Building Mapping Applications
with QGIS

Create your own sophisticated applications to analyze and display
geospatial information using QGIS and Python

http://www.it-ebooks.info/

Building Mapping Applications
with QGIS

Create your own sophisticated applications to
analyze and display geospatial information using
QGIS and Python

Erik Westra

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Building Mapping Applications with QGIS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Production reference: 1231214

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-466-4

www . packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Erik Westra

Reviewers
David McDermott

Pablo Pardo
Heegu Park

Christopher Wesson

Commissioning Editor
Pramila Balan

Acquisition Editor
Sonali Vernekar

Content Development Editor
Rikshith Shetty

Technical Editor
Shruti Rawool

Copy Editors
Alfida Paiva

Vikrant Phadkay

Project Coordinator
Kinjal Bari

Proofreaders
Cathy Cumberlidge

Ameesha Green

Sonia Sanghera

Indexer
Monica Ajmera Mehta

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Erik Westra has been a professional software developer for over 25 years, and has
worked almost exclusively with Python for the past decade. Erik's early interest in
graphical user interface design led to the development of one of the most advanced
urgent courier dispatch systems used by messenger and courier companies
worldwide. In recent years, he has been involved in the design and implementation
of systems that match seekers and providers of goods and services across a range of
geographical areas. This work has included the creation of real-time geocoders and
map-based views of constantly changing data. He is based in New Zealand, and
works for companies worldwide.

He is the author of Python Geospatial Development, Packt Publishing.

I would like to thank Ruth, the love of my life, for all her support
and encouragement. I would also like to thank my two children,
Anneke and Oscar, for reminding me what is important in life.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

David McDermott (MPhys Geog PGCE (Cantab)) is a proud Yorkshireman who
has a keen interest in science fiction and Rugby League, as well as in GIS.

He studied at the University of Hull, where he acquired a 2:1 master's degree in
Physical Geography. During his 4 years at university, he developed an interest in
GIS, subsequently gaining his highest marks in GIS-related modules. He went on
to use GIS to analyze remote sensing data as part of his master's level dissertation.

Following on his master's degree, he qualified as a secondary school geography
teacher at the University of Cambridge. He spent 6 months teaching before
embarking on a career in GIS.

His first GIS position was for a UK-based unaddressed mail company. He spent 18
months working with address data, promoting the use of GIS, redesigning delivery
maps, and creating Python scripts to automate common repetitive tasks.

He currently works in the GIS team for a local authority in the UK. Along with
working in GIS, he is the Local Land and Property Gazetteer Custodian and Street
Naming and Numbering Officer. In this role, he has expanded his knowledge of
database management, programming, and web GIS. He has also presented at the
QGIS South East user group, and was part of the panel at GeoUltilities London 2014.

I would like to thank James Rutter for allowing me the time to peer
review this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Pablo Pardo is a geographist from Spain. He has studied MSc in GIS, and
specialized in natural risk assessment, focusing his MSc thesis on open data quality.
He also received a certificate of higher education in software development.

After several years of working as a GIS technician, he is now starting his freelance
career, mixing GIS consulting with data analysis and programming.

This is the first book he has helped review. He likes open data, free software,
and geo stuff. You can find more about him at www.pablopardo.es.

Heegu Park began his career at an IT company as a software engineer, and
developed some web programs for a famous Korean fashion company. After a short
period of time as a software engineer, he moved to the gaming industry, which was
booming at that time in South Korea, and he experienced technical producing and
coordinating of several online games at leading online game companies.

A five-year work experience drove him to get a higher degree in business and
management, so he went to the Korean Advanced Institute of Science and
Technology for his MBA (Master's degree in Business Administration), and to the
University of Southern California for his MSBA (Master of Science in Business
Administration). During his time at two graduate schools, KAIST and USC, he
mainly focused on IT and the creative industry. His studies have given him great
opportunities to enhance his cooperation and management skills of various teams
and people, and his knowledge, along with this work experience, has driven him
to pursue successful IT business and efficient marketing strategies.

Now, he works at Gaia3D, a geospatial company based in South Korea, and is in
charge of marketing and business development. Gaia3D is actively using many open
source GIS to develop systems or services for clients. Also, Gaia3D participates in
open source GIS activities such as FOSS4G, open source GIS training, and so on. He
has conducted several lectures on open source GIS for many people from all over the
world, and also participated in translating open source GIS software such as QGIS.
His goal at Gaia3D is to make Gaia3D become a global open source GIS company.

www.it-ebooks.info

www.pablopardo.es
http://www.it-ebooks.info/

Christopher Wesson is a cartographic design consultant at Ordnance Survey.
Qualified with a master's degree, he studied a wide range of disciplines at the
University of Southampton, including oceanography, engineering, management,
and finance. He has authored and presented papers domestically and
internationally, and makes time to share a blog on cartographic design
(http://christopherwesson.azurewebsites.net/).

A member of the British Cartographic Society and a contributor to International
Cartographic Association activities and several multi-organization projects, he
has a keen interest in partnering modern technology with traditional cartographic
excellence. Most of his recent work has been in automated cartography and the
visualization of geographic data across different platforms.

www.it-ebooks.info

http://christopherwesson.azurewebsites.net/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢ On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Getting Started with QGIS 7
About QGIS 7
Installing and running QGIS 8
Understanding QGIS concepts 10
Linking QGIS and Python 1"
Exploring the Python Console 12
Examining a Python plugin 15
Writing an external application 20
Summary 26
Chapter 2: The QGIS Python Console 27
Using the console 27
Working with geospatial data in the console 34
Scripting the QGIS user interface 39
The status bar 39
The message bar 40
Progress indicators 41
QGIS logging 42
Custom dialogs and windows 43
Summary 44
Chapter 3: Learning the QGIS Python API 47
About the QGIS Python APIs 47
Deciphering the C++ documentation 48

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Organizing the QGIS Python libraries 53
The qgis.core package 53
Maps and map layers 54
Coordinate reference systems 55
Vector layers 56
Raster layers 61
Other useful qgis.core classes 63
The qgis.gui package 64
The QgisInterface class 64
The QgsMapCanvas class 65
The QgsMapCanvasltem class 66
The QgsMapTool class 66
Other useful qgis.gui classes 67
Using the PyQGIS library 67
Analyzing raster data 68
Manipulating vector data and saving it to a shapefile 70
Using different symbols for different features within a map 73
Calculating the distance between two user-defined points 76
Summary 78
Chapter 4: Creating QGIS Plugins 79
Getting ready 79
Understanding the QGIS plugin architecture 80
Creating a simple plugin 82
The plugin development process 86
Using the Plugin Builder 87
Automating the build process 88
Plugin help files 91
Unit testing 92
Distributing your plugin 95
Writing a useful plugin 97
Possibilities and limitations of plugins 105
Summary 106
Chapter 5: Using QGIS in an External Application 107
Introducing Lex 108
Getting the data 109
Designing the application 110
Creating the application's framework 111
Adding the user interface 13
Connecting the actions 117
Creating the map canvas 118

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Labeling the points 121
Filtering the landmarks 122
Implementing the zoom tool 124
Implementing the pan tool 124
Implementing the explore mode 125
Further improvements and enhancements 127
Summary 128
Chapter 6: Mastering the QGIS Python API 129
Working with symbol layers 129
Combining symbol layers 134
Implementing symbol layers in Python 137
Implementing renderers in Python 142
Working with custom map layers 144
Creating custom map canvas items 148
Using memory-based layers 151
Summary 157
Chapter 7: Selecting and Editing Features in a
PyQGIS Application 159
Working with selections 160
Using the layer editing mode 161
Adding Points 163
Editing Points 164
Deleting Points and other features 165
Adding lines and polygons 166
Editing lines and polygons 173
Summary 179
Chapter 8: Building a Complete Mapping Application
using Python and QGIS 181
Introducing ForestTrails 182
Designing the ForestTrails application 182
Creating the application 184
Laying out the application 185
Defining the toolbar icons 187
The constants.py module 188
The forestTrails.py module 188
The mapTools.py module 192
The ui_mainWindow.py module 192
Running the application 196

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Obtaining the basemap 196
Defining the map layers 201
Defining the map renderers 204
The Pan Tool 209
Implementing the track editing mode 210
Summary 212
Chapter 9: Completing the ForestTrails Application 213
The Add Track map tool 213
Testing the application 218
Vertex snapping 220
The Edit Track map tool 223
The Delete Track map tool 226
The Get Info map tool 228
The Set Start Point and Set End Point actions 233
The Find Shortest Path action 237
Adjusting the toolbar actions 240
Suggested improvements 241
Summary 242
Index 243

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

As software applications become more and more a part of people's lives, the
concepts of location and space become more important. Developers are regularly
finding themselves having to work with location-based data. Maps, geospatial data,
and spatial calculations are increasingly becoming just another part of the everyday
programming repertoire.

A decade ago, geospatial concepts and development was limited to experts in the
Geographic Information Sciences. These people spent years working with maps

and the complex mathematics that underlie them. Often coming from a university
background, these specialists would spend years becoming familiar with a particular
Geographic Information System (GIS), and would make a career of using that system
to draw maps and process geospatial data.

While the ever-popular Google Maps meant that anyone can view and manipulate

a map, the more advanced custom display and processing of geospatial data was
still limited to those who used a professional GIS system. All this changed with

the advent of freely available (and often open source) tools for manipulating and
displaying geospatial data. Now, anybody can learn the necessary concepts and start
building their own mapping applications from scratch. Rather than being limited to
the minimal capabilities and restrictive licensing terms of Google Maps, developers
can now build their own mapping systems to meet their own requirements, and
there are no limits to what can be done.

While the necessary tools and libraries are freely available, the developer still needs
to put them together into a workable system. Often, this is a rather complex process
and requires a lot of understanding of geospatial concepts, as well as how to compile
the necessary wrappers and configure the tools to work on a particular computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Fortunately, now there is an even easier way to include geospatial programming
tools and techniques within your Python applications. Thanks to the development
of the freely available QGIS system, it is now easy to install a complete geospatial
development environment, which you can use directly from within your Python
code. Whether you choose to build your application as a plugin for the QGIS system,
or write a standalone mapping application using QGIS as an external library, you
have complete flexibility in how you use geospatial capabilities within your code.

What this book covers

Chapter 1, Getting Started with QGIS, shows you how to install and run the QGIS
application, and introduces the three main ways in which Python can be used
with QGIS.

Chapter 2, The QGIS Python Console, explores the QGIS Python Console window,
and explains how it acts as a useful tool while building your own custom mapping
applications. It also gives you a taste of what can be done with Python and QGIS,
and improves your confidence and familiarity with the QGIS environment.

Chapter 3, Learning the QGIS Python API, introduces the Python libraries available
for the QGIS Python developer, and shows how these libraries can be used to
work with geospatial data and create useful and interesting maps based on

your geospatial data.

Chapter 4, Creating QGIS Plugins, introduces the concept of a QGIS plugin, and
explains how to write a plugin using Python. We take an in-depth look at how
plugins work, and how to create a useful geospatial application as a QGIS plugin.
We also look at the possibilities and limitations of QGIS plugins.

Chapter 5, Using QGIS in an External Application, completes the process of building
standalone Python applications that make use of the QGIS Python libraries. You
will learn how to create a wrapper script to handle platform-specific dependencies,
design and build a simple but complete standalone mapping application, and learn
about the structure of an application built on top of QGIS. Along the way, you will
become a far more competent QGIS programmer as you build your own turnkey
mapping application from scratch.

Chapter 6, Mastering the QGIS Python API, delves once more into the PyQGIS library,
looking at some more advanced aspects of this library, as well as various techniques
for working with QGIS using Python.

Chapter 7, Selecting and Editing Features in a PyQGIS Application, looks at how Python
programs built using PyQGIS can allow the user to select, add, edit, and delete
geospatial features within a map interface.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 8, Building a Complete Mapping Application Using Python and QGIS, covers the
process of designing and building a complete turnkey mapping application called
"ForestTrails". You will design the application, implement the overall user interface,
and construct a suitable high-resolution basemap for use by the application.

Chapter 9, Completing the ForestTrails Application, covers the completion of the
implementation of the "ForestTrails" mapping application by implementing the
various map-editing tools, as well as writing a feature to find the shortest available
path between two points on the map.

What you need for this book

To follow through the examples in this book, you will need to install the following
software on your computer:

e QGIS Version 2.2 or later

* Python Version 2.6 or later (but not Python 3.x)

* GDAL/OGR Version 1.10 or later

* PyQt4 Version 4.10 or later

* Depending on your operating system, you might also need to install

the Qt toolkit so that PyQt will work

All of this software can be freely downloaded, and works on Mac OS X, MS
Windows, and Linux computers.

Who this book is for

This book is aimed at experienced Python developers who have some familiarity
with maps and geospatial concepts. While the necessary concepts are explained
as we go along, it would help to have at least some understanding of projections,
geospatial data formats, and the like.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"This uses the QGIS PREFIX environment variable we set earlier to tell QGIS where
to find its resources."

A block of code is set as follows:

app = QApplication(sys.argv)

viewer = MapViewer ("/path/to/shapefile.shp")
viewer.show ()

app.exec_ ()

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def unload(self) :
self.iface.removePluginMenu ("Test Plugin", self.action)
self.iface.removeToolBarIcon(self.action)

Any command-line input or output is written as follows:

export PYTHONPATH="$PYTHONPATH:/Applications/QGIS.app/Contents/Resources/
python"

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "If you
haven't already installed QGIS, click on the Download Now button on the main
QGIS web page to download the QGIS software."

& Warnings or important notes appear in a box like this.
i

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub. com/
sites/default/files/downloads/46640S_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[51]

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4664OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4664OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

This chapter provides an overview of the QGIS system and how you can work
with it using the Python programming language. In particular, this chapter will
cover the following:

* Downloading, installing, and running QGIS

* Becoming familiar with the QGIS application

* Using Python within QGIS

* Using the Python Console as a window into the QGIS environment

* Working of a QGIS Python plugin

* Interacting with the QGIS Python API from an external Python program

About QGIS

QGIS is a popular, free, and open source Geographic Information System (GIS),
which runs on all major operating systems. People often use QGIS to view, edit,
and analyze geospatial data. For our purposes, however, QGIS is more than just
a GIS system,; it is also a geospatial programming environment, which we can
use to build our own geospatial applications using Python.

QGIS has a comprehensive website (http://qggis.org), which makes it easy to
download, install, and use.

Before reading further, you should spend 15 minutes looking through the website
and getting familiar with the application and the documentation available online.
In particular, you should check out the Documentation page, where three
important manuals are available: QGIS User guide/Manual, QGIS Training manual,
and PyQGIS cookbook.

www.it-ebooks.info

http://qgis.org
http://www.it-ebooks.info/

Getting Started with QGIS

QGIS User guide/Manual provides in-depth user documentation, which you might
find useful. QGIS Training manual is a detailed introduction to GIS systems and
concepts based on QGIS; you might find it useful to work through this course if you
aren't already familiar with geospatial data and techniques. Finally, PyQGIS cookbook
will be an essential reference to use as you develop your own mapping applications
built on top of QGIS.

Installing and running QGIS

If you haven't already installed QGIS, click on the Download Now button on the
main QGIS web page to download the QGIS software. What you do next depends
on which operating system you are running on your computer:

* For MS Windows, you can download a double-clickable installer that
installs QGIS and all the required libraries in one go. Make sure you use
the OSGeo4W installer, which includes the Python interpreter, QGIS itself,
and all the required libraries.

* For Mac OS X, you'll need to visit the Kyngchaos website (http://www.
kyngchaos . com/software/qggis) to download and install the GDAL and
matplotlib libraries before installing a version of QGIS specially built for
your operating system. All the required packages are available from the
Kyngchaos site.

* For Unix-like systems, you'll use a package manager to download, compile,
and install QGIS and the required libraries from an appropriate package
repository. More information about installing on a Unix-like system can
be found at http://qgis.org/en/site/forusers/alldownloads.
html#linux.

Once you have installed the QGIS system, you can run it just like any other
application on your computer, for example, by double-clicking on the QGIS
icon in your Applications folder.

[8]

www.it-ebooks.info

http://www.kyngchaos.com/software/qgis
http://www.kyngchaos.com/software/qgis
http://qgis.org/en/site/forusers/alldownloads.html#linux
http://qgis.org/en/site/forusers/alldownloads.html#linux
http://www.it-ebooks.info/

Chapter 1

If everything goes well, the QGIS application will start up and you will be greeted

with the following window:

800 QGIS 2.2.0-Valmiera
NEBBL AN LL 2 BPLAMLS & S > B>
&y |j', S C% o o >€ se [il =l gl Gl s
0@ Layers
=
'U
o
»
R
L&
y .m Browser |
Ready Coordinate: | 0,0 Scale 1.0 v [9/] @ Render EPSG:4326

The exact appearance of the window might vary depending on your

are running QGIS.

operating system. Don't worry, as long as a window appears, which
looks something like the one shown in the previous screenshot, you

You don't need to worry too much about the QGIS user interface right now;

the QGIS User Guide describes the interface and various options in great detail.
Rather than duplicating this information, let's take a look under the hood to see
how QGIS works.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

Understanding QGIS concepts

To understand QGIS, you will have to become familiar with the following basic
terms and concepts:

* QGIS works with geospatial information loaded from a variety of data
sources. These data sources can include vector and raster data files on a
disk, a variety of spatial databases, and even web services such as Web
Map Service (WMS) servers that provide geospatial data from the Internet.

* Wherever the data comes from, it is retrieved by QGIS and displayed as
a map layer. Map layers can be shown or hidden, and also customized in
various ways to affect the way the data is displayed on the map.

* The map layers are then combined and displayed on a map.

* Finally, the various map layers, the map, and the other settings, all make up
a project. QGIS always has one and only one project that it is working with.
The project consists of all the map layers, the map display options, and the
various settings that are currently loaded into QGIS.

These concepts are related in the following manner:

Project

Data Source —

Data Source —

/
Data Source ——/ -
B .
N / |

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Note that the data sources are outside QGIS. While the map layer
refers to a data source, the data itself is stored somewhere else, for
i . . . cilos
example, in a file on a disk or within a database.

Whenever you are working with QGIS, you are always working within the current
project. You can save projects and reload them later, or start a new project to reset
QGIS back to its original state.

Linking QGIS and Python

While QGIS itself is written in C++, it includes extensive support for Python
programming. A Python interpreter is built in, and can be used interactively via the
Python Console, or to run plugins written in Python. There is also a comprehensive
API for querying and controlling the QGIS application using Python code.

There are three ways in which you can use Python to work with the QGIS system:

* Python Console: You can open this console, which runs the interactive
Python interpreter built into QGIS, allowing you to type in commands and
see the results immediately.

* Python plugin: These are Python packages designed to be run within the
QGIS environment.

* External applications: You can use the QGIS Python API in your own
applications. This lets you use QGIS as a geospatial processing engine, or
even build your own interactive applications based on QGIS.

No matter how you use Python and QGIS, you will make extensive use of the QGIS
Python libraries, which are often referred to as PyQGIS. They provide a complete
programmatic interface to the QGIS system, including calls to load data sources
into layers, manipulate the map, export map visualizations, and build custom
applications using the QGIS user interface. While an in-depth examination of the
PyQGIS library will have to wait until Chapter 3, Learning the QGIS Python API, we
will start dabbling with it right away in the next section on the Python Console.

For the remainder of this chapter, we will examine each of the three ways in which
you can work with QGIS and Python.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

Exploring the Python Console

The QGIS Python Console window can be accessed by using the Python Console
item in the Plugins menu. When you select this command, the Python Console
will appear in the lower-right corner of the QGIS window. Here's what the Python
Console looks like when you first open it:

Python Conscle
1 Python 2.7.2 (default, Oct 11 2012, 20:14:37)
2 [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Applefclang=418.0.60)] on Eriks-MacBook-Pro=2.local
3 ## Type help(iface) for mare info and list of methods

While the Python Console is an excellent tool for interacting with an existing QGIS
project, we are going to use it to create a new project from scratch. Before we can
do this, though, we'll need to download some geospatial data sources for our
QGIS project.

We are going to need a suitable base map for our project, as well as some river
and city information to display on top of this base map. Let's use the Natural Earth
website to obtain the information we need. Go to http://naturalearthdata.com
and click on the Downloads tab.

Firstly, we'll want to download a nice-looking base map for our project. To do
this, select the Raster link under the Medium scale data, 1:50m section, choose
the Natural Earth 1 dataset, and click on the Download small size link under
the Natural Earth I with Shaded Relief and Water heading.

Next, we need an overlay, which will show lakes and rivers on top of our base map.
To get this information, go back to the Downloads tab and select the Physical link
under the Medium scale data, 1:50m section. The dataset you want is called Rivers,
Lake Centerlines, so click on the Download rivers and lake centerlines link to obtain
this file.

[12]

www.it-ebooks.info

http://naturalearthdata.com
http://www.it-ebooks.info/

Chapter 1

Finally, we'll want to highlight the cities on top of our base map. Go back to the
Downloads page and select the Cultural link under the Medium scale data, 1:50m
heading. At the bottom is a section labelled Urban Areas. Click on the Download
urban areas link to download this file.

Once you've done all this, you should have the following three files:

* A raster base map in a file named NE1_50M_SR W.zip

* Lake and river vector data in a file named ne_50m_rivers lake
centerlines.zip

* Urban area vector data in a file named ne_50m_urban_areas.zip

Since these are ZIP archives, you will need to unzip these files and store them
somewhere at a convenient location on your hard disk.

M You'll need to type in the full path to these datasets, so you might want
Q to put them somewhere convenient, for example, in your home or user
directory. In this way, the path you type won't be too long.

Now that we have our data, let's use the QGIS Python Console to import this
data into a project. If you've already loaded some data into QGIS (for example, by
following the tutorial in the QGIS User Guide), choose the New option from the
Project menu to start again with a blank project. Then, type the following into the
QGIS Python Console:

layerl = iface.addRasterLayer ("/path/to/NE1_50M_SR_W/
NE1 50M SR W.tif", "basemap")

Make sure you replace /path/to/ with the full path to the NE1_50M_Sr_w directory
you downloaded. Assuming you typed the path correctly, the Natural Earth 1 base
map should appear in the QGIS window:

800 QCIS 2.2.0-Valmiera
DOBRBLAN®LL,SPHPLO 0> R:
f/, ; D 5‘.' L:;“ .’_\':k 5 3,__,_‘3 bl I:i.} nt:-a :E(?_ mhﬁ‘ mi_i abel
0@ Layers
T F¥ basemap
L8
'ﬂ
p s
»
¥

Zoordinate | -91,237 | scale (45,890,128~ | |$] M Render iPSG:432¢

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

As you can see, our base map is a bit small right now. You can use the various
panning and zooming commands in the toolbar at the top of the window to make
it bigger, but let's use Python to do the same thing;:

iface.zoomFull ()
This will expand the base map to fill the entire window.

Now that we have a base map, let's add our two vector layers to the project. To do
this, type the following;:

layer2 = iface.addVectorLayer ("/path/to/ne 50m urban areas/
ne 50m urban_ areas.shp", "urban", "ogr")

Once again, make sure you replace /path/to/ with the full path to the ne_5om_
urban_areas directory you downloaded earlier. The urban areas shapefile will be
loaded into the QGIS project and will appear as a series of colored areas on top of
the base map. Let's zoom in to an area of California so that we can see what this
looks like more clearly. To do this, type the following commands into the Python
Console window:

iface.mapCanvas () .setExtent (QgsRectangle (-125, 31, -113, 38))
iface.mapCanvas () .refresh()

This will zoom in on the map in so that an area of California, including Los Angeles
and the southern part of San Francisco, is now shown on the map:

%

Ko

.

o
-]

“

B &

EHBINARS R

;-.__. ’

% Coordinate: | -122.42,35.28 | Scale 127218680 . ¥ mm- £P3G 4326 @l [&]

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Finally, let's add our river and lake data to our project. To do this, enter the following
into the Python Console:

layer3 = iface.addVectorLayer ("/path/to/ne_50m_rivers lake_
centerlines/ne 50m rivers lake centerlines.shp", "water", "ogr")

If you look at the map, you'll see that the rivers and lakes are now visible. However,
they are drawn in a default green color. Let's change this so that the water is now blue:

from PyQt4.QtGui import QColor
layer3.rendererV2 () .symbols () [0] .setColor (QColor ("#4040FF"))
iface.mapCanvas () .refresh ()

This code might be a bit confusing, but don't worry —we'll learn about renderers and
symbols in Chapter 3, Learning the QGIS Python APIL.

Now that we are finished, you can save your project using the Save As... item in the
Project menu. As you can see, it's quite possible to set up and customize your QGIS
project using Python.

Examining a Python plugin

While the Python Console is a fantastic tool for interactive coding, it isn't all that
useful if you want to use Python to extend the functionality of QGIS. This is where
QGIS plugins come in; you can create (or download) a plugin that adds new
features or changes the way QGIS works.

Because QGIS is written using the Qt framework, QGIS plugins make use of the
Python bindings in Qt, which are called PyQt. We will download and install PyQt
and the related tools when we start to build our own plugins in Chapter 4, Creating
QGIS Plugins.

To get an idea of how a Python plugin works, let's take a look at the Zoom to
Point plugin. As the name suggests, this plugin lets you zoom to display a given
coordinate on the map. It's also written in Python, and is a convenient example for
learning about plugins in general.

Before we can use it, we have to install this plugin. Choose the Manage and Install
Plugins... item from the Plugins menu, and click on the Not Installed tab. You
should see Zoom to Point listed near the bottom of the list of available plugins; click
on this plugin, and then click on the Install Plugin button to download and install it.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

Let's run this plugin to see how it works; with the project you created earlier still
loaded, click on the Zoom to Point plugin's icon in the toolbar, which looks like this:

3-,—{::_.;

Try entering the longitude/latitude of your current location (if you don't know it,
you might find http://itouchmap.com/latlong.html helpful). You should see
the base map, urban areas, and waterways for your current location.

a1

~ Don't forget that x equals longitude and y equals latitude. It's
easy to get them the wrong way around.

Now that we know what the plugin does, let's see how it works. The downloaded
plugins are stored in a hidden directory named . ggis2 in your user or home
directory. Go to this hidden directory using your favorite file manager (for Mac
OS X, you can use the Go to Folder... item in the Finder's Go menu), and find the
python/plugins subdirectory. This is where the Python plugins are stored.

. Depending on your operating system and the version of QGIS
~ you are using, the name of this hidden directory might be
Q different. If you can't find it, look for a directory named .qgis or
.dgis2 or something similar.

You should see a directory named zoomtopoint (the full path to this directory will
be ~/.qgis2/python/plugins/zoomtopoint). Inside this directory, you will find
the various files that make up the Zoom to Point plugin:

800 [[] zoomtopaeint
Name 4| Date Modified Size Kind

wi _init_.py Today 6:54 AM 1KB Python Source File
| COPYING Today 6:54 AM 19 KB Document
ES icon.png Today 6:54 AM 1KB Portable Network Graphics image
| Makefile Today 6:54 AM 2 KB Document
w metadata.txt Today 6:54 AM 516 bytes Plain Text File
il Fesgurces.py Today 6:54 AM 6 KB Python Source File
] resources.qrc Today 6:54 AM 107 bytes Document
m| Ui_zoomtopoint.py Today 6:54 AM 5 KB Python Source File

| ui_zoomtopoint.ui Today 6:54 AM 5 KB Document
m| Zoomtopoint.py Today 6:54 AM 4 KB Python Source File
m| zoomtopointdialog.py Today 6:54 AM 1KB Python Source File
| zoomtopointdialog.ui Today 6:54 AM 5 KB Document

[16]

www.it-ebooks.info

http://itouchmap.com/latlong.html
http://www.it-ebooks.info/

Chapter 1

Let's see what these various files do:

Filename Used for

_ init_ .py This is a standard Python package initialization file. This
file also initializes the plugin and makes it available to
the QGIS system.

COPYING This is a copy of the GNU General Public License
(GPL). Since the Zoom to Point plugin is generally
available, this defines the license under which it can be
used.

icon.png As the name suggests, this is the plugin's toolbar icon.

Makefile This is a standard *nix Makefile used to automate the

process of compiling and deploying the plugin.

metadata.txt

This file contains the plugin's metadata, including the
full name of the plugin, a description, the current version
number, and so on.

resources.grc

This is a Qt resource file that defines the various
resources such as images and sound files used by the
plugin.

resources.py

This indicates the contents of the resources.grc file,
compiled into a Python module.

ui_zoomtopoint.ui

This is a Qt user interface template that defines the main
Ul for the plugin.

ui_ zoomtopoint.py

This indicates the contents of the ui_zoomtopoint.ui
file compiled into a Python module.

zoomtopoint.py

This file contains the main Python code for the plugin.

zoomtopointdialog.ui

This is a copy of the ui_zoomtopoint . ui file. It looks
like this file was included by accident, as the plugin can
run without it.

zoomtopointdialog.py

This Python module defines a QtGui.QDialog
subclass that loads the dialog box's contents from ui_
zoomtopoint.py.

Open the zoomtopoint . py module in your favorite text editor. As you can see, this
contains the main Python code for the plugin, in the form of a ZoomToPoint class.
This class has the following basic structure:

class ZoomToPoint:
def init (self, iface):
self.iface = iface

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

def initGui (self) :

def unload (self) :

def run(self):

If you openthe init__ .py module, you'll see how this class is used to define the
plugin's behavior:

def classFactory(iface):
from zoomtopoint import ZoomToPoint
return ZoomToPoint (iface)

When the plugin is loaded, a parameter named iface is passed to the classFactory
function. This parameter is an instance of QgsInterface, and provides access to

the various parts of the running QGIS application. As you can see, the class factory
creates a ZoomToPoint object, and passes the iface parameter to the initializer so
that ZoomToPoint can make use of it.

Notice how ZoomToPoint. init (), in the Zoomtopoint .py module, stores a
reference to the iface parameter in an instance variable, so that the other methods
can refer to the QGIS interface using self.iface. For example:

def init (self, iface):
self.iface = iface

def initGui (self):

self.iface.addPluginToMenu ("&Zoom to point...", self.action)
This allows the plugin to interact with and manipulate the QGIS user interface.
The four methods defined by the ZoomToPoint class are all quite straightforward:

* _ init_ ():This method initializes a new ZoomToPoint object.

* initGui (): This method initializes the plugin's user interface, preparing it to
be used.

* unload(): This method removes the plugin from the QGIS user interface.

* run(): This method is called when the plugin is activated, that is, when the
user clicks on the plugin's icon in the toolbar, or selects the plugin from the
Plugins menu.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Don't worry too much about all the details here; we'll look at the process of
initializing and unloading a plugin in a later chapter. For now, take a closer look at
the run () method. This method essentially looks like the following;:

def run(self):
dlg = ZoomToPointDialog()

dlg.show ()
result = dlg.exec ()
if result == 1:
x = dlg.ui.xCoord.text ()
y = dlg.ui.yCoord.text ()
scale = dlg.ui.spinBoxScale.value ()

rect = QgsRectangle(float (x) - scale,
float (y) - scale,
float (x) + scale,
float (y) + scale)

mc=self.iface.mapCanvas ()
mc.setExtent (rect)
mc.refresh ()

We've excluded the code that remembers the values the user entered previously,
and copies those values back into the dialog when the plugin is run. Looking at
the previous code, the logic seems to be fairly straightforward and is explained
as follows:

* Create a ZoomToPointDialog object.
* Display the dialog box to the user.

e If the user clicks on the OK button, extract the entered values, use them
to create a new bounding rectangle, and set the extent of the map to
this rectangle.

While this plugin is quite straightforward and the actual code doesn't do all that
much, it is a useful example of what a Python plugin should look like, as well as the
various files that are needed by a Python plugin. In particular, you should note that:

* A plugin is simply a directory that contains a Python package initialization
file (__init_ .py), some Python modules, and other files created using
Qt Designer.

* The_ init__ .py module must define a top-level function named
ClassFactory that accepts an iface parameter and returns an object
that represents the plugin.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

The plugin object must define an initGui () method, which is called to
initialize the plugin's user interface, and an unload () method, which is
called to remove the plugin from the QGIS application.

The plugin can interact with and manipulate the QGIS application via the
iface object passed to the class factory.

The resources. grc file lists various resources such as images, which are

used by the plugin.

The resources.grc file is compiled into a resources. py file using the PyQt
command-line tools.

Dialog boxes and other windows are created using a Qt Designer template,
which are typically stored in a file with a name of the form ui_Foo.ui.

The UI template files are then compiled into Python code using the PyQt
command-line tools. If the template is named ui_foo.ui, then the associated
Python module will be named ui_foo.py.

Once the user interface for a dialog box has been defined, you create a
subclass of gtGui.QDhialog, and load that user interface module into it.
This defines the contents of the dialog box based on your template.

Your plugin can then display the dialog box as required, extracting
the entered values and using the results to interact with QGIS via the
iface variable.

Plugins are a useful way of extending and customizing QGIS. We will return to the
topic of QGIS plugins in Chapter 4, Creating QGIS Plugins, where we will create our
own plugin from scratch.

Writing an external application

The final way to work with Python and QGIS is to write a completely standalone
Python program that imports the QGIS libraries and works with them directly. In
many ways, this is an ideal way of writing your own custom mapping applications,
because your program doesn't have to run within the existing QGIS user interface.
There are, however, a few things you need to be aware of when you attempt to use
Python and QGIS in this way:

1.

Your Python program needs to be able to find the QGIS Python libraries
before it can be run. Since these are bundled into the QGIS application itself,
you will need to add the directory where the PyQGIS libraries are installed in
your Python path.

You also need to tell the PyQGIS libraries where the QGIS application's
resources are stored.

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. As the application is running outside the QGIS application, you won't have
access to the iface variable. You also can't use those parts of the PyQGIS
library that assume you are running inside QGIS.

None of this is too onerous, though it can trip you up the first time you attempt to
access PyQGIS from your external Python code. Let's take a look at how we can
avoid these traps when writing your own Python programs.

Firstly, to allow your program to access the PyQGIS libraries, you need to modify
your Python path (and possibly some other environment variables) before you can
import any of the QGIS packages. For MS Windows, you can do this by running the
following in the command line:

SET OSGEO4W_ROOT=C:\OSGeo4W

SET QGIS PREFIX=%0SGEO4W ROOT%\apps\ggis

SET PATH=%PATH%;%QGIS_PREFIX%\bin

SET PYTHONPATH=%QGIS_PREFIX%\python;%PYTHONPATH%

If you are running Mac OS X, the following commands will set up the Python
path for you:

export PYTHONPATH="$PYTHONPATH:/Applications/QGIS.app/Contents/Resources/
python"

export DYLD FRAMEWORK PATH="/Applications/QGIS.app/Contents/Frameworks"
export QGIS PREFIX="/Applications/QGIS.app/Contents/Resources"

For computers that run a version of Linux, you can use the following;:

export PYTHONPATH="/path/to/qgis/build/output/python/"
export LD LIBRARY PATH="/path/to/qgis/build/output/lib/"
export QGIS PREFIX="/path/to/qgis/build/output/"

Obviously, you will need to replace /path/to/qgis with the actual
s path of your QGIS installation.

If you have QGIS installed in a nonstandard location, you might need to modify
these commands before they will work. To check if they have worked, start up the
Python interpreter and enter the following command:

>>> import ggis

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

If everything goes well, you'll simply see the Python prompt:

>>>

On the other hand, you might see the following error:

ImportError: No module named ggis

In this case, the PYTHONPATH variable has not been set up correctly, and you will have
to check the commands you entered earlier to set this environment variable, and
possibly modify it to allow for a nonstandard location of the QGIS libraries.

Note that in some cases, this isn't enough because the Python libraries
are only wrappers around the underlying C++ libraries; you might also
need to tell your computer where to find these C++ libraries. To see if
this is a problem, you can try to do the following;:

import ggis.core
% You might get an error that looks like this:
- ImportError: libggis core.so.l1l.5.0: cannot open shared
object file: No such file or directory

You will to have to tell your computer where to find the underlying
shared libraries. We will return to this later when we look at writing our
own external applications; if you want to see the details, skip ahead to
Chapter 5, Using QGIS in an External Application.

With the path set, you can now import the various parts of the PyQGIS library that
you want to use, for example:

from ggis.core import *

Now that we have access to the PyQGIS libraries, our next task is to initialize these
libraries. As mentioned earlier, we have to tell PyQGIS where to find the various
QGIS resources. We do this using the Qgsapplication.setPrefixpath () function,
like this:

import os
QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)

This uses the QGIS_PREFIX environment variable we set earlier to tell QGIS where
to find its resources. With this done, you can then initialize the PyQGIS library by
making the following call:

QgsApplication.initQgis ()

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We can now use PyQGIS to do whatever we want in our application. When our
program exits, we also need to inform the PyQGIS library that we are exiting;:

QgsApplication.exitQgis ()
Putting all this together, our minimal Python application looks like this:

import os
from ggis.core import *

QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)
QgsApplication.initQgis ()

...

QgsApplication.exitQgis ()

Of course, this application doesn't do anything useful yet— it simply starts up and
shuts down the PyQGIS libraries. So let's replace the ". . ." line with some useful
code that displays a basic map widget. To do this, we need to define a gMainwindow
subclass, which displays the map widget, and then create and use a Qapplication
object to display this window and handle the various user-interface events while
the application is running.

Both QMainWindow and QApplication are PyQt classes. We will be
working extensively with the various PyQt classes as we develop our

=" own external applications using QGIS and Python.

Let's start by replacing the ". . ." line with the following code, which displays a map
viewer and then runs the application's main event loop:

app = QApplication(sys.argv)

viewer = MapViewer ("/path/to/shapefile.shp")
viewer.show ()

app.exec_ ()

As you can see, a MapViewer instance (which we will define shortly) is created and
displayed, and the Qapplication object is run by calling the exec_ () method. For
simplicity, we pass the name of a shapefile to display within the map viewer.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with QGIS

Running this code will cause the map viewer to be displayed, and the application will
run until the user closes the window or chooses the Quit command from the menu.

Now, let's define the Mapviewer class. Here is what the class definition looks like:

class MapViewer (QMainWindow) :
def init (self, shapefile):
OMainWindow. init (self)
self.setWindowTitle ("Map Viewer")

canvas = QgsMapCanvas ()
canvas.useImageToRender (False)
canvas.setCanvasColor (Qt.white)
canvas .show ()

layer = QgsVectorLayer (shapefile, "layerl", "ogr")
if not layer.isValid() :
raise IOError ("Invalid shapefile")

QgsMapLayerRegistry.instance () .addMapLayer (layer)
canvas.setExtent (layer.extent ())
canvas.setLayerSet ([QgsMapCanvasLayer (layer)])

layout = QVBoxLayout ()
layout .addWidget (canvas)

contents = QWidget ()
contents.setLayout (layout)
self.setCentralWidget (contents)

Don't worry too much about the details of this class; we basically just create a
window and place a QgsMapCanvas object within it. We then create a map layer
(an instance of ggsvVectorLayer) and add it to the map canvas. Finally, we add the
canvas to the window's contents.

Notice that QgsMapCanvas and QgsVectorLayer are both part of PyQGIS, while
QMainWindow, QVBoxLayout, and Qwidget are all PyQt classes. This application uses
the PyQGIS classes within a PyQt application, mixing the classes from both sources.
This is possible because QGIS is built using Qt, and the various PyQGIS classes are
based on PyQt.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

To turn the preceding code into a working application, all we need to do is add some
more import statements to the top of the module:

import sys
from PyQt4.QtGui import =*
from PyQt4.QtCore import Qt

Downloading the example code

\ You can download the example code files from your account at
~ http://www.packtpub.com for all the Packt Publishing books you
Q have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

If you run this application, the map viewer will be displayed, showing the contents
of the shapefile referred to by the code. For example:

I I L B, T —

This application is still a bit ugly —you can see white space at the top and bottom this
map because it doesn't take into account the aspect ratio of the map data. There's also
no feature of zooming in or scrolling around the map. However, these can be added
quite easily, and as you can see, it's not very difficult to create your own standalone
mapping applications built on top of QGIS.

[25]

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Getting Started with QGIS

Summary

In this chapter, we became familiar with QGIS and the various ways in which it can
be used as a Python geospatial development system. We installed and explored the
QGIS application itself, and then looked at how Python can be used with QGIS. We
saw how QGIS uses data sources, map layers, maps, and projects to organize and
work with geospatial data. Next, we examined the three ways in which you can
use Python and QGIS: by typing commands into the Python Console, by writing

a Python plugin or by writing an external application that makes use of the QGIS
Python APL

We then looked at the extensive set of Python libraries that come with QGIS, called
PyQGIS, which you can use for geospatial development. We saw how to use the
QGIS Python Console to directly manipulate the QGIS project, add layers, zoom in
and out, change options, and so on.

Next up, we downloaded and examined a QGIS Python plugin. In doing this, we
learned that QGIS plugins are simply Python packages installed in a hidden directory
named .qggis2 (or .qgis) within your home or user directory. A plugin makes use

of the Qt library to define and build resources such as user interface templates.

Finally, we saw how we can write external Python applications that load the PyQGIS
libraries from within the QGIS system, and then use those libraries within a larger
PyQt application.

In the next chapter, we will explore the QGIS Python Console in more detail, and use
it to become more familiar with the PyQGIS library, and also see how we can use it
within our own Python geospatial development projects.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

In this chapter, we will look at the ways in which you can use the QGIS Python
Console as a geospatial development tool. We will also use the console as

a looking-glass to examine the world of QGIS programming. In particular,

we will learn the following;:

* Explore the ways in which the console can be used to develop and
execute Python code

* Learn how to write Python scripts using the console's built-in source
code editor

* Discover various tips and techniques to work with the QGIS Console

* Figure out how to manipulate the current project within QGIS using
Python commands

* Access geospatial data and perform geospatial calculations using
the console

* Use various QGIS user-interface elements within our Python programs

Using the console

While you briefly used the QGIS Console in the previous chapter, it is worth
examining the QGIS Console window in more detail, so that you are aware of
the various features that are available.

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

If you don't already have it open, choose the Python Console item from the Plugins
menu to open the console. The following screenshot shows the various parts of the
console window:

Interpreter Log

00 d Python Console
1 Pyihon 2.7, (defaull, Oct 11 2012, 20:14237)
Clear console % 2 [G%n‘pattﬂc Apple Clang 4.0 (tags/Appie/ciang-418.0.60)] on Erks-MacBook-Pro-2 local

3
4

Import Class —»1 &,

Run command ___.,,3)

Show editor .*H

Settings —p,.| #
<

Help

o

Python Shell

Let's take a closer look at these various parts:

* The Clear console button wipes out the contents of the interpreter log

* The Import Class pop up contains shortcuts to import some commonly-used
PyQGIS classes

G' Import Processing class
I5. Import PyQt.QtCore class
@ Import PyQt.QtGui class

These are equivalent to typing import Processing, from PyQt4.QtCore
import *,and from PyQt4.QtGui import *.

* The Run command button simply executes the command you have typed
in the Python shell field

Of course, you can also run the entered command by pressing the
@’é‘\ Return key, so this command is only useful if you really want to run
’ a command using the mouse.

e The Show editor button shows or hides the built-in source code editor.
We'll look at this shortly

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The Settings button displays the console's Settings window, allowing
you to customize the way the console looks and behaves

The Help button brings up the built-in help viewer page, which contains
useful information about how to use the console

The Python Shell field is where you type your Python commands and
other input

The Interpreter Log shows a complete history of the commands you
have typed and the Python interpreter's output

As we've already seen, you can type Python commands in the shell and press
the Return key to execute them. The commands you type, along with the Python
interpreter's output, appear in the Interpreter Log.

The Python Shell has been designed to make it easier to work with Python
interactively. The following features are currently supported:

Pressing the up and down arrow keys will move through the command
history, making it easy to re-enter the Python commands you typed earlier.

You can display a list of previously-entered commands by pressing
Ctrl + Shift + Space (command + Shift + Space on Mac).

If you select some text in the Interpreter Log, you can use the Enter Selected
command to move that text to the shell and execute it. This command is
available in the console's pop-up menu, or it can be accessed by pressing
Ctrl + E (command + E if you are running Mac OS X).

The Python Shell supports auto-completion. As you type, a pop-up menu
appears, showing you the matching class, function, and method names within
the PyQGIS and PyQt APIs. You can then press the up and down arrow keys
to select the exact name you want, and press the Tab key to select it.

When you type an opening parenthesis, the console automatically enters
the closing parenthesis for you. You can turn this off by using the Settings
window if you wish.

When you type from XXX, the console enters the word import for you
automatically. Once again, you can turn this off in the Settings window if
you don't like this behavior.

When you type the opening parenthesis for a function or method, the C++
signature for that function or method will be displayed. Despite being in C++
format, this tells you which parameters are expected and the type of value
being returned.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

* Youcan type _api into the shell; your web browser will open the PyQGIS
API reference documentation. Similarly, if you type _pyggis, your web
browser will display the PyQGIS Developer Cookbook.

While typing commands into the Python Shell is a useful way of exploring the QGIS
Python libraries, and is good for one-off commands, it quickly gets tedious if you
have to type multiple lines of Python text or repeat the same set of commands over
and over. After all, this is why we store Python code in .py files and execute them,
rather than just typing everything into the Python command-line interface.

The QGIS Console comes with its own editor, allowing you to write Python scripts and
execute them directly within the console. Let's take a quick look at how this works.

With the QGIS Console open, click on the Show Editor icon (@) The console
window will be split in half, with the Python source code editor now taking up the
right-hand side of the window:

800 Python Console
1 Python 2.7.2 (default, Oct 11 2012, 20:14:37)) - felod
% 2 [GGG 4.2.1 Compatible Apple Glang 4.0 (tagsfappled | 220 L7 ~ B Untitled-0
clang=-418.0.60)] on Erike-MacBook-Pro-2.local - 1
3 ## Type help(face) for more info and list of methods. | RS
G - a
[[

===

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The various toolbar icons provide standard editing behavior such as loading and
saving files, copying and pasting text, checking syntax, and executing your script:

Open —Pp =
Save =P

Save As —P> it

Comment Selection = #
Uncomment Selection —p»- #

Object Inspector —pp- .

Run Script =9 P

You'll probably want to memorize the top three icons as there are currently no
keyboard shortcuts to open and save Python scripts.

Let's use the console editor to create a simple Python program and run it. With a
QGIS project loaded, type the following into the editor:

for layer in iface.legendInterface() .layers():
print layer.name ()

As you can probably guess, this program prints out the names of the various layers
within the current project. To run this program, save it by clicking on the Save
As... toolbar icon; then, either click on the Run script toolbar icon (p»), or type the
keyboard shortcut, Ctrl + Shift + E (that's command + Shift + E on Mac). You should
see something like the following appear in the Interpreter Log:

>>> execfile(u'/.../tmplNR24f.py'.encode('utf-8"))
water
urban

basemap

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

Note that QGIS uses the execfile () function (which is part of the Python standard
library) to execute your script.

R If your program didn't display the names of any layers, make
~ sure you have a project loaded with at least one layer. In this
Q example, we've used the example project we created in the
previous chapter, which had three layers in it.

Of course, there is a lot more that we can do with the QGIS Console and its built-in
Python editor, and we'll be using it to do useful work shortly. Before we do, though,
there are two final things you should know about the QGIS Console.

Firstly, the console itself is written in Python using PyQt and the pyQScintilla2
editor. You can learn a lot about how QGIS has been implemented by looking
through the source code to the console, which is available at https://github.com/
qgis/QGIS/tree/master/python/console.

The second thing you should know is that the console is implemented as a Qt
"Dockable" window; that is, it can be dragged into a pane within the main QGIS
window. If you click and hold the console's title bar, you can drag it inside the
main window, as shown in the following illustration:

800 QGIS 2.2.0-Valmiera
) IR NS L L NP LR > 4> B

e T T ab, ab i
e x
- [*F} X] o L [> [*¥] (5] D

00 Layers 006 Python Console

. 1 Python 2.7.2 (default, Oct 11 2012, 20:14:37)
- 2 [GCC 4.2.1 Compatibie Appie Clang 4.0 (lags/Apple/cian
g=418.0.60)] on Erks-MacBook-Pro-2.lacal

3 #¥ Typa heip(dace) for mom inlo and kst of methods

@ 4
P>

M Python Console
1 Python 2.7.2 (detautt, Oct 11 2012, 20:14:37)
2 [GCC 4.2.1 Compatible Apple Clang 4.0 (tags/Apple/clang-418.0.60)] on Er
Iks=MacBook-FPro=2.local
38

DI NBN S

%I Coordinate: 0,0

[32]

www.it-ebooks.info

https://github.com/qgis/QGIS/tree/master/python/console
https://github.com/qgis/QGIS/tree/master/python/console
http://www.it-ebooks.info/

Chapter 2

The console can be moved into any of the existing panes within the QGIS window,
and it will stay there until you move it out.

To turn the console into a window again, click on the title bar and drag it out of the
QGIS window. Alternatively, you can double-click on the console's title bar to switch
between having it as a standalone window or a docked pane.

This docking behavior can be annoying if you're working on a small screen, where
you can accidentally dock the console window while moving it out of the way so
you can see what is beneath it. Fortunately, since the QGIS Console is implemented
in PyQt, you can disable this quite easily by running the following Python code:

from console import console

from PyQt4.QtCore import Qt

console. console.setAllowedAreas (Qt.DockWidgetAreas (Qt.
NoDockWidgetArea))

If you want, you can create a startup script that automatically shows the console
and makes it nondockable whenever QGIS starts up. The startup script is stored
in a hidden directory in your user or home folder. Using your file manager, look
for a hidden directory named .ggis2 (or .ggis, depending on which version of
QGIS you are running) in your user or home directory (for Mac OS X, you can use
the Go to Folder... item in the Finder's Go menu). Inside this directory, there will
be a subdirectory named python. Inside the python directory, create a file named
startup.py and place the following into this file:

from console import console

from PyQt4.QtCore import Qt

console.show console ()

console. console.setAllowedAreas (Qt.DockWidgetAreas (Qt.
NoDockWidgetArea))

As you can see, the only thing we changed was to add a call to console. show_
console () to open the console window when QGIS starts.

If the console is currently docked, this script won't undock it,

although it will prevent you from accidentally docking the
i~ .
console again.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

Working with geospatial data in the
console

So far, we have used the QGIS Console as a glorified Python interpreter, running
standard Python programs and manipulating the QGIS user interface. But QGIS is
a Geographical Information System (GIS), and one of the main uses of a GIS is to
manipulate and query geospatial data. So, let's write some Python code to work
with geospatial data directly within the QGIS Console.

In the previous chapter, we loaded three shapefiles into a QGIS project using Python.
Here is a typical instruction we used to load a shapefile into a QGIS map layer:

layer = iface.addVectorLayer ("/path/to/shapefile.shp", "layer name",
n ogr n)

While this is useful if you want to create a QGIS project programmatically, you may
just want to load a shapefile so you can analyze its contents, without putting the data
into a map layer. To do this, we have to get an appropriate data provider and ask it
to open the shapefile, like this:

registry = QgsProviderRegistry.instance ()
provider = registry.provider ("ogr","/path/to/shapefile.shp")
if not provider.isValid() :

print "Invalid shapefile."

return

The isvalid () method will return False if the shapefile cannot be loaded; this
allows us to fail gracefully if there is an error.

Once we have the data provider, we can ask it for the list of fields used to hold the
attribute values for each of the shapefile's features:

for field in provider.fields():
print field.name (), field.typeName ()

We can also scan through the features within the shapefile using a
QgsFeatureRequest object. For example:

for feature in provider.getFeatures (QgsFeatureRequest()) :
print feature.attribute ("name")

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Of course, this is just a taste of what can be done using the QGIS libraries to query
and manipulate geospatial data. However, let's use what we've learned to build a
simple program that calculates and displays information about the contents of a
shapefile. Shapefiles hold geospatial features such as polygons, lines and points,
and each feature can have any number of attributes associated with it. We'll write
a program that opens and scans through a shapefile, identifying the features and
calculating the length of each line feature and the area of each polygon feature.
We'll also calculate the total length and area across all the features.

One of the challenges we'll have to deal with is the fact that the shapefile can be in
any map projection. This means that our calculation of the area and length has to
take the map projection into account; if, for example, we simply calculated the linear
length of a feature in a shapefile that uses the EPSG 4326 projection (that is, lat/long
coordinates), then the calculated length will be in degrees of latitude and longitude —
which is a completely meaningless figure. We'll want to calculate the feature lengths
in kilometers, and the areas in square kilometers. This is possible but requires us to
do a bit more work.

Let's get started with our program. Start by creating a new Python script and enter
the following;:

from PyQt4.QtGui import *

To make the program easier to use, we're going to define a function and place all our
program logic inside this function, like this:

def analyze shapefile():

analyze shapefile()

Now, let's start writing the contents of the analyze shapefile () function. So far,
we've been hardwiring the name of the shapefile, but this time, let's use QGIS's
graphical interface to prompt the user to select a shapefile:

def analyze shapefile():
filename = QFileDialog.getOpenFileName (iface.mainWindow (),
"Select Shapefile",
", 'x _ghp!')
if not filename:
print "Cancelled."
return

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

We can then open the selected shapefile:

registry = QgsProviderRegistry.instance ()
provider = registry.provider ("ogr",filename)
if not provider.isVvValid():

print "Invalid shapefile."

return

In order to identify a feature, we need to display a meaningful label for the feature.
To do this, we'll look for an attribute with a likely-looking name. If there is no
suitable attribute, we'll have to use the feature's ID instead.

Let's start by building a list of the various attributes stored in this shapefile:

attr names = []
for field in provider.fields():
attr names.append(field.name())

We're now ready to start scanning through the shapefile's features. Before we do this,
though, let's initialize a couple of variables to hold the totals we need to calculate:

tot length 0

tot_area = 0

We also need to set up a QgsDistanceArea object to do the distance and area
calculations for us.

crs = provider.crs()

calculator = QgsDistanceArea ()
calculator.setSourceCrs (crs)
calculator.setEllipsoid(crs.ellipsoidAcronym())
calculator.setEllipsoidalMode (crs.geographicFlag())

We'll use this object to calculate the true length and area of the shapefile's features
in meters and square meters respectively.

We're now ready to scan through the contents of the shapefile, processing each
feature in turn:

for feature in provider.getFeatures (QgsFeatureRequest()) :

For each feature, we want to calculate a label that identifies that feature. We'll do
this by looking for an attribute called "name", "NAME", or "Name", and using that
attribute's value as the feature label. If there is no attribute with one of these field
names, we'll fall back to using the feature's ID instead. Here is the relevant code:

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

if "name" in attr names:

feature label = feature.attribute ("name")
elif "Name" in attr names:

feature label = feature.attribute ("Name")
elif "NAME" in attr names:

feature label = feature.attribute ("NAME")
else:

feature label = str(feature.id())

Next, we need to obtain the geometry object associated with the feature. The
geometry object represents a polygon, line, or point. Getting a reference to the
feature's underlying geometry object is simple:

geometry = feature.geometry ()

We can now use the QgsDistanceArea calculator we initialized earlier to calculate
the length of a line feature and the area of a polygon feature. To do this, we'll first
have to identify the type of feature we are dealing with:

if geometry.type() == QGis.Line:
elif geometry.type() == QGis.Polygon:
else:

For line geometries, we'll calculate the length of the line and update the total length:

if geometry.type() == QGis.Line:
length = int (calculator.measure (geometry) / 1000)
tot length = tot length + length
feature info = "line of length %d kilometers" % length

For polygon geometries, we'll calculate the area of the polygon and update the
total area:

elif geometry.type() == QGis.Polygon:
area = int(calculator.measure (geometry) / 1000000)
tot_area = tot_area + area

feature info = "polygon of area %d square kilometers" %
area

Finally, for the other types of geometries, we'll simply display the geometry's type:

else:
geom_type = ggis.vectorGeometryType (geometry.type())

)

feature info = "geometry of type %s" % geom type

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

Now that we've done these calculations, we can display the feature's label together
with the information we calculated about this feature:

° °

print "%$s: %s" % (feature label, feature info)

Finally, when we've finished iterating over the features, we can display the total
line length and polygon area for all the features in the shapefile:

)

print "Total length of all line features: %d" % tot_ length

°

print "Total area of all polygon features: %d" % tot_ area

This completes our program for analyzing the contents of a shapefile. The full source
for this program is available in the code samples provided with this book. To test our
program, type or copy and paste it into the console's script editor, save the file, and
click on the Run Script button (or press Ctrl + Shift + E). Here's an example of what
the program's output looks like:

Antigua and Barbuda: polygon of area 549 square kilometers
Algeria: polygon of area 2334789 square kilometers
Azerbaijan: polygon of area 86109 square kilometers
Albania: polygon of area 28728 square kilometers

Armenia: polygon of area 29732 square kilometers

Jersey: polygon of area 124 square kilometers

South Georgia South Sandwich Islands: polygon of area 3876 square
kilometers

Taiwan: polygon of area 36697 square kilometers
Total length of all line features: 0
Total area of all polygon features: 147363163

This output was produced using the World Borders dataset, available
K athttp://thematicmapping.org/downloads/world borders.
~ php. This is a useful set of geospatial data, which provides simple
Q world maps and associated metadata. If you haven't already done so,
you should grab yourself a copy of this dataset, as we'll be using this
shapefile throughout this book.

As you can see, it is quite possible to create Python programs that read and analyze
geospatial data, and you can run these programs directly from within the QGIS
Console. It is also possible to create and manipulate geospatial data sources using the
PyQGIS libraries.

[38]

www.it-ebooks.info

http://thematicmapping.org/downloads/world_borders.php
http://thematicmapping.org/downloads/world_borders.php
http://www.it-ebooks.info/

Chapter 2

Scripting the QGIS user interface

While the example program we created earlier has very limited user interaction, it is
quite possible to build your program to directly use the QGIS user interface elements
such as the status bar, the message bar, progress indicators, and the QGIS logging
window. You can also create custom forms and windows so that the output of your
program looks just like any other feature of QGIS itself. Let's take a closer look at
how some of these QGIS user-interface elements can be used from within your
Python programs.

The status bar

The QGIS window has a status bar. You can use it to display the current status of
your Python program, for example:

iface.mainWindow () .statusBar () .showMessage ("Please wait...")

The status message will appear at the bottom of the window, like this:

(- NaNs] QGIS 2.2.0-Valmiera

Bi 5 [A s P = 1 98) (= " < .
LDEBRIXR N L L2 2 8P L AR > B »
4 g =2 s (B g kel o el @ &

Ve

=,

%,

Iz

, Status Message

Please wait... % Coordinate: 0,0 Scale 1:0 v ?" IzRender EPSC:4326 f) .

As you can see, there isn't much room on the status bar, so you'll need to keep your
status message short. To hide the message again, do the following:

iface.mainWindow () .statusBar () .clearMessage ()

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

The message bar

A message bar appears within a window to display messages to the user,
for example:

800 QGIS 2.2.0-Valmiera

NEBBLRI WS 22 B0 »a»> >

#. / B <o B /& la > = Fg ey g » &>
This is the message bar []

Vo
L
'D
Iz
»
@B

¥

Ready Coordinate: | 0,0 | Scale 1:0 v| @Render EPSG:4326

Message bars have several useful features:
* Messages can be stacked so that if multiple messages appear at once,
the user won't miss the earlier messages

* Messages have a level, which indicates the importance of the message,
and affects how the message is displayed

* Messages have an optional title as well as the text to be displayed

* Messages can stay on the screen until the user closes them, or they can
time out, disappearing automatically after a given number of seconds

* You can add various Qt widgets to the message bar to customize its
behavior and appearance

Any window in QGIS can have its own message bar. The iface variable has a
messageBar () method, which returns the message bar for the main QGIS window,
but you can also add a message bar to your own custom windows if you wish.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

To add a message to a message bar, you call the message bar's pushMessage ()
method. To create a message without a title, you use the following method signature:

messageBar.pushMessage (text, level=QsgMessageBar.INFO, duration=None)

For example:

from ggis.gui import =*
iface.messageBar () .pushMessage ("Hello World",
level=QgsMessageBar.INFO)

To include a title, use the following method signature:

messageBar.pushMessage (title, text, level=QgsMessageBar.INFO,
duration=None)

In both cases, the 1evel parameter can be set to QgsMessageBar . INFO,
QgsMessageBar .WARNING, Or QgsMessageBar .CRITICAL, and if the duration
parameter is specified, it will be the number of seconds before the message is hidden.

To remove all the messages currently being shown, you can call the messageBar.
clearWidgets () method.

Progress indicators

You can also make use of the message bar to display a Qt progress indicator. To do
this, use the messageBar. createMessage () method to create a widget to display
your message, then modify the widget to include additional Qt controls, and finally
call the messageBar.pushwidget () method to display the message and the controls
you added. For example:

progressMessage = iface.messageBar () .createMessage ("Please wait")
progressBar = QProgressBar ()

progressBar.setMaximum(100)

progressBar.setAlignment (Qt .AlignLeft | Qt.AlignVCenter)
progressMessage.layout () .addWidget (progressBar)
iface.messageBar () .pushWidget (progressMessage)

progressBar.setValue (n)

iface.messageBar () .clearWidgets ()

There is a bug in the Mac version of QGIS 2.2, which prevents the
* user interface from updating while your Python code is running,.
& A workaround for this is to use threads, as described in the
following article: http://snorf.net/blog/2013/12/07/
multithreading-in-qggis-python-plugins

[41]

www.it-ebooks.info

http://snorf.net/blog/2013/12/07/multithreading-in-qgis-python-plugins
http://snorf.net/blog/2013/12/07/multithreading-in-qgis-python-plugins
http://www.it-ebooks.info/

The QGIS Python Console

QGIS logging

You can use the built-in logging facilities of QGIS to display the output in a separate
window. For example:

for i in range(100) :
QgsMessagelog. logMessage ("Message %d" % i)

The log messages will be shown in the log view, which you can show by navigating
to View | Panels | Log Messages.

If you wish, you can change the importance of your message by adding a message
level to the logMessage () call, for example:

QgsMessagelLog. logMessage ("Something is wrong",
level=QgsMessagelLog.CRITICAL)

Rather than being mixed in with other QGIS messages, you can also choose to
have all your log messages appear in a pane by themselves, by adding a tag to the
logMessage () call as follows:

QgsMessagelog.logMessage ("Test Message", tag="my panel")

Your log messages will then appear in a panel by themselves, like this:

8 00 QGIS 2.2.0-Valmiera
NOBBLINS L L 8P »a- B
//. & D al:l o r\-ﬁ 06{ & .__{;? abe |:&| nu° “(Ef_“r_\ nhE; » x |
L2
'ﬂ
% o @ Log Messages
R | ® General @ Plugins
Timestamp Message Level
@ 2014-06-07T09:56:42 Test Message 1
¥
Coordinate: | 0,0 | Scale 1.0 +)[$¥] ™ Render EPSG:4326 (@)

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Custom dialogs and windows

As QGIS is built on top of Qt, you can use the PyQt classes to create your own
windows and dialog boxes, and display them directly from within your Python code.
For example, here's a script that displays a custom dialog box that prompts the user
to enter a latitude and longitude value:

from PyQ

class My

t4.QtGui import *

Dialog(QDialog) :

def init (self):

dialog =

if dialo
lat
long
prin

QDialog. init (self)
self.setWindowTitle ("Enter Coordinate")

layout = QFormLayout (self)

self.lat label
self.lat field

QLabel ("Latitude", self)
QLineEdit (self)

self.long label QLabel ("Longitude", self)

QLineEdit (self)

self.long field

self.ok btn = QPushButton("OK", self)
self .ok btn.clicked.connect (self.accept)

self.cancel btn = QPushButton("Cancel", self)
self.cancel btn.clicked.connect (self.reject)

btn layout = QHBoxLayout (self)
btn layout.addWidget (self.ok btn)
btn layout.addWidget (self.cancel btn)

layout.addRow (self.lat label, self.lat field)

layout.addRow (self.long label, self.long field)

layout .addRow (btn layout)
self.setLayout (layout)

MyDialog ()
g.exec_ () == QDialog.Accepted:
= dialog.lat field.text ()

= dialog.long field.text ()
t lat,long

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

The QGIS Python Console

Running this script will cause the following dialog box to be displayed:

® O O Enter Coordinate

Latitude || |

Longitude |

[— 0K] | Cancel |

If the user clicks on the OK button, the entered latitude and longitude values will

be printed to the console. Of course, this is just a simple example — there's no error
checking or conversion of the entered values from text back to numbers. However,
this is just a simple example. There's a lot more that can be done using the PyQt
libraries, and people have written entire books on the subject. However, the main
thing to realize now is that, because QGIS is built on top of Qt, you can use all of the
features of PyQt to build sophisticated user interfaces. You're certainly not limited to
using the Python console to interact with the user.

Summary

In this chapter, we explored the QGIS Python Console, and how to use it for a variety
of programming tasks. We also used the console to delve more deeply into the QGIS
Python programming environment.

As we worked through this chapter, we learned what the various toolbar buttons
and controls do within the QGIS Console, and how to enter commands using the
Python Shell. We looked at how we can use the Python Interpreter Log to view the
previous output and re-enter commands you executed earlier. We saw the ways in
which you can use autocompletion to enter your Python code more quickly, and also
learned about the parameters that the various PyQGIS functions and methods accept.

We then looked at how to enter and execute Python scripts using the built-in source
code editor. We discovered that the Python Console is itself written in Python,
allowing you to explore the source code and manipulate the console itself using the
Python code.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

We learned how to create a startup script that is run automatically whenever QGIS
starts up, and how you can use this to set up the console to open automatically and
prevent it from acting as a dockable window.

Next, we examined the process of loading geospatial data directly using your Python
scripts, without first having to load it into a QGIS map layer. We saw how to identify
the attributes defined by a shapefile, how to scan through the features within a
shapefile, and the ways in which the PyQGIS libraries allow you to perform common
geospatial calculations.

We then looked at the various ways in which you can make use of QGIS user
interface elements within your Python scripts, including the status bar, message bars,
progress indicators, and the QGIS message log.

Finally, we saw how you can use standard PyQt classes to create your own windows
and dialog boxes to provide a sophisticated user interface for your Python scripts.

In the following chapter, we will work more directly with the QGIS Python libraries,
learning how these libraries are structured and how you can use them to perform
various sorts of geospatial data manipulation and display the results on a map.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS
Python API

In this chapter, we will take a closer look at the Python libraries available for the
QGIS Python developer, and also look at the various ways in which we can use
these libraries to perform useful tasks within QGIS.

In particular, you will learn:

* How the QGIS Python libraries are based on the underlying C++ APlIs

e How to use the C++ API documentation as a reference to work with the
Python APIs

* How the PyQGIS libraries are organized

* The most important concepts and classes within the PyQGIS libraries
and how to use them

* Some practical examples of performing useful tasks using PyQGIS

About the QGIS Python APIs

The QGIS system itself is written in C++, and has its own set of APIs that are also
written in C++. The Python APIs are implemented as wrappers around these C++
APIs. For example, there is a Python class named QgisInterface thatactsasa
wrapper around a C++ class of the same name. All the methods, class variables,
and the like that are implemented by the C++ version of QgisInterface are made
available through the Python wrapper.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

What this means is that when you access the Python QGIS APIs, you aren't accessing
the API directly. Instead, the wrapper connects your code to the underlying C++
objects and methods, as follows:

Your Python Code

Y

Python Wrappers

Y

l QGIS C++ APIs J

Fortunately, in most cases, the QGIS Python wrappers simply hide away the
complexity of the underlying C++ code, so the PyQGIS libraries work as you
would expect them to. There are some gotchas, however, and we will cover
these as they come up.

Deciphering the C++ documentation

As QGIS is implemented in C++, the documentation for QGIS APIs is all based
on C++. This can make it difficult for Python developers to understand and work
with the QGIS APIs. For example, the API documentation for the QgsInterface.
zoomToActiveLayer () method:

virtual void Qgisinterface::zoomToActiveLayer {) [pure virtual | slot|

Zoom to extent of the active layer.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

If you're not familiar with C++, this can be quite confusing. Fortunately, as a Python
programmer, you can skip over much of the complexity as it doesn't apply to you.
In particular:

* The virtual keyword is an implementation detail you don't need to
worry about

* void indicates that the method doesn't return a value

* The double colons in QgisInterface: : zoomToActiveLayer are simply

a C++ convention for separating the class name from the method name

Just like in Python, the parentheses show that the method doesn't take any
parameters. So if you have an instance of QgisInterface (for example, as the
standard iface variable available in the Python Console), you can call this method
simply by typing the following:

iface.zoomToActiveLayer ()

Now, let's take a look at a slightly more complex example: the C++ documentation
for the QgisInterface.addvVectorLayer () method looks like the following;:

virtual QgsVectorLayer* Qgisinterface::addVectorLayer (QString vectorLayerPath,
QString baseName,
QString providerKey

) pure virual | siot|

Add a vector layer.

Notice how the virtual keyword is followed by QgsvectorLayer* instead of void.
This is the return value for this method; it returns a ggsvector object.

Technically speaking, * means that the method returns a pointer to

an object of type QgsVectorLayer. Fortunately, Python wrappers
g automatically handle pointers, so you don't need to worry about this.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Notice the brief description at the bottom of the documentation for this method;
while many of the C++ methods have very little, if any, additional information,
other methods have more extensive information. Obviously, you should read
these descriptions carefully as they tell you more about what the method does.

Even without any description, the C++ documentation is still useful as it tells you
what the method is called, what parameters it accepts, and what type of data is
being returned.

In the preceding method, you can see that there are three parameters listed in
between the parentheses. As C++ is a strongly typed language, you have to define
the type of each parameter when you define a function. This is helpful for Python
programmers as it tells you what type of value to supply. Apart from QGIS objects,
you might also encounter the following data types in the C++ documentation:

Data type Description

int A standard Python integer value

long A standard Python long integer value

float A standard Python floating point (real) number

bool A Boolean value (true or false)

QString A string value. Note that the QGIS Python wrappers automatically

convert Python strings to C++ strings, so you don't need to deal with
QString objects directly

QList This object is used to encapsulate a list of other objects. For example,
QList<QString*> represents a list of strings

Just as in Python, a method can take default values for each parameter. For example,
the QgisInterface.newProject () method looks like the following:

virtual void Qgisinterface::newProject { bool thePrompiToSaveFlag = false) siot |

Start a blank project.

In this case, the thePromptToSaveFlag parameter has a default value, and this
default value will be used if no value is supplied.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In Python, classes are initialized using the __init__ method. In C++, this is

called a constructor. For example, the constructor for the QgsLabel class looks
like the following:

QgslLabel::QgsLabel (const QgsFields & fields)

Definition at line 47 of file qgslabel.cpp.

References fields(), LabelFieldCount, mFields, mLabelAttributes, and mLabelFieldidx.

Just as in Python, C++ classes inherit the methods defined in their superclass.
Fortunately, QGIS doesn't have an extensive class hierarchy, so most of the classes
don't have a superclass. However, don't forget to check for a superclass if you can't
find the method you're looking for in the documentation for the class itself.

Finally, be aware that C++ supports the concept of method overloading. A single
method can be defined more than once, where each version accepts a different set
of parameters. For example, take a look at the constructor for the QgsRectangle
class —you will see that there are four different versions of this method.

The first version accepts the four coordinates as floating point numbers:

QgsRectangle::QgsRectangle (double xmin =0,
double ymin =0,
double xmax =0,
double ymax =0

)
Constructor.
Definition at line 31 of file qgsrectangle.cpp.

References normalize().

Referenced by buffer(), and intersect().

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

The second version constructs a rectangle using two QgsPoint objects:

QgsRectangle::QgsRectangle (const QgsPoint & p1,
const QgsPoint & p2
)

Construct a rectangle from two points. The rectangle is normalized after construction.

Definition at line 37 of file ggsrectangle.cpp.

The third version copies the coordinates from QrectF (which is a Qt data type) into
a QgsRectangle object:

QgsRectangle::QgsRectangle (const QRectF & gRectF)

Construct a rectangle from a QRectF.
The rectangle is normalized after construction.

Note
added in 2.0

Definition at line 42 of file ggsrectangle.cpp.

References xmax, xmin, ymax, and ymin.

The final version copies the coordinates from another QgsrRectangle object:

QgsRectangle::QgsRectangle (const QgsRectangle & other)

Copy constructor.
Definition at line 50 of file ggsrectangle.cpp.

References xmax, xMaximum{(), xmin, xMinimum(), ymax, yMaximum(), ymin, and yMinimum().

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The C++ compiler chooses the correct method to use based on the parameters that
have been supplied. Python has no concept of method overloading; just choose the
version of the method that accepts the parameters you want to supply, and the QGIS
Python wrappers will automatically choose the correct method for you.

If you keep these guidelines in mind, deciphering the C++ documentation for QGIS
isn't all that hard. It just looks more complicated than it really is, thanks to all the
complexity specific to C++. However, it doesn't take long for your brain to start
filtering out the C++ gobbledygook, and you'll be able to use the QGIS reference
documentation almost as easily as if it was written for Python rather than C++.

Organizing the QGIS Python libraries

Now that we can understand the C++-oriented documentation, let's see how the
PyQGIS libraries are structured. All of the PyQGIS libraries are organized under a
package named ggis. You wouldn't normally import gqgis directly, however, as all
the interesting libraries are subpackages within this main package; here are the five
packages that make up the PyQGIS library:

gqgis.core This provides access to the core GIS functionality used
throughout QGIS.

ggis.gui This defines a range of GUI widgets that you can
include in your own programs.

ggis.analysis This provides spatial analysis tools to analyze vector
and raster format data.

ggis.networkanalysis This provides tools to build and analyze topologies.

ggis.utils This implements miscellaneous functions that allow

you to work with the QGIS application using Python.

The first two packages (qgis.core and ggis.gui) implement the most important
parts of the PyQGIS library, and it's worth spending some time to become more
familiar with the concepts and classes they define. Let's take a closer look at these
two packages now.

The qgis.core package

The ggis.core package defines fundamental classes used throughout the QGIS
system. A large part of this package is dedicated to working with vector and raster
format geospatial data, and displaying these types of data within a map. Let's see
how this is done.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Maps and map layers

A map consists of multiple layers drawn one on top of the other:

rivers layer

+

lakes layer

+

basemap layer

generated map

There are three types of map layers supported by QGIS:
* Vector layer: This layer draws geospatial features such as points, lines,
and polygons
* Raster layer: This layer draws raster (bitmapped) data onto a map
* Plugin layer: This layer allows a plugin to draw directly onto a map
Each of these types of map layers has a corresponding class within the ggis.core

library. For example, a vector map layer will be represented by an object of type
ggis.core.QgsVectorLayer.

We will take a closer look at vector and raster map layers shortly. Before we do this,
though, we need to learn how geospatial data (both vector and raster data)
is positioned on a map.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Coordinate reference systems

Since the Earth is a three-dimensional object, while maps represent the Earth's
surface as a two-dimensional plane, there has to be a way of translating from points
on the Earth's surface into (x,y) coordinates within a map. This is done using a
Coordinate Reference System (CRS):

CRS

Globe image courtesy Wikimedia (http:/ /commons.wikimedia.org/wiki/File:Rotating_globe.gif)

A CRS has two parts: an ellipsoid, which is a mathematical model of the Earth's
surface, and a projection, which is a formula that converts points on the surface of
the spheroid into (x,y) coordinates on a map.

Fortunately, most of the time you can simply select the appropriate CRS that matches
the CRS of the data you are using. However, because many different coordinate
reference systems have been devised over the years, it is vital that you use the correct
CRS when plotting your geospatial data. If you don't do this, your features will be
displayed in the wrong place or have the wrong shape.

The majority of geospatial data available today uses the EPSG 4326 coordinate
reference system (sometimes also referred to as WGS84). This CRS defines
coordinates as latitude and longitude values. This is the default CRS used for new
data imported into QGIS. However, if your data uses a different coordinate reference
system, you will need to create and use a different CRS for your map layer.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

The ggis.core.QgsCoordinateReferenceSystem class represents a CRS. Once you
create your coordinate reference system, you can tell your map layer to use that CRS
when accessing the underlying data. For example:

crs = QgsCoordinateReferenceSystem (4326,
QgsCoordinateReferenceSystem.EpsgCrsId)
layer.setCrs(crs)

Note that different map layers can use different coordinate reference systems.
Each layer will use its CRS when drawing the contents of the layer onto the map.

Vector layers

A vector layer draws geospatial data onto a map in the form of points, lines,
polygons, and so on. Vector-format geospatial data is typically loaded from a
vector data source such as a shapefile or database. Other vector data sources can
hold vector data in memory, or load data from a web service across the Internet.

A vector-format data source has a number of features, where each feature represents
a single record within the data source. The gqgis. core.QgsFeature class represents
a feature within a data source. Each feature has the following components:

* ID: This is the feature's unique identifier within the data source

* Geometry: This is the underlying point, line, polygon, and so on, which
represents the feature on the map. For example, a city data source would
have one feature for each city, and the geometry would typically be either a
point that represents the center of the city, or a polygon (or a multipolygon)
that represents the city's outline.

* Attributes: These are key/value pairs that provide additional information
about the feature. For example, a city data source representing cities might
have attributes such as total area, population, elevation, and so on.
Attribute values can be strings, integers, or floating point numbers.

In QGIS, a data provider allows the vector layer to access the features within the
data source. The data provider, an instance of ggis.core.QgsVectorDataProvider,
includes:

* A geometry type that is stored in the data source

* Alist of fields that provide information about the attributes stored for
each feature

* The ability to search through the features within the data source, using
the getFeatures () method and the QgsFeatureRequest class

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

You can access the various vector (and also raster) data providers by using the qgis.
core.QgsProviderRegistry class.

The vector layer itself is represented by a ggis.core.QgsVectorLayer object.
Each vector layer includes:

* Data provider: This is the connection to the underlying file or database
that holds the geospatial information to be displayed

* Coordinate reference system: This indicates which CRS the geospatial
data uses

* Renderer: This chooses how the features are to be displayed

Let's take a closer look at the concept of a renderer and how features are displayed
within a vector map layer.

Displaying vector data

The features within a vector map layer are displayed using a combination of
renderer and symbol objects. The renderer chooses the symbol that has to be used
for a given feature, and the symbol that does the actual drawing.

There are three basic types of symbols defined by QGIS:
* Marker symbol: This displays a point as a filled circle

* Line symbol: This draws a line using a given line width and color

* Fill symbol: This draws the interior of a polygon with a given color
These three types of symbols are implemented as subclasses of the ggis. core.
QgsSymbolVv2 class:

® (ggis.core.QgsMarkerSymbolV2

® ggis.core.QgsLineSymbolV2

® ggis.core.QgsFillSymbolV2

You might be wondering why all these classes have "V2" in their
_ name. This is a historical quirk of QGIS. Earlier versions of QGIS
% supported both an "old" and a "new" system of rendering, and the
L= "V2"naming refers to the new rendering system. The old rendering
system no longer exists, but the "V2" naming continues to maintain
backward compatibility with existing code.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Internally, symbols are rather complex, using "symbol layers" to draw multiple
elements on top of each other. In most cases, however, you can make use of the
"simple" version of the symbol. This makes it easier to create a new symbol without
having to deal with the internal complexity of symbol layers. For example:

symbol = QgsMarkerSymbolV2.createSimple ({'width' : 1.0,
‘color' : "255,0,0"})

While symbols draw the features onto the map, a renderer is used to choose which
symbol to use to draw a particular feature. In the simplest case, the same symbol
is used for every feature within a layer. This is called a single symbol renderer,
and is represented by the qgis.core.QgsSingleSymbolRenderV2 class. Other
possibilities include:

* Categorized symbol renderer (qgis.core.
QgsCategorizedSymbolRendererV2): This renderer chooses a symbol based
on the value of an attribute. The categorized symbol renderer has a mapping
from attribute values to symbols.

* Graduated symbol renderer (qgis.core.
QgsGraduatedSymbolRendererV2): This type of renderer uses ranges of
attribute values, and maps each range to an appropriate symbol.

Using a single symbol renderer is very straightforward:

symbol =
renderer = QgsSingleSymbolRendererV2 (symbol)
layer.setRendererV2 (renderer)

To use a categorized symbol renderer, you first define a list of ggis.core.
QgsRendererCategoryV2 objects, and then use that to create the renderer.
For example:

symbol male =
symbol female =

categories = []

categories.append (QgsRendererCategoryV2 ("M", symbol male, "Male"))

categories.append (QgsRendererCategoryV2 ("F", symbol female,
"Female"))

renderer = QgsCategorizedSymbolRendererv2 ("", categories)
renderer.setClassAttribute ("GENDER")
layer.setRendererV2 (renderer)

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Notice that the QgsRendererCategoryv2 constructor takes three parameters: the
desired value, the symbol used, and the label used to describe that category.

Finally, to use a graduated symbol renderer, you define a list of ggis.core.

QgsRendererRangeV2 objects and then use that to create your renderer. For example:

symboll =
symbol2 =

ranges = []
ranges.append (QgsRendererRangeV2 (0, 10, symboll, "Range 1"))
ranges.append (QgsRendererRange (11, 20, symbol2, "Range 2"))

renderer = QgsGraduatedSymbolRendererV2 ("", ranges)
renderer.setClassAttribute ("FIELD")

layer.setRendererV2 (renderer)

Accessing vector data

In addition to displaying the contents of a vector layer within a map, you can use
Python to directly access the underlying data. This can be done using the data
provider's getFeatures () method. For example, to iterate over all the features
within the layer, you can do the following;:

provider = layer.dataProvider ()
for feature in provider.getFeatures (QgsFeatureRequest()) :

If you want to search for features based on some criteria, you can use the
QgsFeatureRequest object's setFilterExpression () method, as follows:

provider = layer.dataProvider ()

request = QgsFeatureRequest ()
request.setFilterExpression (' "GENDER" = "M"')

for feature in provider.getFeatures (QgsFeatureRequest()) :

Once you have the features, it's easy to get access to the feature's geometry, ID,
and attributes. For example:

geometry = feature.geometry ()
id = feature.id()
name = feature.attribute ("NAME")

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

The object returned by the feature.geometry () call, which will be an instance of
ggis.core.QgsGeometry, represents the feature's geometry. This object has a large
number of methods you can use to extract the underlying data and perform various
geospatial calculations.

Spatial indexes

In the previous section, we searched for features based on their attribute values.
There are times, though, when you might want to find features based on their
position in space. For example, you might want to find all features that lie within
a certain distance of a given point. To do this, you can use a spatial index, which
indexes features according to their location and extent. Spatial indexes are
represented in QGIS by the ggsSpatialIndex class.

For performance reasons, a spatial index is not created automatically for each
vector layer. However, it's easy to create one when you need it:

provider = layer.dataProvider ()

index = QgsSpatialIndex()

for feature in provider.getFeatures (QgsFeatureRequest()) :
index.insertFeature (feature)

Don't forget that you can use the QgsFeatureRequest.setFilterExpression ()
method to limit the set of features that get added to the index.

Once you have the spatial index, you can use it to perform queries based on the
position of the features. In particular:

* You can find one or more features that are closest to a given point using
the nearestNeighbor () method. For example:

features = index.nearestNeighbor (QgsPoint (long, lat), 5)

Note that this method takes two parameters: the desired point as a
QgsPoint object and the number of features to return.

* You can find all features that intersect with a given rectangular area by using
the intersects () method, as follows:

features = index.intersects (QgsRectangle (left, bottom,
right, top))
[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Raster layers

Raster-format geospatial data is essentially a bitmapped image, where each pixel

or "cell" in the image corresponds to a particular part of the Earth's surface. Raster
data is often organized into bands, where each band represents a different piece of
information. A common use for bands is to store the red, green, and blue component
of the pixel's color in a separate band. Bands might also represent other types of
information, such as moisture level, elevation, or soil type.

There are many ways in which raster information can be displayed. For example:

* If the raster data only has one band, the pixel value can be used as an index
into a palette. The palette maps each pixel value maps to a particular color.

* If the raster data has only one band but no palette is provided, the pixel
values can be used directly as a grayscale value; that is, larger numbers are
lighter and smaller numbers are darker. Alternatively, the pixel values can
be passed through a pseudocolor algorithm to calculate the color to
be displayed.

* If the raster data has multiple bands, then typically, the bands would be
combined to generate the desired color. For example, one band might
represent the red component of the color, another band might represent the
green component, and yet another band might represent the blue component.

* Alternatively, a multiband raster data source might be drawn using a palette,
or as a grayscale or a pseudocolor image, by selecting a particular band to
use for the color calculation.

Let's take a closer look at how raster data can be drawn onto the map.

How raster data is displayed

The drawing style associated with the raster band controls how the raster data will
be displayed. The following drawing styles are currently supported:

Drawing style Description

PalettedColor For a single band raster data source, a palette
maps each raster value to a color.

SingleBandGray For a single band raster data source, the raster
value is used directly as a grayscale value.

SingleBandPseudoColor For a single band raster data source, the raster
value is used to calculate a pseudocolor.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Drawing style Description

PalettedSingleBandGray For a single band raster data source that has a
palette, this drawing style tells QGIS to ignore
the palette and use the raster value directly as
a grayscale value.

PalettedSingleBandPseudoColor For a single band raster data source that has a
palette, this drawing style tells QGIS to ignore
the palette and use the raster value to calculate
a pseudocolor.

MultiBandColor For multiband raster data sources, use a
separate band for each of the red, green, and
blue color components. For this drawing style,
the setRedBand (), setGreenBand (),

and setBlueBand () methods can be used

to choose which band to use for each color
component.

MultiBandSingleBandGray For multiband raster data sources, choose

a single band to use as the grayscale color
value. For this drawing style, use the
setGrayBand () method to specify the band
to use.

MultiBandSingleBandPseudoColor | For multiband raster data sources,

choose a single band to use to calculate a
pseudocolor. For this drawing style, use the
setGrayBand () method to specify the band
to use.

To set the drawing style, use the layer.setDrawingStyle () method, passing in a
string that contains the name of the desired drawing style. You will also need to call
the various setxxxBand () methods, as described in the preceding table, to tell the
raster layer which bands contain the value(s) to use to draw each pixel.

Note that QGIS doesn't automatically update the map when you call the preceding
functions to change the way the raster data is displayed. To have your changes
displayed right away, you'll need to do the following:

1. Turn off raster image caching. This can be done by calling layer.
setImageCache (None).

2. Tell the raster layer to redraw itself, by calling layer.triggerRepaint ().

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Accessing raster data

As with vector-format data, you can access the underlying raster data via the data
provider's identify () method. The easiest way to do this is to pass in a single
coordinate and retrieve the value or values at that coordinate. For example:

provider = layer.dataProvider ()

values = provider.identify(QgsPoint (x, V),

QgsRaster.IdentifyFormatValue)

if values.isValid() :

for band,value in values.results().items() :

As you can see, you need to check whether the given coordinate exists within the
raster data (using the isvalid() call). The values.results () method returns
a dictionary that maps band numbers to values.

Using this technique, you can extract all the underlying data associated with a
given coordinate within the raster layer.

M You can also use the provider.block () method to retrieve the band
Q data for a large number of coordinates all at once. We will look at how
to do this later in this chapter.

Other useful qgis.core classes

Apart from all the classes and functionality involved in working with data sources
and map layers, the ggis.core library also defines a number of other classes that

you might find useful:

Class Description

QgsProject This represents the current QGIS project. Note that this is a
singleton object, as only one project can be open at a time.
The QgsProject class is responsible for loading and storing
properties, which can be useful for plugins.

QGis This class defines various constants, data types, and functions
used throughout the QGIS system.

QgsPoint This is a generic class that stores the coordinates for a point
within a two-dimensional plane.

QgsRectangle This is a generic class that stores the coordinates for a
rectangular area within a two-dimensional plane.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Class Description

QgsRasterInterface This is the base class to use for processing raster data,

for example, to reproject a set of raster data into a new
coordinate system, to apply filters to change the brightness
or color of your raster data, to resample the raster data, and
to generate new raster data by rendering the existing data in
various ways.

QgsDistanceArea This class can be used to calculate distances and areas for a
given geometry, automatically converting from the source
coordinate reference system into meters.

QgsMapLayerRegistry | This class provides access to all the registered map layers in
the current project.

QgsMessageLog This class provides general logging features within a QGIS
program. This lets you send debugging messages, warnings,
and errors to the QGIS "Log Messages" panel.

The qgis.gui package

The ggis.gui package defines a number of user-interface widgets that you can
include in your programs. Let's start by looking at the most important ggis.gui
classes, and follow this up with a brief look at some of the other classes that you
might find useful.

The Qgisinterface class

QgisInterface represents the QGIS system's user interface. It allows programmatic
access to the map canvas, the menu bar, and other parts of the QGIS application.
When running Python code within a script or a plugin, or directly from the QGIS
Python console, a reference to QgisInterface is typically available through the
iface global variable.

. The ggisInterface object is only available when running
% the QGIS application itself. If you are running an external
= application and import the PyQGIS library into your application,
QgisInterface won't be available.

Some of the more important things you can do with the ggisInterface object are:
* Get a reference to the list of layers within the current QGIS project via the
legendInterface () method.

* Get areference to the map canvas displayed within the main application
window, using the mapCanvas () method.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

* Retrieve the currently active layer within the project, using the
activeLayer () method, and set the currently active layer by using the
setActiveLayer () method.

* Get a reference to the application's main window by calling the
mainWindow () method. This can be useful if you want to create additional
Qt windows or dialogs that use the main window as their parent.

* Get a reference to the QGIS system's message bar by calling the
messageBar () method. This allows you to display messages to the user
directly within the QGIS main window.

The QgsMapCanvas class

The map canvas is responsible for drawing the various map layers into a window.
The ggsMapCanvas class represents a map canvas. This class includes:

* Alist of the currently shown map layers. This can be accessed using the
layers () method.

Note that there is a subtle difference between the list of map layers
\ available within the map canvas and the list of map layers included
S in the QgisInterface.legendInterface () method. The map
Q canvas's list of layers only includes the list of layers currently visible,
while QgisInterface.legendInterface () returns all the map
layers, including those that are currently hidden.

* The map units used by this map (meters, feet, degrees, and so on). The
map's map units can be retrieved by calling the mapunits () method.

* An extent, which is the area of the map currently shown within the canvas.
The map's extent will change as the user zooms in and out, and pans across the
map. The current map extent can be obtained by calling the extent () method.

* A current map tool that is used to control the user's interaction with the
contents of the map canvas. The current map tool can be set using the
setMapTool () method, and you can retrieve the current map tool (if any)
by calling the mapTool () method.

* A background color used to draw the background behind all the map
layers. You can change the map's background color by calling the
canvasColor () method.

* A coordinate transform that converts from map coordinates (that is,
coordinates in the data source's coordinate reference system) to pixels within
the window. You can retrieve the current coordinate transform by calling the
getCoordinateTransform() method.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

The QgsMapCanvasltem class

A map canvas item is an item drawn on top of the map canvas. The map canvas item
will appear in front of the map layers. While you can create your own subclass of
QgsMapCanvasItem if you want to draw custom items on top of the map canvas,

you will find it easier to use an existing subclass that does much of the work for

you. There are currently three subclasses of QgsMapCanvasItem that you might

find useful:

* QgsVertexMarker: This draws an icon (an "X", a "+", or a small box)
centered around a given point on the map.

* QgsRubberBand: This draws an arbitrary polygon or polyline onto the map.
It is intended to provide visual feedback as the user draws a polygon onto
the map.

* QgsAnnotationItem: This is used to display additional information about
a feature, in the form of a balloon that is connected to the feature. The
QgsAnnotationItem class has various subclasses that allow you to
customize the way the information is displayed.

The QgsMapTool class

A map tool allows the user to interact with and manipulate the map canvas,
capturing mouse events and responding appropriately. A number of QgsMapTool
subclasses provide standard map interaction behavior such as clicking to zoom in,
dragging to pan the map, and clicking on a feature to identify it. You can also create
your own custom map tools by subclassing QgsMapTool and implementing the
various methods that respond to user-interface events such as pressing down the
mouse button, dragging the canvas, and so on.

Once you have created a map tool, you can allow the user to activate it by associating
the map tool with a toolbar button. Alternatively, you can activate it from within
your Python code by calling the mapCanvas . setMapTool (. . .) method.

We will look at the process of creating your own custom map tool in the section
Using the PyQGIS library.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Other useful qgis.gui classes

While the qgis.gui package defines a large number of classes, the ones you are most

likely to find useful are given in the following table:

Class Description

QgsLegendInterface This provides access to the map legend, that is, the
list of map layers within the current project. Note
that map layers can be grouped, hidden, and shown
within the map legend.

QgsMapTip This displays a tip on a map canvas when
the user holds the mouse over a feature. The
map tip will show the display field for the
feature; you can set this by calling layer.
setDisplayField ("FIELD").

QgsColorDialog This is a dialog box that allows the user to select a
color.

QgsDialog This is a generic dialog with a vertical box layout
and a button box, making it easy to add content and
standard buttons to your dialog.

QgsMessageBar This is a bar that displays non-blocking messages to
the user. We looked at the message bar class in the
previous chapter.

QgsMessageViewer This is a generic class that displays long messages to
the user within a modal dialog.

QgsBlendModeComboBox These QComboBox user-interface widgets allow you

QgsBrushStyleComboBox to Prompt the user for various drawing options.
With the exception of the QgsScaleComboBox,

QgsColorRampComboBox which lets the user choose a map scale, all the other

QgsPenCapStyleComboBox QComboBox subclasses let the user choose various

QgsPenJoinStyleComboBox Qt drawing options.

QgsScaleComboBox

Using the PyQGIS library

In the previous section, we looked at a number of classes provided by the PyQGIS
library. Let's make use of these classes to perform some real-world geospatial

development tasks.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Analyzing raster data

We're going to start by writing a program to load in some raster-format data and
analyze its contents. To make this more interesting, we'll use a Digital Elevation
Model (DEM) file, which is a raster format data file that contains elevation data.

The Global Land One-Kilometer Base Elevation Project (GLOBE) provides free
DEM data for the world, where each pixel represents one square kilometer of the
Earth's surface. GLOBE data can be downloaded from http://www.ngdc.noaa.gov/
mgg/topo/gltiles.html. Download the E tile, which includes the western half of
the USA. The resulting file, which is named e10g, contains the height information
you need. You'll also need to download the e10g.hdr header file so that QGIS can
read the file—you can download this from http://www.ngdc.noaa.gov/mgg/topo/
elev/esri/hdr. Once you've downloaded these two files, put them together into a
convenient directory.

You can now load the DEM data into QGIS using the following code:

registry = QgsProviderRegistry.instance ()
provider = registry.provider ("gdal", "/path/to/elog")

Unfortunately, there is a slight complexity here. Since QGIS doesn't know which
coordinate reference system is used for the data, it displays a dialog box that asks
you to choose the CRS. Since the GLOBE DEM data is in the WGS84 CRS, which
QGIS uses by default, this dialog box is redundant. To disable it, we need to add
the following to the top of our program:

from PyQt4.QtCore import QSettings
QSettings () .setValue ("/Projections/defaultBehaviour", "useGlobal")

Now that we've loaded our raster DEM data into QGIS, we can analyze it. While
there are lots of things we can do with DEM data, let's calculate how often each
unique elevation value occurs within the data.

. Notice that we're loading the DEM data directly using
% QgsRasterDataProvider. We don't want to display this
. information on a map, so we don't want (or need) to load it into
QgsRasterLayer.

[68]

www.it-ebooks.info

http://www.ngdc.noaa.gov/mgg/topo/gltiles.html
http://www.ngdc.noaa.gov/mgg/topo/gltiles.html
http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr
http://www.ngdc.noaa.gov/mgg/topo/elev/esri/hdr
http://www.it-ebooks.info/

Chapter 3

Since the DEM data is in a raster format, you need to iterate over the individual
pixels or cells to get each height value. The provider.xsize () and provider.
ySize () methods tell us how many cells are there in the DEM, while the provider.
extent () method gives us the area of the Earth's surface covered by the DEM. Using
this information, we can extract the individual elevation values from the contents of
the DEM in the following way:

raster_extent = provider.extent ()

raster_width = provider.xSize ()

raster _height = provider.ySize()

block = provider.block(l, raster extent, raster width,
raster height)

The returned block variable is an object of type QgsRasterBlock, which is
essentially a two-dimensional array of values. Let's iterate over the raster and
extract the individual elevation values:

for x in range(raster width) :
for y in range(raster height):
elevation = block.value(x, V)

Now that we've loaded the individual elevation values, it's easy to build a histogram
out of those values. Here is the entire program to load the DEM data into memory,
and then calculate and display the histogram:

from PyQt4.QtCore import QSettings
QSettings () .setValue ("/Projections/defaultBehaviour", "useGlobal")

registry = QgsProviderRegistry.instance ()
provider = registry.provider("gdal", "/path/to/elog")

raster extent = provider.extent ()

raster width = provider.xSize()

raster height = provider.ySize()

no _data value = provider.srcNoDataValue (1)

histogram = {} # Maps elevation to number of occurrences.

block = provider.block(l, raster extent, raster width,
raster_height)

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

if block.isValid() :
for x in range(raster width) :
for y in range(raster height):
elevation = block.value(x, V)
if elevation != no data value:
try:
histogram[elevation] += 1
except KeyError:
histogram[elevation] = 1

for height in sorted(histogram.keys()) :
print height, histograml[height]

Note that we've added a no data value check to the code. Raster data often includes
pixels that have no value associated with them. In the case of a DEM, elevation data
is only provided for areas of land; pixels over the sea have no elevation, and we have
to exclude them, or our histogram will be inaccurate.

Manipulating vector data and saving it to a
shapefile

Let's create a program that takes two vector data sources, subtracts one set of vectors
from the other, and saves the resulting geometries into a new shapefile. Along the
way, we'll learn a few important things about the PyQGIS library.

We'll be making use of the QgsGeometry.difference () function. This function
performs a geometrical subtraction of one geometry from another, like this:

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's start by asking the user to select the first shapefile and open up a vector data
provider for that file:

filename 1 = QFileDialog.getOpenFileName (iface.mainWindow (),
"First Shapefile",
IINIII ll*'Shpll)

if not filename 1:

return

registry = QgsProviderRegistry.instance ()
provider 1 = registry.provider("ogr", filename 1)

We can then read the geometries from that file into memory:

geometries 1 = []
for feature in provider 1.getFeatures (QgsFeatureRequest()) :
geometries 1.append (QgsGeometry (feature.geometry()))

This last line of code includes an important feature. Notice that we use the following:

QgsGeometry (feature.geometry ())

We use the preceding line instead of the following;:

feature.geometry ()

This is to get the geometry object to add to the list. In other words, we had to create
a new geometry object based on the feature's existing geometry object. This is a
limitation of the way the QGIS Python wrappers work: the feature.geometry ()
method returns a reference to the geometry, but the C++ code doesn't know that
you are storing this reference away in your Python code. So, when the feature is no
longer needed, the memory used by the feature's geometry is also released. If you
then try to access that geometry later on, the entire QGIS system will crash. To get
around this, we make a copy of the geometry so that we can refer to it even after the
feature's memory has been released.

Now that we've loaded our first set of geometries into memory, let's do the same for
the second shapefile:

filename 2 = QFileDialog.getOpenFileName (iface.mainWindow (),
"Second Shapefile",
IINIII ll*'Shpll)
if not filename 2:
[711]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

return
provider 2 = registry.provider("ogr", filename 2)

geometries 2 = []
for feature in provider 2.getFeatures (QgsFeatureRequest()) :
geometries 2.append (QgsGeometry (feature.geometry()))

With the two sets of geometries loaded into memory, we're ready to start subtracting
one from the other. However, to make this process more efficient, we will combine
the geometries from the second shapefile into one large geometry, which we can
then subtract all at once, rather than subtracting one at a time. This will make the
subtraction process much faster:

combined geometry = None
for geometry in geometries 2:

if combined geometry == None:
combined geometry = geometry
else:

combined geometry = combined geometry.combine (geometry)

We can now calculate the new set of geometries by subtracting one from the other:

dst_geometries = []
for geometry in geometries 1:
dst geometry = geometry.difference (combined geometry)
if not dst geometry.isGeosValid(): continue
if dst _geometry.isGeosEmpty () : continue
dst geometries.append (dst geometry)

Notice that we check to see whether the destination geometry is mathematically
valid and is not empty.

_ Invalid geometries are a common problem when manipulating
% complex shapes. There are options for fixing them, such as splitting
= apart multi-geometries and performing a buffer operation.
However, doing this is beyond the scope of this book.

Our last task is to save the resulting geometries into a new shapefile. We'll first ask
the user for the name of the destination shapefile:

dst filename = QFileDialog.getSaveFileName (iface.mainWindow (),
"Save results to:",
||~||’ "*.Shp")

if not dst filename:

return

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We'll make use of a vector file writer to save the geometries into a shapefile. Let's
start by initializing the file writer object:

fields = QgsFields ()
writer = QgsVectorFileWriter (dst filename, "ASCII", fields,
dst_geometries[0] .wkbType (),
None, "ESRI Shapefile")
if writer.hasError() != QgsVectorFileWriter.NoError:
print "Error!"

return

We don't have any attributes in our shapefile, so the fields list is empty. Now that
the writer has been set up, we can save the geometries into the file:

for geometry in dst geometries:
feature = QgsFeature ()
feature.setGeometry (geometry)
writer.addFeature (feature)

Now that all the data has been written to the disk, let's display a message box that
informs the user that we've finished:

QOMessageBox.information (iface.mainWindow(), "",
"Subtracted features saved to disk.")

As you can see, creating a new shapefile is very straightforward in PyQGIS, and
it's easy to manipulate geometries using Python—just so long as you copy the
QgsGeometry objects you want to keep around. If your Python code starts to crash
while manipulating geometries, this is probably the first thing you should look for.

Using different symbols for different features
within a map

Let's use World Borders Dataset that you downloaded in the previous chapter to draw
a world map, using different symbols for different continents. This is a good example
of using a categorized symbol renderer, though we'll combine it into a script that loads
the shapefile into a map layer and sets up the symbols and map renderer to display the
map exactly as you want. We'll then save the resulting map as an image.

Let's start by creating a map layer to display the contents of the World Borders
Dataset shapefile:

layer = iface.addVectorLayer ("/path/to/TM WORLD BORDERS-0.3.shp",
"continents", "ogr")

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Each unique region code in the World Borders Dataset shapefile corresponds to a
continent. We want to define the name and color to use for each of these regions, and
use this information to set up the various categories to use when displaying the map:

from PyQt4.QtGui import QColor
categories = []

for value,color, label in [(O, "#660000", "Antarctica"),
(2, "#006600", "Africa"),
(9, "#000066", "Oceania"),
(19, "#660066", "The Americas"),
(142, "#666600", "Asia"),
(150, "#006666", "Europe")]:

symbol = QgsSymbolV2.defaultSymbol (layer.geometryType ())
symbol.setColor (QColor (color))
categories.append (QgsRendererCategoryV2 (value, symbol, label))

With these categories set up, we simply update the map layer to use a categorized
renderer based on the value of the region attribute, and then redraw the map:

layer.setRendererV2 (QgsCategorizedSymbolRendererV2 ("region",
categories))
layer.triggerRepaint ()

There's only one more thing to do, since this is a script that can be run multiple times,
let's have our script automatically remove the existing cont inents layer, if it exists,
before adding a new one. To do this, we can add the following to the start of our script:

layer registry = QgsMapLayerRegistry.instance ()
for layer in layer registry.mapLayersByName ("continents") :
layer registry.removeMapLayer (layer.id())

Now when our script is run, it will create one (and only one) layer that shows the
various continents in different colors. These will appear as different shades of gray
in the printed book, but the colors will be visible on the computer screen:

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Now, let's use the same data set to color each country based on its relative
population. We'll start by removing the existing "population" layer, if it exists:

layer registry = QgsMapLayerRegistry.instance ()
for layer in layer registry.mapLayersByName ("population") :
layer registry.removeMapLayer (layer.id())

Next, we open the World Borders Dataset into a new layer called "population":

layer = iface.addVectorLayer ("/path/to/TM WORLD BORDERS-0.3.shp",
"population", "ogr")

We then need to set up our various population ranges:

from PyQt4.QtGui import QColor
ranges = []

for min pop,max_pop,color in [(O, 99999, "#332828"),
(100000, 999999, "#4c3535"),
(1000000, 4999999, "#663d3d"),
(5000000, 9999999, "#804040"),
(10000000, 19999999, "$#993d3d"),
(20000000, 49999999, "#b33535")
)

(50000000, 999999999, "#cc2828")]:
symbol = QgsSymbolV2.defaultSymbol (layer.geometryType ())
symbol.setColor (QColor (color))
ranges .append (QgsRendererRangeV2 (min_pop, max pop,

symbol, ""))

Now that we have our population ranges and their associated colors, we simply
set up a graduated symbol renderer to choose a symbol based on the value of the
pop2005 attribute, and tell the map to redraw itself:

layer.setRendererV2 (QgsGraduatedSymbolRendererV2 ("pop2005",
ranges))
layer.triggerRepaint ()

The result will be a map layer that shades each country according to its population:

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Calculating the distance between two
user-defined points

In our final example of using the PyQGIS library, we'll write some code that, when
run, starts listening for mouse events from the user. If the user clicks on a point,
drags the mouse, and then releases the mouse button again, we will display the
distance between those two points. This is a good example of how to add your
own map interaction logic to QGIS, using the QgsMapTool class.

This is the basic structure for our QgsMapTool subclass:

class DistanceCalculator (QgsMapTool) :

def init (self, iface):
QgsMapTool. init (self, iface.mapCanvas())
self.iface = iface

def canvasPressEvent (self, event):

def canvasReleaseEvent (self, event):

To make this map tool active, we'll create a new instance of it and pass it to the
mapCanvas . setMapTool () method. Once this is done, our canvasPressEvent ()
and canvasReleaseEvent () methods will be called whenever the user clicks or
releases the mouse button over the map canvas.

Let's start with the code that responds when the user clicks on the canvas. In this
method, we're going to convert from the pixel coordinates that the user clicked on
to the corresponding map coordinates (that is, a latitude and longitude value). We'll
then remember these coordinates so that we can refer to them later. Here is the
necessary code:

def canvasPressEvent (self, event):
transform = self.iface.mapCanvas () .getCoordinateTransform()
self. startPt = transform.toMapCoordinates (event.pos() .x(),
event.pos () .y ())

When the canvasReleaseEvent () method is called, we'll want to do the same with
the point at which the user released the mouse button:

def canvasReleaseEvent (self, event):
transform = self.iface.mapCanvas () .getCoordinateTransform()
endPt = transform.toMapCoordinates (event.pos() .x(),
event.pos () .y ())

Now that we have the two desired coordinates, we'll want to calculate the distance
between them. We can do this using a QgsDistanceArea object:

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

crs = self.iface.mapCanvas () .mapRenderer () .destinationCrs ()

distance calc = QgsDistanceArea ()

distance calc.setSourceCrs(crs)

distance calc.setEllipsoid(crs.ellipsoidAcronym())

distance calc.setEllipsoidalMode (crs.geographicFlag())

distance = distance calc.measureLine([self. startPt,
endPt]) / 1000

Notice that we divide the resulting value by 1000. This is because the
QgsDistanceArea object returns the distance in meters, and we want to display
the distance in kilometers.

Finally, we'll display the calculated distance in the QGIS message bar:

messageBar = self.iface.messageBar ()
messageBar.pushMessage ("Distance = %d km" % distance,
level=QgsMessageBar.INFO,
duration=2)

Now that we've created our map tool, we need to activate it. We can do this by
adding the following to the end of our script:

calculator = DistanceCalculator (iface)
iface.mapCanvas () .setMapTool (calculator)

With the map tool activated, the user can click and drag on the map. When the
mouse button is released, the distance (in kilometers) between the two points
will be displayed in the message bar:

@D || Distance = 673km

www.it-ebooks.info

http://www.it-ebooks.info/

Learning the QGIS Python API

Summary

In this chapter, we took an in-depth look at the PyQGIS libraries and how you

can use them in your own programs. We learned that the QGIS Python libraries
are implemented as wrappers around the QGIS APIs implemented in C++. We

saw how Python programmers can understand and work with the QGIS reference
documentation, even though it is written for C++ developers. We also looked at the
way the PyQGIS libraries are organized into different packages, and learned about
the most important classes defined in the gqgis. core and qgis.gui packages.

We then saw how a coordinate reference systems (CRS) is used to translate from
points on the three-dimensional surface of the Earth to coordinates within a two-
dimensional map plane.

We learned that vector format data is made up of features, where each feature has
an ID, a geometry, and a set of attributes, and that symbols are used to draw vector
geometries onto a map layer, while renderers are used to choose which symbol to
use for a given feature.

We learned how a spatial index can be used to speed up access to vector features.

Next, we saw how raster format data is organized into bands that represent
information such as color, elevation, and so on, and looked at the various ways in
which a raster data source can be displayed within a map layer. Along the way,
we learned how to access the contents of a raster data source.

Finally, we looked at various techniques for performing useful tasks using the
PyQGIS library.

In the next chapter, we will learn more about QGIS Python plugins, and then go
on to use the plugin architecture as a way of implementing a useful feature within
a mapping application.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

In Chapter 1, Getting Started with QGIS, we took a brief look at how QGIS Python
plugins are organized. In this chapter, we will use this knowledge to create two
plugins: a simple "Hello World" style plugin, so you can understand the process,
and a much more sophisticated and useful plugin that displays information about
a clicked-on geometry. In the process, we will learn how plugins work, how to
create and distribute plugins, what plugins will allow us to do, and some of the
possibilities and limitations involved in implementing your mapping applications
as QGIS plugins.

Getting ready

Before we can delve into the plugin development process, there are three things
you will need to do:

1. [Install the Qt developer tools from the Qt developer website
(http://gt-project.org).

2. Install the Python bindings for Qt, called PyQt, from http://www.
riverbankcomputing.co.uk/software/pyqt. While we won't be using
the Python bindings directly, there are two command-line tools included
with PyQt that we will need.

QGIS is currently based on PyQt4. Make sure you
install Version 4 of the Qt Developer tools and the PyQt
M bindings so that you get the compatible version.

Q PyQt is available as an installer for MS Windows and in
source code form for Linux. For Mac OS X users, a binary
installer is available at http: //sourceforge.net/
projects/pygtx.

www.it-ebooks.info

http://qt-project.org
http://www.riverbankcomputing.co.uk/software/pyqt
http://www.riverbankcomputing.co.uk/software/pyqt
http://sourceforge.net/projects/pyqtx
http://sourceforge.net/projects/pyqtx
http://www.it-ebooks.info/

Creating QGIS Plugins

3. You should install and enable the Plugin Reloader plugin for QGIS. This
makes it much easier to develop and test your plugins. To do this, you will
need to turn on experimental plugin support by selecting the Manage and
Install Plugins... item from the Plugins menu, clicking on the Settings tab,
and then turning on the Show also experimental plugins checkbox. You can
then see the experimental plugins, including the Plugin Reloader. Select this
plugin and then click on the Install Plugin button to install it.

The Plugin Reloader adds buttons to the QGIS toolbar that you can click on
in order to reload your plugin:

This allows you to make changes to your plugin and see the result right away.
Without the Plugin Reloader, you would have to quit and restart QGIS for
your changes to take effect.

Understanding the QGIS plugin
architecture

As we saw in Chapter 1, Getting Started with QGIS, QGIS plugins are stored as Python
packages in the ~/.ggis2/python/plugins directory.

M Depending on your operating system and the version
Q of QGIS you're using, the .ggis2 directory might be
named .ggis.

The plugin's package includes a number of Python modules and other files. At a
minimum, the plugin package must include:

* _ init__ .py: Thisis a package initialization module that contains the class
factory function, which creates and initializes the plugin.

* metadata.txt: This is a text file that contains information about the plugin,
including the plugin's version number, the name of the plugin, and the
plugin's author.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In addition, most plugins will include:

* A separate Python module that contains a class definition for the plugin.
The plugin class implements a number of specially named methods that
get called to start up and shut down the plugin.

* One or more user-interface template files with the extension . ui.

* The compiled version of each user-interface template in the form of a Python
module with the same name as that of the template.

* A resources.qgrc file, which is an XML format file that lists the various
images and other resources used by the plugin.

* The compiled version of the resources file, in the form of a Python module
named resources.py.

The various .ui template files are created using Qt Designer, which is a part of the
standard Qt installation. The command-line tools to convert the .grc and .ui files
into Python modules are part of PyQt.

When it starts up, QGIS looks through the various Python packages it finds in the
~/ .qgis2/python/plugins directory. For each package, it attempts to call the
top-level function named ClassFactory () in the plugin's __init__ .py file. This
function should import and return an instance of the plugin's object, like this:

def ClassFactory(iface) :
from myPlugin import MyPlugin
return MyPlugin (iface)

M Obviously, you should change the name of myPlugin
Q (and MyPlugin) to something more meaningful when
you write a real plugin.

While it's usual to define the plugin in a separate module, you can create it directly
within the __init__ .py module if you prefer. The important thing is to define a
class that provides the following methods:

* _ init__ (iface): This initializes the plugin object. Note that this should
accept the iface variable passed to the class factory and store it in an
instance variable for later use.

* initGui (): This initializes the plugin's user interface. This would typically
involve adding the plugin to the QGIS menus and toolbar, and setting up
the signal handlers to respond to various events.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

* unload (): This removes the plugin's user-interface elements. This would
normally include removing the plugin from the QGIS menus and toolbar, and
disconnecting the signal handlers defined in the plugin's initGui () method.

The init__ (iface) method is called by your class factory function to initialize the
plugin object itself. The initGui () method is then called by QGIS when the program
starts up, or when the user installs the plugin. Finally, the unload () method is called
by QGIS when the user uninstalls the plugin or when QGIS shuts down.

A plugin doesn't usually run right away when QGIS starts up. Instead, it installs
various menu and toolbar items, which the user can then select to perform various
actions. For example, a simple plugin may have just one menu item and one toolbar
item, and when the user selects one of these, the plugin performs its one and only
action. More sophisticated plugins might have a range of menu and toolbar items,
each one performing a different action.

Many plugins add their menu items to the Plugins menu using the iface.
addPluginToMenu () method. This creates a submenu within the Plugins menu for
the plugin's menu items, making it easy for the user to see which menu items have
been provided by a given plugin. Alternatively, the plugin might choose to add its
menu items to one of the existing submenus within the Vector, Raster, or Database
menu, as appropriate.

In the same way, the plugin might add icons or widgets to the plugin toolbar, or to
one of the other toolbars if it prefers. A plugin might also add a whole new toolbar
to the QGIS window if it wants to.

Creating a simple plugin

Now that we've seen how plugins are structured and used, let's create a very simple
"Hello World" style plugin to see what's involved in making one. While there are
various tools such as the Plugin Builder plugin, which will create the various files
for you, we're going to eschew them in favor of creating our plugin manually. This
will make the process clearer and avoid the situation where your code just magically
works without knowing why or how.

Go to the ~/.qggis2/python/plugins directory and create a subdirectory named
testPlugin. In this directory, create a file named metadata.txt and enter the
following values into it:

[general]
name=Test Plugin
email=test@example.com

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

author=My Name Here
ggisMinimumVersion=2.0
description=Simple test plugin.
about=A very simple test plugin.
version=version 0.1

This is the minimum metadata you need to enter for a plugin. Obviously, you can
change these values if you want. Now, create a package initialization file, _init__ .
py, and enter the following into that file:

def classFactory(iface):
from testPlugin import TestPlugin
return TestPlugin(iface)

As you can see, we're going to define a class named TestPlugin that represents our
plugin object, and implement it in a module named testPlugin.py. Let's create this
module now:

from PyQt4.QtCore import *
from PyQt4.QtGui import *

class TestPlugin:
def init (self, iface):
self.iface = iface

def initGui (self) :
self.action = QAction("Run", self.iface.mainWindow())
QObject.connect (self.action, SIGNAL("triggered()"),
self.onRun)
self.iface.addPluginToMenu ("Test Plugin", self.action)

def unload(self) :
self.iface.removePluginMenu ("Test Plugin", self.action)

def onRun (self) :
QMessageBox.information (self.iface.mainWindow (), "debug",
"Running")

As you can see, we created a Qt QAction object for our menu item, named it Run, and
added it to the Plugin menu in a submenu named "Test Plugin". We then connected
that action to our onkun () method, which simply displays a message to the user
stating that the plugin is running,.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

This is all we need for a very minimal plugin. Let's test it out. Start QGIS and
choose the Manage and Install Plugins... item from the Plugins menu. The QGIS
Plugin Manager window will appear, and if you scroll down, you should see your
plugin listed:

@00 Plugins | All (289)
L{\(Al Search |
I o] 4" Street View
Installed r H
B - o sVG2ColoR Test Pll.lgll'l
5 Notinstalled 21" Swap XY
' Sync Composer With Map Simple test plugin.
z'ﬂ Upgradeable o Synchronize QGIS with a dire Avery simple test plugin.
4" Table Manager
Settings . - teamqgis Author: My Name Here
g8 7 Test Plugin " Installed version: 0.1 (in
3 Tile Cover [Userslerik/.qgis2/python/pluginsftestPlugin)

. Tile Index Viewer
" TileCache Creator

. TileLayer Plugin

4. TimeManager

.~ TMS for Korea [Upgrade all]‘ Uninstall plugin | Reinstall plugin
- » TopoDelProp J
| Help | | Close |

If you click on the checkbox, the plugin will be activated. If you then look in the
Plugins menu, you should see your plugin listed, and if you select the Run item
from your plugin's submenu, the "Running" message box should be displayed.

If your plugin isn't working, or if it isn't listed in the Plugin Manager window, you
might have made a mistake in your code. If the plugin can't be loaded for some
reason, a window will appear, giving you the Python traceback when you attempt to
install or reload the plugin:

800 Python error

Couldn't load plugin testPlugin due an error when ealling its classFactory() method

Traceback (most recent call last):
File "/Applications/QGIS.app/Contents/MacO0S/. /Resources/python/ggis/utils.py”,
line I204. 1[n stakrtPIu in]) laseF (face)
ugins[packageName] = package.classFactory(iface
Fﬁe %’Usersa‘erikf.qgisE}’pyThonpruginsﬂestPIugirﬁ_inil_.py". line 2, in
classFactorg
from testPlugin import TestPlugin
File "/Applications/QG|S.app/Contents/Mac0S/. /Resources/python/ggis/utils.py”,
line 453, in _import
maod = _builtin_import(name, globals, locals, fromlist, level)
File "Userslerik/.qgis2/python/pluginsitestPluginftestPlugin.py", line 11
def unloadiself:
A

SyntaxError: invalid syntax

Python version:
2.7.5 (default, Mar 9 2014, 22:15:05)
I A

It,
[Falala B B, BN o FRESIERET Y memla L IAMRA C A falmmea CAN A OO

Close

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This window will also appear if your plugin's code generates an exception while it
is running.

If there's a problem with your plugin that prevents it from even
being loaded (for example, a mistake in the metadata. txt file), you
might need to check the Log Messages panel to see the error. You can
show this panel by selecting it from the Panels submenu in the View
menu; make sure you click on the Plugins tab to see the log messages
associated with your plugin:

\‘ 800 Log Messages
- | @ General P

Timestamp Message Level
2014-08-08T06:19:36 Loaded Plugin Reloader (package: plugin_reloader) 0
2014-08-08T06:19:36 Error when reading metadata of plugin testPlugin 1
2014-08-08T06:19:36 Loaded Zoom to Point (package: zoomtopoint) 1]
2014-08-08T06:19:36 Loaded DB Manager (package: db_manager) 1]
2014-08-08T06:19:36 Loaded fTools (package: fTools) 1]
2014-08-08T06:19:37 Loaded GdalTools (package: GdalTools) o
2014-08-08T06:19:37 Loaded Processing (package: processing) [}

Let's add one more feature to our test plugin: a toolbar item, which, when clicked on,
also calls the onrun () method. Find a suitable PNG format image that is 24 x 24 pixels
(the default size for a QGIS toolbar icon), and save that image into your plugin's
directory under the name icon.png. Then, change your initGui () method to look
like the following:

def initGui (self) :

icon = QIcon(":/plugins/testPlugin/icon.png")

self.action = QAction(icon, "Run",
self.iface.mainWindow())

QObject.connect (self.action, SIGNAL("triggered()"),

self.onRun)
self.iface.addPluginToMenu ("Test Plugin", self.action)
self.iface.addToolBarIcon(self.action)

The changed lines have been highlighted. As you can see, we've added an icon to
our QAction object, and then also called the addToolBarIcon () method to add our
action to the Plugins toolbar.

We'll also have to add one extra line to our unload () method to remove the toolbar
icon when the plugin is unloaded:

def unload(self) :
self.iface.removePluginMenu ("Test Plugin", self.action)
self.iface.removeToolBarIcon(self.action)

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

There's one last thing we need to do before our toolbar icon will work; we need to tell
QGIS that the icon. png file is a resource used by our plugin. This is done through the
resources.grc file. Create this file now, placing it into your plugin's directory, and
edit it using your favorite text editor, so that it contains the following XML format text:

<RCC>
<gresource prefix="/plugins/testPlugin">
<file>icon.png</file>
</gresource>
</RCC>

QGIS can't use this file directly; it has to be compiled into a resources.py module
using the pyrcc4 command-line tool. This tool is installed as part of PyQt; once
you've created your resources.qgrc file, use the following command to compile it:

pyrccd resources.grc -oO resources.py

. Depending on where PyQt installed it, you might need to include
< the path to the pyrcc4 command. If you run this command from
Q a directory other than the plugin directory, you will also need to

include the path to the resources.grc and resource.py files.

Finally, we need to add the following to the top of our testPlugin.py module:

import resources

This makes the compiled resources available for our plugin to use. When you reload
your plugin, an icon should appear in the QGIS toolbar, and if you click on that icon,
the "Running" message box should be displayed.

While this plugin is very basic, we've actually learned a lot: how to create and install
a plugin, how a plugin can add itself to the QGIS user interface, how plugins interact
with the user, how errors in a plugin are handled, and how to deal with images and
other plugin resources. Let's take a closer look now at the processes typically used to
develop and distribute plugins, before going on to create a plugin that actually does
something useful.

The plugin development process

In the previous section, we created a plugin by hand, directly storing the necessary
files in the hidden ~/ . ggis2 directory. This isn't a particularly robust way of building
plugins. In this section, we will look at some of the best practices for developing and
distributing plugins, as well as some of the things you need to be aware of when
creating your own plugins.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Using the Plugin Builder

QGIS provides a plugin called Plugin Builder that you can use to create your new
plugin from a standard template. Plugin Builder is a sophisticated and useful tool
for creating plugins, but it does make some assumptions about the way your plugin
will be structured and what it will do. For this reason, we deliberately didn't use the
Plugin Builder for our example plugins.

More information on the Plugin Builder can be found at http://geoapt .net/
pluginbuilder. You can install the Plugin Builder directly from within QGIS, using
the Manage and Install Plugins... item from the Plugins menu. Once installed, you
simply click on the Plugin Builder's icon in the toolbar, and you will be prompted to
fill in various details about your new plugin:

[-NaNs) QGIS Plugin Builder

QGIS Plugin Builder

Class name |
Plugin name |e.g. Photo Linker
Description |e.g. This plugin links peints to photos
Module name |e.g. photo_linker
Version number 0.1
Minimum QGIS version 2.0
Text for the menu item |e.g. Link photos to points
Author/Company |e.q. Acme widgets Inc.
Email address |e.g. bill @gates.com
Optional Items

Bug tracker

Help Cancel | [OK

After filling in the information, you will be prompted to select the directory in which
your plugin's source code is stored. The Plugin Builder will then create the necessary
files for you.

It is up to you whether to use Plugin Builder or not, and whether or not to use all the
features it provides. For example, the Plugin Builder provides a make target to create
the HTML format help files for your plugin, using Sphynx. If you prefer to create
your help files in a different way, or don't want to create help files at all, you can
simply ignore this option.

[87]

www.it-ebooks.info

http://geoapt.net/pluginbuilder
http://geoapt.net/pluginbuilder
http://www.it-ebooks.info/

Creating QGIS Plugins

One of the problems with using Plugin Builder is the complexity of the generated
plugin. Right from the outset, your plugin will include:

* Help files, both in reStructuredText and in HTML format, as well as
directories for holding images and HTML templates

* Support for internationalization
* A Makefile to automate the plugin building process
* A Python script for uploading the plugin to the QGIS plugin repository

* Apylintrcfile, allowing you to check your plugin's Python source files
using the Pylint code-analysis system

* Two separate README files, one in HTML and another in plain text format
* Various shell scripts
* Arange of standard unit tests

* The Ul template and Python code that displays a dialog box when the
plugin is run

All of this leads to a rather complex directory structure, with lots of files that may
or may not be relevant to you. You can certainly remove the various files and
directories you don't need, but this can be risky if you don't know what the files
and directories are for.

Due to all this complexity, we won't be using Plugin Builder in this book. Instead,
we'll create our plugins manually, only adding the files and directories you need
so that you can understand what everything does.

Automating the build process

For our example plugin, we had to create the resources. grc file and then compile
this file into a resources.py file using the pyrcc4 command-line tool. Whenever we
made a change to the resources. grc file, we had to remember to recompile it. The
same thing applies to any user-interface template (.ui) files in our plugin.

Manually running the compiler each time you make a change is poor programming
practice. Instead, you should use a Makefile to automate the process. We won't go
into the details of how to use make here (there are complete books on this topic), but
we will use it to compile all the necessary files with a single command. We will also
store the plugin's source files in a different directory, and use make to compile and
copy all the necessary files into the ~/.qgis2 directory:

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

src/myPlugin ~/.qgis2/python/plugins/myPlugin
__init__.py	resources.qrc	__init__.py	resources.py			
metadata.txt		dialog.ui	m a ke	metadata.txt		dialog.py
icon.png		myPlugin.py		icon.png		myPlugin.py

This ensures that the various files in the running plugin are all consistent—you can't
forget to compile a template, or break the running plugin by running an updated

Python source file before a template has been recompiled. Keeping your source files
separate from your running code is also an excellent programming practice.

By using make in this way, you end up with a highly productive process for

developing and testing your plugin:

Write
Code

Test

Run
make

Reload
Plugin

A typical Makefile for building and running QGIS plugins looks like this:

PLUGINNAME =
PY FILES =
EXTRAS =
UI FILES =
RESOURCE FILES =

testPlugin

default: compile

compile: $(UI_FILES)

3.pY %.qrc
pyrcc4d -o S@ S$<
$.py : %.ui

resources.py

testPlugin.py init .py
icon.png metadata.txt
testPluginDialog.py

$ (RESOURCE_FILES)

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

pyuic4 -o s@ $<

deploy: compile

mkdir -p $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)

cp -vE $(PY FILES) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(UI_FILES) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(RESOURCE_FILES) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(EXTRAS) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
clean:

rm $(UI_FILES) $(RESOURCE FILES)

The top portion of the Makefile sets five variables that tell make about your plugin:

PLUGINNAME is, of course, the name of your plugin.

PY_FILES is a list of the Python source files that make up your plugin's
source code.

EXTRAS is a list of additional files that should be included with your plugin.
You would typically include the metadata. txt file and any additional
images or other files used by your plugin.

UI_FILES is a list of the Ul templates that need to be compiled for your
plugin to work. Note that you have to use the . py suffix for each template
file, as you're telling make which file you want to have recompiled when
the corresponding .ui file is changed.

RESOURCE_FILES is a list of the resource files used by your application. Once
again, you have to use the . py suffix for each resource file rather than the
.grc version of the file.

Typically, you would only have to change the values of these five variables to set
up your Makefile. However, if the pyrcc4 or pyuic4 command-line tools are in a
nonstandard location, or if QGIS uses a directory other than ~/.qgis2/python/
plugins for its Python plugins, then you will have to modify the other parts of the
Makefile so that it works with your particular development setup.

Once it has been set up, the Makefile provides three make targets that you can use:

make compile (or just make) will compile your plugin's .ui and . grc files
into the corresponding .py modules.

make deploy will compile the .ui and .grc files, and then copy all the
necessary files into the QGIS plugin directory.

make clean will remove the .py version of your .ui and .grc files.

You can use make deploy and then click on the Plugin Reloader tool in QGIS to run
the latest version of your plugin so you can test it out.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Plugin help files
QGIS allows you to include an HTML-formatted help file for your plugin. This file

will be displayed using the built-in QGIS help browser if your plugin calls the ggis.
utils.showPluginHelp () function. This function has the following signature:

showPluginHelp (packageName=None, filename='index', section='")
The various parameters are as follows:

* packageName: This is the name of the Python package where the help file can
be found. If a package is specified, QGIS will look for the help files inside the
given package directory. Otherwise, it will look for the help files in the same
directory as the Python module that called showPluginHelp (). Note that it's
quite unusual for a plugin to use this parameter, and you would normally
just leave it set to None.

* filename: This is the base name for the HTML help file to display. Note that
an appropriate suffix (for example, .html) will be added to this base name.

* section: This is the name of an optional HTML anchor tag, which the help
file will be scrolled to when it is opened.

Note that the filename parameter is the base name for the desired HTML file. QGIS
allows you to have your help files translated into multiple languages, and will
automatically choose the appropriate version of the file based on the current locale.
If a translated version of the help file is not available in the current language, then
QGIS will fall back to displaying the US English version of the help file, and if that's
not available, it will use the file named filename.html.

This allows you to include translated versions of your help files if you want (for
example, index-es.html, index-de.html, and index-fr-ca.html), butif you don't
want to have translated help files, a single index.htm1 file will suffice.

There are several ways in which you can organize your plugin's online help. The
following are some examples:

1. You can put all the documentation for your plugin in a single file named
index.html, and then simply call showPluginHelp () with no parameters
to display that help file when the user asks for help.

2. You can use a different filename for your help file and supply that name
in the filename parameter when calling showPluginHelp (), for example,
showPluginHelp (filename="plugin help").

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

3. You're not just limited to having one help file. You can have a whole
directory of help files, and have the index.html file act as a table of contents
for the plugin's online help. To do this, call showPluginHelp with filename
set to something like os.path.join("help files", "index") so that the
help file is found in a subdirectory rather than the main plugin directory.

4. If you have multiple help files, for example, one for each of your plugin's
main features, you might choose to display the appropriate help file based
on which feature the user is using at that time. For example, you might add
a Help button to a complex dialog or window and have that button call
showPluginHelp (filename="my dialog").

5. Finally, you might put all your documentation into a single file, and use
HTML anchor tags (for example, My Dialog)
to define the various sections of your documentation. You will then use
the section parameter to jump directly to that section of your plugin's
documentation, like this: showPluginHelp (section="my dialog").

Of course, while your help file has to end up in HTML format, you might not
want to write HTML directly. Instead, you can write your documentation using

a markup language such as Markdown, reStructuredText, or Latex, and then use

a documentation generator to convert your marked-up files into HTML. This is a
perfect example of something that can be automated using a Makefile, and indeed,
the Plugin Builder's default Makefile includes support for using Sphinx to convert
reStructuredText markup into HTML.

Unit testing

Unit tests are a common programming technique to make sure each part of your
code works as it should. The following is a very simple example of a unit test written
in Python:

import unittest

def double (n) :
return n * 2

class TestDouble (unittest.TestCase) :
def test (self):
self.assertEqual (double(2), 4)

You can run this unit test either directly from the command line, or by adding extra
code to create a TestRunner object that you can then use to run the test.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We're not going to describe the rationale behind unit testing, or how to use the
unittest library to test your Python code. However, it is worth spending some
time learning how you can write and run unit tests for your QGIS plugins.

If you haven't worked with the unittest module before, check out
s http://docs.python-guide.org/en/latest/writing/tests.

Unit testing is done outside of QGIS itself; that is, the unit tests run as an external
Python application that loads your plugin and then tests it. Doing this isn't as bad
as it sounds; in Chapter 1, Getting Started with QGIS, we looked at a simple external
application built on top of QGIS, and we can use pretty much the same process to
write our testing code. Here's the boilerplate example of an external application,
copied from Chapter 1, Getting Started with QGIS:

import os
from ggis.core import *

QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)
QgsApplication.initQgis ()

...

QgsApplication.exitQgis ()

You will also need to use an appropriate wrapper script, as described in Chapter 1,
Getting Started with QGIS, so that the Python path and other environment variables
are set correctly.

With QGIS unit tests, you have to set up the QGIS environment before the test is
run, and then shut it down again once the test finishes. This is done by placing the
appropriate parts of the boilerplate code into the unit test's setup () and tearDown ()
methods, like this:

import unittest

import os

from ggis.core import *

class MyTest (unittest.TestCase) :

def setup(self):
QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)

[93]

www.it-ebooks.info

http://docs.python-guide.org/en/latest/writing/tests
http://www.it-ebooks.info/

Creating QGIS Plugins

QgsApplication.initQgis ()

def tearDown (self) :
QgsApplication.exitQgis ()

def test plugin(self):

You can then import and test your plugin's Python code within the test_plugin ()
method.

M You can, of course, have multiple test XXX () methods in your test
Q case. The PyQGIS library will be initialized before the first test is run,
and shut down after the last test finishes.

Testing plugins in this way does reveal a major limitation of this approach: there is
no QgisInterface object available for your plugin to use. This means that the parts
of the plugin you're testing can't interact with the rest of the QGIS system via the
iface variable.

Unit tests get around this limitation by creating a fake QGIS environment (including
a Python implementation of QgisInterface), which the plugin can use for testing.
The plugin is then loaded by adding the plugin's directory to sys.path and then
calling the plugin's ClassFactory () function with the fake ggisInterface:

sys.path.append("/path/to/my/plugin")
import MyPlugin
plugin = MyPlugin.classFactory(fake iface)

While it seems complex and might introduce errors that only occur while the plugin
is being tested, this process is actually very useful. If you want to use unit tests,

you can either implement your own QgsInterface or make use of the unit testing
framework provided by the Plugin Builder.

If you want to roll your own unit tests, a good starting point is

available at http://snorf.net/blog/2014/01/04/writing-
’ unit-tests-for-qgis-python-plugins.

If you are doing unit testing, then you would normally add an extra target to your
Makefile so you can run the unit tests simply by typing:

make test

[94]

www.it-ebooks.info

http://snorf.net/blog/2014/01/04/writing-unit-tests-for-qgis-python-plugins
http://snorf.net/blog/2014/01/04/writing-unit-tests-for-qgis-python-plugins
http://www.it-ebooks.info/

Chapter 4

Distributing your plugin
To share your plugin with others, you have to upload it to a plugin repository. Let's
look at the steps involved in doing this.

Firstly, you need to ensure that your plugin adheres to the following rules:

* The name of your plugin's folder must contain only upper- and lowercase
letters, digits, underscores, and hyphens, and must not start with a digit.

* Your metadata. txt file must exist and include the following entries:

Metadata entry Description
name The name of your plugin.
ggisMinimumVersion The minimum version of QGIS that your

plugin will run under.

description A brief textual description of your plugin
and what it does.

version The version number of your plugin, as
a string. Note that you can't upload two
copies of a plugin with the same version.

author The name of the plugin's author.

email The author's e-mail address.

If you don't follow these rules, your plugin will be rejected when you attempt to
upload it.

The next step is to compress the plugin into a ZIP archive. Note that you should
compress the folder that contains your plugin, so that the ZIP archive has only
one entry (the plugin's directory) rather than a collection of individual files.

The final step is to upload the ZIP archive to a QGIS plugin repository. You have
two options here:

* You can use the official plugin repository at http://plugins.qggis.org.
This will make your plugin available to all QGIS users.

* You can set up your own plugin repository. This means that only people
who know about your repository or have access to it (for example, via a
VPN) can download your plugins.

[95]

www.it-ebooks.info

http://plugins.qgis.org
http://www.it-ebooks.info/

Creating QGIS Plugins

Setting up your own plugin repository isn't nearly as daunting as it sounds; you
simply create an XML file that lists the plugins that you want to make available, and
then upload that XML file and the plugins themselves to a web server. Here is what
the XML file looks like:

<?xml version="1.0"?>

<plugins>

<pyqggis_plugin name="MyPlugin" version="0.1">
<description>This is a test plugin</descriptions>
<homepage>http://my-site.com/ggis/myplugin</homepage>
<ggis minimum versions>2.2</gqgis minimum versions>
<file name>myplugin.zip</file namex>
<author name>My Name</author_name>
<download urlshttp://my-site.com/myplugin.zip</download urls
</pyagis_plugins

</plugins>

Create a <pyggis_plugins section for each of your repository's plugins. Once this file
has been uploaded, the user simply goes to the QGIS Plugin Manager window, clicks

on the Settings tab, and clicks on the Add button in the Plugin repositories section of
the window. The user will be asked to enter the details of the new repository:

8enn Repository details

Name |
URL http:/f
Parameters 7qgis=2.2

Enabled [

Cancel OK

The URL field should be set to the complete URL for the XML file you uploaded, for
example http://my-site.com/ggis_plugins.xml. Once the repository has been
added, the plugins listed in the XML file will appear in the Plugin Manager, and the
user can install them directly.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Writing a useful plugin

Let's now apply the knowledge we've gained to build a plugin that does something
useful and interesting. While there are built-in tools in QGIS to query a feature and
identify the feature's attributes, there is no easy way of getting information about the
geometry associated with a feature. So let's write a plugin that lets the user click on a
feature and display various statistics about that feature's geometry.

We're going to call our new plugin Geometry Info. When the user clicks on our
plugin's toolbar icon, we will activate a map tool that listens for mouse clicks on the
map canvas. When the user clicks on the map canvas, we'll find the feature that the
user clicked on, and calculate and display statistics about that feature's geometry.

Let's start by setting up the basic template for our plugin. Create a directory named
geometryInfo, put it somewhere convenient, and create an __init__ .py file within
that directory. In that file, place the following code:

def classFactory(iface):
from geometryInfo import GeometryInfoPlugin
return GeometryInfoPlugin(iface)

Next, we need to define the metadata for our plugin. Create the metadata. txt file
and add the following to this file:

[generall

name=Geometry Info

email=your email address

author=your name

ggisMinimumVersion=2.0

description=Displays information about the clicked-on geometry.

about=Plugin used as an example in Chapter 4 of Building Mapping
Applications with QGIS.

version=version 0.1

Next, we need an icon for our plugin. We're going to use the following icon:

A copy of this icon is available with the sample code that comes with this book,
though you can create your own icon or find a different one to use somewhere; just
make sure that the resulting image file is named icon.png, and that the icon is 24 x
24 pixels. Place this file into your geometryInfo directory along with the other files.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

We next need to define the resources. gre file that tells QGIS about our icon. Create
this file and put the following text into it:

<RCC>
<gresource prefix="/plugins/geometryInfo">
<file>icon.png</file>
</gresource>
</RCC>

Finally, let's create a Makefile to automate the process of compiling and deploying
our plugin. Here's a suitable Makefile to get you started:

PLUGINNAME = geometryInfo

PY FILES = geometryInfo.py _ init .py
EXTRAS = icon.png metadata.txt
RESOURCE_FILES = resources.py

default: compile

compile: $(RESOURCE_FILES)
$.py : %.grc
pyrccd -o S@ S$<

deploy: compile
mkdir -p $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(PY FILES) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(RESOURCE FILES) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)
cp -vE $(EXTRAS) $(HOME)/.ggis2/python/plugins/$ (PLUGINNAME)

clean:
rm $(RESOURCE_FILES)

You may need to modify the paths in this file to suit your development setup. Notice
that because our plugin won't have any UI templates, we've removed the portions of
the Makefile that compile and deploy the template files.

Now that we've created the framework for our plugin, let's start writing the code
that does the actual work. The final file we need for our plugin will be named
geometryInfo.py. Create this file and put the following code into it:

from PyQt4.QtCore import *
from PyQt4.QtGui import *
import resources

from ggis.core import *
from ggis.gui import *

class GeometryInfoPlugin:

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

def init (self, iface):
self.iface = iface

def initGui (self) :
icon = QIcon(":/plugins/geometryInfo/icon.png")
self.action = QAction(icon, "Get Geometry Info",
self.iface.mainWindow ())
QObject.connect (self.action, SIGNAL("triggered()"),
self.onClick)
self.iface.addPluginToMenu ("Geometry Info", self.action)
self.iface.addToolBarIcon (self.action)

def unload(self) :
self.iface.removePluginMenu ("Geometry Info", self.action)
self.iface.removeToolBarIcon (self.action)

def onClick(self) :
QMessageBox.information(self.iface.mainWindow (), "debug",
"Click™")

Apart from a few extra import statements (which we'll need later on), this is almost
identical to our earlier example plugin. The onClick () method, of course, is just a
placeholder so we can tell if the plugin is working.

We can now run our plugin by typing make deploy in the command line, starting up
QGIS, and enabling the plugin using the Manage and Install Plugins... command,
just like we did earlier. If all goes well, the plugin's icon should appear in the QGIS
toolbar, and when you select it, the "Click" message should be displayed.

Next, we want to make our toolbar icon checkable. That is, when the user clicks on our
icon, we want to highlight it, activate our map tool, and keep the icon highlighted
until the user either clicks on the icon again or switches to a different tool. To make
the toolbar icon checkable, add the following line to your initGui () method,
immediately after the self.action = QAction(...) statement:

self.action.setCheckable (True)

We then have to respond to the checking and unchecking of our toolbar icon by
activating and deactivating our map tool. Here is what the code will look like:

def onClick(self) :
if not self.action.isChecked() :
...deactivate map tool...
return
self.action.setChecked (True)
...activate map tool...

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

The first thing we do is see if the user has unchecked our icon, and if this is the case,
we deactivate the map tool. Otherwise, we visually highlight the icon by calling
self.action.setChecked (True), and then activate our map tool. In this way, our
plugin will act like a mode within QGIS; clicking on the icon will activate the map
tool, and clicking on it again (or selecting a different icon) will deactivate it.

We're now ready to implement our map tool. Earlier, we looked at how you can use
the QgsMapTool class to respond to mouse clicks within the map canvas. In this case,
we'll use a subclass of QgsMapTool, called QgsMapToolIdentify. This class makes it
easy to find the feature at a given point. When the user clicks on the map canvas, we'll
use the QgsMapToolIdentify.identify () method to find the first clicked-on feature,
and then calculate and display various statistics about that feature's geometry.

Add the following code to the end of your geometryInfo.py module:

class GeometryInfoMapTool (QgsMapToolIdentify) :
def init (self, iface):
QgsMapToolIdentify. init (self, iface.mapCanvas())
self.iface = iface

def canvasReleaseEvent (self, event) :
QMessageBox.information (self.iface.mainWindow (), "debug",
"Canvas Click")

This defines our QgsMapToolIdentify subclass. It doesn't do anything useful yet,
but it will respond with a simple "Canvas Click" message when the user clicks on
the map canvas. Now, let's finish writing our plugin's onclick () method to activate
and deactivate our map tool as the user clicks on our toolbar icon. This is what the
onClick () method should look like:

def onClick (self):

if not self.action.isChecked() :
self.iface.mapCanvas () .unsetMapTool (self .mapTool)
self.mapTool = None
return

self.action.setChecked (True)

self .mapTool = GeometryInfoMapTool (self.iface)

self .mapTool.setAction(self.action)

self.iface.mapCanvas () .setMapTool (self.mapTool)

You should now be able to run your plugin by typing make deploy, and then reload
it in QGIS to see how it works. If all goes well, the toolbar icon will be highlighted
when you click on it, and the "Canvas Click" message should appear when you click
on the map canvas.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Now, let's replace the GeometryInfoMapTool.canvasReleaseEvent () method with
code to identify the feature the user clicked on. Here's the necessary code:

def canvasReleaseEvent (self, event):
found features = self.identify(event.x(), event.y(),
self.TopDownStopAtFirst,
self.VectorLayer)
if len(found features) > O0:
layer = found features[0] .mLayer
feature = found features[0] .mFeature
geometry = feature.geometry ()

As you can see, we call ggsMapToolIdentify.identify () to see which feature

the user clicked on. The parameters we're using tell the method to only return the
top-most vector feature at the point where the user clicked; the identify () method
can also return all features at a given point or the pixel value if the user clicked on a
raster layer, but in our case, we only want the top-most vector feature.

Once we've found the clicked-on feature, we identify which map layer the feature
is on, and extract the feature's geometry. With this information, we can analyze
the geometry and display the calculated statistics, which is the whole purpose of
our plugin.

A QGsGeometry object can represent a point, a line, a polygon, a number of points, a
number of lines, a number of polygons, or a collection of different types of geometries.
To analyze the statistics for any QGsGeometry object, we have to be ready to handle all
these different types of geometries. Fortunately, the basic logic is quite straightforward:

* If the geometry has multiple parts, we split the geometry into its component
parts, and process each part in turn

* For point geometries, we count the number of points

* For line geometries, we count the number of lines and calculate their
total length

* For polygon geometries, we count the number of polygons and calculate
their total area and perimeter

Let's add two methods to our GeometryInfoMapTool class to analyze a geometry:

def analyzeGeometry(self, geometry, layer, info):
crs = layer.dataProvider () .crs()
calculator = QgsDistanceArea ()
calculator.setSourceCrs (crs)
calculator.setEllipsoid(crs.ellipsoidAcronym())

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

calculator.setEllipsoidalMode (crs.geographicFlag())

if geometry.isMultipart () :
self.add(info, 'num multi', 1)
parts = geometry.asGeometryCollection ()
for sub geometry in parts:
self.analyzeGeometry (sub geometry, layer, info)
elif geometry.type() == QGis.Point:
self.add(info, 'num points', 1)
elif geometry.type() == QGis.Line:
self.add(info, 'num lines', 1)
self.add(info, 'tot line length',
calculator.measure (geometry))
elif geometry.type() == QGis.Polygon:
self.add(info, 'num polygons', 1)
self.add(info, 'tot poly area',
calculator.measure (geometry))
self.add(info, 'tot poly perimeter',
calculator.measurePerimeter (geometry))

def add(self, info, key, n):
if key in info:

info[key] = infolkey] + n
else:
infolkey] = n

The add () method is just a helper method that adds a number to a dictionary entry if
it exists, and creates that entry if it doesn't. This allows us to use the info dictionary
to store the results as we calculate them.

As you can see, the analyzeGeometry () method makes use of a QgsDistanceArea
object to calculate the lengths and areas of a geometry. Note that our
analyzeGeometry () method is recursive; if a geometry has multiple parts, each
subgeometry might also have multiple parts, so we call analyzeGeometry ()
recursively on each part to allow these nested geometries to be handled correctly.

When we call analyzeGeometry () on a given QGSGeometry, the results of the
analysis will be stored in the info dictionary. Let's add some code to the end of
our canvasReleaseEvent () method to analyze the clicked-on geometry and
display the results:

info = {}

self.analyzeGeometry (geometry, layer, info)

QMessageBox.information(self.iface.mainWindow (), "debug",
repr (info))

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If you now do a make deploy and reload the plugin, you should be able to click on
a feature and display information about that feature's geometry. The plugin's output
should look like the following:

{'tot_poly_perimeter': 8018658.057509126,
‘tot_poly_area': 269567021983.36533,
'num_polygons': 29, 'num_multi': 1}

—

This is certainly telling us something useful, but it's not very readable. Let's look at
how we can improve the way we display the statistics.

Firstly, notice that the area and perimeter values are not particularly useful; the
QgsDistanceArea object returns lengths and areas in meters, but for most geometries,
these values are too precise and too big. Let's make it more readable by converting the
calculated lengths and areas into a whole number of kilometers. To do this, make the
following highlighted changes to your analyzeGeometry () method:

elif geometry.type() == QGis.Line:
self.add(info, 'num lines', 1)
self.add(info, 'tot line length',
int (calculator.measure (geometry) /1000))
elif geometry.type() == QGis.Polygon:
self.add(info, 'num polygons', 1)
self.add(info, 'tot poly area',
int (calculator.measure (geometry) /1000000))
self.add(info, 'tot poly perimeter',
int (calculator.measurePerimeter (geometry) /1000))

As you can see, we're simply dividing the calculated lengths by a thousand to get the
length in kilometers, and dividing the calculated area by a million to get the area in
square kilometers.

The final thing we want to do is display those calculated statistics in a more friendly
way. To do this, replace the QMessageBox. information () call at the end of your
canvasReleaseEvent () method with the following:

fields = [("num multi",
"Number of multipart geometries", ""),
("num_points",
"Number of point geometries", ""),
("num_lines",

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

"Number of line geometries", ""),
("tot line length",
"Total length of line geometries",
"km") ,
("num_ polygons",
"Number of polygon geometries", ""),
("tot poly area",
"Total area of polygon geometries",
"square km"),
("tot poly perimeter",
"Total perimeter of polygon geometries",
"km")]

results = []
for field, label,suffix in fields:

if field in info:

results.append("%s = %s %s" %
(label, str(infol[field]),
suffix))

QMessageBox.information (self.iface.mainWindow (),
"Geometry Info",
"\n".join (results))

Your plugin will now display the statistics in a more readable format, for example:

800

Number of multipart geometries = 1

Number of polygon geometries = 29

Total area of polygon geometries = 269553
square km

Total perimeter of polygon geometries = 8007 km

& ——

We've now completed our plugin, and can use it to display information about
any geometry within QGIS. More importantly, we've learned how to create a
complete and useful QGIS plugin, and you can build on this knowledge to
create your own plugins.

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Possibilities and limitations of plugins

As we have seen, it's quite possible to write a plugin that acts as a sophisticated
mapping tool integrated directly into the QGIS user interface, interacting with the
map canvas and responding in various ways to the user's actions. Some of the other
things you can do with a QGIS plugin include:

Creating your own subclass of QgsMapCanvasItem, so your plugin can draw
items directly onto the QGIS map canvas.

Creating a custom map layer by subclassing 9gsPluginLayer. This allows
your plugin to act as a completely separate map layer.

Using signal handlers to intercept standard QGIS actions, for example,
redrawing the canvas and executing your own code when a signal is sent.

Creating map layers programmatically, setting up the data provider,
and creating custom symbols and renderers to control how the map data
is displayed.

Using the QGIS Map Composer tools to combine rendered map layers,
labels, legends, tables, and so on, mimicking the layout of a paper map.
The resulting map view can be displayed in a window, printed, or saved
to disk as an image or a PDF file.

There are, however, some limitations on what a QGIS plugin is able to do:

By its very nature, a plugin sits inside the running QGIS application. Your
plugin runs alongside all the other plugins that the user has installed, and
shares the same user interface and menu structure. This means that you

can't implement turnkey mapping applications as QGIS plugins. The full
complexity of QGIS is shown to the user, which can be daunting for the user
who might be looking for a custom application that performs just one task. In
this situation, it might be better to write your code as an external application
that uses the PyQGIS library, rather than attempt to write it as a plugin.

Since the plugin runs within QGIS itself, there are many points of contact
between the plugin code and the QGIS environment. As QGIS is constantly
evolving, this means that a plugin can stop working when a new version of
QGIS is released. This is far more likely to happen with a plugin than with
code written as an external application using the PyQGIS library.

Since the plugin uses the Python interpreter built into QGIS itself, you can't
make use of third-party Python libraries that aren't included in QGIS's
Python interpreter. While you can get around this for pure Python libraries
(by including the Python source code as part of your plugin), if the library
you want makes use of extensions written in C, you simply won't be able
to use that library in your plugin.

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating QGIS Plugins

Ultimately, it is up to you to decide if plugins are a suitable way of implementing
your mapping application. For some applications, they are ideal; they are certainly
a lot easier to develop and distribute than external applications, and if your
application is aimed at people who are already using QGIS, then the plugin scheme
is a logical approach to take. In other situations, an external application built on top
of PyQGIS might be more suitable.

Summary

In this chapter, we delved into the topic of QGIS plugin programming. We created
two separate plugins, a simple one to get started with, and a more complex and
useful plugin that displays information about a clicked-on feature's geometry. We
also looked at the QGIS plugin architecture, the plugin development process, and
some of the possibilities and limitations of QGIS plugins. Along the way, we learned
about the tools needed to develop QGIS plugins, discovered that plugins are simply
Python packages with certain special files in them, and saw how the PyQt command-
line tools can be used to compile user-interface templates and resource description
files into Python modules so that they can be used within a plugin.

We also looked at how your plugin is integrated into the QGIS user interface using
icons and menu items, how to run your plugin, and what happens when your plugin
crashes. We also looked briefly at the Plugin Builder, and how it can be useful.

Next, we looked at how to use a Makefile to automate plugin compilation and
deployment, and the typical write-make-reload-test cycle used to develop plugins.
We saw how to write and use HTML help files within your plugin, how unit tests
can be used for QGIS plugins, and how to distribute your plugin, both to the official
QGIS plugin repository and to a repository that you set up yourself.

We learned that there are many things you can do with plugins, including

drawing into the map canvas, creating custom layers, intercepting QGIS actions,
programmatically creating map layers, and composing complex maps. At the same
time, we saw that there are some constraints in what a QGIS plugin can do, including
the need to share the QGIS user interface with all other plugins, the inability to create
turnkey mapping applications, compatibility issues, and difficulties in using some
third-party Python libraries.

In the next chapter, we will look at the process of using the PyQGIS libraries within
your own external Python programs. This gets around many of the limitations of a
QGIS Plugin, at the cost of some additional complexity.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an
External Application

In Chapter 1, Getting Started with QGIS, we looked briefly at a standalone Python
program built using PyQt and the PyQGIS library. In this chapter, we will use the
same technique to build a complete turnkey mapping application using PyQGIS.
Along the way, we will:

Design and build a simple but complete standalone mapping application

Learn how to use a wrapper script to handle the platform-specific
dependencies before our Python program is run

Define our application's user interface in a separate Python module so that
we keep our Ul separate from the application's business logic

Dynamically show and hide map layers based on the user's preference

Learn how to use a rule-based renderer to selectively display features based
on the map's current zoom level

See how data-defined properties can be used to calculate the font size to use
for a label based on the feature's attributes

Implement Google Maps style panning and zooming

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

Introducing Lex

Our mapping application will display a world map, allowing the user to zoom and
pan, and display various landmarks on the map. If the user clicks on a landmark,
information about that landmark will be displayed.

We'll call our application Lex, which is short for Landmark explorer. Lex will make
use of two freely available geospatial datasets: a high-resolution shaded-relief
basemap, and a comprehensive database of place names, which we will use as the
list of landmarks to display:

800 _ :
v

We will build our Lex application using PyQt, and make use of the PyQGIS libraries
built into QGIS to do most of the hard work.

Our requirements for the Lex application are as follows:

* It must run as a turnkey application. Double-clicking on the launcher script
must start the PyQt program, load all the data, and present a complete
working application to the user.

* The user interface must be as professional as possible, with keyboard
shortcuts and good-looking toolbar icons.

* When the user clicks on a landmark, the name and jurisdiction, time zone,
and latitude/longitude for that landmark should be displayed.

* The look and feel should be as similar as possible to Google Maps.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This last requirement is an important point, as the zooming and
. panning tools built into QGIS are more complicated than what we
a would like to have in a turnkey mapping application. Most users
L are already familiar with the behavior of Google Maps, and we
want to mimic this behavior rather than using the default panning
and zooming tools supplied by QGIS.

Without further delay, let's start building our application. Our first step will be to
download the geospatial data the application will be based on.

Getting the data

Lex will make use of two map layers: a basemap layer that displays a shaded-relief
raster image, and a landmark layer that shows the individual landmarks based on a
set of place names. Both of these datasets can be downloaded from the Natural Earth
Data website. Visit http://www.naturalearthdata.com and click on the Get the
Data link to jump to the Downloads page.

The basemap data can be found by clicking on the Raster link. We'll want
the highest-resolution data available, so use the link in the Large scale data,
1:10m section.

While you could use any of these datasets as a basemap, we will download the Natural
Earth I with Shaded Relief, Water, and Drainages dataset. Make sure you download
the high-resolution version of this dataset so that the raster image will still look good
when the user has zoomed in.

For the landmarks, we'll be using the "populated places" dataset. Go back to the
main downloads page and click on the Cultural link in the Large scale data, 1:10m
section. Scroll down to the Populated Places section and click on the Download
Populated Places link.

Once you have finished downloading, you should have two ZIP archives on
your computer:

NEL HR LC SR W DR.zip
ne 10m _populated places.zip

Create a folder named data, decompress the preceding two ZIP archives, and place
the resulting directories into your data folder.

[109]

www.it-ebooks.info

http://www.naturalearthdata.com
http://www.it-ebooks.info/

Using QGIS in an External Application

Designing the application

We now have a list of requirements for our mapping application, together with the
geospatial data we want to display. Before we start coding, however, it's a good idea

to step back and think about our application's user interface.

Our application will have one main window, which we will call Landmark Explorer.
To make it easy to use, we'll display a map canvas along with a simple toolbar. Our

basic window layout will look like the following;:

Landmark Explorer

Zoom
In

Zoom

Out

Pan
Tool

Explore

Tool

Map Canvas

Along with the main window, our Lex application will have a menu bar with the

following menus:

File View | Mode

Quit #0 Basemap #B Pan #1
Landmarks 3L Explore 32
Zoom In ®+
Zoom Qut -

The toolbar will make it easy for new users to work with Lex by pointing and
clicking on the toolbar icons, while experienced users can make use of the extensive
keyboard shortcuts to access the program's features.

With this design in mind, let's start coding.

www.it-ebooks.info

[110]

http://www.it-ebooks.info/

Chapter 5

Creating the application's framework

Start by creating a folder to hold your application's source code, and move the data
folder you created earlier into it. Next, we want to create the basic framework for our
application using the techniques we learned in Chapter 1, Getting Started with QGIS.
Create a module named lex.py, and enter the following into this file:

import os, os.path, sys

from ggis.core import *
from ggis.gui import =*
from PyQt4.QtGui import *
from PyQt4.QtCore import *

class MapExplorer (QMainWindow) :
def init (self):
OMainWindow. init (self)
self.setWindowTitle ("Landmark Explorer")
self.resize (800, 400)

def main() :
QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)
QgsApplication.initQgis ()

app = QApplication(sys.argv)

window = MapExplorer ()
window. show ()
window.raise ()

app.exec_ ()
app.deletelater()
QgsApplication.exitQgis ()

if name == " main ":
main ()

We're simply importing the various libraries we'll need and setting up an external
PyQGIS application using the techniques we learned earlier. We then create and
display a blank window so that the application will do something when it starts up.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

Since we want the Lex application to work on any operating system, we're not going
to hard-wire the path to QGIS into our source code. Instead, we'll write a wrapper
script that sets up the required environment variables before launching our Python
program. As these wrapper scripts are operating-system dependent, you will need to
create an appropriate wrapper script for your operating system.

. Notice that we use os.environ['QGIS PREFIX'] inour lex.py
% module to avoid hard-wiring the path to the QGIS application into
K= our source code. Our wrapper script will take care of setting this
environment variable before the application is run.

If you are using a computer with Microsoft Windows, your wrapper script will look
something like the following;:

SET OSGEO4W_ROOT=C:\0SGeo4W

SET QGIS_ PREFIX=%0SGEO4W_ROOT%\apps\ggis

SET PATH=%QGIS PREFIX%\bin;$0SGWO4W ROOT\bin; $PATH%

SET PYTHONPATH=%QGIS PREFIX%\python;$0SEO4W ROOT%\apps\
Python27; $PYTHONPATH%

SET PYTHONHOME=%0SGEO4W_ROOT$%\apps\Python27

python lex.py

Name this script something sensible, for example, run.bat, and put it in the same
directory as your lex.py module.

If you are using a computer that runs Linux, your wrapper script will be named
something like run. sh, and will look like the following:

export PYTHONPATH="/path/to/qgis/build/output/python/"
export LD LIBRARY PATH="/path/to/ggis/build/output/lib/"
export QGIS PREFIX="/path/to/ggis/build/output/"

python lex.py

You will need to modify the paths to refer to the directory where QGIS has
been installed.

For those running Mac OS X, your wrapper script will also be called run. sh,
and will contain the following;:

export PYTHONPATH="$PYTHONPATH:/Applications/QGIS.app/Contents/
Resources/python"

export DYLD FRAMEWORK PATH="/Applications/QGIS.app/Contents/
Frameworks"

export QGIS PREFIX="/Applications/QGIS.app/Contents/Resources"
python lex.py

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Notice that for Mac OS X and Linux, we have to set the framework or library paths.
This allows the PyQGIS Python wrappers to find the underlying C++ shared libraries
that they are based on.

M If you are running under Linux or Mac OS X, you'll also have to make
Q your wrapper script executable. To do this, type chmod +x run.sh
into the bash shell or terminal window.

Once you have created your shell script, try running it. If all goes well, your PyQt
application should start up and display a blank window, like the following:

8 0o Landmark Explorer

If it doesn't work, you will need to check your wrapper script and/or your lex.py
module. You might need to modify the directory paths to match your QGIS and
Python installations.

Adding the user interface

Now that our program is running, we can start implementing the user interface (UI).
A typical PyQt application will make use of Qt Designer to store the application's

Ul in a template file, which is then compiled into a Python module for use within
your application.

As it would take many pages to describe how to use Qt Designer to lay out our
window with its toolbar and menus, we're going to cheat and create our user interface
directly within Python. At the same time, however, we'll create our Ul module as if

it was created using Qt Designer; this keeps our application's Ul separate, and also
shows how our application would work if we were to use Qt Designer to design our
user interface.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

Create a new module called ui_explorerWindow.py, and type the following code
into this module:

from PyQt4 import QtGui, QtCore
import resources

class Ui _ExplorerWindow (object) :
def setupUi (self, window) :
window.setWindowTitle ("Landmark Explorer")

self.centralWidget = QtGui.QWidget (window)
self.centralWidget.setMinimumSize (800, 400)
window. setCentralWidget (self.centralWidget)

self .menubar = window.menuBar ()

self.fileMenu = self.menubar.addMenu ("File")
self.viewMenu = self.menubar.addMenu ("View")
self.modeMenu = self.menubar.addMenu ("Mode")

self.toolBar = QtGui.QToolBar (window)
window.addToolBar (QtCore.Qt .TopToolBarArea, self.toolBar)

self.actionQuit = QtGui.QAction("Quit", window)
self.actionQuit.setShortcut (QtGui.QKeySequence.Quit)

self.actionShowBasemaplLayer = QtGui.QAction("Basemap",
window)

self.actionShowBasemapLayer.setShortcut ("Ctrl+B")

self.actionShowBasemapLayer.setCheckable (True)

self.actionShowLandmarkLayer = QtGui.QAction ("Landmarks",
window)

self.actionShowLandmarkLayer.setShortcut ("Ctrl+L")

self.actionShowLandmarkLayer.setCheckable (True)

icon = QtGui.QIcon(":/icons/mActionZoomIn.png")
self.actionZoomIn = QtGui.QAction(icon, "Zoom In", window)
self.actionZoomIn.setShortcut (QtGui.QKeySequence.ZoomlIn)

icon = QtGui.QIcon(":/icons/mActionZoomOut.png")

self.actionZoomOut = QtGui.QAction(icon, "Zoom Out",
window)

self.actionZoomOut.setShortcut (QtGui.QKeySequence.ZoomOut)

icon = QtGui.QIcon(":/icons/mActionPan.png")

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

self.actionPan = QtGui.QAction(icon, "Pan", window)
self.actionPan.setShortcut ("Ctrl+1l")
self.actionPan.setCheckable (True)

icon = QtGui.QIcon(":/icons/mActionExplore.png")

self.actionExplore = QtGui.QAction(icon, "Explore",
window)

self.actionExplore.setShortcut ("Ctrl+2")

self.actionExplore.setCheckable (True)

self.fileMenu.addAction(self.actionQuit)

self.viewMenu.addAction (self.actionShowBasemapLayer)
self.viewMenu.addAction(self.actionShowLandmarkLayer)
self.viewMenu.addSeparator ()
self.viewMenu.addAction(self.actionZoomIn)
self.viewMenu.addAction (self.actionZoomOut)

self .modeMenu.addAction (self.actionPan)
self .modeMenu.addAction(self.actionExplore)

self.toolBar.addAction
self.toolBar.addAction
self.toolBar.addAction
self.toolBar.addAction

self.actionZoomIn)
self.actionZoomOut)
self.actionPan)
self.actionExplore)

(
(
(
(

window.resize (window.sizeHint ())

This module implements our Lex application's user interface, defining a QtAction
object for each toolbar and menu item, creating a widget to hold our map canvas,
and laying everything out within a otMainWindow object. The structure of this
module is identical to the way Qt Designer and the pyuic4 command-line tool
make a user interface template available to Python code.

Notice that the Ui_ExplorerWindow class makes use of several toolbar icons. We
will need to create these icon images and define them in a resource description file,
in the same way we created a resources.py module in the previous chapter.

We are going to need the following icon images:

®* mActionZoomIn.png
® mActionZoomOut.png
®* mActionPan.png

®* mActionExplore.png

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

If you want, you can download these image files in SVG format from the QGIS source
code repository (https ://github.com/gqgis/QGIS/tree/master/images/themes/
default), though you will need to convert them from . svg to .png in order to avoid
issues with image file formats. If you don't want to convert the icons yourself, the
images are available as part of the source code available with this book. Once you are
done, place these four files in the main directory of your Lex application.

o Note that the mActionExplore.png icon file is a converted
~ copy of the mActionIdentify.svgimage in the source code
Q repository. We renamed the image file to match the name of
the tool in our Lex application.

Next, we need to create our resources.grc file so that PyQt can use these images.
Create this file and enter the following into it:

<RCC>
<gresource prefix="/icons">
<file>mActionZoomIn.png</file>
<file>mActionZoomOut.png</file>
<file>mActionPan.png</file>
<file>mActionExplore.png</file>
</qresource>
</RCC>

You will need to compile this file using pyrcc4. This will give you the resources.py
module required by your user interface.

Now that we've defined our user interface, let's modify the lex.py module to use it.
Add the following import statements to the top of your module:

from ui_explorerWindow import Ui ExplorerWindow
import resources

Next, we want to replace our dummy implementation of the MapExplorer window
with one that uses our new UI. This is what the MapExplorer class definition should
look like:

class MapExplorer (QMainWindow, Ui ExplorerWindow) :
def init_ (self):
OMainWindow._ init__ (self)

self.setupUi (self)

[116]

www.it-ebooks.info

https://github.com/qgis/QGIS/tree/master/images/themes/default
https://github.com/qgis/QGIS/tree/master/images/themes/default
http://www.it-ebooks.info/

Chapter 5

If all goes well, our application should now run with a complete user interface —a
toolbar, menus, and room for our map canvas:

[-HsNs] Landmark Explorer

ORI : §

Of course, our user interface doesn't do anything yet, but our Lex application is
starting to look like a real program. Now, let's implement the behavior behind
our UL

Connecting the actions

You might have noticed that none of the menu commands and toolbar icons do
anything yet—even the Quit command doesn't work. Before our actions do anything,
we have to connect them to the appropriate method. To do this, add the following to
your MapExplorer.__init__ () method, immediately after the call to setupUi ():

self.connect (self.actionQuit,
SIGNAL ("triggered() "), gApp.quit)
self.connect (self.actionShowBasemaplLayer,
SIGNAL ("triggered()"), self.showBasemaplayer)
self.connect (gself.actionShowLandmarkLayer,
SIGNAL ("triggered()"),
self.showLandmarkLayer)
self.connect (self.actionZoomlIn,

SIGNAL ("triggered()"), self.zoomIn)
self.connect (self.actionZoomOut,

SIGNAL ("triggered() "), self.zoomOut)
self.connect (self.actionPan,

SIGNAL ("triggered()"), self.setPanMode)
self.connect (self.actionExplore,

SIGNAL ("triggered()"), self.setExploreMode)

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

We're connecting our Quit action to the gApp.quit () method. For the other actions,
we'll be calling methods within our MapExplorer class itself. Let's define some
placeholders for these methods:

def showBasemapLlayer (self) :
pass

def showLandmarkLayer (self) :
pass

def zoomIn (self) :
pass

def zoomOut (self) :
pass

def setPanMode (self) :
pass

def setExploreMode (self) :
pass

We'll implement these methods later on, once we have the map canvas up
and running.

Creating the map canvas

Our Ui_ExplorerWindow class defines an instance variable named centralwidget,
which acts as a placeholder for our window's contents. Since we want to place a
QGIS map canvas into our window, let's implement the code to create our map
canvas and place it into this central widget. Add the following to the end of your
MapExplorer window's __init_ () method (in lex.py):

self .mapCanvas = QgsMapCanvas ()
self.mapCanvas.useImageToRender (False)
self .mapCanvas.setCanvasColor (Qt .white)
self .mapCanvas.show ()

layout = QVBoxLayout ()
layout.setContentsMargins (0, 0, 0, 0)
layout .addWidget (self.mapCanvas)
self.centralWidget.setLayout (layout)

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Next, we want to fill our map canvas with the basemap and landmark map layers. To
do this, we'll define a new method called 1oadMap (), and call this at the appropriate
time. Add the following method to your MapExplorer class:

def loadMap (self) :

cur dir = os.path.dirname(os.path.realpath(file))

filename = os.path.join(cur dir, "data",
"NE1_HR_LC SR _W DR",
"NE1_HR_LC SR _W DR.tif")

self .basemap layer = QgsRasterLayer (filename, "basemap")

QgsMapLayerRegistry.instance () .addMapLayer (

self .basemap layer)

filename = os.path.join(cur dir, "data",
"ne 10m populated places",
"ne 10m_populated places.shp")
self.landmark layer = QgsVectorLayer (filename,
"landmarks", "ogr")
QgsMapLayerRegistry.instance () .addMapLayer (
self.landmark layer)

self.showVisibleMapLayers ()

self .mapCanvas.setExtent (QgsRectangle (-127.7, 24.4, -79.3,
49.1))

This method loads the raster and vector datasets we placed in our data directory.
We then call a new method, showVisibleMapLayers (), to make those layers visible,
and then set the extent of the map canvas to show the continental USA when the
application first starts up.

Let's implement the showVisibleMapLayers () method:

def showVisibleMapLayers (self) :
layers = []
if self.actionShowLandmarkLayer.isChecked() :
layers.append (QgsMapCanvasLayer (self.landmark layer))
if self.actionShowBasemapLayer.isChecked() :
layers.append (QgsMapCanvasLayer (self .basemap layer))
self .mapCanvas.setLayerSet (layers)

As the user can choose to show or hide the basemap and landmark layers
individually, we only display the layers that the user has selected to display. We
also put this into a separate method so that we can call it when the user toggles the
visibility of a layer.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

There are a few more things to do before our map can be displayed. First off,
add the following line to your main () function immediately after the call to
window.raise ():

window.loadMap ()

This loads the map once the window has been displayed. Next, add the following
to the end of your main window's __init__ () method:

self.actionShowBasemapLayer.setChecked (True)
self.actionShowLandmarkLayer.setChecked (True)

This makes the two layers visible when the program starts up. Finally, let's
implement the two methods we defined earlier so that the user can choose
which layers are shown:

def showBasemapLayer (self) :
self.showVisibleMapLayers ()

def showLandmarkLayer (self) :
self.showVisibleMapLayers ()

Running the program should show the two map layers, and you can show or hide
each layer using the commands in the View menu:

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Labeling the points

As you can see from the preceding image, each landmark is simply represented by

a colored dot. To make the program more useful, we'll want to display the name of
each landmark. This can be done by using the "PAL" labeling engine built into QGIS.
Add the following code to your loadMap () method, immediately before the call to
self.showVisibleMapLayers():

Lo lio o lo B o B o L o]

Lol o B oL o]

= QgsPallLayerSettings ()

.readFromLayer (self.landmark layer)

.enabled = True

.fieldName = "NAME"

.placement = QgsPallLayerSettings.OverPoint
.displayAll = True

.setDataDefinedProperty (QgsPallLayerSettings.Size,

True, True, n 12 " s nn)

.quadOffset = QgsPallayerSettings.QuadrantBelow
.yOffset =1

.labelOffsetInMapUnits = False

.writeToLayer (self.landmark_layer)

labelingEngine = QgsPallLabeling()
self .mapCanvas.mapRenderer () .setLabelingEngine (labelingEngine)

This will label each point on the map. Unfortunately, there are a lot of points, and the
resulting map is completely unreadable:

800

Landmark Explorer

)

d‘\r,

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

Filtering the landmarks

The reason our labels are unreadable is because there are too many landmarks
being displayed. However, not all landmarks are relevant at all zoom levels —we
want to hide landmarks that are too small to be useful when the map is zoomed
out, while still showing these landmarks when the user zooms in. To do this, we'll
use a QgsRuleBasedRendererV2 object and make use of the SCALERANK attribute to
selectively hide features that are too small for the current zoom level.

Add the following code to your loadMap () method, before the call to self.
showVisibleMapLayers():

symbol = QgsSymbolV2.defaultSymbol (self.landmark layer.
geometryType ())

renderer = QgsRuleBasedRendererV2 (symbol)
root rule = renderer.rootRule ()
default rule = root rule.children() [0]

rule = default rule.clone()

rule.setFilterExpression (" (SCALERANK >= 0) and (SCALERANK <=
")

rule.setScaleMinDenom(0)

rule.setScaleMaxDenom(99999999)

root rule.appendChild(rule)

rule = default rule.clone()

rule.setFilterExpression (" (SCALERANK >= 2) and (SCALERANK <=
4)")

rule.setScaleMinDenom(0)

rule.setScaleMaxDenom(10000000)

root rule.appendChild(rule)

rule = default rule.clone()

rule.setFilterExpression (" (SCALERANK >= 5) and (SCALERANK <=
7)")

rule.setScaleMinDenom(0)

rule.setScaleMaxDenom (5000000)

root rule.appendChild(rule)

rule = default rule.clone()

rule.setFilterExpression (" (SCALERANK >= 7) and (SCALERANK <=
1m0)m")

rule.setScaleMinDenom (0)

rule.setScaleMaxDenom (2000000)

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

root rule.appendChild(rule)

root rule.removeChildAt (0)
self.landmark layer.setRendererV2 (renderer)

This will have the effect of hiding landmarks that are too small (that is, which have

too large a SCALERANK value) when the map is zoomed out. Now, our map looks
much more reasonable:

There's just one more feature we'd like to add here; at the moment, all the labels
are of the same size. However, we'd like the larger landmarks to be shown with a

larger label. To do this, replace the p. setDataDefinedProperty (.. .) line in your
program with the following:

expr = ("CASE WHEN SCALERANK IN (0,1) THEN 18" +
"WHEN SCALERANK IN (2,3,4) THEN 14 " +
"WHEN SCALERANK IN (5,6,7) THEN 12 " +
"WHEN SCALERANK IN (8,9,10) THEN 10 " +
"ELSE 9 END")
p.setDataDefinedProperty (QgsPallayerSettings.Size, True,
True, expr, "")

This calculates the font size based on the feature's SCALERANK attribute value. As you
can imagine, using data-defined properties in this way can be extremely useful.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

Implementing the zoom tool

Next, we want to support zooming in and out. As mentioned earlier, one of the
requirements for our Lex application is that it must work like Google Maps rather
than QGIS, and this is an example of where we have to support this. QGIS has a
zoom tool, which the user clicks on and then clicks or drags on the map to zoom
in or out. In Lex, the user will click on the toolbar icons directly to do the zooming.
Fortunately, this is easy to do; simply implement the zoomIn () and zoomoOut ()
methods in the following way:

def zoomIn(self) :
self .mapCanvas.zoomlIn ()

def zoomOut (self) :
self .mapCanvas.zoomOut ()

Now, try to run your program. As you zoom in and out, you can see the various
landmarks appear and disappear, and you should also be able to see the different
font sizes used for the labels based on each feature's SCALERANK value.

Implementing the pan tool

Panning (that is, clicking and dragging on the map to move around) is another

area where the QGIS default behavior isn't quite what we want. QGIS includes a
classQgsMapToolPan class, which implements panning; however, it also includes
some features that could be quite confusing for users coming from Google Maps.

In particular, if the user clicks without dragging, the map is re-centered over the
clicked-on point. Instead of using classQgsMapToolPan, we will implement our own
panning map tool. Fortunately, this is simple to do: simply add the following class
definition to your lex.py module after the end of your MapExplorer class definition:

class PanTool (QgsMapTool) :
def init_ (self, mapCanvas) :
QgsMapTool. init (self, mapCanvas)
self.setCursor (Qt.OpenHandCursor)
self.dragging = False

def canvasMoveEvent (self, event):
if event.buttons() == Qt.LeftButton:
self.dragging = True
self.canvas () .panAction(event)

def canvasReleaseEvent (self, event):
if event.button() == Qt.LeftButton and self.dragging:
self.canvas () .panActionEnd (event.pos())
self.dragging = False

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

We then need to add the following to the end of our main window's __init__ ()
method to create an instance of our panning tool:

self.panTool = PanTool (self.mapCanvas)
self .panTool.setAction(self.actionPan)

We can now implement our setPanMode () method to use this map tool:

def setPanMode (self) :
self.actionPan.setChecked (True)
self .mapCanvas.setMapTool (self.panTool)

Finally, we'll want to select the panning mode when the application starts up. To do
this, add the following to your main () function after the call to window.loadMap ():

window.setPanMode ()

Implementing the explore mode

So far, the user can choose which map layers are displayed, and can zoom and pan
the map view. The only thing missing is the entire point of the application: exploring
landmarks. To do this, we'll have to implement our application's explore mode.

In the previous chapter, we saw how we can use a QgsMapToolIdentify subclass to
respond when the user clicks on a vector feature. We're going to use the same logic
here to implement a new map tool, which we'll call ExploreTool. Add the following
class definition to your lex.py module after the panToo1 class definition:

class ExploreTool (QgsMapToolIdentify) :
def init (self, window) :
QgsMapToolIdentify. init (self, window.mapCanvas)
self.window = window

def canvasReleaseEvent (self, event):
found features = self.identify(event.x(), event.y(),
self .TopDownStopAtFirst,
self.VectorLayer)
if len(found features) > O0:
layer = found features[0] .mLayer
feature = found features[0] .mFeature
geometry = feature.geometry ()

info = []

name = feature.attribute ("NAME")

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

if name != None: info.append (name)

admin 0 = feature.attribute ("ADMONAME")

admin 1 = feature.attribute ("ADMINAME")

if admin 0 and admin 1:
info.append(admin 1 + ", " + admin 0)

timezone = feature.attribute ("TIMEZONE")
if timezone != None:
info.append ("Timezone: " + timezone)

longitude = geometry.asPoint () .x()

latitude = geometry.asPoint () .y ()

info.append("Lat/Long: %0.4f, %0.4f" % (latitude,
longitude))

QMessageBox.information (self.window,
"Feature Info",
"\n".join(info))

This tool identifies the landmark feature the user clicked on, extracts the relevant
attributes for that feature, and displays the results in a message box. To use our new
map tool, we'll have to add the following to the end of our MapExplorer window's
__init__ () method:

self.exploreTool = ExploreTool (self)
self.exploreTool.setAction(self.actionExplore)

We'll then need to implement our setExploreMode () method to use this tool:

def setExploreMode (self) :
self.actionPan.setChecked (False)
self.actionExplore.setChecked (True)

self .mapCanvas.setMapTool (self.exploreTool)

Notice that when the user switches to the explore mode, we have to uncheck the
panning mode action. This ensures that the two modes are mutually exclusive. The
final step we have to take is to modify our setPanMode () method so that it unchecks
the explore mode action when the user switches back to the panning mode. To do
this, add the following highlighted line to your set PanMode () method:

def setPanMode (self) :
self.actionPan.setChecked (True)
self.actionExplore.setChecked (False)
self .mapCanvas.setMapTool (self.panTool)

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This completes our Lex program. The user can now zoom in and out, pan around,
and click on a feature to get more information about that landmark:

Landmark Explorer

Scotishluff.

- . P -
3 ‘ e @ k=l
bt L?fEanenne Sidney—

" 4 Fort Collins

New Mexico, United States of America
Timezone: America/Denver

Lat/Long: 35.6869, -105.9372 S S
¢4 - Colorado Springs
- = ‘J‘- '_\‘ JPU;NO‘ ~ L ——a |
Z f dy 2 Lamar
'J_r
?Tﬂn'da_d
Raton
iz i ok . i 3
‘.4 Grand Canyon s~ Los; : Du:
e) ; & ° GaT'l-ED o .._Janta T i# i s el
man - Flagstaffinsiow Albuquerque 7 Tueumcari
8 T . A i 3
i P o . :
= reB@Ut! Bt i Clovis
¥ AL ot Secoro
4 B d ; i A t gy o !
e W e

Further improvements and enhancements

Of course, while Lex is a useful and complete mapping application, it is really
only a starting point. The information provided in the freely available populated
places dataset doesn't make for a particularly interesting set of landmarks, and our
application is still quite basic. Here are some suggested improvements you could
make to the Lex application:

* Add a Search action, where the user can type in the name of a feature and
Lex will zoom and pan the map to show that feature.

* Let the user choose any two landmarks, and display the distance between
those two points in both kilometers and miles.

* Allow the user to load their own set of landmarks, either from a shapefile
or an Excel spreadsheet. When loading from a shapefile, the user could be
prompted to select the attribute(s) to display for each feature. When loading
data from a spreadsheet (using, for example, the x1rd library), the various
columns would contain the latitude and longitude values as well as the label
and other data to display for each landmark.

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Using QGIS in an External Application

* See what is involved in bundling the Lex application and QGIS itself into a
double-clickable installer for your operating system. The PyQGIS Developer
cookbook has some tips on how to do this, and there are various tools such as
py2exe and py2app, which you can use as a starting point.

Implementing these extra features would be a great way of learning more about
PyQGIS and how to use it within your own standalone mapping programs.

Summary

In this chapter, we designed and implemented a simple but complete turnkey
mapping application using PyQGIS. In doing this, we learned how a wrapper script
can be used to keep platform-specific settings out of your Python program. We also
saw how we can define our application's Ul in a separate module even if we don't
use Qt Designer to create our user interface templates.

We learned how to use the "PAL" labeling engine built into QGIS to display a label

for each feature within a vector map layer. We saw that a QgsRuleBasedRendererV2
object can be used to show or hide certain features based on the map's scale factor, and
that data-defined properties allow us to calculate values such as the label's font size;
we also saw how the CASE. . . WHEN expression can be used to calculate data-defined
properties in sophisticated ways.

Finally, we saw how to implement Google Maps style panning and zooming within
a mapping application.

In the next chapter, we will learn about some of the more advanced features of the
QGIS Python API and how we can use them within our mapping applications.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS
Python API

In this chapter, we will look at a number of more advanced aspects of the PyQGIS
library, as well as various techniques for working with QGIS using Python. In
particular, we will learn:

* How to work with symbol layers

* More advanced ways of using symbols to draw vector data onto a map

* How to implement your own symbols and renderers in Python

* How to create a custom map layer using Python

* How to implement your own custom map canvas items

* How to use memory data providers

Working with symbol layers
In the previous chapters, we created symbols to display vector features
by instantiating one of the three basic subclasses of Qgssymbolva2:
* QgsMarkerSymbolv2 for point geometries
* QgsLineSymbolv2 for line geometries
* QgsFillSymbolv2 for polygon geometries
We did this either by calling one of the preceding class's static createSimple ()
methods, or by asking the ggssymbolv2 class to provide us with the default

symbol for a given type of geometry. Irrespective of how we did it, the result
was a ready-to-use symbol object that displays a given type of vector geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Internally, symbols consist of one or more symbol layers that are displayed one on
top of the other, to draw the vector feature:

Symbol Layer 2

o+

 /
_ ""Z /

Drawn Symbol

The symbol layers are drawn in the order in which they are added to
. the symbol. So, in this example, Symbol Layer 1 will be drawn before
& Symbol Layer 2. This has the effect of drawing the second symbol
L layer on top of the first. Make sure you get the order of your symbol
layers correct, or you might find a symbol layer completely obscured
by another layer.

While the symbols we have been working with so far have had only one layer, there
are some clever tricks you can perform with multilayer symbols. We will look at
multilayer symbols in the section Combining symbol layers.

When you create a symbol, it will automatically be initialized with a default symbol
layer. For example, a line symbol (an instance of QgsLineSymbolv2) will be created
with a single layer of type 0gsSimpleLineSymbolLayerVv2. This layer is used to
draw the line feature onto the map.

To work with symbol layers, you need to remove this default layer and replace it
with your own symbol layer or layers. For example:

symbol = QgsSymbolV2.defaultSymbol (layer.geometryType ())
symbol.deleteSymbolLayer (0) # Remove default symbol layer.

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

symbol layer 1 = QgsSimpleFillSymbolLayerV2 ()
symbol layer 1l.setFillColor (QColor ("yellow"))

symbol layer 2 = QgsLinePatternFillSymbolLayer ()
symbol layer 2.setLineAngle(30)

symbol layer 2.setDistance(2.0)

symbol layer 2.setLineWidth(0.5)

symbol layer 2.setColor (QColor ("green"))

symbol . appendSymbolLayer (symbol layer 1)
symbol . appendSymbolLayer (symbol layer 2)

The following methods can be used to manipulate the layers within a symbol:

For example:

symbol . symbolLayerCount (): This returns the number of symbol layers
within this symbol.

symbol.symbolLayer (index) : This returns the given symbol layer within
the symbol. Note that the first symbol layer has an index of zero.

symbol .changeSymbolLayer (index, symbol_layer): This replaces a given
symbol layer within the symbol.

symbol . appendSymbolLayer (symbol_layer): This appends a new symbol
layer to the symbol.

symbol . insertSymbolLayer (index, symbol_ layer): This inserts a symbol
layer at a given index.

symbol .deleteSymbolLayer (index): This removes the symbol layer at the
given index.

Remember that to use the symbol once you've created it, you create an
appropriate renderer and then assign that renderer to your map layer.

renderer = QgsSingleSymbolRendererV2 (symbol)

layer.setRendererV2 (renderer)

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

The following symbol layer classes are available for you to use:

PyQGIS class Description Example
QgsSimpleMarkerSymbolLayerV2 This displays a point
geometry as a small o
colored circle.
QgsEllipseSymbolLayerV2 This displays a point o

geometry as an ellipse.

QgsFontMarkerSymbolLayerV2

This displays a point
geometry as a single
character. You can
choose the font

and character to be
displayed.

QgsSvgMarkerSymbolLayerV2

This displays a point
geometry using a
single SVG format
image.

QgsVectorFieldSymbolLayer

This displays a point
geometry by drawing
a displacement line.
One end of the line

is the coordinate of
the point, while the
other end is calculated
using attributes of the
feature.

QgsSimpleLineSymbolLayerV2

This displays a line
geometry or the
outline of a polygon
geometry using a line
of a given color, width,
and style.

QgsMarkerLineSymbolLayerV2

This displays a

line geometry or

the outline of a
polygon geometry by
repeatedly drawing a
marker symbol along
the length of the line.

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

QgsSimpleFillSymbolLayerV2

This displays a
polygon geometry by
filling the interior with
a given solid color and
then drawing a line
around the perimeter.

QgsGradientFillSymbolLayerV2

This fills the interior
of a polygon geometry
using a color or
grayscale gradient.

QgsCentroidFillSymbolLayerV2

This draws a simple
dot at the centroid of a
polygon geometry.

T~
o

QgsLinePatternFillSymbolLayer

This draws the interior
of a polygon geometry
using a repeated line.
You can choose the
angle, width, and color
to use for the line.

_.III/////// /I

QgsPointPatternFillSymbolLayer

This draws the interior
of a polygon geometry
using a repeated point.

.wQ00000000O0C0

00w
000 0O0UW
ooo-

L
- 20000
-w0O00O0OCO0OO0OCO

ToOo00O0O0CO0OCQOQ
T oo

QgsSVGFillSymbolLayer

This draws the interior
of a polygon geometry
using a repeated SVG
format image.

These predefined symbol layers, either individually or in various combinations, give
you enormous flexibility in how features are to be displayed. However, if these aren't
enough for you, you can also implement your own symbol layers using Python. We
will look at how this can be done later in this chapter.

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Combining symbol layers

By combining symbol layers, you can achieve a range of complex visual effects. For
example, you can combine an instance of QgsSimpleMarkerSymbolLayerV2 with
an instance of QgsvVectorFieldSymbolLayer to display a point geometry using two
symbols at once:

One of the main uses of symbol layers is to draw different LineString or PolyLine
symbols to represent different types of roads. For example, you can draw a complex
road symbol by combining multiple symbol layers, like this:

This effect is achieved by using three separate symbol layers:

+

Here is the Python code used to generate the preceding map symbol:

symbol =QgsLineSymbolV2.createSimple ({})
symbol.deleteSymbolLayer (0) # Remove default symbol layer.

symbol layer = QgsSimpleLineSymbolLayerV2 ()
symbol layer.setWidth (4)

symbol layer.setColor (QColor ("light gray"))
symbol layer.setPenCapStyle(Qt.FlatCap)
symbol . appendSymbolLayer (symbol layer)

symbol layer = QgsSimpleLineSymbolLayerV2 ()
symbol layer.setColor (QColor ("black"))
symbol layer.setWidth(2)

symbol layer.setPenCapStyle(Qt.FlatCap)
symbol . appendSymbolLayer (symbol layer)

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

symbol layer

symbol layer.
symbol layer.
symbol layer.

= QgsSimpleLineSymbolLayerV2 ()
setWidth (1)

setColor (QColor ("white"))
setPenStyle (Qt .DotLine)

symbol . appendSymbolLayer (symbol layer)

As you can see, you can set the line width, color, and style to create whatever effect
you want. As always, you have to define the layers in the correct order, with the
back-most symbol layer defined first. By combining line symbol layers in this way,
you can create almost any type of road symbol that you want.

You can also use symbol layers when displaying polygon geometries. For
example, you can draw QgsPointPatternFillSymbolLayer on top of
QgsSimpleFillSymbolLayerV2 to have repeated points on top of a simple filled

polygon, like this:

Finally, you can make use of transparency to allow the various symbol layers (or
entire symbols) to blend into each other. For example, you can create a pinstripe
effect by combining two symbol layers, like this:

symbol = QgsFillSymbolV2.createSimple ({})
symbol.deleteSymbolLayer (0) # Remove default symbol layer.

symbol layer

symbol layer.
symbol layer.

= QgsGradientFillSymbolLayerV2 ()
setColor2 (QColor ("dark gray"))
setColor (QColor ("white"))

symbol . appendSymbolLayer (symbol layer)

symbol layer

symbol layer.
symbol layer.
symbol layer.
symbol layer.

= QgsLinePatternFillSymbolLayer ()
setColor (QColor (0, 0, 0, 20))
setLineWidth(2)

setDistance (4)

setLineAngle (70)

symbol . appendSymbolLayer (symbol layer)

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

The result is quite subtle and visually pleasing;:

In addition to changing the transparency for a symbol layer, you can also change
the transparency for the symbol as a whole. This is done by using the setAlpha ()
method, like this:

symbol.setAlpha(0.3)

The result looks like this:

Note that setAlpha () takes a floating point number between 0.0 and
% 1.0, while the transparency of a QColor object, like the ones we used
T earlier, is specified using an alpha value between 0 and 255.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Implementing symbol layers in Python

If the built-in symbol layers aren't flexible enough for your needs, you can implement
your own symbol layers using Python. To do this, you create a subclass of the
appropriate type of symbol layer (QgsMarkerSymbolLayerV2, QgsLineSymbolV2,

or QgsFillSymbolv2) and implement the various drawing methods yourself. For
example, here is a simple marker symbol layer that draws a cross for a Point geometry:

class CrossSymbolLayer (QgsMarkerSymbolLayerV2) :
def init_ (self, length=10.0, width=2.0):
QgsMarkerSymbolLayerV2._ init__ (self)
self.length = length
self.width = width

def layerType (self):
return "Cross"

def properties(self):
return {'length' : self.length,
'width' : self.width}

def clone(self):
return CrossSymbolLayer (self.length, self.width)

def startRender (self, context):
self.pen = QPen()
self.pen.setColor (self.color())
self.pen.setWidth(self.width)

def stopRender (self, context):
self.pen = None

def renderPoint (self, point, context):
left = point.x() - self.length
right = point.x() + self.length
bottom = point.y() - self.length
top = point.y() + self.length

painter = context.renderContext () .painter()
painter.setPen(self.pen)
painter.drawlLine (left, bottom, right, top)
painter.drawLine (right, bottom, left, top)

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Using this custom symbol layer in your code is straightforward:

symbol = QgsMarkerSymbolV2.createSimple ({})
symbol.deleteSymbolLayer (0)

symbol layer = CrossSymbolLayer ()

symbol layer.setColor (QColor ("gray"))

symbol . appendSymbolLayer (symbol layer)

Running this code will draw a cross at the location of each point geometry,
as follows:

X

Of course, this is a simple example, but it shows you how to use custom symbol
layers implemented in Python. Let's now take a closer look at the implementation
of the CrossSymbolLayer class, and see what each method does:

__init_ ():Notice how the _init method accepts parameters that
customize the way the symbol layer works. These parameters, which should
always have default values assigned to them, are the properties associated
with the symbol layer. If you want to make your custom symbol available
within the QGIS Layer Properties window, you will need to register your
custom symbol layer and tell QGIS how to edit the symbol layer's properties.
We will look at this shortly.

layerType () : This method returns a unique name for your symbol layer.

properties (): This should return a dictionary that contains the various
properties used by this symbol layer. The properties returned by this
method will be stored in the QGIS project file, and used later to restore
the symbol layer.

clone () : This method should return a copy of the symbol layer. Since
we have defined our properties as parameters to the _init _ method,
implementing this method simply involves creating a new instance of
the class and copying the properties from the current symbol layer to
the new instance.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

* startRender (): This method is called before the first feature in the map
layer is rendered. This can be used to define any objects that will be required
to draw the feature. Rather than creating these objects each time, it is more
efficient (and therefore faster) to create them only once to render all the
features. In this example, we create the gpen object that we will use to draw
the Point geometries.

* stopRender (): This method is called after the last feature has been
rendered. This can be used to release the objects created by the
startRender () method.

* renderPoint (): This is where all the work is done for drawing point
geometries. As you can see, this method takes two parameters: the point
at which to draw the symbol, and the rendering context (an instance of
QgsSymbolV2RenderContext) to use for drawing the symbol.

* The rendering context provides various methods to access the feature being
displayed, as well as information about the rendering operation, the current
scale factor, and so on. Most importantly, it allows you to access the PyQt
QPainter object required to actually draw the symbol on the screen.

The renderpoint () method is only used for symbol layers that draw point
geometries. For line geometries, you should implement the renderpolyline ()
method, which has the following signature:

def renderPolyline(self, points, context):

The points parameter will be a QPolygonF object that contains the various points
that make up the LineString, and context will be the rendering context to use to
draw the geometry.

If your symbol layer is intended to work with polygons, you should implement
the renderPolygon () method, which looks like this:

def renderPolygon(self, outline, rings, context):

Here, outline is a QPolygonF object that contains the points that make up the
exterior of the polygon, and rings is a list of QPolygonF objects that define the
interior rings or "holes" within the polygon. As always, context is the rendering
context to use when drawing the geometry.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

A custom symbol layer created in this way will work fine if you just want to use it
within your own external PyQGIS application. However, if you want to use a custom
symbol layer within a running copy of QGIS, and in particular, if you want to allow
end users to work with the symbol layer using the Layer Properties window, there
are some extra steps you will have to take, which are as follows:

* If you want the symbol to be visually highlighted when the user clicks on it,
you will need to change your symbol layer's renderxxx () method to see if
the feature being drawn has been selected by the user, and if so, change the
way it is drawn. The easiest way to do this is to change the geometry's color.
For example:

if context.selected() :

color = context.selectionColor ()
else:

color = self.color

* To allow the user to edit the symbol layer's properties, you should create a
subclass of ggsSymbolLayerv2widget, which defines the user interface to
edit the properties. For example, a simple widget for the purpose of editing
the length and width of a cCrossSymbolLayer can be defined as follows:

class CrossSymbolLayerWidget (QgsSymbolLayerV2Widget) :
def init (self, parent=None) :
QgsSymbolLayerV2Widget. init (self, parent)
self.layer = None

self.lengthField = QSpinBox(self)
self.lengthField.setMinimum(1)
self.lengthField.setMaximum(100)
self.connect (self.lengthField,
SIGNAL ("valueChanged (int) "),
self.lengthChanged)

self.widthField = QSpinBox (self)
self.widthField.setMinimum(1)
self.widthField.setMaximum(100)
self.connect (self.widthField,
SIGNAL ("valueChanged (int) "),
self .widthChanged)

self.form = QFormLayout ()
self.form.addRow ('Length', self.lengthField)
self.form.addRow ('Width', self.widthField)

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

self.setLayout (self.form)

def setSymbolLayer (self, layer):
if layer.layerType() == "Cross":
self.layer = layer
self.lengthField.setValue (layer.length)
self.widthField.setValue (layer.width)

def symbolLayer (self) :
return self.layer

def lengthChanged(self, n):
self.layer.length = n
self.emit (SIGNAL ("changed () "))

def widthChanged(self, n):
self.layer.width = n
self.emit (SIGNAL ("changed () "))

We define the contents of our widget using the standard __init_ ()
initializer. As you can see, we define two fields, lengthField and
widthField, which let the user change the length and width properties
respectively for our symbol layer.

The setSymbolLayer () method tells the widget which ggsSymbolLayerv2
object to use, while the symbolLayer () method returns the
QgsSymbolLayerV2 object this widget is editing. Finally, the two
XXXChanged () methods are called when the user changes the value of the
fields, allowing us to update the symbol layer's properties to match the
value set by the user.

Finally, you will need to register your symbol layer. To do this, create

a subclass of QgsSymbolLayerV2AbstractMetadata and pass it to the
QgsSymbolLayerV2Registry object's addSymbolLayerType () method. Here
is an example implementation of the metadata for our CrossSymbolLayer
class, along with the code to register it within QGIS:

class CrossSymbolLayerMetadata (QgsSymbolLayerV2AbstractMetadata) :
def init (self):
QgsSymbolLayerV2AbstractMetadata. init (self, "Cross",
"Cross marker", QgsSymbolV2.Marker)

def createSymbollayer (self, properties):
if "length" in properties:

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

length
else:
length = 10
if "width" in properties:

int (properties['length'])

width = int (properties['width'])
else:

width = 2
return CrossSymbolLayer (length, width)

def createSymbolLayerWidget (self, layer):
return CrossSymbolLayerWidget ()

registry = QgsSymbolLayerV2Registry.instance ()
registry.addSymbolLayerType (CrossSymbolLayerMetadata ())

Note that the parameters for the QgsSymbolLayerV2AbstractMetadata. _init
() method are as follows:

* name: The unique name for the symbol layer, which must match the name
returned by the symbol layer's 1layerType () method.

* visibleName: A display name for this symbol layer, as shown to the user
within the Layer Properties window.

* type: The type of symbol that this symbol layer will be used for.

The createsymbolLayer () method is used to restore the symbol layer based on
the properties stored in the QGIS project file when the project was saved. The
createSymbolLayerWidget () method is called to create the user interface widget
that lets the user view and edit the symbol layer's properties.

Implementing renderers in Python

If you need to choose symbols based on more complicated criteria than the built-in
renderers will provide, you can write your own custom QgsFeatureRendererV2
subclass using Python. For example, the following Python code implements a simple
renderer that alternates between odd and even symbols

as point features are displayed:

class OddEvenRenderer (QgsFeatureRendererV2) :
def init (self):
QgsFeatureRendererV2. init (self, "OddEvenRenderer")
self.evenSymbol = QgsMarkerSymbolV2.createSimple ({})
self.evenSymbol.setColor (QColor ("light gray"))

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

self.oddSymbol = QgsMarkerSymbolV2.createSimple ({})
self.oddSymbol.setColor (QColor ("black"))
self.n = 0

def clone(self):
return OddEvenRenderer ()

def symbolForFeature (self, feature):
self.n = self.n + 1
if self.n % 2 == 0:
return self.evenSymbol
else:

return self.oddSymbol

def startRender (self, context, layer):
self.n = 0
self.oddSymbol.startRender (context)
self.evenSymbol.startRender (context)

def stopRender (self, context):
self.oddSymbol.stopRender (context)
self.evenSymbol.stopRender (context)

def usedAttributes (self):
return []

Using this renderer will cause the various point geometries to be displayed in
alternating colors, for example:

Let's take a closer look at how this class was implemented, and what the various
methods do:

e _ init_ ():Thisis your standard Python initializer. Notice how
we have to provide a unique name for the renderer when calling the
QgsFeatureRendererV2._ _init__ () method; this is used to keep track of
the various renderers within QGIS itself.

* clone(): This creates a copy of this renderer. If your renderer uses properties
to control how it works, this method should copy those properties into the
new renderer object.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

* symbolForFeature (): This returns the symbol to use for drawing the given
feature.

* startRender (): This gives you the opportunity to prepare your renderer and
any symbols you use before the features are rendered. Note that you must call
the startRender () method on each symbol that your renderer uses; as the
renderer can make use of multiple symbols, you need to implement this so that
your symbols are also given a chance to prepare for rendering.

* stopRender (): This finishes rendering the features. Once again, you need to
implement this so that your symbols can have a chance to clean up once the
rendering process has finished.

* usedAttributes (): This method should be implemented to return the list
of feature attributes that the renderer makes use of. If your renderer does not
use attributes to choose between the various symbols, then you do not need
to implement this method.

If you wish, you can also implement your own widget that lets the user change
the way the renderer works. This is done by subclassing QgsRendererv2widget
and setting up the widget to edit the renderer's various properties in the same
way that we implemented a subclass of QgsSymbolLayerv2widget to edit the
properties for a symbol layer. You will also need to provide metadata for your
new renderer (by subclassing QgsRenderervV2abstractMetadata) and use the
QgsRendererV2Registry object to register your new renderer. If you do this, the
user will be able to select your custom renderer for new map layers, and change
the way your renderer works by editing the renderer's properties.

Working with custom map layers

Instead of using a standard map layer with a data provider, features, symbols, and so
on, you can implement your own custom map layer entirely in Python. Custom map
layers are generally used to draw specific data that is too complicated to represent as
vector format data, or to draw special visual features such as a grid or a watermark
onto the map.

Custom map layers are implemented by subclassing the ogsPluginLayer class. The
process is actually very simple, though you will need to translate between map and
device coordinates so that the items you draw in your Python layer match up with
the features drawn in the other layers within your canvas.

Don't get confused by the name; you don't have to write a QGIS
S plugin to create your own QgsPluginLayer subclass.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let's see how we can create our own subclass of QgsPluginLayer. We're going to
create a simple grid that can appear as a layer within the map. Let's start by defining
the ogsPluginLayer subclass itself:

class GridLayer (QgsPluginlLayer) :
def init (self):
QgsPluginlLayer. init (self, "GridLayer", "Grid Layer")
self.setValid (True)

Inour __init__ () method, we give the plugin layer a unique name ("GridLayer")
and a user-visible name ("Grid Layer"), and then tell QGIS that the layer is valid.

Next, we need to set up the coordinate reference system and extent of our layer.
Since we're creating a grid that covers the entire Earth, we'll use the standard EPSG
4236 coordinate system (that is, latitude/longitude coordinates), and set the extent
of the layer to cover the entire surface of the Earth:

self.setCrs (QgsCoordinateReferenceSystem(4326))
self.setExtent (QgsRectangle(-180, 90, 180, 90))

We're now ready to define the method that draws the contents of the layer. As you
might imagine, this method is called draw (). Let's start by obtaining the gpainter
object we'll use to do the actual drawing:

def draw(self, renderContext) :
painter = renderContext.painter ()

Next, we want to find the portion of the Earth's surface that is currently visible:

extent = renderContext.extent ()

This gives us the portion of the grid that we want to draw. To make sure the grid
lines are on whole degrees of latitude and longitude, we round the extent up and
down to the nearest whole number, like this:

xMin = int (math.floor (extent.xMinimum()))

xMax = int (math.ceil (extent .xMaximum ()

yMin = int (math.floor (extent.yMinimum()))

())
())
())
yMax = int (math.ceil (extent.yMaximum()))

Next, we need to set up the painter to draw the grid lines:

pen = QPen()
pen.setColor (QColor ("light gray"))
pen.setWidth(1.0)
painter.setPen (pen)

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Now, we're almost ready to start drawing the grid. To draw the grid lines, though,
we'll need some way of translating between latitude/longitude values and pixel
coordinates on the computer screen. We'll do this using a QgsMapToPixel object,
which we can get from the rendering context:

mapToPixel = renderContext.mapToPixel ()

Now, we're finally ready to draw the grid lines. Let's start by drawing a vertical
grid line on each whole degree of longitude:

for x in range (xMin, xMax+1):
coordl = mapToPixel.transform(x, yMin)
coord2 = mapToPixel.transform(x, yMax)
painter.drawlLine (coordl.x (), coordl.y(),
coord2.x(), coord2.y())

We can then do the same for the horizontal grid lines:

for y in range(yMin, yMax+1):
coordl = mapToPixel.transform(xMin, vy)

coord2 = mapToPixel.transform(xMax, VY)
painter.drawlLine (coordl.x (), coordl.y(),
coord2.x(), coord2.y())

The last thing we need to do is tell QGIS that our layer was drawn successfully.
We do this by having our draw () method return True:

return True

This completes our implementation of the GridLayer class. If you want to use this
class within a QGIS script or plugin, you will need to register the class so that QGIS
knows about it. Fortunately, doing this is straightforward:

class GridLayerType (QgsPluginLayerType) :
def init (self):
QgsPluginLayerType. init (self, "GridLayer")

def createlayer (self) :
return GridLayer ()

registry = QgsPluginlLayerRegistry.instance()
registry.addPluginLayerType (GridLayerType ())

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

If you run this program within QGIS and add the GridLayer to your project, you'll
see the grid lines drawn on the map:

Look carefully at the preceding image; you'll see that the grid lines are drawn

in front of the polygon, but behind the circle. This is one of the main benefits of
implementing your own map layer, as opposed to using a map canvas item; you
can choose which layers appear in front or behind your custom map layer.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Creating custom map canvas items

A map canvas item is an item that is placed on top of the map canvas. Standard map
canvas items include text annotations, vertex markers, and the visual highlighting
of a feature. It is also possible to create your own custom map canvas items by
subclassing ggsMapCanvasItem. To see how this works, let's create a map canvas
item that draws a compass rose onto the map:

el e

We'll start by creating the basic QgsMapCanvasItem subclass:

class CompassRoseltem(QgsMapCanvasItem) :
def init (self, canvas):
QgsMapCanvasItem. init (self, canvas)
self.center = QgsPoint (0, 0)
self.size = 100

def setCenter(self, center):
self.center = center

def center (self):
return self.center

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

def setSize(self, size):
self.gize = size

def size(self):
return self.size

def boundingRect (self) :

return QRectF (self.center.x() - self.size/2,
self.center.y() - self.size/2,
self.center.x() + self.size/2,
self.center.y() + self.size/2)
def paint (self, painter, option, widget) :

...

As you can see, we position the compass rose onto the map canvas by defining
center and size instance variables, and provide methods to retrieve and set these
values. We also implement the required boundingRect () method, which returns
the overall bounding rectangle for the canvas item, in screen coordinates.

This leaves us with the paint () method, which does the job of drawing the compass
rose. While this method takes three parameters, the only parameter we'll be using is
the first one, which is the Qpainter object we will use to draw the compass rose.

The compass rose might look quite complicated, but the code needed to implement it
is quite straightforward. The most complicated part is figuring out the dimensions of
the "nv, s, "E", and "w" labels so that we have enough room left for the compass
rose itself. Let's start by calculating some basic information about the labels that we
are going to display:

def paint (self, painter, option, widget) :
fontSize = int (18 * self.size/100)
painter.setFont (QFont ("Times", pointSize=fontSize,
weight=75))
metrics = painter.fontMetrics()
labelSize = metrics.height ()
margin =5

We calculate the size of the font to use for the labels (in points), and then set our

painter to use a boldfaced "Times" font of that size. We then get a QFontMetrics
object that we will use to calculate the labels' dimensions, and define a hardwired
pixel margin so that we leave a gap between the label and the compass rose itself.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Next, we want to draw the two central parts of the compass rose in light gray and
black respectively. To do this, we'll use a QPainterpath object to define the area to
be filled in:

x = self.center.x()
y = self.center.y()
size = self.size - labelSize - margin

path = QPainterPath ()

path.moveTo(x, y - size * 0.23)

path.lineTo(x - size * 0.45, y - size * 0.45)
path.lineTo(x - size * 0.23, V)

path.lineTo(x - size * 0.45, y + size * 0.45)
path.lineTo(x, y + size * 0.23)

path.lineTo(x + size * 0.45, y + size * 0.45)
path.lineTo(x + size * 0.23, vy)

path.lineTo(x + size * 0.45, y - size * 0.45)

path.closeSubpath ()
painter.fillPath(path, QColor("light gray"))

path = QPainterPath ()

path.moveTo (x, y - size)

path.lineTo(x - size * 0.18, y - size * 0.18)
path.lineTo(x - size, V)

path.lineTo(x - size * 0.18, y + size * 0.18)
path.lineTo(x, y + size)

path.lineTo(x + size * 0.18, y + size * 0.18)
path.lineTo(x + size, V)

path.lineTo(x + size * 0.18, y - size * 0.18)

path.closeSubpath ()

painter.fillPath (path, QColor("black"))

Finally, we want to draw the labels at each of the four compass points:

labelX = x - metrics.width("N") /2
labelY = y - self.size + labelSize - metrics.descent ()
painter.drawText (QPoint (labelX, labelY), "N")

labelX = x - metrics.width("s") /2
labelY = y + self.size - labelSize + metrics.ascent ()
painter.drawText (QPoint (labelX, labelY), "S")

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

labelX = x - self.size + labelSize/2 - metrics.width("E") /2
labelY = y - metrics.height()/2 + metrics.ascent ()
painter.drawText (QPoint (labelX, labelY), "E")

labelX = x + self.size - labelSize/2 - metrics.width("W") /2
labelY = y - metrics.height()/2 + metrics.ascent ()
painter.drawText (QPoint (labelX, labelY), "W")

This completes the implementation of our QgsMapCanvasItem subclass. To use it,
we simply have to create and initialize a new CompassRoseItem. Here is an example
of how we can display a CompassRoseItem within the map canvas:

rose = CompassRoseItem(iface.mapCanvas())
rose.setCenter (QPointF (150, 400))
rose.setSize (80)

Your new QgsMapCanvasItem will automatically be added to the map canvas when
the object is initialized — you don't need to explicitly add it to the canvas. To remove
the compass rose from the map canvas, you can do the following;:

iface.mapCanvas () .scene () .removeltem(rose)

Note that map canvas items float above the map layers, and unfortunately, cannot
directly interact with the user —you can't intercept and respond to mouse events
using a map canvas item.

Using memory-based layers

While a map layer would normally display geospatial data taken from an external
data source such as a shapefile, a raster DEM file, or a database, it is also possible to
create geospatial features directly from your Python code. For example, imagine that
you write a program to display the halfway point along a road. This halfway point
could be represented as a QgsPoint geometry, which would be displayed on the
map using an appropriate marker symbol. Since you are calculating the point, this
isn't a feature you would want to store in a shapefile or database. Rather, the feature
is calculated and displayed when your program is run.

This is an ideal application for a memory-based layer. This type of layer stores
geospatial features in memory, allowing you to create new features on the fly
and display them within a map layer.

To create a memory-based map layer, instantiate a new QgsvectorLayer object,
just like normal. The initializer for this class looks like the following:

layer = QgsVectorLayer (path, baseName, providerLib)

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

. This is slightly simplified — there is another parameter,
% loadDefaultStyleFlag, which doesn't apply to memory-based
L layers. Fortunately, there's a default value for this parameter, so we
can ignore it.

Let's take a look at the three parameters needed to create a memory-based map layer:

* path: This string provides information that is needed to create the memory-
based layer, including the type of information that the layer will store. We
will look at this parameter in more detail shortly.

* DbaseName: This is the name used for the memory-based layer. The name can
be anything you like, though the user will see it in the QGIS layer legend.

* providerLib: This should be set to "memory" for memory-based layers.

To create a simple memory-based layer, you can do the following;:
layer = QgsVectorLayer ("Polygon", "My Layer", "memory")

This will create a memory-based layer named "My Layer", which stores polygon
features with no attributes.

The path parameter will let us do much more than simply define the type
of geometry to be stored in the layer. The path parameter has the following
overall syntax:

geometryType?key=value&key=value. ..

This URL-like syntax starts with the type of geometry, and can have any number of
key/value pairs that provide additional information about the memory layer. The
following geometry types are currently supported:

®* Point

® LineString

® Polygon

® MultiPoint

¢ MultiLineString

® MultiPolygon

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Using the key/value pairs, you can also define:

* The coordinate reference system that the layer should use. For example:
crs=IGNF:WGS84G

The coordinate reference system can be defined using a CRS authority code,
as in the preceding example, or you can specify the CRS in WKT format, for
example: crs=+proj=longlat +a=69000 +b=55000 +no_defs.

. If you don't define the coordinate reference system in this way, QGIS
% will prompt the user to select a CRS when your program is run. This
L= could be very confusing for the user, so you should always specify a
CRS when you create a memory layer.

* Attributes to store for each feature within the layer. Here is an example of
an attribute definition:

field=phone number:string

The following types of fields are currently supported:

® integer

° double
° string

You can also specify the field length and precision by listing these
in parentheses, for example, field=height:double (10,2) Or
field=name:string(50).

If you want to have multiple attributes, you simply have one field-=. ..
entry for each of the attributes you want to define.

The memory layer's data provider has an addAttributes () method,
_ which you might assume you'd use to define the attributes. However,
% the addAttributes () method only adds the attributes to the data
L provider, not the map layer, which can cause QGIS to crash. To avoid
this, it is better to define your attributes within the path when you set
up your map layer, rather than trying to add them later.

* A spatial index for this layer's features:

index=yes

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Let's use this to create a more complex memory layer that stores point geometries
using a specified coordinate reference system, a spatial index, and some attributes.
Here is how we might do this:

layer = QgsVectorLayer (

"Point?crs=EPSG:4326&field=height:double&field=name:string (255) &index=
yes", "Point Layer", "memory")

Once we've instantiated our memory layer, we can create the various features we
want to display, and then add them to the layer. The following pseudocode shows
how this is done:

provider = layer.dataProvider ()

featurel =
feature2 =

provider.addFeatures ([featurel, feature2, ...])

As you can see, we define the various features (which are instances of QgsFeature),
and then add them all at once to the memory layer. You can add the features one at
a time, of course, but it's generally more efficient to define a list of features and add
them all at once.

Let's now see how we can create a feature. We start by defining the underlying
geometry that the feature will display. There are various ways of creating
geometries, including:

* Instantiating a QgsPoint, QgsPolyLine, QgsPolygon, or related object,
and then using this to create a QgsGeometry object using one of the
QgsGeometry. fromxxX () methods. For example:

point = QgsPoint (x, V)
geometry = QgsGeometry.fromPoint (point)

* Creating a WKT-format string that represents the geometry, and then
creating the QgsGeometry object using this string. For example:

geometry = QgsGeometry.fromWkt ("POINT (10 10)")

* Creating a new QgsGeometry object out of an existing geometry by using
one of the geometry manipulation methods. For example:

new _geometry = old geometry.buffer (10)
Once we have the geometry, we're ready to create the QgsFeature object itself:

feature = QgsFeature ()
feature.setGeometry (geometry)

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Next, we want to set the attributes for this feature. Before we can do this though, we
need to tell the feature which attributes it will store. This is done in the following way:

fields = provider.fields()
feature.setFields (fields)

Finally, we can set the attribute values. For example:

feature.setAttribute ("height", 301)
feature.setAttribute ("name", "Eiffel Tower")

Putting all this together, let's build a complete example program that creates a
memory layer, populates it with a few QgspPoint features, and updates the map
canvas to show those points. Here is this example program:

layer =
QgsVectorLayer ("Point?crs=EPSG:4326&field=height:double&field
=name:string(255)", "Point Layer", "memory")

provider = layer.dataProvider ()
QgsMapLayerRegistry.instance () .addMapLayer (layer)

fields = provider.fields()
features = []

feature = QgsFeature ()

feature.setGeometry (QgsGeometry. fromWkt ("POINT (2.2945 48.8582)"))
feature.setFields (fields)

feature.setAttribute ("height", 301)

feature.setAttribute ("name", "Eiffel Tower")

features.append (feature)

feature = QgsFeature ()

feature.setGeometry (QgsGeometry. fromWkt ("POINT (0.0761 51.5081)"))
feature.setFields (fields)

feature.setAttribute ("height", 27)

feature.setAttribute ("name", "Tower of London")

features.append (feature)

feature = QgsFeature ()

feature.setGeometry (QgsGeometry. fromWkt ("POINT (10.3964
43.7231) "))

feature.setFields (fields)

feature.setAttribute ("height", 56)

feature.setAttribute ("name", "Leaning Tower of Pisa")

features.append (feature)

provider.addFeatures (features)
layer.updateExtents ()
iface.mapCanvas () .zoomToFullExtent ()

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering the QGIS Python API

Running this program from within QGIS will create a new memory-based map layer
named "Point Layer" with three features in it, which represent the location of three
famous towers in Western Europe:

To make this example useful, we would add symbols to draw the towers in a more
meaningful way, and probably also display the name and height as a label beside
each point. However, you can see how a memory layer can be used to create spatial
data from within your program and include it as a layer within the map.

Note that you aren't limited to using memory layers to represent actual geospatial
data. You could just as easily use the memory layer to display information that
doesn't represent a location. For example, you can use a memory layer to draw
arrows onto a map, or to shade certain areas of the map using a semi-transparent
polygon. Memory-based map layers are an extremely powerful tool, and one that
you will often use when writing your own programs based on QGIS.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Summary

In this chapter, we looked at many of the more advanced features of the QGIS
Python API. We learned how the various built-in symbol layers can be used to draw
geometries on the map, how to combine symbol layers in useful ways, and how to
implement your own symbol layers using Python. We then looked at writing your
own custom renderer to choose which symbol to use for each feature, and how to
create your own custom map layer using Python code. We investigated the creation
of custom map canvas items, and then saw how memory-based map layers can be
used to programmatically add features to your map.

With this, we complete our tour of the more advanced aspects of PyQGIS. In the
next chapter, we will learn how to create custom map tools that let the user select,
add, edit, and delete features within a PyQGIS application.

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing
Features in a PyQGIS
Application

When running the QGIS application, the user has a range of tools available to create
and manipulate geospatial features. For example, the Add Feature tool lets the user
create a new feature, while the Move Feature tool and the Node tool allow the user
to move and edit existing geospatial features. However, these tools are only available
within QGIS itself —if you want to write an external application on top of the
PyQGIS library, these built-in tools aren't available, and you will have to implement
these features yourself.

In this chapter, we will look at what is involved in adding functionality to a PyQGIS
application so that the user can select and edit geospatial features. In particular,
we will examine:

* How to work with selections

* How the layer editing mode can be used to save or undo the changes
the user has made to a map layer

* How to create map tools that will allow the user to add and edit
Point geometries

* How to let the user remove a geometry from a map layer

* How to implement custom map tools that allow the user to add
LineString and Polygon geometries to a map layer

* How to let the user edit a LineString or Polygon geometry

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Working with selections

The vector layer class, QgsvectorLayer, includes support for keeping track of the
user's current selection. Doing this is relatively straightforward: there are methods
that set and alter the selection, as well as retrieve the selected features. When features
are selected, they are visually highlighted on the screen so that the user can see what
has been selected.

\ If you create your own custom symbol layer, you will need to handle
~ the highlighting of the selected features yourself. We saw how to do
Q this in Chapter 6, Mastering the QGIS Python API, in the section titled
Implementing symbol layers in Python.

While there are several ways in which the user can select features, the most
straightforward way is to click on them. This can be implemented by using
a simple map tool, for example:

class SelectTool (QgsMapToolIdentify) :
def init (self, window) :
QgsMapToolIdentify. init (self, window.mapCanvas)
self.window = window

self.setCursor (Qt .ArrowCursor)

def canvasReleaseEvent (self, event):
found features = self.identify(event.x(), event.y(),
self.TopDownStopAtFirst,
self.VectorLayer)
if len(found features) > O0:
layer = found features[0] .mLayer
feature = found features[0] .mFeature

if event.modifiers() & Qt.ShiftModifier:
layer.select (feature.id())
else:
layer.setSelectedFeatures ([feature.id()])
else:
self.window.layer.removeSelection ()

This is very similar to the ExploreTool we implemented in the previous chapter
as part of the Lex application. The only difference is that, instead of displaying
information about the clicked-on feature, we tell the map layer to select it.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Note that we check to see if the Shift key is held down. If so, the clicked-on feature is
added to the current selection; otherwise, the current selection will be replaced with
the newly selected feature. Also, if the user clicks on the background of the map, the
current selection will be removed. These are all standard user interface conventions

the user will be familiar with.

Once we have a selection, it is quite straightforward to get the selected features from
the map layer. For example:

if layer.selectedFeatureCount () == 0:
QMessageBox.information(self, "Info",
"There is nothing selected.")
else:
msg = []

msg.append ("Selected Features:")
for feature in layer.selectedFeatures() :

msg.append (" " + feature.attribute ("NAME"))
QMessageBox.information (self, "Info", "\n".join (msg))

If you want to see all this in action, you can download and run the SelectionExplorer
program, which is included in the sample code of this chapter.

Using the layer editing mode

To let the user change the contents of a map layer, you first have to turn on the
editing mode for that layer. The layer editing mode is similar to the way transactions
are handled in a database:

Start Editing
A

y

Change a
Feature

.

Yes

Commit Changes Rollback Changes
Finish Editing

[161]

Changes?

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

The changes you make to the layer are held in memory until you decide to either
commit the changes to the layer, or roll back the changes to discard them. The
following pseudocode is an example of how to implement this using PyQGIS:

layer.startEditing()
...make changes...

if modified:
reply = QMessageBox.question (window, "Confirm",
"Save changes to layer?",
QMessageBox.Yes | QMessageBox.No,
QMessageBox.Yes)
if reply == QMessageBox.Yes:
layer.commitChanges ()
else:
line.rollBack()
else:
layer.rollBack ()

As you can see, we turn on the editing mode for a given map layer by calling layer.
startEditing (). As well as set up an internal editing buffer to hold the changes you
make, this tells the layer to visually highlight the layer's features by drawing small
vertex markers on each of the vertices, as shown in the following image:

We then allow the user to make changes to the layer's features. We will learn how
this is done in the following sections of this chapter. When the user turns off the
editing mode, we check whether any changes have been made, and if so, display a
confirmation message box to the user. Depending on the user's response, we either
save the changes by calling 1ayer.commitChanges () or discard them by calling
layer.rollBack().

Both commitChanges () and rollBack () turn off the editing mode, hiding the vertex
markers and erasing the contents of the editing buffer.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

When you use the layer's editing mode, you must use the various
methods in QgsVectorLayer to modify the features, rather than
using the equivalent methods in the data provider. For example, you
should call layer.addFeature (feature) instead of layer.
dataProvider () .addFeatures ([feature]).
A

The layer's editing methods only work when the layer is in the editing
mode. These methods add the changes to the internal editing buffer so
that they can be committed or rolled back at the appropriate time. If
you make your changes directly to the data provider, you will bypass
the editing buffer, so the rollback feature won't work.

Now that we have seen the overall process used to edit the contents of a map layer,
let's create some map tools that will let the user add and edit geospatial data.

Adding Points

The following map tool allows the user to add a new Point feature to the given layer:

class AddPointTool (QgsMapTool) :

def init (self, canvas, layer):
QgsMapTool. init (self, canvas)
self.canvas = canvas
self.layer = layer

self.setCursor (Qt.CrossCursor)

def canvasReleaseEvent (self, event):
point = self.tolLayerCoordinates (self.layer, event.pos())

feature = QgsFeature ()

feature.setGeometry (QgsGeometry.fromPoint (point))
self.layer.addFeature (feature)
self.layer.updateExtents ()

As you can see, this straightforward map tool sets the mouse cursor to a cross shape,
and when the user releases the mouse over the map canvas, a new QgsGeometry
object is created that represents a point at the current mouse position. This point

is then added to the layer using layer.addFeature (), and the layer's extent is
updated in case the newly added point is outside the layer's current extent.

Of course, this map tool is only a starting point—you would typically add code to
set the feature's attributes and to notify the application that a point has been added.
However, as you can see, allowing the user to create a new Point feature is quite
straightforward.

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Editing Points

Editing a Point feature is also quite straightforward: since the geometry consists of
only one point, the user can simply click-and-drag to move the point around within
the map layer. The following is a map tool that implements this behavior:

class MovePointTool (QgsMapToolIdentify) :
def init (self, mapCanvas, layer):
QgsMapToolIdentify. init (self, mapCanvas)
self.setCursor (Qt.CrossCursor)
self.layer = layer
self.dragging = False
self.feature = None

def canvasPressEvent (self, event) :
found features = self.identify(event.x(), event.y(),
[self.layer],
self.TopDownAll)
if len(found features) > O0:
self.dragging = True
self.feature = found features[0] .mFeature
else:
self.dragging = False
self.feature = None

def canvasMoveEvent (self, event) :
if self.dragging:
point = self.tolayerCoordinates (self.layer,
event .pos ())

geometry = QgsGeometry.fromPoint (point)

self.layer.changeGeometry (self.feature.id(), geometry)
self.canvas () .refresh()

def canvasReleaseEvent (self, event):
self.dragging = False
self.feature = None

As you can see, we subclass QgsMapToolIdentify for this map tool. This lets us use
the identify () method to find the geometry that the user clicked on, just like we
did in the SelectTool, which we implemented earlier in this chapter.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Notice that our canvasMoveEvent () method keeps track of the user's current mouse
position. It also updates the feature's geometry by calling layer.changeGeometry ()
to remember the changed mouse position as the user moves the point around. The
canvasPressEvent () enables dragging if and only if the user clicked on a Point,
and the canvasReleaseEvent () method tidies up so that the user can move another
point by clicking on it.

If you are writing a standalone PyQGIS application that includes a point-based
QgsVectorLayer, you can use the AddPointTool and MovePointTool classes we
defined here to allow the user to add and edit Point features within your vector
layer. The only thing missing (for Point geometries) is the ability to remove points.
Let's implement this now.

Deleting Points and other features

Fortunately, the code required to delete a Point feature will also work for other
types of geometries, so we don't need to implement separate DeletePointTool,
DeleteLineTool, and DeletePolygonTool classes. Instead, we only need a generic
DeleteTool. The following code implements this map tool:

class DeleteTool (QgsMapToolIdentify) :
def init (self, mapCanvas, layer):
QgsMapToolIdentify. init (self, mapCanvas)
self.setCursor (Qt.CrossCursor)
self.layer = layer
self.feature = None

def canvasPressEvent (self, event):
found features = self.identify(event.x(), event.y(),
[self.layer],
self.TopDownAll)
if len(found features) > O0:
self.feature = found features[0] .mFeature
else:
self.feature = None

def canvasReleaseEvent (self, event):
found features = self.identify(event.x(), event.y(),
[self.layer],
self.TopDownAll)
if len(found features) > O0:
if self.feature.id() == found features[0] .mFeature.id() :
self.layer.deleteFeature (self.feature.id())

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Once again, we are using the QgsMapToolIdentify class to let us quickly

find the feature the user clicked on. We use the canvasPressEvent () and
canvasReleaseEvent () methods to ensure that the user clicked and released

the mouse over the same feature; this ensures that the map tool works in a more
user-friendly way than simply deleting the feature when the user clicks on it. If both
the mouse click and the mouse release were over the same feature, we would delete it.

With the help of these map tools, it is quite straightforward to implement a PyQGIS
application that allows the user to add, edit, and delete Point features within a map
layer. These, however, are the "low hanging fruit" — our next task, where we have to
let the user add and edit LineString and Polygon geometries, is more complex.

Adding lines and polygons

To add a LineString or a Polygon geometry, the user will draw the desired shape by
clicking on each vertex in turn. Appropriate feedback will be displayed as the user
clicks on each vertex. For example, a LineString geometry would be displayed in the
following way:

S anls

To draw the outline of a Polygon geometry, the user will once again click on each
vertex in turn. This time, however, the polygon itself will be displayed to make the
resulting shape clear, as the following image shows:

My ™

_—

In both cases, the basic logic of clicking on each vertex and displaying appropriate
feedback is the same.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

QGIS includes a map tool named QgsMapToolCapture, which handles exactly
this behavior: it allows the user to draw a LineString or the outline of a Polygon
geometry by clicking on each vertex in turn. Unfortunately, QgsMapToolCapture
is not available as part of the PyQGIS library, so we will have to re-implement it
ourselves using Python.

Let's start by looking at the design of our QgsMapToolCapture port, which we will
call captureTool. This will be a standard map tool, derived from QgsMapTool,
which makes use of QgsRubberBand objects to draw the visual highlighting of the
LineString or Polygon as it is drawn.

A QgsRubberBand is a map canvas item that draws a geometry on top of the map.
Since a rubber band draws its entire geometry in a single color and style, we have to
use two rubber bands in our capture tool: one that draws the already captured part
of the geometry and a second temporary rubber band that extends the geometry out
to the current mouse position. The following illustration shows how this works for
both LineString and Polygon geometries:

.

Sy

% %

Main Rubber Band + Temporary Rubber Band Visual Effect

Visual Effect

Main Rubber Band + Temporary Rubber Band

Here are some additional features that we will include in CaptureTool:
* It will have a capture mode that indicates whether the user is creating
a LineString or a Polygon geometry.

* The user can press the Backspace or Delete key to remove the last
vertex added.

* The user can press the Enter or Return key to finish the capturing process.

* If we are capturing a Polygon, the geometry will be closed when the user
finishes capturing. This means that we add an extra point to the geometry
so that the outline begins and ends at the same point.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

* When the user finishes capturing a geometry, the geometry will be added
to the layer, and a callback function will be used to tell the application that
a new geometry has been added.

Now that we know what we're doing, let's start implementing the CaptureTool
class. The first part of our class definition will look like the following:

class CaptureTool (QgsMapTool) :
CAPTURE_LINE 1
CAPTURE_POLYGON 2

def init (self, canvas, layer, onGeometryAdded,
captureMode) :

QgsMapTool. init (self, canvas)
self.canvas = canvas
self.layer = layer
self.onGeometryAdded = onGeometryAdded
self.captureMode = captureMode
self.rubberBand = None
self.tempRubberBand = None

self.capturedPoints = []
self.capturing = False
self.setCursor (Qt.CrossCursor)

At the top of our class, we define two constants, CAPTURE_LINE and CAPTURE_
POLYGON, which define the available capture modes. We then have the class
initializer, which will accept the following parameters:

* canvas: This is the QgsMapCanvas this map tool will be part of.
* layer: This is the QgsVectorLayer the geometry will be added to.

* onGeometryAdded: This is a Python-callable object (that is, a method
or function) that will be called when a new geometry has been added
to the map layer.

* captureMode: This indicates whether we are capturing a LineString
or a Polygon geometry.

We then set the various instance variables to their initial state, and tell the map
tool to use a cross cursor, which makes it easier for the user to see exactly where
they are clicking.

Our next task is to implement the various xxxEvent () methods to respond to
the user's actions. We'll start with canvasReleaseEvent (), which responds to

a left-click by adding a new vertex to the geometry, and to a right-click by
finishing off the capture process and then adding the geometry to the map layer.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

_ Weimplement this behavior in the canvasReleaseEvent () method,
% rather than canvasPressEvent (), because we want the vertex to be
/> added when the user releases the mouse button, rather than when they
initially press it.

Here is the implementation of the canvasReleaseEvent () method. Note that we
make use of several helper methods, which we will define shortly:

def canvasReleaseEvent (self, event):
if event.button() == Qt.LeftButton:
if not self.capturing:
self.startCapturing()
self.addVertex (event.pos())
elif event.button() == Qt.RightButton:
points = self.getCapturedGeometry ()
self.stopCapturing ()
if points != None:
self.geometryCaptured (points)

Next, we have the canvasMoveEvent () method, which responds to the action of the
user moving the mouse by updating the temporary rubber band to reflect the current
mouse position:

def canvasMoveEvent (self, event):
if self.tempRubberBand != None and self.capturing:
mapPt, layerPt = self.transformCoordinates (event.pos())
self.tempRubberBand.movePoint (mapPt)

The interesting part here is the call to tempRubberBand.movePoint (). The
QgsRubberBand class works in map coordinates, so we first have to convert from

the current mouse position, which is in pixels, to map coordinates. We then call
movePoint (), which moves the current vertex in the rubber band to the new position.

There is one more event handling method to define: onkeyEvent (). This responds to
the user pressing the Backspace or Delete keys by removing the last added vertex, and

to the user pressing Return or Enter by closing and saving the current geometry. Here
is the code for this method:

def keyPressEvent (self, event):
if event.key() == Qt.Key Backspace or \
event.key () == Qt.Key Delete:
self.removeLastVertex()
event .ignore ()

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

if event.key() == Qt.Key Return or event.key() ==
Qt .Key Enter:

points = self.getCapturedGeometry ()
self.stopCapturing ()
if points != None:

self .geometryCaptured (points)

Now that we've defined our event handling methods, let's now define the
various helper methods that these event handlers rely on. We'll start with the
transformCoordinates () method, which converts from a mouse position,
which is in canvas coordinates, to map and layer coordinates:

def transformCoordinates (self, canvasPt) :
return (self.toMapCoordinates (canvasPt),
self.tolLayerCoordinates (self.layer, canvasPt))

If, for example, the mouse is currently at position (17,53) on the canvas, this may
translate to a map and layer coordinate of 1at=37.234 and long=-112.472. As the
map and layer might use different coordinate reference systems, we calculate and
return the coordinates for both.

Let's now define the startCapturing () method, which prepares our two rubber
bands and sets self.capturing to True, so we know that we are currently
capturing a geometry:

def startCapturing(self):
color = QColor ("red")
color.setAlphaF (0.78)

self.rubberBand = QgsRubberBand (self.canvas,

self.bandType())
self.rubberBand.setWidth(2)
self.rubberBand.setColor (color)
self.rubberBand.show ()

self.tempRubberBand = QgsRubberBand(self.canvas,
self .bandType())
self.tempRubberBand.setWidth (2)
self.tempRubberBand.setColor (color)
self.tempRubberBand.setLineStyle (Qt . .DotLine)
self.tempRubberBand. show ()

self.capturing = True

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Notice that we use another helper method, bandType (), to decide on the type of
geometry that the rubber band should draw. Let's define that method now:

def bandType (self) :
if self.captureMode == CaptureTool.CAPTURE POLYGON:
return QGis.Polygon
else:

return QGis.Line

Next up is the stopCapturing () method, which removes our two rubber bands
from the map canvas, resets our instance variables back to their initial state, and tells
the map canvas to refresh itself so that the rubber bands are hidden:

def stopCapturing(self):

if self.rubberBand:
self.canvas.scene () .removeltem(self.rubberBand)
self.rubberBand = None

if self.tempRubberBand:
self.canvas.scene () .removeltem(self.tempRubberBand)
self.tempRubberBand = None

self.capturing = False

self.capturedPoints = []

self.canvas.refresh ()

We now come to the addvertex () method. This adds a new vertex to the current
geometry at the clicked-on mouse position, and updates the rubber bands to match:

def addvVertex(self, canvasPoint):
mapPt, layerPt = self.transformCoordinates (canvasPoint)

self.rubberBand.addPoint (mapPt)
self.capturedPoints.append (layerPt)

self.tempRubberBand.reset (self.bandType())

if self.captureMode == CaptureTool.CAPTURE LINE:
self.tempRubberBand.addPoint (mapPt)
elif self.captureMode == CaptureTool.CAPTURE POLYGON:

firstPoint = self.rubberBand.getPoint (0, 0)
self.tempRubberBand.addPoint (firstPoint)
self.tempRubberBand.movePoint (mapPt)
self.tempRubberBand.addPoint (mapPt)

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Note that we add the captured point to the self.capturedpoints list. This is the
list of points that will define the geometry when we finish capturing. Setting up the
temporary rubber band is a bit convoluted, but the basic idea is to define LineString
or Polygon so that it covers the currently highlighted portion of the new geometry.

Let's now define the removeLastVertex () method, which is called when the

user presses Backspace or Delete to undo their last click. This method is slightly
complicated because we have to update both rubber bands to remove the last vertex,
as well as the self.capturedPoints list:

def removelastVertex(self) :
if not self.capturing: return

bandSize = self.rubberBand.numberOfVertices ()
tempBandSize = self.tempRubberBand.numberOfVertices ()
numPoints = len(self.capturedPoints)

if bandSize < 1 or numPoints < 1:

return
self.rubberBand.removePoint (-1)

if bandSize > 1:
if tempBandSize > 1:
point = self.rubberBand.getPoint (0, bandSize-2)
self.tempRubberBand.movePoint (tempBandSize-2,
point)
else:
self.tempRubberBand.reset (self.bandType())

del self.capturedPoints[-1]

We've now defined quite a few methods for our CaptureTool. Fortunately, there are
only two methods left. Let's now define the getCapturedGeometry () method. This
method checks whether a LineString geometry has at least two points, and whether a
Polygon geometry has at least three points. It then closes the polygon and returns the
list of points that make up the captured geometry:

def getCapturedGeometry (self) :
points = self.capturedPoints
if self.captureMode == CaptureTool.CAPTURE LINE:
if len(points) < 2:
return None
if self.captureMode == CaptureTool.CAPTURE POLYGON:

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

if len(points) < 3:
return None
if self.captureMode == CaptureTool.CAPTURE POLYGON:
points.append (points[0]) # Close polygon.
return points

Finally, we have the geometryCaptured () method, which responds to the geometry
that is captured. This method creates a new geometry of the given type, adds it as a
feature to the map layer, and uses the onGeometryadded callable object passed to the
initializer of our CaptureTool, to tell the rest of the application that a new geometry
has been added to the layer:

def geometryCaptured(self, layerCoords):

if self.captureMode == CaptureTool.CAPTURE LINE:
geometry = QgsGeometry.fromPolyline (layerCoords)
elif self.captureMode == CaptureTool.CAPTURE POLYGON:

geometry = QgsGeometry.fromPolygon ([layerCoords])

feature = QgsFeature()
feature.setGeometry (geometry)
self.layer.addFeature (feature)
self.layer.updateExtents ()
self.onGeometryAdded ()

While captureTool is complicated, it is a very powerful class that allows the user
to add new lines and polygons to a map layer. There are a few features we haven't
implemented here (coordinate snapping, checking whether the resulting geometry
is valid, and adding support for inner rings that form "holes" within a polygon),
but even as is, this is a useful tool for adding new features to a map.

Editing lines and polygons

The last major functionality we will examine is the ability to edit LineString and
Polygon features. Just as the CaptureTool allowed the user to click and drag to
create new lines and polygons, we will implement EditTool, which lets the user
click and drag to move the existing feature's vertices. The following image shows
what the user will see when they use this tool to move a vertex:

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Our editing tool will also let the user add new vertices by double-clicking on
a line segment, and delete vertices by right-clicking on the same line segment.

Let's define our EditTool class:

class EditTool (QgsMapTool) :

def init (self, mapCanvas, layer, onGeometryChanged) :
QgsMapTool. init (self, mapCanvas)
self.setCursor (Qt.CrossCursor)
self.layer = layer
self.onGeometryChanged = onGeometryChanged
self .dragging = False
self.feature = None
self.vertex = None

As you can see, EditTool is a subclass of 0gsMapTool, and the initializer accepts
three parameters: the map canvas, the layer to be edited, and an onGeometryChanged
callable object, which will be called when the user makes a change to a geometry.

Next, we want to define the canvaspPressEvent () method. We'll start by identifying
the feature that the user clicked on:

def canvasPressEvent (self, event):

feature = self.findFeatureAt (event.pos())
if feature == None:
return

We'll implement the findFeatureat () method shortly. Now that we know which
feature the user clicked on, we want to identify the vertex within that feature that is
closest to the click point, and how far away from the vertex the user clicked. Here is
the relevant code:

mapPt, layerPt = self.transformCoordinates (event.pos())
geometry = feature.geometry ()

vertexCoord, vertex, prevVertex, nextVertex,distSquared = \
geometry.closestVertex (layerPt)

distance = math.sqgrt (distSquared)

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

As you can see, we're using a copy of the transformCoordinates () method
(borrowed from our CaptureTool class) to convert from canvas coordinates to map
and layer coordinates. We then use the QgsGeometry.closestVertex () method

to identify the closest vertex to the mouse click. This method returns a number of
values, including the square of the distance from the closest vertex to the mouse
position. We use the math.sqgrt () function to convert this into a regular distance
value, which will be in layer coordinates.

Now that we know how far away the mouse click was from the vertex, we have to
decide whether the distance was too much. If the user didn't click anywhere near a
vertex, we'll want to ignore the mouse click. To do this, we'll calculate a tolerance
value. The tolerance is determined by how far the click point can be from a vertex
while still considering it to be a click on that vertex. As with the distance value we
calculated earlier, the tolerance is measured in layer coordinates. We'll use a helper
method, calcTolerance (), to calculate this value. Here is the relevant code to add
at the end of our canvasPressEvent () method:

tolerance = self.calcTolerance (event.pos())
if distance > tolerance: return

As you can see, we ignore the mouse click if it is too far away from the vertex, that is,
if the distance is greater than the tolerance. Now that we know that the user did click
near the vertex, we want to respond to that mouse click. How we do this depends on
whether the user pressed the left or the right mouse button:

if event.button() == Qt.LeftButton:
Left click -> move vertex.
self.dragging = True
self.feature = feature
self.vertex = vertex
self .moveVertexTo (event.pos())
self.canvas () .refresh ()

elif event.button() == Qt.RightButton:
Right click -> delete vertex.
self.deleteVertex (feature, vertex)
self.canvas () .refresh()

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

As you can see, we're relying on a number of helper methods to do most of the work.
We'll define these methods shortly, but first, let's finish implementing our event
handling methods, starting with canvasMoveEvent (). This method responds as the
user moves the mouse over the canvas. It does this by moving the dragged vertex

(if any) to the current mouse position:

def canvasMoveEvent (self, event):
if self.dragging:
self .moveVertexTo (event.pos())
self.canvas () .refresh ()

Next, we have canvasReleaseEvent (), which moves the vertex to its final position,
refreshes the map canvas, and updates our instance variables to reflect the fact that
we are no longer dragging a vertex:

def canvasReleaseEvent (self, event):
if self.dragging:

self .moveVertexTo (event.pos())
self.layer.updateExtents ()
self.canvas () .refresh()
self.dragging = False
self.feature = None
self.vertex = None

Our final event-handling method is canvasbDoubleClickEvent (), which responds
to a double-click by adding a new vertex to the feature. This method is similar to the
canvasPressEvent () method; we have to identify the clicked-on feature, and then
identify which line segment the user double-clicked on:

def canvasDoubleClickEvent (self, event):

feature = self.findFeatureAt (event.pos())
if feature == None:
return
mapPt, layerPt = self.transformCoordinates (event.pos())
geometry = feature.geometry ()

distSquared, closestPt,beforevVertex = \
geometry.closestSegmentWithContext (layerPt)

distance = math.sqgrt (distSquared)
tolerance = self.calcTolerance (event.pos())
if distance > tolerance: return

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

As you can see, we ignore the double-click if the mouse position is too far away from
the line segment. Next, we want to add the new vertex to the geometry, and update
the map layer and the map canvas to reflect this change:

geometry.insertVertex(closestPt.x (), closestPt.y(),

beforeVertex)
self.layer.changeGeometry (feature.id (), geometry)
self.canvas () .refresh()

This completes all of the event-handling methods for our EditTool. Let's now
implement our various helper methods, starting with the findFeatureat ()
method that identifies the clicked-on feature:

def findFeatureAt (self, pos):
mapPt, layerPt = self.transformCoordinates (pos)

tolerance = self.calcTolerance (pos)
searchRect = QgsRectangle (layerPt.x() - tolerance,
layerPt.y () - tolerance,

layerPt.x() + tolerance,
layerPt.y() + tolerance)

request = QgsFeatureRequest ()
request.setFilterRect (searchRect)
request.setFlags (QgsFeatureRequest .ExactIntersect)

for feature in self.layer.getFeatures (request) :
return feature

return None

We use the tolerance value to define a search rectangle centered around the click
point, and identify the first feature that intersects that rectangle:

Search Rectangle

Tolerance

'
I
I
'
|
I
|
|
'
I
|
1
I
- f)
- -
I
I
'
|
I
I
|
I
1
|
|
I
|

Click Point

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting and Editing Features in a PyQGIS Application

Next up is the calcTolerance () method, which calculates how much distance we
can tolerate before a click is considered to be too far away from a vertex or geometry:

def calcTolerance (self, pos):
ptl = QPoint (pos.x(), pos.y())
pt2 = QPoint (pos.x() + 10, pos.y())

mapPtl, layerPtl = self.transformCoordinates (ptl)
mapPt2, layerPt2 = self.transformCoordinates (pt2)
tolerance = layerPt2.x() - layerPtl.x()

return tolerance

We calculate this by identifying two points on the map canvas that are ten pixels
apart, and converting both of these coordinates into layer coordinates. We then
return the distance between these two points, which will be the tolerance in the
layer coordinate system.

We now get to the interesting part: moving and deleting vertices. Let's start with
the method to move a vertex to a new location:

def moveVertexTo (self, pos):
geometry = self.feature.geometry ()
layerPt = self.tolayerCoordinates (self.layer, pos)
geometry.moveVertex (layerPt.x (), layerPt.y(), self.vertex)
self.layer.changeGeometry (self.feature.id (), geometry)
self.onGeometryChanged ()

As you can see, we convert the position into layer coordinates, tell the QgsGeometry
object to move the vertex to this location, and then tell the layer to save the updated
geometry. Finally, we use the onGeometryChanged callable object to tell the rest of
the application that the geometry has been changed.

Deleting a vertex is slightly more complicated, as we have to prevent the user from
deleting a vertex if there aren't enough vertices left to make a valid geometry —
LineString must have a minimum of two vertices, while a polygon must have at least
three. Here is the implementation of our deletevertex () method:

def deleteVertex(self, feature, vertex):
geometry = feature.geometry ()

if geometry.wkbType() == QGis.WKBLineString:
lineString = geometry.asPolyline()
if len(lineString) <= 2:

return

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

elif geometry.wkbType () == QGis.WKBPolygon:
polygon = geometry.asPolygon ()
exterior = polygon[0]
if len(exterior) <= 4:
return

if geometry.deleteVertex (vertex) :
self.layer.changeGeometry (feature.id (), geometry)
self.onGeometryChanged ()

Note that the polygon check has to allow for the fact that the first and last points on
the polygon's exterior are the same. This is why we check to see whether a polygon
has at least four coordinates rather than three.

This completes our implementation of the EditTool class for editing LineString and
Polygon geometries. To see this map tool in action along with the other geometry-
editing map tools we defined in this chapter, check out the GeometryEditor
program, which is included in the sample code of this chapter.

Summary

In this chapter, we learned how to write a PyQGIS application that lets the user select
and edit features. We created a map tool that uses the selection-handling methods

in QgsVectorLayer to let the user select features, and learned how to work with the
currently selected features within your program. We then looked at how the layer's
editing mode allows the user to make changes and then either commit those changes
or discard them. Finally, we created a series of map tools that allow the user to add,
edit, and delete Point, LineString, and Polygon geometries within a map layer.

Putting all these tools together, your PyQGIS application can sport a complete range
of selection- and geometry-editing features. In the final two chapters of this book, we
will use these tools together with the knowledge we gained in the previous chapters,
to build a complete standalone mapping application using Python and QGIS.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping
Application using Python
and QGIS

In this chapter, we will design and start building a complete turnkey mapping
application. While our example application might seem somewhat specialized,
the process of designing and implementing this application, and much of the
code that we use, will apply to all sorts of mapping applications

that you might like to write yourself.

Due to the complexity of the application we're creating, we will split the
implementation across two chapters. In this chapter, we will lay the groundwork
for the mapping application by:

* Designing the application

* Building the high-resolution basemap on which our vector data
will be displayed

* Implementing the overall structure of the application
* Defining the application's user interface
In the following chapter, we will implement the map tools that let the user enter

and manipulate map data, edit attributes, and calculate the shortest path between
two points.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

Introducing ForestTrails

Imagine that you work for a company responsible for developing and maintaining a
large recreational forest. People use the various access roads and purpose-built trails
in the forest for walking, biking and horse riding. Your task is to write a computer
program that lets the user create a database of access roads and trails to assist with
the ongoing maintenance of the forest. For simplicity, we will use the term track

to refer to either an access road or a trail. Each track will have the following;:

* Type: Whether the track is a walking trail, a bike trail, a horse trail,
or an access road

* Name: Not all trails and access roads are named, though some are

* Direction: Some trails and access roads are one-way, while others
can be travelled in both directions

* Status: Whether the track is currently open or closed

Since the recreational forest is continually being developed, new tracks are being
regularly added, while existing tracks are sometimes modified or even removed if
they are no longer needed. This means that you can't hardwire the set of tracks into
your program; you will need to include a track editing mode so that the user can add,
edit, and remove tracks.

A specific request you have been given is to produce a set of directions that the track
maintenance team can follow in order to go from a given starting point to any place
in the forest. To implement this, the program will have to let the user choose the
starting and ending points, and calculate and display the shortest available path
between those two points.

Designing the ForestTrails application

Based on our set of requirements, it seems clear that tracks can be represented by
LineString geometries. We will also need an appropriate basemap on which these
geometries will be displayed. This means that our application will have at least the
following two map layers:

track layer

+

basemap layer

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Since we want the data to be persistent, we will use a SpatiaLite database to hold
our track data, while the basemap is simply a GeoTIFF raster image that we load
and display.

Along with these two main map layers, we will make use of memory-based layers
to display the following temporary information on top of the map:

* The currently selected starting point
* The currently selected ending point

* The shortest available path between these two points

To keep things easier, we're going to display each of these in a separate map layer.
This means that our application is going to have a total of five map layers:

® Dbasemaplayer

®* trackLayer

® startPointLayer

® endPointLayer

® shortestPathlayer

Along with the map itself, our application will sport a toolbar and a menu bar, both
of which let the user access the various features of the system. The following actions
will be available in the toolbar and menu bar:

* Zoom in: This will let the user zoom in on the map.
* Zoom out: This lets the user zoom out.

* Pan: This is the pan mode we implemented earlier, which allows the user
to move around on the map.

* Edit: Clicking on this item will turn on the track editing mode. If we are
already in the track editing mode, clicking on it again will prompt the user
to save their changes before turning off the editing mode.

* Add track: This lets the user add a new track. Note that this item is only
available while in the track editing mode.

* Edit track: This lets the user edit an existing track. This is only enabled if
the user is in the track editing mode.

* Delete track: This lets the user delete a track. This is only available in the
track editing mode.

* Get info: This enables the Get Info map tool. When the user clicks on a track,
this tool will display the attributes for that track, and allow the user to make
changes to those attributes.

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

* Set start point: This lets the user set the current starting point for the shortest
path calculation.

* Set end point: This item lets the user click on the map to set the ending point
for the shortest path calculation.

* Find the shortest path: This displays the shortest available path between
the current starting and ending points. Clicking on this item again will hide
the path.

This gives us a good idea of what our application should look like, and how it will
work. Let's now start writing our ForestTrails program by implementing the basic
logic for the application and its main window.

Creating the application

Our application is going to be a standalone Python program built using PyQt and
the PyQGIS library. Taking the Lex application we implemented in Chapter 5, Using
QGIS in an External Application, as a starting point, let's see how we can organize the
source files for the ForestTrails system. We'll start with the following basic structure:

e 00 [forestTrails

Name &

m| CONStants.py
» | data

py| forestTrails.py

7 Makefile

m| mapTools.py
b || resources

| resources.grc

s run_lin.sh

sh| run_mac.sh

7 run_win.bat

pil ui_mainWindow. py

This is very similar to the structure we used for the Lex application, so most of this
should be familiar to you. The main difference is that we're using two subdirectories
to hold additional files. Let's take a look at what each of these files and directories
will be used for:

* constants.py: This module will hold various constants used throughout
the ForestTrails system.

* data: This is a directory that we will use to hold our raster basemap as
well as the SpatiaLite database that holds our tracks.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

* forestTrails.py: This is the main program for our application.

* Makefile: This file tells the make tool how to compile the resources.qrc
file into a resources. py module that our application can use.

* mapTools.py: This module implements our various map tools.

* resources: This is a directory where we will place our various icons and
other resources. Since we have so many icon files, it makes sense to put
these into a subdirectory rather than cluttering up the main directory with
all these files.

* resources.qgrc: This is the resource description file for our application.

* run lin.sh: This bash shell script is used to run our application
on Linux systems.

* run_mac.sh: This bash shell script is used to run our application
on Mac OS X systems.

* run_win.bat: This batch file is used to run our application on
MS Windows machines.

* ui_mainWindow.py: This Python module defines the user interface
for our main window.

Laying out the application

Let's implement the ForestTrails system one small step at a time. Create a directory
to hold the source code for the ForestTrails system, and then create the data and
resources subdirectories within it. As many of the files in the main directory are
straightforward, let's just go ahead and create the following files:

e The Makefile should look like this:
RESOURCE_FILES = resources.py

default: compile

compile: $(RESOURCE_FILES)
5.py : %.grc

pyrccd -o S@ S$<
$.py : %.ui

pyuic4 -o sS@ S$<

clean:
rm $ (RESOURCE_FILES)
rm *.pyc

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

1
‘Q Note that if your pyrcc4 command is in a nonstandard location,

you might need to modify this file so that make can find it.

e Create the resources.grc file as follows:
<RCC>

<gresource>
<file>resources/mActionZoomIn.png</file>
<file>resources/mActionZoomOut .png</file>
<file>resources/mActionPan.png</file>
<file>resources/mActionEdit.svg</file>
<file>resources/mActionAddTrack.svg</file>
<file>resources/mActionEditTrack.png</file>
<file>resources/mActionDeleteTrack.svg</file>
<file>resources/mActionGetInfo.svg</file>
<file>resources/mActionSetStartPoint.svg</file>
<file>resources/mActionSetEndPoint.svg</file>
<file>resources/mActionFindShortestPath.svg</file>
</gresource>

</RCC>

Note that we've included various image files that will be used for our toolbar
actions. All these files are in our resources subdirectory. We'll look at how
to obtain these image files shortly.

¢ The run-1lin. sh file should look like this:

#!/bin/sh

export PYTHONPATH="/path/to/ggis/build/output/python/"
export LD LIBRARY PATH="/path/to/ggis/build/output/lib/"
export QGIS PREFIX="/path/to/ggis/build/output/"

python forestTrails.py

e Similarly, run-mac. sh should contain the following:
export PYTHONPATH="$PYTHONPATH:/Applications/QGIS.app/Contents/
Resources/python"

export DYLD FRAMEWORK PATH="/Applications/QGIS.app/Contents/
Frameworks"

export QGIS PREFIX="/Applications/QGIS.app/Contents/Resources"
python forestTrails.py

e The run-win.bat file should contain:

SET OSGEO4W_ROOT=C:\0SGeo4W
SET QGIS PREFIX=%0SGEO4W ROOT%\apps\ggis

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

SET PATH=%PATHS%; $QGI S_PREFIX%\bin
SET PYTHONPATH=%QGI S_PREFIX%\python; $PYTHONPATHS%
python forestTrails.py

If your QGIS installation is in a nonstandard place, you might need to
=" modify the appropriate script so that the required libraries can be found.

Since the resources. grc file imports our various toolbar icons and makes them
available to the application, we'll want to set up those icon files. Let's do that now.

Defining the toolbar icons

There are a total of 11 toolbar actions that we will want to display icons for:

. =) " N
P >~ 0] V

mActionZoomin.png mActionZoomQOut.png mActionPan.png mActionEdit.svg

& x]

mActionAddTrack.svg mActionEditTrack.svg mActionDeleteTrack.svg mActionGetinfo.svg

o] 0

mActionSetStartPoint.svg mActionSetEndPoint.svg mActionFindShortestPath.svg

Feel free to create or download your own icons for these toolbar actions, or you can
use the icon files included in the source code provided with this chapter. The file
format isn't important, just as long as you include the right suffix in the resoures.
grc file, and in ui_mainwWindow.py when the toolbar action is initialized.

Make sure you place these files into the resources subdirectory, and run make to
build the resources.py module so that these icons are available for your application
to use.

With this groundwork done, we're ready to start defining the application code itself.
Let's start with the constants.py module.

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

The constants.py module

This module will hold various constants that we use to represent the track attribute
values; by defining them in one place, we make sure that the attribute values are
used consistently, and we don't have to remember exactly what the values are. For
example, the type attribute for the tracks layer can have the following values:

®* ROAD

® WALKING
¢ BIKE

® HORSE

Rather than hardwiring these values every time we need them, we're going to
define these values in the constants.py module. Create this module and enter
the following code into it:

TRACK_TYPE_ROAD = "ROAD"
TRACK_TYPE WALKING = "WALKING"
TRACK_TYPE_ BIKE = "BIKE"

TRACK _TYPE HORSE = "HORSE"
TRACK_DIRECTION BOTH = "BOTH"
TRACK_DIRECTION FORWARD = "FORWARD"
TRACK_DIRECTION BACKWARD = "BACKWARD"
TRACK_STATUS_OPEN = "OPEN"

TRACK STATUS_CLOSED = "CLOSED"

We'll be adding a few more constants as we go along, but this is enough to get
us started.

The forestTrails.py module

This module defines the main program for the ForestTrails application. It looks very
similar to the lex.py module we defined in Chapter 5, Using QGIS in an External
Application. Create your forestTrails.py file, and enter the following import
statements into it:

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

import os, os.path, sys

from ggis.core import *
from ggis.gui import =*
PyQt4 .QtGui import *
PyQt4 .QtCore import *

from
from
from ui mainWindow import Ui MainWindow
import resources

from constants import *
from mapTools import *

Next, we want to define the main window for our application in a class, which we
will call ForestTrailsWindow. This is where the bulk of the application code will
be implemented; this class will get quite complicated, but we're going to start easy
and just define the window itself, and have empty placeholder methods for all the
toolbar actions.

Let's define the class itself and the _init () method to initialize a new window:

class ForestTrailsWindow (QMainWindow, Ui MainWindow) :
def init (self):
OMainWindow. init (self)

self.setupUi (self)

self.connect (self.actionQuit, SIGNAL("triggered()"),
self.quit)

self.connect (self.actionZoomIn, SIGNAL("triggered()"),
self.zoomlIn)

self.connect (self.actionZoomOut, SIGNAL("triggered()"),
self.zoomOut)

self.connect (self.actionPan, SIGNAL("triggered()"),
self.setPanMode)

self.connect (self.actionEdit, SIGNAL("triggered()"),
self.setEditMode)

self.connect (self.actionAddTrack, SIGNAL("triggered()"),
self .addTrack)

self.connect (self.actionEditTrack, SIGNAL ("triggered()"),
self.editTrack)

self.connect (self.actionDeleteTrack, SIGNAL ("triggered()"),
self.deleteTrack)

self.connect (self.actionGetInfo, SIGNAL("triggered()"),
self.getInfo)

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

self.connect (self.actionSetStartPoint,
SIGNAL ("triggered () "),
self.setStartPoint)
self.connect (self.actionSetEndPoint,
SIGNAL ("triggered () "),
self.setEndPoint)
self.connect (self.actionFindShortestPath,
SIGNAL ("triggered () "),
self.findShortestPath)

self .mapCanvas = QgsMapCanvas ()

self .mapCanvas.useImageToRender (False)
self .mapCanvas.setCanvasColor (Qt .white)
self .mapCanvas.show ()

layout = QVBoxLayout ()
layout.setContentsMargins (0, 0, 0, 0)
layout .addWidget (self .mapCanvas)
self.centralWidget.setLayout (layout)

This is very similar to the __init__ () method for the Lex application; we'll
define the Ui_MainWindow class in the ui_mainWindow.py module to set up the
application's user interface. This is where all those actionxXx instance variables
will be defined. Inour __init__ () method, we're connecting these actions to
various methods, which will respond when the user selects the action from the
toolbar or menu bar.

The rest of the init_ () method simply sets up a map canvas and lays it out
within the window. With this method behind us, we can now define all those
action-handling methods. We can borrow two of these directly from lex.py:

def zoomIn(self) :
self .mapCanvas.zoomlIn ()

def zoomOut (self) :
self .mapCanvas.zoomOut ()

For the rest, we'll hold off on implementing them until the application is a bit more
complete. To allow our program to run, we'll set up empty placeholder methods for
the remaining action handlers:

def quit(self):
pass

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

def

def

def

def

def

def

def

def

def

setPanMode (self) :
pass

setEditMode (self) :
pass

addTrack (self) :
pass

editTrack (self) :
pass

deleteTrack (self) :
pass

getInfo(self) :
pass

setStartingPoint (self) :

pass

setEndingPoint (self) :
pass

findShortestPath (self) :

pass

The last part of the forestTrails.py module is the main () function, which is called

when the program is run:

def main() :

QgsApplication.setPrefixPath(os.environ['QGIS PREFIX'], True)

QgsApplication.initQgis ()

app = QApplication (sys.argv)

window = ForestTrailsWindow ()

window. show ()
window.raise ()

window. setPanMode ()

app.exec_ ()

app.deletelater ()

QgsApplication.exitQgis ()

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

if name == " main ":
main ()

Once again, this is almost identical to the code we saw earlier in the Lex application.

This completes our initial implementation of the forestTrails.py module. Our
next step is to create the module that will hold all our map tools.

The mapTools.py module

We used mapTools.py in the Lex application to define our various map tools
separately from the main program. We're going to do the same here. For now,
though, our mapTools.py module is almost empty:

from ggis.core import *
from ggis.gui import *
from PyQt4.QtGui import *
from PyQt4.QtCore import *
from constants import *

Obviously, we'll be adding to this as we start to implement our various map tools,
but for now, this is enough.

The ui_mainWindow.py module

This is the last module we need to define for our initial implementation of the
ForestTrails system. As in the Lex application, this module defines a Ui_MainwWindow
class, which implements the application's user interface, and defines Qaction objects
for the various menu and toolbar items. We'll start by importing the modules that
our class will need:

from PyQt4.QtGui import *
from PyQt4.QtCore import =*
import resources

Next, we'll define the Ui MainWindow class and the setupui () method that will do
all the work:

class Ui_MainWindow (object) :
def setupUi (self, window) :

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The first part of the setupUi () method sets the title for the window, creates
a centralWidget instance variable to hold the map view, and initializes the
application's menus and toolbar:

window.setWindowTitle ("Forest Trails")

self.centralWidget = QWidget (window)
self.centralWidget.setMinimumSize (800, 400)
window. setCentralWidget (self.centralWidget)

self .menubar = window.menuBar ()

self.fileMenu = self.menubar.addMenu ("File")
self .mapMenu = self.menubar.addMenu("Map")
self.editMenu = self.menubar.addMenu ("Edit")
self.toolsMenu = self.menubar.addMenu ("Tools")

self.toolBar = QToolBar (window)
window.addToolBar (Qt . TopToolBarArea, self.toolBar)

Next, we want to define all the Qaction objects for the various toolbar and menu
items. For each action, we'll define the action's icon and keyboard shortcut,
and check whether or not the action is checkable (that is, stays on when the user

clicks on it):

self.actionQuit = QAction("Quit", window)
self.actionQuit.setShortcut (QKeySequence.Quit)

icon = QIcon(":/resources/mActionZoomIn.png")
self.actionZoomIn = QAction(icon, "Zoom In", window)
self.actionZoomIn.setShortcut (QKeySequence. ZoomIn)

icon = QIcon (":/resources/mActionZoomOut.png")
self.actionZoomOut = QAction(icon, "Zoom Out", window)
self.actionZoomOut . setShortcut (QKeySequence . ZoomOut)

icon = QIcon (":/resources/mActionPan.png")
self.actionPan = QAction(icon, "Pan", window)
self.actionPan.setShortcut ("Ctrl+1")
self.actionPan.setCheckable (True)

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

icon

self.
self.
.actionkEdit.setCheckable (True)

self

icon

self.
self.
self.

icon

self.
self.
self.

icon

self.
self.
self.

icon

self.
self.
self.

icon

self.

self.

icon
self

self.

icon

self.

self.

= QIcon(":/resources/mActionEdit.svg")
actionEdit = QAction(icon, "Edit", window)
actionEdit.setShortcut ("Ctrl+2")

= QIcon(":/resources/mActionAddTrack.svg")
actionAddTrack = QAction(icon, "Add Track", window)
actionAddTrack.setShortcut ("Ctrl+A")
actionAddTrack.setCheckable (True)

= QIcon(":/resources/mActionEditTrack.png")
actionEditTrack = QAction(icon, "Edit", window)
actionEditTrack.setShortcut ("Ctrl+E")
actionEditTrack.setCheckable (True)

= QIcon(":/resources/mActionDeleteTrack.svg")
actionDeleteTrack = QAction(icon, "Delete", window)
actionDeleteTrack.setShortcut ("Ctrl+D")
actionDeleteTrack.setCheckable (True)

= QIcon(":/resources/mActionGetInfo.svg")
actionGetInfo = QAction(icon, "Get Info", window)
actionGetInfo.setShortcut ("Ctrl+I")
actionGetInfo.setCheckable (True)

= QIcon(":/resources/mActionSetStartPoint.svg")
actionSetStartPoint = QAction(

icon, "Set Start Point", window)
actionSetStartPoint.setCheckable (True)

= QIcon(":/resources/mActionSetEndPoint.svg")

.actionSetEndPoint = QAction (

icon, "Set End Point", window)
actionSetEndPoint.setCheckable (True)

= QIcon(":/resources/mActionFindShortestPath.svg")
actionFindShortestPath = QAction (

icon, "Find Shortest Path", window)
actionFindShortestPath.setCheckable (True)

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We then add the various actions to our application's menus:

self.fileMenu.addAction(self.actionQuit)

self
self
self
self

self.
self.
self.
self.

self.
self.
self.

.mapMenu.
.mapMenu.
.mapMenu.
.mapMenu.

editMenu.
editMenu.
editMenu.
editMenu.

self.
self.
self.
self.

addAction (
addAction (
addAction (
addAction (
addAction

(
(
addAction (
(

actionZoomIn)
actionZoomOut)
actionPan)
actionEdit)

addAction (self.actionAddTrack)
self.actionEditTrack)
self.actionDeleteTrack)
addAction(self.actionGetInfo)

toolsMenu.addAction(self.actionSetStartPoint)

toolsMenu.addAction (self.actionSetEndPoint)
toolsMenu.addAction (self.actionFindShortestPath)

Finally, we'll add the actions to our toolbar and tell the window to resize itself to fit

its contents:

self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.

toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.
toolBar.

addAction(self.
addAction(self.
addAction(self.
addAction(self.
addSeparator ()

addAction(self.
addAction(self.
addAction(self.
addAction(self.
addSeparator ()

addAction(self.
addAction(self.
addAction(self.

actionZoomIn)
actionZoomOut)
actionPan)
actionEdit)

actionAddTrack)
actionEditTrack)
actionDeleteTrack)
actionGetInfo)

actionSetStartPoint)
actionSetEndPoint)
actionFindShortestPath)

window.resize (window.sizeHint ())

This completes our implementation of the ui_mainwWindow.py module. We now have
a complete mini application that should be able to run. Let's try it out.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

Running the application

Now that you've entered all this code, it's time to check whether it works. Let's
try to run the application using the appropriate startup script. Open a terminal or
command-line window, navigate into the forestTrails directory, and run the
appropriate startup script.

If all goes well, you should see the application's main window along with the
toolbar and menu items:

806 Forest Trails

& o v o o

Of course, the main window's map view is empty, and none of the toolbar or menu
items do anything yet, but at least we have a working framework for our application.
Our next steps are to obtain the basemap for our application, set up our map layers,
and then start implementing the various toolbar and menu bar items.

Obtaining the basemap

To follow through this section of the chapter, you are going to need access to the
GDAL command-line tools. GDAL is probably already installed on your computer, as
QGIS makes use of it. If you don't already have GDAL installed, go to www.gdal.org
and click on the Downloads link to download and install a copy onto your machine.

One of the challenges of writing a mapping application is to obtain a high-quality
basemap on top of which your geospatial data will be displayed. In our case, we
want our basemap to show an aerial photograph of the forest. We're going to use the
Whakarewarewa Forest in Rotorua, New Zealand, for our ForestTrails application.
Fortunately, suitable aerial photographs are available from the Land Information New
Zealand website.

[196]

www.it-ebooks.info

www.gdal.org
http://www.it-ebooks.info/

Chapter 8

Go to the following web page, which provides high-resolution aerial photos for the
Bay of Plenty, New Zealand:

https://data.linz.govt.nz/layer/1760-bay-of-plenty-025m-rural-aerial-
photos-2011-2012/

We want to download a basemap that covers the Whakarewarewa forest, which is
just south of the city of Rotorua. In the map on the right-hand side of the page, pan
and zoom until the following area of the map is visible:

The dark circular area in the center of the map is Lake Rotorua. Zoom in further and
pan down to the area just south of Rotorua:

[197]

www.it-ebooks.info

https://data.linz.govt.nz/layer/1760-bay-of-plenty-025m-rural-aerial-photos-2011-2012/
https://data.linz.govt.nz/layer/1760-bay-of-plenty-025m-rural-aerial-photos-2011-2012/
http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

This map shows the Whakarewarewa forest image we want to download. Next, click
on the crop tool (ﬂ) in the upper right-hand corner and select the following area of
the map:

A crop area has been set. Redraw Crop

BoxCrop | RegionCrop | %

With the appropriate area of the map selected, click on the "Download or Order"
link in the upper right-hand corner. The window that appears gives you the option
to download the basemap. Make sure you select the following options:

* Map Projection will be NZGD2000

* Image format will be TIFF in the original resolution

You will need to register to download the file, but the registration
L process only takes a few seconds, and it doesn't cost anything.

The resulting download should be about 2.8 GB, just under the 3 GB limit for
file downloads from this site. If it's too big, you'll have to select a smaller area
to download.

Once you've downloaded the file, you will end up with a ZIP archive that contains
a number of TIFF format raster image files. Next, we need to combine these images
into a single . tif file for our basemap. To do this, we'll use the gdal_merge.py
command that comes with GDAL:

gdal merge.py -o /dst/path/basemap.tif *.tif

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Choose an appropriate destination for the basemap . tif file (by replacing /dst/
path with a sensible location, for example, the path to your desktop). If the current
directory is not set to the folder that contains the downloaded . tif files, you'll need
to also specify the source path in the command.

It will take a while for this command to stitch together the various images, but

the result should be a single large file named basemap. tif. This is a TIFF-format
raster image that contains the aerial photograph you selected, geo referenced to the
appropriate portion of the Earth's surface.

Unfortunately, we can't use this file directly. To see why, run the gdalinfo
command on the downloaded file:

gdalinfo basemap.tif

Among other things, this tells us which coordinate reference system the file is using;:

Coordinate System is:
PROJCS ["NZGD2000 / New Zealand Transverse Mercator 2000",
GEOGCS ["NZGD2000™",
DATUM ["New Zealand Geodetic Datum 2000",
SPHEROID["GRS 1980",6378137,298.2572221010002,
AUTHORITY ["EPSG","7019"]1,
AUTHORITY ["EPSG","6167"]11,
PRIMEM ["Greenwich", 0],
UNIT ["degree",0.0174532925199433],
AUTHORITY ["EPSG", "4167"]11,

As you can see, the downloaded basemap uses the New Zealand Transverse
Mercator 2000 coordinate system. We need to translate this into the WGS84
(geographic latitude/longitude coordinate) coordinate system so that we can use it
in the ForestTrails program. To do this, we'll use the gdalwarp command, like this:

gdalwarp -t srs EPSG:4326 basemap.tif basemap wgs84.tif

If you look at the resulting image using gdalinfo, you'll see that it has been
converted into the lat/long coordinate system:

Coordinate System is:
GEOGCS ["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84" ,6378137,298.257223563,
AUTHORITY ["EPSG","7030"]1,
AUTHORITY ["EPSG", "6326"]1,
PRIMEM ["Greenwich", 0],

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

UNIT["degree",0.0174532925199433],
AUTHORITY ["EPSG", "4326"]]

You might wonder why we didn't download the file directly in the
/ WGS84 coordinate system. We downloaded the file in its original CRS
% because this gives us more control over the final image. Reprojecting the
image ourselves also makes it easier to see how the image was changed
when it was reprojected.

So far, so good. However, if we look at the resulting image, we'll see another problem:

The translation from NZGD2000 into WGS84 rotated the basemap slightly, so the
borders of the map don't look good. Now, we need to trim the map to get rid of the
unwanted borders. To do this, we'll use the gdal_warp command again, this time
with a target extent:

gdalwarp -te 176.241 -38.2333 176.325 -38.1557 basemap wgs84.tif
basemap trimmed.tif

You might need to adjust the lat/long values if you have selected

~ slightly different bounds when downloading the basemap. The corner
Q coordinate values displayed by gdalinfo will give you a clue as to

what values have to be used.

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The resulting file is a good raster basemap for us to use for our ForestTrails program:

Copy the final image into your forestTrails/data directory and rename it back

to basemap.tif.

Defining the

map layers

We know that we want to have a total of five map layers in our application. The
basemap layer will display the basemap. tif file we just downloaded, while the track
layer will use a SpatiaLite database to store and display the track data entered by the
user. The remaining map layers will display temporary features held in memory.

Let's start by defining a new method in our forestTrails.py module to initialize
the SpatiaLite database we will use for the track layer:

def setupDatabase (self) :

cur dir = os.path.dirname(os.path.realpath(file))
dbName = os.path.join(cur dir, "data", "tracks.sqglite")
if not os.path.exists (dbName) :
fields = QgsFields()
fields.append(QgsField ("id", QVariant.Int))
fields.append(QgsField ("type", QVariant.String))
fields.append(QgsField ("name", QVariant.String))
fields.append(QgsField("direction", QVariant.String))
fields.append(QgsField("status", QVariant.String))

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

crs = QgsCoordinateReferenceSystem (4326,
QgsCoordinateReferenceSystem.EpsgCrsId)

writer = QgsVectorFileWriter (dbName, 'utf-8', fields,
QGis.WKBLineString,
crs, 'SQLite',
["SPATIALITE=YES"])

if writer.hasError() != QgsVectorFileWriter.NoError:
print "Error creating tracks database!"

del writer

As you can see, we check to see whether the SpatiaLite database file exists in our
data subdirectory, and create a new database if necessary. We define the various
fields that will hold the various track attributes, and use a QgsvectorFileWriter
object to create the database.

You will also need to modify the main () function to call the setupDatabase ()
method. Add the following line to this function after the call to window.raise_():

window. setupDatabase ()

Now that we've set up our database for the track layer, we can define our various
map layers. We'll create a new method called setupMapLayers () to do this. Let's
start by defining a layers variable to hold the various map layers, and initialize our
base map layer:

def setupMapLlayers (self) :
cur dir = os.path.dirname(os.path.realpath(file))
layers = []

filename = os.path.join(cur dir, "data", "basemap.tif")
self .baselayer = QgsRasterLayer (filename, "basemap")
QgsMapLlayerRegistry.instance () .addMapLayer (self .baselayer)
layers.append (QgsMapCanvasLayer (self .baselayer))

Next, we want to set up our tracks layer. Since this is stored in a SpatiaLite database,
we have to use a QgsDataSourceURI object to connect the database to the map layer.
The following code shows how this is done:

uri = QgsDataSourceURI ()

uri.setDatabase (os.path.join(cur dir, "data",
"tracks.sqglite"))

uri.setDataSource('', 'tracks', 'GEOMETRY')

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

self.tracklLayer = QgsVectorLayer (uri.uri(), "Tracks",
"spatialite")
QgsMapLayerRegistry.instance () .addMapLayer (
self.trackLayer)
layers.append (QgsMapCanvasLayer (self . trackLayer))

We can now set up a memory-based map layer to display the shortest path:

self.shortestPathlLayer = QgsVectorLayer (
"LineString?crs=EPSG:4326",
"shortestPathLayer", "memory")

QgsMapLayerRegistry.instance () .addMapLayer (
self.shortestPathlLayer)

layers.append (QgsMapCanvasLayer (self.shortestPathLayer))

We saw how to create memory-based map layers in Chapter 6, Mastering the QGIS
Python API, so there shouldn't be any surprises here; we're simply defining the
shortest path layer to hold a LineString geometry.

Next, we want to set up another memory-based map layer to show the user's selected
starting point:

self.startPointLayer = QgsVectorLayer (
"Point?crs=EPSG:4326",
"startPointLayer", "memory")
QgsMapLayerRegistry.instance () .addMapLayer (
self.startPointLayer)
layers.append (QgsMapCanvasLayer (self.startPointLayer))

Also, we want to set another map layer for the ending point:

self.endPointLayer = QgsVectorLayer (
"Point?crs=EPSG:4326",
"endPointLayer", "memory")
QgsMapLayerRegistry.instance () .addMapLayer (
self.endPointLayer)
layers.append (QgsMapCanvasLayer (self.endPointLayer))

This completes all five of our map layers. The final part of the setupMapLayers ()
method adds these various layers to the map canvas. Note that because we defined
the map layers in back-to-front order (in other words, the first entry in layers is the
basemap, which should appear at the back), we have to reverse the layers before we
add them to the map canvas. Here is the relevant code:

layers.reverse ()
self .mapCanvas.setLayerSet (layers)
self .mapCanvas.setExtent (self.baselayer.extent ())

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

The last thing we have to do is add a call to setupMapLayers () from within
our main () function. Add the following immediately after the window.
setupDatabase () line:

window. setupMapLayers ()

Now that our map layers are set up, we can run our program again. There's no
vector data yet, but the basemap should be visible, and we can zoom in and out
using the toolbar icons:

806 Forest Trails
oK 8 /B0 e e

Defining the map renderers

Now that we have the map layers, we'll want to set up appropriate symbols

and renderers to draw the vector data onto the map. Let's start by defining a
method called setupRenderers (), which creates the renderers for our various
map layers. Our first renderer will display the track layer, where we use a
QgsRuleBasedRendererV2 object to display the tracks in different ways depending
on the type of track, whether or not the track is open, and whether it is bidirectional
or can only be used in one direction. Here is the relevant code:

def setupRenderers (self) :
root rule = QgsRuleBasedRendererV2.Rule (None)

for track type in (TRACK TYPE ROAD, TRACK TYPE WALKING,
TRACK_TYPE BIKE, TRACK TYPE HORSE) :

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

if track type == TRACK TYPE ROAD:
width = ROAD WIDTH

else:
width = TRAIL WIDTH

lineColor = "light gray"
arrowColor = "dark gray"

for track status in (TRACK STATUS OPEN,
TRACK STATUS CLOSED) :

for track direction in (TRACK DIRECTION BOTH,
TRACK DIRECTION_ FORWARD,
TRACK _DIRECTION BACKWARD) :

symbol = self.createTrackSymbol (
width, lineColor, arrowColor,
track status,track direction)

expression = ("(type='%s') and " +
"(status='%s') and " +
" (direction="'%s')") & (

track type,track status,
track direction)

rule = QgsRuleBasedRendererV2.Rule (
symbol, filterExp=expression)
root rule.appendChild(rule)

symbol = QgsLineSymbolV2.createSimple ({'color' : "black"})
rule = QgsRuleBasedRendererV2.Rule (symbol, elseRule=True)
root rule.appendChild(rule)

renderer = QgsRuleBasedRendererV2 (root rule)
self.trackLayer.setRendererV2 (renderer)

As you can see, we iterate over all the possible track types. Based on the track type,
we choose a suitable line width. We also choose a color to use for the line and the
arrowheads — for now, we're simply using the same color for every type of track. We
then iterate over all the possible status and direction values, and call a helper method
named createTrackSymbol () to create a suitable symbol for this track type, status,
and direction. We then create a QgsRuleBasedRendererV2.Rule object that uses that
symbol for those tracks with the given type, status, and direction. Finally, we define
an "else" rule for the renderer, displaying the track as a simple black line if the track
doesn't have any of the expected attribute values.

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

Our remaining map layers will use straightforward line or marker symbols to
display the shortest path, and the starting and ending points. Here's the remainder
of the setupRenderers () method, which defines these map renderers:

symbol = QgsLineSymbolV2.createSimple ({'color' : "blue"})
symbol.setWidth (ROAD WIDTH)

symbol.setOutputUnit (QgsSymbolV2.MapUnit)

renderer = QgsSingleSymbolRendererV2 (symbol)
self.shortestPathlLayer.setRendererV2 (renderer)

symbol = QgsMarkerSymbolV2.createSimple (
{'color' : "green"})
symbol.setSize (POINT SIZE)
symbol.setOutputUnit (QgsSymbolV2.MapUnit)
renderer = QgsSingleSymbolRendererV2 (symbol)
self.startPointLayer.setRendererV2 (renderer)

symbol = QgsMarkerSymbolV2.createSimple ({'color' : "red"})
symbol.setSize (POINT SIZE)

symbol.setOutputUnit (QgsSymbolV2.MapUnit)

renderer = QgsSingleSymbolRendererV2 (symbol)
self.endPointLayer.setRendererV2 (renderer)

Now that we've defined the setuprRenderers () method itself, let's modify our
main () function to call it. Add the following line immediately after the call to
setupMapLayers ():

window. setupRenderers ()

There are a few more things we need to do to finish implementing our map
renderers. Firstly, we need to define the createTracksSymbol () helper
method that we used to set up the track renderer. Add the following to your
ForestTrailsWindow class:

def createTrackSymbol (self, width, lineColor, arrowColor,
status, direction):
symbol = QgsLineSymbolV2.createSimple ({})
symbol.deleteSymbolLayer (0) # Remove default symbol layer.

symbolLayer = QgsSimpleLineSymbolLayerV2 ()

symbolLayer.setWidth (width)

symbolLayer.setWidthUnit (QgsSymbolV2.MapUnit)

symbolLayer.setColor (QColor (lineColor))

if status == TRACK STATUS CLOSED:
symbolLayer.setPenStyle (Qt .DotLine)

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

symbol . appendSymbolLayer (symbolLayer)

if direction == TRACK DIRECTION FORWARD:
registry = QgsSymbolLayerV2Registry.instance ()
markerLineMetadata = registry.symbolLayerMetadata (
"MarkerLine")
markerMetadata = registry.symbolLayerMetadata (
"SimpleMarker")

symbolLayer = markerLineMetadata.createSymbolLayer (
{rwidth': '0.26"',
'color': arrowColor,

'rotate': '1"',
'placement': 'interval',
'interval' : '20',
'offset': '0'})

subSymbol = symbolLayer.subSymbol ()
subSymbol.deleteSymbolLayer (0)
triangle = markerMetadata.createSymbolLayer (
{'name': 'filled arrowhead',
'color': arrowColor,
'color border': arrowColor,

'offset': '0,0"',

'size': '3"',

'outline width': '0.5',
'output unit': 'mapunit’,
'angle': '0'})

subSymbol . appendSymbolLayer (triangle)

symbol . appendSymbolLayer (symbolLayer)
elif direction == TRACK DIRECTION BACKWARD:
registry = QgsSymbolLayerV2Registry.instance ()
markerLineMetadata = registry.symbolLayerMetadata (
"MarkerLine")
markerMetadata

registry.symbolLayerMetadata (
"SimpleMarker")

symbolLayer = markerLineMetadata.createSymbolLayer (
{rwidth': '0.26"',
'color': arrowColor,

'rotate': '1"'",
'placement': 'interval',
'interval' : '20',
'offset': '0'})

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

subSymbol = symbolLayer.subSymbol ()
subSymbol.deleteSymbolLayer (0)
triangle = markerMetadata.createSymbolLayer (
{'name': 'filled arrowhead',
'color': arrowColor,
'color border': arrowColor,

'offset': '0,0"',

'size': '3"',

'outline width': '0.5',
'output unit': 'mapunit’,
'angle': '180'})

subSymbol . appendSymbolLayer (triangle)
symbol . appendSymbolLayer (symbolLayer)

return symbol

The complex part of this method is the code to draw an arrowhead onto the track
to indicate the track's direction. Apart from this, we simply draw a line to represent
the track using the specified color and width, and if the track is closed, we draw the
track as a dotted line.

Our final task here is to add some more entries to our constants.py module to
represent the various sizes and line widths used by our renderers. Add the following
to the end of this module:

ROAD WIDTH = 0.0001
TRAIL WIDTH = 0.00003
POINT _SIZE = 0.0004

All of these values are in map units.

Unfortunately, we can't see these renderers being used yet, as we don't have any
vector features to display, but we need to implement them now so that our code
will work when the time comes. We won't see these renderers in action until the
next chapter, when the user starts adding tracks and selecting start/end points
on the map.

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The Pan Tool

To let the user move around the map, we'll make use of the panTool class we
implemented in an earlier chapter. Add the following class definition to the
mapTools.py module:

class PanTool (QgsMapTool) :
def init_ (self, mapCanvas) :
QgsMapTool. init (self, mapCanvas)
self.setCursor (Qt.OpenHandCursor)
self.dragging = False

def canvasMoveEvent (self, event) :
if event.buttons () == Qt.LeftButton:
self.dragging = True
self.canvas () .panAction(event)

def canvasReleaseEvent (self, event):
if event.button() == Qt.LeftButton and self.dragging:
self.canvas () .panActionEnd (event.pos())
self.dragging = False

Back in our forestTrails.py module, add the following new method:

def setupMapTools (self) :
self .panTool = PanTool (self.mapCanvas)
self .panTool.setAction(self.actionPan)

This method will initialize the various map tools that our application will use; we'll
add to this method as we go along. For now, add the following to your main ()
function, after the call to window.setupRenderers ():

window. setupMapTools ()
We can now replace our dummy implementation of setPanMode () with the real thing:

def setPanMode (self) :
self .mapCanvas.setMapTool (self.panTool)

If you run your program now, you'll see that the user can now zoom in and out and
use the pan tool to move around the basemap.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

Implementing the track editing mode

Our final task for this chapter is to implement the track editing mode. We learned

in the previous chapter how we can turn on the editing mode for a map layer and
then use various map tools to let the user add, edit, and delete features. We'll start

to implement the actual map tools in Chapter 9, Completing the ForestTrails Application,
but for now, let's define our track editing mode itself.

The setEditMode () method is used to enter and leave the track editing mode.
Replace the placeholder method you defined earlier with this new implementation:

def setEditMode (self) :
if self.editing:
if self.modified:
reply = QMessageBox.question(self, "Confirm",
"Save Changes?",
QMessageBox.Yes |
QMessageBox .No,
QMessageBox.Yes)
if reply == QMessageBox.Yes:
self.trackLayer.commitChanges ()
else:
self.trackLayer.rollBack ()
else:
self.trackLayer.commitChanges ()
self.trackLayer.triggerRepaint ()
self.editing = False
self.setPanMode ()
else:
self.trackLayer.startEditing()
self.trackLayer.triggerRepaint ()
self.editing = True
self.modified = False
self.setPanMode ()
self.adjustActions ()

If the user is currently editing the tracks and has made some changes, we ask the
user whether they want to save their changes, and either commit the changes or roll
them back. If no changes have been made, we roll back (to turn off the vector layer's
editing mode) and switch back to the panning mode.

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

There are a couple of instance variables that we use here to monitor the state of our
track editing: self.editing will be set to True if we're currently editing the tracks,
and self.modified is set to True if the user has changed anything in the track layer.
We'll have to add the following to our ForestTrailsWindow.__init__ () method to
initialize these two instance variables:

self.editing = False
self.modified= False

There's another method that we haven't seen before: adjustaActions (). This method
will enable/disable and check/uncheck the various actions: depending on the
application's current state. For example, when we enter the track editing mode, our
adjustActions () method will enable the add, edit, and delete tools, and these tools
will be disabled again when the user leaves the track-editing mode.

We can't implement all of adjustActions () at the moment because we haven't yet
defined the various map tools that our application will use. For now, we'll write the
first half of this method:

def adjustActions(self):

if self.editing:
self.actionAddTrack.setEnabled (True)
self.actionEditTrack.setEnabled (True)
self.actionDeleteTrack.setEnabled (True)
self.actionGetInfo.setEnabled (True)
self.actionSetStartPoint.setEnabled (False)
self.actionSetEndPoint.setEnabled (False)
self.actionFindShortestPath.setEnabled (False)

else:
self.actionAddTrack.setEnabled (False)
self.actionEditTrack.setEnabled (False)
self.actionDeleteTrack.setEnabled (False)
self.actionGetInfo.setEnabled (False)
self.actionSetStartPoint.setEnabled (True)
self.actionSetEndPoint.setEnabled (True)
self.actionFindShortestPath.setEnabled (True)

We'll also need to add a call to adjustActions () in our main () function after the
call to setPanMode ():

window.adjustActions ()

With the track editing mode implemented, the user can click on the Edit toolbar icon
to enter the track editing mode, and click on it again to leave that mode. Of course,
we can't make any changes yet, but the code itself is in place.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Complete Mapping Application using Python and QGIS

There's one more feature we'd like to add to our application; if the user makes some
changes to the track layer and then tries to quit the application, we'd like to give
the user the chance to save their changes. To do this, we'll implement the quit ()
method, which we linked to the actionQuit action:

def quit(self):
if self.editing and self.modified:
reply = QMessageBox.question(self, "Confirm",
"Save Changes?",
QMessageBox.Yes |
QMessageBox.No |
QMessageBox.Cancel,
QMessageBox.Yes)
if reply == QMessageBox.Yes:
self.curEditedLayer.commitChanges ()
elif reply == QMessageBox.No:
self.curEditedLayer.rollBack ()

if reply != QMessageBox.Cancel:
gApp.quit ()
else:
gApp.quit ()

This is very similar to the part of the setEditMode () method that lets the user leave
the track editing mode, except that we call gapp.quit () to quit the application at the
end. We have one more method to define, which intercepts an attempt to close the
window and calls self.quit (). This prompts the user to save their changes if they
close the window while editing. Here is the definition for this method:

def closeEvent (self, event):
self.quit ()

Summary

In this chapter, we designed and started to implement a complete mapping
application for maintaining a map of tracks and roads within a recreational forest. We
implemented the application itself, defined our map layers, obtained a high-resolution
basemap for our application, and implemented zooming, panning, and the code
necessary for editing the track layer.

In the next chapter, we will round out the implementation of our ForestTrails system
by implementing the map tools to let the user add, edit, and delete tracks. We will also
implement the code for editing track attributes and finding the shortest available path
between two points.

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails
Application

In this chapter, we will complete our implementation of the ForestTrails application
that we started building in the preceding chapter. So far, our application displays the
basemap and lets the user zoom and pan across the map. We've also implemented
the track editing mode, though the user can't enter or edit track data yet.

In this chapter, we will add the following features to the ForestTrails application:

* Map tools that let the user add, edit, and delete tracks
¢ A toolbar action that lets the user view and edit the attributes for a track
e The Set Start Point and Set End Point actions

* Calculating and displaying the shortest available path between the two
selected points using a memory-based map layer

The Add Track map tool

Our first task is to let the user add a new track while in the track editing mode. This
involves defining a new map tool, which we will call AddTrackTool. Before we start
implementing the AddTrackTool class, however, we're going to create a mixin class
that provides various helper methods for our map tools. We'll call this mixin class
MapToolMixin.

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

Here is our initial implementation of the MapToolMixin class, which should be
placed near the top of your mapTools.py module:

class MapToolMixin
def setLayer(self, layer):
self.layer = layer

def transformCoordinates (self, screenPt) :
return (self.toMapCoordinates (screenPt),
self.toLayerCoordinates (self.layer, screenPt))

def calcTolerance (self, pos):
ptl = QPoint (pos.x(), pos.y())
pt2 = QPoint (pos.x() + 10, pos.y())

mapPtl, layerPtl = self.transformCoordinates (ptl)
mapPt2, layerPt2 = self.transformCoordinates (pt2)
tolerance = layerPt2.x() - layerPtl.x()

return tolerance

We've seen both the transformCoordinates () and calcTolerance () methods
before when we created the geometry editing map tools in Chapter 7, Selecting and
Editing Features in a PyQGIS Application. The only difference is that we're storing a
reference to the edited map layer so that we don't have to supply it as a parameter
each time we want to calculate the tolerance or transform coordinates.

We can now start implementing the AddTrackTool class. This is very similar to
CaptureTool we defined in Chapter 7, Selecting and Editing Features in a PyQGIS
Application, except that it only captures LineString geometries and it creates a new
track feature with default attributes when the user finishes defining the track. Here
is the class definition with the __init__ () method for our new map tool, which
should be placed in the mapTools.py module:

class AddTrackTool (QgsMapTool, MapToolMixin) :

def init (self, canvas, layer, onTrackAdded) :
QgsMapTool. init (self, canvas)
self.canvas = canvas
self.onTrackAdded = onTrackAdded
self.rubberBand = None

self.tempRubberBand = None
self.capturedPoints = []
self.capturing = False
self.setlLayer (layer)
self.setCursor (Qt.CrossCursor)

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

As you can see, our class inherits from both QgsMapTool and MapToolMixin. We also
call the setLayer () method so that our mixin knows which layer to work with. This
also makes the currently edited layer available via self.layer.

We next define the various event handling methods for our map tool:

def canvasReleaseEvent (self, event):
if event.button() == Qt.LeftButton:
if not self.capturing:
self.startCapturing()
self.addVertex (event.pos())
elif event.button() == Qt.RightButton:
points = self.getCapturedPoints ()
self.stopCapturing ()
if points != None:
self.pointsCaptured (points)

def canvasMoveEvent (self, event) :
if self.tempRubberBand != None and self.capturing:
mapPt, layerPt = self.transformCoordinates (event.pos())
self.tempRubberBand.movePoint (mapPt)

def keyPressEvent (self, event):
if event.key() == Qt.Key Backspace or \
event.key () == Qt.Key Delete:
self.removelastVertex ()
event .ignore ()

if event.key ()

= Qt.Key Return or \
= Qt.Key Enter:
points = self.getCapturedPoints ()

event .key ()

self.stopCapturing ()
if points != None:
self.pointsCaptured (points)

Once again, we've seen this logic before in the CaptureTool class. The only
difference is that we're only capturing LineString geometries, so we don't need
to worry about the capture mode.

We now get to the startCapturing () and stopCapturing () methods. These
create and release the rubber bands used by our map tool:

def startCapturing(self) :
color = QColor ("red")
color.setAlphaF (0.78)

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

self.rubberBand = QgsRubberBand(self.canvas, QGis.Line)
self.rubberBand.setWidth(2)
self.rubberBand.setColor (color)

self.rubberBand. show ()

self.tempRubberBand = QgsRubberBand (self.canvas,
QGis.Line)

self.tempRubberBand.setWidth (2)

self.tempRubberBand.setColor (color)

self.tempRubberBand.setLineStyle (Qt.DotLine)

self.tempRubberBand. show ()

self.capturing = True

def stopCapturing(self) :

if self.rubberBand:
self.canvas.scene () .removeltem(self.rubberBand)
self.rubberBand = None

if self.tempRubberBand:
self.canvas.scene () .removeltem(self.tempRubberBand)
self.tempRubberBand = None

self.capturing = False

self.capturedbPoints = []

self.canvas.refresh()

Next, we have the addvertex () method, which adds a new vertex to the track:

def addVertex(self, canvasPoint):
mapPt, layerPt = self.transformCoordinates (canvasPoint)

self.rubberBand.addPoint (mapPt)
self.capturedPoints.append (layerPt)

self.tempRubberBand.reset (QGis.Line)
self.tempRubberBand.addPoint (mapPt)

Note that we call self.transformCoordinates (), which is a method defined by
our mixin class.

Our next method is removeLastVertex (). This deletes the last added vertex when
the user presses the Delete key:

def removelastVertex(self) :
if not self.capturing: return

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

bandSize = self.rubberBand.numberOfVertices ()
tempBandSize = self.tempRubberBand.numberOfVertices()
numPoints = len(self.capturedPoints)

if bandSize < 1 or numPoints < 1:
return

self.rubberBand.removePoint (-1)

if bandSize > 1:
if tempBandSize > 1:
point = self.rubberBand.getPoint (0, bandSize-2)
self.tempRubberBand.movePoint (tempBandSize-2,
point)
else:
self.tempRubberBand.reset (QGis.Line)

del self.capturedPoints[-1]

We now define the getCapturedPoints () method, which returns either the set of
points the user clicked on or None if the user didn't click on enough points to make a
LineString:

def getCapturedPoints(self) :
points = self.capturedPoints
if len(points) < 2:
return None
else:
return points

Our final method is pointsCaptured (), which responds when the user finishes
clicking on the points for a new track. Unlike the equivalent method in captureTool,
we have to set the various attributes for the new track:

def pointsCaptured(self, points):
fields = self.layer.dataProvider () .fields()

feature = QgsFeature ()

feature.setGeometry (QgsGeometry.fromPolyline (points))
feature.setFields (fields)

feature.setAttribute ("type", TRACK_TYPE ROAD)
feature.setAttribute ("status", TRACK_STATUS OPEN)
feature.setAttribute ("direction", TRACK DIRECTION_ BOTH)

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

self.layer.addFeature (feature)
self.layer.updateExtents ()
self.onTrackAdded ()

Now that we've defined our map tool, let's update our application to use this
tool. Back in the forestTrails.py module, add the following to the end of the
setupMapTools () method:

self.addTrackTool = AddTrackTool (self.mapCanvas,
self.trackLayer,
self.onTrackAdded)

self.addTrackTool.setAction (self.actionAddTrack)

We can now define our addTrack () method as follows:

def addTrack(self) :
if self.actionAddTrack.isChecked() :
self .mapCanvas.setMapTool (self.addTrackTool)
else:
self.setPanMode ()

If the user checks the Add Track action, we activate the Add Track tool. If the user
unchecks the action by clicking on it again, we will switch back to the pan mode.

Finally, we have to define a helper method called onTrackadded (). This
method responds when the user adds a new track to our track layer. Here
is the implementation of this method:

def onTrackAdded (self):
self.modified = True
self .mapCanvas.refresh()
self.actionAddTrack.setChecked (False)
self.setPanMode ()

Testing the application

With all of this code implemented, it's time to test out our application. Run the
appropriate startup script, and zoom in slightly on the map. Then click on the
Edit action, followed by the Add Track action. All going well, you should be able
to click on the map to define the vertices of a new track. When you're done, press
the Return key to create the new track. The result should look something like the
following screenshot:

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

800 Forest Trails

i e

e

If you then click on the Edit Tracks icon again, you'll be asked if you want to save
your changes. Go ahead, and your new track should be made permanent.

Now go back to the track editing mode and try creating a second track that connects
with the first. For example:

8006 Forest Trails

T A IO

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

If you then zoom in, you'll quickly discover a major flaw in the design of our
application, as shown in the next screenshot:

806 Forest Trails

&£ 2 Wil / B 6 e e i

The tracks aren't connected together. Since the user can click anywhere on the map,
there's no way of ensuring that the tracks are connected —and if the tracks aren't
connected, the Find Shortest Path command won't work.

There are a few ways we can solve this problem, but the easiest one in this case is to
implement vertex snapping, that is, if the user clicks close to an existing vertex, we
snap the click location onto the vertex so that the various tracks are connected.

Vertex snapping

To implement vertex snapping, we're going to add some new methods to
MapToolMixin. We'll start with the findFeatureat () method. This method finds
a feature close to the click location. Here is the implementation of this method:

def findFeatureAt (self, pos, excludeFeature=None) :

mapPt, layerPt = self.transformCoordinates (pos)

tolerance = self.calcTolerance (pos)

searchRect = QgsRectangle (layerPt.x() - tolerance,
layerPt.y() - tolerance,
layerPt.x() + tolerance,
layerPt.y () + tolerance)

request = QgsFeatureRequest ()
request.setFilterRect (searchRect)
request.setFlags (QgsFeatureRequest.ExactIntersect)

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

for feature in self.layer.getFeatures (request) :

if excludeFeature != None:
if feature.id() == excludeFeature.id() :
continue

return feature

return None

As you can see, this method takes an optional excludeFeature
%j%“ parameter. This lets us exclude a given feature from the search, which
’ will be important later on.

Next up, we'll define the findvertexat () method, which identifies the vertex close
to the given click location (if any). Here is the implementation of this method:

def findVertexAt (self, feature, pos):
mapPt, layerPt = self.transformCoordinates (pos)
tolerance = self.calcTolerance (pos)

vertexCoord, vertex, prevVertex, nextVertex,distSquared = \
feature.geometry () .closestVertex (layerPt)

distance = math.sqgrt (distSquared)
if distance > tolerance:

return None
else:

return vertex

As you can see, we use the QgsGeometry.closestVertex () method to find the
vertex closest to the given position and then see if that vertex is within the tolerance
distance. If so, we return the vertex index for the clicked-on vertex; otherwise, we
return None.

Notice that this method uses the math.sqgrt () function. To be able to use this
function, you'll need to add the following near the top of the module:

import math

With these two new methods defined, we're ready to start implementing vertex
snapping. Here is the signature for the method we are going to write:

snapToNearestVertex (pos, trackLayer, excludeFeature=None)

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

In this method, pos is the click position (in canvas coordinates), trackLayer is a
reference to our track layer (which contains the features and vertices we need to
check), and excludeFeature is an optional feature to exclude when looking for
nearby vertices.

The excludeFeature parameter will be useful when we start
A editing tracks. We'll use it to stop a track from snapping to itself.

Upon completion, our method will return the coordinate of the clicked-on vertex. If
the user didn't click anywhere near a feature, or close to a vertex, then this method
will return the click position instead, converted to layer coordinates. This lets the
user click on the map canvas, away from any vertices, to draw new features, while
still snapping to an existing vertex when the user clicks on it.

Here is the implementation of our snapToNearestVertex () method:

def snapToNearestVertex(self, pos, trackLayer,
excludeFeature=None) :

mapPt, layerPt = self.transformCoordinates (pos)
feature = self.findFeatureAt (pos, excludeFeature)
if feature == None: return layerPt

vertex = self.findVertexAt (feature, pos)
if vertex == None: return layerPt

return feature.geometry () .vertexAt (vertex)

As you can see, we use our findFeatureAt () method to search for features

that are close to the given click point. If we find a feature, we then call self.
findvertexAt () to find the vertex close to where the user clicked. Finally, if we find
a vertex, we return the coordinates of that vertex. Otherwise, we return the original
click position converted to layer coordinates.

With these extensions to our mixin class, we can easily add snapping to our AddTrack
tool. All we have to do is replace our addvertex () method with the following:

def addvVertex(self, canvasPoint):
snapPt = self.snapToNearestVertex (canvasbPoint, self.layer)
mapPt = self.toMapCoordinates(self.layer, snapPt)

self.rubberBand.addPoint (mapPt)
self.capturedPoints.append (snapPt)

self.tempRubberBand.reset (QGis.Line)
self.tempRubberBand.addPoint (mapPt)

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Now that we have vertex snapping enabled, it'll be easy to ensure that our tracks are
connected. Note that we'll also use vertex snapping when we edit a track and when the
user selects the start and end points for the Shortest Available Path calculation. This is
why we've added these methods to our mixin rather than to the addTrack tool.

The Edit Track map tool

Our next task is to implement the Edit Track action. To do this, we'll take EditTool
we defined in Chapter 7, Selecting and Editing Features in a PyQGIS Application, and
modify it to work specifically with tracks. Fortunately, we only need to support
LineString geometries and can make use of our mixin class, which will simplify the
implementation of this new map tool.

Let's start by adding our new class definition to the mapTools.py module, along
with the init () method:

class EditTrackTool (QgsMapTool, MapToolMixin) :

def init (self, canvas, layer, onTrackEdited) :
QgsMapTool. init (self, canvas)
self.onTrackEdited = onTrackEdited
self .dragging = False
self.feature = None
self.vertex = None

self.setlLayer (layer)
self.setCursor (Qt.CrossCursor)

We now define our canvasPressEvent () method to respond when the user presses
the mouse button over our map canvas:

def canvasPressEvent (self, event):

feature = self.findFeatureAt (event.pos())
if feature == None:
return

vertex = self.findVertexAt (feature, event.pos())
if vertex == None: return

if event.button() == Qt.LeftButton:
Left click -> move vertex.
self.dragging = True
self.feature = feature
self.vertex = vertex
self .moveVertexTo (event.pos())
self.canvas () .refresh ()

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

elif event.button() == Qt.RightButton:
Right click -> delete vertex.
self.deleteVertex (feature, vertex)
self.canvas () .refresh()

As you can see, we're using our mixin's methods to find the clicked-on feature and
vertex. This simplifies the implementation of the canvasPressedEvent () method.

We now come to the canvasMoveEvent () and canvasReleaseEvent () methods,
which are basically identical to the methods defined in EditTool from Chapter 7,
Selecting and Editing Features in a PyQGIS Application:

def canvasMoveEvent (self, event) :
if self.dragging:
self .moveVertexTo (event.pos())
self.canvas () .refresh ()

def canvasReleaseEvent (self, event):
if self.dragging:

self .moveVertexTo (event.pos())
self.layer.updateExtents ()
self.canvas () .refresh ()
self.dragging = False
self.feature = None
self.vertex = None

Our canvasDoubleClickEvent () method is also very similar, the only difference
being that we can use the findFeatureat () method defined by our mixin class:

def canvasDoubleClickEvent (self, event):
feature = self.findFeatureAt (event.pos())
if feature == None:
return

mapPt, layerPt self.transformCoordinates (event.pos())

geometry = feature.geometry ()

distSquared, closestPt,beforeVertex = \
geometry.closestSegmentWithContext (layerPt)

distance = math.sqgrt (distSquared)
tolerance = self.calcTolerance (event.pos())
if distance > tolerance: return

geometry.insertVertex(closestPt.x (), closestPt.y(),
beforeVertex)

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

self.layer.changeGeometry (feature.id (), geometry)
self.onTrackEdited ()
self.canvas () .refresh()

We now have the movevertexTo () method, which moves the clicked-on vertex
to the current mouse location. While the logic is very similar to the method with
the same name in our EditTool, we also want to support vertex snapping so that
the user can click on an existing vertex to connect two tracks together. Here is the
implementation of this method:

def moveVertexTo(self, pos):
snappedPt = self.snapToNearestVertex(pos, self.layer,
self.feature)

geometry = self.feature.geometry ()
layerPt = self.tolayerCoordinates (self.layer, pos)

geometry.moveVertex (snappedPt.x (), snappedPt.y (),
self .vertex)
self.layer.changeGeometry (self.feature.id (), geometry)

self.onTrackEdited ()

Notice that our call to snapToNearestVertex () makes use of the excludeFeature
parameter to exclude the clicked-on feature when finding a vertex to snap to. This ensures
that we don't snap a feature to itself.

Finally, we have the deletevertex () method, which is copied almost verbatim from
the EditTool class:

def deleteVertex(self, feature, vertex):
geometry = feature.geometry ()

lineString = geometry.asPolyline ()
if len(lineString) <= 2:
return

if geometry.deleteVertex (vertex) :
self.layer.changeGeometry (feature.id (), geometry)
self.onTrackEdited ()

With this complex map tool implemented, we can now use it to let the user edit a
track. Back in the forestTrails.py module, add the following to the end of the
setupMapTools () method:

self.editTrackTool = EditTrackTool (self.mapCanvas,
self.trackLayer,

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

self.onTrackEdited)
self.editTrackTool.setAction(self.actionEditTrack)

We now want to replace our placeholder for the editTrack () method with
the following:

def editTrack (self):
if self.actionEditTrack.isChecked() :
self .mapCanvas.setMapTool (self.editTrackTool)
else:
self.setPanMode ()

As with the addTrack () method, we switch to the edit tool when the user clicks
on our action, and switch back to panning mode if the user clicks on the action a
second time.

The last thing we need to do is implement the ForestTrailsWindow.
onTrackEdited () method to respond when the user makes a change to a track.
Here is this new method:

def onTrackEdited(self) :
self.modified = True
self .mapCanvas.refresh ()

We simply need to remember that the track layer has been modified and redraw
the map canvas to show the change. Note that we don't switch back to the panning
mode, as the user will continue to make changes to the track vertices until he or she
explicitly switches off the edit tool by clicking on the toolbar icon a second time, or
by choosing a different action from the toolbar.

With this implemented, you can rerun your program, switch to track editing mode,
and click on the Edit Track action to add, move, or delete vertices. If you look
carefully, you'll see that the vertex you're dragging will snap to the vertex of another
feature when you move the mouse close to it. As with the EditTool, you can double-
click on a segment to add a new vertex, or press the Ctrl key and click on a vertex to
delete it.

The Delete Track map tool

We now want to implement the Delete Track action. Fortunately, the map tool for
doing is very simple, thanks to our mixin class. Add the following class definition
to the mapTools.py module:

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

class DeleteTrackTool (QgsMapTool, MapToolMixin) :
def init (self, canvas, layer, onTrackDeleted):
QgsMapTool. init (self, canvas)
self.onTrackDeleted = onTrackDeleted
self.feature = None
self.setlLayer (layer)
self.setCursor (Qt.CrossCursor)

def canvasPressEvent (self, event):
self.feature = self.findFeatureAt (event.pos())

def canvasReleaseEvent (self, event):
feature = self.findFeatureAt (event.pos())
if feature != None and feature.id() == self.feature.id():
self.layer.deleteFeature (self.feature.id())
self.onTrackDeleted ()

Then, back in the forestTrails.py module, add the following to the end of the
setupMapTools () method:

self.deleteTrackTool = DeleteTrackTool (
self .mapCanvas, self.trackLayer, self.onTrackDeleted)
self.deleteTrackTool.setAction(gself.actionDeleteTrack)

Then replace the dummy deleteTrack () method with the following:

def deleteTrack(self):
if self.actionDeleteTrack.isChecked() :
self .mapCanvas.setMapTool (self.deleteTrackTool)
else:
self.setPanMode ()

Finally, add a new onTrackDeleted () method to respond when the user deletes
a track:

def onTrackDeleted(self) :
self.modified = True
self .mapCanvas.refresh ()
self.actionDeleteTrack.setChecked (False)
self.setPanMode ()

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

With this map tool, we now have all of the necessary logic for adding, editing, and
deleting tracks. We now have a complete mapping application for maintaining a
database of forest trails, and you can use this program to enter as many tracks as
you want.

8006 Forest Trails
£ K B /50 e

Of course, we're not finished yet. In particular, we can't yet specify the type of track;
every track is a road at the moment. To get around this, our next task is to implement
the Get Info action.

The Get Info map tool

When the user clicks on the Get Info item in the toolbar, we will activate a custom
map tool that lets the user click on a track to display and edit the attributes for that
track. Let's walk through this implementation one step at a time, starting with the
GetInfoTool class itself. Add the following to your mapTools.py module:

class GetInfoTool (QgsMapTool, MapToolMixin) :
def init (self, canvas, layer, onGetInfo):
QgsMapTool. init (self, canvas)
self.onGetInfo = onGetInfo
self.setlLayer (layer)
self.setCursor (Qt .WhatsThisCursor)

def canvasReleaseEvent (self, event):

if event.button() != Qt.LeftButton: return
feature = self.findFeatureAt (event.pos())
if feature != None:

self.onGetInfo (feature)

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

This map tool calls the onGetInfo () method (which is passed as a parameter
to the map tool's initializer) when the user clicks on a track. Let's now use this
map tool within our program by adding the following code to the end of our
setupMapTools () method in the forestTrails.py module:

self.getInfoTool = GetInfoTool (self.mapCanvas,
self.trackLayer,
self.onGetInfo)

self.getInfoTool.setAction(self.actionGetInfo)

We can then replace our placeholder get Info () method with the following:

def getInfo(self):
self .mapCanvas.setMapTool (self.getInfoTool)

This activates the map tool when the user clicks on the toolbar icon. The last step is to
implement the onGetInfo () method, which is called when the user selects the map
tool and clicks on a track.

When onGetInfo () is called, we want to display to the user the various attributes

of the clicked-on track. These attributes will be displayed in a dialog window, where
the user can make changes if he/she wishes. When the user submits his/her changes,
we will have to update the feature with the new attribute values and indicate that the
track has been changed.

The bulk of our work will be setting up the dialog window so that the attributes
can be displayed and edited by the user. To do this, we'll create a new class named
TrackInfoDialog, which will be a subclass of gDialog.

Add the following code to the forestTrails.py module, immediately before the
main () function definition:

class TrackInfoDialog(QDialog) :
def _ init_ (self, parent=None) :
QDialog. init (self, parent)
self.setWindowTitle ("Track Info")

The _init__ () method will set up the contents of the dialog window. So far, we've
initialized the dialog object itself, and given the window a title. Let's now define a list
of the available track types the user can choose from:

self.trackTypes = ["Road",
"Walking Trail",
"Bike Trail",
"Horse Trail"]

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

Similarly, we'll want a list of the available direction options:

self.directions = ["Both",
"Forward",
"Backward"]

We'll also want a list of the available track status options:

self.statuses = ["Open",
"Closed"]

With the preceding sets of options defined, we can now start to lay out the contents
of our dialog window. We'll start by using a QFormLayout object that lets us lay out
form labels and widgets side by side:

self.form = QFormLayout ()

We next want to define the various input widgets we'll use to display and change
the track attributes:

self.trackType = QComboBox (self)
self.trackType.addItems (self.trackTypes)

self.trackName = QLineEdit (self)

self.trackDirection = QComboBox (self)
self.trackDirection.addItems (self.directions)

self.trackStatus = QComboBox (self)
self.trackStatus.addItems (self.statuses)

Now that we have the widgets themselves, let's add them to the form:

self.form.addRow ("Type", self.trackType)
self.form.addRow ("Name", self.trackName)
self.form.addRow ("Direction", self.trackDirection)
("Status", self.trackStatus)

self.form.addRow

Next, we want to define the buttons at the bottom of our dialog window:
self.buttons = QHBoxLayout ()
self.okButton = QPushButton ("OK", self)

self.connect (self.okButton, SIGNAL ("clicked()"),
self.accept)

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

self.cancelButton = QPushButton ("Cancel", self)

self.connect (self.cancelButton, SIGNAL("clicked()"

self.reject)

self.buttons.addStretch(1)
self .buttons.addWidget (self.okButton)
self .buttons.addWidget (self.cancelButton)

Finally, we can place the form and our buttons within the dialog box, and lay

everything out:

self.layout = QVBoxLayout (self)
self.layout.addLayout (self.form)
self.layout.addSpacing(10)

self.layout.addLayout (self.buttons)
self.setLayout (self.layout)
self.resize(self.sizeHint ())

).

So much for the _init_ () method. With the dialog box set up, we next want to

define a method to copy the feature's attributes in the dialog window:

def loadAttributes (self, feature):

type attr = feature.attribute ("type")
name_ attr = feature.attribute ("name")
direction attr = feature.attribute("direction")
status_attr = feature.attribute("status")
if type attr == TRACK TYPE ROAD: index = 0
elif type attr == TRACK TYPE WALKING: index = 1
elif type attr == TRACK TYPE BIKE: index = 2
elif type attr == TRACK TYPE HORSE: index = 3
else: index = 0
self.trackType.setCurrentIndex (index)
if name attr != None:

self.trackName.setText (name_attr)
else:

self.trackName.setText ("")
if direction attr == TRACK DIRECTION BOTH: index 0
elif direction attr == TRACK DIRECTION FORWARD: index 1
elif direction attr == TRACK DIRECTION BACKWARD: index 2
else: index 0

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

self.trackDirection.setCurrentIndex (index)

if status_attr == TRACK STATUS OPEN: index =
elif status attr == TRACK STATUS CLOSED: index =
else: index =

self.trackStatus.setCurrentIndex (index)

The last method we need to define here is saveAttributes (), which stores
the updated values from the dialog window back in the feature's attributes:

def saveAttributes (self, feature):
index = self.trackType.currentIndex ()

if index == 0: type attr = TRACK TYPE ROAD
elif index == 1: type attr = TRACK TYPE WALKING
elif index == 2: type attr = TRACK TYPE BIKE
elif index == 3: type attr = TRACK TYPE HORSE
else: type_attr = TRACK TYPE ROAD

name_ attr = self.trackName.text ()

index = self.trackDirection.currentIndex ()

if index == 0: direction attr = TRACK DIRECTION BOTH
elif index == 1: direction attr = TRACK DIRECTION FORWARD
elif index == 2: direction attr = TRACK DIRECTION BACKWARD
else: direction attr = TRACK DIRECTION BOTH

index = self.trackStatus.currentIndex ()

if index == 0: status_attr = TRACK STATUS OPEN
elif index == 1: status_attr = TRACK STATUS CLOSED
else: status_attr = TRACK STATUS_ OPEN

feature.setAttribute ("type", type_ attr)

feature.setAttribute ("name", name_attr)

feature.setAttribute ("direction", direction attr)

(
(
(
(

feature.setAttribute ("status", status_attr)

With the TrackInfoDialog class defined, we can finally implement the
onGetInfo () method (in our ForestTrailsWindow class) to display the
clicked-on track's attributes in the dialog box, and save the changes if the
user clicks on the OK button:

def onGetInfo(self, feature):
dialog = TrackInfoDialog(self)
dialog.loadAttributes (feature)
if dialog.exec ():

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

dialog.saveAttributes (feature)
self.trackLayer.updateFeature (feature)
self.modified = True

self .mapCanvas.refresh ()

You should now be able to run the program, switch to the editing mode, click on
the Get Info toolbar icon, and then click on a feature to display the attributes for
that feature. The resulting dialog window should look like this:

e O 0O Track Info

Type | Road

am

Name |8 Mile Gate Road

Direction | Both .
Status | Open s
[OK | | Cancel

You should be able to change any of these attributes and click on the OK button
to save the changes. As you change the track type, status and direction, you should
see the change reflected in the way the track is displayed on the map.

The Set Start Point and Set End Point
actions

The Set Start Point and Set End Point toolbar actions allow the user to set the start
and end points in order to calculate the shortest path between these two points. To

implement these actions, we're going to need a new map tool that lets the user click
on a track vertex to select the starting or ending points.

By positioning the start point and the end point on vertices, we
guarantee that the points lie on a track's LineString. We could
theoretically be more sophisticated and snap the starting and ending
points to anywhere along a track segment, but that's more work, and
we're trying to keep the implementation simple.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

Go back to the mapTools.py module and add the following class definition to
this file:

class SelectVertexTool (QgsMapTool, MapToolMixin) :
def init (self, canvas, trackLayer, onVertexSelected):
QgsMapTool. init (self, canvas)
self.onVertexSelected = onVertexSelected
self.setLayer (trackLayer)
self.setCursor (Qt.CrossCursor)

def canvasReleaseEvent (self, event):
feature = self.findFeatureAt (event.pos())
if feature != None:
vertex = self.findVertexAt (feature, event.pos())
if vertex != None:

self.onVertexSelected (feature, vertex)

This map tool uses the mixin's methods to identify which feature and vertex the user
clicked on, and then calls the onvertexSelected () callback to allow the application
to respond to the selection.

Let's use this map tool to implement the Set Start Point and Set End Point
actions. Back in the forestTrails.py module, add the following to the end
of the setupMapTools () method:

self.gselectStartPointTool = SelectVertexTool (
self.mapCanvas, self.trackLayer,
self.onStartPointSelected)

self.selectEndPointTool = SelectVertexTool (
self.mapCanvas, self.trackLayer,
self.onEndPointSelected)

These two instances of selectVertexTool use different callback methods to respond
when the user clicks on a track vertex. Using these tools, we can now implement

the setstartPoint () and setEndpPoint () methods, which were just placeholders
until now:

def setStartPoint (self):
if self.actionSetStartPoint.isChecked() :
self .mapCanvas.setMapTool (self.selectStartPointTool)
else:
self.setPanMode ()

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

def setEndPoint (self) :
if self.actionSetEndPoint.isChecked() :
self .mapCanvas.setMapTool (self.selectEndPointTool)
else:
self.setPanMode ()

As usual, we activate the map tool when the user clicks on the toolbar action, and
switch back to the pan mode if the user clicks on the action a second time.

All that's left now are the two callback methods, onStartPointSelected ()

and onEndPointSelected (). Let's start with the implementation of
onStartPointSelected (). This method will start by asking the feature's geometry
to return the coordinates of the clicked-on vertex, which we store into self.
curStartPt:

def onStartPointSelected(self, feature, vertex):
self.curStartPt = feature.geometry () .vertexAt (vertex)

Now that we know where the start point will be, we want to show this start point on
the map. If you remember, we previously created a memory-based map layer called
startPointLayer, to display this point. We'll need to first clear the contents of this
memory layer, deleting any existing features, and then create a new feature at the
given coordinate:

self.clearMemoryLayer (self.startPointLayer)

feature = QgsFeature ()

feature.setGeometry (QgsGeometry. fromPoint (
self.curStartPt))

self.startPointLayer.dataProvider () .addFeatures ([feature])

self.startPointLayer.updateExtents ()

Finally, we'll redraw the map canvas to show the newly added point, and switch
back to pan mode:

self .mapCanvas.refresh ()
self.setPanMode ()
self.adjustActions ()

We'll need to implement the clearMemoryLayer () method, but before we do, let's
also define the onEndpPointSelected () callback method so that we can respond
when the user clicks on the end point. The code for this is almost identical to the
code for onStartPointSelected():

def onEndPointSelected(self, feature, vertex):
self.curEndPt = feature.geometry () .vertexAt (vertex)

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

self.clearMemoryLayer (self.endPointLayer)

feature = QgsFeature ()

feature.setGeometry (QgsGeometry.fromPoint (self.curEndPt))
self.endPointLayer.dataProvider () .addFeatures ([feature])
self.endPointLayer.updateExtents ()

self .mapCanvas.refresh ()

self.setPanMode ()

self.adjustActions ()

To finish off these two actions, we'll need to implement the clearMemoryLayer ()
method and initialize the curstartpPt and curEndpPt instance variables so that the
program knows when these variables are set for the first time.

Here is the implementation for the clearMemoryLayer () method:

def clearMemorylayer (self, layer):
featurelIDs = []
provider = layer.dataProvider ()
for feature in provider.getFeatures (QgsFeatureRequest()) :
featurelIDs.append (feature.id())
provider.deleteFeatures (featurelDs)

We simply obtain a list of all the features in the given memory layer, and then ask
the data provider to delete them. Since this data is transient and held in memory,
deleting all the features is no big deal.

Finally, let's initialize those two instance variables. Add the following to the end

of your ForestTrailsWindow.__init__ () method:
self.curStartPt = None
self.curEndPt = None

With all this implemented, the user can now click on a vertex to set the starting
or ending point, as shown in the following screenshot:

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

80e : Forest Trails
H 2Kl v

® o I
v

The Find Shortest Path action

This is the last feature of the ForestTrails that we will have to implement. When

the user clicks on this toolbar icon, we want to calculate the shortest available path
between the given start and end points. Fortunately, the QGIS network analysis
library will do the actual calculation for us. All we have to do is run the shortest path
calculation on the track layer, build the LineString that corresponds to this shortest
path, and display that LineString geometry in our memory-based map layer.

All of this logic will be implemented within the findShortestPath () method. We'll
start our implementation with a bit of housekeeping: if the user unchecks the Find
Shortest Path toolbar icon, we clear the shortest path memory layer, switch back

to the panning mode, and redraw the map canvas to show the map without the
previous path:

def findShortestPath(self) :
if not self.actionFindShortestPath.isChecked() :
self.clearMemorylayer (self.shortestPathLayer)
self.setPanMode ()
self .mapCanvas.refresh()
return

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

The rest of the method will be executed when the user clicks on the Find Shortest
Path toolbar action to check it. Add the following code to your method:

directionField = self.trackLayer.fieldNameIndex (
"direction™")
director = QgsLineVectorLayerDirector (
self.trackLayer, directionField,
TRACK DIRECTION_FORWARD,
TRACK DIRECTION_BACKWARD,
TRACK DIRECTION_BOTH, 3)

properter = QgsDistanceArcProperter ()
director.addProperter (properter)

crs = self.mapCanvas.mapRenderer () .destinationCrs ()
builder = QgsGraphBuilder (crs)

tiedPoints = director.makeGraph(builder, [self.curStartPt,
self.curEndPt])
graph = builder.graph()

startPt = tiedPoints[0]
endPt = tiedPoints[1]

startVertex = graph.findVertex(startPt)
tree = QgsGraphAnalyzer.shortestTree (graph,
startVertex, 0)

startVertex = tree.findVertex(startPt)
endVertex = tree.findVertex (endPt)

if endvVertex == -1:
QMessageBox.information (self.window,
"Not Found",
"No path found.")

return

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

points = []
while startVertex != endVertex:
incomingEdges = tree.vertex(endVertex) .inArc ()
if len(incomingEdges) == 0:
break
edge = tree.arc(incomingEdges[0])
points.insert (0, tree.vertex(edge.inVertex()) .point())

endVertex = edge.outVertex()

points.insert (0, startPt)

The preceding code was copied from the PyQGIS cookbook with some changes in
variable names to make the meaning clearer. At the end, points will be a list of
QgsPoint objects defining the LineString geometry that connects the starting point to
the ending point. The most interesting part of this method is the following;:

director = QgsLineVectorLayerDirector (
self.tracklLayer, directionField,
TRACK _DIRECTION_ FORWARD,
TRACK DIRECTION_ BACKWARD,
TRACK _DIRECTION BOTH, 3)

This piece of code creates an object which converts a set of LineString features into
an abstract graph of the layer's features. The various parameters specify which of the
track's attributes will be used to define the various directions in which a track can be
followed. Bidirectional tracks can be followed in either direction, while forward and
reverse directional tracks can be followed in only one direction.

The final parameter, with the value 3, tells the director to treat any
o track without a valid direction value as bidirectional.

Once we have the set of points that define the shortest path, it's easy to display those
points as a LineString in the memory layer and make the resulting path visible on
the map:

self.clearMemoryLayer (self.shortestPathLayer)

provider = self.shortestPathlLayer.dataProvider ()
feature = QgsFeature ()

feature.setGeometry (QgsGeometry.fromPolyline (points))
provider.addFeatures ([feature])
self.shortestPathLayer.updateExtents ()

self .mapCanvas.refresh ()

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

If you define the starting and ending points, and then click on the Find Shortest Path
toolbar action, the resulting path will be displayed as a blue line on the map,
as shown in the following screenshot:

806 Forest Trails

5 2 K

v [& o &

If you look carefully at the preceding screenshot, you'll see that the path taken wasn't
the shortest one; the starting point was at the bottom and the ending point was near
the end of a one-way bike track, so the shortest available path involved taking the
road back to the start of the one-way track, and then following it through to the
endpoint. This is exactly the behavior that we would expect, and it is correct given
the one-way nature of the tracks.

Adjusting the toolbar actions

Now that we've finished creating all the necessary map tools and instance variables,
we can finally implement the rest of the adjustActions () method to adjust the
toolbar and menu items to reflect the current state of the system. Firstly, we want

to change the final line of this method so that the Find Shortest Path action is only
enabled if the start and end points have both been set:

self.actionFindShortestPath.setEnabled (
self.curStartPt != None andself.curEndPt != None)

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

In the final part of this method, we'll want to find the action that is associated with
the current map tool and check that action, while unchecking all the others. To do
this, add the following code to the end of your adjustActions () method:

curTool = self.mapCanvas.mapTool ()

self.

self.

self.

self.

self.

self.
self.

self.

self.

a1

actionPan.setChecked (curTool == self.panTool)
actionkEdit.setChecked (self.editing)
actionAddTrack.setChecked (

curTool == self.addTrackTool)
actionEditTrack.setChecked (

curTool == self.editTrackTool)
actionDeleteTrack.setChecked (

curTool == self.deleteTrackTool)
actionGetInfo.setChecked (curTool == self.getInfoTool)
actionSetStartPoint.setChecked (

curTool == self.selectStartPointTool)
actionSetEndPoint .setChecked (

curTool == self.selectEndPointTool)
actionFindShortestPath.setChecked (False)

you've already entered in this method.

‘Q Note that this code should go outside the if. . .else statement that

This completes our implementation of the adjustActions () method, and

in fact it also completes our implementation of the entire ForestTrails system.
Congratulations! We now have a complete working mapping application,
with all the features implemented and working.

Suggested improvements

Of course, no application is ever completely finished, and there are always things
that could be improved upon. Here are a few ideas for things you could do to make
the ForestTrails application even better:

* Adding labels to the trail layer, using the QgspalLabeling engine to only
show only the track names when the map is zoomed in sufficiently so that
the names can be read.

* Changing the color used for the track based on the track type. For example,
you might draw all bike trails in red, all walking trails in green, and all horse
trails in yellow.

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Completing the ForestTrails Application

* Adding a View menu where the user can select the types of tracks to be
displayed. For example, the user might choose to hide all the horse trails,
or show only the walking trails.

* Extending the logic of the shortest path calculation to exclude any tracks
that are currently closed.

* Adding another map layer to display various obstacles on the map.
An obstacle would be something that is blocking a track, and could be

represented by a Point geometry. Typical obstacles might be things like fallen

trees, landslides, and ongoing track maintenance. Depending on the obstacle,
the trail might be closed until the obstacle is cleared.

* Using Print Composer to generate a printable version of the map. This could
be used to print maps based on the current state of the forest trails.

Summary

In this chapter, we finished implementing the ForestTrails mapping application.
Our application now lets the user add, edit, and delete tracks; view and enter track
attributes; set the start and end points; and display the shortest available path
between those two points. As we implemented the application, we discovered an
issue with tracks not connecting, and solved that problem by adding support for
vertex snapping. We also learned how to write a custom gbialog to let the user
view and edit attributes, and how to use the QGIS Network Analysis library to
calculate the shortest available path between two points.

While the ForestTrails application is only one example of a specialized mapping
application, it provides a good example of how to implement standalone mapping
applications using PyQGIS. You should be able to use much of the code for your
own mapping applications, as well as build on the techniques covered in previous
chapters when you write your own mapping applications using Python and QGIS.

I'hope you've enjoyed the journey, and learned much about using QGIS as a
mapping toolkit within your Python programs. Map on!

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Sym bols C++ documentation, data types
bool 50

__init__(iface) method 81, 82 float 50

__init_ () method 138, 143 int 50

__init__.py file 17 long 50
QList 50

A QString 50

clone() method 138, 143
commit 162
. constants.py module 188
connecting 117,118 Coordinate Reference Systems (CRS),
Add Feature tool 159 qgis.core package 55
Add Track map tool COPYING ﬁle 17
gbout 213) crop tool 198
implementing 213-218 CrossSymbolLayer class

abstract graph 239
actions

application, Lex __init_ () method 138
designing 110 clone() method 138
framework, creating 111-113 layerType() method 138

B properties() method 138

renderPoint() method 139
startRender() method 139

b layer 109
asemap layer stopRender() method 139

C custom dialogs 43, 44
custom map layers

canvas parameter 168 working with 144-147

captureMode parameter 168

CaptureTool D

features 167
Categorized symbol renderer 58

C++ documentation

deciphering 48-53 data provider 34
data sources 10

data
obtaining 109

www.it-ebooks.info

http://www.it-ebooks.info/

Delete Track map tool

about 226

implementing 226-228
Digital Elevation Model (DEM) 68
displacement line 132

E

Edit Track map tool
about 223
implementing 223-226

ellipsoid 55

execfile() function 32

explore mode
implementing 125-127

external application
writing 20-25

F

files and directories, ForestTrails application
constants.py 184
data 184
forestTrails.py 185
Makefile 185
mapTools.py 185
resources 185
resources.qrc 185
run_lin.sh 185
run_mac.sh 185
run_win.bat 185
ui_mainWindow.py 185
Find Shortest Path action 237-240
Find Shortest Path command 220
ForestTrails application
about 182
Add Track map tool 213-218
basemap, obtaining 196-201
completing 213
constants.py module 188
creating 184
Delete Track map tool 226-228
designing 182, 183
Edit Track map tool 223-226
files and directories 184
Find Shortest Path action 237-240
forestTrails.py module 188-192

Get Info map tool 228-233

improvements 241, 242

laying out 185-187

map layers 183

map layers, defining 201-204

map renderers, defining 204-208

mapTools.py module 192

pan tool 209

running 196

Set End Point toolbar action 233-236

Set Start Point toolbar action 233-236

testing 218-220

toolbar actions, adjusting 240, 241

toolbar and menu bar 183

toolbar icons, defining 187

track editing mode, implementing 210-212

ui_mainWindow.py module 192-195

vertex snapping, implementing 220-222
forestTrails.py module 188-192

G

GDAL
URL 196
General Public License (GPL) 17
Geographic Information System (GIS) 7
Geometry Info plugin 97
geospatial data, QGIS Python Console
URL 38
working with 34-38
Get Info map tool
about 228
implementing 228-233
Global Land One-Kilometer Base
Elevation Project (GLOBE)
about 68
URL 68
Graduated symbol renderer 58

icon.png file 17
initGui() method 81

L

Landmark explorer. See Lex
landmark layer 109

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

landmarks
filtering 122,123
layer editing mode
using 161-163
layer parameter 168
layerType() method 138
Lex
about 108
basemap layer 109
enhancements 127
improvements 127,128
landmark layer 109
requisites 108, 109
lines
adding 166-173
editing 173-179

Makefile
about 17, 88
EXTRAS 90
PLUGINNAME 90
PY_FILES 90
RESOURCE_FILES 90
UL_FILES 90
make targets, Makefile
make clean 90
make compile 90
make deploy 90
map 10
map canvas
about 65
creating 118-120
map canvas item
creating 148-151
map layer
about 10
defining 201-204
map renderers, ForestTrails application
defining 204-208
mapTools.py module 192
memory-based layers
baseName 152
path 152
providerLib 152
using 151-156

message bar
about 40
features 40, 41
metadata.txt file 17
method overloading 51
Move Feature tool 159
MultiBandColor, drawing style 62
MultiBandSingleBandGray,
drawing style 62
MultiBandSingleBandPseudoColor,
drawing style 62

N

Natural Earth Data
URL 12,109
Node tool 159

(0

onGeometryAdded parameter 168

P

PalettedColor, drawing style 61
PalettedSingleBandGray, drawing style 62
PalettedSingleBandPseudoColor, drawing
style 62
pan tool
about 209
implementing 124, 125
Plugin Builder
URL 87
using 87, 88
plugin layers, qgis.core package 54
Plugin Reloader plugin 80
points
adding 163
deleting 165, 166
editing 164, 165
labeling 121
polygons
adding 166-173
editing 173-179
progress indicators 41
projection 55
properties() method 138

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

pseudocolor algorithm 61 QgsRasterInterface 64

pushMessage() method 41 QgsRectangle 63
PyQGIS 11 qgis.core package
PyQGIS library about 53
different symbols, using for different Coordinate Reference Systems (CRS) 55, 56
features within map 73-75 maps 54
distance between two user-defined points, map layers 54
calculating 76 vector layers 56, 57
raster data, analyzing 68-70 qgis.core.QgsFeature class
using 67 Attributes 56
vector data, manipulating 70-73 Geometry 56
PyQt ID 56
about 15 qgis.gui classes
URL 79 QComboBox user-interface widgets 67
Python QgsColorDialog class 67
renderers, implementing 142-144 QgsDialog class 67
symbol layers, implementing 137-142 QgsLegendInterface class 67
Python Console QgsMapTip class 67
exploring 12-15 QgsMessageBar class 67
Python plugin QgsMessageViewer class 67
examining 15-20 qgis.gui package
about 53
Q QgisInterface class 64
QgsMapCanvas class 65
QGIS QgsMapCanvasltem class 66
about 7,8 QgsMapTool class 66
and Python, linking 11 QgisInterface class 64, 65
concepts 10, 11 QGIS logging 42
installing 8, 9 qgis.networkanalysis package 53
running 8,9 QGIS plugin
URL 7 __init__.py package 80
qgis.analysis package 53 about 79, 80
QGIS and Python, linking architecture 80-82
external applications 11 build process, automating 88-90
Python Console 11-14 creating 82-86
Python plugin 11, 15-20 development process 86
QGis class 63 distributing 95, 96
QGIS Console help files 91, 92
geospatial data, working with 34-38 limitations 105
u'sing 27-33 metadata.txt file 80
qgis-core classes Plugin Builder, using 87, 88
QGis 63 possibilities 105
QgsMapLayerRegistry 64 unit testing 92-94
QgsMessageLog 64 writing 97-104
QgsPoint 63 QGIS plugin repository
QgsProject 63 URL 95
[246]

www.it-ebooks.info

http://www.it-ebooks.info/

QGIS Python APIs 47,48
QGIS Python libraries

maps 54

map layers 54

organization 53

qgis.core package 53

qgis.gui package 64
QGIS, symbols

Fill symbol 57

Line symbol 57

Marker symbol 57
QGIS user interface, scripting

about 39

custom dialogs 43, 44

message bar 40, 41

progress indicators 41

QGIS logging 42

status bar 39

windows 43, 44
qgis.utils package 53
QgsCentroidFillSymbolLayerV2 class 133
QgsColorDialog class 67
QgsDialog class 67
QgsDistanceArea class 64
QgsEllipseSymbolLayerV2 class 132
QgsFontMarkerSymbolLayerV2 class 132
QgsGradientFillSymbolLayerV2 class 133
QgsLegendInterface class 67
QgsLinePatternFillSymbolLayer class 133
QgsMapCanvas class 65
QgsMapCanvasltem class

QgsAnnotationltem 66

QgsRubberBand 66

QgsVertexMarker 66
QgsMapLayerRegistry class 64
QgsMapTip class 67
QgsMapTool class 66
QgsMarkerLineSymbolLayerV2 class 132
QgsMessageBar class 67
QgsMessageLog class 64
QgsMessageViewer class 67
QgsPoint class 63
QgsPointPatternFillSymbolLayer class 133
QgsProject class 63
QgsRasterInterface class 64
QgsRectangle class 63
QgsRubberBand 167

QgsSimpleFillSymbolLayerV2 class 133
QgsSimpleLineSymbolLayerV2 class 132
QgsSimpleMarkerSymbolLayerV2 class 132
QgsSVGFillSymbolLayer class 133
QgsSvgMarkerSymbolLayerV2 class 132
QgsVectorFieldSymbolLayer class 132
Qt Designer 81
Qt developer tools

URL 79

R

raster data
accessing 63
raster layers, qgis.core package
about 54, 61
raster data, accessing 63
raster data, displaying 61, 62
renderers
implementing, in Python 142-144
rendering context 139
renderPoint() method 139
resources.py file 17
resources.qrc file 17
roll back 162

S

selections

working with 160, 161
Set End Point toolbar action 233-236
Set Start Point toolbar action 233-236
setSymbolLayer() method 141
setupRenderers() method 204
SingleBandGray, drawing style 61
SingleBandPseudoColor, drawing style 61
single symbol renderer

Categorized symbol renderer 58

Graduated symbol renderer 58
spatial indexes 60
startRender() method 139, 144
status bar, QGIS window 39
stopRender() method 139, 144
symbolForFeature() method 144
symbol layers

about 129-131

combining 134-136

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

implementing, in Python 137-142
symbol.appendSymbolLayer(symbol_layer)
method 131
symbol.changeSymbolLayer(index,
symbol_layer) method 131
symbol.deleteSymbolLayer(index)
method 131
symbol.insertSymbolLayer(index,
symbol_layer) method 131
symbol.symbolLayerCount() method 131
symbol.symbolLayer(index) method 131
symbol layers class
QgsCentroidFillSymbolLayerV2 133
QgsEllipseSymbolLayerV2 132
QgsFontMarkerSymbolLayerV2 132
QgsGradientFillSymbolLayerV2 133
QgsLinePatternFillSymbolLayer 133
QgsMarkerLineSymbolLayerV2 132
QgsPointPatternFillSymbolLayer 133
QgsSimpleFillSymbolLayerV2 133
QgsSimpleLineSymbolLayerV2 132
QgsSimpleMarkerSymbolLayerV2 132
QgsSVGFillSymbolLayer 133
QgsSvgMarkerSymbolLayerV2 132
QgsVectorFieldSymbolLayer 132

T

tolerance value 175
toolbar actions

adjusting 240, 241
toolbar and menu bar, ForestTrails

application

add track 183

delete track 183

edit 183

edit track 183

find the shortest path 184

get info 183

pan 183

set end point 184

set start point 184

zoom in 183

zoom out 183
track

about 182

optional direction 182

optional name 182
status 182
type 182
track editing mode, ForestTrails application
implementing 210-212
transparency 135

U

ui_mainWindow.py module 192-195
ui_zoomtopoint.py file 17
unit testing 92-94
Unix-like system
URL 8
unload() method 82
usedAttributes() method 144
user interface

adding 113-117
\'/

vector data
accessing 59
vector layers, qgis.core package
about 54-56
coordinate reference system 57
data provider 57
renderer 57
spatial indexes 60
vector data, accessing 59
vector data, displaying 57, 58
vertex snapping
implementing 220-223

w

Web Map Service (WMS) 10
windows 43,44

Y4

zoom tool

implementing 124
ZoomToPoint class 18
zoomtopointdialog.py file 17
zoomtopointdialog.ui file 17
zoomtopoint.py file 17

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Building Mapping Applications with QGIS

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Learning QGIS 2.0
ISBN: 978-1-78216-748-8 Paperback: 110 pages

Use QGIS to create great maps and perform all the
geoprocessing tasks you need

1. Load and visualize vector and raster data.

2. Create and edit spatial data and perform
spatial analysis.

3. Construct great maps and print them.

PostGIS Cookbook

PostGIS Cookbook
ISBN: 978-1-84951-866-6 Paperback: 484 pages

Over 80 task-based recipes to store, organize,
manipulate, and analyze spatial data in a PostGIS
database

1. Integrate PostGIS with web frameworks and
implement OGC standards such as WMS and
WES using MapServer and GeoServer.

2. Convert 2D and 3D vector data, raster data,
and routing data into usable forms.

3. Visualize data from the PostGIS database using
a desktop GIS program such as QGIS and
OpenJUMP.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled
"PUBLISHING

Administering ArcGIS for Server
ISBN: 978-1-78217-736-4 Paperback: 246 pages

Installing and configuring ArcGIS for Server to
publish, optimize, and secure GIS services

1. Configure ArcGIS for Server to achieve
maximum performance and response time.

:) T ——— 2. Understand the product mechanics to build

Administering ArcGIS up good troubleshooting skills.
for Server
| ; 3. Filled with practical exercises, examples, and

code snippets to help facilitate your learning.

Google Maps JavaScript API

Cookbook
ISBN: 978-1-84969-882-5 Paperback: 316 pages
Over 50 recipes to help you create web maps and

GIS web applications using the Google Maps
JavaScript API

1. Add to your website's functionality by utilizing
Google Maps' power.

Google Maps JavaScript
APl Cookbook 2. Full of code examples and screenshots for
practical and efficient learning.

3. Empowers you to build your own mapping
application from the ground up.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with QGIS
	About QGIS
	Installing and running QGIS
	Understanding QGIS concepts

	Linking QGIS and Python
	Exploring the Python Console
	Examining a Python plugin
	Writing an external application

	Summary

	Chapter 2: The QGIS Python Console
	Using the console
	Working with geospatial data in the console
	Scripting the QGIS user interface
	The status bar
	The message bar
	Progress indicators
	QGIS logging
	Custom dialogs and windows

	Summary

	Chapter 3: Learning the QGIS
Python API
	About the QGIS Python APIs
	Deciphering the C++ documentation
	Organization of the QGIS Python libraries
	The qgis.core package
	Maps and map layers
	Coordinate reference systems
	Vector layers
	Raster layers
	Other useful qgis.core classes

	The qgis.gui package
	The QgisInterface class
	The QgsMapCanvas class
	The QgsMapCanvasItem class
	The QgsMapTool class
	Other useful qgis.gui classes

	Using the PyQGIS library
	Analyzing raster data
	Manipulating vector data and saving it to a shapefile
	Using different symbols for different features within a map
	Calculating the distance between two
user-defined points

	Summary

	Chapter 4: Creating QGIS Plugins
	Getting ready
	Understanding the QGIS plugin architecture
	Creating a simple plugin
	The plugin development process
	Using the Plugin Builder
	Automating the build process
	Plugin help files
	Unit testing
	Distributing your plugin

	Writing a useful plugin
	Plugin possibilities and limitations
	Summary

	Chapter 5: Using QGIS in an
External Application
	Introducing Lex
	Getting the data
	Designing the application
	Creating the application's framework
	Adding the user interface
	Connecting the actions
	Creating the map canvas
	Labeling the points
	Filtering the landmarks
	Implementing the zoom tool
	Implementing the pan tool
	Implementing the explore mode
	Further improvements and enhancements
	Summary

	Chapter 6: Mastering the QGIS
Python API
	Working with symbol layers
	Combining symbol layers
	Implementing symbol layers in Python
	Implementing renderers in Python
	Working with custom map layers
	Creating custom map canvas items
	Using memory-based layers
	Summary

	Chapter 7: Selecting and Editing Features in a PyQGIS Application
	Working with selections
	Using the layer editing mode
	Adding Points
	Editing Points
	Deleting Points and other features
	Adding lines and polygons
	Editing lines and polygons
	Summary

	Chapter 8: Building a Complete Mapping Application using Python
and QGIS
	Introducing ForestTrails
	Designing the ForestTrails application
	Creating the application
	Laying out the application
	Defining the toolbar icons
	The constants.py module
	The forestTrails.py module
	The mapTools.py module
	The ui_mainWindow.py module
	Running the application

	Obtaining the basemap
	Defining the map layers
	Defining the map renderers
	The Pan Tool
	Implementing the track editing mode
	Summary

	Chapter 9: Completing the ForestTrails Application
	The Add Track map tool
	Testing the application
	Vertex snapping
	The Edit Track map tool
	The Delete Track map tool
	The Get Info map tool
	The Set Start Point and Set End Point actions
	The Find Shortest Path action
	Adjusting the toolbar actions
	Suggested improvements
	Summary

	Index

