

2. After installing these modules, you will have another configuration
area under your Configuration | Regional and language page called
Multilingual settings.

Regional settings
Date and time
Languages
Translate interface

Multilingual settings

3. Now navigate to Configuration | Regional and language | Multilingual
settings | Variables and you will see a list of variables you can translate.

4. For now, enable the Site name and Site slogan checkboxes and click on
Save configuration.

5. We will update the site name and slogan by going to the Configuration |
System | Site information page. In English, my variables will look as
shown in the following screenshot:

Select language
English | Arabic | German | Polish

SITE DETAILS

Site name *

Awesome Drupal Books

This is a multilingual variable.

Slegan
Read the best Drupal books you can find...

How this is used depends on your site's theme. This Is a multilingual variable.

6. To translate these strings into German, click on the German Select language
link at the top of the page. All the variables chosen for translation are marked
with This is a multilingual variable underneath the field.

[37]

Setting up the Basics: Languages, Ul Translation, and System Settings

7. Fill the translated text into the form and save. Now when switching to

German, the top of the page looks similar to the following screenshot:

Ehrflirchtig Drupal Blicher

Lesen Sie den besten Drupal Blicher, die Sie finden kénnen...

8. Besides the variables we have translated, there are many others that you

might want to translate as well, such as site e-mail messages. Note that as
you add more modules, the list of variables may increase, so don't forget
to come back to the Variable Translation configuration page as needed.

Customizing the contact form

We've done a lot in this chapter, but we have one more hurdle before moving on to
our content. It is time to translate our site contact form.

1.

4.

Go ahead and enable the core Contact module and install the Contact
Translation module from the Internationalization package (drupal.org/
project/il8n).

My English contact form is at example.com/contact and my German one is
at example.com/de/contact. These already have translated text thanks to
our interface translations. But there are a few more steps you need to do to
finish the job.

Navigate to the Structure | Contact form config page. The default contact
form is already set up.

CATEGORY | RECIPIENTS SELECTED OPERATIONS

Website feedback ilBn@example.com Tes Edit Delete

Click on the Edit link and you'll see the contact category settings. You can
change the category name, recipients of the submissions, and auto-reply text.

Fill in your English auto-reply text and then click on Save and translate.

[38]

Chapter 2

5. Your data will be saved and then you'll end up on the Translate tab.

LANGUAGE TITLE

English (source) Website feedback
Arabic Website feedback
German Website feedback
Palish Website feedback

STATUS
original
not translated
not translated

not translated

OPERATIONS

edit

translate

translate

translate

6. If you click on the German translate link, the category name and auto-reply

text will be pre-populated with the English values.

7. Just fill in the translation and click on Save translation:

Category

Feedback zur Website

Auto-reply

Save translation

Vielen Dank fir lhre Kontaktaufnahme.

Now if someone uses the German contact form, they will get an e-mail reply

in German!

Summary

Whew! I don't know about you, but I'm tired. We did a lot in this chapter, so give
yourself a pat on the back that you've made it this far. Let's do a quick review of

all the good stuff we learned.

After we created our test website, we worked with languages. We added several
new languages and then configured the detection settings to handle different URLs
per language based on the language's path prefix. Then, we added a handy block

for switching between each language with ease.

[39]

Setting up the Basics: Languages, Ul Translation, and System Settings

Once the languages were in place, we moved on to Drupal interface translation. We
got translation files directly from localize.drupal.org and imported them into
our site. To make the job easier, we installed the Localization Update module to get
the translation files for us automatically. We then learned that, unfortunately, not all
the Ul text has been translated. So we added our own string translations that can be
shared back with the community. This process was simplified with the Localization
Client module. For the last part of the Ul translation section, we learned different
methods for translating English strings and how to export our string translations for
use on other Drupal websites.

We finished the chapter with a grab bag of configuration settings. We updated the
default country and time zone in the regional settings and the date/time formats for
each language. In the end, we translated a couple of site variables including the site
name and updated the contact form settings for our languages.

Now let's move on to translating our content!

[40]

Working with Content

In the previous chapter, we set up a test site, translated our interface, and configured
general system settings to support multiple languages. Now we will start our content
translation process!

The first part of this chapter focuses on nodes. We'll work with the node translation
method which creates multiple nodes, and the field translation method that uses one
multilingual node. We will look at examples and use cases for both methods.

After our nodes are translated, we'll configure non-node core entities (comments,
users, and taxonomy terms) using field translation. The chapter concludes with

a quick look at built-in Drupal content pages, namely the default home page,
taxonomy term pages, and search.

Nodes

For the majority of Drupal websites, most content exists in nodes. These nodes come
in different shapes and sizes as defined by a node's content type. The information, if
any, that needs translating for a particular node depends on how the content is used,
so there is no cookie-cutter formula for creating multilingual nodes. You will need to
decide how to deal with translation for each and every content type. In this section,
we will go over the different approaches for multilingual node content. We will work
with concrete examples to help you figure out the methods to implement on your
own site.

Enabling multilingual support

For the exercises, it's useful to have a few content types to work with. If you are
using the demo website, you have several to choose from including Article, Blog
entry, Basic page, and Drupal Book.

Working with Content

The first three are pretty self-explanatory. Drupal Book is a custom content type for
displaying a particular Drupal book title. For simplicity, Drupal Book nodes are not
configured for e-commerce, but check out kristen.org/drupal7-i18n-commerce

to learn about internationalization for the Drupal Commerce module.

To enable multilingual support on your site, follow these steps:

1. Choose a content type and go to its main config page (for example, for Blog

2.

The Language drop-down includes all enabled site languages as well as a Language
neutral option. Choose Language neutral if you have language-independent content.
For example, if you have an Image content type with an image field in it, then an
Image node might not have linguistic content and could be set as Language neutral.

entry, go to Structure | Content types | Blog entry | Edit).

Now click on the Publishing options tab towards the bottom of the form and
you will see the following options since the Locale module is enabled:

Submission form settings
Titke

Publishing options
Published | Promoted to front page

Display settings
Cisplay author and date information.

Comment settings
Open, Threading , 50 comments per page

Menu settings

Default options
wf Published

» Promoted to front page
| Sticky at top of lists
] Create new revision

Users with the Adminisfer g

Multilingual support
) Disabled

@ Enabled

Choose the Enabled radio button in the Multilingual support section and
then click on Save content type. Now any node of this content type can
have a language associated with it. If I edit a Blog entry node, I now have
a Language field on my node edit form.

Language

English
Arabic
German
Paolish

Language neutral

Language neutral

k.

[42]

Chapter 3

Node translation model

In previous versions of Drupal, content translation was done by copying the source
node for each language. The source node and its associated translated nodes together
form a translation set such as the grouped nodes shown in the following figure:

4 Node translation N

- J
\de=German en=English pI=PoIish/

The node translation model is still available for Drupal 7. Note that for Drupal 8,
the current plan is to combine the node translation model and field translation
model, discussed later in this chapter, to unify the architecture.

Node translation might be useful when your content will be mostly or fully
translated. For example, if you have a blog post or an article, it is likely that you'll
want to translate everything in the text except perhaps meta information such as
the author's name and the date of the post. There might be common fields that the
nodes should "share" such as an image or a video, but those shared fields can be
handled with some configuration.

Another good reason to use node translation is if you want to track each node
separately, for example, if you want users to vote on different translations of an
article, or if you want them to flag translated blog posts, for instance, "I like this!"
or "Bad translation!" You might even want a different workflow for each node to
allow published nodes and unpublished nodes within the same translation set.

Conversely, you should now have a better idea of when you don't want to use the
node translation model. Typically this is the case if you have a minimal number
of fields that need translating or if you want to make sure to track the node as one
object for whatever purpose (voting, flagging, workflow, tracking, and so on). For
these use cases, we will look at some examples in the field translation section later
in this chapter.

[43]

Working with Content

Configuring node translation

We need to configure a few different things to get our node translation set up. In this
section, we'll enable the required modules, configure our content types, and change
some node display options. Oh, and we'll translate content too!

Content type settings

Let's start with configuring our content type by following these steps:

1. Enable the core Content Translation module.

2. If we go back to our content type configuration page (for example, for Blog
entry, go to Structure | Content types | Blog entry | Edit) and click on the
Publishing options tab, we have a new Multilingual support option:

Multilingual support

) Disabled
) Enabled

@ Enabled, with translation

3. Select the Enabled, with translation radio button and click on Save
content type.

4. Now if you view a node page for that content type, you'll see a new
handy Translate tab:

VIEW EDIT OUTLINE TRACK TRANSLATE

M If you don't see a Translate tab, then most likely you have that
Q node's language set as Language neutral. Edit the node, choose
a language, and save it, so that the Translate tab will appear.

5. Click on the Translate tab and you will be shown a summary of the current
translations for that node.

[44]

Chapter 3

LANGUAGE TITLE STATUS OPERATIONS
English (source} Multilingual Drupal rocks! Published edit

Arabic nfa Not translated add translation
German nfa Mot translated add translation
Polish nfa Not translated add translation

6. To translate the node, click on add translation for a particular language.

Since we already configured the interface in Chapter 2, Setting up the Basics: Languages,
Ul Translation, and System Settings, we will see the translated Ul strings on the node
edit page. For example, I see the German Drupal interface when adding a translation

for German:

Bearbeite Blog entry Mehrsprachige Drupal-Felsen! o

Sprache
Dautsch | |

Title *
Mehrsprachige Drupal-Felsen!

Body (Zusammenfassung bearheiten)

Es gibt viele mehrsprachige Module fir Drupal 7 lhre Website ... lesen Multilingual Drupal 7|

Node display options
By default, translation links are added to the node links for any available translations
(for example, English in the following screenshot):

Mehrsprachige Drupal-Felsen!

Gespeichert von admin amfum Do, 02/16/2012 - 14:26
Es pibt viele mehrsprachige Moedule fir Drupal 7 Thre Website ... lesen

Multilingual Drupal 7 um mehr zu erfahren!

Blog Tags:
Drupal Rocks | Love Drupal Internationalization

Blog won admin English

[45]

Working with Content

The decision to show translation links on teasers and node view pages is a matter
of preference. These links can improve usability if you have a small number of
languages, but the Ul can look ugly if you have too many.

To turn translation links off completely, follow these steps:

1.

3.

Install the Multilingual Content module from the Internationalization
package (drupal.org/project/il8n).

Flush the cache and go to Configuration | Regional and language |
Multilingual settings | Node options.
Select Hide content translation links and click on Save configuration.

On this page, you can disable the Switch interface for translating option if
desired. You can also set the default language for content types that have
multilingual support disabled. This can be set to The site's default language
or to Language neutral depending on the type of content you expect to store:

[Hide content translation links
Hide the links to translations in content body and teasers. If you choose this option|
[Switch interface for translating
Switch interface language to fit node language when creating or editing a translati
unintended effects like references not matching the node language.
Default language for content types with Multilingual support disabled.

") The site's default language (Default behaviour).

® Language neutral (Recommended).

The Multilingual Content module from the Internationalization package adds a
Language field to the content types. Typically you won't want this Language field
shown when viewing a node. It can be hidden by performing the following steps:

1.

Go to the content type's Manage display page (for example, for the Blog
entry content type, this is at Structure | Content types | Blog entry |
Manage display).

Choose Hidden for the Language field.

Click on Save.

[46]

Chapter 3

4. Click on the small Teaser sub-tab and repeat.

Body <Hidden> ¥ Default ¥

Blog Tags Above v Link ¥
Hidden

Language Hidden ¥

New and existing translations
Now you can go back and create more translations using the same process:

1.

2.
3.
4

View the node page and click on the Edit tab.
Choose language and click on the Save button.
Click on the Translate tab.

Click on the add translation link, translate the content, and click on Save.

If you have an existing German node which should be the translation of an existing
English node, then clicking on the add translation link won't help you because
both nodes already exist. How do we link these nodes together in a translation set?
Fortunately the Internationalization package comes to the rescue again:

1.

Click on the Translate tab and you'll see a useful form at the bottom of the
page since the Multilingual Content module is installed.

To use an existing node, just type the node title into the auto-complete text
field to find it.

Don't forget to click on Update translations after you find the right nodes!

SELECT TRANSLATIONS FOR MULTILINGUAL DRUPAL ROCKS!

Alternatively, you can select existing nodes as translations of this one|
from this translation set. Only nodes that have the right language and
other translation set will be available here.

Arabic
German Mehrsprachige Drupal-Felsen! [nid:67]

Polish

[47]

Working with Content

Synchronizing shared fields

There are times when a content field is not dependent on language and doesn't
need translating. For example, an image might be language-independent and
could be used for all nodes in a translation set. The simplest way to deal with these
types of fields is to use the Synchronize Translations module which is part of the
Internationalization package.

1.

ARSI

Install the Synchronize Translations module (drupal.org/project/i18n)and
then navigate back to your content type configuration page. In my case, I'll go
to the Article content type at Structure | Content types | Article | Edit.

You will now see a Synchronize translations tab at the bottom of the form.
Click on the Synchronize translations tab.
Choose the fields you want to keep in sync.

Click on Save content type.

Be very careful when choosing the fields you want to synchronize.
For example, it is highly unlikely you will want to select the Body
» field. Say you do select it and create an English node with body
% text. If you then translate the node for German and change the
g body text, the original English body text would be wiped out and
replaced with the one you provided for the German node. This is
probably not what you want to happen!

For this example, I edited the Article content type and chose a number of fields to
be in sync, including a custom Image field. Now when I edit any Article nodes, the
image will be shared across all nodes in a translation set. Try it for yourself!

Select which fields to synchronize for all translations of this content type.
Standard node fields

»f Comment settings
| Author
] Status
;ﬁ Promate
1‘[Maoderate
o Sticky
o Revision
Create also new revision far translations
Configurable fields
] Body

] Tags
Enter a comma-separated list of words to describe your content.

:ﬁ Image

[48]

Chapter 3

Extra content type options

The Internationalization module package is a treasure-trove of useful goodies. To see
a few more settings from the Multilingual Content module, navigate to your content
type configuration page (for example, Structure | Content types | Article | Edit).
Then click on the Multilingual settings tab to see some new options.

These are the extended language options:

Set current language as default for new content: This is a good option to
enable for all multilingual content types. If enabled and you are navigating
the site in Polish, then Polish will be auto-selected for your node's language
when creating content.

Require language (Do not allow Language Neutral): This one is pretty
self-explanatory. When you create a node, the Language neutral option
will not be available in the Language drop-down list. Therefore you'll
need to choose a specific language. This option is good for any content
types that must be translated.

Lock language (Cannot be changed): If you enable this setting, then the
node's language cannot be changed after the node is created. This option
might be useful if you are setting your language correctly each and every
time, but it will end up being a pain if you don't!

Here are some options for extended language support:

Normal: When you edit content, only the site's enabled languages will be
available in the Language field. Most sites should stick with this setting.

Extended: All of the defined languages will be listed in the Language
drop-down whether enabled or not. This option is useful when you

want some languages for the UI but need more languages for the content.
For example, you should use this option if you are staging content for a
language that shouldn't be made public yet.

Extended, but not displayed: Same as the Extended option, but translation
links will not be shown for disabled languages.

[49]

Working with Content

Field translation model

In the previous sections, we explored why we might use the node translation model
for certain content types. When that method is not appropriate, we can use field
translation instead. The field translation model uses one node rather than a set of
nodes where individual fields are translated as needed, as illustrated next for the
Title and Body fields.

(Field translation)

(Title (de)] [Body (de)
[Title (en)] [Body (en)]
(Tite @)] [Body (p))]

Photo (und)

\. J
de=German en=English
\ pl=Polish und=undetermined /

Entity fields were introduced in Drupal 7, so field translation is not available in
earlier versions of Drupal. As mentioned previously, the Drupal 8 Multilingual
Initiative is investigating how to combine the node and field translation models
together for Drupal 8.

Field translation is useful when you have a minimal number of content fields to
translate or when you need to maintain one multilingual node. For example, a
product content type typically has fields such as price, images, and manufacturer
that probably should not be translated. For a product node, translatable information
would likely include title, body, and similar descriptive text, so those specific fields
should be configured for translation.

A product content type is a good candidate for the field translation method for
other reasons as well. When someone buys a product, it is tracked. For example,
we can find out how many people bought the product. If we use node translation
for products, then our tracking is per node. We wouldn't know how many people
bought a particular product, but instead would have the total for the number of
people who bought the product using the German interface, the French interface,
and so on. This isn't usually what we want.

[50]

Chapter 3

Other examples of when field translation makes sense include events and organic
groups. When someone signs up for an event, it is important to track the event data
in one node. For organic groups, the main group node is the key to membership, so
it would be problematic to have multiple nodes. Field translation is the best solution
when you have these types of language-unaware node relationships.

Configuring field translation

As with node translation, we need to configure several things before we start using
field translation. In this section, we will enable the necessary modules, configure our
entity and content type settings, and then translate our content.

Entity settings

To configure your entity settings, follow these steps:

1. [Install the Entity Translation module (drupal.org/project/
entity translation).

2. Entity Translation adds a new Content language detection section at
Configuration | Regional and language | Languages | Detection and
selection. Navigate to that page and update the settings so that the Content
language detection section matches the User interface text language
detection section (rearrange the items as needed and make sure the same
items are checked or unchecked).

3. Enable the Interface method and move it to the top. This option will try to
use the interface detection settings when possible, but it isn't always reliable.
This is why you should match the interface detection section options as well.

4. Click on Save settings when you're done.

Interface Use the detected interface language. _f
URL Determine the language from the URL (Path prefic or domain). _.-“ Configure
Session Determine the language from a request/session parameter. - Configure
User Follow the user's language preference. =
Browser Determine the language from the browser's language settings. -
Default Use the default site language (English). s

5. Now you need to replace your current language switcher block called
Language switcher (User interface text) with the new Language switcher
(Content) block. If you don't change the block, the switcher links won't
be correct.

[51]

Working with Content

6. To enable your nodes for translation, you now have a new Entity Translation
config page at Configuration | Regional and language | Entity translation.

Translatable entity types
|l Content

Taxonomy term
Comment
User

Select which entities can be translated.

We can stick with the default entity settings since we are focusing on node content
at the moment. We'll look at the other entity options later in this chapter.

Content type settings

When configuring our content type settings, we will need to choose a content type
for field translation and then proceed with the following steps:

1. Go to your content type config page (for example, edit Drupal Book at
Structure | Content types | Drupal Book | Edit), click on the Publishing
options tab, and you'll see a new option for Multilingual support:

Multilingual support
_ Disabled

) Enabled

) Enabled, with translation

@ Enabled, with field translation

2. Choose Enabled, with field translation and click on Save content type.
Note that for earlier module versions, the option is Enabled, with entity
translation. Now we need to decide which fields to translate. Drupal
Book has a number of fields including Title, Image, Description (Body),
and Drupal Version:

LABEL NAME FIELD
Title title_field Text
Image field_image Image
Description body Long text and summary
Drupal Version field_drupal_version Term reference

[52]

Chapter 3

An interesting thing about the Title field in Drupal 7 is that it's technically
not a real "field" (it is considered a "property"). This is a problem when using
field translation because we want to translate the node's Title.

The workaround is to install the Title module (drupal.org/project/title)
and the Entity API module (drupal.org/project/entity). Install both of
those now and then go to the content type's Manage fields page.

You'll see a replace link for the Title. Click on replace, select the Replace title
with a field instance checkbox, and click on Save settings:

« Replace title with a field instance.

If this is enabled the title legacy field

Save settings

The Title module will do some magic and then the Title will be transformed
into a bona fide Text field. One oddity is that the new Title field will show
up on the node view page (you'll have two titles!), so it needs to be hidden.

Go to the Manage display page for your content type, choose <Hidden> for
the Title, and click on Save:

Title Ahove v <Hidden> ¥

For Drupal Book, let's configure the Description (Body), so it can be
translated. The Title module will enable translation for the Title field for us.

Go back to the Manage fields page.

Click on edit for the Description (Body) field and the bottom of the form
will look similar to the next screenshot. Note that it will say BODY FIELD
SETTINGS when editing a Body field that has not been renamed.

DESCRIPTION FIELD SETTINGS
These settings apply to the Description field everywhere it is used. Bsg

Number of values
1 v

Maximum number of values users can enter for this field.
‘Unlimited" will provide an ‘Add more' button so the users can add as m

Field translation
This field is shared among the entity translaticns. Enable translaticn

[53]

Working with Content

8. If you don't have content yet, there will be a Users may translate this field
checkbox, otherwise, there will be an Enable translation link. Select the
checkbox and save the settings, or click on the link. If there is content, a
Disable translation link will be available if you need to turn off translation.

9. Repeat this process for all fields you want to translate.

o Author and status are not "fields" and cannot be translated using
~ field translation. If you need a different author or workflow per
Q translation, you'll need to use node translation and the Synchronize
Translations module similar to what we did earlier in this chapter.

Translating content

Now that the fields have been configured, we can translate our content. Edit an
existing node or create a new one, set its language to the default language, and save
the node. The Translate tab will be available just as it was when we used the node
translation model.

Click on Translate and the UI will look familiar. To add translations, just follow
the same process as before:

1. Click on the add translation link.

2. Translate content and click on the Save button.

3. Repeat for each language.

Using the language switcher

Because of the way field translation works, notice that all languages are "available"
in the language switcher for our node even when translations are actually missing.
These duplicate pages affect the site's SEO, which will be discussed in Chapter 5,
Panels, SEO, and More!.

Languages

» gl
= English
» Deutsch
» Polski

[54]

Chapter 3

Another thing to remember is that, for field translation, we are using one node. So,
if you click on any language in the language switcher and edit the node, you are
actually editing the same node, no matter what the interface language is. This is
very important to keep in mind, particularly if you are using both node translation
and field translation models. It can become confusing at times if you aren't paying
attention. Let's recap:

e When you use the language switcher for node translation, you will be
viewing a different node. In that case, if you edit the node, you'll see the
node edit page for the translated content. Saving the node will affect the
translated node and not the source node (except for synchronized fields).
Translated content can be handled with this method or via the Translate
tab process.

e When you use the language switcher for field translation, you will be
viewing the same node but the translated fields will show up to match
your chosen language. If you edit the node, you'll see the node edit page
for the source node content (the only node). To translate content, you
must click on the Translate tab and use that process.

At the time of writing, there is an open Entity Translation issue

to allow field translation via the node edit page (drupal.org/
’ node/1282018).

Non-node entities

Although translating nodes is usually the bulk of the content translation burden,
there might be "content" from other entities as well. This section walks us through
the configuration for these non-node core entities, namely, comments, users, and
taxonomy terms.

Comments

For each content type, you will need to decide if it makes sense to translate
comments. If comments are coming from the general public, then it's unlikely
that they should be translated. But, if there are comments that you control, then
translating them might make sense. For example, if you have a company blog
where only employees make comments and the blog posts will be translated,
you might decide to translate the comments as well.

[55]

Working with Content

Unlike nodes, comments can only be handled using field translation as follows:

1. Navigate to Configuration | Regional and language | Entity translation.
2. Select the Comment checkbox and click on Save configuration.

3. Now we can enable field translation for any of our comment fields. To
do this, we need to choose a content type, so we can get to the correct
configuration page. I'll start with the Blog entry content type at Structure |
Content types | Blog entry | Edit.

4. Navigate to your content type config page and then click on the Comment
fields tab.

Since the Title module is installed, we have a replace link available for the
Subject field.

Click on replace.

Select the Replace subject with a field instance checkbox.

Click Save settings. Your comment fields should look similar to the
following screenshot:

Author author Author textfield
Subject subject_field Text
Comment comment_body Long text

You now need to hide the new Subject field from the display, so that you don't have
two subject lines showing up in the comments:

1. Click on the Comment display tab.
2. Choose <Hidden> for the Subject.
3. Click on Save.

You need to repeat the Subject field replacement process for
s all content type comment entities that will be translated.

Translation for the Subject field is enabled by the Title module, so you just need to
configure the Comment field using the following steps:

1. Go back to the Comment fields tab.

[56]

Chapter 3

2. Click on the Comment field's edit link and scroll down the form. Click on
the Enable translation link if you have existing content (otherwise, check
the Users may translate this field checkbox and save the settings).

3. [Edit anode comment (or add a new one and save it) and you will see a
Translate tab.

Edit comment Can't wait!

View comment Edit Delete Transkte
v Administration

Eubject *
Can't wait!
& field replacing comment subject.

Comment *

I am super excited about the book! Can't wait to get a copy...

4. Click on the Translate tab and you will find a familiar translation
overview page:

LANGUAGE SOURCE LANGUAGE TRANSLATION STATUS OPERATIONS
Arabic nia nja Mot translated add translation
English {original content) Can't wait! Published edit

German nia nja Mot translated add translation
Palish nia nfa Not translated add translation

5. The process for translating comments is the same as the process for
translating nodes. Click on the add translation link, translate the content,
and click on Save translation. Repeat for each language.

Language assignment

When creating a comment, the language assigned is based on the interface language.
If I'm viewing the site in German and create a comment, then the language for the
comment will be German as well. This is true whether the node being commented
on was translated using node translation or field translation.

[57]

Working with Content

Comment display

When viewing comments on nodes that use node translation, you will see only the
comments associated with the particular node. If there is an English node and an
associated German node, then you will see different comments for each since the
comments are not shared.

For field-translated nodes this is different since there is only one node. By default,
you see all comments, and comments show up in the selected language when
possible. For example, if you are viewing German content, a comment will show

up in German if there is a German translation or the comment's source language is
German. If German is not available, the source comment will be shown (in whatever
language). If you prefer that only comments with the selected language be displayed,
then follow the given steps:

1. [Edit the content type for the comments (for example, Structure | Content
types | Blog entry | Edit).
Click on the Comment settings tab.
Select the Filter comments per language checkbox.

Click on Save content type.

Users

Although it is a bit strange to think of users as content, users can have fields just

like nodes and comments. So, just like for node and comment fields, we can enable
translation for any of the user fields. When might this make sense? For general users,
it probably doesn't. But, if your site showcases your employees, you might want to
translate profile information for your employee users.

1. First, enable field translation for users by going to Configuration | Regional
and language | Entity translation.
Select User and click on Save configuration.

Now navigate to Configuration | People | Account settings | Manage
fields and you'll see the default user fields, namely User name and password
and Timezone. These aren't actually real "fields" (they are usually referred to
as "properties"), so we can't enable translation for any of them.

Add a new Long text field called Bio.

Enable the Users may translate this field checkbox when saving the field
settings. This new Bio field is now translatable.

6. Create a new user or edit an existing one and fill in the Bio text.

[58]

Chapter 3

7. Now when you view a user, you will see a Translate tab. Click on the tab to
get to the translation overview page:

LANGUAGE SOURCE LANGUAGE TRANSLATION STATUS OPERATIONS
Arabic nia nia Mot translated add translation
English {original content) view Published edit

German nfa nfa Mot translated add translation
Palish nia nia Not translated add translation

Translating user information follows familiar steps:

1. Click on the add translation link.
2. Translate content and click on the Save translation button.

3. Repeat for all languages.

Taxonomy terms

Taxonomy terms can be associated with nodes (or other entities) by using a Term
reference field. For example, the demo site has a Blog entry content type with a Blog
Tags term reference field.

One way to deal with different translations having different taxonomy terms is
to configure the term reference field itself to be translatable. When using node
translation, this will be the default behavior unless the field is configured with
the Synchronize Translations module as discussed previously.

For nodes using field translation, use the process explained earlier for content
type fields. This approach makes the most sense when you are using completely
different and unrelated terms for each translation.

The other approach, which is more typical, is to configure the taxonomy
term entities. One complication is that we have different ways to handle this
configuration.

First, we can use the field translation method for term fields similar to what we
did for node, comment, and user fields. Second, the Internationalization package
provides a flexible Taxonomy Translation module for translating vocabularies and
terms in a variety of ways.

[59]

Working with Content

Field translation will be addressed here but the Taxonomy Translation module will
be covered in Chapter 4, Configuring Blocks, Menus, Taxonomy, and Views, since it is

a very different approach. These two methods can be used in parallel (for different
vocabularies).

Field translation is useful when you have custom fields for your taxonomy terms
because the Taxonomy Translation module only handles the term name and
description. For example, if you have a "Slang" vocabulary and decide to add an
"Example Usage" field, then it would make sense to use field translation, so that all
term fields (Name, Description, Example Usage, and so on) are translatable.

Another reason you might choose field translation instead of taxonomy translation
is just for simplicity (there are fewer modules to deal with).

Configuring field translation for the taxonomy term entities is similar to what we
did for nodes, comments, and users:

1. First, enable the Taxonomy term entity type at Configuration | Regional
and language | Entity translation and save the settings.

2. Now you need to choose a vocabulary and navigate to its Manage fields
page (for example, Structure | Taxonomy | Tags | Manage fields).

3. You will see replace links for both the Name and Description fields because
the Title module is installed.

4. Click on replace for the Name field, select the Replace name with a field
instance checkbox, and click on Save settings.

5. Repeat this process for the Description field.

M If you have custom taxonomy term fields, you can enable
Q translation for those, in the way the user Bio field was
configured previously.

With field translation configured, you can now edit any of your terms in the
vocabulary and find a Translate tab. On the Translate tab page, you'll see

the translation overview where you can do the usual, that is, click on the add
translation link, translate Name and Description, save the translation, and repeat
for your languages.

[60]

Chapter 3

Once the terms are translated, the way they are used depends on the content
they are associated with. If the node's term reference field is shared for all node
translations, then just choose your terms for one node translation and, when you
view a different node translation, the translated terms will show up. If the node's
term reference field is not shared, then just choose the correct language-specific
terms when editing each translation.

Custom entities

Drupal core provides node, comment, user, and taxonomy term entities, but
contributed modules can also define custom entities in their code. For example,
the Commerce module defines entities for products, payments, and customers,
and the Organic Groups module has entities for groups and memberships.

In theory, by using the Entity Translation module, you can configure field
translation for any entity type with fields. The process would be similar to
what we did previously. But, in practice, it might not work depending on the
entity. For example, translating Commerce Product fields (from the Commerce
module) does work (check out kristen.org/drupal7-il8n-commerce for a
tutorial). For other custom entities, check the module's project page or issue
queue to see if field translation is fully supported.

Node listing and search pages

As you have been clicking around your site, you might have noticed something
odd. On pages with lists of content such as the default home page and taxonomy
term pages, content is shown in all languages. In this section, we will fix this issue
as well as look at language support for core search functionality.

Home page

If you are using the demo site or a site built from scratch, you start off with
the default home page provided by Drupal (/node). To get the home page to
show nodes based on language, install the Multilingual Select module from
the Internationalization package (drupal.org/project/i18n). Now when
you change languages, you'll only see language-neutral nodes and nodes in
the chosen language. The module can be configured at Configuration |
Regional and language | Multilingual settings | Selection.

[61]

Working with Content

At the time of writing, the Multilingual Select module doesn't
handle nodes that have been translated using the field translation
model (drupal.org/node/1398770).

It's unlikely you'll want to use the default home page for your real website. Instead,
you might use a views page, a panels page, or something defined in custom code.
We will discuss multilingual views pages in Chapter 4, Configquring Blocks, Menus,
Taxonomy, and Views, and panels pages in Chapter 5, Panels, SEO, and More!. If you
are writing a custom module to generate your home page, check out Chapter 5 for
more details on module development for a multilingual website. Chapter 5 also
covers handling a separate home page per language which improves SEO.

Taxonomy term pages

Drupal automatically provides taxonomy pages for each term in every vocabulary
on your site. By default, node terms show up on node view pages and each term

is linked to its taxonomy page. With the Multilingual Select module enabled, these
taxonomy pages will only show nodes that are language-neutral or match the
selected language. You can use the language switcher to switch between taxonomy
term pages for each language.

Search

If you are using the built-in Drupal search, users with Use advanced search
permission can search for node and comment content based on language. The core
user search does not have any advanced search functionality. If you need more
sophisticated search features with multilingual support, check out the Apache Solr
Search Integration module.

For nodes using field translation, at the time of writing, content
* is only searchable using keywords in the default language. Track
the issue at drupal .org/node/1291388. There is a contributed
’ module, Search API Entity Translation, in development that
might help in the interim.

[62]

Chapter 3

Summary

Wow! I'm sure you'll agree that we just covered a lot of material. Configuring a
multilingual website is not for the faint of heart! Let's quickly recap the important
items we covered in this chapter.

We first focused on the node translation method using the core Content Translation
module. Example content types were discussed to better understand when node
translation works best. We then configured content types, display options, and
extended features from the Internationalization package, and actually translated
some nodes!

After node translation, we moved on to the field translation model. More examples
were reviewed to help us know when to choose field translation over node
translation. Then the Entity Translation module was installed and we configured
entity and content type settings. With the configuration in place, we translated some
content via fields, and then discussed the differences between the two translation
processes and possible gotchas.

With nodes completed, we took a look at non-node core entities (comments, users,
and taxonomy terms) which were configured using the field translation process.
Then, custom entities were addressed briefly.

Finally, the built-in Drupal content pages were explored including the default
home page, taxonomy term pages, and search. We turned on the Multilingual Select
module to add multilingual support to the home page and taxonomy term pages.
Then we finished up by taking a look at the default language support for the core
search feature.

We're on the home stretch. Let's move on to blocks, menus, taxonomy, and views!

[63]

Configuring Blocks, Menus,
Taxonomy, and Views

In the previous chapter, we translated content and looked at core content pages. In
this chapter, we'll discuss the standard components of a Drupal site, namely, blocks,
menus, taxonomy, and views.

First, we'll start by configuring language-specific and multilingual blocks and
menus. Then, taxonomy terms will be revisited using different multilingual options
provided by the Taxonomy Translation module. The chapter concludes with creating
language-aware views for nodes, comments, taxonomy terms, and users.

Blocks

Modules can provide blocks, or we can create simple ones ourselves. A block
should be configured appropriately based on its content. We might have a block
that is language-independent such as an image. Some blocks might only make sense
for one language, for example an advertisement targeted at German users. Other
block content, such as footer text or instructions, might be relevant for some or all
languages. In this section, we'll configure blocks for different use cases including a
block created by a module.

Configuring Blocks, Menus, Taxonomy, and Views

Language-specific blocks

For language-independent blocks, you don't need to do anything special. Just create
your blocks as usual. But, if you have blocks that need to only show up for certain
languages, you'll need the Block Languages module.

1. Install the Block Languages module from the Internationalization package
(drupal.org/project/ilsn) and go to Structure | Blocks | Add block.

2. Let's create a block that will only be shown for one language. Fill in the Block
title, Block description, and Block body, and then click on the Languages
tab at the bottom of the form.

3. Now select a language and click on Save block:

Languages Show this block for these languages
Mot translatable, Restricted to certain .

languages [Arabic

Content types LI English

Mot restricted & German

Roles [Palish

Mot restricted

4. Place the block where content with the chosen language is available. In my
case, I'll create a block with German text and put it on my blog pages. This
block will only show up if I'm viewing German blog content:

Liste der deutschen
Drupal Websaiten Weblogs

Schauen Sie sich diese # Neuen Blog-Eintrag erstellen
Listeder deutschen

Internetseiten:
drupalseite.de Herzlich Willkommen auf unserer neuen Webs

Giesp=izhed von krisien am/um Sa, 01072012 - 19:03

[66]

Chapter 4

Translating blocks

When we add body text for a block, we can choose its text format (Filtered HTML,
Full HTML, Plain text, and so on). So, before continuing with block translation, we
need to make sure that we can translate strings that have been provided in different
text formats.

1. Go to Configuration | Regional and language | Multilingual settings |
Strings.

2. Select Filtered HTML and Full HTML in the Translatable text formats
section (Plain text should already be selected) and click on Save
configuration.

Full HTML should only be used for trusted roles, and content gets
X translated prior to being filtered, so only use verified translations.

Now let's translate a block:

1. Edit a block (or create a new one), click on the Languages tab, and select
Make this block translatable.

2. Do not choose a language in this case as we want this block shown for
all languages:

Pages

FomTi=Ed (o o pans & Make this block translatable

Languages Show this block for these languages
Translatahle, Mot restricted [Arabic
Content types [] English
Mot restricted
[Gerrman
Roles)
Not restricted [] Palish
s You can also create blocks for a subset of your languages. This can be

~Q combined with translation, so that a translated block is only available
for some languages.

[67]

Configuring Blocks, Menus, Taxonomy, and Views

3. You'll now have a Save and translate button. So click on that and you'll see
the translation overview page for the block.

4. Now you know what to do. Click on translate, translate content, click on
Save translation, and repeat for all languages. Isn't consistency great?

Another nice feature is that we have a handy Translate link in the block's
contextual links.

We love Drupal!)
Gonligune

We love Drupal...h TrmkE
you? Cheek out our blogs, h‘

Once the translations are in place, the block content will match the interface
language. For my example, I translated a custom "We love Drupal!" block to German
and now it has the title "Wir lieben Drupal!" when viewing the German blog page:

Wir lieben Drupal!

Wir lieben Drupal ... wie
tiber Sie? Schauen Sie sich
unsere Elogs, Artikel und
Eiicher viber Drupal

Blocks provided by modules

To handle a block provided by a module, our steps will be different because the text
will be coming from the module code. Instead of using the Translate tab similar to
what we used for custom blocks, we'll need to follow the string translation process
used in Chapter 2, Setting up the Basics: Languages, Ul Translation, and System Settings.
Let's walk through this with an example by using the core Powered by Drupal block:

1. Go to Structure | Blocks, position the Powered by Drupal block in your
footer region, and then configure the block to have a title (for example, "We
are...").

2. Also, since we added a custom block title, click on the Languages tab, select
Make this block translatable, and save the block.

The usual Translate tab process lets us translate the block title
if we override the title provided by the module, but it doesn't
i
let us translate the block body text.

[68]

Chapter 4

3. To translate the block title and body, go to Configuration | Regional and
language | Translate interface | Translate.

4. Type in powered by (case sensitive) in the String contains box and click on
Filter. The powered by text will show up as translated in the results since
the translation is available (from our work in Chapter 2, Setting up the Basics:
Languages, Ul Translation, and System Settings).

The default German translation is the same as the English text
L (Powered by).

TEXT

STRING CONTEXT LANGUAGES OPERATIONS
GROUP
Built-in Powered by <a)
! . . ar de pl edit delete
interface href="{@poweredby"=Drupal

5. Click on the edit link, add your translation, and click on Save translations.
6. Repeat the process for your custom block title text.
7. Flush all caches and take a look!

Our block will now have the new translated title and body text! For German, I

changed "Powered by" to be the German translation of "Presented by," so it looks
as follows:

Wir sind...

Prasentiert von Drupal

Menus

Menus are added to websites so that users can find content easily. We'll need to
configure our site menus based on how they are used for each language. A menu
might make sense for all languages because it links to language-independent content.
Some menus might point to language-specific pages and should only be shown for
the associated language. For other menus, the same navigation elements might be
appropriate for some or all languages, so we'll need a multilingual menu.

[69]

Configuring Blocks, Menus, Taxonomy, and Views

Multilingual menus are not supported by Drupal core, so we will use the contributed
Menu Translation module from the Internationalization package. But, before we try
the different module options, the following figure provides examples of how we

can handle menu items using Menu Translation. For language-independent menus,
we can use the default option. For language-specific menus, we can use the Fixed
Language option. For multilingual menus, we can use the Translate and Localize

option (which has been split into two in the figure to illustrate the differences
between "localize" and "translate").

In the figure, NT stands for "node-translated" and FT stands for "field-translated".

4 Default N Fixed h
4 N || 7 N
Language-Independent Menu ltems Fixed Language Menu ltems
Item Item Item (de) Item (de)
Drupal Twitter kontakt tiber uns
[\ [\
/drupal-info NT Node (de)
/node/3
\\ /) \\ /)
4 Localize N (Translate)
4 N\ 4 N\
Localized Menu Items Translated Menu Items
Item ltem Item (de) Item (en)
kontakt tiber uns tiber uns about us
contact (en) about us (en)])\
[\
NT Node (de) NT Node (en)
/node/7 /node/3 /node/4
_ /
o J

[70]

Chapter 4

Language-specific menus
For language-independent menus, you don't need to do anything special. Just

create the menu as usual. For language-specific menus, we'll need the Menu
Translation module.

1. Install the Menu Translation module from the Internationalization package
(drupal.org/project/ilsn) and then create or edit your menu. For
example, I'll edit a custom footer menu at Structure | Menus | Footer
menu | Edit.

2. In the new Translation mode section, choose Fixed Language and a
Language field will appear.

3. Select a language, click on Save, and add or update your menu items
as needed.

Translation mode

(7 Mo multilingual options for menu items. Only the menu will be translatable.

(7 Translate and Localize. Menu items with language will allow translations,
Menu items without language will be localized.

(® Fixed Language. Menu items will have a global language and they will only
show up for pages in that language.

Far localizable elements, to have all items available for translation visit the
translation refresh page.

Language *

English =

Now we need to see the menu somewhere, so let's configure the menu block.

Go to Structure | Blocks, position the menu block, and click on Save blocks.

Edit the block, select the language to match the menu, and save. This menu
block will only be shown when viewing content in the matching language.

6. If desired, repeat the process so you have one menu block per language.

[71]

Configuring Blocks, Menus, Taxonomy, and Views

Multilingual menus

You can choose to make one menu per language but usually this is best when each
menu is very different. When menus will be similar across languages, we can make a
multilingual menu. A typical use case is the Main menu since it often makes sense to
use the same global navigation regardless of language. For the demo site, the Main
menu has links to common pages such as About Us, News, Search, Contact Us, and
so on.

7’

Awesome Drupal Books
— Read the best Drupal books you can find...

About Us Drupal Boolks MNews Blog Farum Pol Search Contact Us

Let's create a multilingual menu:

1. First, add a menu or edit an existing one (for example, for the Main menu,
go to Structure | Menus | Main menu | Edit), choose the Translate and
Localize option, and save the menu.

2. To translate the menu's name, there is a Translate tab available when
viewing the menu links or editing the menu. Just click on the tab and follow
the regular translation process.

3. If necessary, position the menu block on the site as before.

Now that the menu has been configured, we can handle each menu item. Things
can get a bit confusing at this point since the process will change depending on the
type of menu item. A few different scenarios are explained in the next sections for
better clarity.

Node pages

You would most likely want menu items that point directly to nodes. For example,
on my demo site, the About Us link points to node/5 for English and that node can
be translated. When using nodes translated via node translation, we can proceed
as follows:

1. Add or edit a menu item for the source node (for example, About Us and
node/5) and save the menu item. Note that the menu item's language will
automatically be associated with the node's language. Now you have two
ways of adding the translated nodes.

[72]

Chapter 4

2. The first option is to edit the menu item again. Click on the Translate tab,
and translate as usual while making sure to change the menu item's Path to
point to the translated node page. After you click on Save translation, a new
menu item and menu item translation set will be created for you.

3. Alternatively, add a new menu item directly for the translated node page and
save. Then you can associate this menu item with the first one as follows:

o

Edit either menu item
° (Click on the Translate tab

o

Choose the correct mapping in the Translations section below the
translation overview table

Click on Save

Now when you view the menu on the site and toggle between languages, the
appropriate menu item title and node link will be displayed.

At the time of writing, field-translated nodes are not supported well in menus.
There are some possible workarounds such as using the node/ [nid] /view page
or a fully-qualified URL (for example, http://example.com/node/ [nid]) for the
menu item path. But, these options end up with undesirable side effects including
the active menu item not being set for the associated page. Since there are several
related issues to solve, check the issue queues for both the Entity Translation and
Internationalization modules to track progress.

Pages with the same link

For some pages, the same path should be used for all languages. For example, the
demo site has a Contact Us menu item that links to /contact. In this case, we only
need one menu item where the title and description are translated. This method is
referred to as "localize" because there is only one menu item object.

1. Add or edit a menu item for a page where the same link should be used for
all languages (for example, Contact Us and contact). Leave the language
set to Language neutral and save the menu item. Note that the String
Translation source language (that we set in Chapter 2, Setting up the Basics:
Languages, UI Translation, and System Settings) will be used for the menu item
even though it is set to Language neutral (yes, it is confusing).

2. Edit the menu item again, click on the Translate tab, and translate as usual.

[73]

Configuring Blocks, Menus, Taxonomy, and Views

Pages with different links

The last scenario we will cover is when a page has a different path per language.
On the demo site, the News page is generated from a view and has the path
/articles. We could create a different view page that was for German and uses
the path /german-articles. Then we'd need to create two (related) menu items
in our menu. This method is referred to as "translate" because a menu item
translation set is created.

1. Add or edit a menu item for the first page (for example, News and articles),
choose a language (for example, English), and save the menu item.

2. For the translated page (for example, Nachrichten and german-articles),
follow the previous directions for nodes translated using the node
translation model.

If you create a new menu item directly, also choose the language
L for the page.

English
News

German
- Machrichten - |

With the Main menu translated, the German version now looks similar to the
following screenshot:

Vd

o Lesen Sie den besten Drupal Bucher; die Ste finden konnen...

Ehrflrchtig Drupal Bicher

Uber uns Drupal Bachar Machrichtan Blg Farum Umfragen Suche Eontaki

Taxonomy terms

In the previous chapter, we translated taxonomy term fields using the Entity
Translation module. For a completely different approach, we can leverage the
Taxonomy Translation module from the Internationalization package.

[74]

Chapter 4

Before continuing, if the Multilingual Content module is installed,
verify whether the Switch interface for translating checkbox is
enabled at Configuration | Regional and language | Multilingual
% settings | Node options or you will see unexpected behavior in
"~ this section. For example, if you edit a German translation using
the English U, then you will only see English terms even though
you would most likely want to see German terms.

Taxonomy translation module

The Taxonomy Translation module provides four different multilingual options
depending on how we use our vocabularies and terms. The simplest choice is to use
the default option and do nothing to a vocabulary or its terms. This makes sense

if you have terms that are language-independent such as a list of programming
languages (for example, HTML, Java, PHP, and so on) or companies (for example,
Apple, HP, IBM, Microsoft, and so on).

Another option is to assign a fixed language to a vocabulary. This is useful if
you have terms that only make sense in one language. For example, we might
maintain a list of slang words per language as translating the slang might not
be accurate. Other lists that might be separated by language are songs, videos,
or other language-dependent media.

If you plan on having a term list where you add terms in the String Translation
source language and then translate each term name and description, you can use
the "localize" option. For example, you might maintain a list of colors, animals,
plants, or ice cream flavors where each term will be translated for each language.

For the last option ("translate"), we can create a mixed-language vocabulary. For the
slang example, we could create one "slang" vocabulary and put all slang terms for
all languages in it. Then we can translate some slang terms (or not!). As long as we
assign a language per term, the correct terms will be available for us when using the
vocabulary. For example, when editing a node with slang terms, the Polish UI will
only have access to the Polish slang terms.

[75]

Configuring Blocks, Menus, Taxonomy, and Views

To better visualize the four options available from the Taxonomy Translation
module, take a look at the following figure. For the Default example, the term
is language-independent. For the Fixed example, terms come from separate
language-specific vocabularies. For the Localize example, there is one term
"object", whereas for the Translate example, each translation is a separate term
"object" with the translations forming a translation set. In the figure, NT stands
for "node-translated" and FT stands for "field-translated".

4 Default N Fixed N
4 N\ 4 N\
NT Node (de) NT Node (en) NT Node (de) NT Node (en)

Car Car
| Term (de) I | Term (en)
Stollen London

Car (en)

\\ / ') \\ / ')
4 Localize N Translate N
4 N\ 4 N\
NT Node (de) NT Node (en) NT Node (de) NT Node (en)

Term ‘ Term (de) Term (en)
blau blue (en) blau blue
\\ / ') \\ / ')

Language-independent terms

Let's start with the default option for a language-independent vocabulary:

1. [Install the Taxonomy Translation module from the Internationalization
package (drupal.org/project/il8n).

[76]

Chapter 4

2. Now create a new vocabulary or choose an existing one. If you are using
the demo site, there are several vocabularies such as Blog Tags, Book Style,
Drupal Level, and Drupal Version. The Drupal Version vocabulary is a
good choice here as the terms Drupal 6, Drupal 7, and so on will not be
translated.

3. Also, make sure you have a content type with a taxonomy term reference
field for that vocabulary. The demo site uses Blog Tags for Blog entry nodes
and Book Style, Drupal Level, and Drupal Version for Drupal Book nodes.

4. Navigate to Structure | Taxonomy and click on the edit vocabulary link
for your vocabulary. You'll see a Multilingual options section similar to the
following screenshot:

® Mo multilingual options for terms. Only the vocabulary
will be translatable.

Localize. Terms are common for all languages, but
their name and description may be localized.

Translate. Different terrms will be allowed for each
language and they can be translated.

Fixed Language. Terms will have a global language
and they will only show up for pages in that language.

The first option, No multilingual options for terms, is our default, and we'll use this
for vocabularies with language-independent terms. We'll learn how to translate the
vocabulary field label/name later in the chapter in case this is needed.

Language-specific terms
We can make a vocabulary language-specific, so that the vocabulary is only used for

content in that language. In my case, I'll assume that the Book Style terms only make
sense for English users.

1. Go to Structure | Taxonomy and click on the appropriate edit
vocabulary link.

2. Choose Fixed Language and a Language drop-down field will be displayed.

[77]

Configuring Blocks, Menus, Taxonomy, and Views

3. Select the language and click on Save:

® Fixed Language. Terms will have a global language

and they will only show up for pages in that language.

Forlocalizable elements, to have all items available for
translation visit the translation refresh page.

Language *

English -]

4. If you edit or view a node associated with that vocabulary, the terms will
only show up if the term language matches the Ul language. For example,
when I view a German Drupal Book node, the Book Style terms are gone.

Localized terms

For vocabularies where terms will be added in the String Translation source
language, we can use the Localize option. This option is called "localize" because
it does not create term translation sets.

1. Choose a vocabulary to edit, select Localize, and click on Save. In my case,
I'll edit Drupal Level at Structure | Taxonomy | Drupal Level | Edit.

Make sure to start with terms in the String Translation
% source language, and then don't change the source language
A~ . .
or translations might break!

2. Now edit a term (or add a new one and save) and there will be a Translate
tab. Click on the tab to get the translation overview page for the term.

LANGUAGE TITLE STATUS OPERATIONS
Enaglish {source) Intermediate original edit

Arabic Intermediate not translated translate
German Intermediate not translated translate
Palish Intermediate not translated translate

You can probably do this blindfolded now!

[78]

Chapter 4

Click on translate, translate the Name and Description (if available), click on
Save translation, and repeat for all languages.

Then repeat the process for all terms. It's tedious, but it works!

Well, it will work. But, there are still a few more steps if we want the
translated text to actually show up for our nodes.

Go to the Manage display page for a content type with the vocabulary.
In my case, I'll go to the Structure | Content types | Drupal Book |
Manage display.

By default, the format for the taxonomy term reference is set to Link.
Change this to Link (localized) and click on Save.

Drupal Lewvel Above j Link (localized) j

Now if you edit or view a translated node with that vocabulary, the
vocabulary terms will be appropriate for the language. I translated
"Intermediate" to "Zwischen" for German. So if I view an Intermediate book
while in German, the terms will appear as in the following screenshot:

Drupal Level:
Zwischen fortgeschritten

To translate your taxonomy terms faster, check out the Translation
M Table module. It provides a config page at Configuration |
Q Regional and language | Translate interface | Translation table
where you can translate many terms at once. It also helps with
field labels, content type strings, and menu items.

Mixed-language vocabulary

For vocabularies with terms in multiple languages (with none, some, or all
translated), the Translate option can be used. Unlike Localize, this option uses
term translation sets and you don't have to add new terms in the String Translation
source language.

1. Edit a vocabulary, select the Translate radio button, and click on Save. For

example, the Blog Tags vocabulary would be a good choice since it is a
free-form list of terms and not all terms may translate well to all languages.

[79]

Configuring Blocks, Menus, Taxonomy, and Views

2. Edit a term from your vocabulary and you will find a new Language field.
Choose a language and then click on Save and translate. The translation
overview page will show up for the term.

The Translate tab page behaves differently depending on the
multilingual option. With the Localize option, the page lets you

M update the name and description of a term for each language
(you translate the user-defined strings). With the Translate
option, the page lets you add a new term or select an existing
term for each language (to associate with the source term and
add to the translation set).

3. Now you have two options, that is you can either click on the add translation
link or you can choose an existing term in the Select translations form.

4. Go through and create translations for some of your terms, and add new
terms for specific languages only. The term list page will show the language
associated with each term.

Deutzschland (German)

Drupal Rocks

Welcorme (English)

willkommen (German)

5. Now if you are editing a node associated with this vocabulary, only the
relevant terms will appear. For example, if I am using the German interface
and add a Blog entry node, I can choose willkommen but not Welcome.

If I'm using the English interface, then Deutschland won't be available.
Language-neutral terms are accessible for all languages.

Updating the field label

You might have noticed that the field label for our taxonomy term reference field (for
example, Blog Tags or Drupal Level) is still in English. We'll need to translate it so
that our field label language matches our interface language.

1. [Install the Field Translation module from the Internationalization package
(drupal.org/project/il8n). This module lets you translate field settings.

[80]

Chapter 4

Go to the Manage fields page for the content type that has the taxonomy
term reference field (for example, Structure | Content types | Drupal Book
| Manage fields) and then click on edit for the term reference field (for
example, Drupal Level).

You'll find the usual Translate tab. So click on it to see your overview table.

You should already know what to do. Click on the translate link for a
language, translate the Name and Description text, click on Save translation,
and then repeat for all languages and content types as needed.

Now when you are viewing nodes for these content types, the vocabulary
label will also reflect the language.

Views

Although the Views module is not in Drupal core (yet!), pretty much every Drupal site
uses Views to create custom content pages, blocks, feeds, and so on. We can use Views'
built-in language support along with help from the Internationalization Views module
to update or add views for a multilingual website. For each view, we'll need to decide
if we want one view that handles multiple languages or multiple views, each handling
one language. I'll assume you know how to use Views for this section.

Multilingual views

Let's start out with making a view that handles multiple languages:

1.

First create or edit a view. For now, only work with nodes that use the
node translation model. We'll look at field-translated nodes a bit later.
For example, the demo site has an articles view that shows up on the
News page (for example, Structure | Views | Articles).

Click on the add link in the Filter criteria section, and then search for
"language" and you'll see a filter for Content translation: Language. Note
that this filter only shows up if you have the core Content Translation
module enabled.

Select the checkbox and click on Add and configure filter criteria.

Search lnguage

¥ Cortert translation: Language
The language the content is in.

[81]

Configuring Blocks, Menus, Taxonomy, and Views

4. Now select the Current user's language checkbox and click on Apply
(all displays).

If you want language-neutral nodes to show up as well, also select
= the No language checkbox.

The language the content is in.
O Expose this filter to visitors, to allow thermn to change it

Operator Language

I‘Hihl o
= Is one of

—~ O Select all

" 15 not one of

m Current user's language

Save your view and go to the generated page (for example, /articles).

Switching languages with the language switcher will now cause the view to
grab the nodes based on language. You'll see English nodes in the English UI,
German nodes in the German UI, and so on. Simple!

Strictly speaking, the "Current user's language" isn't necessarily
the same as the interface language. If you don't have the Entity

Al Translation module turned on, then it is the same. But, with Entity

~ Translation enabled, the "Current user's language" is based on the

Q content language settings at Configuration | Regional and language
| Languages | Detection and selection. Since we configured content
language detection to be the same as the interface language detection
in the previous chapter, the end result is the same in our case.

For views pages, if you want different paths per language, you can install the i18n
Page Views module (drupal.org/project/i18_page_views). You will need to
choose the i18n page display rather than the page display to configure path settings
for each language.

PAGE SETTINGS
Path inArabic: news-arabic
Path in English: news

Path inGerman: news-german

P ath in Polish: news-polish

[82]

Chapter 4

Language-specific views

Creating a view for a specific language is similar to what we just did. This time,
though, instead of choosing Current user's language for the Content translation:
Language filter, just choose the desired language. This method is useful if you want
to show a different view for each language or a special view for a subset of languages.
This method works for nodes translated using the node translation method.

1. Edit the previous view and change the language filter to use one language
and save the view.

2. Now when you look at the output, it will only show nodes for the chosen
language. For example, if you configured the view for English, then you will
see English nodes no matter what the interface language is.

3. To create multiple views for different languages, just add a new page display
and change the language, URL path, and other fields as desired.

4. Now you can add these URLs to your navigation. For example, you can add
them to a multilingual menu like we did earlier in the chapter.

Nodes using field translation

The previous examples used translated nodes where there is a different node per
language. Things work a bit differently when dealing with nodes using the field
translation model since there is only one node. The single node has a language
associated with it which is the source language. Individual fields are then translated
from the source language into other languages.

When using the Views' language filter for field-translated nodes, the source language
is analyzed. So, if we configure a view to use the Current user's language option

and switch to English, only nodes with the source language of English show up. If
we switch to German, only nodes with the German source language show up, even
if there is a German translation of an English node. The workaround is to not use

the Content translation: Language filter and, instead, use an option provided by the
Entity Translation module.

1. Add or edit a view and, if necessary, remove the Content translation:
Language filter.

2. Click on Advanced and look for the Field Language option in the Other
section.

3. Configure the Field Language, choose Current user's language, and select
the When needed, add the field language condition to the query checkbox.

[83]

Configuring Blocks, Menus, Taxonomy, and Views

4. Click on Apply and save the view.

M If you are using the node title as a view field, you need to use the
Q title provided by the Title module rather than the core title marked
with "The content title".

Now the view will behave as expected. For example, you will see the German
translation of a node (if it's available) from the German interface. If you have
the fallback option enabled at Configuration | Regional and language | Entity
translation, then the source content will be shown when there is no translation
available.

R At the time of writing, if you want to show some node-translated
~ nodes and some field-translated nodes in the same view, then this
Q isn't possible out-of-the-box. Instead you could write custom code
to handle it.

Non-node views

Views can be configured for non-node content including comments, taxonomy terms,
and users. This section quickly runs through example configurations for these types
of views.

Comments

When creating a view, we can choose to show comments rather than nodes. For
example, we can create a views block containing the most recent comments that are
associated with nodes in a particular language. Let's try that out:

1. Create a new view, choose Comments for the Show list, deselect the Create
a page checkbox, and select the Create a block checkbox.

2. Now choose HTML list and fields in the Display format section and click
on Continue & edit.

[84]

Chapter 4

Show Comments j sorted by Newestfir&‘tj
O Create a page

M create a block

Block title
Mest recant comments

Display format

HTMLEst - | of feks -|

The rest of the configuration is the same as with the node view.

3. Add the Content translation: Language filter and choose Current user's
language.
4. Save the view and put the block on your site.

The block will only show comments that are associated with nodes that have been
created in the chosen language. For example, when viewing German content, the
comments will be displayed for German nodes regardless of the comment language.
At the time of writing, views cannot be configured to show comments based on the
comment language.

Taxonomy terms

For taxonomy terms configured with the Taxonomy Translation module (discussed
earlier in this chapter), we can create a view for terms that is similar to the recent
comments block by choosing Taxonomy terms rather than Comments in the Show list.
But, there is no default language filter available for taxonomy terms. Not to worry!

1. Install the Internationalization Views module (drupal .org/project/
i18nviews). The project is called Internationalization Views but the actual
module is called Views Translation.

2. Now you'll have a new Taxonomy term: Language filter available. Add the
filter and configure it by choosing Current user's language.

[85]

Configuring Blocks, Menus, Taxonomy, and Views

3. Then save the view and you'll have a block that shows the most recent terms
for the interface language.

Search anguage

i Taxonormy terrm: Language
The language the term is in.

For taxonomy terms that are configured for field translation (discussed in the previous
chapter), we cannot use the Taxonomy term: Language filter and, instead, need to use
the Advanced / Field Language option like we used for field-translated nodes.

If you add the term name field to the view, use the name field

that is provided by the Title module rather than the core name

field marked with the description The taxonomy term name.

~ Similarly, for the term description, use the field called Taxonomy

Q term: Description provided by the Title module rather than the

core Taxonomy term: Term description field. This is definitely
confusing! One of the goals of Drupal 8 is to eliminate the need
for the Title module, which would make things simpler.

Users

A realistic views use case for users would be to show the most recent users based
on their profile language. Creating this block has steps similar to those for the recent
comments or terms blocks.

1. When adding the view, choose Users in the Show list and then add the User:
Language filter and choose the Current user's language option.

2. Save the view, place the block as desired, and then the users in the block
will match the interface language.

Search knguage

i User: Language
guag
Language of the user

[86]

Chapter 4

In the previous chapter, we added a user "Bio" field and configured it for field
translation. To show users with this "Bio" field, we wouldn't use the User: Language
filter but, instead, would use the Advanced / Field Language option like we did
earlier for field-translated nodes. Then, we would see user "Bio" translations when
switching between languages.

Views text

In addition to handling content generated from a views query, we can translate
strings associated with a view including title, header, footer, and empty text with
the help of the Internationalization Views/Views Translation module.

1. Go to Structure | Views and you'll find a translate link in the Operations
list for each view:

OPERATIOMS

adit -
disable
delete

clane
export

translate

2. Click on translate to get to the translation overview page. Then you can
translate views strings for each display and language with the usual process.

Master default title
Page* Mews & Arikel
Feed

default use_more_text

mehr

Look at your views page in another language and you'll see translated views
text. Easy!

[87]

Configuring Blocks, Menus, Taxonomy, and Views

Summary

Now you know how to configure the standard components of a multilingual Drupal
site! Here's a brief review of what we learned in this chapter.

We started off with configuring blocks by creating a block associated with one
language. Then, title and body text were translated for a custom block and for the
Powered by Drupal block provided by a module.

Then, we moved onto menus. A language-specific menu was created, and we
localized and translated different types of menu items to make a multilingual menu.

After blocks and menus, we used the Taxonomy Translation module to create
language-specific and multilingual vocabularies and terms.

The last part of the chapter focused on Views configuration by creating multilingual
and language-specific views. Different language settings were used for node-translated
and field-translated content, and language-aware views were created for comments,
taxonomy terms, and users. The chapter concluded with translating views strings (for
example, title and header text) with the help of the Internationalization Views module.

Guess what? Only one chapter to go. Let's learn some advanced topics!

[88]

Panels, SEO, and More!

In the previous chapter, we configured the common Drupal components: blocks,
menus, taxonomy, and views. In this chapter, we'll explore several final topics for
our multilingual Drupal 7 website.

First, we'll discuss creating multilingual and language-specific panels. After panels,
we will look at some Search Engine Optimization (SEO) tips and the language
support for the top Drupal 7 SEO modules. The chapter concludes by examining a
few subjects that might also apply to your Drupal site such as content translation
management and workflow, theming, and custom module development.

Panels

Although it's not as popular as Views, the Panels module has a reported usage of
more than 100,000 installs! Not too shabby. If you haven't tried Panels yet, it's a little
hard to wrap your head around it at first when you are used to Drupal's built-in
block configuration. But, if you are willing to take the plunge, you'll find that Panels
is an awesome tool for sites with non-standard or multiple layout requirements.
David Mercer's Drupal 7 book has an introduction to Panels, but, for more in-depth
coverage, Bhavin (Vin) Patel has a Drupal Panels book and Earl and Lynette Miles
wrote one for Panels, CCK, and Views. I'll assume you know how to use Panels for
this section.

Panels, SEO, and More!

Panel panes

The language behavior of panel panes depends on the pane content. For example, if
you add a multilingual block, then you will see the language-specific block content
when viewing the panel with another language. This is the same for any component
added to a pane including nodes, menus, variables, and forms. In my case, I created
a panel page that included the Powered by Drupal block, Who's online block,

site name, "Multilingual Drupal rocks" blog post, the contact form, and a custom
footer menu. When viewing the panel page in German, all of these components are
translated accordingly. Awesome!

Ehrfirchtig Drupal Bicher

Sprachen

« English Mehrsprachige Drupal-Felsen!

. ayall Gespeichert von admin am/um Do, 02/16/2012 - 14:26

« Deutsch

« Polski Es gibt viele mehrsprachige Medule fir Drupal 7 Ihre Website

... lesen Multilingual Drupal 7 um mehr zo erfahren!

Prasentiert von Drupal
Weiterlesen Blog von admin 1 Kommentar Meuen

Wer ist online Kommentar schreiben English
Zur Zeit ist 1 Benutzeronline. Kontakt
kristen Ihr Name *

kristen

At the time of writing, one issue with multilingual panel panes is how to deal with
titles. You can override a pane title if you want to, but then how do you translate that
title? Well, fortunately, people have been working on that problem and there is a
patch that works. Follow the issue at drupal .org/node/1179034.

1. Tapplied the patch, saved the panel page again, and flushed the caches. Now
there is a new Panels text group available on the Configuration | Regional
and language | Translate interface | Translate page.

2. Just choose this text group and click Filter and you'll see all the Panels-
related strings you can translate.

TEXT

STRING COMNTEXT LANGUAGES OPER
GROUP

This is powered by Drupal
Panels block pane_configuration: 1:title ardapl edit

panels:pane_configuration: 1 :title

Multilingual panel page . X . .)
Panels display configuration:1:title ardapl edit
panels:display_configuration: 1 :title -

[90]

Chapter 5

Language-specific panel pages

If you want different panel pages per language, there is currently no way to set the
language of the panel page. But, you can create a translation set for your panel pages
by using the Path Translation module as follows:

1. Create separate panel pages per language with unique paths.

2. Install the Path Translation module from the Internationalization package
(drupal.org/project/i18n).

3. Go to Configuration | Regional and language | Translation sets | Paths.
Click on the Add path translation link.
5. Fill in paths for each language and click the Save button.

Now the language switcher will know what links to use for each language.

TITLE ITEMS CREATED

. il8n-panel-page-german
Panel pages translation set . . 01y22/2012 - 13:29
il8n-panel-page-english

M The Path Translation module is not specific to Panels. You can
Q use it for Views pages or custom pages created with a module.
It is not needed for node content.

SEO

Search Engine Optimization (SEO) is vital for every website that wants free traffic
from search engines (which is pretty much all sites!). If you haven't yet, you should
check out Drupal Search Engine Optimization, Ben Finklea, Packt Publishing, as it
covers the basics. In this section, we'll look at some multilingual and international
SEO tips and how to configure the most common SEO modules for a multilingual
Drupal 7 site. If you are looking for more modules, check out kristen.org/
drupal-seo-modules.

Multilingual and international SEO

Multilingual SEO addresses multilingual sites. International SEO assumes that
our site will have users in more than one country. These are parallel concerns as
our site can cater to multiple languages and one country or to multiple countries
and one language.

[91]

Panels, SEO, and More!

The following are a few things to consider when dealing with multilingual and
international SEO:

The same SEO principles generally apply regardless of language/country
Evaluate all SEO requirements at the start of a project

Avoid automated translation due to poor quality

When possible, use native translators for your target countries

Don't translate keywords. Do keyword research per language/country
Avoid using the same content across languages (or set up proper redirects)
Each page should focus on one language (that is, avoid mixing languages)
Avoid culture-specific content or technical jargon that doesn't translate well
Enable URL detection so there are language-specific URLs or domains

In some cases, use country-specific domains when possible

Check your web analytics to see what countries you should be targeting
Create separate webmaster tools accounts for all site languages/countries
Learn what the top search engines for your target countries are

Use keyword research tools with data for the target languages/countries
Set the geographical meta data for region-specific pages

Get links from other sites within the same region/country

Now let's move on to configuring the most important Drupal 7 SEO modules.

Friendly URLs

If you're not using Pathauto, you should be. Pathauto lets you set user- and
SEO-friendly patterns for your URLs. For example, instead of a cryptic /node/55
URL, you can use Pathauto to use the content title so it becomes /articles/
multilingual-drupal-7, which is human-readable and contains relevant keywords.

Pathauto works fine for nodes using the node translation model as each language
has a separate node. At the time of writing, for field translation, the Pathauto and
Entity Translation module maintainers have been ironing out some issues. To get
the automatic URL aliases to work in Drupal 7 for field-translated nodes, you must
use at least Entity Translation version 7.x-1.0-alpha2, if available, or the most recent
dev version.

[92]

Chapter 5

If you want language-specific URL patterns, Pathauto lets you set those for
node pages.

1. Install the Pathauto module (drupal.org/project/pathauto).

2. Go to Configuration | Search and metadata | URL aliases | Patterns,
fill in the patterns for each language in the Content paths section, and
click Save configuration. Blank patterns will use the default pattern.

3. To override the pattern for a node, edit the node, unselect Generate
automatic URL alias, fill in the URL alias field, and save. Simple!

When specifying aliases and alias patterns, do not include the
M . . .
~ language's path prefix or domain. For example, a URL alias
might be about (not de/about) and an alias pattern might be
article/[node:title] (notde/article/[node:titlel).

If you already have nodes using field translation, you'll need to edit each
translation, select the Generate automatic URL alias checkbox, and click
Save translation. This is unfortunate, but required. Perhaps someone will
write the code to help with that! Maybe you?

* URL PATH SETTINGS (AUTOMATIC ALIAS)

] Generate automnatic URL alias

Unchecdk this to create a custom alias below. Configure URL alias patterns.

URL alias

Optionally specify an alternative URL by which this ertity can be accessed. For
won't wark.

Removing special characters from path aliases

For some languages, there are interesting characters such as &, 5, and é mixed in
with Roman characters, and, for other languages, the characters look nothing like
any in the Roman alphabet. After installing Pathauto, the default rules are set up

so the path alias is created from the node title, for example content/ [node:titlel.
So, if your node title has non-Roman characters in it, then you will get an alias that
includes those characters.

[93]

Panels, SEO, and More!

For example, if my Pathauto blog content type pattern is blog/ [node : author] /
[node:title] and I create a blog post called "Typing Umlauts i 6 i § A O U", then
the path alias looks like the following;:

URL alias
blog/kristen/ty ping-umlauts-a-G-i-B-4-6-i

These special characters are not user-friendly and aren't optimal for search engines
either. To get rid of them:

1. Install the Transliteration module (drupal.org/project/transliteration)
and go to Configuration | Search and metadata | URL aliases | Settings.
Select the Transliterate prior to creating alias checkbox.

Click on Save configuration.

|l Transliterate priorto creating alias

When & pattern includes certain characters (such &s those with accents)
should Pathauto attermpt to transliterate therm into the ASCI-26
alphabet? Transliteration is handled by the Transliteration module.

Now if you go back to a node with special characters in its alias, you can edit and
save it with the Generate automatic URL alias option enabled. The path will be
updated so the non-Roman characters are replaced with Roman characters. In my
case, my new node alias is now: blog/kristen/typing-umlauts-o-u-ss-o-u. Note
that the a was removed from the alias because of the default Strings to Remove
settings at Configuration | Search and metadata | URL aliases | Settings.

Page title and meta tags

The <title> tag text (AKA "page title") shows up at the top of the browser and is
often used in search engine results. It's super important SEO text! In Drupal 7, you
can use the Meta Tags module or the Page Title module to add <title> tags.

A meta tag is HTML text that shows up in the <head> section of your web page
using the <meta> notation. These tags are mainly used to relay information to search
engine crawlers such as the page's description, keywords, robot settings, and so on.
Although adding meta keywords for your web pages is no longer necessary, meta
tags are still useful for SEO.

[94]

Chapter 5

In particular, the description meta tag should be added to your content so that your
search results can have the best possible summary text. The meta description is
essentially your marketing message telling everyone: "This is the content you want!"

In Drupal 7, you can choose from the Meta Tags and the Meta Tags Quick modules
for your meta tags. At the time of writing, the main differences between the two
modules are as follows:

e Meta Tags Quick is field-based and Meta Tags has a custom architecture

e Meta Tags handles page titles and default global meta tags

Meta Tags module

In previous Drupal versions, we used the Nodewords module for meta tags but, for
Drupal 7, Nodewords has been rewritten and has a more intuitive name: Meta Tags.
Like with Pathauto, the Meta Tags module works as expected with node-translated
content. Unfortunately, at the time of writing, Entity Translation support is not
available for Meta Tags. Smart people have been working on it, though, so track

the issue at drupal.org/node/1282620. And, you can help out too by fixing and
testing patches.

1. Install the Meta Tags module (drupal.org/project/metatag) and enable
Meta Tag API and Meta Tag UL

2. To add meta tag patterns, navigate to the Configuration | Search and
metadata | Meta tags config page and add or override patterns as needed.

3. To use custom meta tag text for a node (recommended for at least your top
pages), just edit the node content as usual, click the Meta tags tab towards
the bottom of the form, and fill in the description, keywords (optional), and
page title.

Description

Multilingual Drupal 7 s an awesome book about Drupal internationalization and lbcalization!

A brief and concise surnmary of the page's content, preferrably 150 characters or less. The

[95]

Panels, SEO, and More!

Meta Tags Quick module

Meta Tags Quick is new for Drupal 7 and uses fields for the meta tags. The nice
thing about this is that field-based meta tags work for both node-translated and
field-translated nodes. Yeah!

1. Install the Meta Tags Quick module (drupal.org/project/metatags_
quick) and enable Meta Tags (Quick). To avoid confusion, disable the
Meta Tags modules.

2. The module is easy to use. Just enable it and then navigate to Configuration
| Search and metadata | Meta tags (quick) settings.

3. Check the boxes for the meta tag fields you want added to each entity
and click the Attach button. For example, if you choose Description and
Keywords for the Node entity, then all the content types will have a meta
description and a meta keywords field added.

BUNDLE/ENTITY ABSTRACT COPYRIGHT DESCRIPTION KEYWORDS

Hode 1// s/
Taxonomy term V’/ s/
Comment

4. Then when you look at the content type's fields or edit a node, the meta tag
fields are listed.

{Meta)Description

Multilingual Drupal 7 i an awesome bookon Drupal 7 internationalization and ocalization

Page Title module

In previous versions of Drupal, we used the Page Title module to set the <title> tag
for content. If you are using the Meta Tags module, you can set a default page title
pattern for all pages and override page titles for entities. If you are using Meta Tags
Quick, then you definitely need the Page Title module for page titles.

For nodes using node translation, Page Title works fine since each language has its
own node. At the time of writing, though, field-translated nodes aren't currently
supported. You can track this issue here: drupal.org/node/1264024.

1. Install the Page Title module (drupal.org/project/page_title).

[96]

Chapter 5

2. To manage Page Title patterns, go to Configuration | Search and metadata
| Page titles. There are plans to allow language-specific patterns like what

Pathauto provides (drupal.org/node/383358).

3. To override a page title, just fill in the Page Title text in the node edit form

and save. Easy!

Page title
Ceool Multiingual Drupal 7 Book!

Home page optimization

In Chapter 3, Working with Content, we used the Multilingual Select module to make
sure the default /node home page showed content based on our selected language.
Most sites won't use the /node page and will, instead, replace it with a page from
Views, Panels, or custom code. In this case, for optimal SEO, make sure to either
have one home page that handles each language correctly or create a separate home

page for each language.

For the latter, since the home page path is handled with a site variable, you'll need
to use the variable translation process like how we did for Site name in Chapter 2,

Setting up the Basics: Languages, UI Translation, and System Settings.

1. Make sure the Variable Translation and Variable modules are enabled.

2. Go to Configuration | Regional and language | Multilingual settings |
Variables, check the Default front page checkbox, and save the settings.

3. Then, go to Configuration | System | Site information, click on a language
in the Select language list, update the Default front page field with the

home page for that language, and click on Save configuration.

4. Repeat for all languages.

Duplicate pages

Search engines don't like seeing the exact same content on different pages. The default
Drupal setup lets you access the same page with more than one path. For example, if

/node/5 is aliased to /about -us, then these paths will show duplicate content:

e /node/5
e /node/5/
e /about-us

e /about-us/

[97]

Panels, SEO, and More!

For Drupal 7, the typical remedy is to install the Global Redirect and Redirect
modules. The Redirect module has incorporated the Path Redirect module
functionality from Drupal 6 and will eventually replace Global Redirect as well.

At the time of writing, there are serious redirect issues in Global
. Redirect version 7.x-1.4 and below when used on multilingual sites.
Do not use Global Redirect until these issues have been resolved.
&~ And, when you do use it, back up your database and try it on a
development server first. For more info, search for "language" at
drupal .org/project/issues/globalredirect.

If you install Global Redirect (read the previous warning), go to Configuration |
System | Global Redirect, select the Language Path Checking checkbox, and click
on Save Configuration.

With translation added to the mix, we have more duplicate pages even when content
has been translated. For example, if German and Polish are enabled and we are using
node translation, then there will be duplicate content at /node/5, /de/node/5, and
/pl/node/5.

Translated nodes can be handled by enabling the Multilingual Content and
Translation Redirect modules from the Internationalization package. Translation
Redirect actually won't do any redirection by itself. It needs Multilingual Content

to determine what the translation page is for a particular node. So, for the previous
example, if we translate /node/5 into German using node translation and get a new
/node/12 page, then the redirection will work as follows (assuming, for the moment,
Global Redirect is not on):

e User requests /node/5 and no redirection happens (English is shown)

e User requests /de/node/5 and is redirected to /de/node/12 (German
is shown)

e User requests /pl/node/5 and no redirection happens (English is shown)

Note that currently the redirection will only happen for anonymous users though
this may be made configurable in the future. Also, the home page is not redirected
by design since sites should explicitly use a language-aware home page.

At the time of writing, there is no redirection support for field-translated nodes. This
is fine if there are translations for all languages or if the Entity Translation module's
language fallback is disabled. If the fallback option is enabled and you are missing
translations, then the search engines will see the same content at different URLs.

[98]

Chapter 5

The search engines are usually smart enough to figure out which is the source
content because it can check if the meta tag language matches the language of
the actual content. So, this isn't usually a big problem, but something you should
keep in mind.

Translation management and workflow

Content management and workflow can be simple or complex depending on the
website. One site might have content authors who are allowed to publish content
themselves, while another might require a moderation cycle involving different
reviewers. With a translation step added, things get more interesting, particularly if
there are many languages involved. This section covers some options for handling
translation management and workflow in Drupal 7.

Who can translate?

You should decide at the beginning of your project who will be translating the
content. Do you have one person to do all the work, or will you have a team of
translators? Will it be done by employees, or outsourced to a translation company?
Or maybe both?

Even if you initially intend to only have one translator, it is a good practice to create
a translator role since you can then assign appropriate permissions to that role. It's
possible you will need more fine-grained roles depending on your site, such as a
blog translator role and a product translator role or a content translator role and an
interface translator role. Make sure to set your module permissions appropriately
for your roles. The Appendix, Modules, Resources, and Getting Involved, lists the
permissions associated for all the modules used in the book.

Content administration

The core Find content admin page (/admin/content) lets you find node content
based on language. Just choose a language and click on Filter. If more advanced
filtering is needed, this page can be replaced with one built with Views and
Views Bulk Operations.

[99]

Panels, SEO, and More!

If you want to set the language for one or more nodes using the
M content admin form, the Language Assignment module will help
Q once it's ready for Drupal 7 (drupal .org/node/1086454).
Another handy module is Administration Language that lets
administrators see all admin pages in a preferred language.

To flag content for translation, there is an option available in the Translation settings
on the node content edit form. If you are editing the source content, you can select
the Flag translations as outdated checkbox and, if you are editing a translation,

you can select the This translation needs to be updated checkbox. In both cases, if
you select the checkbox and save the content, you will see an outdated flag on the
translation overview page.

German Mehrsprachige Drupal-Felsen Published - cutdated edit

Contributed modules

Two translation management modules that have been contributed to Drupal 7 are
Lingotek Collaborative Translation and Translation Management Tool.

Lingotek Collaborative Translation module

Lingotek Collaborative Translation is maintained by Lingotek (1ingotek.com) and
has an interesting twist. You can use your own in-house translators, submit content
to Lingotek for translation, use automatic translation tools, and leverage your users
to voluntarily translate content for you. This last method is known as "translation
crowdsourcing" and is all the rage. Social networking giants like Facebook and Twitter
are getting content translated this way. So, if you think your users might contribute
translations, try out the module and see what you think. There are demos and
documentation available at 1ingotek.com/drupal.

Translation Management Tool module

The first Drupal translation management module, Translation Management, was
created by ICanLocalize (icanlocalize.com) for Drupal 6. At the time of writing,
the Drupal 7 port for the module had stalled. So, in early 2012, a bunch of committed
Drupalers got together in Zurich for a code sprint. Initially, they planned to update
the Translation Management module for Drupal 7 but they found it was best to start
from scratch. The Translation Management Tool module is the result of their hard
work. Help with making this new module great by testing and participating in the
issue queue!

[100]

Chapter 5

Custom workflow

If you decide, for whatever reason, that you want to build your own custom
translation workflow, Drupal has all the tools you need for the job. You'll have
some configuring to do, but, in the end, it will be just how you want it. There are
plenty of modules that can help with this, including multilingual-specific ones
like Translation Access and Translation Overview and general ones such as Rules,
Workflow, Revisioning, Scheduler, and the new Workbench suite.

The general modules can be used for regular content management and workflow
out-of-the-box but, at the time of writing, setting them up for multilingual content
will require some custom coding. Once multilingual support has been finished
for the Rules module (drupal.org/node/1422996), creating a custom translation
workflow should be much easier.

Theming and module development

Every Drupal site uses a theme (or two!). It can be a free core or contributed theme.
You can buy one from a theme vendor, for example, topnotchthemes.com or
themesnap. com. Or, you can get fancy and create your own! In this section, we'll
look at some considerations for multilingual theming including RTL support and
custom CSS.

Many developers create modules to handle custom site features. This section also
briefly covers internationalization for custom modules, including using string
functions for hard-coded and user-defined strings. To learn more about theme and
module development, check out the Drupal 7 Themes book by Ric Shreves and the
Drupal 7 Module Development book by Matt Butcher, Larry Garfield, John Wilkins,
Matt Farina, Ken Rickard, and Greg Dunlap.

RTL support

If you plan to use a Right-to-Left (RTL) language such as Arabic or Hebrew, your
theme must have RTL support for the site to display properly in that language. All
Drupal core themes have this support. To find other RTL-capable themes, you can
perform a theme search at drupal.org/project/themes using the text "rtl" in the
Search Themes text field.

These themes have CSS stylesheets to handle the Right-to-Left layout. For example, if
you look at the core Bartik theme files, the stylesheets include layout.css, layout-
rtl.css, style.css, style-rtl.css, ie.css, and ie-rtl.css.

[101]

Panels, SEO, and More!

If your site uses a custom theme, you'll need to add these RTL CSS files if they
haven't been created. Creating Right-to-Left stylesheets involves changing floats,
padding, and margins so that the layout is flipped. For example, the main menu
might be floated left for the Left-to-Right (LTR) layout and floated right for RTL.
You can check out what the experts have done by peeking at the core themes.

Interface and content languages

There is an "interface language" that is determined using the interface language
detection settings at Configuration | Regional and language | Languages |
Detection and selection. There is a "content language" as well since sometimes we
want to show content in a different language than the UI (for example, when using
a search form). When the Entity Translation module isn't used, the content language
is the same as the interface language. But, when using Entity Translation, the
content language is determined with the content language detection settings on the
Detection and selection page.

If you want to know the interface and content languages, you can use the global
$language and $language content variables, which are objects that include the
language's code, name, directionality, and so on. If you are just interested in the
language's code, you can write some PHP like the following:

global $language, S$language content;
$interface langcode $language->language;

$content langcode = $language content->language;

To analyze these objects, use var_dump () or devel print_object () if the Devel
module is installed.

Custom CSS

We often want to add custom CSS whether or not we have a multilingual site. If
you're using a custom theme, then it is simple to add or change the CSS. If you are
using a core or contributed theme, then it is not as simple because you should not
change the theme's CSS files or your changes will be wiped out when updating the
theme. Not good!

If you already have a custom module or know how to create one, you can add
your CSS using the drupal_add_css function. For example, if we want to create
CSS to remove the bullets in the language switcher, we could create a custom
module as follows:

[102]

Chapter 5

1. Create a module directory, for example, sites/all/modules/custom/
my_demo.

2. Create a . info file in the module directory, for example, my demo.info:

name = My Demo
description = My demo module
core = 7.X%

3. Create a .module file in the module directory, for example, my_demo.module:

<?php

function my demo_init ()
$path = drupal get path('module', 'my demo');
S$css = $path . '/my demo.css';

drupal add css(Scss);

}
4. Create a .css file in the module directory, for example, my_demo.css:

#block-locale-language ul,
#block-locale-language-content ul {padding-left:0;}
#block-locale-language 1li,
#block-locale-language-content 1i {list-style:none;}

5. Create a RTL . css file in the module directory, for example,
my demo-rtl.css:

#block-locale-language ul,
#block-locale-language-content ul {padding-right:0;}

6. Enable the module and flush all caches.

Pretty easy, huh? With this tiny module enabled, the bullets will be removed from
language switcher block links whether you are using an LTR or RTL language.

Languages

i yalil
English
Deutsch
Polski

a1

~ One way to add new CSS files without writing any PHP
code is to use the CSS Injector module.

[103]

Panels, SEO, and More!

String translation functions

If you are working with a custom theme or module, you'll need to use the format_
plural () and t () functions for hard-coded strings and the i18n_string() function
for user-defined strings. Hard-coded strings are ones that are contained within

code in themes or modules. For example, if you want a custom admin block, we can

update our previous module example by adding the following code to the my demo.
module file:

function my_demo_block_info() { // implement hook_block_info
Sblocks['my-demo-admin-block'] = array(
'info' => t('This demo block shows info for the admins.'),

)i

return Sblocks;

function my demo block view($delta = '') { // implement hook block
view
$block = array() ;
switch ($delta) {
case 'my-demo-admin-block':
Sblock['subject'] NULL;
$block['content'] theme ('my demo_admin block') ;
return S$block;

function my_demo_theme() { // implement hook_theme
return array (
'my _demo_admin block' => array(
'variables' => array(),
).
)i
}
function theme my demo_admin block() { // custom theme function
return '' . t('Admins rock!') . '';

Drupal assumes that the text in your themes and modules is

in English, so translation is always from English to the target

language. There is no way to change this behavior.

[104]

Chapter 5

User-defined strings are added via the Ul such as taxonomy terms, content type
names, and block titles. If we have code that deals with user-defined strings, we can't
use the t () function but the Internationalization module provides an i18n_string()
function that we can use instead. For example, if we want to show all the content
types in our block, we could change the code as follows:

function theme my demo_admin block() ({
Scontent types = node type get types();
foreach ($content types as S$Stype => $type object) {

Skey = 'node:type:' . Stype . ':name';
Sname = $type object->name;
if (function exists('il8n string')) {

$name = il8n string($key, $name);

}

Stype url str = str replace(' ', '-', Stype);
$links[] = '<1lis' . 1($name, 'node/add/' . Stype url str) . '</
lis';
}
return '' . implode('', $links) . '';

}

The $key, for example, node : type:blog:name, is a unique identifier and can be
found using the form at Configuration | Regional and language | Translate
interface | Translate.

R If you're writing JavaScript, then translate functions are
~ available for hard-coded strings: Drupal . formatPlural ()
Q and Drupal .t (). The Localization API docs go into depth on
these functions (and more!) at drupal . org/node/322729.

Summary
We did it! Let's do a quick recap of this chapter.

First, we learned we don't need to do anything special for multilingual panels, but
do need to use the Path Translation module for panel translation sets. Then, we took
a look at some multilingual and international SEO tips and the top Drupal 7 SEO
modules for friendly URLs, page titles, meta tags, and handling duplicate content.

[105]

Panels, SEO, and More!

After panels and SEO, we discussed translation management and workflow
including specialized roles, administration functionality, and contributed modules.
The chapter concluded with a brief look at theming and module development
including Right-to-Left theme support, custom CSS, and string translation functions.

Well, we're done! I hope you enjoyed yourself. Have fun with your multilingual
Drupal 7 website!

[106]

Modules, Resources,
and Getting Involved

Here are some of the great resources available for creating your multilingual Drupal
7 website. The modules used for the book exercises are listed with their permissions
and project pages. There is also a list of additional modules that you might want

to try out as well as community documentation and support groups to get your
questions answered. We'll also take a look at how you can get involved in the Drupal
community and what's in the works for Drupal 8 improvements. Don't forget to
check the Drupal glossary at drupal.org/glossary if there are any Drupal words
that you aren't familiar with.

Modules used in the book

Even with only about 50 multilingual Drupal 7 modules, it would take more
space than we have in this book to explain each one. This section lists the modules
covered in the book exercises, while additional multilingual modules are split out
in another section.

The modules given are grouped alphabetically within the chapters where they

are discussed. The following descriptions are intentionally brief. If you want

more information about a module, its drupal . org project page has been provided
for reference.

_ The module versions used are listed on the demo installation profile
page (drupal.org/project/multilingual book demo). Also,
= module names have been standardized to use proper name casing as
per the new Drupal policy (drupal.org/node/1346158).

Modules, Resources, and Getting Involved

Chapter 2

Contact Translation: Allows you to create multilingual site contact forms via
the Contact module. Project page: drupal .org/project/i18n. Permissions:
administer contact forms, access site-wide contact form.

¢ Internationalization: Extends Drupal core multilingual functionality with a
collection of submodules, mainly for configuration and translation support.
These submodules are listed separately throughout this module list (marked
with the same Drupal project URL). Project page: drupal .org/project/il8n.

e Locale: Adds basic language support and allows Drupal Ul translation for
languages besides English. Project page: drupal.org/project/drupal
(Core). Permissions: administer languages, translate interface.

e Localization Client: Provides a Ul tool to fix interface translations and
contribute them back to the community. Project page: drupal.org/
project/110n_client. Permissions: use on-page translation, Submit
translations to localization server.

e Localization Update: Grabs the latest translations for your site from
localize.drupal.org or other localization servers. Project page: drupal.
org/project/110n update. Permissions: translate interface.

e String Overrides: Provides a simple administration form so that any
translatable text on the site can be changed for any language. Project
page: drupal.org/project/stringoverrides. Permissions: administer
string overrides.

e Variable Translation: Enables the translation of variables that are
exposed via the Variable module such as the site's name and slogan.
Project page: drupal.org/project/il18n. Permissions: administer
site configuration.

Chapter 3

Content Translation: Adds the ability to flag content types as translatable,
so that content of those types can be handled using the node translation
model. Project page: drupal .org/project/drupal (core). Permissions:
Translate content.

¢ Entity Translation: Provides a Ul for translating entity fields into multiple
languages using the field translation model. Project page: drupal.org/
project/entity translation. Permissions: translate any entity,
administer entity translation, toggle field translatability.

[108]

Appendix

Cha

Multilingual Content: Extends the content type and system multilingual
settings with some helpful options such as making language selection
required for nodes. Project page: drupal.org/project/i18n. Permissions:
administer site configuration, administer content translations.

Multilingual Select: Allows for core node listing pages to be filtered by
language such as the default home page and the taxonomy pages. Project page:
drupal .org/project/il8n. Permissions: administer site configuration.

Synchronize Translations: Keeps data synchronized across translated nodes
for fields that should be the same for all languages. Project page: drupal.
org/project/il8n. Permissions: administer site configuration.

Title: Creates a "real" title field for entities so that, when using field
translation, titles can be translated like other fields. Project page: drupal.
org/project/title. Permissions: administer site configuration.

pter 4

Block Languages: Adds language options to the block visibility settings
and provides support for translating block title and body content. Project
page: drupal.org/project/il8n. Permissions: translate interface.

Field Translation: Despite the name, this module supports translating
field settings such as labels and help text rather than field values. Project
page: drupal.org/project/i18n. Permissions: administer site
configuration.

i18n Page Views: Extra options for Views displays, so that paths can be
specified for multiple languages. Project page: drupal.org/project/
i18 page views. Permissions: Administer views.

Internationalization Views: Adds Views multilingual support such as
allowing header, footer, and empty text to be translated. The project is
Internationalization Views but the module it provides is called Views
Translation. Project page: drupal.org/project/il8nviews. Permissions:
translate interface, administer views.

Menu Translation: Allows for language-specific and translated menus.
Project page: drupal .org/project/i18n. Permissions: administer menu.

String Translation: Leveraged by other modules for translating
user-defined strings. Project page: drupal.org/project/il18n. Permissions:
translate interface, administer site configuration, use on-page
translation.

[109]

Modules, Resources, and Getting Involved

e Taxonomy Translation: Provides a number of options when configuring
taxonomy vocabularies such as language-specific vocabularies and
translatable terms. Project page: drupal.org/project/i18n. Permissions:
administer taxonomy, translate interface.

Chapter 5

Path Translation: Provides a mechanism to specify paths that are in a
translation set which can be used for non-node pages such as the ones from
Views or Panels. Project page: drupal .org/project/i18n. Permissions:
administer site configuration.

e Panels: This isn't a multilingual module, but multilingual panel pages are
discussed in this chapter. Project page: drupal .org/project/panels.
Permissions: use panels dashboard, administer page manager,
administer site configuration.

e SEO-related modules: These are not multilingual modules, but several
Drupal 7 SEO modules are covered in this chapter, including the following;:

o

Global Redirect: drupal .org/project/globalredirect

o

Meta Tags: drupal.org/project/metatag
° Meta Tags Quick: drupal.org/project/metatags_gquick
Page Title: drupal .org/project/page_title

Pathauto: drupal .org/project/pathauto

Redirect: drupal.org/project/redirect

e Translation Redirect: Helps with SEO by ensuring search engines are
redirected to the appropriate translated pages. Project page: drupal.org/
project/il8n.

e Transliteration: Replaces special characters in strings with Roman characters

for cleaner URLs and filenames. Project page: drupal.org/project/
transliteration. Permissions: administer site configuration.

Module usage

For some topics, separate modules are used to handle the translation process
differently. Also, some modules have multiple configuration options. The following
table serves as an overview of the key multilingual modules used in the book:

[110]

Appendix

Topic Module Usage notes Pages
Node Locale Assign language to node 42
Node Content Translate nodes; node translation set 44-45
Translation
Node Synchronize Synchronize fields for node-translated 48
Translations nodes
Node Entity Translate fields; no translation set 51-54
Translation
Comment Entity Translate fields; no translation set 56-57
Translation
User Entity Translate fields; no translation set 58-59
Translation
Taxonomy Entity Translate fields; no translation set 60
Translation
Taxonomy Taxonomy Fixed option; assign language to 77-78
Translation vocabulary; terms are assigned the
same language
Taxonomy Taxonomy Localize option; localize terms; no 78-79
Translation translation set; term language is same
as source language
Taxonomy Taxonomy Translate option; translate terms; term 79-80
Translation translation set; assign language to term
Entity Field Translation Translate field settings (for example, 80-81
help text)

Block Block Languages Assign language visibility to block 66
Block Block Languages Translate block title/body; no 67-69
translation set

Menu Menu Fixed Language option; assign 71
Translation language to menu; menu items are
assigned same language
Menu Menu Translate and Localize option; translate ~ 72-73
Translation menu item; menu item translation set;
assign language to menu item
Menu Menu Translate and Localize option; localize 73
Translation menu item; no translation set; menu

item language is same as source
language

[111]

Modules, Resources, and Getting Involved

More multilingual modules

We've worked with many multilingual Drupal 7 modules, but certainly not all. Here
are some additional modules that you might find useful. Not all modules tagged as
"Multilingual" are included, so check out drupal .org/project/modules for more.

Interface

Administration Language: drupal .org/project/admin_language
Consistent Language Interface: drupal.org/project/languageinterface
Language Icons: drupal.org/project/languageicons

Language Switcher: drupal .org/project/language_switcher

Language Switcher Dropdown: drupal .org/project/lang dropdown

Views Language Switcher: drupal.org/project/views_lang switch

Content

GTranslate: drupal.org/project/gtranslate

i18n_media: drupal .org/project/il8n media

Language Sections: drupal .org/project/language sections
Multi-Language Link and Redirect: drupal.org/project/multilink
Translatable Regions: drupal.org/project/translatableregions
TranslateThis Button: drupal.org/project/translate this

Translation Access: drupal.org/project/il8n_access

Configuration

Apache Solr Multilingual: drupal .org/project/apachesolr_
multilingual

Context Locale Cookie: drupal .org/project/context locale coockie
i18n Comments: drupal .org/project/il8n_ comments

IP to Locale: drupal .org/project/ip2locale

Language Cookie: drupal .org/project/language cookie

Locale Cookie: drupal.org/project/locale cookie

Multilingual Forum: drupal .org/project/il8n

Search API Entity Translation: drupal.org/project/search_api_et

[112]

Appendix

Admin tools
e Language Assignment: drupal .org/project/languageassign
e Language Checker: drupal.org/project/langcheck
¢ Lingotek Collaborative Translation: drupal.org/project/lingotek
e Translation Management Tool: drupal . org/project/tmgmt
e Translation Overview: drupal.org/project/translation overview

e Translation Table: drupal.org/project/translation table

Finding multilingual modules

How do you know if a module has multilingual support? This is not always obvious.
If the module is tagged with the "Multilingual" category, then you can find it easily
with the module search form at drupal .org/project/modules.

For other modules, first check out the module's project page and look for the right
buzzwords such as i18n, internationalization, multilingual, multilanguage,
language, locale, localization, and translation. If you still aren't sure, check the
module's issue queue. There might be an issue for adding internationalization
support. If there is one and it hasn't been fixed yet, you can click on the FOLLOW
button on the top right of the page to keep track of the issue's progress. If progress
has been made and there is a patch available, try out the patch and report your
findings. That's what Drupal is all about!

Some modules don't need to do anything special to work on a multilingual website,
so you can always just test the module to see if it works as expected. If it doesn't,
then make sure to file an issue by following the issue report guidelines at drupal.
org/node/73179.

Community resources

There are lots of great Drupal resources available. You can participate in the groups
and forums, hop on IRC, read the documents and articles, and watch the videos!

Groups, forums, and IRC
e Internationalization group: groups.drupal.org/il18n
e Translations group: groups .drupal .org/translations
e Translations forum: drupal.org/forum/30

e IRC channel: #drupal-ilsn

[113]

Modules, Resources, and Getting Involved

Documentation and guides

e Multilingual Guide: drupal.org/documentation/multilingual
e HowTo: Basic Internationalization setup: drupal.org/node/1268692

e Translate Drupal to your language: drupal.org/contribute/
translations

e Localization API: drupal .org/node/322729

e Module developer's guide (Multilingual support): drupal.org/
node/303984

e Internationalization module APIs: drupal.org/node/1114010

e Developer cheat sheet: hojtsy.hu/files/
Drupal7TranslationCheatSheetv2.pdf

Articles, videos, and more

e Multilingual Drupal 7 articles: kristen.org/drupal7-il8n-articles
e Multilingual Drupal 7 videos/slides: kristen.org/drupal7-i18n-videos
e Multilingual Drupal 7 issues: kristen.org/drupal7-il8n-issues

e Multilingual Drupal 7 extra topics: kristen.org/drupal7-il8n-extra

Getting involved

There are many ways to get involved with the Drupal community. Even if you are
new, you can help others by answering questions in forums, groups, and IRC. If you
are a designer or developer, write a cool theme or module and contribute it. If you
know another language, translate text and submit it to localize.drupal.org.

Most communities have a local user group, so you can meet up with other Drupal
users face-to-face. Then, of course, there are the fun DrupalCons and camps that
happen regularly throughout the year. To learn more about getting involved, check
out drupal.org/getting-involved.

[114]

Appendix

What's up for Drupal 8?

The Drupal community is actively striving to improve Drupal each and every

day. Many people have been hard at work on Drupal 8 since 2011. As mentioned
previously, Gabor Hojtsy (drupal.org/user/4166) is heading up the Drupal 8
Multilingual Initiative (D8MI) with the number one goal to "make language support
awesome in Drupal 8!"

If you review the D8MI plan and top priorities at hojtsy.hu/d8mi, you can see that
there's plenty of work to do! You can help make Drupal 8 awesome. To get involved,
check out the issue queue, hop on IRC for a meeting, or attend a code sprint.

Want more?

I tried to be thorough, but no doubt you'll have a question or topic that hasn't been
covered in this book. No worries! Just send along your query to kristen.org/
contact. I'll be regularly adding tips and tricks to my blog. For multilingual topics,
you can find my relevant blog posts at kristen.org/i18n.

[115]

Symbols

$key 105

$language_content variable 102
$language variable 102

<title> tag 96

A

Add language button 20

Add path translation link 91

add translation link 47

administration menu 18

admin tools, multilingual modules
language assistant 113
language checker 113
lingotek collaborative translation 113
translation management tool 113
translation overview 113
translation table 113

Article content type 48

Attach button 96

B

block languages module 109
blocks
about 65
by modules 68, 69
language-specific blocks 66
translating 67, 68
Blog entry node 42, 80
browser method 23

Index

C

Comment Fields tab 56
comments
about 55, 56
display 58
language assignment 57
comments, non-node views 84
config. See configuration
configuration 11 14
contact form
customizing 38, 39
contact translation module 108
content 11,13
content, field translation model
translating 54
content, multilingual modules
GTranslate 112
i18n_media 112
language sections 112
multi-language link and redirect 112
translatable regions 112
translatation access 112
translate this button 112
content translation module 108
content type settings, node
translation model 44
content type settings, field
translation model 52-54
custom CSS
adding 102
custom translated strings
reusing 35

D Entity Translation module 102, 108
extended but not displayed option,

Date and time config page 19 extended language options 49
date and time formats 36 extended language options
default front page checkbox 97 about 49
default front page field 97 extended but not displayed option 49
default site language 23 extended option 49
demo site lock language (cannot be changed) 49
using 18 normal option 49
de.po 25 require language (do not allow
detection and selection page 102 language neutral) 49
detection method order 23 set current language as default for
Developer cheat sheet 114 new content 49
Drupal extended option 49
about 7
configuration 14 F
content 13
glossary 10 field label, taxonomy term
home page 61 updating 80
interface 12 fields translation module 80, 109
language support 8 field-translated. See FT
modules 14 field translation model
multilingual support 10 about 50, 51
search feature 62 configuring 51
taxonomy term pages 62 language switcher, using 54, 55
website designing, queries 8, 9 field translation model, configuring
Drupal 7 site about 51
demo site, using 18 content, translating 54
using 18 content type settings 52-54
Drupal 8 115 entity settings 51, 52
drupal_add_css function 102 Filtered HTML 67
Drupal Book content type 52 Fixed Language option 70
Drupal.formatPlural() function 105 format_plural() function 104
Drupal.t() function 105 friendly URLs
duplicate pages 97 special characters, removing 93
FT 70
E Full HTML 67
edit vocabulary link 77 G
Enabled radio button 42
english strings Generate automatic URL alias checkbox 93
custom english language, creating 34 Global Redirect module
settings.php file, modifying 34 about 98,110
string overrides module 34 installing, steps 98
translating 33 glossary, Drupal 10

entity settings, field translation
model 51,52

[118]

H

hard-coded strings 104
home page, Drupal 61
homepage optimization
creating 97
HowTo
Basic Internationalization setup 114

i18n 11
i18n page views module 109
i18n_string() function 104, 105
image content type 42
image node 42
interface 11,12
interface language 102
interface method 51
interface, multilingual modules
administration language 112
consistent language interface 112
language icons 112
language switcher 112
language switcher dropdown 112
views language switcher 112
interface translation
interface translationabout 25-27
interface translationadding 29-32
Internationalization. See i18n
internationalization group 113
internationalization module 105, 108
Internationalization module APIs 114
internationalization views module 109
international SEO 92
IRC channel 113

L

L10n 11

language assignment 57

Language Assignment module 100

Language drop-down 42

language-independent terms, taxonomy
translation module 76, 77

Language neutral option 42

languages
about 19
adding, with locale module 19-21
detecting 21
switching between 24, 25
languages, detecting
browser method 23
default site language 23
detection method order 23
session option 22
URL method 22
user method 22
language-specific blocks 66
language-specific menus 71
language-specific terms, taxonomy
translation module 77,78
language-specific views 83
language support, Drupal 8
language switcher
using 54, 55
Language switcher (User interface text)
block 24
Left-to-Right. See LTR
Lingotek Collaborative
Translation module 100
locale 10
locale module
about 108
languages, adding 19-21
Localization. See L10n
Localization API 114
localization client module 108
localization update module 108
Localized Drupal Distribution
install profile 12
localized terms, taxonomy
translation module 78, 79
Localize option 78
Log in button text 12
LTR 20,102

Manage fields page 53
menus
about 69, 70
language-specific menus 71

[119]

multilingual menus 72

multilingual menus, creating 72
menu translation module 109
meta tag module 94, 95,110
meta tags quick module 95, 96
mixed-language vocabulary, taxonomy

translation module 79, 80
Module developer's guide
(Multilingual support) 114

modules

block, handling 68, 69

categorization 15

usages 110
msgid 25
msgstr 25
multilingual content module 98, 109
Multilingual Drupal 7

articles 114

extra topics 114

issues 114

videos/slides 114
multilingual guide 114
multilingual menus, creating

node pages 72,73

pages, with different links 74

pages, with same link 73
multilingual modules

admin tools 113

configuration 112

content 112

finding 113

interface 112

list 110
multilingual modules, configuration

Apache Solr Multilingual 112

Context Locale Cookie 112

i18n Comments 112

IP to Locale 112

Language Cookie 112

Locale Cookie 112

Multilingual Forum 112

Search API Entity Translation 112
multilingual puzzle

configuration 14

content 13

interface 12

pieces 11,12

multilingual select module 109
multilingual SEO 91, 92
multilingual support

about 41

enabling, steps 42
multilingual support, Drupal

about 10

configuration (config) 11

content 11

interface 11

Internationalization (i18n) 11

locale 10

localization (L10n) 11

numeronym 11

translation 11

translation set 11

und 11

user interface (UI) 11
multilingual views 81, 82
my_demo.module file 104

N

News page 74
node display, node translation model
options 45, 46
Node entity 96
node pages, multilingual menus 72, 73
nodes
about 41
field translation used 83, 84
multilingual support 41, 42
node-translated. See NT
node translation model
about 43
configuring 44
extended language options 49
shared fields, synchronizing 48
node translation model, configuring
content type, settings 44
node display, options 45, 46
translations, creating 47
nodewords module 95
non-node entities
about 55
comments 55, 56

[120]

taxonomy terms 59, 61
users 58

non-node views
comments 84, 85
taxonomy terms 85, 86
users 86, 87

normal option, extended

language support 49
NT 70
numeronym 11

P

pages, multilingual menus
with different links 74
with same links 73
page title module 94, 96, 110
panel pages
language-specific 91
panel panes 90
panels 89
panels module 110
Password field labels 12
Pathauto
about 18, 92,110
language-specific URL patterns, setting 93
Path Redirect module 98
path translation module 91, 110
Powered by Drupal block 90
Publishing options tab 42

R

Redirect, SEO-related modules 110
regional settings
updating 35
Right-to-Left. See RTL
RTL 9, 20,101, 102

S

Save and translate button 68
Search Engine Optimization. See SEO
search feature, Drupal 62
SEO
about 91
duplicate pages 97

friendly URLs 92, 93

homepage optimization, creating 97

meta tag module 94, 95

page title module 94, 95
SEO-related modules

Global Redirect 110

Meta Tags 110

Meta Tags Quick 110

Page Title 110

Pathauto 110

Redirect 110
session option 22
settings.php file

modifying 34
shared fields

synchronizing 48
site variables

translating 36, 38
string overrides module 34, 108
strings

custom translated strings, reusing 35

english strings, translating 33
string translation module 109
Switch interface for translating checkbox 75
Switch interface for translating option 46
synchronize translations module 109
Synchronize translations tab 48
system settings

contact form, customizing 38, 39

date and time formats 36

regional settings, updating 35

site variables, translating 36, 38

T

taxonomy term pages, Drupal 62
taxonomy terms
about 59, 61, 74
custom entities 61
field label, updating 80, 81
language-independent vocabulary 76, 77
language-specific terms 77, 78
localized terms 78, 79
mixed-language vocabulary 79, 80
taxonomy translation module 75
taxonomy terms, non-node views 85, 86

[121]

taxonomy translation module 75,110
Text field 53
t() function 12,104
title module 109
Translate and Localize option 70
Translate Drupal to your language 114
Translate radio button 79
Translate tab 44, 47, 54, 68, 80
translation
about 11
automatic updates 27, 28
contributing, to community 32, 33
forum 113
group 113
interface 25-27
interface translation, adding 29-32
interface translation, fixing 29-32
set 11
translation crowdsourcing 100
translation management
and workflow 99
content administration 99, 100
custom workflow 101
translation management,
contributed modules
Lingotek Collaborative
Translation module 100
Translation Management Tool module 100
Translation Management Tool module 100
Translation mode section 71
Translation Redirect module 98
Transliteration module 94,110

U

Ul 11
und 11
URL alias field 93
URL method 22
use cases, example
blog site 9
company site 9
demo site 10
e-commerce site 9, 10
user interface. See Ul
user method 22
users 58
Users may translate this field checkbox 58
users, non-node views 86, 87

\'

variable translation module 108
view bulks operations 18
views
about 18, 81
language-specific views, creating 83
multilingual views 81, 82
nodes, using field translation 83, 84
non-node views 84
text 87
views slideshow 18

[122]

open source

community experience distilled

PUBLISHING

Thank you for buying
Drupal 7 Multilingual Sites

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Drupal 7 Multi Sites Configuration
ISBN: 978-1-84951-800-0 Paperback: 100 pages

Run multiple website from a single instance of
Drupal 7

1. Prepare your server for hosting multiple sites

2. Configure and install several sites on one
instance of Drupal

Dru pal 7 3. Manage and share themes and modules across
Multi-sites Configuration the multi-site configuration

Drush User's Guide
ISBN: 978-1-84951-798-0 Paperback: 140 pages

A practical guide to Drush, Drupal's command line
interface, helping you work with your Drupal sites
more effectively

1. Stop clicking around administration pages
and start issuing commands straight to your
Drupeal sites

2. Write your own commands, hook in to alter
existing ones and extend the toolkit with a long
list of contributed modules

3. A practical guide full of examples and step-by-
step instructions to start using Drush right from
Chapter 1

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Drupal 7
ISBN: 978-1-84951-286-2 Paperback: 416 pages

Create and operate any type of website quickly and
efficiently

1. Setup, configure, and deploy a Drupal 7
website

2. Easily add exciting and powerful features

3. Design and implement your website's look
and feel

4. Promote, manage, and maintain your live
website

Drupal 7 Module Development
ISBN: 978-1-84951-116-2 Paperback: 420 pages

Create your own Drupal 7 modules from scratch
1. Specifically written for Drupal 7 development

2. Write your own Drupal modules, themes, and
libraries

3. Discover the powerful new tools introduced in
Drupal 7

4. Learn the programming secrets of six
experienced Drupal developers

5. Get practical with this book's project-based
format

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Multilingual Overview, Use Cases, and Modules
	Considerations and use cases
	Different types of language support
	Some things to think about
	Example use cases
	Simple blog site
	Consulting company site
	E-commerce site
	Our demo site

	Multilingual Drupal overview
	Speaking the same language... terminology
	Pieces of the multilingual puzzle
	Interface
	Content
	Configuration

	A look at the modules
	Summary

	Chapter 2: Setting up the Basics: Languages, UI Translation, and System Settings
	Getting up and running
	Using your own site
	Using the demo site
	Roles, users, and permissions

	Working with languages
	Adding languages with the Locale module
	Detecting languages
	URL
	Session
	User
	Browser
	Default
	Detection method order
	Our choice

	Switching between languages

	Interface and string translations
	Translating the interface
	Automatic translation updates
	Adding and fixing interface translations
	Contributing translations back to the community
	Translating English strings
	Modifying the settings.php file
	Using the String Overrides module
	Creating a custom English language

	Reusing custom translated strings

	General system configuration
	Updating regional settings
	Date and time formats
	Translating site variables
	Customizing the contact form

	Summary

	Chapter 3: Working with Content
	Nodes
	Enabling multilingual support
	Node translation model
	Configuring node translation
	Synchronizing shared fields
	Extra content type options

	Field translation model
	Configuring field translation
	Using the language switcher

	Non-node entities
	Comments
	Language assignment
	Comment display

	Users
	Taxonomy terms
	Custom entities

	Node listing and search pages
	Home page
	Taxonomy term pages
	Search

	Summary

	Chapter 4: Configuring Blocks, Menus, Taxonomy, and Views
	Blocks
	Language-specific blocks
	Translating blocks
	Blocks provided by modules

	Menus
	Language-specific menus
	Multilingual menus
	Node pages
	Pages with the same link
	Pages with different links

	Taxonomy terms
	Taxonomy translation module
	Language-independent terms
	Language-specific terms
	Localized terms
	Mixed-language vocabulary

	Updating the field label

	Views
	Multilingual views
	Language-specific views
	Nodes using field translation
	Non-node views
	Comments
	Taxonomy terms
	Users

	Views text

	Summary

	Chapter 5: Panels, SEO, and More!
	Panels
	Panel panes
	Language-specific panel pages

	SEO
	Multilingual and international SEO
	Friendly URLs
	Removing special characters from path aliases

	Page title and meta tags
	Meta Tags module
	Meta Tags Quick module
	Page Title module

	Home page optimization
	Duplicate pages

	Translation management and workflow
	Who can translate?
	Content administration
	Contributed modules
	Lingotek Collaborative Translation module
	Translation Management Tool module

	Custom workflow

	Theming and module development
	RTL support
	Interface and content languages
	Custom CSS
	String translation functions

	Summary

	Appendix: Modules, Resources,
and Getting Involved
	Modules used in the book
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Module usage
	More multilingual modules
	Interface
	Content
	Configuration
	Admin tools
	Finding multilingual modules

	Community resources
	Groups, forums, and IRC
	Documentation and guides
	Articles, videos, and more

	Getting involved
	What's up for Drupal 8?
	Want more?

	Index

