

Кенни Ламмерс

Шейдеры и эффекты
в Unity

Книга рецептов

Как с помощью шейдеров и постэффектов
добиться потрясающей картинки в проектах на Unity

Unity Shaders and
Effects Cookbook

Discover how to make your Unity
projects look stunning with Shaders
and screen effects

Kenny Lammers

BIRMINGHAM - MUMBAI

Шейдеры и эффекты в Unity
Книга рецептов

Как с помощью шейдеров и постэффектов
добиться потрясающей картинки
в проектах на Unity

Кенни Ламмерс

Москва, 2016

УДК 004.4'2Unity3D
ББК 32.972

Л21

Книга выпущена при поддержке Mail.Ru Group.

Л21 Кенни Ламмерс

Шейдеры и эффекты в Unity. Книга рецептов / пер. с англ. Шапоч-
кин Е. А., под редакцией Симонова В. В. – М.: ДМК Пресс, 2016. –
274 с.: ил.

В книге раскрываются секреты разработки шейдеров в Unity – са-
мом популярном в мире мультиплатформенном инструменте для раз-
работки двух- и трёхмерных игр и приложений. Описываются базовые
модели освещения, создание эффектов с помощью текстур, анимация
моделей в реальном времени, настройка шейдеров для мобильных
устройств, а также использование постэффектов в гейм-плее.

Издание предназначено для Unity-разработчиков, стремящихся
использовать максимум возможностей платформы для создания сво-
их собственных шедевров!

 УДК 004.4'2Unity3D
 ББК 32.972

Original English language edition published by Packt Publishing Ltd., Livery Place,
35 Livery Street, Birmingham B3 2PB, UK. Copyright © 2013 Packt Publishing.
Russian-language edition copyright (c) 2014 by DMK Press. All rights reserved.

Все права защищены. Любая часть этой книги не может быть воспроизве-
дена в какой бы то ни было форме и какими бы то ни было средствами без пись-
менного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, поскольку
вероятность технических ошибок все равно существует, издательство не может га-
рантировать абсолютную точность и правильность приводимых сведений. В связи
с этим издательство не несет ответственности за возможные ошибки, связанные с
использованием книги.

 Copyright © 2013 Packt Publishing
 © Оформление, перевод на русский язык 	

 ДМК Пресс, 2016

ОГЛАВЛЕНИЕ

Об авторе... 8
О рецензентах.. 9
Предисловие к русскому изданию........................ 10
Предисловие.. 11

Что рассматривается в этой книге.. 11
Что потребуется при чтении этой книги.. 13
Для кого эта книга.. 14
Условные соглашения.. 14
Обратная связь с читателями... 15
Поддержка клиентов.. 15

Глава 1. Диффузный шейдинг.............................. 17
Введение... 17
Создаём простой поверхностный шейдер 18
Добавление свойств поверхностному шейдеру.............................. 22
Использование свойств в поверхностном шейдере........................ 25
Делаем собственную модель диффузного освещения................... 29
Модель освещения Half Lambert... 32
Использование текстуры для контроля над диффузным
шейдингом... 34
Имитация эффекта BRDF с помощью 2D-текстуры......................... 36

Глава 2. Создание эффектов с помощью текстур.... 41
Введение... 41
Прокрутка текстур с помощью изменения UV-координат................ 42
Анимирование спрайт-листов.. 45
Упаковка и блендинг текстур.. 51
Использование карты нормалей... 56
Создание процедурных текстур в редакторе Unity.......................... 60
Эффект уровней Photoshop.. 66

Глава 3. Пусть ваши игры засияют отражённым
светом... 71

Введение... 71
Использование встроенной в Unity Specular модели....................... 72
Создаём модель освещения Phong.. 74

6 Оглавление

Создание модели освещения BlinnPhong 79
Маскирование глянцевых бликов с помощью текстур 81
Металлические и мягкие блики ... 87
Создание анизотропных бликов .. 93

Глава 4. Добавим отражения в ваш мир 100

Создание кубических текстур в Unity ... 100
Простое отражение с использованием кубической текстуры 107
Маскирование отражений ... 110
Карты нормалей и отражения .. 114
Отражения по Френелю .. 119
Создание простой динамической системы кубических текстур ... 123

Глава 5. Модели освещения 128

Введение .. 128
Модель освещения Lit Sphere .. 128
Модель освещения Diffuse Convolution .. 135
Создание модели освещения автомобильной краски 141
Шейдер кожи .. 145
Шейдер ткани ... 154

Глава 6. Прозрачность 160

Введение .. 160
Создание прозрачности с помощью параметра alpha 160
Прозрачный cutoff-шейдер .. 163
Сортировка объектов с помощью очередей рендеринга.............. 165
GUI и прозрачность ... 169

Глава 7. Волшебные возможности вершин 177

Введение .. 177
Получение цвета вершины в поверхностном шейдере 178
Анимация вершин в поверхностном шейдере 182
Использование цветов вершин для ландшафта 185

Глава 8. Настройка шейдеров для мобильных

приложений ... 190

Введение .. 190
Что значит дешевый шейдер? ... 191
Профайлинг шейдеров .. 198
Изменение шейдеров для мобильных ... 204

Глава 9. Делаем наш шейдерный мир

модульным с помощью CgInclude 209

Введение .. 209

7Оглавление

Встроенные в Unity CgInclude-файлы .. 210
Создание CgInclude-файла для хранения моделей освещения 213
Использование #define в шейдерах ... 217

Глава 10. Создание экранных эффектов в Unity

с помощью рендер-текстур 221

Введение .. 221
Создание скриптов для полноэкранных эффектов 222
Корректировка яркости, насыщенности и контраста
с помощью полноэкранных эффектов ... 232
Создание основных режимов блендинга с использованием
полноэкранных эффектов ... 238
Реализация режима блендинга Overlay с использованием
полноэкранных эффектов ...245

Глава 11. Гейм-плей и экранные эффекты 249

Введение .. 249
Создание эффекта старого фильма .. 249
Создание эффекта ночного видения ... 260

Предметный указатель 271

ОБ АВТОРЕ

Кенни Ламмерс работает в индустрии игр уже 13 лет. Он работал на
такие компании, как Microsoft, Activision и Surreal Software. В дан-
ный момент он работает с двумя компаниями. В первой – Creative
TD – он занимается консультированием по Unity3D и созданием ма-
териалов для таких компаний, как IGT, Microsoft, Janus Research и
Allegorithmic. Второй компанией – Ozone Interactive – он руководит
совместно со своим бизнес-партнёром Ноа Каарбо (Noah Kaarbo).
Ozone Interactive специализируется на создании интерактивных при-
ложений и высококачественных дизайнов с использованием Unity3D
для таких компаний как Amazon, E-line Media, Microsoft и Sucker
Punch games. Во время его работы в индустрии игр он создавал пер-
сонажей в Zbrush и Maya, писал шейдеры и постэффекты, а так же
разрабатывал игры полностью в Unity3D, используя C#. В данный
момент он работает над несколькими играми и разрабатывает набор
инструментов для облегчения процесса создания игр.

Я бы хотел высказать благодарность всем её заслуживающим, но
тогда на это ушла бы целая глава. Перво-наперво я определённо
хочу поблагодарить мою маму за то, что она всегда говорила мне,
что моя работа должна вести к моей мечте, и за то, что она всегда
была мне поддержкой. Я бы хотел поблагодарить моего партнёра
по бизнесу Ноа Каарбо за то, что был мне другом и поддержкой на
протяжении написания этой книги. Я хочу поблагодарить всех, с кем
мне довелось работать, но, что более важно, – я хочу поблагодарить
тех, кто побуждал меня всегда совершенствовать мои навыки и тем
самым открыл для меня мир этой индустрии. Эти люди – Бэн Кам-
мерано (Ben Cammerano) из MGS, Пол Амер (Paul Amer) из MGS,
Филлипо Костанцо (Fillipo Costanzo) из 5D Institute, Алессандро Тен-
то (Alessandro Tento) из Lakshya, Джеймс Роджерс (James Rogers)
из MGS и Тони Гарсия (Tony Garcia) из Unity Technologies. Я бы не
добился того, чего добился, без кого-либо из этих людей, и они за-
служивают моего самого сильного почтения!

О РЕЦЕНЗЕНТАХ

Винсент Лим (Vincent Lim) закончил The One Academy по специ-
альности цифровая анимация и разработка игр. Сразу же после за-
вершения учёбы он присоединился к Big Ant Studio, где он преобрёл
массу бесценного опыта в игровой индустрии. Проведя несколько
лет в компании, Винсент многому научился, начиная от низкопо-
логонального моделирования и заканчивая укладкой текстур для
создания ландшафта, а также – немного программированию и напи-
санию MEL-скриптов. Работая над разнообразными задачами в Big
Ant Studio, Винсент накопил знания об игровых движках, о тонко-
стях работы разных шейдеров и о пайплайне разработки игр. В ком-
пании он занимался оптимизацией пайплайна разработки, создавая
с помощью MEL-скриптов инструменты для художников, которые
упрощали те или иные задачи на пути 3D-модели, – от заготовки в
3D-редакторе до модели в игре. Получив достаточный базис знаний
в Big Ant Studio, Винсент продолжил изучение игровых механик и
движков. Это привело его к Unity, навыки работы с которым он про-
должает совершенствовать и по сей день.

Кристиан 'XeviaN' Мененгхини (Christian 'XeviaN' Meneghini) в
молодости был обладателем и поклонником Sinclair ZX Spectrum.
Он начал своё знакомство с миром игровой индустрии со спрай-
тов, жёстко закодированных с помощью Бейсика и Ассемблера. По
прошествии времени ему довелось работать с такими замечательны-
ми технологиями, как C64, культовым Amiga и всей линейкой про-
цессоров PC, при этом работая с видеокартами от Hercules и CGA
от первых 3D-ускорителей до современных. При его специализации
на программировании графики и оптимизации производительности,
ему очень нравилось заниматься рендерингом и принимать участие в
демосцене. Кристиан в своё свободное время сочиняет музыку.

После нескольких лет работы по ночам вместе с друзьями и колле-
гами, изучения технической документации, написания движков и ра-
боты на другие компании Кристиан в 2011 году совместно со своими
друзьями Марко Ди Тимотео (Marco Di Timoteo) и Лукой Марчетти
(Luca Marchetti) основал небольшую студию, которую они назвали
STUDIO EVIL. Их первым продуктом стала игра Syder Arcade – ре-
тро-шутер с 3D-графикой, рассчитанный на PC и MAC, а позднее –
портированный под iOS, Android и OUYA.

10

ПРЕДИСЛОВИЕ К
РУССКОМУ ИЗДАНИЮ

Мы очень рады выходу первой переводной книги по Unity, тем бо-
лее, что это совпало с открытием нашего офиса в России. Мы на-
блюдаем значительный рост количества российских разработчиков и
издателей игр, которые используют Unity и работаем над тем, чтобы
содействовать им в постижении новых горизонтов возможностей в
разработке кросс-платформенных игр. Всегда хочется добиться мак-
симального качества картинки при разумной производительности.
Эта задача актуальна, пожалуй, для проектов всех масштабов и задач.
Мы верим, что с помощью данной книги ваша жизнь, работа и опыт
использования Unity станут лучше и красочнее.

Искренне ваши,
Unity Technologies в России
russia@unity3d.com
Роман Менякин,
Наталья Свиридова,
Йоана Кодите,
Олег Придюк

ПРЕДИСЛОВИЕ

Мы приветствуем вас на страницах книги «Шейдеры и эффекты в
Unity». Эта книга поможет вам освоиться с созданием шейдеров и
постэффектов в Unity3D. Вы начнёте ваше путешествие по страни-
цам этой книги с самого начала, с создания наиболее базовых шей-
деров и получения представления о структуре шейдерного кода. Эти
базовые знания пригодятся вам в последующих главах, в которых вы
будете создавать шейдеры, имитирующие людскую кожу, шейдеры,
обрабатывающие динамические отражения, а также, создавать пост
эффекты, такие как эффект ночного видения.

К концу каждой главы, у вас сформируется новый набор навыков,
с помощью которых, вы сможете повысить качество ваших шейдеров,
а также, сделать более эффективным процесс их написания. Эти гла-
вы были сформированные таким образом, что вы можете перейти к
любой секции и сразу овладеть любым требуемым навыком, развив
его от уровня новичка до эксперта. А, если процесс написания шей-
деров для вас в новинку, вы можете читать главы последовательно,
одну за другой, постепенно приобретая необходимые знания. В лю-
бом случае, вы познакомитесь с приёмами, которые используются в
большинстве современных игр.

После того, как вы закончите работу с этой книгой, у вас будет
набор шейдеров, который вы сможете использовать в ваших играх,
сделанных с помощью Unity3D, а также, у вас появится понимание
того, как и что нужно будет добавлять к ним, чтобы получать новые
эффекты и удовлетворять запросам производительности. Так что, да-
вайте, перейдём к делу.

Что рассматривается в этой
книге
Глава 1 «Диффузный шейдинг» содержит азы написания шейдеров, в
этой главе объясняется структура шейдеров в Unity3D. Далее в этой
главе данные знания применяются для создания диффузной модели

12 Предисловие

освещения по умолчанию, а также приводятся тонкости и приёмы,
используемые в игровой индустрии для создания собственных моде-
лей освещения.

Глава 2 «Создание эффектов с помощью текстур» описывает ис-
пользование текстур для создания различных эффектов. В этой главе
вы узнаете, как можно анимировать спрайт-листы с помощью шейде-
ра, а также, как использовать различные каналы текстуры для повы-
шения эффективности шейдеров. К концу этой главы, ваши навыки
использования текстур будут достаточны для создания ваших собс-
твенных эффектов.

Глава 3 «Пусть ваши игры засияют отражённым светом» рассказы-
вает всё, что вам может потребоваться, о создании наиболее распрост-
ранённых типов бликового отражения – Blinn и Phong. Вы узнаете,
как можно применить эти шейдерные эффекты для создания мас-
кированного отражённого освещения, металлического отражения, а
так же, узнаете о создании анизотропного отражённого освещения.
К концу этой главы, вы будете иметь достаточно знаний, для того,
чтобы реализовывать свои собственные specular-эффекты.

Глава 4 «Добавим отражения в ваш мир» рассказывает о примене-
нии одного из наиболее распространённых эффектов в современных
играх, с помощью которого вы сможете учитывать в ваших шейдерах
приёмы создания отражений. Эта глава научит вас всему – начиная
с азов организации отражения в шейдерах Unity3D и заканчивая со-
зданием вашей собственной системы динамического отражения с по-
мощью C#.

Глава 5 «Модели освещения» рассказывает о более сложных шей-
дерах. Вы узнаете, как создавать свои собственные модели освещения,
использование которых позволит вам сымитировать произвольный
тип поверхности. Каждый рецепт демонстрирует применение различ-
ных техник для достижения различных задач, каждая из которых при-
ведёт к развитию ваших навыков написания шейдеров. К концу этой
главы, вы создадите ваш собственный шейдер кожи, узнаете об осве-
щении Lit Sphere, и напишете свой шейдер автомобильной краски.

Глава 6 «Прозрачность» продемонстрирует то, что на некотором
этапе производства игр вам неизбежно потребуется использовать
прозрачность. Практически любая игра, так или иначе, задействует
прозрачность для таких объектов, как элементы пользовательского
интерфейса, опавшая листва, объекты-трафареты, и т. д. В этой гла-
ве вы узнаете, как работать с прозрачностью в Unity3D, и как можно
уладить трудные моменты, возникающие при этом.

13Предисловие

Глава 7 «Волшебные возможности вершин» рассказывает о том,
как можно получить доступ к информации, хранящейся в вершинах
3D сетки объекта. Вы научитесь работать с этими данными использо-
вать их в шейдере, для создания таких эффектов, как блендинг текс-
тур и анимация.

Глава 8 «Настройка шейдеров для мобильных приложений» по-
священа способам оптимизации шейдеров в Unity, с помощью встро-
енных типов и макросов. Так как, эта задача становится особенно важ-
ной при работе шейдеров для мобильных платформ.

Глава 9 «Делаем наш шейдерный мир модульным с помощью
CgIncludes» продемонстрирует вам, почему нужно повторно исполь-
зовать уже написанный код, для того, чтобы улучшить ваш навык
 написания шейдеров. Эта глава покажет, как вы можете создать ваши
собственные файлы CgInclude, для хранения и повторного использо-
вания повторяющихся блоков кода.

Глава 10 «Создание экранных эффектов в Unity с помощью рен-
дер-текстур» начинается с рассмотрения того, как в современных
играх используются экранные эффекты (так же, называемый пост-
эффектами) для изменения итогового отрендеренного изображения
игры. Вы узнаете, как вы можете создать ваши собственные экранные
эффекты, а также, как можно осуществлять корректировку цвета и
наложения текстур для создания различных визуальных эффектов в
вашей игре.

Глава 11 «Гейм-плей и экранные эффекты» углубляет ваши знания
об экранных эффектах, и показывает, как вы можете создать эффек-
ты, усиливающие атмосферность моментов в вашей игре. Вы научи-
тесь создавать эффекты старого фильма и ночного видения.

Что потребуется при чтении

этой книги
Для того чтобы вы смогли выполнить рецепты, приводимые в этой
книге, вам понадобится следующее необходимое и опциональное
программное обеспечение:

 Unity3D (для глав 10 и 11 вам потребуется Unity3D Pro);
 3D-приложение, такое как Maya, Max или Blender (опцио-

нально);
 приложение для работы с 2D-графикой, такое как Photoshop

или Gimp (опционально).

14 Предисловие

Для кого эта книга
Эта книга предназначена для программистов, работающих с Unity3D,
для новичков и продвинутых. Лучше всего, чтобы у вас уже был опыт
работы с C# или JavaScript, и вы бы уже владели базовыми навыками
работы с Unity. Мы советуем вам взглянуть на руководство для но-
вичков в Unity 3.x по разработке игр от Packt Publishing (http://www.
packtpub.com/unity-3-x-game-development-by-example-beginners-
guide/book), для того, чтобы получить достаточные базовые навыки
по работе с азами Unity3D.

Условные соглашения
В этой книге вы встретите несколько стилей оформления текста, ко-
торыми форматируется разная по смыслу информация. Сейчас мы
приведём примеры этих стилей и объясним их смысл.

Ключевые слова кода будут приводиться в тексте следующим обра-
зом: «введите следующий код в блок Properties вашего шейдера».

Блоки кода будут оформляться таким образом:

void surf (Input IN, inout SurfaceOutput o)
{
 fl oat4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
}

Новые термины и ключевые слова будут приводится полужирным
шрифтом. Слова, которые вы увидите на экране, в меню или, напри-
мер, в диалоговых окнах, будут приводиться по тексту следующим
образом: «таким образом создаётся палитра кубмапы на закладке Инс-
пектора компонентов, пользователь может перетаскивать кубмапу на
шейдер».

Так будут оформляться предупреждения и важные примечания.

Так будут оформляться подсказки и приёмы.

15Предисловие

Обратная связь с читателями
Мы всегда приветствуем обратную связь с нашими читателями. Со-
общите нам, что вы думаете об этой книге – что вам в ней понрави-
лось или же не понравилось. Обратная связь поможет нам преподно-
сить именно тот материал, который вам нужен.

Чтобы связаться с нами, просто пошлите письмо по адресу
feedback@packtpub.com, а в теме письма укажите название книги.

Если есть предметная область, в которой вы имеете обширный
опыт, и вы заинтересованы в написании книги или в другом содейст-
вии, то посетите www.packtpub.com/authors.

Поддержка клиентов
Теперь, когда вы стали покупателем книги Packt, перед вами откры-
ваются следующие возможности.

Скачивание программного кода примеров
Вы можете скачать файлы программного кода примеров для всех
книг Packt, которые вы заказали с вашего аккаунта на страничке
http://www.packtpub.com. Если вы заказали эту книгу откуда-то ещё,
то вы можете посетить страницу http://www.packtpub.com/support и
зарегистрироваться, чтобы мы выслали вам эти файлы электронным
письмом.

Скачивание цветных изображений

этой книги
Также мы предоставим вам PDF-файл, содержащий цветные изобра-
жения скриншотов/диаграмм, использованных в данной книге. Цвет-
ные изображения помогут вам лучше понять содержимое глав. Вы
можете скачать этот файл с http://www.packtpub.com/sites/default/
files/downloads/5084OT_Images.pdf.

Ошибки и опечатки

Несмотря на то что мы предприняли всё возможное для обеспечения
точности содержимого наших книг, ошибки иногда всё-таки встреча-
ются. Если вы найдёте ошибку в какой-либо из наших книг – может
быть, ошибку в тексте или в коде, – мы будем рады, если вы сообщите

16 Предисловие

нам об этом. Таким образом вы сможете облегчить жизнь другим чита-
телям и помочь нам улучшить последующие издания книги. Если вы
найдёте какую-либо ошибку, то, пожалуйста, сообщите о ней на стра-
нице http://www.packtpub.com/submit-errata – выберите там вашу
книгу, кликните на ссылку отправки ошибки и введите её описание.
Как только присланная вами ошибка будет подтверждена, она будет
загружена на наш веб-сайт или добавлена к списку сущест вующих
ошибок в секции ошибок для выбранной книги. Найденные ошибки
можно посмотреть, выбрав название книги на странице http://www.
packtpub.com/support.

Нарушение авторских прав

В Интернете пиратство защищённого авторскими правами матери-
ала является насущной проблемой для всех форм материалов. Мы в
Packt относимся к защите наших авторских прав и лицензий очень
серьёзно. Если вы найдёте в Интернете в любой форме нелегальные
копии наших работ, то, пожалуйста, незамедлительно сообщите нам
ссылку или название веб-сайта, чтобы мы смогли принять меры.

Пожалуйста, свяжитесь с нами по адресу copyright@packtpub.com
и укажите ссылку на предположительно пиратские материалы. Мы
ценим вашу помощь в защите прав наших авторов и нашей возмож-
ности предоставлять вам ценную информацию.

Вопросы

Вы можете связаться с нами по адресу questions@packtpub.com, если
у вас имеются вопросы касательно любого аспекта этой книги, и мы
постараемся на них ответить.

ГЛАВА 1
Диффузный шейдинг

В этой главе будут рассмотрены некоторые наиболее распространён-
ные приёмы, используемые сегодня в игровой индустрии при разра-
ботке шейдеров. Вы узнаете о том, как:

 создать простой поверхностный шейдер;
 добавить свойства поверхностному шейдеру;
 использовать свойства в поверхностном шейдере;
 сделать собственную модель диффузного освещения;
 написать модель освещения Half Lambert;
 использовать текстуру для контроля над диффузным

шейдингом;
 имитировать эффект BRDF с помощью 2D-текстуры.

Введение
В основе любого хорошего шейдера всегда лежит модель освещения,
а точнее, его диффузного (рассеивающего) компонента. Так что имеет
смысл начинать написание шейдера именно с него.

Ранее в компьютерной графике диффузный шейдинг делали с по-
мощью так называемой неперепрограммируемой (fixed function) мо-
дели освещения. Она предоставляла графическим программистам
единственную модель освещения, которую они могли настраивать с
помощью набора параметров и текстур. Сейчас же, с появлением шей-
деров и языка Cg , мы получили больше возможностей контролиро-
вать освещение. Тем более в Unity с его поверхностными шейдерами.

Диффузный компонент шейдера описывает, как свет отражается
от поверхности во всех направлениях. Возможно, вам покажется, что
это описание очень похоже на принцип работы зеркала, но в действи-
тельности это не так. Зеркальная поверхность отражает изображение
объектов окружающей среды, в то время как диффузное освещение
рассеивает во все направления суммарный свет, испускаемый источ-

18 Глава 1. Диффузный шейдинг

никами света, такими как, например, солнце. Отражения мы рассмот-
рим в последующих главах, а на данный момент, нам просто нужно
знать, чем они отличаются от диффузного освещения.

Чтобы создать базовую модель диффузного освещения, нам нужно
будет написать шейдер, в который будут передаваться цвет испускае-
мого излучения, цвет фонового освещения и суммарный свет от всех
источников. Следующие рецепты покажут, как сделать законченную
модель диффузного освещения, а также продемонстрируют некото-
рые известные приёмы работы с текстурами, которые пригодятся при
создании более сложных моделей.

К концу этой главы вы научитесь создавать простые шейдеры, ко-
торые выполняют основные функции шейдинга. Вооружившись эти-
ми знаниями, вы сможете создать практически любой поверхностный
шейдер.

Создаём простой

поверхностный шейдер
В то время как мы продвигаемся дальше по рецептам этой книги, важ-
но, чтобы вы знали, как настроить рабочую среду в Unity так, чтобы
можно было работать эффективно и без каких-либо неудобств. Если
вы уже знакомы с созданием шейдеров и настройкой материалов в
Unity 4, то можете пропустить этот рецепт. Мы приводим его в этой
книге для того, чтобы те, кто только начинает работу с поверхност-
ным шейдингом в Unity 4, могли работать с остальными рецептами
книги.

Подготовка

Для того чтобы начать работать с этим рецептом, вам потребуется за-
пустить Unity 4 и создать новый проект. Вы также можете восполь-
зоваться прилагаемым к книге проектом, просто добавляя в него свои
собственные шейдеры по мере вашей работы с рецептами из книги.
Разобравшись с проектом, вы будете готовы окунуться в прекрасный
мир шейдинга!

Как это сделать…

Прежде чем мы займёмся нашим первым шейдером, давайте созда-
дим небольшую сцену, с которой мы будем работать. Для этого, в ре-

19Создаём простой поверхностный шейдер

дакторе Unity зайдите в меню Game Object (Игровой объект) | Cre-
ate Other (Создать другое). Там вы можете создать плоскость (Plane),
которая будет играть роль земли, парочку сфер (Sphere), к которым
мы будем применять наш шейдер, и направленный источник света
(Directional Light), чтобы осветить сцену. После того как мы создали
сцену, мы можем перейти к следующим шагам написания шейдера:

1. В панели Project (Проект) редактора Unity нажмите правой
кнопкой по папке Assets (Ресурсы) и выберите Create (Со-
здать) | Folder (Папку).

Если вы используете проект Unity, предоставляемый с этой книгой
рецептов, то вы можете перейти к шагу 4.

Рис. 1.1. Создание в проекте новой папки

2. Переименуйте папку, которую вы создали, в Shaders, нажав
на неё правой кнопкой мышки и выбрав Rename (Переимено-
вать) из выпадающего списка, либо выбрав папку и нажав F2
на клавиатуре.

3. Создайте ещё одну папку и назовите её Materials.
4. Нажмите правой кнопкой мыши по папке Shaders и выбери-

те Create (Создать) | Shader (Шейдер). После этого нажмите
правой кнопкой мыши по папке Material и выберите Create
(Создать) | Material (Материал).

5. Переименуйте и Shader, и Material в BasicDiffuse.

20 Глава 1. Диффузный шейдинг

6. Запустите BasicDiffuse шейдер в MonoDevelop (редактор
скриптов по умолчанию для Unity), сделав двойной щелчок
мышкой по нему. Это автоматически запустит редактор и
отобразит код шейдера.

Вы увидите, что в только что созданном шейдере уже есть какой-то
код. Unity по умолчанию создаёт самый простой diffuse-шейдер с
одной текстурой. Изменяя и дополняя этот код, мы научимся разра-
батывать наши собственные шейдеры.

7. Теперь давайте переименуем наш шейдер и поместим его в от-
дельную папку. Первая строчка кода шейдера задаёт его имя
и путь, которые будут отображаться в выпадающем списке в
Unity при назначении шейдера материалу. Мы переименовали
наш шейдер в "CookbookShaders/BasicDiffuse", но вы мо-
жете переименовать его во что захотите и когда захотите. Так
что сейчас можете за это не волноваться. Сохраните шейдер в
MonoDevelop и вернитесь в редактор Unity. Unity автомати-
чески скомпилирует шейдер, когда увидит, что файл был об-
новлён. На данном этапе ваш шейдер должен выглядеть так:

Shader "CookbookShaders/BasicDiffuse"
{
 Properties
 {
 _MainTex ("Base (RGB)", 2D) = "white" {}
 }
 SubShader
 {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 #pragma surface surf Lambert

 sampler2D _MainTex;

 struct Input
 {
 fl oat2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o)
 {
 half4 c = tex2D (_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;

21Создаём простой поверхностный шейдер

 o.Alpha = c.a;
 }
 ENDCG
 }
 FallBack "Diffuse"
}

8. Выберите материал BasicDiffuse, который мы создали на шаге
4, и посмотрите на панель Инспектора. Из выпадающего спис-
ка Shader (Шейдер) выберите CookbookShaders | BasicDiffuse
(путь к вашему шейдеру может отличаться, если вы решили
использовать другое имя). Таким образом, мы назначим шей-
дер материалу и сможем теперь применить его к объектам на
сцене.

Чтобы назначить материал объекту, вы можете просто перетащить
его из панели Project (Проект) на объект в сцене или на панель ин-
спектора при выделенном объекте.

Рис. 1.2. Объекты, используемые в данном рецепте

И хотя пока что особо не на что смотреть, тем не менее мы настрои-
ли нашу среду для разработки шейдеров и теперь можем приступить
к модификации шейдера под наши нужды.

Как это работает…

Как видите, в Unity настроить среду разработки шейдеров дело бук-
вально нескольких кликов. В поверхностном шейдере незаметно для
пользователя работает много компонентов. Unity сделала шейдер-

22 Глава 1. Диффузный шейдинг

ный язык Cg более эффективным, генерируя за вас большую часть
Cg-кода. Поверхностные шейдеры – это более компонентно ориен-
тированный способ написания шейдеров. Такие задачи, как обработ-
ка текстурных координат и матриц преобразований, уже решены за
вас, так что вам больше не придётся каждый шейдер начинать с нуля.
Раньше же, начав писать новый шейдер, нам бы пришлось переписы-
вать большие куски кода снова и снова. По мере того как вы будете
набираться опыта при работе с поверхностными шейдерами, вы, ес-
тественно, захотите узнать больше о заложенных в основу функциях
языка Cg и о том, как Unity обрабатывает за вас все низкоуровневые
задачи, выполняемые графическим процессором (GPU).

Итак, мы создали простой диффузный шейдер, который уже пра-
вильно взаимодействует с источниками света и тенями. И всё, что мы
сделали, – поменяли одну строчку кода, переименовав наш шейдер.

Дополнительная информация

Если вы хотите узнать подробнее, какие встроенные функции до-
ступны вам при написании поверхностных шейдеров, загляните в пап-
ку Editor\Data\CGIncludes в установленной версии Unity. В этой
папке находятся три файла, на которые вам стоит обратить внимание:
UnityCG.cginc, Lighting.cginc и UnityShaderVariables.cginc.
На данном этапе наш шейдер использует все эти файлы.

Подробнее на файлах из папки CGIncludes мы остановимся в главе 9
«Делаем наш шейдерный мир модульным с помощью CgIncludes».

Добавление свойств

поверхностному шейдеру
Свойства шейдера играют очень важную роль в разработке и ис-
пользовании шейдеров. Для каждого из свойств Unity автоматичес-
ки создаёт элементы интерфейса в панели Инспектора, с помощью
которых можно легко настраивать шейдер непосредственно в редак-
торе. Откройте ваш шейдер в MonoDevelop и обратите внимание на
блок кода с третьей по шестую строку. Этот блок называется Блоком
свойств. На данный момент в нём присутствует лишь одно свойст-
во – _MainTex. Если вы посмотрите на ваш материал, который ис-
пользует этот шейдер, то заметите, что в панели Инспектора есть
поле для настройки текстуры. Это поле было автоматически создано
из его описания в блоке свойств.

23Добавление свойств поверхностному шейдеру

И опять Unity проделала большую работу за нас, сделав процесс
задания и изменения свойств лёгким и эффективным.

Как это сделать…

Давайте посмотрим, как это работает, на примере нашего шейдера
BasicDiffuse, для этого создадим наши собственные свойства и поз-
накомимся с используемым синтаксисом:

1. В блоке свойств нашего шейдера удалите текущее свойство,
стерев у шейдера следующую строчку:

_MainTex ("Base (RGB)", 2D) = "white" {}

2. Теперь добавьте следующий код, сохраните шейдер и верни-
тесь в редактор Unity:

_EmissiveColor ("Emissive Color", Color) = (1,1,1,1)

3. Когда вы вернётесь в Unity и шейдер скомпилируется, вы уви-
дите, что на панели Инспектора материала вместо поля для
выбора текстуры появилась палитра выбора цвета под назва-
нием Emissive Color (Цвет испускаемого излучения). Давайте
добавим ещё одну строчку кода и посмотрим, что произойдёт.
Наберите следующий код:

_AmbientColor ("Ambient Color", Color) = (1,1,1,1)

4. Мы добавили ещё одну палитру выбора цвета на панель Инс-
пектора материала. Давайте добавим еще одно свойство, что-
бы получить представление о том, какие ещё типы свойств мы
можем создать. В блок свойств добавьте следующий код:

_MySliderValue ("This is a Slider", Range(0,10)) = 2.5

5. Мы создали ещё один элемент интерфейса, который позволяет
нам визуально взаимодействовать с нашим шейдером. В этот
раз мы создали слайдер под названием «This is a Slider» («Это
слайдер»), что проиллюстрировано на следующем скриншоте:

Рис. 1.3. Элементы GUI

24 Глава 1. Диффузный шейдинг

Свойства позволяют вам визуально настраивать шейдеры без не-
обходимости менять вручную код.

Как это работает…

Все шейдеры в Unity следуют определенной структуре. Блок
свойств – один из тех элементов, которые Unity ожидает увидеть в
коде. Это сделано для того, чтобы предоставить вам как программис-
ту шейдеров способ быстро создавать элементы интерфейса, связан-
ные напрямую с кодом шейдера. Свойства, объявляемые вами в блоке
свойств, могут быть впоследствии использованы в коде шейдера для
изменения числовых значений, цветов и текстур.

Рис. 1.4. Структура свойств

Давайте посмотрим, как это работает. Когда вы добавляете новое
свойство, вы должны сопоставить ему имя переменной, с которой бу-
дет связано это свойство. Эта переменная должна быть определена в
коде, и текущее значение свойства будет автоматически ей присваи-
ваться. Таким образом, это экономит нам уйму времени, поскольку
нам не нужно самим беспокоиться о передаче внешних параметров в
шейдер.

Следующие компоненты описания свойства, – это его название в
Испекторе и его тип. Название используется в панели Инспектора
во время редактирования параметров материала. Тип свойства задаёт
тип данных, которые будут передаваться в шейдер через него. В Unity
можно использовать свойства следующих типов:

Таблица 1.1. Типы свойств поверхностных шейдеров

Range (min, max) Создаёт свойство типа float (число с плавающей запя-
той), в виде слайдера с указанным диапазоном от ми-
нимального значения до максимального

Color Создаёт цветовую палитру на закладке Инспектора,
которая вызывает селектор цвета = (float,float,float,
float)

Имя переменной Название компонента Тип Значение
 в Инспекторе по умолчанию

25Использование свойств в поверхностном шейдере

2D Создаёт элемент для выбора текстуры, который позво-
ляет пользователю перетаскивать текстуру на шейдер

Rect Создаёт элемент для выбора текстурные кратной сте-
пени двойки, функционирует также как 2D элемент GUI

Cube Создаёт элемент для выбора кубической текстуры
(cube map) в Инспекторе и позволяет пользователю
перетаскивать их на шейдер

Float Создаёт свойство типа float в Инспекторе, но без слай-
дера

Vector Создаёт свойство из четырёх float, что позволяет зада-
вать направления или цвета

И последнее, –это значение свойства по умолчанию, которое оно
принимает, если это свойство не редактировалось в Инспекторе. Так
что в примере, изображённом на рисунке, значение по умолчанию
свойства _AmbientColor типа Color задано как (1,1,1,1). Так как
это свойство в качестве значения ожидает цвет в формате RGBA, ко-
торое в коде хранится в переменной типа fl oat4, где (r,g,b,a) = (x,
y, z, w), то это свойство в момент его создания принимает значение
белого цвета.

Дополнительная информация

Документация по свойствам приводится в руководстве по Unity,
которое можно найти по адресу: http://docs.unity3d.com/Documenta-
tion/Components/SL-Properties.html.

Использование свойств

в поверхностном шейдере
Теперь, после того как мы создали несколько свойств, давайте свяжем
их с переменными в коде, чтобы их можно было использовать для на-
стройки шейдера, и сделаем процесс изменения параметров более ин-
терактивным.

К каждому свойству в блоке свойств мы привязали имя перемен-
ной, которую это свойство контролирует. Таким образом, мы сможем
использовать значения свойств в коде шейдера. Но для этого сперва
нужно изменить код шейдера и добавить в него определение этих пе-
ременных.

26 Глава 1. Диффузный шейдинг

Как это сделать

Следующие шаги демонстрируют вам, как использовать свойства в
поверхностных шейдерах:

1. Для начала давайте удалим следующие строки кода, так как
мы удалили свойство _MainTex в рецепте «Создаём простой
шейдер» этой главы:

sampler2D _MainTex;
half4 c = tex2D(_MainTex, IN.uv_MainTex);

2. Далее добавьте следующие строки кода после строки
CGPROGRAM.

fl oat4 _EmissiveColor;
fl oat4 _AmbientColor;
fl oat _MySliderValue;

3. Теперь мы можем использовать значения из свойств нашего
шейдера. Давайте сделаем это, присвоив o.Albedo сумму зна-
чений свойств _EmissiveColor и _AmbientColor. Для этого
добавьте следующий код в функцию surf:

void surf (Input IN, inout SurfaceOutput o)
{
 fl oat4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
}

4. Код получившегося шейдера приведён ниже. Если вы сохрани-
те ваш шейдер в MonoDevelop и вернетесь в Unity, то шейдер
скомпилируется. Если вы не сделали ошибок, то теперь у вас
появится возможность менять излучаемый и фоновый цвета
материала, а также вы сможете менять насыщенность итогово-
го цвета с помощью значения слайдера. Здорово, да?

Shader "CookbookShaders/BasicDiffuse"
{
 //Объявляем свойства в блоке свойств.
 Properties
 {
 _EmissiveColor ("Emissive Color", Color) = (1,1,1,1)
 _AmbientColor ("Ambient Color", Color) = (1,1,1,1)
 _MySliderValue ("This is a Slider", Range(0,10)) = 2.5
 }
 SubShader

27Использование свойств в поверхностном шейдере

 {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 #pragma surface surf Lambert
 //Нам нужно объявить переменные свойств внутри CGPROGRAM,
 //чтобы мы смогли получить доступ к значениям этих
 //переменных из блока свойств.
 fl oat4 _EmissiveColor;
 fl oat4 _AmbientColor;
 fl oat _MySliderValue;

 struct Input
 {
 fl oat2 uv_MainTex;
 };

 void surf (Input IN, inout SurfaceOutput o)
 {
 //После этого мы можем использовать значения свойств
 //в нашем шейдере.
 fl oat4 c;
 c = pow((_EmissiveColor + _AmbientColor), _MySliderValue);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }
 ENDCG
 }
 FallBack "Diffuse"
}

Функция pow(arg1, arg2) – это встроенная функция, которая вы-
полняет математическую операцию возведения в степень. Аргу-
мент 1 – это число, которое мы хотим возвести в степень, а аргу-
мент 2 – это степень, в которую мы хотим возвести.

Чтобы узнать больше о функции pow(), загляните в CgTutorial. Это
прекрасный бесплатный ресурс, где вы можете больше узнать про
шейдинг и который содержит перечень всех функций, доступных в
языке шейдинга Cg (http://http.developer.nvidia.com/CgTutorial/cg_
tutorial_appendix_e.html).

Следующий скриншот показывает результат использования
свойств для контроля цвета и насыщенности материала из панели
Инспектора:

28 Глава 1. Диффузный шейдинг

Рис. 1.5. Результат использования свойств

Как это работает…

Когда вы объявляете новое свойство в блоке свойств, вы предоставляе-
те шейдеру способ получить изменённое значение с панели Инспек-
тора материала. Это значение хранится в переменной, имя которой
мы задали при создании свойства. В данном случае _AmbientColor,
_EmissiveColor и _MySliderValue – это переменные, в которых мы
храним изменяемые значения. Для того чтобы можно было исполь-
зовать значения переменных в блоке SubShader{}, вам нужно будет
создать три новые переменные с именами, такими же как и у перемен-
ных свойств. Это автоматически создаст связь между ними, благода-
ря которой они будут работать с одними и теми же данными. Кроме
того, это задаст и тип данных, которые мы хотим хранить в перемен-
ных, что нам пригодится в последующей главе – когда мы займёмся
оптимизацией шейдеров.

Как только вы объявите переменные в блоке SubShader, вы смо-
жете использовать их значения в функции surf (). В данном слу-
чае мы хотим просуммировать переменные _EmissiveColor и
_AmbientColor, а потом возвести их в степень, которая задана пере-
менной _MySliderValue из панели Инспектора материала.

Выполнив эти действия, мы задали фундамент, который потре-
буется для любого шейдера, использующего диффузный компо-
нент.

29Делаем собственную модель диффузного освещения

Делаем собственную модель

диффузного освещения
Использовать встроенные в Unity функции освещения, несомненно,
просто, но вы быстро перерастёте этот этап и захотите делать гораздо
более специализированные световые модели. Исходя из нашего опы-
та, мы ни разу не работали над проектом, в котором мы использовали
только встроенные модели освещения и были этим довольны. Мы со-
здавали собственные модели освещения практически для всего. Бла-
годаря этому мы, например, смогли сделать эффект задней подсветки,
реализовать типы освещения, основанные на кубмапах, или даже конт-
ролировать, как шейдер реагирует на события гейм-плея, что можно на-
блюдать на примере шейдера, симулирующего эффект силового поля.

Этот рецепт посвящен созданию собственной модели диффузного
освещения, которую мы будем использовать для реализации несколь-
ких различных эффектов.

Как это сделать…

Давайте воспользуемся простым диффузным шейдером, который мы
создали по предыдущему рецепту, и модифицируем его, выполнив
следующие шаги:

1. Сперва измените директиву #pragma в следующем коде:

#pragma surface surf BasicDiffuse

2. Далее добавьте следующий код:

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fl oat difLight = max(0, dot (s.Normal, lightDir));
 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (difLight * atten * 2);
 col.a = s.Alpha;
 return col;
}

3. Сохраните шейдер в редакторе MonoDevelop и вернитесь в
Unity. Шейдер скомпилируется, и если всё прошло хорошо, вы
увидите, что внешне наш материал никак не изменился. Но это
не значит, что наш код не работает. Этим кодом мы удалили
связь со встроенным в Unity диффузным освещением и созда-

30 Глава 1. Диффузный шейдинг

ли нашу собственную модель освещения, которую мы сможем
настраивать.

Как это работает…

В этом коде много важных частей, давайте разберём каждую из них по
отдельности, чтобы понять, почему код работает именно так:

• директива #pragma говорит шейдеру, какую модель освеще-
ния использовать для его расчётов. Когда мы создали новый
шейдер, он работал, потому что модель освещения Lambert
определена в файле Lighting.cginc. Поэтому мы могли её
использовать в шейдере. Теперь же мы дали указание шейдеру
использовать модель освещения под названием BasicDiffuse;

• чтобы создать новую модель освещения, нужно написать функ-
цию, которая будет считать эту модель. Название этой функ-
ции должно начинаться с Lighting, то есть Lighting<ваше наз-
вание>. Вы можете использовать один из трёх вариантов:

 half4 LightingName (SurfaceOutput s, half3 lightDir,
 half atten){}
 эта функция используется при Forward-рендеринге, когда

направление взгляда не требуется;

 half4 LightingName (SurfaceOutput s, half3 lightDir,
 half3 viewDir, half atten){}
 эта функция используется при Forward-рендеринге, когда

требуется направление взгляда;

 half4 LightingName_PrePass (SurfaceOutput s, half4
 light){}

 эта функция используется при Deferred-рендеринге;

• скалярное произведение – это ещё одна встроенная в язык
Cg математическая функция. Мы можем использовать её для
того, чтобы сравнить направления двух векторов в пространст-
ве. С помощью скалярного произведения можно узнать, па-
раллельны друг другу два вектора или перпендикулярны. Так,
применив эту функцию к двум векторам, вы получите зна-
чения от –1 до 1, где –1 будет соответствовать случаю, когда
сравниваемый вектор параллелен и противонаправлен вашему
взгляду, 1 будет соответствовать случаю, когда сравниваемый
вектор параллелен и сонаправлен вашему взгляду, 0 же соот-
ветствует случаю, когда сравниваемый вектор перпендикуля-
рен направлению вашего взгляда;

31Делаем собственную модель диффузного освещения

«Скалярное произведение нормализованных векторов N и L явля-
ется мерой угла между двумя векторами. Чем меньше угол между
векторами, тем больше будет значение скалярного произведения и
тем больше падающего света получит поверхность».

 Источник: http://http.developer.nvidia.com/CgTutorial/cg_tutorial_
chapter05.html.

• чтобы завершить расчёт диффузного компонента, нам нужно
перемножить его с данными, предоставленными нам Unity
в структуре SurfaceOutput. Для этого мы перемножаем
значение s.Albedo (из нашей функции surf) с получае-
мым значением _LightColor0.rgb (оно предоставляется
Unity), а потом результат этого произведения умножаем на
(difLight * atten * 2). После этого мы возвращаем полу-
чившийся цвет. Взгляните на следующий код:

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fl oat difLight = max(0, dot (s.Normal, lightDir));
 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (difLight * atten * 2);
 col.a = s.Alpha;
 return col;
}

На следующем скриншоте показан результат применения нашего
простого диффузного шейдера:

Рис. 1.6. Результат применения диффузного шейдера

32 Глава 1. Диффузный шейдинг

Но это ещё не всё…

Воспользовавшись встроенной в язык Cg функцией max, мы можем
ограничить значения, получаемые из функции скалярного произведе-
ния. Функция max принимает два аргумента – max(arg1, arg2), – и
возвращает наибольший их них. Мы используем её в нашем шейдере,
для того чтобы быть уверенными, что значения, которые мы будем
применять для вычисления диффузного компонента, всегда больше
или равны нулю. Таким образом, мы исключаем из обработки от-
рицательные значения, особенно -1, которое бы создало в шейдере
чрезвычайно чёрные области, что было бы неудобно с точки зрения
дальнейших вычислений.

В библиотеке языка Cg также есть функция saturate. Она прини-
мает один аргумент и возвращает значение в диапазоне от 0 до 1.

Дополнительная информация…

Дополнительную информацию об аргументах функций модели
освещения поверхностного шейдера можно найти по адресу: http://
docs.unity3d.com/Documentation/Components/SL-SurfaceShader-
Lighting.html.

Модель освещения Half Lambert
Half Lambert – это техника, созданная в компании Valve, чтобы поверх-
ность объектов, на которые свет «падает» под большим углом, тоже
подсвечивалась. В модели освещения Lambert цвет этих объектов
уходит в чёрный.

Half Lambert – это техника, которая была впервые использована в
оригинальном Half-Life (https://developer.valvesoftware.com/wiki/
Half-Life). Техника была разработана для того, чтобы тыльная сто-
рона объекта не теряла формы и не выглядела слишком плоской.
Half Lambert – это совершенно не физически реалистичная техника,
и она создаёт исключительно визуальные улучшения. Это пример
нестрогой модели освещения.

 Ссылка: https://developer.valvesoftware.com/wiki/Half_Lambert.

Как это сделать…

Взяв шейдер, на котором мы остановились в предыдущем рецепте,
давайте изменим в нём рассчет диффузного цвета:

33Модель освещения Half Lambert

• измените вычисление диффузного компонента, умножив его
на 0,5. Для этого добавьте следующий код в функцио освеще-
ния:

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fl oat diffLight = dot(s.Normal, lightDir);
 fl oat hLambert = difLight * 0.5 + 0.5;

 fl oat4 col;
 col.rgb = s.Albedo * LightColor0.rgb * (hLambert * atten * 2);
 col.a = s.Alpha;
 return col;
}

Результат внедрения техники Half Lambert в нашу модель освеще-
ния показан на следующем скриншоте:

Рис. 1.7. Использование Half Lambert

Как это работает…

Техника Half Lambert преобразует диапазон значений скалярного
произведения нормали к поверхности и направления света из [–1, 1]
в [0, 1]. Таким образом, значение 1 так и остаётся 1, а 0 преобразуется
в 0,5. При этом места с отрицательными значениями тоже становятся
подсвечены. Это уменьшает затемнённость модели в местах, на кото-
рые свет «падает» под большим углом.

На следующей картинке видно, как сдвигается кривая диффузного
компонента при применении техники Half Lambert.

34 Глава 1. Диффузный шейдинг

1

0 1Значение скалярного
произведения

Значение диф
ф

узного
ком

понента

Рис. 1.8. График диффузного компонента
при применении техники Half Lambert

Использование текстуры

для контроля над диффузным

шейдингом
Еще одним отличным инструментом при работе с шейдерами явля-
ется использование рэмп-текстур для управления цветом диффуз-
ного компонента освещения. С помощью рэмп-текстур вы сможете
подчеркнуть цвет поверхности, чтобы сымитировать эффекты пере-
отражения света или более сложной системы освещения. Эта техни-
ка чаще используется в мультяшных играх, где художественный вид
ваших шейдеров будет ценнее, чем физически достоверная световая
модель.

Эта техника стала более популярной с игрой TeamFortress 2, в кото-
рой Valve нашла уникальный подход к освещению своих персонажей.
На эту тему они написали очень известную статью, которую вам опре-
делённо стоит прочесть.

Статья Valve по освещению и шейдингу TeamFortress 2 доступна по
адресу: http://www.valvesoftware.com/publications/2007/NPAR07_Ill
ustrativeRenderingInTeamFortress2.pdf.

Подготовка

Для начала работы по данному рецепту вам потребуется подготовить
рэмп-текстуру в каком-либо графическом редакторе. Для целей кон-

35Использование текстуры для контроля над диффузным...

кретно этого примера мы использовали Photoshop, однако сделать
градиент можно в любом графическом редакторе.

Рис. 1.9. Градиент

Как это сделать…

Давайте начнём подготовку нашего шейдера с написания следующего
кода:

• измените функцию освещения:

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fl oat difLight = dot(s.Normal, lightDir);
 fl oat hLambert = difLight * 0.5 + 0.5;
 fl oat3 ramp = tex2D(_RampTex, fl oat2(hLambert)).rgb;

 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (ramp);
 col.a = s.Alpha;
 return col;
}

Результат выполнения этого кода представлен на следующей ил-
люстрации.

Рис. 1.10. Результат выполнения кода

Рэмп-текстура

36 Глава 1. Диффузный шейдинг

Как это работает…

Встроенная функция tex2D() языка Cg возвращает цвет из текстуры
в формате RGBA. Она принимает два аргумента: текстуру, из которой
мы хотим получить цвет, и UV-координаты пикселя в этой текстуре.

В данном случае мы не собираемся использовать UV-координаты,
полученные из вершины 3D-объекта, вместо этого мы хотим отобра-
зить диапазон значений диффузного компонента на рэмп-текстуру.
В конечном итоге эта операция «обернёт» текстуру вокруг поверх-
ности объекта, основываясь на направлении источника света, для ко-
торого проводятся вычисления.

Мы берем перерасчитанные значения диффузного компонента из
Half Lambert, передаем их во fl oat2() и получаем текстурные коор-
динаты. Если переменная hLambert принимает значение 0, то функ-
ция tex2D ищет значение пикселя с UV-координатами (0, 0). В нашем
случае это нежный персиковый цвет из текстуры. Когда переменная
hLambert принимает значение 1, tex2D будет использовать значение
пикселя с UV-координатами (1, 1), то есть белый цвет.

Теперь художник уже может лучше контролировать освещение
объекта под разными углами. Поэтому эту технику чаще всего можно
увидеть в тех проектах, где акцент делается на наглядности.

Имитация эффекта BRDF

с помощью 2D-текстуры
Мы можем улучшить предыдущий рецепт, если будем использовать
направление взгляда в функции освещения для создания более ин-
тересного эффекта. Используя направление взгляда, например, мы
сможем сымитировать заднюю подсветку (rim lighting).

Если мы посмотрим на технику диффузного освещения с помощью
рэмп-текстуры, то увидим, что мы используем лишь одно значение
для UV-координат текстуры. А это значит, что полученный эффект
будет одномерным. В этом рецепте мы изменим нашу функцию ос-
вещения таким образом, чтобы она использовала дополнительный
аргумент – направление взгляда .

Направление взгляда, – это направление, в котором пользователь
смотрит на объект. Это вектор, который мы можем использовать сов-
местно с нормалью и направлением света. Использование вектора
взгляда позволит нам усложнить метод сэмплинга текстуры.

37Имитация эффекта BRDF с помощью 2D-текстуры

В индустрии компьютерной графики эта техника часто называ-
ется эффект BRDF. BRDF расшифровывается как Bidirectional
Reflectance Distribution Function (двулучевая функция отражатель-
ной способности). Эта закрученная формулировка относится всего
лишь к тому, как свет отражается от непрозрачной поверхности с учё-
том направления света и направления взгляда. Чтобы наглядно уви-
деть эффект работы BRDF шейдера, давайте вернёмся к нашей сцене
и продолжим работу над шейдером.

Подготовка

В этот раз для начала нам потребуется более продвинутая рэмп-тек-
стура. Нам нужно включить в неё градиенты по обоим направлениям
текстуры.

1. Создайте новую текстуру с размерами 512×512.
2. Создайте градиент, направив его по диагонали из левого ниж-

него угла квадрата в верхний правый.
3. Создайте ещё один градиент, начинающийся из левого верхне-

го угла квадрата и заканчивающийся перед его центром.
4. И наконец, создайте градиент, начинающийся из правого ниж-

него угла квадрата и заканчивающийся перед его центром.
У вас должна получиться текстура, показанная на следующей
иллюстрации:

Рис. 1.11. Используемая в данном рецепте текстура

Как это сделать…

В этом рецепте мы будем отталкиваться от простого диффузного
шейдера:

1. Сначала нам нужно изменить нашу функцию освещения
так, чтобы учитывать предоставляемую Unity переменную
viewDir, что позволит нам получить направление камеры на

38 Глава 1. Диффузный шейдинг

сцене, при котором она смотрит на наши объекты. Для этого
отредактируйте функцию освещения:

inline fl oat4 LightingDiffuse (SurfaceOutput s, fi xed3 lightDir,
half3 viewDir, fi xed atten)
{
 fl oat difLight = dot(s.Normal, lightDir);
 fl oat hLambert = difLight * 0.5 + 0.5;
 fl oat3 ramp = tex2D(_RampTex, fl oat2(hLambert)).rgb;

 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (ramp);
 col.a = s.Alpha;
 return col;
}

2. После этого нам нужно посчитать скалярное произведение на-
правления взгляда и нормали к поверхности (как показано в
следующем коде).

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{
 fl oat difLight = dot(s.Normal, lightDir);
 fl oat rimLight = dot(s.Normal, viewDir);
 fl oat hLambert = diffLight * 0.5 + 0.5;
 fl oat3 ramp = tex2D(_RampTex, fl oat2(hLambert)).rgb;

 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (ramp);
 col.a = s.Alpha;
 return col;
}

3. Для завершения операции нам нужно подставить результат
скалярного произведения в функцию tex2D().

inline fl oat4 LightingBasicDiffuse (SurfaceOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{
 fl oat difLight = dot(s.Normal, lightDir);
 fl oat rimLight = dot(s.Normal, viewDir);
 fl oat hLambert = diffLight * 0.5 + 0.5;
 fl oat3 ramp = tex2D(_RampTex, fl oat2(hLambert, rimLight)).rgb;

 fl oat4 col;
 col.rgb = s.Albedo * _LightColor0.rgb * (ramp);
 col.a = s.Alpha;
 return col;
}

39

4. Сохраните ваш шейдер и вернитесь в Unity. Проверьте, что
вы используете вашу новую BRDF-текстуру в качестве рэмп-
текстуры для Unity. Обратите внимание, что ваше освещение
теперь содержит два эффекта подсветки по краям – один на
нижней части модели, другой на верхней.

Следующее изображение показывает результат применения BRDF
рэмп-текстуры для задания общего диффузного цвета. Эта техника
очень удобна для команды разработчиков, поскольку позволяет ху-
дожнику обновлять текстуру с помощью Photoshop, а не за счёт на-
стройки света в игре:

Рис. 1.12. Результат применения BRDF рэмп-текстуры

Как это работает…

Используя направление взгляда, мы можем сделать весьма незамыс-
ловатый эффект затухания. Направление взгляда позволяет созда-
вать различные типы эффектов: прозрачность в форме пузырька, за-
днюю подсветку, эффекты защитного силового поля или даже эффект
мультяшного контура.

Рис. 1.13. Скалярное произведение направления
взгляда и нормали к поверхности

Имитация эффекта BRDF с помощью 2D-текстуры

BRDF-текстура

40 Глава 1. Диффузный шейдинг

Изображение, расположенное выше, демонстрирует значение ска-
лярного произведения направления взгляда и нормали к поверхнос-
ти. А поскольку значения diffLight и rimLight лежат в диапазоне
от 0 до 1, мы можем использовать эти значения как координаты при
сэмплинге BRDF-текстуры.

Рис. 1.14. Визуализация выбора шейдером
цвета для поверхности

Самое важное в этом рецепте – понять, какие значения мы полу-
чаем из скалярных произведений, и то, как мы можем использовать
текстуру в функции освещения, чтобы «обернуть» её вокруг поверх-
ности для имитации более сложных эффектов.

Дополнительная информация

Информация о BRDF на Polycount: wiki.polycount.com/BrdfMap.

Н
аправлениевзгляда

Н
аправлениевзгляда

Н
аправление с

вета

Н
аправление с

вета

ГЛАВА 2
Создание эффектов
с помощью текстур

В этой главе мы рассмотрим способы использования текстур для
создания шейдерных эффектов. Как мы убедились в предыдущей
главе, используя текстуры, можно добиться более сложных эффек-
тов освещения. Помимо этого, мы можем использовать текстуры для
того, чтобы анимировать, смешивать да и вообще управлять любым
другим свойством, каким только пожелаем. В этой главе мы узнаем о
следующих методах:

 прокрутка текстур с помощью изменения UV-координат;
 анимирование спрайт-листов;
 упаковка и блендинг текстур;
 использование карт нормалей;
 создание процедурных текстур в редакторе Unity;
 эффект уровней Photoshop.

Введение
Использование текстур – это быстрый способ сделать наши шейдер-
ные эффекты более реалистичными. Однако следует внимательно
следить за количеством используемых в шейдере текстур, поскольку
накапливаются они очень быстро, а добавление каждой новой тексту-
ры в шейдер будет сказываться на производительности. Это особенно
актуально для приложений на мобильных платформах, в которых ко-
личество текстур должно быть минимальным, чтобы ваше приложе-
ние скачивалось быстро и быстро работало.

Текстуры – это изображения, которые обычно рисуются в графи-
ческих редакторах, таких как Photoshop , но их можно создавать и не-
посредственно в Unity. Текстуры накладываются на поверхность объ-
екта с помощью UV-координат, которые задают соотношение между

42 Глава 2. Создание эффектов с помощью текстур

2D-точкой текстуры и 3D-точкой вершины. Значения пикселей ин-
терполируются между вершинами объекта, что создает иллюзию на-
ложения 2D-картинки на 3D-поверхность.

Как добавить свойство с текстурой в шейдер, мы уже разобрались
в прошлой главе, поэтому заново мы на этом останавливаться не бу-
дем. Однако, если вы хотите узнать подробнее, как именно работает
отображение текстуры на 3D-объект, вы можете прочитать об этом
по адресу : http://http.developer.nvidia.com/CgTutorial/cg_tutorial_
chapter03.html.

Давайте начнём с того, что посмотрим, что мы можем делать с текс-
турами и как их использовать, чтобы сделать наши real-time 3D-эф-
фекты ещё более интересными и убедительными. В этой главе мы на-
чнем с самых простых текстурных эффектов, но ближе к концу главы
они станут более сложными и более зрелищными.

Прокрутка текстур с помощью

изменения UV-координат
Один из приёмов, наиболее распространённых в игровой индустрии
на сегодняшний день, – это прокрутка текстур по поверхности объ-
екта. С помощью этого приёма можно создавать эффекты анимации
водопадов, рек, потоков лавы и т. п. Кроме того, эта же техника лежит
в основе создания эффектов анимированных спрайтов, но про них
мы поговорим в следующем рецепте этой главы. Для начала давай-
те посмотрим, как в поверхностном шейдере сделать простой эффект
прокрутки.

Подготовка

Вам потребуется создать новый шейдер и новый материал. Таким об-
разом, у нас будет пустой шейдер, на котором мы потренируемся с
эффектом прокрутки.

Как это сделать…

Откройте ваш новый шейдер и следуйте инструкции:

1. Нам понадобятся два новых свойства, с помощью которых мы
будем контролировать скорость прокрутки текстуры. Поэто-
му давайте добавим свойство скорости по оси X и свойство

43Прокрутка текстур с помощью изменения UV-координат

скорости по оси Y, так, как показано в следующем фрагменте
кода.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _ScrollXSpeed ("X Scroll Speed", Range(0, 10)) = 2
 _ScrollYSpeed ("Y Scroll Speed", Range(0, 10)) = 2
}

2. Создайте новые переменные в секции CGPROGRAM, чтобы мы
могли получить доступ к значениям из наших свойств.

fi xed4 _MainTint;
fi xed _ScrollXSpeed;
fi xed _ScrollYSpeed;
sampler2D _MainTex;

3. Измените код в функции surf(), чтобы он изменял UV-коор-
динаты, передаваемые в функцию tex2D() . Далее используйте
встроенную переменную _Time, чтобы добавить UV-коорди-
натам анимацию по времени, которую мы увидим, когда в ре-
дакторе нажмём кнопку Play.

void surf (Input IN, inout SurfaceOutput o)
{
 //Создадим отдельную переменную для хранения наших UV
 //перед тем, как передать их в функцию tex2D().
 fi xed2 scrolledUV = IN.uv_MainTex;

 //Добавим переменные для хранения смещения по x и y
 fi xed xScrollValue = _ScrollXSpeed * _Time.x;
 fi xed yScrollValue = _ScrollYSpeed * _Time.x;

 //Применяем итоговый сдвиг UV
 scrolledUV += fi xed2(xScrollValue, yScrollValue);

 //Применяем текстуру и цвет
 half4 c = tex2D(_MainTex, scrolledUV);
 o.Albedo = c.rgb * _MainTint;
 o.Alpha = c.a;

}

Изображение ниже иллюстрирует результат применения системы
прокрутки UV-координат для создания простого эффекта течения
реки. В книге тяжело показать анимацию, поэтому придётся поверить
нам на слово, что картинка движется.

44 Глава 2. Создание эффектов с помощью текстур

Рис. 2.1. Течение воды

Как это работает…

Мы начали разработку системы прокрутки текстур с объявления пары
свойств, которые позволят пользователю шейдера увеличивать или
уменьшать скорость эффекта прокрутки. С помощью свойств поверх-
ностная функция получает значения типа fl oat из текстовых полей в
Инспекторе материала. Дополнительную информацию о свойствах
шейдеров вы можете найти в главе 1 «Диффузный шейдинг».

Таким образом, установив связь между переменными в коде и тек-
стовыми полями Инспектора материала, мы сможем использовать их
для изменения значений UV-координат в шейдере.

Сперва мы сохраняем значения UV-координат в отдельной пере-
менной scrolledUV. Эта переменная должна иметь тип fl oat2 или
fi xed2, так как значения UV-координат мы получаем из структуры
Input.

struct Input
{
 fl oat2 uv_MainTex;
};

45Анимирование спрайт-листов

После того как мы получим UV-координаты вершин модели, мы
сможем двигать их, используя переменные со скоростями прокрутки
по осям и встроенную переменную _Time. Эта встроенная перемен-
ная имеет тип fl oat4, и ее компоненты содержат следующие значения:
(t/20, t, t*2, t*3), где t – игровое время. Детальное описание встро-
енных переменных находится по адресу: http://docs.unity3d.com/
Documentation/Components/SL-BuiltinValues.html.

Переменная _Time возвращает возрастающие значения типа fl oat
на основе игрового времени Unity. Поэтому мы можем использовать
эти значения для того, чтобы сдвигать UV-координаты, масштабируя
время с помощью переменных скоростей прокрутки:

//Добавим переменные для хранения смещения по x и y
fi xed xScrollValue = _ScrollXSpeed * _Time.x;
fi xed yScrollValue = _ScrollYSpeed * _Time.x;

Рассчитав правильный сдвиг, мы прибавляем его к первоначаль-
ным UV-координатам. Для этого мы используем в следующей строч-
ке оператор +=. Мы хотим к первоначальным значениям UV-коорди-
нат прибавить значение смещения, а затем подставить его в функцию
tex2D() в качестве новых UV-координат текстуры. Таким образом,
получится эффект движущейся текстуры по поверхности объекта.
Но, как вы поняли, на самом деле мы всего лишь изменяем UV-коор-
динаты, изображая движение.

//Применяем итоговый сдвиг UV
scrolledUV += fi xed2(xScrollValue, yScrollValue);

//Применяем текстуру и цвет
half4 c = tex2D(_MainTex, scrolledUV);

Анимирование спрайт-листов
Навык анимации с помощью спрайт-листов может пригодиться где
угодно. Эту технику можно использовать для создания эффекта час-
тиц или эффекта мультфильма, нарисованного на страницах блокно-
та, но чаще всего эту технику можно увидеть в 2D-скроллерах (играх,
в которых экран постоянно прокручивается в одну сторону).

Спрайт-лист также называют атласом спрайтов (sprite atlas) или
просто последовательностью изображений (image sequence) . Это
большая текстура, в которой упаковано много маленьких изображе-
ний в определённом порядке.

46 Глава 2. Создание эффектов с помощью текстур

Рис. 2.2. Спрайт-лист с обезьяной

Когда вы переходите от одного маленького изображения из спрайт-
листа к другому, вы видите, как обезьяна двигается. Принцип тут та-
кой же, как и в движущихся изображениях, получаемых при перелис-
тывании страниц блокнота, или на киноплёнке. Эффект анимации
создаётся за счёт быстрого перемещения по изображениям из спрайт-
листа.

В коде этого рецепта будет использовано больше математики, чем
в предыдущих, но не волнуйтесь – мы пройдёмся по каждой новой
строчке кода и детально их все прокомментируем.

Подготовка

Для того чтобы мы могли протестировать наш шейдер, нам потребу-
ются тестовые изображения. Вы можете сделать спрайт-лист само-
стоятельно либо найти его в Интернете. Спрайт-лист не должен быть
сложным, в нём просто должна быть последовательность кадров, ко-
торые мы будем анимировать. Одно лишь важное условие – для на-
шего шейдера спрайт-лист должен быть горизонтальным и состоять
из одной строки изображений. Спрайт-лист, прилагаемый к книге,
можно найти по адресу: www.packtpub.com/support.

Рис. 2.3. Спрайт-лист с идущим человеком

Создайте новый материал и новый шейдер. Затем примените этот
материал к плоскости на сцене. После этого добавьте текстуру спрайт-
листа материалу.

47Анимирование спрайт-листов

Как это сделать…

Выполните следующие шаги:

1. В блоке свойств шейдера создайте три новых свойства. С по-
мощью них мы будем изменять параметры системы из Инс-
пектора материала, не прибегая к жёсткому заданию значений
в коде:

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}

 //Добавим следующие свойства
 _CellAmount ("Cell Amount", fl oat) = 0.0
 _Speed ("Speed", Range(0.01, 32)) = 12
}

2. Затем сохраните входные UV-координаты в отдельной пере-
менной, для того чтобы в дальнейшем мы смогли работать с их
значениями:

//Сохраним UV в переменной
fl oat2 spriteUV = IN.uv_MainTex;

3. После этого нам нужно будет узнать ширину каждой клетки.
В спрайт-листе UV-координаты находятся в диапазоне от 0 до
1, нам нужно вычислить процент от всей текстуры, который
занимает одна ячейка:

//Вычислим, сколько занимает одна клетка
fl oat cellUVPercentage = 1/_CellAmount;

4. Теперь нужно вычислить номер кадра в спрайт-листе, исполь-
зуя который, мы будем смещать UV-координаты:

//Вычислим номер кадра для сдвига UV
fl oat frame = fmod(_Time.y * _Speed, _CellAmount);
frame = fl oor(frame);

5. И наконец, мы сдвигаем x-координату UV спрайт-листа. Пос-
ле этих действий ваш шейдер, создающий эффект анимации,
должен быть готов.

//Изменим UV в соответствии с текущим кадром
fl oat xValue = (spriteUV.x + frame) * cellUVPercentage;
spriteUV = fl oat2(xValue, spriteUV.y);

На следующем изображении приводится результат смещения UV-
координат объекта в поверхностном шейдере. И вновь вам придётся
поверить нам на слово, что картинка движется.

48 Глава 2. Создание эффектов с помощью текстур

Рис. 2.4. Анимация походки человека

Как это работает…

Код начинается с того, что мы сохраняем значения UV-координат, по-
лучаемые из структуры Input, в новую переменную. На самом деле
это делать не обязательно, поскольку это скорее вопрос удобства, чем
жёсткое правило, – просто так код становится более читаемым. В дан-
ном случае мы назвали нашу новую переменную spriteUV, а тип ей
задали как fl oat2. Мы сделали так потому, что нам нужно хранить x и y
компоненты UV-координат модели в одной переменной.

Далее нам нужно узнать, какой процент ширины текстуры занима-
ет каждый кадр. Для этого мы просто делим 1 на количество клеток в
спрайт-листе. Полученное значение показывает, на сколько нам нуж-
но сдвинуть UV-координаты по оси x, чтобы попасть на следующую
клетку спрайт-листа.

Кроме этого, нам потребуются значения, которые бы увеличи-
вались со временем, но были бы целыми числами. Например, та-
кое значение может увеличиваться по закономерности 0, 1, 2, 3, 4
и т. д., вплоть до общего количества клеток в нашем спрайт-листе.
Для этого мы можем использовать встроенную в CGFX функцию
fmod ().

49Анимирование спрайт-листов

Таблица 2.1. Описание функции fmod

Функция Описание

fmod(x, y) Возвращает остаток от деления x на y с тем же знаком,
что и x. Если y равен 0, то возвращаемый результат зави-
сит от конкретной реализации функции

Если мы подставим значение x в функцию fmod() и поделим его
на значение y, то получим остаток от деления. Поэтому если мы
будем использовать переменную _Time в качестве x, а в качестве y
возьмём значение свойства _CellAmount, то в результате мы получим
возрастающие с течением времени значения, которые будут повто-
ряться по достижении значения _CellAmount. К этому значению мы
применяем функцию fl oor() , чтобы отбросить дробную часть. Та-
ким образом, мы получим номер текущего кадра в диапазоне от 0 до
_CellAmount - 1.

Таблица 2.2. Описание функции fl oor

Функция Описание

fl oor(x) Возвращает минимальное целое, не большее, чем x
(отбрасывает дробную часть)

Теперь нам нужно изменить первоначальные UV-координаты так,
чтобы отображался только текущий кадр анимации. Так как UV-ко-
ординаты находятся в диапазоне от 0 до 1, текущий кадр по x будет
начинаться в frame * cellUVPercentage. К этому значению мы при-
бавляем первоначальное значение UV-координаты x, отмасштабиро-
ванное из координат всей текстуры (0, 1) до размеров одного кадра
(0, cellUVPercentage). После этого всё, что остаётся сделать, – это
передать новые значения UV-координат текстуры в функцию tex2D.

Но это ещё не всё…

Вероятно, вы уже догадались, что можно использовать не только одно
направление сдвига. Точно так же, как мы использовали два направ-
ления в предыдущем рецепте прокрутки, мы можем использовать
анимированный 2D спрайт-лист. Для этого вам нужно будет учиты-
вать смещение не только по x, но и по y.

Принцип работы точно такой же, как и при горизонтальной про-
крутке, но так вы сможете обрабатывать большие спрайт-листы в не-
скольких направлениях. Таким образом, вы видите, что шейдеры мо-
гут выполнять весьма непростые задачи. Но чем сложнее шейдер, тем

50 Глава 2. Создание эффектов с помощью текстур

больше он использует шейдерных инструкций, что может привести к
снижению производительности приложения. Для борьбы с этим вы
можете вынести код с выбором сдвига в скрипт на C#, взаимодействую-
щий с шейдером, что позволит эти вычисления перенести на CPU и
делать их не для каждого пикселя, а всего лишь один раз. Когда речь
заходит об оптимизации, то всё упирается в «балансировку» вашего
приложения, однако никогда не помешает подумать о том, с чем вам
придется столкнуться в будущем, и учесть это при разработке при-
ложения. К этой книге прилагается код на C#, который демонстри-
рует, как с помощью скрипта, передающего данные шейдеру, можно
реализовать простую систему анимации спрайтов. Этот скрипт пере-
дает в шейдер номер кадра, вычисление которого он берёт на себя с
по мощью следующего кода.

void FixedUpdate ()
{
 timeValue = Mathf.Ceil(Time.time % 16);
 transform.renderer.material.setFloat("_TimeValue", timeValue);
}

Дополнительная информация

Если вы не горите желанием писать с нуля систему анимации
спрайтов, то можете заглянуть в Asset Store – там вы найдёте много
пакетов, решающих большую часть задач спрайтовой анимации.

Приведём список некоторых из них:

• SpriteManager (бесплатный):
 http://wiki.unity3d.com/index.php?title=SpriteManager

• 2D ToolKit ($65.00):
 http://www.unikronsoftware.com/2dtoolkit/

• Sprite Manager 2 ($150.00):
 http://anbsoft.com/middleware/sm2/

А если вы ищете хорошее приложение, которое помогло бы вам при
создании спрайтов, то следующий список как раз для вас:

• TimelineFX ($46.79):
 http://www.rigzsoft.co.uk/

• Anime Studio Pro ($199.99):
 http://anime.smithmicro.com/index.html

• Adobe Flash Professional ($699.00):
 http://www.adobe.com/products/flash.html

51Упаковка и блендинг текстур

Упаковка и блендинг текстур
Текстуры, помимо всего прочего, хорошо подходят для хранения мас-
сивов данных, содержащих не просто цвета пикселей, к которым мы
уже привыкли. В RGBA-каналах текстуры могут находиться разные
другие данные. Мы даже можем упаковать несколько изображений в
одну RGBA-текстуру и использовать каждый компонент R, G, B, A по
отдельности, извлекая их независимо друг от друга в коде шейдера.

Результат упаковки отдельных черно-белых изображений в одну
RGBA-текстуру представлен на следующем рисунке:

Рис. 2.5. Иллюстрация упаковки черно-белых
изображений в RGBA-текстуру

В чём преимущество такого подхода? Большая часть памяти, расхо-
дуемая вашим приложением, выделяется под хранение текстур. Поэто-
му для уменьшения размера приложения мы можем попробовать объ-
единить текстуры, используемые шейдером, в одну общую текстуру.

Любая черно-белая текстура может быть упакована в один из
RGBA-каналов другой текстуры. Хотя сначала такой приём может
показаться слегка странным, но этот рецепт продемонстрирует при-
менение упаковки текстур и их использование в шейдере.

Например, упакованные текстуры можно использовать, когда вы
хотите выполнить блендинг (англ. to blend – смешивать) нескольких
текстур на одной поверхности. Чаще всего эта техника используется в
ландшафтных шейдерах, когда одна текстура должна плавно перехо-
дить в другую с помощью некоей контролирующей текстуры или, как
в нашем случае, с помощью упакованной текстуры. Этой технике и
посвящён текущий рецепт, он покажет, как вы можете сделать основ-
ную часть ландшафтного шейдера, в котором используется блендинг
четырех текстур.

Подготовка

Давайте создадим новый шейдер и новый материал для него. Полити-
ка задания имён для файлов шейдера и материалов остаётся на ваше

 Канал R Канал G Канал B Альфа канал Результат
 упаковки

52 Глава 2. Создание эффектов с помощью текстур

усмотрение, поэтому постарайтесь придумывать такие имена, кото-
рые будет легко упорядочить и найти в дальнейшем.

После того как вы создадите шейдер и материал, создайте новую
сцену для тестирования нашего шейдера.

Вам также понадобится выбрать четыре текстуры, которые вы бу-
дете блендить. Текстуры могут быть любыми, но для хорошего ланд-
шафтного шейдера мы советуем использовать траву, грязь, грязь с
камнями и просто камни.

В этом рецепте мы будем использовать следующие цветовые текс-
туры, которые прилагаются к данной книге.

Рис. 2.6. Ландшафтные текстуры, прилагаемые к книге

Кроме того, нам потребуется блендинг-текстура, в которую мы
упакуем черно-белые изображения. Итого у нас будет четыре черно-
белых канала, которые мы можем использовать для управления раз-
мещением текстур на поверхности объекта.

Мы можем использовать сложные блендинг-текстуры для созда-
ния очень реалистичного распределения текстур поверхности земли
на модели рельефа, что демонстрирует следующее изображение:

Рис. 2.7. Упаковка сложных текстур реалистичного ландшафта

Как это сделать…

Давайте начнём знакомство с использованием упакованных текстур,
для этого выполним следующие шаги:

1. Добавим несколько свойств в блок свойств. Нам потребуются
пять объектов sampler2D, или же текстур, и два цвета.

 Канал R Канал G Канал B Альфа канал Результат
 упаковки

53Упаковка и блендинг текстур

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)

 //Добавьте эти свойства, чтобы мы могли задавать текстуры
 _ColorA ("Terrain Color A", Color) = (1,1,1,1)
 _ColorB ("Terrain Color B", Color) = (1,1,1,1)
 _RTexture ("Red Channel Texture", 2D) = "" {}
 _GTexture ("Green Channel Texture", 2D) = "" {}
 _BTexture ("Blue Channel Texture", 2D) = "" {}
 _ATexture ("Alpha Channel Texture", 2D) = "" {}
 _BlendTex ("Blend Texture", 2D) = "" {}
}

2. После этого нам нужно будет объявить переменные, с помощью
которых мы получим доступ к данным в блоке свойств.

CGPROGRAM
#pragma surface surf Lambert

fl oat4 _MainTint;
fl oat4 _ColorA;
fl oat4 _ColorB;
sampler2D _RTexture;
sampler2D _GTexture;
sampler2D _BTexture;
sampler2D _ATexture;
sampler2D _BlendTex;

3. Итак, теперь наши свойства текстур готовы, и мы их передаём
в поверхностную функцию. Нам потребуется изменить струк-
туру Input, чтобы позволить пользователю менять параметры
тайлинга для отдельных текстур. Так мы сможем использовать
параметры tiling и offset для каждой текстуры:

struct Input
{
 fl oat2 uv_RTexture;
 fl oat2 uv_GTexture;
 fl oat2 uv_BTexture;
 fl oat2 uv_ATexture;
 fl oat2 uv_BlendTex;
};

4. В функции surf мы сохраним информацию о текстурах в со-
ответствующие переменные, чтобы нам было легче работать с
данными:

//Получаем данные из блендинг-текстуры.
//Здесь мы используем fl oat4, потому что данные хранятся
//в R,G,B и A или X,Y,Z и W каналах.

54 Глава 2. Создание эффектов с помощью текстур

fl oat4 blendData = tex2D(_BlendTex, In.uv_BlendTex);

//Получаем цвета из текстур, которые мы хотим блендить
fl oat4 rTexData = tex2D(_RTexture, IN.uv_RTexture);
fl oat4 gTexData = tex2D(_GTexture, IN.uv_GTexture);
fl oat4 bTexData = tex2D(_BTexture, IN.uv_BTexture);
fl oat4 aTexData = tex2D(_ATexture, IN.uv_ATexture);

5. Давайте объединим наши текстуры с помощью функции
lerp() . Она принимает два цвета и производит интерполяцию
между ними, используя число в диапазоне от 0 до 1, передавае-
мое в последнем аргументе:

//Теперь нужно объединить все цвета в один
fl oat4 fi nalColor;
fi nalColor = lerp(rTexData, gTexData, blendData.g);
fi nalColor = lerp(fi nalColor, bTexData, blendData.b);
fi nalColor = lerp(fi nalColor, aTexData, blendData.a);
fi nalColor.a = 1.0;

6. И наконец, мы перемножим смешанные цвета текстур с цвета-
ми поверхности, для интерполяции между которыми исполь-
зуется красный канал блендинг-текстуры.

//Добавим наши цвета ландшафта
fl oat4 terrainLayers = lerp(_ColorA, _ColorB, blendData.r);
fi nalColor *= terrainLayers;
fi nalColor = saturate(fi nalColor);

o.Albedo = fi nalColor.rgb * _MainTint.rgb;
o.Alpha = fi nalColor.a;

Результат объединения четырёх ландшафтных текстур и примене-
ния техники terrain tinting представлен на следующем изображении.

Рис. 2.8. Ландшафт, получаемый в результате
применения техники terrain tinting

55Упаковка и блендинг текстур

Как это работает…

Вы могли удивиться количеству кода, но концепция блендинга на са-
мом деле весьма проста. Для этой техники мы используем встроенную
функцию lerp() из стандартной библиотеки CGFX. Эта функция
позволяет нам выбрать значение между первым и вторым аргумен-
тами с помощью третьего аргумента, используемого как показатель
смешивания.

Таблица 2.3. Описание функции lerp

Функция Описание

lerp(a, b, f) Выполняет линейную интерполяцию (1 – f) * a + b * f,
где a и b одного типа (векторного или скалярного).
f может быть скалярным, или векторным – того же типа
что a и b

Поэтому, к примеру, если нам потребуется найти среднее между
1 и 2, мы можем подставить в функцию lerp 0,5 в качестве третьего
аргумента – в результате мы получим 1,5. Нам это отлично подходит,
поскольку значения отдельных каналов RGBA-текстур являются зна-
чениями с плавающей точкой, обычно в диапазоне от 0 до 1.

В шейдере мы просто берем один из каналов из нашей блендинг-тек-
стуры и используем его как параметр функции lerp для управления
цветом каждого пикселя. К примеру, за основу мы возьмём текстуру с
травой и текстуру с грязью, использовать будем красный канал нашей
блендинг-текстуры – всё это мы подадим на вход функции lerp(). В
результате мы получим корректно смешанный цвет для каждого пик-
селя поверхности. Более наглядная демонстрация результатов работы
функции lerp приводится на следующем изображении.

Рис. 2.9. Идея работы функции lerp

В коде шейдера для создания финальной текстуры используются
все 4 канала блендинг-текстуры плюс 4 отдельные RGBA-текстуры.
Эта итоговая текстура и становится нашим цветом, который мы мо-
жем перемножить с диффузным освещением.

Результат

56 Глава 2. Создание эффектов с помощью текстур

Дополнительная информация

Рельеф для этого рецепта был сделан с помощью программы World
Machine . Используя эту программу, вы можете с лёгкостью создавать
очень сложные ландшафтные блендинг-текстуры и модели.

• World Machine ($189.00):
 http://www.world-machine.com/

Использование карты нормалей
Одна из наиболее распространённых на сегодняшний день техник,
применяемых в игровой индустрии, – это использование карт норма-
лей . С её помощью мы можем создать видимость детализированной
геометрии на малодетализированных моделях. Идея техники заклю-
чается в том, что вместо вычисления освещения для каждой вершины
мы используем нормаль к поверхности в каждом пикселе, которые
закодированы в пикселях карты нормалей, в результате чего у нас по-
лучается гораздо более детальная картина распределения света при
сохранении небольшого числа полигонов в модели.

В 3D-графике normal mapping, также известная как «Dot3
bump mapping », – техника, используемая для имитации осве-
щения впадин и выступов, является вариантом реализации
Bump mapping . Техника применяется для добавления деталей
без добавления полигонов. Применение этой техники приводит
к эффекту существенного улучшения внешнего вида и деталей
низкополигональных моделей за счёт генерации карты норма-
лей из высокополигональной модели, или карты высот. Карты
нормалей чаще всего хранятся как обычные RGB-изображения,
в которых RGB-компоненты соответствуют координатам
X, Y, Z (в указанном порядке) нормалей поверхности.

Предыдущий фрагмент текста является цитатой из Википедии
(http://en.wikipedia.org/wiki/Normal_mapping).

Сегодня существует много способов создания карт нормалей. Не-
которые приложения, такие как CrazyBump (http://www.crazybump.
com/) и N2DO (http://quixel.se/ndo/), позволяют конвертировать
2D-данные в карты нормалей. Другие приложения, такие как Zbrush
(http://www.pixologic.com/) и Mudbox (http://usa.autodesk.com), мо-
гут создавать карту нормалей на основе 3D-модели. Сам процесс со-

57Использование карты нормалей

здания карт нормалей определённо выходит за рамки этой книги, но
ссылки, приводимые выше, помогут вам разобраться с этим.

С помощью функции UnpackNormal() Unity позволяет легко до-
бавить в шейдер поддержку карт нормалей, не выходя за синтаксис
поверхностных шейдеров. Давайте посмотрим, как это делается.

Подготовка

Создайте новый материал и шейдер, примените их к новому объекту
на сцене. В этой простой сцене мы сможем сосредоточиться только на
технике normal mapping .

Для этого рецепта вам потребуется карта нормалей, однако в про-
екте Unity, поставляемом вместе с этой книгой, есть уже готовая текс-
тура.

Образец карты нормалей, поставляемый с этой книгой, показан на
следующем изображении.

Рис. 2.10. Образец карты нормалей

Как это сделать…

1. Добавим в блок свойств цветовой тон и текстуру:

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _NormalTex ("Normal Map", 2D) = "bump" {}
}

2. Свяжите свойства с кодом Cg, добавив определения перемен-
ных после инструкции CGPROGRAM:

58 Глава 2. Создание эффектов с помощью текстур

CGPROGRAM
#pragma surface surf Lambert

//Свяжем свойства с переменными
sampler2D _NormalTex;
fl oat4 _MainTint;

3. Теперь нужно отредактировать структуру Input, задав в ней
правильное имя переменной нашей текстуры, чтобы мы смог-
ли использовать UV-координаты модели для текстуры карты
нормалей.

//Убедитесь, что в структуре передаются UV
struct Input
{
 fl oat2 uv_NormalTex;
};

4. Заключительным этапом мы извлекаем информацию о нор-
малях из текстуры карты нормалей с помощью встроенной
функции UnpackNormal(). После этого потребуется только
применить эти нормали к результатам работы поверхностного
шейдера:

//Получаем направления нормалей из текстуры карты нормалей
//с помощью функции UnpackNormal().
fl oat3 normalMap = UnpackNormal(tex2D(_NormalTex,
IN.uv_NormalTex));

//Применяем новые нормали к модели освещения
o.Normal = normalMap.rgb;

Следующее изображение демонстрирует результаты работы наше-
го шейдера:

Рис. 2.11. Иллюстрация работы шейдера
без и с картой нормалей

Результат применения

карты нормалей

Без применения карты

нормалей

59Использование карты нормалей

Как это работает…

Математика, используемая в normal mapping, выходит за рамки дан-
ной главы, тем более что Unity всё равно всё уже сделала за нас. Нам
доступны все необходимые функции для использования карт норма-
лей в шейдерах, так что нам самим не придётся писать один и тот же
код снова и снова. Это ещё одна причина, по которой использование
поверхностных шейдеров, – это по-настоящему эффективный способ
написания шейдеров.

Если вы загляните в файл UnityCG.cginc , который можно найти
в папке Data в директории, куда вы установили Unity, то вы найдёте
определения функции UnpackNormal(). Чтобы получить корректные
данные для функции освещения каждого пикселя, вам нужно лишь
использовать эту функцию внутри вашего поверхностного шейде-
ра – Unity возьмет карту нормалей и обработает её за вас. Экономия
времени просто колоссальная!

После того как вы распакуете карту нормалей с помощью функ-
ции UnpackNormal(), результат нужно будет передать в структуру
SurfaceOutput, чтобы его можно было использовать в функции освеще-
ния. Делается это с помощью строки кода o.Normal = normalMap.rgb;.

Но это ещё не всё…

Мы можем добавить параметры для настройки карты нормалей шей-
дера, с помощью которых пользователь сможет регулировать её ин-
тенсивность. Для этого нужно всего лишь модифицировать x и y ком-
поненты вектора нормали.

1. Добавьте ещё одно свойство в блок свойств и назовите его
_NormalIntensity, так, как показано в следующем фрагменте
кода:

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _NormalTex ("Normal Map", 2D) = "bump" {}
 _NormalIntensity ("Normal Map Intensity", Range(0,2)) = 1
}

2. Не забудьте объявить соответствующие переменные.

//Свяжем свойства с кодом
sampler2D _NormalTex;
fl oat4 _MainTint;
fl oat _NormalIntensity;

60 Глава 2. Создание эффектов с помощью текстур

3. Умножьте x и y компоненты распакованной карты нормалей на
этот новый параметр и присвойте получившееся значение пе-
ременной normalMap. Теперь пользователь сможет настраи вать
интенсивность карты нормалей в Инспекторе материала:

//Получим данные нормалей из текстуры карты нормалей
//с помощью функции UnpackNormal().
fl oat3 normalMap = UnpackNormal(tex2D(_NormalTex,
IN.uv_NormalTex));
normalMap = fl oat3(normalMap.x * _NormalIntensity,
normalMap.y * _NormalIntensity, normalMap.z);

Следующее изображение демонстрирует результат модификации
карты нормалей нашими скалярными значениями:

Рис. 2.12. Иллюстрация работы шейдера с различной
интенсивностью карты нормалей

Создание процедурных текстур

в редакторе Unity
Бывают случаи, когда вам хочется динамически создавать текстуры и
модифицировать их пиксели в рантайме для достижения различных
эффектов. Обычно такие эффекты называют процедурными текстур-
ными эффектами. Вместо того чтобы вручную создавать новые текс-
туры в графическом редакторе, вы можете программно сгенерировать
двумерный массив пикселей и добавить их в новую текстуру. После
этого текстуру нужно передать в шейдер, чтобы он мог использовать
её для вычислений.

Эта техника может вам пригодиться, если вы захотите нарисовать
динамически созданную текстуру на уже существующей текстуре
при взаимодействии игрока с окружающим игровым миром. С её по-
мощью можно реализовать эффект следов от пуль на стене или созда-
вать процедурные фигуры, которые потом использовать в шейдере.

Интенсивность нормалей: 0.1 Интенсивность нормалей: 1 Интенсивность нормалей: 3

61Создание процедурных текстур в редакторе Unity

Существует много ситуаций, в которых вам пригодятся создание но-
вой текстуры, заполнение её неким процедурным паттерном и после-
дующая обработка её в вашем шейдере.

Если мы хотим динамически генерировать текстуры, нам не обой-
тись без специального скрипта, который будет это делать. Давайте
посмотрим, как написать такой скрипт, который будет передавать в
поверхностный шейдер динамически создаваемую текстуру.

Подготовка

Для того чтобы начать работать с этим рецептом, выполните следую-
щие действия:

1. Создайте новый C# скрипт в вашем проекте и назовите его
ProceduralTexture.

2. Создайте на сцене пустой GameObject и убедитесь, что он на-
ходится в (0, 0, 0), затем назначьте ему скрипт ProceduralTex-
ture.cs.

3. Далее создайте новый шейдер, новый материал и новый объ-
ект, к которому мы применим этот материал. Не забудьте за-
дать имя шейдеру и материалу, чтобы их впоследствии можно
было легко найти.

4. Сделав всё это, мы готовы написать код, который будет
гене рировать круговой градиент, рисовать его на текстуре и
передавать эту текстуру в шейдер. К концу этого рецепта вы
сделаете текстуру, которая будет выглядеть как это изобра-
жение.

Рис. 2.13. Текстура, которая у вас
должна получиться к концу рецепта

62 Глава 2. Создание эффектов с помощью текстур

Как это сделать…

1. Добавьте переменную для изменения высоты и ширины вашей
текстуры, а также переменную типа Texture2D для хранения
сгенерированной текстуры. Кроме этого, нам потребуется не-
сколько приватных переменных для хранения данных во вре-
мя выполнения скрипта.

#region Public Variables
//С помощью этих переменных мы сможем изменять размер
//текстуры, а также видеть её в редакторе
public int widthHeight = 512;
public Texture2D generatedTexture;
#endregion

#region Private Variables
//Внутренние переменные скрипта
private Material currentMaterial;
private Vector2 centerPosition;
#endregion

2. В функции Start() нашего скрипта первым делом нам
нужно проверить, есть ли материал у объекта, к которо-
му относится скрипт. Если есть, то мы вызовем функцию
GenerateGradient(), которую мы напишем далее , а возвраща-
емое ей значение сохраним в переменную generatedTexture
типа Texture2D:

void Start ()
{
 //Проверяем, есть ли на этом объекте материал
 if (!currentMaterial)
 {
 currentMaterial = renderer.sharedMaterial;
 if (!currentMaterial)
 {
 Debug.LogWarning("Cannot fi nd a material on: "
 + transform.name);
 }
 }

 //Генерируем процедурную текстуру
 if (currentMaterial)
 {
 //Генерируем текстуру градиента
 centerPosition = new Vector2(0.5f, 0.5f);
 generatedTexture = GenerateGradient();

63

 //Присваиваем её материалу текущего объекта
 currentMaterial.SetTexture("_MainTex", generatedTexture);
 }
}

3. После этого нам надо объявить функцию, которая будет гене-
рировать картинку:

private Texture2D GenerateGradient()
{

}

4. Теперь добавим в функцию алгоритм, генерирующий круговой
градиент для нашей текстуры. Не волнуйтесь, если на данный
момент вам что-то не понятно. Мы разберём каждую строку
кода в следующей секции этого рецепта.

private Texture2D GenerateGradient()
{
 //Создадим новую Texture2D
 Texture2D proceduralTexture = new Texture2D(widthHeight,
widthHeight);

 //Узнаём центр текстуры
 Vector2 centerPixelPosition = centerPosition * widthHeight;

 //Пройдёмся по всем пикселям, определим их расстояние от
 //центра и на основе этого присвоим им значения.
 for (int x = 0; x < widthHeight; x++)
 {
 for (int y = 0; y < widthHeight; y++)
 {
 //Вычисляем расстояние от центра текстуры
 //до выбранного пикселя
 Vector2 currentPosition = new Vector2(x, y);
 fl oat pixelDistance = Vector2.Distance
 (currentPosition, centerPixelPosition)/
 (widthHeight*0.5f);

 //Инвертируем значения и ограничиваем их
 //диапазоном [0, 1]
 pixelDistance = Mathf.Abs(1 - Mathf.Clamp(
 pixelDistance, 0f, 1f));

 //Создаём новый цвет пикселя
 Color pixelColor = new Color(pixelDistance,
 pixelDistance, pixelDistance, 1.0f);
 proceduralTexture.SetPixel(x, y, pixelColor);
 }
 }

Создание процедурных текстур в редакторе Unity

64 Глава 2. Создание эффектов с помощью текстур

 //И наконец, записываем все изменения в текстуру
 proceduralTexture.Apply();

 //Возврашаем текстуру в основную программу.
 return proceduralTexture;
}

Как это работает…

Скрипт начинает свою работу с того, что проверяет, есть ли матери-
ал у объекта на сцене, которому мы пытаемся назначить текстуру.
Если да, то мы присваиваем переменной currentMaterial значение
renderer.sharedMaterial, то есть наш материал.

После этого мы смотрим на нашу следующую инструкцию if() и
проверяем, корректен ли материал. Если да, то мы вызываем функ-
цию GenerateGradient(), которая вернёт нам экземпляр класса
Texture2D.

Когда исполнение программы доходит до функции
GenerateGradient(), то сначала с помощью конструктора
Texture2D(), в который передаётся наша переменная widthHeight,
создаётся новая текстура. В результате мы получаем пустую текстуру,
в которой в квадрате со стороной widthHeight можно устанавливать
цвета пикселей.

В новой текстуре мы рассчитываем положение центрального пик-
селя и сохраняем его в переменной centerPixelPosition. После чего
мы добавляем два цикла, которые просто проходят по всем пикселям
в нашей пустой текстуре. Если вам не знаком цикл for в языке C#, то
вы можете найти информацию о нём на сайте http://msdn.microsoft.
com/en-us/library/ch45axte.aspx.

Далее для каждого пикселя в координате Vector2(x,y) мы из-
меряем расстояние от центрального пикселя с помощью функции
Vector2.Distance(). Эта функция возвращает число с плавающей
точкой, например если на некоторой итерации циклов были выбраны
координаты пикселя Vector2(32,32), то мы получим расстояние от
центра, равное 316,78, при условии что мы создали текстуру размером
512×512. Это число соответствует расстоянию от центра для пикселя
с координатами (32, 32).

После этого нам потребуется нормализовать расстояние до центра
так, чтобы оно было в диапазоне от 0,0 до 1,0, чтобы его можно было
использовать в качестве цвета (компоненты цвета Unity хранит в диа-
пазоне от 0 до 1). Всё, что нам нужно сделать для этой нормализа-
ции, – это поделить расстояние на половину ширины текстуры (или

65

высоты, так как она квадратная). В данном случае мы делим расстоя-
ние на 256, поскольку именно это число является половиной от 512.
Поэтому для расстояния 316,78, полученного в предыдущем примере,
после нормализации мы получим значение 1,23.

Теперь же нам нужно убедиться, что у нас нет значений, больших
единицы или меньших нуля, – поэтому мы используем функцию
Mathf.Clamp() , которая позволяет нам ограничить их пределами,
передаваемыми в функцию в качестве аргументов. Чтобы получить
нормализованные значения, мы передаём в эту функцию 0 и 1.

И наконец, мы инвертируем полученные значения, вычитая их
из 1, а результат присваиваем всем трем каналам новой цветовой пе-
ременной. Взгляните на следующее изображение.

Рис. 2.14. Иллюстрация диапазонов значений
пикселей – от центра и до радиуса

Но это ещё не всё…

Теперь, когда вы увидели, как можно генерировать значения пиксе-
лей с помощью всего лишь небольшой порции векторной математи-
ки, подумайте, какие еще данные можно сгенерировать и хранить в
текстурах.

1. Следующий код генерирует картинку с кольцами вокруг цент-
ра текстуры:

//Получим расстояние от центра текстуры
//до нашего выбранного пикселя.
Vector2 currentPosition = new Vector2(x,y);
fl oat pixelDistance = Vector2.Distance(currentPosition,
centerPixelPosition)/(widthHeight*0.5f);
pixelDistance = Mathf.Abs(1-Mathf.Clamp(pixelDistance, 0f, 1f));
pixelDistance = (Mathf.Sin(pixelDistance * 30.0f) *
pixelDistance);

Создание процедурных текстур в редакторе Unity

ЦентрЦентр

0 0 ← ← Значение Значение → 1→ 1 пикселя пикселя

66 Глава 2. Создание эффектов с помощью текстур

2. Далее приводится код для вычисления скалярного произве-
дения направления от центра изображения к пикселю и осей
координат:

//Можно делать что-то более интересное с векторами,
//для того чтобы рассчитать другие данные по модели,
//UV или цветам пикселей.
Vector2 pixelDirection = centerPixelPosition - currentPosition;
pixelDirection.Normalize();
fl oat rightDirection = Vector2.Dot(pixelDirection, Vector2.right);
fl oat leftDirection = Vector2.Dot(pixelDirection, -Vector2.right);
fl oat upDirection = Vector2.Dot(pixelDirection, Vector2.up);

3. А этот код используются для вычисления угла между направ-
лением от центра изображения к пикселю и осями координат.

//Можно делать что-то более интересное с векторами,
//для того чтобы рассчитать другие данные по модели,
//UV или цветам пикселей.
Vector2 pixelDirection = centerPixelPosition - currentPosition;
pixelDirection.Normalize();
fl oat rightDirection = Vector2.Angle(pixelDirection, Vector2.right)/360;
fl oat leftDirection = Vector2.Angle(pixelDirection, -Vector2.right)/360;
fl oat upDirection = Vector2.Angle(pixelDirection, Vector2.up)/360;

Результаты, полученные при обработке пикселей с помощью вы-
числений различных векторов и углов, представлены на следующем
изображении.

Рис. 2.15. Иллюстрация различных вычислений пикселей

Эффект уровней Photoshop
Если вам когда-либо доводилось заниматься редактированием изоб-
ражений – ретушировать семейные фотографии, делать игровые
текстуры или рисовать картину на компьютере, мы уверены, что вы
понимаете, насколько полезен инструмент «уровни» для глобальной
настройки всего изображения. Такой же Photoshop-подобный эффект
можно реализовать и в шейдере.

Синус расстояния пикселя от центра Скалярное произведение Скалярное произведение
направления пикселянаправления пикселя

Угол направления пикселяУгол направления пикселя

67

Все разнообразные инструменты редактирования изображений и
режимы блендинга, которые можно найти в Photoshop, описывают-
ся набором математических операций. Потому что, для того чтобы
получить финальный цвет изображения, мы умножаем, складываем,
вычитаем или сравниваем одни пиксели с другими пикселями.

И хотя мы могли бы написать целую книгу, посвященную рецептам
различной математики для Photoshop-эффектов, в этой мы сфокуси-
руемся лишь на уровнях. Более тонкие режимы блендинга мы рас-
смотрим в главе 10 «Создание экранных эффектов в Unity с помощью
рендер-текстур».

Подготовка

Для работы с этим рецептом вам нужно будет сделать новый шей-
дер и новый материал, а также назначить его объекту на новой сцене
Unity. Кроме того, вам понадобится исходная текстура, на которой
можно будет протестировать наш код по работе с уровнями. Вы може-
те использовать материалы, поставляемые с этой книгой.

Как это сделать…

1. В новый шейдер добавьте следующие свойства:

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}

 //Входные значения уровней
 _inBlack ("Input Black", Range(0, 255)) = 0
 _inGamma ("Input Gamma", Range(0, 2)) = 1.61
 _inWhite ("Input White", Range(0, 255)) = 255

 //Выходные значения уровней
 _outWhite ("Output White", Range(0,255)) = 255
 _outBlack ("Output Black", Range(0,255)) = 0
}

2. Не забудьте также объявить эти свойства как переменные в
блоке CGPROGRAM:

//Добавим переменные
fl oat _inBlack;
fl oat _inGamma;
fl oat _inWhite;
fl oat _outWhite;
fl oat _outBlack;

Эффект уровней Photoshop

68 Глава 2. Создание эффектов с помощью текстур

3. Создайте новую переменную для хранения только красного
канала нашей текущей текстуры _MainTex:

//Переменная для хранения красного канала текстуры
fl oat outRPixel;

4. Поскольку данные, предоставляемые нам функцией tex2D(),
нормализованы в диапазоне от 0 до 1, нам потребуется привес-
ти их к диапазону от 0 до 255.

//Преобразуем диапазон от 0 до 1 к диапазону от 0 до 255
outRPixel = (c.r * 255.0);

5. Далее мы вычитаем из этой переменной значение параметра
Input Black, что будет делать все пиксели более темными при
перемещении слайдера к значению 255.

//Вычтем значение чёрного в параметре _inBlack
outRPixel = max(0, outRPixel - _inBlack);

6. Затем сделаем все пиксели более белыми при перемещении
слайдера Input White к 0, а результат возведём в степень вход-
ной гаммы.

//Увеличим значение белого для каждого пикселя
//с помощью _inWhite
outRPixel = saturate(pow(outRPixel / (_inWhite - _inBlack), _inGamma));

7. Перемножим новые значения пикселей с разницей выходного
белого и выходного чёрного, а после вновь нормализуем значе-
ния пикселей к диапазону от 0 до 1:

//Изменим итоговую чёрную точку и белую точку
//и приведём диапазон от 0 до 255 к диапазону от 0 до 1.
outRPixel = (outRPixel * (_outWhite - _outBlack) + _outBlack)/255.0;

Следующее изображение демонстрирует итоговый эффект работы
над уровнями нашей текстуры в шейдере.

Рис. 2.16. Иллюстрация применения
обработки с помощью уровней

Оригинальное изображениеОригинальное изображение Изображение после применения Изображение после применения

фильтрафильтра

69

Как это работает…

Функция surf начинает свою работу с того что, сохраняет цвет текс-
туры в переменную c. На этом этапе мы будем работать с отдельными
каналами и менять значения пикселей в них. Для этого мы создаём
новую переменную, называем её outRPixel и присваиваем ей значе-
ние c.r * 255. Так мы преобразуем значения из диапазона от 0 до 1
к диапазону от 0 до 255.

После этого из текущего значения пикселя мы вычитаем значение
свойства _inBlack, для того чтобы сделать цвет пикселя более тём-
ным. При этом мы контролируем, что после вычитания значение пик-
селя не станет отрицательным с помощью функции max(), которая
возвращает нам максимальное из двух значений.

Таблица 2.4. Описание функции max

Функция Описание

max(a, b) Возвращает максимум a и b

Теперь мы поделим наше изменённое значение пикселей на зна-
чение новой точки белого. Узнать значение новой точки белого мы
можем, если вычтем значение _inBlack из значения _inWhite. Это
приведёт к тому, что значение пикселя увеличится, то есть он станет
ярче. Увеличенное значение пикселя возводится в степень _inGamma,
что по-существу позволяет перемещать значение серединной точки
цвета текущего пикселя.

И наконец, ещё раз модифицируем пиксель с помощью _outWhite
и _outBlack, для того чтобы у вас была возможность итогового гло-
бального контроля за минимальным и максимальным значениями
пикселя. После этого результат делится на 255, чтобы нормализовать
его к шкале от 0 до 1.

Это значение мы присваиваем o.Albedo для вычисления итогово-
го диффузного цвета. По мере того как вы будете экспериментиро-
вать со слайдерами на закладке Инспектора материала, вы заметите,
что теперь у вас появилась возможность детально контролировать
контрастность и яркость текстуры.

Но это ещё не всё…

Мы уверены, что вы заметили в шейдере много дублирующегося
кода. Мы можем создать собственную функцию внутри шейдера, что-
бы привести код в порядок. Так мы будем содержать наш шейдерный

Эффект уровней Photoshop

70 Глава 2. Создание эффектов с помощью текстур

код в чистоте, а с точки зрения разработчика он станет более эффек-
тивным. Взгляните на следующую функцию.

fl oat GetPixelLevel(fl oat pixelColor)
{
 fl oat pixelResult;
 pixelResult = (pixelColor * 255.0);
 pixelResult = max(0, pixelResult - _inBlack);
 pixelResult = saturate(pow(pixelResult / (_inWhite -
 _inBlack), _inGamma));
 pixelResult = (pixelResult * (_outWhite - _outBlack) +
 _outBlack)/255.0;
 return pixelResult;
}

Используя эту новую функцию внутри нашего шейдера для обра-
ботки итогового уровня пикселей, мы сократили функцию surf до
трёх строчек кода по всем каналам вместо прежних 15. Так код ста-
новится гораздо чище, и теперь, когда понадобится, мы можем делать
изменения всего лишь в одном месте вместо трёх.

Дополнительная информация

Дополнительная информация по эффекту «уровней» находится
на сайте GPU Gems (http://http.developer.nvidia.com/GPUGems/
gpugems_ch22.html).

ГЛАВА 3
Пусть ваши игры засияют

отражённым светом

Вы наверняка играли в такие игры, как Gears of War или Call of Duty,
реалистичность графики в которых в некоторые моменты поражает.
Как же они этого добиваются? Конечно же тут много составляющих,
но одной из них, несомненно, является использование различных ва-
риантов глянцевых материалов. В этой главе раскрываются основы
построения визуальных эффектов, основанных на бликах, и демонст-
рируются некоторые приёмы, используемые в шейдерах гигантов ин-
дустрии компьютерных игр. В этой главе вы узнаете о:

 использовании встроенной в Unity Specular модели освещения;
 создании модели освещения Phong;
 создании модели освещения BlinnPhong;
 маскировании глянцевых бликов с помощью текстур;
 разнице между металлическими и мягкими бликами;
 создании анизотропных бликов.

Введение
Эффекты глянцевой поверхности ещё называются эффектами, зави-
сящими от направления взгляда. Такое название связано с тем, что
для достижения реалистичного визуального эффекта вам потребует-
ся учитывать направление камеры или пользователя, который смот-
рит на поверхность объекта. Также для создания правдоподобных
бликов важен ещё один параметр – направление источника света.
Комбинируя эти два вектора, мы получаем блик – яркий участок на
поверхности объекта посредине между ними. Это направление назы-
вается полувектор, и к нему мы ещё вернёмся. Кроме этого, мы узна-
ем, как настраивать блики для имитации металлической поверхности
и поверхности ткани.

72 Глава 3. Пусть ваши игры засияют отражённым светом

Использование встроенной

в Unity Specular модели
В Unity уже встроена модель Specular освещения, которая называется
BlinnPhong. Это одна из самых простых, но в то же время эффектив-
ных, моделей Specular освещения, которая используется в играх и по
сей день. Мы решили взять её за основу и надстраивать на ней наши
дополнительные эффекты. В руководстве по Unity вы можете найти
примеры использования этой модели освещения, но мы копнём чуть
глубже и рассмотрим, как вычисляются её параметры и почему эта
модель работает именно так. Этими знаниями мы заложим хороший
фундамент, от которого мы сможем отталкиваться в следующих ре-
цептах этой главы.

Подготовка

Для начала выполните следующие действия:

1. Создайте новый шейдер.
2. Создайте новый материал, назовите его и присвойте ему толь-

ко что созданный шейдер.
3. Создайте плоскость земли и сферу. Поместите её примерно в

центр сцены.
4. А теперь давайте добавим направленный источник света, что-

бы осветить наш объект.

После того как вы выполнили эти действия, ваша сцена должна вы-
глядеть примерно как на следующем скриншоте.

Рис. 3.1. Новая сцена

73Использование встроенной в Unity Specular модели

Как это сделать...

1. Начните с добавления следующих свойств в блок свойств шей-
дера:

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _SpecColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0,1)) = 0.5
}

2. Убедитесь, что вы добавили переменные в блок CGPROGRAM,
чтобы мы смогли получить доступ к новым свойствам. Об-
ратите внимание, что нам не нужно объявлять свойство
_SpecColor как переменную, потому что Unity уже создала
для нас эту переменную во встроенной модели Specular осве-
щения. Всё, что нам нужно сделать, – это объявить её в бло-
ке свойств, и тогда мы сможем передавать через неё данные в
функцию surf().

sampler2D _MainTex;
fl oat _SpecPower;
fl oat4 _MainTint;

3. Теперь шейдеру нужно указать, какую функцию освещения ему
следует использовать для нашей сферы. Вам уже доводилось
видеть модель освещения Lambert, и вы даже тренировались
в написании собственной модели, поэтому теперь давайте по-
смотрим на модель BlinnPhong. Добавьте модель BlinnPhong в
директиву #pragma следующим образом:

CGPROGRAM
#pragma surface surf BlinnPhong

4. После этого измените функцию surf() так, чтобы она выгля-
дела следующим образом:

void surf (Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
 o.Specular = _SpecPower;
 o.Gloss = 1.0;
 o.Albedo = c.rgb;
 o.Alpha = c.a;
}
ENDCG

74 Глава 3. Пусть ваши игры засияют отражённым светом

Как это работает...

Этот небольшой Specular шейдер – хорошая стартовая точка для про-
тотипирования других шейдеров, потому что на этом этапе вы можете
написать большую часть функционала шейдера, не заботясь о функ-
циях освещения.

Unity предоставляет нам модель освещения, в которой расчёт
бликов на поверхности уже реализован. Если вы заглянете в файл
Lighting.cginc, который находится в каталоге, куда вы установили
Unity, в подпапке Data, то вы увидите, что в Unity уже есть модели
освещения Lambert и BlinnPhong. После того как вы укажете в секции
#pragma surface surf BlinnPhong и скомпилируете ваш шейдер,
он начнёт использовать код световой функции BlinnPhong из фай-
ла Lighting.cginc, и нам не придётся дублировать этот код в своём
шейдере.

Если вы сделаете всё без ошибок и ваш шейдер скомпилируется, то
вы увидите результат, похожий на следующий скриншот:

Рис. 3.2. Результат работы шейдера с моделью
освещения BlinnPhong

Создаём модель освещения

Phong
Модель Specular освещения Phong является наиболее простой и не-
требовательной к производительности среди Specular моделей осве-
щения. Её идея заключается в вычислении направления отражённого
света от поверхности с учётом направления взгляда пользователя. Эта

75Создаём модель освещения Phong

модель очень распространена и используется повсеместно, начиная с
игр и заканчивая фильмами. И хотя эффект от неё не самый реалис-
тичный в плане точности моделирования отражения, он является за-
мечательным приближением, хорошо подходящим для большинства
ситуаций. Более того, если ваш объект находится далеко от камеры, а
высокой точности бликов не требуется, то эта модель отлично подхо-
дит для реализации Specular освещения в вашем шейдере.

В этом рецепте мы остановимся на том, как написать повертексное
освещение в данной модели, а далее с помощью добавления новых
параметров в структуру Input мы реализуем её попиксельный вари-
ант. Мы отдельно остановимся на их различиях и обсудим, для каких
ситуаций какой из них лучше подходит.

Подготовка

Выполните следующие действия:

1. Создайте новый шейдер, материал и объект и задайте им име-
на так, чтобы их можно было найти в дальнейшем.

2. Назначьте шейдер материалу, а материал – объекту. И в довер-
шение работы со сценой добавьте новый направленный источ-
ник света, чтобы мы смогли увидеть наши блики после того,
как мы их запрограммируем.

Как это сделать...

1. Вероятно, вы уже видите какие-то шаги решения задачи, одна-
ко мы советуем начинать с наиболее базовой части написания
шейдера – задания свойств. Поэтому давайте добавим нашему
шейдеру следующие свойства.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Ваsе (RGB)", 2D) = "white" {}
 _SpecularColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0,30)) = 1
}

2. После этого убедимся, что соответствующие переменные до-
бавлены в блок CGPROGRAM.

fl oat4 _SpecularColor;
sampler2D _MainTex;
fl oat4 _MainTint;
fl oat _SpecPower;

76 Глава 3. Пусть ваши игры засияют отражённым светом

3. Теперь, для того чтобы рассчитать Phong Specular, нам нужно
добавить собственную модель освещения. Добавьте следую-
щий код в блок SubShader. Не волнуйтесь, если на данный мо-
мент что-то не понятно, – далее мы рассмотрим каждую строку
кода.

inline fi xed4 LightingPhong (SurfaceOutput s, fi xed3 lightDir,
half3 viewDir, fi xed atten)
{
 //Вычислим диффузный и отражённый вектор
 fl oat diff = dot(s.Normal, lightDir);
 fl oat3 refl ectionVector = normalize(2.0 * s.Normal * diff - lightDir);

 fl oat spec = pow(max(0, dot(refl ectionVector, viewDir)), _SpecPower);
 fl oat3 fi nalSpec = _SpecularColor.rgb * spec;

 fi xed4 c;
 c.rgb = (s.Albedo * _LightColor0.rgb * diff) + (_LightColor0.rgb *
fi nalSpec);
 c.a = 1.0;
 return c;
}

4. И наконец, мы должны указать в блоке CGPROGRAM, что нужно
использовать нашу функцию освещения вместо дефолтной.
Чтобы это сделать, мы поменяем секцию #pragma следую щим
образом.

CGPROGRAM
#pragma surface surf Phong

Следующий скриншот демонстрирует результат использования
нашей модели освещения Phong.

Рис. 3.3. Результат работы шейдера с моделью освещения Phong

77Создаём модель освещения Phong

Как это работает...

Давайте более подробно рассмотрим функцию освещения, поскольку
на данном этапе остальная часть кода шейдера вам уже должна быть
вполне знакома.

Начнём мы с того, что будем использовать функцию освещения, в
которую передается направление взгляда. Не забывайте, что, чтобы
получать нужные параметры в функцию освещения, вам нужно пра-
вильно указывать их в сигнатуре этой функции. Взгляните на следую-
щую таблицу либо на её электронную версию по адресу: http://docs.
unity3d.com/Documentation/Components/SLSurfaceShaderLighting.
html.

Таблица 3.1. Параметры зависящих и не зависящих от направления
взгляда функций

Не зависит

от направления

взгляда

half4 ваше Название Функции Освещения
(SurfaceOutput s, half3 lightDir, half atten);

Зависит

от направления

взгляда

half4 ваше Название Функции Освещения
(SurfaceOutput s, half3 lightDir, half3 viewDir,
half atten);

В нашем случае мы будем работать со Specular шейдером, поэтому
структура нашей функции освещения должна соответствовать зави-
сящему от направления взгляда формату. Соответственно, мы долж-
ны написать следующий код.

CGPROGRAM
#pragma surface surf Phong
inline fi xed4 LightingPhong (SurfaceOutput s, fi xed3 lightDir,
half3 viewDir, fi xed atten)
{

}

Эти инструкции означают, что мы хотим использовать шейдер,
учитывающий направление взгляда. Всегда проверяйте, что название
функции освещения совпадает с названием, указанным в директиве
#pragma, в противном случае Unity не сможет найти вашу модель
освещения.

Функция освещения начинается с объявления обычного диффузно-
го компонента и его вычисления с помощью скалярного произведения
нормали поверхности и направления света. Таким образом, мы получим
значение 1, когда нормаль к поверхности направлена в сторону света,
и -1, когда нормаль направлена в противоположную свету сторону.

78 Глава 3. Пусть ваши игры засияют отражённым светом

После этого нам нужно рассчитать вектор отражения, для этого мы
умножаем вектор нормали на 2*diff и вычитаем из него направление
света. Таким образом, получается эффект наклона нормали к свету – и
даже если нормаль была направлена от источника света, она будет вы-
нуждена к нему повернуться. На следующих скриншотах приводится
более наглядное пояснение этой идеи. Скрипт, с помощью которого
был получен скриншот во время отладки, можно найти на странице
поддержки данной книги по адресу www.packtpub.com/support.

Рис. 3.4. Визуальный эффект в режиме отладки

После этого всё, что нам остаётся, – это вычислить итоговые значе-
ния отражённого цвета. Для этого мы считаем скалярное произведе-
ние вектора отражения и направления взгляда, а результат возводим
в степень _SpecPower. После этого мы просто перемножаем значение
spec и _SpecularColor.rgb и получаем блик на поверхности.

На следующем скриншоте приводятся итоговые результаты вы-
числения модели Phong в нашем шейдере.

Рис. 3.5. Итоговый результат расчётов Phong
отражённого света

Результат работы шейдера Отладка векторов отражения

79Создание модели освещения BlinnPhong

Создание модели освещения

BlinnPhong
Существует более эффективный способ расчёта и оценки отражённо-
го света – модель Blinn. Её идея заключается в вычислении полу-век-
тора между направлением взгляда и направлением источника света.
В мир Cg этот метод ввёл Джим Блинн (Jim Blinn). Он понял, что,
вместо того чтобы считать вектор отражения, гораздо эффективнее
просто взять полувектор. Это позволило уменьшить объём кода и
время выполнения. Если вы посмотрите на встроенную модель осве-
щения BlinnPhong в файле Lighting.cginc, то увидите, что она так-
же использует полувектор, потому-то она и называется BlinnPhong .
По существу, это просто упрощённый вариант вычисления модели
Phong.

Подготовка

Выполните следующие действия :

1. В этот раз, вместо того чтобы создавать новую сцену целиком,
давайте будем использовать имеющиеся у нас объект и сце-
ну и сделаем новые шейдер и материал, которые мы назовём
BlinnPhong.

2. Как только вы создадите новый шейдер, два раза кликните по
нему, чтобы запустить MonoDevelop для редактирования на-
шего шейдера.

Как это сделать...

1. Первым делом нам нужно добавить свойства в блок свойств,
для того чтобы мы смогли контролировать параметры блика
на поверхности.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Ваsе (RGB)", 2D) = "white" {}
 _SpecularColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0.1, 60)) = 3
}

2. После этого нам нужно убедиться, что мы создали соответст-
вующие переменные в блоке CGPROGRAM, для того чтобы мы
могли получить доступ к этим данным из нашего шейдера.

80 Глава 3. Пусть ваши игры засияют отражённым светом

sampler2D _MainTex;
fl oat4 _MainTint;
fl oat4 _SpecularColor;
fl oat _SpecPower;

3. Теперь нам нужно создать модель освещения, которая будет
выполнять вычисления Diffuse и Specular компонент.

inline fi xed4 LightingCustomBlinnPhong (SurfaceOutput s,
fi xed3 lightDir, half3 viewDir, fi xed atten)
{
 fl oat3 halfVector = normalize(lightDir + viewDir);

 fl oat diff = max(0, dot(s.Normal, lightDir));

 fl oat nh = max(0, dot(s.Normal, halfVector});
 fl oat sрес = pow(nh, _SpecPower) * _SpecularColor;

 fl oat4 c;
 c.rgb = (s.Albedo * _LightColor0.rgb * diff) + (_LightColor0.rgb *
_SpecularColor.rgb * spec) * (atten * 2);
 c.a = s.Alpha;
 return c;
}

4. Последнее, что нам нужно сделать, – это в блоке CGPROGRAM
дать указание шейдеру использовать нашу модель освещения
вместо встроенной в Unity, сделав в секции #pragma такие из-
менения.

CGPROGRAM
#pragma surface surf CustomBlinnPhong

Следующий скриншот иллюстрирует результаты работы модели
освещения BlinnPhong.

Рис. 3.6. Результаты работы модели освещения BlinnPhong

81Маскирование глянцевых бликов с помощью текстур

Как это работает...

Модель Specular освещения BlinnPhong почти в точности повторяет
модель Phong, только она более эффективна, поскольку использует
меньше кода для достижения такого же эффекта. Этот подход сегодня
можно встретить в девяти шейдерах из десяти, поскольку он легче в
написании и более производителен.

Вместо того чтобы рассчитывать наш собственный вектор отраже-
ния, мы просто вычисляем полувектор между направлением взгляда
и направлением освещения. Кроме того, было установлено, что этот
подход является физически более точным, чем предыдущий, тем не
менее мы приводим и его, поскольку считаем, что вы должны знать
обо всех вариантах.

Чтобы получить полувектор, нам нужно просто сложить направле-
ние взгляда и направление освещения так, как показано в следующем
фрагменте кода.

fl oat3 halfVector = normalize(lightDir + viewDir);

После этого нам нужно вычислить скалярное произведение нор-
мали вершины и этого нового вектора, чтобы получить основное зна-
чение Specular компонента. Далее нам нужно просто возвести его в
степень _SpecPower и умножить на значение цвета из переменной
_SpecularColor. По сравнению с предыдущим шейдером, эти вы-
числения гораздо проще и быстрее, но тем не менее дают нам блик,
вполне качественный для большинства реальных ситуаций.

Маскирование глянцевых бликов

с помощью текстур
Теперь , когда мы узнали, как добавить блик в шейдер, давайте по-
смотрим, что можно изменить в коде, чтобы предоставить художнику
больше возможностей по контролю за тем, как этот блик выглядит.
В этом рецепте мы рассмотрим использование текстур для управле-
ния бликом и его интенсивностью.

Техника использования текстур для контроля Specular компонен-
та применяется в современных игровых движках, поскольку позво-
ляет 3D-художнику контролировать итоговый эффект на пиксель-
ном уровне. С помощью этой техники мы можем совместить в одном
шейдере матовую и блестящую поверхности. Также с помощью этой

82 Глава 3. Пусть ваши игры засияют отражённым светом

техники можно управлять размером блика или его интенсивностью,
используя дополнительную текстуру, что позволяет получать поверх-
ности с очень большим бликом или, наоборот, с чётким маленьким
бликом.

Существует множество эффектов, которых можно добиться, ком-
бинируя в шейдере данные из текстур и динамические вычисления.
И ключевым моментом эффективной работы является возможность
художника контролировать самому, как выглядит шейдер на экране.
Давайте посмотрим, как с помощью текстур мы можем управлять на-
шими Specular моделями освещения. В этом рецепте вы познакоми-
тесь с новыми концепциями, такими как создание собственной струк-
туры Input, узнаете, как в функцию освещения передаются данные из
структуры output, как после этого они передаются в структуру Input
и в функцию surf(). Понимание того, как передаются данные меж-
ду этими основными элементами поверхностного шейдера, является
ключевым для правильной организации работы с шейдерами.

Подготовка

Выполните следующие действия:

1. Нам потребуется сделать новый шейдер, материал и объект, к
которому мы применим наш шейдер и материал.

2. После того как вы добавите шейдер и материал объекту на сце-
не, два раза кликните по шейдеру, для того чтобы открыть его в
MonoDevelop.

3. Нам будет нужна текстура бликов. Для наших целей подойдёт
любая текстура, содержащая различные цвета и паттерны. На
следующем скриншоте представлена текстура, которую мы бу-
дем использовать в этом рецепте.

Рис. 3.7. Используемая текстура

Диффузная карта Карта спекуляров

83

Как это сделать...

Выполните следующие действия:

1. Давайте добавим новые переменные в наш блок свойств:

Properties
{
 //Объявим свойства, чтобы можно было использовать
 //данные из редактора с панели инспектора.
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _SpecularColor ("Specular Tint", Color) = (1,1,1,1)
 _SpecularMask ("Specular Texture", 2D) = "white" {}
 _SpecPower ("Specular Power", Range(0.1, 120)) = 3

}

2. После этого нам потребуется создать соответствующие пере-
менные в блоке SubShader, чтобы мы могли получить доступ к
данным из блока свойств. Добавьте следующий код после сек-
ции #pragma.

//Получим данные из блока свойств
sampler2D _MainTex;
sampler2D _SpecularMask;
fl oat4 _MainTint;
fl oat4 _SpecularColor;
fl oat _SpecPower;

3. Теперь нам нужно будет сформировать собственную структу-
ру Output. С её помощью мы сможем хранить и передавать
больше данных для функции surf и модели освещения. Не
волнуйтесь, если что-то не понятно. В следующей секции это-
го рецепта мы рассмотрим структуру Output более подробно.
Добавьте следующий код сразу после переменных в блоке
SubShader.

//Создадим нашу выходную структуру.
struct SurfaceCustomOutput
{
 fi xed3 Albedo;
 fi xed3 Normal;
 fi xed3 Emission;
 fi xed3 SpecularColor;
 half Specular;
 fi xed Gloss;
 fi xed Alpha;
};

Маскирование глянцевых бликов с помощью текстур

84 Глава 3. Пусть ваши игры засияют отражённым светом

4. Сразу после структуры Output мы должны указать используе-
мую модель освещения. В данном случае мы будем пользоваться
моделью освещения, которая называется LightingCustomPhong.
Сразу после структуры Output добавьте следующий код.

inline fi xed4 LightingCustomPhong (SurfaseCustomOutput s,
fi xed3 lightDir, half3 viewDir, fi xed atten)
{
 //Вычислим диффузный и отражённый векторы
 fl oat diff = dot(s.Normal, lightDir);
 fl oat3 refl ectionVector = normalize(2.0 * s.Normal * diff - lightDir);

 //Вычислим Phong блик
 fl oat spec = pow(max(0.0f,dot(refl ectionVector, viewDir)),
_SpecPower) * s.Specular;
 fl oat3 fi nalSpec = s.SpecularColor * spec * _SpecularColor.rgb;

 //Посчитаем итоговый цвет
 fi xed4 c;
 c.rgb = (s.Albedo * _LightColorO.rgb * diff) +
(_LightColorO.rgb * fi nalSpec);
 с.a = s.Alpha;
 return c;
}

5. Для того чтобы наша модель освещения заработала, нам нужно
указать в блоке SubShader, какую модель освещения должен
использовать шейдер. Для этого в секции #pragma добавьте
следующий код.

CGPROGRAM
#pragma surface surf CustomPhong

6. Поскольку мы собираемся использовать текстуру для измене-
ния значений, использующихся при расчёте блика, нам потре-
буется ещё одна пара UV-координат, которые будут относить-
ся к этой текстуре. Для этого в структуре Input добавьте uv
перед именем переменной, сопоставленной текстуре. Набери-
те следующий код сразу после вашей модели освещения.

struct Input
{
 //Получим UV-координаты из структуры Input
 fl oat2 uv_MainTex;
 fl oat2 uv_SpecularMask;
};

7. И в довершение работы с шейдером нам потребуется заменить
функцию surf() следующим образом. Так мы сможем пере-

85

давать информацию о текстуре в нашу функцию модели осве-
щения и использовать данные из пикселей этой текстуры для
изменения параметров блика.

void surf (Input IN, inout SurfaceCustomOutput o)
{
 //Получим из текстуры информацию о цвете
 fl oat4 с = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
 fl oat4 specMask = tex2D(_SpecularMask, IN.uv_SpecularMask) *
_SpecularColor;

 //Зададим параметры структуры Output
 о.Albedo = с.rgb;
 о.Specular = specMask.r;
 о.SpecularColor = specMask.rgb;
 о.Alpha = с.a;
}

Следующий скриншот демонстрирует результаты маскирования
Specular вычислений с помощью информации из текстуры. Теперь у
нас есть приятные глазу неоднородности блика по всей поверхности
вместо одного общего значения для отражённого света.

Рис. 3.8. Результат расчёта блика для поверхности

Как это работает...

Вычисления, используемые в этом шейдере, в большой степени по-
хожи на вычисления в шейдере, реализующем эффект Phong, за той
лишь разницей, что теперь мы управляем бликом, используя данные
из другой текстуры, что добавляет шейдеру эффект глубины и делает
его более живым.

Для этого нам нужно передавать информацию из поверхностной
функции в функцию освещения. Это необходимо, потому что в функ-

Маскирование глянцевых бликов с помощью текстур

86 Глава 3. Пусть ваши игры засияют отражённым светом

ции освещения мы не можем добраться до UV-координат поверхнос-
ти. Конечно, мы могли бы процедурно генерировать UV-координаты
в функции освещения, однако, если вы захотите распаковать тексту-
ру и получить пиксельную информацию, вам всё равно потребуется
использовать структуру Input, а единственный способ добраться до
структуры Input – это использовать функцию surf().

Поэтому, чтобы организовать такую связь данных, нам потребует-
ся определить собственную структуру SurfaceCustomOutput. В этой
структуре будут содержаться все итоговые данные поверхностного
шейдера, и, к счастью для нас, функция освещения и функция surf()
могут получить доступ к данным в этой структуре. Так как мы создаём
нашу собственную структуру, мы можем добавить в неё дополнитель-
ные данные. В следующем блоке кода приведена наша новая структу-
ра SurfaceCustomOutput.

//Создадим нашу выходную структуру
struct SurfaceCustomOutput
{
 fi xed3 Albedo;
 fi xed3 Normal;
 fi xed3 Emission;
 fi xed3 SpecularColor;
 half Specular;
 fi xed Gloss;
 fi xed Alpha;
};

После того как мы добавим эту структуру в шейдер, нам следует
указать функции surf() и функции освещения, что они должны ис-
пользовать эту структуру вместо структуры по умолчанию. Это дела-
ется в следующем фрагменте кода.

//Создадим нашу выходную структуру
struct SurfaceCustomOutput
{
 fi xed3 Albedo;
 fi xed3 Normal;
 fi xed3 Emission;
 fi xed3 SpecularColor;
 half Specular;
 fi xed Gloss;
 fi xed Alpha;
};

inline fi xed4 LightingCustomPhong (SurfaceCustomOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{

87

}

void surf (Input IN, inout SurfасеСustomOutput о)
{
}
ENDCG

Обратите внимание, что и функция surf(), и функция освеще-
ния теперь принимают структуру SurfaceCustomOutput в качестве
одного из атрибутов. В неё мы добавили еще один элемент, который
назвали SpecularColor. Таким образом, мы сможем хранить по-
пиксельную информацию из Specular текстуры и использовать её в
нашей функции освещения, вместо того чтобы просто перемножать
один цвет со всеми значениями блика.

Чтобы передать цвет из нашей текстуры в структуру
SurfaceCustomOutput, мы используем функцию tex2D(), а возвра-
щаемое ею значение записываем в o.SpecularColor. После того как
эти шаги будут сделаны, мы сможем получить доступ из функции ос-
вещения к информации в текстуре.

void surf (Input IN, inout SurfaceCustomOutput о}
{
 //Получим из текстур информацию о цвете
 fl oat4 с = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
 fl oat4 specMask = tex2D(_SpecularMask, IN.uv_SpecularMask) *
_SpecularColor;

 //Зададим параметры в выходной структуре
 o.Albedo = c.rgb;
 о.Specular = specMask.r;
 o.SpecularColor = specMask.rgb;
 o.Alpha = c.a;
}

Теперь вы знаете, как получать данные из текстур в функции
surf() и передавать их в функцию освещения. Этот приём является
очень важным для создания сложных шейдерных эффектов.

Металлические и мягкие блики
В этой секции мы рассмотрим способ, с помощью которого мы смо-
жем в одном шейдере получить мягкие и жёсткие блики. Чаще всего
вы будете сталкиваться с тем, что для решения большинства задач
вам потребуется использовать целый набор шейдеров. А поскольку
работать с большим количеством шейдеров может быть чрезвычайно

Металлические и мягкие блики

88 Глава 3. Пусть ваши игры засияют отражённым светом

сложно, обычно программисты пытаются в одном шейдере объеди-
нить эффекты металла и ткани. Как он будет выглядеть, зависит от
того, как пользователь настроит его свойства. Наша цель в этом ре-
цепте – сделать Specular блик настраиваемым, так чтобы конечный
пользователь смог получать мягкий как ткань блеск, а затем с помо-
щью этого же шейдера добиться очень жёсткого металлического бли-
ка.

Для достижения такой гибкости мы будем использовать модель ос-
вещения, похожую на модель Cook Torrance однако, нашу модель мы
слегка доработаем, сделав её чуть более дружественной для художни-
ка или того, кто будет использовать этот шейдер.

Подготовка

Выполните следующие шаги:

1. Создайте новую сцену, поставьте на ней сферу, плоскость и ис-
точник направленного света. Не забудьте сохранить вашу сце-
ну под новым именем.

2. Создайте новый шейдер и новый материал, придумайте и за-
дайте им имена.

3. И наконец, добавьте шейдер материалу, а материал – сфере на
вашей сцене.

4. Кроме того, нам потребуется несколько текстур, которые
позволят художнику управлять резкостью блика, определяя,
насколько размытым или насколько резким он должен быть.
Пример того, как могут выглядеть эти текстуры, приводится
на следующем скриншоте.

На этом скриншоте наглядно демонстрируются примеры текстур
различной резкости, использованные в этом рецепте.

Рис. 3.9. Текстуры различной резкости

89

Как это сделать...

Выполните следующую последовательность действий:

1. Начнём с самого важного – нам нужно задать свойства, кото-
рые мы будем использовать в шейдере. В блок свойств вашего
шейдера добавьте следующий код.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _RoughnessTex ("Roughness texture", 2D) = "" {}
 _Roughness ("Roughness", Range(0,1)) = 0.5
 _SpecularColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0,30)) = 2
 _Fresnel ("Fresnel Value", Range(0,1.0)) = 0.05
}

2. После этого нам нужно убедиться, что данные свойств доступ-
ны в блоке SubShader. Добавьте следующий код в шейдер сра-
зу после секции #pragma.

sampler2D _MainTex;
sampler2D _RoughnessTex;
fl oat _Roughness;
fl oat _Fresnel;
fl oat _SpecPower;
fl oat4 _MainTint;
fl oat4 _SpecularColor;

3. Далее нам нужно объявить нашу новую модель освещения в
секции #pragma.

CGPROGRAM
#pragma surface surf MetallicSoft
#pragma target 3.0

inline fi xed4 LightingMetallicSoft (SurfeceOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{

}

4. Теперь мы готовы взяться за функцию модели освещения. Сна-
чала мы сгенерируем все диффузные и зависящие от направле-
ния взгляда векторы, поскольку они все нам пригодятся далее.

//Вычислим диффузию и направление взгляда
fl oat3 halfVector = normalize(lightDir + viewDir);
fl oat NdotL = saturate(dot(s.Normal, normalize(lightDir)));

Металлические и мягкие блики

90 Глава 3. Пусть ваши игры засияют отражённым светом

fl oat NdotH_raw = dot(s.Normal, halfVector);
fl oat NdotH = saturate(dot(s.Normal, halfVector));
fl oat NdotV = saturate(dot(s.Normal, normalize(viewDir)));
fl oat VdotH = saturate(dot(halfVector, normalize(viewDir)));

5. Следующая секция кода нашего шейдера связана с вычис-
лением значений резкости блика с помощью текстуры для
задания формы блика и процедурной генерации небольших
неровностей на поверхности объекта. Добавьте следующий
код.

//Распределение небольших неровностей
fl oat geoEnum = 2.0*NdotH;
fl oat3 Gl = (GeoEnum * NdotV)/ NdotH;
fl oat3 G2 = (geoEnum * NdotL)/ NdotH;
fl oat3 G = min(1.0f, min(G1, G2));

//Достаём цвет из BRDF-текстуры
fl oat roughness = tex2D(_RoughnessTex, fl oat2(NdotH_raw * 0.5
+ 0.5, _Roughness)).r;

6. И последний элемент, который понадобится нашему шейде-
ру, – это вычисление эффекта Френеля , с помощью которого
мы сможем маскировать блик, если камера смотрит на объект
под слишком острым углом.

//Вычислим значение fresnel
fl oat fresnel = pow(1.0 - VdotH, 5.0);
fresnel *= (1.0 - _Fresnel);
fresnel += _Fresnel;

7. Теперь, когда у нас есть все компоненты, необходимые для
блика, нам нужно их объединить воедино для генерации ито-
гового отражённого значения.

//Сформируем итоговый блик
fl oat3 spec = fl oat3(fresnel * G * roughness * roughness) *
_SpecPower;

8. Для завершения модели освещения нам просто нужно объ-
единить диффузную и Specular-компоненты.

fl oat4 c;
c.rgb = (s.Albedo * _LightColorO.rgb * NdotL)+ (spec *
_SpecularColor.rgb) * (atten * 2.0f);
c.a = s.Alpha;
return с;

После того как вы добавите в ваш шейдер весь этот код, вернитесь
в редактор Unity, чтобы шейдер скомпилировался. Если не было до-

91

пущено ошибок, вы увидите результат, похожий на изображённый на
следующем скриншоте.

Рис. 3.10. Результаты работы шейдера

Как это работает...

Возможно, этот шейдер вым покажется гораздо сложнее, чем преды-
дущие. Но не волнуйтесь, на самом деле всё довольно просто. Вы даже
можете попробовать визуально проследить ход выполнения шейде-
ра, устанавливая c.rgb в промежуточное fl oat3 значение на каждом
этапе. Таким образом, прямо в редакторе вы будете видеть данные из
того шага алгоритма, после которого вы устанавливаете цвет. Этот
трюк полезно помнить при отладке шейдеров.

Если мы попробуем сделать это с первым блоком кода, в кото-
ром мы выполняем расчёт диффузных и зависящих от направления
взгляда векторов, то мы увидим картину, очень похожую на следую-
щий скриншот.

Рис. 3.11. Векторы в режиме отладки

Как только мы получим все нужные данные, мы можем начать ра-
ботать с ними, почти так же, как со слоями в Photoshop. Начнём мы
этот процесс с того, что сгенерируем необходимые значения для си-
муляции маленьких неровностей и переотражающегося в них света.

Металлические и мягкие блики

Текстуры резкости

92 Глава 3. Пусть ваши игры засияют отражённым светом

//Распределение небольших неровностей
fl oat geoEnum = 2.0*NdotH;
fl oat3 Gl = (geoEnum * HdotV)/ NdotH;
fl oat3 G2 = (geoEnum * NdotL)/ NdotH;
fl oat3 G = min(1.0f, min(Gl, G2));

Одним из ключевых моментов этой модели освещения является
возможность контролировать ширину блика или его резкость с по-
мощью текстуры с запеченной Specular-функцией. Таким образом, мы
можем процедурно генерировать UV-координаты и выбирать участок
текстуры для использования при расчёте нашего блика. Для этих це-
лей мы используем значение NdotH – скалярное произведение полу-
вектора и нормали вершины, подставляя его в fl oat2 переменную в
функции tex2D(). Эта переменная станет нашими UV-координатами
для сэмплинга текстуры. Значение y в этой переменной – свойство из
панели Инспектора. Таким образом пользователь может расширять
или сужать ширину блика.

//Достаём цвет из BRDF-текстуры
fl oat roughness = tex2D(_RoughnessTex, fl oat2 (NdotH_raw * 0.5 +
0.5, _Roughness)).r;

Далее нам нужно добавить эффект Френеля, чтобы при взгляде
в направлении, противоположном направлению света, мы получали
эффект увеличения интенсивности блика.

//Сформируем значение fresnel
fl oat fresnel = pow(1.0 - VdotH, 5.0);
fresnel *= (1.0 - _Fresnel);
fresnel += Fresnel;

После того как мы вычислили все эти отдельные части, для того
чтобы получить итоговое значение Specular-компонента, нужно прос-
то их перемножить. В данном случае для контроля интенсивности
блика мы добавили ещё один множитель – свойство _SpecPower.

//Сформируем итоговый блик
fl oat3 spec = fl oat3(fresnel * G * roughness * roughness) *
_SpecPower;

И последнее, чтобы получить итоговый цвет поверхности, мы ком-
бинируем Specular-компонент с диффузным компонентом. Мы на-
деемся, что вы видите масштаб изменений, которые можно внести
в простую систему, всего лишь за счёт использования других типов
векторов и текстур.

93

Дополнительная информация

Чтобы узнать больше о световой модели Cook Torrance, посетите
следующие ссылки:

• http://en.wikipedia.org/wiki/Specular_highlight#Cook.
E2.80.93Torrance_model;

• http://content.gpwiki.org/index.php/D3DBook:%28Lighting
%29_Cook-Torrance;

• http://forum.unity3d.com/threads/158589-Cook-Torrance.

Создание анизотропных бликов
Анизотропные блики – тип бликов или отражений, которые симули-
руют направленность царапин на поверхности и соответствующим
образом изменяются/растягиваются перпендикулярно направлению
царапин. Этот приём окажется очень полезен, когда вам потребуется
смоделировать потёртый металл, а не обычный металл с гладкой, по-
лированной и блестящей поверхностью. Вспомните, как выглядит CD-
или DVD-диск со стороны данных или как выглядит нижняя часть но-
венькой кастрюли либо сковородки. При внимательном рассмотрении
поверхности вы заметите, что царапины на поверхности направлены в
одну сторону – как правило, в сторону стачивания металла. При при-
менении Specular освещения к такой поверхности вы получите отра-
жённый свет, вытянутый перпендикулярно направлению царапин.

В этом рецепте мы рассмотрим, как дополнить расчет блика, чтобы
добиться эффекта различных потёртых поверхностей. В следующих
рецептах мы увидим, как эту технику можно модифицировать для по-
лучения других эффектов, например таких как вытянутые отражения
на волосах, но не будем забегать вперёд – сперва изучим основы. Мы
будем использовать следующий шейдер в качестве образца анизотроп-
ного шейдера (http://wiki.unity3d.com/index.php?title=Anisotropic_
Highlight_Shader).

На скриншоте, показанном на рис. 3.12, приводятся различные ти-
пы бликов, которые можно получить в Unity с помощью анизотроп-
ного шейдера.

Подготовка

Выполните следующие действия :

1. Создайте новую сцену с объектами и источниками освеще-
ния, чтобы мы могли видеть эффект нашего шейдера.

Создание анизотропных бликов

94 Глава 3. Пусть ваши игры засияют отражённым светом

2. Создайте новый шейдер и материал, соедините их с нашими
объектами.

3. Кроме того, нам понадобится карта нормалей, которую мы бу-
дем использовать для задания направленности нашего ани-
зотропного блика.

Рис. 3.12. Результаты применения анизотропных шейдеров

На скриншоте, приведенном на рис. 3.13, представлена карта нор-
малей, которую мы будем использовать для этого рецепта. Найти её
можно на странице книги по следующему адресу www.packtpub.com/
support.

Рис. 3.13. Анизотропная карта нормалей

Как это сделать...

Выполните следующие действия:

1. Сперва нам нужно добавить свойства, которые мы хотим за-
действовать в шейдере. С их помощью мы получим возмож-
ность детально контролировать итоговый вид поверхности.

Радиальная анизотропия Горизонтальная анизотропия

95

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Bаsе (RGB)", 2D) = "white" {}
 _SpecularColor ("Specular Color", Color) = (1,1,1,1)
 _Specular ("Specular Amount", Range(0,1)) = 0.5
 _SpecPower ("Specular Power", Range(0,1)) = 0.5
 _AnisoDir ("Anisotropic Direction", 2D) = "" {}
 _AnisoOffset ("Anisotropic Offset", Range(-1,1)) = -0.2
}

2. После этого мы должны настроить связь между блоком свойств
и кодом, чтобы можно было использовать данные из блока
свойств.

sampler2D _MаinTех;
sampler2D _AnisoDir;
fl oat4 _MainTint;
fl oat4 _SpecularColor;
fl oat _AnisoOffset;
fl oat _Specular;
fl oat _SpecPower;

3. На этом шаге мы добавим нашу функцию освещения, которая
будет создавать правильный анизотропный эффект для нашей
поверхности.

inline fi xed4 LigntingAnisotropic (SurfaceAnisoOutput s,
fi xed3 lightDir, half3 viewDir, fi xed atten)
{
 fi xed3 halfVector = normalize(normalize(lightDir) +
normalize (viewDir));
 fl oat NdotL = saturate(dot(s.Normal, lightDir));

 fi xed HdotA = dot(normalize(s.Normal + s.AnisoDirection),
halfVector);
 fl oat aniso = max(0, sin(radians((HdotA + _AnisoOffset) * 180f)));

 fl oat spec = saturate(pow(aniso, s.Gloss * 128) *
s.Specular);

 fi xed4 c;
 c.rgb = ((s.Albedo * _LightColorO.rbg * NdotL) +
(_LightColor0.rgb * _SpecularColor.rgb * spec)) * (atten * 2);
 c.a = 1.0:
 return c;
}

4. Чтобы вместо стандартной функции освещения мы могли вос-
пользоваться нашей функцией, мы должны соответственным

Создание анизотропных бликов

96 Глава 3. Пусть ваши игры засияют отражённым светом

образом модифицировать директиву #pragma. Кроме того,
дадим инструкцию шейдеру использовать в качестве целевой
шейдерную модель версии 3.0, что нам даст больше места под
текстуры.

CGPROGRAM
#pragma surface surf Anisotropic
#pragma target 3.0

5. Также мы определим отдельные UV-координаты для анизот-
ропной карты нормалей, добавив следующий код в структу-
ру Input. Строго говоря, этот шаг не является обязательным,
поскольку мы могли бы использовать UV-координаты из ос-
новной текстуры, но при таком подходе мы сможем добиться
независимого контроля за размещением эффекта потёртого
метала, а значит, мы сможем масштабировать его как захо-
тим.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat2 uv_AnisoDir;
}

6. И конечно, нам потребуется использовать функцию surf(),
чтобы передавать корректные данные нашей функции освеще-
ния. Мы получаем данные из анизотропной карты нормалей и
передаем их дальше в структуре SurfaceAnisoOutput.

void surf (Input IN, inout SurfaceAnisoOutput o)
{
 half4 с = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
 fl oat3 anisoTex = UnpackNormal(tex2D(_AnisoDir, IN.uv_
AnisoDir));

 o.AnisoDirection = anisoTex;
 o.Specular = _Specular;
 о.Gloss = _SpecPower;
 o.Albedo = c.rgb;
 о.Alpha = с.a;
}

Следующий скриншот демонстрирует результаты работы нашего
анизотропного шейдера. Анизотропная карта нормалей позволяет нам
задать направление поверхности и распределить блик по поверхнос-
ти объекта.

97

Рис. 3.14. Результат применения анизотропной карты нормалей

Как это работает...

Давайте рассмотрим наш шейдер по частям и объясним, почему мы
получаем именно такие эффекты. При этом мы сосредоточимся в ос-
новном на функции освещения, поскольку остальные части шейдера
на данный момент уже должны быть очевидны.

Начинаем мы с того, что объявляем нашу структуру
SurfaceAnisoOutput. Делаем мы это потому, что нам нужно полу-
чить попиксельную информацию из анизотропной карты нормалей, а
единст венный способ, которым этого можно добиться в поверхностном
шейдере, – это использование функции tex2D() в функции surf().

struct SurfaceAnisoOutput
{
 fi xed3 Albedo;
 fi xed3 Normal;
 fi xed3 Emission;
 fi xed3 AnisoDirection;
 half Specular;
 fi xed Gloss;
 fi xed Alpha;
};

Создание анизотропных бликов

98 Глава 3. Пусть ваши игры засияют отражённым светом

Мы можем использовать структуру SurfaceAnisoOutput как
по средник между функцией освещения и функцией поверхности.
В нашем случае в функции surf() мы передаем информацию из тек-
стуры в структуру SurfaceAnisoOutput, сохраняя её в переменную
AnisoDirection. После этого мы можем использовать эту информа-
цию в функции освещения, обращаясь к s.AnisoDirection.

А теперь, когда мы можем обмениваться данными между этими
функциями, мы можем перейти непосредственно к нашим расчётам
освещения. Начинается расчёт с того, что мы, чтобы не делать полно-
го расчёта отражённого света, вычисляем полувектор. Далее находим
диффузный компонент света, то есть скалярное произведение норма-
ли к точке и направление света.

fi xed3 halfVector = normalize(normalize(lightDir) +
normalize(viewDir));
fl oat NdotL = saturate(dot(s.Normal, lightDir));

После этого мы начинаем изменять отражение для придания ему
правильного вида. Первым делом мы рассчитываем скалярное про-
изведение нормализованной суммы нормали вершины и векторов
из нашей анизотропной карты нормалей с рассчитанным на преды-
дущем этапе значением halfVector. В результате чего мы получаем
значение, которое будет равно 1, если нормаль вершины (изменен-
ная анизотропной картой нормалей) параллельна полувектору, и 0,
если перпендикулярна. После этого, для того чтобы получить более
тёмный блик посередине и в конечном итоге эффект колец, основан-
ный на полувекторе, мы изменяем это значение с помощью функции
sin().

fi xed HdotA = dot(normalize(s.Normal + s.AnisoDirection),
halfVector);
fl oat aniso = max(0, sin(radians((HdotA + _AnisoOffset) *
180)));

Далее мы масштабируем эффект от применения переменной aniso,
возводя её в степень s.Gloss, а затем мы глобально уменьшаем его
силу, умножая на s.Specular.

fl oat spec = saturate(pow(aniso, s.Gloss * 128) * s.Specular);

Этот эффект замечательно подходит для создания более сложных
типов металлических поверхностей, особенно таких, которые содер-
жат потёртости и визуально заметные направления на поверхности.
Также этот эффект хорошо подходит для имитации волос или любой
другой мягкой поверхности, содержащей направленную структуру.

99

На следующем скриншоте приводится итоговый результат расчёта
анизотропного освещения.

Рис. 3.15. Итоговый результат расчёта анизотропного освещения

Создание анизотропных бликов

ГЛАВА 4
Добавим отражения

в ваш мир

уровень. Для того чтобы получить отражающую поверхность, шей-
дер материала этой поверхности использует информацию об окру-
жающем мире и симулирует отражение объектов. В основном для
создания этого эффекта используется специальный тип текстур – ку-
бические карты, или кубмапы (cubemap). Эти текстуры состоят из
шести плоских текстур, которые выстраиваются вокруг поверхности
в форме куба (по одной на каждую грань) и позволяют сэмплировать
цвет по направлению в трёхмерном пространстве вместо двумерных
UV-координат. Таким образом, мы можем запечь снимок окружаю-
щего пространства в один такой кубмап.

В этом рецепте мы рассмотрим, как генерировать кубмапы на ос-
нове объектов окружающего мира и как потом использовать получен-
ные кубмапы в шейдерах для создания эффектов отражения. Эта тех-
ника замечательно подходит для имитации металла, автомобильной
краски и даже пластика. В этой главе вы узнаете о том, как:

 создать кубмап в редакторе Unity;
 использовать кубмап для простых отражений;
 маскировать отражения;
 использовать карты нормалей в отражениях;
 реализовать эффект Френеля;
 написать простую динамическую систему кубических

текстур в Unity.

Создание кубических текстур

в Unity
Прежде чем мы займёмся изучением того, как создаются шейдеры
отражений, нам потребуется научиться создавать кубмапы. Конеч-

Real-time-отражения поднимают качество графики в игре на новый

101Создание кубмапов в Unity

но, вы можете найти их в Интернете, но рано или поздно вы захотите
научиться создавать свои собственные, хотя бы потому, что готовые
статические кубмапы не содержат деталей именно вашего уникаль-
ного игрового мира. Кубические текстуры, выложенные в Интерне-
те, хорошо подходят лишь для тестирования шейдера, и не более.
В программировании графики создание своих кубических текстур,
в которые запечатлён именно ваш виртуальный мир, – это ключе-
вой момент для обеспечения реалистичности эффектов отражения.
В первом рецепте этой главы мы рассмотрим, как в редакторе Unity
сгенерировать кубмап из заданной точки пространства. В конце мы
дадим ссылки на сторонние приложения, с помощью которых можно
создавать кубмапы. Вооружившись этими знаниями, вы сможете пе-
рейти к следующим частям этой главы, поскольку создание кубичес-
ких текстур и понимание принципов их работы, – это необходимый
минимум для выполнения последующих рецептов.

Подготовка

В Unity есть пример на JavaScript, в котором показано, как генериро-
вать кубмап из окружающих объектов. Давайте посмотрим, как это
делается. Описание скрипта доступно по следующей ссылке: www.
packtpub.com/support. Мы возьмем этот скрипт за основу и перепи-
шем его на C#. А в последнем рецепте этой главы мы рассмотрим,
как можно сделать простую систему генерации кубических текстур
в нескольких позициях, которую мы будем использовать для того,
чтобы менять полученные кубмапы по мере продвижения нашего
персонажа по уровню, что даст нам почти real-time-систему отра-
жений.

В этом рецепте мы сфокусируемся на том, как сгенерировать куб-
мап, что подготовит нас к созданию системы динамических отраже-
ний для вашей игры.

Выполните следующие действия:

1. Нам нужно будет добавить объекты на сцену, которые на
кубмапе будут выполнять роль источников сета. Поэтому
в нашей сцене нам потребуется создать несколько плоскос-
тей. Вы можете это сделать в любом 3D-редакторе, например
Maya или Max, или же вы можете использовать стандартную
плоскость (Plane) Unity. Подойдёт любой вариант. В конце
концов, ваша сцена должна выглядеть примерно следующим
образом.

102 Глава 4. Добавим отражения в ваш мир

Рис. 4.1. Вид сцены с созданными плоскостями

2. Теперь нам нужно создать текстуры, которые будут имитиро-
вать эффекты от разных типов освещения. Поэтому нам пона-
добятся текстуры, имитирующие затухание и интенсивность
источников света нашего окружающего мира. Взгляните на
следующий скриншот.

Рис. 4.2. Текстуры для имитации эффектов разных типов освещения

3. Далее, для того чтобы мы смогли использовать наши плоскос-
ти и текстуры в качестве источников света в кубмапе, мы при-
меним к ним один из встроенных в Unity шейдеров. В данном
случае Unlit/Transparent (Неосвещённый/Прозрачный) шей-
дер, чтобы текстуры, симулирующие источники света, не теря-

103Создание кубмапов в Unity

ли яркости. В готовом варианте ваша сцена должна выглядеть
следующим образом.

Рис. 4.3. Итоговый вид подготовленной сцены

Как это сделать…

Для написания нашего шейдера выполните следующие шаги:

1. Сперва нам потребуется создать новый скрипт, а так как мы
планируем сделать кастомное всплывающее окно в редакторе,
нам потребуется сохранить скрипт в папке Editor. Создайте
эту папку в панели проекта, затем создайте в ней C#-скрипт и
назовите его GenerateStaticCubemap. После того как вы со-
здадите скрипт, два раза кликните по нему, чтобы запустить
его в MonoDevelop.

Рис. 4.4. Расположение файла скрипта в дереве проекта

104 Глава 4. Добавим отражения в ваш мир

2. Когда наш скрипт откроется в MonoDevelop, мы должны бу-
дем его отредактировать, чтобы он выполнял требуемые функ-
ции. Для начала нам потребуется добавить директиву using, в
которой указать, что мы собираемся использовать неймспейс
(пространство имён) UnityEditor.

using UnityEngine;
using UnityEditor;
using System.Collections;

3. Для того, чтобы скрипт при выполнении в редакторе откры-
вался во всплывающем окне, нам нужно унаследовать класс
GenerateStaticCubemap от класса ScriptableWizard . Таким
образом, у нас появится доступ к некоторым полезным функ-
циям.

public class GenerateStaticCubemap : ScriptableWizard

4. Также нам нужно будет добавить несколько публичных пере-
менных, в которых мы будем хранить наш кубмап и координа-
ты точки, из которой он был снят. Добавьте следующий код в
начале класса.

public Transform renderPosition;
public Cubemap cubemap;

5. Первая функция в нашем скрипте – это встроенная функция
OnWizardUpdate() . Она вызывается, когда наше всплывающее
окно (wizard) открывается, или когда пользователь взаимо-
действует с элементами GUI в нем. Поэтому в этой функции
мы будем проверять, что пользователь ввёл правильные дан-
ные в визард: если пользователь не указал кубмап или ссылку
на transform, то мы установим значение булевой переменной
isValid в false и запретим дальнейшие действия.

void OnWizardUpdate()
{
 helpString = "Select transform to render " +
 "from and cubemap to render into";
 if (renderPosition != null && cubemap != null)
 {
 isValid = true;
 }
 else
 {
 isValid = false;
 }
}

105Создание кубмапов в Unity

6. Если переменная isValid равна true, визард вызовет функ-
цию OnWizardCreate() , где мы создадим новую камеру, рас-
положим её там же, где находится предоставленный transform,
и вызовем функцию RenderToCubemap() , чтобы получить но-
вую кубическую карту.

void OnWizardCreate()
{
 //Создадим временную камеру для рендеринга
 GameObject go = new GameObject("CubeCam",
typeof(Camera));

 //Разместим её в нужном месте
 go.transform.position = renderPosition.position;
 go.transform.rotation = Quaternion.identity;

 //Отрендерим кубмап
 go.camera.RenderToCubemap(cubemap);

 //Уничтожим временную камеру
 DestroyImmediate(go);
}

7. И наконец, нам потребуется сделать так, чтобы это всплы-
вающее окно открывалось при выборе определенного пунк-
та меню в редакторе Unity. Добавьте следующий код в класс
GenerateStaticCubemap.

[MenuItem("CookBook/Render Cubemap")]
static void RenderCubemap()
{
 ScriptableWizard.DisplayWizard("Render CubeMap",
 typeof(GenerateStaticCubemap), "Render!");
}

Как это работает…

В начале нашего скрипта мы объявляем, что он наследуется от клас-
са ScriptableWizard. Тем самым мы говорим Unity, что мы создаём
новый тип всплывающего окна в редакторе. Поэтому-то мы и помес-
тили наш скрипт в папку Editor. Если бы мы поместили его в другое
место, то Unity бы не распознала этот скрипт как выполняющийся в
редакторе.

С помощью переменных, объявляемых нами на следующем этапе,
мы получаем возможность хранить положение, из которого мы хотим
отрендерить кубмап, и ссылку на объект кубмапа в панели проекта,

106 Глава 4. Добавим отражения в ваш мир

в который мы хотим этот кубмап сохранить. Выставив правильные
значения этих переменных, мы сможем сгенерировать наш кубмап.

Далее мы редактируем функцию OnWizardUpdate(), которую нам
предоставляет класс ScriptableWizard. Вызывается эта функция
при первом запуске визарда, а также при любом взаимодействии
пользователя с элементами GUI визарда. Мы будем использовать эту
функцию для проверки того, что пользователь действительно уста-
новил правильные значения переменных. Если да, то мы устанавли-
ваем переменную isValid в true, если нет, то в false. Переменная
isValid – это встроенная переменная класса ScriptableWizard. Всё,
что она делает, – это позволяет вам включать и выключать кнопку
Create внизу окна визарда. Так, вы можете быть уверены, что никто
не сможет запустить следующую функцию визарда без установлен-
ных трансформа и кубмапа.

После того как мы проверили, что пользователь предоставил нам
корректные данные, мы можем перейти к функции OnWizardCreate().
Именно здесь и создается новый кубмап. Начинается всё с того что
мы создаем новый GameObject с компонентом Camera на нём. Далее,
мы выставляем его в координаты предоставленного в параметрах ви-
зарда трансформа.

После выполнения этого кода у нас появится новая камера на за-
данной позиции. Всё, что нам останется сделать после этого, – это вы-
звать функцию RenderToCubemap() и передать ей кубмап, который
пользователь выбрал в параметрах визарда. После выполнения этой
функции шесть изображений для нашего кубмапа будут созданы и
объединены в заданный пользователем объект кубической карты.

Далее для нашего визарда мы добавляем опцию в меню, чтобы
пользователь мог вызвать его из главного меню Unity. При нажатии
на этот пункт меню будет вызвана статическая функция визарда, ко-
торая отобразит его на экране. Таким образом, мы написали неболь-
шой инструмент для создания кубических карт непосредственно в
редакторе Unity.

Дополнительная информация

Мы приводим две программы, с помощью которых вы можете гене-
рировать кубмапы и использовать их в своих шейдерах:

• ATI CubeMapGen : http://developer.amd.com/resources/archive/
archived-tools/gpu-tools-archive/cubemapgen/;

• HDR Light StudioPro : http://www.hdrlightstudio.com/.

107

Простое отражение
с использованием кубической
текстуры
Теперь , когда мы умеем создавать наши собственные кубмапы, мы
можем перейти к использованию этого нового типа текстур для ими-
тации отражений в нашем шейдере. В основе использования кубичес-
ких текстур для создания отражений лежит весьма простая идея, но
при этом она предоставляет очень мощный инструмент для создания
шейдерных эффектов. Мы берём нормаль точки поверхности модели
и используем цвет пикселя в кубмапе в этом направлении при генера-
ции отражения на поверхности объекта. Таков, в общих чертах, прин-
цип работы этого метода.

В этом рецепте мы сделаем первые шаги к использованию куби-
ческих карт для имитации отражений. Unity может сама вычислять
вектор отражения, что избавит нас от необходимости его расчёта
вручную. Для этого в структуре Input нужно использовать вектор
worldRefl . Мы будем использовать этот вектор для сэмплинга куби-
ческой текстуры. Что даст нам в итоге самый простой способ созда-
ния эффекта отражения в поверхностном шейдере.

Подготовка

Прежде чем мы начнём писать код шейдера, нам потребуется подго-
товить сцену. Для этого выполните следующие действия:

1. Создайте новую сцену, материал и шейдер. Не забудьте при-
своить им имена, с помощью которых их легко можно будет
найти.

2. Добавьте шейдер материалу, а материал назначьте объекту.
3. Создайте или найдите кубмап, который мы будем использо-

вать в нашем шейдере.

На скриншоте (рис. 4.5) показан кубмап, который мы использова-
ли для этого рецепта. Несмотря на то что у вас будет другой кубмап,
мы приводим этот скриншот, чтобы показать, какие текстуры исполь-
зуем мы, и избежать возможных недопониманий.

Как это сделать…

Начните написание вашего шейдера с выполнения следующих дейст-
вий:

Простое отражение с использованием кубической...

108 Глава 4. Добавим отражения в ваш мир

Рис. 4.5. Используемая в рецепте кубическая текстура

1. В блоке свойств создайте новые свойства. Нам понадобится
свойство, чтобы хранить нашу кубическую текстуру, и свойст-
во, чтобы управлять величиной отражения.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _Cubemap ("CubeMap", CUBE) = ""{}
 _Refl Amount ("Refl ection Amount", Range(0.01, 1)) = 0.5
}

2. После этого нам нужно создать связь между блоком свойств
и переменными в коде. Это позволит нам получать данные из
блока свойств.

sampler2D _MainTex;
samplerCUBE _Cubemap;
fl oat4 _MainTint;
fl oat _Refl Amount;

3. Чтобы корректно имитировать угол отражения от поверхнос-
ти, нам потребуется некий вектор с правильным направлением
отражения. Для этого мы воспользуемся ещё одним механиз-
мом, встроенным в Unity. Если мы поместим внутрь нашей
структуры Input следующий код, то получим вектор отраже-
ния объектов окружающего мира, пригодный для использова-
ния в нашем шейдере.

struct Input
{

109

 fl oat2 uv_MainTex;
 fl oat3 worldRefl ;
};

4. После этого мы сможем получить цвет из нашего кубмапа с
помощью функции texCUBE() и вектора отражения объектов
окружающего мира из структуры Input. Добавьте в функцию
surf() следующий код.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;
 o.Emission = texCUBE(_Cubemap, IN.worldRefl).rgb *
 _Refl Amount;
 o.Albedo = c.rgb;
 o.Alpha = c.a;
}

Результат использования нашего кубмапа вы можете увидеть на
следующем скриншоте.

Рис. 4.6. Результат работы шейдера, обрабатывающего
нашу кубическую текстуру

Как это работает…

Если вы всё написали без ошибок, то вы увидите, что кубмап отража-
ется от вашего объекта так, как отражались бы настоящие объекты.
Это возможно благодаря встроенному в поверхностные шейдеры в
Unity свойству структуры Input. С помощью свойства worldRefl мы
можем получить вектор отражения, необходимый для правильной ра-
боты с кубической картой. Всего лишь за счёт использования вектора

Простое отражение с использованием кубической...

110 Глава 4. Добавим отражения в ваш мир

worldRefl внутри функции texCUBE() мы можем достать корректное
отражение из нашего кубмапа.

На следующем скриншоте показано, как выглядят обрабатывае-
мые шейдером данные отражения во время выполнения отладочного
скрипта, который показывает направление нормалей в точках.

Рис. 4.7. Иллюстрация эффекта отражения
в режиме отладки

Маскирование отражений
В предыдущем рецепте мы научились делать зеркальные сферы,
теперь мы попробуем сделать более сложную отражающую поверх-
ность. Поскольку практически все объекты в той или иной степени
отражают своё окружение, нам будет нужен некий инструмент по-
пиксельного контроля за эффектом отражения.

В этом рецепте мы рассмотрим технику, которая позволит нам уп-
равлять отражением с помощью текстур, используемых в качестве
маски. Мы будем использовать черно-белые текстуры, для того что-
бы задавать коэффициент отражения на поверхности, условившись,
что чёрный цвет в текстуре будет соответствовать поверхности без от-
ражения, а белый – полностью зеркальной поверхности. С помощью
такого подхода художник, использующий ваш шейдер, сможет лучше
контролировать получившийся эффект. Давайте посмотрим, как этот
подход реализуется в поверхностных шейдерах Unity.

Отраженный цвет

Направление отражения

Направление взгляда

111

Подготовка

Давайте подготовим новую сцену для нашего шейдера, реализующего
маскированное отражение. Для этого выполните следующие дейст вия.

1. Нам понадобится кубмап, который вы можете сгенерировать,
или же воспользуйтесь кубмапом из предыдущего рецепта.
Ниже приводится кубмап, который мы использовали в этом
рецепте, найти его можно в примерах кода, поставляемых
вместе с книгой.

Рис. 4.8. Кубическая текстура,
используемая для этого рецепта

2. Кроме того, нам потребуется текстура, содержащая распреде-
ление отражающих и неотражающих участков. Не забудьте, что
мы условились о том, что чёрный цвет соответствует неотра-
жающей поверхности, белый цвет соответствует полному отра-
жению, а оттенки серого соответствуют неким промежуточным
значениям между этими двумя крайностями. Ниже приводит-
ся текстура, которую мы использовали в этом рецепте.

Рис. 4.9. Текстура для маскирования
отражения

Маскирование отражений

112 Глава 4. Добавим отражения в ваш мир

3. После того как мы создали сцену с объектом, землю и направ-
ленный источник света, мы можем взглянуть на наш шейдер
во всём его отражающем великолепии.

Как это сделать…

Теперь, когда наша сцена подготовлена, мы можем перейти к написа-
нию кода, который-то и создаст эффект отражения. Выполните сле-
дующие действия:

1. Добавьте в ваш шейдер следующие свойства. С их помощью
мы сможем назначить в шейдере кубмап и маску отражений.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _Refl Amount ("Refl ection Amount", Range(0, 1)) = 1
 _Cubemap ("Cubemap", CUBE) = ""{}
 _Refl Mask ("Refl ection Mask", 2D) = ""{}
}

2. После этого мы добавим в код переменные с такими же назва-
ниями.

sampler2D _MainTex;
sampler2D _Refl Mask;
samplerCUBE _Cubemap;
fl oat4 _MainTint;
fl oat _Refl Amount;

3. Чтобы отражение из кубической карты работало коррект-
но, нам потребуется в структуре Input объявить свойство
worldRefl . Направление из него мы будем подставлять в функ-
цию texCUBE(), чтобы получить цвет окружения в этом на-
правлении.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat3 worldRefl ;
};

4. Кроме того, нам потребуется добавить в нашу функцию surf()
следующий код. Мы подробнее остановимся на нем в следую-
щей секции рецепта.

void surf(Input IN, inout SurfaceOutput o)
{

113

 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 fl oat3 refl ection = texCUBE(_Cubemap,IN.worldRefl).rgb;
 fl oat4 refl Mask = tex2D(_Refl Mask, IN.uv_MainTex);

 o.Albedo = c.rgb * _MainTint;
 o.Emission = (refl ection * refl Mask.r) * _Refl Amount;
 o.Alpha = c.a;
}

На следующем скриншоте приводится результат маскирования
отражённого света с помощью текстуры в поверхностном шейдере
Unity.

Рис. 4.10. Результат маскирования отражённого света
с помощью текстуры

Как это работает…

В начале своей работы шейдер просто достает значение цвета из куб-
мапа с помощью функции texCUBE(). Эта функция встроена в язык
CGFX, она возвращает цвет текстуры в заданном направлении, кото-
рый мы можем использовать в нашем шейдере. Unity помогает нам в
этом деле, предоставляя свойство worldRefl в структуре Input. Как
объяснялось в последнем рецепте – это свойство передаёт нам вектор
отражения от направления камеры.

После того как мы получим значение отражения в точке, нам нужно
будет получить данные из текстуры маски. Это делается с помощью
встроенной функции tex2D(), применение которой мы уже рассмат-
ривали в главе 2 «Создание эффектов с помощью текстур».

Маскирование отражений

114 Глава 4. Добавим отражения в ваш мир

Когда данные из обеих текстур получены и сохранены в перемен-
ных в нашей функции surf(), мы просто перемножаем цвета кубма-
па с цветами маски и сохраняем полученный результат в параметр
o.Emission выходной структуры нашей поверхности. А потом, для
того чтобы у нас была возможность глобально контролировать общую
интенсивность отражения, мы умножаем результат маскированного
отражения на значение свойства _Refl ectionAmount. Это позволит
нам контролировать интенсивность отражения по всей поверхности
объекта.

На следующем скриншоте приводятся результаты, которые мы по-
лучаем при различных значениях свойства _Refl ectionAmount.

Рис. 4.11. Результаты рассчёта отражения, получаемые
при различных значениях общей интенсивности отражения

Карты нормалей и отражения
В определённый момент вам может понадобиться изменять вектор
отражения в точке, используя нормаль к поверности . Например, для
того чтобы симулировать поверхность замерзшего стекла или ледя-
ного куба. Нельзя ожидать, что игра будет выдавать 60 fps при ис-
пользовании настолько детализированных моделей, как может пона-
добиться в этом случае. Для имитации более высокополигональных
деталей нам потребуется использовать карту нормалей, поэтому сей-
час мы рассмотрим, как использовать информацию из карты норма-
лей в эффекте отражения.

Для решения поставленной задачи мы воспользуемся ещё одним
встроенным в структуру Input параметром, с помощью которого мы
будем передавать модифицированные нормали поверхности с учетом
карты нормалей. Давайте посмотрим, как нам нужно изменить струк-
туру Input для создания этого эффекта.

115

Подготовка

Давайте создадим новую, чистую сцену с помощью следующих дейст-
вий:

1. Нам вновь потребуется кубмап для создания эффекта отраже-
ния. Поэтому вы можете использовать или кубмап из преды-
дущего рецепта, или сгенерировать новый. Кубическая тексту-
ра, которую использовали мы и которая включена в примеры
кода, идущие вместе с этой книгой, показана ниже.

Рис. 4.12. Кубическая текстура, используемая
для данного рецепта

2. Нам также понадобится карта нормалей для создания соот-
ветственно измененных отражений.

Рис. 4.13. Карта нормалей, используемая
для данного рецепта

Карты нормалей и отражения

116 Глава 4. Добавим отражения в ваш мир

3. После этого создайте новую сцену с объектом, плоскость земли
и направленный источник света, также создайте новый шей-
дер и материал. Эти действия позволят нам запустить шейдер
и проверить, что он работает.

Как это сделать…

Давайте теперь напишем шейдер, чтобы мы могли на практике на-
учиться использовать карты нормалей для отражающего шейдера.

1. Давайте добавим свойства, которые позволят нам назначить
свой кубмап и карту нормалей. Этот этап уже должен быть
вам знаком. Разработку шейдеров всегда стоит начинать с
опре деления всех свойств, которые вам понадобятся. Добавьте
следующий код в блок свойств вашего шейдера.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _NormalMap ("Normal Map", 2D) = "bump" {}
 _Cubemap ("Cubemap", CUBE) = "" {}
 _Refl Amount ("Refl ection Amount", Range(0,1)) = 0.5
}

2. После этого нам потребуется объявить свойства в блоке
SubShader, чтобы мы смогли получить доступ к данным из на-
шего блока свойств.

samplerCUBE _Cubemap;
sampler2D _MainTex;
sampler2D _NormalMap;
fl oat4 _MainTint;
fl oat _Refl Amount;

3. Далее вам нужно будет в структуру Input добавить следующий
код. Здесь и происходит вся магия, с помощью которой полу-
чаются отражения, использующие карту нормалей. С помощью
макроса INTERNAL_DATA мы можем получить доступ к норма-
лям поверхности после их модификации картой нормалей.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat2 uv_NormalMap;
 fl oat3 worldRefl ;
 INTERNAL_DATA
};

117

4. И наконец, нам потребуется добавить в функцию surf() сле-
дующий код, чтобы воспользоваться изменёнными нормаля-
ми при вычислении отражений.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 fl oat3 normals = UnpackNormal(tex2D(_NormalMap,
IN.uv_NormalMap)).rgb;

 o.Normal = normals;
 o.Emission = texCUBE(_Cubemap, WorldRefl ectionVector (IN,
o.Normal)).rgb * _Refl Amount;
 o.Albedo = c.rgb * _MainTint;
 o.Alpha = c.a;
}

Следующий скриншот демонстрирует результат использования
карты нормалей для воздействия на эффект отражения.

Рис. 4.14. Результат расчёта отражения
с учётом карты нормалей

Как это работает…

Обратите внимание, что этот шейдер очень похож на последний напи-
санный нами, за одним очень важным отличием. Мы используем
попиксельную карту нормалей для модификации отражения из ку-
бической текстуры. Для этого нам нужно иметь доступ к нормалям
поверхности объекта после того, как к ним была применена карта
нормалей. Следующим кодом мы применяем карту нормалей:

Карты нормалей и отражения

118 Глава 4. Добавим отражения в ваш мир

fl oat3 normals = UnpackNormal(tex2D(_NormalMap, IN.uv_NormalMap)).rgb;
o.Normal = normals;

После того как эти строки кода выполнятся, нормали к поверх-
ности модели будут изменены, теперь нам нужно использовать их
для модификации отражения. Получить доступ к изменённым нор-
малям мы сможем, если добавим в нашу структуру Input строчку
INTERNAL_DATA, а затем будем использовать WorldRefl ectionVector
(IN, o.Normal) вместо координат при сэмплинге нашей кубической
текстуры. Это ещё одна функция, встроенная в Unity, наличие кото-
рой избавляет нас от того, чтобы каждый раз писать код самим. Таким
образом, мы сможем сконцентрироваться на написании существен-
ных для нашего шейдера функций, которые непосредственно участ-
вуют в создании нужных нам эффектов.

Но это ещё не всё…

Есть ещё ряд встроенных свойств, к которым мы можем получить до-
ступ в нашей структуре Input, и можете быть уверены – мы остано-
вимся на них в следующих главах. В таблице приводится информация
о том, что эти встроенные свойства делают и как их можно исполь-
зовать. Чтобы получить более детальную информацию, вы можете
посетить следующий сайт: http://docs.unity3d.com/Documentation/
Components/SL-SurfaceShaders.html.

Таблица 4.1. Таблица описания встроенных свойств

Тип Свойство Описание

fl oat3 viewDir Содержит направление взгляда для вычисления
эффектов параллакса, задней подсветки и т. д.

fl oat4 переменная
с семантикой COLOR

Содержит интерполированный повертекст ный
цвет

fl oat4 screenPos Содержит положение относительно экрана для
эффектов отражения

fl oat3 worldPos Содержит положение относительно мировых
координат

fl oat3 worldRefl Содержит вектор отражения в глобальных коор-
динатах, если поверхностный шейдер не запи-
сывал информацию в o.Normal. Для примера
посмотрите Reflect-Diffuse шейдер

fl oat3 worldNormal Содержит вектор нормали в глобальных коор-
динатах, если поверхностный шейдер не запи-
сывал информацию в o.Normal

119

Тип Свойство Описание

fl oat3 worldRef;
для использования
требуется
объявление
INTERNAL_DATA

Содержит вектор отражения в глобальных ко-
ординатах, если поверхностный шейдер за-
писывал информацию в o.Normal. Чтобы
получить вектор отражения, основанный на
попиксельной карте нормалей, используйте
WorldRefl ectionVector (IN, o.Normal). Для
примера посмотрите Reflect-Bumped шейдер

fl oat3 worldNormal;
для использования
требуется
объявление
INTERNAL_DATA

Содержит вектор нормали в глобальных коорди-
натах, если поверхностный шейдер записывал
информацию в o.Normal. Чтобы получить век-
тор нормали, основанный на попиксельной кар-
те нормалей, используйте WorldNormalVector
(IN, o.Normal)

Отражения по Френелю
Один из наиболее часто используемых типов отражений – отражение
по Френелю . Эффектом Френеля называется изменение отражаю щей
способности поверхности в зависимости от угла, под которым вы на
неё смотрите. Его можно заметить практически на любом типе повер-
хностей, но чаще всего его используют при создании корпусов машин.
Мы сразу видим, что поверхность автомобиля отражает свет, но если
посмотреть на нее под более острым углом, вы увидите, что интен-
сивность отражений и бликов увеличивается, и появляется приятный
глазу эффект задней подсветки.

Однако не все поверхности обладают одинаковой степенью отра-
жения по Френелю. Некоторые поверхности, такие как корпуса ма-
шин, обладают высокой интенсивностью отражения по Френелю, в
то время как другие, например кусок пластика, являются менее отра-
жающими и более блёклыми.

В этом рецепте мы рассмотрим лишь базовую реализацию эффек-
та отражения по Френелю, поскольку в реальном мире эффект Фре-
неля складывается из отражения и преломления, которые зависят от
того, под каким углом человек смотрит на поверхность объекта. Но,
поскольку мы еще не останавливались на эффектах преломления,
то давайте посмотрим, как этот эффект реализуется в большинстве
компаний, выпускающих игры, и как мы можем модифицировать
их приёмы для создания интересных визуальных эффектов отраже-
ния.

Отражения по Френелю

Таблица 4.1. (окончание)

120 Глава 4. Добавим отражения в ваш мир

Подготовка

И вновь давайте создадим новую сцену, а также необходимые объек-
ты для неё, чтобы мы могли сконцентрироваться на написании наше-
го шейдера. Выполните следующую последовательность действий:

1. Для реализации эффекта отражения по Френелю нам потре-
буется кубическая текстура. Поэтому, вам нужно будет либо
сгенерировать новую кубическую текстуру, либо использовать
ту, что была в предыдущем рецепте. На следующем скриншо-
те показан кубмап, который мы использовали в этом рецепте,
найти его вы можете по адресу www.packtpub.com/support.

Рис. 4.15. Кубическая текстура, используемая
в данном рецепте

2. Создайте новую сцену, объект, плоскость (которая будет иг-
рать роль поверхности земли), новый шейдер и новый матери-
ал.

3. Также создайте направленный источник света, чтобы мы мог-
ли работать с освещением.

Как это сделать…

Давайте перейдём к созданию нашего шейдера и напишем эффект от-
ражения по Френелю. Выполните следующие действия:

1. Сначала нам нужно задать наши свойства в блоке свойств. На
этот раз мы будем использовать встроенную модель освеще-
ния BlinnPhong, поэтому нам потребуется объявить свойства,
необходимые для Specular-компонента модели освещения.

121

Properties
{
 _MainTint("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _Cubemap ("Cubemap", CUBE) = "" {}
 _Refl ectionAmount ("Refl ection Amount", Range(0,1)) = 1
 _RimPower ("Fresnel Falloff", Range(0.1, 3)) = 2
 _SpecColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0,1)) = 0.5
}

2. Для этого шейдера нам потребуется поддержка шейдерной
модели версии 3, благодаря чему мы сможем использовать до-
статочное количество регистров, чтобы передать все необходи-
мые данные в функцию surf(). Для этого нам нужно добавить
следующие инструкции #pragma.

CGROGRAM
#pragma surface surf BlinnPhong
#pragma target 3.0

3. После этого нам нужно не забыть создать связь между нашими
новыми свойствами и кодом шейдера, для этого мы объявим
наши переменные следующим образом:

samplerCUBE _Cubemap;
sampler2D _MainTex;
fl oat4 _MainTint;
fl oat _Refl ectionAmount;
fl oat _RimPower;
fl oat _SpecPower;

4. Чтобы наш эффект отражения заработал, нам потребуется
объявить параметры worldRefl и viewDir в структуре Input.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat3 worldRefl ;
 fl oat3 viewDir;
};

5. После этого нам нужно будет рассчитать эффект задней под-
светки в функции surf(), чтобы создать простой эффект отра-
жения по Френелю.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);

 fl oat rim = 1.0 - saturate(dot(o.Normal, normalize(IN.viewDir)));

Отражения по Френелю

122 Глава 4. Добавим отражения в ваш мир

 rim = pow(rim, _RimPower);

 o.Albedo = c.rgb * _MainTint;
 o.Emission = (texCUBE(_Cubemap, IN.worldRefl).rgb * _Refl ectionAmount)
* rim;
 o.Specular = _SpecPower;
 o.Gloss = 1.0;
 o.Alpha = c.a;
}

На следующем скриншоте представлены итоговые результаты ра-
боты нашего шейдера, реализующего простой эффект Френеля. По-
мимо прочего, мы можем взять его за основу для написания шейдера
поверхности машины.

Рис. 4.16. Результат работы шейдера,
реализующего эффект Френеля

Как это работает…

В этом примере мы вычисляем величину уменьшения интенсивнос-
ти отражения, с помощью которой мы можем маскировать участки
поверхности с более высокой отражающей способностью и участки с
более низкой. Сравнивая направление взгляда с нормалью к поверх-
ности, мы можем вычислить это значение для текущего положения
камеры. После чего мы инвертируем это значение и получаем маску,
которая будет более белой по краям поверхности и более чёрной в тех
местах, где поверхность больше направлена в сторону наблюдателя.
Идею иллюстрирует следующий скриншот.

123

Рис. 4.17. Иллюстрация применения инвертирования при отражении

После этого мы добавляем Specular и диффузные компоненты све-
та и получаем финальный шейдер, реализующий эффект Френеля.

Создание простой

динамической системы

кубических текстур
Несмотря на то что к этому моменту мы уже узнали много тонкостей
работы с кубмапами, мы всё ещё не можем корректно обрабатывать
отражения объектов окружающего мира для движущегося объекта.
К примеру, если ваш виртуальный мир будет состоять из множества
комнат и коридоров, то мы не сможем изготовить одну кубическую
текстуру для всего уровня вашей игры. Такая текстура содержала бы
неправильную информацию об окружающих объектах в комнатах.
И всё, что бы мы получили, – это статичное нереалистичное отраже-
ние.

Исправить ситуацию, сделав отражения для разных комнат различ-
ными, можно несколькими способами. Первый и наиболее простой –
это использовать разные кубмапы на основании того, в какой комна-
те находится объект. То есть при перемещении объекта из комнаты
в комнату соответствующим образом будут заменяться наши куби-
ческие текстуры. Второй способ – это изменение кубмапа в реальном
времени по мере перемещения игрока в окружающем мире – способ,
при котором кубмап генерируется заново каждый фрейм игры. И хо-
тя второй способ более предпочтителен с визуальной точки зрения,
потому что вы не заметите «скачка» при смене кубмапа, он весьма
затратен с точки зрения необходимых вычислений, поэтому решение
о его использовании нужно принимать, учитывая все необходимые
для вашей игры ресурсы.

Создание простой динамической системы кубических...

Затухание по направлению Инвертированное затухание Полное отражение Полное отражение *

 к камере Инвертированное затухание

124 Глава 4. Добавим отражения в ваш мир

В этом рецепте мы сосредоточимся на первом варианте и покажем,
как вы можете сделать очень простую систему для переключения
между кубмапами, основываясь на текущем положении игрока в про-
странстве. В последнем разделе этого рецепта приводится информа-
ция о создании системы real-time-отражений, поэтому обратите вни-
мание на него, если вам это интересно и вы хотите увидеть разницу
между двумя вышеозвученными подходами.

Подготовка

Выполните следующие действия:

1. Нам потребуется создать новую сцену, задать плоскость земли
и поместить туда сферу. Кроме того, создайте направленный
источник света, чтобы предоставить нашему шейдеру возмож-
ность работать со светом.

2. Далее добавьте на сцену два пустых GameObject, и назовите их
pos001 и pos002.

3. После этого назначьте сфере новый материал, а ему сопоставь-
те шейдер отражений по Френелю из нашего предыдущего ре-
цепта. После этих действий ваша сцена должна выглядеть как
на следующем скриншоте.

4. И наконец, создайте скрипт и назовите его SwapCubemaps.cs.

Чуть ниже приводится скриншот, отображающий итоговый вид
нашей сцены, в которой всё готово к созданию нашей динамической
системы отражений.

Рис. 4.18. Исходное состояние сцены для работы
над системой динамических отражений

125

Как это сделать…

После того как вы подготовили сцену, можно переходить к програм-
мированию системы отражений, для чего вам нужно выполнить сле-
дующие шаги:

1. Начнём с того, что перед декларацией класса добавим строчку
[ExecuteInEditMode].

[ExecuteInEditMode]
public class SwapCubemaps : MonoBehaviour

2. После этого нам потребуется объявить несколько переменных
для хранения данных нашей системы. Более подробно этот
этап мы объясним в следующей секции этого рецепта.

public Cubemap cubeA;
public Cubemap cubeB;

public Transform posA;
public Transform posB;

private Material curMat;
private Cubemap curCube;

3. Для того чтобы видеть, откуда в 3D-пространстве были сняты
наши кубмапы, мы воспользуемся встроенным в Unity мето-
дом визуальной отладки – Gizmos. Для этого давайте добавим
следующий код в конец нашего скрипта.

void OnDrawGizmos()
{
 Gizmos.color = Color.green;

 if (posA)
 {
 Gizmos.DrawWireSphere(posA.position, 0.5f);
 }

 if (posB)
 {
 Gizmos.DrawWireSphere(posB.position, 0.5f);
 }
}

4. Теперь нам потребуется создать новую функцию, определяю-
щую, какой кубмап мы будем использовать, на основе рассто-
яния объекта от установленных нами двух позиций.

private Cubemap CheckProbeDistance()
{

Создание простой динамической системы кубических...

126 Глава 4. Добавим отражения в ваш мир

 fl oat distA = Vector3.Distance(transform.position, posA.position);
 fl oat distB = Vector3.Distance(transform.position, posB.position);

 if (distA <= distB)
 {
 return cubeA;
 }
 else if (distB < distA)
 {
 return cubeB;
 }
 }

5. После этого мы будем каждый кадр проверять расстояния от
объекта до этих позиций и подставлять соответствующий куб-
мап в материал.

void Update ()
{
 curMat = renderer.sharedMaterial;
 if (curMat)
 {
 curCube = CheckProbeDistance();
 curMat.SetTexture("_Cubemap", curCube);
 }
}

После того как вы сохраните шейдер, вернитесь в редактор Unity,
чтобы шейдер скомпилировался заново. Далее нажмите на кнопку
Play и попробуйте подвигать сферу вперёд-назад. Вы должны уви-
деть эффект, похожий на изображённый на следующем скриншоте.

Рис. 4.19. Изменение отражения при перемещении сферы

Как это работает…

Мы начинаем скрипт с того, что добавляем к нашему классу аттрибут
[ExecuteInEditMode]. Указание этого аттрибута говорит Unity, что

Кубмап B используется при приближении к точке B Кубмап A используется при приближении к точке A

Точка АТочка А Точка АТочка АТочка BТочка BТочка BТочка B

127

этот скрипт должен выполняться не только при нажатой кнопке Play,
но даже когда мы будем просто находиться в редакторе. Таким обра-
зом, мы сможем тестировать изменение кубмапов даже без нажатия
кнопки Play – так получится гораздо быстрее.

Далее мы добавляем в скрипт несколько переменных, чтобы поль-
зователь смог задать две кубические текстуры, и две координаты в
трехмерном пространстве, которые будут учитываться при расчёте
расстояний. Помимо этого, в скрипте используются две приватные
переменные, в которых мы храним текущий материал и кубическую
текстуру во время выполнения.

Добавив необходимые переменные, мы можем использовать встро-
енную функцию OnDrawGizmos() для отображения вводимых поль-
зователем положений. На основе этих положений наш скрипт будет
определять, в какой момент нужно будет заменить кубмапы.

Вот мы и добрались до сути нашего скрипта. Далее мы объявляем
функцию, которая вычисляет расстояние нашей сферы от каждого из
заданных положений с помощью метода Vector3.Distance(). После
этого она сравнивает эти расстояния и возвращает кубмап, который
соответствует точке с меньшим расстоянием.

Далее в функции Update() мы получаем текущий материал сферы
(или объекта, к которому прикреплён скрипт) и назначаем ему куби-
ческую текстуру, которую возвращает предыдущая функция.

Наш скрипт весьма прост и служит лишь для иллюстрации идеи,
но при желании вы можете его доработать до состояния законченной
системы, содержащей множество кубических текстур для каждой
комнаты. Такая система могла бы даже автоматически генерировать
кубмапы во время выполнения, что хорошо бы подошло для игр, в
которых нецелесообразно, с точки зрения производительности, ис-
пользовать полностью real-time-отражения.

Но это ещё не всё…

Возможно, вас заинтересует создание системы отражений, работаю-
щей в реальном времени, в которой кубмап будет обновляться каждый
фрейм. Несомненно, такая система будет выглядеть лучше, но для
достижения этой красоты потребуется пожертвовать производитель-
ностью. Ниже приводится ссылка на метод, который вам нужно будет
использовать в этом случае (http://docs.unity3d.com/Documentation/
ScriptReference/Camera.RenderToCubemap.html).

Создание простой динамической системы кубических...

ГЛАВА 5
Модели освещения

В этой главе вы узнаете о том, как создавать следующие модели осве-
щения:

 модель освещения Lit Sphere;
 модель освещения Diffuse Convolution;
 модель освещения автомобильной краски;
 шейдер кожи;
 шейдер ткани.

Введение
На протяжении последних нескольких глав мы рассматривали раз-
личные способы использования компонентов языка написания по-
верхностных шейдеров для создания шейдеров и моделей освещения.
В этой главе мы воспользуемся полученными знаниями и напишем
целиком шейдеры для разных эффектов.

Мы сконцентрируемся на основных типах шейдеров, наиболее
востребованных в игровой индустрии. Эти знания мы применим для
совершенствования процесса создания наших собственных шейде-
ров, что пригодится нам, когда в игре понадобится создать материал
с новыми свойствами. Кроме того, мы обсудим некоторые способы
повышения эффективности, применимые в случае работы в команде,
а также то, каким образом художники из вашей команды смогут поль-
зоваться вашими шейдерами.

Модель освещения Lit Sphere
Модель освещения Lit Sphere, – это любопытный случай использо-
вания освещения на основе изображения (Image Based Lighting или
IBL). Мы можем использовать 2D-текстуру, для того чтобы полно-

129Модель освещения Lit Sphere

стью запечь в неё окружающее освещение. Как, например, это дела-
ется в Zbrush . Если вы знакомы с MatCaps в Zbrush, то освещение Lit
Sphere работает по тому же принципу. Мы создаем текстуру, в кото-
рую запекаем диффузный свет, блики, отражения, заднюю подсветку,
и используем её в нашем шейдере. Единственный минус такого шей-
дера – так как мы запекли все параметры освещения в текстуру, оно не
будет меняться, если, конечно, не менять вручную текстуры в разных
точках окружения, наподобие того, что мы видели в главе 4 «Добавим
отражения в ваш мир» в рецепте «Создание простой динамической
системы кубических карт в Unity3D». Таким образом, шейдер не бу-
дет реагировать на источники света, и освещение не будет меняться,
когда вы рассматриваете вашу виртуальную модель с разных сторон.
Пример текстуры, используемой в модели освещения Lit Sphere, ко-
торую часто называют Sphere Map, приводится на следующем скрин-
шоте.

Рис. 5.1. Пример Sphere Map текстуры

Данный тип шейдеров хорошо подходит для создания качествен-
ных сцен диорам или для использования в скриптованных игровых
сценах, в которых позиция камеры жёстко фиксирована и требуется
детальное освещение для персонажей и окружающих их объектов.

Давайте рассмотрим, как создать такую модель освещения и как её
использовать в поверхностных шейдерах Unity.

Подготовка

Перед тем как начать работу над шейдером, нам потребуется научить-
ся создавать текстуры освещения, которые мы будем использовать в
шейдере. Для этого мы можем использовать Photoshop, но гораздо
проще будет использовать небольшую бесплатную утилиту MaCrea ,
скачать которую можно по адресу: http://www.taron.de/macrea. Эта

130 Глава 5. Модели освещения

программа – замечательный бесплатный инструмент, с помощью ко-
торого можно создавать Lit Sphere текстуры. Советуем вам посмотреть
обучающие видео об интерфейсе и работе с MaCrea на Vimeo. Видеов-
ведение в MaCrea доступно по адресу: http://vimeo.com/14030320.

После того, как вы освоитесь с созданием сферических карт, мы
сможем перейти к следующей части нашего рецепта. На скриншоте
показаны интерфейс MaCrea и готовая текстура, созданная в этой
программе.

Рис. 5.2. Интерфейс MaCrea и результат работы в ней

Выполните следующие действия:

1. Создайте новую сцену и перетащите в нее несколько объектов,
плоскость и источник света.

2. Создайте новый шейдер и материал. После этого назначьте
ваш шейдер материалу.

Как это сделать…

После того как наша сцена и её ресурсы будут подготовлены, а наш
шейдер готов для редактирования в MonoDevelop, мы можем перейти
к написанию модели шейдинга Lit Sphere .

Выполните следующие действия:

1. Как обычно, нам потребуется задать свойства для поверхност-
ного шейдера, чтобы пользователи нашего шейдера смог-
ли выставлять разные текстуры и изменять значения пере-
менных. Поэтому давайте добавим следующий код в блок
свойств.

131Модель освещения Lit Sphere

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _NormalMap ("Normal Map", 2D) = "bump" {}
}

2. Так как для освещения модели шейдер будет использовать
только сферическую карту, нам не понадобится функция осве-
щения Lambert , вместо неё мы объявим нашу собственную
функцию освещения Unlit. Кроме этого, нам понадобится
написать ещё и небольшую вершинную функцию, чтобы наш
шейдер заработал.

CGPROGRAM
#pragma surface surf Unlit vertex:vert

3. Далее нам опять нужно убедиться, что мы не забыли размес-
тить наши свойства в блоке SubShader, чтобы мы могли ис-
пользовать данные, изменяемые пользователем в панели Инс-
пектора в редакторе Unity.

sampler2D _MainTex;
sampler2D _NormalMap;
fl oat4 _MainTint;

4. Теперь мы можем добавить функцию освещения, которую мы
назвали Unlit . Мы это делаем, потому что в данном случае мы
не хотим, чтобы светильники в сцене влияли на наш шейдер.
Но при этом нам нужно, чтобы наш объект отбрасывал тень.
Добавьте в шейдер следующую функцию освещения.

inline fi xed4 LightingUnlit(SurfaceOutput s, fi xed3 lightDir,
fi xed atten)
{
 fi xed4 c = fi xed4(1,1,1,1);
 c.rgb = c * s.Albedo;
 c.a = s.Alpha;
 return c;
}

5. Теперь нам потребуется добавить в нашу структуру Input до-
полнительные свойства, чтобы мы могли передавать данные
из функции vert() в функцию surf().

struct Input
{
 fl oat2 uv_MainTex;
 fl oat2 uv_NormalMap;

132 Глава 5. Модели освещения

 fl oat3 tan1;
 fl oat3 tan2;
};

6. Для того чтобы получить правильные значения из сферичес-
кой карты, нам нужно преобразовать касательные векторы в
точке модели. Для этого мы умножаем векторы инвертиро-
ванной транспонированной матрицы MV (матрица перехода
из координат модели в координаты камеры) на матрицу пово-
рота в касательное пространство. Не волнуйтесь, если не все
описанные действия вам понятны, – мы объясним их более
подробно в следующей секции.

void vert(inout appdata_full v, out Input o)
{
 UNITY_INITIALIZE_OUTPUT(Input, o);

 TANGENT_SPACE_ROTATION;
 o.tan1 = mul(rotation, UNITY_MATRIX_IT_MV[0].xyz);
 o.tan2 = mul(rotation, UNITY_MATRIX_IT_MV[1].xyz);
}

7. И наконец, мы можем добавить в нашу функцию surf() вы-
числения, в результате которых мы получим правильные зна-
чения UV-координат для сферической карты, значение из
которой мы передадим в структуру SurfaceOutput. И опять –
детали этой функции будут объяснены в следующей секции.

void surf(Input IN, inout SurfaceOutput o)
{
 fl oat3 normals = UnpackNormal(tex2D(_NormalMap,
IN.uv_NormalMap));
 o.Normal = normals;

 fl oat2 litSphereUV;
 litSphereUV.x = dot(IN.tan1, o.Normal);
 litSphereUV.y = dot(IN.tan2, o.Normal);

 half4 c = tex2D(_MainTex, litSphereUV*0.5+0.5);
 o.Albedo = c.rgb * _MainTint;
 o.Alpha = c.a;
}

На следующем скриншоте приводится результат работы нашего
шейдера, использующего сферическую карту, или, согласно термино-
логии Zbrush, – MatCaps.

133Модель освещения Lit Sphere

Рис. 5.3. Результат работы шейдера, использующего
сферическую карту

Как это работает…

Самое интересное в этой модели освещения происходит внутри функ-
ции vert(), где мы присваиваем o.tan1 и o.tan2 значения касатель-
ных векторов в пространстве камеры, для чего умножаем векторы из
инвертированной транспонированной матрицы MV (Model*View) на
матрицу поворота в касательное пространство. Эти вычисления пово-
рачивают векторы так, чтобы их можно было использовать при сэмп-
линге сферической карты. Откуда же у нас появляется эта матрица?
UNITY_MATRIX_IT_MV – это одно из предоставляемых Unity зна-
чений, которое нам не придётся рассчитывать самостоятельно.

На самом деле Unity вычисляет за нас большую часть наиболее
распространённых матриц преобразований, используемых в CGFX-
шейдерах. Это ещё одно преимущество использования поверхност-
ных шейдеров – нам не нужно делать это самостоятельно. Вместо
этого мы можем воспользоваться встроенными значениями.

Вы, наверное, спросите, зачем нам в нашем случае нужно исполь-
зовать это преобразование векторов. Детальное объяснение матриц
преобразований определённо выходит за рамки данной книги, но,
говоря простым языком, нам нужно преобразовать касательные век-
торы в точке модели из локальных координат в координаты камеры,
для того чтобы получить правильный цвет из сферической карты и
применить его в данной точке. Вы можете считать, что таким образом
вы изменяете взаимное расположение модели и себя как зрителя.

Векторы, получившиеся в результате данных преобразований, по-
казаны на скриншоте. Мы будем использовать их для выборки значе-
ний из нашей Sphere map текстуры.

134 Глава 5. Модели освещения

Рис. 5.4. o.tan1 и o.tan2

И наконец, мы используем значения IN.tan1 и IN.tan2 в качестве
UV-координат в нашей сферической карте. Мы можем использовать
эти данные из структуры Input, потому что мы их туда сохранили в
функции vert().

Это простой и в то же время приятный глазу способ достичь эф-
фекта сложного освещения. Один лишь минус – освещение не будет
меняться при изменении источников света на сцене. При таком под-
ходе освещение всегда будет привязано к направлению взгляда ка-
меры, как если бы текстура освещения проецировалась камерой на
видимый объект.

Дополнительная информация

Как и в предыдущих главах, много дополнительной информации
по нашей теме содержится в Интернете. Мы приводим несколько
ссылок, где вы можете найти дополнительную информацию и обу-
чающие материалы по использованию сферических карт и модели
освещения Lit Sphere:

• отличное объяснение матриц преобразований вы можете най-
ти в онлайн-книге по Cg : https://developer.nvidia.com/content/
cg-tutorial-chapter-4-transformations;

• Тут вы можете найти дополнительную информацию по всем
встроенным матрицам преобразований: http://docs.unity3d.
com/Documentation/Components/SLBuiltinStateInPrograms.
html;

• Дополнительная информация по отражениям в MaCrea:
http://vimeo.com/14189456;

• Информация о сэл-шейдинге в MaCrea: http://vimeo.com/
14033777.

135Модель освещения Diffuse Convolution

Модель освещения

Diffuse Convolution
Diffuse Сonvolution (диффузная свёртка) – это процесс размытия ку-
бической карты таким образом, чтобы её общая интенсивность осве-
щения сохранилась, но детали стали размытыми. Этот приём поз-
воляет увеличить глобальное освещение поверхности модели. Для
этого нужно отрендерить окружающий мир в кубмап, применить к
нему алгоритм diffuse convolution и использовать его для подсветки
вашей модели.

В этом рецепте мы рассмотрим применение данной техники в по-
верхностных шейдерах Unity. Для генерации кубических карт мы бу-
дем использовать утилиту CubeMapGen.

Подготовка

Перед тем как приступать к написанию шейдера, нам потребуется
создать «свёрнутый» (convoluted) кубмап. Существует несколько
способов это сделать, но мы остановимся на утилите CubeMapGen от
ATI. Скачать эту утилиту вы можете с сайта производителя по адресу:
http://developer.amd.com/resources/archive/archived-tools/gpu-tools-
archive/cubemapgen/.

Следующее изображение показывает интерфейс CubeMapGen, а
также кубмап, загруженный в программу.

Рис. 5.5. Интерфейс программы CubeMapGen

136 Глава 5. Модели освещения

Давайте пройдёмcя по шагам создания кубической карты :

1. Запустите CubeMapGen и загрузите одну из кубических карт,
поставляемых с приложением. Они находятся в каталоге, в ко-
торый вы проинсталлировали CubeMapGen.

2. После того как вы загрузили кубмап в программу, нам нужно
будет применить к нему convolution фильтр, то есть специаль-
ным образом его размыть. Для этого в синей части интерфейса
нам нужно будет выставить следующие параметры: Filter Type
(Тип фильтра) – Gaussian (Фильтр Гаусса), Base Filter Angle
(Угол фильтра) – 72.00, Mip Initial Filter Angle (Начальный
мип-угол) – 7.60, Mip Filter Angle Scale (Угловой мип-масш-
таб) – 2.02 и Edge fix up (Выравнивание границ) – 4. После
этого там же, в синей части интерфейса нажмите кнопку Filter
Cubemap (Применить фильтр). Это займёт некоторое время,
но в результате вы получите что-то вроде изображённого на
следующем скриншоте.

Рис. 5.6. Результат применения фильтра
в программе CubeMapGen

3. После того как CubeMapGen закончит применение фильтра,
вы сможете сохранить отдельные грани кубмапа, нажав в зелё-
ной секции интерфейса на кнопку Save Cubemap to Images
(Сохранить кубмап как картинки). В результате вы получите
изображения для каждой из сторон кубмапа, которые можно
импортировать в Unity и построить на их основе новую куби-
ческую карту.

137

4. Теперь, когда наша кубическая карта готова, нам нужно будет
сделать сцену, в которой мы будем тестировать наш шейдер.
Поэтому создайте новую сцену и поместите на неё несколько
объектов, а также один направленный источник света. Кроме
этого, нам понадобятся новый материал и новый шейдер.

Как это сделать…

После того как мы сгенерировали все ассеты, мы можем перейти к
процессу написания шейдера, который будет использовать нашу раз-
мытую кубическую карту.

Выполните следующую последовательность действий:

1. Как обычно, мы создадим набор свойств, которые позволят ху-
дожнику взаимодействовать с нашим шейдером, чтобы он мог
настраивать его, как ему покажется нужным.

Properties
{
 _MainTint ("Global Tint", Color) = (1,1,1,1)
 _BumpMap ("Normal Map", 2D) = "bump" {}
 _AOMap ("Ambient Occlusion Map", 2D) = "white" {}
 _CubeMap ("Diffuse Convolution Cubemap", Cube) = "" {}
 _SpecIntensity ("Specular Intensity", Range(0, 1)) = 0.4
 _SpecWidth ("Specular Width", Range(0, 1)) = 0.2
}

2. После этого нам нужно будет добавить #pragma директивы.
В данном случае мы создадим новую модель освещения, по-
скольку мы хотим, чтобы для освещения модели использо-
вался наш кубмап, а не источники освещения на сцене. Кроме
этого, нам потребуется объявить использование шейдерной
модели версии 3.0, чтобы избежать появления ошибок интер-
поляции текстур.

CGPROGRAM
#pragma surface surf DiffuseConvolution
#pragma target 3.0

3. Для того чтобы получить доступ к данным, содержащимся в
свойствах шейдера, нам потребуется создать связь между бло-
ком свойств и блоком SubShader, объявив соответствующие
переменные для каждого из наших свойств. Чтобы создать эту
связь, добавьте следующий код:

samplerCUBE _CubeMap;
sampler2D _BumpMap;

Модель освещения Diffuse Convolution

138 Глава 5. Модели освещения

sampler2D _AOMap;
fl oat4 _MainTint;
fl oat _SpecIntensity;
fl oat _SpecWidth;

4. Наша структура Input в этот раз будет весьма простой,
поскольку всё, что нам нужно, – это нормали модели в сис-
теме мировых координат. Нам потребуется инструкция
INTERNAL_DATA, поскольку мы будем использовать карту нор-
малей в нашем шейдере, а эта инструкция предоставит нам мо-
дифицированные нормали.

struct Input
{
 fl oat2 uv_AOMap;
 fl oat3 worldNormal;
 INTERNAL_DATA
};

5. Наша следующая задача – выбрать сигнатуру функции мо-
дели освещения. Поскольку мы планируем в нашем шейдере
эмулировать блики, нам понадобится направление взгляда.

inline fi xed4 LightingDiffuseConvolution(SurfaceOutput s,
fi xed3 lightDir, fi xed3 viewDir, fi xed atten)
{

}

6. Чтобы от нашей функции освещения был какой-то толк, нам
нужно добавить в неё непосредственно вычисления освеще-
ния. Давайте начнём с того, что вычислим нужные векторы.

//Вычислим все векторы для освещения
viewDir = normalize(viewDir);
lightDir = normalize(lightDir);
s.Normal = normalize(s.Normal);
fl oat NdotL = dot(s.Normal, lightDir);
fl oat3 halfVec = normalize(lightDir + viewDir);

7. После этого, нам нужно учесть блики.

//Вычислим Specular
fl oat spec = pow(dot(s.Normal, halfVec), s.Specular*128.0) *
s.Gloss;

8. И наконец, мы объединяем вычисленные значения модели
осве щения.

fi xed4 c;
c.rgb = (s.Albedo * atten) + spec;

139

c.a = 1.0f;
return c;

9. После того как наша функция освещения будет готова, мы
сможем использовать данные из переданных в шейдер текс-
тур. Используя нормаль к поверхности в мировых координа-
тах, мы получаем значение кубмапа и записываем финальный
цвет в структуру SurfaceOutput.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_AOMap, IN.uv_AOMap);
 fl oat3 normals = UnpackNormal(tex2D(_BumpMap,
IN.uv_AOMap)).rgb;
 o.Normal = normals;

 fl oat3 diffuseVal = texCUBE(_CubeMap,
WorldNormalVector(IN, o.Normal)).rgb;

 o.Albedo = (c.rgb * diffuseVal) * _MainTint;
 o.Specular = _SpecWidth;
 o.Gloss = _SpecIntensity * c.rgb;
 o.Alpha = c.a;
}

С помощью нормали к поверхности в мировых координатах мы
получаем цвет из размытой (convoluted) кубической текстуры, что
придаёт нашей модели весьма реалистичный вид.

Результат применения шейдера Diffuse Convolution представлен на
следующем скриншоте.

Рис. 5.7. Результат применения шейдера Diffuse Convolution

Как это работает…

Diffuse Convolution – это ещё один простой, но очень эффектный
визуальный приём. И хотя он чуть более интерактивен, чем исполь-
зование сферических карт, освещение всё равно привязано к единст-

Модель освещения Diffuse Convolution

140 Глава 5. Модели освещения

венной кубической карте. Конечно, можно обновлять содержимое
кубмапа в реальном времени для учёта изменения объектов окружа-
ющего мира, но применение фильтра Diffuse Convolution для каждо-
го кадра, может плачевно сказаться на производительности. Однако
не волнуйтесь. Специально для этого в Unity есть лайт-пробы (light
probes). Объекты в пространстве, которые запоминают параметры ос-
вещения вокруг себя. Техника, использующая данный подход, извест-
на как Ambient Cube Shading (окружающее кубическое освещение).

Такой шейдер хорошо подходит для создания небольших сцен, в
которых нет ни большого количества движения, ни взаимодействия
с освещением. Подобный подход называют освещением, основанным
на изображении (Image Based Lighting), так как для освещения объек-
та мы используем не светильники в сцене, а изображение из кубмапа.
Этот приём хорошо подходит для скриптованных сцен, или, напри-
мер, сцены тюнинга автомобиля в игре.

Основная идея этого шейдера заключается в том, чтобы ис-
пользовать нормали к поверхности, после того как они были из-
менены с помощью карты нормалей, для получения цвета из ку-
бической карты. Именно для этого в нашей структуре Input мы
объявляем параметр worldNormal типа fl oat3 и указываем макрос
INTERNAL_DATA. После этого мы используем встроенную в Unity функ-
цию WorldNormalVector() , чтобы получить итоговый вектор, кото-
рый мы используем в функции texCUBE(). Остальная часть шейдера
вам уже должна быть хорошо знакома.

На следующем скриншоте мы видим, как в зависимости от направ-
ления нормали к поверхности меняется цвет, получаемый из куби-
ческой карты.

Рис. 5.8. Зависимость цвета, получаемого
из кубической карты, от нормали к поверхности

141

Но это ещё не всё…

Если вы хотите узнать больше о применении лайт-проб (light probes)
в Unity, обратите внимание на следующую страницу: http://docs.
unity3d.com/Documentation/Manual/LightProbes.html.

Дополнительная информация

Если вы забыли, как делаются кубмапы в Unity, вы всегда можете
вернуться к главе 4 «Добавим отражения в ваш мир».

Создание модели освещения

автомобильной краски
Один из наиболее распространённых шейдерных эффектов – шейдер
поверхности автомобиля . Для его создания нам понадобятся многие
изученные нами в предыдущих главах техники, и сейчас-то нам и
пригодятся все полученные ранее знания. Мы напишем базу для шей-
дера, который вы сможете использовать в продакшене в материалах
любых моделей автомобилей. Несомненно, это будет один из самых
сложных и больших шейдеров среди тех, что мы уже написали, но мы
будем делать это по шагам и объясним каждый из них.

Подготовка

Давайте подготовим новую сцену и несколько ассетов, чтобы мы мог-
ли перейти к созданию модели освещения автомобильной краски .

Выполните следующие действия:

1. Перво-наперво нам потребуется объект для демонстрации ма-
териала, поэтому создайте в пустой сцене новый объект. Удоб-
но, когда есть плоскость, играющая роль земли, и на которую
отбрасываются тени от нашего объекта. Поэтому мы рекомен-
дуем вам добавить плоскость в сцену.

2. Чтобы мы смогли перейти к написанию шейдера, нам потре-
буются новый шейдер и новый материал. Поэтому давайте их
создадим и присвоим материал нашему основному объекту, в
данном случае – сфере.

3. Для создания этого эффекта нам понадобится BRDF-тексту-
ра. Как вы помните из секции одного из пройденных рецептов,
посвященной BRDF, вам всего лишь нужно создать текстуру,
содержащую цветовые вариации, соответствующие различ-

Создание модели освещения автомобильной краски

142 Глава 5. Модели освещения

ным углам взгляда на модель. Проще говоря, нам потребуется
цвет для диффузного освещения, зависящий от направления
взгляда. На следующем скриншоте приводятся примеры текс-
тур, которые мы использовали для этого автомобильного шей-
дера.

Рис. 5.9. Использованные BRDF-текстуры

4. Последний этап в подготовке к написанию шейдера – созда-
ние кубической карты. Как вы помните, в главе 4 «Добавим
отражения в ваш мир» мы использовали скрипт для создания
кубической карты прямо из сцены в Unity. Давайте сейчас вос-
пользуемся им же.

Как это сделать…

После того как мы подготовили все необходимые ассеты, мы можем
перейти к созданию нашего шейдера. Сначала мы пройдёмся по все-
му коду шейдера, а затем, рассмотрим его более детально и подробно
прокомментируем каждую его часть.

Выполните следующую последовательность действий:

1. Первым делом мы создадим свойства, которые нам понадобят-
ся. В этом шейдере их довольно много, но в следующей секции
мы объясним, что каждое из них делает. Несмотря на то что
некоторые свойства, вероятно, вам уже будут знакомы, мы всё
равно объясним их все.

Properties
{
 _MainTint ("Diffuse Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _SpecularColor ("Specular Color", Color) = (1,1,1,1)
 _SpecPower ("Specular Power", Range(0.01, 30)) = 3
 _Refl Cube ("Refl ection Cube", CUBE) = "" {}
 _BRDFTex ("BRDF Texture", 2D) = "white" {}
 _DiffusePower ("Diffuse Power", Range(0.01, 10)) = 0.5
 _FalloffPower ("Falloff Spread", Range(0.01, 10)) = 3
 _Refl Amount ("Refl ection Amount", Range(0.01, 1.0) = 0.5

Примеры BRDF-текстур

143

 _Refl Power ("Refl ection Power", Range(0.01, 3.0)) = 2.0
}

2. Поскольку для этого шейдера мы создадим нашу собственную
модель освещения, которую назовём CarPaint, нам потребует-
ся объявить это в директиве #pragma.

CGPROGRAM
#pragma surface surf CarPaint

3. Чтобы мы смогли получить доступ к свойствам нашего шейде-
ра, мы также объявим их и в нашем SubShader блоке. Взгляни-
те на следующий код.

sampler2D _MainTex;
sampler2D _BRDFTex;
fi xed4 _MainTint;
fi xed4 _SpecularColor;
fi xed _SpecPower;
fi xed _DiffusePower;
fi xed _FalloffPower;
fi xed _Refl Amount;
fi xed _Refl Power;
samplerCUBE _Refl Cube;

4. Теперь мы можем перейти к написанию нашей модели осве-
щения. Для этого шейдера нам потребуется использовать до-
статочно большое количество данных, поэтому просмотрите
следующий код несколько раз, чтобы получить представление
о том, что он делает, прежде чем вставить его в свой шейдер.

inline fi xed4 LightingCarPaint(SurfaceOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{
 half3 h = normalize(lightDir + viewDir);
 fi xed diff = max(0, dot(s.Normal, lightDir)));

 fl oat ahdn = 1 - dot(h, normalize(s.Normal));
 ahdn = pow(clamp(ahdn, 0.0, 1.0), _DiffusePower);
 half4 brdf = tex2D(_BRDFTex, fl oat2(diff, 1 - ahdn));

 fl oat nh = max(0, dot(s.Normal, h));
 fl oat spec = pow(nh, S.Specular * _SpecPower) * s.Gloss;

 fi xed4 c;
 c.rgb = (s.Albedo * _LightColor0.rgb * brdf.rgb +
_LightColor0.rgb * _SpecularColor.rgb * spec)* (atten * 2);
 c.a = s.Alpha + _LightColor0.a * _SpecularColor.a * spec * atten;
 return c;
}

Создание модели освещения автомобильной краски

144 Глава 5. Модели освещения

5. Давайте обратим наше внимание на структуру Input шейдера
и добавим в неё следующий код. С его помощью мы сможем
создать эффект Френеля, который мы рассматривали в преды-
дущей главе.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat3 worldRefl ;
 fl oat3 viewDir;
};

6. Теперь мы перейдём к нашей функции surf(), в которой осу-
ществляется большинство попиксельных вычислений. В ней
мы создадим итоговые визуальные эффекты нашего шейдера
автомобильной краски.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);

 fi xed falloff = saturate(1 - dot(normalize(IN.viewDir),
o.Normal));
 falloff = pow(falloff, _FalloffPower);

 o.Albedo = c.rgb * _MainTint;
 o.Emission = pow((texCUBE(_Refl Cube, IN.worldRefl).rgb *
falloff), _Refl Power) * _Refl Amount;
 o.Specular = c.r;
 o.Gloss = 1.0;
 o.Alpha = c.a;
}

Следующий скриншот демонстрирует результат применения на-
шего шейдера автомобильной краски к сфере в Unity.

Рис. 5.10. Результат применения шейдера автомобильной краски

145

Как это работает…

Наш шейдер автомобильной краски на самом деле весьма прост, если
рассматривать его по частям, тем более что мы уже рассматривали
каждую отдельную часть в главе 1 «Диффузный шейдинг», и в главе 3
«Пусть ваши игры засияют отражённым светом». Так что мы надеем-
ся, что эти знания уже отложились у вас в голове, а сейчас же давайте
рассмотрим общую идею эффекта.

С помощью приёма BRDF, который мы разобрали в главе 1 «Диф-
фузный шейдинг», мы создаём эффект градиента между двумя цвета-
ми в краске автомобиля. Однако не для всех автомобилей характерен
такой визуальный аспект, поэтому от вас как от шейдерного програм-
миста будет зависеть, будете ли вы использовать BRDF-текстуру или
какой-то другой источник диффузного цвета.

Далее мы просто рассчитываем эффект Френеля и величину зату-
хания, от которых зависит интенсивность отражения на поверхности
автомобиля. Все эти компоненты освещения управляются свойства-
ми из блока свойств, поэтому у художника есть полный контроль за
тем, как в итоге будет выглядеть поверхность автомобиля.

Но это ещё не всё…

В Unity Asset Store продаются готовые шейдеры автомобильной крас-
ки. Вот ссылка на один из них: http://u3d.as/content/ravel-tammeleht/
mo-dy-en-car-paint-shaderpack/2Xe.

Шейдер кожи
Если у вас в игре есть персонажи с натуральной кожей, вам обязатель-
но понадобится шейдер кожи . В этой секции мы рассмотрим один из
способов создания шейдера кожи, который вы сможете использовать
в своей игре. Разумеется, это будет не самый физически правильный
шейдер, но он подойдёт для поставленной задачи, и с помощью него
можно будет добиться неплохого визуального эффекта.

Прежде чем начать, нам нужно определиться с тем, что же наша по-
верхность кожи должна «делать». Вооружившись этой информацией,
мы сможем декомпозировать наш шейдер на компоненты, чтобы мы
смогли запрограммировать соответствующие эффекты.

Шейдер кожи мы можем разложить на четыре основных компонен-
та. Нельзя сказать, что такое деление является результатом какого-то

Шейдер кожи

146 Глава 5. Модели освещения

правила, но подобная декомпозиция позволит нам в итоге добиться
весьма качественного результата. Мы выделим следующие компо-
ненты :

• Подповерхностное рассеивание (Subsurface scattering или
SSS). Этот эффект наблюдается, если смотреть на тонкую или
очень прозрачную кожу на просвет, в результате чего свет, на-
ходящийся за ней, создаёт окрашивающий эффект. Для кожи
это, как правило, красный оттенок, имитирующий прилегаю-
щие кровеносные сосуды. В этой части мы рассмотрим, как
можно вычислить кривизну поверхности на основе её карты
нормалей.

• Диффузный . Как вы наверняка представляете, диффузный
компонент цвета кожи не сводится всего лишь к простой шка-
ле серого. И хотя мы всё так же будем использовать технику
скалярного произведения вектора света и вектора нормали,
нам потребуется применить ещё и технику BRDF, чтобы по-
лучить больше возможностей контролировать распределение
света по поверхности объекта.

• Блики . С бликами на коже не всё так просто, потому что они
будут зависеть от того, насколько жирная поверхность кожи.
Мы всё ещё можем использовать способы работы с бликами,
которые мы выучили, но нам потребуется добавить еще эффект
Френеля и заднюю подсветку, чтобы контролировать место
расположения блика. Таким образом, мы добьёмся более реа-
листичного распределения блика на коже. Конечно, мы могли
бы для контроля за формой блика использовать текстуры, но
в этом рецепте мы будем использовать простые блики, так как
про использование текстур мы рассказали в предыдущей главе.

• Размытые нормали . Причина, по которой большое количест-
во игровых шейдеров кожи приводит к нереалистичными, или
чересчур «пластмассовым» результатам заключается в том,
что нормали в карте нормалей указаны очень детально, что
хорошо, например, для бликов, поскольку там нас интересуют
все детали. Но для диффузного компонента цвета кожи нам
важнее мягкий переход цветов.

Подготовка

Давайте подготовим нашу сцену и все ассеты, которые нам понадо-
бятся при реализации различных частей нашего шейдера. Выполните
следующие действия:

147

1. Создайте новую сцену, шейдер и материал. Не забудьте доба-
вить шейдер материалу, а материал назначить объекту. В идеа-
ле было бы здорово, если бы вы сейчас работали с моделью
головы, но если у вас сейчас этой модели нет под рукой, то мы
можем воспользоваться сферой, так же как и в предыдущих
главах.

2. Кроме того, нам понадобится BRDF-текстура для вычисления
диффузного цвета. BRDF-текстура, поставляемая с книгой
доступна по адресу: http://www.packtpub.com/support. Ис-
пользуемая BRDF-текстура должна имитировать цвет кожи
для различных тонов кожи. В данном случае мы будем моде-
лировать светлую кожу, поэтому мы используем следующую
BRDF-текстуру.

Рис. 5.11. BRDF-текстура для кожи

Как это сделать…

Давайте взглянем на код нашего шейдера. Мы пройдёмся по каждому
блоку кода, а потом объясним ключевые моменты в следующей сек-
ции. Выполните следующие действия:

1. Для начала нам потребуется добавить в блок свойств свойства,
которые позволят применять различные настройки и переда-
вать текстуры в шейдер. Как вы видите, свойств у нас стано-
вится довольно много. Возможно, сейчас будет хорошей идеей
обсудить с художниками возможность упаковки нескольких
текстур (контролирующих разные параметры) в одну, чтобы
избавиться от некоторых текстурных свойств и слайдеров. Но
в данный момент для наших целей это не важно.

Шейдер кожи

148 Глава 5. Модели освещения

Properties
{
 _MainTint ("Global Tint", Color) = (1,1,1,1)
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BumpMap ("Normal Map", 2D) = "bump" {}
 _CurveScale ("Curvature Scale", Range(0.001, 0.09)) = 0.01
 _CurveAmount ("Curvature Amount", Range(0,1)) = 0.5
 _BumpBiass ("Normal Map Blur", Range(0, 5)) = 2.0
 _BRDF ("BRDF Ramp", 2D) = "white" {}
 _FresnelVal ("Fresnel Amount", Range(0.01, 0.3)) = 0.05
 _RimPower ("Rim Falloff", Range(0.5)) = 2
 _RimColor ("Rim Color", Color) = (1,1,1,1)
 _SpecIntensity ("Specular Intensity", Range(0, 1)) = 0.4
 _SpecWidth ("Specular Width", Range(0, 1)) = 0.2
}

2. После этого нам нужно будет объявить несколько инструкций
#pragma, поскольку этот шейдер будет довольно требователен
к ресурсам и ему понадобятся некоторые платформозависи-
мые особенности CGFX. Поэтому, чтобы избежать ошибок
компилятора? скопируйте нижеприведённый код. Его объяс-
нение мы дадим в следующей секции.

CGPROGRAM
#pragma surface surf SkinShader
#pragma target 3.0
#pragma only_renderers d3d9

3. Нашему шейдеру потребуется доступ к данным, которые поль-
зователь выставляет в свойствах шейдера. Для этого нам нужно
объявить соответствующие переменные в блоке SubShader.

sampler2D _MainTex;
sampler2D _BumpMap;
sampler2D _BRDF;
fl oat4 _MainTint;
fl oat4 _RimColor;
fl oat _CurveScale;
fl oat _BumpBiass;
fl oat _CurveAmount;
fl oat _FresnelVal;
fl oat _RimPower;
fl oat _SpecIntensity;
fl oat _SpecWidth;

4. Чтобы мы могли использовать возможности поверхностных
шейдеров на полную катушку, нам потребуется объявить
нашу собственную структуру SurfaceOutput. С её помощью
мы сможем обмениваться данными между нашей функцией

149

освещения и нашей поверхностной функцией. Если бы мы ис-
пользовали встроенную структуру SurfaceOutput, то мы не
смогли бы передать нашей функции освещения ни размытые
нормали, ни значения кривизны поверхности, которые мы рас-
считываем попиксельно.

struct SurfaceOutputSkin
{
 fi xed3 Albedo;
 fi xed3 Normal;
 fi xed3 Emission;
 fi xed3 Specular;
 fi xed Gloss;
 fi xed Alpha;
 fl oat Curvature;
 fi xed3 BlurredNormals;
};

5. Чтобы закончить основную часть нашего шейдера, нам потре-
буется объявить структуру Input и определить в ней нужные
поля. В данном случае нам будут нужны глобальные коорди-
наты каждой вершины модели, нормали вершин в глобальных
координатах, а поскольку мы используем в шейдере карту нор-
малей, то нам также нужно добавить макрос INTERNAL_DATA,
чтобы мы смогли получить нормали после применения карты
нормалей к поверхности.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat3 worldPos;
 fl oat3 worldNormal;
 INTERNAL_DATA
};

6. Подготовив эти данные, мы можем перейти к написанию нашей
функции освещения. Начнём мы с того, что объявим функ цию
модели освещения, которую назовём LightingSkinShader() .

inline fi xed4 LightingSkinShader(SurfaceOutputSkin s, fi xed3
lightDir, fi xed3 viewDir, fi xed atten)
{

}

7. Теперь мы можем добавить в нашу модель освещения необходи-
мые вычисления, чтобы получить правильное освещение кожи.
Для начала мы приведём наши векторы в порядок, нормализо-

Шейдер кожи

150 Глава 5. Модели освещения

вав их, чтобы в дальнейшем работать с единичными векторами.
Поэтому добавьте в функцию освещения следующий код.

//Обработаем векторы освещения
viewDir = normalize(viewDir);
lightDir = normalize(lightDir);
s.Normal = normalize(s.Normal);
fl oat NdotL = dot(s.BlurredNormals, lightDir);
fl oat3 halfVec = normalize(lightDir + viewDir);

8. После того как наши векторы будут готовы, мы можем сфор-
мировать значения, используемые для получения цвета из
BRDF-текстуры.

//Создадим BRDF и имитируемый SSS
fl oat3 brdf = tex2D(_BRDF, fl oat2((NdotL * 0.5 + 0.5)* atten,
s.Curvature)).rgb;

9. Далее мы займемся эффектом Френеля и задней подсветкой.

//Добавим эффект Френеля и заднюю подсветку
fl oat fresnel = saturate(pow(1 - dot(viewDir, halfVec),5.0));
fresnel += _FresnelVal * (1 - fresnel);
fl oat rim = saturate(pow(1 - dot(viewDir, s.BlurredNormals),
_RimPower)) * fresnel;

10. После этого мы посчитаем интенсивность блика, точно так же,
как мы делали в главе 3 «Пусть ваши игры засияют отражён-
ным светом».

//Создадим блик
fl oat specBase = max(0, dot(s.Normal, halfVec));
fl oat spec = pow(specBase, s.Specular*128.0) * s.Gloss;

11. Теперь когда мы вычислили все необходимые значения для на-
шей модели освещения, мы можем объединить их и передать
результат.

//Итоговый цвет
fi xed4 c;
c.rgb = (s.Albedo * brdf * _LightColor0.rgb * atten) +
(spec + (rim * _RimColor));
c.a = 1.0;
return c;

12. И наконец, мы перейдём к функции surf(), в которой мы по-
лучаем данные из текстур, вычисляем размытые нормали и ге-
нерируем значение кривизны поверхности для нашей модели
на основе карты нормалей.

void surf(Input IN, inout SurfaceOutputSkin o)

151

{
 //Получим данные из текстур
 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 fi xed3 normals = UnpackNormal(tex2D(_BumpMap,
IN.uv_MainTex));
 fi xed3 normalBlur = UnpackNormal(tex2Dbias(_BumpMap,
fl oat4 (IN.uv_MainTex, 0.0, _BumpBiass)));

 //Вычислим кривизну поверхности
 fl oat curvature = length(fwidth(WorldNormalVector(IN, normalBlur)))
 / length(fwidth(IN.worldPos)) * _CurveScale;

 //Добавим вычисленные данные в структуру SurfaceOutput
 o.Normal = normals;
 o.BlurredNormals = normalBlur;
 o.Albedo = c.rgb * _MainTint;
 o.Curvature = curvature;
 o.Specular = _SpecWidth;
 o.Gloss = _SpecIntensity;
 o.Alpha = c.a;
}

После того как мы собрали воедино все части нашего шейдера, ре-
зультат его работы должен выглядеть как на следующем скриншоте.

Рис. 5.12. Результат работы шейдера кожи

Как это работает…

Код большей части шейдера нам уже знаком, но есть и несколько но-
вых для нас моментов. К примеру, мы объявили новый тип структуры
SurfaceOutputSkin, и хотя мы её уже видели, сейчас мы всё равно
остановимся на ней подробнее.

Структура SurfaceOutputSkin – это наша собственная кастомная
структура, с помощью которой мы можем передавать данные из функ-

Шейдер кожи

152 Глава 5. Модели освещения

ции surf() в функцию освещения. Можно сказать, что это своего рода
транспортный механизм. Когда мы присваиваем ей значения внутри
функции surf(), эти значения сохраняются в переменных структу-
ры. Эти данные мы можем использовать внутри функции освещения
для выполнения попиксельных расчётов освещения.

Ещё один новый для нас элемент – вычисление кривизны поверх-
ности. Проще говоря, мы измеряем величину изменения для норма-
лей поверхности. Поэтому при изменении кривизны поверхности
изменяется и угол между нормалями поверхности. Мы можем ис-
пользовать эти данные для поиска областей с наибольшей кривизной
и вычислить соответствующее черно-белое значение.

В коде вычисления кривизны поверхности вы, вероятно, замети-
ли две новые встроенные в CGFX функции, с помощью которых мы
получаем необходимые данные, чтобы найти изменения вектора кри-
визны. Первая функция – fwidth() , она принимает один векторный
параметр и возвращает скорость изменения этого вектора в экранных
координатах. Поэтому в результате мы получаем вектор, который
отражает, как быстро изменяются нормали к поверхности модели,
то есть вектор кривизны поверхности. Следующая ссылка ведёт на
описание этой функции в документации по Cg: http://http.developer.
nvidia.com/Cg/fwidth.html.

С помощью стандартной функции Cg fwidth() мы можем полу-
чить информацию о кривизне поверхности нашей модели.

Рис. 5.13. Результат вычисления вектора
кривизны поверхности модели

Нам не нужен весь вектор целиком, нам потребуется лишь его
модуль для каждого пикселя. Поэтому мы можем воспользоваться
функ цией length() , которая вернёт нам длину вектора как значение

153

с плавающей точкой. Следующая ссылка ведёт на описание функции
length в документации по Cg: http://http.developer.nvidia.com/Cg/
length.html.

Таким образом, для каждого пикселя мы находим модуль вектора
кривизны поверхности, который мы будем использовать при сэмп-
линге BRDF-текстуры.

Рис. 5.14. Результат вычисления модуля вектора кривизны
поверхности

После этого, мы вычисляем модуль кривизны по поверхности модели,
для этого мы делим полученный модуль кривизны в экранных коорди-
натах на модуль изменения координат по модели (опять же в экранных
координатах) и умножаем на параметр CurveScale , чтобы, контроли-
руя его, мы могли изменять интенсивность эффекта кривизны.

Финальный результат вычисления кривизны поверхности в нашем
шейдере кожи показан на следующем скриншоте.

Рис. 5.15. Итоговый результат вычислений кривизны
поверхности модели для шейдера кожи

Шейдер кожи

154 Глава 5. Модели освещения

И ещё одна новая для нас функция, которую мы используем для
получения мягкого диффузного освещения кожи, – это функция
tex2Dbias() . С помощью неё мы можем сдвигать или изменять теку-
щий mip-уровень в сторону уменьшения или увеличения, используя
данные из свойств шейдера, в результате чего мы можем контролиро-
вать, насколько размытой будет текстура. На самом деле мы не осу-
ществляем размытие текстуры как таковой, вместо этого мы выбира-
ем более низкий mip-уровень в нашей текстуре. Чтобы узнать больше
про mip-текстурирование, мип-мапы и как их генерировать, обрати-
тесь к документации Unity: http://docs.unity3d.com/Documentation/
Manual/Textures.html.

Но это ещё не всё…

Эта конкретная реализация шейдера кожи была навеяна парой шей-
деров, которые мы увидели в Интернете. Поэтому мы считаем, что
будет правильно упомянуть их здесь:

• Unity forums : http://forum.unity3d.com/threads/131626-
Grittyrealistic-skin-shader;

• Skin Shader 3 : http://wiki.unity3d.com/index.php?title=Skin_
Shader_3.

Шейдер ткани
Шейдинг ткани – это еще одна довольно распространённая задача в
гейм-девелопменте и интерактивной real-time-визуализации. Для её
решения нужно понимать, как волокна ткани рассеивают свет по по-
верхности объекта и как от этого получается характерная для ткани
текстура. При этом шейдинг ткани очень сильно зависит от направ-
ления взгляда, поэтому мы рассмотрим новые приёмы, которые мы
сможем использовать для имитации эффекта отражения света по по-
верхности объекта, а также для создаваемого маленькими волокнами
очень отчётливого эффекта задней подсветки.

При работе с этим шейдером мы познакомимся с концепцией де-
тализированных карт нормалей и детализированных текстур. Объ-
единяя две карты нормалей, мы можем добиться более высокой де-
тализированности, чем мы бы получили, работая с одной текстурой
2048×2048. Эта техника поможет нам имитировать микроуровень
ямок на поверхности объекта, с помощью которых мы сможем рассеи-
вать бликовую компоненту освещения по более широкой площади.

155

Ниже приводится итоговый результат работы шейдера ткани, ко-
торый мы подготовим в этом рецепте.

Рис. 5.16. Итоговый результат работы шейдера ткани

Подготовка

Для этого шейдера мы будем использовать три разных типа текстур,
чтобы имитировать похожую на ткань поверхность:

1. Детализированную карту нормалей. Она будет дублироваться
по поверхности для имитации микроструктуры ткани.

2. Карту вариаций нормалей для создания вариаций в структуре,
с помощью которой ткань будет выглядеть менее однообраз-
ной и более поношенной.

3. Детализированную диффузную текстуру, которую мы сможем
перемножить с базовым цветом для придания цвету ткани
большей глубины и реализма, что подчеркнёт её структуру.

На следующем скриншоте представлены три текстуры, которыми
мы воспользуемся в этом рецепте. Они также приводятся на стра-
нице, посвящённой этой книге, найти вы её можете по адресу: www.
packtpub.com/support.

Рис. 5.17. Используемые в рецепте текстуры

Шейдер ткани

Детализированные Текстура вариации Диффузная
 нормали нормалей текстура

156 Глава 5. Модели освещения

Для того чтобы завершить подготовительные работы, нам нужно
создать сцену с объектом и направленным источником света. После
этого создайте новый шейдер и материал, который мы назначим объ-
екту.

Как это сделать…

Начнём наш шейдер с блока свойств. Выполните следующие дейст-
вия:

1. Нашему шейдеру потребуется совсем немного свойств – для
контроля за тем, какие текстуры мы используем и как будут
выглядеть затухание бликов и отражения по Френелю.

Properties
{
 _MainTint ("Global Tint", Color) = (1,1,1,1)
 _BumpMap ("Normal Map", 2D) = "bump" {}
 _DetailBump ("Detail Normal Map", 2D) = "bump" {}
 _DetailTex ("Fabric Weave", 2D) = "white" {}
 _FresnelColor ("Fresnel Color", Color) = (1,1,1,1)
 _FresnelPower ("Fresnel Power", Range(0, 12)) = 3
 _RimPower ("Rim Falloff", Range(0, 12)) = 3
 _SpecIntensity ("Specular Intensity", Range(0, 1)) = 0.2
 _SpecWidth ("Specular Width", Range(0, 1)) = 0.2

}

2. Поскольку мы хотим иметь возможность полностью конт-
ролировать, как свет взаимодействует с нашей тканью, нам
по требуется объявить новую модель освещения в секции
#pragma и указать компилятору использовать шейдерную мо-
дель 3.0. Для того чтобы использовать свою модель освещения,
нам нужно объявить её имя в директиве #pragma.

CGPROGRAM
#pragma surface surf Velvet
#pragma target 3.0

3. Чтобы мы смогли воспользоваться данными, вводимыми в
блок свойств, нам потребуется объявить переменные с такими
же именами в блоке SubShader.

sampler2D _BumpMap;
sampler2D _DetailBump;
sampler2D _DetailTex;
fl oat4 _MainTint;
fl oat4 _FresnelColor;

157

fl oat _FresnelPower;
fl oat _RimPower;
fl oat _SpecIntensity;
fl oat _SpecWidth;

4. Чтобы можно было контролировать параметры тайлинга каж-
дой из наших детализированных текстур по отдельности, мы
должны объявить разные UV-параметры в структуре Input.
Связь UV-координат с текстурой будет создана автоматичес-
ки, если вы добавите в имя переменной "uv" перед именем
текс туры.

struct Input
{
 fl oat2 uv_BumpMap;
 fl oat2 uv_DetailBump;
 fl oat2 uv_DetailTex;
};

5. Теперь нам нужно написать функцию, которая станет нашей
моделью освещения. Начнём написание функции освещения
с задания её сигнатуры. Нам нужно выбрать ту, что содержит
viewDir, потому что шейдинг поверхности ткани зависит от
направления взгляда.

inline fi xed4 LightingVelvet (SurfaceOutput s, fi xed3
lightDir, half3 viewDir, fi xed atten)
{

}

 Всегда стоит начинать с определения необходимых для вы-
числения освещения векторов. Впоследствии нам не придется
заботиться об их нормализации при каждом использовании в
других частях кода. Давайте добавим вычисление этих векто-
ров в начало функции модели освещения:

//Вычислим векторы освещения
viewDir = normalize(viewDir);
lightDir = normalize(lightDir);
half3 halfVec = normalize(lightDir + viewDir);
fi xed NdotL = max(0, dot(s.Normal, lightDir));

6. Следующая задача – расчёт Specular-компонента. Добавьте
следующий код сразу после определения векторов:

//Вычислим блик
fl oat NdotH = max(0, dot(s.Normal, halfVec));
fl oat spec = pow(NdotH, s.Specular*128.0) * s.Gloss;

Шейдер ткани

158 Глава 5. Модели освещения

 Шейдинг ткани очень сильно зависит от направления взгляда
на поверхность. Чем более острый угол взгляда к поверхности,
тем больше её волокна улавливают свет за ними и увеличива-
ют интенсивность Specular-компонента.

//Создадим освещение по Френелю
fl oat NdotV = pow(1 - max(0, dot(halfVec, viewDir)), _FresnelPower);
fl oat NdotE = pow(1 - max(0, dot(s.Normal, viewDir)), _RimPower);
fl oat fi nalSpecMask = NdotE * HdotV;

7. После того как мы закончили наши основные вычисления
освещения, нам нужно вернуть из нашей функции итоговый
цвет. Дополните модель освещения, добавив следующий код
сразу после вычисления эффекта Френеля.

//Вернём итоговый цвет
fi xed4 c;
c.rgb = (s.Albedo * NdotL * _LightColor0.rgb)
 + (spec * (fi nalSpecMask * _FresnelColor)) * (atten * 2);
c.a = 1.0;
return c;

8. Закончим мы наш шейдер, дописав функцию surf(). Нам
нужно лишь распаковать наши карты нормалей и перенапра-
вить данные в структуру SurfaceOutput.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_DetailTex, IN.uv_DetailTex);
 fi xed3 normals = UnpackNormal(tex2D(_BumpMap, IN.uv_BumpMap)).rgb;
 fi xed3 detailNormals = UnpackNormal(tex2D(_DetailBump,
IN.uv_DetailBump)).rgb;
 fi xed3 fi nalNormals = fl oat3(normals.x + detailNormals.x,
 normals.y + detailNormals.y,
 normals.z + detialNormals.z);

 o.Normal = normalize(fi nalNormals);
 o.Specular = _SpecWidth;
 o.Gloss = _SpecIntensity;
 o.Albedo = c.rgb * _MainTint;
 o.Alpha = c.a;
}

Следующий скриншот демонстрирует результат работы нашего
шейдера ткани на модели, имитирующей ткань.

159

Рис. 5.18. Результат работы шейдера ткани на модели,
имитирующей ткань

Как это работает…

На самом деле наш шейдер ткани не такой уж и сложный. В нём мы
выполняем очень простые операции со светом, но порой это всё, что
необходимо для вашего шейдера. Перед тем, как приступать к созда-
нию шейдера, стоит пристальнее взглянуть на имитируемую поверх-
ность, декомпозировать её на компоненты, а потом запрограммиро-
вать их один за другим. Весь фокус будет заключаться в том, как вы
будете комбинировать различные вычисления, совсем как при сме-
шении слоёв в Photoshop.

Новая техника, которую мы применили в нашем шейдере ткани, –
это комбинирование двух карт нормалей с различной плотностью
тайлинга. В соответствии с основами линейной алгебры при сложе-
нии двух векторов мы получаем третий. С нашими картами нормалей
мы так и поступаем. К карте вариаций нормалей, из которой мы по-
лучаем вектор с помощью функции UnpackNormal() , мы прибавляем
вектор нормали из детализированной карты нормалей. В результате
мы получаем новую карту нормалей. После этого мы нормализуем
наш итоговый вектор, чтобы он вновь был в диапазоне от 0 до 1. Если
мы этого не сделаем, то наша карта нормалей будет выглядеть весьма
помятой и визуально неправильной.

И наконец, комбинация вычислений освещения по Френелю и
блика позволяет нам создать эффект маленьких волокон ткани, улав-
ливающих свет на острых углах к поверхности объекта.

Шейдер ткани

ГЛАВА 6
Прозрачность

В этой главе вы узнаете о:

 cоздании прозрачности с помощью параметра alpha;
 прозрачном cutoff-шейдере;
 сортировке объектов с помощью очередей рендеринга;
 GUI и прозрачности.

Введение
Реализация прозрачности в шейдерах может оказаться довольно не-
тривиальной задачей. Но с помощью поверхностных шейдеров Unity
мы легко можем сделать шейдер, реализующий эффект полной про-
зрачности для таких поверхностей, как стекло, или частичной про-
зрачности для волос и листвы.

Мы начнём с создания простых прозрачных шейдеров, а потом
остановимся на том, как прозрачность влияет на порядок отрисовки
объектов.

Создание прозрачности

с помощью параметра alpha
Начнём мы с того, что разберёмся, как нужно изменить шейдер, чтобы
он стал прозрачным . И опять Unity здесь всё делает за нас.

Нам всего лишь потребуется использовать в секции #pragma наше-
го шейдера параметр alpha. Эта инструкция говорит Unity, что мы со-
бираемся использовать прозрачность в шейдере. Однако в создании
прозрачных шейдеров есть несколько нюансов, так как важным ста-
новится порядок отрисовки элементов. В этом рецепте мы рассмот-
рим основные моменты, с которыми нам придётся столкнуться при
создании прозрачного объекта на нашей сцене. Другие особенности
прозрачности мы рассмотрим в последующих рецептах.

161Создание прозрачности с помощью параметра alpha

Подготовка

Для начала работы с этим рецептом нам потребуется подготовить не-
сколько ресурсов и создать новую сцену в редакторе Unity. Давайте
выполним следующие действия, чтобы приготовиться к написанию
шейдера:

1. Создайте новую сцену и поместите на неё сферу, плоскость и
источник направленного света.

2. После этого нам потребуется создать новый шейдер и новый
материал. Шейдер будет необходимо назначить материалу, а
материал – сфере.

3. Далее нам будет нужна текстура, на основе которой мы будем
принимать решение о том, какая часть нашего объекта на сцене
должна быть прозрачна, а какая – нет.

На следующем рисунке приводится пример текстуры, которую мы
будем использовать для этого рецепта. На этой текстуре есть отдель-
но красный, зеленый, синий цвета и комбинация всех трех – белый
цвет. Таким образом, в качестве маски прозрачности в нашем примере
мы можем использовать любой из каналов RGB со значениями от 0
до 1, где 0 – полностью прозрачный, а 1 – полностью непрозрачный.

Рис. 6.1. Текстура, использованная
нами для этого рецепта

Как это сделать…

Подготовив ассеты, мы можем приступить к написанию нашего по-
верхностного шейдера для создания эффекта прозрачности.

Выполните следующие действия:

1. Давайте добавим в блок свойств новое свойство, с помощью
которого мы будем контролировать уровень прозрачности.

Properties
{

162 Глава 6. Прозрачность

 _MainTex ("Base (RGB)", 2D) = "white" {}
 _TransVal ("Transparency Value", Range(0,1)) = 0.5
}

2. После этого нам потребуется добавить в секцию #pragma но-
вый параметр, который мы ещё не видели – параметр alpha.

CGPROGRAM
#pragma surface surf Lambert alpha

3. После этого мы добавим в функцию surf() нашего шейде-
ра строку, в которой будем присваивать значение параметру
o.Alpha.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.r * _TransVal;
}

Следующий скриншот демонстрирует наш прозрачный шейдер в
редакторе Unity.

Рис. 6.2. Результат работы шейдера

Как это работает…

Как вы, наверно заметили, с помощью поверхностых шейдеров в Unity
сделать эффект прозрачности не составляет никакого труда. Для та-
кого шейдера ключевыми являются два элемента: параметр alpha из
секции #pragma и значение Alpha в структуре SurfaceOutput, кото-
рое и определяет, насколько прозрачным должен быть каждый конк-
ретный пиксель.

Объявление параметра alpha в секции #pragma говорит Unity, что
на экране сейчас нужно будет отрендерить прозрачную поверхность.

Прозрачность
по красному каналу

Прозрачность
по зелёному каналу

Прозрачность
по синему каналу

163Прозрачный cutoff-шейдер

Всё, что нужно сделать после этого, – это присвоить значение o.Alpha
из нашей структуры SurfaceOutput (в данном случае – встроенной) –
значение от 0 до 1 для каждого пикселя. Говоря на языке цвета, белый
(1) будет соответствовать полностью непрозрачной поверхности,
а чёрный (0) – полностью прозрачной.

Данная реализация прозрачности является наиболее простой. По
мере нашего продвижения по этой главе мы рассмотрим характерные
ситуации, которые возникают при использовании полупрозрачных
шейдеров в real-time-движках, таких как Unity.

Прозрачный cutoff-шейдер
Unity предоставляет нам ещё один параметр в секции #pragma, с по-
мощью которого можно создать более простой эффект прозрачности,
известный как отсекаемая прозрачность, или cutoff-прозрачность .
Этот тип прозрачности использует некоторое контрольное значение,
чтобы определить, нужно ли рисовать данный конкретный пиксель,
таким образом, в нашем шейдере будут только либо полностью про-
зрачные, либо полностью непрозрачные пиксели, в отличие от пре-
дыдущего рецепта, в котором в шейдере мы могли использовать весь
диапазон оттенков серого для управления прозрачностью объекта.
Такой шейдер называется полупрозрачным шейдером .

Но не будем отвлекаться, вернёмся к написанию этого шейдера в
Unity.

Подготовка

Давайте начнём работу над нашим шейдером со следующих дейст-
вий:

1. Создайте новую сцену и поместите на ней обычную сферу и
направленный источник света.

2. Далее создайте новый шейдер и новый материал.
3. Назначьте шейдер материалу, а материал – сфере на сцене.
4. После этого нам потребуется новая текстура. Нагляднее будет

использовать черно-белую текстуру, таким образом будет бо-
лее заметен эффект от изменения величины отсечения.

На следующем скриншоте показана текстура, которую мы исполь-
зовали в этом рецепте. Для её создания мы воспользовались фильт-
ром Render Difference Clouds в Photoshop. Сделанная нами текстура
доступна по адресу www.packtpub.com/support.

164 Глава 6. Прозрачность

Рис. 6.3. Текстура, использованная
нами в этом рецепте

Как это сделать…

Теперь, когда мы подготовили нашу сцену и необходимые ассеты, да-
вайте посмотрим на код нашего шейдера.

Выполните следующие действия:

1. Для начала добавьте в блок свойств свойство, которое позво-
лит нам управлять величиной отсечения в нашем шейдере.

Properties
{
 _MainTex ("Base (RGB)", 2D = "white" {}
 _Cutoff ("Cutoff Value", Range(0,1)) = 0.5
}

2. После этого нам нужно указать, что мы делаем cutoff-шейдер.

CGPROGRAM
#pragma surface surf Lambert alphatest:_Cutoff

3. И наконец, мы присваиваем o.Alpha значения для каждого
пикселя поверхности.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.r;
}

Следующий скриншот демонстрирует результат применения на-
шего cutoff-шейдера при различных значениях cutoff-слайдера в диа-
пазоне между 0 и 1.

165Сортировка объектов с помощью очередей...

Рис. 6.4. Результат работы cutoff-шейдера

Как это работает…

Unity предоставляет нам довольно много параметров, которые мы
можем использовать в секции #pragma. С помощью них мы можем
изменять и оптимизировать поведение нашего поверхностного шей-
дера. Это ещё одна причина, по которой поверхностные шейдеры яв-
ляются таким мощным и эффективным инструментом для итератив-
ного написания шейдеров.

Наш отсекающий шейдер использует новый параметр директивы
#pragma – alphatest:VariableName. Эта инструкция переводит наш
шейдер в режим упрощённой версии прозрачности. В этом режиме вмес-
то значения от 0 до 1, соответствующего прозрачности пикселя, ренде-
рится пиксель или отбрасывается, определяется только значением пере-
менной _Cutoff. При таком подходе, если мы на закладке Инспектора
присвоим переменной _Cutoff значение 0,4, все значения меньше 0,4
будут считаться прозрачными, а значения больше 0,4 – непрозрачными.

Эта техника хорошо подходит, если мы беспокоимся о производи-
тельности, поскольку блендинг полупрозрачных объектов – гораздо
более ресурсоемкая задача, чем простая cutoff-прозрачность. Одна-
ко для мобильных устройств наблюдается обратная закономерность,
поскольку сэмплинг-текстуры являются достаточно дорогой опера-
цией для этих маленьких GPU. Поэтому, если вы используете Unity
для разработки приложения под мобильные устройства, используйте
полупрозрачные шейдеры, а технику отсекаемой прозрачности при-
меняйте лишь в случае необходимости.

Сортировка объектов с помощью

очередей рендеринга
Для того чтобы действительно понять эффект прозрачности, нам
потребуется остановиться на сортировке по глубине , или проще го-

166 Глава 6. Прозрачность

воря – очерёдности отрисовки объектов. В Unity мы можем контро-
лировать порядок отрисовки объектов на экране, что предоставляет
нам больше возможностей контроля за тем, какие объекты будут от-
рисованы поверх каких. Вы можете думать об очерёдности отрисовки
как о слоях в Photoshop. Очерёдность отрисовки особенно важна при
работе с прозрачностью или с такими элементами, как объекты поль-
зовательского интерфейса.

В этом рецепте вы увидите, как можно использовать данный метод
слоёв для рендеринга ваших объектов с помощью встроенных в Unity
тегов. Этот момент очень важен, поскольку у вас появится больше
возможностей для контроля за рендерингом объектов в игре.

Подготовка

Для начала работы нам потребуется создать необходимые ассеты,
чтобы мы могли увидеть, как очерёдность отрисовки объектов в Unity
предоставляет нам больше гибкости и контроля за рендерингом.

Выполните следующие действия:

1. Создайте новую сцену и разместите на ней несколько сфер так,
чтобы они были выстроены в ряд по любой оси. Наша цель – по-
нять, как мы можем рисовать одни объекты поверх других, вне
зависимости от их реального расположения в пространстве.

2. Чтобы увидеть эффект изменения порядка отрисовки объек-
тов, нам потребуются, по крайней мере, два шейдера. Поэтому
давайте создадим два новых шейдера и соответственно их на-
зовём. Мы назвали наши шейдеры Depth001 и Depth002.

3. Ваша сцена должна выглядеть, как на следующем скриншоте
(рис. 6.5). Такой сетап позволит нам поэкспериментировать с
очерёдностью отрисовки объектов.

Как это сделать…

Код, который нам потребуется написать для реализации этого при-
ёма, на самом деле весьма прост. В нём будут присутствовать всего
две новые для нас строчки.

Выполните следующую последовательность действий:

1. Сначала нам потребуется определить, в какой очереди ренде-
ринга наш объект будет рисоваться, – для этого нам нужно бу-
дет модифицировать блок Tags{} внутри блока SubShader.

Tags { "Queue" = "Geometry-20"}

167Сортировка объектов с помощью очередей...

Рис. 6.5. Сцена демонстрирующая порядок отрисовки объектов

2. Далее нам нужно будет дать инструкции Unity, что мы хотим
контролировать очерёдность отрисовки данного объекта и что
мы не хотим, чтобы он записывался в буфер глубины. Добавьте
следующую строку кода сразу после добавленной нами ранее
строки Tags{}.

ZWrite Off

3. После того как мы добавили этот код в наш шейдер, нам нужно
будет сохранить его, а потом вернуться в Unity, чтобы шейдер
скомпилировался заново. После того как шейдер скомпилиру-
ется, вы заметите, что одна из сфер рисуется позади всех объ-
ектов, даже несмотря на то, что её действительное положение
в пространстве находится перед всеми другими объектами.
Следующий скриншот демонстрирует результат применения
шейдера сортировки глубины.

Рис. 6.6. Результат применения шейдера глубины

168 Глава 6. Прозрачность

Как это работает…
По умолчанию, Unity сортирует объекты по их удалённости от ка-
меры. Поэтому если объект будет расположен ближе к камере, то он
будет отрисован поверх всех остальных объектов, расположенных
дальше от камеры. В большинстве случаев при разработке игр такое
поведение всех устраивает, однако всё же бывают ситуации, в кото-
рых вам потребуется возможность контролировать сортировку ваших
объектов на сцене. Это можно делать с помощью блока Tags{}.

В Unity есть дефолтные очереди отрисовки, каждой из которых со-
поставлено число, которое определяет, когда объект должен быть от-
рисован на экране. Эти встроенные очереди называются Background,
Geometry, AlphaTest, Transparent и Overlay. Очереди были добавле-
ны не просто так: их цель – облегчить процесс написания шейдеров, а
также упростить взаимодействие с real-time-рендерером. Описание
очередей отрисовки приводится в следующей таблице.

Таблица 6.1. Описание очередей отрисовки

Название Описание Значение

Background Эта очередь рендерится первой. Используется
для скайбокса и т. п.

1000

Geometry Эта очередь используется по умолчанию. Она
подходит для большинства объектов. Она исполь-
зуется для рендеринга непрозрачных объектов

2000

AlphaTest Alpha-tested (cutoff) геометрия использует эту
очередь. Специальная очередь для объектов с
cutoff-прозрачностью позволяет рендерить проз-
рачные объекты только после того, как отрисуют-
ся все непрозрачные объекты

2450

Transparent Эта очередь отрисовывается после очередей
Geometry и AlphaTest от самых дальних объектов
к более близким к камере. Она предназначена для
объектов с альфа-блендингом (для которых шей-
деры не пишут в буфер глубины), например для
стекла или эффектов частиц

3000

Overlay Эта очередь отрисовки предназначена для овер-
леев. Всё, что должно рендериться в последнюю
очередь, идёт сюда, например блики камеры

4000

Так что, после того как вы определитесь с очередью отрисовки объ-
екта, вам следует присвоить ему тег встроенной очереди. Наш шейдер
использовал очередь Geometry, поэтому мы добавили Tags{"Queue"=
"Geometry"}. Однако при этом мы хотим, чтобы наш объект рисовал-

169GUI и прозрачность

ся до всех остальных объектов из очереди Geometry, но после очереди
Background. Поэтому мы изменили блок Tags{} следующим образом:
Tags{"Queue"="Geometry-20"}. Эта инструкция говорит Unity, что
мы хотим, чтобы наш объект считался непрозрачным, но при этом он
должен рендериться за всеми остальными непрозрачными объекта-
ми. Это становится понятнее, если считать, что Geometry, – это всего
лишь число, которое указывает порядок рендеринга объектов. Соот-
ветственно, отняв от этого числа 20, мы сказали, что хотим, чтобы наш
объект рендерился раньше.

Помимо этого, нам потребуется добавить тег ZWrite в блок
SubShader. Таким образом, мы говорим Unity, что мы хотим сами
контролировать сортировку по глубине данного объекта и что мы
присвоили новое значение его очереди отрисовки. Так что мы просто
устанавливаем ZWrite в Off.

GUI и прозрачность
Теперь , когда мы уже рассмотрели основы создания прозрачных шей-
деров и научились контролировать очерёдность отрисовки объектов,
давайте посмотрим на задачу из области практики, в которой нам по-
требуется использовать прозрачность и контролировать очерёдность
отрисовки прозрачных объектов.

Создание GUI для Unity – это, несомненно, очень серьёзная зада-
ча. Можно использовать встроенные функции OnGUI() для создания
элементов GUI с помощью набора прозрачных 2D-изображений, пе-
реложив на Unity задачу их отрисовки. Или же можно создать насто-
ящую систему с 3D-элементами GUI, которые вы сможете увидеть
на сцене в редакторе Unity. Мы пойдём по последнему пути. Нам
потребуется использовать атлас с 2D-изображениями, которые мы
поместим на 3D-объекты нашей сцены, чтобы таким образом создать
элементы GUI для нашей игры.

Также в этом рецепте мы рассмотрим некоторые сложности, с ко-
торыми вы, вероятно, столкнётесь при использовании этого подхода,
такие как, например, очерёдность отрисовки, и увидим, как с этими
сложностями бороться.

Подготовка
В этом рецепте мы разберём пример очень простого GUI, для которо-
го нам потребуется создать атлас с GUI-элементами для нашей сце-
ны. При создании GUI в 3D обычно помещают текстуры всех элемен-

170 Глава 6. Прозрачность

тов в одну текстуру (атлас), для того чтобы сэкономить на количестве
используемых текстур. Это значит, что вся графика для кнопок, для
иконок, а иногда даже для текста будет находиться в одной текстуре,
альфа-канал которой показывает, где атлас должен быть полностью
прозрачен, где непрозрачен, а где полупрозрачен. Взгляните на следу-
ющий скриншот, содержащий атлас, который мы будем использовать
для этого рецепта.

Рис. 6.7. Атлас, использованный нами для этого рецепта

Давайте начнём создание наброска элементов GUI. В процессе ра-
боты с ним нам придётся продумать моменты, с которыми мы можем
столкнуться при написании GUI в продакшене.

Выполните следующую последовательность действий:

1. Создайте GUI-атлас, похожий на изображённый на предыду-
щем скриншоте. Не забудьте добавить в текстуру альфа-ка-
нал.

2. Кроме этого, нам потребуется сделать немного простых гео-
метрических объектов для нашего GUI. Мы воспользовались
Maya, чтобы сделать меши, на которых будут располагаться
GUI-элементы.

3. Создайте новую сцену и поместите на неё плоскость и направ-
ленный источник света.

4. Далее создайте новый шейдер и новый материал для нашего
GUI, шейдер назначьте материалу.

5. Теперь, чтобы завершить подготовку, нам просто нужно назна-
чить наш материал GUI-объектам на сцене.

6. После того как вы выполните предыдущие шаги, ваша сце-
на должна стать похожей на изображённую на следующем
скриншоте. Вы можете использовать сцену, которая идёт вмес-
те с этой книгой, но всегда более продуктивно упражняться на
своих ассетах.

RGB-атлас Прозрачность

171GUI и прозрачность

Рис. 6.8. Вид сцены с элементами GUI

Пока что то, что получилось, несильно радует взгляд, да и наша
альфа не создаёт эффекта прозрачности, необходимого для настояще-
го игрового GUI. Нам потребуется создать собственный GUI-шейдер,
чтобы наши элементы GUI стали более изящными. Давайте этим и
займёмся.

Как это сделать…

Чтобы наши элементы GUI получили прозрачность, нам потребуется
создать собственный шейдер, с помощью которого мы сможем ука-
зать Unity, что эти объекты должны быть прозрачными.

Выполните следующие действия:

1. Как обычно, нам нужно заполнить блок свойств соответствую-
щими свойствами, чтобы мы смогли взаимодействовать с на-
шим шейдером из редактора Unity.

//После того как мы создадим наши свойства тут, мы сможем
//увидеть их на закладке инспектора.
Properties
{
 _GUITint ("GUI Tint", Color) = (1,1,1,1)
 _GUITex ("Base (RGB) Alpha (A)", 2D) = "white" {}
 _FadeValue ("Fade Value", Range(0,1)) = 1
}

2. После этого мы перейдём к SubShader блоку, а начнём с того,
что зададим тип очереди отрисовки, который нам потребуется,
и модель освещения. Мы используем новые теги, на которых

172 Глава 6. Прозрачность

более подробно остановимся в следующей секции. Сейчас же
добавьте следующий код в начало блока SubShader:

//Тут мы объявляем теги, чтобы сказать Unity, что это будет
//за шейдер.
Tags {"Queue"="Transparent" "IgnoreProjector"="True"
"RenderType"="Transparent"}
ZWrite Off
Cull Back
LOD 200

3. После того как мы объявили теги, нам нужно будет перейти к
инструкциям #pragma и добавить нашу собственную модель
освещения, а также добавить в код несколько, пока ещё новых
для нас аргументов. Таким образом, мы сможем создать по-
верхность, на которую не действуют источники света на сцене
(Unlit), и предоставить полный контроль атласу за тем, как
выглядят элементы GUI.

//Определим модель освещения
CGPROGRAM
#pragma surface surf UnlitGUI alpha novertexlights

4. Далее нам потребуется связать переменные в нашем блоке
свойств и переменные в блоке CGPROGRAM.

//Создадим связь между свойствами и переменными
sampler2D _GUITex;
fl oat4 _GUITint;
fl oat _FadeValue;

5. После того как эти шаги подготовки шейдера будут выполне-
ны, мы перейдём к написанию модели освещения Unlit . Она
будет достаточно простой, в ней мы будем передавать цвето-
вые значения из атласа в нашу структуру SurfaceOutput.

//Unlit – модель освещения
inline fi xed4 LightingUnlitGUI(SurfaceOutput s, fi xed3
lightDir, fi xed3 viewDir, fi xed atten)
{
 fi xed4 c;
 c.rgb = s.Albedo;
 c.a = s.Alpha;
 return c;
}

6. Не забывайте, что раз мы хотим использовать текстуры, то
нам нужно передавать UV-координаты для них в структуре
Input.

173GUI и прозрачность

struct Input
{
 fl oat uv_GUITex;
};

7. Далее мы просто получаем цвет и альфу из текстуры, после
чего передаём их в структуру SurfaceOutput внутри нашей
функции surf().

void surf(Input IN, inout SurfaceOutput o)
{
 half4 texColor = tex2D(_GUITex, IN.uv_GUITex);
 o.Albedo = texColor.rgb * _GUITint.rgb;
 o.Alpha = texColor.a * _FadeValue;
}

 После того как вы закончите написание шейдера, вы должны
увидеть результат, похожий на изображённый на следующем
скриншоте, однако если вы используете вашу собственную
геометрию и свой атлас, то сцена, конечно, будет выглядеть
по-другому. Не считая этих возможных различий, шейдер дол-
жен создавать эффект прозрачной поверхности, на которую не
действуют источники света.

Рис. 6.9. Промежуточный результат работы шейдера

 Вероятно, вы заметили, что в наш GUI закралась маленькая
ошибка. Фоновая заливка меню рисуется поверх кнопки Play
Game. Так получилось, потому что меши находятся очень
близко, и Unity было тяжело определить, какой объект нужно
рисовать первым. А поскольку очерёдность отрисовки опре-

174 Глава 6. Прозрачность

делялась удалённостью от камеры, Unity рендерит фон меню
поверх кнопки.

8. Чтобы исправить эту неточность, нам нужно будет изменить
очередь отрисовки для каждого материала. Мы не можем
просто поменять очередь отрисовки в шейдере, поскольку
тогда нам пришлось бы писать шейдер для каждого уровня
очереди. Нам нужна возможность индивидуального контроля
наших материалов. Поэтому мы напишем небольшой скрипт
на C#, который поможет нам в этом деле. Давайте приступим
к этому.

9. Для начала создайте новый C#-скрипт.
10. После того как скрипт был создан, кликните по нему два раза,

чтобы открыть его в MonoDevelop.
11. Первым делом нам нужно дать указание скрипту выполняться

в редакторе, чтобы мы могли в реальном времени наблюдать
эффекты от изменения очереди отрисовки. Для этого нам нуж-
но добавить атрибут [ExecuteInEditMode] перед объявлени-
ем класса.

[ExecuteInEditMode]
public class ObjectRenderQueue : MonoBehaviour

12. Чтобы мы смогли в реальном времени изменять очерёдность
отрисовки, нам потребуется создать переменную, значение ко-
торой мы будем менять с закладки Инспектора. Поэтому мы
объявим новую переменную с именем queueValue и сделаем её
публичной, для того чтобы она отображалась в Инспекторе.

//Эта строка кода позволит нам изменять величину очереди
//в редакторе
public int queueValue = 2000;

13. После этого мы перейдём к функции Update() , где первым де-
лом нам нужно будет проверить, что на объекте, к которому
прицеплен этот скрипт, есть материал.

//Сначала проверим, есть ли у объекта материал.
Material curMaterial = renderer.sharedMaterial;

14. Далее с помощью оператора if() мы проверяем, что наша пе-
ременная curMaterial содержит непустую ссылку на матери-
ал. Это мы делаем, чтобы подстраховаться от всяких ненуж-
ных сообщений об ошибках, появляющихся в консоли.

if (curMaterial != null)
{

175GUI и прозрачность

 //Если есть материал, устанавливаем значение очереди
 curMaterial.renderQueue = queueValue;
}
else
{
 //Если материал найти не удалось, выведем отладочное
 //сообщение.
 Debug.LogWarning(transform.name +
 ": Cannot fi nd a material to set the render
queue!");
}

 После того как вы написали скрипт, вы сможете его назначить
любому элементу GUI, чтобы подкорректировать в редакторе
значение очереди на лету и тут же увидеть изменения в отри-
совке. Теперь наша GUI-сцена готова, и все наши элементы
GUI рисуются в правильном порядке. При этом у нас появи-
лись достаточно большие возможности контроля за отрисов-
кой наших объектов GUI, очень похожие на возможности,
предоставляемые слоями в Photoshop. И всё это благодаря со-
зданию шейдера и небольшого скрипта.

Рис. 6.10. Итоговый результат работы шейдера

Как это работает…

В GUI-шейдере мы добавили несколько новых тегов, которые позво-
ляют нам осуществлять тонкую настройку работы нашего шейдера с
рендерером Unity. Объявив инструкцию "IgnoreProjector"="True",

176 Глава 6. Прозрачность

мы говорим Unity, что не хотим, чтобы какие-либо материалы или
текстуры с типом projector влияли на наши объекты или шейдер.
Мы делаем это потому, что хотим, чтобы наши элементы GUI были
независимы от сцены. Все эффекты, происходящие на сцене, в том
числе создаваемые проекторами, должны затрагивать лишь игровые
объекты, но не элементы GUI. Тег "IgnoreProjector" – как раз пре-
красный способ решения этой задачи.

Второй новый для нас тег – это "RenderType"="Transparent".
Анало гично тегу "Queue", этот тег говорит Unity, что это прозрачный
шейдер, и используется в работе фулскрин-эффектов, для того чтобы
Unity мог правильно отсортировать объекты.

Последнее новшество нашего шейдера – это добавление
novertexlights в инструкцию #pragma. Этот параметр говорит
Unity, что мы не хотим использовать повертексное освещение или
сферические гармоники для освещения наших объектов. Более того,
мы вообще не хотим использовать освещение. Поэтому мы использу-
ем этот параметр для того, чтобы облегчить наш шейдер в вычисли-
тельном плане, – как раз то, что нам нужно при разработке 3D-систе-
мы элементов GUI.

Что касается созданного нами скрипта для изменения очереди
рендеринга – скрипт просто обращается к прикреплённому к нашему
объекту материалу с помощью конструкции transform.renderer.
sharedMaterial. Если материал действительно назначен объекту, к
которому прикреплён код, то код вернёт материал. Если код не смо-
жет найти материал, то он вернёт null.

После этого мы проверяем, смог ли скрипт найти материал, и изме-
няем значение очереди отрисовки. Если скрипт не смог найти мате-
риал, то мы просто выводим в консоль отладочное сообщение, чтобы
пользователь знал, что объекту следовало бы назначить материал.

Этот простой пример демонстрирует возможности очередей отри-
совки при работе с прозрачностю. Используя эти знания, вы сможете
создавать свои более сложные эффекты.

ГЛАВА 7
Волшебные возможности

вершин

В этой главе вы узнаете о том, как:

 использовать цвет вершин в поверхностном шейдере;
 анимировать вершины в поверхностном шейдере;
 использовать цвет вершин при создании ландшафта.

Введение
При рендеринге объектов в реальном времени нам никак не обойтись
без шейдеров . С их помощью мы можем создавать очень сложные ва-
рианты освещения поверхности объектов, но, кроме этого, используя
шейдеры, можно непосредственно модифицировать и вершины, из
которых состоят ваши объекты. Этот подход имеет много преиму-
ществ, по сравнению с работой с массивом вершин на CPU, так как,
используя шейдеры, мы можем это делать намного быстрее, не пере-
сылая каждый раз данные с CPU на GPU.

Вершинная функция выполняется один раз для каждой вершины,
переданной на видеокарту (Graphics Processing Unit или GPU). Её за-
дача – преобразовать локальные 3D-координаты вершины таким обра-
зом, чтобы при рендеринге она попала в правильное место на 2D-экране.
С помощью вершинной функции мы можем изменять такие параметры
вершины, как её положение, цвет и UV-координаты. После того как
вершинная функция завершает свою работу, управление передается в
функцию surf(), в которой применяются попиксельные эффекты.

Вершинный шейдер (vertex shader) является мощным инструмен-
том для управления 3D-моделями, с помощью которого мы можем
реализовать такие эффекты, как эффект волн на поверхности океана,
или эффект развевающегося флага, или, например, раскрасить нашу
модель цветами вершин. В этой главе мы рассмотрим применение
вершинной функции в поверхностных шейдерах.

178 Глава 7. Волшебные возможности вершин

Получение цвета вершины

в поверхностном шейдере
Давайте начнём эту главу с того, что разберёмся, как в вершинной
функции поверхностного шейдера получить доступ к атрибутам каж-
дой вершины модели. Вооружившись этим знанием, мы сможем ис-
пользовать атрибуты вершин, чтобы создавать по-настоящему инте-
ресные визуальные эффекты.

Каждая вершина, передаваемая в вершинную функцию, может со-
держать различные атрибуты, например координаты вершины (тип
fl oat3), направление нормали (тип fl oat3). Вы даже можете присваи-
вать и получать цвет для каждой вершины (тип fl oat4). На этих ат-
рибутах мы остановимся в данном рецепте. Мы рассмотрим, как в по-
верхностных шейдерах сохранять и использовать цвета вершин.

Подготовка
Для того, чтобы написать этот вершинный шейдер, нам потребуется
подготовить несколько ассетов. Выполните следующие шаги:

1. Для того чтобы мы смогли увидеть цвета вершин, нам нужна
модель, вершинам которой присвоены некоторые цвета. Вы
можете использовать Unity для назначения цветов, но тог-
да вам придётся написать инструмент, который бы позволил
пользователю присваивать вершинам цвета, или же написать
некий скрипт, который сделал бы это за вас. В этом рецепте
мы просто воспользовались Maya для раскраски вершин на-
шей модели. Эта модель доступна по адресу: www.packtpub.
com/support.

2. Создайте новую сцену и разместите на ней импортированную
модель.

3. Создайте новый шейдер и материал. После этого назначьте
шейдер материалу, а материал – импортированной модели.

Ваша сцена должна выглядеть примерно так, как показано на сле-
дующем скриншоте (рис. 7.1).

Как это сделать…
После того как мы подготовили сцену, шейдер и материал, мы можем
перейти к написанию кода нашего шейдера. Откройте код шейдера,
сделав по нему двойной щелчок мышкой на закладке проекта в редак-
торе Unity. После этого выполните следующие действия:

179Получение цвета вершины в поверхностном шейдере

Рис. 7.1. Вид подготовленной сцены

1. Поскольку мы хотим создать очень простой шейдер, нам нет
нужды добавлять какие-либо свойства в блок свойств. Однако
мы всё равно добавим глобальный цвет, просто для того, что-
бы выдержать единообразие формы шейдеров на протяжении
книги. Добавьте в блок свойств вашего шейдера следующий
код.

Properties
{
 _MainTint("Global Color Tint", Color) = (1,1,1,1)
}

2. Далее нам нужно сказать Unity, что мы хотим использовать в
нашем шейдере вершинную функцию.

CGPROGRAM
#pragma surface surf Lambert vertex:vert

3. Как обычно, раз мы добавили свойства в наш блок свойств,
нам нужно создать соответствующие переменные в блоке
CGPROGRAM. Добавьте следующий код сразу после инструкции
#pragma.

fl oat4 _MainTint;

4. Теперь мы обратимся к структуре Input. Чтобы наша функция
surf() смогла получить доступ к данным, предоставляемым
функцией vert() , нам нужно будет добавить новую перемен-
ную.

struct Input
{

180 Глава 7. Волшебные возможности вершин

 fl oat2 uv_MainTex;
 fl oat4 vertColor;
};

5. Теперь мы можем перейти к написанию функции vert(), ко-
торая позволит нам получить доступ к цвету каждой вершины
нашей модели.

void vert(inout appdata_full v, out Input o)
{
 o.vertColor = v.color;
}

6. Далее мы можем использовать данные о цвете вершин из нашей
структуры Input, чтобы присвоить их параметру o.Albedo из
встроенной структуры SurfaceOutput.

void surf(Input IN, inout SurfaceOutput o)
{
 o.Albedo = IN.vertColor.rgb * _MainTint.rgb;
}

7. После того как мы закончили с написанием кода, мы можем
вернуться в Unity, чтобы наш шейдер скомпилировался. Если
всё прошло без ошибок, то вы увидите что-то, очень похожее
на следующий скриншот.

Рис. 7.2. Результат работы шейдера

Как это работает…

Unity предоставляет нам способ получить доступ к информации о
вершинах модели, которой назначен шейдер. А это значит, что у нас
появляется возможность изменять такие параметры, как положение
вершины и её цвет. В этом рецепте мы импортировали меш из Maya

181Получение цвета вершины в поверхностном шейдере

(хотя вы можете использовать любую подходящую программу для
работы с 3D), в которой вершинам были назначены цвета. Вы замети-
те, что после импортирования модели материал, используемый нами
по умолчанию, не будет отображать цвета вершин. Нам придётся
написать шейдер, чтобы мы смогли извлечь цвета вершин и отобра-
зить их на поверхности модели.

Unity предоставляет нам большой объём встроенного в поверхност-
ные шейдеры функционала, что делает процесс доступа к атрибутам
вершин быстрым и эффективным.

Наша первая задача – сказать Unity, что при создании нашего шей-
дера мы будем использовать вершинную функцию. Сделаем мы это,
добавив параметр vertex:vert в секцию #pragma блока CGPROGRAM.
Получив эту инструкцию, Unity при компиляции шейдера будет ис-
кать функцию с именем vert. Если Unity этой функции не найдёт, то
будет выдана ошибка компиляции, и вас попросят добавить в шейдер
функцию vert.

Что приводит нас к шагу 5, где мы добавляем функцию vert().
Объявив эту функцию, мы получаем доступ к встроенной структуре
данных appdata_full, в которой хранится информация о вершине.
Из неё мы получаем информацию о цветах вершин, которую пере-
даём в нашу структуру Input с помощью следующего фрагмента кода:
o.vertColor = v.color.

Преременная o соответствует нашей структуре Input, а перемен-
ная v – структуре appdata_full, содержащей вершинные данные.
В этом случае мы просто получаем данные из структуры appdata_full
и записываем их в нашу структуру Input. А после того как цвет вер-
шины оказывается в структуре Input, – мы можем использовать его в
нашей функции surf(). В данном же рецепте мы просто присваиваем
цвет параметру o.Albedo во встроенной структуре SurfaceOutput.

Но это ещё не всё…

Можно получить доступ и к четвёртой компоненте данных цвета вер-
шины. Вероятно, вы заметили, что переменная vertColor, которую
мы объявили в структуре Input, имеет тип fl oat4. А это значит, что
помимо цвета вершины передаётся ещё и её значение alpha. Исполь-
зуя это значение, можно, например, сделать прозрачный материал,
или же вы можете использовать его как ещё одну маску для блендинга
двух текстур. Как бы то ни было, решать вам, будете вы использовать
для ваших шейдеров этот четвёртый компонент цвета или нет. Но, по
крайней мере, вы должны знать о нём.

182 Глава 7. Волшебные возможности вершин

В Unity4 у нас появилась возможность писать шейдеры под
DirectX 11. И хоть так у нас и появляются замечательные возможности,
вместе с этим процесс компилирования шейдеров становится немного
сложнее. Теперь в шейдер нам нужно будет добавить ещё одну строку
кода, чтобы правильным образом инициализировать выходную инфор-
мацию вершин. Следующий фрагмент кода показывает, как будет вы-
глядеть вершинная функция при написании шейдера под DirectX 11.

void vert(inout appdata_full v, out Input o)
{
 UNITY_INITIALIZE_OUTPUT(Input, o);
 o.vertColor = v.color;
}

После того как мы добавили эту строку кода, наш вершинный шей-
дер не будет выдавать предупреждений о том, что он не скомпилиру-
ется под DirectX 11 правильным образом.

Анимация вершин

в поверхностном шейдере
Теперь , когда мы знаем, как получить доступ к цвету каждой верши-
ны, давайте потренируемся обрабатывать и другие данные, например
координаты вершины.

В вершинной функции мы можем получить доступ к координатам
каждой вершины меша. Что позволяет нам изменять каждую отдель-
ную вершину во время работы шейдера.

В этом рецепте мы создадим шейдер, который позволит нам изме-
нять координаты каждой вершины меша по синусоиде. Этот приём
может пригодиться при создании анимации таких объектов, как фла-
ги или волны океана.

Подготовка

Давайте подготовим наши ассеты, чтобы мы смогли перейти к напи-
санию шейдера. Для этого выполните следующие действия:

1. Создайте новую сцену и поместите в её центре плоскость.
2. Создайте новый шейдер и материал.
3. Назначьте шейдер материалу, а материал – плоскости.

После этих действий ваша сцена должна выглядеть, как на следую-
щем скриншоте.

183Анимация вершин в поверхностном шейдере

Рис. 7.3. Вид сцены, использованной в данном рецепте

Как это сделать…

Теперь, когда наша сцена готова, вы можете два раза кликнуть по
только что созданному шейдеру, чтобы открыть его в MonoDevelop.
Далее выполните следующие действия:

1. Давайте начнём написание нашего шейдера с блока свойств.
Добавьте в него следующий код.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _tintAmount ("Tint Amount", Range(0,1)) = 0.5
 _ColorA ("Color A", Color) = (1,1,1,1)
 _ColorB ("Color B", Color) = (1,1,1,1)
 _Speed ("Wave Speed", Range(0.1, 80)) = 5
 _Frequency ("Wave Frequency", Range(0, 5)) = 2
 _Amplitude ("Wave Amplitude", Range(-1, 1)) = 1
}

2. После этого нам потребуется сообщить Unity о том, что мы
хотим использовать вершинную функцию. Для этого добавьте
следующий код в секцию #pragma.

CGPROGRAM
#pragma surface surf Lambert vertex:vert

3. Чтобы мы смогли получить доступ к значениям наших свойств,
нам потребуется объявить соответствующие переменные в
блоке CGPROGRAM.

sampler2D _MainTex;
fl oat4 _ColorA;

184 Глава 7. Волшебные возможности вершин

fl oat4 _ColorB;
fl oat _tintAmount;
fl oat _Speed;
fl oat _Frequency;
fl oat _Amplitude;
fl oat _OffsetVal;

4. Мы хотим изменять не только координаты вершин, но и их
цвет. Таким образом, мы сможем подкрасить наш объект.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat3 vertColor;
};

5. Теперь нам нужно написать вершинную функцию, которая
будет деформировать меш по синусоиде. Добавьте следующий
код после структуры Input.

void vert(inout appdata_full v, out Input o)
{
 fl oat time = _Time.x * _Speed;
 fl oat waveValueA = sin(time + v.vertex.x * _Frequency) *
_Amplitude;

 v.vertex.xyz = fl oat3(v.vertex.x, v.vertex.y + waveValueA,
v.vertex.z);
 v.normal = normalize(fl oat3(v.normal.x + waveValueA,
v.normal.y, v.normal.z));
 o.vertColor = fl oat3(waveValueA, waveValueA, waveValueA);
}

6. И наконец, мы используем функцию lerp для интерполяции
между двумя заданными цветами, чтобы выделить цветом
пики и впадины деформированной поверхности.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);
 fl oat3 tintColor = lerp(_ColorA, _ColorB, IN.vertColor).rgb;

 o.Albedo = c.rgb * (tintColor * _tintAmount);
 o.Alpha = c.a;
}

После того как вы закончите написание вашего шейдера, пере-
ключитесь обратно в Unity, чтобы он скомпилировался. После это-
го вы должны получить результат, похожий на следующий скрин-
шот.

185Использование цветов вершин для ландшафта

Рис. 7.4. Результат работы шейдера

Как это работает…

Наш шейдер использует тот же принцип работы, что и шейдер из пре-
дыдущего рецепта, за исключением того, что теперь мы модифициру-
ем расположение вершин сетки. Этот приём очень удобен при рабо-
те с простыми объектами, например флагами, которые вы не хотите
разбивать на составляющие и анимировать их с помощью скелетной
анимации или иерархического набора трансформаций.

Для получения значения синуса в точке мы используем встроен-
ную в язык Cg функцию sin(). Далее мы добавляем его к y-коорди-
нате каждой вершины и получаем волнообразный эффект.

Помимо этого, мы ещё немного модифицировали нормали точек
меша, чтобы придать модели чуть более реалистичный шейдинг, учи-
тывающий значения синусоиды в вершинах.

Вы видите, насколько легко создавать даже более сложные вер-
шинные эффекты с помощью встроенных параметров, предоставляе-
мых нам поверхностными шейдерами.

Использование цветов вершин

для ландшафта
Одним из наиболее распространённых применений цвета вершин
является создание более реалистичного ландшафта или окружаю-
щего мира. При этом информация из RGBA-каналов цвета вершины

186 Глава 7. Волшебные возможности вершин

используется для блендинга разных текстур. Такой подход является
весьма эффективным, поскольку вам не нужно импортировать ещё
одну специальную текстуру для управления блендингом. Эта техни-
ка применяется практически в любой игре, в которой присутствуют
сцены с ландшафтами и зданиями.

В этом рецепте вам будет продемонстрирована более продвинутая
техника блендинга, в которой используется специальная черно-белая
текстура – карта высот, что позволяет добавить больше деталей.

Подготовка

Давайте подготовим для этого рецепта нашу сцену, а также несколько
текстур. Выполните следующие действия:

1. Создайте новую сцену и импортируйте в неё меш с раскрашен-
ными вершинами из 3D-редактора. Для данного рецепта мы
использовали Maya.

2. Поместите импортированную модель на сцену и создайте ис-
точник направленного освещения.

3. Далее создайте новый шейдер и материал. Шейдер назначьте
материалу, а материал – модели.

Как это сделать…

После того как вы создадите новую сцену, сделайте двойной щелчок
по шейдеру, чтобы открыть его в MonoDevelop. Выполните следую-
щую последовательность действий:

1. Давайте создадим свойства, которые нам понадобятся, чтобы
дать пользователю нашего шейдера больший контроль за ито-
говым визуальным эффектом.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _SecondaryTex ("Secondary Texture", 2D) = "white" {}
 _HeightMap ("HeightMap", 2D) = "white" {}
 _Value ("Value", Range(1, 20)) = 3
}

2. После этого нам нужно будет сказать Unity, что мы будем
использовать вершинную функцию в нашем поверхностном
шейдере. Для этого добавьте следующий код.

CGPROGRAM
#pragma surface surf Lambert vertex:vert

187Использование цветов вершин для ландшафта

3. Далее создайте переменные, которые добавят связь нашему
блоку CGPROGRAM с блоком свойств.

sampler2D _MainTex;
sampler2D _SecondaryTex;
sampler2D _HeightMap;
fl oat _Value;

4. Поскольку мы собираемся использовать ещё несколько текс-
тур и цвета вершин, нам потребуется добавить в нашу структу-
ру Input несколько дополнительных параметров.

struct Input
{
 fl oat2 uv_MainTex;
 fl oat2 uv_SecondaryTex;
 fl oat3 vertColor;
};

5. После этого мы добавим вершинную функцию. В этот раз она
будет довольно простой, поскольку всё, что нам нужно сде-
лать, – это получить цвет вершины и передать его в структуру
Input.

void vert(inout appdata_full v, out Input o)
{
 o.vertColor = v.color.rgb;
}

6. Теперь мы можем заняться нашей функцией surf(). В ней нам
потребуется первым делом получить данные из текстур для
последующего блендинга.

//Получим данные из текстур
half4 base = tex2D(_MainTex, IN.uv_MainTex);
half4 secondTex = tex2D(_SecondaryTex, IN.uv_SecondaryTex);
fl oat4 height = tex2D(_HeightMap, IN.uv_MainTex);

7. После этого мы вычисляем параметр блендинга, используя
красный канал цвета вершины и цвет из карты высот.

//Выполним блендинг
fl oat redChannel = 1 - IN.vertColor.r;
fl oat rHeight = height.r * redChannel;
fl oat invertHeight = 1 - height.r;
fl oat fi nalHeight = (invertHeight * redChannel) * 4;
fl oat fi nalBlend = saturate(rHeight + fi nalHeight);

8. Следующим шагом мы вычисляем параметр затухания блен-
динга, данные для которого передаются в зеленом канале и ко-

188 Глава 7. Волшебные возможности вершин

торый позволяет контролировать четкость границы блендинга
текстур.

//Давайте добавим деталей для блендинга вершин.
//Пусть будут или очень чёткие, или очень мягкие границы.
fl oat hardness = ((1 - IN.vertColor.g) * _Value) + 1;
fi nalBlend = pow(fi nalBlend, hardness);

9. И наконец, мы используем функцию lerp для интерполяции
между двумя текстурами, а полученный в результате цвет пе-
редаём в структуру SurfaceOutput.

//Выдадим итоговый цвет
fl oat3 fi nalColor = lerp(base, secondTex, fi nalBlend);
o.Albedo = fi nalColor;
o.Alpha = base.a;

После того как ваш шейдер будет скомпилирован, вы должны по-
лучить результат, похожий на изображённый на следующем скрин-
шоте.

Рис. 7.5. Результат работы шейдера

Как это работает…

Определённо этот шейдер будет посложнее предыдущих, но обратите
внимание, что мы практически ничего не делаем в самой вершинной
функции. Мы лишь передаём цвета вершин в функцию surf(), чтобы
использовать их в попиксельных операциях. Мы могли бы реализо-
вать блендинг в вершинной функции, что было бы быстрее и выгля-
дело бы довольно убедительно. Но, к сожалению, таким образом мы

189Использование цветов вершин для ландшафта

бы получили множество хорошо заметных визуальных артефактов,
исправить которые можно, лишь добавив в меш ещё больше вершин,
а это не всегда приемлемо.

Поэтому цвета вершин мы умножаем на данные из черно-белой
карты высот базовой текстуры, на которую мы хотим наложить вто-
рую текстуру. Выполнив для цветов вершин и карты высот седьмой
шаг алгоритма, мы можем получить дополнительный уровень детали-
зации, который позволяет сымитировать эффект объединения одной
текстуры с другой. В нашем случае текстура снега смешивается с ма-
ленькими трещинками текстуры камня.

Эта техника не так давно стала весьма популярна благодаря таким
играм, как Uncharted и Gears of War. А теперь и вы можете использо-
вать её при разработке своих игр.

ГЛАВА 8
Настройка шейдеров

для мобильных
приложений

В двух следующих главах мы остановимся на оптимизации шейде-
ров под различные платформы. Мы не будем рассматривать какую-то
одну отдельно взятую платформу, вместо этого мы попробуем разбить
шейдеры на отдельные элементы, и посмотреть, какие корректировки
можно в них внести, для того чтобы повысить их эффективность как
на мобильных платформах, так и на любых других. Мы начнём с того,
что разберёмся во встроенных в Unity функциях и переменных, ис-
пользуя которые, мы можем снизить расход памяти, а далее перейдём
непосредственно к способам оптимизации нашего собственного кода.
В этой главе мы остановимся на следующих темах:

 что значит дешевый шейдер?
 профайлинг шейдеров;
 модификация шейдеров для мобильных платформ.

Введение
Знания об оптимизации шейдеров пригодятся вам почти в любом
игровом проекте. В разработке всегда наступает момент, когда не-
который шейдер необходимо оптимизировать, или переписать так,
чтобы он использовал меньше текстур, но при этом создавал такой
же визуальный эффект. Вам как шейдерному программисту, или если
хотите – техническому художнику, нужно понимать базовые принци-
пы, которые позволят вам оптимизировать шейдеры, чтобы повысить
производительность игры, но при этом не потерять в качестве гра-
фики. Эти же знания вам пригодятся, когда вы только приступаете
к написанию шейдера. К примеру, если вам будет наперёд известно,

191Что значит дешевый шейдер?

что игра, использующая ваш шейдер, будет запускаться на мобильной
платформе, вы можете в функциях освещения использовать половин-
ный вектор для направления взгляда или поменять тип переменных
с fl oat на fi xed или half. Применение этих и многих других техник
скажется на эффективности работы вашего шейдера на целевом ап-
паратном обеспечении. А теперь давайте начнём знакомство с опти-
мизацией шейдеров.

Что значит дешевый шейдер?
Сходу ответить на вопрос «что же такое вычислительно дешёвый
шейдер ?» может быть немного затруднительно, поскольку эффек-
тивность шейдеров зависит от многих факторов. Это может быть и
количество памяти, выделяемой под переменные. Это может быть и
количество используемых текстур. А может быть и так, что наш шей-
дер работает как надо, но есть способ добиться такого же эффекта,
используя меньше кода или входных данных. В этом рецепте мы рас-
смотрим несколько таких техник и покажем, как их можно комбини-
ровать, чтобы ваш шейдер работал быстрее и эффективнее и при этом
создавал высококачественные визуальные эффекты, которых сейчас
все ожидают от игр, и на компьютере, и на мобильных.

Подготовка

Для начала работы с этим рецептом нам понадобится несколько ре-
сурсов. Поэтому выполните следующие действия:

1. Создайте новую сцену и поместите на неё простой объект-сфе-
ру, а также направленный источник света.

2. Создайте новый шейдер и материал, назначьте шейдер мате-
риалу.

3. После этого назначьте материал только что созданной сфе-
ре.

4. И наконец, подправьте шейдер таким образом, чтобы он ис-
пользовал диффузную текстуру, карту нормалей и вашу собст-
венную функцию освещения.

Shader "Cookbook/Chapter08/OptimizedShader001"
{
 Properties
 {
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _NormalMap ("Normal Map", 2D) = "bump" {}

192 Глава 8. Настройка шейдеров для мобильных...

 }

 SubShader
 {
 Tags { "RenderType"="Opaque" }
 LOD 200

 CGPROGRAM
 #pragma surface surf SimpleLambert

 sampler2D _MainTex;
 sampler2D _NormalMap;

 struct Input
 {
 fl oat2 uv_MainTex;
 fl oat2 uv_NormalMap;
 };

 inline fl oat4 LightingSimpleLambert(SurfaceOutput s,
 fl oat3 lightDir, fl oat atten)
 {
 fl oat diff = max(0, dot(s.Normal, lightDir));

 fl oat4 c;
 c.rgb = s.Albedo * _LightColor0.rgb * (diff *
 atten * 2);
 c.a = s.Alpha;
 return c;
 }

 void surf(Input IN, inout SurfaceOutput o)
 {
 fl oat4 c = tex2D(_MainTex, IN.uv_MainTex);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal(tex2D(_NormalMap,
 IN.uv_NormalMap));
 }
 ENDCG
 }
 FallBack "Diffuse"
}

Этот код есть не что иное, как модификация дефолтного шейдера,
который Unity создала для нас в первом шаге. На данном этапе ваша
сцена должна быть похожа на изображённую на следующем скрин-
шоте. Используя такой сетап, мы рассмотрим некоторые базовые кон-
цепции оптимизации шейдеров на примере поверхностных шейдеров
в Unity.

193Что значит дешевый шейдер?

Рис. 8.1. Вид подготовленной сцены

Как это сделать…

Мы начнём с простого диффузного шейдера, с помощью которого мы
рассмотрим несколько способов оптимизации шейдеров.

Для начала мы оптимизируем типы наших переменных, чтобы на
них выделялось меньше памяти при обработке данных.

Выполните следующие действия:

1. Давайте начнём со структуры Input нашего шейдера. Сейчас
наши UV-координаты хранятся в переменной с типом fl oat2.
Изменим её тип на half2.

struct Input
{
 half2 uv_MainTex;
 half2 uv_NormalMap;
};

2. После этого мы можем перейти к нашей функции освещения и
уменьшить расход памяти на локальные переменные, изменив
их типы следующим образом:

inline fi xed4 LightingSimpleLambert(SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fi xed diff = max(0, dot (s.Normal, lightDir));

 fi xed4 c;
 c.rgb = s.Albedo * _LightColor0.rgb * (diff * atten * 2);
 c.a = s.Alpha;

194 Глава 8. Настройка шейдеров для мобильных...

 return c;
}

3. И наконец, мы заканчиваем эту оптимизацию, изменив типы
переменных в функции surf().

void surf(Input IN, inout SurfaceOutput o)
{
 fi xed4 c = tex2D(_MainTex, IN.uv_MainTex);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_NormalMap));
}

4. Теперь, когда типы наших переменных оптимизированы, мы
можем воспользоваться встроенной директивой освещения
для контроля за тем, как шейдер работает с источниками све-
та. Таким образом, мы сможем заметно снизить количество
светильников, которые вынужден обрабатывать наш шейдер.
Измените секцию #pragma вашего шейдера следующим обра-
зом:

CGPROGRAM
#pragma surface surf SimpleLambert noforwardadd

5. Мы можем дальше оптимизировать шейдер, если будем ис-
пользовать один набор UV-координат и для карты норма-
лей, и для диффузной текстуры. Для этого мы просто в фун-
кции UnpackNormal() будем использовать UV-координаты
_MainTex вместо _NormalMap.

void surf(Input IN, inout SurfaceOutput o)
{
 fi xed4 c = tex2D(_MainTex, IN.uv_MainTex);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}

6. А поскольку нам больше не нужны UV-координаты карты
нормалей, нам нужно обязательно убрать их упоминание из
структуры Input.

struct Input
{
 half2 uv_MainTex;
};

195Что значит дешевый шейдер?

7. И наконец, мы можем ещё сильнее оптимизировать наш шей-
дер, указав ему, что он должен работать лишь с определёнными
рендерерами.

CGPROGRAM
#pragma surface surf SimpleLambert exclude_path:prepass
noforwardadd

В результате наших действий мы получили шейдер, который визу-
ально ничем не отличается, но при этом нам удалось сократить вре-
мя, затрачиваемое шейдером на отрисовку. В следующем разделе мы
узнаем, как можно замерить время рендеринга шейдера, сейчас же
для нас ключевой идеей является то, что мы можем добиться такого
же результата с помощью меньшего количества данных. Помните об
этом, когда будете создавать новые шейдеры. На следующем изобра-
жении приводится итоговый результат работы нашего оптимизиро-
ванного шейдера.

Рис. 8.2. Итоговый результат работы шейдера

Как это работает…

Теперь, когда мы увидели, каким образом можно оптимизировать
шейдеры, мы можем копнуть ещё чуть глубже и разобраться, почему
работают рассмотренные способы, а также взглянуть на несколько
других приёмов, которые могут вам пригодиться.

Давайте сначала посмотрим на размер в байтах каждой объявлен-
ной нами переменной. Если вы знакомы с программированием, то вы
знаете, что с помощью типов данных вы можете объявлять перемен-

196 Глава 8. Настройка шейдеров для мобильных...

ные различного размера. Это значит, что, например, тип данных float
занимает наибольший объём памяти. Давайте рассмотрим типы пере-
менных более подробно:

• fl oat – для хранения переменной этого типа выделяется
32 бита, кроме того, это наиболее медленный из трёх рассмат-
риваемых нами типов данных. Этот тип данных имеет произ-
водные типы fl oat2, fl oat3 и fl oat4;

• half – это укороченное число с плавающей точкой, для хра-
нения которого используются 16 бит. Хорошо подходит для
хранения UV-координат, значений цветов. Обрабатывается
гораздо быстрее, чем переменные типа fl oat. Этот тип данных
имеет производные типы half2, half3 и half4;

• fi xed – это тип данных, который занимает меньше всего памяти
и для которого отводится по крайней мере 10 бит. Его можно
использовать при вычислении света и преобразовании цветов,
он имеет производные типы fi xed2, fi xed3 и fi xed4.

Второй шаг нашей оптимизации простого шейдера заключался в
объявлении noforwardadd в секции #pragma. Эта инструкция явля-
ется флагом, указание которого говорит Unity, что любой объект с
этим шейдером будет освещаться попиксельно только одним направ-
ленным источником света. Все остальные источники освещения, рас-
считываемые этим шейдером, будут принудительно просчитываться
повертексно, используя значения сферических гармоник, рассчиты-
ваемых внутри Unity. Поскольку наш шейдер выполняет попиксель-
ные операции с помощью карты нормалей, этот эффект будет хорошо
видно, если мы разместим на сцене ещё один источник света для под-
светки нашей сферы.

Это, конечно, здорово, но что делать, если мы хотим на сцене раз-
местить несколько направленных источников света и при этом иметь
возможность контролировать, какой из этих источников будет ис-
пользоваться для основного попиксельного освещения? Вы могли за-
метить, что каждый источник света имеет выпадающее меню Render
Mode (Режим рендеринга). Если вы кликнете на выпадающее меню,
то вы увидите несколько флажков: Auto (Автоматически), Important
(Важный) и Not Important (Неважный). Выбрав для освещения ре-
жим Important, вы говорите Unity, что источник света должен, по
возможности, считаться попиксельно, а не повертексно, при выборе
Not Important – наоборот. Если вы оставите выбранным режим Auto,
Unity будет решать, как поступить с этим светильником самостоя-
тельно.

197Что значит дешевый шейдер?

Поместите ещё один источник света на сцену и уберите текстуру,
которая на данный момент выбрана как основная текстура вашего
шейдера. Вы заметите, что второй точечный источник света не взаи-
модействует с картой нормалей, с ней работает лишь направленный
источник света, который мы создали первым. Идея этого приёма – в
том, что вы можете сэкономить на попиксельных вычислениях,
если будете обрабатывать все дополнительные источники света как
вершинные, что благотворно скажется на производительности, по-
скольку попиксельное освещение будет рассчитываться только для
главного источника света. Следующий скриншот служит наглядной
демонстрацией этой идеи, поскольку точечный источник света не
взаи модействует с картой нормалей.

Рис. 8.3. Иллюстрация попиксельного и вершинного
освещений источниками света

После этого мы немного навели порядок и сказали текстуре карты
нормалей использовать тот же набор UV-координат, что и для основ-
ной текстуры, кроме этого, мы избавились от строки кода, с помощью
которой в шейдер передавались (ненужные теперь) UV-координаты
специально для карты нормалей.

Также мы добавили exclude_path:prepass в секцию #pragma,
для того чтобы на этот шейдер не действовало кастомное освещение
при Deferred-рендеринге. Это значит, что эффективно мы можем ис-
пользовать наш шейдер только при Forward-рендеринге, который по
умолчанию выставлен в настройках основной камеры.

Вы удивитесь тому, насколько можно оптимизировать шейдер,
если уделить этому немного времени. Вы уже видели, как можно

Точечный источник света

Повертексное освещение

Направленный источник света

Попиксельное освещение

198 Глава 8. Настройка шейдеров для мобильных...

упаковывать черно-белые текстуры в одну RGBA-текстуру, а также
как использовать текстуры для имитации освещения. Есть много
способов оптимизации шейдера, поэтому выбор оптимального спо-
соба – вопрос неоднозначный. Но если вы владеете этими техниками
оптимизации, вы сможее подогнать ваши шейдеры под вашу игру и
под её целевую платформу, обеспечив тем самым стабильный и плав-
ный фреймрейт.

Профайлинг шейдеров
Теперь , когда вы знаете, как уменьшить расход ресурсов шейдерами,
давайте посмотрим, как найти эти «проблемные» шейдеры на сцене,
на которой может быть много шейдеров, объектов, скриптов – всего
этого, выполняющегося одновременно. Поиск одного конкретного
объекта или шейдера в пространстве всей игры может быть весьма не-
приятной задачей, но на этот случай Unity предоставляет нам встро-
енный профайлер. С его помощью мы можем увидеть кадр за кадром,
что же происходит в игре, а также понять, как каждый элемент обра-
батывается GPU или CPU.

С помощью профайлера мы можем изолировать такие элементы,
как шейдеры, геометрию, и другие объекты, участвующие в рендерин-
ге. Мы можем отфильтровывать элементы до тех пор, пока перед нами
не останется работа всего лишь одного объекта. А вот тогда-то мы и
сможем увидеть, как его работа сказывается на CPU и GPU.

Давайте внимательно рассмотрим использование профайлера и уз-
наем, как мы можем отлаживать наши сцены и, что ещё важнее, шей-
деры.

Подготовка

Давайте начнём работу с профайлером с того, что подготовим необ-
ходимые ассеты и откроем окно профайлера. Выполните следующие
действия:

1. Мы воспользуемся сценой, сделанной нами в последнем ре-
цепте. Запустите профайлер Unity из Window | Profiler (Окно |
Профайлер), или нажатием сочетания клавиш Ctrl+7.

2. Теперь нам нужно расклонировать нашу сферу, чтобы посмот-
реть, как это скажется на рендеринге.

После выполнения этих действий вы должны увидеть нечто похо-
жее на следующий скриншот.

199Профайлинг шейдеров

Рис. 8.4. Вид окна профайлера

Как это сделать…

Перед тем как начать работать с профайлером, мы посмотрим на не-
которые элементы интерфейса в этом окне. Прежде чем вы нажмёте
кнопку Play, давайте разберёмся, как мы можем получить в профай-
лере нужную нам информацию. Для этого выполните следующие
действия:

1. Сперва нажмите на большие блоки в окне профайлера, на
которых написано: GPU Usage (Использование GPU), CPU
Usage (Использование CPU), Rendering (Рендеринг). Эти
блоки расположены слева в верхней части окна, что наглядно
иллюстрирует скриншот на рис. 8.5.

 Используя эти блоки, мы можем наблюдать за различными
данными, характерными для основных функций нашей игры.
В блоке CPU Usage мы можем увидеть результаты рабо-
ты большинства наших скриптов, а также игровой физики и
общего рендеринга. Блок GPU Usage предоставляет нам де-
тальную информацию об элементах, связанных с нашим осве-
щением, тенями и очередями отрисовки. И наконец, в блоке
Rendering мы можем увидеть информацию о запросах на от-
рисовку (draw call) и о геометрии, присутствующей на нашей
сцене для каждого кадра.

200 Глава 8. Настройка шейдеров для мобильных...

 Нажав на один из этих блоков, мы можем отдельно выделить
любую информацию, наблюдаемую нами во время профай-
линга.

Рис. 8.5. Блоки профайлера

2. Теперь кликните по маленьким цветным квадратикам внутри
этих больших блоков и нажмите Play, или сочетание клавиш
Ctrl+P, для запуска сцены.

 Таким образом, мы можем отфильтровать данные, которые
мы получаем, и углубиться в процесс профайлинга в нужном
направлении. Для запущенной сцены снимите выделение со
всех полей, кроме Opaque в блоке GPU Usage. Обратите вни-
мание, что теперь мы видим лишь информацию о том, сколь-
ко тратится времени на рендеринг непрозрачных объектов, то
есть тех, что находятся в очереди отрисовки Opaque.

Рис. 8.6. Время, затрачиваемое на рендеринг
непрозрачных объектов

3. Ещё одна замечательная возможность окна профайлера, – это
возможность перемещаться по кадрам при нажатии на график.

Блоки профайлера

201Профайлинг шейдеров

Это действие автоматически поставит вашу игру на паузу, что-
бы вы смогли детально проанализировать внезапный скачок
на графике и установить, какие именно элементы плохо влия-
ют на производительность. Попробуйте сами покликать по
графику и посмотреть, что показывает профайлер для разных
кадров.

Рис. 8.7. График профайлера

4. Давайте теперь обратим наше внимание на нижнюю часть окна
профайлера (рис. 8.8). Вы заметите, что при выделенном блоке
GPU Usage появляется раскрывающийся список. Мы можем
воспользоваться им, чтобы получить ещё более детальную ин-
формацию о текущей сессии работы с профайлером и, в дан-
ном случае, о том, что сейчас отрисовывает камера и сколько
времени это занимает.

 Таким образом, у нас появляется возможность подробно
рассмотреть, что же Unity обрабатывает на данном конкрет-
ном фрейме. В этом случае мы видим, что три сферы отри-
совываются нашим оптимизированным шейдером примерно
за 0,14 миллисекунды, при этом происходит семь запросов
на отрисовку, обработка которых требует на каждом фрейме
3,1 процента времени работы GPU. Это как раз та инфор-
мация, которую мы можем использовать для диагностики и

График профайлера

202 Глава 8. Настройка шейдеров для мобильных...

устранения проблем с производительностью шейдеров. Да-
вайте проведём эксперимент, чтобы посмотреть, как скажется
на производительности добавление в наш шейдер ещё одной
текстуры, а также блендинг двух текстур с помощью функции
lerp. Результат этого изменения вы сразу заметите в профай-
лере.

Рис. 8.8. Подробные данные профайлера

5. Измените блок свойств следующим образом, что даст нам воз-
можность работать с ещё одной текстурой.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BlendTex ("Blend Texture", 2D) = "white" {}
 _NormalMap ("Normal Map", 2D) = "bump" {}
}

6. После этого давайте добавим нашу текстуру в блок CGPROGRAM:

sampler2D _MainTex;
sampler2D _BlendTex;
sampler2D _NormalMap;

7. Теперь нам нужно добавить соответствующий код в функцию
surf(), чтобы мы смогли смешать нашу новую текстуру с диф-
фузной текстурой.

Подробные данные профайлера

203Профайлинг шейдеров

void surf(Input IN, inout SurfaceOutput o)
{
 fi xed4 c = tex2D(_MainTex, IN.uv_MainTex);
 fi xed4 blendTex = tex2D(_BlendTex, IN.uv_MainTex);

 c = lerp(c, blendTex, blendTex.r);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));
}

После того как вы сохраните изменения и вернётесь в редактор
Unity, мы сможем запустить нашу игру и посмотреть, на сколько мил-
лисекунд дольше будет работать наш шейдер. Нажмите кнопку Play и
взгляните на результаты измерений в окне профайлера.

Рис. 8.9. Изменившееся время отрисовки

Как видите, время, затрачиваемое на рендеринг непрозрачной
(Opaque) геометрии в сцене, возросло с 0,140 до 0,179 миллисекун-
ды. Это случилось из-за того, что мы добавили ещё одну текстуру и
использовали функцию lerp() . Возможно, это покажется небольшой
разницей, но представьте себе двадцать шейдеров, все работающие
по-разному и с разными объектами.

Используя данные профайлера, вы сможете быстрее находить при-
чины снижения производительности и устранять их с помощью при-
ёмов из предыдущего рецепта.

204 Глава 8. Настройка шейдеров для мобильных...

Как это работает…

Описание внутренних механизмов работы этого инструмента одно-
значно выходит за рамки данной книги, мы остановимся на том, что
Unity предоставляет нам способ наблюдения за производительностью
компьютера во время работы игры. Профайлер очень тесно связан с
CPU и с GPU, благодаря чему мы получаем данные в реальном вре-
мени о том, сколько времени тратится на каждый из наших скриптов,
объектов и очередей отрисовки. Мы уже видели, что, используя эту
информацию, мы можем отслеживать эффективность нашего шейде-
ра и устранять проблемные участки кода.

Но это ещё не всё…

Кроме этого, можно профилировать игру непосредственно на мобиль-
ном устройстве. Unity предоставляет нам несколько дополнительных
возможностей, появляющихся, если в настройках сборки будет уста-
новлен Android или iOS. Мы можем получать информацию в реаль-
ном времени от нашего мобильного устройства во время работы игры.
Это очень удобно, поскольку вы сможете профилировать непосредст-
венно под конкретное устройство. Больше об этом вы можете узнать в
разделе документации Unity, доступном по следующей ссылке: http://
docs.unity3d.com/Documentation/Manual/MobileProfiling.html.

Изменение шейдеров

для мобильных
Теперь , когда мы рассмотрели несколько способов оптимизации шей-
деров, давайте напишем хороший, высококачественный шейдер, спе-
циально предназначенный для мобильных устройств. На самом деле
нам не составит труда внести несколько изменений в уже написанный
нами шейдер таким образом, чтобы на мобильных устройствах он вы-
полнялся быстрее. Эти изменения включают, например, использова-
ние директив approxview или halfasview в настройках освещения.
Кроме этого, мы можем сократить количество используемых текстур,
а для оставшихся использовать более сильное сжатие. К концу этой
секции мы получим хорошо оптимизированный Specular-шейдер,
учитывающий карту нормалей, который мы сможем использовать в
играх на мобильных платформах.

205Изменение шейдеров для мобильных

Подготовка

Перед тем как мы начнём работу, давайте создадим новую сцену и до-
бавим на неё объекты, к которым мы будем применять наш шейдер для
мобильных устройств. Для этого выполните следующие действия:

1. Создайте новую сцену и поместите на неё дефолтную сферу и
направленный источник света.

2. Создайте новый материал и шейдер. Назначьте шейдер мате-
риалу.

3. После этого назначьте материал нашему объекту-сфере.

После этих действий ваша сцена должна стать похожей на изобра-
жённую на следующем скриншоте.

Рис. 8.10. Вид подготовленной сцены

Как это сделать…

В этом рецепте мы напишем с нуля наш шейдер, оптимизированный
для мобильных устройств, при этом мы остановимся на конкретных
оптимизациях. Выполните следующие действия:

1. Для начала давайте добавим в наш блок свойств текстуры,
которые нам понадобятся. В данном случае мы будем исполь-
зовать диффузную текстуру, содержащую карту блеска в её
альфа-канале, а также карту нормалей и слайдер для регули-
рования интенсивности блика.

Properties
{
 _Diffuse ("Base (RGB) Specular (A)", 2D) = "white" {}

206 Глава 8. Настройка шейдеров для мобильных...

 _SpecIntensity ("Specular Width", Range(0.01, 1)) = 0.5
 _NormalMap ("Normal Map", 2D) = "bump"{}
}

2. Далее нам потребуется настроить нашу секцию #pragma. Суть
настройки состоит во включении или выключении возмож-
ностей поверхностного шейдера, от которых будет зависеть,
станет он дешевле или дороже в вычислительном плане.

CGPROGRAM
#pragma surface surf MobileBlinnPhong exclude_path:prepass
nolightmap noforwardadd halfasview

3. После этого нам нужно организовать связь между блоком
свойств и секцией CGPROGRAM. В противоположность тому,
что мы делали обычно, мы будем использовать для слайдера
интенсивности блика тип переменной fi xed, чтобы сократить
расход памяти.

sampler2D _Diffuse;
sampler2D _NormalMap;
fi xed _SpecIntensity;

4. Чтобы мы смогли связать наши текстуры с поверхностью объ-
екта, нам потребуются UV-координаты. Теперь мы будем ис-
пользовать только один набор UV-координат, чтобы в нашем
шейдере было задействовано как можно меньше данных.

struct Input
{
 half2 uv_Diffuse;
};

5. Далее нам потребуется написать нашу функцию освещения
и включить в неё несколько новых входных переменных, ко-
торые стали нам доступны благодаря инструкциям в секции
#pragma.

inline fi xed4 LightingMobileBlinnPhong(SurfaceOutput s,
fi xed3 lightDir, fi xed3 halfDir, fi xed atten)
{
 fi xed diff = max(0, dot(s.Normal, lightDir));
 fi xed nh = max(0, dot(s.Normal, halfDir));
 fi xed spec = pow(nh, s.Specular*128) * s.Gloss;

 fi xed4 c;
 c.rgb = (s.Albedo * _LightColor0.rgb * diff + _LightColor0.rgb
* spec) * (atten*2);
 c.a = 0.0;

207

 return c;
}

6. Завершим мы наш шейдер написанием функции surf(), в ко-
торой мы будем обрабатывать итоговый цвет нашей поверх-
ности.

void surf(Input IN, inout SurfaceOutput o)
{
 fi xed4 diffuseTex = tex2D(_Diffuse, IN.uv_Diffuse);
 o.Albedo = diffuseTex.rgb;
 o.Gloss = diffuseTex.a;
 o.Alpha = 0.0;
 o.Specular = _SpecIntensity;
 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_Diffuse));
}

После того как вы закончите написание кода, сохраните ваш шей-
дер и вернитесь в редактор Unity, чтобы шейдер скомпилировался.
Если всё было сделано без ошибок, то вы увидите результат, похожий
на изображённый на следующем скриншоте.

Рис. 8.11. Результат работы шейдера

Как это работает…

Давайте начнём разбор нашего шейдера с того, что разберёмся, что
он делает и чего он не делает. Во-первых, он исключает обработку
прохода освещения в Deferred-рендеринге. А это значит, что если вы
создали функцию освещения, которая была связана с препроходом
Deferred-рендерера, то шейдер не будет использовать вашу функцию,
вместо этого он задействует функцию освещения по умолчанию, на-

Изменение шейдеров для мобильных

208 Глава 8. Настройка шейдеров для мобильных...

подобие тех, что мы уже использовали в этой книге.
Кроме этого, наш шейдер не поддерживает light mapping, таким об-

разом, наш шейдер не будет пытаться искать карты освещения для
объекта, которому назначен шейдер. Это делает наш шейдер легче,
так как ему не нужно делать проверку карт освещения.

Мы добавили инструкцию noforwardadd, чтобы попиксельное ос-
вещение просчитывалось лишь для одного направленного источника
света. Все остальные источники света будут обрабатываться повер-
тексно и не будут участвовать в попиксельных операциях вашей фун-
кции surf().

И наконец, мы использовали инструкцию halfasview, чтобы ска-
зать Unity, что мы не собираемся использовать параметр функции
освещения viewDir. Вместо этого для расчёта блика мы будем ис-
пользовать половинный вектор в качестве направления взгляда. При
таком подходе шейдер сможет выполнять необходимые вычисления
гораздо быстрее, поскольку они будут выполняться повертексно.
Нельзя сказать, что этот подход очень уж точен при имитации блика
в реальном мире, но на мобильном устройстве это будет незаметно, а
наш шейдер будет выполняться быстрее.

Описанные приёмы делают шейдеры более эффективными, а их
код – чище. Вам всегда следует использовать только те ресурсы, ко-
торые вам будут нужны, а они зависят от вашей целевой платформы и
требуемого игрой качества изображения. В конечном итоге сочетания
подобных приёмов и позволяют создавать качественные шейдеры для
ваших игр.

ГЛАВА 9
Делаем наш шейдерный

мир модульным
с помощью CgInclude

В этой главе мы рассмотрим следующие темы:

 CgInclude-файлы, встроенные в Unity;
 создание CgInclude-файла для хранения моделей освещения;
 создание шейдеров с использованием директив #defi ne.

Введение
За время нашего изучения шейдеров нам уже довелось повидать мно-
жество техник и эффектов, но тем не менее, из раза в раз нам прихо-
дилось писать одни и те же части кода. В продакшене время стоит
дорого, а требования индустрии разработки игр диктуют необходи-
мость быстрого и эффективного итеративного создания шейдеров.
Тут-то нам и пригодятся CgInclude-файлы. С их помощью мы можем
создать фреймворк, который мы сможем использовать снова и снова,
тем самым сделав написание шейдеров модульным.

На самом деле при написании наших поверхностных шейдеров мы
уже использовали несколько встроенных CgInclude-файлов. Каждый
раз, когда мы использовали встроенные модели освещения Lambert
или BlinnPhong, мы использовали код и функции из CgInclude-фай-
лов, уже созданных для нас Unity. Таким образом, снижается коли-
чество кода, которое необходимо написать, и выдерживается едино-
образие освещения и эффектов для всех ваших шейдеров.

Если вы разберётесь с CgInclude-файлами и будете их использо-
вать при написании шейдеров, то сможете значительно ускорить этот
процесс, кроме того, если понадобится, такие шейдеры будет легко
модифицировать. Так что давайте продолжим изучение шейдеров и

210 Глава 9. Делаем наш шейдерный мир модульным...

посмотрим, какие модели освещения, функции и встроенные пере-
менные состояний Unity предоставляет нам из коробки.

Встроенные в Unity

CgInclude-файлы
Прежде чем начать писать наши собственные CgInclude-файлы , нам
нужно разобраться, какие дополнительные возможности для наших
шейдеров Unity уже предоставляет по умолчанию. При компиляции
поверхностных шейдеров Unity делает очень многое за нас. Именно
поэтому процесс написания шейдеров в Unity настолько прост. Функ-
ции и макросы, которые используются при генерации шейдерного
кода, вы можете найти в папке, куда вы установили Unity, в подпапке
Editor/Data/CGIncludes. Код из всех этих файлов тем или иным об-
разом участвует в отрисовке объектов на экран. Какие-то из них от-
вечают за освещение и тени, другие содержат вспомогательные функ-
ции, а третьи решают за вас проблемы совместимости платформ. Без
этих файлов процесс написания шейдеров был бы гораздо сложнее.

Документацию, предоставляемую Unity, вы можете найти по следу-
ющему адресу: http://docs.unity3d.com/Documentation/Components/
SL-BuiltinIncludes.html.

Давайте разберёмся с этими встроенными CgInclude-файлами,
воспользовавшись некоторыми вспомогательными функциями из
файла UnityCG.cginc.

Подготовка

До нашего углубления в написание шейдеров нам потребуется под-
готовить несколько ресурсов для нашей сцены. Прежде чем открыть
ваш шейдер в MonoDevelop, выполните следующие действия:

1. Создайте новую сцену и поместите на неё простую модель сфе-
ры.

2. Создайте новый шейдер и материал.
3. Назначьте шейдер материалу, а материал – сфере.
4. Создайте направленный источник света и расположите его над

сферой.
5. Теперь нам нужно будет открыть файл UnityCG.cginc из ката-

лога CGIncludes, расположенного в папке, в которую вы уста-
новили Unity. Так мы сможем проанализировать код вспомо-

211Встроенные в Unity CgInclude-файлы

гательных функций и лучше понять, что происходит, когда мы
их используем.

6. На этом шаге у вас должна получиться сцена, похожая на изоб-
ражённую на следующем скриншоте.

Рис. 9.1. Вид подготовленной сцены

Как это сделать…

После того как мы подготовим сцену, мы можем перейти к экспери-
ментам со встроенными функциями, которые содержатся в файле
UnityCG.cginc. Сделайте двойной щелчок по созданному для нашей
сцены шейдеру, чтобы открыть его в MonoDevelop и вставить в него
следующий код:

1. Следующий фрагмент кода добавьте в блок свойств нового
шейдера. Мы будем использовать в нашем шейдере одну текс-
туру и один слайдер.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _DesatValue ("Desaturate", Range(0,1)) = 0.5
}

2. После этого давайте убедимся, что мы создали связь меж-
ду данными из блока свойств и блока CGPROGRAM, для этого
разместите следующий код после инструкций CGPROGRAM и
#pragma.

sampler2D _MainTex;
fi xed _DesatValue;

212 Глава 9. Делаем наш шейдерный мир модульным...

3. И наконец, нам нужно добавить в функцию surf() следую-
щий код.

void surf(Input IN, inout SurfaceOutput o)
{
 half4 c = tex2D(_MainTex, IN.uv_MainTex);

 c.rgb = lerp(c.rgb, Luminance(c.rgb), _DesatValue);

 o.Albedo = c.rgb;
 o.Alpha = c.a;
}

После того как вы измените код, вы должны увидеть нечто, похо-
жее на следующий скриншот. Для создания эффекта обесцвечивания
основной текстуры нашего шейдера мы воспользовались встроенной
функцией Luminance, которая находится в файле UnityCG.cginc.

Рис. 9.2. Различные степени преобразования в оттенки серого

Как это работает…

Используя встроенную функцию Luminance() , мы можем быст-
ро добавить в наш шейдер эффект обесцвечивания, или если угод-
но, – эффект перевода в оттенки серого. Мы можем использовать эту
функцию потому, что файл UnityCG.cginc, в котором она находится,
автоматически подключается при работе с поверхностными шейде-
рами.

Если вы откроете файл UnityCG.cginc в MonoDevelop и про-
скролите до 276 строки, то вы найдёте там реализацию этой функции.
Ниже приводится фрагмент кода из этого файла.

274|
275|// Преобразуем цвет в оттенки серого.
276|inline fi xed Luminance(fi xed3 c)
277|{
278| return dot(c, fi xed3(0.22, 0.707, 0.071));
279|}

Значение Desaturate: 0.0 Значение Desaturate: 0.5 Значение Desaturate: 1.0

213Создание CgInclude-файла для хранения моделей...

Так как эта функция находится в файле UnityCG.cginc, который
Unity использует при компиляции шейдеров, она автоматически
становится доступна нам для использования в наших шейдерах, что
уменьшает количество дублирующегося кода, который нам прихо-
дится писать. Возможно, вы обратили внимание, что рядом находится
файл Lighting.cginc . В этом файле объявлены все модели освеще-
ния, которые мы можем использовать, когда добавляем в код конст-
рукции вроде #pragma Surface surf Lambert. Такая компоновка по-
вышает модульность и степень переиспользуемости кода.

Создание CgInclude-файла для

хранения моделей освещения
Знать о существовании встроенных файлов CgInclude – это хорошо,
но что делать, если мы хотим написать собственный CgInclude-файл,
чтобы хранить свои модели освещения и вспомогательные функции?
Для этого сперва нам нужно будет немного разобраться с синтакси-
сом, прежде чем мы сможем начать эффективно использовать такие
файлы при написании шейдеров. Давайте посмотрим, как сделать
CgInclude-файл с нуля.

Подготовка

На примере той же сцены, шейдера и материала давайте пройдёмся по
процессу создания нового файла для этого рецепта. Выполните сле-
дующие действия:

1. Первым делом создайте новый текстовый файл и назовите его,
например, MyCgInclude.txt .

2. После этого измените его расширение на .cginc. Windows вы-
даст окошко предупреждения, в котором будет написано, что
файл таким образом может стать непригодным, но не верьте
ему – файл будет работать.

3. Импортируйте этот новый файл .cginc в проект Unity и поз-
вольте ему скомпилироваться. Если всё пройдёт успешно, вы
увидите, что Unity смогла скомпилировать его в CgInclude-
файл.

Теперь мы готовы к тому, чтобы добавить наш собственный код в
этот файл. Сделайте двойной щелчок по созданному вами CgInclude-
файлу, чтобы открыть его в MonoDevelop.

214 Глава 9. Делаем наш шейдерный мир модульным...

Как это сделать…

Открыв CgInclude-файл, мы можем приступить к написанию кода,
который будет работать в нашем поверхностном шейдере. Добавив
следующий код, вы подготовите наш CgInclude-файл к работе с на-
шими поверхностными шейдерами, при этом вы сможете и в дальней-
шем добавлять код в этот файл по мере написания шейдеров. Выпол-
ните следующую последовательность действий:

1. Мы начнём наш CgInclude-файл с так называемой директивы
препроцессора. Директивы – это инструкции наподобие #pragma
и #include. Добавьте следующий код в начале вашего файла.

#ifndef MY_CG_INCLUDE
#defi ne MY_CG_INCLUDE

2. Затем каждый раз нам нужно проверять, что мы закрыли наши
секции #ifndef или #ifdef с помощью #endif. Нам нужно
закрывать их, так же как, например, в операторе if в языке C#
должны быть две скобки (). Добавьте следующий код сразу
после директивы #defi ne.

#endif

3. Теперь мы можем заняться содержимым CgInclude-файла. По-
этому мы добавляем в него следующий код.

//Настраиваемые встроенные переменные.
fi xed4 _MyColor;

//Модели освещения.
inline fi xed4 LightingHalfLambert(SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fi xed diff = max(0, dot(s.Normal, lightDir));

 diff = (diff + 0.5) * 0.5;

 fi xed4 c;
 c.rgb = s.Albedo * _LightColor0.rgb * ((diff * _MyColor.
rgb) * atten * 2);
 c.a = s.Alpha;
 return c;
}

4. После того как вы завершите предыдущие действия, у вас по-
лучится первый готовый CgInclude-файл. С помощью этих не-
скольких строк кода мы можем существенно сократить коли-
чество кода, которое нам нужно будет переписывать каждый

215Создание CgInclude-файла для хранения моделей...

раз. Теперь мы можем хранить в этом файле наши модели осве-
щения, которыми мы постоянно пользуемся, чтобы не поте-
рять их. Код получившегося CgInclude-файла приведён ниже.

#ifndef MY_CG_INCLUDE
#defi ne MY_CG_INCLUDE

//Настраиваемые встроенные переменные.
fi xed4 _MyColor;

//Модели освещения.
inline fi xed4 LightingHalfLambert(SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fi xed diff = max(0, dot(s.Normal, lightDir));

 diff = (diff + 0.5) * 0.5;

 fi xed4 c;
 c.rgb = s.Albedo * _LightColor0.rgb * ((diff * _MyColor.
rgb) * atten * 2);
 c.a = s.Alpha;
 return c;
}

#endif

 Но нам потребуется выполнить ещё несколько действий,
прежде чем мы сможем использовать код из этого CgInclude-
файла. Нам необходимо дать указание шейдеру, с которым мы
работаем, что он должен использовать этот файл и его код. Вы-
полните следующие действия.

5. Теперь, когда мы сконцентрировались на нашем шейдере, нам
нужно подключить наш новый CgInclude-файл, чтобы можно
было добраться до содержащегося в нём кода. Добавьте к ди-
рективам компилятора директиву #include.

CGPROGRAM
#include "MyCGInclude.cginc"
#pragma surface surf Lambert

6. Пока что наш шейдер использует встроенную модель осве-
щения Lambert, но мы хотим, чтобы он использовал создан-
ную нами в нашем CgInclude-файле модель освещения Half
Lambert. А поскольку мы подключили наш CgInclude-файл,
мы можем использовать модель освещения Half Lambert с по-
мощью следующего кода.

216 Глава 9. Делаем наш шейдерный мир модульным...

CGPROGRAM
#include "MyCGInclude.cginc"
#pragma surface surf HalfLambert

7. И наконец, мы объявили переменную в нашем CgInclude-фай-
ле, чтобы показать, что мы можем подготовить переменные по
умолчанию для использования в нашем шейдере. Чтобы уви-
деть, как это работает, в блок свойств вашего шейдера добавьте
следующий код.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _DesatValue ("Desaturate", Range(0,1)) = 0.5
 _MyColor ("My Color", Color) = (1,1,1,1)
}

Если не было допущено ошибок, то после возвращения в Unity
файл CgInclude и шейдер скомпилируются, и вы увидите, что наш
шейдер использует нашу новую модель освещения Half Lambert, а
на закладке Инспектора материалов появилась палитра цвета. На
следую щем скриншоте показан результат использования нашего
CgInclude-файла.

Рис. 9.3. Результат работы нашего шейдера,
использующего файлы CgInclude

Как это работает…

При работе с шейдерами мы можем импортировать внешние блоки
кода с помощью директивы препроцессора #include. Эта директива

217Использование #define в шейдерах

говорит Unity, что мы хотим использовать в нашем шейдере код, на-
ходящийся в указанном файле, – с этой директивой и связано назва-
ние файлов CgInclude. Мы «включаем» (include) фрагменты Cg-кода
с помощью директивы #include.

На самом деле #include не создает «ссылок» на файлы, как, напри-
мер, оператор import в Java, он просто копирует при компиляции код
из указанного файла в ваш шейдер. Так что если два раза включить
один и тот же файл, то в шейдере окажется два одинаковых блока
кода с дублирующимися названиями функций и переменных, и такой
шейдер не скомпилируется. Конечно, если вы работаете только с од-
ним CgInclude-файлом, легко проследить, чтобы подобного не прои-
зошло. Но когда у вас будет несколько CgInclude-файлов, которые
ссылаются друг на друга, лучше пользоваться старым проверенным
методом работы с помощью #ifndef. В данном примере мы исполь-
зуем директиву #ifndef, чтобы проверить, не был ли определен иден-
тификатор с именем MY_CG_INCLUDE, если нет, мы определяем его с
помощью директивы #defi ne и вставляем необходимый код. Иначе
не делаем ничего. Таким образом, если наш CgInclude-файл был уже
когда-то скопирован в код шейдера, идентификатор MY_CG_INCLUDE
будет уже объявлен, и Unity пропустит дублирующийся код.

Теперь вы видите, какие преимущества даёт нам использование
CgInclude-файлов, в которых мы можем хранить все наши модели
освещения и наши собственные переменные, что в большой степени
снижает количество кода, которое нам нужно писать. Но, ещё боль-
шие возможности для придания гибкости вашему шейдеру даёт объ-
явление нескольких состояний функций в файлах CgInclude.

Использование #define

в шейдерах
Теперь мы умеем использовать встроенные в Unity CgInclude файлы,
а также создавать собственные несложные CgInclude-файлы для объ-
единения в них наших моделей освещения, переменных и вспомога-
тельных функций. Давайте посмотрим, как мы можем использовать
CgInclude-файлы более динамично и более эффективно, чтобы по-
высить степень модульности наших шейдеров с помощью состояний,
которые мы можем включать и выключать.

Для демонстрации этой идеи мы изменим нашу модель освещения
Half Lambert, которую мы создали в последнем рецепте, так чтобы

218 Глава 9. Делаем наш шейдерный мир модульным...

иметь возможность включать и выключать эффект Half Lambert. Та-
ким образом, если мы в шейдере объявляем, что используется Half
Lambert, наша модель освещения изменится со стандартной модели
освещения NdotL на модель Half Lambert.

Давайте посмотрим, как это работает, используя уже созданные
нами ассеты. Нам потребуется внести в код лишь небольшие изме-
нения.

Как это сделать…

Начнём мы с того, что обратим внимание на наш CgInclude-файл. Мы
хотим, чтобы модель освещения имела два состояния. Для этого вы-
полните следующие действия:

1. Первым состоянием нашей модели будет модель диффузного
освещения NdotL, а вторым состоянием – модель освещения
Half Lambert. Добавьте в ваш файл CgInclude следующий
код.

#ifndef MY_CG_INCLUDE
#defi ne MY_CG_INCLUDE

//Настраиваемые встроенные переменные.
fi xed4 _MyColor;

//Модели освещения.
inline fi xed4 LightingCustomLambert(SurfaceOutput s, fi xed3
lightDir, fi xed atten)
{
 fi xed diff = max(0, dot(s.Normal, lightDir));

 #ifdef HalfLambert
 diff = (diff + 0.5)*0.5;
 #endif

 fi xed4 c;
 c.rgb = s.Albedo * _LightColor0.rgb *
((diff * _MyColor.rgb) * atten * 2);
 c.a = s.Alpha;
 return c;
}

#endif

2. Далее нам нужно будет обновить у нашего шейдера директивы
компилятора.

219Использование #define в шейдерах

CGPROGRAM
#defi ne HalfLambert

#include "MyCGInclude.cginc"
#pragma surface surf CustomLambert

3. Сохраните ваш CgInclude-файл и шейдер, затем вернитесь в
Unity, чтобы они скомпилировались. Если всё прошло хорошо,
то вы не заметите различий. Это потому, что мы дали указа-
ние Unity объявить идентификатор HalfLambert, который ис-
пользуется в коде нашей функции освещения. Таким образом,
код между #ifdef и #endif будет выполнен.

4. Вернитесь к вашему шейдеру и закомментируйте только что
добавленный дефайн. Сохраните его и вернитесь в Unity, что-
бы он скомпилировался.

CGPROGRAM
//#defi ne HalfLambert

#include "MyCGInclude.cginc"
#pragma surface surf CustomLambert

Если всё прошло хорошо, то вы увидите, что наш шейдер теперь
использует стандартную модель освещения NdotL. Так происхо-
дит потому, что теперь мы больше не объявляем идентификатор
HalfLambert, поэтому Unity при компиляции пропускает этот учас-
ток кода. С помощью этого приёма написание шейдеров становится
более гибким и более эффективным, поскольку нам не приходится
постоянно переписывать или удалять большие участки кода. На сле-
дующем скриншоте приводится результат работы нашего нового мо-
дульного шейдера.

Рис. 9.4. Результат работы шейдера
с и без директивы #defi ne HalfLambert

 Не используем Используем
 #defi ne HalfLambert #defi ne HalfLambert

220 Глава 9. Делаем наш шейдерный мир модульным...

Как это работает…

Как видите, объём необходимого нам на данном этапе кода минима-
лен. Используя этот простой метод, мы можем создать большое число
вариаций наших моделей освещения. С помощью директивы #ifdef
мы говорим Unity искать определение, следующее за #ifdef, в нашем
случае – HalfLambert.

Когда мы объявляем в нашем шейдере директиву #defi ne, Unity на-
чинает искать указанное определение во всех подключенных файлах.
Если Unity встретит нужный #ifdef, то она будет использовать код,
располагающийся до директивы #endif. Нужно понимать, насколько
ответственным становится задание имён для этих идентификаторов,
ведь вам придётся удостовериться, что вы не собираетесь использо-
вать уже задействованное имя.

Повышение эффективности написания шейдеров с помощью
CgInclude-файлов заключается не только в том, что нам не приходит-
ся дублировать большие объёмы кода в каждом шейдере, но также
и в том, что с помощью этих файлов можно хранить большое коли-
чество моделей освещения. Таким образом, становится гораздо проще
вспомнить и выбрать нужную модель освещения, а также, например,
изменить её так, чтобы она использовала несколько состояний. Пред-
ставьте, каково было бы попытаться запомнить все модели освещения
из этой книги или даже просто выписать их в блокнотик для дальней-
шего применения. Использование CgInclude-файлов поможет вам
стать более эффективным и организованным шейдерным програм-
мистом.

ГЛАВА 10
Создание экранных

эффектов в Unity
с помощью рендер-текстур

В этой главе вы узнаете о:

 написании скриптов для полноэкранных эффектов;
 реализации эффектов изменения яркости, насыщенности и

контраста;
 создании режимов блендинга на подобие Photoshop;
 реализации режима блендинга Overlay.

Введение
Один из наиболее впечатляющих аспектов изучения шейдеров, –
это написание ваших собственных полноэкранных эффектов, так-
же известных как постэффекты или фулскрин-эффекты (от англ.
fullscreen, – полноэкранный). Используя фулскрин-эффекты, мы
можем существенно улучшить картинку, например при помощи эф-
фектов Bloom, Motion Blur, HDR и других. Большинство современ-
ных игр активно использует постэффекты, например для реализации
эффектов глубины (Depth of Field или DOF), свечения (Bloom) или
коррекции цвета.

В этой главе мы начнём с изучения скриптов, которые позволят
нам создавать эти эффекты. Мы узнаем о рендер-текстурах (render
texture), о том, что такое буфер глубины (depth buffer), и о создании
эффектов, с помощью которых мы можем так же детально контроли-
ровать цвет финального рендера, как в Photoshop. Начав использо-
вать полноэкранные эффекты в своих играх, вы не только пополните
свою копилку приёмов написания шейдеров, но и получите возмож-
ность создавать в Unity невероятно красивую картинку в реальном
времени.

222 Глава 10. Создание экранных эффектов в Unity...

Создание скриптов

для полноэкранных эффектов
Полноэкранные эффекты работают следующим образом: Unity рен-
дерит изображение с камеры, отдаёт текстуру в эффект, который,
используя шейдер на GPU, нужным образом изменяет каждый
пиксель текстуры и возвращает модифицированное изображение
обратно. Таким образом, мы можем выполнять в реальном времени
попиксельные операции над отрендеренным изображением игры,
что даёт нам больший художественный контроль над финальной
картинкой.

Представьте, какого было бы корректировать каждый материал
каждого отдельного объекта в вашей игре, чтобы всего лишь изме-
нить контрастность итогового изображения. Конечно, можно было бы
поступить и так, но на это ушло бы очень много времени. С помощью
фулскрин-эффектов мы можем корректировать итоговое изображе-
ние сразу на всём экране, что даёт нам контроль на уровне Photoshop
за финальной картинкой.

Чтобы начать разбираться в постэффектах, нам потребуется
написать скрипт, который будет выступать в роли посредника между
Unity и шейдером, и передавать текущее отрендеренное изображение
в виде рендер-текстуры (render texture). Настроив скрипт для пере-
дачи текстуры шейдеру, мы сможем использовать его для создания
различных полноэкранных эффектов. В качестве нашего первого эф-
фекта мы напишем очень простой эффект перевода в оттенки серо-
го, при применении которого наша игра станет чёрно-белой. Давайте
посмотрим, как же это сделать.

Подготовка

Для начала нам нужно будет подготовить несколько ассетов в нашем
Unity-проекте. Для этого выполните следующие действия:

1. В текущем проекте создайте новый C#-скрипт и назовите его
TestRenderImage.cs.

2. Создайте новый шейдер и назовите его ImageEffect.shader.
3. Создайте простую сферу и назначьте ей новый материал. Это

может быть совершенно произвольный материал, но для на-
шего примера мы решили использовать простой Specular-ма-
териал красного цвета.

223Создание скриптов для полноэкранных эффектов

4. Далее создайте новый направленный источник света и сохра-
ните сцену.

После того, как вы подготовите все необходимые ресурсы, ваша
сцена должна выглядеть примерно как на следующем скриншоте.

Рис. 10.1. Вид подготовленной сцены

Как это сделать…

Чтобы сделать эффект перевода в оттенки серого, нам понадобятся
соответствующий скрипт и шейдер. Поэтому сейчас мы займёмся их
созданием. Сначала мы приступим к написанию C#-скрипта. Этот
скрипт будет базой для всех наших фулскрин-эффектов. После этого
мы напишем шейдер и посмотрим на результаты применения нашего
эффекта.

Выполните следующие действия:

1. Откройте C#-скрипт TestRenderImage.cs и создайте не-
сколько переменных, которые нам потребуются для хранения
важных объектов и данных. Добавьте следующий код в самом
начале класса TestRenderImage .

public class TestRenderImage : MonoBehaviour
{
 #region Variables
 public Shader curShader;
 public fl oat grayScaleAmount = 1.0f;
 private Material curMaterial;
 #endregion

224 Глава 10. Создание экранных эффектов в Unity...

2. Чтобы мы смогли редактировать эффекты в реальном вре-
мени, когда редактор Unity не находится в режиме play, нам
потребуется добавить следующую строчку перед объявлением
класса TestRenderImage.

[ExecuteInEditMode]
public class TestRenderImage : MonoBehaviour
{

3. Поскольку наш фулскрин-эффект использует шейдер для вы-
полнения попиксельных операций с отрендеренным изображе-
нием для работы шейдера, нам потребуется создать материал.
Без него мы не сможем получить доступ к свойствам шейдера.
Поэтому мы создаём C#-свойство, которое будет проверять ма-
териал и создавать его, если он не был создан. Добавьте следую-
щий код сразу после объявленных на первом шаге переменных.

#region Properties
Material material
{
 get
 {
 if(curMaterial == null)
 {
 curMaterial = new Material(curShader);
 curMaterial.hideFlags = HideFlags.HideAndDontSave;
 }
 return curMaterial;
 }
}
#endregion

4. Теперь нам нужно проверить, поддерживает ли текущая плат-
форма, под которую мы делаем игру, фулскрин-эффекты. Если
не поддерживает, скрипт автоматически выключит себя.

void Start()
{
 if(!SystemInfo.supportsImageEffects)
 {
 enabled = false;
 return;
 }

 if(!curShader && !curShader.isSupported)
 {
 enabled = false;
 }
}

225Создание скриптов для полноэкранных эффектов

5. Для того чтобы получать отрендеренное изображение в нашем
эффекте, нам нужно добавить в скрипт метод OnRenderImage() ,
в который Unity будет передавать рендер-текстуру с изобра-
жением с экрана.

void OnRenderImage(RenderTexture sourceTexture, RenderTexture
destTexture)
{
 if(curShader!= null)
 {
 material.SetFloat("_LuminosityAmount", grayScaleAmount);
 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

6. В нашем эффекте мы определили переменную
grayScaleAmount, которую мы используем для контроля над
степенью обесцвечивания итоговой картинки. Её значения
должны лежать в диапазоне от 0 до 1, где 0 – эффект выклю-
чен, 1 – изображение полностью черно-белое. Мы будем про-
верять это в методе Update() , который выполняется каждый
кадр.

void Update()
{
 grayScaleAmount = Mathf.Clamp(grayScaleAmount, 0.0f, 1.0f);
}

7. И наконец, мы завершим написание скрипта, убедившись, что
при его выключении мы удаляем все созданные нами объек-
ты.

void OnDisable()
{
 if(curMaterial)
 {
 DestroyImmediate(curMaterial);
 }
}

Теперь, если скрипт TestRenderImage.cs скомпилировался в
Unity без ошибок, мы можем назначить его камере. Давайте назначим
его нашей мэйн (от англ. main, – главный) камере в сцене. В свойствах
скрипта вы должны увидеть значение переменной grayScaleAmount
и поле для шейдера, но при этом скрипт выдаёт ошибку в окне кон-

226 Глава 10. Создание экранных эффектов в Unity...

соли. В сообщении об ошибке написано, что отсутствует экземпляр
объекта и скрипт не может корректно выполниться. Если вы помните,
на 4-ом шаге мы осуществляем ряд проверок на наличие шейдера и на
его поддержку текущей платформой. А поскольку мы не задали шей-
дер для нашего скрипта, переменная curShader содержит значение
null, что и приводит к появлению ошибки.

Давайте продолжим работу над нашим фулскрин-эффектом, напи-
сав шейдер для него:

1. Начнём написание шейдера с создания переменных, с по-
мощью которых мы сможем передавать данные в шейдер.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _LuminosityAmount ("GrayScale Amount", Range(0.0, 1)) = 1.0
}

2. Наш шейдер не будет использовать возможности поверхнос-
тных шейдеров в Unity, вместо этого мы сами реализуем нуж-
ную нам пиксельную функцию. Таким образом, мы получим
более эффективный шейдер для нашего фулскрин-эффекта.
Для этого мы создадим новый блок Pass в нашем шейде-
ре и добавим в него пока что ещё новые для нас директивы
#pragma.

SubShader
{
 Pass
 {
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest
 #include "UnityCG.cginc"

3. Чтобы получить доступ к данным, пересылаемым в шейдер из
редактора Unity, нам потребуется объявить соответствующие
переменные в блоке CGPRGORAM.

uniform sampler2D _MainTex;
fi xed _LuminosityAmount;

4. И наконец, всё, что нам остаётся сделать, – это подготовить
пиксельную функцию, в нашем случае frag() . Тут-то в нашем
полноэкранном эффекте и будет происходить всё самое ин-
тересное. Эта функция будет обрабатывать каждый пиксель

227Создание скриптов для полноэкранных эффектов

рендер-текстуры и возвращать новое изображение скрипту
TestRenderImage.cs.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 fi xed4 renderTex = tex2D(_MainTex, i.uv);

 //Применим значение яркости к нашей рендер-текстуре.
 fl oat luminosity = 0.299 * renderTex.r + 0.587 * renderTex.g +
0.114 * renderTex.b;
 fi xed4 fi nalColor = lerp(renderTex, luminosity, _LuminosityAmount);

 return fi nalColor;
}

После того как наш шейдер будет готов, вернитесь в Unity, чтобы он
скомпилировался, и убедитесь, что не было допущено ошибок. Если
всё прошло хорошо, назначьте скрипту TestRenderImage.cs новый
шейдер и измените значение переменной grayscale. После этого вы
должны увидеть, как ваша игра превращается из цветной в чёрно-
белую. Следующее изображение наглядно иллюстрирует результат
применения этого эффекта.

Рис. 10.2. Результат применения фулскрин-эффекта
с разными значениями переменной grayscale

В итоге у нас появился удобный способ тестировать шейдеры фул-
скрин-эффектов, избавляющий нас от необходимости каждый раз за-
ново писать C#-скрипты. Давайте копнём чуть глубже и узнаем под-
робнее о рендер-текстурах и о том, как данные из них обрабатываются
на разных этапах выполнения эффектов.

Значение Grayscale: 0.0 Значение Grayscale: 0.5 Значение Grayscale: 1.0

228 Глава 10. Создание экранных эффектов в Unity...

Как это работает…
Для полноценного фулскрин-эффекта в Unity нам необходимо со-
здать скрипт и шейдер. Скрипт нужен для настройки и обновления па-
раметров в реальном времени, а также для передачи рендер-текстуры
от камеры, на которой он висит, в шейдер. Шейдер получает текстуру,
попиксельно изменяет её и возвращает обратно модифицированное
изображение.

В начале скрипта мы проверяем, что текущая целевая платформа
поддерживает полноэкранные эффекты и способна выполнить дан-
ный шейдер. Потому что вполне может быть, что выбранная платфор-
ма не поддерживает полноэкранных эффектов, или используемого
нами шейдера. Проверяя это в функции Start() при первом запуске
скрипта, мы избавляемся от неправильного поведения и неминуемых
ошибок во время игры.

Добавив в скрипт метод OnRenderImage(), мы говорим Unity, что
хотим получать картинку с камеры. Как вы уже, наверное заметили,
у этого метода есть два параметра: sourceTexture и destTexture.
В первой текстуре находится изображение с камеры, во вторую тек-
стуру нам нужно поместить измененное изображение. Мы это дела-
ем с помощью функции Graphics.Blit() , которая просто-напросто
рендерит полноэкранный квад с текстурой и материалом в заданную
рендер-текстуру. Вы можете найти дополнительную информацию об
этих двух функциях по следующим адресам:

• OnRenderImage (http://docs.unity3d.com/Documentation/
ScriptReference/MonoBehaviour.OnRenderImage.html);

• Graphics.Blit (http://docs.unity3d.com/Documentation/Script-
Reference/Graphics.Blit.html).

Мы рассмотрели очень простой пример, но этот пример показывает
основные элементы и возможности фулскрин-эффектов. Скорее все-
го, вы уже понимаете, насколько мощный инструмент у нас в руках.
Используя фулскрин-эффекты, мы получаем контроль над финальной
картинкой на уровне таких графических редакторов, как Photoshop.
Например, применяя несколько эффектов к камере, можно думать о
них как о слоях в Photoshop. Эффекты будут выполнены один за дру-
гим, в той же последовательности, в какой они были размещены.

Но это ещё не всё…
Итак, мы подготовили C#-скрипт и шейдер для базового полноэк-
ранного эффекта, а теперь давайте посмотрим, какую ещё полезную
информацию можно получить от рендерера Unity.

229

Рис. 10.3. Глубина сцены

Например, включив встроенный в Unity рендеринг глубины у ка-
меры, мы получим доступ к информации о глубине сцены относитель-
но камеры. Если его включить, то мы сможем использовать данные о
глубине для большого количества различных эффектов. Давайте по-
смотрим, как это делается:

1. Создайте новый шейдер и назовите его SceneDepth_Effect.
После этого кликните по нему два раза, чтобы открыть его в
редакторе MonoDevelop.

2. Далее мы создадим свойство для основной текстуры и свойст-
во для контроля за интенсивностью эффекта глубины сцены.
Для этого добавьте в ваш шейдер следующий код:

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _DepthPower ("Depth Power", Range(1, 5)) = 1
}

3. Теперь нам потребуется добавить соответствующие перемен-
ные в наш блок CGPROGRAM. Мы добавим ещё одну переменную
под названием _CameraDepthTexture. Это встроенная в Uni-
ty переменная, которая определена в файле UnityCG.cginc.
В этой переменной содержится информация о глубине, полу-
чаемая от камеры.

Pass
{
 CGPROGRAM

Создание скриптов для полноэкранных эффектов

230 Глава 10. Создание экранных эффектов в Unity...

 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest
 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 fi xed _DepthPower;
 sampler2D _CameraDepthTexture;

4. Мы заканчиваем наш шейдер, используя ещё пару встроенных
в Unity функций: UNITY_SAMPLE_DEPTH() и Linear01Depth() .
Первая функция получает информацию о глубине из тексту-
ры _CameraDepthTexture и возвращает для каждого пикселя
число типа fl oat. Но возвращаемые ей значения нелинейны по
глубине, так что мы используем функцию Linear01Depth(),
чтобы получить линейное распределение глубины от 0 до 1.
Возводя эти значения в степень, мы можем контролировать,
где, относительно положения камеры, будет находиться цент-
ральная точка глубины.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 fl oat d = UNITY_SAMPLE_DEPTH(tex2D(_CameraDepthTexture, i.uv.xy));
 d = pow(Linear01Depth(d), _DepthPower);

 return d;
}

5. Теперь, когда мы доделали наш шейдер, давайте обратим вни-
мание на скрипт эффекта. Во-первых, нам нужно добавить пе-
ременную depthPower, чтобы пользователь мог изменять это
значение в шейдере.

#region Variables
public Shader curShader;
private material curMaterial;

public fl oat depthPower = 1.0f;
#endregion

6. После этого нам нужно обновить метод OnRenderImage(), что-
бы в нём в шейдер передавалось значение depthPower.

void OnRenderImage(RenderTexture sourceTexture, RenderTexture
destTexture)
{
 if(curShader != null)

231

 {
 material.SetFloat("_DepthPower", depthPower);
 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

7. Чтобы завершить создание эффекта глубины, мы должны ска-
зать Unity включить рендеринг глубины для текущей камеры.
Чтобы это сделать, нужно присвоить определённое значение
свойству depthTextureMode у камеры.

void Update()
{
 Camera.main.depthTextureMode = DepthTextureMode.Depth;
 depthPower = Mathf.Clamp(depthPower, 0, 5);
}

После того как вы напишете этот код, сохраните ваш скрипт и шей-
дер, а потом вернитесь в Unity, чтобы они скомпилировались. Если
не было допущено ошибок, вы увидите нечто, похожее на следующий
скриншот.

Рис. 10.4. Результаты, получаемые
при различных значениях depthPower

Создание скриптов для полноэкранных эффектов

Значение depthPower: 0.1

Значение depthPower: 0.4

Значение depthPower: 0.8

232 Глава 10. Создание экранных эффектов в Unity...

Корректировка яркости,

насыщенности и контраста

с помощью полноэкранных

эффектов
Теперь , когда у нас есть шаблоны C# скрипта и шейдера для фул-
скрин-эффектов, мы можем перейти к изучению использования бо-
лее сложных попиксельных операций для создания визуальных эф-
фектов, наиболее распространённых в современных играх.

Использование постэффектов для корректировки итогового цвета
в вашей игре необходимо для предоставления художнику глобального
контроля над финальным изображением на экране игрока. Под кон-
тролем мы подразумеваем методы корректировки цвета с по мощью
слайдеров интенсивности красного, синего и зелёного или методы на-
ложения некоторого тона цвета для всего экрана наподобие эффекта
сепии.

В этом рецепте мы рассмотрим наиболее базовые операции преоб-
разования цвета: операции коррекции яркости, насыщенности и
контраста. Научившись писать эти эффекты, вы получите доста-
точный базис, чтобы приступить к изучению куда более сложных
примеров.

Подготовка

Первым делом нам потребуется подготовить необходимые ассеты.
Мы можем использовать нашу тестовую сцену, однако шейдер и
скрипт нам потребуются новые. Выполните следующие действия:

1. Создайте новый скрипт и назовите его BSC_ImageEffect.
2. Создайте новый шейдер и назовите его BSC_Effect.
3. Теперь нам нужно скопировать код C#-скрипта из предыдуще-

го рецепта в наш новый C#-скрипт. Таким образом мы сможем
сфокусироваться непосредственно на математике эффектов
яркости, насыщенности и контраста.

4. Скопируйте в новый шейдер код шейдера из предыдущего ре-
цепта.

5. Создайте несколько новых объектов на сцене и назначьте им
материалы разных цветов. Так мы получим хороший набор
цветов для тестирования наших новых постэффектов.

233

После того как всё будет готово, у вас должна получиться сцена,
похожая на изображение на следующем скриншоте.

Рис. 10.5. Вид подготовленной сцены

Как это сделать…

Теперь, когда мы подготовили нашу сцену и создали новый скрипт
и шейдер, мы можем перейти к написанию кода, необходимого для
создания эффектов яркости, насыщенности и контраста. Мы сфоку-
сируемся лишь на попиксельных операциях и настройке переменных
для нашего скрипта и шейдера, поскольку подготовка скриптов для
создания фулскрин-эффектов уже была описана в предыдущем ре-
цепте. Выполните следующие действия:

1. Откройте ваш новый шейдер и новый скрипт в редакторе
MonoDevelop. Для этого просто кликните по ним два раза.

2. Целесообразнее сначала приступить к редактированию шей-
дера, поскольку так мы сможем узнать, какие переменные по-
требуются нашему C#-скрипту. Давайте для начала создадим
свойства для яркости, насыщенности и контраста. Также не
забудьте, что нам нужно оставить свойство _MainTex, так как
именно через него передаётся рендер-текстура с изображени-
ем от камеры.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BrightnessAmount ("Brightness Amount", Range(0.0, 1)) = 1.0
 _satAmount ("Saturation Amount", Range(0.0, 1)) = 1.0

Корректировка яркости, насыщенности и контраста...

234 Глава 10. Создание экранных эффектов в Unity...

 _conAmount ("Contrast Amount", Range(0.0, 1)) = 1.0
}

3. Как обычно, чтобы мы смогли получить доступ из блока
CGPROGRAM к нашим свойствам, нам потребуется создать соот-
ветствующие переменные.

Pass
{
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest
 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 fi xed _BrightnessAmount;
 fi xed _satAmount;
 fi xed _conAmount;

4. Теперь нам нужно реализовать операции изменения яркости,
насыщенности и контраста. Добавьте следующий код в наш
шейдер выше функции frag(). Не волнуйтесь, если что-то бу-
дет непонятно, – в следующей секции мы объясним все слож-
ные моменты.

fl oat3 ContrastSaturationBrightness(fl oat3 color, fl oat brt,
fl oat sat, fl oat con)
{
 //Увеличивайте или уменьшайте значения переменных
 //для независимой корректировки значений каналов r, g, b.
 fl oat AvgLumR = 0.5;
 fl oat AvgLumG = 0.5;
 fl oat AvgLumB = 0.5;

 //Коэффициенты Luminance для извлечения освещённости из текстуры.
 fl oat3 LuminanceCoeff = fl oat3(0.2125, 0.7154, 0.0721);

 //Действия над яркостью.
 fl oat3 AvgLumin = fl oat3(AvgLumR, AvgLumG, AvgLumB);
 fl oat3 brtColor = color * brt;
 fl oat intensityf = dot(brtColor, LuminanceCoeff);
 fl oat3 intensity = fl oat3(intensityf, intensityf, intensityf);

 //Действия над насыщенностью.
 fl oat3 satColor = lerp(intensity, brtColor, sat);

 //Действия над контрастом.
 fl oat3 conColor = lerp(AvgLumin, satColor, con);
 return conColor;
}

235

5. И наконец, нам нужно изменить функцию frag(), что-
бы она использовала только что созданную функцию
ContrastSaturationBrightness (). Таким образом, код в
этой функции будет выполнен для каждого пикселя рендер-
текстуры, а результат передан обратно в наш скрипт.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 fi xed4 renderTex = tex2D(_MainTex, i.uv);

 //Применим преобразования для яркости, насыщенности и контраста.
 renderTex.rgb = ContrastSaturationBrightness(renderTex.rgb,
 _BrightnessAmount,
 _satAmount,
 _conAmount);
 return renderTex;
}

Изменив код, вернитесь в редактор Unity, чтобы ваш новый шей-
дер скомпилировался. Если не было допущено ошибок, мы вернёмся
в MonoDevelop, чтобы поработать над нашим скриптом. Давайте на-
чнём с того, что добавим несколько строк кода, которые будут отве-
чать за передачу необходимых данных в шейдер. Для этого выполни-
те следующие действия:

1. Первым делом нам нужно добавить переменные, в которых бу-
дут храниться параметры наших эффектов. В данном случае
нам будут нужны слайдер для яркости, слайдер для насыщен-
ности и слайдер для контраста.

#region Variables
public Shader curShader;
public fl oat brightnessAmount = 1.0f;
public fl oat saturationAmount = 1.0f;
public fl oat contrastAmount = 1.0f;
private Material curMaterial;
#endregion

2. После настройки необходимых переменных нам нужно
передать их значения в шейдер. Мы это делаем в методе
OnRenderImage():

void OnRenderImage(RenderTexture sourceTexture, RenderTexture
destTexture)
{
 if(curShader != null)

Корректировка яркости, насыщенности и контраста...

236 Глава 10. Создание экранных эффектов в Unity...

 {
 material.SetFloat("_BrightnessAmount", brightnessAmount);
 material.SetFloat("_satAmount", saturationAmount);
 material.SetFloat("_conAmount", contrastAmount);

 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

3. И наконец, мы добавим код, который будет ограничивать зна-
чения параметров в разумном диапазоне. Параметры ограни-
чения – дело вкуса, поэтому вы можете сами подобрать значе-
ния, которые вам нравятся.

void Update()
{
 brightnessAmount = Mathf.Clamp(brightnessAmount, 0.0f, 2.0f);
 saturationAmount = Mathf.Clamp(saturationAmount, 0.0f, 2.0f);
 contrastAmount = Mathf.Clamp(contrastAmount, 0.0f, 3.0f);
}

После того как скрипт и шейдер будут готовы, нам нужно просто
повесить скрипт на камеру и назначить ему шейдер. Теперь мы мо-
жем контролировать цвет всей картинки с помощью слайдеров. На
следующем скриншоте приводится пример использования наших
постэффектов.

Рис. 10.6. Результат применения постэффекта,
корректирующего яркость, насыщенность и контраст

237

А на этом скриншоте приводится ещё один пример того, чего мож-
но добиться с помощью настройки цветов отрендеренного изображе-
ния.

Рис. 10.7. Результат применения постэффекта, корректирующего
яркость, насыщенность и контраст с нулевой насыщенностью

Как это работает…

Поскольку мы уже знаем общий принцип работы фулскрин-эффек-
тов, давайте подробно рассмотрим лишь попиксельные операции, ко-
торые используются в функции ContrastSaturationBrightness().

Эта функция принимает несколько аргументов. Первый и наиболее
важный аргумент, – это цвет пикселя из рендер-текстуры. Остальные
аргументы просто управляют эффектами и соответствуют слайдерам
в панели Инспектора.

В самом начале функции мы объявляем несколько переменных, ко-
торые используются в последующем коде при преобразовании цвета.
Переменная LuminanceCoeff содержит коэффициенты для получе-
ния общей яркости изображения. Эти коэффициенты основываются
на функциях соответствия цветов CIE, и их значения стандартны в
индустрии. Чтобы получить яркость пикселя, нужно вычислить ска-
лярное произведение цвета и этих коэффициентов яркости.

Далее мы умножаем текущий цвет на параметр яркости и исполь-
зуем два раза функцию lerp, чтобы, в зависимости от параметров sat
и con, получить нужный по насыщенности и контрастности цвет.

Такие постэффекты, как только что разобранный нами, необхо-
димы для создания качественной графики в играх, поскольку они

Корректировка яркости, насыщенности и контраста...

238 Глава 10. Создание экранных эффектов в Unity...

позволяют вам корректировать итоговое изображение в игре без не-
обходимости редактировать каждый материал на сцене.

Создание основных режимов

блендинга с использованием

полноэкранных эффектов
Возможности фулскрин-эффектов не ограничиваются лишь коррек-
тировкой цвета изображения с камеры. Мы также можем использо-
вать их для комбинирования других изображений с нашей рендер-
текстурой. Эта техника похожа на создание нового слоя в Photoshop и
выбор ему режима наложения, который управляет блендингом цвета
нового изображения со старым, или, как в нашем случае, с рендер-
текстурой. Это даёт нам очень мощный инструмент, поскольку поз-
воляет художнику имитировать режимы блендинга, применяемые в
игре, находясь в редакторе, а не в Photoshop.

В этом рецепте мы рассмотрим наиболее распространённые режимы
блендинга, такие как Multiply (умножение), Add (сложение) и Over-
lay (наложение). Вы увидите, как легко мы можем получить в нашей
игре возможности Photoshop по работе с режимами блендинга.

Подготовка

Для начала нам потребуются некоторые ассеты. Поэтому выполните
следующие шаги, в которых мы подготовим всё необходимое для реа-
лизации эффектов блендинга:

1. Создайте новый скрипт и назовите его BlendMode_ImageEf-
fect.

2. Создайте новый шейдер и назовите его BlendMode_Effect.
3. Теперь нам нужно скопировать в наш C#-скрипт код из C#-

скрипта первого рецепта этой главы. Это позволит нам сфоку-
сироваться непосредственно на шейдере эффекта.

4. Скопируйте в ваш новый шейдер код из того же рецепта.
5. И наконец, нам потребуется ещё одна текстура, которую мы

будем накладывать на изображение с камеры с помощью реа-
лизованных нами режимов блендинга. В этом рецепте мы бу-
дем использовать текстуру грязи. Таким образом, эффекты
будут более заметны при тестировании.

239

На следующем изображении приводится текстура, которую мы ис-
пользовали. Нам нужна текстура с достаточно большим количеством
деталей и большим диапазоном оттенков серого.

Рис. 10.8. Текстура, использованная нами в этом рецепте

Как это сделать…

Первым мы реализуем режим блендинга Multiply в том виде, в каком
он используется в Photoshop. Давайте начнём с того, что изменим код
нашего шейдера. Откройте шейдер в MonoDevelop, два раза кликнув
по нему в панели проекта Unity. Далее выполните следующие дейст-
вия:

1. Нам понадобятся два новых свойства: текстура, которую мы
будем блендить, и слайдер для регулировки прозрачности. До-
бавьте в ваш шейдер следующий код.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BlendTex ("Blend Texture", 2D) = "white" {}
 _Opacity ("Blend Opacity", Range(0,1)) = 1
}

2. Добавьте соответствующие переменные в блок CGPROGRAM, что-
бы мы смогли добраться до данных из нашего блока свойств.

Pass
{
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest

Создание основных режимов блендинга...

240 Глава 10. Создание экранных эффектов в Unity...

 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 uniform sampler2D _BlendTex;
 fi xed _Opacity;

3. И наконец, нам нужно изменить нашу функцию frag() таким
образом, чтобы она выполняла умножение наших двух текс-
тур.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 fi xed4 renderTex = tex2D(_MainTex, i.uv);
 fi xed4 blendTex = tex2D(_BlendTex, i.uv);

 //Выполним блендинг в режиме Multiply.
 fi xed4 blendedMultiply = renderTex * blendTex;

 //Подкорректируем степень блендинга с помощью функции lerp.
 renderTex = lerp(renderTex, blendedMultiply, _Opacity);

 return renderTex;
}

4. Сохраните шейдер и вернитесь в редактор Unity, чтобы шей-
дер скомпилировался. Если не было ошибок, кликните два
раза по файлу C#-скрипта, чтобы открыть его в редакторе
MonoDevelop.

5. В нашем скрипте нам также потребуется создать соответствую-
щие переменные. Нам будет нужна текстура, которую мы смо-
жем назначить шейдеру, а также слайдер для корректировки
итогового значения блендинга.

#region Variables
public Shader curShader;
public Texture2D blendTexture;
public fl oat blendOpacity = 1.0f;
private Material curMaterial;
#endregion

6. Далее мы передаем значения этих свойств в шейдер в методе
OnRenderImage().

void OnRenderImage(RenderTexture sourceTexture, RenderTexture
destTexture)
{
 if(curShader != null)

241

 {
 material.SetTexture("_BlendTex", blendTexture);
 material.SetFloat("_Opacitry", blendOpacity);

 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

7. И в заключение в методе Update() мы нормализуем значение
переменной blendOpacity в диапазоне от 0,0 до 1,0.

void Update()
{
 blendOpacity = Mathf.Clamp(blendOpacity, 0.0f, 1.0f);
}

После того как скрипт и шейдер будут готовы, нам нужно просто
повесить скрипт на камеру и назначить ему шейдер. Но, чтобы эф-
фект заработал, нам понадобится текстура. В панели Инспектора в
свойствах скрипта постэффекта вы можете выбрать, какую текстуру
использовать. После того как вы назначите текстуру, вы увидите эф-
фект перемножения выбранной текстуры с отрендеренным изобра-
жением вашей игры. Следующий скриншот демонстрирует результат
применения реализованного нами фулскрин-эффекта.

Рис. 10.9. Применение блендинга в режиме Multiply для Opacity 0,5

На следующем скриншоте вы видите пример снижения прозрач-
ности, в результате которого перемножаемое изображение становит-
ся гораздо более заметным на фоне отрендеренного изображения.

Создание основных режимов блендинга...

242 Глава 10. Создание экранных эффектов в Unity...

Рис. 10.10. Применение блендинга в режиме Multiply для Opacity 1,0

Теперь, когда мы реализовали наш первый режим блендинга, мы
можем добавить к нему еще несколько режимов, чтобы увидеть, как
просто это делается и как их использование существенно повышает
качество картинки в игре. Но сначала давайте разберёмся с тем, что
тут происходит.

Как это работает…

К этому моменту мы уже получили солидный багаж знаний по фул-
скрин-эффектам, и я уверен, что вы уже видите, какие возможности
предоставляет нам Unity. Мы можем буквально повторить для нашей
игры функционал Photoshop по работе с блендингом слоёв, чтобы
предоставить художнику гибкость контроля, необходимую для до-
стижения высококачественной графики в кратчайшие сроки.

В этом рецепте мы рассмотрели, как перемножать два изображе-
ния, используя шейдер. При работе с режимами блендинга необхо-
димо думать на пиксельном уровне. К примеру, если мы используем
режим блендинга Multiply, мы берём значение каждого пикселя из
первоначальной текстуры и перемножаем его со значением пикселя
блендинг-текстуры. Аналогичный принцип работает и для режима
блендинга Add. В этом режиме цвет каждого пикселя исходной тек-
стуры, или рендер-текстуры, складывается с цветом пикселя блен-
динг-текстуры.

Режим блендинга Screen (освещение) немного сложнее, но прин-
цип его работы такой же. Оба изображения, – и рендер-текстура, и

243

блендинг-текстура, – инвертируются, перемножаются друг с другом,
а затем вновь инвертируются. Точно так же, как Photoshop наклады-
вает одни текстуры на другие, используя режимы блендинга, мы мо-
жем это делать с помощью фулскрин-эффектов.

Но это ещё не всё…

Давайте продолжим работу с этим рецептом, добавив ещё несколько
режимов блендинга в наш фулскрин-эффект. Для этого выполните
следующие действия:

1. В шейдере эффекта добавьте следующий код в функцию
frag(), а также измените значение, возвращаемое нашему
скрипту. Кроме этого, нам нужно будет закомментировать ре-
жим блендинга Multiply, чтобы он не выполнялся.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 fi xed4 renderTex = tex2D(_MainTex, i.uv);
 fi xed4 blendTex = tex2D(_BlendTex, i.uv);

 //Выполним блендинг в режиме Multiply.
 //fi xed4 blendedMultiply = renderTex * blendTex;
 fi xed4 blendedAdd = renderTex + blendTex;

 //Подкорректируем степень блендинга с помощью функции lerp.
 renderTex = lerp(renderTex, blendedAdd, _Opacity);

 return renderTex;
}

 Сохраните шейдер и вернитесь в редактор Unity, чтобы шей-
дер скомпилировался. Если не было допущено ошибок, то
вы увидите результат, похожий на скриншот, показанный на
рис. 10.11. Это простой режим блендинга Add.

 Как видите, эффект противоположен режиму Multiply, по-
скольку теперь мы складываем два изображения.

2. И наконец, давайте добавим ещё один режим блендинга, кото-
рый называется Screen (освещение). Этот режим чуть более
сложный, но всё равно прост в реализации. Добавьте следую-
щий код в функцию frag() вашего шейдера:

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,

Создание основных режимов блендинга...

244 Глава 10. Создание экранных эффектов в Unity...

 //используя UV-координаты из структуры v2f_img.
 fi xed4 renderTex = tex2D(_MainTex, i.uv);
 fi xed4 blendTex = tex2D(_BlendTex, i.uv);

 //Выполним блендинг в режиме Multiply.
 //fi xed4 blendedMultiply = renderTex * blendTex;
 //fi xed4 blendMultiply = renderTex + blendTex;
 fi xed4 blendedScreen = (1.0 - ((1.0 - renderTex) * (1.0 - blendTex)));

 //Подкорректируем степень блендинга с помощью функции lerp.
 renderTex = lerp(renderTex, blendedScreen, _Opacity);

 return renderTex;
}

Рис. 10.11. Применение блендинга в режиме Add

Приведённый ниже скриншот демонстрирует результат примене-
ния режима блендинга Screen при наложении двух изображений.

Рис. 10.12. Режим блендинга Screen

245

Реализация режима блендинга

Overlay с использованием

полноэкранных эффектов
В нашем последнем рецепте этой главы мы рассмотрим ещё один тип
блендинга – Overlay (наложение). Этот режим использует некие ус-
ловия, от которых зависит итоговый цвет каждого пикселя в каждом
канале. Так что для его реализации нам понадобится немного больше
кода, чем обычно. Давайте посмотрим, как это сделать.

Подготовка

Для этого фулскрин-эффекта нам потребуется подготовить два скрип-
та наподобие тех, что уже были использованы в предыдущем рецепте
этой главы. В этом рецепте мы будем использовать ту же сцену, по-
этому новую нам создавать не потребуется. Выполните следующую
последовательность действий:

1. Создайте новый скрипт и назовите его Overlay_ImageEffect, а
также шейдер, который вам следует назвать Overlay_Effect.

2. Скопируйте код в файл вашего скрипта из предыдущего C#-
скрипта.

3. Скопируйте в файл нового шейдера код из вашего предыдуще-
го шейдера.

4. Назначьте скрипт Overlay_ImageEffect основной камере, а
шейдер Overlay_Effect установите свойству скрипта в Инс-
пекторе.

5. После этого два раза кликните по скрипту и по шейдеру, чтобы
открыть их в редакторе MonoDevelop.

Как это сделать…

Работу над нашим Overlay – эффектом мы начнём так же, как мы
начинали работу с большинством рецептов этой главы, сначала мы
разберёмся с шейдером, а потом мы отредактируем C#-скрипт, чтобы
он передавал в шейдер корректные данные. Для этого выполните сле-
дующую последовательность действий:

1. Для начала нам нужно определить необходимые свойства в
нашем блоке свойств. В этом рецепте мы будем использовать
такие же свойства, как и в последних рецептах этой главы.

Реализация режима блендинга Overlay...

246 Глава 10. Создание экранных эффектов в Unity...

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BlendTex ("Blend Texture", 2D) = "white" {}
 _Opacity ("Blend Opacity", Range(0,1)) = 1
}

2. После этого нам нужно создать соответствующие переменные
в нашей секции CGPROGRAM.

Pass
{
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest
 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 uniform sampler2D _BlendTex;
 fi xed _Opacity;

3. Для реализации режима блендинга Overlay нам нужно будет
обрабатывать каждый канал цвета пикселя отдельно. Для этого
нам потребуется написать в шейдере функцию, которая будет
работать со значением отдельного канала, например с каналом
красного цвета, и выполнять для него операцию наложения.
Добавьте следующий код в ваш шейдер сразу после объявле-
ния переменных.

fi xed OverlayBlendMode(fi xed basePixel, fi xed blendPixel)
{
 if(basePixel < 0.5)
 {
 return (2.0 * basePixel * blendPixel);
 }
 else
 {
 return (1.0 - 2.0 * (1.0 - basePixel) * (1.0 - blendPixel));
 }
}

4. И наконец, нам нужно дописать нашу функцию frag() таким
образом, чтобы блендинг выполнялся для каждого канала по
отдельности.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.

247

 fi xed4 renderTex = tex2D(_MainTex, i.uv);
 fi xed4 blendTex = tex2D(_BlendTex, i.uv);

 fi xed4 blendedImage = renderTex;

 blendedImage.r = OverlayBlendMode(renderTex.r, blendTex.r);
 blendedImage.g = OverlayBlendMode(renderTex.g, blendTex.g);
 blendedImage.b = OverlayBlendMode(renderTex.b, blendTex.b);

 //Подкорректируем интенсивность блендинга с помощью функции lerp
 renderTex = lerp(renderTex, blendedImage, _Opacity);

 return renderTex;
}

5. После того как вы закончите шейдер, постэффект должен зара-
ботать. Сохраните шейдер и вернитесь в Unity, чтобы он ском-
пилировался. Наш скрипт уже готов, поэтому нам не потре-
буется вносить в него какие-либо дополнительные изменения.
После того как шейдер скомпилируется, вы должны увидеть
результат, похожий на следующий скриншот.

Рис. 10.13. Применение блендинга в режиме наложения

Как это работает…

Реализация режима блендинга Overlay определённо сложнее преды-
дущих, но если вы декомпозируете её на части, то вы увидите, что по
существу этот режим является просто комбинацией режима Multiply
и режима Screen. Разница лишь в том, что в данном случае мы вы-
полняем проверку, на основании которой принимаем решение о том,
какой режим блендинга использовать для конкретного пикселя.

Реализация режима блендинга Overlay...

248 Глава 10. Создание экранных эффектов в Unity...

В функции OverlayBlendMode мы проверяем, меньше ли значение
канала пикселя, чем 0,5. Если значение оказалось меньше, то мы при-
меняем модифицированный режим блендинга Multiply, если нет, то
применяем модифицированный режим блендинга Screen. Мы проде-
лываем это с каждым пикселем, в результате чего получаем итоговое
RGB-изображение.

Как видите, с помощью полноэкранных эффектов можно добиться
довольно многого. Ограничивающим фактором является лишь целе-
вая платформа и количество памяти, доступной для эффектов. Как
правило, эти ограничения определяются в самом начале работы над
игровым проектом, поэтому дерзайте и получайте удовольствие от
вашей работы с фулскрин-эффектами.

ГЛАВА 11
Гейм-плей и экранные

эффекты

В этой главе мы рассмотрим следующие темы:

 создание эффекта старого фильма;
 создание эффекта ночного видения.

Введение
Одной из особенностей real-time-игр является вовлечение игрока
в игровой мир, настолько сильное, что игрок воспринимает его как
настоящий. Многие современные игры для достижения этой цели ак-
тивно используют постэффекты.

Например, с помощью постэффектов мы можем превратить игро-
вую атмосферу из спокойной в жуткую, всего лишь откорректировав
цвета изображения на экране. Или представьте игровую ситуацию,
в которой вы входите в комнату на одном из уровней вашей игры,
и игра переходит в видеоролик. Во многих играх этот переход будет
реализован с помощью полноэкранного эффекта. Так что следующей
нашей задачей будет научиться делать эффекты, запускаемые по со-
бытиям гейм-плея.

В этой главе мы узнаем, как можно придать игре вид старого фильма
и как во многих шутерах от первого лица реализуется эффект ночного
видения. В каждом из этих рецептов мы рассмотрим, как эти эффекты
можно связать с гейм-плеем, чтобы они использовались уместно по
отношению к игровым событиям.

Создание эффекта старого

фильма
Разные игры делаются в разных исторических сеттингах. В одних иг-
рах события происходят в фэнтезийных мирах, или в фантастических

250 Глава 11. Гейм-плей и экранные эффекты

мирах далёкого будущего, в других действие происходит на Западе
прошлого, как раз тогда, когда были изобретены первые камеры, а
кино люди смотрели черно-белое или с так называемым эффектом
сепии. Одним словом, – видео того времени имело весьма узнаваемые
черты, и их-то мы и воссоздадим с помощью постэффектов в Unity.

Для достижения этого эффекта нам потребуется выполнить не-
сколько действий, и мы рассмотрим, из каких составных частей, поми-
мо очевидного перевода изображения в оттенки серого, складывается
этот эффект. Мы сможем это сделать, если проанализируем внешний
вид кадров старых фильмов. Давайте посмотрим на следующее изоб-
ражение и разберёмся, какие у них есть характерные черты.

Рис. 11.1. Кадр из старого фильма

Мы сделали эту картинку, оглядываясь на несколько примеров в
Сети. Для создания таких картинок, с помощью которых мы можем
лучше понять, как делать тот или иной эффект, удобно использо-
вать Photoshop. Работая с Photoshop, мы понимаем, не только какие
элементы нам потребуется реализовать программно, но и получаем
представление о том, какие режимы блендинга будут уместны для
решения поставленной задачи и как нам нужно будет организовать
слои наших эффектов. Исходник Photoshop, созданный нами для
этого рецепта под названием OldFilmEffect_Research_Layout.psd,
доступен на странице, посвящённой данной книге, по адресу: www.
packtpub.com/support.

251

Подготовка

Теперь, когда мы знаем, что у нас должно получиться, давайте об-
ратим наше внимание на то, как сочетаются используемые слои для
создания итогового эффекта, а также подготовим необходимые ре-
сурсы.

• Тонирование в сепию : этот эффект относительно прост в реа-
лизации, поскольку нам потребуется всего лишь привести
все пиксели исходной рендер-текстуры к единому цветовому
диапазону. Этого легко можно добиться, если использовать
освещённость исходного изображения и добавить к ней некий
цвет.

 Наш первый слой будет выглядеть следующим образом:

Рис. 11.2. Изображение, тонированное в сепию

• Эффект виньетки : на старых фильмах, когда они показыва-
ются с помощью старых кинопроекторов, всегда можно за-
метить нечто вроде «мягких», или нечётких, границ кадра.
Это происходит потому, что лампочка, используемая в кино-
проекторе, более ярка в центре, чем по краям. Этот эффект
называется эффектом виньетки, и именно его мы будем ис-
пользовать в качестве второго слоя. Добиться этого эффекта
можно, наложив полупрозрачную текстуру на весь экран. На
следующем изображении приводится этот слой в виде отдель-
ной текстуры;

Создание эффекта старого фильма

252 Глава 11. Гейм-плей и экранные эффекты

Рис. 11.3. Слой виньетки

• Пыль и царапины : третьим и последним слоем нашего эффек-
та старого фильма будет слой с пылью и царапинами. В этом
слое мы будем использовать две текстуры – одну для пыли и
одну для царапин. Две отдельные текстуры нам нужны для
того, чтобы анимировать их с разной скоростью. Так мы смо-
жем создать эффект прокрутки киноплёнки, на каждом кадре
которой содержатся царапинки и пыль. Следующее изображе-
ние демонстрирует текстуру этого эффекта.

Рис. 11.4. Пыль и царапины, использованные
в данном рецепте

Теперь давайте подготовим шейдер и скрипт, которые используют
эти текстуры. Выполните следующие действия:

1. Для данного рецепта вам потребуются текстура для виньетки,
а также текстуры для пыли и царапин – наподобие только что
приведённых выше.

253

2. Создайте новый скрипт под названием OldFilmEffect.cs и
новый шейдер под названием OldFilmEffectShader.shader.

3. После того как вы создадите необходимые файлы, вам нужно
будет скопировать в них базовый код эффекта из предыдущей
главы. О том, как это сделать, вы можете узнать в главе 10 «Пол-
ноэкранные эффекты с использованием рендер-текстур».

Теперь мы можем перейти непосредственно к созданию эффекта
старого фильма.

Как это сделать…

По отдельности наши слои, используемые для эффекта старого филь-
ма, довольно просты, но при их сочетании мы получаем интересный
визуальный эффект. Давайте пройдёмся по коду скрипта и шейдера,
а после этого разберём каждую строчку этого кода и посмотрим, по-
чему код работает именно так, как он работает. К этому моменту у вас
уже должен быть код простого фулскрин-эффекта, так что в этом ре-
цепте мы пропустим этот шаг и перейдём сразу к добавлению нового
кода. Выполните следующие действия:

1. Начнём мы с C#-скрипта. В первом блоке кода мы определим
переменные, которые должны быть видимы в Инспекторе,
чтобы пользователь мог изменять параметры нашего эффекта.
Чтобы понять, какие параметры нам нужны, мы можем руко-
водствоваться нашим Photoshop-файлом, в котором мы сдела-
ли набросок эффекта. Добавьте следующий код.

#region Variables
public Shader oldFilmShader;

public fl oat OldFilmEffectAmount = 1.0f;

public Color sepiaColor = Color.white;
public Texture2D vignetteTexture;
public fl oat vignetteAmount = 1.0f;

public Texture2D scratchesTexture;
public fl oat scratchesYSpeed = 10.0f;
public fl oat scratchesXSpeed = 10.0f;

public Texture2D dustTexture;
public fl oat dustYSpeed = 10.0f;
public fl oat dustXSpeed = 10.0f;

private Material curMaterial;

Создание эффекта старого фильма

254 Глава 11. Гейм-плей и экранные эффекты

private fl oat randomValue;
#endregion

2. Далее нам нужно написать метод OnRenderImage(). В нём мы
будем передавать значения наших переменных шейдеру, что-
бы он смог использовать их при обработке рендер-текстуры.

void OnRenderImage(RenderTexture sourceTexture, RenderTexture
destTexture)
{
 if(oldFilmShader != null)
 {
 material.SetColor("_SepiaColor", sepiaColor);
 material.SetFloat("_VignetteAmount", vignetteAmount);
 material.SetFloat("_EffectAmount", OldFilmEffectAmount);

 if(vignetteTexture)
 {
 material.SetTexture("_VignetteTex", vignetteTexture);
 }

 if(scratchesTexture)
 {
 material.SetTexture("_ScratchesTex", scratchesTexture);
 material.SetFloat("_ScratchesYSpeed", scratchesYSpeed);
 material.SetFloat("_ScratchesXSpeed", scratchesXSpeed);
 }

 if(dustTexture)
 {
 material.SetTexture("_DustTex", dustTexture);
 material.SetFloat("_dustYSpeed", dustYSpeed);
 material.SetFloat("_dustXSpeed", dustXSpeed);
 material.SetFloat("_RandomValue", RandomValue);
 }

 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

3. И наконец, мы ограничиваем параметры скрипта, чтобы их
значения лежали в правильных диапазонах.

void Update()
{
 vignetteAmount = Mathf.Clamp01(vignetteAmount);
 OldFilmEffectAmount = Mathf.Clamp(OldFilmEffectAmount, 0f, 1.5f);

255

 randomValue = Random.Range(-1f, 1f);
}

4. Завершив написание C#-скрипта, давайте переключимся на
шейдер. Мы должны добавить в шейдер переменные, которые
соответствуют созданным ранее переменным в скрипте. Пос-
ле этого скрипт и шейдер смогут взаимодействовать. Добавьте
следующий код в блок свойств вашего шейдера.

Properties
{
 _MaintTex ("Base (RGB)", 2D) = "white" {}
 _VignetteTex ("Vignette Texture", 2D) = "white"{}
 _ScratchesTex ("Scratches Texture", 2D) = "white"{}
 _DustTex ("Dust Texture", 2D) = "white"{}
 _SepiaColor ("Sepia Color", Color) = (1,1,1,1)
 _EffectAmount ("Old Film Effect Amount", Range(0,1)) = 1.0
 _VignetteAmount ("Vignette Opacity", Range(0,1)) = 1.0
 _ScratchesYSpeed ("Scratches Y Speed", Float) = 10.0
 _ScratchesXSpeed ("Scratches X Speed", Float) = 10.0
 _dustXSpeed ("Dust X Speed", Float) = 10.0
 _dustYSpeed ("Dust Y Speed", Float) = 10.0
 _RandomValue ("Random Value", Float) = 1.0
}

5. Далее, как обычно, нам нужно добавить эти же переменные в
блок CGPROGRAM.

SubShader
{
 Pass
 {
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest
 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 uniform sampler2D _VignetteTex;
 uniform sampler2D _ScratchesTex;
 uniform sampler2D _DustTex;
 fi xed4 _SepiaColor;
 fi xed _VignetteAmount;
 fi xed _ScratchesYSpeed;
 fi xed _ScratchesXSpeed;
 fi xed _dustXSpeed;
 fi xed _dustYSpeed;
 fi xed _EffectAmount;
 fi xed _RandomValue;

Создание эффекта старого фильма

256 Глава 11. Гейм-плей и экранные эффекты

6. Теперь мы переходим к нашей функции frag(), в которой мы
будем попиксельно применять эффект к рендер-текстуре. На-
чинаем мы с того, что получаем цвет из рендер-текстуры и из
текстуры с виньеткой.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 half2 renderTexUV = half2(i.uv.x, i.uv.y + (_RandomValue *
_SinTime.z * 0.005));
 fi xed4 renderTex = tex2D(_MainTex, renderTexUV);

 //Получим цвет из текстуры виньетки.
 fi xed4 vignetteTex = tex2D(_VignetteTex, i.uv);

7. После этого мы добавляем пыль и царапины.

//Возьмём цвет царапин.
half2 scratchesUV = half2(i.uv.x + (_RandomValue * _SinTime.z *
_ScratchesXSpeed), i.uv.y + (_Time.x * _ScratchesYSpeed));
fi xed4 scratchesTex = tex2D(_ScratchesTex, scratchesUV);

//Возьмём цвет пыли.
half2 dustUV = half2(i.uv.x + (_RandomValue * (_SinTime.
z * _dustXSpeed)), i.uv.y + (_RandomValue * (_SinTime.z *
_distYSpeed)));
fi xed4 dustTex = tex2D(_DustTex, dustUV);

8. Далее переводим в сепию.

//Получим значения освещённости из рендер-текстуры с помощью
//значений YIQ.
fi xed lum = dot(fi xed3(0.299, 0.587, 0.114), renderTex.rgb);

//Добавим постоянный цвет значению lum.
fi xed4 fi nalColor = lum + lerp(_SepiaColor, _SepiaColor +
 fi xed4(0.1f,0.1f,0.1f,0.1f), _RandomValue);

9. И наконец, мы объединяем все наши слои и цвета, чтобы полу-
чить текстуру итогового эффекта.

 //Создадим постоянный белый цвет, который мы сможем
 //использовать для корректировки прозрачности эффектов.
 fi xed3 constantWhite = fi xed3(1,1,1);

 //Объединим вместе различные слои, чтобы создать итоговый
 //эффект.
 fi nalColor = lerp(fi nalColor, fi nalColor * vignetteTex,
_VignetteAmount);
 fi nalColor.rgb *= lerp(scratchesTex, constantWhite,

257

_RandomValue);
 fi nalColor.rgb *= lerp(dustTex.rgb, constantWhite,
(_RandomValue * _SinTime.z));
 fi nalColor = lerp(renderTex, fi nalColor, _EffectAmount);

 return fi nalColor;
}

ENDCG

10. После того как вы напишете весь этот код, если не было до-
пущено ошибок, вы увидите нечто, похожее на следующий
скриншот. В редакторе Unity нажмите Play, чтобы увидеть эф-
фект анимации царапин и пыли, а также медленное смещение
изображения.

Рис. 11.5. Результат применения постэффекта старого фильма

Как это работает…

Теперь давайте пройдёмся по каждому из слоёв, задействованных в
данном эффекте, и рассмотрим каждую строчку кода, чтобы разо-
браться, как этот код работает. Таким образом, мы поймём, как мы
можем улучшить этот эффект.

Теперь, когда наш эффект старого фильма работает, давайте рас-
смотрим код в функции frag(), поскольку весь остальной код к это-
му моменту уже должен быть понятен.

По аналогии с Photoshop, наш шейдер обрабатывает каждый слой
по отдельности, а потом блендит их вместе. Так что на этот процесс
удобно смотреть, как на слои в Photoshop. Подобный подход помога-
ет при разработке новых фулскрин-эффектов.

Создание эффекта старого фильма

258 Глава 11. Гейм-плей и экранные эффекты

Обратим внимание на первые строки кода функции frag().

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 half2 renderTexUV = half2(i.uv.x, i.uv.y + (_RandomValue *
_SinTime.z * 0.005));
 fi xed4 renderTex = tex2D(_MainTex, renderTexUV);
 fi xed4 vignetteTex = tex2D(_VignetteTex, i.uv);

В первой строке кода функции мы определяем UV-координаты
для главной текстуры. Так как мы пытаемся имитировать эффект
старого фильма, нам нужно немного изменять UV-координаты на-
шей рендер-текстуры на каждом фрейме, будто кадры киноленты
слегка дрожат. Дрожание соответствует неидеальной работе меха-
низма перемотки киноленты. Мы используем встроенную перемен-
ную _SinTime, которая возвращает значение между –1 и 1. Далее мы
умножаем её на очень маленькое число, в нашем случае на 0,005, что-
бы снизить интенсивность этого эффекта. Получившееся значение
вновь умножается на значение переменной _RandomValue, которое
мы генерируем в скрипте. Это значение «скачет» между –1 и 1, что-
бы имитировать «скачки» киноплёнки вперёд-назад. Получив новое
значение UV-координат, мы сохраняем его в переменную render-
TexUV и, используя функцию tex2D() , получаем цвет рендер-тек-
стуры в обрабатываемом пикселе. Далее мы просто получаем цвет
из текстуры виньетки с помощью той же функции tex2D(). Мы не
используем на этом шаге анимированные UV-координаты, посколь-
ку текстура виньетки будет привязана к камере, а не к подёргиваю-
щейся киноленте.

Следующий фрагмент кода иллюстрирует вторую группу строк в
нашей функции frag().

//Возьмём цвет царапин.
half2 scratchesUV = half2(i.uv.x + (_RandomValue * _SinTime.z *
_ScratchesXSpeed), i.uv.y + (_Time.x * _ScratchesYSpeed));
fi xed4 scratchesTex = tex2D(_ScratchesTex, scratchesUV);

//Возьмём цвет пыли.
half2 dustUV = half2(i.uv.x + (_RandomValue * (_SinTime.z *
_dustXSpeed)), i.uv.y + (_RandomValue * (_SinTime.z *
_distYSpeed)));
fi xed4 dustTex = tex2D(_DustTex, dustUV);

Этот код очень похож на предыдущий фрагмент, где мы создавали
анимированные UV-координаты, чтобы модифицировать положение

259

слоя эффекта. Мы просто используем значение встроенной в Unity
переменной _SinTime, чтобы получить значение между –1 и 1, умно-
жаем его на нашу случайную величину, а потом на ещё один множи-
тель, который корректирует общую скорость анимации. Рассчитан-
ные UV-координаты используются для сэмплинга текстур пыли и
царапин.

Следующий фрагмент кода отвечает за цвет нашего эффекта ста-
рого фильма.

//Получим значения освещённости из рендер-текстуры с помощью
//значений YIQ.
fi xed lum = dot(fi xed3(0.299, 0.587, 0.114), renderTex.rgb);

//Добавим постоянный цвет значению lum.
fi xed4 fi nalColor = lum + lerp(_SepiaColor, _SepiaColor +
 fi xed4(0.1f,0.1f,0.1f,0.1f),
 _RandomValue);

В этом блоке кода мы осуществляем цветовое тонирование всей
нашей рендер-текстуры. Для этого мы сначала преобразовываем её в
черно-белое изображение. Делаем мы это, используя значения осве-
щённости, переводя цвет в формат YIQ. Значения YIQ, – это цветовое
пространство, используемое телевизионной системой NTSC. Чтобы
подробнее прочитать про YIQ, вы можете посетить следующие ссылки:

• http://en.wikipedia.org/wiki/YIQ;
• http://www.blackice.com/colorspaceYIQ.htm;
• http://dcssrv1.oit.uci.edu/~wiedeman/cspace/me/infoyiq.html.

Для работы с этим рецептом вы не обязаны знать, что такое YIQ и
как в этом пространстве представляются цвета. Важно лишь запом-
нить, что значение Y соответствует освещенности картинки и из RGB
цвета оно получается по специальной формуле с коэффициентами
для каждого из каналов. Таким образом, чтобы получить черно-белое
изображение, нужно для каждого пикселя вычислить скалярное про-
изведение его цвета с этими коэффициентами, что даст нам значение
освещенности в этом пикселе. Это мы и делаем в первой строке при-
ведённого кода.

После того как мы получим значения освещённости, мы сможем
просто наложить на него цвет, в который мы хотим тонировать наше
изображение. Этот цвет передаётся в шейдер из нашего C#-скрипта,
а потом в блок CGPROGRAM, где мы можем сложить его с нашей черно-
белой текстурой. Таким образом, мы получаем готовое тонированное
изображение.

Создание эффекта старого фильма

260 Глава 11. Гейм-плей и экранные эффекты

И наконец, мы совмещаем все слои нашего эффекта. Что и делается
в следующем коде:

//Создадим постоянный белый цвет, который мы сможем
//использовать для корректировки прозрачности эффектов.
 fi xed3 constantWhite = fi xed3(1,1,1);

//Объединим вместе различные слои, чтобы создать итоговый
//эффект.
 fi nalColor = lerp(fi nalColor, fi nalColor * vignetteTex,
_VignetteAmount);
 fi nalColor.rgb *= lerp(scratchesTex, constantWhite,
_RandomValue);
 fi nalColor.rgb *= lerp(dustTex.rgb, constantWhite,
(_RandomValue * _SinTime.z));
 fi nalColor = lerp(renderTex, fi nalColor, _EffectAmount);

 return fi nalColor;
}

Последний блок кода достаточно прост и не нуждается в деталь-
ном объяснении. Вкратце мы просто умножаем значения всех слоев
и получаем итоговую картинку. Так же как в Photoshop, цвета сло-
ев умножаются в режиме наложения Multiply, мы делаем это в коде
шейдера. Для того чтобы иметь возможность корректировать сте-
пень прозрачности каждого слоя, мы используем функцию lerp()
с соответствующими параметрами, благодаря чему мы получаем
больше художественного контроля за нашим эффектом. Чем больше
«ручек для настроек» эффектов можно предоставить художнику, тем
лучше.

Создание эффекта ночного

видения
Следующий фулскрин-эффект, который мы сделаем, используется
определённо чаще. Эффект ночного видения присутствует в таких иг-
рах, как Call of Duty Modern Warfare, Halo, а также практически в лю-
бом шутере от первого лица, имеющемся сегодня на рынке. Эффект
заключается в подсвечивании всего изображения с помощью хорошо
узнаваемого лаймово-зелёного цвета.

Прежде чем приступить к созданию эффекта ночного видения, нам
нужно воссоздать его в Photoshop, как мы делали в прошлом приме-
ре. Для этого нам нужно найти несколько референсных изображений

261

в Интернете и нарисовать похожую картинку в Photoshop, чтобы по-
смотреть, какие слои и режимы блендинга нам нужны для получения
данного эффекта. На следующем скриншоте изображён результат
этого процесса.

Рис. 11.6. Изображение из прибора ночного видения

А теперь давайте перейдём к разбиению нашего изображения, сде-
ланного в Photoshop, на его составные части, чтобы мы смогли лучше
понять, какие нам потребуется подготовить ресурсы. В следующей
секции мы рассмотрим как раз этот процесс.

Подготовка

Давайте опять начнём работу над нашим постэффектом с того, что
выделим в нём слои. Используя Photoshop, мы можем создать много-
слойное изображение, чтобы лучше продемонстрировать, как именно
мы можем запечатлеть эффект ночного видения.

• Тонирование в зелёный цвет : нашим первым слоем будет
классический зелёный цвет, который мы ожидаем увидеть на
любом изображении, полученном в режиме ночного видения.
С помощью этого эффекта мы сможем придать нашим изобра-
жениям узнаваемые черты ночного видения.

Создание эффекта ночного видения

262 Глава 11. Гейм-плей и экранные эффекты

Рис. 11.7. Тонирование изображения в зелёный цвет

• Линии сканирования : чтобы у пользователя создалось и уси-
лилось ощущение, что перед ним теперь находится какой-то
другой дисплей, мы добавим поверх нашего тонирования в
зелёный цвет линии сканирования (scan lines). Для этих целей
мы воспользуемся текстурой, созданной в Photoshop, и позво-
лим пользователю самостоятельно выбирать плотность, чтобы
линии сканирования становились больше или меньше.

Рис. 11.8. Линии сканирования,
используемые в данном рецепте

263

• Шумы : наш следующий слой, – это шумы, или помехи, кото-
рые мы наложим поверх тонированного изображения и линий
сканирования, чтобы работа оборудования ночного видения
не казалась идеальной, а заодно чтобы добавить эффекту де-
талей. Этот слой усиливает ощущение работы с техническим
устройством ночного видения.

Рис. 11.9. Шумы, используемые в данном рецепте

• Виньетка : последним слоем в нашем эффекте ночного видения
будет виньетка. Если вы посмотрите, как реализован эффект
ночного видения в Call of Duty Modern Warfare, то вы увидите,
что в этой игре используется виньетка, имитирующая эффект
взгляда через окуляр. Мы тоже воспользуемся этим приёмом.

Рис. 11.10. Виньетка, используемая в данном рецепте

Создание эффекта ночного видения

264 Глава 11. Гейм-плей и экранные эффекты

Давайте подготовим текстуры, которые нам понадобятся для со-
здания этого постэффекта. Выполните следующие действия:

1. Подготовьте текстуру виньетки, текстуру шума и линий ска-
нирования – наподобие тех, что мы приводили чуть выше.

2. Создайте новый скрипт под названием NightVisionEffect.
cs и новый шейдер под названием NightVisionEffectShader.
shader.

3. После того как вы создадите необходимые файлы, вам нужно
будет скопировать в них базовый код эффекта из предыдущей
главы. О том, как это сделать, вы можете узнать в главе 10
«Полноэкранные эффекты с использованием рендер-текс-
тур».

А теперь, когда мы подготовили необходимые файлы текстур и
создали базовые скрипты, мы можем приступить непосредственно к
созданию эффекта ночного видения.

Как это сделать…

Мы начнём разработку эффекта со скрипта NightVisionEffect.cs.
Кликните по нему два раза, чтобы открыть его в MonoDevelop. После
этого выполните следующие действия:

1. Нам потребуется создать несколько переменных, чтобы дать
пользователю нашего эффекта возможность настраивать его
в инспекторе. Добавьте следующий код в скрипт NightVi-
sionEffect.cs.

#region Variables
public Shader nightVisionShader;

public fl oat contrast = 2.0f;
public fl oat brightness = 1.0f;
public Color nightVisionColor = Color.white;

public Texture2D vignetteTexture;

public Texture2D scanLineTexture;
public fl oat scanLineTileAmount = 4.0f;

public Texture2D nightVisionNoise;
public fl oat noiseXSpeed = 100.0f;
public fl oat noiseYSpeed = 100.0f;

public fl oat distortion = 0.2f;

265

public fl oat scale = 0.8f;

private fl oat randomValue = 0.0f;
private Material curMaterial;
#endregion

2. Далее нам нужно написать метод OnRenderImage(). В нём
мы будем передавать значения наших переменных шейдеру,
чтобы он смог использовать их при обработке рендер-текс-
туры.

void OnRenderImage(RenderTexture sourceTexture,
RenderTexture destTexture)
{
 if (nightVisionShader != null)
 {
 material.SetFloat("_Contrast", contrast);
 material.SetFloat("_Brightness", brightness);
 material.SetFloat("_NightVisionColor", nightVisionColor);
 material.SetFloat("_RandomValue", randomValue);
 material.SetFloat("_distortion", distortion);
 material.SetFloat("_scale",scale);

 if (vignetteTexture)
 {
 material.SetTexture("_VignetteTex", vignetteTexture);
 }

 if (scanLineTexture)
 {
 material.SetTexture("_ScanLineTex", scanLineTexture);
 material.SetFloat("_ScanLineTileAmount",
 scanLineTileAmount);
 }

 if (nightVisionNoise)
 {
 material.SetTexture("_NoiseTex", nightVisionNoise);
 material.SetFloat("_NoiseXSpeed", noiseXSpeed);
 material.SetFloat("_NoiseYSpeed", noiseYSpeed);
 }

 Graphics.Blit(sourceTexture, destTexture, material);
 }
 else
 {
 Graphics.Blit(sourceTexture, destTexture);
 }
}

Создание эффекта ночного видения

266 Глава 11. Гейм-плей и экранные эффекты

3. Чтобы завершить работу со скриптом NightVisionEffect.
cs, давайте убедимся, что мы ограничиваем значения наших
переменных в некотором диапазоне. Приведённые здесь диа-
пазоны произвольны и могут быть в дальнейшем изменены.
Мы же используем значения, которые действительно хорошо
работают.

void Update()
{
 contrast = Mathf.Clamp(contrast, 0f, 4f);
 brightness = Mathf.Clamp(brightness, 0f, 2f);
 randomValue = Random.Range(-1f, 1f);
 distortion = Mathf.Clamp(distortion, -1f, 1f);
 scale = Mathf.Clamp(scale, 0f, 3f);
}

4. Теперь мы можем сосредоточить наше внимание на шейдерной
части нашего эффекта. Если вы ещё не открыли шейдер, то сей-
час самое время это сделать. Начните с добавления свойств.

Properties
{
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _VignetteTex ("Vignette Texture", 2D) = "white" {}
 _ScanLineTex ("Scan Line Texture", 2D) = "white" {}
 _NoiseTex ("Noise Texture", 2D) = "white" {}
 _NoiseXSpeed ("Noise X Speed", Float) = 100.0
 _NoiseYSpeed ("Noise Y Speed", Float) = 100.0
 _ScanLineTileAmount ("Scan Line Tile Amount", Float) = 4.0
 _NightVisionColor ("Night Vision Color", Color) = (1,1,1,1)
 _Contrast ("Contrast", Range(0,4)) = 2
 _Brightness ("Brightness", Range(0,2)) = 1
 _RandomValue ("Random Value", Float) = 0
 _distortion ("Distortion", Float) = 0.2
 _scale ("Scale (Zoom)", Float) = 0.8
}

5. Для того чтобы мы смогли передавать данные из нашего блока
свойств в блок CGPROGRAM, нам нужно объявить в нём перемен-
ные с такими же именами.

SubShader
{
 Pass
 {
 CGPROGRAM
 #pragma vertex vert_img
 #pragma fragment frag
 #pragma fragmentoption ARB_precision_hint_fastest

267

 #include "UnityCG.cginc"

 uniform sampler2D _MainTex;
 uniform sampler2D _VignetteTex;
 uniform sampler2D _ScanLineTex;
 uniform sampler2D _NoiseTex;
 fi xed4 _NightVisionColor;
 fi xed _Contrast;
 fi xed _ScanLineTileAmount;
 fi xed _Brightness;
 fi xed _RandomValue;
 fi xed _NoiseXSpeed;
 fi xed _NoiseYSpeed;
 fi xed _distortion;
 fi xed _scale;

6. Мы также добавим в наш эффект искажение линз, чтобы мы
могли достовернее воссоздать эффект обзора через оккуляры,
где изображение по углам претерпевает искажения. Добавьте
в блок CGPROGRAM следующий код сразу после объявления пе-
ременных.

fl oat2 barrelDistortion(fl oat2 coord)
{
 //Алгоритм искажения линз
 //Смотри на http://www.ssontech.com/content/lensalg.htm.

 fl oat2 h = coord.xy - fl oat2(0.5, 0.5);
 fl oat r2 = h.x * h.x + h.y * h.y;
 fl oat r = 1.0 + r2 * (_distortion * sqrt(r2));

 return f * _scale * h + 0.5;
}

7. Теперь мы можем сконцентрироваться на основной части на-
шего шейдера NightVisionEffect. Давайте начнём с сэмп-
линга текстур. В функцию frag() нашего шейдера добавьте
следующий код.

fi xed4 frag(v2f_img i) : COLOR
{
 //Получим цвет из рендер-текстуры,
 //используя UV-координаты из структуры v2f_img.
 half2 distortedUV = barrelDistortion(i.uv);
 fi xed4 renderTex = tex2D(_MainTex, distortedUV);
 fi xed4 vignetteTex = tex2D(_VignetteTex, i.uv);

8. Далее мы получаем значения текстур линий сканирования и
шумов, используя анимированные UV-координаты.

Создание эффекта ночного видения

268 Глава 11. Гейм-плей и экранные эффекты

//Обработаем линии сканирования и шумы.
half2 scanLinesUV = half2(i.uv.x * _ScanLineTileAmount,
 i.uv.y * _ScanLineTileAmount);
fi xed4 scanLineTex = tex2D(_ScanLineTex, scanLinesUV);

half2 noiseUV = half2(i.uv.x + (_RandomValue * _SinTime.z *
_NoiseXSpeed), i.uv.y + (_Time.x * _NoiseYSpeed));
fi xed4 noiseTex = tex2D(_NoiseTex, noiseUV);

9. После этого нам нужно вычислить значение освещённости
основной текстуры и применить к ней цвет ночного видения,
чтобы привести её к характерному, узнаваемому виду ночного
видения.

//Получим значения освещённости из рендер-текстуры
//с помощью значений YIQ.
fi xed lum = dot(fi xed3(0.299, 0.587, 0.114), renderTex.rgb);
lum += _Brightness;
fi xed4 fi nalColor = (lum * 2) + _NightVisionColor;

10. И наконец, нам нужно объединить все слои воедино и вернуть
итоговый цвет нашего эффекта ночного видения.

 //Итоговые значения
 fi nalColor = pow(fi nalColor, _Contrast);
 fi nalColor *= vignetteTex;
 fi nalColor *= scanLineTex * noiseTex;

 return fi nalColor;
}

Теперь сохраните шейдер и вернитесь в редактор Unity, чтобы
ваш шейдер и скрипт скомпилировались. Если не возникло никаких
ошибок, для того чтобы увидеть результаты применения эффекта, на-
жмите в редакторе кнопку Play. Вы должны увидеть нечто похожее
на изображение, показанное на рис. 11.11.

Как это работает…

Как вы, наверное заметили, эффект ночного видения очень похож на
эффект старого фильма, что лишний раз демонстрирует нам перспек-
тивы создания модульных компонент в Unity. Мы можем получить
абсолютно разные эффекты, используя один и тот же код, но приме-
няя другие текстуры и другие параметры тайлинга.

Единственное отличие данного эффекта состоит в том, что мы до-
бавляем в наш постэффект искажение от линз. Давайте разберёмся,
как он работает.

269

Рис. 11.11. Результат применения эффекта ночного видения

Следующий фрагмент кода используется для реализации искаже-
ния линз. Этот фрагмент кода мы получили от создателей SynthEyes,
и этот код можно свободно использовать в ваших собственных эф-
фектах.

fl oat2 barrelDistortion(fl oat2 coord)
{
 //Алгоритм искажения линз
 //Смотри на http://www.ssontech.com/content/lensalg.htm.

 fl oat2 h = coord.xy - fl oat2(0.5, 0.5);
 fl oat r2 = h.x * h.x + h.y * h.y;
 fl oat r = 1.0 + r2 * (_distortion * sqrt(r2));

 return f * _scale * h + 0.5;
}

В функции barrelDistortion() в первой строке кода мы ищем
центр изображения рендер-текстуры. Когда у нас есть центр изобра-
жения, мы можем растягивать пиксели по мере их удаления от него.
Таким образом, мы имитируем эффект искажения основной рендер-
текстуры выпуклой поверхностью линзы. Этот эффект смотрится
очень хорошо, когда он используется в таких постэффектах, как ноч-
ное видение.

После того как UV-координаты будут обработаны для имитации
эффекта растяжения, мы продолжаем работу с шейдером, так же как
мы с ним работали раньше, – применяем анимацию UV-координат и
попиксельные операции, в результате чего мы и получаем итоговый
эффект ночного видения.

Создание эффекта ночного видения

270 Глава 11. Гейм-плей и экранные эффекты

Дополнительная информация

Узнать больше об эффекте искажения линз вы можете по следую-
щему адресу: http://www.ssontech.com/content/lensalg.htm.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Символ
2D ToolKit;
 URL 50

А
анизотропные блики 93
анимация вершин в поверхностном

шейдере 182
атлас спрайтов 45

Б
блики 146
блок Tags{} 166
блок свойств 22

В
встроенная в Unity Specular-модель

освещения Phong 74
встроенная в Unity анизотропная Specular-

модель освещения 93
встроенная в Unity модель Specular освещения

BlinnPhong 79
встроенные в Unity CgInclude-файлы 210
вычислительно дешёвый шейдер 191

Д
директивы approxview и halfasview 204
диффузный компонент шейдера кожи 146
диффузный шейдинг 17
добавление свойств поверхностному

шейдеру 22

И
изменение шейдеров для мобильных 204
имитация эффекта BRDF с помощью

2D-текстуры 36
использование;
 директивы #define в шейдерах 217
 свойства в поверхностном шейдере 25
 цвета вершин для ландшафта 185

К
карты нормалей 56
карты нормалей и отражения в Unity3D 114
класс;
 ScriptableWizard 104
 TestRenderImage 223
компоненты шейдера кожи 146
корректировка яркости, насыщенности и

контраста с помощью полноэкранных
эффектов 232

М
маскирование глянцевых бликов с помощью

текстур 81
металлические и мягкие блики 87
модель диффузного освещения 29
модель освещения;
 BlinnPhong 79
 diffuse convolution 135
 Lit Sphere 128
 NdotL 218
 unlit 172
модель освещения автомобильной краски 141

Н
написание модели освещения HalfLambert 32
направление взгляда 36

О
оптимизация шейдеров 191
очередь отрисовки;
 AlphaTest 168
 Background 168
 Geometry 168
 Overlay 168
 Transparent 168

П
переменная LuminanceCoeff 237
подповерхностное рассеивание 146
полупрозрачный шейдер 163

272 Предметный указатель

получение цвета вершины в поверхностном
шейдере 178

постэффекты 221
прозрачность 160
простое отражение с помощью кубической

текстуры в Unity3D 107
простой поверхностный шейдер 18
профайлинг шейдеров 198

Р
размытые нормали 146
реализация режима блендинга Overlay с

использованием полноэкранных
эффектов 245

результат применения модели освещения
diffuse convolution 140

руководство по Cg 134

С
свойство CurveScale 153
создание;
 CgInclude-файла для хранения моделей

освещения 213
 анизотропных бликов 93
 кубических текстур в Unity3D 100
 кубической карты 136
 модели освещения BlinnPhong 79
 модели освещения автомобильной

краски 141
 модели шейдинга Lit Sphere 130
 основных режимов блендинга используя

полноэкранные эффекты 238
 отражения по Френелю в Unity3D 119
 полупрозрачного шейдера 163
 прозрачности с помощью alpha 160
 простой динамической системы кубических

текстур в Unity3D 123
 процедурных текстур в редакторе Unity 60
 скриптов для полноэкранных эффектов 222
 шейдера ткани 155
сортировка глубины с помощью очередей

рендеринга 165
спрайт-листы 45

Т
текстуры 41
 URL дополнительной информации 42
 блендинг 51
 прокрутка текстур с помощью изменения

UV-координат 42

 упаковка 51
типы свойств поверхностных шейдеров;
 2D 24
 Color 24
 Cube 24
 Float 24
 Range 24
 Rect 24
 Vector 24

Ф
файл;
 Lighting.cginc 213
 MyCgInclude.txt 213
 UnityCG.cginc 59
файлы CgInclude 210
фильтр Render Difference Clouds 163
френелевское отражение 90
функция;
 barrelDistortion() 269
 ceil() 49
 ContrastSaturationBrightness() 235
 fmod 48
 frag() 226
 fwidth() 152
 GenerateGradient() 63
 Graphics.Blit() 228
 length() 152
 lerp() 54, 203
 LightingSkinShader() 149
 Linear01Depth() 230
 Luminance() 212
 Mathf.Clamp() 65
 max 32
 OnGUI() 169
 OnRenderImage() 225, 228
 OnWizardCreate() 105
 OnWizardUpdate() 104
 pow() 27
 pow(arg1, arg2) 27
 RenderToCubemap() 105
 Start() 62, 228
 surf 28
 surf() 73, 112, 162
 tex2D() 43, 258
 texCUBE() 109
 UnpackNormal() 159, 194
 Update() 174, 225
 vert() 131, 179
 WorldNormalVector() 140

273Предметный укзатель

функция освещения;
 Lambert 131
 Unlit 131
функция скалярного произведения 30

Ш
шейдер;
 кожи 145
 ткани 154
шейдеры 177

Э
эффект глубины (DOF) 221
эффект ночного видения 260
 виньетка 263
 линии сканирования 262
 тонирование в зелёный цвет 261
 шумы 263
эффект старого фильма 249
 пыль и царапины 252
 тонирование в сепию 251
 эффект виньетки 251
Эффект уровней Photoshop 66

A
Adobe Flash Professional 50
ambient cube shading 140
Anime Studio Pro 50
ATI CubeMapGen 106

B
Bump mapping 56

C
Cg 17
CGFX 48
CrazyBump 56
cutoff прозрачность 163

D
Dot3 bump mapping 56

G
GPU 22, 177
GPU Gems 70
GUI и прозрачность 169

H
HDR Light StudioPro 106

M
MaCrea 129
MatCaps 129
MonoDevelop 20
Mudbox 56

N
N2DO 56
normal mapping 57

P
Photoshop 41

S
Skin Shader 3 154
SpriteManager 50
Sprite Manager 2 50

T
tex2Dbias() 154
TimelineFX 50

U
Unity forums 154

W
World Machine 56

Z
Zbrush 56, 129

	Пустая страница
	Пустая страница

