
Алан Торн

Искусство создания сценариев
в Unity

Mastering Unity
Scripting

Alan Thorn

Learn advanced C# tips and techniques to make
professional-grade games with Unity

BIRMINGHAM – MUMBAI

Практические советы и приемы создания игр
профессионального уровня на C# в Unity

Искусство создания
сценариев в Unity

Москва, 2016

Алан Торн

УДК	 004.4'2Unity3D
ББК	 32.972
	 Т60
	

	 	 Торн А.
Т60	 Искусство создания сценариев в Unity / пер. с англ. Р. Н. Раги­

мова. – М.: ДМК Пресс, 2016. – 360 с.: ил. 

	 ISBN 978-5-97060-381-9

Это простое и доступное руководство, в котором вы найдете по­
лезные советы и современные приемы программирования игр на C#
в Unity. Десять исчерпывающих глав книги содержат практические и
наглядные примеры творческого подхода к программированию на C#
и созданию коммерчески успешных игр профессионального уровня.

Вы научитесь наделять игровых персонажей впечатляющим искус­
ственным интеллектом, настраивать камеры для создания эффектов
постобработки и управлять сценой, опираясь на понимание компо­
нентной архитектуры. Кроме того, вы познакомитесь с классами .NET,
позволяющими повысить надежность программ, увидите, как обраба­
тывать наборы данных, такие как файлы CSV, и как создавать сложные
запросы к данным. Прочтя эту книгу до конца, вы станете сильным раз­
работчиком Unity, вооруженным множеством инструментов и приемов
быстрой и эффективной разработки коммерческих игр.

Издание предназначено для студентов, преподавателей и специа­
листов, знакомым с Unity, а также с основами программирования. Не­
важно, как давно вы знакомы с Unity, в этой книге вы найдете важную
и полезную информацию, которая поможет вам эффективно наладить
процесс создания игр.

	 УДК 	004.4'2Unity3D
	 ББК	 32.972

Все права защищены. Любая часть этой книги не может быть воспроиз­
ведена в какой бы то ни было форме и какими бы то ни было средствами без
письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но по­
скольку вероятность технических ошибок все равно существует, издательство
не может гарантировать абсолютную точность и правильность приводимых
сведений. В связи с этим издательство не несет ответственности за возможные
ошибки, связанные с использованием книги.

ISBN 978-1-78439-065-5 (анг.)	 Copyright © 2015 Packt Publishing
ISBN 978-5-97060-381-9 (рус.)	 © 	Оформление, перевод,
		 ДМК Пресс, 2016

Содержание

Об авторе...10
О технических рецензентах.. 11
Предисловие..13

Глава 1. Основы C# в Unity...19

Почему C#? ...20
Создание файлов сценариев ..21
Подключение сценариев..24
Переменные ..26
Условные операторы ..28

Оператор if ...28
Оператор switch..31

Массивы ...34
Циклы ...37

Цикл foreach ..38
Цикл for ...39
Цикл while ..40
Бесконечные циклы ..42

Функции...42
События ..45
Классы и объектно-ориентированное программирование46
Классы и наследование ...49
Классы и полиморфизм ..51
Свойства в C# ..55
Комментарии ..57
Видимость переменных ..60
Оператор ? ...62
Методы SendMessage и BroadcastMessage ...62
Итоги ...65

Глава 2. Отладка..66

Ошибки компиляции и консоль ..67
Отладка с помощью Debug.log – определяемые программистом
сообщения ..70
Переопределение метода ToString ..73

6    Содержание

Визуальная отладка ..76
Регистрация ошибок...80
Отладка с помощью редактора ...85
Профилирование ...87
Отладка с помощью MonoDevelop – начало..92
Отладка с помощью MonoDevelop – окно Watch97
Отладка с помощью MonoDevelop – продолжение и пошаговый
режим ... 101
Отладка с помощью MonoDevelop – стек вызовов 103
Отладка с помощью MonoDevelop – окно Immediate.......................... 105
Отладка с помощью MonoDevelop – точки останова с условием 107
Отладка с помощью MonoDevelop – точки трассировки 108
Итоги .. 111

Глава 3. Синглтоны, статические члены,
игровые объекты и миры...112

Игровые объекты.. 112
Взаимодействия компонентов.. 114

Функция GetComponent .. 116
Получение нескольких компонентов... 117
Компоненты и сообщения ... 118

Игровые объекты и игровой мир .. 120
Поиск игровых объектов... 120
Сравнение объектов.. 122
Получение ближайшего объекта ... 123
Поиск любого объекта определенного типа 124
Проверка препятствий между игровыми объектами.................... 124
Доступ к иерархии объектов ... 126

Игровой мир, время и обновление ... 128
Правило № 1 – важность событий обновления кадров 130
Правило № 2 – движение должно основываться на времени 130

Неуничтожаемые объекты .. 132
Синглтоны и статические переменные .. 134
Итоги .. 138

Глава 4. Событийное программирование.....................139

События ... 140
Управление событиями... 144

Основы управления событиями с помощью интерфейсов 145
Создание класса EventManager ... 148

Содержание    7

Директивы #region и #endregion для свертывания кода
в MonoDevelop .. 153

Использование EventManager ... 154
Альтернативный способ, основанный на делегировании 155
События класса MonoBehaviour ... 159
События мыши и сенсорной панели .. 160
Фокус приложения и пауза ... 164

Итоги .. 167

Глава 5. Камеры и отображение сцены........................168

Визуальное представление камеры.. 168
Быть на виду .. 171

Определение видимости объекта .. 172
Подробнее о видимости... 174
Проверка поля зрения – отображаемые компоненты 174
Проверка поля зрения – точки .. 176
Проверка поля зрения – заслонение ... 176
Видимость для камеры – впереди или позади................................ 178

Ортографические камеры.. 179
Вывод изображения с камеры и постобработка 183
Дрожание камеры .. 189
Камеры и анимация ... 192

Сопровождающие камеры ... 193
Управление движением камеры .. 195

Траектория камеры – iTween .. 197
Итоги .. 201

Глава 6. Работа с фреймворком Mono......................... 202

Списки и коллекции.. 203
Класс List ... 204
Класс Dictionary .. 207
Класс Stack .. 208

Интерфейсы IEnumerable и IEnumerator .. 210
Перебор врагов с помощью интерфейса IEnumerator 211

Строки и регулярные выражения... 216
Null, пустые строки и пробелы ... 216
Сравнение строк ... 217
Форматирование строк .. 219
Цикл по символам строке .. 219
Создание строк .. 220

8    Содержание

Поиск в строках ... 220
Регулярные выражения .. 220

Произвольное количество аргументов ... 222
Язык интегрированных запросов ... 223
Linq и регулярные выражения .. 226
Работа с текстовыми ресурсами... 227

Текстовые ресурсы – статическая загрузка 227
Текстовые ресурсы – загрузка из локальных файлов 228
Текстовые ресурсы – загрузка из INI-файлов 230
Текстовые ресурсы – загрузка из CSV-файлов 231
Текстовые ресурсы – загрузка из Интернета 232

Итоги .. 232

Глава 7. Искусственный интеллект. 233

Искусственный интеллект в играх .. 234
Начало проекта ... 235
Внедрение навигационного меша ... 237
Создание агента искусственного интеллекта.. 242
Конечные автоматы в Mecanim ... 244
Конечный автомат состояний в C# – начало ... 251
Создание состояния Idle .. 252
Создание состояния Patrol ... 256
Создание состояния Chase .. 260
Создание состояния Attack .. 262
Создание состояния бегства SeekHealth .. 263
Итоги .. 266

Глава 8. Настройка редактора Unity............................ 268

Пакетное переименование... 268
Атрибуты C# и рефлексия .. 274
Смешивание цветов ... 278
Отображение свойств ... 283
Локализация .. 289
Итоги .. 296

Глава 9. Работа с текстурами, моделями
и двухмерными изображениями................................ 298

Скайбокс ... 299
Процедурные меши.. 305

Содержание    9

Анимация UV-координат – прокручивание текстур 311
Рисование на текстуре .. 313

Шаг 1 – создание шейдера смешивания текстур............................ 315
Шаг 2 – создание сценария рисования текстуры........................... 319
Шаг 3 – настройка текстуры рисования ... 326

Итоги .. 328

Глава 10. Управление исходными текстами
и другие подсказки..331

Git – управление исходными текстами... 331
Шаг № 1 – загрузка .. 333
Шаг № 2 – добавление проекта в репозиторий.............................. 334
Шаг № 3 – настройка Unity для управления исходными
текстами ... 336
Шаг № 4 – создание репозитория... 337
Шаг № 5 – игнорируемые файлы.. 338
Шаг № 6 – первая фиксация изменений .. 339
Шаг № 7 – изменение файлов .. 341
Шаг № 8 – получение файлов из хранилища 343
Шаг № 9 – просмотр репозитория ... 345

Папка ресурсов и внешние файлы ... 347
Пакеты ресурсов и внешние файлы .. 349
Хранимые данные и сохранение игры .. 352
Итоги .. 356

Предметный указатель... 357

Об авторе
Алан Торн (Alan Thorn), разработчик игр, независимый программист
и писатель, с более чем 13-летним опытом работы, живущий в Лон­
доне. В 2010 году основал компанию Wax Lyrical Games и является
создателем игры «Baron Wittard: Nemesis of Ragnarok», удостоенной
многочисленных наград. Автор 10 видеокурсов и 11 книг по разра­
ботке игр, в том числе «Unity 4 Fundamentals: Get Started at Making
Games with Unity» (Focal Press), «UDK Game Development» и «Pro
Unity Game Development with C#» (Apress). Кроме того, как пригла­
шенный лектор читает курс «Game Design & Development Masters
Program» в Национальной школе кино и телевидения.

Участвовал как независимый разработчик в более чем 500 проек­
тах по созданию игр, симуляторов, игровых киосков, «серьезных»
игр, программ дополненной реальности для игровых студий, музеев
и тематических парков по всему миру. В настоящее время работает
над приключенческой игрой «Mega Bad Code» для настольных ком­
пьютеров и мобильных устройств. Алан обожает графику. Увлекает­
ся философией, йогой и пешими загородными прогулками. Его адрес
электронной почты: directx_user_interfaces@hotmail.com.

О технических
рецензентах
Дилан Агис (Dylan Agis), программист и дизайнер игр, в настоящее
время участвует в нескольких сторонних проектах, как независи­
мый разработчик, и одновременно развивает несколько собственных.
Имеет большой опыт работы на C++ и C#, а также в Unity, и любит
решать проблемы.

Я хотел бы поблагодарить издательство Packt Publishing за предо­
ставленную возможность ознакомиться с книгой и автора за инте­
ресное чтение.

Джон П. Доран (John P. Doran), дизайнер игр, созданием кото­
рых занимается более 10 лет. Участвовал в разработке разнообразных
игр, и в одиночку, и в командах, численностью до 70 человек, в рамках
в учебных, и профессиональных проектов.

Одно время работал в компании LucasArts над созданием игры
«Star Wars: 1313» как дизайнер-стажер, где был единственным на­
чинающим дизайнером в команде опытных специалистов. Также
был ведущим преподавателем на курсах DigiPen®-Ubisoft® Campus
Game Programming Program, где обучал студентов-выпускников про­
граммированию игр по интенсивной программе.

В настоящее время Джон занимает пост технического дизайнера
в отделе исследований и разработки, в институте DigiPen. Кроме
того, он преподает и консультирует студентов по нескольким пред­
метам, читает лекции по разработке игр, в том числе на C++, в Unreal,
Flash, Unity и др.

Был техническим рецензентом девяти книг по разработке игр и яв­
ляется автором книг «Unity Game Development Blueprints», «Getting
Started with UDK», «UDK Game Development [Video]» и «Mastering
UDK Game Development HOTSHOT». Все они вышли в издательстве
Packt Publishing. Также является соавтором книги «UDK iOS Game
Development Beginner’s Guide» (Packt Publishing).

Алессандро Моки (Alessandro Mochi) играет в видеоигры со вре­
мен появления «Amstrad» и «NES» на всех возможных устройствах:
компьютере, консоли и мобильном телефоне. Большие и маленькие
видеоигры – его любовь и страсть. Ролевые игры (RPG), стратегии,
динамические игры-платфомеры... ничто не ускользнуло от него.

12    О технических рецензентах

Профессионально занимаясь программированием, имея диплом
с отличием в области управления проектами, свободно владея испан­
ским, итальянским и английским языками, он получил глубокое зна­
ние многих программ. Всегда готов встретить новые вызовы.

В настоящее время внештатный дизайнер и программист, помогает
молодым разработчикам воплотить идеи в реальность. Хотя он часто
путешествует по всему миру, его по-прежнему легко найти через его
портфолио на www.amochi-portfolio.com.

Райан Уоткинс (Ryan Watkins) любит веселиться. Его можно най­
ти на LinkedIn: www.linkedin.com/in/ryanswatkins.

Предисловие
Книга «Искусство создания сценариев в Unity» – это сжатое и спе-
циализированное исследование некоторых продвинутых, нетради-
ционных и эффективных методов разработки игровых сценариев на
C# в Unity. Это делает книгу очень актуальной, потому что, несмо-
тря на большое число книг «для начинающих» и учебных пособий по
Unity, очень немногие из них описывают приемы профессиональной
разработки в ясной и структурированной форме. Автор книги пред-
полагает, что вы уже знакомы с основами Unity, такими как импорт
ресурсов, проектирование уровней, карты освещения и основы разра-
ботки сценариев на C# или JavaScript. Книга сразу начинается с рас-
смотрения примеров творческого использования сценариев для ре-
шения сложных задач, таких как отладка, искусственный интеллект,
нестандартное отображение, расширение редактора, анимация и дви-
жение, и многое другое. Главная цель заключается не в демонстра-
ции абстрактных принципов и теоретических основ, а в том, чтобы
на реальных примерах показать, как применить теорию на практике,
что поможет вам в полную силу задействовать свои знания в области
программирования для создания качественных игр, которые не про-
сто работают, но работают оптимально. Чтобы получить максималь-
ную отдачу от этой книги, читайте ее главы по порядку, от начала до
конца, и используйте навыки обобщенного и абстрактного мышле-
ния. То есть, рассматривайте каждую главу, как конкретный пример
и демонстрацию более общих принципов, сохраняющихся во времени
и пространстве; их можно выделить из конкретного контекста в дан-
ной книге и повторно использовать в иных ситуациях, где бы они не
потребовались. Проще говоря, рассматривайте приведенные здесь
сведения вне связи с конкретными примерами и выбранной мной
тематикой, а как весьма актуальные знания для ваших собственных
проектов. Итак, давайте начнем.

14    Предисловие

О чем рассказывается в этой книге
Глава 1 «Основы C# в Unity» кратко напоминает основы написания
сценариев для Unity. Она не является полным и исчерпывающим
руководством по основам. Скорее, это курс повторения для тех, кто
ранее уже изучал основы, но, возможно, не писал сценарии некоторое
время и был бы рад освежить память перед тем, как начать работу
в следующих главах. Если вы знакомы с основами сценариев (такими
как классы, наследование, свойства и полиморфизм), можете пропу­
стить эту главу.

Глава 2 «Отладка» глубоко исследует процесс отладки. Надеж­
ность и эффективность кода нередко зависит от возможности успеш­
но находить и исправлять ошибки при их появлении. Это делает от­
ладку очень важным умением. В этой главе мы не только рассмотрим
основы, но и опишем отладку в интерфейсе MonoDevelop, а также
установим полезную систему регистрации ошибок.

Глава 3 «Синглтоны, статические члены, игровые объекты и миры»
исследует широкий спектр возможностей для доступа, изменения
и управления игровыми объектами. В частности, мы познакомимся
с шаблоном проектирования «Одиночка» (синглтон) для создания
глобальных объектов, а также со многими приемами поиска, пере­
числения, сортировки и размещения объектов. Сценарии в Unity ма­
нипулируют объектами в едином игровом мире (пространстве коор­
динат), обеспечивая реалистичность игр.

Глава 4 «Событийное программирование» рассматривает событий­
ное программирование как важный подход к перестройке архитекту­
ры игры с целью оптимизации. Переложив тяжелую нагрузку с часто
возникающих событий и событий обновления на комплекс других
событий, можно высвободить много ценного времени для решения
других задач.

Глава 5 «Камеры и отображение сцены» глубоко исследует работу
камер, подробно описывает их архитектуру и настройку отображения
сцены. Мы изучим проверку попадания в область видимости, иссле­
дуем вопросы отбраковки, познакомимся с такими понятиями, как
прямая видимость, ортогональная проекция, глубина, слои, эффекты
постобработки и прочее.

Глава 6 «Работа с фреймворком Mono» исследует обширную биб­
лиотеку Mono и некоторые из ее наиболее практичных классов, от
словарей, списков и стеков до таких функций и понятий, таких как
строки, регулярные выражения и фреймворк запросов Linq. К концу

Что потребуется для работы с книгой    15

этой главы вы овладеете приемами быстрой и эффективной обработ­
ки больших объемов данных.

Глава 7 «Искусственный интеллект» содержит пример практиче­
ского применения почти всего описанного ранее в одном проекте
для создания искусственного интеллекта, а точнее – умного врага,
способного ходить, преследовать, патрулировать, нападать, убегать
и искать аптечки для восстановления здоровья. В процессе создания
этого персонажа мы рассмотрим вопросы прямой видимости, обнару­
жения и прокладки маршрутов.

Глава 8 «Настройка редактора Unity» описывает редактор Unity,
функциональность которого способна удовлетворить самые разные
потребности, но иногда бывает нужно нечто большее. В этой главе
рассказывается, как создавать классы для настройки самого редакто­
ра, чтобы сделать работу в нем удобнее и эффективнее. Мы создадим
собственный инспектор свойств и полнофункциональную систему
локализации для разработки многоязычных игр.

Глава 9 «Работа с текстурами, моделями и двухмерной графикой»
содержит описание функций для работы с двухмерными графически­
ми элементами, такими как спрайты, текстуры и элементы пользо­
вательского интерфейса. Двухмерные элементы играют важную роль
даже в трехмерных играх, и здесь мы рассмотрим ряд задач работы
с двухмерной графикой и эффективные способы их решения.

Глава 10 «Управление исходными текстами и другие подсказки» за­
вершает книгу. Она содержит множество советов и рекомендаций,
которые не вписываются в какую-либо конкретную категорию, но
в целом очень важны. Мы рассмотрим полезные навыки програм­
мирования, советы по поддержанию чистоты кода, сериализацию
данных, применение систем управления версиями исходных кодов
и многое другое.

Что потребуется для работы с книгой
Эта книга, как следует из ее названия, описывает работу с платфор­
мой Unity, а это значит, что понадобится только копия Unity. Unity
поставляется со всем необходимым для работы с книгой, в том числе
со встроенным редактором кода. Дистрибутив Unity можно загру­
зить с сайта http://unity3d.com/. Приложение Unity поддерживает две
основные лицензии, бесплатную и профессиональную. Бесплатная
лицензия ограничивает доступ к некоторым функциям, но сохраняет
доступность обширного набора основных функций. В целом боль­

16    Предисловие

шинство глав и примеров в этой книге соответствуют бесплатной
версии, то есть, для опробования примеров можно пользоваться бес­
платной версией. Тем не менее, некоторые главы и примеры требуют
наличия профессиональной версии.

Кому адресована эта книга
Эта книга адресована студентам, преподавателям и специалистам,
знакомым с основами Unity и с приемами создания сценариев. Не­
важно, как давно вы знакомы с Unity, эта книга найдет, что предло­
жить вам, чтобы помочь усовершенствовать приемы разработки игр.

Соглашения
В этой книге используется несколько разных стилей оформления
текста для выделения разных видов информации. Ниже приведены
примеры этих стилей с объяснением их назначения.

Программный код в тексте, имена таблиц баз данных, имена па­
пок, имена файлов, расширения файлов, адреса страниц в Интернете,
пользовательский ввод и ссылки в Twitter будут выглядеть так: «По­
сле создания новый файл сценария будет сохранен в папке Project
с расширением .cs».

Блоки программного кода оформляются так:

01 using UnityEngine;
02 using System.Collections;
03
04 public class MyNewScript : MonoBehaviour
05 {

Когда нам потребуется привлечь ваше внимание к определенному
фрагменту в блоке программного кода, мы будем выделять его жир­
ным шрифтом:

// Объект следует скрыть, если его координата Y
// получила значение выше 100
bool ShouldHideObject = (transform.position.y > 100) ? true : false;

// Изменить видимость объекта
gameObject.SetActive(!ShouldHideObject);

Новые термины и важные определения будут выделяться в обыч­
ном тексте жирным. Текст, отображаемый на экране, например в меню
или в диалогах, будет оформляться так: «Выберите в меню приложе­
ния пункт Assets ⇒ Create ⇒ C# Script».

Список опечаток    17

	 Так будут оформляться предупреждения и важные примечания.

	 Так будут оформляться советы и рекомендации.

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы
думаете об этой книге – что понравилось или может быть не понрави­
лось. Отзывы важны для нас, чтобы выпускать книги, которые будут
для вас максимально полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.
com, зайдя на страницу книги и оставить комментарий в разделе «От­
зывы и рецензии». Также можно послать письмо главному редактору
по адресу dmkpress@gmail.com, при этом напишите название книги
в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересо­
ваны в написании новой книги, заполните форму на нашем сайте по
адресу http://dmkpress.com/authors/publish_book/ или напишите в из­
дательство по адресу dmkpress@gmail.com.

Загрузка исходного кода примеров
Скачать файлы с дополнительной информацией для книг издатель­
ства «ДМК Пресс» можно на сайте www.dmkpress.com или www.дмк.рф
в разделе «Читателям – Файлы к книгам».

Загрузка цветных иллюстраций к книге
Вы также можете скачать файл в формате PDF с цветными иллюстра­
циями и диаграммами к этой книге. Цветные изображения помогут
вам лучше понять содержание книги. Загрузить этот файл можно по
адресу https://www.packtpub.com/sites/default/files/downloads/0655OT_
ColoredImages.pdf.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы удостоверить­
ся в качестве наших текстов, ошибки все равно случаются. Если вы
найдете ошибку в одной из наших книг – возможно, ошибку в тексте
или в коде – мы будем очень благодарны, если вы сообщите нам о ней.
Сделав это, вы избавите других читателей от расстройств и поможете
нам улучшить последующие версии этой книги.

18    Предисловие

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите
о них главному редактору по адресу dmkpress@gmail.com, и мы испра-
вим это в следующих тиражах.

Нарушение авторских прав
Пиратство в Интернете по-прежнему остается насущной проблемой.
Издательства ДМК Пресс и Packt очень серьезно относится к вопро-
сам защиты авторских прав и лицензирования. Если вы столкнетесь
в Интернете с незаконно выполненной копией любой нашей книги,
пожалуйста, сообщите нам адрес копии или веб-сайта, чтобы мы мог-
ли принять меры.

Пожалуйста, свяжитесь с нами по адресу электронной почты
dmkpress@gmail.com со ссылкой на подозрительные материалы.

Мы высоко ценим любую помощь по защите наших авторов, и по-
могающую нам предоставлять вам качественные материалы.

Вопросы
Вы можете присылать любые вопросы, касающиеся данной книги, по
адресу dmkpress@gmail.com или questions@packtpub.com. Мы поста-
раемся разрешить возникшие проблемы.

Глава 1

Основы C# в Unity
Эта книга посвящена освоению приемов создания сценариев для
Unity, в частности игровых сценариев на языке C#. Перед тем как
двигаться дальше, необходимо дать определение понятия освоения
приемов создания сценариев. Под освоением подразумевается, что
эта книга поможет вам совершить переход от теоретических знаний
к более свободному, практическому и продвинутому овладению на­
выками разработки сценариев. Здесь ключевым является слово «сво­
бодное». С самого начала изучения любого языка программирования,
в центре внимания неизменно оказывается его синтаксис, правила
и законы, то есть формальная часть языка, включающая такие поня­
тия, как переменные, циклы и функции. Однако, по мере накопления
опыта, внимание программиста смещается от самого языка к твор­
ческим способам его применения для решения насущных задач; от
задач, ориентированных на сам язык, к вопросам контекстно-зави­
симого применения. Следовательно, большая часть этой книги будет
посвящена вовсе не формальному синтаксису языка C#.

В следующих главах я буду считать, что вы уже знакомы с основа­
ми языка C#. Поэтому далее речь пойдет о конкретных применениях
и реальных примерах использования C#. Однако сначала в этой гла­
ве основное внимание будет уделено именно основам C#. И это не
случайно. Эта глава кратко охватит все основные понятия C#, необ­
ходимые для продуктивной работы с последующими главами. Я на­
стоятельно рекомендую прочесть ее от начала до конца, независимо
от вашего опыта. Она адресована, прежде всего, читателям, имеющим
поверхностное знакомство с C#, но стремящимся углубить свои зна­
ния. Однако, она также может помочь опытным разработчикам за­
крепить имеющиеся знания и, возможно, приобрести новые, свежие
идеи. В этой главе я кратко опишу основы C# с нуля, шаг за шагом.
Я буду излагать так, как будто вы уже знакомы с основами програм­
мирования, может быть на другом языке, но никогда не сталкивались
с C#. Итак, начнем.

20    Основы C# в Unity

Почему C#?
Когда дело доходит до сценариев для Unity, перед началом работы
над новой игрой всегда возникает вопрос, какой язык выбрать, по­
тому что Unity предлагает выбор. Официально на выбор предлага­
ется три варианта: Boo, C# и JavaScript. В настоящее время не утиха­
ют дебаты о том, как правильнее называть JavaScript – «JavaScript»
или «UnityScript», – из-за ряда специфичных изменений, внесенных
в язык для Unity. Но не это должно нас сейчас волновать. Вопрос
в том, какой язык выбрать для проекта. Кроме того, может показаться,
что у нас есть еще один вариант – можно выбрать оба языка и писать
одни файлы сценария на одном языке, а другие – на другом, фактиче­
ски смешав языки. Технически это возможно. Unity не запрещает так
поступить. Тем не менее это плохо, потому что подобная практика,
как правило, приводит к путанице, а также к конфликтам при ком­
пиляции, это все равно, что пытаться рассчитать расстояние в милях
и километрах одновременно.

Рекомендуемый подход состоит в том, чтобы выбрать один язык
и использовать его повсюду в проекте в качестве главного языка. Это
упростит работу, но это также означает, что придется выбрать один
язык, а от других отказаться. В этой книге выбран язык C#. Поче­
му? Во-первых, не потому, что язык C# лучше других. На мой взгляд,
нет абсолютно «лучшего» или абсолютно «худшего» языка програм­
мирования. Каждый язык имеет свои достоинства и недостатки,
и все языки одинаково хорошо подходят для создания игр в Unity.
Основная причина в том, что C# является, пожалуй, наиболее ши­
роко используемым и поддерживаемым языком в Unity, и позволя­
ет большинству разработчиков применить уже имеющиеся знания.
Большинство учебников по Unity ориентированы на C#, потому что
он часто применяется для разработки приложений в других областях.
Язык C# исторически привязан к платформе .NET, которая исполь­
зуется в Unity (под именем Mono), к тому же C# напоминает C++,
который очень популярен у разработчиков игр. Кроме того, изучив
язык C#, вы обнаружите, что ваши знания и умения работать с Unity
востребованы в современной игровой индустрии. Таким образом,
я выбрал C#, чтобы обеспечить этой книге более широкую аудиторию
и позволить вам дополнительно использовать обширный набор уже
существующих учебников и литературы. Этот выбор позволит найти
применение знаний, полученных при чтении данной книги.

Создание файлов сценариев    21

Создание файлов сценариев
Чтобы определить логику игры или поведение ее персонажей, потре­
буется написать сценарии. Разработка сценариев в Unity начинается
с создания нового файла сценария – обычного текстового файла, до­
бавляемого в проект. Этот файл содержит программные инструкции,
каждая из которых является командой для Unity. Как уже упомина­
лось, программный код может быть написан на одном из языков: C#,
JavaScript или Boo. В этой книге будет применяться язык C#. В Unity
есть несколько способов создания файлов сценария.

Один из них состоит в выборе пункта Assets ⇒ Create ⇒ C# Script
(Ресурсы ⇒ Создать ⇒ Сценарий C#) в меню приложения, как по­
казано на рис. 1.1.

Другой способ – щелкнуть правой кнопкой мыши на пустом про­
странстве в любом месте панели Project (Проект) и выбрать в кон­
текстном меню пункт Create ⇒ C# Script (Создать ⇒ Сценарий C#),

Рис. 1.1. Создание файла сценария с помощью меню приложения

22    Основы C# в Unity

как показано на рис. 1.2. При этом файл сценария будет создан в от­
крытой в данный момент папке.

Рис. 1.2. Создание файла сценария
с помощью контекстного меню панели Project

После этого в папке Project будет создан новый файл с расшире­
нием .cs (сокращенно от C Sharp). Имя файла особенно важно, и его
изменение будет иметь серьезные последствия, потому что Unity ис­
пользует имена файлов для определения имен классов С# в этих фай­
лах. Классы будут рассмотрены более подробно далее в этой главе.
Проще говоря, выбирайте для своих файлов уникальные и значимые
имена.

Под уникальным именем имеется в виду, что ни какой другой файл
в проекте не должен иметь то же имя, независимо от того, в какой
папке он находится. Все файлы сценария должны иметь уникальное
имя в рамках проекта. Имя должно быть осмысленным и явно вы­
ражать назначение сценария. Кроме того, существуют правила, опре­
деляющие допустимость имен файлов, а также имен классов в C#.
Формальное определение этих правил можно найти по адресу http://
msdn.microsoft.com/en-us/library/aa664670%28VS.71%29.aspx. Проще

Создание файлов сценариев    23

говоря, имя файла может начинаться только с буквы или символа
подчеркивания (цифры для первого символа не подходят), и имя не
должно включать пробелов, их рекомендуется заменять символами
подчеркивания (_), как показано на рис. 1.3.

Рис. 1.3. Имена файлов должны быть уникальными
и соответствовать принятым в C#
соглашениям об именах классов

Файлы сценариев для Unity можно открывать и просматривать
в любом текстовом редакторе или интегрированной среде разработ­
ки (IDE), в том числе в Visual Studio или Notepad ++, но в состав
Unity входит бесплатный редактор исходного кода MonoDevelop.
Эта программа является частью основного пакета Unity и входит
в установочный дистрибутив, но не может быть загружена отдельно.
Если дважды щелкнуть на файле сценария в панели Project (Про­
ект), файл автоматически откроется в редакторе MonoDevelop. Если
потом вы решите переименовать файл сценария, вам также придется
переименовать класс C# в файле, чтобы его имя в точности соответ­
ствовало новому имени файла, как показано на рис. 1.4. В противном
случае будут возникать ошибки во время компиляции и проблемы
при подключении файла сценария к объектам.

	 Компиляция кода. Чтобы скомпилировать код в Unity, достаточно сохра-
нить файл сценария в MonoDevelop, выбрав пункт меню File ⇒ Save (Файл
⇒ Сохранить) (или нажав Ctrl+S на клавиатуре), и вернуться в главное окно
редактора Unity. При повторном получении фокуса ввода, Unity автоматиче-

24    Основы C# в Unity

ски обнаружит изменения в файлах и скомпилирует их. Если при компиля-
ции возникнут ошибки, игру невозможно будет запустить и в окне консоли
появится сообщение об ошибках. Если компиляция прошла успешно, игру
можно запустить простым щелчком на кнопке Play (Играть) в панели ин-
струментов редактора, после чего игра будет запущена в тестовом режиме.
Имейте в виду, что если забыть сохранить файл после внесения изменений,
Unity будет использовать старую версию кода, скомпилированную прежде.
По этой причине, а также в целях резервного копирования важно регулярно
сохранять файлы, так что не забывайте нажимать Ctrl+S.

Подключение сценариев
Каждый файл сценария для Unity определяет один главный класс,
который, подобно шаблону, можно использовать для создания экзем­
пляров. Он представляет собой совокупность связанных между со­
бой переменных, функций и событий (с которыми мы скоро позна­
комимся). Формально файл сценария подобен любым другим видам
ресурсов в Unity, таким как меши (mesh) или аудиофайлы. Он ждет
своей очереди в папке Project и ничего не делает, пока не будет добав­
лен в определенную сцену (точнее, подключен к объекту в качестве
компонента), где он оживет во время выполнения сцены. Сценарии,

Рис. 1.4. Переименование класса
для соответствия имени файла

Подключение сценариев    25

имеющие логическую, или математическую природу, не добавляют­
ся в сцену как материальные, независимые объекты, подобно мешам.
Вы не увидите и не услышите их непосредственно, потому что они не
имеют никакого видимого или слышимого воплощения. Вместо этого
они подключаются к объектам игры в виде компонентов, определя­
ющих их поведение. Процесс вовлечения сценария в работу в виде
отдельного компонента конкретного объекта называют созданием его
экземпляра. Из одного файла сценария можно создать множество эк­
земпляров для нескольких объектов, если их поведение должно быть
похожим, это позволяет избежать создания отдельного файла для
каждого объекта, например когда несколько вражеских персонажей
должны иметь одинаковый искусственный интеллект. В идеале на­
значение сценария состоит в том, чтобы определить некую абстракт­
ную формулу или модель поведения объекта, которая может быть
успешно применена ко многим подобным объектам во всевозмож­
ных обстоятельствах. Чтобы подключить файл сценария к объекту,
перетащите его из панели Project (Проект) на нужный объект в сце­
не. В результате будет создан экземпляр главного класса в сценарии
и прикреплен как компонент, а его общедоступные переменные ста­
нут видны в инспекторе при выборе объекта, как показано на рис. 1.5.

Рис. 1.5. Подключение сценария к объекту игры

26    Основы C# в Unity

Подробнее переменные будут описаны в следующем разделе.

	 Более подробную информацию о создании и использовании сценариев
в Unity можно найти по адресу http://docs.unity3d.com/412/Documentation/
Manual/Scripting.html.

Переменные
Самым важным, пожалуй, понятием в программировании вообще
и в языке C# в частности является переменная. Переменные часто
соответствуют буквам, используемым в алгебре для записи числовых
величин, например X, Y и Z или a, b и c. Если потребуется хранить не­
которую информацию, такую ​​как имя игрока, счет, положение, ориен­
тацию, количество боеприпасов, здоровье или любые другие сведения
(которые можно выразить существительными), переменные помогут
вам в этом. Переменная представляет собой единичный элемент ин­
формации. То есть, для хранения нескольких элементов информации
потребуется несколько переменных, по одной переменной для каждо­
го элемента. Кроме того, каждый элемент будет иметь определенный
тип, или вид. Например, имя игрока определяется последовательно­
стью букв, таких как «Джон», «Том» или «Давид». Здоровье игрока,
напротив, определяется в числовом виде, например 100 процентов (1)
или 50 процентов (0,5), в зависимости от того, какие повреждения по­
лучил игрок. Итак, каждая переменная обязательно имеет тип дан­
ных. В C# переменные создаются с помощью специального синтакси­
са. Взгляните на пример файла сценария в листинге 1.1, содержащего
класс с именем MyNewScript, в котором объявлены три переменные раз­
ных типов с областью видимости класса. Слово «объявить» означает,
что мы, как программисты, сообщаем компилятору С# о необходимо­
сти создать переменные:

Листинг 1.1. Типы переменных
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyNewScript : MonoBehaviour
05 {
06 public string PlayerName = "";
07 public int PlayerHealth = 100;
08 public Vector3 Position = Vector3.zero;
09
10 // Этот метод выполняет инициализацию
11 void Start () {
12

Переменные    27

13 }
14
15 // Вызывается при отображении каждого кадра
16 void Update () {
17
18 }
19 }

	 Типы данных переменных. Каждая переменная имеет определенный тип
данных. Наиболее употребительными являются: int, float, bool, string
и Vector3. Ниже приводится несколько примеров переменных этих типов:

	 •  int (целое число) = –3, –2, –1, 0, 1, 2, 3...
	 •  float (вещественное, или десятичное число) = –3.0, –2.5, 0.0, 1.7, 3.9...

Обратите внимание на строки 06–08 в листинге 1.1, где каждой
переменной присваивается начальное значение и явно указан ее тип
данных как int (целое число), string (строка) и Vector3, который пред­
ставляет координаты точки в трехмерном пространстве (этот тип
может также представлять направления, как будет показано ниже).
Это не полный список всех возможных типов данных, а только са­
мых распространенных из них. Перечень используемых типов будет
зависеть от вашего проекта (а кроме того, вы сможете создавать свои
собственные типы!). В этой книге мы будем работать с наиболее рас­
пространенными типами данных и вы увидите массу примеров их
использования. Наконец, каждая строка объявления переменной на­
чинается с ключевого слова public, определяющего степень доступно­
сти переменной. Обычно переменные объявляются как общедоступ­
ные (public) или закрытые (private) (существует еще защищенные
(protected) переменные, но он здесь не рассматривается). Значения
общедоступных public переменных можно изменять в инспекто­
ре объектов (как мы скоро это увидим, можете также взглянуть на
рис. 1.5) или обращаться к ним из других классов.

Переменные названы так потому, что их значения могут меняться
в разные моменты времени. Конечно, они меняются не произвольно
или непредсказуемо, а только когда мы явно изменяем их: либо путем
присваивания нового значения в коде, либо из инспектора объектов,
либо вызывая методы и функции. Они могут изменяться непосред­
ственно или косвенно. Переменным можно присваивать значения не­
посредственно, например:

PlayerName = "NewName";

или косвенно, с помощью выражений, чье окончательное значение
должно быть вычислено до его присваивания переменной:

28    Основы C# в Unity

// Переменная получит значение 50, потому что: 100 x 0.5 = 50
PlayerHealth = 100 * 0.5;

	 Область видимости переменных. Каждая переменная объявляется с не-
явной областью видимости. Область видимости определяет время жизни
переменной, то есть области в файле, где на переменную можно сослаться
и получить к ней доступ. Область видимости определяется местом объ-
явления переменной. Для переменных, объявленных в листинге 1.1, обла-
стью видимости является класс, потому что они объявлены в начале класса
и вне функций. Это значит, что они доступны во всем классе, а также (буду-
чи общедоступными (public)) из других классов. Переменные могут также
объявляться внутри функций. Такие переменные называют локальными,
потому что область их видимости ограничена функцией, то есть локальная
переменная недоступна за пределами функции, в которой она была объ-
явлена. Классы и функции будут рассмотрены позже в этой же главе.

	 Более подробную информацию о переменных и их использовании
в C# можно найти по адресу http://msdn.microsoft.com/en-us/library/
aa691160%28v=vs.71%29.aspx.

Условные операторы
Значения переменных могут изменяться во множестве разных ситу­
аций: игрок поменял свою позицию, враги были уничтожены, про­
изошла смена уровня и т. д. Следовательно, необходимо часто прове­
рять переменные, чтобы обеспечить выполнение в сценарии разных
действий, в зависимости от их текущих значений. Например, если
значение переменной PlayerHealth, определяющее здоровье игрока,
достигнет 0 процентов, сценарий должен выполнить фрагмент кода,
отмечающий смерть игрока, а если значение переменной PlayerHealth
стало равно 20 процентам, может быть желательно вывести пред­
упреждение. В этом конкретном примере значение переменной
PlayerHealth направит сценарий в указанном направлении. Язык C#
предлагает два основных условных оператора для такого ветвления
программного кода. Это операторы if и Switch. Оба они очень полезны.

Оператор if
Оператор if имеет несколько разных форм. Основная форма прове­
ряет условие и выполняет следующий за ней блок кода, если и только
если условие истинно, то есть его значение равно true. Рассмотрим
следующий пример в листинге 1.2.

Листинг 1.2. Оператор if
01 using UnityEngine;
02 using System.Collections;
03

Условные операторы    29

04 public class MyScriptFile : MonoBehaviour
05 {
06 public string PlayerName = "";
07 public int PlayerHealth = 100;
08 public Vector3 Position = Vector3.zero;
09
10 // Этот метод выполняет инициализацию
11 void Start () {
12 }
13
14 // Вызывается при отображении каждого кадра
15 void Update ()
16 {
17 // Проверить здоровье игрока – скобки {} необязательны
18 // для однострочного оператора if
19 if(PlayerHealth == 100)
20 {
22 Debug.log ("Player has full health");
23 }
24 }
25 }

Этот сценарий можно запустить так же, как любой другой сцена­
рий – щелчком на кнопке Play (Играть) в панели инструментов –
и он будет выполняться, пока экземпляр класса сценария остается
связанным с объектом в активной сцене. Оператор if в строке 19
непрерывно проверяет текущее значение переменной PlayerHealth
класса. Если она в точности равна (==) 100, будет выполнен код вну­
три скобок {} (строки 20–22). Это объясняется тем, что результаты
всех проверок приводятся к значению логического типа: либо true,
либо false; на самом деле условный оператор проверяет равенство
условия (PlayerHealth == 100) значению true. Теоретически код в фи­
гурных скобках может содержать несколько строк и выражений. Но
здесь он содержит единственную строку 21 – вызов функции Debug.
log, которая выводит в консоль строку «Player has full health», как
показано на рис. 1.6. Конечно, оператор if может направить выпол­
нение кода и в другом направлении, то есть, если значение пере­
менной PlayerHealth не равно 100 (возможно, оно равно 99 или 101),
сообщение не будет выведено. Появление сообщения зависит от
равенства условного выражения в предыдущем операторе if зна­
чению true.

Дополнительную информацию об операторах if, if-else и их ис­
пользовании в C# можно найти в по адресу http://msdn.microsoft.com/
ru-ru/library/5011f09h.aspx.

30    Основы C# в Unity

Рис. 1.6. Консоль Unity удобно использовать
для вывода отладочных сообщений

	 Консоль Unity. Как показано на рис. 1.6, консоль Unity является инструмен-
том отладки. Это то место, куда функция Debug.log (функция вывода в кон-
соль) выводит сообщения. Консоль удобно использовать для диагностики
проблем во время выполнения или компиляции. Если во время компиляции
или выполнения будут выведены сообщения об ошибках, их можно найти
в списке на вкладке Console (Консоль). По умолчанию эта вкладка видна
в редакторе Unity, но если это не так, ее можно сделать видимой, выбрав
пункт Window ⇒ Console (Окно ⇒ Консоль) в меню приложения Unity. Бо-
лее подробную информацию о функции Debug.log можно найти по адресу
http://docs.unity3d.com/ScriptReference/Debug.log.html.

Кроме проверки равенства (==), как показано в листинге 1.2, мож­
но проверять и другие условия. Например, с помощью операторов >
и < можно проверить, является ли переменная больше или меньше
заданного значения, соответственно. С помощью оператора != можно
проверить неравенство переменной заданному значению. Кроме того,
можно даже объединить несколько проверок с помощью операторов

Условные операторы    31

&& (И) и || (ИЛИ). Например, взгляните на следующий оператор if.
Он выполняет блок кода между скобками {}, только если значение
переменной PlayerHealth находится в интервале между 0 и 100, и не
равно 50:

if(PlayerHealth >= 0 && PlayerHealth <= 100 && PlayerHealth !=50)
{
 Debug.log ("Player has full health");
}

	 Оператор if-else. Одной из разновидностей оператора if является опера-
тор if-else. Оператор if выполняет блок кода, если условие истинно. Опе-
ратор if-else является его расширением. Он выполнит блок кода X, если
условие истинно, и блок кода Y, если условие ложно:

if(MyCondition)
{
 // X – этот блок выполняется, если условие MyCondition истинно
}
else
{
 // Y – этот блок выполняется, если условие MyCondition ложно
}

Оператор switch
Как мы видели, оператор if проверяет истинность условия и на ос­
новании результатов проверки принимает решение, выполнять ли
следующий за ним блок кода. Оператор switch, напротив, позволяет
проверить несколько условий сразу и продолжает выполнение про­
граммы в одном из нескольких возможных направлений, а не толь­
ко в одном или другом, как в случае с оператором if. Например, если
персонаж врага может находиться в одном из нескольких состояний
(погоня (CHASE), бегство (FLEE), бой (FIGHT), засада (HIDE) и т. д.), вам по­
надобится несколько веток кода, чтобы обработать каждое состояние.
Ключевое слово break используется для выхода из обработки некото­
рого состояния и перехода в конец оператора switch. В листинге 1.3
показано, как управлять действиями врага с помощью перечисления.

Листинг 1.3. Оператор switch
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Определение возможных состояний врага в виде перечисления
07 public enum EnemyState {CHASE, FLEE, FIGHT, HIDE};

32    Основы C# в Unity

08
09 // Текущее состояние врага
10 public EnemyState ActiveState = EnemyState.CHASE;
11
12 // Этот метод выполняет инициализацию
13 void Start () {
14 }
15
16 // Вызывается при отображении каждого кадра
17 void Update ()
18 {
19 // Проверить переменную ActiveState
20 switch(ActiveState)
21 {
22 case EnemyState.FIGHT:
23 {
24 // Релизовать бой
25 Debug.log ("Entered fight state");
26 }
27 break;
28
29
30 case EnemyState.FLEE:
31 case EnemyState.HIDE:
32 {
33 // Бегство и засада реализуются одинаково
34 Debug.log ("Entered flee or hide state");
35 }
36 break;
37
38 default:
39 {
40 // Случай по умолчанию, когда никакой другой случай
41 // не подходит. Сейчас обрабатывает состояние погони.
42 Debug.log ("Entered chase state");
43 }
44 break;
45 }
46 }
47 }

	 Перечисления. Строка 07 в листинге 1.3 объявляет перечисление (enum)
с именем EnemyState. Перечисление – это специальная структура, храня-
щая диапазон допустимых значений для одной или более переменных.
Само по себе перечисление не является переменной как таковой, это лишь
способ определения набора значений, которые переменная может иметь.
В листинге 1.3 переменная ActiveState объявлена в строке 10, как пере-
менная типа перечисления EnemyState. Ее значением может быть любое
из значений перечисления ActiveState. Перечисления дают отличную воз-
можность контролировать переменные, ограничивая их значения опреде-
ленным набором или списком вариантов.

Условные операторы    33

Еще одно большое преимущество перечислений в том, что пере­
менные-перечисления отображаются в инспекторе объектов в виде
раскрывающегося списка доступных вариантов значений, как пока­
зано на рис. 1.7.

Рис. 1.7. Перечисление в виде раскрывающегося списка вариантов
для переменной в инспекторе объектов

Дополнительную информацию о перечислениях и их использо­
вании в C# можно найти по адресу http://msdn.microsoft.com/ru-ru/
library/sbbt4032.aspx.

Ниже приводится несколько комментариев к листингу 1.3:
�� Строка 20: начало оператора switch. В скобки () заключена

переменная, чье значение или состояние должно проверяться.
В данном случае это ActiveState.

�� Строка 22: первый оператор case внутри оператора switch. Сле­
дующий за ним блок кода (строки 24 и 25) будет выполнен,
если значение переменной ActiveState равно EnemyState.Fight.
В противном случае этот блок кода будет пропущен.

�� Стоки 30 и 31: здесь два оператора case следуют друг за дру­
гом. Блок кода в строках 33 и 34 будет выполнен, если и толь­

34    Основы C# в Unity

ко если значение переменной ActiveState равно EnemyState.Flee
или EnemyState.Hide.

�� Строка 38: оператор default, который является необязатель­
ным в операторе switch. Когда этот оператор присутствует, он
получает управление, если не подошел ни один оператор case.
В данном случае это произойдет, если переменная ActiveState
будет иметь значение EnemyState.Chase.

�� Строки 27, 36 и 44: оператор break должен находиться в конце
каждого оператора case. Он выполняет выход за пределы опера­
тора switch, внутри которого находится, выполнение програм­
мы продолжится со строки, следующей за оператором switch,
в данном случае это строка 45.

Массивы
Списки и последовательности присутствуют в играх повсюду. По этой
причине часто бывает нужно хранить наборы данных одного вида:
все враги в уровне, все вооружения, которые были собраны, все бону­
сы, которые могли бы быть собраны, все заклинания и пункты инвен­
тарной ведомости и т. д. Одной из разновидностей списков является
массив. Каждый элемент в массиве, по сути, является единицей ин­
формации, которая может изменяться во время игры, и для хранения
каждого элемента массива потребовалась бы отдельная переменная.
Однако гораздо удобнее оперировать набором однотипных перемен­
ных (все враги, все оружие и т. д.), собранных в единую, линейную
и перечисляемую структуру. Это и есть массив. В C# есть два вида
массивов: статические и динамические. Статические массивы могут
хранить не более фиксированного числа элементов, заданного зара­
нее, и это число остается неизменным в течение всего времени ра­
боты программы, даже если потребуется хранить меньше элементов,
чем ранее предполагалось. Это означает, что некоторые слоты, или
элементы могут занимать память без пользы. Динамические масси­
вы могут расти и уменьшаться для размещения необходимого числа
элементов. Со статическими массивами работать легче и они обра­
батываются быстрее, но динамические массивы позволяют избегать
потерь памяти. В этой главе рассматриваются только статические
массивы, динамические массивы будут рассмотрены позднее. При­
мер статического массива приводится в листинге 1.4.

Массивы    35

Листинг 1.4. Статический массив
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Массив игровых объектов в сцене
07 public GameObject[] MyObjects;
08
09 // Этот метод выполняет инициализацию
10 void Start ()
11 {
12 }
13
14 // Вызывается при отображении каждого кадра
15 void Update ()
16 {
17 }
18 }

В строке 07 (листинг 1.4) объявляется пустой массив MyObjects с типом
GameObjects. Для создания массивов используется синтаксис, с квадрат­
ными скобкамии [], следующими за типом GameObject, это означает, что
объявляется список объектов GameObjects, а не один объект GameObject.
В данном примере объявлен массив, который будет списком всех объ­
ектов в сцене. Изначально он пуст, но с помощью инспектора объектов
в редакторе Unity можно заполнить этот массив вручную, установив
его емкость и добавив в него все необходимые объекты. Чтобы сделать
это, выберите объект, к которому прикреплен сценарий, и в разделе My
Objects (Мои объекты) введите в поле Size (Размер) значение, соот­
ветствующее емкости массива. Это значение должно быть равно коли­
честву объектов, которые вы хотите в него поместить. Затем перетащите
мышью объекты по одному из панели с иерархией сцены в слоты масси­
ва, чтобы заполнить список, как показано на рис. 1.8.

Массив можно также заполнить программно, используя функ­
цию Start вместо инспектора объектов. Заполнение массива в функ­
ции Start гарантирует заполнение массива в момент запуска уровня.
И тот, и другой методы работают одинаково хорошо. Второй метод
демонстрируется в листинге 1.5.

Листинг 1.5. Заполнение массива
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour

36    Основы C# в Unity

Рис. 1.8. Заполнение массива из инспектора объектов Unity

05 {
06 // Массив игровых объектов в сцене
07 public GameObject[] MyObjects;
08
09 // Этот метод выполняет инициализацию
10 void Start ()
11 {
12 // Сконструировать массив программно
13 MyObjects = new GameObject[3];
14 // Сцена должна иметь камеру, обозначенную как MainCamera
15 MyObjects[0] = Camera.main.gameObject;
16 // Использовать функцию GameObject.Find для
17 // поиска объектов в сцене по именам
18 MyObjects[1] = GameObject.Find("Cube");
19 MyObjects[2] = GameObject.Find("Cylinder");
20 }
21
22 // Вызывается при отображении каждого кадра
23 void Update ()
24 {
25 }
26 }

Ниже приводится несколько комментариев к листингу 1.5:
�� Строка 10: функция Start вызывается в момент запуска уров­

ня. Функции будут рассматриваться в этой главе ниже.

Циклы    37

�� Строка 13: ключевое слово new используется для создания но­
вого массива с тремя элементами. Это означает, что массив не
сможет хранить более трех элементов. По умолчанию все эле­
менты получают начальное значение null (то есть, ничего).
Они пусты.

�� Строка 15: здесь в первый элемент массива записывается ссыл­
ка на объект основной камеры в сцене. Следует отметить два
важных момента. Во-первых, к элементам массива можно обра­
щаться по индексам, с помощью оператора []. То есть, к перво­
му элементу массива MyObjects можно обратиться с помощью
выражения MyObjects[0]. Во-вторых, в C# нумерация элемен­
тов массива начинается с нуля. Это значит, что первый элемент
занимает позицию 0, следующий – позицию 1, следующий –
позицию 2 и т. д. Для массива MyObjects с тремя элементами
доступ к элементам можно получить с помощью выражений
MyObjects[0], MyObjects[1] и MyObjects[2]. Обратите внимание,
что последний элемент имеет индекс 2, а не 3.

�� Строки 18 и 19: в элементы 1 и 2 массива MyObjects записыва­
ются ссылки на объекты, полученные с помощью функции
GameObject.Find. Эта функция производит поиск игрового объ­
екта в активной сцене по его имени (с учетом регистра), затем
полученная ссылка помещается в указанный элемент массива
MyObjects. Если объект с заданным именем не будет найден,
в элемент массива будет записано значение null.

	 Более подробную информацию о массивах и их использовании в C# можно
найти по адресу http://msdn.microsoft.com/ru-ru/library/9b9dty7d.aspx.

Циклы
Циклы являются одним из самых мощных инструментов в програм­
мировании. Представьте игру, где на уровень может быть сброшена
атомная бомба. Когда это случится, сценарий должен уничтожить
почти все, что находится в сцене. Сделать это можно программно,
удаляя объекты по одному, написав для каждого отдельную строку
кода. Для небольшой сцены из нескольких объектов код удаления за­
ймет всего несколько строк, что не проблематично. Но для больших
сцен с сотнями объектов придется написать много строк кода, и этот
код придется изменять при изменении содержимого сцены. Это будет
утомительно. Циклы помогут сжать код до нескольких строк, неза­
висимо от сложности сцены и количества объектов. Они позволяют

38    Основы C# в Unity

многократно выполнять одни и те же операции над множеством объ­
ектов. В C# имеется несколько видов циклов. Давайте теперь рассмо­
трим несколько примеров.

Цикл foreach
Самым простым, пожалуй, циклом в C# является цикл foreach. С по­
мощью foreach можно перебрать все элементы массива по одному, от
первого до последнего, и выполнить с каждым из них необходимые
операции. Рассмотрим пример в листинге 1.6, удаляющий все объ­
екты GameObjects из массива GameObject.

Листинг 1.6. Цикл foreach
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Массив игровых объектов в сцене
07 public GameObject[] MyObjects;
08
09 // Этот метод выполняет инициализацию
10 void Start ()
11 {
12 // Выполнить операцию со всеми объектами в массиве
13 foreach(GameObject Obj in MyObjects)
14 {
15 // Уничтожить объект
16 Destroy (Obj);
17 }
18 }
19
20 // Вызывается при отображении каждого кадра
21 void Update ()
22 {
23 }
24 }

	 Загрузка примеров кода. Файлы с примерами можно загрузить с сайта
www.dmkpress.com или www.дмк.рф в разделе «Читателям – Файлы к кни-
гам».

Цикл foreach выполняет блок кода в строках 14–17, заключенный
в фигурные скобки {} по одному разу для каждого элемента массива
MyObjects. Каждый проход, или повтор цикла называется итерацией.
Время выполнения цикла зависит от размера массива – чем больше
массив, тем больше требуется итераций и больше времени на их вы­
полнение. Цикл также содержит локальную переменную obj. Она

Циклы    39

объявлена внутри оператора foreach в строке 13. Эта переменная со­
держит выбранный, или активный элемент массива в каждой итера­
ции цикла, то есть, при выполнении первой итерации цикла пере­
менная obj будет содержать первый элемент, при выполнении второй
итерации – второй элемент и т. д.

	 Более подробную информацию о циклах foreach и их использовании в C#
можно найти по адресу http://msdn.microsoft.com/ru-ru/library/ttw7t8t6.aspx.

Цикл for
Цикл foreach удобен, когда нужно последовательно перебрать эле­
менты одного массива от начала до конца. Но иногда может понадо­
биться более полный контроль над итерациями. Например, может
потребоваться выполнить цикл в обратном направлении, от конца
к началу; обработать сразу два массива одинаковой длины или об­
работать только определенные элементы массива. Этих целей можно
достичь с помощью цикла for, например:

// Обработать элементы массива в обратном направлении
for(int i = MyObjects.Length-1; i >= 0; i--)
{
 // Уничтожить объект
 DestroyMyObjects[i]);
}

Ниже приводится несколько комментариев к предыдущему фраг­
менту:

�� Здесь цикл for выполняет обход элементов массива MyObjects
в обратном направлении, от конца к началу, удаляя каждый
GameObject в сцене. При этом он использует локальную пере­
менную i. Ее иногда называют итератором, так как она управ­
ляет ходом выполнением цикла.

�� Оператор цикла for состоит из трех основных разделов, отде­
ленных друг от друга точкой с запятой:
• � i: инициализация переменной значением MyObjects.Length

– 1 (индекс последнего элемента массива). Напомню, что ин­
дексация массивов начинается с нуля, поэтому индекс по­
следнего элемента массива всегда равен длине массива ми­
нус единицу. Раздел инициализации гарантирует, что цикл
начнется с конца массива;

• � i >= 0: выражение, определяющее условие продолжения цик­
ла. Переменная i действует как обратный счетчик, уменьша­
ясь по мере обхода массива. Цикл будет продолжаться, пока

40    Основы C# в Unity

значение i больше или равно 0, так как 0 является индексом
первого элемента массива;

• � i--: это выражение выполняется в конце каждой итерации
и определяет изменение переменной i. Здесь i будет умень­
шаться на единицу в конце каждой итерации, то есть 1 будет
вычитаться из i при каждом проходе цикла. Оператор ++, на­
против, будет добавлять 1.

�� Для обращения к элементам массива в теле цикла используется
выражение MyObjects[i].

	 Более подробную информацию о циклах for и их использовании в C# мож-
но найти по адресу http://msdn.microsoft.com/ru-ru/library/ch45axte.aspx.

Цикл while
Циклы for и foreach хорошо подходят для обхода массивов с выполне­
нием определенных действий в каждой итерации. Цикл while, напро­
тив, повторяет определенные действия, пока заданное условие оста­
ется истинным. Например, если потребуется, чтобы игрок продолжал
получать повреждения, пока стоит на горячей лаве, или транспортное
средство двигалось, пока не сломается, в таких ситуациях пригодится
цикл while. Его применение демонстрирует листинг 1.7.

Листинг 1.7. Цикл while
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Этот метод выполняет инициализацию
07 void Start ()
08 {
09 // Счетчик числа сообщений для вывода
10 int NumberOfMessages = 0;
11
12 // Продолжать, пока в консоль не будет выведено 5 сообщений
13 while(NumberOfMessages < 5)
14 {
15 // Вывести сообщение
16 Debug.log("This is Message: " + NumberOfMessages.ToString());
17
18 // Увличить счетчик
19 ++NumberOfMessages;
20 }
21 }
22

Циклы    41

23 // Вызывается при отображении каждого кадра
24 void Update ()
25 {
26 }
27 }

	 Функция ToString. Многие классы и объекты в Unity имеют функцию
ToString (строка 16 в листинге 1.7). Эта функция преобразует объект, на-
пример integer (целое число), в удобочитаемый текст, который можно
вывести в окно Console (Консоль) или Debugging (Отладка). Она может
пригодиться для вывода объектов и данных в консоль во время отладки.
Обратите внимание, что вывод числовых объектов в виде строк требует не-
явного преобразования.

Ниже приводится несколько комментариев к листингу 1.7:
�� Строка 13: начало цикла while с условием, которое обеспечивает

повторение цикла, пока значение переменной NumberOfMessages
остется меньше 5.

�� Блок кода в строках 15–19 повторяется как тело цикла while.
�� Строка 19: увеличивает значение переменной NumberOfMessages

в каждой итерации.
Результатом выполнения сценария в листинге 1.7 будет вывод

пяти текстовых сообщений в консоль, как показано на рис. 1.9.

Рис. 1.9. Вывод сообщений в консоль в цикле while

	 Более подробную информацию о циклах while и их использовании в C#
можно найти по адресу http://msdn.microsoft.com/ru-ru/library/2aeyhxcd.
aspx.

42    Основы C# в Unity

Бесконечные циклы
Одной из опасностей при использовании циклов является возмож­
ность случайного создания бесконечного цикла, то есть цикла, ко­
торый не может закончиться. Особенно это характерно для циклов
while. Когда игра входит в бесконечный цикл, она обычно зависает и ее
приходится прерывать принудительно. Иногда даже вход в бесконеч­
ный цикл может привести к краху системы! Часто Unity успевает во­
время обнаружить проблему и прервать сценарий, но не полагайтесь
на это. Например, если из листинга 1.7 убрать строку 19, получится
бесконечный цикл, поскольку значение переменной NumberOfMessages
никогда не достигнет величины, удовлетворяющей условию выхода
из цикла. Основной посыл данного раздела можно выразить словами:
«Будьте осторожны, используя циклы, чтобы избежать зациклива­
ния». Ниже приведен еще один классический пример бесконечного
цикла, который, безусловно, может стать источником проблем в ва­
шей игре, поэтому постарайтесь избежать их:

// Бесконечный цикл
while(true)
{
}

Однако, хотите верьте, хотите нет, но иногда правильно подготов­
ленные бесконечные циклы просто необходимы! Если вам понадо­
бится платформа, постоянно движущаяся вверх и вниз, непрерывно
крутящийся волшебный шар или повторяющийся цикл смены дня
и ночи, реализовать их вам поможет правильно организованный
бесконечный цикл. Далее в этой книге мы рассмотрим примеры, где
с успехом можно использовать бесконечные циклы. Циклы – мощ­
ный и удобный инструмент, но при неправильном применении они
могут стать источником аварий, зависаний и проблем с производи­
тельностью, поэтому будьте аккуратнее. В этой книге мы еще рассмо­
трим примеры успешного применения циклов на практике.

Функции
В этой главе мы уже использовали функции, такие как Start и Update.
Однако только сейчас пришло время рассмотреть их более формаль­
но и подробно. В сущности, функция представляет собой множество
операторов, объединенных в единый смысловой блок, которому при­
сваивается имя и который можно выполнять по требованию. При
реализации логики игры бывают ситуации, когда нужно выполнять

Функции    43

с объектами некоторые повторяющиеся действия, такие как выстре­
лы из оружия, прыжки в воздух, уничтожение врагов, обновление
счета или воспроизведение звука. Можно просто копировать и встав­
лять соответствующий фрагмент кода везде, где он понадобился, но
это очень нехорошая привычка. Гораздо проще оформить повторяе­
мый код в виде функции и вызывать ее в нужные моменты по имени,
как показано в листинге 1.8:

Листинг 1.8. Функции
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Закрытая переменная для подсчета очков
07 // Доступна только в данном классе
08 private int Score = 0;
09
10 // Этот метод выполняет инициализацию
11 void Start ()
12 {
13 // Вызвать функцию обновления счета
14 UpdateScore(5, false); // Прибавить пять очков
15 UpdateScore (10, false); // Прибавить десять очков
16 // Прибавить пятнадцать очков и сохранить результат
17 int CurrentScore = UpdateScore (15, false);
18
19 // Удвоить число очков
20 UpdateScore(CurrentScore);
21 }
22
23 // Вызывается при отображении каждого кадра
24 void Update ()
25 {
26 }
27
28 // Обновляет счет
29 public int UpdateScore(int AmountToAdd, bool PrintToConsole=true)
30 {
31 // Прибавить число очков к счету
32 Score += AmountToAdd;
33
34 // Вывести в консоль?
35 if(PrintToConsole){Debug.log ("Score is: "+Score.ToString());}
36
37 // Завершить функцию и вернуть текущий счет
38 return Score;
39 }
40 }

44    Основы C# в Unity

Ниже приводится несколько комментариев к листингу 1.8:
�� Строка 08: объявление локальной целочисленной переменной
Score для хранения счета. Эта переменная будет далее в функ­
ции UpdateScore.

�� Строки 11, 24 и 29: класс MyScriptFile содержит три функции
(чаще их называют методами, или функциями-членами): Start,
Update и UpdateScore. Функции Start и Update являются спе­
циальными функциями и предоставляются для нужд Unity,
с этими функциями мы познакомимся чуть ниже. Функция
UpdateScore – это обычная функция класса MyScriptFile.

�� Строка 29: функция UpdateScore – это цельный блок кода между
строками 30 и 39. Она должна вызываться при каждом измене­
нии счета в игре. Когда происходит вызов этой функции, вы­
полняется блок кода (строки 30–39). Таким образом, функция
обеспечивает повторное использование кода.

�� Строки 14–20: функция UpdateScore несколько раз вызыва­
ется из функции Start. При каждом таком вызове, функция
Start приостанавливает выполнение до завершения вызван­
ной функции UpdateScore, а затем продолжает со следующей
строки.

�� Строка 29: функция UpdateScore принимает два параметра, или
аргумента. Это целочисленный параметр AmountToAdd и логиче­
ский параметр PrintToConsole. Параметры действуют как устрой­
ства ввода, которые можно подключать к функциям, чтобы ока­
зывать влияние на их работу. Значение параметра AmountToAdd
определяет число очков, прибавляемых к текущему значению
переменной Score, а значение параметра PrintToConsole опреде­
ляет необходимость вывода значения переменной Score в кон­
соль. Количество аргументов функции теоретически не ограни­
чено, более того, функция может вообще не иметь аргументов,
как функции Start и Update.

�� Строки 32–35: собственно, здесь изменяется счет и выводит­
ся в окно консоли, если необходимо. Обратите внимание, что
параметр PrintToConsole получает значение по умолчанию true,
указанное в объявлении функции, в строке 29. Это делает ар­
гумент необязательным при вызове функции. В строках 14,
15, и 17 значение по умолчанию переопределяется и в пара­
метре PrintToConsole явно передается значение false. В строке
20, напротив, второй аргумент опущен и поэтому в параметре
PrintToConsole передается значение по умолчанию true.

События    45

�� Строки 29 и 38: функция UpdateScore возвращает значение, тип
которого указан в строке 29 перед именем функции. В данном
случае UpdateScore возвращает значение типа int. То есть, по за­
вершении функция вернет целое число – текущий счет. Выход
с возвратом значения осуществляет оператор return в строке
38. Функции не обязаны возвращать значения, если в этом нет
необходимости. Если не требуется возвращать значение, тип
возвращаемого значения определяется как void, что и сделано
в объявлениях функций Start и Update.

	 Более подробную информацию о функциях и их использовании в C# можно
найти по адресу http://csharp.net-tutorials.com/basics/functions/.

События
События, по сути, являются функциями, используемыми особым
способом. Уже знакомые нам функции Start и Update – не что иное,
как специальные события Unity. События – это функции, предна­
значенные для уведомления объекта о значительных происшестви­
ях: запуске уровня, начале нового кадра, уничтожении врага, прыжке
игрока и др. Функции событий вызываются в критические моменты,
давая объекту шанс адекватно отреагировать, если это необходимо.
Функция Start вызывается автоматически при создании объекта, как
правило, это происходит при запуске уровня. Функция Update также
вызывается автоматически в начале каждого кадра. Функция Start
дает возможность выполнить некоторые действия при запуске уров­
ня, а функция Update вызывается для каждого кадра, несколько раз
в секунду. Поэтому функция Update особенно полезна для создания
анимационных эффектов в играх. В листинге 1.9 функция Update обе­
спечивает вращение объекта с течением времени.

Листинг 1.9. Простой анимационный эффект – вращение объекта
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyScriptFile : MonoBehaviour
05 {
06 // Этот метод выполняет инициализацию
07 void Start ()
08 {
09 }
10
11 // Вызывается при отображении каждого кадра

46    Основы C# в Unity

12 void Update ()
13 {
14 // Повернуть объект на 2 градуса вокруг оси Y
15 transform.Rotate(new Vector3(0.0f, 2.0f, 0.0f));
16 }
17 }

Оператор в строке 15, в листинге 1.9, вызывается один раз в начале
каждого кадра и обеспечивает непрерывное вращение объекта со ско­
ростью 2 градуса за кадр вокруг оси у. Производимый эффект зависит
от частоты кадров, а это значит, что объект будет вращаться быстрее на
компьютерах, способных обеспечить большую частоту кадров, так как
функция Update будет вызываться чаще. Существуют методы, позво­
ляющие добиться независимости от частоты кадров и гарантирующие
одинаковую работу игр на всех компьютерах, независимо от частоты
кадров. Мы рассмотрим их в следующей главе. Вы можете узнать ча­
стоту кадров для своей игры прямо во вкладке Game (Игра), в окне
редактора Unity. Выберите вкладку Game (Игра) и щелкните на кноп­
ке Stats (Статистики) в правом верхнем углу панели инструментов.
При этом откроется панель статистики Stats, с общей статистической
информацией о производительности игры. Эта панель отображает
частоту кадров в секунду (Frames Per Second, FPS) игры, которая
определяет и как часто вызывается функция Update, и общую произ­
водительность игры в данной системе. В общем случае, если частота
кадров в секунду ниже 15, это указывает на значительные проблемы
с производительностью. Нужно стремиться к частоте кадров 30 или
выше. На рис. 1.10 показано, как вызвать панель Stats (Статистики).

	 Число типов событий слишком велико, чтобы перечислить их здесь все.
Тем не менее, некоторые общие события Unity, такие как Start и Update,
можно найти в классе MonoBehaviour. Более подробную информацию
о классе MonoBehaviour можно найти по адресу http://docs.unity3d.com/
ScriptReference/MonoBehaviour.html.

Классы и объектно-ориентированное
программирование
Класс представляет собой смешение многих взаимосвязанных пере­
менных и функций, собранных в отдельный модуль или «сущность».
Иными словами, представьте игру (например, ролевую игру в стиле
фэнтези), наполненную множеством независимых сущностей, таких
как волшебники, орки, деревья, дома, игрок, рыцари, предметы, ору­
жие, заклинания, дверные проемы, мосты, силовые поля, порталы, ох­

Классы и объектно-ориентированное программирование    47

ранники и т. д. Многие из этих объектов соответствуют объектам в ре­
альном мире. Но самое важное, что каждая из этих сущностей является
независимым объектом, волшебник является отдельной сущностью,
отличной от силового поля; охранник является отдельной сущностью,
отличной от дерева. Каждую из сущностей можно рассматривать как
объект определенного типа. Если сосредоточить внимание на одном
конкретном объекте, например вражеском орке, можно определить
свойства и поведение этого объекта. Орк будет иметь определенную
позицию и размеры, и повернут в определенном направлении – каж­
дой из этих характеристик будет соответствовать своя переменная.

Орк может также владеть несколькими видами нападения, напри­
мер в ближнем бою с топором и дальнем бою с арбалетом. Эти на­
падения реализуются с помощью функций. Таким образом, наборы
переменных и функций соединяются вместе важными связями. Этот
процесс объединения называется инкапсуляцией. В этом примере
свойства и поведение орка инкапсулированы в класс. Класс в данном
случае представляет шаблон общего, абстрактного орка (концепция
орка). Объекты – напротив, частные, конкретные экземпляры класса
Orc. Файл сценария в Unity определяет класс. Чтобы создать экзем­
пляр этого класса в уровне, нужно добавить его в GameObject. Как мы
видели, классы подключаются к игровым объектам в виде компонен­

Рис. 1.10. Доступ к панели Stats во вкладке Game
для просмотра частоты кадров в секунду

48    Основы C# в Unity

тов. Компоненты – это объекты, а множество компонентов образует
GameObject. Следующий листинг 1.10 содержит набросок класса Orc.

Листинг 1.10. Класс Orc
01 using UnityEngine;
02 using System.Collections;
03
04 public class Orc : MonoBehaviour
05 {
06 // Ссылка на трансофрмацию объекта орка
07 // (позиция, направление, масштаб)
08 private Transform ThisTransform = null;
09
10 // Перечисление с набором состояний орка
11 public enum OrcStates {NEUTRAL, ATTACK_MELEE, ATTACK_RANGE};
12
13 // Текущее состояние орка
14 public OrcStates CurrentState = OrcStates.NEUTRAL;
15
16 // Скорость перемещения в метрах в секунду
17 public float OrcSpeed = 10.0f;
18
19 // Дружественность к игроку
20 public bool isFriendly = false;
21
22 //--
23 // Этот метод выполняет инициализацию
24 void Start ()
25 {
26 // Получить трансформацию орка
27 ThisTransform = transform;
28 }
29 //--
30 // Вызывается при отображении каждого кадра
31 void Update ()
32 {
33 }
34 //--
35 // Действия орка в разных состояниях
36 public void AttackMelee()
37 {
38 // Реализация приемов ближнего боя
39 }
40 //--
41 public void AttackRange()
42 {
43 // Реализация приемов дальнего боя
44 }
45 //--
46 }

Классы и наследование    49

Ниже приводится несколько комментариев к листингу 1.10:
�� Строка 04: здесь с помощью ключевого слова class определяет­

ся класс Orc. Этот класс является производным от MonoBehaviour.
В следующем разделе этой главы мы подробнее рассмотрим на­
следование и производные классы.

�� Строки 10–20: в класс Orc добавлено несколько переменных
и перечисление. Переменные имеют разные типы, но они свя­
заны с общей концепцией орка.

�� Строки 36–46: орк имеет два метода: AttackMelee и AttackRange.

	 Более подробную информацию о классах и их использовании в C# можно
найти по адресу http://msdn.microsoft.com/ru-ru/library/x9afc042.aspx.

Классы и наследование
Представьте, что вы создали класс Orc для игровых объектов и по­
том решили создать еще два модернизированных типа орков: орк-
военачальник, с улучшенными броней и оружием и орк-маг, который,
как следует из названия, использует заклинания. Оба могут делать
все, что обычный орк, и кое-что еще. Для этого можно создать три от­
дельных класса Orc, OrcWarlord и OrcMage путем копирования общего
кода.

Проблема в том, что орк-военачальник и орк-маг имеют много
общего с обычным орком и, следовательно, придется повторить мас­
су общего кода, что само по себе является ненужным расточитель­
ством. Кроме того, если обнаружится ошибка в общем коде в одном
из классов, вам придется скопировать исправления в другие классы.
Это и утомительно, и технически не оправдано, так как вы зря потра­
тите время и можете допустить ошибку, создав ненужные сложности.
Решить эту проблему вам поможет объектно-ориентированная кон­
цепция наследования. Наследование позволяет создать совершенно
новый класс, неявно включающий функциональность другого клас­
са, то есть, создать новый класс, который расширяет существующий,
не затрагивая при этом оригинала. При наследовании между двумя
классами образуются определенные взаимоотношения. Оригиналь­
ный класс (например, класс Orc) называется суперклассом, клас­
сом-предком, или родительским классом. Новый класс (например,
OrcWarlord или OrcMage), расширяющий родительский класс, называ­
ется дочерним или производным классом.

	 Более подробную информацию о наследовании в C# можно найти по адре-
су http://msdn.microsoft.com/ru-ru/library/ms173149%28v=vs.80%29.aspx.

50    Основы C# в Unity

По умолчанию каждый новый файл сценария Unity создает новый
класс, производный от класса MonoBehaviour. Это значит, что каждый
новый сценарий содержит весь функционал класса MonoBehaviour и по­
тенциально расширяет его с помощью дополнительного кода. Чтобы
доказать это, обратимся к листингу 1.11.

Листинг 1.11. Наследование
01 using UnityEngine;
02 using System.Collections;
03
04 public class NewScript : MonoBehaviour
05 {
06 //--
07 // Этот метод выполняет инициализацию
08 void Start ()
09 {
10 name = "NewObject";
11 }
12 //--
13 // Вызывается при отображении каждого кадра
14 void Update ()
15 {
16 }
17 }

Ниже приводится несколько комментариев к листингу 1.11:
�� Строка 04: класс NewScript порожден от класса MonoBehaviour.

Впрочем, имя MonoBehaviour можно заменить на любое действи­
тельное имя класса, свойства и методы которого должен унас­
ледовать ваш класс.

�� Строка 10: здесь переменной name внутри события Start при­
сваивается строка. Обратите внимание, что переменная name не
объявлена явно в исходном файле NewScript. Если бы NewScript
был совершенно новым классом, не имеющим предка, компи­
лятор обнаружил бы ошибку в строке 10. Но, из-за того, что
класс NewScript порожден от класса MonoBehaviour, он автомати­
чески наследует все его переменные, что позволяет обращаться
к ним в классе NewScript.

	 Когда применять наследование. Используйте наследование, только
если это действительно необходимо; в противном случае вы сделаете
ваши классы большими, тяжелыми и запутанными. Если новый класс дол-
жен иметь много общих функций с другим классом, имеет смысл устано-
вить связь между ними и использовать наследование. Еще одно примене-
ние наследования, как мы увидим далее, заключается в переопределении
функций.

Классы и полиморфизм    51

Классы и полиморфизм
Иллюстрацию полиморфизма в C# начнем с рассмотрения приме­
ра в листинге 1.12. Этот пример не является прямой демонстраци­
ей полиморфизма, а представляет исходную ситуацию, где может
пригодиться полиморфизм. Он содержит базовый класс персонажа,
не являющегося игроком (non-player character, сокращенно NPC)
в типичной ролевой игре (RPG). Класс намеренно сделан неполным
и содержит только самые необходимые переменные, намечающие ос­
нову для создания персонажа. Самое главное здесь, что класс имеет
функцию SayGreeting, которая должна вызваться, когда игрок начина­
ет разговор с персонажем. Эта функция выводит в консоль обычное
приветствие, как показано ниже:

Листинг 1.12
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyCharacter
05 {
06 public string CharName = "";
07 public int Health = 100;
08 public int Strength = 100;
09 public float Speed = 10.0f;
10 public bool isAwake = true;
11
12 // Приветствовать игрока при вступлении в диалог
13 public virtual void SayGreeting()
14 {
15 Debug.log ("Hello, my friend");
16 }
17 }

Если попытаться представить, как он будет работать в игре, сра­
зу же возникает первая проблема, связанная с разнообразием при­
менений и реалистичности поведения. В частности, все персонажи,
созданные как экземпляры класса MyCharacter, будут отвечать одним
и тем же приветствием при вызове функции SayGreeting: мужчины,
женщины, орки и все остальные. Все они скажут одно и то же, а имен­
но: «Hello, my friend» («Привет, мой друг»). Это неправдоподобно
и нежелательно. Проще всего было бы добавить в класс общедоступ­
ную переменную, позволив тем самым определить желаемый текст
сообщения при настройке объекта. Но, чтобы показать полиморфизм
в действии, попробуем другое решение. Можно было бы создать не­

52    Основы C# в Unity

сколько дополнительных классов, наследующих MyCharacter, по одно­
му для каждого типа персонажей, и каждый класс мог бы выводить
уникальное приветствие при вызове функции SayGreeting. В случае
с классом MyCharacter это вполне возможно, потому что функция
SayGreeting объявлена с ключевым словом virtual (строка 13). Бла­
годаря этому производные классы смогут переопределять поведение
функции SayGreeting из класса MyCharacter. Это означает, что функции
SayGreeting в производных классах будут подменять исходную функ­
цию в базовом классе. Такое решение приводится в листинге 1.13.

Листинг 1.13. Переопределение функции
01 using UnityEngine;
02 using System.Collections;
03 //---
04 public class MyCharacter
05 {
06 public string CharName = "";
07 public int Health = 100;
08 public int Strength = 100;
09 public float Speed = 10.0f;
10 public bool isAwake = true;
11
12 // Приветствовать игрока при вступлении в диалог
13 public virtual void SayGreeting()
14 {
15 Debug.log ("Hello, my friend");
16 }
17 }
18 //---
19 public class ManCharacter: MyCharacter
20 {
21 public override void SayGreeting()
22 {
23 Debug.log ("Hello, I’m a man");
24 }
25 }
26 //---
27 public class WomanCharacter: MyCharacter
28 {
29 public override void SayGreeting()
30 {
31 Debug.log ("Hello, I’m a woman");
32 }
33 }
34 //---
35 public class OrcCharacter: MyCharacter
36 {

Классы и полиморфизм    53

37 public override void SayGreeting()
38 {
39 Debug.log ("Hello, I’m an Orc");
40 }
41 }
42 //---

Здесь сделаны некоторые улучшения: созданы разные классы
для каждого типа персонажей, а именно ManCharacter, WomanCharacter
и OrcCharacter. Все они выводят разные приветствия в своих функци­
ях SayGreeting. Кроме того, каждый персонаж наследует общее пове­
дение от базового класса MyCharacter. Однако возникает техническая
проблема, связанная со специфичностью классов. Представьте тавер­
ну, внутри которой расположились несколько персонажей разных
типов, попивающих грог из кружек. Когда игрок входит в таверну,
все персонажи должны вывести свое уникальное приветствие. Для
этого было бы здорово иметь массив всех персонажей и просто вызы­
вать функции SayGreeting элементов массива в цикле, чтобы каждый
персонаж вывел свое приветствие. Но, похоже, сейчас мы не можем
сделать этого. Это связано с тем, что все элементы в одном массиве
должны иметь один и тот же тип данных, например MyCharacter[] или
OrcCharacter[]. Мы не можем смешивать типы данных в одном мас­
сиве. Можно было бы объявить несколько массивов, по одному для
каждого типа персонажей, но это не лучшее решение, и оно не по­
зволит легко добавлять новые типы персонажей, после того как код
обработки массивов будет написан. Чтобы решить эту проблему, нуж­
но другое решение. В этом нам поможет полиморфизм. Посмотрите
на следующий пример в листинге 1.14, где определяется новый класс
Tavern в отдельном файле сценария.

Листинг 1.14. Класс Tavern
01 using UnityEngine;
02 using System.Collections;
03
04 public class Tavern : MonoBehaviour
05 {
06 // Массив персонажей в таверне
07 public MyCharacter[] Characters = null;
08 //---
09 // Этот метод выполняет инициализацию
10 void Start () {
11
12 // Массив может содержать до 5 персонажей
13 Characters = new MyCharacter[5];

54    Основы C# в Unity

14
15 // Добавить персонажей разных типов в массив MyCharacter
16 Characters[0] = new ManCharacter();
17 Characters[1] = new WomanCharacter();
18 Characters[2] = new OrcCharacter();
19 Characters[3] = new ManCharacter();
20 Characters[4] = new WomanCharacter();
21
22 // Теперь игрок входит в таверну
23 EnterTavern();
24 }
25 //---
26 // Вызывается, когда игрок входит в таверну
27 public void EnterTavern()
28 {
29 // Все приветствуют игрока
30 foreach(MyCharacter C in Characters)
31 {
32 // вызов SayGreeting в дочернем классе
33 // Дочерний класс доступен через базовый класс
34 C.SayGreeting();
35 }
36 }
37 //---
38 }

Ниже приводится несколько комментариев к листингу 1.14:
�� Строка 07: для хранения ссылок на всех персонажей в таверне,

независимо от их типов, объявляется массив (Characters) типа
MyCharacter[].

�� Строки 16–20: массив Characters заполняется несколькими
персонажами разных типов. Это возможно, потому что персо­
нажи разных типов происходят от одного и того же базового
класса.

�� Строка 27: функция EnterTavern вызывается при запуске
уровня.

�� Строка 34: цикл foreach перебирает персонажей в массиве и для
каждого вызывает функцию SayGreeting. Результат работы при­
мера показан на рис. 1.11. Вместо общего сообщения, опреде­
ленного в базовом классе, выводятся уникальные сообщения
для каждого персонажа. Полиморфизм позволяет заменить ме­
тод базового класса в производных классах.

	 Более подробную информацию о полиморфизме в C# можно найти по
адресу http://msdn.microsoft.com/ru-ru/library/ms173152.aspx.

Свойства в C#    55

Рис. 1.11. Полиморфизм обеспечивает обратную связь для типов,
имеющих общую родословную

Свойства в C#
При присваивании значений переменным класса, например, MyClass.x
= 10;, есть пара важных аспектов, которым следует уделить внимание.
Во-первых, как правило, необходимо проверять присваиваемое зна­
чение на соответствие заданным требованиям. Типичными случаями
являются ограничение целого значения минимальным и максималь­
ным пределами или ограничение ввода для строковой переменной
определенным набором строк. Во-вторых, может потребоваться опре­
делить момент изменения значения переменной для инициализации
других зависимых функций. Свойства C# позволяют обеспечить обе
эти возможности. В листинге 1.15 реализованы ограничение значе­
ний целой переменной диапазоном от 1 до 10 и вывод сообщения при
его изменении.

Листинг 1.15. Свойства
01 using UnityEngine;
02 using System.Collections;
03 //--
04 // Пример класса – пожет подключаться к игровому объекту
05 public class Database : MonoBehaviour
06 {

56    Основы C# в Unity

07 //--
08 // Общедоступное свойство для закрытой переменной iMyNumber
09 // Это общедоступное свойство для закрытой переменной iMyNumber
10 public int MyNumber
11 {
12 // Вызывается при попытке извлечь значение
13 get
14 {
15 return iMyNumber; // Вернет значение iMyNumber
16 }
17
18 // Вызывается при попытке присвоить значение
19 set
20 {
21 // Если значение в диапазоне 1-10, привоить его
22 if(value >= 1 && value <= 10)
23 {
24 // Изменить закрытую переменную
25 iMyNumber = value;
26
27 // Вызвать событие
28 NumberChanged();
29 }
30 }
31 }
32 //--
33 // Внутренняя переменная, число в диапазоне 1-10
34 private int iMyNumber = 0;
35 //--
36 // Этот метод выполняет инициализацию
37 void Start ()
38 {
39 // Присвоить число свойству MyNumber
40 MyNumber = 11; // Ничего не произойдет, потому что число > 10
41
42 // Присвоить число свойству MyNumber
43 MyNumber = 7; // Изменится, так как число в диапазоне 1-10
44 }
45 //--
46 // Событие, вызываемое при изменении iMyNumber
47 void NumberChanged()
48 {
49 Debug.log("Variable iMyNumber changed to: "+iMyNumber.ToString());
50 }
51 //--
52 }
53 //--

Ниже приводится несколько комментариев к листингу 1.15:
�� Строка 10: объявление целочисленного общедоступного свой­

ства. Данное свойство не является независимой переменной,

Комментарии    57

это лишь обертка, или интерфейс доступа к локальной пере­
менной iMyNumber, объявленной в строке 34.

�� Строка 13: при попытке чтения из свойства MyNumber будет вы­
звана внутренняя функция get.

�� Строка 14: при попытке присвоить значение свойству MyNumber
будет вызвана внутренняя функция set.

�� Строка 25: функция set в качестве неявного аргумента прини­
мает присваиваемое значение.

�� Строка 28: при изменении значения переменной iMyNumber бу­
дет вызвано событие NumberChanged.

	 Свойства и Unity. Свойства особенно удобны для проверки значений, при-
сваиваемых переменным. Основной проблемой свойств в Unity является
их невидимость в инспекторе объектов. То есть, свойства C# не отобра-
жаются в инспекторе объектов. Вы не сможете получать или присваивать
им значения в редакторе. Однако, сообществом Unity создано множество
сценариев и решений, изменяющих такое поведение по умолчанию и дела-
ющих свойства C# видимыми в редакторе. Эти сценарии и решения можно
найти по адресу http://wiki.unity3d.com/index.php?title=Expose_properties_
in_inspector.

	 Более подробную информацию о свойствах в C# можно найти по адресу
http://msdn.microsoft.com/ru-ru/library/x9fsa0sw.aspx.

Комментарии
Комментарии – это сообщения в коде, поясняющие, что этот код де­
лает. В C# однострочные комментарии начинаются с пары символов
//, а многострочные –начинаются с символов /* и заканчиваются
символами */. Комментарии используются во всех примерах в этой
книге. Комментарии важны, и я рекомендую взять в привычку писать
их, если вы еще не имеете такой привычки. Они пригодятся не только
другим разработчикам вашей команды (если вы работаете не одни),
но и вам тоже! Они напомнят, что делает код, когда вы вернетесь
к нему спустя несколько недель или месяцев, и даже помогут достичь
ясности в понимании своего кода, который вы пишете прямо сейчас.
Конечно, все эти преимущества зависят от того, пишете вы краткие
и содержательные комментарии или длинные и пространные эссе.
Кроме того, MonoDevelop дает возможность писать комментарии,
основанные на XML, описывающие функции и аргументы, и инте­
грирующиеся с подсказками, которые может выводить редактор. Эти
комментарии помогут ускорить рабочий процесс, особенно когда вы
работаете в команде. Давайте посмотрим, как их использовать. Нач­
нем с произвольной функции, представленной на рис. 1.12.

58    Основы C# в Unity

Затем вставим три символа косой черты (///) над строкой с заго­
ловком функции, как показано на рис. 1.13.

Рис. 1.12. Ввод кода функции AddNumbers в редакторе MonoDevelop
(подготовка к комментированию кода)

После этого MonoDevelop автоматически вставит готовый шаблон
XML-комментария, который вы можете заполнить соответствующи­
ми сведениями. Этот шаблон содержит сводный раздел для общего
описания и записи для каждого параметра функции, как показано на
рис. 1.14.

Заполните шаблон описанием функции. Удостоверьтесь, что каж­
дый параметр получил соответствующий комментарий, как показано
на рис. 1.15.

Рис. 1.13. Добавление /// над заголовком функции
для создания XML-комментария

Комментарии    59

Если теперь в редакторе попытаться написать код вызова функции
AddNumbers, на экране появится всплывающее окно с общим описани­
ем функции и контекстной подсказкой для каждого параметра, как
показано на рис. 1.16.

Рис. 1.14. Добавление /// над заголовком функции
привело к созданию XML-комментария

Рис. 1.15. Описание функций с помощью XML-комментариев

60    Основы C# в Unity

Видимость переменных
Одной из замечательных особенностей Unity является функция ото­
бражения общедоступных переменных в инспекторе объектов редак­
тора Unity, позволяющая просматривать и редактировать значения
переменных даже во время выполнения. Это особенно удобно для
отладки. Однако, по умолчанию инспектор объектов не отображает
значения локальных переменных. Они, как правило, скрыты от про­
смотра. Это не всегда удобно, потому что часто бывает желательно
иметь возможность изменить или хотя бы проверить локальную
переменную в инспекторе объектов, не меняя область их видимости.
Есть два простых решения этой проблемы.

Первое позволяет просматривать все общедоступные и закрытые
переменные класса. Инспектор объектов можно перевести в режим

Рис. 1.16. Подсказка с описанием функции
при попытке написать ее вызов

Видимость переменных    61

отладки. Для этого щелкните на значке контекстного меню в правом
верхнем углу окна инспектора и выберите пункт Debug (Отладка),
как показано на рис. 1.17. В результате будут отображены все обще­
доступные и закрытые переменные класса.

Рис. 1.17. Включение режима отладки в инспекторе объектов

Второе позволяет увидеть конкретные закрытые переменные, явно
отмеченные для отображения в инспекторе объектов. Они будут вид­
ны в обоих режимах – Normal (Обычный) и Debug (Отладка). Для
этого объявите закрытую переменную с атрибутом [SerializeField].
Атрибуты C# будут рассматриваться далее в этой книге. Ниже при­
водится пример объявления закрытой переменной с атрибутом
[SerializeField]:

01 using UnityEngine;
02 using System.Collections;

62    Основы C# в Unity
03
04 public class MyClass : MonoBehaviour
05 {
06 // Всегда будет отображаться в инспекторе объектов
07 public int PublicVar1;
08
09 // Всегда будет отображаться в инспекторе объектов
10 [SerializeField]
11 private int PrivateVar1;
12
13 // Будет отображаться только в режиме отладки
14 private int PrivateVar2;
15
16 // Будет отображаться только в режиме отладки
17 private int PrivateVar3;
18 }

	 Можно также использовать атрибут [HideInInspector] для отключения ото-
бражения общедоступных переменных в инспекторе.

Оператор ?
Оператор if-else так часто используется в C#, что для него была
создана специальная сокращенная форма записи, более простая и не
занимающая нескольких строк кода, как полная форма записи опера­
тора if-else. Эта сокращенная форма называется оператором ?. Ниже
приводится базовый синтаксис оператора:

// Если условие истинно, выполняется выражение_1, иначе выражение_2
(условие) ? выражение_1 : выражение_2;

Рассмотрим применение оператора ? на практическим примере:

// Объект следует скрыть, если его координата Y
// получила значение выше 100
bool ShouldHideObject = (transform.position.y > 100) ? true : false;

// Изменить видимость объекта
gameObject.SetActive(!ShouldHideObject);

	 Оператор ? удобно использовать для коротких инструкций, но при исполь-
зовании с длинными и сложными операторами, он может сделать код труд-
но читаемым.

Методы SendMessage и BroadcastMessage
Класс MonoBehaviour, входящий в состав в Unity API и используемый
в качестве базового для большинства сценариев, предоставляет ме­
тоды SendMessage и BroadcastMessage. С их помощью можно вызвать по

Методы SendMessage и BroadcastMessage    63

именам функции в любых компонентах, прикрепленных к объекту.
Для вызова метода класса обычно нужна локальная ссылка на этот
класс, чтобы получить к нему доступ и вызывать его функции, что
верно и переменных. Методы SendMessage и BroadcastMessage, напро­
тив, позволяют вызывать функции по их именам, которые передают­
ся в виде строковых значений. Это очень удобно и делает код намного
проще и короче, как показано ниже, в листинге 1.16.

Листинг 1.16. Вызов функций по именам в виде строк
01 using UnityEngine;
02 using System.Collections;
03
04 public class MyClass : MonoBehaviour
05 {
06 void start()
07 {
08 // Вызвать функцию MyFunction во ВСЕХ компонентах/сценариях,
09 // подключенных к объекту (и имеющих эту функцию)
10 SendMessage("MyFunction", SendMessageOptions.DontRequireReceiver);
11 }
12
13 // Вызывается с помощью метода SendMessage
14 void MyFunction()
15 {
16 Debug.log ("hello");
17 }
18 }

Ниже приводится несколько комментариев к листингу 1.16:
�� Строка 10: вызывается метод SendMessage для вызова функции
MyFunction. В данном случае будет вызвана функция MyFunction
не только в данном классе, но и во всех других компонен­
тах, подключенных к GameObject, если они имеют функцию
MyFunction, включая компонент Transform и другие.

�� Строка 10: аргумент SendMessageOptions.DontRequireReceiver
определяет, что должно произойти, если компонент не имеет
функции MyFunction. Он указывает, что такой компонент сле­
дует просто игнорировать и должен быть выполнен переход
к следующему компоненту.

	 Термины «функция» и «метод» означают одно и то же, если функция при-
надлежит классу. Функцию, принадлежащую классу, называют методом
класса.

Мы видели, что метод SendMessage вызывает заданную функцию
во всех компонентах, подключенных к объекту GameObject. Метод

64    Основы C# в Unity

BroadcastMessage делает то же, что и метод SendMessage, но в более ши­
роком масштабе – он вызывает указанную функцию во всех компо­
нентах объекта GameObject, а затем повторяет этот процесс рекурсивно
для всех его дочерних объектов в иерархии сцены, двигаясь вниз по
иерархии.

	 Более подробную информацию о методах SendMessage и BroadcastMessage
можно найти по адресам: http://docs.unity3d.com/ScriptReference/
GameObject.SendMessage.html и http://docs.unity3d.com/ScriptReference/
Component.BroadcastMessage.html.

	 Рефлексия. Методы SendMessage и BroadcastMessage обеспечивают эффек-
тивный способ взаимодействия объектов и компонентов. То есть, они явля-
ются отличным способом организации общения компонентов друг с дру-
гом, если потребуется синхронизировать их действия или воспользоваться
их функциями. Однако методы SendMessage и BroadcastMessage основаны на
механизме С# с названием «рефлексия» (reflection). При вызове функции
по ее имени в виде строки, приложению требуется осмотреть себя во вре-
мя выполнения, чтобы найти точку входа в искомую функцию. Этот процесс
требует дополнительных вычислительных затрат, по сравнению с вызовом
функции в обычном режиме. По этой причине старайтесь не пользоваться
методами SendMessage и BroadcastMessage, особенно в событиях Update или
в других функциях, частота вызова которых напрямую связана с частотой
кадров, так как отрицательное влияние на производительность может быть
значительным. Это не значит, что вы никогда не должны использовать их.
Существуют ситуации, когда их редкое, нечастое использование удобно
и практически не оказывает заметного влияния на производительность.
В последующих главах этой книги будут представлены альтернативные
и более быстрые приемы с использованием делегатов и интерфейсов.

Если вы интересно узнать больше о языке C# и его использовании,
прежде чем продолжить чтение этой книги, я рекомендую следующие
источники:

�� Терри Нортон (Terry Norton). «Learning C# by Developing
Games with Unity 3D Beginner’s Guide». Packt Publishing;

�� Алан Торн (Alan Thorn). «Intro to C# Programming and Scripting
for Games in Unity» (видеокурс по адресу https://www.udemy.
com/3dmotive-intro-to-c-programming-and-scripting-for-games-
in-unity/);

�� Алан Торн (Alan Thorn). «Pro Unity Game Development with
C#». Apress.

И еще несколько ресурсов в Интернете:
�� http://msdn.microsoft.com/ru-rulibrary/aa288436%28v=vs.

71%29.aspx;
�� http://www.csharp-station.com/tutorial.aspx;
�� http://docs.unity3d.com/ScriptReference/.

Итоги    65

Итоги
В этой главе был представлен общий обзор C#, в котором были рас­
смотрены наиболее распространенные функции языка, широко ис­
пользуемые в разработке игр для Unity. В следующих главах мы вновь
вернемся к некоторым из рассмотренных здесь проблем и применим
для их решения более продвинутые методы, но все затронутые здесь
вопросы будут иметь решающее значение для понимания и написа­
ния кода в следующих главах.

Глава 2

Отладка
Отладка – это процесс поиска, идентификации и исправления «жуч­
ков» (ошибок или опечаток) в коде. Чтобы эффективно писать сцена­
рии, нужно знать основные приемы отладки и инструменты, поддер­
живаемые в Unity. Прежде чем начать их рассмотрение, остановимся
на общих ограничениях отладки, то есть на том, чего она не может
предложить. Отладка – не волшебный эликсир от всех болезней, она
не в состоянии избавить код от всех ошибок и гарантировать безоши­
бочную работу приложения. Специалист в области информационных
технологий Эдсгер Вибе Дейкстра (Edsger Wybe Dijkstra) сказал:
«Тестирование может быть использовано для демонстрации наличия
ошибок, но никогда для их отсутствия». То есть, во время тестиро­
вания можно столкнуться с одной или несколькими ошибками. Эти
ошибки будут выявлены, идентифицированы и исправлены при от­
ладке. И все же, тесты, даже очень обширные и детальные, никогда не
охватят всех возможных ситуаций на всех аппаратных платформах
при всевозможных условиях, так как число таких комбинаций прак­
тически бесконечно. Поэтому, никто не может быть абсолютно уве­
рен, что нашел и исправил все возможные ошибки. Даже в момент вы­
пуска игры она все еще может содержать «жучки», которые не смогли
выявить при тестировании. Конечно, в программе может не остаться
никаких ошибок, но знать наверняка вы этого не можете. Поэтому
отладка не может гарантировать безошибочную работу приложения.
Ее цель скромнее. Это систематическое тестирование игры для боль­
шинства типичных ситуаций, чтобы найти и исправить столько оши­
бок, сколько возможно обнаружить, или, по крайней мере, выявить
критические ошибки, насколько позволят время, отпущенное на раз­
работку, и бюджет. В любом случае, отладка является важной частью
процесса разработки сценариев, потому что без нее вы вообще не бу­
дете иметь возможности выявлять и исправлять ошибки. Существует
много методов отладки, простых и сложных. В этой главе мы охватим
достаточно широкий их диапазон.

Ошибки компиляции и консоль    67

Ошибки компиляции и консоль
Под отладкой обычно понимается выявление ошибок, обнаруживаю­
щих себя во время выполнения кода, то есть, это поиск и исправление
ошибок, возникающих во время выполнения игры. При таком пони­
мании отладки предполагается, что программный код уже скомпили­
рован и запущен. Это значит, вы правильно записали все операторы,
код скомпилировался и вы хотите найти ошибки времени выполне­
ния, которые являются результатом просчетов в логике работы про­
граммы. То есть, в центре внимания находится не синтаксис, а логика,
и, в общем, так и должно быть. Однако, в этом разделе я очень кратко
остановлюсь на компиляции кода, точнее на написании допустимого
кода, а также выявлении и исправлении ошибок компиляции, кото­
рые проявляются в виде сообщений в консоли. Для этого важно знать
основные приемы работы с окном консоли и иметь прочную основу
для более глубокого понимания отладки. Рассмотрим пример в лис­
тинге 2.1.

Листинг 2.1. Файл сценария ErrorScript.cs с ошибками
01 using UnityEngine;
02 using System.Collections;
03
04 public class ErrorScript : MonoBehaviour
05 {
06 int MyNumber = 5;
07
08 // Этот метод выполняет инициализацию
09 void Start () {
10
11 mynumber = 7;
12 }
13
14 // Вызывается при отображении каждого кадра
15 void Update () {
16 mynumber = 10;
17 }
18 }

Чтобы скомпилировать пример из листинга 2.1, просто сохраните
файл сценария в MonoDevelop (Ctrl+S), а затем переключитесь из
окна редактора Unity и обратно. В момент повторного получения фо­
куса ввода окном редактора, автоматически запустится компиляция.
Если этого не произошло, щелкните правой кнопкой мыши на файле
сценария в панели Project (Проект) и выберите в контекстном меню

68    Отладка

пункт Reimport (Импортировать повторно). При компиляции при­
мера из листинга 2.1 будут найдены две ошибки, и соответствующие
сообщения появятся в окне консоли. Если окно консоли еще не от­
крыто, откройте его, выбрав в меню приложения пункт Window ⇒
Console (Окно ⇒ Консоль). Окно консоли играет очень важную роль
и постоянно должно присутствовать в интерфейсе. Через это окно
Unity общается с вами как с разработчиком. Если в вашем коде име­
ются ошибки компиляции, Unity сообщит о них через консоль.

Пример в листинге 2.1 сгенерирует две ошибки компиляции, как
это показано на рис. 2.1. Они возникли в строках 11 и 16 из-за обраще­
ния к несуществующей переменной mynumber, хотя в сценарии присут­
ствует переменная MyNumber (чувствительность к регистру). Ошибки
компиляции имеют критическое значение, потому что делают весь
код неработоспособным. Это значит, что вы не сможете запустить
игру, пока эти ошибки не будут исправлены.

Рис. 2.1. Ошибки компиляции в окне консоли

Если ошибки компиляции не появились в консоли, как это ожи­
далось, убедитесь, что включен фильтр вывода ошибок. Для этого
щелкните на ярлыке фильтра ошибок (изображение красного вос­
клицательного знака) в правом верхнем углу окна консоли. Окно
консоли имеет три фильтра: комментариев (A), предупреждений (B)
и ошибок (C), как показано на рис. 2.2, для переключения между ре­
жимами сокрытия и отображения соответствующих сообщений. Эти

Ошибки компиляции и консоль    69

переключатели определяют видимость всех типов сообщений в окне
консоли. Комментарии относятся к сообщениям, которые вы, как
программист, выводите в окно консоли из программного кода с по­
мощью оператора Debug.log. Мы познакомимся с этим приемом чуть
ниже (для вывода можно также использовать функцию Print). Пред­
упреждения определяют фрагменты кода, потенциально способные
вызвать проблемы, или присутствие «мусора». Эти участки кода про­
ходят синтаксический контроль и не вызывают ошибок компиляции,
но если предупреждения проигнорировать, они могут создать пробле­
мы при выполнении и привести к непредвиденным результатам или
к расточительному использованию ресурсов. Сообщения об ошибках
связаны с любыми найденными ошибками компиляции, которые
делают компиляцию всего сценария невозможной, как, например,
ошибки в листинге 2.1.

Рис. 2.2. Включение и выключение
фильтров в окне консоли

Если в консоль выводится больше одной ошибки, они, как прави­
ло, перечисляются в порядке обнаружения компилятором, то есть
сверху вниз. Это считается лучшим способом отображения ошибок,
потому что более ранние ошибки могут привести к возникновению
более поздних. То есть, исправление ранних ошибок может сделать
ненужным исправление более поздних. Для исправления ошибки
дважды щелкните на сообщении в окне консоли, в результате автома­
тически откроется редактор MonoDevelop, в котором будет выделена
строка с ошибкой, или строка, где ошибка была впервые обнаружена.
Отметьте, что MonoDevelop выделит строку, где ошибка была впер­
вые обнаружена, хотя сама ошибка не обязательно будет находиться
именно в этой строке. В зависимости от проблемы может понадобить­
ся внести изменения в другую строку, а не в ту, которая была выделе­

70    Отладка

на. Если дважды щелкнуть на верхней (первой) ошибке в консоли,
появившейся при попытке скомпилировать листинг 2.1, откроется
MonoDevelop и выделит строку 11. Данную ошибку можно исправить
двумя способами: либо переименовать mynumber в MyNumber в строке 11,
либо переименовать переменную MyNumber в mynumber в строке 6. Теперь
рассмотрим пример в листинге 2.2.

Листинг 2.2. Файл сценария ErrorScript.cs после исправления ошибок
01 using UnityEngine;
02 using System.Collections;
03
04 public class ErrorScript : MonoBehaviour
05 {
06 int MyNumber = 5;
07
08 // Этот метод выполняет инициализацию
09 void Start () {
10
11 MyNumber = 7;
12 }
13
14 // Вызывается при отображении каждого кадра
15 void Update () {
16 MyNumber = 10;
17 }
18 }

В листинге 2.2 исправлены ошибки, допущенные в листинге 2.1.
Но, теперь вместо сообщений об ошибках появляется предупрежде­
ние (как показано на рис. 2.3). Оно указывает, что переменная MyNumber
нигде не используется. Ей присваивается значение в строках 11 и 16,
но это значение не используется в приложении. Это предупреждение
можно проигнорировать, оно никак не влияет на работоспособность
кода. Предупреждения надо рассматривать как рекомендации, сде­
ланные компилятором на основании анализа кода. Как с ними по­
ступить – вам решать, но я рекомендую устранять и ошибки, и пред­
упреждения везде, где это целесообразно.

Отладка с помощью Debug.log –
определяемые программистом сообщения
Пожалуй, самым старым и самым известным методом отладки
в Unity является использование оператора Debug.log для вывода
диагностических сообщений в консоль, отражающих ход выполне­

Отладка с помощью Debug.log    71

ния программы и текущие свойства объектов. Этот метод являет­
ся универсальным и доступным, потому что может использоваться
практически в любой интегрированной среде разработки (Integrated
Development Environment, IDE), а не только в MonoDevelop. Кроме
того, все объекты Unity, в том числе векторы и объекты, представляю­
щие цвет, имеют удобную функцию ToString, позволяющую выводить
в консоль значения их членов (таких как X, Y, и Z) в удобочитаемом
виде. Для иллюстрации рассмотрим пример в листинге 2.3. Этот при­
мер демонстрирует важный для отладки процесс, а именно вывод со­
общения о состоянии при создании экземпляра. Этот сценарий, при
прикреплении к объекту сцены, выводит в консоль его координаты
вместе с поясняющим сообщением.

Листинг 2.3. Отладочный сценарий
01 using UnityEngine;
02 using System.Collections;
03
04 public class CubeScript : MonoBehaviour
05 {
06 // Этот метод выполняет инициализацию
07 void Start () {
08 Debug.log ("Object created in scene at position: " +
09 + transform.position.ToString());
10 }
11 }

На рис. 2.4 показан вывод, произведенный этим кодом, после при­
соединения сценария к объекту игры. Само сообщение, что выво­
дится функцией Debug.log, включается в главный список сообщений

Рис. 2.3. Старайтесь устранять и ошибки и предупреждения

72    Отладка

в консоли. Если выбирать это сообщение с помощью мыши, в консо­
ли появятся имя файла сценария и номер строки с оператором.

Основным препятствием к использованию оператора Debug.log для
отладки являются стремление к сохранению чистоты кода и желание
избежать излишней сложности. Во-первых, применение операторов
Debug.log требует явно добавлять их в сценарии. По окончании от­
ладки вам потребуется либо вручную удалить операторы Debug.log,
либо оставить их там, что приведет к снижению производительности
и к путанице, особенно если вы использовали операторы Debug.log во
многих местах. Во-вторых, хотя оператор Debug.log полезен для реше­
ния конкретных проблем и мониторинга значений переменных, в ко­
нечном счете этот оператор совершенно не подходит для получения
общей картины о ходе выполнения сценария и отслеживания ошибок,

Рис. 2.4. В сообщениях Debug.log
объекты можно преобразовывать в строки, и, кроме того,

в окне консоли также отображаются имя файла и номер строки

Переопределение метода ToString    73

чье присутствие было обнаружено, но местоположение остается не­
известным. Впрочем, из этих критических замечаний не следует, что
нужно полностью отказаться от оператора Debug.log. Рассматривай­
те их как рекомендации по правильному использованию оператора.
Оператор Debug.log прекрасно справляется с задачей, когда ошибку
или проблему можно проследить от основного подозреваемого объек­
та и необходимо посмотреть, как изменяются его свойства, особенно
в моменты таких событий, как OnStart.

	 Удаление операторов Debug.log. После окончания разработки игры, не
забудьте удалить или закомментировать все операторы Debug.log.

Переопределение метода ToString
Пример в листинге 2.3 демонстрирует удобство метода ToString для
отладки, при использовании в сочетании с Debug.log. Метод ToString
позволяет преобразовать объект в читаемую строку, которую можно
вывести в консоль. В C# каждый класс наследует метод ToString по
умолчанию. Это означает, что с помощью наследования и полимор­
физма можно переопределить метод ToString, откорректировать его
и привести строку в более читаемый вид, точнее отражающий состо­
яние членов класса. Если вы возьмете в привычку переопределять
метод ToString в каждом своем классе, их будет гораздо проще отла­
живать. Рассмотрим следующий пример в листинге 2.4, где переопре­
деляется метод ToString.

Листинг 2.4. Переопределение метода ToString

01 using UnityEngine;
02 using System.Collections;
03 //--
04 // Пример класса злого огра
05 public class EnemyOgre : MonoBehaviour
06 {
07 //--
08 // Виды нападений огра
09 public enum AttackType {PUNCH, MAGIC, SWORD, SPEAR};
10 // Текущий вид нападения
11 public AttackType CurrentAttack = AttackType.PUNCH;
12 // Здоровье
13 public int Health = 100;
14 // Задержка перед восстановлением (после повреждения)
15 public float RecoveryTime = 1.0f;
16 // Скорость перемещения огра – в метрах в секунду
17 public float Speed = 1.0f;

74    Отладка

18 // Имя огра
19 public string OgreName = "Harry";
20 //--
21 // Переопределение метода ToString
22 public override string ToString ()
23 {
24 // Вернуть строку, представляющую объект
25 return string.Format ("***Class EnemyOgre*** OgreName:
26 {0} | Health: {1} | Speed: {2} | CurrentAttack: {3} |
27 RecoveryTime: {4}", OgreName, Health, Speed,
28 CurrentAttack, RecoveryTime);
29 }
30 //--
31 void Start()
32 {
33 Debug.log (ToString());
34 }
35 //--
36 }
37 //--

На рис. 2.5 показан вывод в окне консоли, произведенный сцена­
рием.

Рис. 2.5. Переопределение метода ToString
для вывода нестандартного отладочного сообщения

	 Функция String.Format. Строка 25 в листинге 2.4 использует функцию
String.Format для создания результирующей строки. Эту функцию удобно
использовать, когда нужно получить одну строку, включающую обычный
текст и значения переменных различных типов. Лексемы {0}, {1}, {2} ...
внутри строкового аргумента функция String.Format заменит на следую-
щие далее аргументы функции, порядковые номера которых соответствуют
числам в фигурных скобках. Так, подстрока {0} будет заменена на резуль-

Переопределение метода ToString    75

тат OgreName.ToString(). Более подробную информацию о функции String.
Format можно найти по адресу http://msdn.microsoft.com/ru-ru/library/
system.string.format%28v=vs.110%29.aspx.

В Unity имеется возможность выделить фрагменты кода, пред­
назначенные для отладки, что позволит установкой определенного
флажка выполнять отладочный код. При отладке игры, например,
можно использовать два варианта кода: код для рабочей версии ре­
лиза и код для отладки. Представьте, что нужно выявить и исправить
ошибку в коде. Для этого вы вставляете операторы Debug.log, выводя­
щие значения переменных и свойств классов. Можно даже добавить
дополнительные строки кода, операторы if и циклы, чтобы прове­
рить альтернативные ситуации и выявить реакцию объектов на них.
После внесения изменений в код на какое-то время проблема кажется
решенной, вы удаляете дополнительный отладочный код и продол­
жаете тестирование. Но через некоторое время обнаруживается, что
проблема появилась вновь или возникла похожая. Сейчас код отлад­
ки снова необходим, и его надо было бы сохранить. Вы обещаете себе
в следующий раз закомментировать отладочный код, а не удалять его
полностью. Это позволит просто убрать символы комментариев, если
код понадобится снова. Но комментировать и раскомментировать
код также утомительно, особенно если в нем много строк и они раз­
бросаны по нескольким файлам в разных местах. Решить эту пробле­
му можно с помощью глобальных символов. В сущности, глобальный
символ представляет собой специальный флаг, сообщающий препро­
цессору, какие фрагменты кода он должен включить в процесс ком­
пиляции или убрать, то есть обеспечивает компиляцию по условию.
При установке флажка в значение true Unity автоматически скомпи­
лирует одну версию кода, а при установке в значение false – другую.
Это позволит вам иметь два варианта вашего кода при одном и том
же наборе исходных файлов: один – для отладки и один – для окон­
чательной версии. Давайте посмотрим, как это выглядит на практике.
Взгляните на листинг 2.5.

Листинг 2.5. Пример использования глобального символа для отладки
01 using UnityEngine;
02 using System.Collections;
03
04 public class CubeScript: MonoBehaviour
05 {
06 // Этот метод выполняет инициализацию
07 void Start ()
08 {

76    Отладка

09 #if SHOW_DEBUG_MESSAGES
10 // выполняется, ТОЛЬКО если символ SHOW_DEBUG_MESSAGES определен
11 Debug.log ("Pos: " + transform.position.ToString());
12 #endif
13
14 // выполняется всегда, так как находится
15 // за пределами блока #if #endif
16 Debug.log ("Start function called");
17 }
18 }

Строки 09–12 окружены условными директивами препроцессо­
ра #if и #endif. Эти директивы определяют условия, которые про­
веряются не во время выполнения кода, как в обычных операторах
if, а во время компиляции. Во время компиляции Unity проверяет,
существует ли глобальный символ SHOW_DEBUG_MESSAGES. Если условие
выполняется, в результат компиляции будут добавлены строки 10
и 11, в противном случае компилятор проигнорирует эти строки, рас­
сматривая их как комментарии. Используя эту особенность, можно
окружить весь отладочный код директивами #if #endif и включать
и отключать фрагменты кода во всех исходные файлах просто опреде­
ляя глобальный символ SHOW_DEBUG_MESSAGES. Остается только решить,
как задать глобальный символ. Чтобы определить глобальный сим­
вол, выберите в меню приложения пункт Edit ⇒ Project Settings ⇒
Player (Правка ⇒ Настройки проекта ⇒ Проигрыватель). Введите
имя символа в поле Scripting Define Symbols (Определить символы
для сценариев) и нажмите клавишу Enter после ввода имени для под­
тверждения, как показано на рис. 2.6.

	 Удаление и добавление новых символов. Ввести имя глобального сим-
вола – это все, что нужно, чтобы изменения в коде вступили в силу во всех
исходных текстах. Вы можете удалить имя, чтобы удалить определение гло-
бального символа, а также добавить символ / перед именем (например, /
SHOW_DEBUG_MESSAGE), чтобы отключить глобальный символ, что облегчит по-
вторное его включение. Можно также добавить несколько глобальных сим-
волов, разделив их имена точкой с запятой (например, DEFINE1; DEFINE2;
DEFINE3 ...).

Визуальная отладка
Часто бывает достаточно обычной отладки с применением абстракт­
ных или текстовых представлений данных (полученных, например,
с помощью Debug.log), но иногда удобнее использовать другие спо­
собы. Порою лучше один раз увидеть, чем сто раз услышать. Так,
например, при программировании функций, определяющих поле

Визуальная отладка    77

Рис. 2.6. Добавление глобального символа в редакторе Unity
для условной компиляции кода

зрения врагов и других персонажей, которые позволяют им увидеть
игрока и прочие объекты, полезно было бы иметь живое графическое
представление в окне просмотра, отражающее их поле зрения. Поле
зрения должно быть представлено в виде граничных линий или куби­
ческого каркаса. Аналогично, если объект движется по определенной
траектории, было бы хорошо провести цветную линию этой траекто­
рии. Цель такой визуализации заключается не в создании наглядных
подсказок игроку в законченной игре, а в облегчении процесса отлад­
ки с помощью получения более полного отражения работы игры. Соз­
дание таких наглядных визуальных представлений является частью
визуальной отладки. Unity изначально предоставляет нам в пользо­
вание несколько визуальных представлений, например каркас кол­
лайдера или границы поля зрения камер. Однако мы можем создавать
свои собственные визуальные представления для своих объектов,
о чем рассказывается далее в этом разделе.

78    Отладка

Как уже упоминалось ранее, многие объекты Unity, такие как кол­
лайдеры, триггеры объема, NavMesh Agents, камеры и источники
света, уже оснащены собственными визуальными представлениями.
Визуальные представления по умолчанию отображаются в окне про­
смотра сцены Scene, если вы не выключили их или не уменьшили
их размер до нуля. То есть, если вы добавили встроенный объект
и не увидели его визуальное представление в окне просмотра сцены,
откройте панель Gizmo (Визуальное представление), щелкнув на
кнопке Gizmos (Визуальные представления) в панели инструментов
вкладки Scene (Сцена). Включите визуальные представления, кото­
рые хотите видеть, и отрегулируйте их размер ползунком Size (Раз­
мер), как показано на рис. 2.7.

Рис. 2.7. Включение визуального представления
в окне просмотра сцены

Визуальная отладка    79

	 Визуальные представления во вкладке Game. По умолчанию визуаль-
ные представления не отображаются во вкладке Game (Игра). Вы легко
сможете это исправить, открыв панель Gizmo (Визуальное представле-
ние), щелкнув на кнопке Gizmo (Визуальное представление) справа вверху
во вкладке Game (Игра). Панель Gizmo (Визуальное представление) дей-
ствует точно так же, как панель Gizmos (Визуальные представления) во
вкладке Scene (Сцена), изображенной на рис. 2.7.

Рассмотрим пример в листинге 2.6. Он содержит класс, который
можно подключить к объекту, чтобы добавить в него определенного
типа визуальное представление. Более подробную информацию мож­
но найти по адресу http://docs.unity3d.com/ScriptReference/Gizmos.
html. Этот класс прорисовывает сферический каркас заданного ради­
уса с объектом в центре, который представляет область, доступную
объекту для атаки. Кроме того, он отображает вектор направления
движения объекта, обеспечивая визуальную индикацию траектории
объекта. Прорисовка визуального представления выполняется в ме­
тоде обработки события OnDrawGizmos класса MonoBehaviour, при усло­
вии, что значение переменной DrawGizmos равно true.

Листинг 2.6. Класс для рисовании визуального представления
using UnityEngine;
using System.Collections;

public class GizmoCube : MonoBehaviour
{
 // Выводить отладочную информацию?
 public bool DrawGizmos = true;

 // Вызывается для рисования визуального представления.
 // Будет рисовать всегда.
 // Если нужно нарисовать визуальные представления только
 // для выбранных объектов, тогда вызывайте
 // OnDrawGizmosSelected
 void OnDrawGizmos()
 {
 if(!DrawGizmos) return;

 // Установить цвет визуального представления
 Gizmos.color = Color.blue;

 // Нарисовать вектор движения
 Gizmos.DrawRay(transform.position,
 transform.forward.normalized * 4.0f);

 // Установить цвет визуального представления
 // Нарисовать сферу, описывающую куб

80    Отладка

 // Если куб – это враг, он сможет определить присутствие
 // игрока, как только тот попадет внутрь сферы
 Gizmos.color = Color.red;
 Gizmos.DrawWireSphere(transform.position, 4.0f);

 // Восстановить белый цвет
 Gizmos.color = Color.white;
 }
}

На рис. 2.8 показано, как визуальное представление помогает при
отладке.

Рис. 2.8. Визуальное представление

Регистрация ошибок
После сборки игры и передачи ее тестировщикам, где бы они не на­
ходились, в том же офисе, что и вы, или разбросаны по всему миру,
вам понадобится средство для записи сведений об ошибках и исклю­
чениях, происходящих во время выполнения игры. Одним из таких
средств являются файлы регистрации, или файлы журналов (logfiles).
Файлы регистрации – обычные текстовые файлы, предназначенные
для чтения человеком. Они создаются на локальном компьютере во
время выполнения игры и содержат сведения об ошибках. Объем
информации для записи в файл должен быть тщательно продуман.
Слишком детальная информация сделает файл запутанным, а слиш­

Регистрация ошибок    81

ком краткая – бесполезным. Однако будем считать, что нужный ба­
ланс достигнут, и тестировщики отправляют вам регистрационные
файлы для просмотра. Это, как мы надеемся, позволит вам быстро
выявлять ошибки и эффективно исправлять их, не внося новых оши­
бок! В Unity существует много способов регистрации. Один из них
основан на встроенном классе Application, получающем уведомле­
ния об исключениях путем делегирования. Рассмотрим следующий
пример в листинге 2.7:

Листинг 2.7
01 //--
02 using UnityEngine;
03 using System.Collections;
04 using System.IO;
05 //--
06 public class ExceptionLogger : MonoBehaviour
07 {
08 // Внутренняя ссылка на объект потока записи
09 private System.IO.StreamWriter SW;
10
11 // Имя файла регистрации
12 public string LogFileName = "log.txt";
13
14 //--
15 // Этот метод выполняет инициализацию
16 void Start ()
17 {
18 // Сделать постоянно хранимым в памяти
19 DontDestroyOnLoad(gameObject);
20
21 // Создать объект записи в строку
22 SW = new System.IO.StreamWriter(
23 Application.persistentDataPath + "/" + LogFileName);
24
25 Debug.log(Application.persistentDataPath + "/" + LogFileName);
26 }
27 //--
28 // Зарегистрировать обработчик исключений
29 void OnEnable()
30 {
31 Application.RegisterLogCallback(HandleLog);
32 }
33 //--
34 // Отключить обработчик исключений
35 void OnDisable()
36 {
37 Application.RegisterLogCallback(null);
38 }

82    Отладка

39 //--
40 // Записать информацию об исключении в файл
41 void HandleLog(string logString, string stackTrace, LogType type)
42 {
43 // Если исключение или ошибка, записать в файл
44 if(type == LogType.Exception || type == LogType.Error)
45 {
46 SW.WriteLine("Logged at: " + System.DateTime.Now.ToString() +
47 " – Log Desc: " + logString + " – Trace: " + stackTrace +
48 " – Type: " + type.ToString());
49 }
50 }
51 //--
52 // Вызывается при уничтожении объекта
53 void OnDestroy()
54 {
55 // Закрыть файл
56 SW.Close();
57 }
58 //--
59 }
60 //--

Ниже приводится несколько комментариев к листингу 2.7:
�� Строка 22: создается новый объект StreamWriter для записи от­

ладочных строк в файл на локальном компьютере. Файл соз­
дается в папке Application.persistentDataPath, которая всегда
доступна для записи.

�� Строка 31: вызывается метод Application.RegisterLogCallBack
со ссылкой на функцию HandleLog в качестве аргумента. Это
связано с делегированием. Проще говоря, ссылка на функцию
HandleLog нужна, чтобы вызвать ее при возникновении ошибки
или исключения и записать данные в файл регистрации.

�� Строка 45: вызывается метод WriteLine объекта StreamWriter для
вывода данных в файл при возникновении ошибки. Сведения
об ошибке передаются средой Unity через аргументы функции
HandleLog: logString, stackTrace и LogType. Класс StreamWriter яв­
ляется частью фреймворка Mono, открытой реализации Micro­
soft .NET Framework. Более подробную информацию о классе
StreamWriter можно найти по адресу http://msdn.microsoft.com/
ru-ru/library/system.io.streamwriter%28v=vs.110%29.aspx.

	 Одним из самых быстрых способов проверить наше средство регистрации
ошибок – внести в код ошибку деления на ноль. Не забудьте вставить в код
строку Debug.log(Application.persistentDataPath), чтобы вывести путь
к файлу в окно консоли. Это поможет быстро найти файл с помощью про-

Регистрация ошибок    83

водника Windows или Mac Finder. Обратите внимание, что вместо абсолют-
ного пути используется переменная persistentDataPath, значение которой
меняется в зависимости от операционной системы.

Рисунок 2.9 демонстрирует, как выводятся сведения об ошибках
в файл.

Рис. 2.9. Вывод ошибок в текстовый файл
помогает упростить отладку и исправление ошибок

Что такое «делегирование» в C#? Представьте, что у вас есть воз­
можность создать переменную и присвоить ей ссылку на функцию,
а не обычное значение. В этом случае вы сможете вызвать перемен­
ную как обычную функцию. Позднее вы сможете даже присвоить
этой переменной ссылку на другую функцию. Примерно так работает
делегирование. Делегаты практически эквивалентны указателям на
функции в C++. То есть, делегат является специальным типом дан­
ных, который может содержать ссылку для вызова функции. Они
идеально подходят для создания системы обратного вызова и уве­
домления о событиях. Например, при наличии списка или массива

84    Отладка

делегатов, многие классы смогут зарегистрироваться в качестве полу­
чателей обратных вызовов, добавив себя в список. Более подробную
информацию о делегатах в C# можно найти по адресу http:// msdn.
microsoft.com/ru-ru/library/ms173171.aspx. Рассмотрим пример ис­
пользования делегатов C# в Unity (см. листинг 2.8).

Листинг 2.8. Пример использования делегатов C# в Unity
using UnityEngine;
using System.Collections;
//---
public class DelegateUsage : MonoBehaviour
{
 // Определить типа делегата со списком параметров
 public delegate void EventHandler(int Param1, int Param2);
 //---
 // Объявить массив ссылок на функции типа EventHandler
 // емкостью до 10 ссылок

 public EventHandler[] EH = new EventHandler[10];

 //---
 /// <summary>
 /// Awake вызывается перед началом работы. Добавляет делегата
 /// HandleMyEvent в список
 /// </summary>
 void Awake()
 {
 // Добавить обработчика события (HandleMyEvent) в список делегатов
 EH[0] = HandleMyEvent;
 }
 //---
 /// <summary>
 /// Выполняет обход списка делегатов и вызывает обработчики по одному
 /// </summary>
 void Start()
 {
 // Цикл по всем делегатам в списке
 foreach(EventHandler e in EH)
 {
 // Вызвать обработчика, если ссылка не равна null
 if(e!=null)
 e(0,0); // Это вызов обработчика
 }
 }
 //---
 /// <summary>
 /// Пример обработчика события. Позволяет ссылаться на него
 /// как на делегат типа EventHandler

Отладка с помощью редактора    85

 /// </summary>
 /// <param name="Param1">Пример параметра</param>
 /// <param name="Param2">Пример параметра</param>
 void HandleMyEvent (int Param1, int Param2)
 {
 Debug.Log ("Event Called");
 }
 //---

Отладка с помощью редактора
Некоторые жалуются, что Unity не имеет встроенных инструментов
отладки, но это не совсем верно. В Unity можно запустить игру и ре­
дактировать сцену одновременно с ее выполнением. Можно даже
просматривать и редактировать общедоступные и закрытые свойства
в инспекторе объектов. Это позволяет получить полную и наглядную
картину происходящего в игре во время выполнения, выявлять и на­
блюдать широкий спектр всевозможных ошибок. Эту форму отладки
не следует недооценивать. Чтобы полностью использовать возможно­
сти отладки в редакторе, включите режим отладки в инспекторе объек­
тов, щелкнув на ярлыке контекстного меню в правом верхнем углу ин­
спектора и выбрав пункт Debug (Отладка), как показано ни рис. 2.10.

Расположите окна просмотра так, чтобы одновременно видеть
оба окна – Scene (Сцена) и Game (Игра) – в режиме Play (Играть),
вместе с панелью Stats (Статистики). Для этого снимите флажок
Maximize on Play (Распахнуть на время игры) на панели инструмен­
тов во вкладке Game (Игра), если он установлен. Затем поместите
закладки Scene (Сцена) и Game (Игра) рядом друг с другом, либо
разнесите их по разным мониторам, если есть такая возможность.
Настоятельно рекомендую использовать несколько мониторов, если
ваш бюджет это позволяет. Но и одного монитора вполне достаточно,
если вы потратите дополнительное время на настройку положения
и размеров каждого из окон под свои потребности. Также желатель­
но сделать видимым окно консоли и скрыть панель проекта, чтобы
предотвратить случайный выбор и перемещение ресурсов, как пока­
зано на рис. 2.11. Кроме того, можно настроить режим компоновки
графического интерфейса Unity. Более подробную информацию об
этом можно найти по адресу http://docs.unity3d.com/Manual/Customiz-
ingYourWorkspace.html.

Когда вы будете готовы приступить к отладке в редакторе, щелк­
ните на кнопке Play (Играть) в панели инструментов и используй­
те паузу для остановки игры и проверки значений свойств нужного

86    Отладка

Рис. 2.10. Включение режима отладки в инспекторе объектов

Рис. 2.11. Отладка игры в редакторе на единственном мониторе

Профилирование    87

объекта в инспекторе объектов. Помните, что вы все еще можете ис­
пользовать инструменты позиционирования (положение, направле­
ние и масштаб) в игре, чтобы изменить местоположение игрока и его
врагов, задавая разные значения и наблюдая, к каким результатам это
приводит. Самое главное, однако, что все изменения в инспекторе
объектов во время игры носят временный характер и будут отменены
при ее завершении. Поэтому, если нужно, чтобы изменения сохраня­
лись, производите их в режиме редактирования. Можно, конечно, ко­
пировать и вставлять значения, переключаясь между режимами Play
(Играть) и Edit (Правка) с помощью контекстного меню компонента,
как это показано на рис. 2.12. Однако гораздо удобнее переключаться
между этими режимами с помощью горячей комбинации Ctrl+P (еще
одна комбинация – Ctrl+Shift+P – позволяет включать и выключать
режим паузы). Полный список горячих клавиш в Unity можно найти
по адресу http://docs.unity3d.com/Manual/UnityHotkeys.html.

Профилирование
Еще один инструмент, предназначений для отладки и оптимиза­
ции, – окно Profiler (Профилировщик), доступное только в версии
Unity Pro. Чтобы увидеть его, щелкните на вкладке Profiler (Про­

Рис. 2.12. Копирование и вставка значений свойств компонента
из контекстного меню компонента

88    Отладка

филировщик) в меню Window (Окно) приложения, как показано на
рис. 2.13. Профилировщик позволяет получить статистическую ин­
формацию о распределения нагрузки между разными частями игры
и элементами оборудования, такими как процессор и видеокарта.
С помощью профилировщика можно определить, например, сколь­
ко времени расходуется камерой на отображение сцены, и сравнить
со временем на фактические расчеты, или на воспроизведение ау­
дио, или на что-то другое. Это позволит измерить производитель­
ность, сравнить результаты и оценить, что нужно улучшить. Про­
филирование не предназначено конкретно для выявления ошибок
в коде. Но, если наблюдаются проблемы с производительностью
игры, такие как замедление и замирание, оно поможет найти уча­
сток, нуждающийся в оптимизации. По этой причине профилиров­
щик – это тот инструмент, к помощи которого следует обратиться,
если производительность станет проблемой для игры, и вы должны
будете провести грамотный анализ и выявить место для внесения
улучшений.

Рис. 2.13. Профилирование обычно используется
для диагностики потерь производительности

Профилирование    89

Если запустить игру с открытым окном Profiler (Профилиров­
щик), графики в нем заполнятся статистической информацией о по­
следних кадрах. Профилировщик обычно записывает информацию
не обо всех кадрах с начала игры, а только о последних, что разумно
с точки зрения экономии памяти. Существует возможность переклю­
чения в режим «глубокого профилирования», его переключатель до­
ступен в верхней панели инструментов, в окне Profiler (Профилиров­
щик). Этот режим позволяет (в теории) получить дополнительную
информацию об игре, но я рекомендую избегать его использования,
так как это может вызвать проблемы с производительностью в ре­
дакторе Unity при использовании «тяжелых» ресурсов и «тяжелого»
кода, вплоть до зависания всего редактора. Используйте только ре­
жим по умолчанию. В этом режиме обычно бывает желательно от­
ключить визуализацию сигнала VSync в разделе CPU Usage (Загруз­
ка процессора), чтобы получить более точное представление о других
характеристиках, таких как отображение и сценарии, как показано на
рис. 2.14. Для этого просто щелкните на ярлыке VSync в области ле­
генды графика.

Рис. 2.14. Отключение визуализации сигнала VSync
в разделе CPU Usage (Загрузка процессора)

Горизонтальная ось графика соответствует кадрам – самым послед­
ним, добавленным в буфер памяти. Эта ось постоянно заполняется
новыми данными в процессе выполнения игры. Вертикальная ось со­
ответствует затратам времени или вычислительных ресурсов: боль­
шие значения соответствуют более высоким требованиям к произво­
дительности и более затратным по времени кадрам. После заполнения

90    Отладка

Рис. 2.15. Выбор кадра на графике
в окне профилировщика

графика некоторым количеством данных в режиме Play (Играть),
можно приостановить игру и проанализировать ее состояние. Выбе­
рите отдельные кадры из графика, чтобы получить более подробную
информацию о производительности игры в этих кадрах. Когда вы это
сделаете, панель Hierarchy (Иерархия) в нижней части окна Profiler
(Профилировщик) заполнится данными о коде, выполненном в вы­
бранном кадре. При просмотре графика желательно отследить внезап­
ные всплески (пики или шипы), как показано на рис. 2.15. Они ука­
зывают на кадры с неожиданной интенсивной деятельностью. Иногда
это могут быть разовые случаи, которые неизбежны из-за аппаратных
операций или вполне объяснимы и не являются источником проблем
с производительностью, такие как смена сцен или загрузка экранов.
Но иногда они могут указывать на проблемы, особенно если повторя­
ются регулярно. То есть, при диагностике проблем с производитель­
ностью пики – это именно то, с чего надо начинать исследования.

В панели Hierarchy (Иерархия) перечислены все основные функ­
ции и события, выполнявшиеся и обрабатывавшиеся в выбранном ка­
дре. Для каждой функции приводится несколько важнейших характе­
ристик, таких как Total (Всего), Self (Сама функция), Time ms (Время,
мсек) и Self ms (Сама функция, мсек), как показано на рис. 2.16.

Профилирование    91

Обсудим эти характеристики подробнее:
�� Total (Всего) и Time ms (Всего мсек): столбец Total (Всего)

отражает отношение времени, затраченного на выполнение
функции, ко времени, затраченному на весь кадр. Значение
49,1%, например, означает, что 49,1 процента общего времени,
затраченного на выбранный кадр, было поглощено функцией,
сюда входит и время, затраченное функциями, вызывавши­
мися внутри нее. Столбец Time ms (Время, мсек) отображает
затраченное время в миллисекундах. Вместе эти два значения
позволяют получить относительную и абсолютную оценку
времени, затраченного на вызов функций в каждом кадре и на
весь кадр.

�� Self (Сама функция) и Self ms (Сама функция, мсек): значе­
ния в столбцах Total (Всего) и Time ms (Всего мсек) отража­
ют затраты времени на выполнение функции для выбранного
кадра, но они включают также время выполнения функций,
вызванных из функции. Значения Self (Сама функция) и Self
ms (Сама функция, мсек) отражают только время выполнения
самой функции, без учета времени ожидания завершения вы­
званных из нее других функций. Эти характеристики особенно

Рис. 2.16. Характеристики функций, вызывавшихся в кадрах

92    Отладка

важны для выделения функций, вызывающих проблемы с про­
изводительностью.

Более подробную информацию о профилировании в Unity можно
найти по адресу http://docs.unity3d.com/Manual/ProfilerWindow.html.

Отладка с помощью MonoDevelop –
начало
Ранее мы уже познакомились с методом отладки Debug.log для выво­
да вспомогательных сообщений в консоль в критические моменты,
возникающие в ходе выполнения программы. Несмотря на удобство,
этот метод имеет ряд существенных недостатков. Во-первых, в боль­
ших программах множество операторов Debug.log очень легко может
наводнить консоль большим количеством сообщений. Это усложнит
задачу выделения нужных сообщений. Во-вторых, изменение кода
вставкой операторов Debug.log только для мониторинга выполнения
программы и выявления ошибок, считается плохой практикой. В иде­
але должна иметься возможность переходить в режим отладки без
внесения изменений в код. Таким образом, у нас есть веские причины
для поиска альтернативных способов отладки. В этом нам поможет
MonoDevelop. В частности, последние версии MonoDevelop могут
напрямую подключаться к запущенному процессу Unity. При этом
мы получаем доступ к множеству инструментов отладки, широко
используемых при разработке других видов программного обеспече­
ния, таких как точки останова и трассировка. В настоящее время при
установке связи между MonoDevelop и Unity может возникать ошиб­
ка, но только у некоторых пользователей некоторых систем. Тем не
менее, при нормальной работе MonoDevelop может предложить бо­
гатые средства отладки, что позволяет отойти от практики вставки
операторов Debug.log.

Начнем знакомство с возможностями отладки в MonoDevelop с то­
чек останова. При отладке часто бывает нужно проверить состояние
программы по достижении заданной строки. Точка останова позво­
ляет отметить одну или несколько строк в исходном файле и оста­
навливать выполнение программы в первой точке останова. Это дает
возможность изучить код и состояние переменных, а также прове­
рить и отредактировать их значения. Также поддерживается возмож­
ность продолжить выполнение с этой точки. Это позволяет перейти
к следующим строкам, в соответствии с обычной логикой выполне­

Отладка с помощью MonoDevelop – начало    93

ния программы. Вы получаете возможность проверить код в каждой
строке, по ее достижении. Рассмотрим практический пример. В ли­
стинге 2.9 представлен простой сценарий. При подключении к объ­
екту, сценарий получает список всех объектов в сцене (в том числе
и свой объект), а затем, в вызове функции Start, перемещает их в на­
чало координат (0, 0, 0).

Листинг 2.9. Пример сценария для отладки
using UnityEngine;
using System.Collections;
public class DebugTest : MonoBehaviour
{
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Получить все объекты в сцене
 Transform[] Objs = Object.FindObjectsOfType<Transform>();

 // Обойти все объекты в цикле
 for(int i=0; i<Objs.Length; i++)
 {
 // Переместить объект в начало координат
 Objs[i].position = Vector3.zero;
 }
 }
}

Давайте установим точку останова в выделенной строке. Она прио­
становит выполнение программы по достижении этой строки. Чтобы
установить точку останова, поместите курсор мыши на выделенную
строку, щелкните правой кнопкой мыши на сером поле слева и выбе­
рите в контекстном меню пункт New Breakpoint (Новая точка оста­
нова), или в меню приложения MonoDevelop выберите пункт Run ⇒
New Breakpoint (Выполнить ⇒ Точка останова), или нажмите клави­
шу F9 (либо щелкните левой кнопкой мыши на номере строки), как
показано на рис. 2.17.

Строка с точкой останова будет подсвечена красным цветом. Чтобы
остановить сценарий в этой точке останова, подключите MonoDevelop
к действующему процессу Unity. Для этого запустите редактор Unity
вместе с MonoDevelop и в меню приложения MonoDevelop выберите
пункт Run ⇒ Attach to Process (Выполнить ⇒ Подключиться к про­
цессу), как показано на рис. 2.18.

После этого появится диалог Attach to Process (Подключение
к процессу), где в списке процессов должен присутствовать редактор

94    Отладка

Рис. 2.17. Создание новой точки останова в MonoDevelop

Unity. В раскрывающемся списке Debugger (Отладчик), слева внизу,
должен быть выбран пункт Unity Debugger (Отладчик Unity). Вы­
берите процесс Unity Editor и щелкните на кнопке Attach (Подклю­
чить), как показано на рис. 2.19.

Когда MonoDevelop подключится к процессу Unity, в нижней ча­
сти интерфейса MonoDevelop появятся две новые панели, Watch
(Просмотр) и Immediate (Непосредственная отладка), как показано
на рис. 2.20. Эти панели предоставляют дополнительную отладочную
информацию при выполнении игры в редакторе Unity, как будет по­
казано в следующем разделе.

Затем вернитесь в редактор Unity и подключите файл сценария
DebugTest.cs из листинга 2.9 к объекту в сцене, при этом желательно,
чтобы сцена включала также другие объекты (любые, например кубы
или цилиндры). Запустите игру с помощью кнопки Play (Играть)
в панели инструментов Unity, как показано на рис. 2.21.

После щелчка на кнопке Play (Играть), когда будет достигнута
точка останова (режим останова), редактор Unity замрет и управле­
ние перейдет в окно MonoDevelop, где строка с точкой останова будет
подсвечена желтым цветом, что указывает на текущий шаг выполне­

Отладка с помощью MonoDevelop – начало    95

Рис. 2.18. Подключение к процессу

Рис. 2.19. Выбор редактора Unity
в диалоге окне Attach to Process

(Подключение к процессу)

96    Отладка

Рис. 2.20. При подключении MonoDevelop
к процессу Unity появляются две новые панели

ния, как показано на рис. 2.22. В этом режиме вы не сможете ни ис­
пользовать редактор Unity, ни переключаться между окнами просмо­
тра, ни даже редактировать параметры в инспекторе объектов, как это

Рис. 2.21. Запуск в редакторе Unity игры,
подготовленной к отладке в MonoDevelop

Отладка с помощью MonoDevelop – окно Watch    97

Рис. 2.22. Вход в режим останова в MonoDevelop

было возможно при отладке в редакторе. MonoDevelop ждет от вас
только команды на продолжение выполнения. В следующих несколь­
ких разделах будут рассмотрены некоторые полезные инструменты
отладки, которые можно использовать в режиме останова.

Отладка с помощью MonoDevelop –
окно Watch
Окно Watch (Просмотр) предназначено для просмотра значений
переменных на текущем шаге выполнения. Это могут быть значения
локальных или глобальных переменных. Чтобы быстро просмотреть
состояние переменной во время останова, достаточно выделить ее
в редакторе и навести на нее указатель мыши. Если оставить указа­
тель мыши в таком положении на несколько секунд, автоматически
появится всплывающее окно, позволяющее полностью исследовать
переменную, как показано на рис. 2.23. Вы можете распахнуть класс
и изучить состояние всех его переменных.

Используя метод наведения можно исследовать практически лю­
бые переменные в любом активном объекте. Однако, часто бывает
желательно закрепить наблюдение за переменной и даже за группой

98    Отладка

переменных, чтобы видеть их значения собранными вместе в одном
списке. Для этого можно использовать панель Watch (Просмотр)
в нижней части окна MonoDevelop. Чтобы добавить новую перемен­
ную в эту панель, щелкните правой кнопкой мыши на списке в окне
Watch (Просмотр) и выберите в контекстном меню пункт Add watch
(Добавить для просмотра), как показано на рис. 2.24.

При добавлении нового наблюдения, в поле Name (Имя) можно
ввести любое допустимое выражение или имя переменной, и ре­
зультат будет показан в столбце Value (Значение), как показано на
рис. 2.25. Значения в области Watch (Просмотр), соответствуют те­
кущей выполняемой строке и меняются по ходу программы. Помни­
те, что добавить можно любую допустимую переменную, на которую
можно сослаться в текущей области видимости, в том числе name, tag,
transform.position и т. д.

Рис. 2.23. Просмотр переменной
во всплывающем окне во время останова

Отладка с помощью MonoDevelop – окно Watch    99

Рис. 2.24. Добавление новой переменной
в окне Watch (Просмотр)

Окно Watch (Просмотр) можно использовать для просмотра зна­
чений любых переменных и выражений, относящихся к активному
классу или строке кода. Это означает, что можно просматривать зна­
чения глобальных и любых других переменных, связанных с другими
классами или объектами, если они доступны. Однако, если вас интере­
суют только локальные переменные, то есть переменные, область ви­

Рис. 2.25. Переменные,
наблюдаемые в окне Watch (Просмотр)

100    Отладка

димости которых ограничивается текущим блоком кода, вместо окна
Watch (Просмотр) можно использовать окно Locals (Локальные).
Это окно автоматически добавляет для наблюдения все локальные
переменные – их не нужно добавлять вручную. Вкладка окна Locals
(Локальные) по умолчанию располагается сразу вслед за вкладкой
Watch (Просмотр), как показано на рис. 2.26.

Рис. 2.26. Просмотр локальных переменных в окне Locals (Локальные)

Если вы не увидите каких-то окон для отладки в интерфейсе Mono­
Develop, например Watch (Просмотр) или окна Locals (Локальные),
их можно вывести или скрыть, выбрав пункт View ⇒ Debug Windows
(Вид ⇒ Окна для отладки) в меню приложения MonoDevelop (см.
рис. 2.27).

Рис. 2.27. Включение окон для отладки

Отладка с помощью MonoDevelop – продолжение    101

Главным достоинством окон Watch (Просмотр) и Locals (Локаль­
ные) является доступность значений переменных не только для чте­
ния, но и для записи. То есть, вы можете не только просматривать
значения переменных, но и изменять их. Для этого просто дважды
щелкните на поле Value (Значение) в окне Watch (Просмотр) или
Locals (Локальные) и введите новое значение (см. рис. 2.28).

Рис. 2.28. Редактирование значений в окне Watch (Просмотр)

Отладка с помощью MonoDevelop –
продолжение и пошаговый режим
После достижения точки останова и проверки кода часто бывает
желательно выйти из режима паузы и продолжить выполнение про­
граммы. Для этого достаточно просто передать управление програм­
мой среде Unity. Это позволит продолжить выполнение в обычном
режиме, пока не встретится следующая точка останова, если она есть.
То есть сценарий продолжит выполнение без остановок до достиже­
ния следующей точки останова. Чтобы возобновить выполнение из
MonoDevelop, нажмите клавишу F5 или щелкните на кнопке Play
(Играть) в панели инструментов MonoDevelop. Или же выберите
пункт Run ⇒ Continue Debugging (Выполнить ⇒ Продолжить от­
ладку) в меню приложения MonoDevelop, как показано на рис. 2.29.

Но иногда требуется выполнять код по шагам, строку за строкой,
чтобы оценить ход выполнения программы в каждой строке и уви­
деть, как меняются значения переменных. Наблюдать за ходом вы­
полнения программы позволяет режим пошагового выполнения.

102    Отладка

Есть три основных вида пошаговой отладки: «перешагнуть» (Step
Over), «шагнуть в» (Step Into) и «шагнуть из» (Step Out). Коман­
да отладчика «перешагнуть» вызывает переход к следующей строке
кода и остановку для проверки, как если бы следующая строка со­
держала точку останова. Если выполняемая строка содержит вызов
функции, отладчик выполнит его как обычно, а затем перейдет к сле­
дующей строке. То есть он «перешагнет» через функцию. Функция
будет вызвана и выполнена, но это произойдет в режиме обычного
выполнения, и режим останова включится на следующей строке кода,
после вызова функции. Чтобы выполнить команду отладчика «пере­
шагнуть», нажмите клавишу F10, или выберите пункт Run ⇒ Step
Over (Выполнить ⇒ Перешагнуть) в меню приложения, или щел­
кните на кнопке Step Over (Перешагнуть) в панели инструментов
MonoDevelop, как показано на рис. 2.30.

Рис. 2.29. Выход из режима останова и возобновление выполнения
с помощью пункта меню Run ⇒ Continue Debugging

(Выполнить ⇒ Продолжить отладку)

Отладка с помощью MonoDevelop – стек вызовов    103

Рис. 2.30. Команда «перешагнуть» выполнит переход
к следующему оператору, без входа во вложенную функцию

Если строка содержит вызов функции, команда Step Into (Шаг­
нуть в) (F11) позволяет продолжить отладку, войдя внутрь этой
функции. Выполнение остановится на первой строке функции. Эту
команду удобно использовать для наблюдения за взаимодействием
функций. Чтобы выйти из функции и продолжить выполнение, мож­
но воспользоваться командой Step Out (Шагнуть из) (Shift+F11),
которая возобновит выполнение и остановится на строке, следующей
за вызовом функции.

Отладка с помощью MonoDevelop –
стек вызовов
Сложные программы обычно содержат много функций и их вызо­
вов. Во время выполнения одной функции могут вызываться дру­
гие функции, и эти функции могут, в свою очередь, вызвать другие
функции, создавая сложную цепочку вызовов функций из функций.
Это значит, что при достижении точки останова внутри функции
никогда нельзя точно знать, откуда данная функция была вызвана.
Точка останова сообщает только, что выполнение программы достиг­
ло указанной строки, но ничего не говорит о том, каким путем про­
грамма пришла в эту строку. Иногда это легко выяснить, иногда очень
сложно, особенно когда функция вызывается в циклах, в условных
инструкциях или во вложенных циклах и условных инструкциях.
Рассмотрим пример в листинге 2.10, который был получен из приме­

104    Отладка

ра в листинге 2.9. Здесь класс содержит несколько функций, которые
вызывают другие функции.

Листинг 2.10. Пример сценария для отладки
01 using UnityEngine;
02 using System.Collections;
03
04 public class DebugTest : MonoBehaviour
05 {
06 // Этот метод выполняет инициализацию
07 void Start ()
08 {
09 // Получить все объекты в сцене
10 Transform[] Objs = Object.FindObjectsOfType<Transform>();
11
12 // Обойти все объекты в цикле
13 for(int i=0; i<Objs.Length; i++)
14 {
15 // Переместить объект в начало координат
16 Objs[i].position = Vector3.zero;
17 }
18
19 // Вызвать функцию 01
20 Func01();
21 }
22 //-------------------------------------
23 // Вызывает функцию Func02
24 void Func01()
25 {
26 Func02();
27 }
28 //-------------------------------------
29 // Вызывает функцию Func03
30 void Func02()
31 {
32 Func03();
33 }
34 //-------------------------------------
35 // Выводит сообщение
36 void Func03()
37 {
38 Debug.log ("Entered Function 3");
39 }
40 //-------------------------------------
41 }

Если установить точку останова в строке 38 (как показано на
рис. 2.31), выполнение будет приостановлено по ее достижении. Про­
смотрев этот пример, можно заметить, что один маршрут к этой точке

Отладка с помощью MonoDevelop – окно Immediate    105

начинается в функции Start, вызывающей функцию Func01, функция
Func01 вызывает функцию Func02, а затем функция Func02 вызывает
функцию Func03. Но откуда мы знаем, что это единственный путь?
Технически возможно, например, что функция Func03 была вызвана
из другого класса, в другом месте проекта. Итак, как же узнать путь,
каким мы достигли этой функции на данном этапе во время отладки?
С помощью уже знакомых нам инструментов – никак. Но мы можем
использовать окно Call Stack (Стек вызовов). Это окно по умолча­
нию отображается в правом нижнем углу интерфейса MonoDevelop,
в нем перечислены все вызовы функций, которые были сделаны до
достижения текущей функции. Этот список и приведет нас обратно
к первой, или начальной функции. Окно списка вызовов отражает
весь пройденный путь в виде списка имен функций, от текущей до
первой, или начальной функции. Список вызовов упорядочен от ак­
тивной, или последней функции в начале списка до начальной, или
первой функции в конце списка. С помощью списка можно также по­
лучить доступ к любой из функций, чтобы просмотреть значения их
переменных, как показано на рис. 2.31.

Рис. 2.31. Использование стека вызовов
для трассировки вызванных функций

Отладка с помощью MonoDevelop –
окно Immediate
Окно Immediate (Непосредственная отладка) похоже на окно Console
(Консоль) в играх, его можно найти во многих шутерах от первого
лица, таких как Unreal, Half Life или Call of Duty. Окно Immediate
(Непосредственная отладка) по умолчанию находится в правом

106    Отладка

нижнем углу интерфейса MonoDevelop. Оно становится активным
в режиме останова. В нем можно вводить выражения и операторы,
которые сразу же будут выполняться, как если бы были частью про­
граммного кода на этом шаге. Можно получать и устанавливать зна­
чения активных переменных, а также выполнять дополнительные
операции. Можно написать любое допустимое выражение, например
2 + 2 или 10 * 5. Результаты этих выражений будут выведены в сле­
дующей строке в окне Immediate (Непосредственная отладка), как
показано на рис. 2.32.

Рис. 2.32. Вычисление выражений в окне Immediate
(Непосредственная отладка)

Рис. 2.33. Ввод более сложных выражений
в окне Immediate (Непосредственная отладка)

Конечно же, вы не ограничены вводом простых операторов, вклю­
чающих основные арифметические операции, такие как сложение
и вычитание. Вы можете вводить любые выражения, включающие
активные переменные (см. рис. 2.33).

В целом окно Immediate (Непосредственная отладка) особенно
удобно для тестирования кода, ввода альтернативных операторов
и просмотра результатов их вычисления.

Отладка с помощью MonoDevelop – точки останова    107

Отладка с помощью MonoDevelop –
точки останова с условием
Точки останова очень важны при отладке и представляют точки, где
выполнение приложений в режиме отладки останавливается. Часто
все, что вам нужно, – это задать точку останова и начать отладку! Од­
нако иногда точки останова в обычном их виде начинают раздражать.
Примером может служить точка останова внутри цикла. Иногда
нужно, чтобы точка останова прерывала выполнение, только после
заданного числа итераций, а не в первой же итерации. По умолчанию
точка останова внутри цикла будет останавливать выполнение в каж­
дой итерации, и если цикл длинный, такое поведение станет утоми­
тельным. Чтобы решить эту проблему, можно использовать точку
останова с условием, которое определит состояние, при котором точ­
ка останова должна начать работать. Чтобы задать условие для точки
останова, щелкните правой кнопкой мыши на точке останова и вы­
берите в контекстном меню пункт Breakpoint Properties (Свойства
точки останова), как показано на рис. 2.34.

После выбора пункта Breakpoint Properties (Свойства точки
останова) появится диалог со свойствами точки останова, где можно
определить условие. В разделе Condition (Условие) выберите вари­
ант Break when condition is true (Останавливать при выполнении

Рис. 2.34. Доступ к свойствам точки останова
для определения условия

108    Отладка

условия), а затем введите условие в поле Condition expression (Ус­
ловное выражение). Для цикла вполне подойдет условие i>5, кото­
рое вызовет остановку выполнения, когда итератор цикла превысит
значение 5. Конечно, имя переменной i должно быть заменено на имя
фактической переменной.

Отладка с помощью MonoDevelop –
точки трассировки
Точки трассировки могут предложить удобную альтернативу опера­
тору Debug.log, применение которого сопровождается нежелательным
изменением кода при отладке. Точки трассировки определяются так
же, как точки останова, то есть они устанавливаются в определенных
строках в файле с исходным кодом. Для их использования не требует­
ся изменять программный код, но (в отличие от точек останова) они не
останавливают выполнение программы при отладке. Вместо этого они
автоматически выполняют заданную инструкцию. Как правило, они
выводят сообщение в окно Application Output (Вывод приложения),
а не в консоль Unity. Чтобы установить точку трассировки в строке 16
листинга 2.10, установите курсор в строку 16 и выберите пункт Run ⇒
Add Tracepoint (Выполнить ⇒ Добавить точку трассировки) в меню
приложения (или нажмите Ctrl+Shift+F9), как показано на рис. 2.36.

После выбора пункта Add Tracepoint (Добавить точку трассиров­
ки) MonoDevelop выведет диалог Add Tracepoint (Добавить точку

Рис. 2.35. Определение условия
для точки останова

Отладка с помощью MonoDevelop – точки трассировки    109

трассировки). Поле Trace Text (Текст трассировочного сообщения)
предназначено для ввода текста, который будет напечатан в окне
Application Output (Вывод приложения) при прохождении точки
трассировки во время выполнения. В текст можно вставлять пары от­
крывающих и закрывающих фигурных скобок с выражениями между
ними. Таким способом можно выводить значения переменных, на­
пример: "Loop counter is {i}", как показано на рис. 2.37.

После щелчка на кнопке ОК в выбранную строку будет добавлена
точка трассировки. В редакторе MonoDevelop строки с точками трас­
сировки отмечаются ромбиками, в отличие от кружков, отмечающих
точки останова (см. рис. 2.38).

После установки точки трассировки в выбранной строке и запуска
приложения, игра будет работать в нормальном режиме, непосред­
ственно в редакторе Unity. При достижении точки трассировки при­
ложение не станет останавливаться или входить в режим останова,
как это было при достижении точки останова. Вместо этого в окно

Рис. 2.36. Добавление точки трассировки
в MonoDevelop

110    Отладка

Рис. 2.37. Определение текста
для вывода в точке трассировки

Application Output (Вывод приложения) будет выведено сообще­
ние. По умолчанию это окно находится в нижней части интерфейса
MonoDevelop (см. рис. 2.39).

Рис. 2.38. Установка точки трассировки

Рис. 2.39. Точки трассировки позволяют выводить
в окно Application Output (Вывод приложения)сообщения,

подобно операторам Debug.log

Итоги    111

Точки трассировки – это удобная и эффективная альтернатива
оператору Debug.log, и самое важное их преимущество в отсутствии
необходимости вносить изменения в код, как этого требует использо­
вание оператора Debug.log. К сожалению, они не выводят сообщения
непосредственно в консоль Unity. Вместо этого сообщения появляют­
ся в окне Application Output (Вывод приложения), в MonoDevelop.
Тем не менее, следует признать, что точки трассировки могут быть
мощным и полезным средством поиска и исправления ошибок.

Итоги
Эта глава была посвящена отладке, поиску и исправлению ошибок
в игре. Существует много способов достижения этой цели, особен­
но в Unity. В частности, здесь был описан способ отладки с помощью
оператора Debug.Log, наверное, самый простой из всех видов отладки.
Он заключается во вставке операторов Debug.log в критические места
в коде для вывода диагностических сообщений в консоль Unity. Далее
мы познакомились с глобальными символами, позволяющими выде­
лить и изолировать блоки кода для окончательной и отладочной вер­
сий. Это позволяет выполнять при отладке определенный код, когда
установлен заданный флаг. Затем мы остановились на регистрации
ошибок. В этой главе было показано, как создать класс регистрато­
ра ошибок, интегрирующийся со встроенным классом приложения
Unity с помощью делегирования. Мы узнали о профилировщике
в Unity, доступном только в версии Unity Pro, который предоставляет
статистические данные о распределении времени и расходовании си­
стемных ресурсов. Кроме того, мы исследовали приемы визуальной
отладки в редакторе, помогающие получить более четкое визуальное
представление о сцене и факторах, влияющих на поведение объектов.
Наконец, мы рассмотрели средства отладки в MonoDevelop, не требу­
ющие внесения изменений в код. В их число входят точки останова,
точки трассировки, пошаговое выполнение и наблюдение. Далее мы
рассмотрим работу с игровыми объектами.

Глава 3

Синглтоны,
статические члены,

игровые объекты
и миры

Каждый уровень, или игровой мир в Unity представляет собой ​​сцену,
а сцена является коллекцией игровых объектов, помещенных в де­
картову систему координат с осями x, y и z. Расстояния в сцене изме­
ряются в единицах Unity, соответствующих (условно) метрам. Чтобы
освоить разработку сценариев для Unity, важно понимать, как устро­
ены сцены и объекты, и как работают механизмы взаимодействий
объектов. То есть, важно знать, как отдельные и независимые объекты
в сцене могут воздействовать друг на друга, чтобы выполнить то, чего
вы от них ждете. Как следствие, основное внимание в этой главе бу­
дет уделено встроенным методам поиска объектов, получения ссылок
на них и доступа к объектам в сцене. Здесь также будут рассмотрены
дополнительные понятия, такие как статические члены и синглтоны
(объекты-одиночки), служащие для создания объектов, путешеству­
ющих между сценами и сохраняющих свои данные. Конечно, в этой
главе будут обсуждаться не только методы сами по себе, но и произ­
ведена оценка их применимости в практических ситуациях, их произ­
водительность и эффективность.

Игровые объекты
Игровые объекты во многих отношениях являются основными еди­
ницами, или сущностями в сцене. Естественнее было бы называть
их реквизитами в повседневном смысле. Не имеет значения, какие

Игровые объекты    113

именно реквизиты и какое их поведение понадобится в играх, в лю­
бом случае для их реализации вы должны будете использовать игро­
вые объекты. Игровые объекты не всегда видны игроку, достаточно
часто они бывают невидимыми. Звуки, коллайдеры и управляющие
классы – вот некоторые примеры невидимых игровых объектов.
С другой стороны, многие игровые объекты видимы: меши, анимиро­
ванные меши, спрайты и т. д. В любом случае, видимые и невидимые
игровые объекты в сцене являются совокупностью взаимосвязанных
компонентов. Компонент – это, по существу, класс, производный от
MonoBehaviour. Его можно прикрепить к игровому объекту и опреде­
лять его поведение. Каждый игровой объект имеет, по крайней мере,
один общий компонент, который невозможно удалить, а именно
компонент Transform (или RectTransform для объектов графического
интерфейса). Этот компонент отвечает за позиционирование, ориен­
тацию и масштабирование объекта. Например, если создать в сцене
новый пустой игровой объект, выбрав пункт GameObject ⇒ Create
Empty (GameObject ⇒ Создать пустой объект) в меню приложения,
как показано на рис. 3.1, новый игровой объект получит только один
компонент Transform. То есть, даже новый пустой игровой объект не
является, строго говоря, пустым, он пустой только как игровой объ­
ект. Объект всегда нуждается в компоненте Transform для определе­
ния своего местоположения в сцене.

Рис. 3.1. Все игровые объекты оснащены компонентом Transform

Конечно, игровой объект может иметь множество компонентов,
и поведение объекта определяется сочетанием компонентов и их
взаимодействием. Вы можете добавлять к объекту предварительно

114    Синглтоны, статические члены, игровые объекты и миры

подготовленные компоненты, с помощью меню Component (Компо­
нент), или свои собственные, прикрепляя свои сценарии к объекту.

Итак, игровые объекты состоят из компонентов. На более высоком
уровне сцены – это коллекции игровых объектов внутри одного игро­
вого мира. Кроме того, сами объекты состоят в тесных связях друг
с другом, определяемых иерархией сцены. Объекты могут быть до­
черними по отношению к другим объектам, которые, в свою очередь,
могут иметь своих родителей (transform.parent). Эта связь влияет на
перемещение объектов и их трансформацию. Проще говоря, значения
свойств компонента Transform объекта передаются вниз по иерархии
и добавляются к значениям свойств компонентов Transform всех до­
черних объектов. Благодаря этому дочерний игровой объект всегда
сохраняет свою позицию относительно родительского объекта – по­
зиция родителя всегда определяет позицию дочернего объекта. Но,
если объект не имеет родителя, он всегда будет позиционироваться
относительно начала координат игрового мира (0, 0, 0). На рис. 3.3
показана панель иерархии.

Взаимодействия компонентов
Как мы уже определили, игровой объект является совокупностью
компонентов и ничем более. Тогда возникает вопрос о взаимодей­
ствии и общении компонентов друг с другом. Каждый компонент

Рис. 3.2. Прикрепление компонента к игровому объекту

Взаимодействия компонентов    115

реализован в виде автономного файла сценария и обособлен от дру­
гих компонентов, но компонент должен взаимодействовать с други­
ми. В частности, ему необходим доступ к переменным и функциям
других компонентов, прикрепленных к одному игровому объекту, и,
возможно, это нужно делать в каждом кадре. В этом разделе мы по­
смотрим, как взаимодействуют компоненты.

Часто для вызова функций в других компонентах используются
SendMessage и BroadcastMessage, как это было описано в главе 1 «Ос­
новы С# в Unity». Эти функции не зависят от типов. В частности,
эти функции можно использовать в любой точке сценария для вы­
зова по именам любых методов, любых компонентов, подключенных
к тому же игровому объекту, независимо от их типа. Эти функции
вообще не интересуют типы компонентов. Это делает SendMessage
и BroadcastMessage очень удобным. Однако, они имеют два недостат­
ка. Во-первых, эти функции действуют по принципу «все или ниче­
го»: они либо вызывают метод по имени во всех компонентах, либо
не вызывают ничего. Мы не можем выбрать, какому компоненту от­
править сообщение, потому что сообщения всегда адресованы всем

Рис. 3.3. Игровой объект занимает свое место в иерархии сцены

116    Синглтоны, статические члены, игровые объекты и миры

компонентам. Во-вторых, оба метода (SendMessage и BroadcastMessage)
полагаются на механизм рефлексии, что может вызвать проблемы
с производительностью при их частом использовании, например при
применении этих функций в событии Update или, что еще хуже, в со­
бытии OnGUI. Поэтому всегда старайтесь использовать альтернатив­
ные способы там, где это возможно. Давайте рассмотрим эти способы
в следующих разделах.

Функция GetComponent
Если необходим прямой доступ к определенному компоненту игрово­
го объекта и известен его тип, попробуйте использовать функцию Get
Component, как показано в листинге 3.1. Эта функция дает доступ к пер­
вому компоненту соответствующего типа, подключенному к игровому
объекту. После получения ссылки на компонент, он становится доступ­
ным как обычный объект, и с помощью этой ссылки можно читать/из­
менять общедоступные переменные компонента и вызывать его методы.

Листинг 3.1. Пример использования функции GetComponent
01 using UnityEngine;
02 using System.Collections;
03 //---
04 public class MyCustomComponent : MonoBehaviour
05 {
06 // Ссылка на трансформацию объекта
07 private Transform ThisTransform = null;
08 //---
09 // Этот метод выполняет инициализацию
10 void Start ()
11 {
12 // Получить сохраненную ссылку на трансформацию
13 ThisTransform = GetComponent<Transform>();
14 }
15 //---
16 // Вызывается при отображении каждого кадра
17 void Update ()
18 {
19 // Изменить позицию
20 if(ThisTransform !=null)
21 {
22 ThisTransform.localPosition +=
23 Time.deltaTime * 10.0f * ThisTransform.forward;
24 }
25 }
26 //---
27 }
28 //---

Взаимодействия компонентов    117

Ниже приводится несколько комментариев к листингу 3.1:
�� Строки 07 и 13: переменная ThisTransform объявлена как закрытая.

Ей присваивается ссылка на компонент Transform, прикрепленный
к игровому объекту, полученная с помощью вызова GetComponent
в событии Start. В частности, чтобы получить доступ именно
к компоненту Transform, можно также использовать унаследован­
ное свойство transform, например: ThisTransform = transform;.

�� Строка 22: здесь ссылка ThisTransform используется для записи
в localPosition новой позиции игрового объекта. Опять же, если
говорить конкретно о компоненте Transform, можно было бы ис­
пользовать transform.localPosition. Однако, при этом был бы
выполнен вызов внутренней функции, так как transform являет­
ся свойством С#, а не обычной переменной. Более полную ин­
формацию о свойствах С# можно найти в главе 1 «Основы С#
в Unity». По этой причине использование функции GetComponent
в событиях Start или Awake для получения ссылок на компонен­
ты, считается одним из самых эффективных способов доступа
к внешним компонентам, особенно если ссылка на компонент
регулярно используется, например, в событии Update.

	 Свойства localPosition и position. Компонент Transform предоставляет
два основных поля для позиционирования: position и localPosition. Уста-
новка любого из них изменяет положение объекта, но по-разному. Свойство
position всегда определяет положение объекта в глобальном простран-
стве. Поэтому значение, присваиваемое этой переменной в сценарии, мо-
жет не соответствовать значению, отображаемому инспектором объектов
в компоненте Transform. Если объект является потомком другого объекта,
то есть, если его позиция определяется положением родителя, тогда Unity
сместит объект относительно родителя настолько, насколько это будет
необходимо, чтобы расположить его в указанном месте глобального про-
странства. Свойство localPosition, напротив, соответствует значению,
отображаемому в компоненте Transform в инспекторе объектов. В частно-
сти, оно определяет положение объекта как смещение относительно роди-
теля или начала координат игрового мира, если объект не имеет родителя.
В последнем случае свойства position и localPosition будут идентичны.

	 Более подробную информацию о функции GetComponent можно найти
в электронной документации: http://docs.unity3d.com/ScriptReference/
GameObject.GetComponent.html.

	 Документация по Unity также доступна в MonoDevelop, в виде пункта меню
Help ⇒ Unity API Reference (Справка ⇒ Справочник по Unity API).

Получение нескольких компонентов
Иногда бывает необходимо получить список из нескольких компо­
нентов: полный список всех компонентов или список компонен­

118    Синглтоны, статические члены, игровые объекты и миры

тов определенного типа. Сделать это можно с помощью функции
GetComponents. Рассмотрим листинг 3.2. Так же как при использовании
функции GetComponent, вызов GetComponents лучше поместить в одно
событий, вызываемых лишь раз, такое как Start или Awake.

Листинг 3.2. Пример использования функции GetComponents
01 using UnityEngine;
02 using System.Collections;
03 //---
04 public class MyCustomComponent : MonoBehaviour
05 {
06 // Массив ссылок на все компоненты
07 private Component[] AllComponents = null;
08 //---
09 // Этот метод выполняет инициализацию
10 void Start ()
11 {
12 // Получить список всех компонентов данного объекта
13 AllComponents = GetComponents<Component>();
14
15 // Обойти компоненты в списке и вывести их в консоль
16 foreach(Component C in AllComponents)
17 {
18 // Вывести в консоль
19 Debug.log (C.ToString());
20 }
21 }
22 }
23 //---

	 Еще о компонентах. Unity предлагает дополнительные разновидно-
сти функций GetComponent и GetComponents, упрощающие взаимодействия
между компонентами, которые могут принадлежат разным объектам. В их
число входят: функция GetComponentsInChildren, позволяющая получить
список всех компонентов всех дочерних объектов, а также функция GetCom
ponentsInParent, возвращающая все компоненты родительского объекта.

	 Более подробную информацию о функции GetComponents можно найти
в электронной документации: http://docs.unity3d.com/ScriptReference/
Component.GetComponents.html.

Компоненты и сообщения
Функции семейства GetComponent способны удовлетворить практиче­
ски любые потребности, связанные со взаимодействиями между ком­
понентами. Они лучше справляются с этой задачей, чем SendMessage
или BroadcastMessage, при правильном их использовании. Однако,
бывает желательно вызвать метод SendMessage только для одного ком-
понента выбранного игрового объекта, не зная ничего о типе компо­

Взаимодействия компонентов    119

нента. Эту задачу можно было бы решить, используя делегирование
и интерфейсы (рассматриваются в следующей главе). Однако здесь
мы рассмотрим прием, подобный вызову метода SendMessage. Такая
возможность была бы особенно полезна для создания расширений.
Например, представьте, что игра содержит несколько видов врагов
и есть возможность добавлять новые их виды, каждый из которых
имеет свою реализацию. Несмотря на их различия, при сохране­
нии игры текущие сведения обо всех врагах должны быть записаны
в файл. Для этого имеет смысл предусмотреть в реализации каждого
врага метод OnSave, реализованный в специальном компоненте. Есте­
ственно, при сохранении игры было бы желательно вызвать только
функцию OnSave этого компонента с помощью SendMessage. Но, если
имеются другие компоненты с функцией OnSave, их функции с та­
ким именем также будут ошибочно вызваны. Чтобы предотвратить
это, можно прибегнуть к помощи метода Invoke. Рассмотрим пример
в листинге 3.3.

Листинг 3.3. Пример использования функции Invoke
01 using UnityEngine;
02 using System.Collections;
03 //---
04 public class MyCustomComponent : MonoBehaviour
05 {
06 // Ссылка на компонент, функция которого должна вызываться
07 public MonoBehaviour Handler = null;
08
09 //---
10 // Этот метод выполняет инициализацию
11 void Start ()
12 {
13 // Вызвать функцию непосредственно
14 Handler.Invoke("OnSave",0.0f);
15 }
16 }
17 //---

Ниже приводится несколько комментариев к листингу 3.3:
�� Строка 07: здесь объявляется общедоступная переменная
Handler. В инспекторе объектов на нее можно перетащить ка­
кой-либо компонент. Это будет компонент, которому адресо­
вано сообщение. Обратите внимание, что типом переменной
может быть MonoBehaviour или производный от него класс. Это
означает, что независимость от типа достигнута – нам не нужно
знать тип компонента заранее.

120    Синглтоны, статические члены, игровые объекты и миры

�� Строка 14: метод Invoke класса MonoBehaviour предназначен для
вызова любого метода по его имени. Второй аргумент, десятич­
ное число, определяет время задержки в секундах перед вы­
зовом функции. Если указать задержку, равную 0, метод будет
вызван немедленно.

	 Более подробную информацию о функции Invoke можно найти в электрон-
ной документации: http://docs.unity3d.com/ScriptReference/MonoBehaviour.
Invoke.html.

Игровые объекты и игровой мир
Еще одной важной задачей в Unity является поиск объектов в сцене,
особенно если экземпляры объектов создаются во время выполнения.
Задачи, такие как «Получить объект игрока» или «Получить список
всех врагов в сцене», используются во многих операциях, от повтор­
ного создания врагов и сбора предметов до смены положения игрока
и проверки столкновений между объектами. Для получения ссылок
на конкретные игровые объекты в Unity предусмотрен набор функ­
ций, связанных с классом GameObject. Эти функции удобны, но затрат­
ны, поэтому постарайтесь вызывать их только в однократно выполня­
емых событиях, таких как Start и Awake, если это возможно. Давайте
рассмотрим их вместе с другими методами, предназначенными для
работы с найденными объектами.

Поиск игровых объектов
Найти объект в сцене можно с помощью двух функций: GameObject.
Find и GameObject.FindObjectWithTag. Почти всегда предпочтительнее
использовать последнюю из них, из соображений производительно­
сти. Тем не менее, давайте начнем с GameObject.Find. Эта функция про­
сматривает содержимое сцены до первого объекта с именем, точно
совпадающим с заданным (с учетом регистра), и возвращает найден­
ный объект. Для поиска должно использоваться имя объекта, как оно
отображается в панели иерархии. К сожалению, функция выполняет
операцию сравнения строк в поисках совпадения, которая выполня­
ется достаточно медленно. Кроме того, она хорошо подходит только
для сцен, где все объекты гарантированно имеют уникальные имена,
без повторов. Тем не менее, функция GameObject.Find остается полез­
ной для поиска объекта по его имени:

// Поиск объекта с именем Player
ObjPlayer = GameObject.Find ("Player");

Игровые объекты и игровой мир    121

	 Метод Find класса GameObject. Если заглянуть в определение класса
GameObject, можно увидеть, что Find – это статическая функция. То есть, что-
бы вызвать ее, не нужно создавать экземпляр класса GameObject. Ее можно
вызвать, записав инструкцию GameObject.Find. Статические члены и гло-
бальная область видимости будут рассматриваться далее в этой главе.

	 Более подробную информацию о функции GameObject.Find можно найти
в электронной документации: http://docs.unity3d.com/ScriptReference/
GameObject.Find.html.

	 Функция GameObject.Find выполняется медленно, поэтому применяйте ее
только в событиях, вызываемых один раз, таких как Awake или Start.

Намного эффективнее выполняется поиск по тегу. Каждый объект
в сцене имеет свойство-тег, которому по умолчанию присваивается
значение Untagged. Тег – это уникальный идентификатор, которым
можно отметить один или несколько объектов, объединив их в кол­
лекцию. Естественно, чтобы получить возможность искать объекты
по тегам, сначала нужно присвоить теги объектам. Сделать это можно
программно, используя общедоступное свойство GameObject.tag. Од­
нако чаще для этого используется редактор Unity. Чтобы присвоить
тег выбранному объекту в редакторе Unity, щелкните на раскрыва­
ющемся списке Tag (Тег) в инспекторе объектов и выберите тег. Так
же есть возможность создавать свои теги, выбрав пункт Add Tag...
(Добавить тег...). На практике часто используют теги Player (Игрок),
Enemy (Враг), Weapon (Оружие), Bonus (Бонус), Prop (Реквизит),
Environment (Окружение), Light (Источник света), Sound (Звук)
и GameController (Контроллер игры). Взгляните на рис. 3.4.

Рис. 3.4. Присваивание тега объекту

122    Синглтоны, статические члены, игровые объекты и миры

После присваивания тегов одному или нескольким объектам в сце­
не можно эффективно находить объекты по тегу. Функция GameObject.
FindGameObjectWithTag ищет и возвращает первый найденный объект
с указанным тегом. Функция GameObject.FindObjectsWithTag возвраща­
ет массив всех подходящих объектов. Рассмотрим пример в листин­
ге 3.4. Обратите внимание, что хотя функция FindGameObjectsWithTag
принимает строковый аргумент, Unity внутренне преобразует строку
в число для увеличения скорости сравнения тегов.

Листинг 3.4. Поиск объектов по тегам

using UnityEngine;
using System.Collections;
//---
public class ObjectFinder : MonoBehaviour
{
 // Имя тега для поиска оъектов
 public string TagName = "Enemy";

 // Массив найденных объектов
 public GameObject[] FoundObjects;

 //---
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Найти объекты с указанным тегом
 FoundObjects = GameObject.FindGameObjectsWithTag(TagName);
 }
}
//---

	 Иногда бывает желательно присвоить несколько тегов одному объекту.
К сожалению, Unity не поддерживает такую возможность. Тем не менее, вы
можете обойти данное ограничение, создав пустые дочерние объекты для
основного объекта и присвоив им требуемые теги. Выполняя поиск объек-
тов по тегу в этом случае нужно просто помнить, что надо получить ссылку
на родительский объект, который, собственно, вам и нужен.

Сравнение объектов
Функции поиска в классе GameObject удобны для поиска конкретных
объектов, но бывают ситуации, когда нужно сравнить два уже най­
денных объекта. Как правило, бывает нужно сравнить имена или теги
двух объектов. Сравнить теги можно с помощью функции CompareTag:

// Сравнить тег данного объекта с тегом объекта Obj_Y
bool bMatch = gameObject.CompareTag(Obj_Y.tag);

Игровые объекты и игровой мир    123

Кроме того, иногда требуется сравнить два объекта на равенство,
чтобы определить, один и тот же это объект или это два разных объ­
екта с одинаковыми тегами. Это особенно важно при программирова­
нии алгоритмов принятия поведенческих решений. Например, решая
вопрос, следует ли вражескому персонажу сражаться или бежать от
игрока, неплохо было бы знать, сколько еще вражеских персонажей
смогут поддержать его. Чтобы ответить на этот вопрос, как мы уже
знаем, поиск всех врагов в сцене можно выполнить по тегу. Однако,
результаты такого поиска будут также включать первого врага, и его
необходимо исключить из результатов. Листинг 3.5 демонстрирует,
как решить эту задачу с помощью метода GetInstanceID.

Листинг 3.5. Сравнение объектов
01 // Найти все объекты с указанным тегом
02 FoundObjects = GameObject.FindGameObjectsWithTag(TagName);
03
04 // Находит указанный объект в списке и исключает его
05 foreach(GameObject O in FoundObjects)
06 {
07 // Если это один и тот же объект
08 if(O.GetInstanceID() == gameObject.GetInstanceID())
09 continue; // Перейти к следующей итерации
10
11 // [...] Выполнить необходимые операции
12 }

Получение ближайшего объекта
Имеется массив игровых объектов игры, полученный, например, в ре­
зультате поиска. Как найти объект, ближайший к заданному, в смыс­
ле расстояния? Пример в листинге 3.6 демонстрирует, как решить эту
задачу с помощью функции Vector3.Distance, вычисляющей расстоя­
ние (в метрах) между любыми двумя точками в сцене.

Листинг 3.6. Поиск ближайшего объекта
// Возвращает ближайший игровой объект
GameObject GetNearestGameObject(GameObject Source, GameObject[]
DestObjects)
{
 // Извлечь ссылку на первый объект
 GameObject Nearest = DestObjects[0];

 // Вычислить расстояние
 float ShortestDistance = Vector3.Distance(
 Source.transform.position,

124    Синглтоны, статические члены, игровые объекты и миры

 DestObjects[0].transform.position);

 // Обойти в цикле все объекты
 foreach(GameObject Obj in DestObjects)
 {
 // Вычислить расстояние
 float Distance = Vector3.Distance(
 Source.transform.position, Obj.transform.position);

 // Если этот объект ближе к заданному, запомнить его
 if(Distance < ShortestDistance)
 {
 // Ближе, запомнить
 Nearest = Obj;
 ShortestDistance = Distance;
 }
 }

 // Вернуть ближайший объект
 return Nearest;
}

Поиск любого объекта определенного типа
Иногда бывает нужно получить список всех компонентов определен­
ного типа, независимо от того, к каким игровым объектам они под­
ключены. Это могут быть компоненты, подключенные ко всем врагам,
всем собираемым предметам, все компоненты определения местопо­
ложения, все коллайдеры и т. д. Решить эту задачу можно с помощью
функции Object.FindObjectsOfType, как показано в листинге 3.7, пред­
назначенной для получения списка всех экземпляров заданного типа,
за исключением неактивных объектов. Но, из-за невысокой скорости
работы этой функции старайтесь избегать ее в событиях, связанных
с кадрами, таких как Update. Ее имеет смысл использовать в редко вы­
зываемых событиях, таких как события Start и Awake.

Листинг 3.7. Получение списка всех объектов заданного типа
void Start()
{
 // Получить список всех коллайдеров в сцене
 Collider[] Cols = Object.FindObjectsOfType<Collider>();
}

Проверка препятствий между игровыми объектами
Часто возникает задача проверить отсутствие препятствий между
двумя выбранными игровыми объектами, такими как игрок и враг,

Игровые объекты и игровой мир    125

Рис. 3.5. Проверка отсутствия препятствий
между двумя игровыми объектами с помощью Physics.LineCast

иначе говоря, проверить присутствие коллайдеров, пересекающих во­
ображаемую линию между объектами. Это может пригодиться в си­
стемах, определяющих прямую видимость, как будет показано ниже,
или, в более общем случае, для выбора объектов в реализациях ис­
кусственного интеллекта и др.

Существует множество способов решения этой задачи. Один из
них основан на использовании функции Physics.LineCast, как пока­
зано в листинге 3.8.

Листинг 3.8. Определение отсутствия препятствий между объектами
01 using UnityEngine;
02 using System.Collections;
03 // Проверяет отсутствие препятствий на воображаемой линии между
 объектами
04 public class ObjectPath : MonoBehaviour
05 {
06 // Ссылка на вражеский объект
07 public GameObject Enemy = null;
08
09 // Маска слоев для ограничения определения препятствий на линии
10 public LayerMask LM;
11 //--
12 // Вызывается при отображении каждого кадра
13 void Update ()
14 {

126    Синглтоны, статические члены, игровые объекты и миры

15 // Проверить отсутствие препятствий между объектами
16 if(!Physics.Linecast(transform.position,
 Enemy.transform.position, LM))
17 {
18 // Препятствий нет
19 Debug.log ("Path clear");
20 }
21 }
22 //--
23 // Показать вспомогательную линию в режиме отладки
24 void OnDrawGizmos()
25 {
26 Gizmos.DrawLine(transform.position, Enemy.transform.position);
27 }
28 //--
29 }

Ниже приводится несколько комментариев к листингу 3.8:
�� Строка 07: этот класс должен быть прикреплен к объекту
Player, а в его общедоступную переменную Enemy должна быть
записана ссылка на объект, отсутствие препятствий на пути
к которому должно быть проверено.

�� Строка 10: переменная LayerMask – это битовая маска, опреде­
ляющая, какие слои в сцене следует учитывать при провер­
ке. Более подробную информацию о битовых масках можно
найти в электронной документации: http://docs.unity3d.com/
Manual/Layers.html.

�� Строка 16: функция Physics.Linecast определяет, возможно
ли соединить два объекта в сцене непрерывной прямой ли­
нией. Обратите внимание, что если два проверяемых объекта
снабжены коллайдерами, такими, например, как коллайдер
BoxCollider, они будут рассматриваться как препятствия. Дру­
гими словами, собственный коллайдер объекта может повли­
ять на результаты функции LineCast. Поэтому используйте
переменную LayerMask для включения и исключения нужных
слоев.

	 Проект примера использования функции Physics.LineCast можно найти
в сопроводительных файлах к книге, в папке Chapter03/LineCast.

Доступ к иерархии объектов
Панель Hierarhy (Иерархия) в Unity является графическим пред­
ставлением иерархических связей между игровыми объектами в сце­
не. Эти отношения играют важную роль, потому что дочерние объек­

Игровые объекты и игровой мир    127

ты наследуют трансформации своих родителей. Однако возможности
определять и редактировать иерархические взаимосвязи только в ре­
дакторе, как правило, не достаточно. Часто бывает нужно связать два
объекта программно, а также перебрать в цикле все дочерние объекты
выбранного объекта для их обработки или вызова их функций. Давай­
те сначала посмотрим, как установить отношение родитель-потомок
между объектами. В следующем примере (листинг 3.9) демонстриру­
ется, как присоединить один объект к другому в качестве дочернего
с помощью компонента Transform.

Листинг 3.9. Присоединение объекта

using UnityEngine;
using System.Collections;
//--
public class Parenter : MonoBehaviour
{
 // Ссылка на дочерний объект
 private GameObject Child;
 // Ссылка на родительский объект
 private GameObject Parent;
 //--
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Получить ссылки на родительский и дочерний объекты
 Child = GameObject.Find("Child");
 Parent = GameObject.Find("Parent");

 // Установить связь между ними
 Child.transform.parent = Parent.transform;
 }
 //--
}
//--

Теперь посмотрим, как перебрать в цикле все дочерние объекты
выбранного родительского объекта. Сделать это можно с помощью
того же компонента Transform, как показано в листинге 3.10.

Листинг 3.10. Обход дочерних объектов
using UnityEngine;
using System.Collections;
//--
public class CycleChildren : MonoBehaviour
{
 //--

128    Синглтоны, статические члены, игровые объекты и миры

 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Обойти все дочерние объекты
 for(int i=0; i<transform.childCount; i++)
 {
 // Вывести имя потомка в консоль
 Debug.log (transform.GetChild(i).name);
 }
 }
 //--
}
//--

Игровой мир, время и обновление
Сцена в Unity – это коллекция игровых объектов в одном трехмерном
пространстве, а также во времени. Каждая игра нуждается в опреде­
лении единого понятия времени для синхронизации анимации и об­
новлений, потому что анимация – это изменение с течением времени.
В Unity для работы со временем применяется класс Time. Умение ра­
ботать с этим классом очень важно для создания предсказуемых и по­
следовательных движений в играх. Подробнее мы обсудим эту тему
чуть ниже.

Каждая игра имеет свою частоту смены кадров, которая измеря­
ется в кадрах в секунду (Frames Per Second, сокращенно FPS). Уви­
деть значение этого показателя можно в панели Stats (Статистики),
во вкладке Game (Игра). Частота кадров определяет, сколько раз
в секунду Unity может выполнить код игры, предназначенный для
вывода изображений с камер на экране. Каждая такая итерация на­
зывается кадром (frame). Частота кадров может резко меняться с те­
чением времени и на разных компьютерах. Она зависит от мощности
компьютера, наличия других процессов, сложности сцены для теку­
щего кадра и других факторов. Это значит, что никогда нельзя пола­
гаться на неизменность частоты кадров во времени на одном и том же
компьютере, а тем более при смене компьютера. Взгляните на рис. 3.6.

Для работы с кадрами в Unity предусмотрены три вида событий,
которые могут быть реализованы в любом классе MonoBehaviour для
выполнения непрерывного обновления с течением времени. С этими
событиями – Update, FixedUpdate и LateUpdate – мы уже знакомы, те­
перь рассмотрим их более подробно и предметно:

�� Update: событие Update вызывается один раз для каждого кад­
ра в каждом активном компоненте каждого активного игро­

Игровой мир, время и обновление    129

Рис. 3.6. Частота кадров важна
для создания основанных на времени действий и анимаций

вого объекта. Если объект выключен с помощью метода
MonoBehaviour.SetActive, событие Update не будет вызываться
для этого объекта, пока он не будет активирован. Проще го­
воря, событие Update наиболее точно соответствует понятию
кадра в Unity и применяется для выполнения повторяющих­
ся действий или вызова функций обновления или наблюде­
ния, например, за событиями ввода: нажатиями клавиш или
щелчками мышью. Обратите внимание, что в пределах кадра
очередность обработки событий Update в разных компонентах
не определена, то есть нельзя утверждать, что функция Update
объекта X будет вызвана раньше, чем функция Update объекта
Y, или наоборот.

�� FixedUpdate: это событие не привязано к кадрам и может вызы­
ваться несколько раз в кадре. Однако, оно вызывается регуляр­
но и нормированно, через фиксированные интервалы времени.
Чаще всего событие FixedUpdate используется для эмуляции
физических характеристик объектов. Если, к примеру, нужно
обновлять скорость или свойства компонента Rigidbody с тече­
нием времени, событие FixedUpdate подойдет для этого лучше,
чем Update.

�� LateUpdate: это событие вызывается в каждом кадре, как и со­
бытие Update. С той лишь разницей, что LateUpdate всегда вы­

130    Синглтоны, статические члены, игровые объекты и миры

зывается после событий Update и FixedUpdate. Это значит, что
при вызове события LateUpdate можно быть уверенным, что со­
бытия Update и FixedUpdate уже были вызваны для всех объектов
в текущем кадре. Это делает LateUpdate удобным местом для из­
менения положения камеры, особенно в играх от третьего лица,
так как гарантируется, что положение камеры всегда будет со­
впадать с последним положением объекта в текущем кадре.

Нюансы использования событий Update, FixedUpdate и LateUpdate
в сочетании с понятиями времени и частоты кадров оказывают зна­
чительное влияние на программирование движений в играх. В част­
ности, существуют два основных направляющих принципа, рассма­
триваемых в следующих двух подразделах.

Правило № 1 – важность событий обновления
кадров
Кадры должны сменяться много раз в секунду, иначе игра будет за­
медляться и дергаться. В каждом кадре для каждого активного экзем­
пляра класса MonoBehaviour один раз вызывается событие Update. Это
значит, что сложность расчетов (и производительность) в каждом
кадре в значительной мере зависит от происходящего внутри собы­
тий Update. Больший объем возможностей требует больше времени на
обработку и увеличивает нагрузку на процессор или на графический
сопроцессор. В больших сценах, с множеством объектов и компонен­
тов, обновление кадров легко может выйти из-под контроля, если не
позаботиться о снижении нагрузки на события Update, тщательно пла­
нируя их код. Важно рационально относиться к Update и любым дру­
гим регулярным вызываемым событиям, связанным с кадрами. Про­
ще говоря, они должны содержать только самый необходимый код,
например для чтения ввода игрока или наблюдения за перемещением
курсора. Серьезно уменьшить нагрузку на функции Update вам помо­
жет событийное программирование. Событийное программирование
и система событий будут рассмотрены в следующей главе.

Правило № 2 – движение должно основываться
на времени
Так как нельзя гарантировать неизменность частоты кадров (она бу­
дет колебаться с течением времени и отличаться на разных компью­
терах), нужно писать код для реализации движений и изменений так,
чтобы вне зависимости от частоты кадров они выглядели одинаково

Игровой мир, время и обновление    131

у всех игроков. Рассмотрим простой случай равномерного переме­
щения объекта кубической формы. Один из способов (не самый луч­
ший) реализации такого движения приведен в листинге 3.11.

Листинг 3.11. Реализация (не самая лучшая) равномерного
перемещения объекта
using UnityEngine;
using System.Collections;
public class Mover : MonoBehaviour
{
 // Расстояние перемещения объекта в каждом кадре
 public float AmountToMove = 1.0f;
 // Вызывается при отображении каждого кадра
 void Update ()
 {
 // Переместить куб вдоль оси x
 transform.localPosition += new Vector3(AmountToMove,0,0);
 }
}

Этот код работает и в каждом кадре перемещает объект, к которому
он прикреплен, на расстояние, определяемое значением переменной
AmountToMove. Проблема – в его зависимости от частоты кадров. Так как
частота кадров меняется и отличается для разных компьютеров, каж­
дый пользователь будет видеть разную картину, в нашем случае это
движение куба с разными скоростями. Это плохо, потому что нель­
зя предсказать, как игра будет работать у конкретного пользователя.
Чтобы исправить это, нужно связать движение со временем, а не со
сменой кадров. Частота кадров меняется, но ход времени постоянен,
одна секунда – всегда одна секунда. Чтобы добиться нужного резуль­
тата, используем переменную DeltaTime, которая является свойством
класса Time. Рассмотрим следующий пример в листинге 3.12. Это ис­
правленная версия примера из листинга 3.11.

Листинг 3.12. Исправленная реализация равномерного перемещения
объекта
using UnityEngine;
using System.Collections;
public class Mover : MonoBehaviour
{
 // Скорость перемещения
 public float Speed = 1.0f;

 // Вызывается при отображении каждого кадра
 void Update ()

132    Синглтоны, статические члены, игровые объекты и миры

 {
 // Переместить куб в соответствии с заданной скоростью
 transform.localPosition +=
 transform.forward * Speed * Time.deltaTime;
 }
}

Переменная DeltaTime хранит вещественное число, выражающее
время в секундах, прошедшее с момента предыдущего вызова функ­
ции Update. Значение 0.5, например, означает, что с момента смены
кадров прошло полсекунды и т. д. Поэтому переменную DeltaTime
можно использовать как множитель. Умножая значение скорости на
значение переменной DeltaTime в каждом кадре, мы получим расстоя­
ние перемещения для объекта, так как расстояние = скорость × время.
То есть, переменная DeltaTime обеспечивает независимость движения
объекта от частоты кадров.

Неуничтожаемые объекты
По умолчанию Unity рассматривает каждый объект, как существу­
ющий в пространстве и времени только одной активной сцены.
Разница между сценами подобна разнице между отдельными все­
ленными. Как следствие, объекты не могут существовать вне сцены,
которой они принадлежат, то есть они уничтожаются при смене ак­
тивной сцены. Как правило, это именно то, что нужно, потому что
сцены обычно совершенно независимы и должны быть отделены
друг от друга. Тем не менее, даже в этом случае есть объекты, кото­
рые не должны уничтожаться. Примерами объектов, которые долж-
ны переноситься из сцены в сцену, могут служить: персонаж игрока,
система подсчета баллов или класс GameManager. Это, как правило,
объекты высшего порядка, существование которых не должно огра­
ничиваться одной конкретной сценой – они должны присутствовать
в нескольких сценах. Вопрос сохранения объекта при смене сцены
легко разрешим с помощью функции DontDestroyOnLoad, но примене­
ние этой функции принесет с собой важные последствия, на кото­
рых нужно остановиться подробно. Взгляните на следующий при­
мер в листинге 3.13.

Листинг 3.13. Неуничтожаемые объекты
using UnityEngine;
using System.Collections;
//---

Неуничтожаемые объекты    133

// Этот объект будет перемещаться между сценами
public class PersistentObj : MonoBehaviour
{
 //---
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Сделать объект неуничтожаемым
 DontDestroyOnLoad(gameObject);
 }
}
//---

Переход объектов из сцены в сцену необходим, но путешествую-
щие объекты берут с собой багаж, который путешествует по сценам
вместе с ними. Это значит, что также не будут уничтожаться все до­
черние объекты переносимого объекта и любые ресурсы, которые он
использует, например меши, текстуры, звуки и прочее. Это не являет­
ся проблемой само по себе, но важно, чтобы вы знали об этом. По этой
причине многие неуничтожаемые объекты создаются максимально
легковесными, то есть из пустых игровых объектов, без дочерних объ­
ектов, только с самыми основными компонентами, необходимыми
для их функционирования. Это гарантирует, что только самые важ­
ные данные будут перенесены в другие сцены.

	 Смена сцен. Для смены активной сцены в Unity используется функция
Application.LoadLevel. Существуют несколько разновидностей этой функ-
ции: LoadLevelAsync, LoadLevelAdditive и LoadLevelAdditiveAsync. Более
подробную информацию о функциях загрузки сцен можно найти по адресу
http://docs.unity3d.com/ScriptReference/Application.html.

Как мы видели выше, для защиты объекта от разрушения при сме­
не сцен, вызывается его функция DontDestroyOnLoad. Но при этом ино­
гда возникает проблема дублирования объектов. В частности, если
позднее произойдет возврат к исходной сцене, где был создан неунич­
тожаемый объект, сценарий создаст его копию, то есть в сцене будут
присутствовать неуничтоженный оригинальный объект, пришедший
из предыдущей сцены, и новый, вновь созданный для загруженной
сцены. Причем эта проблема будет усугубляться с каждым возвра­
том к сцене, так как каждый раз будет создаваться новая копия объ­
екта. Такое дублирование, как правило, вовсе не то, что вам нужно.
Обычно нужен только один экземпляр объекта: один игрок, один дис­
петчер игры или одно табло с баллами. Чтобы добиться этого, нужно
создать объект-одиночку, или синглтон (singleton), как описывается
в следующем разделе.

134    Синглтоны, статические члены, игровые объекты и миры

Синглтоны и статические переменные
Правила создания экземпляров некоторых классов могут принци­
пиально отличаться от правил создания экземпляров других клас­
сов. Большинство классов представляют собой шаблоны с наборами
свойств и методов, которые могут быть многократно воссозданы в сце­
не в виде игровых объектов. Класс вражеского персонажа можно ис­
пользовать для создания множества экземпляров противника, а класс
электрической батареи – для множества объектов батарей и т. д.
Однако некоторые классы, такие как GameManager, HighScoreManager,
AudioManager или SaveGameManager, должны существовать в единствен­
ном экземпляре. Такая особенность объединяет их в единую группу.
Проще говоря, в каждый момент времени может существовать один
и только один экземпляр такого класса. Существование нескольких
экземпляров либо бессмысленно, либо сделает функционирование
объекта невозможным или вредным. Эти виды объектов называют
синглтонами1. Синглтоны часто являются неуничтожаемыми объек­
тами, сохраняющимися при смене сцен, хотя это и не обязательно.
Единственная существенная особенность синглтонов (что и делает
их синглтонами, то есть, одиночками) – это невозможность одно­
временного существования более одного экземпляра. Давайте теперь
создадим синглтон в виде экземпляра класса GameManager.

Практически каждая игра имеет в своем составе или экземпляр
класса GameManager, или экземпляр класса GameController, как пра­
вило, это неуничтожаемые синглтоны. Класс GameManager отвечает
в игре за все высокоуровневые функции. Он должен определять,
приостановлена ли игра, была ли достигнута победа и иметь надеж­
ный способ знать, что происходит в игре в любой момент време­
ни. Рассмотрим типичный пример реализации класса GameManager
в листинге 3.14.

Листинг 3.14. Типичный пример реализации класса GameManager
using UnityEngine;
using System.Collections;
//---
// Пример класса диспетчера игры
public class GameManager : MonoBehaviour
{
 //---
 // Высший результат

1	 От англ. singleton – одиночка. – Прим. ред.

Синглтоны и статические переменные    135

 public int HighScore = 0;

 // Признак приостановки игры
 public bool IsPaused = false;

 // Признак поддержки ввода пользователя
 public bool InputAllowed = true;
 //---
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Сделать диспетчера игры неуничтожаемым
 DontDestroyOnLoad(gameObject);
 }
 //---
}
//---

Этот объект будет сохраняться при смене сцен, но как сделать его
(или любой другой объект) синглтоном? Ответ на этот вопрос демон­
стрирует листинг 3.15.

Листинг 3.15. Создание синглтона
01 using UnityEngine;
02 using System.Collections;
03 //---
04 // Пример класса диспетчера игры – синглтона
05 public class GameManager : MonoBehaviour
06 {
07 //---
08 // Свойство C# для доступа к экземпляру синглтона
09 // Доступно только для чтения – метод set отсутствует
10 public static GameManager Instance
11 {
12 // вернуть ссылку на экземпляр
13 get
14 {
15 return instance;
16 }
17 }
18
19 //---
20 private static GameManager instance = null;
21 //---
22 // Высший результат
23 public int HighScore = 0;
24
25 // Признак приостановки игры
26 public bool IsPaused = false;

136    Синглтоны, статические члены, игровые объекты и миры

27
28 // Признак поддержки ввода пользователя
29 public bool InputAllowed = true;
30 //---
31 // Этот метод выполняет инициализацию
32 void Awake ()
33 {
34 // Проверить наличие экземпляра класса
35 // Если присутствует – уничтожить текущий экземпляр
36 if(instance)
37 {
38 DestroyImmediate(gameObject);
39 return;
40 }
41
42 // Сделать активным и единственным данный экземпляр
43 instance = this;
44
45 // Сделать диспетчера игры неуничтожаемым
46 DontDestroyOnLoad(gameObject);
47 }
48 //---
49 }
50 //---

Ниже приводится несколько комментариев к листингу 3.15.
�� Строки 10–20: в класс Manager добавлена закрытая переменная
instance, объявленная как статическая (static). Это означает,
что переменная совместно используется всеми экземплярами
класса, а не является собственностью каждого отдельного эк­
земпляра. Это позволяет при создании каждого нового экзем­
пляра определить присутствие созданного ранее экземпляра.
Эта переменная сделана общедоступной с помощью свойства
Instance, имеющего только один метод get, то есть это свойство
предназначено лишь для чтения.

�� Строки 36–43: здесь, в событии Awake (вызывается при созда­
нии объекта), выполняется проверка переменной instance, что­
бы определить присутствие в текущей сцене ранее созданного
экземпляра класса. Если такой экземпляр существует, теку­
щий объект удаляется, потому что допускается существование
лишь одного экземпляра этого класса и он уже существует. Та­
ким образом, объект класса GameManager будет сохраняться при
смене сцен, и всегда будет существовать только один, первый
созданный экземпляр.

Синглтоны и статические переменные    137

	 События Awake и Start. Класс GameManager в листинге 3.15 использует
функцию Awake вместо Start. Разница между функциями Start и Awake за-
ключается в следующем:

	 •  функция Awake всегда вызывается перед функцией Start;
	 • � функция Awake всегда вызывается при создании объекта. Функция Start

вызывается в первом кадре, где игровой объект становится активным.
Если игровой объект начинает сцену в неактивном состоянии, функция
Start не будет вызвана, пока объект не будет активирован. Для активных
по умолчанию объектов функция Start вызывается при запуске сцены, по-
сле функции Awake.

	 Если потребуется кэшировать ссылки на компоненты в локальных перемен-
ных класса, как, например, ссылка на компонент Transform была помещена
в переменную ThisTransform, лучше использовать для этого событие Awake,
а не Start. При обработке события Start предполагается, что все локаль-
ные ссылки на объекты уже подготовлены.

Главное преимущество наличия глобального статического свой­
ства Instance в классе GameManager в том, что оно непосредственно до­
ступно в любом другом файле сценария, без необходимости исполь­
зовать какие-либо локальные переменные или ссылки на объекты.
Это означает, что каждый класс будет иметь непосредственный до­
ступ ко всем свойствам экземпляра класса GameManager и использо­
вать функционал высокого уровня. Например, чтобы изменить счет
игры из другого класса, достаточно использовать код из листин­
га 3.16.

Листинг 3.16. Простота использования статического свойства класса

using UnityEngine;
using System.Collections;
//---
public class ScoreSetter : MonoBehaviour
{
 //---
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Изменить счет в GameManager
 GameManager.Instance.HighScore = 100;
 }
 //---
}
//---

	 Более подробную информацию о синглтонах можно найти по адресу http://
unitypatterns.com/singletons/.

138    Синглтоны, статические члены, игровые объекты и миры

Итоги
В этой главе были рассмотрены игровые объекты, сцены, компонен­
ты и их совместное использование. Эти вопросы, на первый взгляд,
могут показаться простыми, но их понимание и способность их ис­
пользования для управления объектами совершенно необходимо для
разработки игр в Unity. В частности, мы рассмотрели игровой объект,
как набор компонентов, взаимодействующих для создания единого
поведения. Подчеркнули особую значимость компонента Transform.
Мы также рассмотрели сцены. Сцена представляет собой единство
времени и пространства, внутри которого существуют игровые объ­
екты. Как правило, сцена является изолированной средой, объекты
которой не могут существовать за ее пределами. Кроме того, каж­
дая сцена выполняется во времени, что делает возможным измене­
ния и анимацию. Время может быть измерено с помощью свойства
DeltaTime, которое используется как множитель и позволяет добиться
независимости от частоты кадров. Наконец, мы исследовали шаблон
проектирования «Одиночка» (синглтон), использующий статиче­
ские переменные в определении класса, для которого можно создать
только один активный экземпляр. В следующей главе мы перейдем
к событийному программированию.

Глава 4

Событийное
программирование

События Update для объектов MonoBehaviour кажутся удобным ме­
стом для выполнения операций, регулярно повторяющихся в течение
длительного периода времени, охватывающего несколько кадров и,
возможно, несколько сцен. При создании устойчивого поведения во
времени, например искусственного интеллекта для врагов или непре­
рывного движения, может показаться, что практически нет альтерна­
тивы заполнению функции Update многочисленными операторами if
и switch, служащими для ветвления кода в разных направлениях, в за­
висимости от того, что должны сделать объекты в текущий момент
времени. Но, если рассматривать событие Update как место по умолча­
нию для реализации длительных действий, это приведет к серьезным
проблемам с производительностью в крупных и сложных играх. При
более глубоком анализе нетрудно догадаться, почему это именно так.
Как правило, игра заполнена массой действий, которые происходят
одновременно и в одном месте, и реализация их всех только с помо­
щью функций Update просто невозможна. Рассмотрим персонажи вра­
гов в состоянии покоя, они должны знать, когда игрок входит в зону их
прямой видимости и выходит из нее, когда уровень их здоровья слиш­
ком низок, когда заканчиваются боеприпасы, когда они находятся на
опасной местности, когда они получают повреждения, когда движутся
или стоят на месте и многое другое. При размышлении об этом спектре
состояний кажется, что все они требуют постоянного и непрерывного
отслеживания, потому что враги всегда должны быть готовы мгновен­
но отреагировать на изменения, вызванные действиями игрока. Это
и есть главная причина, почему функция Update выглядит самым под­
ходящим местом в такой ситуации, но есть и лучшее решение, а именно
событийное (или событийно-ориентированное) программирование1.

1	 https://ru.wikipedia.org/wiki/Событийно-ориентированное_программи­
рование. – Прим. ред.

140    Событийное программирование

Взглянув на игру с точки зрения событий, вы сможете значительно
увеличить ее производительность. Эта глава посвящена событиям
и управлению игрой с их помощью.

События
Игровые миры представляют собой полностью детерминированные
системы. В Unity сцена представляет общее декартово трехмерное
пространство и время, внутри которых существует конечный набор
игровых объектов. События в этом пространстве происходят, толь­
ко когда логика игры и код позволяют это. Например, объекты могут
двигаться, только когда некоторый код управляет их перемещения­
ми, или при выполнении определенных условий, таких как нажатие
клавиши на клавиатуре. Заметим, что поведение объектов не явля­
ется случайным, оно всегда чем-то обусловлено: объекты движутся,
только когда происходят события ввода с клавиатуры. Здесь уста­
новлена важная связь между действиями, одно действие влечет за со­
бой другое. Эти связи и называются событиями; каждая единичная
связка представляет одно событие. События не активны, они пас­
сивны; представляют собой моменты возможности действий, но не
действия сами по себе, например нажатие клавиши, щелчок мышью,
объект вошел внутрь коллайдера, игрок подвергся нападению и т. д.
Все эти события не сообщают программе, что она должна сделать,
а только уведомляют о произошедшем. Событийное программирова­
ние начинается с признания за событиями роли всеобщего понятия,
и рассмотрения почти каждого обстоятельства в игре как экземпляра
события, то есть как события во времени. Не как понятия события
вообще, а как конкретного события, происходящего в определен­
ный момент времени. При таком подходе к событиям все действия
в игре можно рассматривать как прямые отклики на происходящие
события. В частности, события связаны с откликами; событие про­
исходит и вызывает отклик (реакцию). Кроме того, реакция может
пойти дальше и, в свою очередь, стать событием, которое запустит
следующие отклики и т. д. Другими словами, игровой мир является
полной и интегрированной системой событий и откликов на них. По­
сле того как общий подход определен, возникает вопрос, как это мо­
жет помочь улучшить производительность, по сравнению с простым
применением функции Update, для выполнения изменений в каждом
кадре. Ответ заключается в поиске способов уменьшить частоту
возникновения событий. Эта стратегия может показаться сырой, но

События    141

в ней заключена суть метода. Для иллюстрации рассмотрим пример
реализации стрельбы вражеского персонажа в игрока во время боя.

В процессе игры враг должен отслеживать множество показателей.
Во-первых, свое здоровье, потому что когда его уровень сильно понижа­
ется, ему нужно заняться поиском аптечки для его восстановления. Во-
вторых, патроны, потому что когда они заканчиваются, ему также нуж­
но будет заняться их поиском и, кроме того, беречь патроны, стреляя
в игрока, только когда он оказывается в области прямой видимости. Вот
так, просто размышляя об этой проблеме, мы уже наметили некоторые
связи между действиями, которые можно рассматривать как события.
Но прежде чем развить эту тему, давайте посмотрим, как реализовать
такое поведение с помощью функции Update (см. листинг 4.1). А затем
обсудим, как события смогут помочь улучшить эту реализацию.

Листинг 4.1. Упрощенная реализация с помощью функции Update
// Вызывается при отображении каждого кадра
void Update ()
{
 // Проверить здоровье врага
 // Убит?
 if(Health <= 0)
 {
 // Сымитировать смерть
 Die();
 return;
 }
 // Уровень здоровья слишком низкий?
 if(health <= 20)
 {
 // Уровень низкий, отправиться на поиски аптечки
 RunAndFindHealthRestore();
 return;
 }
 // Проверить патроны
 // Патроны кончились?
 if(Ammo <= 0)
 {
 // Отправиться на поиски патронов
 SearchMore();
 return;
 }
 // Здровье в порядке, патроны есть.
 // Игрок в поле зрения? Если да – выстрелить
 if(HaveLineOfSight)
 {
 FireAtPlayer();
 }
}

142    Событийное программирование

В листинге 4.1 приведена «тяжелая» функция Update, наполнен­
ная множеством проверок состояний и вызовов ответных реакций.
В сущности, функция Update пытается объединить в себе обработку
событий и реакцию на них, а это излишне затратно. Если проследить
связи для наблюдаемых показателей (проверка здоровья и проверка
боеприпасов), можно найти пути значительного улучшения кода. На­
пример, количество боеприпасов изменяется только в двух случаях:
когда оружие стреляет и когда подбирается новый боезапас. Точно
так же и здоровье меняется только в двух случаях: когда враг успеш­
но атакован игроком и когда враг подобрал аптечку. В первом случае
происходит уменьшение, во втором – увеличение.

Поскольку это единственные моменты, когда происходит измене­
ние свойств (события), только в эти моменты значения этих свойств
и нужно проверять. Рассмотрим следующий пример (листинг 4.2)
управления вражеским персонажем, который содержит свойства C#
и значительно уменьшившуюся функцию Update.

Листинг 4.2. Улучшенная реализация на основе событий
using UnityEngine;
using System.Collections;

public class EnemyObject : MonoBehaviour
{
 //---
 // Свойства C# для закрытых переменных
 public int Health
 {
 get{return _health;}
 set
 {
 // Привести уровень здоровья в диапазон 0-100
 _health = Mathf.Clamp(value, 0, 100);

 // Убит?
 if(_health <= 0)
 {
 OnDead();
 return;
 }

 // Проверить уровень здоровья
 // и сгенерировать событие при необходимости
 if(_health <= 20)
 {
 OnHealthLow();
 return;

События    143

 }
 }
 }
 //---
 public int Ammo
 {
 get{return _ammo;}
 set
 {
 // Привести боезапас в диапазон 0-50
 _ammo = Mathf.Clamp(value,0,50);

 // Проверить отсутствие патронов
 if(_ammo <= 0)
 {
 // Вызвать событие опустошения боезапаса
 OnAmmoExpired();
 return;
 }
 }
 }
 //---
 // Внутренние переменные: уровень здоровья и количество патронов
 private int _health = 100;
 private int _ammo = 50;
 //---
 // Вызывается при отображении каждого кадра
 void Update ()
 {
 }
 //---
 // Это событие вызывается при низком уровне здоровья
 void OnHealthLow()
 {
 // Реализовать здесь отклик на событие
 }
 //---
 // Это событие вызывается, когда враг погибает
 void OnDead()
 {
 // Реализовать здесь отклик на событие
 }
 //---
 // Это событие вызывается, когда заканчивается боезапас
 void OnAmmoExpired()
 {
 // Реализовать здесь отклик на событие
 }
 //---
}

144    Событийное программирование

Класс врага в листинге 4.2 был переработан в стиле событийного
программирования, и теперь такие свойства, как Ammo и Health, про­
веряются не внутри функции Update, а в моменты присваивания им
новых значений. Поэтому события возникают, только когда они необ­
ходимы. Приняв за основу событийный подход, мы достигли оптими­
зации производительности и навели чистоту в нашем коде. Мы изба­
вились от лишних проверок в функции Update и позволили операциям
присваивания новых значений запускать код событий, зная, что они
будут вызываться только в соответствующие моменты времени.

Управление событиями
Событийное программирование может значительно упростить нам
жизнь. Но, начав разработку, основанную на событиях, мы сталкива­
емся с чередой новых проблем, требующих радикального решения.
В частности, мы видели в листинге 4.2, как использовать свойства C#
для проверки здоровья и наличия боеприпасов, и при обнаружении
соответствующих изменений инициировать другие события (напри­
мер, OnDead), когда это необходимо. Это прекрасно работает в прин­
ципе, по крайней мере персонаж врага будет уведомляться о собы­
тиях, происходящих в нем самом. Однако, что если врагу нужно
знать о смерти другого врага или он должен узнать, когда было убито
определенное количество других врагов? В этом конкретном случае
мы могли бы вернуться к классу врага в листинге 4.2 и изменить его,
вызвав событие OnDead не только для текущего экземпляра, но и для
всех других врагов с помощью такой функции, как SendMessage, как
мы это видели в предыдущих главах. Но это не решит нашей пробле­
мы в общем виде. А теперь давайте сформулируем сразу идеальный
подход: нам нужно, чтобы каждый объект отслеживал необходимые
типы событий и получал уведомления о них так же легко, как если
бы событие было связано непосредственно с ним самим. Теперь мы
столкнулись с вопросом создания оптимизированной системы, по­
зволяющей с легкостью контролировать события. Проще говоря, нам
нужен класс управления событиями EventManager, который позволит
объектам получать уведомления о конкретных событиях. Эта система
основана на трех основных идеях, а именно:

�� EventListener: определение «получатель событий» применимо
к любому объекту, который должен получать уведомления о со­
бытии, даже если это событие связано с ним самим. На практи­
ке почти каждый объект будет получателем, по меньшей мере,

Управление событиями    145

одного события. Враг, например, среди всего прочего нуждает­
ся в уведомлениях о низком уровне здоровья и о малом коли­
честве боеприпасов. В этом случае он будет получателем, по
меньшей мере, двух отдельных событий. То есть, всякий раз,
когда объект ожидает, что ему сообщат о событии, он становит­
ся получателем.

�� EventPoster: когда объект обнаруживает, что произошло собы­
тие, он должен уведомить всех получателей, или разместить
объявление о событии. В листинге 4.2 класс врага обнаружива­
ет события снижения уровня здоровья и исчерпания боезапаса,
используя свойства, и вызывает внутренние события, если это
требуется. Но чтобы это в полной мере соответствовало обоб­
щенному подходу, требуется, чтобы объект инициировал собы­
тия на глобальном уровне.

�� EventManager: и наконец, всеобъемлющий синглтон EventManager,
который сохраняется при переходе между уровнями и досту­
пен глобально. Этот объект эффективно связывает получате­
лей с отправителями. Он принимает уведомления о событиях,
посылаемых отправителями, и сразу же передает их соответ­
ствующим получателям в форме событий.

Основы управления событиями с помощью
интерфейсов
Первым, или начальным субъектом в системе обработки событий
является получатель, который должен уведомляться о конкретных
событиях по мере их наступления. Потенциально получателем мо­
жет быть объект любого типа, он просто ждет уведомлений об опре­
деленных событиях. Проще говоря, получатель должен быть заре­
гистрирован в EventManager в качестве получателя одного или более
конкретных событий. Затем, когда событие действительно происхо­
дит, получатель должен быть уведомлен посредством вызова функ­
ции. Тут возникает технический вопрос об определении менеджером
EventManager типа получателя, которого он должен уведомить о собы­
тии, потому что получателем может быть объект любого типа. Ко­
нечно, этот вопрос можно обойти, задействовав функцию SendMessage
или BroadcastMessage. И действительно, в Интернете можно найти
бесплатные системы обработки событий, такие как NotificationCenter,
основанные на этих функциях. Однако в этой главе вместо них мы
будем использовать интерфейсы и полиморфизм, так как функции
SendMessage и BroadcastMessage основаны на тяжеловесном механизме

146    Событийное программирование

рефлексии (подробнее этот механизм рассматривается в главе 8, «На­
стройка редактора Unity»). В частности, мы создадим интерфейс, из
которого будем обращаться ко всем объектам получателей.

	 Более подробную информацию о бесплатной системе обработки собы-
тий NotificationCenter (в версии для C#) можно найти по адресу http://wiki.
unity3d.com/index.php? title=CSharpNotificationCenter.

В языке C# интерфейс похож на пустой абстрактный базовый
класс. Подобно классу, интерфейс объединяет коллекцию методов
и функций в единый блок. Но, в отличие от класса, интерфейс позво­
ляет определить только прототипы функций, содержащие имя функ­
ции, тип возвращаемого значения и типы аргументов. Он не позволя­
ет определять реализацию функций. Причина в том, что интерфейс
определяет лишь общий набор функций, которые будут унаследо­
ваны производным классом. Производный класс может реализовать
все или некоторые функции интерфейса, а наличие интерфейса по­
зволяет другим объектам вызывать эти функции, основываясь на
полиморфизме, не зная конкретного типа производного класса. Это
делает интерфейс подходящим кандидатом для создания объектов
получателей. С помощью интерфейса Listener, от которого будут про­
изведены все объекты, каждый объект получает возможность стать
получателем события.

Следующий пример в листинге 4.3 демонстрирует простой интер­
фейс Listener.

Листинг 4.3. Интерфейс Listener
01 using UnityEngine;
02 using System.Collections;
03 //---
04 // Перечисление определяет все возможные события
05 // Дополнительные события должны добавляться сюда
06 public enum EVENT_TYPE {GAME_INIT,
07 GAME_END,
08 AMMO_EMPTY,
09 HEALTH_CHANGE,
10 DEAD};
11 //---
12 // Интефейс Listener для реализации в классах получателей событий
13 public interface IListener
14 {
15 // Вызывается, когда возникает событие
16 void OnEvent(EVENT_TYPE Event_Type,
17 Component Sender, Object Param = null);
18 }
19 //---

Управление событиями    147

Ниже приводится несколько комментариев к листингу 4.3:
�� Строки 06–10: это перечисление определяет полный список

всех событий, возникающих в игре. В примере перечислены
всего пять событий: GAME_INIT, GAME_END, AMMO_EMPTY, HEALTH_CHANGE
и DEAD. В вашей игре их наверняка будет много больше. На са­
мом деле нет особой необходимости использовать перечисле­
ния для кодирования событий, можно просто обойтись целыми
числами. Но я использовал перечисление для улучшения чита­
бельности событий в коде.

�� Строки 13–18: объявление интерфейса получателя с именем
IListener. Он поддерживает только одно событие OnEvent. Эта
функция будет унаследована всеми производными класса­
ми и вызываться диспетчером всякий раз, когда происходит
событие, на которое зарегистрирован получатель. Обратите
внимание, что OnEvent – это прототип функции, он не имеет
тела.

	 Более подробную информацию об интерфейсах C# можно найти по адресу
http://msdn.microsoft.com/ru-ru/library/ms173156.aspx.

Теперь, с помощью интерфейса IListener мы можем сделать полу­
чателем любой объект, используя только наследование класса, то есть
любой объект может объявить себя получателем и получать события.
Например, вновь созданный компонент MonoBehaviour в листинге 4.4
можно превратить в получателя. Этот код, как это уже было в преды­
дущих главах, использует множественное наследование, то есть на­
следует два класса. Более подробную информацию о множественном
наследовании можно найти по адресу http://www. dotnetfunda.com/ar-
ticles/show/1185/multiple-inheritance-in-csharp.

Листинг 4.4. Определение получателя событий

using UnityEngine;
using System.Collections;

public class MyCustomListener : MonoBehaviour, IListener
{
 // Этот метод выполняет инициализацию
 void Start () {}

 // Вызывается при отображении каждого кадра
 void Update () {}
 //---------------------------------------
 // Реализовать функцию OnEvent для приема событий

148    Событийное программирование

 public void OnEvent(EVENT_TYPE Event_Type, Component Sender,
 Object Param = null)
 {
 }
 //---------------------------------------
}

Создание класса EventManager
Как мы убедились, любой объект можно превратить в получателя.
Но получатели должны зарегистрироваться в объекте диспетчера
событий. Обязанностью диспетчера является вызов событий у полу­
чателей, когда события действительно происходят. Давайте теперь
обратимся к созданию самого диспетчера и деталям его реализации.
Класс диспетчера будет называться EventManager, как показано в лис­
тинге 4.5. Этот класс, будучи неуничтожаемым синглтоном, будет
подключаться к пустому игровому объекту в сцене и непосредствен­
но доступен для всех других объектов через статическое свойство.
Подробнее об этом классе и его использовании рассказывается в ком­
ментариях, следующих за примером.

Листинг 4.5. Диспетчер событий
001 using UnityEngine;
002 using System.Collections;
003 using System.Collections.Generic;
004 //-----------------------------------
005 // Синглтон EventManager для отправки событий получателям
006 // Работает с реализациями IListener
007 public class EventManager : MonoBehaviour
008 {
009 #region свойства C#
010 //-----------------------------------
011 // Общий доступ к экземпляру
012 public static EventManager Instance
013 {
014 get{return instance;}
015 set{}
016 }
017 #endregion
018
019 #region переменные
020 // Экземпляр диспетчера событий (синглтон)
021 private static EventManager instance = null;
022
023 // Массив получателей (все зарегистрировавшиеся объекты)
024 private Dictionary<EVENT_TYPE, List<IListener>> Listeners =
 new Dictionary<EVENT_TYPE, List<IListener>>();

Управление событиями    149

025 #endregion
026 //---
027 #region методы
028 // Вызывается перед началом работы для инициализации
029 void Awake()
030 {
031 // Если экземпляр отсутствует, сохранить данный экземпляр
032 if(instance == null)
033 {
034 instance = this;
035 DontDestroyOnLoad(gameObject);
036 }
037 else
038 DestroyImmediate(this);
039 }
040 //---
041 /// <summary>
042 /// Функция добавления получателя в массив
043 /// </summary>
044 /// <param name="Event_Type">Событие, ожидаемое получателем</param>
045 /// <param name="Listener">Объект, ожидающий события</param>
046 public void AddListener(EVENT_TYPE Event_Type, IListener Listener)
047 {
048 // Список получателей для данного события
049 List<IListener> ListenList = null;
050
051 // Проверить тип события. Если существует – добавить в список
052 if(Listeners.TryGetValue(Event_Type, out ListenList))
053 {
054 // Список существует, добавить новый элемент
055 ListenList.Add(Listener);
056 return;
057 }
058
059 // Иначе создать список как ключ словаря
060 ListenList = new List<IListener>();
061 ListenList.Add(Listener);
062 Listeners.Add(Event_Type, ListenList);
063 }
064 //---
065 /// <summary>
066 /// Посылает события получателям
067 /// </summary>
068 /// <param name="Event_Type">Событие для вызова</param>
069 /// <param name="Sender">Вызываемый объект</param>
070 /// <param name="Param">Необязательный аргумент</param>
071 public void PostNotification(EVENT_TYPE Event_Type,
 Component Sender, Object Param = null)
072 {
073 // Послать событие всем получателям

150    Событийное программирование

074
075 // Список получателей только для данного события
076 List<IListener> ListenList = null;
077
078 // Если получателей нет - выйти
079 if(!Listeners.TryGetValue(Event_Type, out ListenList))
080 return;
081
082 // Получатели есть. Послать им событие
083 for(int i=0; i<ListenList.Count; i++)
084 {
085 if(!ListenList[i].Equals(null))
086 ListenList[i].OnEvent(Event_Type, Sender, Param);
087 }
088 }
089 //---
090 // Удаляет событие из словаря, включая всех получателей
091 public void RemoveEvent(EVENT_TYPE Event_Type)
092 {
093 // Удалить запись из словаря
094 Listeners.Remove(Event_Type);
095 }
096 //---
097 // Удаляет все избыточные записи из словаря
098 public void RemoveRedundancies()
099 {
100 // Создать новый словарь
101 Dictionary<EVENT_TYPE, List<IListener>> TmpListeners =
 new Dictionary<EVENT_TYPE, List<IListener>>();
102
103 // Обойти все записи в словаре
104 foreach(KeyValuePair<EVENT_TYPE, List<IListener>> Item in Listeners)
105 {
106 // Обойти всех получателей, удалить пустые ссылки
107 for(int i = Item.Value.Count-1; i>=0; i--)
108 {
109 // Если ссылка пустая, удалить элемент
110 if(Item.Value[i].Equals(null))
111 Item.Value.RemoveAt(i);
112 }
113
114 // Если в списке остались элементы, добавить его в словарь tmp
115 if(Item.Value.Count > 0)
116 TmpListeners.Add (Item.Key, Item.Value);
117 }
118
119 // Заменить объект Listeners новым словарем
120 Listeners = TmpListeners;
121 }
122 //---

Управление событиями    151

123 // Вызывается при смене сцены. Очищает словарь
124 void OnLevelWasLoaded()
125 {
126 RemoveRedundancies();
127 }
128 //---
129 #endregion
130 }

	 Более подробную информацию о событии OnLevelWasLoaded можно найти
по адресу http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnLevel
WasLoaded.html.

Ниже приводится несколько комментариев к листингу 4.5:
�� Строка 003: обратите внимание на добавление пространства

имен System.Collections.Generic, которое дает доступ к допол­
нительным классам фреймворка Mono, в том числе к классу
Dictionary. Этот класс используется в нескольких местах в клас­
се EventManager. Более подробно фреймворк Mono и его классы
будут рассмотрены ниже, в главе 6 «Работа с фреймворком
Mono». Если коротко, то класс Dictionary является двумерным
массивом особого вида, позволяющим хранить базу данных
в виде набора пар ключ–значение. Более подробную инфор­
мацию о классе Dictionary можно найти по адресу http://msdn.
microsoft.com/ru-ru/library/xfhwa508%28v=vs.110%29.aspx.

�� Строка 007: класс EventManager является производным от клас­
са MonoBehaviour и должен прикрепляться к пустому игровому
объекту в сцене, где он будет существовать как неуничтожае­
мый синглтон.

�� Строка 024: закрытая переменная Listeners объявлена с ти­
пом данных Dictionary. Она представляет собой структуру для
хранения хэш-таблицы с парами ключ–значение, в которой
можно осуществлять поиск как в базе данных. Пара ключ–
значение для класса EventManager принимает форму EVENT_TYPE
и List<Component>. Если коротко, это значит, что будет сохранен
список типов событий (таких как HEALTH_CHANGE) и для каждого
типа можно задать ноль, один или несколько компонентов, ко­
торые будут получателями и должны уведомляться о событиях.
В сущности, свойство Listeners является главной структурой
данных, на которой основана поддержка получателей классом
EventManager. Более подробную информацию о фреймворке
Mono и его классах можно найти в главе 6, «Работа с фрейм­
ворком Mono».

152    Событийное программирование

�� Строки 029–039: функция Awake отвечает за превращение
класса EventManager в синглтон, то есть, она гарантирует, что
в сцене будет существовать единственный экземпляр класса
EventManager и сохраняться при смене сцен. За более подроб­
ной информацией о неуничтожаемых синглтонах обращайтесь
к главе 3 «Синглтоны, статические переменные, игровые объ­
екты и игровой мир».

�� Строки 046–063: метод AddListener класса EventManager следует
вызвать из объекта-получателя один раз для каждого события,
которое он должен получать. Метод принимает два аргумента:
тип события (Event_Type) и ссылку на объект-получатель (про­
изводный от IListener), желающий получать уведомления о со­
бытиях этого типа. Функция AddListener обращается к словарю
получателей Listeners и генерирует новую пару ключ–значе­
ние для сохранения связи между событием и получателем.

�� Строки 071–088: функцию PostNotification можно вызвать из
любого объекта, независимо от того, является он получате­
лем или нет, в момент обнаружения события. При вызове этой
функции объект EventManager перебирает все записи в словаре,
находит всех получателей событий данного типа и уведомля­
ет их, вызывая методы OnEvent получателей через интерфейс
IListener.

�� Строки 098–127: заключительные методы класса EventManager
несут ответственность за поддержание целостности данных
в структуре получателей при смене сцены и сохранении объ­
екта EventManager. Хотя экземпляр EventManager сохраняется при
смене сцен, объекты-получатели, ссылки на которые хранятся
в переменной Listeners, могут быть уничтожены. Если это про­
изойдет, после смены сцены некоторые получатели перестанут
существовать, оставив в объекте EventManager недействующие
записи. Метод RemoveRedundancies должен найти и удалить все
такие записи. Событие OnLevelWasLoaded вызывается автомати­
чески, когда происходит смена сцены.

	 Словари. Большое преимущество словарей не только в скорости доступа
к ним, но и в возможности работать с ними через типы объектов и индексы
массива. В обычном массиве каждый элемент доступен по целочислен-
ному индексу, например MyArray[0] или MyArray[1]. Но со словарями дело
обстоит иначе. В частности, доступ к элементам словаря можно получить,
используя объекты с типом данных EVENT_TYPE, который представляет со-
бой ключ для пары ключ–значение, например MyArray[EVENT_TYPE.HEALTH_
CHANGE]. За более подробной информацией о словарях обращайтесь к офи-

Директивы #region и #endregion для свертывания кода    153

циальной документации Microsoft по адресу http://msdn.microsoft.com/
ru-ru/library/xfhwa508%28v=vs.110%29.aspx.

Директивы #region и #endregion
для свертывания кода в MonoDevelop
Редактор MonoDevelop поддерживает две директивы препроцессо­
ра – #region и #endregion – которые (в сочетании с функцией сверты­
вания кода) весьма полезны для улучшения читаемости кода и уве­
личения скорости перемещения по исходному коду. Они добавляют
в исходный код организацию и структурность, не затрагивая его сущ­
ности и не влияя на его выполнение. Директива #region отмечает на­
чало блока кода, директива #endregion – его окончание. После того
как область отмечена, она становится сворачиваемой, точнее, она ста­
новится сворачиваемой в редакторе кода MonoDevelop, при условии,
что функция свертывания кода включена. Сворачивание фрагментов
может пригодиться для их сокрытия, чтобы сосредоточиться на чте­
нии других, нужных вам сейчас областей, как показано на рис. 4.1.

Рис. 4.1. Включение свертывания кода в редакторе MonoDevelop

154    Событийное программирование

	 Чтобы включить функцию свертывания кода в MonoDevelop, выберите
пункт Tools ⇒ Options (Инструменты ⇒ Параметры) в меню приложения.
После этого появится диалог Options (Параметры). В нем выберите вклад-
ку General (Общие) в разделе Text Editor (Редактор текста) и установите
флажки Enable code folding (Разрешить свертку кода) и Fold #regions by
default (Сворачивать области #region по умолчанию).

Использование EventManager
Теперь давайте посмотрим, как применить класс EventManager на прак­
тике, в сцене с получателями и отправителями сообщений. Во-первых,
для получения уведомлений о событии (любом событии) получатель
должен зарегистрироваться в экземпляре синглтона EventManager.
Обычно это делается при первой же возможности, например, в функ­
ции Start. Не используйте для этого функцию Awake, потому что она
зарезервирована для внутренней инициализации объектов, а не для
операций, которые выходят за пределы текущего объекта, для смены
состояний и настройки других объектов. Взгляните на следующий
пример в листинге 4.6 и обратите внимание, что в нем использует­
ся статическое свойство Instance для получения ссылки на активный
синглтон EventManager.

Листинг 4.6. Регистрация получателя событий
// Вызывается в момент запуска
void Start()
{
 // Добавить себя как получателя события изменения уровня здоровья
 EventManager.Instance.AddListener(EVENT_TYPE.HEALTH_CHANGE, this);
}

После регистрации получателей одного или более событий объ­
екты могут затем уведомить синглтон EventManager об обнаруженном
событии, как показано в листинге 4.7.

Листинг 4.7. Уведомление о событии
public int Health
{
 get{return _health;}
 set
 {
 // Привести уровень здоровья в диапазон 0-100
 _health = Mathf.Clamp(value, 0, 100);

 // Послать уведомление об изменении уровня здоровья
 EventManager.Instance.PostNotification(EVENT_TYPE.EALTH_CHANGE,
 this, _health);
 }
}

Директивы #region и #endregion для свертывания кода    155

Наконец, после отправки уведомления о событии, все подпи­
савшиеся на него получатели будут автоматически уведомлены
синглтоном EventManager. В частности, объект EventManager вызовет
функцию OnEvent каждого получателя, давая возможность обрабо­
тать событие и среагировать в случае необходимости, как показано
в листинге 4.8.

Листинг 4.8. Обработка события получателем
// Вызывается, когда происходит событие
public void OnEvent(EVENT_TYPE Event_Type, Component Sender,
 object Param = null)
{
 // Определить тип события
 switch(Event_Type)
 {
 case EVENT_TYPE.HEALTH_CHANGE:
 OnHealthChange(Sender, (int)Param);
 break;
 }
}

	 Пример использования EventManager можно найти в папке events, в пакете
примеров для этой главы.

Альтернативный способ, основанный
на делегировании
Интерфейсы являются эффективным и простым способом реализа­
ции систем обработки событий, но это не единственный способ. Так­
же можно использовать механизм C#, называемый делегированием.
Суть его в том, чтобы создать функцию и сохранить ссылку на нее
в переменной. Эта переменная позволит обрабатывать функции как
переменные ссылочного типа. То есть делегирование позволяет хра­
нить ссылки на функции и использовать их для вызова этих функций.
Другие языки, такие как C++, предлагают реализацию подобного
подхода с помощью указателей на функции. При реализации системы
событий с использованием делегирования нам не понадобятся интер­
фейсы. Рассмотрим следующий пример в листинге 4.9, который яв­
ляется альтернативной реализацией класса EventManager, использую­
щей делегирование. Соответствующие изменения в кода выделены
жирным, чтобы показать различия между реализациями на основе
интерфейсов и делегирования. Помимо незначительных изменений,
необходимых для работы с делегатами, все остальные функции оста­
лись неизменными.

156    Событийное программирование

Листинг. 4.9. Реализация поддержки событий на основе делегатов
001 using UnityEngine;
002 using System.Collections;
003 using System.Collections.Generic;
004 //---
005 // Перечисление определяет все возможные события
006 // Дополнительные события должны добавляться сюда
007 public enum EVENT_TYPE {GAME_INIT,
008 GAME_END,
009 AMMO_CHANGE,
010 HEALTH_CHANGE,
011 DEAD};
012 //---
013 // Синглтон EventManager для отправки событий получателям
014 // Реализация основана на делегатах
015 public class EventManager : MonoBehaviour
016 {
017 #region свойства C#
018 //---
019 // Общий доступ к экземпляру
020 public static EventManager Instance
021 {
022 get{return instance;}
023 set{}
024 }
025 #endregion
026
027 #region переменные
028 // Экземпляр диспетчера событий (синглтон)
029 private static EventManager instance = null;
030
031 // Тип делегата, обрабатывающего события
032 public delegate void OnEvent(EVENT_TYPE Event_Type,
 Component Sender, object Param = null);
033
034 // Массив получателей
035 private Dictionary<EVENT_TYPE, List<OnEvent>>
 Listeners = new Dictionary<EVENT_TYPE, List<OnEvent>>();
036 #endregion
037 //---
038 #region методы
039 // Вызывается перед началом работы для инициализации
040 void Awake()
041 {
042 // Если экземпляр отсутствует, сохранить данный экземпляр
043 if(instance == null)
044 {
045 instance = this;
046 DontDestroyOnLoad(gameObject);

Директивы #region и #endregion для свертывания кода    157

047 }
048 else
049 DestroyImmediate(this);
050 }
051 //---
052 /// <summary>
053 /// Функция добавления получателя в массив
054 /// </summary>
055 /// <param name="Event_Type">Событие, ожидаемое получателем</param>
056 /// <param name="Listener">Объект, ожидающий события</param>
057 public void AddListener(EVENT_TYPE Event_Type, OnEvent Listener)
058 {
059 // Список получателей для данного события
060 List<OnEvent> ListenList = null;
061
062 // Проверить тип события. Если существует – добавить в список
063 if(Listeners.TryGetValue(Event_Type, out ListenList))
064 {
065 // Список существует, добавить новый элемент
066 ListenList.Add(Listener);
067 return;
068 }
069
070 // Иначе создать список как ключ словаря
071 ListenList = new List<OnEvent>();
072 ListenList.Add(Listener);
073 Listeners.Add(Event_Type, ListenList);
074 }
075 //---
076 /// <summary>
077 /// Посылает события получателям
078 /// </summary>
079 /// <param name="Event_Type">Событие для вызова</param>
080 /// <param name="Sender">Вызываемый объект</param>
081 /// <param name="Param">Необязательный аргумент</param>
082 public void PostNotification(EVENT_TYPE Event_Type,
 Component Sender, object Param = null)
083 {
084 // Послать событие всем получателям
085
086 // Список получателей только для данного события
087 List<OnEvent> ListenList = null;
088
089 // Если получателей нет - выйти
090 if(!Listeners.TryGetValue(Event_Type, out ListenList))
091 return;
092
093 // Получатели есть. Послать им событие
094 for(int i=0; i<ListenList.Count; i++)
095 {

158    Событийное программирование

096 if(!ListenList[i].Equals(null))
097 ListenList[i](Event_Type, Sender, Param);
098 }
099 }
100 //---
101 // Удаляет событие из словаря, включая всех получателей
102 public void RemoveEvent(EVENT_TYPE Event_Type)
103 {
104 // Удалить запись из словаря
105 Listeners.Remove(Event_Type);
106 }
107 //---
108 // Удаляет все избыточные записи из словаря
109 public void RemoveRedundancies()
110 {
111 // Создать новый словарь
112 Dictionary<EVENT_TYPE, List<OnEvent>>
 TmpListeners = new Dictionary<EVENT_TYPE, List<OnEvent>>();
113
114 // Обойти все записи в словаре
115 foreach(KeyValuePair<EVENT_TYPE, List<OnEvent>> Item in Listeners)
116 {
117 // Обойти всех получателей, удалить пустые ссылки
118 for(int i = Item.Value.Count-1; i>=0; i--)
119 {
120 // Если ссылка пустая, удалить элемент
121 if(Item.Value[i].Equals(null))
122 Item.Value.RemoveAt(i);
123 }
124
125 // Если в списке остались элементы, добавить его в словарь tmp
126 if(Item.Value.Count > 0)
127 TmpListeners.Add (Item.Key, Item.Value);
128 }
129
130 // Заменить объект Listeners новым словарем
131 Listeners = TmpListeners;
132 }
133 //---
134 // Вызывается при смене сцены. Очищает словарь
135 void OnLevelWasLoaded()
136 {
137 RemoveRedundancies();
138 }
139 //---
140 #endregion
141 }

	 Более подробную информацию о делегировании в C# можно найти в до-
кументации Microsoft по адресу http://msdn.microsoft.com/ru-ru/library/
aa288459%28v=vs.71%29.aspx.

Директивы #region и #endregion для свертывания кода    159

Ниже приводится несколько комментариев к листингу 4.9:
�� Строки 005–011: перечисление типов событий было перене­

сено из файла с интерфейсом IListener в файл с реализацией
класса EventManager. Поскольку прием делегирования устраня­
ет необходимость в интерфейсах, в частности необходимость
в интерфейсе IListener, перечисление стало возможным поме­
стить непосредственно в исходный файл с реализацией диспет­
чера.

�� Строка 032: общедоступная функция OnEvent объявлена с ти­
пом делегата. Обратите внимание, что это объявление являет­
ся гибридным, поскольку сочетает в себе объявление в стиле
переменной с прототипом функции. Оно определяет прототип
функции, которая может быть присвоена переменной. Пере­
менной может быть назначена любая функция с такой же
структурой, из любого класса или любого другого файла сцена­
рия. То есть, функция OnEvent становится переменной с типом
делегата и далее будет использована для создания внутреннего
словаря.

�� Строка 035: объявление локальной переменной-словаря liste
ners, в котором для каждого типа событий будет храниться мас­
сив делегатов (вместо интерфейсов). Каждый делегат является
ссылкой на функцию, которая должна быть вызвана, когда про­
изойдет событие.

�� Строка 097: функция PostNotification класса EventManager пред­
назначена для вызова всех делегатов (функций получателей),
когда происходит событие. Это происходит в строке 097 с опе­
ратором ListenList[i](Event_ Type, Sender, Param);. Этот опера­
тор вызывает делегата как функцию, как показано на рис. 4.2.

	 Реализацию класса EventManager, использующую делегатов, можно найти
в папке events_delgateversion, в пакете примеров для этой главы.

События класса MonoBehaviour
Перед завершением этой главы рассмотрим некоторые предопреде­
ленные события, предлагаемые Unity. Класс MonoBehaviour уже содер­
жит широкий спектр событий, которые вызываются автоматически
при определенных условиях. Эти функции, или события, начинают­
ся с префикса On и включают такие события, как OnGUI, OnMouseEnter,
OnMouseDown, OnParticleCollision и др. В этом разделе рассматриваются
некоторые детали этих общих типов событий.

160    Событийное программирование

	 Полный список событий, поддерживаемых классом MonoBehaviour, мож-
но найти в документации Unity по адресу http://docs.unity3d.com/Script
Reference/MonoBehaviour.html.

События мыши и сенсорной панели
Одним из интересных наборов событий является множество собы­
тий от мыши и сенсорного панели. Оно включает в себя события
OnMouseDown, OnMouseEnter и OnMouseExit. В ранних версиях Unity эти
события были связаны только с мышью. Но недавно они были свя­
заны и сенсорной панелью. Это значит, что сенсорная панель будет
теперь по умолчанию регистрироваться так же, как мышь. Событие
OnMouseDown вызывается один раз при нажатии кнопки мыши, когда
ее курсор находится над объектом. Событие, однако, не вызывается,
пока кнопка не будет отпущена. Событие OnMouseEnter также вызы­
вается один раз, когда курсор входит в область объекта, а событие
OnMouseExit вызывается, когда курсор покидает границы объекта. Вы­
зов этих событий определяется коллайдером объекта, события вызы­
ваются при нахождении курсора мыши в пределах его объема. Это
значит, что ни одно из событий мыши не срабатывает для объектов,
не имеющих коллайдера.

Рис. 4.2. Исследование проекта EventManager

Директивы #region и #endregion для свертывания кода    161

Однако иногда событии мыши не срабатывают и для объектов
с коллайдерами, потому что другие объекты (с коллайдерами) за­
слоняют их при обзоре с активной камеры. То есть интерактивные
объекты находятся на заднем плане. Можно, конечно, решить вопрос
(по крайней мере, во многих случаях), просто установив для объектов
переднего плана слой IgnoreRaycast, что сделает их нечувствительны­
ми к операциям отслеживания лучей.

Чтобы назначить слой IgnoreRaycast, просто выберите объект в сце­
не, а затем щелкните на раскрывающемся списке Layers (Слои) в ин­
спекторе объектов и выберите пункт Ignore Raycast (Не участвовать
в отслеживании лучей), как показано на рис. 4.3.

Рис. 4.3. Назначение объекту слоя Ignore Raycast

Но такое простое решение помогает не всегда. Часто сцена включа­
ет множество камер и объектов с коллайдерами, и иногда бывает не­
ясно, какие именно объекты должны обрабатывать события от мыши.
В этих случаях может потребоваться вручную обрабатывать события
от мыши, как показано в листинге 4.10, ниже, где события вызываются

162    Событийное программирование

вручную на основе входных данных. В сущности, этот код использует
систему отслеживания лучей Raycast для перенаправления вручную
обнаруженных событий мыши. Также в этом примере используются
сопрограммы, которые будут рассмотрены ниже.

Листинг 4.10. Обработка событий от мыши вручную
using UnityEngine;
using System.Collections;
//---------------------
public class ManualMouse : MonoBehaviour
{
 //---------------------
 // Коллайдер, подключенный к данному объекту
 private Collider Col = null;

 //---------------------
 // Вызывается перед началом работы для инициализации
 void Awake()
 {
 // Сохранить ссылку на коллайдер
 Col = GetComponent<Collider>();
 }

 //---------------------
 // Сопрограмма Start
 void Start()
 {
 StartCoroutine(UpdateMouse());
 }

 //---------------------
 public IEnumerator UpdateMouse()
 {
 // Признак пересечения
 bool bIntersected = false;

 // Кнопка нажата или отпущена
 bool bButtonDown = false;

 // Бесконечный цикл
 while(true)
 {
 // Получить экранные координаты X и Y указателя мыши
 // Может потребоваться использовать другую камеру
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);
 RaycastHit hit;

 // Проверить столкновение луча с коллайдером

Директивы #region и #endregion для свертывания кода    163

 if (Col.Raycast(ray, out hit, Mathf.Infinity))
 {
 // Луч пересек объект
 if(!bIntersected)
 SendMessage("OnMouseEnter",
 SendMessageOptions.DontRequireReceiver);

 bIntersected = true;

 // Проверить события от мыши
 if(!bButtonDown && Input.GetMouseButton(0))
 {
 bButtonDown = true; SendMessage("OnMouseDown",
 SendMessageOptions.DontRequireReceiver);
 }
 if(bButtonDown && !Input.GetMouseButton(0))
 {
 bButtonDown = false; SendMessage("OnMouseUp",
 SendMessageOptions. DontRequireReceiver);
 }
 }
 else
 {
 // Прежде указатель входил в границы объекта и теперь вышел
 if(bIntersected)
 SendMessage("OnMouseExit",
 SendMessageOptions.DontRequireReceiver);

 bIntersected = false;
 bButtonDown = false;
 }
 // Ждать следующего кадра
 yield return null;
 }
 }
 //---------------------
}
//---------------------

	 Сопрограммы. Сопрограммы это особый вид функций. Они ведут себя по-
добно потокам выполнения, поскольку кажутся работающими параллельно
или асинхронно с основным циклом игры, то есть в фоновом режиме. Вы-
полнение кода не приостанавливается и не ждет завершения сопрограмм,
как это происходит с обычными функциями. По этой причине сопрограммы
отлично подходят для создания асинхронных действий. Технически все со-
программы должны возвращать значение типа IEnumerator, содержать хотя
бы один оператор yield и запускаться с помощью функции StartCoroutine.
Оператор yield – это особый оператор, он приостанавливает выполнение
сопрограммы, пока его состояние не изменится. Оператор yield, возвра-
щающий результат вызова WaitForSeconds(x), приостановит выполнение на

164    Событийное программирование

x секунд, а затем продолжит его со следующей строки. Оператор yield, воз-
вращающий null, приостановит выполнение в текущем кадре и возобновит
выполнение со следующей строки в следующем кадре. Более подробную
информацию о сопрограммах и их использовании можно найти в докумен-
тации Unity по адресу http://docs.unity3d. com/Manual/Coroutines.html.

Фокус приложения и пауза
Три дополнительных события MonoBehaviour отличаются тем, что ча­
сто вызывают замешательство и удивление. Это события: OnApplica
tionPause, OnApplicationFocus и OnApplicationQuit.

Событие OnApplicationQuit посылается всем объектам сцены пе­
ред завершением игры, но до уничтожения сцены и ее содержимого.
Если игра тестируется в редакторе, событие OnApplicationQuit вы­
зывается при остановке воспроизведения. Примечательно, что со­
бытие OnApplicationQuit не вызывается на устройствах, работающих
под управлением iOS, где, как правило, приложения не закрывают­
ся, а приостанавливаются, ожидая, пока пользователи занимаются
другими делами, что позволяет им вернуться и возобновить работу
с того места, где они остановились. Если вам нужно получать уве­
домление о событии OnApplicationQuit при приостановке, вы должны
установить соответствующий флаг в окне настроек проигрывателя
Player Settings (Настройки проигрывателя). Чтобы получить доступ
к ним, выберите пункт Edit ⇒ Project Settings ⇒ Player (Правка ⇒
Настройки проекта ⇒ Проигрыватель) в меню приложения, а затем
в инспекторе объектов, раскройте вкладку Other Settings (Прочие
настройки) для iOS, установите флажок Exit on Suspend (Завершать
при приостановке), как показано на рис. 4.4.

Событие OnApplicationFocus передается всем объектам в сцене, ког­
да окно игры теряет фокус, например, когда оно деактивируется при
переключении на другую программу. Это событие может быть значи­
тельным событием для игр, особенно для многопользовательских, где
действия и события в общем мире продолжаются, даже если один или
несколько игроков не принимают в игре участия. В этих случаях, воз­
можно, потребуется приостановить или возобновить определенные
действия либо приглушить или усилить звуковое сопровождение игры.

Событие OnApplicationPause является неоднозначным событием,
потому что понятие паузы в Unity четко не определено. С моей точки
зрения существует два вида пауз, а именно абсолютная и относитель­
ная паузы. При абсолютной паузе все действия и события в игре пол­
ностью приостанавливаются. В этом состоянии нет течения времени,

Директивы #region и #endregion для свертывания кода    165

Рис. 4.4. Включение флага Exit on Suspend 	
(Завершать при приостановке) для iOS

и ничто не может двигаться. Относительная пауза применяется чаще.
Здесь игра осознает себя и понимает, что находится в состоянии пау­
зы. Она останавливает некоторые события, но позволяет другим со­
бытиям выполняться, чтобы продолжить взаимодействие с вводом
пользователя, который имеет возможность возобновить игру. Собы­
тие OnApplicationPause имеет отношение к первому виду пауз. Это со­
бытие будет вызываться при выполнении нескольких условий. Они
будут рассмотрены ниже.

Во-первых, событие OnApplicationPause вызывается, только если
сброшен флаг Run In Background (Запускать в фоне) во вкладке
Player Settings (Настройки проигрывателя), в группе Resolution
(Разрешение), как показано на рис. 4.5. Выключение этого параметра
приведет к автоматической приостановке игры, когда ее окно потеря­
ет фокус. Это значит, что событие OnApplicationPause будет вызвано
после события OnApplicationFocus.

166    Событийное программирование

В iOS событие OnApplicationPause будет вызываться всякий раз,
когда приложение сворачивается или переносится на задний план.

	 Не полагайтесь на событие OnApplicationPause при реализации собствен-
ной реакции на относительную паузу. Используйте для этого переменную
Time.timeScale или создайте более полноценную систему, которая сможет
сама выбирать, какие элементы приостанавливать.

Рис. 4.5. Выключение параметра Run In Background
(Запускать в фоне)

Итоги    167

Итоги
Эта глава была посвящена преимуществам, которые дает система
управления событиями, основанная на классе EventManager. Для ре­
ализации диспетчера событий можно использовать интерфейсы или
делегирование – оба метода являются мощными и расширяемыми.
Мы увидели, как легко до бесконечности добавлять и добавлять
новые операции в функцию Update, и как это приводит к серьезным
проблемам производительности. Мы проанализировали связи между
действиями и переработали код в стиле событийного программирова­
ния. По сути, события являются сырьем для систем управления собы­
тиями. Они обеспечивают связь между одним действием (причина),
а другим (реакция). Для управления событиями, мы создали класс
EventManager – интегрированный класс или систему, связывающую
отправителей с получателями. Он принимает уведомления о собы­
тиях от отправителей, а затем сразу же вызывает соответствующие
функции получателей. В следующей главе мы рассмотрим камеры
и отображение сцены.

Глава 5

Камеры
и отображение сцены

Эта глава посвящена некоторым из множества действий с камерами
и отображением сцен, а также интересным комбинациям их совмест­
ного использования. Вообще говоря, камера – это точка обзора ото­
бражаемой сцены. Это точка в трехмерном пространстве, из которой
открывается вид на сцену. Камера определяет перспективу и поле
зрения, захватывает и разбивает текстуры до пикселей. После этого
они визуализируются на экране, смешиваясь с изображениями, полу­
ченными с любых других камер. Таким образом, камеры, сцены и их
отображение тесно связаны. В этой главе мы увидим, как оживить ка­
меру и создать эффект ее полета, как перемещать камеру вдоль кри­
волинейных траекторий, и рассмотрим, как объекты могут узнать,
видны ли они для определенной камеры. Кроме того, мы увидим, как
вручную обрабатывать изображения с камер для создания дополни­
тельных эффектов, а также как настроить ортографические камеры
для отображения пикселей двухмерной текстуры в двухмерной игре
и графическом пользовательском интерфейсе. Итак, начнем.

Визуальное представление камеры
Когда камера выбрана во вкладке Scene (Сцена) и разрешено отобра­
жение визуального представления камеры, ребра усеченной пирами­
ды ясно показывают, где находится камера и что она может видеть из
этой точки обзора, с учетом других ее свойств, таких как угол обзора,
как показано на рис. 5.1.

Визуальные представления камер особенно полезны при их раз­
мещении для получения наилучшего обзора сцены. Однако иногда
может понадобится обратное, то есть разместить объекты в поле зре­
ния не выбранной в настоящий момент камеры. Например, может
понадобится поместить отдельные объекты в поле зрения камеры

Визуальное представление камеры    169

и убедиться, что они видны для нее. Сделать это сложно, потому что
по умолчанию визуальные представления для камер не отображают­
ся, если они не выбраны. Это значит, что при перемещении объектов
придется постоянно выбирать камеру, чтобы проверить, попадают ли
объекты в поле зрения камеры после перемещения, и откорректиро­
вать их позиции, если это потребуется. Решению этой задачи очень
помогла бы возможность просматривать визуальные представления
камер постоянно, даже если они не выбраны, но, такая возможность
отсутствует, по крайней мере, на момент написания этой книги. Что­
бы обойти этот недостаток, можно написать сценарий, представлен­
ный в листинге 5.1.

Листинг 5.1. Сценарий отображения визуального представления камер
01 using UnityEngine;
02 using System.Collections;
03 //---
04 [ExecuteInEditMode]
05 [RequireComponent(typeof(Camera))]
06 //---
07 public class DrawFrustumRefined : MonoBehaviour
08 {
09 //---
10 private Camera Cam = null;

Рис. 5.1. При выборе камеры во вкладке Scene (Сцена),
она отображается в виде значка и усеченной пирамиды

170    Камеры и отображение сцены

11 public bool ShowCamGizmo = true;
12 //---
13 void Awake()
14 {
15 Cam = GetComponent<Camera>();
16 }
17 //---
18 void OnDrawGizmos()
19 {
20 // Отображать визуальное представление?
21 if(!ShowCamGizmo) return;
22 // Получить размеры окна Game (Игра)
23 Vector2 v = DrawFrustumRefined.GetGameViewSize();
24 float GameAspect = v.x/v.y; // Вычислить отношение сторон окна
25 float FinalAspect = GameAspect / Cam.aspect;
26
27 Matrix4x4 LocalToWorld = transform.localToWorldMatrix;
28 Matrix4x4 ScaleMatrix = Matrix4x4.Scale(new Vector3(Cam.aspect *
 (Cam.rect.width / Cam.rect.height), FinalAspect,1));
29 Gizmos.matrix = LocalToWorld * ScaleMatrix;
30 Gizmos.DrawFrustum(transform.position, Cam.fieldOfView,
 Cam.nearClipPlane, Cam.farClipPlane, FinalAspect);
31 Gizmos.matrix = Matrix4x4.identity; // Сбросить матрицу
32 }
33 //---
34 // Возвращает размеры окна игры
35 public static Vector2 GetGameViewSize()
36 {
37 System.Type T =
 System.Type.GetType("UnityEditor.GameView,UnityEditor");
38 System.Reflection.MethodInfo GetSizeOfMainGameView =
 T.GetMethod("GetSizeOfMainGameView",System.Reflection.
 BindingFlags.NonPublic | System.Reflection.BindingFlags. Static);
39 return (Vector2)GetSizeOfMainGameView.Invoke(null,null);
40 }
41 //---
42 }
43 //---

Ниже приводится несколько комментариев к листингу 5.1.
�� Строки 27–31: функция Gizmos.DrawFrustum принимает аргумен­

ты, такие как позиция и угол поворота, выраженные в глобаль­
ных (мировых) координатах. Это значит, что все аргументы по­
зиционирования должны быть предварительно преобразованы
с помощью матрицы преобразования локальных координат
в глобальные координаты. Это преобразование выполняет ме­
тод localToWorldMatrix класса Transform. Кроме того, аргумент
FinalAspect требует расчета соотношения между шириной и вы­
сотой окна просмотра и шириной и высотой окна игры.

Быть на виду    171

�� Строки 35–40: функция GetGameViewSize возвращает двухмер­
ный вектор, выражающий фактические размеры окна Game
(Игра) в пикселях. Она получает эти значения, используя
недокументированные возможности редактора. Следует под­
черкнуть, что код, использующий «недокументированные»
возможности, может перестать работать в будущих версиях
редактора.

На рис. 5.2 изображена полученная пирамида, представляющая
поле зрения камеры.

Рис. 5.2. Визуальное представление невыбранной камеры

Быть на виду
Есть много случаев, когда во время игры возникают вопросы о види­
мости объекта, как фактической, так и гипотетической. Относительно
фактической видимости есть несколько вопросов, ответы на которые
мы хотели бы получить, в том числе видим ли объект Х для камеры Y
прямо сейчас, видим ли объект Х для любой камеры прямо сейчас или
когда объект Х становится видимым или невидимым для конкретной
камеры или для любой камеры. Что касается гипотетической видимо­
сти, вопрос может быть сформулирован так: ​​будет ли объект Х виден,
если камеру Y переместить в положение Z. В вопросах о фактической
видимости нас заботит действительная видимость объектов в теку­

172    Камеры и отображение сцены

щем кадре, зависящая от текущей позиции камеры, а в отношении ги­
потетической видимости нас беспокоит, что было бы, если бы камера
была бы перемещена в определенное положение. И оба эти варианта
видимости имеют важное значение для игры. Зная, что объекты (та­
кие как враги) действительно видны для камеры, важно определить
их поведение и реакцию. Это объясняется тем, что когда объекты не
видны, многие действия и расчеты можно приостановить, уменьшив
нагрузку за счет отказа от их обработки. Кроме того, информация
о видимости объекта, если камера будет перемещена, позволит пред­
видеть, какие объекты, если они имеются, станут видимыми со следу­
ющего кадра, чтобы подготовить их заранее. Теперь, прежде чем пере­
йти к рассмотрению ответов на эти вопросы с помощью сценариев,
рассмотрим видимость в узком смысле этого понятия.

Видимость базируется на двух основных понятиях: поле зрения
и препятствия. Каждая камера, работающая в режиме перспективы,
имеет поле зрения в форме усеченной пирамиды – трапециевидный
объем, простирающийся от камеры и содержащий область, опреде­
ляемую углом поля зрения и отсекающими плоскостями (ближней
и дальней). Усеченная пирамида математически определяет область
сцены, которую камера потенциально может видеть прямо сейчас.
Замечание «потенциально» важно, потому что даже когда активный
и видимый объект находится в пределах поля зрения камеры, это
не обязательно означает, что он виден для камеры. Дело в том, что
объекты в поле зрения могут перекрываться другими объектами, то
есть находящиеся ближе к камере объекты могут заслонять объекты,
расположенные за ними, полностью или частично. По этой причине
правильная проверка видимости должна включать в себя, по мень­
шей мере, два процесса: во-первых, определение нахождения объекта
внутри поля зрения, а во-вторых, определение наличия препятствия,
скрывающего объект. Только если объект пройдет обе проверки, его
можно признать видимым для камеры, и то при условии, что он не
скрыт пользовательскими шейдерами или другими эффектами по­
стобработки. Проще говоря, есть много причин, почему полная про­
верка видимости является сложным процессом, но здесь я ограничусь
двухступенчатой проверкой, которой достаточно для большинства
задач.

Определение видимости объекта
Наверное, самым простым и прямолинейным способом проверки ви­
димости объектов в Unity является определение видимости и неви­

Быть на виду    173

димости для некоторой камеры. Два сопутствующих этому события –
OnBecameVisible и OnBecameInvisible – автоматически вызываются для
любого объекта с компонентом отображения, таким как MeshRenderer
или SkinnedMeshRenderer. Это, конечно, не касается пустых объектов,
даже попадающих в поле зрения камеры, поскольку они (технически
говоря) не содержат видимых частей, несмотря на то, что находятся
в пространстве. Вы можете обрабатывать эти события, как показано
в листинге 5.2:

Листинг 5.2

//--
using UnityEngine;
using System.Collections;
//--
public class ViewTester : MonoBehaviour
{
 //--
 void OnBecameVisible()
 {
 Debug.log ("Became Visible");
 }
 //--
 void OnBecameInvisible()
 {
 Debug.log ("Became Invisible");
 }
 //--
}
//--

Есть несколько важных аспектов событий OnBecameVisible и OnBe
cameInvisible, на которые стоит обратить внимание. Во-первых, види­
мость здесь означает лишь, что объект попал в поле зрения камеры, но
он может быть перекрыт другими объектами, находящимися ближе
к камере, и если это так, его может быть не видно вообще. Во-вторых,
события относятся ко всем камерам, а не к конкретной камере. Со­
бытие OnBecameVisible вызывается один раз, чтобы сообщить, что объ­
ект, которого раньше нигде не было видно, вступил в поле зрения, по
крайней мере, одной камеры. Точно так же событие OnBecameInvisible
вызывается один раз и говорит о том, что объект, который ранее мог
быть виден, теперь оставил поле зрения всех камер. И наконец, весьма
неприятная особенность этих функций состоит в том, что они отсле­
живают также видимость камеры сцены. Это означает, что при тести­
ровании игры с открытой и видимой вкладкой Scene (Сцена), если

174    Камеры и отображение сцены

объект виден во вкладке Scene (Сцена), он будет считаться видимым.
Проще говоря, методы OnBecameVisible и OnBecameInvisible полезны,
только если действия и решения зависят от общей видимости или не­
видимости в сцене, где видимости соответствует присутствие в поле
зрения камеры. Другими словами, эти события хорошо подходят для
переключения поведения, зависящего от видимости, например испуг
персонажа и другие виды взаимодействий между персонажами.

	 Более подробную информацию о событиях OnBecameVisible и OnBecame
Invisible можно найти в электронной документации Unity по адресам:
http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnBecameVisible.
html и http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnBecame
Invisible.html.

Подробнее о видимости
Другая важная проверка видимости, не связанная с входом объекта
в поле зрения камеры и выходом из него определяет, виден ли объект
в настоящий момент для определенной камеры. В отличие от собы­
тий OnBecameVisible и OnBecameInvisible, которые вызываются один раз
при входе в поле зрения и выходе из него, этот вид проверки связан
только с текущим состоянием объекта и не требует никаких предва­
рительных знаний о нем. Для его реализации можно использовать
событие OnWillRenderObject. Это событие вызывается регулярно, один
раз в каждом кадре для каждой камеры, для которой он виден, все
время, пока объект остается видимым для этой камеры. Под «види­
мостью» здесь понимается «находится в поле зрения». Опять же, про­
верка заслонения другими объектами не применяется. Взгляните на
листинг 5.3, и обратите внимание, что внутри этого события можно
использовать свойство Camera.current, чтобы получить ссылку на ка­
меру, для которой объект в настоящее время виден, в том числе и на
камеру обзора сцены.

Листинг 5.3. Событие OnWillRenderObject
void OnWillRenderObject()
{
 Debug.log (Camera.current.name);
}

Проверка поля зрения – отображаемые компоненты
Часто встроенных событий Unity, с которыми мы познакомились
выше, недостаточно для проверки видимости или нахождения объек­
тов в поле зрения камер. В частности, может быть нужно всего лишь

Быть на виду    175

проверить, виден ли объект только одной определенной камере; попа­
дет ли невидимый объект в поле зрения, если станет видимым; видна
ли камере указанная точка в пространстве; или будет ли камере виден
определенный объект, если переместить его в новое положение. Все
проверки видимости важны в разных ситуациях, и все они требуют
ручной доработки. Для реализации этих проверок придется написать
достаточно много кода. В следующих разделах мы создадим несколь­
ко статических функций и поместим их в выделенный для этого класс
CamUtility. Давайте начнем с проверки нахождения конкретного ото­
бражаемого компонента внутри поля зрения некоторого объекта
Camera, как показано в листинге 5.4.

Листинг 5.4. Проверка попадания объекта в поле зрения камеры
01 using UnityEngine;
02 using System.Collections;
03 //---
04 public class CamUtility
05 {
06 //---
07 // Проверяет попадание отображаемого объекта в поле зрения камеры
08 // Возвращает true, если попадает, и false – в противном случае
09 public static bool IsRendererInFrustum(Renderer Renderable,
 Camera Cam)
10 {
11 // Сконструировать плоскости, ограничивающие поле зрения камеры
12 // Каждая плоскость представляет грань усеченной пирамиды
13 Plane[] planes = GeometryUtility.CalculateFrustumPlanes(Cam);
14
15 // Проверить попадание объекта внутрь усеченной пирамиды
16 return GeometryUtility.TestPlanesAABB(planes, Renderable.bounds);
17 }
18 //---
19 }

В строках 10–17 с помощью класса GeometryUtility создается массив
плоскостей, ограничивающих область поля зрения камеры. Плоско­
сти в трехмерном пространстве подобны прямым в двумерном: они
отмечают воображаемую поверхность в трехмерном пространстве.
Массив включает шесть плоскостей, размещенных в пространстве
так, чтобы образовать поле зрения камеры трапециевидной формы.
Этот массив затем используется функцией TestPlanesAABB, где аббре­
виатура AABB расшифровывается как Axially Aligned Bounding Box,
что можно перевести как «объем, ограниченный осями». Эта функция
проверяет, находится ли поверхность, ограничивающая отображае­
мый меш, внутри поля зрения камеры, определяемого плоскостями.

176    Камеры и отображение сцены

Проверка поля зрения – точки
Конечно, не всегда будет нужна проверка видимости целых объек­
тов. Иногда требуется проверить видимость одной точки. Тому мо­
гут быть две основные причины. Во-первых, возможно достаточно
знать, виден ли такой объект, как частица или точка прицеливания.
Во-вторых, бывает желательно знать не только видима ли точка, но
и где на экране она будет показана камерой. Такая проверка реали­
зована в листинге 5.5. Она выясняет, находится ли точка в пределах
поля зрения камеры, и возвращает ее координаты в нормализованном
виде (между 1 и 0), в окне просмотра.

Листинг 5.5. Проверка попадания точки в поле зрения камеры
//---
// Определяет попадание точки в поле зрения камеры
// Возвращает true, если попадает, и false – в противном случае
// Выходной параметр ViewPortLoc определяет координаты
public static bool IsPointInFrustum(Vector3 Point, Camera Cam,
 out Vector3 ViewPortLoc)
{
 // Создать новые границы с нулевыми размерами
 Bounds B = new Bounds(Point, Vector3.zero);

 // Сконструировать плоскости, ограничивающие поле зрения камеры
 // Каждая плоскость представляет грань усеченной пирамиды
 Plane[] planes = GeometryUtility.CalculateFrustumPlanes(Cam);

 // Проверить попадание точки внутрь усеченной пирамиды
 bool IsVisible = GeometryUtility.TestPlanesAABB(planes, B);

 // Присвоить координаты в видимой области
 ViewPortLoc = Vector3.zero;

 // Если точка видима, вернуть ее координаты
 if(IsVisible)
 ViewPortLoc = Cam.WorldToViewportPoint(Point);
 return IsVisible;
}
//---

Проверка поля зрения – заслонение
Как уже упоминалось, проверка видимости в строгом смысле являет­
ся двухэтапным процессом. Все проверки видимости до сих пор пред­
ставляли собой только проверку присутствия объекта в поле зрения
камеры. Часто этого достаточно, но иногда нет, потому что объекты
в поле зрения могут перекрывать друг друга, то есть ближние к каме­

Быть на виду    177

ре объекты могут закрывать дальние полностью или частично. Это не
всегда является проблемой, потому что чаще всего основной интерес
состоит в том, чтобы определить – достаточно ли близко находится
камера для выбора соответствующей реакции (например, реакции
искусственного интеллекта). Целью является не проверка видимости
как таковой, а близость камеры к объектам. В этих случаях заслоне­
ние одних объектов другими не имеет значения, важно только, что
объекты находятся в поле зрения. Но иногда возможность заслоне­
ния необходимо учитывать, например, при отображении элементов
интерфейса или всплывающих уведомлений, или чтобы узнать – ви­
дит ли игрок конкретные объекты. Важность можно проиллюстриро­
вать возможностью отображения элемента графического интерфей­
са за глухой стеной. Иногда эти ситуации можно обойти, творчески
используя коллайдеры, триггеры и тщательно размещая объекты,
а иногда действительно нет выбора, кроме дальнейшей фильтрации
объектов в поле зрения проверкой заслонения одних объектов дру­
гими. Такая проверка среди объектов внутри поля зрения является
операцией, которая при некоторых способах реализации может при­
вести к значительной потере производительности. По этой причине
лучшим считается использование простого метода Physics.LineCast,
определяющего пересечение воображаемой линии, соединяющей
объект с камерой, другими коллайдерами. Этот способ, как правило,
работает хорошо, но имеет некоторые ограничения. Во-первых, он
предполагает, что все видимые объекты имеют коллайдеры; любые
исключения из этого правила не будут обнаружены методом LineCast.
Во-вторых, коллайдеры только приблизительно повторяют грани­
цы мешей и лишь окружают вершины мешей, это может послужить
причиной ошибки метода LineCast, например когда меши имеют вну­
тренние отверстия, окружающий коллайдер предотвратит проник­
новения в них луча LineCast. Наконец, в соединении с прозрачными
материалами, которые делают видимыми объекты, расположенные
за ними, метод LineCast всегда терпит неудачу. Рассмотрим пример
в листинге 5.6.

Листинг 5.6. Определение видимости объекта с помощью метода LineCast
//---
// Определяет видимость объекта
public static bool IsVisible(Renderer Renderable, Camera Cam)
{
 // Если находится в поле зрения, протянуть линию
 if(!CamUtility.IsRendererInFrustum(Renderable, Cam))

178    Камеры и отображение сцены

 return false;

 // Проверить, не пересекается ли линия , соединяющая камеру с объектом
 If(!Physics.Linecast(Renderable.transform.position,
 Cam.transform.position);
 return false; // Линия пересекается, объект невидим

 return true; // Объект видим
}
//---

Видимость для камеры – впереди или позади
В некоторых играх, таких как стратегии реального времени или ка­
зуальные игры, горизонт камеры (или дальняя плоскость отсечения)
не имеет большого значения, потому что камера всегда видит все, что
находится перед ней. В этих случаях, объекты оказываются вне поля
зрения, только когда находятся за плоскостями х и у, а расстояние по
локальной оси z не имеет значения. То есть скрытые объекты не вид­
ны только потому, что камера не направлена прямо на них. Однако,
когда камера ориентирована правильно, расстояние до объектов не
грает никакого значения для их видимости. В таких ситуациях про­
верку видимости часто можно свести к быстрым и простым провер­
кам ориентации. То есть, вопрос: «Находится ли объект в поле зре­
ния и не заслонен другим объектом?», – можно заменить вопросом:
«Находится ли объект перед камерой или позади нее?». Здесь и ответ
будет другим, так как вопрос будет связан не с видимостью, а с ори­
ентацией – будут ли камера и объект ориентированы так, что объект
находится перед камерой или позади нее. Для такой проверки можно
использовать скалярное произведение векторов. Скалярное произве­
дение умножает два вектора и возвращает скалярное числовое значе­
ние. Это значение описывает угловое отношение между векторами.
В следующем листинге 5.7 представлен класс CamFieldView, который
можно прикрепить к камере, и он будет обнаруживать, может ли ка­
мера видеть целевой объект, то есть, находится ли целевой объект
перед камерой в пределах ее ограниченного поля зрения.

Листинг 5.7. Класс CamFieldView
using UnityEngine;
using System.Collections;
//---
public class CamFieldView : MonoBehaviour
{
 //---

Ортографические камеры    179

 // Угол поля зрения камеры
 // Измеряется в градусах от направления вперед (влево или вправо)
 public float AngleView = 30.0f;

 // Целевой объект
 public Transform Target = null;

 // Локальная трансформация
 private Transform ThisTransform = null;
 //---
 // Используется для инициализации
 void Awake ()
 {
 // Получить локальную трансформацию
 ThisTransform = transform;
 }

 //---
 // Вызывается при отображении каждого кадра
 void Update ()
 {
 // Обновить видимое пространство между камерой и целью
 Vector3 Forward = ThisTransform.forward.normalized;
 Vector3 ToObject = (Target.position – ThisTransform.position).
 normalized;

 // Вычислить скалярное произведение
 float DotProduct = Vector3.Dot(Forward, ToObject);
 float Angle = DotProduct * 180f;

 // Проверить попадание в поле зрения
 if(Angle >= 180f-AngleView)
 {
 Debug.log ("Object can be seen");
 }
 }
 //---
}
//---

Ортографические камеры
Каждый вновь созданный объект камеры в Unity по умолчанию на­
строен на режим перспективы, если вы не изменили параметры по
умолчанию. Камеры этого вида наиболее близко соответствует реаль­
ным камерам, размещенным в трехмерном пространстве, имеющим
изогнутую линзу и использующим метод фиксации изображения на
плоской двумерной поверхности, или экране. Главным признаком та­

180    Камеры и отображение сцены

кой камеры является ракурс, как называется искажение, применяе­
мое к отображаемым объектам. В частности, отображаемые объекты
становятся меньше, с увеличением расстояния, форма и внешний вид
объектов изменяются тем больше, чем дальше они от центра зрения,
и все параллельные линии сходятся где-то в удаленной точке, либо
на линии горизонта, либо на какой-то другой линии. Но, кроме пер­
спективных камер, существуют еще и ортографические камеры. Они
полезны для создания двухмерных игр и настоящих изометрических
игр, в отличие от игр, похожих на изометрические. В ортографиче­
ских камерах объектив строго плоский, ракурса не существует, то
есть параллельные линии остаются параллельными, объекты не
уменьшаются с расстоянием, объекты не искажаются при отдалении
от центра зрения и т. д. Вы легко можете включить ортографический
режим камеры, заменив параметр Perspective (Перспективная) па­
раметром Orthographic (Ортографическая) в поле Projection (Про­
екция), в инспекторе объектов, как показано на рис. 5.3.

Рис. 5.3. Превращение перспективной камеры
в ортографическую

После изменения типа камеры с перспективной на ортографиче­
скую, форма поля зрения камеры тоже изменится с объемной тра­
пециевидной на прямоугольную. Все, видимое пространство будет
иметь форму прямоугольника, ближние объекты по-прежнему будут
перекрывать более далекие, но ощущение глубины утратится, как по­
казано на рис. 5.4. Такая камера больше подходит для двухмерных игр.

Главной проблемой при работе с ортографическими камерами
является создание соотношения 1:1 между единицами расстояний

Ортографические камеры    181

Рис. 5.4. Поле зрения ортографической камеры
имеет вид прямоугольника

(в сцене) и пикселями (на экране). Эта проблема возникает потому,
что в двухмерных играх и графических интерфейсах желательно ото­
бражать графику на экране в ее изначальных и правильных размерах,
как они заданы в файлах текстур. В большинстве трехмерных игр
ракурс и перспектива искажают текстуры, то есть при проецирова­
нии на поверхность трехмерных объектов они отображаются не пря­
мо, как в программе для редактирования фотографий, а в перспекти­
ве. В случае с двухмерными играми и спрайтами ситуация иная. Эта
графика отображается напрямую. Поэтому желательно сохранить ее
стандартные размеры, пиксель в пиксель. Такой вид визуализации
называется безупречным, потому каждый пиксель в текстуре выво­
дится на экран без изменений. Но реализация его требует особого
подхода. Проще говоря, для отображения 1 игровой единицы в 1 пик­

182    Камеры и отображение сцены

сель значение в поле Size (Размер) во вкладке Camera (Камера) долж­
но быть равно половине вертикального разрешения дисплея. То есть,
если игра будет запущена в окне с разрешением 1024×768, поле Size
(Размер) должно содержать значение 364, потому что 768 / 2 = 364,
как показано на рис. 5.5.

Рис. 5.5. Поле Size (Размер)
управляет преобразованием единиц расстояний

в игре в пиксели экрана

Вы можете установить значение в поле Size (Размер) непосред­
ственно в редакторе, но в этом случае игра будет работать правильно
только в окне с постоянным неизменным разрешением. Если пользо­
ватель имеет возможность изменять размер окна игры или разреше­
ние, вам нужно будет обновить размер камеры программно, как это
показано в листинге 5.8.

Листинг 5.8. Изменение размера камеры программно
01 //---
02 using UnityEngine;
03 using System.Collections;
04 //---
05 [RequireComponent(typeof(Camera))]
06 //---
07 public class OrthoCam : MonoBehaviour
08 {
09 // закрытая ссылка на компонент камеры

Вывод изображения с камеры и постобработка    183

10 private Camera Cam = null;
11
12 // Число пикселей в единице размера Units
13 public float PixelsToWorldUnits = 200f;
14 //---
15 // Этот метод выполняет инициализацию
16 void Awake ()
17 {
18 // Получить ссылку на камеру
19 Cam = GetComponent<Camera>();
20 }
21 //---
22 // Вызывается при отображении каждого кадра
23 void LateUpdate ()
24 {
25 // Изменить ортографический размер
26 Cam.orthographicSize = Screen.height / 2f / PixelsToWorldUnits;
27 }
28 //---
29 }
30 //---

Обратите внимание на переменную PixelsToWorldUnits в строке 13,
определяющую масштаб ортографического размера в соответствии
с полем Pixels To Units (Пикселей в единице размера) импортиро­
ванной текстуры спрайтов, как показано на рис. 5.6. Это гарантирует,
что спрайты отобразятся с правильными размерами при выводе на
экран. Это вызвано необходимостью масштабировать все спрайты
в соответствии с этим значением для отображения пикселей текстуры
в мировые единицы измерения.

Вывод изображения с камеры
и постобработка
В официальной документации Unity вывод изображения с камеры
и постобработка упоминаются сравнительно редко. Тем не менее,
это не следует воспринимать как свидетельство, что данная тема
не требует никаких пояснений. Напротив, камеры и объекты Unity
предоставляют широкие возможности управления отображением
сцены. Все связанные с этим вопросы называются постобработкой.
В частности, это относится ко всем дополнительным правкам и из­
менениям, внесенным в изображение с камеры, не относящимся
к обычной визуализации. Они включают в себя эффекты размытия,
регулировки цвета, эффект рыбьего глаза и т. д. Следует отметить,

184    Камеры и отображение сцены

что все эти функции доступны
только в профессиональной вер­
сии Unity. По этой причине поль­
зователи бесплатной версии не
смогут на практике применить
сведения, почерпнутые из этого
раздела. Тем не менее, пользова­
телям профессиональной версии
доступен широкий спектр воз­
можностей вывода изображений
с камер, один из примеров кото­
рых показан на рис. 5.7. В этом
разделе будет рассмотрено соз­
дание системы внесения изме­
нений в изображение с камеры,
обеспечивающей плавный пере­
ход изображения с одной камеры
в изображение с другой. Переход
означает не просто врезку изо­
бражения с одной камеры в изо­
бражение с другой камеры, что
(случайно) может быть достигну­
то при изменении значения поля
глубины камеры. Это означает,
что изображение с первой камеры
будет постепенно становиться все
прозрачнее, открывая изображе­
ние со второй камеры, и наоборот.
Итак, начнем.

Создайте проект со сценой, со­
держащей две отдельные зоны
или области, как показано на
рис. 5.7. Пример проекта можно найти в пакете примеров к книге,
в папке Cameras. Каждой зоне в сцене должна быть придана отдельная
камера, всего две камеры в сцене, и обе камеры должны быть деак­
тивированы. Это позволит избежать автоматического вывода изобра­
жений с камер. Здесь мы будем управлять изображениями вручную,
это позволит скомбинировать изображения и наложить изображение
с одной камеры на изображение с другой.

Рис. 5.6. Значение поля
Pixels to Units (Пикселей

в единице размера)
для текстуры спрайтов

Вывод изображения с камеры и постобработка    185

	 Компоненты AudioListener обеих камер должны быть удалены, так как Unity
разрешает присутствие только одного активного компонента AudioListener
в сцене.

Далее создайте третью камеру с тегом MainCamera в начале коорди­
нат сцены и установите ей пустую маску отбраковки. Убедитесь, что
камера активна, но ничего не отображает. Она будет представлять со­
бой центральную, основную камеру сцены, соединяющую изображе­
ния с двух других камер, как показано на рис. 5.8.

Теперь сцена имеет три камеры: две неактивные камеры в разных
местах (камеры X и Y) и одну основную камеру сцены (камера Z). При
подключении кода из листинга 5.9 к камере Z, он обеспечит плавную
смену изображений с камер X и Y после нажатии клавиши пробела.

Листинг 5.9. Реализация наложения изображений с двух камер
001 // Класс для наложения изображений с камер 0 и 1
002 // Предполагает присутствие в сцене двух дополнительных камер
003 //---------------------------------------
004 using UnityEngine;
005 using System.Collections;
006 //---------------------------------------
007 public class CameraFader : MonoBehaviour
008 {
009 //---------------------------------------
010 // Все камеры в сцене для объединения изображений

Рис. 5.7. Создание сцены с несколькими камерами

186    Камеры и отображение сцены

011 public Camera[] Cameras;
012
013 // Цвет для умножения
014 public Color[] CamCols = null;
015
016 // Время растворения/проявления в секундах
017 public float FadeTime = 2.0f;
018
019 // Материал для окончательного отображения
020 public Material Mat = null;
021 //---------------------------------------
022 // Этот метод выполняет инициализацию
023 void Start ()
024 {
025 // Присвоить текстуры каждой камере
026 foreach(Camera C in Cameras)
027 C.targetTexture = new
 RenderTexture(Screen.width, Screen.height, 24);
 // Создаст текстуру
028 }
029 //---------------------------------------

Рис. 5.8. Создание третьей, основной камеры

Вывод изображения с камеры и постобработка    187

030 // Вызывается один раз в каждом кадре после получения изображения
031 // с камеры, но перед выводом его на экран
032 // Парная функция: OnPreRender
033 void OnPostRender()
034 {
035 // Определить прямоугольник экрана
036 Rect ScreenRct = new Rect(0,0,Screen.width,Screen.height);
037
038 // Исходный прямоугольник
039 Rect SourceRect = new Rect(0,1,1,-1);
040
041 // Вывести изображение каждой камеры в их текстуры
042 for(int i = 0; i<Cameras.Length; i++)
043 {
044 // Вывести изображение
045 Cameras[i].Render();
046
047 // Нарисовать текстуры на кране с помощью камеры
048 GL.PushMatrix();
049 GL.LoadPixelMatrix();
050 Graphics.DrawTexture(ScreenRct,
 Cameras[i].targetTexture, SourceRect, 0,0,0,0, CamCols[i]);
051 GL.PopMatrix(); // Сбросить матрицу
052 }
053 }
054 //---------------------------------------
055 // Эта функция вызывается после OnPostRender,
056 // когда пиксели изображения выводятся на экран
057 // src = текущее изображение с камеры
058 // dst = текстура для вывода на экран
059 void OnRenderImage(RenderTexture src, RenderTexture dst)
060 {
061 // Вывести на экран окончательные пиксели с материалом Mat
062 Graphics.Blit(src, dst, Mat);
063 }
064 //---------------------------------------
065 // Смена цвета в течение периода TotalTime
066 // Изменить альфа-канал изображения сверху
067 public IEnumerator Fade(Color From, Color To, float TotalTime)
068 {
069 float ElapsedTime = 0f;
070
071 // Выполнять цикл, пока время не истекло
072 while(ElapsedTime <= TotalTime)
073 {
074 // Изменить цвет
075 CamCols[1] = Color.Lerp(From, To, ElapsedTime/TotalTime);
076
077 // Ждать следующего кадра
078 yield return null;

188    Камеры и отображение сцены

079
080 // Обновить время
081 ElapsedTime += Time.deltaTime;
082 }
083
084 // Применить конечный цвет
085 CamCols[1] = Color.Lerp(From, To, 1f);
086 }
087 //---------------------------------------
088 // Пример тестирования функциональности камеры
089 // Нажмите клавишу пробела чтобы включить плавную смену изображений
090 void Update()
091 {
092 // Растворить или проявить изображение с камеры
093 if(Input.GetKeyDown(KeyCode.Space))
094 {
095 StopAllCoroutines();
096
097 // Растворить или проявить?
098 if(CamCols[1].a <= 0f)
099 StartCoroutine(Fade(CamCols[1], new Color(0.5f,0.5f,0.5f,1f),
 FadeTime)); // Проявить
100 else
101 StartCoroutine(Fade(CamCols[1], new Color(0.5f,0.5f,0.5f,0f),
 FadeTime)); // Растворить
102 }
103 }
104 //---------------------------------------
105 }

Ниже приводится несколько комментариев к листингу 5.9:
�� Строки 011–020: класс CamerFader отвечает за плавную смену

изображений с камер Camera[0] и Camera[1]. Для этого создано
несколько переменных. Массив Cameras содержит список камер,
в нашем случае две камеры. Массив CamCols связан с массивом
Cameras. Он определяет цвета, с которыми будут смешиваться
изображения с камер, это позволяет с помощью альфа-канала
сделать изображение прозрачным. Переменная FadeTime опре­
деляет общее время в секундах, за которое происходит полная
смена изображений. Наконец, переменная Mat содержит ссылку
на любой доступный материал, который будет применен к окон­
чательному изображению основной камеры, то есть к изображе­
нию, собранному из изображений со всех других камер.

�� Строки 023–038: в методе Start для каждой камеры создает­
ся текстура RenderTexture, которая присваивается свойству
TargetTexture камеры. В сущности, это означает, что каждой

Дрожание камеры    189

камере присваивается внутренняя текстура, куда будет выво­
диться изображение.

�� Строки 033–052: событие OnPostRender вызывается автоматиче­
ски для любых активных камер в сцене, в каждом кадре, после
завершения его отображения. Это дает возможность включить
изображения с дополнительных камер, наложив их поверх дру­
гих изображений, полученных как обычно. Здесь вызывается
метод Render каждой камеры из массива Cameras. Этот метод вы­
водит изображение с камеры, но не на экран, а в текстуру. После
получения текстур функция Graphics.DrawTexture прорисовыва­
ет на экране текстуры RenderTexture каждой камеры, в порядке
их вхождения в массив, одну поверх другой. Обратите внима­
ние, что при каждом вызове функция DrawTexture присоединяет
цвет CamCols к текстуре, он является множителем для альфа-ка­
нала, обеспечивая создание эффекта прозрачности.

�� Строки 059–063: событие OnRenderImage, так же как OnPostRender,
вызывается автоматически для активных камер один раз в кадр,
после события OnPostRender, до вывода изображений с камер
на экран. Это событие принимает два аргумента – src и dst.
Аргумент src должен содержать ссылку на текстуру, в которой
находится окончательное изображение, полученное после вы­
полнения события OnPostRender, аргумент dst должен содержать
ссылку текстуру для отображения на экране после завершения
события OnRenderImage. Проще говоря, эта функция дает воз­
можность изменить пиксели изображения вручную или с по­
мощью шейдеров. Здесь функция Graphics.Blit вызывается для
копирования из src в dst с использованием шейдера, основан­
ного на материале Mat.

�� Строки 067–085: функция Fade является сопрограммой и про­
изводит перехода от цвета From к цвету To за время TotalTime. Эта
сопрограмма используется для изменения альфа-канала цвета
от значения 0 до значения 1, которые, соответственно, опреде­
ляют прозрачность и непрозрачность.

Рисунок 5.9 показывает эффект перехода изображений.

Дрожание камеры
А теперь рассмотрим эффект, доступный в бесплатной версии Unity:
дрожание камеры! Для боев, стрельбы и приключений вообще, эф­
фект дрожания камеры очень важен. Он передает толчок, опасность,

190    Камеры и отображение сцены

действие, динамизм и волнение в форме кинетической обратной свя­
зи. Этот эффект можно использовать вместе со множеством других
эффектов, имитируя всепроникающее движение и эмоции в опреде­
ленном месте сцены. В этом смысле эффект дрожания камеры может
избавить от массы работы по созданию всеобъемлющей анимации,
как показано на рис. 5.10.

Рис. 5.9. Плавная смена изображений с камер

Рис. 5.10. Эффект дрожания камеры

Дрожание камеры    191

Есть много способов создать эффект дрожания камеры, но все
они основаны на колебаниях положения камеры в диапазоне между
минимальным и максимальным пределами, с использованием не­
которой функции получения случайных значений. Иногда случай­
ность используется в чистом виде, а иногда она сглаживается с по­
мощью функции демпфирования, чтобы создать более медленное
или более плавное дрожание. Рассмотрим пример в листинге 5.10,
который можно прикрепить к любой камере для создания эффекта
дрожания.

Листинг 5.10. Реализация эффекта дрожания камеры

using UnityEngine;
using System.Collections;
//---------------------
public class CameraShake : MonoBehaviour
{
 private Transform ThisTransform = null;

 // Общее время дрожжания в секундах
 public float ShakeTime = 2.0f;

 // Амплитуда дрожжания – смещение в любом направлении
 public float ShakeAmount = 3.0f;

 // Скорость перемещения камеры
 public float ShakeSpeed = 2.0f;

 //---------------------
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Получить компонент трансформации
 ThisTransform = GetComponent<Transform>();

 // Начать дрожжание
 StartCoroutine(Shake());
 }

 //---------------------
 // Дрожжание камеры
 public IEnumerator Shake()
 {
 // Сохранить исходную позицию камеры
 Vector3 OrigPosition = ThisTransform.localPosition;

 // Счетчик прошедшего времени в секундах

192    Камеры и отображение сцены

 float ElapsedTime = 0.0f;

 // Повторять, пока время дрожжания не истекло
 while(ElapsedTime < ShakeTime)
 {
 // Выбрать точку в сфере
 Vector3 RandomPoint = OrigPosition +
 Random.insideUnitSphere * ShakeAmount;

 // Изменить позицию
 ThisTransform.localPosition = Vector3.Lerp(
 ThisTransform.localPosition, RandomPoint,
 Time.deltaTime * ShakeSpeed);

 // Приостановиться до следующего кадра
 yield return null;

 // Обновить время
 ElapsedTime += Time.deltaTime;
 }

 // Восстановить исходную позицию камеры
 ThisTransform.localPosition = OrigPosition;
 }

 //---------------------
}
//---------------------

Камеры и анимация
Пролет камеры через сцену – это анимационный эффект, в котором
камера перемещается и поворачивается с течением времени по опре­
деленным позициям для создания кинематографического эффекта.
Обычно пролет камеры применяется для создания заставок в играх,
хотя и не всегда. Он может пригодиться для создания камер персона­
жей от третьего лица и для обзора сверху по определенному заранее
маршруту. Часто для получения эффекта пролета камеры предвари­
тельно создается траектория ее полета в редакторе анимаций Unity
или в пакетах сторонних производителей, таких как Maya, Blender
и 3DS Max. Однако, иногда бывает достаточно простого программно­
го управления камерой, чтобы плавно провести ее от заданной пози­
ции через ряд точек по предопределенному маршруту. В этом разделе
будут рассмотрены все три подхода.

Камеры и анимация    193

Сопровождающие камеры
Пожалуй, одним из самых распространенных видов камер являются
сопровождающие камеры, то есть камеры, которые отслеживают за­
данный объект в сцене и следуют за ним. Такие камеры держатся на
некотором расстоянии от объекта, как показано на рис. 5.11. Так дей­
ствует камера персонажа от третьего лица, реализующая обзор из-за
плеча или сверху.

Рис. 5.11. Создание камеры, плавно следующей за объектом

	 Этот проект можно найти в пакете с примерами к книге, в папке Camera_
Smooth_Damp.

Для таких камер простого следования, как правило, бывает не­
достаточно. Если бы требовалось только это, можно было бы про­
сто сделать объект родителем камеры и на этом закончить. Однако,
как правило, желательно добиться некоторой степени сглаживания,
или демпфирования движения камеры, то есть сделать смену скоро­
стей плавной, что позволит камере постепенно замедляться до пол­
ной остановки при достижении цели, а не останавливаться внезап­
но и резко. Для этого можно использовать функции Quaternion.Slerp
и Vector3.SmoothDamp. Рассмотрим следующий пример в листинге 5.11,
содержащий класс, который можно подключить к любой камере, что­
бы заставить ее плавно следовать за объектом.

Листинг 5.11. Реализация сопровождающей камеры
using UnityEngine;
using System.Collections;

194    Камеры и отображение сцены

//---
public class CamFollow : MonoBehaviour
{
 //---
 // Цель для преследования
 public Transform Target = null;

 // Сылка на локальную трансформацию
 private Transform ThisTransform = null;

 // Линейное расстояние до цели (в мировых единицах измерения)
 public float DistanceFromTarget = 10.0f;

 // Высота камеры над целью
 public float CamHeight = 1f;

 // Демпфирование вращения
 public float RotationDamp = 4f;

 // Демпфирование позиции
 public float PosDamp = 4f;

 //---
 void Awake()
 {
 // Получить трансформацию для камеры
 ThisTransform = GetComponent<Transform>();
 }
 //---
 // Вызывается при отображении каждого кадра
 void LateUpdate ()
 {
 // Получить скорость
 Vector3 Velocity = Vector3.zero;

 // Вычислить угол поворота интерполяцией
 ThisTransform.rotation =
 Quaternion.Slerp(ThisTransform.rotation,
 Target.rotation, RotationDamp * Time.deltaTime);

 // Вычислить новую позицию
 Vector3 Dest = ThisTransform.position =
 Vector3.SmoothDamp(ThisTransform.position,
 Target.position, ref Velocity,
 PosDamp * Time.deltaTime);

 // Отдалить от цели
 ThisTransform.position = Dest – ThisTransform.forward *
 DistanceFromTarget;

 // Вычислить высоту

Управление движением камеры    195

 ThisTransform.position =
 new Vector3(ThisTransform.position.x, CamHeight,
 ThisTransform.position.z);

 // Направление на цель
 ThisTransform.LookAt(Dest);
 }
 //---
}

	 Более подробную информацию о функции Quaternion.Slerp можно най-
ти по адресу http://docs.unity3d.com/ScriptReference/Quaternion.Slerp.
html, а о функции Vector3.SmoothDamp – по адресу http://docs.unity3d.com/
ScriptReference/Vector3.SmoothDamp.html.

Управление движением камеры
Для заставок, фона меню или организации обычного пролета камеры
может понадобиться реализовать движение камеры по прямой, с из­
менением скорости, при этом камера должна плавно начинать и за­
канчивать свое движение. Это значит, что камера должна набрать
скорость в начале пути, а затем постепенно снизить скорость в конце
пути. Для этого, можно использовать эффект, подготовленный с по­
мощью редактора анимаций в Unity, или использовать анимацион­
ные кривые, обеспечивающие высокую степень гибкости и контроля
над преобразованиями объекта с течением времени, как показано на
рис. 5.12.

Чтобы создать сценарий управления скоростью движения камеры
с течением времени, в том числе для реализации движения по кри­

Рис. 5.12. Перемещение камеры
с применением анимационных кривых

196    Камеры и отображение сцены

волинейной траектории и сглаживания или регулирования скорости,
можно использовать сценарий из листинга 5.12.

Листинг 5.12. Управление движением камеры
//-----------------------------
using UnityEngine;
using System.Collections;
//-----------------------------
public class CameraMover : MonoBehaviour
{
 //-----------------------------
 // Время длительности анимационного эффекта
 public float TotalTime = 5.0f;

 // Расстояние перемещения по каждой оси
 public float TotalDistance = 30.0f;

 // Кривые для перемещения
 public AnimationCurve XCurve;
 public AnimationCurve YCurve;
 public AnimationCurve ZCurve;

 // Преобразование для данного объекта
 private Transform ThisTransform = null;

 //-----------------------------
 void Start()
 {
 // Получить компонент трансформации
 ThisTransform = GetComponent<Transform>();

 // Запустить анимацию
 StartCoroutine(PlayAnim());
 }
 //-----------------------------
 public IEnumerator PlayAnim()
 {
 // Время, прошедшее с начала анимации
 float TimeElapsed = 0.0f;

 while(TimeElapsed < TotalTime)
 {
 // Нормализовать время
 float NormalTime = TimeElapsed / TotalTime;

 // Вычислить смещение по осям X, Y и Z
 Vector3 NewPos = ThisTransform.right.normalized *
 XCurve.Evaluate(NormalTime) * TotalDistance;

 NewPos += ThisTransform.up.normalized *

Управление движением камеры    197

 YCurve.Evaluate(NormalTime) * TotalDistance;

 NewPos += ThisTransform.forward.normalized *
 ZCurve.Evaluate(NormalTime) * TotalDistance;

 // Изменить позицию
 ThisTransform.position = NewPos;

 // Ждать следующего кадра
 yield return null;

 // Обновить время
 TimeElapsed += Time.deltaTime;
 }
 }
 //-----------------------------
}
//-----------------------------

	 Проект, демонстрирующий использование анимационных кривых для пере-
мещения камеры, можно найти в пакете примеров, сопровождающих книгу,
в папке Camera_Anim_Curves.

Чтобы задействовать класс CameraMover, прикрепите сценарий к ка­
мере и в инспекторе объектов щелкните на каждом из полей опреде­
ления кривых по осям X, Y и Z для настройки изменения скорости
камеры с течением времени. Щелкая на графике, можно отредакти­
ровать его, добавляя точки и изменяя кривые для выбранной оси. Об­
ратите внимание, что оси X, Y и Z привязаны к локальным осям объ­
екта (вперед, вверх и вправо), а не к глобальным осям (х, у и z). С их
помощью задается относительное движение объекта, как показано на
рис. 5.13.

	 Более подробную информацию об анимационных кривых можно най-
ти в электронной документации Unity по адресу http://docs.unity3d.com/
Manual/ AnimatorCurves.html.

Траектория камеры – iTween
Одним из полезных свойств, которое, как ни странно, до сих пор не
реализовано в Unity, являются программируемые траектории движе­
ния. Под этим термином понимается возможность объекта, например
камеры, плавно следовать по траектории, проложенной с помощью
сферической интерполяции, когда путь определяется серией связан­
ных игровых объектов. Эта функция уже существует в том смысле,
что движение камеры можно определить с помощью анимаций, соз­
данных в редакторе Unity. Однако, желательно иметь более гибкий

198    Камеры и отображение сцены

способ программного управления траекторией движения, определя­
емой набором точек, позиции которых можно корректировать про­
граммно, в определенные моменты времени. Эта функция особенно
полезна, например, для космических игр, где полет вражеских кора­
блей четко следует гладким, криволинейным траекториям, соответ­
ствующим положению космического корабля игрока, как показано
на рис. 5.14. Есть много способов достижения этой цели в Unity, но
быстрое решение состоит в использовании бесплатного расширения
iTween Боба Беркебайла (Bob Berkebile), которое можно загрузить
и импортировать непосредственно с сайта Asset Store Unity. Более
подробную информацию о расширении iTween можно найти по адре­
су http://itween.pixelplacement.com/index.php.

В дополнение к самому пакету iTween можно также скачать бес­
платное расширение для iTween – визуальный редактор траекторий
iTween (Visual iTween Path Editor), доступный по адресу http://pixel-
placement.com/2010/12/03/visual-editor-for-itween-motion-paths/.

Рис. 5.13. Прокладка траектории движения
с помощью кривых анимации

Управление движением камеры    199

Рис. 5.14. Создание траекторий движения камеры
с помощью iTween

Рис. 5.15. Сценарий iTweenPath позволяет определить
траекторию с помощью путевых точек

Импортировав оба пакета iTween, их можно использовать для ани­
мации движения объекта вдоль траектории. Чтобы реализовать про­
лет камеры, перетащите сценарий iTweenPath на объект камеры. Он
позволяет создать независимый и именованный путь, состоящий из
нескольких путевых точек, как показано на рис. 5.15.

200    Камеры и отображение сцены

Чтобы определить несколько путевых точек, введите общее их чис­
ло в поле Node Count (Число узлов), а затем выберите визуальное
представление каждого узла в окне просмотра сцены и поместите их
в нужные места. Обратите внимание на линию, соединяющую точ­
ки – это траектория камеры (см. рис. 5.16).

Рис. 5.16. Определение путевых точек для траектории

Затем, чтобы заставить камеру двигаться вдоль траектории, до­
бавьте к камере сценарий, представленный в листинге 5.13.

Листинг. 5.13. Сценарий, управляющий движением камеры вдоль
траектории
using UnityEngine;
using System.Collections;

public class cam_itween_mover : MonoBehaviour
{
 // Этот метод выполняет инициализацию
 void Start ()
 {
 iTween.MoveTo(gameObject, iTween.Hash("path",

Итоги    201

 iTweenPath.GetPath("Camera Fly") , "time", 4f, "easetype",
 iTween.EaseType.easeInOutSine));
 }
}

	 Более подробную информацию о расширении iTween и его использовании
можно найти по адресу http://itween.pixelplacement.com/gettingstarted.php.

Итоги
В этой главе все внимание было сосредоточено на решении задач,
связанных с камерами. Камеры имеют большое значение в Unity,
как и в любом другом игровом движке, потому что предназначены
для визуализации сцены на экране. Большая часть функциональ­
ности камеры встроена в Unity, и, как следствие, это ведет к потере
гибкости и возможностей управления камерами, многие из которых
плохо документированы. В частности, здесь мы впервые рассмотрели
возможность постоянного отображения визуального представления
камер в окне сцены, даже если камера не выбрана. Во-вторых, мы уз­
нали, как определить, какие объекты видны для камеры, а какие нет.
Это реализуется несколькими видами проверок, таких как проверка
на нахождение поле зрения и выявление заслоняющих препятствий.
В-третьих, мы увидели, как создавать и настраивать ортографиче­
ские камеры, отображающие двухмерные элементы без искажений.
В-четвертых, мы узнали, как изменять и улучшать изображения, по­
лученные с камер через промежуточные текстуры. Для этого потре­
бовалось переопределить несколько важных событий камеры и ор­
ганизовать смешивание изображений с камер для создания эффекта
растворения/проявления изображений при смене камер. В-пятых,
мы увидели, как реализовать движение камеры, например, дрожание
камеры. И наконец, мы узнали, как определить траекторию движения
камеры, то есть организовать ее перемещение камеры по заданному
маршруту, определенному серией путевых точек, или простое сопро­
вождение объекта. Далее мы займемся исследованием фреймворка
Mono.

Глава 6

Работа
с фреймворком Mono

Unity поддерживает два основных языка программирования, а имен­
но C# и JavaScript. Разработчики должны выбрать один из них и по­
следовательно применять его на протяжении всего проекта, то есть
писать все сценарии на выбранном языке. Отказ от этого правила
(смешивание файлов сценариев на разных языках) обычно вызы­
вает головную боль и излишнюю путаницу. Однако определившись
с языком, выбрав, например, C#, вы понимаете, что он не предостав­
ляет всего необходимого для создания игр. Язык программирования
C# сам по себе не может ни загружать, ни разбирать файлы XML
для поддержки сохранения игры, не может создавать объекты окна
и компоненты пользовательского интерфейса, выполнять расширен­
ный поиск и запросы к сложным наборам данных и коллекций. Для
этих дополнительных функций и многих других приходится обра­
щаться к внешним библиотекам. Некоторые библиотеки можно при­
обрести непосредственно в магазине Unity, но они, как правило, ис­
пользуются для конкретных целей. Однако, Unity распространяется
вместе с Mono – бесплатным, кросс-платформенным фреймворком
с открытым исходным кодом на основе библиотеки Microsoft .NET
Framework, и предоставляет множество классов, доступных в данной
библиотеке. В .NET Framework имеются классы для работы со стро­
ками и файлами, поиска и сортировки данных, отслеживания дина­
мических списков, анализа файлов XML и многие другие. Это значит,
что в виде Mono вам доступен обширный набор инструментов, по­
зволяющих эффективно и продуктивно управлять данными в при­
ложении. В этой главе рассматриваются некоторые из возможностей
Mono, доступных в приложениях Unity, такие как поддержка списков
и стеков, язык интегрированных запросов (Language Integrated
Query, LINQ), регулярные выражения, счетчики и т. д.

На рис. 6.1 показана домашняя страница проекта Mono Framework.

Списки и коллекции    203

Списки и коллекции
Пожалуй, самой распространенной задачей при программировании
игр является хранение списков данных. Природа этих данных мо­
жет быть разной: счет игры, статистика игроков, статистика врагов,
списки предметов, оружия, бонусов, уровней и многое другое. Там,
где это только возможно, следует выбирать для хранения данных
статические массивы, из-за высокой скорости их обработки. Ста­
тические массивы были подробно рассмотрены в главе 1 «Основы
С# в Unity». Проще говоря, статические массивы создаются зара­
нее, и их максимальная емкость определяется с самого начала. В них
можно добавлять и удалять элементы, но общий размер статических
массивов нельзя изменить. Если их максимальная емкость полно­
стью не используется, пространство будет потрачено впустую. Ста­
тические массивы являются отличным выбором для хранения посто­
янных списков данных, например всех уровней в игре, всего оружия,
которое может быть собрано, всех бонусов, которые могут быть соб­
раны, и т. д.

Рис. 6.1. Фреймворк Mono
поставляется вместе с игровым движком Unity

204    Работа с фреймворком Mono

Однако не менее часто используются и динамические массивы,
которые могут увеличиваться и уменьшаться, по мере добавления
и удаления данных, например, при создании и уничтожении врагов,
появления и исчезновения предметов или оружия, и т. д. Фреймворк
Mono предлагает множество классов для поддержки списков данных.
Основных таких классов три: List, Stack и Dictionary. Каждый из них
полезен для определенных целей.

Класс List
Если необходим неупорядоченный, последовательный список элемен­
тов любого одного типа данных, то есть список, который растет и сжи­
мается в соответствии с объемом хранимых данных, класс List являет­
ся идеальным выбором. В список особенно удобно добавлять и удалять
элементы и последовательно перебирать их элементы. Кроме того, объ­
екты класса List могут изменяться в инспекторе объектов Unity. В сле­
дующем листинге 6.1 представлено содержимое файла Using_List.cs.

Листинг 6.1. Файл Using_List.cs
01 using UnityEngine;
02 using System.Collections;
03 using System.Collections.Generic;
04 //--
05 // Пример класса для хранения данных о врагах
06 [System.Serializable]
07 public class Enemy
08 {
09 public int Health = 100;
10 public int Damage = 10;
11 public int Defense = 5;
12 public int Mana = 20;
13 public int ID = 0;
14 }
15 //--
16 public class Using_List : MonoBehaviour
17 {
18 //--
19 // Список активных врагов в сцене
20 public List<Enemy> Enemies = new List<Enemy>();
21 //--
22 // Этот метод выполняет инициализацию
23 void Start ()
24 {
25 // Добавить 5 врагов в список
26 for(int i=0; i<5; i++)
27 Enemies.Add (new Enemy());
 // Метод Add вставляет элемент в конец списка

Списки и коллекции    205

28
29 // Удалить врага в начале списка (с индексом 0)
30 Enemies.RemoveRange(0,1);
31
32 // Обойти элементы списка
33 foreach (Enemy E in Enemies)
34 {
35 // Вывести значение свойства ID врага
36 Debug.log (E.ID);
37 }
38 }
39 }
40 //--

	 Более подробную информацию об использовании класса List можно найти
в пакете примеров для книги, в папке Chapter06\Collections. Документацию
с описанием класса List можно найти в MSDN: http://msdn.microsoft.com/
ru-ru/library/ 6sh2ey19%28v=vs.110%29.aspx.

 Ниже приводится несколько комментариев к листингу 6.1:
�� Строка 03: чтобы использовать класс List, необходимо под­

ключить пространство имен System.Collections.Generic.
�� Строка 06: если тип данных списка наследует класс System.
Serializable, список будет доступен в инспекторе объектов.

�� Строка 20: вы можете объявить и тут же инициализировать
новый экземпляр списка в одном операторе при объявлении
членов класса.

�� Строка 27: новые объекты добавляются в конец списка с по­
мощью метода Add.

�� Строка 30: элементы могут удаляться с помощью нескольких
методов. Метод RemoveRange удаляет несколько последователь­
ных элементов из списка. Другими методами удаления явля­
ются: Remove, RemoveAll и RemoveAt.

�� Строка 33: есть возможность обойти все элементы списка с по­
мощью цикла foreach.

�� Строки 27–33: обычно при обходе элементов в цикле операции
добавления и удаления элементов не выполняются.

На рис. 6.2 показано, как выглядит экземпляр класса List в инспек­
торе объектов.

Класс List поддерживает несколько методов удаления элементов,
по одному или группами, предназначенных для использования вне
итераций по спискам. Тем не менее, иногда бывает удобнее и проще
удалять элементы во время их обхода в цикле, например когда нужно
удалить элемент после его обработки. Классический случай – удале­
ние всех объектов ссылочного типа в сцене, например врагов, а также

206    Работа с фреймворком Mono

связанных с ними элементов списка, чтобы избежать присутствия пу­
стых ссылок. Удаление элементов в цикле может вызвать проблемы,
потому что при удалении итератор перестанет отслеживать правиль­
ное положение элемента в списке, и общее количество итераций цик­
ла не будет соответствовать длине списка. Чтобы совместить обход
элементов списка в цикле и удаление элементов, перебор элементов
списка следует проводить в обратном порядке, от конца к началу, как
показано в листинге 6.2.

Листинг 6.2. Удаление элементов списка в цикле
// Удалит все элементы списка в цикле
void RemoveAllItems()
{
 // Обойти список в обратном порядке
 for(int i = Enemies.Count-1; i>=0; i--)
 {
 // Вызвать функцию элемента перед удалением
 Enemies[i].MyFunc();

 // Удалить элемент из списка
 Enemies.RemoveAt(i);
 }
}

Рис. 6.2. Экземпляр класса List в инспекторе объектов

Списки и коллекции    207

Класс Dictionary
Класс List является, пожалуй, одним из самых полезных классов
в фреймворке Mono для хранения данных в памяти. Однако не бу­
дем забывать и о классе Dictionary (аналоге класса std::map в C ++).
Этот класс особенно полезен, когда нужно нечто большее, чем про­
стой список элементов. Если нужна возможность быстро находить
элементы по ключу, лучше всего использовать класс Dictionary. Для
каждого элемента списка следует указать ключ, или идентификатор,
однозначно определяющий элемент. Класс Dictionary позволяет по­
лучить мгновенный доступ к элементу, основываясь исключительно
на знании его ключа. Это делает работу с классом Dictionary похожей
на работу с обычным словарем, например, если нужно найти толко­
вание некоторых слов в большом словаре или базе данных слов, само
слово будет ключом, а толкование – значением.

Конечно, можно реализовать аналог класса Dictionary с помощью
нескольких объектов класса List. Но класс Dictionary работает очень
быстро, почти молниеносно. Вы можете хранить большие объемы
данных в словаре без ощутимых потерь производительности. Это
делает его весьма полезным, когда нужен быстрый поиск данных по
ключевым значениям. Применение класса Dictionary показано в лис­
тинге 6.3.

Листинг 6.3. Применение класса Dictionary
01 using UnityEngine;
02 using System.Collections;
03 using System.Collections.Generic;
04
05 public class Using_Dictionary : MonoBehaviour
06 {
07 // База данных слов. Пары ключ/значение: <Word, Score>
08 public Dictionary<string, int> WordDatabase = new
 Dictionary<string, int>();
09
10 // Этот метод выполняет инициализацию
11 void Start ()
12 {
13 // Определить несколько слов
14 string[] Words = new string[5];
15 Words[0]="hello";
16 Words[1]="today";
17 Words[2]="car";
18 Words[3]="vehicle";
19 Words[4]="computers";
20

208    Работа с фреймворком Mono

21 // добавить в словарь с числом очков
22 foreach(string Word in Words)
23 WordDatabase.Add(Word, Word.Length);
24
25 // Выбрать слово из списка с использованием ключа
26 // Используется синтаксис массивов!
27 Debug.log ("Score is: " + WordDatabase["computers"].ToString());
28 }
29 }

Ниже приводится несколько комментариев к листингу 6.3:
�� Строка 03: как и для работы с классом List, необходимо под­

ключить пространство имен System.Collections.Generic.
�� Строка 08: словарь объявляется и создается в одной строке;

в отличие от класса List, словари не отображаются в инспекто­
ре объектов Unity.

�� Строки 13 – 23: класс Dictionary заполняется с помощью мето­
да Add.

�� Строка 27: обращаться к элементам класса Dictionary можно
так же, как к элементам массива, используя значение ключа
вместо индекса массива.

	 Более подробную информацию об использовании словарей можно найти
в главе 4, «Событийное программирование», в разделе об управлении со-
бытиями с помощью класса EventManager.

Класс Stack
Если вы разрабатываете карточную игру, где игроки снимают верх­
нюю карту с колоды, если нужно отменить сделанный ход, если вы
программируете поиск пути, создаете сложную систему произнесе­
ния заклинаний или игру-головоломку Ханойская башня (https://
ru.wikipedia.org/wiki/Ханойская_башня), очень возможно, что вам по­
надобится стек. Стек – это особый вид списка, основанный на модели
«Последним вошел – первым вышел» (Last in, first out, LIFO). Кон­
цепция его базируется на стопке листов бумаги. Вы можете добавлять
элементы в список, и они будут укладываться один на другой в вер­
тикальную стопку, в которой последний элемент всегда будет сверху.
Затем вы можете снимать элементы с вершины стека (удалять их из
списка) по одному. Порядок, в котором вы получаете элементы, всег­
да обратен порядку, в котором они были добавлены.

Вот почему класс Stack особенно полезен для отката или отмот­
ки назад. Рассмотрим листинг 6.4 с примером использования класса
Stack.

Списки и коллекции    209

Листинг 6.4. Пример использования класса Stack
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
//--
[System.Serializable]
public class PlayingCard
{
 public string Name;
 public int Attack;
 public int Defense;
 }

//--
public class Using_Stack : MonoBehaviour
{
 //--
 // Стопка карт
 public Stack<PlayingCard> CardStack = new Stack<PlayingCard>();

 //--
 // Этот метод выполняет инициализацию
 void Start ()
 {
 // Создать массив карт
 PlayingCard[] Cards = new PlayingCard[5];

 // Создать несколько карт
 for(int i=0; i<5; i++)
 {
 Cards[i] = new PlayingCard();
 Cards[i].Name = "Card_0" + i.ToString();
 Cards[i].Attack = Cards[i].Defense = i * 3;

 // Втолкнуть карту в стек
 CardStack.Push(Cards[i]);
 }

 // Удалить карты из стека
 while(CardStack.Count > 0)
 {
 PlayingCard PickedCard = CardStack.Pop();

 // Вывеси имя выбранной карты
 Debug.log (PickedCard.Name);
 }
 }
 //--
}
//--

210    Работа с фреймворком Mono

Интерфейсы IEnumerable и IEnumerator
При работе с коллекциями данных, будь то списки, словари, стеки
или что-то другое, часто бывает нужно обойти все элементы коллек­
ции или лишь некоторые из них, опираясь на определенные критерии.
В некоторых случаях нужно перебрать в цикле все элементы после­
довательности или некоторые из ее элементов. Чаще бывает нужно
обойти элементы в прямой последовательности, но иногда желатель­
но сделать это в обратном порядке. Вы можете сделать это с помо­
щью стандартного оператора цикла for. Однако, при этом возникнут
некоторые неудобства, от которых помогут избавиться интерфейсы
IEnumerable и IEnumerator. Давайте посмотрим, что за неприятности
могут возникать. Рассмотрим цикл в листинге 6.5.

Листинг 6.5. Обход элементов коллекции
// Создать переменную с общим счетом
int Total = 0;

// Обойти список объектов слева направо
for(int i=0; i<MyList.Count; i++)
{
 // Выбрать число из списка
 int MyNumber = MyList[i];

 // Увеличить общий счет
 Total += MyNumber;
}

С циклом for связаны три основные неприятности. Начнем с пер­
вых двух. Во-первых, синтаксис не особенно подходит циклу, во всем
теле цикла for мы вынуждены использовать числовой итератор (i) для
доступа к каждому элементу массива. Во-вторых, сам итератор не га­
рантирует защиты от выхода за границы последовательности. Он мо­
жет увеличиваться, выходя за верхний предел массива, и уменьшать­
ся, выходя за нижний предел, вызывая ошибку выхода за границы.

Эти проблемы можно решить до определенной степени примене­
нием цикла foreach, который не выходит за границы и использует
простой синтаксис, как показано в листинге 6.6.

Листинг 6.6. Оператор цикла foreach
// Создать переменную с общим счетом
int Total = 0;

// Обойти список объектов слева направо

Интерфейсы IEnumerable и IEnumerator    211

foreach(int Number in MyList)
{
 // Увеличить общий счет
 Total += Number;
}

Цикл foreach проще и лучше читается, но в нем содержится нечто
большее, чем это кажется на первый взгляд. Цикл foreach работает
только с классами, реализующими интерфейс IEnumerable, которые
должны возвращать экземпляр интерфейса IEnumerator. Итак, объект,
пригодный для работы в цикле foreach, должен реализовать эти два ин­
терфейса. Возникает вопрос, для чего такая сложность при реализации
простого обхода элементов. Дело в том, что интерфейсы IEnumerable
и IEnumerator не только решают две первые проблемы – упрощают син­
таксис и гарантируют отсутствие выхода за границы, – но также реша­
ют третью задачу. В частности, они позволяют обойти в цикле объек­
ты, которые не являются массивами. То есть интерфейсы IEnumerable
и IEnumerator позволяют перебирать объекты разных типов, как если
бы они были массивами. Это, несомненно, мощные инструменты. Да­
вайте рассмотрим их в действии на практическом примере.

Перебор врагов с помощью интерфейса IEnumerator
Возьмем, к примеру, ролевую игру на средневековую тему, где игровой
мир населен злыми волшебниками (класс Wizard). Пусть эти волшеб­
ники появляются в случайных местах и в случайные моменты време­
ни, они могут нанести вред игроку своими заклинаниями и прочими
злодеяниями. Из-за случайности их появления мы не можем знать
заранее, сколько волшебников находится в сцене в текущий момент
и где они находятся. Однако, есть важные причины отыскать всех
волшебников, например, чтобы деактивировать их, скрыть, заставить
замереть, уничтожить или, может быть, пересчитать их, чтобы пре­
дотвратить перенасыщение сцены злыми волшебниками. Итак, не­
зависимо от случайного характера появления волшебников в сцене,
есть веские причины иметь доступ ко всем волшебникам.

Мы уже видели в главе 2, «Отладка», один способ получения пол­
ного списка всех волшебников, как показано в листинге 6.7.

Листинг 6.7. Получение списка объектов определенного типа
// Получить список волшебников
Wizard[] WizardsInScene = Object.FindObjectsOfType<Wizard>();

// Обойти элементы списка

212    Работа с фреймворком Mono

foreach (Wizard W in WizardsInScene)
{
 // Обратиться к каждому объету Wizard через W
}

Функция FindObjectsOfType имеет один существенный недоста­
ток – она выполняется медленно и серьезно снижает производитель­
ность. Даже в документации к Unity (http://docs.unity3d.com/ScriptRe-
ference/Object.FindObjectsOfType.html) можно найти рекомендации не
использовать ее в тех местах, где она будет часто вызываться.

	 Проект, демонстрирующий использование интерфейсов IEnumerator
и IEnumerable, можно найти в пакете примеров к книге, в папке Chapter06\
Enumerators.

Однако, тот же результат можно получить с помощью интерфейсов
IEnumerable и IEnumerator, и это позволит избежать значительных по­
терь производительности. С помощью этих двух интерфейсов мож­
но эффективно обойти всех волшебников в сцене, используя цикл
foreach, как если бы они находились в массиве (см. листинг 6.8).

Листинг 6.8. Обход всех объектов с помощью интерфейсов IEnumerable
и IEnumerator
01 using UnityEngine;
02 using System.Collections;
03 using System.Collections.Generic;
04 //--
05 // Класс наследует IEnumerator
06 // Поддержка границ для безопасности итераций
07 public class WizardEnumerator : IEnumerator
08 {
09 // Текущий объект, на который указывает итератор
10 private Wizard CurrentObj = null;
11 //--
12 // Переопределить метод перехода к следующему элементу
13 public bool MoveNext()
14 {
15 // Получить следующего волшебника
16 CurrentObj = (CurrentObj==null) ? Wizard.FirstCreated :
 CurrentObj.NextWizard;
17
18 // Вернуть следующего волшебника
19 return (CurrentObj != null);
20 }
21 //--
22 // Переустановить итератор на первого волшебника
23 public void Reset()
24 {

Интерфейсы IEnumerable и IEnumerator    213

25 CurrentObj = null;
26 }
27 //--
28 // Свойство C# для доступа к текущему волшебнику
29 public object Current
30 {
31 get{return CurrentObj;}
32 }
33 //--
34 }
35 //--
36 // Пример класса, определяющего объект волшебника
37 // Наследует IEnumerable, что позволяет обходить объекты в цикле foreach
38 [System.Serializable]
39 public class Wizard : MonoBehaviour, IEnumerable
40 {
41 //--
42 // Ссылка на последнего созданного волшебника
43 public static Wizard LastCreated = null;
44
45 // Ссылка на первого созданного волшебника
46 public static Wizard FirstCreated = null;
47
48 // Ссылка на следующего волшебника в списке
49 public Wizard NextWizard = null;
50
51 // Ссылка на предыдущего волшебника в списке
52 public Wizard PrevWizard = null;
53
54 // Имя данного волшебника
55 public string WizardName = "";
56 //--
57 // Конструктор
58 void Awake()
59 {
60 // Обновить ссылку на первого созданного волшебника?
61 if(FirstCreated==null)
62 FirstCreated = this;
63
64 // Обновить ссылку на последнего созданного волшебника?
65 if(Wizard.LastCreated != null)
66 {
67 Wizard.LastCreated.NextWizard = this;
68 PrevWizard = Wizard.LastCreated;
69 }
70
71 Wizard.LastCreated = this;
72 }
73 //--
74 // Вызывается перед уничтожением объекта

214    Работа с фреймворком Mono

75 void OnDestroy()
76 {
77 // Переустановить ссылки, если уничтожается объект в середине цепочки
78 if(PrevWizard!=null)
79 PrevWizard.NextWizard = NextWizard;
80
81 if(NextWizard!=null)
82 NextWizard.PrevWizard = PrevWizard;
83 }
84 //--
85 // Возвращает данный класс как итератор
86 public IEnumerator GetEnumerator()
87 {
88 return new WizardEnumerator();
89 }
90 //--
91 }
92 //---

Ниже приводится несколько комментариев к листингу 6.8:
�� Строки 07 и 39: объявляются два класса. Первый класс, Wizard
Enumerator, реализует интерфейс IEnumerator, и второй класс,
Wizard, реализует интерфейс IEnumerable. Экземпляр класса
WizardEnumerator просто перебирает коллекцию волшебников,
запоминая текущего волшебника в процессе итераций. Для пе­
ребора всех волшебников в сцене он использует члены класса
Wizard, как мы это увидим в следующих разделах.

�� Строки 13, 23 и 29: класс WizardEnumerator реализует методы
и свойства IEnumerator, в частности методы MoveNext (выполня­
ет переход к следующему волшебнику), Reset (переустанавли­
вает итератор в начало, на первого волшебника) и Current (воз­
вращает текущего волшебника).

�� Строка 39: класс Wizard инкапсулирует свойства и методы вол­
шебника и наследует два класса: MonoBehaviour и IEnumerable. То
есть, все свойства обоих классов собраны вместе в этом произ­
водном классе. Он обеспечивает поддержку нескольких пере­
менных, позволяющих в любой момент выполнить обход всех
волшебников в сцене. Во-первых, класс Wizard содержит стати­
ческие свойства FirstCreated и LastCreated (являются глобаль­
ными для всех экземпляров класса Wizard). Эти переменные
устанавливаются при создании объектов (обратите внимание
на строку 58 в функции Awake).

�� Строки 48 и 52: класс Wizard также поддерживает переменные
экземпляра NextWizard и PrevWizard. Они реализуют двусвяз­

Интерфейсы IEnumerable и IEnumerator    215

ный список, то есть каждый экземпляр класса Wizard указывает
на предыдущий и следующий экземпляры, что позволит после­
довательно обходить всех волшебников. Первый волшебник
будет хранить в переменной PrevWizard значение null, а послед­
ний – то же значение null в переменной NextWizard. Эти пере­
менные и делают возможным перебор мастеров без создания
массива мастеров.

�� Строка 86: метод GetEnumerator возвращает экземпляр класса
Enumerator. Этого требует интерфейс IEnumerable для обхода
в цикле foreach всех волшебников.

Вместе классы Wizard и WizardEnumerator обеспечивают простой
и быстрый способ обхода объектов Wizard в цикле, без создания мас­
сива. Чтобы убедиться в этом, рассмотрим пример в листинге 6.9,
перечисляющий всех волшебников в сцене.

Листинг 6.9. Перечисление всех волшебников в сцене
void Update()
{
 // Нажмите пробел, чтобы запустить перечисление волшебников
 if(Input.GetKeyDown(KeyCode.Space))
 {
 // Получить первого волшебника
 Wizard WizardCollection = Wizard.FirstCreated;

 // Если есть хотя бы один волшебник, начать обход
 if(Wizard.FirstCreated != null)
 {
 // Цикл по всем волшебникам
 foreach(Wizard W in WizardCollection)
 Debug.log (W.WizardName);
 }
 }
}

Также есть возможность перечислить всех волшебников без исполь­
зования цикла foreach, а напрямую обращаясь к объекту Enumerator,
как показано в листинге 6.10.

Листинг 6.10. Перечисление всех волшебников без использования
цикла foreach
void Update()
{
 // Нажмите пробел, чтобы запустить перечисление волшебников
 if(Input.GetKeyDown(KeyCode.Space))
 {

216    Работа с фреймворком Mono

 // Получить итератор (экземпляр типа Enumerator)
 IEnumerator WE = Wizard.FirstCreated.GetEnumerator();
 while(WE.MoveNext())
 {
 Debug.log(((Wizard)WE.Current).WizardName);
 }
 }
}

Строки и регулярные выражения
Работа с текстовыми данными важна, и важна по многим причи­
нам. Если нужно вывести субтитры, показать в игре текст, а также
реализовать поддержку нескольких языков, вам придется работать
с текстом, в частности с текстовыми ресурсами. В Unity к тестовым
ресурсам относятся любые текстовые файлы, включенные в проект
Unity, и каждый тестовый ресурс интерпретируется как одна длин­
ная строка, даже когда речь идет о нескольких строках (разделителем
строк служит управляющий символ \n). Как только в коде появля­
ются такие строки, тут же обычно возникает необходимость их обра­
ботки разными способами. Давайте рассмотрим некоторые главные
операции со строками.

Null, пустые строки и пробелы
При обработке строк не всегда можно положиться на их коррект­
ность, иногда строки неправильно сформированы и дальнейшая ра­
бота с ними не имеет смысла. По этой причине часто бывает нужно
проверить их перед обработкой. Обычно сначала проверяется – не
передано ли в качестве строки значение null, а затем (если значение
не null) определяется длина строки, потому что если ее длина равна 0,
значит строка пустая и, следовательно, неправильная.

Также часто бывает желательно исключить строки, состоящие
только из пробелов, потому что обычно такие строки не содержат ни­
чего, что требовало бы обработки. Можно проверять строки на соот­
ветствие (точнее, несоответствие) каждому из этих условий в отдель­
ности, однако класс string в .NET предлагает возможность выполнить
весь комплекс проверок сразу – с помощью метода IsNullOrWhiteSpace.
Проблема, однако в том, что данный метод появился только в .NET 4.5,
и Mono не поддерживает его. Это означает, что этот метод придется
реализовать вручную, как показано в листинге 6.11.

Строки и регулярные выражения    217

Листинг 6.11. Реализация комплексной проверки строк

using UnityEngine;
using System.Collections;
//---
// Расширенный класс, добавляющий проверку на null и пробелы
public static class StringExtensions {
 public static bool IsNullOrWhitespace(this string s){
 return s == null || s.Trim().Length == 0;
 }
}
//---
public class StringOps : MonoBehaviour
{
 // Проверить строку
 public bool IsValid(string MyString)
 {
 // Проверить на null и пробельные символы
 if(MyString.IsNullOrWhitespace()) return false;
 // Выполнить другие проверки
 return true;
 }
}
//---

Сравнение строк
Часто бывает нужно сравнить две строки, обычно на равенство, что­
бы определить, являются ли две строки идентичными. Сделать это
можно с помощью оператора ==, например так: string1 == string2, но
для большей скорости лучше использовать метод theString.Equals.
Этот метод имеет несколько версий и все они выполняются с разной
скоростью. В общем случае предпочтительнее выбирать версию с па­
раметром, имеющим тип StringComparison. Если сравниваемые типы
указаны явно, операция сравнения будет работать быстрее, как по­
казано в листинге 6.12:

Листинг 6.12. Сравнение строк
// Сравнение строк
public bool IsSame(string Str1, string Str2)
{
 // Без учета регистра символов
 return string.Equals(Str1, Str2,
 System.StringComparison.CurrentCultureIgnoreCase);
}

218    Работа с фреймворком Mono

	 Более подробную информацию о методе String.Compare можно найти
в MSDN по адресу http://msdn.microsoft.com/ru-ru/library/system.string.
compare%28v=vs.110%29.aspx.

Другой способ быстрого сравнения двух строк на равенство за­
ключается в сравнении хэш-кодов, для этого строки преобразуются
в уникальные целые числа, а затем выполняется сравнение этих це­
лых чисел, а не самих строк, как показано в листинге 6.13.

Листинг 6.13. Сравнение строк по их хэш-кодам
// Сравнение строк по их хэш-кодам
public bool StringHashCompare(string Str1, string Str2)
{
 int Hash1 = Animator.StringToHash(Str1);
 int Hash2 = Animator.StringToHash(Str2);
 return Hash1 == Hash2;
}

	 Для получения хэш-кодов строк можно также использовать функцию
String.GetHashCode из библиотеки Mono. За более подробной информаци-
ей обращайтесь по адресу http://msdn.microsoft.com/ru-ru/library/system.
string.gethashcode%28v=vs.110%29.aspx.

Однако иногда нужно выяснить не равенство строк, а определить
лексикографический порядок строк, то есть какая из строк будет рас­
полагаться впереди в алфавитном порядке. Реализовать это можно
с помощью функции String.Compare. Однако, опять же, старайтесь ис­
пользовать версию с параметром типа StringComparison, как показано
в листинге 6.14. В этой версии число -1 возвращается, если Str1 распо­
лагается перед Str2, 1 – если Str2 располагается перед Str1, и 0 – если
две строки равны.

Листинг 6.14. Определение лексикографического порядка следования
строк
// Определяет порядок сортировки
public int StringOrder (string Str1, string Str2)
{
 // Без учета регистра символов
 return string.Compare(Str1, Str2,
 System.StringComparison.CurrentCultureIgnoreCase);
}

	 Хотя функция string.Compare и возвращает 0, сообщая о равенстве строк,
не используйте ее с целью проверки равенства. Для этого лучше исполь-
зовать функцию string.Equals или хэш-коды, так как они работают гораздо
быстрее, чем string.Compare.

Строки и регулярные выражения    219

Форматирование строк
При создании элементов пользовательского интерфейса, таких как
табло с результатами, список имен игроков, отображение денежных
расчетов или индикаторы ресурсов, приходится выводить не только
постоянный текст, но и вставлять в него числовые значения, напри­
мер соединив слово «Score:» со строкой, содержащей фактический
результат, который будут меняться со временем, в зависимости от
действий игрока. Для этого можно использовать, например, метод
String.Format, как показано в листинге 6.15.

Листинг 6.15. Конструирование строки из трех чисел
// Конструирование строки из трех чисел
public void BuildString(int Num1, int Num2, float Num3)
{
 string Output = string.Format(
 "Number 1 is: {0}, Number 2 is: {1}, Number 3 is: {2}",
 Num1, Num2, Num3);
 Debug.log (Output.ToString("n2"));
}

Цикл по символам строке
Мы уже знакомы с интерфейсами IEnumerable и IEnumerator. К сча­
стью, эти интерфейсы поддерживаются строками и могут использо­
ваться для обхода символов в них. Для этого можно использовать сам
интерфейс IEnumerator или цикл foreach. Рассмотрим оба способа, как
показано в листингах 6.16 и 6.17.

Листинг 6.16. Обход символов в цикле foreach
// Обход символов в цикле foreach
public void LoopLettersForEach(string Str)
{
 // Для каждого символа
 foreach(char C in Str)
 {
 // Вывести символ в консоль
 Debug.log (C);
 }
}

Листинг 6.17. Обход символов с помощью итератора
// Обход символов с помощью итератора
public void LoopLettersEnumerator(string Str)
{
 // Получить перечислитель

220    Работа с фреймворком Mono

 IEnumerator StrEnum = Str.GetEnumerator();

 // Перейти к следующему символу
 while(StrEnum.MoveNext())
 {
 Debug.log ((char)StrEnum.Current);
 }
}

Создание строк
Чтобы код получился более читаемым, чистым, надежным и вообще
полнее соответствовал стилистике .NET, применяйте следующее пра­
вило при создании строк. Избегайте инициализации строковых пере­
менных таким способом: string MyString = "";. Вместо этого приме­
няйте способ объявления строк с одновременным присваиванием им
начальных значений с помощью функции String.Empty:

string MyString = string.Empty;

Поиск в строках
Если вы имеете дело с несколькими строками текста, прочитанными
из файла, может потребоваться найти первое вхождение строки мень­
шего размера в строке большего размера, например, определенное сло­
во в строке. Реализовать это можно с помощью метода String.indexOf.
Если совпадение найдено, функция вернет положительное целое чис­
ло, указывающее позицию первого символа найденного слова в стро­
ке, как смещение от начала строки до первой буквы слова. Если со­
впадений не найдено, функция вернет -1, как показано в листинге 6.18.

Листинг 6.18. Поиск слова в строке
// Ищет слово в строе и возвращает индекс
// первого найденного вхождения
public int SearchString(string LargerStr, string SearchStr)
{
 // Без учета регистра символов
 return LargerStr.IndexOf(SearchStr,
 System.StringComparison.CurrentCultureIgnoreCase);
}

Регулярные выражения
Иногда может потребоваться выполнить более сложный поиск в очень
больших строках, например, найти все слова в строке, начинающие­
ся с определенной буквы, начинающиеся с a и заканчивающиеся на t
и т. д. В этих случаях нужно, чтобы результаты поиска, если таковые

Строки и регулярные выражения    221

имеются, сохранялись в массиве. Реализовать это можно с помощью
регулярных выражений. Регулярные выражения позволяют опре­
делить искомую строку, используя специальный синтаксис, задав
шаблон поиска. Например, строка [dw]ay означает: «найти все слова,
которые заканчиваются на ay и начинаются с d или w». То есть найти
все вхождения слов day или way. Применить регулярное выражение
к большей строке можно с помощью класса Regex. Фреймворк .NET
предоставляет доступ к регулярным выражениям с помощью про­
странства имен RegularExpressions, как это показано в листинге 6.19.

Листинг 6.19. Регулярные выражения
01 //---
02 using UnityEngine;
03 using System.Collections;
04 // Подключить пространство имен с регулярными выражениями
05 using System.Text.RegularExpressions;
06 //---
07 public class RGX : MonoBehaviour
08 {
09 // Шаблон поиска
10 string search = "[dw]ay";
11
12 // Большая строка для поиска
13 string txt = "hello, today is a good day to do things my way";
14
15 // Этот метод используется для инициализации
16 void Start ()
17 {
18 // Выполнить поиск и вернуть первый результат в m
19 Match m = Regex.Match(txt, search);
20
21 // Пока обнаруживаются вхождения, продолжать поиск
22 while(m.Success)
23 {
24 // Вывести очередной результат в консоль
25 Debug.log (m.Value);
26
27 // Получить следующий результат
28 m = m.NextMatch();
29 }
30 }
31 }
32 //---

Ниже приводится несколько комментариев к листингу 6.19:
�� Строка 05: пространство имен RegularExpressions обязательно

должно подключаться во всех исходных файлах, использую­
щих поиск с помощью регулярных выражений.

222    Работа с фреймворком Mono

�� Стоки 09 и 13: строка search определяет регулярное выражение.
Строка txt определяет большую строку, в которой нужно най­
ти строку, соответствующую регулярному выражению. Строка
search определяет поиск всех вхождений слов day и way.

�� Строка 19: метод Regex.Match вызывается для поиска регуляр­
ного выражения search в строке txt. Результаты поиска сохра­
няются в локальной переменной m. C помощью этой перемен­
ной можно просмотреть все результаты в цикле.

�� Строка 25: результаты в m будут включать три совпадения (не
два) для строки txt: подстроку day, являющуюся частью слова
today, а также отдельные слова day и way.

	 Более подробную информацию о регулярных выражениях можно найти по
адресу https://ru.wikipedia.org/wiki/Регулярные_выражения.

Произвольное количество аргументов
Хотя мы не вдавались в технические подробности .NET или Mono,
наше исследование обеих этих библиотек коснулось нескольких
функций, которые принимают, казалось бы, бесконечную цепь ар­
гументов, например функция String.Format. Функции String.Format
можно передать столько аргументов, сколько понадобится для вклю­
чения в отформатированную строку. В этом разделе я хочу сделать
небольшое отступление, чтобы показать, как писать функции, кото­
рые принимают и обрабатывают неограниченное число аргументов;
они создаются очень легко. Взгляните на следующую функцию в ли­
стинге 6.20, которая предназначена для суммирования массивов це­
лых чисел неограниченной длины:

Листинг6.20
01 public int Sum(params int[] Numbers)
02 {
03 int Answer = 0;
04
05 for(int i=0; i<Numbers.Length; i++)
06 Answer += Numbers[i];
07
08 return Answer;
09 }

Ниже приводится несколько комментариев к листингу 6.20:
�� Строка 01: чтобы функция могла принимать неограничен­

ное число аргументов, нужно добавить ключевое слово params
и объявить аргумент-массив.

Язык интегрированных запросов    223

�� Строка 05: аргумент params можно обрабатывать как обычный
массив.

Язык интегрированных запросов
Очевидно, что игры работают с большим количеством данных, не
только со строками, но также с объектами, базами данных, таблицами,
документами и многими другими видами данных, их слишком много,
чтобы перечислить их все. Однако, несмотря на обширность и разно­
образие данных, всегда есть общая потребность фильтровать данные
и просматривать ограниченные их подмножества, имеющие отноше­
ние к текущему моменту. Например, если имеется полный массив
(или список) всех волшебников в сцене, можно было бы ограничить
его, оставив только волшебников, чье здоровье составляет менее 50
процентов и чьи оборонные показатели меньше 5 пунктов. Это может
понадобиться для организации массового бегства волшебников на по­
иски зелья, восстанавливающего здоровье, прежде чем они возобновят
атаки на игрока. Давайте теперь рассмотрим реализацию этого сцена­
рия с помощью технологии языка интегрированных запросов Linq.

	 Законченный проект примера использования языка интегрированных запро-
сов можно найти в пакете с примерами для книги, в папке Chapter06\Linq\.

Для начала создадим упрощенный пример класса злого волшебни­
ка, как показано в листинге 6.21. Этот класс включает переменные
Health и Defense, имеющие решающее значение для реализации нашей
логики поведения.

Листинг 6.21. Класс злого волшебника
//---
using UnityEngine;
using System.Collections;
//---
public class Enemy : MonoBehaviour
{
 public int Health = 100;
 public int Mana = 20;
 public int Attack = 5;
 public int Defense = 10;
}
//---

Теперь, получив коллекцию всех объектов волшебников в сцене, ее
можно отфильтровать в соответствии с нашими критериями, и полу­
чить меньший массив, как показано в листинге 6.22.

224    Работа с фреймворком Mono

Этот код перебирает все элементы коллекции, пропускает их через
условный оператор if, и, если они удовлетворяют условию, добавляет
их в результирующий массив. Условием в нашем случае является уро­
вень здоровья менее 50 процентов и защитные способности меньше 5
пунктов.

Листинг 6.22. Фильтрация объектов
// Получает отфильтрованный список врагов
public void FindEnemiesOldWay()
{
 // Получить список всех врагов
 Enemy[] Enemies = Object.FindObjectsOfType<Enemy>();

 // Отфильтрованный список
 List<Enemy> FilteredData = new List<Enemy>();

 // Обойти в цикле всех врагов и проверить
 foreach(Enemy E in Enemies)
 {
 if(E.Health <= 50 && E.Defense < 5)
 {
 // Соответствующий враг найден
 FilteredData.Add (E);
 }
 }

 // Теперь можно обработать отфильтрованные данные
 // Все элементы в FilteredData соответствуют критериям
 foreach(Enemy E in FilteredData)
 {
 // Обработать врага E
 Debug.log (E.name);
 }
}

Этот код выделяет из большего набора элементы, опираясь на за­
данные условия, и помещает их в меньший набор. Однако, язык ин­
тегрированных запросов Linq позволяет достичь тех же результатов
меньшим количеством строк кода, и часто обеспечивает более высо­
кую производительность. Язык интегрированных запросов Linq яв­
ляется специализированным языком высокого уровня для выполне­
ния запросов к наборам данных, таким как массивы, объекты, базы
данных и документы XML. Запросы Linq автоматически переводятся
на язык, соответствующий используемому набору данных (напри­
мер, SQL для баз данных). Целью является извлечение результатов
в обычный массив.

Язык интегрированных запросов    225

В листинге 6.23 демонстрируется альтернативный подход с ис­
пользованием Linq, решающий ту же задачу, что и функция в листин­
ге 6.22.

Листинг 6.23. Фильтрация объектов с помощью Linq
01 using UnityEngine;
02 using System.Collections;
03 using System.Collections.Generic;
04 using System.Linq;
05 //---
06 public void FindEnemiesLinqWay()
07 {
08 // Получить список всех врагов
09 Enemy[] Enemies = Object.FindObjectsOfType<Enemy>();
10
11 // Выполнить поиск
12 Enemy[] FilteredData = (from EnemyChar in Enemies
13 where EnemyChar.Health <= 50 && EnemyChar.Defense < 5
14 select EnemyChar).ToArray();
15
16 // Теперь можно обработать отфильтрованные данные
17 // Все элементы в FilteredData соответствуют критериям
18 foreach(Enemy E in FilteredData)
19 {
20 // Обработать врага E
21 Debug.log (E.name);
22 }
23 }
24 //---

Ниже приводится несколько комментариев к листингу 6.23:
�� Строки 03–04: чтобы использовать Linq, необходимо подклю­

чить пространство имен System.Collections.Linq, а для исполь­
зования объектов List следует подключить пространство имен
System.Collections.Generic.

�� Строки 12–14: основная часть кода, связанная с Linq, находит­
ся здесь. Она состоит из трех основных частей. Во-первых, ука­
зывается источник исходных данных, в данном случае – мас­
сив врагов Enemies. Во-вторых, определяются критерии поиска,
а именно, EnemyChar.Health <= 50 && EnemyChar.Defense < 5. Затем,
после определения критерия, выбирается объект для вклю­
чения в множество результатов, в данном случае – EnemyChar.
И, наконец, результаты преобразуются в массив с помощью
функции ToArray.

	 Более подробную информацию о Linq можно найти в MSDN по адресу http://
msdn.microsoft.com/ru-ru/library/bb397926.aspx.

226    Работа с фреймворком Mono

Linq и регулярные выражения
Язык интегрированных запросов Linq, конечно, не обязательно дол­
жен работать в изоляции. Его можно объединить, например, с регу­
лярными выражениями, для извлечения строк, соответствующих
заданному шаблону, и преобразования результатов в массив. Такое
соединение полезно при обработке файлов с данными, разделенны­
ми запятыми (CSV-файлов), – специально отформатированные тек­
стовые файлы, значения в которых отделены друг от друга запяты­
ми. Язык интегрированных запросов Linq и регулярные выражения
можно использовать для быстрого и удобного переноса каждого из
значений в отдельный элемент массива. Например, рассмотрим игру,
где вновь созданным персонажам даются человеческие имена. Сами
имена хранятся в формате CSV и делятся на две группы: мужские
и женские. При создании мужских и женских персонажей им долж­
ны быть присвоены соответствующие имена, полученные из данных
в формате CSV, как показано в листинге 6.24.

Листинг 6.24. Извлечение имен из списков
01 // Генерирует женские имена
02 // Регулярное выражение – шаблон поиска
03 // Извлечение всех имен, начинающихся с ‘female:’,
 но без включения префикса в результат
04 string search = @"(?<=\bfemale:)\w+\b";
05
06 // CSV-данные – имена персонажей
07 string CSVData =
 "male:john,male:tom,male:bob,female:betty,female:jessica,male:dirk ";
08
09 // Извлечь имена с префиксом ‘female’.
10 string[] FemaleNames = (from Match m in Regex.Matches(CSVData,
search)
11 select m.Groups[0].Value).ToArray();
12
13 // Вывести все найденные женские имена
14 foreach(string S in FemaleNames)
15 Debug.log (S);
16
17 // Выбрать случайное женское имя из коллекции
18 string RandomFemaleName =
 FemaleNames[Random.Range(0, FemaleNames.Length)];

Ниже приводится несколько комментариев к листингу 6.24:
�� Строка 04: переменная Search определяет регулярное выраже­

ние для поиска по шаблону. В данном случае эта переменная

Работа с текстовыми ресурсами    227

определяет все слова с префиксом female:. Однако сам префикс
не будет включен в полученные строки.

�� Строка 07: переменная CSVData определяет строку CSV с муж­
скими и женскими именами, отформатированную нужным об­
разом. Эта строка, по сути, представляет собой базу данных или
источник данных.

�� Строки 10–11: здесь Linq используется в сочетании с регуляр­
ным выражением для извлечения из строки CSV всех женских
имен без префиксов. Затем список преобразуется в массив
строк FemaleNames.

	 Строки и символ @. Обратите внимание на строку 04 в листинге 6.24: перед
строкой регулярного выражения стоит символ @. Этот префикс в C# опреде-
ляется соглашением, позволяющим записать литеральную строку в исходный
код. Такая строка может содержать управляющие последовательности (на-
пример, \), не нарушающие целостности строки и не вызывающие ошибок.

Работа с текстовыми ресурсами
Во всех рассмотренных нами примерах текст хранился непосред­
ственно в строках, но в Unity существует возможность работы с тек­
стовыми файлами. В частности, текст можно загружать из внешних
источников. Сейчас я опишу, как это делается.

Текстовые ресурсы – статическая загрузка
Первый способ заключается в перетаскивании текстового файла
в проект Unity, при этом текст будет импортирован в ресурс. Импор­
тированный файл имеет тип TextAssets, как показано на рис. 6.3.

Вы можете получить доступ к файлу и его текстовым данным из
любого файла сценария, объявив общедоступную переменную с ти­
пом данных TextAsset, как показано в листинге 6.25.

Листинг 6.25. Доступ к текстовому ресурсу
//--
using UnityEngine;
using System.Collections;
//--
public class TextFileAccess : MonoBehaviour
{
 // Ссылка на текстовый файл
 public TextAsset TextData = null;

 // Этот метод выполняет инициализацию

228    Работа с фреймворком Mono

 void Start ()
 {
 // Вывести текст из файла
 }
}
//--

Этот пример подразумевает, что вы должны перетащить файл
TextAsset в слот Text Data (Текстовые данные) сценария, в инспекто­
ре объектов, как показано на рис. 6.4.

Текстовые ресурсы – загрузка из локальных файлов
Другой метод предназначен для загрузки внешних текстовых данных,
то есть из файлов с локальных дисков. Текстовые данные, загружае­
мые таким способом, читаются динамически, из сценария, причем не
обязательно при запуске сцены, а когда выполняется соответствую­
щий код. Это значит, что для больших текстовых файлов со сложной
обработкой замедление выполнения становится серьезным факто­
ром. Поэтому предпочтительнее использовать статическую загрузку
текстовых ресурсов. Я рекомендую выполнять динамическую загруз­
ку и обработку всех ресурсов при запуске сцены, чтобы избежать за­
медления игры, как показано в листинге 6.26.

Рис. 6.3. Импорт текстовых файлов в Unity
как ресурсов типа TextAssets

Работа с текстовыми ресурсами    229

Листинг 6.26. Динамическая загрузка текстовых ресурсов
using UnityEngine;
using System.Collections;
using System.IO;

// Функция для загрузки текстовых данных из внешнего файла
public static string LoadTextFromFile(string Filename)
{
 // Если файл не найден, вернуть пустую строку
 if(!File.Exists(Filename)) return string.Empty;

 // Файл найден, загрузить текст из него
 return File.ReadAllText(Filename);
}

Функция в листинге 6.26 загружает весь текстовый файл в один
строковый объект. Вы можете предпочесть построчную обработку
текстового файла, особенно если это файл с настройками, где отдель­
ные значения указаны в отдельных строках. Этот способ загрузки де­
монстрирует пример в листинге 6.27.

Листинг 6.27. Построчная загрузка текстового ресурса
// Функция для построчной загрузки текстовых данных в массив
public static string[] LoadTextAsLines(string Filename)
{
 // Если файл не найден, вернуть пустой массив
 if(!File.Exists(Filename)) return null;

 // Прочитать строки
 return File.ReadAllLines(Filename);
}

Рис. 6.4. Доступ к текстовому файлу из сценария

230    Работа с фреймворком Mono

Текстовые ресурсы – загрузка из INI-файлов
В число поддерживаемых форматов текстовых файлов входят так­
же INI-файлы. При создании игр в Unity этот формат используется
нечасто, так как обычно разработчики применяют для хранения на­
строек класс PlayerPreferences. Тем не менее, INI-файлы обладают
преимуществом хранения всех настроек приложения в одном месте
и в одном формате, независимо от платформы. Это может стать ве­
ской причиной использовать INI-файлы. В листинге 6.28 приводится
пример INI-файла с парами ключ/значение.

Листинг 6.28. Пример INI-файла
ApplicationName=MyTestApp
Date=1st Nov 2014
Author=Alan Thorn
Engine=Unity
Build=Production

Идеальной структурой для хранения данных из INI-файла является
словарь, который также основан на парах ключ/значение. По этой при­
чине лучше всего загружать INI-файл в словарь. Однако, ни Unity, ни
Mono не предоставляют встроенной поддержки для этого, то есть, мы
должны сами написать такую поддержку, как показано в листинге 6.29.

Листинг 6.29. Загрузка INI-файла в словарь
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Text;

// Функция для чтения простых INI-файлов в словарь
public static Dictionary<string, string> ReadINIFile(string Filename)
{
 // Если файл не найден, вернуть null
 if(!File.Exists(Filename)) return null;

 // Создать новый словарь
 Dictionary<string, string> INIFile = new Dictionary<string, string>();

 // Создать новый объект чтения из потока
 using (StreamReader SR = new StreamReader(Filename))
 {
 // Переменная для хранения текущей строки
 string Line;

 // Продолжать читать допустимые строки
 while(!string.IsNullOrEmpty(Line = SR.ReadLine()))
 {

Работа с текстовыми ресурсами    231

 // Удалить ведущие и конечные пробелы
 Line.Trim();

 // разбить строку на ключ и значение
 string[] Parts = Line.Split(new char[] {‘=’});

 // Добавить в словарь
 INIFile.Add(Parts[0].Trim(), Parts[1].Trim());
 }
 }

 // Вернуть словарь
 return INIFile;
}

Словарь, возвращаемый этой функцией, будет иметь ту же струк­
туру, что и INI-файл. Соответственно, значения можно получать сле­
дующим образом: Value = MyDictionary["Key"];. Также есть возмож­
ность перебрать все ключи и значения из словаря в цикле foreach, как
показано в листинге 6.30.

Листинг 6.30. Обход всех ключей и значений в словаре
// Создать словарь из INI-файла
Dictionary<string,string> DB = ReadINIFile(@"c:\myfile.ini");

// Обойти все записи в словаре
foreach(KeyValuePair<string, string> Entry in DB)
{
 // Цикл по каждой паре ключ/значение
 Debug.log("Key: " + Entry.Key + " Value: " + Entry.Value);
}

Текстовые ресурсы – загрузка из CSV-файлов
Ранее в этой главе мы видели, как обработать CSV-файл с мужскими
и женскими именами. Давайте теперь посмотрим, как загрузить данные
из CSV-файла на диске в массив строк, как показано в листинге 6.31.

Листинг 6.31. Загрузка CSV-файла в массив строк
// Функция читает содержимое файла CSV в массив строк
public static string[] LoadFromCSV(string Filename)
{
 // Если файл не найден, вернуть null
 if(!File.Exists(Filename)) return null;

 // Прочитать весь текст
 string AllText = File.ReadAllText(Filename);

 // Вернуть массив строк
 return AllText.Split(new char[] {‘,’});
}

232    Работа с фреймворком Mono

Текстовые ресурсы – загрузка из Интернета
Если вы разрабатываете многопользовательские игры и нужно полу­
чить доступ к данным игрока или к данным игры через Интернет, на­
пример чтобы сверить пароли с хэшем или обработать элементы веб-
страницы, вам пригодится класс WWW, способный извлекать текстовые
данные из Интернета, как показано в листинге 6.32.

Листинг 6.32. Использование класса WWW
// Извлекает текст из Интернета в строку
public IEnumerator GetTextFromURL(string URL)
{
 // Создать новый объект WWW
 WWW TXTSource = new WWW(URL);

 // Ждать загрузки данных
 yield return TXTSource;

 // Обработать полученный текст
 string ReturnedText = TXTSource.text;
}

	 Более подробную информацию о классе WWW можно найти в электронной
документации Unity по адресу http://docs.unity3d.com/ScriptReference/
WWW.html.

Итоги
В этой главе рассматривался широкий спектр применений фреймвор­
ка Mono на практике. Для этого потребовалось три раздела. В первом
мы исследовали общие структуры хранения данных, используемые
в C#, такие как список, словарь и стек. Затем мы перешли к рассмо­
трению общих подходов к хранению и поиску данных, а также об­
работке строк. Мы также познакомились с применением регулярных
выражений для поиска строк по шаблону и с языком интегрирован­
ных запросов Linq для фильтрации не только строк, но и коллекций
объектов любых типов, доступных в Mono. И, наконец, мы рассмо­
трели различные методы импорта текстовых данных: из внутренних
ресурсов проекта, из локальных файлов, а также из Интернета. В сле­
дующей главе мы переместимся в мир искусственного интеллекта
и познакомимся с выбором маршрутов, конечными автоматами, зо­
ной прямой видимости, системой принятия решений, операциями от­
слеживания лучей и многим другим.

Глава 7

Искусственный
интеллект

Эта глава имеет конкретную практическую направленность. Здесь
мы рассмотрим разработку проекта от начала и до конца – игры
с лабиринтом, который населяют враждебные персонажи с искус­
ственным интеллектом. Эти персонажи способны находить игрока,
преследовать его, нападать и убегать, когда им понадобится восста­
новить свое здоровье, найдя и выпив зелье. На рис.7.1 показана сцена
лабиринта.

Рис. 7.1. Сцена лабиринта

	 Проект AI для этой книги можно найти в пакете примеров для этой главы,
в папке ai.

234    Искусственный интеллект

При реализации проекта мы используем почти все концепции
и идеи, которые рассмотрели в чистом виде выше, вместе с понятия­
ми искусственного интеллекта, такими как конечные автоматы, на­
вигационные меши, зоны прямой видимости и т. д. Чтобы получить
максимальную пользу от чтения этой главы, я рекомендую создать
новый пустой проект и пройти со мной все шаги разработки от начала
до конца. Законченный проект для этой главы можно в пакете при­
меров для этой главы, в папке ai.

Искусственный интеллект в играх
Концепцию интеллекта можно рассматривать с разных позиций: пси­
хологической, научной, философской, духовной, социологической и т.
д. Многие из них весьма существенны. Однако, в видеоиграх это, пре­
жде всего, поведение, и именно в разумности поведения проявляет­
ся интеллект. Может быть поэтому слово «искусственный» является
частью названия. Идея видеоигр заключается, прежде всего, в полу­
чении удовольствия и приобретении опыта. То есть, правдоподоб­
ность для любителей компьютерных игр означает соответствие собы­
тий, происходящих в игре, их реальному опыту. Всякий раз, когда не
управляемые игроком персонажи, такие как злые волшебники, делают
что-то «глупое» (безуспешно пытаются пройти сквозь твердые стены
или бесцельно ходят взад и вперед, впав в ступор), игроки чувствуют,
что что-то идет не так. Они видят неразумность персонажа, неадекват­
ность его поведения конкретной ситуации, которая и не может быть
объяснена происходящим в игре. «Неадекватное» или «глупое» по­
ведение персонажа заставляет игрока признать, что он видит «глюк»
игры, а это выводит его из игрового мира. Поэтому главная цель ис­
кусственного интеллекта в игре заключается в обеспечении способ­
ности персонажей адекватно реагировать на ситуации. В играх, где
применяется искусственный интеллект врагов или противников, не­
обходима настройка его сложности, искусственный интеллект должен
быть не слишком простым и не слишком сложным. С этой точки зре­
ния, создание искусственного интеллекта состоит не в построении ма­
тематической модели человеческого разума и сознания, а только в соз­
дании поведения, соответствующего нашим ожиданиям. Речь пойдет
о создании поведения персонажа, показанного на рис. 7.2, ожидаемого
игроками. Следовательно, это будет искусственный интеллект в виде
внешней формы без внутреннего содержания, но это философское на­
блюдение, и мы не будем его в дальнейшем касаться.

Начало проекта    235

В этой главе мы создадим игру, где игрок находится внутри лаби­
ринта. Здесь игрок сможет атаковать врагов, а враги будут нападать
на игрока. Меш врага опирается персонаж анимированного инжене­
ра, входящего в состав Unity, способный ходить, бегать и прыгать.
Инженер будет исследовать окружающую среду, пытаясь найти игро­
ка, и при его обнаружении настигать и нападать на него. Инженер сам
может быть атакован и, получив повреждения, будет спасаться бег­
ством и искать лечебное зелье для поправки своего здоровья. Итак,
давайте начнем!

Начало проекта
Для начала создадим новый пустой проект Unity с новой сценой.
В этом примере я импортировал несколько пакетов ресурсов Unity,
выбрав в меню пункт Asset ⇒ Import Package (Ресурсы ⇒ Импор­
тировать пакет). Вот эти пакеты: Character Controller (Контроллер
персонажа), Skyboxes (Небо) и Particles (Частицы), как показано на
рис. 7.3. Пакет Character Controller (Контроллер персонажа) содер­

Рис. 7.2. Вражеский персонаж с искусственным интеллектом,
который создан с помощью конструктора мешей Unity

236    Искусственный интеллект

жит меш инженера и его анимации, а также заранее подготовленный
контроллер игрока. Пакет Skyboxes (Небо) содержит привлекатель­
ные виды неба, а пакет Particles (Частицы) будет использован для
создания устройства телепортации.

Кроме того, добавьте в сцену контроллер игрока и меш лабиринта
(можно найти в пакете с примерами для этой книги, в папке assets
для этой главы), и создайте некоторое освещение, чтобы изначально
все выглядело красиво. Меш был создан в программе трехмерного
моделирования, в данном случае Blender (http://www.blender.org/).
Ни один из этих ресурсов не имеет прямого отношения к искус­
ственному интеллекту, но они создают презентабельное окружение,
соответствующее сценарию нашей игры. Детальное описание на­
стройки освещения выходит за рамки этой книги, но необходимые
функции становятся доступны при выборе пункта меню Window
⇒ Lightmapping (Окно ⇒ Освещение), как показано на рис. 7.4.

Рис. 7.3. Импорт ресурсов в проект

Внедрение навигационного меша    237

Более подробную информацию о настройке освещения можно най­
ти в электронной документации Unity по адресу http://docs.unity3d.
com/Manual/Lightmapping.html.

Рис. 7.4. Создание начальной сцены

Внедрение навигационного меша
Вражеские персонажи должны уметь разумно перемещаться по уров­
ню, находить и преследовать игрока, а также искать средства для вос­
становления своего здоровья. Искусственному интеллекту недоста­
точно способности перемещаться по прямой между любыми двумя
точками, так как ему могут помешать препятствия, такие как стены
и другие персонажи. Искусственный интеллект должен изменять на­
правление своего движения при встрече с другими объектами. Чтобы
добиться такой разумности, будет использоваться навигационный
меш. Он представляет собой ресурс невидимого меша, который Unity
автоматически сгенерирует, опираясь на доступность для прохода го­
ризонтальных поверхностей в уровне, то есть поверхностей, которые
идентифицируются как пол. Сама навигационная сетка не содержит
искусственного интеллекта. Навигационный меш является, скорее,
математической моделью со всеми необходимыми данными, по­
зволяющими объектам с искусственным интеллектом успешно рас­
считывать маршрут и пройти весь путь, обходя препятствия, когда
это требуется. Для создания навигационного меша уровня выберите
пункт Window ⇒ Navigation (Окно ⇒ Навигация) в меню приложе­

238    Искусственный интеллект

ния. В результате появится вкладка Navigation Mesh (Навигацион­
ный меш), которая может быть пристыкована к инспектору объектов.

	 Описание принципов внедрения навигационного меша можно найти в элек-
тронной документации Unity по адресу http://docs.unity3d.com/Manual/
Navmeshes.html.

При внедрении навигационного меша можно воспользоваться не­
которыми настройками, изображенными на рис. 7.5.

Рис. 7.5. Подготовка навигационного меша к внедрению

Во-первых, почти всегда требуется изменить значение параметра
Radius (Радиус). Этот параметр определяет радиус воображаемой
окружности вокруг ног персонажей, эта окружность задает их габа­
риты при ходьбе. Если радиус слишком большой, навигационный
меш отображается неправильно или разрывается, а если он слишком
мал, генерация меша займет много времени, а кроме того, персонажи
станут просачиваться сквозь стены. Экспериментальный подход, ос­
нованный на пробах, ошибках и корректировках, позволит получить
значение, оптимальное для вашего проекта. Для этого примера лучше

Внедрение навигационного меша    239

всего подойдет значение 0,2. Если радиус слишком велик, навигаци­
онный меш будет порван в узких местах, что нехорошо, потому что
персонажи не смогут проходить через зауженные проходы, как по­
казано на рис. 7.6.

Рис. 7.6. Разрыв навигационного меша
в узких местах

Во-вторых, навигационный меш (генерируется один раз) может
оказаться расположен выше меша пола. Если это произойдет, вы мо­
жете уменьшить значение 1 в параметре Height Inaccuracy % (Не­
точность по высоте %) из группы Advanced (Дополнительные), как
показано на рис. 7.7. Это предотвратит парение персонажей в возду­
хе. Помните, что после корректировки настроек нужно повторно вне­
дрить навигационный меш, чтобы применить изменения.

На рисунках можно заметить, что сцена содержит два отдельных
лабиринта (левый и правый), не соединенных между собой прохода­
ми. В этом примере персонажи имеют возможность свободно пере­
мещаться между лабиринтами с помощью телепортации.

Для реализации соединения между разделенными навигационны­
ми мешами, позволяющего искусственному интеллекту проклады­
вать маршруты, мы могли бы использовать ссылки между мешами.
Добавим новый меш, который должен послужить площадкой или

240    Искусственный интеллект

платформой для телепортации. Для этого примера я использовал
стандартный параллелепипед с системой частиц для создания нуж­
ного эффекта, но это не существенно. Затем присоедините компонент
ссылки между мешами к объекту меша, как показано на рис. 7.8.

Повторите процедуру для создания второй площадки телепорта­
ции. Свяжите поле Start (Начало) трансформации каждого объекта
с компонентом ссылки между мешами. При этом выбранная площад­
ка телепортации станет стартовой точкой. Затем свяжите поле End
(Конец) трансформации каждого объекта с местом назначения. В ре­
зультате будет установлена связь между двумя площадками телепо­
ртации. Если панель навигации открыта в редакторе Unity и активна,
после установки соединения в окне обзора сцены должна появиться
стрелка соединения, как показано на рис. 7.9. Ссылки между мешами
можно также создавать автоматически. За дополнительной инфор­
мацией обращайтесь по адресу https://www.youtube.com/watch?v=w3-
sSozYph4.

	 Заготовку проекта для этой главы, готовую к реализации искусственного
интеллекта, можно найти в пакете примеров для этой книги, в папке Start.

Рис. 7.7. Уменьшение Height Inaccuracy %
(Неточность по высоте %) помогает приблизить

сгенерированный навигационный меш к полу

Внедрение навигационного меша    241

Рис. 7.8. Создание площадки телепортации
с помощью ссылки между мешами

Рис. 7.9. Определение связей с помощью ссылок между мешами

242    Искусственный интеллект

Создание агента искусственного интеллекта
Теперь создадим агента искусственного интеллекта, который будет
реагировать на действия игрока. Во-первых, агент должен иметь
меш для отображения его в сцене. Для этого я использовал меш
Constructor, который является частью пакета Character Controllers
в Unity, импортированного ранее. Перетащите его из панели Project
(Проект) в сцену и удалите компонент аниматора как показано на
рис. 7.10. Анимация будет важна, но требуемый нам аниматор будет
создан позже.

Рис. 7.10. Добавление меша Constructor
для создания вражеского персонажа

	 Напомню, что мы не воспользовались готовым контроллером третьего
лица, а использовали лишь меш Constructor.

Затем добавьте компонент NavMeshAgent к объекту, выбрав в меню
пункт Component ⇒ Navigation ⇒ Nav Mesh Agent (Компонент ⇒
Навигация ⇒ Агент навигационного меша). Это позволит объекту
использовать навигационный меш и прокладывать маршруты. Уста­
новите значения полей Radius (Радиус) и Height (Высота) компо­
нента в соответствии с размерами меша. Установите значение поля
Stopping Distance (Расстояние остановки) равным 2, оно определя­
ет, как близко к месту назначения можно подойти, как показано на
рис. 7.11. Конечно, для ваших собственных проектов значение поля
Stopping Distance (Расстояние остановки), вероятно, будет другим.

Создание агента искусственного интеллекта    243

Теперь добавим компонент Rigidbody и включим флажок Is Kine
matic (Кинематический), как показано на рис. 7.12. Это позволит объ­
екту стать триггером и частью физической системы, вызывая и при­
нимая физические события. Однако, с установленным флажком Is
Kinematic (Кинематический), среда Unity не переопределяет транс­
формацию объекта (позиция, направление и масштаб). Это позволит
использовать NavMeshAgent исключительно для управления движени­
ем персонажа.

Рис. 7.11. Настройка компонента NavMeshAgent
для прокладки маршрутов

Рис. 7.12. Настройка компонента Rigidbody
для взаимодействия с физической системой

Теперь добавьте к объекту компонент BoxCollider и включите фла­
жок Is Trigger (Триггер), чтобы преобразовать его в триггер и запре­
тить другим объектам проходить сквозь него. Это будет использовать­
ся искусственным интеллектом для расчета области обзора агента.
Искусственный интеллект будет просматривать эту область и только
объекты, попадающие в эту область, будут учитываться при выборе

244    Искусственный интеллект

соответствующей реакции. Чтобы изменить размер области обзора
агента, задайте значения полей X, Y, и Z, как показано на рис. 7.13.

Рис. 7.13. Использование компонента BoxCollider
для настройки области обзора агента

Наконец, создайте новый файл сценария AI_Enemy.cs на C# для
реализации искусственного интеллекта врага. Этот сценарий будет
содержать весь код искусственного интеллекта, и он будет написан
в этой главе. После создания файла подключите его к объекту врага
в сцене. Теперь можно переходить к программированию и построению
графов искусственного интеллекта! Начнем с создания конечного ав­
томата и подготовки состояний, которые определяют поведение врага.

Конечные автоматы в Mecanim
С этого момента мы сосредоточимся на разработке искусственного
интеллекта враждебного персонажа на языке C#, и визуальном про­
граммировании графа Mecanim. Mecanim – это система анимации
в Unity (http://docs.unity3d.com/Manual/MecanimAnimationSystem.html).
В следующих разделах мы создадим полный класс, просматривая
и обсуждая отдельные участки кода, и исходный код полного класса
будет написан нами вместе. Его можно найти в файле AI_Enemy.cs за­
конченного проекта.

Для начала давайте рассмотрим концепцию конечного автомата.
Если задуматься о поведении вражеских персонажей, можно выде­

Конечные автоматы в Mecanim    245

лить несколько моделей поведения. При запуске сцены враги без­
действуют, а затем переходят к патрулированию. Во время патрули­
рования они могут наткнуться на игрока. В этом случае они начнут
преследование игрока, пока игрок не окажется в области нападения.
Когда игрок будет доступен для атаки, они нападают на игрока. Ис­
ключением из этих правил является ситуация, когда врагу нанесен
серьезный ущерб и он близок к смерти. Оказавшись в критическом
состоянии, враг, вместо того чтобы действовать агрессивно, будет
спасаться бегством и искать зелье для восстановления здоровья, пока
уровень здоровья не вернется в норму.

Получив набор возможных шаблонов поведения противника, мы мо­
жем определить ряд дискретных ключевых состояний. Это ожидание,
патрулирование, погоня, нападение и бегство. В каждый момент вре­
мени враг может находиться в одном и только в одном из этих состоя­
ний, и каждое состояние определяет, как враг будет себя вести. Для ре­
ализации этой логики можно использовать граф конечного автомата.
Он относится не к конкретному классу или типу объекта (например,
MonoBehaviour или ScriptableObject), а является шаблоном проектирова­
ния или способом программирования. Конечный определяет конечное
множество состояний (ожидание, патрулирование, погоня и т. д., как
уже упоминалось выше) и логику связей между состояниями – когда
и как одно состояние переходит в другое. Враг в нашей ситуации будет
зависеть на самом деле от двух механизмов управления: программного
кода на C# и графа анимаций Mecanim. Последний контролирует толь­
ко анимационные эффекты, которые воспроизводятся мешами врагов
в каждом состоянии. Построим сначала граф Mecanim.

Щелкните правой кнопкой мыши на панели Project (Проект)
и создайте новый ресурс Animator Controller (Контроллер анимато­
ра). Откройте ресурс в окне Animator (Аниматор), доступном в виде
пункта Window ⇒ Animator (Окно ⇒ Аниматор) в меню приложе­
ния, как показано на рис. 7.14.

Граф анимации Mecanim определяет все возможные состояния
анимации для меша, и они должны соответствовать состояниям,
перечисленным выше, а именно ожидание, патрулирование, погоня,
нападение и бегство. Для настройки анимации этих состояний вы­
берите ресурс меша Constructor (Инженер) в панели Project (Про­
ект) и сделайте все анимации повторяющимися, установив флажки
Loop Time (Повторять анимацию) и Loop Pose (Повторять позы)
в инспекторе объектов, как показано на рис. 7.15. Это предотвратит
остановку анимаций персонажей после первого же воспроизведения.

246    Искусственный интеллект

Теперь добавим в граф анимации состояний, по одной для каждо­
го состояния. В состоянии ожидания Idle должна воспроизводиться
анимация бездействия. В состоянии патрулирования Patrol должна
воспроизводиться анимация ходьбы, так как персонаж должен хо­
дить. Для состояний преследования Chase и бегства Flee подойдет
анимация бега, а для состояния Attack – анимация прыжка. Модель
Constructor не содержит анимации нападения, так что в данном при­
мере ее заменит анимация прыжка.

Добавьте их в граф, перетаскивая каждую анимацию из панели
проекта в редактор графа и давая соответствующие названия каждо­
му состоянию, как показано на рис. 7.16.

В дополнение к уже ранее добавленным состояниям добавим еще
одно пустое состояние. Это будет начальное состояние врага, или

Рис. 7.14. Доступ к графу анимации

Конечные автоматы в Mecanim    247

Рис. 7.15. Подготовка анимаций
для конечного автомата Mecanim

Рис. 7.16. Построение конечного автомата в окне Animator

248    Искусственный интеллект

состояние по умолчанию; это состояние не воспроизводит никакой
анимации и представляет, по сути, состояние без состояния, то есть
соответствует моменту, пока мы явно не определили состояние про­
тивника при запуске уровня. Чтобы создать пустое состояние по
умолчанию, щелкните правой кнопкой мыши на пустом простран­
стве внутри редактора графа и выберите в контекстном меню пункт
Create State ⇒ Empty (Создать состояние ⇒ Пустое) (переименуйте
его в Start или Init), а затем сделайте его состоянием по умолчанию,
щелкнув на нем правой кнопкой мыши и выбрав пункт Set As Default
(Установить по умолчанию), как показано на рис. 7.17.

Рис. 7.17. Установка узла Empty как состояния по умолчанию

Граф теперь содержит по одной анимации для каждого состояния
персонажа, но состояния не связаны между собой; каждое состояние
изолировано. В частности, нет никакой логики перехода из одного
состояния в другое. Чтобы исправить это, создайте пять новых триг­
геров, используя панель Parameters (Параметры) в нижнем левом
углу окна Mecanim. Триггер – это специальная булева переменная.
Unity автоматически присваивает триггерам значение false – смена
их значений на true приведет к немедленным изменениям, например
к смене состояния. Триггеры, как мы увидим ниже, доступны в про­
граммном коде на C#.

Конечные автоматы в Mecanim    249

Теперь создайте пять триггеров: Idle, Patrol, Chase, Attack и Seek
Health, как показано на рис. 7.18.

Рис. 7.18. Создание триггеров
для анимации каждого состояния

С помощью состояний и триггеров можно определить связи меж­
ду состояниями в графе. В частности, при установке триггера Patrol
следует перейти от состояния Idle к состоянию Patrol; при установ­
ке триггера Chase нужно перейти от состояния Patrol к состоянию
Chase, когда устанавливается триггер Attack, должен быть выполнен
переход от состояния Chase к состоянию Attack, и т. д. Кроме того,
связи между большинством состояний являются двунаправленны­
ми: состояние Patrol может перейти в состояние Chase (например,
когда враг видит игрока), а из состояния Chase может вернуться
в состояние Patrol (когда теряет игрока из виду). Чтобы связать два
состояния, щелкните правой кнопкой мыши на состоянии, выберите
в контекстном меню пункт Make Transition (Создать переход), а за­
тем щелкните на состоянии назначения, с которым должно быть уста­
новлена связь.

Граф определяет теперь полный конечный автомат состояний для
объекта противника. Привязка его к объекту врага в сцене реализует­
ся очень просто.

Добавьте компонент Animator к объекту, а затем перетащите кон­
троллер Animator из панели Project (Проект) в поле Controller
(Контроллер) компонента Animator, как показано на рис. 7.20.

250    Искусственный интеллект

Рис. 7.19. Настройка связей между состояниями

Рис. 7.20. Присоединение контроллера Animator к объекту врага

Конечный автомат состояний в C# – начало    251

Конечный автомат состояний в C# –
начало
Теперь, когда создание конечного автомата для анимаций завершено,
мы должны обратить внимание на конечный автомат в C#, который
управляет поведением противника, а также инициирует триггеры
в графе Mecanim для анимации соответствующих действий (ходьбы
и бега) в нужные моменты времени. Для начала добавьте следующее
общедоступное перечисление в начало файла сценария AI_Enemy.cs,
как показано в листинге 7.1. Это перечисление определяет все воз­
можные состояния врага в конечном автомате и присваивает каждому
состоянию свой уникальный хэш-код строки, то есть состоянию IDLE
присвоено значение 2081823275, которое является хэш-кодом строки
IDLE, и т. д. Это понадобится позднее для работы с Mecanim, чтобы
инициировать триггеры. Получить хэш-код строки можно с помо­
щью функции StringToHash класса Animator, как показано ниже.

Листинг 7.1. Функция для получения хэш-кода строки
// Определение возможных состояний
public enum AI_ENEMY_STATE {IDLE = 2081823275,
 PATROL = 207038023,
 CHASE = 1463555229,
 ATTACK = 1080829965,
 SEEKHEALTH = -833380208};

	 Более подробную информацию можно найти по адресу http://docs.unity3d.
com/ ScriptReference/Animator.StringToHash.html.

Опираясь на перечисление AI_ENEMY_STATE, класс AI_Enemy будет
поддерживать в актуальном состоянии общедоступную переменную
CurrentState, которая отражает состояние объекта врага в текущий
момент. Значение этой переменной будет меняться с течением време­
ни, по мере изменения состояния, как показано ниже:

// Текущее состояние врага
public AI_ENEMY_STATE CurrentState = AI_ENEMY_STATE.IDLE;

Как и большинство объектов, класс AI_Enemy содержит функцию
Awake, где создает кэш ссылок на другие компоненты, в том числе на
локальный компонент Transform объекта NavMeshAgent, а также на ком­
поненты других объектов сцены, таких как объект игрока, как показа­
но в листинге 7.2. Эти ссылки будут использоваться в других местах
в сценарии.

252    Искусственный интеллект

Листинг 7.2. Функция Awake в классе AI_Enemy
// Получить ссылку на объект Animator
ThisAnimator = GetComponent<Animator>();

// Получить ссылку на агента навигационного меша
ThisAgent = GetComponent<NavMeshAgent>();

// Получить ссылку на свой компонент Transform
ThisTransform = transform;

// Получить ссылку на компонент Transform игрока
PlayerTransform = GameObject.FindGameObjectWithTag("Player").transform;

// Получить ссылку на коллайдер
ThisCollider = GetComponent<BoxCollider>();

	 Здесь используется прием кэширования в переменных ThisAnimator,
ThisTransform, ThisAgent и ThisCollider. Это позволяет получить прямые
ссылки на другие компоненты при запуске уровня и избежать необходимо-
сти вызывать функции доступа к свойствам (get и set) каждый раз, когда
понадобится обратиться к объекту. То есть, использование This.Transform
дает большую нагрузку, чем переменной кэша ThisTransform.

Каждому состоянию конечного автомата будут соответствовать
отдельная сопрограмма. Сопрограмма будет выполнять бесконечный
цикл, пока состояние остается активным, определяя поведение врага
в этом состоянии. Основная работа конечного автомата состоит в вы­
боре и инициализации соответствующего состояния при корректных
условиях. Давайте начнем с создания сопрограммы для состояния
Idle – состояния по умолчанию вражеского персонажа.

Создание состояния Idle
Объект врага начинает игру в состоянии простоя (состояние бездей­
ствия), к которому будет выполнен первый переход. В этом состоя­
нии враги стоят там, где находятся, воспроизводя анимацию простоя.
Переход в это состояние выполняется один раз при запуске сцены,
но к нему можно вернуться при выходе из некоторых других состо­
яний, как к промежуточному шагу перед переходом в новое состоя­
ние. В этом состоянии враг всегда должен воспроизводить анимацию
ожидания только один раз, а затем, по завершении анимации, перейти
в другое состояние. Враг автоматически должен перейти в состояние
патрулирования, чтобы начать поиск игрока в сцене. Этот переход
выполняется в два этапа. Во-первых, нужно начать воспроизведение
анимации Idle. Во-вторых, мы должны получить уведомление о за­

Создание состояния Idle    253

вершении анимации Idle, чтобы начать переход в состояние Patrol.
Рассмотрим реализацию состояния Idle в листинге 7.3.

Листинг 7.3. Реализация состояния Idle
01 //--
02 // Выполняется, когда объект находится в состоянии ожидания
03 public IEnumerator State_Idle()
04 {
05 // Установить текущее состояние
06 CurrentState = AI_ENEMY_STATE.IDLE;
07
08 // Активировать состояние ожидания с помощью графа Mecanim
09 ThisAnimator.SetTrigger((int) AI_ENEMY_STATE.IDLE);
10
11 // Остановить перемещение агента навигационного меша
12 ThisAgent.Stop();
13
14 // Бесконечный цикл на время пребывания в состоянии ожидания
15 while(CurrentState == AI_ENEMY_STATE.IDLE)
16 {
17 // Проверить видимость игрока
18 if(CanSeePlayer)
19 {
20 // игрок виден, начать преследование
21 StartCoroutine(State_Chase());
22 yield break;
23 }
24
25 // Ждать следующего кадра
26 yield return null;
27 }
28 }
29 //--

Ниже приводится несколько комментариев к листингу 7.3:
�� Строка 03: объявление сопрограммы State_Idle для состояния

ожидания. За более подробной информацией о сопрограммах
обращайтесь к электронной документации Unity по адресу
http://docs.unity3d.com/Manual/Coroutines.html. Если коротко,
то сопрограммы работают как асинхронные функции (как блок
кода, который выполняется в фоновом режиме, параллельно
с другими функциями). По этой причине бесконечный цикл
в строке 15 не вызовет зависания, потому что сопрограмма ра­
ботает как отдельный поток. Сопрограммы всегда возвращают
результат с типом данных IEnumerator и всегда содержат в своем
теле оператор yield.

254    Искусственный интеллект

�� Строка 09: вызов функции SetTrigger аниматора, она получа­
ет хэш-код строки Idle в качестве аргумента и устанавливает
триггер Idle в графе Mecanim, инициируя воспроизведение
анимации ожидания. Таким способом конечный автомат C #
связывается с конечным автоматом Mecanim. Обратите вни­
мание, что в строке 12 вызывается функция Stop компонента
NavMeshAgent, чтобы остановить любое движение, которое объ­
ект, возможно, выполняет. Это связано с тем, что в режиме вос­
произведения анимации ожидания враг не должен двигаться.

�� Строка 15: здесь функция State_Idle входит в бесконечный
цикл, то есть этот цикл будет переходить из кадра в кадр, пока
враг находится в состоянии Idle. Пока состояние ожидания ак­
тивно, все, что есть в цикле, будет выполняться в каждом кадре,
что позволит объекту обновлять и изменять свое поведение
с течением времени.

�� Строка 18: проверяется единственное условие выхода из состо­
яния Idle, кроме ожидания завершения анимации Idle, – види­
мость игрока. Видимость игрока определяется булевой перемен­
ной CanSeePlayer (подробнее о прямой видимости рассказывается
ниже). Если значение переменной CanSeePlayer равно true, вызо­
вом функции StartCoroutine активируется состояние Chase и со­
стояние ожидания прерывается вызовом оператора yield break.

Состояние Idle продолжается, пока выполняется бесконечный
цикл, а он выполняется, пока не будет виден игрок. Однако состояние
Idle должно быть временным, пока не завершится одноразовое вос­
произведение анимации простоя, после этого мы должны получить
сообщение о завершении воспроизведения. Для реализации уведом­
ления можно использовать события анимации. Для этого выберите
меш персонажа Constructor (Инженер) в панели Project (Проект)
и откройте вкладку Animation (Анимация), чтобы найти анимацию
бездействия в инспекторе объектов. Здесь распахните раздел Events
(События), как показано на рис. 7.21.

Затем дважды щелкните на шкале времени анимации в точке, со­
ответствующей моменту времени 1 (в конце), чтобы добавить вызов
функции в этот момент, которая отправит сообщение объекту врага,
когда анимация завершится, как показано на рис. 7.22. Для этого я
добавил метод OnIdleAnimCompleted в класс AI_Enemy.

Функция OnIdleAnimCompleted будет автоматически вызвана по за­
вершении анимации ожидания. Реализация этого метода представле­
на в листинге 7.4.

Создание состояния Idle    255

Листинг 7.4. Реализация метода OnIdleAnimCompleted
// Посылает событие по завершении анимации
public void OnIdleAnimCompleted()
{
 // Прервать активное состояние ожидания
 StopAllCoroutines();
 StartCoroutine(State_Patrol());
}

Рис. 7.21. Раздел Events (События) в инспекторе объектов

256    Искусственный интеллект

Создание состояния Patrol
В состоянии патрулирования Patrol враг должен обходить окружаю­
щую территорию в поисках игрока. Персонаж может перейти в состоя­
ние Patrol из состояния Idle, после завершения анимации ожидания,
а также из состояния Chase, если потерял игрока из вида во время
погони. Состояние патрулирования основано на цикличной логи­
ке. В частности, враг должен выбрать случайный пункт назначения
в меше навигации и отправиться в этот пункт. По прибытии в пункт
назначения процесс повторяется. Единственным условием, которое
выведет врага из этого состояния, является появление игрока в зоне
видимости, что переведет его в состояние преследования Chase.

Хотя все выглядит просто, реализация этого состояния зависит от
решения двух сложных вопросов: выбора случайного места и провер­
ки видимости игрока. Начнем со случайного выбора места.

Во вкладке Scene (Сцена) я создал коллекцию пунктов назначения
(пустых игровых объектов), которые отмечены тегом Waypoint (Пу­
тевая точка) и нужны только для обозначения мест в навигационном
меше NavMesh. Вместе они представляют собой все возможные места,
в которые враг может направляться во время патрулирования. Врагу
остается только случайным образом выбрать одно из этих мест, как
это показано на рис. 7.23.

Рис. 7.22. Вызов функции по завершении анимации

Создание состояния Patrol    257

Для выбора пункта назначения в состоянии Patrol функция Awake
в классе AI_Enemy должна получить список всех путевых точек в сцене.
Мы можем сделать это с помощью Linq, как показано в листинге 7.5.
В этом примере создается статический массив Waypoints всех объектов
путевых точек в сцене.

Листинг 7.5. Получение списка путевых точек
01 // найти все игровые объекты с тегом Waypoint
02 GameObject[] Waypoints =
 GameObject.FindGameObjectsWithTag("Waypoint");
03
04 // Выбрать все компоненты трансформации из путевых точек с помощью Linq
05 WayPoints = (from GameObject GO in Waypoints
06 select GO.transform).ToArray();

Имея список всех пунктов назначения, можно приступать к реали­
зации состояния Patrol, как показано в листинге 7.6, которая перио­
дически выбирает новые пункты назначения.

Листинг 7.6. Реализация состояния патрулирования
01 //--
02 // Выполняется, когда объект находится в состоянии патрулирования
03 public IEnumerator State_Patrol()
04 {
05 // Установить текущее состояние
06 CurrentState = AI_ENEMY_STATE.PATROL;
07

Рис. 7.23. Создание путевых точек во вкладке Scene (Сцена)

258    Искусственный интеллект

08 // Активировать состояние патрулирования
09 ThisAnimator.SetTrigger((int) AI_ENEMY_STATE.PATROL);
10
11 // Выбрать случайную путевую точку
12 Transform RandomDest = WayPoints[Random.Range(0, WayPoints.Length)];
13
14 // Отправиться к выбранной точке
15 ThisAgent.SetDestination(RandomDest.position);
16
17 // Бесконечный цикл на время пребывания в состоянии патрулирования
18 while(CurrentState == AI_ENEMY_STATE.PATROL)
19 {
20 // Проверить видимость игрока
21 if(CanSeePlayer)
22 {
23 // игрок виден, начать преследование
24 StartCoroutine(State_Chase());
25 yield break;
26 }
27
28 // Проверить достижения пункта назначения
29 if(Vector3.Distance(ThisTransform.position,
 RandomDest.position) <= DistEps)
30 {
31 // Заданная точка достигнута. Вернуться в состояние ожидания
32 StartCoroutine(State_Idle());
33 yield break;
34 }
35
36 // Ждать следующего кадра
37 yield return null;
38 }
39 }
40 //--

Ниже приводится несколько комментариев к листингу 7.6:
�� Строка 12: здесь функция Random.Range выбирает случайный

пункт назначения из массива Waypoints. Этот пункт назначения
передается как аргумент функции SetDestination компонента
NavMeshAgent, который отправляет туда врага.

�� Строка 28: функция Vector3.Distance определяет достижение
цели. Это реализуется не проверкой на совпадение позиции
врага с позицией пункта назначения, потому что при операци­
ях с плавающей точкой возможны погрешности. Вместо этого
выполняется проверка, не подошел ли враг к пункту назначе­
ния ближе, чем на заданное расстояние (DistEps), что и счита­
ется прибытием.

Создание состояния Patrol    259

�� Строка 32: если враг находится в пункте назначения, он пере­
ходит в состояние Idle. После завершения анимации ожидания
враг снова входит в состояние Patrol.

�� Строка 21: и снова состояние Patrol прерывается, если враг
увидел игрока. В этом случае он переходит в состояние Chase.

Значение логической переменной CanSeePlayer определяет, видит
ли враг игрока в текущем кадре. Значение этой переменной обновля­
ется в каждом кадре. Процесс этот начинается в функции Update, как
показано в листинге 7.7.

Листинг 7.7. Проверка видимости игрока

01 void Update()
02 {
03 // Допустить, что игрок невидим
04 CanSeePlayer = false;
05
06 // Если игрок вне границ видимости, выйти
07 if(!ThisCollider.bounds.Contains(PlayerTransform.position)) return;
08
09 // Если игрок в границах видимости, проверить его
 нахождение в прямой видимости
10 CanSeePlayer = HaveLineSightToPlayer(PlayerTransform);
11 }

Ключевой вопрос для функции Update – находится ли игрок внутри
коллайдера, присоединенного к врагу. Этот коллайдер определяет об­
ласть видимости врага. Если игрок находится внутри этой области,
игрок может быть видим врагу. В этом случае требуется дальнейшая
проверка. Она основана на функции HaveLineSightToPlayer. Эта функ­
ция возвращает логическое значение (true/false), указывающее, ви­
дит враг игрока или нет, как показано в листинге 7.8.

Листинг 7.8. Проверка нахождения игрока в прямой видимости

// Определяет видимость игрока в текущий момент
private bool HaveLineSightToPlayer(Transform Player)
{
 // Вычислить угол между линией зрения врага и направлением на игрока
 float Angle = Mathf.Abs(Vector3.Angle(ThisTransform.forward,
 (Player.position-ThisTransform.position).normalized));

 // Если угол больше угла поля зрения, игрок невидим
 if(Angle > FieldOfView) return false;

 // Проверить, не скрывает ли игрока непрозрачная стена

260    Искусственный интеллект

 if(Physics.Linecast(ThisTransform.position,
 Player.position, SightMask))
 return false;

 // Игрок видим
 return true;
}

Как мы знаем из предыдущих глав, определение видимости являет­
ся двухступенчатым процессом. Во-первых, видимость определяется
углом между вектором направления взгляда врага и нормированным
вектором направления от врага к игроку. Если угол меньше, чем угол
обзора врага, игрок находится перед врагом и он видим, если врага
и игрока не разделяют препятствия, такие как стены. Вторая провер­
ка выполняется с помощью функции Physics.Linecast, которая опре­
деляет, можно ли соединить врага и игрока непрерывной прямой ли­
нией. Если это возможно, значит никаких препятствий между ними
нет и игрок виден.

Создание состояния Chase
Если враг видит игрока и не находится на расстоянии атаки, он по­
бежит к игроку. Это состояние, при котором враг бежит к игроку
с враждебными намерениями, является состоянием Chase. Из этого
состояния есть два основных выхода. Если враг сокращает расстоя­
ние до расстояния, достаточного для нападения, его состояние Chase
переходит в состояние Attack. Если нет, и игрок исчезает из поля
зрения врага, враг продолжит преследование некоторое время, а за­
тем откажется от погони, если игрок все еще не видим. Рассмотрим
листинг 7.9.

Листинг 7.9. Реализация состояния преследования
01 // Выполняется, когда объект находится в состоянии преследования
02 public IEnumerator State_Chase()
03 {
04 // Установить текущее состояние
05 CurrentState = AI_ENEMY_STATE.CHASE;
06
07 // Активировать состояние преследования
08 ThisAnimator.SetTrigger((int) AI_ENEMY_STATE.CHASE);
09
10 // Бесконечный цикл на время пребывания в состоянии преследования
11 while(CurrentState == AI_ENEMY_STATE.CHASE)
12 {

Создание состояния Chase    261

13 // Установить точку назначения в позиции игрока
14 ThisAgent.SetDestination(PlayerTransform.position);
15
16 // Если игрок потерялся из виду, продолжить преследование
17 if(!CanSeePlayer)
18 {
19 // Сбросить время преследования невидимого игрока
20 float ElapsedTime = 0f;
21
22 // Продолжать преследование
23 while(true)
24 {
25 // Увеличить время
26 ElapsedTime += Time.deltaTime;
27
28 // Установить точку назначения в позиции игрока
29 ThisAgent.SetDestination(PlayerTransform.position);
30
31 // Ждать следующего кадра
32 yield return null;
33
34 // Время истекло?
35 if(ElapsedTime >= ChaseTimeOut)
36 {
37 // Если игрок невидим, остановиться
38 if(!CanSeePlayer)
39 {
40 // Перейти в состояние ожидания
41 StartCoroutine(State_Idle());
42 yield break;
43 }
44 else
45 break; // игрок снова видим
46 }
47 }
48 }
49
50 // Игрок настигнут, начать атаку
51 if(Vector3.Distance(ThisTransform.position,
 PlayerTransform.position) <= DistEps)
52 {
53 // Перейти в состояние атаки
54 StartCoroutine(State_Attack());
55 yield break;
56 }
57
58 // Ждать следующего кадра
59 yield return null;
60 }
61 }

262    Искусственный интеллект

Ниже приводится несколько комментариев к листингу 7.9.
�� Строки 17–48: в этой фазе цикл в State_Chase определяет поте­

рю игрока из видимости. Когда это происходит, враг продолжит
преследование в течение времени ChaseTimeOut. По истечении
этого времени вновь будет проверена видимость игрока. Если
игрок снова виден, погоня продолжится. В противном случае
врага перейдет в состояние Idle, то есть, готовности к началу
нового патрулирования в поисках игрока.

�� Строки 51–59: здесь выполняется проверка достижения дис­
танции атаки (DistEps). В этом случае конечный автомат перей­
дет в состояние Attack.

Создание состояния Attack
В состоянии Attack враг атакует игрока, пока он виден. После очеред­
ной атаки противник должен остановиться, прежде чем начать новую
атаку. Единственной причиной выхода из этого состояния является
потеря игрока из видимости. Когда это происходит, враг возвраща­
ется в состояние преследования Chase, а оттуда вновь переходит в со­
стояние Attack или в состояние Idle, в зависимости от того, был ли
найден игрок, как это показано в листинге 7.10.

Листинг 7.10. Реализация состояния атаки
// Выполняется, когда объект находится в состоянии атаки
public IEnumerator State_Attack()
{
 // Установить текущее состояние
 CurrentState = AI_ENEMY_STATE.ATTACK;

 // Активировать состояние атаки
 ThisAnimator.SetTrigger((int) AI_ENEMY_STATE.ATTACK);

 // Остановить перемещение агента навигационного меша
 ThisAgent.Stop();

 // Установить таймер задержки между атаками
 float ElapsedTime = 0f;

 // Бесконечный цикл на время пребывания в состоянии атаки
 while(CurrentState == AI_ENEMY_STATE.ATTACK)
 {
 // Обновить таймер
 ElapsedTime += Time.deltaTime;

Создание состояния бегства SeekHealth    263

 // Проверить, находится ли игрок на дистанции атаки
 if(!CanSeePlayer || Vector3.Distance(ThisTransform.position,
 PlayerTransform.position) > DistEps)
 {
 // Начать преследование
 StartCoroutine(State_Chase());
 yield break;
 }

 // Проверить продолжительность задержки
 if(ElapsedTime >= AttackDelay)
 {
 // Сбросить таймер
 ElapsedTime = 0f;

 // Начать атаку
 PlayerTransform.SendMessage("ChangeHealth", -AttackDamage,
 SendMessageOptions.DontRequireReceiver);
 }

 // Ждать следующего кадра
 yield return null;
 }
}

Создание состояния бегства SeekHealth
Состояние SeekHealth наступает, когда уровень здоровья врага пада­
ет и он должен попытаться восстановить его, найдя аптечку. Переход
в это состояние, в отличие от других, может быть выполнен из любо­
го другого состояния. Необходимость этого состояния определяется
только уровнем здоровья врага. В частности, переход в это состояние
должен быть выполнен, когда здоровье врага уменьшилось ниже ми­
нимального порога. Поэтому состояние SeekHealth должно быть свя­
зано в графе Mecanim с узлом Any State (Любое состояние), что по­
зволит запустить анимацию при срабатывании триггера, независимо
от текущего состояния, как показано на рис. 7.24.

Каждый вражеский персонаж имеет переменную Health, значение
которой увеличивается, когда враг находит аптечку, или уменьша­
ется, когда враг подвергается нападению. Ее изменение происходит
в методе ChangeHealth, и именно здесь должна определяться необходи­
мость перехода в состояние SeekHealth. Функция ChangeHealth общедо­
ступная; это позволяет вызывать ее с помощью функций SendMessage
и BroadcastMessage, как показано в листинге 7.11.

264    Искусственный интеллект

Листинг 7.11. Реализация метода ChangeHealth
// Вызывается при изменении уровня здоровья
public void ChangeHealth(float Amount)
{
 // Изменить уровень здоровья
 Health += Amount;

 // Наступила смерть?
 if(Health <= 0)
 {
 StopAllCoroutines();
 Destroy(gameObject);
 return;
 }

 // Проверить, насколько опасно падение уровня здоровья
 if(Health > HealthDangerLevel) return;

 // Уровень здоровья опасно мал, начать поиск аптечки
 StopAllCoroutines();
 StartCoroutine(State_SeekHealth());
}

Метод State_SeekHealth, реализующий состояние поиска аптечки,
приводится в листинге 7.12.

Листинг 7.12. Реализация состояния поиска аптечки
01 // Выполняется, когда объект находится в состоянии поиска аптечки
02 public IEnumerator State_SeekHealth()
03 {

Рис. 7.24. В состояние SeekHealth
можно перейти из состояния Any State

Создание состояния бегства SeekHealth    265

04 // Установить текущее состояние
05 CurrentState = AI_ENEMY_STATE.SEEKHEALTH;
06
07 // Активировать состояние поиска аптечки
08 ThisAnimator.SetTrigger((int) AI_ENEMY_STATE.SEEKHEALTH);
09
10 // Ближайшая аптечка
11 HealthRestore HR = null;
12
13 // Бесконечный цикл на время поиска аптечки
14 while(CurrentState == AI_ENEMY_STATE.SEEKHEALTH)
15 {
16 // Если аптечки нет, искать ближайшую
17 if(HR == null) HR = GetNearestHealthRestore(ThisTransform);
18
19 // Аптечка найдена, начать движение к ней
20 ThisAgent.SetDestination(HR.transform.position);
21
22 // Если HR == null, значит аптечек больше нет, бездействовать
23 if(HR == null || Health > HealthDangerLevel)
24 {
25 // Перейти в состояние ожидания
26 StartCoroutine(State_Idle());
27 yield break;
28 }
29
30 // Ждать следующего кадра
31 yield return null;
32 }
33 }

Ниже приводится несколько комментариев к листингу 7.12.
�� Строка 17: обработка состояния HealthSeek начинается с поис­

ка ближайшей аптечки и использования ее позиции в качестве
пункта назначения для агента. Это в определенном смысле мо­
шенничество, потому что (конечно) без возможности удален­
ного обзора враг не должен знать, где находится ближайшая
аптечка. Однако помните, что значение имеет не то, что враг
знает или не знает, а то, как это воспримет игрок. Если игрок
не знает об этой логике и не может об этом догадаться, значит
это не имеет никакого значения. Также обратите внимание, что,
возможно, тот же игрок или другие враги уже подберут аптечку,
прежде чем враг придет в пункт назначения. По этой причине
в каждом кадре враг должен проверять, доступна ли еще на­
значенная аптечка, и если нет – выбрать другую ближайшую
аптечку.

266    Искусственный интеллект

�� Строка 23: если не осталось доступных аптечек или уровень
здоровья был восстановлен, враг вернется в состояние Idle.

Для обработки состояния SeekHealth необходимо найти в сцене
ближайшую аптечку и вернуть ссылку на нее. Этот поиск реализу­
ется методом GetNearestHealthRestore, представлены в листинге 7.13.

Листинг 7.13. Реализация метода GetNearestHealthRestore
01 // Ищет аптечку, ближайшую к объекту Target
02 private HealthRestore GetNearestHealthRestore(Transform Target)
03 {
04 // Получить список всех аптечек
05 HealthRestore[] Restores = Object.FindObjectsOfType<HealthRestore>();
06
07 // Расстояние до ближайшей
08 float DistanceToNearest = Mathf.Infinity;
09
10 // Выбранная аптечка
11 HealthRestore Nearest = null;
12
13 // Перебрать все аптечки
14 foreach(HealthRestore HR in Restores)
15 {
16 // Определить расстояние до данной аптечки
17 float CurrentDistance = Vector3.Distance(
 Target.position, HR.transform.position);
18
19 // Если данная аптечка ближе предыдущей, запомнить ее
20 if(CurrentDistance <= DistanceToNearest)
21 {
22 Nearest = HR;
23 DistanceToNearest = CurrentDistance;
24 }
25 }
26
27 // Вернуть ближайшую аптечку или null
28 return Nearest;
29 }

Итоги
Весь проект реализации искусственного интеллекта, представленный
в этой главе, можно найти в пакете с примерами для данной главы,
в папке ai. Я рекомендую открыть его и протестировать. Использо­
вание контроллера игры от первого лица позволяет игроку переме­
щаться по уровню, уходить от врагов, а также нападать, когда враги
находятся достаточно близко, нажимая на клавишу пробела, как по­
казано на рис. 7.25.

Итоги    267

Есть много возможностей дальнейшего улучшения проекта. На­
пример, можно добавить несколько типов врагов, создать разные
стратегии для каждого типа, от нападения из засады до умения при­
творяться мертвым, и т. д. Однако, мы прошли долгий путь и созда­
ли искусственный интеллект, основанный на конечном автомате C#,
а также на конечном автомате Mecanim для воспроизведения анима­
ций. В следующей главе мы покинем мир искусственного интеллекта
и перейдем к рассмотрению настроек редактора, чтобы сделать раз­
работку игр более удобной!

Рис. 7.25. Тестирование класса AI_Enemy

Глава 8

Настройка
редактора Unity

Редактор Unity – это мощный, универсальный инструмент для раз­
работки игр. Но иногда при разработке возникают ситуации, когда
необходимы некоторые особые функции редактора, которые он не
может вам предоставить, связанные с вашими предпочтениями или
с особенностями разрабатываемой игры. Например, вам могут пона­
добиться функции редактирования путей, возможность пакетного
переименования, инструменты создания мешей, или что-то еще. В та­
ких случаях вы можете посетить магазин ресурсов Unity для поиска
подходящих расширений. Но и там вы можете не найти того, что вам
нужно. Тогда можно попытаться настроить или адаптировать редак­
тор, чтобы лучше приспособить его для ваших целей. К счастью, су­
ществует много способов настройки Unity как инструмента, и в этой
главе мы основное внимание уделим знакомству с конкретными ме­
тодами такой настройки. Во-первых, мы узнаем, как создать инстру­
мент пакетного переименования Batch Rename для переименования
нескольких выбранных объектов в одной операции. Во-вторых, как
создать поле цветовой гаммы в инспекторе объектов для смешивания
двух цветов при помощи ползунка. В-третьих, как отобразить гло­
бальные свойства C# в инспекторе объектов и сделать их доступными
для установки и получения значений. И наконец, как использовать
атрибуты C# для создания инструмента локализации, который по­
зволит автоматически менять язык (английский, французский и т. д.)
всех текстов в игре нажатием одной кнопки.

Пакетное переименование
При создании сцены с многочисленными врагами, бонусами, рекви­
зитами или экземплярами других объектов, как правило, использу­
ется функция клонирования объектов (Ctrl+D). Это приводит к по­
явлению множества объектов с одинаковыми именами. Само по себе

Пакетное переименование    269

дублирование имен не будет ошибкой, но это неудобно, потому что
приводит к отображению в панели иерархии многочисленных объек­
тов с одинаковыми именами, что не позволяет различать объекты по
именам. Кроме того, при поиске объекта в сценарии с помощью функ­
ции GameObject.Find будет получен не нужный вам конкретный объ­
ект, а один из объектов, имеющих одинаковое имя. Решить проблему
можно, если придать каждому объекту уникальное имя. Но это может
занять много времени, особенно если таких объектов очень много. То
есть, вам нужен инструмент пакетного переименования.

Теоретически такой инструмент должен позволять выбирать не­
сколько объектов в панели иерархии, а затем автоматически переиме­
новывать их, в соответствии с правилом нумерации. Проблема в том,
что Unity изначально не поддерживает такой функции. Но мы можем
написать ее код сами, как показано на рис. 8.1.

Для начала создайте папку Editor внутри проекта. Это важно. Папка
Editor является специальной папкой, предназначенной для размеще­
ния всех сценариев настройки редактора. То есть, если вы планируете
настраивать редактор Unity, убедитесь, что все сценарии с настройка­
ми находятся в папке Editor. Не имеет значения, сколько в вашем про­
екте папок с именем Editor, имеет значение только наличие хотя бы од­
ной папки Editor и сценария настройки в ней, как показано на рис. 8.2.

Далее создадим утилиту пакетного переименования BatchRename
в виде потомка класса ScriptableWizard. Этот класс считается предком
для всех классов настроек редактора. Все порожденные от него классы
действуют как диалоги, которые можно вызывать из главного меню
Unity. Окно любого такого диалога будет содержать набор вариантов,
выбираемых пользователем перед нажатием кнопки подтверждения,
которая запускает выполнение операции. Другими словами, классы,
наследующие ScriptableWizard, идеально подходят для выполнения
разовых операций над одним или несколькими объектами.

	 Более подробную информацию о классе ScriptableWizard можно най-
ти в электронной документации Unity по адресу http://docs.unity3d.com/
ScriptReference/ScriptableWizard.html.

В листинге 8.1 приводится полная реализация утилиты пакетного
переименования.

Листинг 8.1. Утилита пакетного переименования
01 //------------------------------------
02 using UnityEngine;
03 using UnityEditor;
04 using System.Collections;

270    Настройка редактора Unity

Рис. 8.1. Создание расширения пакетного переименования

Рис. 8.2. Создание папки Editor
для всех сценариев настройки редактора

Пакетное переименование    271

05 //------------------------------------
06 public class BatchRename : ScriptableWizard
07 {
08 // Базовое имя
09 public string BaseName = "MyObject_";
10
11 // Начальный номер
12 public int StartNumber = 0;
13
14 // Шаг
15 public int Increment = 1;
16
17 [MenuItem("Edit/Batch Rename...")]
18 static void CreateWizard()
19 {
20 ScriptableWizard.DisplayWizard(
 "Batch Rename",typeof(BatchRename),"Rename");
21 }
22 //------------------------------------
23 // Вызывается при первом появлении окна
24 void OnEnable()
25 {
26 UpdateSelectionHelper();
27 }
28 //------------------------------------
29 // Вызывается, когда изменяется область выбора в сцене
30 void OnSelectionChange()
31 {
32 UpdateSelectionHelper();
33 }
34 //------------------------------------
35 // Изменяет счетчик выбранных объектов
36 void UpdateSelectionHelper()
37 {
38 helpString = "";
39
40 if (Selection.objects != null)
41 helpString = "Number of objects selected: " +
 Selection.objects.Length;
42 }
43 //------------------------------------
44 // Переименование
45 void OnWizardCreate()
46 {
47 // Если ничего не выбрано, выйти
48 if (Selection.objects == null)
49 return;
50
51 // Текущий шаг

272    Настройка редактора Unity

52 int PostFix = StartNumber;
53
54 // Цикл переименования
55 foreach(Object O in Selection.objects)
56 {
57 O.name = BaseName + PostFix;
58 PostFix += Increment;
59 }
60 }
61 //------------------------------------
62 }
63 //------------------------------------

Ниже приводится несколько комментариев к листингу 8.1:
�� Строка 03: расширение редактора должно подключать про­

странство имен UnityEditor, чтобы получить доступ к классам
и объектам редактора.

�� Строка 06: класс BatchRename наследует не класс MonoBehaviour,
как большинство классов в файлах сценариев, а класс Scrip
tableWizard. Наследники класса ScriptableWizard представляют
собой независимые утилиты Unity, которые могут быть вызы­
ваться из меню приложения.

�� Строки 17–21: атрибут MenuItem служит префиксом функции
CreateWizard. Он определяет пункт в меню приложения и вы­
зывает функцию CreateWizard для отображения окна Batch
Rename (Пакетное переименование).

�� Строки 8–16: вызов CreateWizard выведет окно BatchRename.
В нем будут содержаться редактируемые поля для всех об­
щедоступных переменных класса (в нашем случае это поля
Base Name (Базовое имя), Start Number (Начальный номер)
и Increment (Шаг)).

�� Строки 45–60: функция OnWizardCreate вызывается как собы­
тие, когда пользователь щелкает на кнопке Rename (Переиме­
новать) в окне Batch Rename (Пакетное переименование). Имя
кнопки Rename в данном случае задано в строке 20. Функция
OnWizardCreate перебирает все выбранные объекты, если тако­
вые имеются, и последовательно переименовывает их в соот­
ветствии со значениями полей Base Name (Базовое имя), Start
Number (Начальный номер) и Increment (Шаг), как показано
на рис. 8.3.

Чтобы воспользоваться инструментом пакетного переименования,
просто выберите группу объектов в сцене, а затем выберите пункт
Edit ⇒ Batch Rename (Правка ⇒ Пакетное переименование) в меню

Пакетное переименование    273

приложения. Значение поля Base Name (Базовое имя) определяет
строку, которая должна стать префиксом для всех имен объектов,
а значение поля Increment (Шаг) определяет величину изменения
счетчика перед добавлением к базовому имени. Значение поля Start
Number (Начальный номер) служит начальным значением счетчика,
как показано на рис. 8.4.

Рис. 8.3. Инструмент Batch Rename
(Пакетное переименование)

Рис. 8.4. Переименование объектов с помощью инструмента
Batch Rename (Пакетное переименование)

274    Настройка редактора Unity

Атрибуты C# и рефлексия
С этого момента в данной главе все расширения редактора будут
основываться на понятиях атрибутов и рефлексии. Эти понятия не
являются специальными понятиями для Unity, это более общие по­
нятия в информатике, программировании, и применяются в таких
языках, как С#, а также в фреймворке .NET. Прежде чем присту­
пить к следующему расширению, рассмотрим атрибуты и связанное
с ними понятие рефлексии на примере атрибута Range, встроенного
в Unity. Взгляните на следующую строку кода:

public float MyNumber = 0;

Эта общедоступная переменная будет отображаться в инспекторе
объектов в виде поля редактирования, что позволит пользователю
ввести в него любое действительное число, установив, таким образом,
значение переменной MyNumber, как показано на рис. 8.5.

Рис. 8.5. Ввод действительного числа в инспекторе объектов

Этого достаточно для многих ситуаций, но иногда желательно
иметь возможность проверять ввод на принадлежность числа неко­
торому диапазону значений. Вы можете сделать это в коде, используя
функцию Mathf.Clamp, но есть возможность проверить ввод, используя
атрибут. Вы можете прикрепить атрибут Range к вещественной пере­

Атрибуты C# и рефлексия    275

менной (MyNumber), чтобы отобразить ползунок в окне редактирова­
ния, как показано ниже:

 [Range(0f,1f)]
public float MyNumber = 0;

	 Более подробную информацию об атрибутах можно найти в электронной
документации Unity по адресу http://unity3d.com/learn/tutorials/modules/
intermediate/scripting/attributes.

После того как этот код будет скомпилирован, поле переменной
MyNumber в инспекторе объектов будет выглядеть иначе – появится
диапазон чисел между 0 и 1, как показано на рис. 8.6. Обратите вни­
мание, что все числа, задаваемые в атрибуте Range в качестве аргу­
ментов, должны иметь явные значения, известные на момент компи­
ляции, и не могут быть выражениями, зависящими от переменных,
значения которых могут измениться во время выполнения. Все зна­
чения атрибутов должны быть известны на момент компиляции.

Рис. 8.6. Использование атрибутов
для настройки отображения в инспекторе объектов

Так как же действуют атрибуты? Если коротко, атрибуты являют­
ся разновидностью метаданных, они действуют как метки. Програм­
мисты могут прикрепить атрибут к классу, переменной или методу,
чтобы связать с ними данные, которые станут известны компилято­
ру. Сам атрибут имеет только описательный характер, он ничего не
делает, это просто данные. Польза атрибутов в том, что код, постро­
енный на основе фреймворка .NET (или Mono), имеет возможность
«взглянуть на себя со стороны», то есть просмотреть все классы, типы

276    Настройка редактора Unity

данных и экземпляры, имеющиеся в программе. Для каждого объекта
в программе могут быть запрошены и просмотрены его метаданные
(атрибуты). Эта способность программы «взглянуть на себя со сто­
роны» называется рефлексией (или отражением), это то же самое,
что посмотреть на себя в зеркало. Конечно, программа видит себя
не искаженно, в обратном отражении, а правильно, в том числе и все
свои метаданные. Для быстрого знакомства с рефлексией рассмотрим
следующий пример в листинге 8.2. Этот код перечисляет в цикле все
классы проекта, во всех исходных файлах. Обратите внимание, что
он перечисляет не только все экземпляры классов в сцене, но и сами
классы (то есть, образно выражаясь, делает ксерокопию).

Листинг 8.2. Обход всех классов в проекте
01 using UnityEngine;
02 using System.Collections;
03 using System.Reflection;
04 using System;
05
06 public class MyTestScript : MonoBehaviour
07 {
08 // Этот метод выполняет инициализацию
09 void Start ()
10 {
11 // Обойти все классы в сборке
12 foreach(Type t in Assembly.GetExecutingAssembly().GetTypes())
13 {
14 Debug.log (t.Name);
15 }
16 }
17 }

Ниже приводится несколько комментариев к листингу 8.2:
�� Строки 03–04: необходимо подключить пространства имен
System и System.Reflection, потому что они содержат классы и объ­
екты, необходимые для доступа к механизму рефлексии в .NET.

�� Строка 12: этот цикл foreach выполняет обход всех классов
(типов) в активной сборке (то есть в скомпилированном коде,
в том числе и во всех файлах сценариев, созданных пользова­
телем).

Вы можете сделать еще шаг вперед и, например, вместо перечис­
ления всех типов, как показано в листинге 8.2, перечислить методы,
свойства и переменные (поля) определенного типа. Рассмотрим сле­
дующий пример в листинге 8.3, который перечисляет все общедо­
ступные переменные указанного типа.

Атрибуты C# и рефлексия    277

Листинг 8.3. Обход всех общедоступных переменных
// Перечисляет все общедоступные переменные класса t
public void ListAllPublicVariables(Type t)
{
 // Обойти все общедоступные переменные
 foreach(FieldInfo FI in t.GetFields(
 BindingFlags.Public | BindingFlags.Instance)
 {
 // Вывести имя переменной
 Debug.log (FI.Name);
 }
}

	 Более подробную информацию о поразрядных операциях, используе-
мых в этом примере, можно найти по адресу http://www.blackwasp.co.uk/
CSharpLogicalBitwiseOps.aspx.

И, самое важное, можно перечислить атрибуты, назначенные типу.
Это позволит получить метаданные типа и просмотреть его свойства
во время выполнения, как показано в листинге 8.4.

Листинг 8.4. Обход атрибутов типа
01 public void ListAllAttributes(Type t)
02 {
03 foreach(Attribute attr in t.GetCustomAttributes(true))
04 {
05 // Обойти все найденные атрибуты
06 Debug.log (attr.GetType());
07 }
08 }

Листинг 8.4 демонстрирует возможность получения всех атрибу­
тов для заданного типа данных во время выполнения. Это значит,
что типы данных и переменные могут иметь метаданные, связанные
с ними, которые можно извлечь и использовать для принятия реше­
ний, касающихся обработки этих объектов. Это мощное средство для
создания расширений редактора, потому что, создавая собственные
атрибуты, которые можно присоединять к типам данных и перемен­
ным, мы можем интегрировать наш код с редактором Unity без изме­
нения его логической структуры и не нарушая его работы. То есть мы
сможем, пометив переменные атрибутами, настроить их отображение
в редакторе Unity без нарушения его логики и структуры. Далее мы
увидим, как создать пользовательские атрибуты для настройки ре­
дактора.

278    Настройка редактора Unity

Смешивание цветов
Атрибут Range, рассматривавшийся выше, можно присоединить к це­
лому или действительному числу при его объявлении, чтобы ограни­
чить диапазон значений, доступных для ввода в редакторе Unity. При
этом редактируемое поле в редакторе Unity будет заменено ползун­
ком, ограничивающим диапазон допустимых значений переменной.
Это, конечно, никак не повлияет на присваивание переменным зна­
чений в программном коде. Во время выполнения атрибут Range не
имеет никакой силы. Атрибут Range определяет представление обще­
доступных переменных в инспекторе объектов и управляет вводом
их значений пользователем. За кулисами класс Editor получает объ­
ект данных Attribute с помощью механизма рефлексии, чтобы опре­
делить порядок отображения в инспекторе объектов.

Атрибут Range хорошо подходит для чисел. Но было бы здорово
распространить его действие и на другие типы данных. Например,
часто применяемый эффект смены цветов, такой как выцветание от
черного до полной прозрачности, с целью создания эффектов плав­
ного появления и постепенного растворения при смене сцен. Это на­
зывается линейной интерполяцией цветов. Промежуточный цвет ге­
нерируется как смесь двух цветов с использованием действительного
значения нормализации, задаваемого значением ползунка (от 0 до 1).

Соответствующее свойство Inspector для этого типа данных мог­
ло бы управляться ползунком, по аналогии с атрибутом Range, и осу­
ществлять интерполяцию цвета в диапазоне от 0 до 1, как показано на
рис. 8.7.

Рис. 8.7. Линейная интерполяция двух цветов

Смешивание цветов    279

В сущности, нам нужно настроить редактор так, чтобы всякий
раз, когда в сцене выбирается объект, содержащий общедоступную
переменную определенного типа, он нужным образом отображал
эту переменную в инспекторе объектов. Это позволит добавлять
свои элементы управления в инспектор объектов и проверять вводи­
мые в нем данные. Чтобы начать реализацию этой задачи, создадим
пользовательский класс и определим все данные для смешивания
цветов. Нам потребуются четыре переменные. Две переменные для
граничных цветов SourceColor и DestColor. Переменная BlendFactor
для действительного числа в диапазоне между 0 и 1 (начало и ко­
нец), определяющего промежуточный цвет. И, наконец, переменная
для результата BlendedColor. Полное определение класса приводится
в листинге 8.5.

Листинг 8.5. Класс смешивания цветов
[System.Serializable]
public class ColorBlend : System.Object
{
 public Color SourceColor = Color.white;
 public Color DestColor = Color.white;
 public Color BlendedColor = Color.white;
 public float BlendFactor = 0f;
}

Так как класс ColorBlend имеет атрибут [System.Serializable], Unity
автоматически отображает класс и его общедоступные члены в ин­
спекторе объектов. По умолчанию будут отображены все общедо­
ступные члены класса ColorBlend, а поле BlendFactor будет представле­
но в виде поля ввода чисел без проверки принадлежности диапазону
от 0 до 1, как показано на рис. 8.8.

Давайте теперь начнем настройку отображения этого класса в ин­
спекторе объектов. Создадим новый класс атрибута ColorRangeAttri
bute, как показано в листинге 8.6.

Листинг 8.6. Класс атрибута ColorRangeAttribute
01 public class ColorRangeAttribute : PropertyAttribute
02 {
03 //--
04 public Color Min;
05 public Color Max;
06 //--
07 public ColorRangeAttribute(float r1, float g1, float b1, float a1,
08 float r2, float g2, float b2, float a2)
09 {

280    Настройка редактора Unity

10 this.Min = new Color(r1, g1, b1, a1);
11 this.Max = new Color(r2, g2, b2, a2);
12 }
13 //--
14 }

Ниже приводится несколько комментариев к листингу 8.6:
�� Строка 01: класс ColorRangeAttribute определяет структуру ме­

таданных, которой можно отмечать другие типы данных. Об­
ратите внимание, что он наследует класс PropertyAttribute. Это
значит, кроме всего остального, что ColorRangeAttribute явля­
ется, прежде всего, структурой атрибутов и метаданных, а не
обычным классом. Он не предназначен для создания экземпля­
ров, как стандартный класс.

�� Строка 07: атрибут имеет функцию-конструктор, который
принимает восемь вещественных чисел, определяющих каналы
RGBA исходного и конечного цветов. Они будут использовать­
ся только при присоединении атрибута к переменной.

Теперь мы напишем класс, объявив экземпляр ColorBlend с атрибу­
том ColorRangeAttribute. Даже сейчас добавление атрибута ColorRange

Рис. 8.8. Отображение класса Color Adjuster по умолчанию
и изменение его свойств

Смешивание цветов    281

Attribute, по сути, ничего не меняет, потому что класс редактора для
его обработки еще не написан. Мы можем увидеть это в следующем
коде:

public class ColorAdjuster : MonoBehaviour
{
 [ColorRangeAttribute(1f,0f,0f,0f, 0f,1f,0f,1f)]
 public ColorBlend MyColorBlend;
}

Создание класса Editor для отображения ColorBlend в инспекто­
ре объектов в виде ползунка включает обработку класса ColorRange
Attribute. В частности, Unity предлагает расширяемый базовый
класс PropertyDrawer, от которого можно наследовать новые классы
и переопределять в них способ отображения любых атрибутов в ин­
спекторе объектов. Проще говоря, класс PropertyDrawer позволяет на­
строить прорисовку инспектора для всех переменных, отмеченных
общим атрибутом. Итак, создайте в папке Editor проекта новый класс
ColorRangeDrawer, как показано в листинге 8.7.

Листинг 8.7. Класс ColorRangeDrawer
01 using UnityEngine;
02 using UnityEditor; //Be sure to include UnityEditor for all
 extension classes
03 using System.Collections;
04 //--
05 // Атрибут CustomPropertyDrawer, переопределяющий
 отображение всех членов ColorRangeAttribute
06 [CustomPropertyDrawer(typeof(ColorRangeAttribute))]
07 public class ColorRangeDrawer : PropertyDrawer
08 {
09 //--
10 // Событие вызывается редактором Unity для
 отображения элементов пользовательского интерфейса
11 public override void OnGUI (Rect position,
 SerializedProperty property, GUIContent label)
12 {
13 // Получить атрибут диапазона цветов
14 ColorRangeAttribute range = attribute as ColorRangeAttribute;
15
16 // Добавить подпись в инспектор объектов
17 position = EditorGUI.PrefixLabel (position,
 new GUIContent ("Color Lerp"));
18
19 // Определить размеры цветных прямоугольников и ползунков
20 Rect ColorSamplerRect = new Rect(position.x, position.y,
 100, position.height);

282    Настройка редактора Unity

21 Rect SliderRect = new Rect(position.x+105, position.y,
 200, position.height);
22
23 // Вывести цветные прямоугольники
24 EditorGUI.ColorField(ColorSamplerRect,
 property.FindPropertyRelative("BlendedColor").colorValue);
25
26 // Вывести ползунок
27 property.FindPropertyRelative("BlendFactor").floatValue =
 EditorGUI.Slider(SliderRect,
 property.FindPropertyRelative("BlendFactor").floatValue, 0f, 1f);
28
29 // Обновить результат смешивания в зависимости от положения ползунка
30 property.FindPropertyRelative("BlendedColor").colorValue =
 Color.Lerp(range.Min, range.Max,
 property.FindPropertyRelative("BlendFactor").floatValue);
31 }
32 //--
33 }
34 //--

Ниже приводится несколько комментариев к листингу 8.7:
�� Строка 01: атрибут CustomPropertyDrawer используется, чтобы

связать класс PropertyDrawer с атрибутом ColorRangeAttribute.
Редактор Unity применяет эти метаданные для определения
типов, требующих особого отображения в инспекторе объек­
тов. В данном случае все члены ColorRangeAttribute будут про­
рисованы вручную, функцией OnGUI класса PropertyDrawer.

�� Строка 11: переопределяется функция OnGUI базового класса,
реализующая отображение всех полей атрибута ColorRange
Attribute в инспекторе объектов. Класс EditorGUI – это вспо­
могательный класс редактора Unity, предназначенный для
прорисовки элементов интерфейса, таких как кнопки, тексто­
вые поля и ползунки. Более подробную информацию о классе
EditorGUI можно найти в электронной документации Unity по
адресу http://docs.unity3d.com/ScriptReference/EditorGUI.html.

�� Строка 14: функция OnGUI вызывается один раз для каждого
уникального члена, отображаемого в инспекторе объектов, воз­
можно много раз в секунду. Здесь извлекаются данные атри­
бута ColorRangeAttribute, что дает нам доступ непосредственно
ко всем членам текущего отображаемого объекта. Чтобы по­
лучить доступ к переменным самого объекта (для чтения и за­
писи), необходимо использовать аргумент SerializedProperty,
как, например, в методе FindPropertyRelative. Более подробную

Отображение свойств    283

информацию можно найти в электронной документации Unity
по адресу http://docs.unity3d.com/ScriptReference/Serialized
Property.html.

�� Строка 24: здесь и далее с помощью функции FindPropertyRelative
извлекаются общедоступные переменные SourceColor, DestColor
и BlendedColor выбранного объекта, и устанавливаются их зна­
чения, в зависимости от позиции ползунка.

	 Более подробную информацию о классе PropertyDrawer можно найти
в электронной документации Unity по адресу http://docs.unity3d.com/
Manual/editor-PropertyDrawers.html.

В листинге 8.7 переопределяется прорисовка в инспекторе объек­
тов любых экземпляров ColorBlend, отмеченных атрибутом ColorRange
Attribute. Это обеспечивает простой и удобный в использовании
способ создания смешанных цветов. Помните, что начальный и ко­
нечный цвета можете сделать общедоступными, для отображения их
в инспекторе объектов, как показано на рис. 8.9.

Рис. 8.9. Создание отображения ColorBlender
для класса ColorBlend

Отображение свойств
По умолчанию инспектор объектов отображает все общедоступные
переменные класса, но в режиме Debug будут также отображаться
локальные переменные. Кроме того, локальные переменные отобра­
жаются, если отметить их атрибутом SerializeField (см. рис. 8.10).

284    Настройка редактора Unity

Однако свойства C# никогда не отображаются в инспекторе объ­
ектов ни по умолчанию, ни в режимах Release или Debug. Как уже
говорилось в главе 1 «Основы C# Unity», свойства C# реализованы
как функции доступа к переменным. Они могут выполнять проверку
в каждой операции get и set, потому что каждая операция get и set
влечет за собой вызов внутренней функции. Тем не менее, независимо
от ограничений инспектора объектов Unity, можно написать расши­
рение редактора, которое обеспечит отображение всех свойств класса
в инспекторе объектов и позволит получать и устанавливать значе­
ния непосредственно. Об этом подробно рассказывается в данном
разделе. И снова мы будем опираться на механизм рефлексии.

	 Более подробную информацию о классе SerializeField можно найти
в электронной документации Unity по адресу http://docs.unity3d.com/
ScriptReference/SerializeField.html.

Взгляните на пример в листинге 8.8, который содержит несколько
свойств.

Листинг 8.8. Класс с несколькими свойствами
//--
using UnityEngine;
using System.Collections;
//--

Рис. 8.10. Доступ к свойствам из инспектора объектов

Отображение свойств    285

[System.Serializable]
public class ClassWithProperties : System.Object
{
 // Класс с несколькими свойствами
 //--
 public int MyIntProperty
 {
 get{return _myIntProperty;}

 // Выполнить проверку присваиваемых значений
 set{if(value <= 10)_myIntProperty = value;else _myIntProperty=0;}
 }
 //--
 public float MyFloatProperty
 {
 get{return _myFloatProperty;}
 set{_myFloatProperty = value;}
 }
 //--
 public Color MyColorProperty
 {
 get{return _myColorProperty;}
 set{_myColorProperty = value;}
 }
 //--
 // Локальные члены
 private int _myIntProperty;
 private float _myFloatProperty;
 private Color _myColorProperty;
 //--
}
//--

Этот класс будет использоваться внутри другого класса в качестве
общедоступной переменной, как показано в листинге 8.9.

Листинг 8.9. Использование экземпляра класса в качестве
общедоступной переменной
using UnityEngine;
using System.Collections;

public class LargerClass : MonoBehaviour
{
 public ClassWithProperties MyPropClass;
}

По умолчанию общедоступный член MyPropClass (хотя и отмечен­
ный как System.Serializable) не отображает своих членов в инспекто­
ре объектов. Это связано с тем, что для свойств C# не предусмотрена
встроенная поддержка (см. рис. 8.11).

286    Настройка редактора Unity

Чтобы решить эту проблему, можно вернуться к классу Property
Drawer, связав его на этот раз с определенным классом, а не с атрибу­
том, как показано в листинге 8.10.

Листинг 8.10. Вспомогательный класс для отображения
общедоступных свойств

01 // Вспомогательный класс для отображения общедоступных свойств
02 //--
03 using UnityEngine;
04 using UnityEditor;
05 using System.Collections;
06 using System.Reflection;
07 //--
08 [CustomPropertyDrawer(typeof(ClassWithProperties))]
09 public class PropertyLister : PropertyDrawer
10 {
11 // Высота панели инспектора объектов
12 float InspectorHeight = 0;
13
14 // Высота одной строки в пикселях
15 float RowHeight = 15;
16
17 // Промежуток между строками

Рис. 8.11. По умолчанию инспектор объектов
не отображает свойства C#

Отображение свойств    287

18 float RowSpacing = 5;
19
20 // Отобразить свойство в пределах заданного прямоугольника
21 public override void OnGUI(Rect position,
 SerializedProperty property, GUIContent label)
22 {
23 EditorGUI.BeginProperty(position, label, property);
24
25 // Получить объект по ссылке
26 object o = property.serializedObject.targetObject;
27 ClassWithProperties CP =
 o.GetType().GetField(property.name).GetValue(o) as
 ClassWithProperties;
28
29 int indent = EditorGUI.indentLevel;
30 EditorGUI.indentLevel = 0;
31
32 // Разметка
33 Rect LayoutRect = new Rect(position.x, position.y,
 position.width, RowHeight);
34
35 // Найти все свойства объекта
36 foreach(var prop in
 typeof(ClassWithProperties).GetProperties(
 BindingFlags.Public | BindingFlags.Instance))
37 {
38 // Если целочисленное свойство
39 if(prop.PropertyType.Equals(typeof(int)))
40 {
41 prop.SetValue(CP, EditorGUI.IntField(
 LayoutRect, prop.Name, (int)prop.GetValue(CP,null)), null);
42 LayoutRect = new Rect(LayoutRect.x,
 LayoutRect.y + RowHeight+RowSpacing,
 LayoutRect.width, RowHeight);
43 }
44
45 // Если вещественное свойство
46 if(prop.PropertyType.Equals(typeof(float)))
47 {
48 prop.SetValue(CP, EditorGUI.FloatField(LayoutRect,
 prop.Name, (float)prop.GetValue(CP,null)), null);
49 LayoutRect = new Rect(LayoutRect.x,
 LayoutRect.y + RowHeight+RowSpacing, LayoutRect.width, RowHeight);
50 }
51
52 // Если свойство хранит значение цвета
53 if(prop.PropertyType.Equals(typeof(Color)))
54 {
55 prop.SetValue(CP, EditorGUI.ColorField(LayoutRect,
 prop.Name, (Color)prop.GetValue(CP,null)), null);

288    Настройка редактора Unity

56 LayoutRect = new Rect(LayoutRect.x,
 LayoutRect.y + RowHeight+RowSpacing, LayoutRect.width, RowHeight);
57 }
58 }
59
60 // Обновить высоту инспектора
61 InspectorHeight = LayoutRect.y-position.y;
62
63 EditorGUI.indentLevel = indent;
64 EditorGUI.EndProperty();
65 }
66 //--
67 // Возвращает высоту поля в пикселях
68 // Это необходимо, чтобы избежать наложения полей друг на друга
69 public override float GetPropertyHeight (
 SerializedProperty property, GUIContent label)
70 {
71 return InspectorHeight;
72 }
73 //--
74 }
75 //--

Ниже приводится несколько комментариев к листингу 8.10:
�� Строка 08: обратите внимание, что атрибут CustomPropertyDrawer

теперь связан с обычным классом, а не с атрибутом. В этом слу­
чае настраивается отображение конкретного класса, а не всех
свойств разных типов, имеющих общий атрибут.

�� Строки 12–18: объявляются некоторые общедоступные чле­
ны, необходимые для вычисления высоты (в пикселях) одной
строки в инспекторе объектов. По умолчанию инспектор объ­
ектов выделяет одну строку для отображения и все отображае­
мые поля должны вписаться в эту область. Если общая высота
отображения превышает высоту одной строки, все дополни­
тельные элементы управления и данные будут перекрываться
и смешиваться с органами управления и виджетами, располо­
женными ниже. Чтобы решить эту проблему, необходимо ис­
пользовать функцию GetPropertyHeight (строка 69) для возвра­
та высоты отображаемой области в пикселях.

�� Строки 26–27: эти строки имеют особое значение. Они исполь­
зуют механизм рефлексии для получения ссылки правильного
типа на экземпляр ClassWithProperties, подготавливаемый для
текущего вызова OnGUI. В частности, извлекается ссылка на
targetObject (выбранный объект), а затем из него извлекается
экземпляр ClassWithProperties. В результате мы получаем пря­
мой доступ к объекту ClassWithProperties.

Локализация    289

�� Строки 37–58: цикл по всем общедоступным свойствам объек­
та и отображение в инспекторе объектов свойств поддержива­
емых типов, при этом обеспечивается их чтение и запись, если
само свойство поддерживает оба метода.

На рис. 8.12 показано, как выглядят свойства C# в инспекторе объ­
ектов.

Рис. 8.12. Доступ к свойствам C#

Локализация
Возможно, одним из самых недооцененных и слабо документирован­
ных аспектов разработки игр является локализация. К ней относит­
ся широкий спектр технических, экономических и лингвистических
мер, которые разработчик предпринимает для поддержки нескольких
языков в играх, например английского, французского, немецкого, ис­
панского, эсперанто и т. д. Технически цель состоит не столько в под­
держке конкретного языка, сколько в создании инфраструктуры, ко­
торая может поддержать любой язык, добавленный в любое время,
сейчас или позже. Вся область локализации и ее роль в разработке
выходят за рамки этой книги, но здесь мы рассмотрим один из спо­
собов настройки редактора Unity для ускорения и облегчения про­
цесса локализации. Например, рассмотрим следующий XML-файл,
в котором надписи для кнопок главного меню игры определены на

290    Настройка редактора Unity

английском и несуществующем языке Йода:

<?xml version="1.0"?>
<text>
 <language id="english">
 <text_entry id="text_01"><![CDATA[new game]]></text_entry>
 <text_entry id="text_02"><![CDATA[load game]]></text_entry>
 <text_entry id="text_03"><![CDATA[save game]]></text_entry>
 <text_entry id="text_04"><![CDATA[exit game]]></text_entry>
 </language>
 <language id="yoda">
 <text_entry id="text_01"><![CDATA[new game, you start]]></text_entry>
 <text_entry id="text_02"><![CDATA[load game, you will]]></text_entry>
 <text_entry id="text_03"><![CDATA[game save, you have]]></text_entry>
 <text_entry id="text_04"><![CDATA[leave now, you must]]></text_entry>
 </language>
</text>

	 Обратите внимание, что все пользовательские текстовые узлы заключены
в элемент CDATA, чтобы можно было использовать любые знаки и символы.
Более подробную информацию о CDATA можно найти по адресу http://www.
w3schools.com/xml/xml_cdata.asp.

В этом файле определяются четыре текстовых элемента, по од­
ному для каждой кнопки меню пользовательского интерфейса.
Каждому текстовому элементу присваивается уникальный иден­
тификатор: text_01, text_02, text_03 и text_04. Эти идентификаторы
однозначно определяют каждый элемент текста и будут одинако­
выми для всех поддерживаемых языков. Цель состоит в том, чтобы
импортировать текстовый файл в Unity, что позволит разработчику
переключаться между языками нажатием кнопки, при этом все со­
ответствующие текстовые элементы игры будут меняться автома­
тически, в соответствии с выбранным языком. Давайте посмотрим,
как это работает.

Сначала импортируйте локализованный текст в папку Resources
проекта. Создайте папку с именем Resources и импортируйте локали­
зованный текстовый файл в нее, как показано на рис. 8.13. Теперь лю­
бой объект или класс сможет загрузить или открыть текстовый файл
с помощью функции Resources.Load, как будет показано ниже.

	 Более подробную информацию о ресурсах можно найти в электронной
документации Unity по адресу http://docs.unity3d.com/ScriptReference/
Resources.html.

Импортированный текстовый файл содержит текстовые данные,
каждый элемент которых связан с определенным идентификатором.
То есть, каждое строковое значение привязано к идентификатору,

Локализация    291

а для каждого идентификатора имеется соответствие в языковой
схеме, что позволяет произвести смену языков без лишних хлопот.
Идентификатор является связующим звеном, которое делает воз­
можным автоматизированную локализацию. Для реализации систе­
мы локализации мы сначала создадим атрибут, который должен быть
применен ко всем локализованным строкам. Атрибут определяет
идентификатор, присоединенный к конкретной строковой перемен­
ной, как показано в листинге 8.11.

Листинг 8.11. Атрибут для присоединения к строковым значениям
using UnityEngine;
using System.Collections;

// Атрибут для присоединения к строковым значениям
public class LocalizationTextAttribute : System.Attribute
{
 // Присваиваемый идентификатор
 public string LocalizationID = string.Empty;

 // Конструктор
 public LocalizationTextAttribute(string ID)
 {
 LocalizationID = ID;
 }
}

Рис. 8.13. Импорт локализованного текста в проект

292    Настройка редактора Unity

Создав атрибут LocalizationTextAttribute, мы можем применить его
в сценарии к строковым членам, связывая их с конкретными иденти­
фикаторами, как показано в листинге 8.12.

Листинг 8.12. Использование атрибута LocalizationTextAttribute
//--
using UnityEngine;
using System.Collections;
//--
public class SampleGameMenu : MonoBehaviour
{
 [LocalizationTextAttribute("text_01")]
 public string NewGameText = string.Empty;

 [LocalizationTextAttribute("text_02")]
 public string LoadGameText = string.Empty;

 [LocalizationTextAttribute("text_03")]
 public string SaveGameText = string.Empty;

 [LocalizationTextAttribute("text_04")]
 public string ExitGameText = string.Empty;
}
//--

Класс SampleGameMenu отображается в инспекторе объектов как
обычный класс, как видно на рис. 8.14. Позже с помощью класса
Editor мы реализуем автоматическую смену языка для всех его стро­
ковых членов.

Теперь реализуем класс Editor для переключения между языками.
Этот класс будет добавлять элементы в меню приложения, щелкая на
которых можно менять активный язык, как показано в листинге 8.13.
Этот пример опирается на ряд взаимосвязанных понятий, часть из
которых нам уже знакома. В частности, здесь используются классы
Reflection, Linq и Editor, а также классы для работы с форматом XML
из фреймворка Mono:

Листинг 8.13. Реализация класса смены языка
01 //---
02 using UnityEngine;
03 using UnityEditor;
04 using System.Collections;
05 using System.Xml;
06 using System.Linq;
07 using System.Reflection;
08 //---

Локализация    293

09 public class LanguageSelector
10 {
11 [MenuItem ("Localization/English")]
12 public static void SelectEnglish()
13 {
14 LanguageSelector.SelectLanguage("english");
15 }
16
17 [MenuItem ("Localization/French")]
18 public static void SelectFrench()
19 {
20 LanguageSelector.SelectLanguage("french");
21 }
22
23 [MenuItem ("Localization/Yoda")]
24 public static void SelectYoda()
25 {
26 LanguageSelector.SelectLanguage("yoda");
27 }
28
29 public static void SelectLanguage(string LanguageName)
30 {
31 // Открыть XML-файл
32 TextAsset textAsset = Resources.Load("LocalText") as TextAsset;

Рис. 8.14. Класс SampleGameMenu включает все текстовые элементы
для примера экранного меню

294    Настройка редактора Unity

33
34 // Загрузить текст в объект чтения XML
35 XmlDocument xmlDoc = new XmlDocument();
36 xmlDoc.LoadXml(textAsset.text);
37
38 // Получить узлы, определяющие язык
39 XmlNode[] LanguageNodes = (from XmlNode Node in
 xmlDoc.GetElementsByTagName("language")
40 where Node.Attributes["id"].Value.ToString().Equals(
 LanguageName.ToLower ())
41 select Node).ToArray();
42
43 // Если ни один узел не найден, выйти
44 if(LanguageNodes.Length <= 0)
45 return;
46
47 // Взять первый узел
48 XmlNode LanguageNode = LanguageNodes[0];
49
50 // Получить текстовый объект
51 SampleGameMenu GM = Object.FindObjectOfType<SampleGameMenu>()
 as SampleGameMenu;
52
53 // Выполнить обход дочерних узлов
54 foreach (XmlNode Child in LanguageNode.ChildNodes)
55 {
56 // Получить идентификатор текстового элемента
57 string TextID = Child.Attributes["id"].Value;
58 string LocalText = Child.InnerText;
59
60 // Выполнить обход всех полей
61 foreach(var field in GM.GetType().GetFields(
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.FlattenHierarchy))
62 {
63 // Если это строковое поле
64 if(field.FieldType == typeof(System.String))
65 {
66 // Получить его атрибуты
67 System.Attribute[] attrs =
 field.GetCustomAttributes(true) as System.Attribute[];
68
69 foreach (System.Attribute attr in attrs)
70 {
71 if(attr is LocalizationTextAttribute)
72 {
73 // Мы нашли текст
74 LocalizationTextAttribute LocalAttr =
 attr as LocalizationTextAttribute;
75

Локализация    295

76 if(LocalAttr.LocalizationID.Equals(TextID))
77 {
78 // Идентификатор совпадает, установить значение
79 field.SetValue(GM, LocalText);
80 }
81 }
82 }
83 }
84 }
85 }
86 }
87 }
88 //---

Ниже приводится несколько комментариев к листингу 8.13:
�� Строки 02–07: не забываем подключить длинный список про­

странств имен, как показано здесь. Наш код будет использовать
каждое из них.

�� Строки 11–23: в этом примере в меню приложения можно вы­
брать один из трех языков: английский, французский и йода.
Для ваших проектов список языков может быть другим. Но
суть в том, что, на основе приведенной здесь системы локали­
зации можно с легкостью добавлять языки когда угодно.

�� Строка 32: функция Resources.Load вызывается для загрузки
текстового XML-файла из папки Resources проекта: его тексто­
вое содержимое помещается в единственную строковую пере­
менную.

�� Строки 35–36: XML-строка загружается в объект XmlDocument,
входящего в состав Mono, для инкапсуляции полного XML-
файла, находящегося на диске или в памяти. Класс также про­
веряет загруженный документ, генерируя исключение, если
XML-файл содержит синтаксические ошибки.

�� Строка 53: после выборки языка из XML-файла выполняется
обход всех дочерних узлов (каждый узел является уникальной
строкой) в поисках соответствующего идентификатора.

�� Строка 61: для каждого строкового элемента просматриваются
все общедоступные строковые члены класса, для выбора пере­
менных с атрибутом LocalizationTextAttribute. После извлече­
ния строка сравнивается с текущим идентификатором. Если
они совпали, строковой переменной присваивается соответ­
ствующая локализованная строка.

Чтобы использовать приведенную здесь систему локализации, до­
бавьте объект SampleGameMenu в сцену, как показано на рис. 8.15.

296    Настройка редактора Unity

Затем выберите в главном меню приложения пункт Localization
⇒ English (Локализация ⇒ Английский) или Localization ⇒ Yoda
(Локализация ⇒ Йода), как показано на рис. 8.16.

Рис. 8.15. Добавление объекта SampleGameMenu
в сцену для локализации

Рис. 8.16. Выбор языка для игры

После выбора языка будут обновлены все строки с атрибутом
LocalizationTextAttribute, как показано на рис. 8.17.

Итоги
В этой главе был подробно рассмотрен механизм рефлексии и его
практическое применение для создания классов, добавляющих новые
возможности в редактор. Эти возможности не всегда необходимы соб­
ственно для разработки игр в Unity, но они могут облегчить вам рабо­

Итоги    297

Рис. 8.17. Текстовые значения
изменились после выбора активного языка

ту. Кроме того, разрабатывая расширения, которые помогут в работе
другим разработчикам, вы сможете заработать на этом, разместив их
магазине ресурсов Unity. Здесь вы узнали, как создать инструмент па­
кетного переименования с помощью класса ScriptableWizard и отобра­
жение в инспекторе объектов элементов управления для смешивания
цветов. Затем мы использовали механизм рефлексии для отображе­
ния в инспекторе объектов общедоступных свойств C#, чтобы полу­
чить прямой доступ к методам set и get во время выполнения. Далее
мы рассмотрели способ локализации с помощью обработки XML-
файлов в классе Editor, который позволяет автоматически изменять
строковые переменные для соответствия их выбранному языку. За
более подробной информацией обращайтесь к следующим страни­
цам: http://catlikecoding.com/unity/tutorials/editor/custom-data/ и http://
catlikecoding.com/unity/tutorials/editor/custom-list/. В следующей главе
мы пополним наши теоретические и практические познания, рассмо­
трев слабо документированные вопросы двухмерного мира.

Глава 9

Работа
с текстурами,

моделями
и двухмерными

изображениями
Сегодня большинство игровых движков ориентировано на создание
трех-, а не двухмерных игр. Как это ни парадоксально, это делает
процесс разработки трехмерных игр более простым, чем двухмер­
ных, по крайней мере на начальном этапе. В этой главе мы рассмо­
трим некоторые вопросы разработки двухмерных игр с некоторыми
оговорками. С момента выхода Unity 4.3 в редактор был добавлен
широкий спектр функций для работы с двухмерной графикой: встро­
енная поддержка спрайтов и новая система отображения пользова­
тельского интерфейса. Хотя они и полезны во многих ситуациях,
основное внимание в этой главе будет сосредоточено не на этих
функциях. Первая причина в том, что во многих учебных пособиях
они уже довольно подробно описаны, а вторая и наиболее важная –
даже после добавления эти функций остались нерешенными фунда­
ментальные вопросы, которые возникают при работе с двухмерной
графикой: манипулирование геометрией – вершинами и ребрами
двухмерных плоскостей, настройка и анимация текстурных коорди­
нат, редактирование текстур, а также прорисовка текстур в режиме
реального времени, с использованием системы кистей, для наложе­
ния изображений, таких как пятна крови и т. п. Эти вопросы больше
относятся к двухмерной графике, чем к трехмерной, поскольку ка­

Скайбокс    299

саются геометрии и текстур двухмерных плоскостей, но в целом они
актуальны для любых игр, двух- и трехмерных. Сегодня эти вопросы
имеют большое значение, хотя и недостаточно освещены в учебных
пособиях, поэтому я и рассмотрю их здесь. Однако, я ограничусь
в этой главе в основном слабо документированными сторонами ра­
боты с двухмерной графикой.

Скайбокс
Может показаться странным начинать рассмотрение приемов работы
с двухмерной графикой со скайбокса, но все дело в том, что работа
с ним демонстрирует возможности настройки камер и использование
слоев. Скайбокс, по сути, представляет собой фон на кубической ос­
нове для отображения облаков, неба и других отдаленных деталей,
которые всегда должны быть в сцене только отдаленным фоном, к ко­
торому игрок никогда не сможет приблизиться. Он всегда в отдале­
нии, как показано на рис. 9.1.

Рис. 9.1. Скайбокс создает фон неба для камеры

Основная проблема скайбоксов, встроенных в Unity, в том, что они
по умолчанию остаются неизменными и неподвижными. Большин­
ство разработчиков, однако, хотят, чтобы небо и облака медленно по­
ворачивались, даже если камера неподвижна, чтобы отобразить сме­
ну дня и ночи или течение времени. Давайте создадим улучшенный

300    Работа с текстурами, моделями

вариант скайбокса с помощью ресурсов Unity, камеры с двумя слоями
и файла сценария на C#.

	 Окончательный проект вращающегося скайбокса можно найти в пакете
примеров для книги.

Для нужд проекта, созданного здесь, импортируем пакет Charac-
ter Controllers с контроллером игры от первого лица, пакет Terrain
Assets с текстурами ландшафтов, которые можно наносить на мест­
ность, и пакет Skyboxes с текстурами скайбоксов, как показано на
рис. 9.2. Все это пригодится при разработке примера проекта с вра­
щающимся скайбоксом.

Давайте начнем с создания вращающегося скайбокса в виде объ­
екта. Этот объект будет состоять из трех основных частей, или по­
добъектов: контроллера игры от первого лица, чтобы дать игроку

Рис. 9.2. Импорт пакетов Character Controllers,
Skyboxes и Terrain Assets

Скайбокс    301

возможность двигаться и отображать объекты сцены, второй камеры
(камеры скайбокса), расположенной ниже камеры от первого лица
и показывающей только скайбокс, и кубического объекта с перевер­
нутыми нормалями, окружающего камеру скайбокса и отображающе­
го каждую текстуру скайбокса на каждой стороне.

Для начала создайте новый пустой объект в исходной точке сцены
(назовем его SkyBoxCamera) и добавьте к нему контроллер игры от пер­
вого лица. Затем создайте шесть объектов Quad (выбрав пункт меню
GameObject ⇒ 3D Object ⇒ Quad (Игровой объект ⇒ Трехмерные
объекты ⇒ Quad)), совместив объекты по углам и расположив вер­
шины так, чтобы сформировать инвертированный куб, то есть куб,
грани которого вогнуты внутрь, как показано на рис. 9.3. Он будет
служить мешем для управляемого скайбокса.

	 Измените размеры объектов Quad, если это потребуется, и убедитесь, что
они охватывают контроллер игры от первого лица, который должен быть
в центре скайбокса.

Рис. 9.3. Создание управляемого скайбокса
из шести объектов Quad

302    Работа с текстурами, моделями

Назначьте граням скайбокса новый слой SkyBoxLayer, выберите ка­
меру контроллера игры от первого лица, а затем измените поле Culling
Mask (Маска отбраковки) для исключения слоя SkyBoxLayer. Камера
от первого лица должна отображать только объекты переднего плана,
игнорируя фоновые. Для достижения этой цели измените значение
поля Clear Flags (Флаги очистки) на Depth only (Только окружение)
в инспекторе объектов, как показано на рис. 9.4. Это сделает фон про­
зрачным для камеры, что позволит камерам более низкого порядка
видеть сквозь него, если они есть.

Теперь создайте новый дополнительный объект Camera, как дочер­
ний объект камеры от первого лица, с совпадающими с ней положени­
ем, направлением и масштабом. Это позволит вновь созданной каме­
ре повторять все перемещения камеры от первого лица. Цель второй
камеры – отображать только объект скайбокса как слой, совместно
с камерой от первого лица, повторяя позицию и направление камеры
от первого лица.

Для этого измените значение поля Depth (Глубина) новой камеры
на любое значение, меньшее, чем значение поля Depth (Глубина) ка­
меры от первого лица, например –1. Удалите все компоненты слуша­
телей аудио там, где это потребуется.

Рис. 9.4. Настройка камеры для прозрачности фона

Скайбокс    303

Назначьте уникальную текстуру скайбокса каждой грани куба
и позаботьтесь об их выравнивании с помощью небольших поворо­
тов и смещений объектов Quad. Затем измените тип материала Shader
(Шейдер) для текстур скайбокса на Unlit/Texture (Неосвещенный/
текстура), что сделает скайбокс индифферентным к освещению сце­
ны. Меш скайбокса должен выглядеть, как показано на рис. 9.6.

И, наконец, подключите сценарий из листинга 9.1 к родительско­
му объекту скайбокса, реализующий его вращение и постоянное соот­
ветствие положению камеры. Это гарантирует то, что скайбокс всегда
будет располагаться так, что камера будет находиться в его центре,
куда бы она не переместилась в сцене.

Листинг 9.1. Сценарий, реализующий вращение скайбокса
и его соответствие положению камеры
01 //--
02 using UnityEngine;
03 using System.Collections;
04 //--
05 public class SkyBox : MonoBehaviour
06 {
07 //--
08 // Камера для отображения
09 public Camera FollowCam = null;
10
11 // Скорость вращения (градусов в секунду)
12 public float RotateSpeed = 10.0f;
13
14 // Трансформация

Рис. 9.5. Создание второй камеры
для отображения скайбокса

304    Работа с текстурами, моделями

Рис. 9.6. Наложение текстур на объекты Quad

15 private Transform ThisTransform = null;
16 //--
17 // Этот метод используется для инициализации
18 void Awake () {
19 ThisTransform = transform;
20 }
21 //--
22 // Вызывается при отображении каждого кадра
23 void Update () {
24 // Изменить положение
25 ThisTransform.position = FollowCam.transform.position;
26
27 // Изменить угол поворота
28 ThisTransform.Rotate(new Vector3(0,RotateSpeed * Time.deltaTime,0));
29 }
30 //--
31 }
32 //--

Итак, теперь у нас есть усовершенствованный скайбокс, всегда
окружающий камеру и вращающийся для придания сценам большей
реалистичности. Можно пойти дальше, добавив несколько вложен­
ных друг в друга скайбоксов, каждый с определенной степенью про­
зрачности, для создания дополнительных эффектов, таких как туман,
дымка и т. д.

Процедурные меши    305

Процедурные меши
Хотя Unity и предлагает примитив четырехугольника Quad, доступ­
ный в виде пункта GameObject ⇒ 3D Object ⇒ Quad (Игровой объ­
ект ⇒ Трехмерные объекты ⇒ Quad) в меню приложения, но полезно
также знать, как создавать подобные геометрические фигуры вруч­
ную. И на это есть несколько причин. Во-первых, часто бывает нужно
скорректировать координаты вершин из сценария для создания ани­
мационного эффекта или искажения меша с целью имитации разных
визуальных эффектов, например желеобразного пола, который изги­
бается и качается, когда персонажи наступают на него. Во-вторых, вы
должны будете отредактировать UV-координаты меша для создания
анимированных текстур или эффектов прокрутки текстур, как пока­
зано на рис. 9.8.

Рассмотрим следующий пример в листинге 9.2, который следует
поместить в папку Editor проекта. Он реализует расширение редакто­
ра для создания примитивов Quad из сценария с возможностью опре­
деления позиции центра вращения меша. Как мы увидим в коммента­
риях, этот пример содержит много полезных приемов.

Листинг 9.2. Расширение редактора для создания примитивов Quad
001 // Класс расширения редактора для создания примитивов QUAD
 с заданной точкой вращения
002 //--
003 using UnityEngine;
004 using UnityEditor;

Рис. 9.7. Законченный управляемый скайбокс

306    Работа с текстурами, моделями

Рис. 9.8. Динамическое создание мешей в сценарии

005 using System.IO;
006 //--
007 // Используется редактором Unity
008 public class CreateQuad : ScriptableWizard
009 {
010 // Точка вращения для меша
011 public enum AnchorPoint
012 {
013 TopLeft,
014 TopMiddle,
015 TopRight,
016 RightMiddle,
017 BottomRight,
018 BottomMiddle,
019 BottomLeft,
020 LeftMiddle,
021 Center,
022 Custom
023 }
024
025 // Имя ресурса Quad

Процедурные меши    307

026 public string MeshName = "Quad";
027
028 // Имя игрового объекта
029 public string GameObjectName = "Plane_Object";
030
031 // Имя папки с ресурсами
032 public string AssetFolder = "Assets";
033
034 // Ширина примитива в мировых единицах (пикселях)
035 public float Width = 1.0f;
036
037 // Высота примитива в мировых единицах (пикселях)
038 public float Height = 1.0f;
039
040 // Позиция точки вращения
041 public AnchorPoint Anchor = AnchorPoint.Center;
042
043 // Горизонтальная позиция точки вращения на плоскости
044 public float AnchorX = 0.5f;
045
046 // Вертикальная позиция точки вращения на плоскости
047 public float AnchorY = 0.5f;
048 //--
049 [MenuItem("GameObject/Create Other/Custom Plane")]
050 static void CreateWizard()
051 {
052 ScriptableWizard.DisplayWizard("Create Plane",typeof(CreateQuad));
053 }
054
055 //--
056 // Вызывается в момент создания окна
057 void OnEnable()
058 {
059 // Вызвать событие изменения выбора
060 OnSelectionChange();
061 }
062 //--
063 // Вызывается 10 раз в секунду
064 void OnInspectorUpdate()
065 {
066 switch(Anchor)
067 {
068 // Точка вращения установлена в левый верхний угол
069 case AnchorPoint.TopLeft:
070 AnchorX = 0.0f * Width;
071 AnchorY = 1.0f * Height;
072 break;
073
074 // Точка вращения установлена вверху в центре
075 case AnchorPoint.TopMiddle:

308    Работа с текстурами, моделями

076 AnchorX = 0.5f * Width;
077 AnchorY = 1.0f * Height;
078 break;
079
080 // Точка вращения установлена в правый верхний угол
081 case AnchorPoint.TopRight:
082 AnchorX = 1.0f * Width;
083 AnchorY = 1.0f * Height;
084 break;
085
086 // Точка вращения установлена справа в центре
087 case AnchorPoint.RightMiddle:
088 AnchorX = 1.0f * Width;
089 AnchorY = 0.5f * Height;
090 break;
091
092 // Точка вращения установлена в правый нижний угол
093 case AnchorPoint.BottomRight:
094 AnchorX = 1.0f * Width;
095 AnchorY = 0.0f * Height;
096 break;
097
098 // Точка вращения установлена внизу в центре
099 case AnchorPoint.BottomMiddle:
100 AnchorX = 0.5f * Width;
101 AnchorY = 0.0f * Height;
102 break;
103
104 // Точка вращения установлена в левый нижний угол
105 case AnchorPoint.BottomLeft:
106 AnchorX = 0.0f * Width;
107 AnchorY = 0.0f * Height;
108 break;
109
110 // Точка вращения установлена слева в центре
111 case AnchorPoint.LeftMiddle:
112 AnchorX = 0.0f * Width;
113 AnchorY = 0.5f * Height;
114 break;
115
116 // Точка вращения установлена в центре
117 case AnchorPoint.Center:
118 AnchorX = 0.5f * Width;
119 AnchorY = 0.5f * Height;
120 break;
121
122 case AnchorPoint.Custom:
123 default:
124 break;
125 }

Процедурные меши    309

126 }
127 //--
128 // Вызывается, когда выполняется обновление окна
129 void OnSelectionChange()
130 {
131 // Проверить выбор пользователя в редакторе
132 if (Selection.objects != null && Selection.objects.Length == 1)
133 {
134 // Получить путь из выбранного ресурса
135 AssetFolder = Path.GetDirectoryName(AssetDatabase.
 GetAssetPath(Selection.objects[0]));
136 }
137 }
138 //--
139 // Функция для создания меша четырехугольника
140 void OnWizardCreate()
141 {
142 // Создать вершины
143 Vector3[] Vertices = new Vector3[4];
144
145 // Создать координаты UV
146 Vector2[] UVs = new Vector2[4];
147
148 // Два треугольника в четырехугольнике
149 int[] Triangles = new int[6];
150
151 // Связать вершины, опираясь на точку вращения
152
153 // Слева внизу
154 Vertices[0].x = -AnchorX;
155 Vertices[0].y = -AnchorY;
156
157 // Справа внизу
158 Vertices[1].x = Vertices[0].x+Width;
159 Vertices[1].y = Vertices[0].y;
160
161 // Слева вверху
162 Vertices[2].x = Vertices[0].x;
163 Vertices[2].y = Vertices[0].y+Height;
164
165 // Справа вверху
166 Vertices[3].x = Vertices[0].x+Width;
167 Vertices[3].y = Vertices[0].y+Height;
168
169 // Присвоить координаты UV
170 // Слева внизу
171 UVs[0].x=0.0f;
172 UVs[0].y=0.0f;
173
174 // Справа внизу

310    Работа с текстурами, моделями

175 UVs[1].x=1.0f;
176 UVs[1].y=0.0f;
177
178 // Слева вверху
179 UVs[2].x=0.0f;
180 UVs[2].y=1.0f;
181
182 // Справа вверху
183 UVs[3].x=1.0f;
184 UVs[3].y=1.0f;
185
186 // Присвоить треугольники
187 Triangles[0]=3;
188 Triangles[1]=1;
189 Triangles[2]=2;
190
191 Triangles[3]=2;
192 Triangles[4]=1;
193 Triangles[5]=0;
194
195 // Создать меш
196 Mesh mesh = new Mesh();
197 mesh.name = MeshName;
198 mesh.vertices = Vertices;
199 mesh.uv = UVs;
200 mesh.triangles = Triangles;
201 mesh.RecalculateNormals();
202
203 // Создать ресурс в базе данных
204 AssetDatabase.CreateAsset(mesh,
 AssetDatabase.GenerateUniqueAssetPath(
 AssetFolder + "/" + MeshName) + ".asset");
205 AssetDatabase.SaveAssets();
206
207 // Создать плоский игровой объект
208 GameObject plane = new GameObject(GameObjectName);
209 MeshFilter meshFilter =
 (MeshFilter)plane.AddComponent(typeof(MeshFilter);
210 plane.AddComponent(typeof(MeshRenderer));
211
212 // Связать меш с фильтром
213 meshFilter.sharedMesh = mesh;
214 mesh.RecalculateBounds();
215
216 // Добавить компонент коллайдера кубической формы
217 plane.AddComponent(typeof(BoxCollider));
218 }
219
220 //--
221 }

Анимация UV-координат – прокручивание текстур    311

Ниже приводится несколько комментариев к листингу 9.2:
�� Строка 004: этот пример представляет расширение редактора.

Именно поэтому он подключает пространство имен UnityEditor.
За более подробной информацией о создании расширений ре­
дактора обращайтесь к главе 8 «Настройка редактора Unity».

�� Строка 135: событие OnSelectionChanged вызывается, когда
пользователь производит выбор в редакторе Unity с помощью
мыши или клавиатуры. Здесь метод GetAssetPath вызывается
для восстановления открытой в данный момент папки в панели
Project (Проект).

�� Строка 140: функция OnWizardCreate вызывается для создания
меша Quad. Она заполняет массивы вершин и координат UV,
а затем наполняет содержанием объект Mesh, созданный в стро­
ке 196.

�� Строка 204: важно отметить, что меш сохраняется не как объ­
ект в определенной сцене, а как ресурс, из которого можно
создать несколько экземпляров. Для этого используется класс
AssetDatabase. Это позволит, при необходимости, использовать
меш в нескольких сценах, а также переносить его изменения из
сцены в сцену.

	 Более подробную информацию о классе AssetDatabase можно найти
в электронной документации Unity по адресу http://docs.unity3d.com/
ScriptReference/AssetDatabase.html.

Анимация UV-координат – прокручивание
текстур
Прием прокручивания текстур очень часто применяется в играх, и все
же он не имеет встроенной поддержки в Unity, поэтому есть смысл
написать сценарий для его реализации. Прокручивание текстур ис­
пользуется для создания эффекта смещения: движения облаков, пе­
ремещения поверхностей, текучей воды и подчеркивания движений
в игре. Как правило, такие текстуры представляют собой бесшовные
изображения по вертикали и по горизонтали. Это позволяет выпол­
нять бесконечное их прокручивание, как показано на рис. 9.9.

При подключении к примитиву Quad, следующий пример в листин­
ге 9.3 оживит его текстуру с соответствующими скоростями по гори­
зонтали и вертикали.

312    Работа с текстурами, моделями

Рис. 9.9. Прокручивание текстуры на четырехугольнике Quad

Листинг 9.3. Класс для прокручивания плоских текстур
01 // Класс для прокручивания плоских текстур.
 Может использоваться для создания эффекта движения облаков
02 //--
03 using UnityEngine;
04 using System.Collections;
05 //--
06 [RequireComponent (typeof (MeshRenderer))]
07 public class MatScroller : MonoBehaviour
08 {
09 // Общедоступные переменные
10 //--
11 // Горизонтальная скорость прокрутки
12 public float HorizSpeed = 1.0f;
13
14 // Вертикальная скорость прокрутки
15 public float VertSpeed = 1.0f;
16
17 // Минимальная и максимальная координаты UV по гризонтали и вертикали
18 public float HorizUVMin = 1.0f;
19 public float HorizUVMax = 2.0f;
20
21 public float VertUVMin = 1.0f;
22 public float VertUVMax = 2.0f;
23
24 // Локальные переменные

Рисование на текстуре    313

25 //--
26 // Ссылка на компонент отображения меша
27 private MeshRenderer MeshR = null;
28
29 // Методы
30 //--
31 // Этот метод выполняет инициализацию
32 void Awake ()
33 {
34 // Получить компонент отображения меша
35 MeshR = GetComponent<MeshRenderer>();
36 }
37 //--
38 // Вызывается при отображении каждого кадра
39 void Update ()
40 {
41 // Прокручивать текстуру между минимальной и максимальной координатами
42 Vector2 Offset = new Vector2((
 MeshR.material.mainTextureOffset.x > HorizUVMax) ?
 HorizUVMin : MeshR.material.mainTextureOffset.x +
 Time.deltaTime * HorizSpeed,
43 (MeshR.material.mainTextureOffset.y > VertUVMax) ?
 VertUVMin : MeshR.material.mainTextureOffset.y +
 Time.deltaTime * VertSpeed);
44
45 // Обновить UV-координаты
46 MeshR.material.mainTextureOffset = Offset;
47 }
48 //--
49 }
50 //--

	 Класс MatScroller работает с любым компонентом MeshRenderer и объектом
Quad. Полный проект прокручивания текстуры можно найти в пакете приме-
ров для книги.

Подключите этот сценарий к объекту Quad и настройте его скорость
прокрутки для получения необходимого эффекта, как показано на
рис. 9.10. Он пригодится для создания анимированного фона неба
и фона для игр-стрелялок с боковой прокруткой. Он также может
быть полезен при создании плавно текущей воды и объемного осве­
щения, при применении в сочетании с прозрачностью!

Рисование на текстуре
На практике часто возникают ситуации, когда необходимо рисовать
пиксели на текстуре прямо во время игры. Иногда такая задача реша­
ется тривиально, например отображение полупрозрачных вставок на

314    Работа с текстурами, моделями

Рис. 9.10. Настройка прокрутки текстуры
в инспекторе объектов

текстуре (как следы ног или надписи). В этих случаях можно просто
наложить полупрозрачные фрагменты изображений на фоновую по­
верхность. Но иногда требуется нечто более сложное, когда поможет
только полноценное рисование на текстуре. Например, игры с улич­
ными драками, где желательно изобразить брызги крови от ударов,
падающие на землю и окружающие предметы так, чтобы они стали
частью окружающих текстур. Другим примером может послужить
игра в визажиста, где игрок должен наложить макияж на изображе­
ние лица.

Здесь нужно не просто натянуть плоскую текстуру на меш, как
отдельный объект, чтобы создать декоративный эффект, а прорисо­
вать текстуру (например, с помощью кисти) на фоновой текстуре
меша. Здесь картинка и фон не должны быть двумя независимыми
текстурами, и при их соединении должны учитываться меш и его
UV-координаты. Другими словами, исходная текстура должны быть
спроецирована на поверхность меша, а затем прорисованные пиксе­
ли возвращены на текстуру с помощью UV-отображения меша. Это
гарантирует, что пиксели будут прорисованы в правильном месте на

Рисование на текстуре    315

текстуре назначения, как показано на рис 9.11. Этот метод позволя­
ет прорисовать любую исходную текстуру любого размера на любой
трехмерной поверхности с наложенной текстурой любого размера,
через UV-отображение.

Рис. 9.11. Рисование на текстуре текстурированной кистью
во время выполнения с использованием меша

и его UV-отображения

В этом разделе мы рассмотрим, как эффективно реализовать это
на практике. Перед тем как начать, следует отметить, что рисование
на текстуре должно рассматриваться как последнее средство, когда
альтернативные методы (например, врезка плоских кусочков) не под­
ходят. Это связано с тем, что рисование на текстуре предъявляет по­
вышенные требования к вычислительным ресурсам.

	 Законченный проект рисования на текстуре можно найти в пакете с при-
мерами для книги.

Шаг 1 – создание шейдера смешивания текстур
Давайте познакомимся с приемом наложения двух слоев, который
идеально подходит в данном случае. Во-первых, у нас есть текстура
кисти, которая будут нарисована на фоновой текстуре, когда пользо­
ватель щелкнет на меше в сцене, она показана на рис. 9.12.

У нас есть также фоновая текстура, натянутая на меш, которая при
рисовании должна перекрываться текстурой кисти, она показана на
рис. 9.13.

316    Работа с текстурами, моделями

Рис. 9.12. Текстура кисти черного цвета
с прозрачностью

Рис. 9.13. Фоновая текстура,
на которой будет прорисована

текстура кисти

Однако, обычно не требуется, чтобы при рисовании текстура кисти
перекрывала или изменяла пиксели фоновой текстуры. Это связано
с тем, что фоновая текстура может быть наложена на несколько объ­

Рисование на текстуре    317

ектов в сцене (по крайней мере, теоретически), и перекрытие или
изменение пикселей исходной фоновой текстуры приведет к распро­
странению изменений на все объекты с этой же текстурой.

Вместо этого лучше выделить результат рисования в отдельную
текстуру с прозрачным фоном, которую можно наложить вторым
слоем на фоновую текстуру. Это позволит разделить фоновую тек­
стуру и текстуру с результатами рисования кистью, хотя по внешнему
виду они будут выглядеть как одна сводная текстура. Для достиже­
ния этого эффекта необходимо написать свой шейдер, приведенный
в листинге 9.4. Этот шейдер накладывает текстуру кисти (с альфа-
прозрачностью) поверх текстуры фона.

Листинг 9.4. Шейдер наложения одной текстуры на другую
01 Shader "TextureBlender"
02 {
03 Properties
04 {
05 _Color ("Main Color", Color) = (1,1,1,1)
06 _MainTex ("Base (RGB) Trans (A)", 2D) = "white" {}
07 _BlendTex ("Blend (RGB)", 2D) = "white"
08 }
09
10 SubShader
11 {
12 Tags { "Queue"="Geometry-9" "IgnoreProjector"="True"
 "RenderType"="Transparent" }
13 Lighting Off
14 LOD 200
15 Blend SrcAlpha OneMinusSrcAlpha
16
17 CGPROGRAM
18 #pragma surface surf Lambert
19 uniform fixed4 _Color;
20 uniform sampler2D _MainTex;
21 uniform sampler2D _BlendTex;
22
23 struct Input
24 {
25 float2 uv_MainTex;
26 };
27
28 void surf (Input IN, inout SurfaceOutput o)
29 {
30 fixed4 c1 = tex2D(_MainTex, IN.uv_MainTex);
31 fixed4 c2 = tex2D(_BlendTex, IN.uv_MainTex);
32
33 fixed4 main = c1.rgba * (1.0 – c2.a);

318    Работа с текстурами, моделями

34 fixed4 blendedoutput = c2.rgba * c2.a;
35
36 o.Albedo = (main.rgb + blendedoutput.rgb) * _Color;
37 o.Alpha = main.a + blendedoutput.a;
38 }
39 ENDCG
40 }
41 Fallback "Transparent/VertexLit"
42 }

После сохранения шейдера, он становится доступен для выбора
в качестве типа шейдера для любого материала, создаваемого в па­
нели Material (Материал) в инспекторе объектов. Этот шейдер дол­
жен использоваться для любых объектов, которые вы собираетесь
рисовать, как показано на рис. 9.14. Слот _MainTex определяет фоно­
вую текстуру, на которую будет наложено изображение и которая

Рис. 9.14. Пользовательский шейдер для смешивания текстур

Рисование на текстуре    319

не должна редактироваться. Слот _BlendTex определяет прозрачную
текстуру, накладываемую на фоновую текстуру _MainTex. Обычно этот
слот заполняется программно из сценария, генерирующего прозрач­
ную текстуру кисти, как мы вскоре увидим.

Шаг 2 – создание сценария рисования текстуры
Мы создали шейдер, принимающий две текстуры (верхнюю и ниж­
нюю) и накладывающий верхнюю текстуру на нижнюю. В результате
возникает эффект, похожий на использование слоев в Photoshop. Это
позволяет поместить нарисованную текстуру в верхний слой, сохра­
нив неизменными пиксели фоновой текстуры под ней, как показано
на рис. 9.15.

Рис. 9.15. Создание сценария рисования текстуры

Прежде чем двигаться дальше, мы должны сначала отредактиро­
вать ресурс текстуры кисти, что мы и сделаем с помощью инспекто­
ра объектов. В частности, выберите текстуру кисти в панели Project
(Проект) редактора Unity и измените Texture Type (Тип текстуры) на
Advanced (Улучшенный). Установите флажок Read/Write Enabled
(Разрешить чтение/запись), это позволит получить доступ к функци­
ям редактирования текстуры.

Кроме того, установите флажок Alpha is Transparency (Прозрач­
ный альфа-канал) и сбросьте флажок Generate Mip Maps (Генериро­
вать mip-текстуру), как показано на рис. 9.16.

320    Работа с текстурами, моделями

Теперь напишем сценарий рисования на текстуре, который позво­
лит прорисовать текстуру кисти с помощью мыши на трехмерном
объекте с использованием его UV-координат. Сценарий представлен
в листинге 9.5.

Листинг. 9.5. Сценарий рисования на текстуре
001 //---
002 using UnityEngine;
003 using System.Collections;
004 //---
005 public class TexturePainter : MonoBehaviour
006 {
007 // Квадратная текстура с прозрачностью
008 public Texture2D BrushTexture = null;
009
010 // Ширина и высота текстуры для рисования
011 public int SurfaceTextureWidth = 512;
012 public int SurfaceTextureHeight = 512;
013
014 // Ссылка на текстуру для рисования
015 public Texture2D SurfaceTexture = null;
016

Рис. 9.16. Подготовка текстуры
для рисования на другой текстуре

Рисование на текстуре    321

017 // Ссылка на материал текстуры для рисования
018 public Material DestMat = null;
019 //---
020 // Этот метод выполняет инициализацию
021 void Start ()
022 {
023 // Создать текстуру для рисования
024 SurfaceTexture = new Texture2D(SurfaceTextureWidth,
 SurfaceTextureHeight, TextureFormat.RGBA32, false);
025
026 // Заполнить черными пикселями (прозрачные; alpha=0)
027 Color[] Pixels = SurfaceTexture.GetPixels();
028 for(int i=0; i<Pixels.Length; i++)
029 Pixels[i] = new Color(0,0,0,0);
030 SurfaceTexture.SetPixels(Pixels);
031 SurfaceTexture.Apply();
032
033 // Установить как основную текстуру
034 renderer.material.mainTexture = SurfaceTexture;
035
036 // Если материал текстуры для рисования, установить текстуру кисти
037 // Используется с нестандартным шейдером
038 if(DestMat)
039 DestMat.SetTexture("_BlendTex", SurfaceTexture);
040 }
041 //--
042 // Вызывается при отображении каждого кадра
043 void Update ()
044 {
045 // Если кнопка мыши нажата, начать рисование
046 if(Input.GetMouseButtonDown(0))
047 {
048 // Точка под указателем мыши
049 RaycastHit hit;
050
051 // Преобразовать точку на экране в луч в сцене
052 if (!Physics.Raycast(Camera.main.ScreenPointToRay(
 Input.mousePosition), out hit))
053 return;
054
055 // Получить коллайдер
056 Renderer renderer = hit.collider.renderer;
057 MeshCollider Collide = hit.collider as MeshCollider;
058 if (renderer == null || renderer.sharedMaterial == null ||
 renderer.sharedMaterial.mainTexture == null || Collide == null)
059 return;
060
061 // Получить UV-координаты поверхности
062 Vector2 pixelUV = hit.textureCoord;
063 pixelUV.x *= renderer.material.mainTexture.width;

322    Работа с текстурами, моделями

064 pixelUV.y *= renderer.material.mainTexture.height;
065
066 // Установить центр текстуры кисти в координаты курсора
067 pixelUV.x -= BrushTexture.width/2;
068 pixelUV.y -= BrushTexture.height/2;
069
070 // Привести значения пикселей к диапазону 0-width
071 pixelUV.x = Mathf.Clamp(pixelUV.x, 0,
 renderer.material.mainTexture.width);

072 pixelUV.y = Mathf.Clamp(pixelUV.y, 0,
 renderer.material.mainTexture.height);
073
074 // нарисовать на текстуре для рисования
075 PaintSourceToDestTexture(BrushTexture,
 renderer.material.mainTexture as Texture2D,
 (int)pixelUV.x, (int)pixelUV.y);
076 }
077 }
078 //--
079 // Рисует исходную текстуру на текстуре для рисования
080 // Нарисует текстуру кисти на текстуре для рисования
081 public static void PaintSourceToDestTexture(
 Texture2D Source, Texture2D Dest, int Left, int Top)
082 {
083 // Получить пиксели текстуры кисти
084 Color[] SourcePixels = Source.GetPixels();
085
086 // Получить пиксели текстуры для рисования
087 Color[] DestPixels = Dest.GetPixels();
088
089 for(int x=0; x<Source.width; x++)
090 {
091 for(int y=0; y<Source.height; y++)
092 {
093 // Получить исходный пиксель
094 Color Pixel = GetPixelFromArray(SourcePixels, x, y,
 Source.width);
095
096 // Получить смещение в текстуре для рисования
097 int DestOffsetX = Left + x;
098 int DestOffsetY = Top + y;
099
100 if(DestOffsetX < Dest.width && DestOffsetY < Dest.height)
101 SetPixelInArray(DestPixels, DestOffsetX, DestOffsetY,
 Dest.width, Pixel, true);
102 }
103 }
104
105 // Изменить текстуру для рисования

Рисование на текстуре    323

106 Dest.SetPixels(DestPixels);
107 Dest.Apply();
108 }
109 //---
110 // Читает цвет из массива пикселей
111 public static Color GetPixelFromArray(Color[] Pixels, int X, int Y,
 int Width)
112 {
113 return Pixels[X+Y*Width];
114 }
115 //--
116 // Записывает цвет в массив пикселей
117 public static void SetPixelInArray(Color[] Pixels, int X, int Y,
 int Width, Color NewColor, bool Blending=false)
118 {
119 if(!Blending)
120 Pixels[X+Y*Width] = NewColor;
121 else
122 {
123 // Здесь смешивается цвет текстуры с цветом поверхности,
 С сохранением значения прозрачности
124 Color C = Pixels[X+Y*Width] * (1.0f – NewColor.a);
125 Color Blend = NewColor * NewColor.a;
126
127 Color Result = C + Blend;
128 float Alpha = C.a + Blend.a;
129
130 Pixels[X+Y*Width] = new Color(Result.r, Result.g, Result.b, Alpha);
131 }
132 }
133 //---
134 }
135 //---

Ниже приводится несколько комментариев к листингу 9.5:
�� Строка 008: общедоступная переменная в этой строке хранит

ссылку на ресурс текстуры, используемой в качестве рисунка
кисти. По каждому щелчку мышью эта текстура будет накла­
дываться на текстуру из переменной SurfaceTexture.

�� Строка 015: переменная SurfaceTexture хранит ссылку на ди­
намически сгенерированную текстуру с прозрачными пиксе­
лями, которая сыграет роль нижнего слоя. Эта текстура будет
принимать все мазки кистью при рисовании. Проще говоря, эта
текстура будет передана в шейдер TextureBlender в переменной
_BlendTex.

�� Строки 026–031: новая текстура генерируется во время выпол­
нения функции Start. Текстура имеет формат RGBA32, поддер­

324    Работа с текстурами, моделями

живающий альфа-канал. Функция SetPixels используется для
пакетного заполнения (заливки) текстуры пикселями одного
цвета. Более подробно функции GetPixels и SetPixels рассма­
триваются ниже.

�� Строка 046: в функции Update отслеживаются щелчки мышью
для запуска процедуры рисования на текстуре.

�� Строки 048–059: при нажатии кнопки мыши необходимо
прорисовать текстуру кисти в назначенном месте. Функция
Physics.Raycast вызывается в строке 52 для выяснения несколь­
ких вопросов, один из них: является ли мешем объект в сцене,
на который указывает луч. Такой объект должен иметь компо­
нент Collider.

�� Строки 062–072: если объект обнаружен, UV-координаты ме­
ста падения луча можно получить из переменной textureCoord
структуры RaycastHit. Более подробную информацию о данной
переменной можно найти в электронной документации Unity
по адресу http://docs.unity3d.com/ScriptReference/RaycastHit-
textureCoord.html. Эта переменная хранит нужные значения,
только если объект, на меш которого попал луч, владеет кол­
лайдером типа MeshCollider, а не каким-то другим, таким как
BoxCollider или CapsuleCollider. То есть, любой объект, пред­
назначенный для прорисовки на нем текстуры, должен иметь
компонент MeshCollider, так как только он имеет данные о UV-
координатах. В строках 63–72 выполняется преобразование
UV-координат в абсолютную позицию в пикселях центра тек­
стуры кисти при заданном положении курсора. Результатом
является точно определенная позиция на исходной текстуре,
соответствующая точке с координатами х, у, в которой текстура
должна быть прорисована на текстуре для рисования.

�� Строка 075: функция PaintSourceToDestTexture служит для са­
мой прорисовки.

�� Строка 081: функция PaintSourceToDestTexture принимает четы­
ре аргумента: Source, Dest, Left и Top. На основании их значений
текстура Source прорисовывается на текстуре Dest в месте с ко­
ординатами Left и Top. Эта функция объявлена как статическая,
то есть для ее вызова нет необходимости создавать экземпляр
класса.

�� Строки 084–087: на первым шаге процесса прорисовки тексту­
ры извлекаются все пиксели текстур Source и Dest. Для этого
используется функция GetPixels. Более подробную информа­

Рисование на текстуре    325

цию о функции GetPixels можно найти в электронной докумен­
тации Unity по адресу http://docs.unity3d.com/ScriptReference/
Texture2D.GetPixels.html. Далее, несмотря на то, что каждое изо­
бражение внешне выглядит как двумерный массив пикселей,
функция GetPixels возвращает линейный (одномерный) мас­
сив. Поэтому для преобразования координат х и у пикселей
в индексы линейного массива используются две функции:
GetPixelFromArray и SetPixelFromArray.

�� Строки 089–101: здесь каждый пиксель извлекается из тексту­
ры кисти и рисуется в нужном месте. Дополнительно прове­
ряется – находится ли прорисовываемая часть текстуры кисти
в пределах текстуры для рисования, и при необходимости про­
изводится отсечение. Это связано с тем, что кисть, в принципе,
может приблизиться к краю текстуры. В этом случае фактиче­
ски будет прорисована только часть кисти, а некоторые пик­
сели будут «отрезаны». Пиксели читаются из текстуры кисти
с помощью функции GetPixelFromArray и записываются в тек­
стуру для рисования с помощью функции SetPixelInArray.

�� Строки 106–107: вызов функции Apply после записи пикселей
в текстуру для рисования служит для подтверждения опера­
ции. Кроме функции SetPixels (множественное число) Unity
поддерживает также функцию SetPixel (единственное число).
Однако функция SetPixels показывает лучшую производи­
тельность, чем многократный вызов функции SetPixel.

�� Строки 111–114: функция GetPixelFromArray принимает мас­
сив пикселей, координаты х и у пикселя и ширину текстуры
в пикселях. На основании этих параметров она возвращает
линейный индекс в массиве пикселей, где находится искомый
пиксель.

�� Строки 117–131: функция SetPixelInArray изменяет цвет пик­
селя в линейном массиве. Способ изменения определяется
аргументом Blending. Если аргумент Blending имеет значение
false, пиксель в текстуре просто замещается пикселем, пере­
данным функции. Если аргумент Blending имеет значение true,
будет выполнено смешивание цвета пикселя в аргументе с цве­
том пикселя в текстуре, с сохранением альфа-прозрачности.
Аргумент Blending следует установить в true для рисования по­
лупрозрачной кистью на текстуре для сложения и смешивания
значений цвета.

326    Работа с текстурами, моделями

Шаг 3 – настройка текстуры рисования
Теперь у нас есть работоспособный шейдер, сценарий рисования на
текстуре и подготовленные текстуры, осталось пройти шаг за шагом
настройку рисования на текстуре в Unity. Начнем с пустого проекта,
содержащего шейдер, сценарий рисования на текстуре и две подго­
товленные текстуры: текстуру фона и текстуру кисти, как показано
на рис. 9.17.

Рис. 9.17. Начальный проект рисования на текстуре

Настройте текстуру кисти в панели Project (Проект), указав не­
большой размер (например, 32×32) и выберите в ее поле Format
(Формат) в значение RGBA 32 bit для использования альфа-про­
зрачности, как показано на рис. 9.18.

Создайте новый материал, используя шейдер TextureBlender, и вы­
берите фоновую текстуру в слоте MainTexture, как показано на
рис. 9.19.

Добавьте в сцену новый объект Quad, Plane или Mesh и удалите у него
коллайдер, если имеется. На этом объекте будет выполняться рисо­
вание, хотя обнаружение щелчков мышью будет происходить на его
дубликате. Я разделил меш для рисования и меш для обнаружения
щелчков, чтобы меш для рисования мог иметь другой коллайдер или
другие компоненты, если это потребуется.

После добавления четырехугольника Quad назначьте ему поль­
зовательский материал с шейдером TextureBlender, как показано на
рис. 9.20.

Скопируйте объект Quad, добавьте Mesh Collider, отключите Mesh
Renderer и назначьте ему пустой диффузный материал. Этот – не­
видимый меш, и он будет служить для обнаружения щелчков мышью
и выполнения операции рисования.

Рисование на текстуре    327

Рис. 9.19. Создание нового материала
с шейдером TextureBlender

Рис. 9.18. Настройка текстуры кисти

328    Работа с текстурами, моделями

Кроме того, подключите сценарий TexturePainter к объекту и вы­
берите в поле Brush Texture (Текстура кисти) текстуру кисти, в поле
Dest Mat (Материал назначения) выберите Custom_Mat, как показано
на рис. 9.21.

Теперь запустите приложение и начните щелкать мышью на меше.
При этом на фоновой текстуре будут прорисовываться мазки кистью,
как показано на рис. 9.22.

Итоги
В этой главе были рассмотрены множество деталей работы с двух­
мерной графикой. Под двухмерной графикой обычно подразумевают
только двухмерные игры, но здесь основное внимание было уделено
текстурам, что важно не только для двухмерных, но и для трехмер­
ных игр. В главу включены приемы и идеи, которые можно отнести
и к двухмерной плоскости, и к двухмерному пространству. В частно­
сти, был создан вращающийся скайбокс, как соединение управляе­
мого скайбокса с настройками глубины камеры для визуализации по
слоям. Затем был проработан вопрос программного создания геомет­

Рис. 9.20. Добавление нового объекта Quad

Итоги    329

Рис. 9.22. Результат рисования на текстуре

Рис. 9.21. Создания четырехугольника
для определения щелчков

330    Работа с текстурами, моделями

рических фигур на примере плоскости. После добавления в Unity воз­
можности создания примитивов четырехугольников Quad, тема созда­
ния плоскостей несколько растеряла свою актуальность, но методы
и понятия создания объектов Quad сохраняют свою значимость, так
как позволяют редактировать и настраивать любые меши, а не только
Quad. Редактирование мешей в режиме реального времени позволя­
ет создать широкий спектр эффектов, от ударной волны взрывов до
желеподобных батутов. Мы рассмотрели анимацию UV-мешей. С ее
помощью можно реализовать бесконечную прокрутку бесшовной
текстуры двухмерного фона на объектах Quad, чтобы создать эффект
перемещения, а также для имитации текучей воды и других движу­
щихся поверхностей. Наконец, мы рассмотрели динамическое рисо­
вание на текстуре меша, запускаемое щелчками мышью, с помощью
UV-координат и альфа-прозрачности для смешивания текстур. Этот
прием часто применяется для наложения изображений на текстуры,
таких как пулевые отверстия, брызги крови или рисование на холсте.
В следующей главе мы рассмотрим ряд советов и приемов по повы­
шению эффективности работы с проектами в Unity.

Глава 10

Управление
исходными текстами

и другие подсказки
В этой главе будут рассмотрены три рекомендации по разработке
программного кода на C# и работе со сценариями. Эти рекомендации,
несомненно, важны, но их тематически нельзя отнести ни к одной из
предыдущих глав. Рекомендации приведены здесь в произвольном
порядке, и главное, что служит оправданием включения их в книгу, –
это их полезность, а также их отсутствие или лишь поверхностное
упоминание в других источниках. Следовательно, в этой главе дан
набор советов и подсказок, которые, собранные вместе, предлагают
применимые на практике знания. Эти три рекомендации касаются
следующих тем:

�� управление исходными текстами с помощью Git;
�� папки ресурсов и внешние файлы;
�� загрузка и сохранение игр.

Git – управление исходными текстами
Под термином управление исходными текстами (source control) или
управление версиями (revision control) понимают любое программ­
ное обеспечение, имеющее цель сделать практическую разработку
приложений проще и безопаснее, насколько это возможно. Если ко­
ротко, такое программное обеспечение позволяет легко и быстро от­
слеживать изменения в файлах и при необходимости отменять их,
а также обмениваться изменениями с другими разработчиками. Как
правило, разработка программного обеспечения (в том числе разра­
ботка игр) основывается на двух важных аспектах, или ингредиентах.
Во-первых, это коллективные усилия, где несколько разработчиков

332    Управление исходными текстами и другие подсказки

работают вместе как часть команды в одном месте (например, в офи­
се) или в удаленных друг от друга местах, а обмен ведется через вирту­
альное пространство (например, виртуальный офис, форум или даже
электронная почта). Во-вторых, в процессе разработки программи­
сты настраивают, редактируют и вносят улучшения в исходный код.
Из этих двух, казалось бы, простых аспектов вытекает ряд важных
потребностей, которые и должно удовлетворить программное обеспе­
чение управления версиями.

Эти потребности заключаются в следующем.
�� Сотрудничество: когда несколько разработчиков работают над

общим проектом, им обычно нужно использовать общие исход­
ные файлы. Их можно пересылать по электронной почте или
какими-то другими способами, но при работе над большими
и долгосрочными проектами поддерживать такой обмен ста­
новится сложно. С течением времени очень быстро нарастает
сложность мониторинга изменений и интеграции двух версий
файла в единый файл.

�� Откат: иногда внесенные изменения или улучшения оказыва­
ются ошибочными. Редактирование или исправления не всегда
приводят к ожидаемому результату и должны быть отменены,
код следует вернуть в прежнее состояние. Можно, конечно, со­
хранять копии предыдущих файлов вручную, но работа с таки­
ми копиями в течение длительного времени может стать уто­
мительной и чересчур запутанной.

�� Отслеживание истории изменений: часто необходимо отсле­
живать внесение изменений в код, особенно при его отладке.
Если кто-то внес правки, вы наверняка захотите знать, кто
изменил код, почему и когда. Опять же, вы можете вручную
вести журналы изменений, писать комментарии или как-то
иначе документировать изменения, но это будет достаточно
трудоемко.

Управление версиями предназначено для решения всех трех ос­
новных проблем: сотрудничества, отката и отслеживания измене­
ний. Существует множество приложений управления версиями, это
Git, Perforce, Microsoft Team Foundation Server и др. В этой главе бу­
дет рассмотрен пакет Git, он пользуется популярностью, бесплатен,
кросс-платформенный и с открытым исходным кодом. Использова­
ние Git начинается с настройки специальной базы данных, называ­
емой хранилищем, или репозиторием (repository), которая может
быть локальной (на компьютере) или удаленной (в сети). После на­

Git – управление исходными текстами    333

стройки вы будете иметь возможность отслеживать любые измене­
ния в ваших проектах Unity, откатывать их при необходимости и об­
мениваться, или сотрудничать с другими разработчиками. Давайте
посмотрим, как настроить Git, используя графический интерфейс
пользователя.

Шаг № 1 – загрузка
Есть много способов установки Git для проектов Unity. В этой главе
рассматривается соединение официального пакета Git с внешним ин­
терфейсом TortoiseGit. С помощью этих двух пакетов разработчики
могут отслеживать и управлять всеми изменениями в своих проектах,
независимо от того, работают они одни или в команде.

Для начала загрузите и установите программное обеспечение
с официального сайта Git http://git-scm.com/.

	 Более подробную информацию об использовании Git можно найти в бес-

Рис. 10.1. Загрузка и установка Git

334    Управление исходными текстами и другие подсказки

платной электронной книге «Pro Git», Скотта Чакона (Scott Chacon) и Бена
Штрауба (Ben Straub), выпущенной издательством Apress и доступной по
адресу http://git-scm.com/book/en/v21.

После загрузки и установки Git имеет смысл установить и пакет Tor­
toiseGit. Он не является частью оригинального пакета Git, это дополни­
тельный графический интерфейс для Windows, который позволит вам
интегрировать Git с оболочкой Windows, а также взаимодействовать
с Git через графический интерфейс, а не с помощью командной строки.

Рис. 10.2. Загрузка и установка TortoiseGit

Для загрузки и установки TortoiseGit перейдите на страницу
https://code.google.com/p/ tortoisegit/.

Шаг № 2 – добавление проекта в репозиторий
Основная цель установки Git состоит в возможности отслеживать из­
менения в проекте, откатывать их при необходимости, использовать
в качестве резервной копии при потере исходных файлов и совмест­
ном с другими разработчиками внесении изменений. Далее надо
определиться, какой существующий проект вы будете поддерживать.

1	 Эта версия (v2) книги переведена на русский язык лишь частично и до­
ступна там же, по адресу http://git-scm.com/book/ru/v2, однако версия (v1)
переведена полностью: http://git-scm.com/book/ru/v1. – Прим. ред.

Git – управление исходными текстами    335

То есть, после установки и Git, и TortoiseGit надо создать новый про­
ект Unity или выбрать уже существующий. Ниже показано типичное
содержимое папки проекта Unity (рис. 10.3).

Выбрав проект, откройте папку проекта в проводнике Windows,
чтобы увидеть файлы проекта. Если вы не знаете или не помните где
находится папка, ее можно открыть в проводнике прямо из редакто­
ра Unity. Для этого щелкните правой кнопкой мыши внутри пане­
ли Project (Проект) и выберите в контекстном меню пункт Show in
Explorer (Показать в проводнике), как показано на рис. 10.4.

Рис. 10.3. Типичное содержимое папки проекта Unity

Рис. 10.4. Доступ к папке проекта из редактора Unity

336    Управление исходными текстами и другие подсказки

Шаг № 3 – настройка Unity для управления
исходными текстами
Git работает и с двоичными, и с текстовыми файлами, но отдает пред­
почтение текстовым файлам. В процессе работы редактор Unity гене­
рирует множество файлов метаданных для проекта и файлов импор­
тированных ресурсов. Эти файлы находятся в папке проекта Unity.
По умолчанию они скрыты и имеют двоичной формат. Некоторые
из метафайлов зависят от установленной версии Unity, например
настройки интерфейса, тогда как другие относятся к ресурсам и дан­
ным, являющимся частью проекта, таким как меши, текстуры и файлы
сценариев. Чтобы получить наилучшие результаты при работе с Git,
нужно изменить поведение Unity по умолчанию, сделав метафайлы
видимыми в панели проекта, и настроить замену двоичных файлов
текстовыми. Для этого цели выберите пункт меню Edit ⇒ Project
Settings ⇒ Editor (Правка ⇒ Настройки проекта ⇒ Редактор).

Далее настройте в инспекторе объектов поле Version Control
(Управление версиями), выбрав значение Visible Meta Files (Пока­
зывать мета-файлы), и поля Asset Serialization (Сериализация ресур­
сов), выбрав значение Force Text (Принудительно преобразовывать
в текст), как показано на рис. 10.5.

Рис. 10.5. Настройка Unity для управления версиями

Git – управление исходными текстами    337

После смены значений этих параметров станут видимыми файлы
с расширением .meta, соответствующие каждому ресурсу проекта, в том
числе и сцене. Кроме того, метафайлы будут преобразованы в читаемый
текстовый формат, что сделает возможным их редактирование (хотя
ручное редактирование не рекомендуется). Взгляните на рис. 10.6.

Рис. 10.6. Содержимое ресурса сцены (текстовый формат)
в текстовом редакторе

Шаг № 4 – создание репозитория
Следующий этап после создания и настройки проекта – создание
базы данных Git, или репозитория, для отслеживания и поддержки
всех изменений в файлах. Репозиторий может быть удаленным (в
сети или на внешнем компьютере) или локальным (на том же ком­
пьютере). В хранилище будут храниться оригинальные файлы и все
изменения, сделанные в течение длительного времени, что позволит
вернуться к более ранним версиям файлов, если это потребуется.
Хранилище также может быть сделано общим и объединено с дру­
гими хранилищами для совместного использования файлов. В этой
главе рассматриваются только локальные хранилища, давайте соз­
дадим одно из них. Для этого откройте папку проекта Unity (корне­

338    Управление исходными текстами и другие подсказки

вую папку), а затем щелкните правой кнопкой мыши, чтобы вызвать
контекстное меню Windows. Выберите пункт Git Init Here (Создать
репозиторий здесь).

Рис. 10.7. Создание репозитория Git

После этого будет создана новая
скрытая папка .git. Она содержит все
файлы хранилища проекта. Ярлыки
файлов и папок будут отмечены крас­
ными значками, указывающими, что
файлы в папке проекта еще не добав­
лены в репозиторий и Git не может от­
слеживать вносимые в них изменения
(этим мы займемся в ближайшее вре­
мя). Это показано на рис. 10.8.

Шаг № 5 – игнорируемые
файлы
Итак, репозиторий Git создан и готов к приему первого набора фай­
лов (commit). Однако перед их добавлением заметим, что есть опре­
деленные файлы, которые имеет смысл игнорировать. Приложение

Рис. 10.8. Папки
с красными значками

содержат файлы,
не включенные

в репозиторий Git

Git – управление исходными текстами    339

Unity использует специальные системные файлы, относящиеся
к проекту или ко всей системе в целом, которые в данном контексте
не важны. Это файлы настроек пользовательского интерфейса, фай­
лы только для чтения, временные файлы и содержащие некоторые
другие данные, которые не должны добавляться в хранилище. Чтобы
игнорировать их, нужно создать текстовый файл .gitignore в корне­
вой папке проекта и перечислить нем все файлы и папки, которыми
можно пренебречь, как показано на рис. 10.9.

Рис. 10.9. Создание файла для исключения
определенных типов файлов из хранилища

Для Unity файл (.gitignore) должен выглядеть, как показано ниже.
Удостоверьтесь, что файл помещен в корневую папку:

[Ll]ibrary/
[Tt]emp/
[Oo]bj/
[Bb]uild/
/*.csproj
/*.unityproj
/*.sln
/*.suo
/*.user
/*.userprefs
/*.pidb
/*.booproj
sysinfo.txt

Шаг № 6 – первая фиксация изменений
Теперь репозиторий настроен для получения первого набора файлов
проекта Unity. Чтобы добавить их, щелкните правой кнопкой мыши
в окне корневой папки и в контекстном меню выберите Git Commit ⇒

340    Управление исходными текстами и другие подсказки

Master (Передать в Git ⇒ Главная ветвь). В Git файлы обычно пред­
ставлены не по одному, а в виде партий. Окно Commit (Зафиксиро­
вать) позволяет выбрать файлы для добавления в хранилище.

Нажмите кнопку All (Все), чтобы выбрать все файлы в папке, а за­
тем введите описание текущей версии в поле Message (Сообщение).
Цель сообщения – дать понять любому пользователю, что содержат
новые версии файлов. Когда все будет готово, щелкните на кнопке
ОК, чтобы передать файлы в репозиторий (см. рис. 10.10).

Рис. 10.10. Передача оригинальных файлов проекта

После завершения передачи значки, отмечающие файлы, станут
зелеными, что указывает на идентичность файлов в папке проекта
и файлов в репозитории (рис. 10.11).

Git – управление исходными текстами    341

Шаг № 7 – изменение файлов
Git должен полностью отслеживать все изменения файлов, а значит
он должен хранить не только исходные файлы, но и все последующие
изменения и правки, позволяя вернуться к предыдущим версиям.

Если теперь вернуться в Unity и изменить файлы, добавив новые
ресурсы или отредактировав существующие, значки на измененных
файлах в проводнике Windows вновь станут красными, указывая на
несоответствие между локальными файлами и файлами в репозито­
рии.

Рис. 10.11. Файлы в папке
проекта соответствуют

файлам в хранилище

Рис. 10.12. Изменение
файлов

Если вы решите, что последние изменения были ошибкой, и захоти­
те вернуться к предыдущему состоянию, это можно сделать, щелкнув
правой кнопкой мыши в окне папки проекта и выбрав в контекстном
меню пункт TortoiseGit ⇒ Revert... (TortoiseGit ⇒ Вернуть…), как
показано на рис. 10.13.

В появившемся диалоге Revert (Вернуть) можно выбрать восста­
навливаемые файлы. Выберите все необходимые файлы, а затем щел­
кните на кнопке ОК. Git восстановит выбранные файлы, перезаписав
их локальные версии последними версиями из хранилища.

Но чаще не требуется откатывать или отменять последние измене­
ния. Вы могли внести действительно нужные изменения и теперь их
нужно сохранить в репозитории Git, как последнюю версию файлов.
Если это так, просто снова отправьте файлы в репозиторий: щелкните
правой кнопкой мыши в окне папки проекта и в контекстном меню
выберите пункт Git Commit ⇒ Master (Передать в Git ⇒ Главная
ветвь). Внесите новое значимое сообщение в поле Message (Сообще­
ние) и щелкните на кнопке ОК.

342    Управление исходными текстами и другие подсказки

Рис. 10.13. Откат (отмена) последних изменений

Рис. 10.14. Выбор файлов для восстановления

Git – управление исходными текстами    343

Шаг № 8 – получение файлов из хранилища
После начальной отправки всех файлов, если
вы намеренно или случайно удалите все фай­
лы в папке проекта, за исключением папки .git
и файла .gitignore, вы сможете восстановить
последние версии файлов, так как они имеются
в хранилище Git.

	 Конечно, если при чтении книги вы повторяете
описываемые действия и удаляете свои файлы,
не забудьте вручную сохранить их резервные копии на случай, если что-то
пойдет не так во время тестирования!

Для восстановления щелкните правой кнопкой мыши в окне пап­
ки проекта и выберите в контекстном пункт TortoiseGit ⇒ Switch/
Checkout (TortoiseGit ⇒ Выбрать/Извлечь), как показано на
рис. 10.16.

Рис. 10.15. Удаленные
файлы можно
восстановить

из хранилища Git

Рис. 10.16. Восстановление последних версий файлов
из репозитория

344    Управление исходными текстами и другие подсказки

В диалоге Switch/Checkout (Вы­
брать/Извлечь) выберите значение
Master (Главная ветвь) в поле Switch
To (Выбрать).

Вам также может потребоваться
установить флажок Force (Принуди­
тельно) (подробности ищите в доку­
ментации). Затем щелкните на кнопке
ОК для восстановления файлов. Сразу
после извлечения файлов вы увидите
картину, изображенную на рис. 10.17.

Иногда бывает желательно вернуть не самое последнее зафикси­
рованное состояние проекта, а получить более ранние версии фай­
лов. Для этого сначала выберите в контекстном пункт TortoiseGit ⇒
Switch/Checkout (TortoiseGit ⇒ Выбрать/Извлечь), чтобы открыть
диалог Switch/Checkout (Выбрать/Извлечь). А затем выберите пе­
реключатель Commit (Версия) в группе Switch To (Выбрать).

Рис. 10.17. Восстановление
последних версий файлов

с помощью опции Checkout

Рис. 10.18. Выбор переключателя Commit (Версия)
для восстановления зафиксированного ранее состояния

Нажмите кнопку обзора (...) рядом с полем Commit (Версия) для
отображения списка доступных версий и выберите нужную версию.
Затем щелкните на кнопке OK, чтобы выйти из диалога Repo Commits
(Версии в репозитории), и щелкните на кнопке ОК для подтвержде­
ния извлечения выбранной версии. Файлы выбранной версии будут

Git – управление исходными текстами    345

восстановлены в папку проекта. Помните, что каждая версия имеет
автора (для тех, кто работает в команде), и это позволяет получить
сведения о том, кто и какие внес изменения.

Рис. 10.19. Выбор более ранней версии
для восстановления из репозитория

Шаг № 9 – просмотр репозитория
Иногда не нужно ни добавлять файлы в репозиторий, ни извлекать их
оттуда, все, что нужно, – просто просмотреть, что содержит репозито­
рий. Это можно сделать легко и быстро с помощью браузера репози­
тория, который является частью TortoiseGit. Чтобы получить доступ
к браузеру, выберите в контекстном меню пункт TortoiseGit ⇒ Repo
Browser (TortoiseGit ⇒ Браузер репозитория).

Браузер репозитория (Repo Browser) позволяет просматривать
файлы и иерархии в иерархическом виде (см. рис. 10.21).

346    Управление исходными текстами и другие подсказки

Рис. 10.20. Открытие браузера репозитория

Рис. 10.21. Просмотр файлов в репозитории

Папка ресурсов и внешние файлы    347

Папка ресурсов и внешние файлы
Ваши игры часто будут нуждаться в данных, загруженные из внеш­
них файлов, таких как XML-файлы с субтитрами и локализованны­
ми текстами, или сериализованные уровни. Взгляните на рис. 10.22.

Рис. 10.22. Вывод сообщения,
загруженного из внешнего текстового файла,

скомпилированного вместе с проектом

В этих случаях вам понадобится реализация определенного набо­
ра возможностей. Первой из них является возможность динамически
загружать данные из файлов в память, чтобы среда Unity смогла их
разобрать и использовать. Во-вторых, возможность редактировать
содержимое файлов после импорта в Unity, с последующим обнов­
лением игры, учитывающим внесенные изменения, без правки кода.
В-третьих, возможность создания автономного дистрибутива игры
в виде одного выполняемого файла, где внешние файлы будут вклю­
чены в файл сборки Unity, а не входить в дистрибутив в вид отдель­
ных, доступных для редактирования файлов. Многие предпочитают
не распространять игру в виде дистрибутива, содержащего внешние
файлы, такие как XML-файлы, открытые для редактирования. Вме­
сто этого многие редактируют и изменяют файлы в редакторе Unity,
а затем компилируют и встраивают их в окончательную автономную
сборку, вместе с другими ресурсами. Все это можно реализовать с по­
мощью папок ресурсов.

Чтобы использовать папки ресурсов, создайте папку с именем
resources в проекте Unity. Проект может иметь ни одной, одну или

348    Управление исходными текстами и другие подсказки

Рис. 10.23. Добавление внешних файлов
в папку resources

несколько папок resources. В эту папку добавьте все текстовые файлы,
которые загружаются во время выполнения.

После добавления файла в папку resources, его можно загрузить
в память с помощью функции Resources.Load. В листинге 10.1 показа­
но, как загрузить текстовый ресурс в компонент интерфейса.

Листинг 10.1. Загрузка текстового ресурса
using UnityEngine;
using System.Collections;
using UnityEngine.UI;
//---
public class LoadTextData : MonoBehaviour
{
 // Ссылка на компонент интерфейса
 private Text MyText = null;

 // Ссылка на текстовый ресурс в папке resources
 private TextAsset TextData = null;

 //---
 // Этот метод выполняет инициализацию
 void Awake () {
 // Получить ссылку на компонент интерфейса
 MyText = GetComponent<Text>();

 // Загрузить текст из папки resources
 TextData = Resources.Load("TextData") as TextAsset;
 }
 //---
 // Вызывается при отображении каждого кадра
 void Update () {
 // Изменить текст в компоненте интерфейса
 MyText.text = TextData.text;

Пакеты ресурсов и внешние файлы    349

 }
 //---
}
//---

	 Более подробную информацию о папке resources и классе Resources можно
найти в электронной документации Unity по адресу http://docs.unity3d.com/
ScriptReference/Resources.html.

Пакеты ресурсов и внешние файлы
Если вы используете версию Unity Pro и хотите предоставить поль­
зователям возможность модификации содержимого игры, то есть
возможность добавлять ресурсы и расширения, вам понадобятся
пакеты ресурсов. Пакеты ресурсов позволяют упаковать вместе мно­
жество разнородных ресурсов в один внешний файл, отделенный от
основного проекта, который можно загрузить в любой проект Unity
динамически – из локального файла на диске или из Интернета (см.
рис. 10.24).

Для начала импортируйте сценарий редактирования пакетов ре­
сурсов, который позволяет создавать пакеты ресурсов из панели
Project (Проект). Для этого создайте файл сценария на C# в папке

Рис. 10.24. Сборка пакета ресурсов
из выбранных активов

350    Управление исходными текстами и другие подсказки

Editor проекта и поместите в него содержимое листинга 10.2 или же
загрузите готовый сценарий со страницы http://docs.unity3d.com/
ScriptReference/BuildPipeline.BuildAssetBundle.html.

// Пример на C#
// Создает пакет ресурсов из объектов
// выбранных в представлении проекта.
// После компиляции выберите пункт меню "Menu" -> "Assets" и укажите
// один из вариантов сборки пакета ресурсов
using UnityEngine;
using UnityEditor;

public class ExportAssetBundles {
 [MenuItem("Assets/Build AssetBundle From Selection – Track dependencies")]
 static void ExportResource () {
 // Вывести диалог сохранения
 string path = EditorUtility.SaveFilePanel ("Save Resource", "",
 "New Resource", "unity3d");
 if (path.Length != 0) {
 // Создать файл пакета ресурсов из выбранных файлов.
 Object[] selection = Selection.GetFiltered(typeof(Object),
 SelectionMode.DeepAssets);
 BuildPipeline.BuildAssetBundle (Selection.activeObject, selection,
 path,
 BuildAssetBundleOptions.CollectDependencies |
 BuildAssetBundleOptions.CompleteAssets);
 Selection.objects = selection;
 }
 }
 [MenuItem("Assets/Build AssetBundle From Selection – No dependency tracking")]
 static void ExportResourceNoTrack () {
 // Вывести диалог сохранения
 string path = EditorUtility.SaveFilePanel ("Save Resource", "",
 "New Resource", "unity3d");
 if (path.Length != 0) {
 // Создать файл пакета ресурсов из выбранных файлов.
 BuildPipeline.BuildAssetBundle (Selection.activeObject,
 Selection.objects, path);
 }
 }
}

Для создания пакета ресурсов выберите все ресурсы в панели
Project (Проект) для включения в пакет, а затем выберите в меню
пункт Assets ⇒ Build AssetBundle from Selection (Ресурсы ⇒ Соз­
дать пакет ресурсов из выбранных). После этого выберите папку для
сохранения пакета.

Чтобы проверить пакет ресурсов, создайте новый проект или от­
кройте существующий, без ресурсов, и загрузите пакет в свой проект

Пакеты ресурсов и внешние файлы    351

во время выполнения с помощью класса WWW. Рассмотрим следующий
пример в листинге 10.3, который загружает пакет ресурсов из локаль­
ного файла, извлекает текстуру и накладывает ее на меш.

Листинг 10.3. Проверка пакета ресурсов
using UnityEngine;
using System.Collections;
public class LoadAssetBundle : MonoBehaviour
{
 // Ссылка на меш
 private MeshRenderer MR = null;

 // Этот метод выполняет инициализацию
 IEnumerator Start ()
 {
 // Получить локальный файл пакета ресурсов
 WWW www = new WWW (@"file:///c:\asset_textures.unity3d");

 // Ждать завершения загрузки
 yield return www;

 // Извлечь текстуру из пакета
 Texture2D Tex = www.assetBundle.Load
 ("texture_wood",typeof(Texture2D)) as Texture2D;

 // Наложить текстуру на меш
 MR = GetComponent<MeshRenderer>();
 MR.material.mainTexture = Tex;
 }
}

Ниже показано, как выглядит текстура из пакета ресурсов.

	 Более подробную информацию о пакетах ресурсов можно найти в элект
ронной документации Unity по адресу http://docs.unity3d.com/Manual/
AssetBundlesIntro.html.

Рис. 10.25. Выбор ресурсов для включения в пакет

352    Управление исходными текстами и другие подсказки

Хранимые данные и сохранение игры
Предоставление возможности сохранять и восстанавливать состо­
яние игры необходимо во многих играх, особенно с длительным
игровым процессом, таких как приключенческие игры, стратегии и
ролевые игры. Для реализации подобной возможности надо позво­
лить пользователю сохранять состояние игры во внешний файл и за­
гружать его из внешнего файла.

Это реализуется в Unity с помощью сериализации данных в XML-
файлы или в двоичные файлы (см. рис. 10.27).

Сериализация (Serialization) – это процесс преобразования дан­
ных, хранящихся в памяти (например, состояние компонента игро­
вого объекта) в поток, который можно записать в файл, а затем вновь
загрузить из файла для восстановления состояния компонента в па­
мяти на момент сохранения. Как результат, процесс сохранения игры
заключается в выборе данных для сохранения и загрузки (для каждой
конкретной игры), и создании нового класса для работы с этими дан­
ными. Рассмотрим следующий пример в листинге 10.4 (ObjSerializer.
cs). Этот файл можно подключить к любому игровому объекту для
сериализации свойств его компонента Transform и записи во внешний
файл в формате XML, например, или в двоичном формате. Для пре­

Рис. 10.26. Загрузка текстуры из пакета ресурсов

Хранимые данные и сохранение игры    353

образования объекта в памяти в формат XML класс использует объ­
ект XmlSerializer , а для преобразования в двоичный формат – объект
BinaryFormatter. XML-файлы – это текстовые файлы, доступные для
чтения, тогда как двоичные файлы не могут быть прочитаны людьми.

Листинг 10.4. Реализация сохранения и восстановления состояния игры
001 //---
002 using UnityEngine;
003 using System.Collections;
004 using System.Collections.Generic;
005 using System.Xml;
006 using System.Xml.Serialization;
007 using System.Runtime.Serialization.Formatters.Binary;
008 using System.IO;
009 //---
010 public class ObjSerializer : MonoBehaviour
011 {
012 // Данные для сохранения
013 [System.Serializable]
014 [XmlRoot("GameData")]
015 public class MySaveData
016 {

Рис. 10.27. Сохранение свойств компонента Transform в XML-файл

354    Управление исходными текстами и другие подсказки

017 // Преобразует данные для загрузки из файла или сохранения в файл,
018 // представляющие объект трансформации,
019 // в простые значения
020 [System.Serializable]
021 public struct DataTransform
022 {
023 public float X;
024 public float Y;
025 public float Z;
026 public float RotX;
027 public float RotY;
028 public float RotZ;
029 public float ScaleX;
030 public float ScaleY;
031 public float ScaleZ;
032 }
033
034 // Компонент трансформации для сохранения
035 public DataTransform MyTransform = new DataTransform();
036 }
037
038 // Объект с сохраняемыми данными
039 public MySaveData MyData = new MySaveData();
040 //---
041 // Заполняет структуру MyData данными
042 // Эти данные будут сохранены в файл
043 private void GetTransform()
044 {
045 // Получить компонент трансформации для данного объекта
046 Transform ThisTransform = transform;
047
048 // Заполнить структуру данных
049 MyData.MyTransform.X = ThisTransform.position.x;
050 MyData.MyTransform.Y = ThisTransform.position.y;
051 MyData.MyTransform.Z = ThisTransform.position.z;
052 MyData.MyTransform.RotX = ThisTransform.localRotation.eulerAngles.x;
053 MyData.MyTransform.RotY = ThisTransform.localRotation.eulerAngles.y;
054 MyData.MyTransform.RotZ = ThisTransform.localRotation.eulerAngles.z;
055 MyData.MyTransform.ScaleX = ThisTransform.localScale.x;
056 MyData.MyTransform.ScaleY = ThisTransform.localScale.y;
057 MyData.MyTransform.ScaleZ = ThisTransform.localScale.z;
058 }
059 //---
060 // Восстанавливает компонент трансформации
061 // Вызывается после загрузки данных из файла для восстановления
062 private void SetTransform()
063 {
064 // Получить компонент трансформации для данного объекта
065 Transform ThisTransform = transform;
066

Хранимые данные и сохранение игры    355

067 // Восстановить данные
068 ThisTransform.position = new Vector3
 (MyData.MyTransform.X, MyData.MyTransform.Y,
 MyData.MyTransform.Z);
069 ThisTransform.rotation = Quaternion.Euler(
 MyData.MyTransform.RotX, MyData.MyTransform.RotY,
 MyData.MyTransform.RotZ);
070 ThisTransform.localScale = new Vector3(
 MyData.MyTransform.ScaleX, MyData.MyTransform.ScaleY,
 MyData.MyTransform.ScaleZ);
071 }
072 //---
073 // Сохраняет состояние игры в XML-файл
074 // Вызывается для сохранения данных в XML-файл
075 // Вызывается как Save
076 public void SaveXML(string FileName = "GameData.xml")
077 {
078 // Получить данные для компонента трансформации
079 GetTransform();
080
081 // Сохранить данные
082 XmlSerializer Serializer = new XmlSerializer(typeof(MySaveData));
083 FileStream Stream = new FileStream(FileName, FileMode.Create);
084 Serializer.Serialize(Stream, MyData);
085 Stream.Close();
086 }
087 //---
088 // Загружает данные из XML-файла
089 // Вызывается для загрузки данных из XML-файла
090 // Вызывается как Load
091 public void LoadXML(string FileName = "GameData.xml")
092 {
093 // Если файл не найден, выйти
094 if(!File.Exists(FileName)) return;
095
096 XmlSerializer Serializer = new XmlSerializer(typeof(MySaveData));
097 FileStream Stream = new FileStream(FileName, FileMode.Open);
098 MyData = Serializer.Deserialize(Stream) as MySaveData;
099 Stream.Close();
100
101 // Восстановить компонент трансформации
102 SetTransform();
103 }
104 //---
105 public void SaveBinary(string FileName = "GameData.sav")
106 {
107 // Получить данные из компонента трансформации
108 GetTransform();
109
110 BinaryFormatter bf = new BinaryFormatter();

356    Управление исходными текстами и другие подсказки

111 FileStream Stream = File.Create(FileName);
112 bf.Serialize(Stream, MyData);
113 Stream.Close();
114 }
115 //---
116 public void LoadBinary(string FileName = "GameData.sav")
117 {
118 // Если файл не найден, выйти
119 if(!File.Exists(FileName)) return;
120
121 BinaryFormatter bf = new BinaryFormatter();
122 FileStream Stream = File.Open(FileName, FileMode.Open);
123 MyData = bf.Deserialize(Stream) as MySaveData;
124 Stream.Close();
125
126 // Восстановить компонент трансформации
127 SetTransform();
128 }
129 //---
130 }
131 //---

	 Полный пример загрузки и сохранения игры можно найти в пакете приме-
ров для книги, в папке Chapter10/XML_and_Binary.

Итоги
В этой последней главе были рассмотрены три рекомендации, глав­
ная из которых была связана с управлением исходными текстами.
Первая рекомендация касалась пакета управления версиями Git, бес­
платного программного обеспечения с открытым исходным кодом
для управления версиями исходных текстов, позволяющего отсле­
живать изменения в проекте, а также упрощающего сотрудничество
с другими разработчиками. Вторая рекомендация связана с динами­
ческой загрузкой файлов данных, с помощью, во-первых, внутренних
файлов проекта из папки resources, и во-вторых, пакетов ресурсов.
Последний вариант особенно полезен для создания внешних ресур­
сов, которые могут быть отредактированы как разработчиками, так
и самими игроками. Третья и последняя рекомендация демонстри­
рует использование сериализации для сохранения состояния игры
в файл и его последующей загрузки. С помощью сериализации поль­
зователям дается возможность сохранять и восстанавливать игру для
возобновления ее с того же места, на котором она была закончена.

Предметный указатель

Animator.StringToHash, 218
AssetDatabase, 305
Axially Aligned Bounding Box, 175

Blender, URL, 236
BroadcastMessage, 62
BuildPipeline.BuildAssetBundle, 350

C#
выбор, 20
конечный автомат, 251
свойства, 55

CDATA, 290

EventListener, 144
EventManager, 145
EventPoster, 145

INI-файлы, 230
iTween, описание, 197
ITween, URL, 198

LIFO, 208
Linq, 226
localPosition, 117

Mecanim
граф анимаций, 245
конечные автоматы, 244

SendMessage, 62

Анимационные кривые, 195
Анимация камері, 193
Атрибут CustomProperty­
Drawer, 288
Атрибуты C#, 61

Бесконечные циклы, 42

Внешние файлы
и пакеты ресурсов, 349
и папка ресурсов, 347

Делегирование, 81
Директива #endregion, 153
Директива #region, 153

Инспектор объектов, 60
Интерфейс IEnumerable, 210
Интерфейс IEnumerator, 210
Интерфейс TortoiseGit, URL, 333
Искусственный интеллект, 233

в играх, 234

Камеры
анимация, 192
сопровождающие, 193
траектория, 197
шейдер, 315

Класс
ColorBlend, 279
ColorRangeAttribute, 279
EditorGUI, 282
PropertyDrawer, 281
ScriptableWizard, 297
StreamWriter, URL, 82
Time, 128
WizardEnumerator, 214
WWW, 232

Классы
и интерфейсы, 145
и наследование, 49
и объектно-ориентированное
программирование, 46

358    Предметный указатель

и полиморфизм, 51
Компонент GetComponent, 116
Компонент Transform, 113
Компонет, получение
нескольких, 117
Контроль версий, 332

Массивы, 34
Межмешевые ссылки, 239
Метод

FindPropertyRelative, 282
GetEnumerator, 215
GetNearestHealthRestore, 266
Invoke, 120
IsNullOrWhiteSpace, 216
Linecast, 260
OnSave, 119
String.indexOf, 220
ToString, переопределение, 73

Окклюзия, 172
Окно Immediate, 105
Оператор

?, 62
if, 28
switch, 31

Ортографические камеры, 179
Отладка

Debug.log, 70
MonoDevelop, 92
визуальная, 76
описание, 66
профилирование, 87

Пакетное переименование, 268
Пакеты активов, 349
Переменная DeltaTime, 132
Полиморфизм, 51

Синглтон, 134
Скайбокс, 299
Событие

FixedUpdate, 128

LateUpdate, 129
OnApplicationFocus, 164
OnApplicationPause, 164
OnGUI, 159
Update, 128

События, 45
класса MonoBehaviour, 159
мыши, 160
сенсорного ввода, 160

Создание Quad, 301
Состояние

Attack, 262
Chase, 260
Idle, 252
Patrol, 256

Список вызовов, 105
Строки

описание, 216
поиск, 220
создание, 220
сравнение, 217
форматирование, 219
цикл, 219

Текстовые активы
загрузка из CSV-файлов, 231
загрузка из INI-файлов, 230
загрузка из Интернета, 232
загрузка из локальных файлов, 228
статическая загрузка, 227

Текстуры рисование
описание, 313
скрипт, 319
шейдер смешивания, 315

Точки трассировки, 108

Управление исходными текстами
Git, 331

Формат CSV, 226
Функции, 42
Функция

ChangeHealth, 263

Предметный указатель    359

DontDestroyOnLoad, 132
FindObjectsOfType, 124
GameObject.Find, 37
GameObject.
FindGameObjectWithTag, 122
GetGameViewSize, 171
GetPixelFromArray, 325
GetPixels, URL, 325
Gizmos.DrawFrustum, 170
Mathf.Clamp, 274
OnBecameInvisible, 173
OnBecameVisible, 173
OnWizardCreate, 272
PaintSourceToDestTexture, 324
PostNotification, 152
Print, 69
Quaternion.Slerp, 193
Random.Range, 258
Resources.Load, 290
SetPixelFromArray, 325
SetPixelInArray, 325

SetTrigger, 254
State_Idle, 254
String.Empty, 220
UpdateScor, 44
Vector3.SmoothDamp, 193

Ханойская башня
URL, 208

Хранилище
описание, 332
создание, 337
создание первой фиксации, 339

Цикл for, 39
Цикл foreach, 38
Цикл while, 40

Частота кадров в секунду, 46

Язык интегрированных
запросов, 202

Алан Торн

Искусство создания сценариев в Unity

	 Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

	 Перевод	 Рагимов Р. Н.
	 Научный редактор	 Киселев А. Н.
	 Корректор	 Синяева Г. И.
	 Верстка	 Чаннова А. А.
	 Дизайн обложки	 Мовчан А. Г.

Формат 60×90 1/16.
Гарнитура «Петербург». Печать офсетная.

Усл. печ. л. 23. Тираж 200 экз.

Веб-сайт издательства: www.дмк.рф

Книги издательства «ДМК Пресс» можно заказать
в торгово-издательском холдинге «Планета Альянс» наложенным платежом,

выслав открытку или письмо по почтовому адресу:
115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью),
по которому должны быть высланы книги;

фамилию, имя и отчество получателя.
Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-kniga.ru.
Оптовые закупки: тел. (499) 782-38-89.

Электронный адрес: books@alians-kniga.ru.

