
B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

www.apress.com

Shelve in
Graphics/Game Programming

User level
Beginning

SOURCE CODE ONLINE9 781484 214954

ISBN 978-1-4842-1495-4ISBN 978-1-4842-1495-4

Make a
2D Arcade Game
in a Weekend

With Unity
—
Create your � rst 2D arcade game in a
weekend
—
Jodessiah Sumpter

Create and complete your �rst 2D arcade game in Unity. In Make a 2D Arcade Game
in a Weekend with Unity, you will learn to create an arcade classic brick breaker
game from beginning to end. You will plan the game � ow, add the graphics and
create the game logic using C#, then build the UX to complete your game. By the
time you have � nished, you will have enough knowledge to tweak the game to
create more levels or your own variant game rules, and you will have the con� dence
to go on and create your own 2D arcade games. You will also learn how to publish
the game into mobile app stores.

Unity is a powerful cross platform so� ware tool that allows you to create 2D and 3D
apps and games. Learning how to create a classic arcade game is a great way to learn
the foundations of game design. While you do need to have a basic understanding
of Unity to complete this project, advanced game building or advanced Unity
experience is not required.

• Learn how to design a classic arcade puzzle game with a unique twist
• Navigate the Unity game development platform
• Gain knowledge and experience scripting in C#
• Add power-ups and scoring to a game
• Learn tips for shortening the development timeline
• Deploy your game using Unity Cloud Build

Make a 2D Arcade Game in a Weekend

Sum
pter

M
ake a 2D Arcade Gam

e in a W
eekend

Make a 2D Arcade
Game in a Weekend

With Unity

Jodessiah Sumpter

Make a 2D Arcade Game in a Weekend: With Unity

Copyright © 2015 by Jodessiah Sumpter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1495-4

ISBN-13 (electronic): 978-1-4842-1494-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Marc Schärer
Edit�orial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Michelle Lowman,
James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484214954. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484214954
www.apress.com/source-code/

iii

Contents at a Glance

About the Author��� ix

About the Technical Reviewer��� xi

Acknowledgments��� xiii

Introduction�� xv

■■Chapter 1: Getting Started��� 1

■■Chapter 2: Define Game Layout and Environment������������������������� 23

■■Chapter 3: Create Positioning and Movement������������������������������� 41

■■Chapter 4: Scripting a Game Manager�� 61

■■Chapter 5: Adding Sound and Music��� 83

■■Chapter 6: Game Power-Ups�� 97

■■Chapter 7: Level Manager and Menu��� 115

■■Chapter 8: Publishing to the App Store��������������������������������������� 139

Index��� 157

v

Contents

About the Author��� ix

About the Technical Reviewer��� xi

Acknowledgments��� xiii

Introduction�� xv

■■Chapter 1: Getting Started��� 1

Prerequisites�� 1

Install Unity�� 2

Choosing a License�� 4

Welcome to Unity��� 6

Configuring Unity��� 8

Skinning the Interface�� 10

Learning the Views�� 11

Understanding Layouts�� 16

Development Tips and Tricks�� 18

Changing Runtime Background Color�� 18

Useful Hotkeys��� 20

Summary�� 21

■■Chapter 2: Define Game Layout and Environment������������������������� 23

2D Game Design Setup�� 23

Laying Out the Game�� 25

Importing Assets�� 26

■ Contents

vi

Define Screen Resolution��� 28

Adding Background�� 29

Adjusting Our Camera�� 32

Adding Bricks��� 32

Creating PreFabs��� 33

Creating Row of Bricks�� 35

Add the Paddle�� 36

Add the Ball�� 38

Summary�� 39

■■Chapter 3: Create Positioning and Movement������������������������������� 41

Making Our Ball Move�� 41

Handling Ball Collisions�� 44

Making Our Ball Bounce��� 46

Beginning Scripting�� 47

The Rules of C Sharp (C#)�� 48

Selecting an Editor�� 48

Our First Script�� 48

Moving the Paddle with the Mouse��� 52

Launching the Ball with the Mouse��� 54

Destroy the Blocks on Hit�� 57

Summary�� 60

■■Chapter 4: Scripting a Game Manager�� 61

Keeping Our Ball in the Game Space�� 61

Creating Invisible Collider Walls��� 62

Changing the Impact of Gravity�� 64

Relabeling the Game Objects in Our Scene�� 66

Scripting Our Game Manager��� 67

■ Contents

vii

Scripting Our Lose Collider��� 71

Using UI Text to Display Information��� 75

Summary�� 82

■■Chapter 5: Adding Sound and Music��� 83

Adding Background Music��� 83

Adding Start and End Sounds��� 85

Bricks with Action and Impact Sound�� 86

Modify Brick Script for Sound�� 87

Game Area Sounds for the Walls and Paddle��� 92

Summary�� 95

■■Chapter 6: Game Power-Ups�� 97

Building Power-Up Scripts��� 97

Building Base Power-Up Prefab Scripts��� 99

Extra Balls Script�� 100

Change Paddle Size Script��� 105

Creating Prefab Game Objects for Ball and Paddle Changes��������������� 106

Sprites for Prefabs��� 107

Extra Ball Prefab�� 107

Shrink and Grow Prefabs��� 108

Putting it All Together in the Scene�� 111

Modify the Lose Script��� 113

Summary�� 114

■■Chapter 7: Level Manager and Menu��� 115

Creating Intro Scene��� 115

Add a Main Title and Buttons��� 115

Script for Loading a Level�� 118

Modifying the Game Lose Scenario�� 121

■ Contents

viii

Add Restart and Main Menu Buttons��� 121

Add a Panel for the Buttons��� 121

Updating the GameManager and Lose Scripts�� 122

Rename and Duplicate Main Scene��� 128

Modifying Level 1 to Include Level Manager�� 128

Adding Scenes to the Build Settings�� 130

Add Additional Buttons��� 131

Background Music��� 134

Trailing Ball Effect�� 134

Summary�� 137

■■Chapter 8: Publishing to the App Store��������������������������������������� 139

Investigating Deployment Options�� 139

Defining Build Settings��� 140

Adding a Quit Button�� 144

Button Creation and LevelLoader Script Modification��� 145

Deploying to WebGL��� 146

Unity Cloud Build�� 148

Placing Our Game in GitHub�� 149

Adding your GitHub to the Cloud�� 152

Summary�� 155

Index��� 157

ix

About the Author

Jodessiah Sumpter currently is the Chief Technology
Officer for numerous start-up companies including
Perfomatix Innovations and Food Cowboy. He has
over 10 years of software development experience at
Fortune 500 companies and has 20+ years experience
developing websites and Internet marketing materials
for individuals, non-profits, start-ups and small
businesses.

Joe has also developed and deployed numerous
mobile and TV applications for Android, iOS,
Blackberry, Windows, and Samsung Smart TV. His
company Blue Crystal Web Design has won numerous

awards with the most recent being the AT&T U-Verse Hackathon and the Extreme Reality
Android Challenge.

Joe is a serial entrepreneur who specializes in taking the software ideas of his national
clients from concept to reality. He received an MBA from the University of Buffalo and a
Post Masters degree in Marketing from the University of Dayton. You can reach find him
on Twitter @bcwdesign or view his blog at http://www.bluecrystalwebdesign.com.

http://www.bluecrystalwebdesign.com

xi

About the Technical
Reviewer

Marc Schärer is an interactive media software
engineer and contributor to the Unity forums as a
fulltime professional unity user since 2007–2008.
As a Swiss local, he attempts to support the local
development communities in Switzerland to help
them unleash their potential, applying his experience
delivering interactive 3d learning, training and
entertainment experiences to mobile, desktop and
web platforms for customers around the world.

He has a strong background in the 3D graphics,
network technology, software engineering and
interactive media fields, which first interested him
as a teenager. He studied Computer Science and
Computational Science and Engineering at the Swiss
Federal Institute of Technology in Zürich.

He is currently the Chief VR Officer at vantage.tv, a
company he co-founded in 2014, which seeks to revolutionize how we see and experience
events of any type and scale in the future by removing the barrier of distance.

xiii

Acknowledgments

First I would like to give glory to God. This book would not have been written if this
skinny, anxious, and shy kid from the ghetto didn’t believe that he could accomplish
anything through Him. Thank you to my amazing wife Cunard for all of her love, support
and patience during this book writing process. I must also thank my wonderful kids
Jayden and Angel. Papa would not have accomplished this book without your hugs,
kisses, jokes and smiles whenever I needed a break or distraction. You are my heart.

Thank you to my family and friends for all of their support and words of
encouragement while writing this book. Especially to my Mom who has always pushed me
to be better and my brother Jeremiah who created the music for the book. The beats take
this book and my games to another level so thanks so much for being there for me bro.

Last and definitely not least I want to thank the outstanding team at Apress. Thanks
to Steve Anglin for being my first contact many years ago and starting me on the book
writing journey. Thank you to my editors Mark Powers and Ben Renow-Clarke for giving
me the continuous poking and prodding I needed to get the job done. You guys were a
great support and I appreciate your patience and understanding during the process.
A special thanks to my technical reviewer Marc Schärer as well for making sure I had my
stuff together and for encouraging thoughts for each chapter.

xv

Introduction

Mobile games are among the most popular types of apps that mobile device owner’s use.
According to App Annie, mobile games hold 7 of the top 10 grossing apps for 2015 at the
time of this writing. With the introduction of game development platforms like Unity,
GameSalad and Corona, the ability to build a complete highly engaging game has become
easier to create. Anyone with basic programming and game design understanding can
build and release a game for the masses to enjoy.

What is the Book About
In this book we use the Unity software to build a simple brick breaker game. A brick
breaker game allows the player to eliminate bricks on the screen by hitting them with a
ball. The player uses the paddle to keep the ball in the game and loses if the ball passes
the paddle.

We will walk through using Unity to rebuild this classic game. We will learn how to
add simple graphics and sounds to make the game interactive. In addition we will use the
Unity editor and the Unity Cloud to build the game for web, mobile and WebGL.

Who is the Book For
This book was written for the Unity 3D beginner. It does assume that you are familiar with
working with a computer and comfortable with understanding basic programming. Other
than that no experience with the Unity software is expected. Familiarity with the old Atari
Super Breakout game play is helpful as well so you can understand the logic of the basic
game we will create.

How To Contact Me
I would love to hear from you! You can contact me as well as get updated information on
the book here:

Joe Sumpter
Twitter: @bcwsdesign
Site: http://www.breakthosebricks.com
Email: joe@breakthosebricks.com

Unity is updated all the time so I would suggest signing up for the email list on the
site or visiting the Errata section for the book on the Apress site for the latest information
on the book.

http://www.breakthosebricks.com
mailto:joe@breakthosebricks.com

1

Chapter 1

Getting Started

Unity is a development framework for creating 2D and 3D games. With this framework,
you can create interactive content for a multitude of platforms including the desktop,
mobile devices, and gaming consoles. The latest version of Unity supports development
for iOS, Android, Windows, Blackberry 10, OS X, Linux, Internet browsers, PlayStation,
Xbox, and Wii U.

The primary focus of this chapter is to walk through the setup and installation of
Unity and provide the basic information on laying out a project in Unity. You will learn the
system requirements as well as the licensing details for choosing the Unity version to use.

This book will walk through the latest version of Unity today, which is Unity 5.1.2.
Unity is constantly being updated, and version 5, the latest major release, was delivered in
early 2015.

Let’s get started!

■■ Note  The primary focus of this book will be development on a MacBook Pro.
If you plan to develop for a PC, please visit the site notes online at
http://www.apress.com/9781484214954.

Prerequisites
In order to begin learning how to use Unity, you need to confirm that you have the right
computer equipment to run the software. Unity is a powerful editor and 3D engine that
requires your computer to have enough horsepower to utilize the product effectively.

First you should verify that your system supports the general requirements for Unity
development (see Figure 1-1).

http://www.apress.com/9781484214954

Chapter 1 ■ Getting Started

2

After you have verified your computer hardware and software are supported, let’s
install the Unity software.

Install Unity
Download and run the installer for Unity on your system. The system used for
development for this book is a MacBook Pro running the Lion operating system. However,
as Figure 1-1 indicated, you can develop using Unity on both Windows and Mac PCs.
After downloading and double-clicking the file for the Mac, you will see the Download
Assistant window shown in Figure 1-2. The assistant window provides the release notes
for the version of Unity that you are trying to install and the ability to begin the software
installation.

Figure 1-1.  System Requirements for installing the Unity software from Unity3d.com

Chapter 1 ■ Getting Started

3

Next you will double-click on the Download Assistant icon to begin the installation
(shown in Figure 1-3).

Figure 1-2.  Unity Download Assistant

Figure 1-3.  Download introduction window for Unity

Chapter 1 ■ Getting Started

4

Click to continue through the installation process while making sure that the Standard
Assets, Web Player, and Unity 5.1.2f1 components are selected for install (Figure 1-4).

Figure 1-4.  Component selection window for Unity

You also will see the space required to install the components on your system. Once
the installation has completed, you can start using the Unity software. You simply have to
double-click on the Unity icon to run the software.

Choosing a License
When you download and install Unity for the first time, you are given the option to install
a 30-day trial license of the Unity Professional version. This license will allow you to test
out the features of Professional version before investing in the software. Figure 1-5 shows
the Activation window that allows you to select the licensing options available.

Chapter 1 ■ Getting Started

5

The Professional version of the software offers numerous advantages primarily
centered around the needs of a professional Unity game developer. For example, the
Professional version of Unity will allow you to use game performance reporting to analyze
managed code crashes, change your editor skin from gray to black, and customize your
splash screen. In addition you will get access to 12 free months of Unity Cloud Build Pro.
We will use Unity Cloud in Chapter 8 to build our simple game online. If you would like
to review the differences between the Unity Personal (free) and the Unity Professional
version, you can find that on the Unity webs site at:

http://unity3d.com/get-unity

In addition you can review the licensing information to ensure you qualify to release
games under the Personal license here at:

http://unity3d.com/legal/eula

The Professional version of the software currently costs $1500 or $75 a month for
the base platform. Each mobile and console device platform export is considered to be
an add-on to the Unity base package. Each add-on has its own individual deployment
pricing in addition to the base platform cost. Also the Android, Blackberry, Windows, and
iOS add-on packages for Unity have Personal and Professional versions. For example,
the Personal Android add-on for Unity is free for Indie developers making less than
$100,000 in annual revenue or by an educational, academic, nonprofit, or government
entity with a total annual budget for the entire entity (based on prior fiscal year) in excess
of US$100,000. As with the base Unity software, the Professional version of the Android
add-on is an additional $1500 or $75 a month. Therefore the total cost for obtaining the
Professional version of Unity for Android development is $3000 or $150 a month.

Figure 1-5.  License selection window for Unity

http://dx.doi.org/10.1007/978-1-4842-1494-7_8
http://unity3d.com/get-unity
http://unity3d.com/legal/eula

Chapter 1 ■ Getting Started

6

The monthly subscription payments mentioned above are Unity’s effort to make
the Professional version of the software more affordable for Indie developers. The
subscription does not give you a full permanent license to the software so it is definitely
not recommended for most development shops. Fortunately the Personal version of
Unity is good enough to get started and for the purposes of this book.

■■ Note  More details on the Professional version of Unity can be found in detail on the
web site http://unity3d.com/unity/professional-edition.

Welcome to Unity
When you first get started using Unity, you will be asked to log in to an online Unity
account. This account will be used to manage your subscription and to manage any
assets that you acquire from the Unity Asset store. If you do not have a login please create
one now at this window (Figure 1-6).

Figure 1-6.  Sign-In window for Unity Account

Once you are signed in, you will be provided the option to enter your subscription
serial number for the Professional version or to choose the Unity Personal Edition
(Figure 1-7).

http://unity3d.com/unity/professional-edition

Chapter 1 ■ Getting Started

7

Next you will see the Projects window (Figure 1-8) where you can either choose the
project you will open of create a new project to begin. Select “New Project” located at the
top right of the window so we can create our 2D project (Figure 1-9).

Figure 1-7.  License management window for Unity Account

Figure 1-8.  Projects window for new or existing projects

Chapter 1 ■ Getting Started

8

This will open an empty project in Unity and allow us to view the configuration
options available in the software.

Configuring Unity
The Unity software offers numerous options for a developer to customize the
environment to their liking. This flexibility in the software makes it easier to develop
games on various computer screen sizes since you can lay out the editor in a way that
provides the best view ability for you. Let’s take a look at the preferences on the Editor
first. The Unity Preferences is where we can configure the basic functionality of our
environment (Figure 1-10).

Figure 1-9.  New project window with 2D and 3D options

For now we just want to look at the basics of the system so you can name your
project “Sample Unity Project” (see Figure 1-9) and choose a location to save it on your
computer.

Chapter 1 ■ Getting Started

9

Click on the word “Unity” located at the top left-hand corner of the application
window.

Select the Preferences option (or select and hold command button and press
comma) to open the Unity Preferences window. There are numerous options here that
we can modify to customize our Editor to our liking. Go ahead and select the External
Tools option from the menu on the left-hand side. Here you will find the External Script
Editor. MonoDevelop is the IDE supplied with Unity and should be the default. If it is not
selected, please change the editor to MonoDevelop Figure 1-11).

Figure 1-10.  Empty Project for Unity

Chapter 1 ■ Getting Started

10

Next we will learn how to modify our interface look. The next section will only matter
if you are using the 30-day trial or have paid for the Professional version of the software.
Feel free to skip the section if you are only developing with the Personal version of Unity.

Skinning the Interface
There are two skins for Unity: the dark (black) skin and the light (gray) one. The Personal
(i.e., free) version of Unity only allows for you to choose the gray skin as the color of the
interface. Once you upgrade to the Professional license, you get the option to choose
between the two skin colors. The option to choose between the skins is located in the
preferences options found by selecting Unity, Preferences, and then selecting General in
the left navigation (see Figure 1-12).

Figure 1-11.  Unity Preferences window

Chapter 1 ■ Getting Started

11

Since we are trying to limit our costs for game development, we will use the Personal
version of Unity for this book. We will leave the other options at the defaults for now.
Close the Unity Preferences window.

Learning the Views
The next thing we want to do is to lay out the various windows of the Unity interface in
a way that makes it easier for us to build our 2D game. These windows in the Editor are
called views, and the main ones we will use are the following six (see Figure 1-13):

•	 Project View

•	 Hierarchy View

•	 Scene View

•	 Game View

•	 Inspector View

•	 Console

Figure 1-12.  General preferences for Unity. Choose the drop-down next to Skin (Pro Only)
to toggle between the different types

Chapter 1 ■ Getting Started

12

■■ Note  There are actually four additional views.

The Project View, shown in Figure 1-14, displays the assets that are part of your
project. These assets include all materials, models, prefabs, and scripts.

Figure 1-13.  Display of the available tabs

Chapter 1 ■ Getting Started

13

The Project View also allows you to view assets in the store directly without opening
the Asset Store window. For example, if you select All Models in the Project View, you
will see a list of any models you have imported in the asset view on the right. If you want
to view available assets in the Asset Store, simply select the Asset Store option from the
Search option bar (see Figure 1-15). This will display both the Free and the Paid assets
that you can use within your projects.

Figure 1-14.  Example of Project View details

Figure 1-15.  Embedded asset store with Model option selected in Project View

Hierarchy View displays all of the GameObjects that are included in the current Scene.
The default project starts with only a Main Camera object. If you double-click the GameObject
in the Hierarchy View, the focus will shift to the object in the Scene View (see Figure 1-16).

Chapter 1 ■ Getting Started

14

Figure 1-16.  Default Hierarchy and Scene View

The Scene View displays the layout of the scene. You use this view to move objects
around and lay them out for your game. The GameObjects can be moved on their X, Y, Z axes
using the red, green, and blue arrows that appear in the Scene View. Since we are creating a
2D game, you will need to click the 2D text at the top left of the view to see the Z axis.

The Game View, shown in Figure 1-17, shows how the GameObjects will display
when the game is played. If you switch to this view without pressing the play button
on the Toolbar, the game will display at a standstill. Pressing the play button will
automatically switch to this view and execute the scene you are working on.

Figure 1-17.  A basic project with only the camera view will show an empty blue screen
when the game is played

Chapter 1 ■ Getting Started

15

The Inspector View (Figure 1-18) displays all the attributes and parameters of any
selected GameObjects. In addition you can use it to view Unity settings and review
selected scripts and components.

Figure 1-18.  Inspector View of the Main Camera object

The Console displays any output written to the log from scripts, warning messages,
or error messages from your game. For error messages outputted from your scripts, you
can double-click them to be taken to the section that the error occurred. As you see in
Figure 1-19 there are four different options in the Console View.

•	 Clear – Will remove all messages written to the Console

•	 Collapse – This can be enabled or disabled. When enabled it
allows duplicate messages to only be displayed once.

•	 Clear on Play – This can be enabled or disabled. When enabled
this will clear the console once the Play mode is entered.

•	 Error Pause - This can be enabled or disabled. When enabled this
will pause the game when Debug.LogError() is called in your
script.

Chapter 1 ■ Getting Started

16

Now that we have learned about the available views, let’s learn how to lay out the
views in a custom way.

Understanding Layouts
There are five different included types of interface layouts we can choose for our
development environment. You will review the options by selecting the drop-down next to
the Layers drop-down on the upper right-hand side of the Unity interface (see Figure 1-20).

Figure 1-19.  Console View with example of random error message

Figure 1-20.  Shows list of default layout view options

Chapter 1 ■ Getting Started

17

•	 The 2 x 3 layout enlarges the Scene and the Game views on the
left-hand side of your screen. The middle section contains your
objects in the Hierarchy View, and the right side contains the
Project and Inspector Views.

•	 The 4 Split layout gives you four view different angles of our Scene
at different points of the X, Y, and Z axes. The middle section has
the Hierarchy and Project Views, and the right side contains the
Inspector View.

•	 The Default layout places the Hierarchy and Scene/Game Views
at the top of the interface. The Project and the Console Views are
laid at the bottom of the screen.

•	 The Tall layout enlarges the Scene/Game Views on the right-
hand side, places the Hierarchy and Project Views in the middle
section, and the Inspector on the right-hand side.

•	 The Wide view places the Scene/Game Views at the top half of the
interface in a large wide format. At the bottom of the interface, the
Hierarchy View is to the left and the Project View to the right. On
the far right of the screen is the Inspector View.

You can also create a Custom Layout based on the way you would like the interface
to look. Figure 1-21 shows the option to save and create a custom name for a layout. We
can add or remove windows, expand or contract areas, etc.

Figure 1-21.  Hierarchy View displaying the Main Camera selected

The Scene View shows the current scene you are working on. When you start a new
project, the only object in the Scene View is the Main Camera. You can find and highlight
the Main Camera in your scene, as in Figure 1-21, by double-clicking on the Main Camera
in the Hierarchy View.

Chapter 1 ■ Getting Started

18

The Main Camera will be used to display the areas that we want our user to view. We
will need to position or move the camera around our GameObjects in order for them to
be visible in our game.

■■ Note  You can choose to have multiple cameras in a scene for a 3D game but we can
keep it simple and use one camera for our 2D creation.

Ok, we should have a basic understanding of our views and how to lay them
out. Let’s look at a few tips and tricks we can use as well create our game to speed up
development.

Development Tips and Tricks
When working as a developer, any setting, action, or repeatable process that saves you
time or improves productivity is extremely beneficial. In this section we will look at some
of the shortcuts we will use throughout the book as we create our game. I encourage you
to look at the drop-down menu and the Unity documentation to find additional shortcuts
that will help your development efforts. OK, let’s begin with modification of our Editor
color when our game is running.

Changing Runtime Background Color
One of the great things about development in Unity is the ability to make modifications
to you game and see the results in real time. This allows for very effective debugging of
issues and lets you to alter your game experience while doing your development work.
However while this is a great feature of Unity, it does offer risks of lost development work.
We can reduce this risk by setting a different runtime color when our game is playing
within our user preferences.

Figure 1-22 shows our options when we have color definition. The Playmode tint
option is what we want to set in order to change the color when we are in Play mode.
Select the color next to the text and choose a light blue color. You can also enter the HEX
information for the color that I used as 6CE2F9FF.

Chapter 1 ■ Getting Started

19

You can see the results of this change by pressing the Play button in the middle of the
Unity screen. Your screen should now look like Figure 1-23 and have a blue tint covering
the entire Editor.

Figure 1-22.  Unity Preferences screen with Color option selected

Chapter 1 ■ Getting Started

20

Figure 1-23.  Play screen with Blue tint indicating that it is running

This will help us determine when the game is running so we don’t make changes to
our game while it is in a run state. We have nothing in our scene right now but this will be
very useful later. Trust me.

Useful Hotkeys
Using shortcuts and hotkeys can help reduce the amount of time it takes for you to
develop your next great game. Table 2-1 shows a few keyboard hotkeys that can help you
use Unity more efficiently.

Table 2-1.  List of useful Unity commands

Key Command

Q Activates the Pan option in the toolbar

W Activates the move toolbar

E Activates the Rotate toolbar option

R Activates the scale toolbar option for resizing objects

T Activates the Rect Tool

Chapter 1 ■ Getting Started

21

Figure 1-24 shows the keys that the hotkeys refer to. These keys are located at the top
left of the screen above the Hierarchy View. We will use these hotkeys through the book as
we build and navigate the project and scenes.

Figure 1-24.  Unity editor tools

■■ Note A dditional hotkey information can be found on the Unity site here:
http://docs.unity3d.com/Documentation/Manual/UnityHotkeys.html.

Summary
In this chapter we discussed the system requirements and additional software need for
developing with the Unity software. We walked through the different Views that are part of
the Unity Editor as well as the different layouts that are available in the system. In addition
we discussed some of the developer shortcuts that are available to make your life easier.

In the next chapter we will discuss setting up the project for our game and begin
building the basic structure of the gameplay.

The secret of getting ahead is getting started. The secret of getting started
is breaking your complex overwhelming tasks into small manageable
tasks, and starting on the first one.

—Mark Twain

http://docs.unity3d.com/Documentation/Manual/UnityHotkeys.html

23

Chapter 2

Define Game Layout and
Environment

As mentioned earlier in this book, Unity can be used for both 3D and 2D game
development. The thought process for laying out a 2D game is very different than a
3D game in Unity since the environmental options and tools used are specific to each
game type. Two-dimensional game development typically involves simpler graphics and
design process using assets that are limited to a horizontal and vertical plane.

In Chapter 2 we will learn about the various layout options that Unity provides
for developers to tailor their environment preferences. Also we will configure these
environmental preferences in a way that works for 2D game development.

Let’s begin talking about 2D!

■■ Note  For more information and tutorials on 2D Game Development in Unity, please
refer to the Unity 2D Game Creation web site at https://unity3d.com/learn/tutorials/
topics/2d-game-creation.

2D Game Design Setup
Building a 2D game in Unity is very different from building a 3D game. Unity provides
individualized tools and settings that are tailored toward each game type and assist the
game developer in having the right environment for game creation. In Chapter 1 when we
defined our Project, we choose 2D as the development type for our game (Figure 1-9).
At this point we will repeat the process we used and create a new game project called
“Break Those Bricks.” Again we will set the project type to 2D (Figure 2-1) as we create it
and leave the default asset packages defined.

http://dx.doi.org/10.1007/978-1-4842-1494-7_2
https://unity3d.com/learn/tutorials/topics/2d-game-creation
https://unity3d.com/learn/tutorials/topics/2d-game-creation
http://dx.doi.org/10.1007/978-1-4842-1494-7_1

Chapter 2 ■ Define Game Layout and Environment

24

By choosing the 2D project type, we instruct Unity to define the preferences in the
software to support effective 2D application development. This will set our Scene View
into 2D mode, define the Default Behavior of our Editor to 2D, and set our main camera
to Orthographic mode. Figure 2-2 shows what the Scene View looks like for the 2D mode.
The Rect Tool (HotKey T) is selected, and the Main Camera object is the only thing that is
set in our scene.

Figure 2-1.  Defining the project name and type

Figure 2-2.  Scene View with 2D

Chapter 2 ■ Define Game Layout and Environment

25

Next let’s set the layout we will work into for the Unity Editor. To make it easier for
us to view the game as we develop our scenes, we will switch the layout to 2 x 3. This is
accomplished by selecting this option from the second drop-down on the top right of
the Unity Editor interface. Then within the Project View, let’s create three folders for us
to hold our main project assets. The folder names are Scenes, Sprites, and Scripts. They
can be created by right-clicking on the Assets folder name in the Project View and then
selecting Create, then Folder.

Once the folders are created, our screen should look like Figure 2-3. We can then
begin thinking about the layout of our game and what the user experience will be.

Figure 2-3.  Assets folder with three created folders

Laying Out the Game
The goal of our project is to build a 2D Brick Breaker game. Our game will be similar
to the classic games Super Breakout and Arkanoid by Atari and Taito that were really
popular back in the 1980s. The game elements were really simple and include a Paddle,
Ball, and Blocks (i.e., Bricks) displayed on the screen. We will also include enhancements
like power-ups and music to improve our user experience. The goal for the user playing
the classic games was to eliminate the Blocks on the screen by hitting the ball into them.
Our game player would accomplish this by using the Paddle to ensure that the ball did
not fall off the bottom of the screen. Figure 2-4 shows an example of the typical layout for
a classic brick breaker game.

Chapter 2 ■ Define Game Layout and Environment

26

Some of the Blocks would provide bonus features (i.e., power-ups) that would be
released when the ball hit it and which had to be caught by the Paddle. These items would
either have positive or negative consequences to the player and potentially would impact
the game play. In addition they could provide additional balls that will help eliminate the
blocks faster. We will follow the basic outline of these classic games for our creation while
adding our own unique aspects to the design.

Importing Assets
Since we have our folders laid out within our Asset folder, we can begin importing the
game assets we will need to build our 2D game. The items we will need to get started
are our graphics for the background and the game objects used as part of the game play.
These items will be imported as Sprites without any depth since this is a 2D game. A
Sprite is simply a compute graphic that can be moved onscreen. Unity provides a built-in
Sprite Editor and also includes some really cool features for Sprite manipulation and
management. We will discuss these features later in the book as we build our game.

For now we will begin by importing the Sprites into our project. The items that we
need are included with the book and are called background.png, ball.gif, greenbrick.
gif, and paddle.gif. This can be done by opening the folder where these Sprites are

Figure 2-4.  Sample of a classic brick breaker game layout

Chapter 2 ■ Define Game Layout and Environment

27

located and dragging them into the Unity Editor onto the Sprites folder. This will place the
files in that folder in our project. Figure 2-5 shows how our Project View looks with the
images included.

Figure 2-5.  Imported Sprites

If you select the greenbrick.gif and look at the Inspector View on the right in the
Unity Editor, you will see details on the imported Sprite. There is also a button for access
to the Sprite editor listed that we will dive into that later in the chapter.

Now that we have our basic asset import completed, let’s go ahead and save our
scene. This can be accomplished by selecting File and then Save Scene from the main
Unity menu. We will name the scene as “Main” and save it to the default Assets folder.
Once the save is done, navigate to the Assets folder in the project view and drag and drop
the Main scene in the Scenes folder.

Figure 2-6.  Main Scene saved in our Assets/Scene folder

Chapter 2 ■ Define Game Layout and Environment

28

Define Screen Resolution
With the various device types and screen sizes you can develop for in Unity, one of the
challenging decisions that we must make is the choice of screen resolution to develop for.
Table 2-1 contains the details on the screen resolutions for the types of games you can
develop in Unity.

Table 2-1.  Screen Resolution Suggestions By Device

Screen Resolution

Desktop/PC Users can adjust their screens to various sizes. Therefore the focus
should be developing for popular screen resolutions that meet the
needs of the widest range of customers.

Microconsole Typically run games at 1080p (1920x1080) or 720p (1280x720)

iOS Have various resolutions depending on the generation of device.
These include:
- 960x640px (iPhone 4)
- 1136x640px (iPhone 5)
- 1024x768px (iPad 1st gen, iPad 2, iPad Mini),
- 2048x1536px (iPad 3rd gen, iPad 4th gen, iPad Air, iPad mini 2nd gen),
- 2732‑by‑2048 (iPad Pro)

Android There are tons of Android devices available with dozens of screen
resolutions attributed to them. Since there are so many resolution
options the focus for development should be the most popular
device sizes.

For our game we are going to focus on the resolution of 800x600px. This resolution
is the generic 4:3 resolution that is popular for many mobile and desktop screen sizes.
Unity’s game space is actually defined by Unity World Units and not pixels in the game
space. World Units are the position in the Transform (in the Inspector) of the game space
that defines how a certain image will be displayed. The sizes of unscaled sprites are
defined using pixels to units by Unity.

In order to find out the pixel size and number of bricks we need for our game, we can
use the Google calculator. Just navigate to Google.com in any browser and type in 800/10
(Figure 2-7). Click enter and you will get the response of 80. This is the pixel size we will
need to great our bricks and represent the World Unit size of our brick asset. We will have
10 brick rows on our scene each at a size of 80 pixels.

http://rd.bizrate.com/rd?t=http%3A%2F%2Fclickserve.dartsearch.net%2Flink%2Fclick%3Flid%3D92700007017675546%26ds_s_kwgid%3D58700000492265904%26ds_s_inventory_feed_id%3D97700000001002072%26ds_e_product_id%3DMF084LL%2FA%26ci_customer_id%3D1001292%26ci_cse_id%3D1003%26ci_feed_id%3D1004591%26ds_e_product_country%3DUS%26ds_e_product_language%3Den%26ds_e_product_channel%3Donline%26ds_url_v%3D2%26ds_dest_url%3Dhttp%3A%2F%2Fverizonwireless.rdr.channelintelligence.com%2Fgo.asp%253FfVhzOC8fBggESSMfKVNTR20SCwI4YRlOAgRKaGNdVlIPESJDKzAnXQgfH1Y7fAsMHhFNO1xIVkcoaj1IRh9TVDRpXVtYQRVtFnZ2aBwDAAAObmVeUVAeHjZLNzRpAh1HRkdxJAoRAglOMEhNTUEvISBeHFNfWHAmDgEHFlUtCyI0I0FXHVlGPjZCDgIdSHMNbndhSlAdWVlyIQYPHRZTcQBHUlR*JyBIH2NYVy8oBg8HEgwTYnN8Z2F*H3EfLCAMAAQXRGNcKi0MHAIABQNrZFdFCANPPVBAWhl-Jz9EUVtZUXBsSQAGAxwddwZpEAB6YR14EBxCMUYyYnNxDAoWAHx-fnJyYCxTOysRc2x*EmkFdGsZfnwfeQ%253D%253D%2526nAID%253D10043468&mid=32908&cat_id=9257&atom=9262&prod_id=5553818484&oid=6087134750&pos=1&b_id=18&bid_type=0&bamt=a5fedf14fd8fec0d&cobrand=1&ppr=d5fd18a05ee07882&af_sid=90&rf=af1&af_assettype_id=10&af_creative_id=2912
http://www.target.com/p/apple-ipad-mini-16gb-wi-fi-black-md528ll-a/-/A-14213694#prodSlot=medium_1_21&term=ipad%20mini

Chapter 2 ■ Define Game Layout and Environment

29

Now that we have a plan for our screen size and brick assets, let’s begin building by
starting with adding a background image to our game.

Adding Background
The background of our game is what adds the coolness and unique feel for our game
player. The classic Arkanoid game used a very generic blue background that had some
simple texture to it. For our project we will start with the background.png file that
we imported into our Sprites folder earlier in the chapter (Figure 2-8). Let’s drag the
background image to the Main scene by placing it in our Hierarchy View.

Figure 2-7.  Google calculator from main page

Figure 2-8.  Background sprite

Chapter 2 ■ Define Game Layout and Environment

30

If we select the background image and look at the Inspector (Figure 2-9), we will see
the details on the Sprite with an option to view the Sprite Editor. The Sprite Editor allows
us to modify our image and set the necessary parameters for defining the location of the
background within our screen resolution. Since we only need one image for our background,
our Sprite Mode is set to Single. If our Sprite texture contains multiple images to be used in
our project, we would set the mode to multiple to handle extraction of each image.

Figure 2-9.  Background Sprite Inspector

Chapter 2 ■ Define Game Layout and Environment

31

Now we will set the Pivot point of our background from the center to the bottom left.
You can accomplish this by either choosing bottom left next the Pivot in the Inspector or
by editing the location by opening the Sprite Editor. Figure 2-10 shows the Sprite Editor
with the point at the bottom left corner of the background image. This will allow us to
work from left to right as we add assets to our game.

Figure 2-10.  Backgound image Sprite Editor

Figure 2-11.  Setting Pivot of Camera

Next add the background image to the scene by dragging and dropping the image
under the Main Camera. Then set the Camera location from Center to Pivot by clicking
button at the top middle (Figure 2-11).

This will ensure that our camera is fixed on the pivot area that we set for the
background and not in the middle of our screen.

Chapter 2 ■ Define Game Layout and Environment

32

Adjusting Our Camera
With our Pivot set now, we can adjust our camera to cover the entire 4:3 background area.
We want the people to play our game with the entire screen filled with the background
image. Currently when we select the camera we will see the outline covering the center of
our background image. In order to cover the entire background we will need to adjust the
camera size to a size 6. In Figure 2-3 under the Camera Inspector is where the new size
can be set. Once the size is changed, our camera will cover the entire background image.
We can verify this by pressing the Play button in the middle of the screen and looking at
the Game View. You will see the entire background screen displayed like in Figure 2-12.

Figure 2-12.  Play button selected and blank background shown. Let's now add some
bricks to our scene

Adding Bricks
One of the core parts of our game are the bricks. Our bricks will be simple yet colorful and
are one of the key components to the fun in our game. Our game will be different from the
classic bricks game since we will not just list bricks across the entire screen. Instead we
will strategically place the bricks in the scene and even eventually add some movement to
them. To get started we need to add 13 bricks to our screen.

Chapter 2 ■ Define Game Layout and Environment

33

Creating PreFabs
When you want to create multiples of the same object in a game Scene, Unity offers
an asset type called a PreFab. A PreFab allows you to store a GameObject with all of its
attributes and properties. When you make changes to the PreFab object, it will change the
properties of all of the objects created from it.

Since we have to create 13 bricks that will be mirrored within our Scene, we will start
off by creating a PreFab. First drag our brick image named greenbrick.png from our
Sprites folder (Figure 2-5) into our Scene. The brick will be placed on the lower left corner
of our background image in our scene (Figure 2-13).

Figure 2-13.  Green Brick added to the scene

Now select the brick to show the object Inspector. Let’s change the Transform
Position to X to 8 and Y to 6. Also let’s change the X/Y of our Scale to the same numbers.
We should now see our brick near the center of our screen. Now right-click on the Assets
folder in your Project View, select Create and New Folder. Name the folder Prefab since
we will use it to store the Prefab assets we create. Once all is done your screen should look
like Figure 2-14.

Chapter 2 ■ Define Game Layout and Environment

34

To create our Prefab for the brick we just drag the green brick object down unto the
Prefab folder. You should now see the green brick in the folder and the name of the object
should change from black text to blue text. Figure 2-15 shows how your view should look.
We distinguish between our Prefab and regular assets in our screen by the color of the
text and the description of the object in the Inspector window. Once you select the green
brick object in the Hierarchy View, you should see Prefab listed with three interaction
buttons (Select, Revert, Apply) in the Inspector window.

Figure 2-15.  Green brick prefab object

Figure 2-14.  Green Brick in the middle of the screen

Chapter 2 ■ Define Game Layout and Environment

35

Creating Row of Bricks
With our Prefab created we can now generate a row of bricks for our ball to eliminate.
We will limit our first row to 13 bricks on our screen that will stretch horizontally across.
It’s really easy to create a new brick from our prefab using the duplicate feature in Unity.
Simply right-click on the brick object in the Hierarchy View and select Duplicate. This will
create a duplicate object with the same name of the object plus an incremental number
in parentheses. We can also use the shortcut CMD+D on a Mac or CTRL+D on a Windows
PC on a selected brick to create duplicates faster.

Go ahead and repeat this step 12 times so that there are 13 brick objects on the
screen. Since we are creating duplicates, they will all be located in the same Transform
location of our original object. We will need to select each object and move them to the
appropriate locations on the screen.

Here are the Transform Position X coordinates to set in the Inspector for each object:

greenbrick_03: -7.4
greenbrick_03(1): -6.2
greenbrick_03(2): -5
greenbrick_03(3): -3.8
greenbrick_03(4): -2.6
greenbrick_03(5): -1.4
greenbrick_03(6): -0.2
greenbrick_03(7): 1
greenbrick_03(8): 2.2
greenbrick_03(9): 3.4
greenbrick_03(10): 4.6
greenbrick_03(11): 5.8
greenbrick_03(12): 7

If you notice, the spacing between each of the objects is 1.2. The Y and Z position
attributes should be 0 for all objects as well. Once completed, Right-Click on an empty
area of the Hierarchy Window and select Create Empty. This will create an empty game
object that we can use to place our bricks under. This will allow us to coordinate and
move the entire row of bricks together. Name the empty object Bricks for now. Select all of
the brick objects that you created and drag them under the new Bricks game object. Your
screen should now look like Figure 2-16.

Chapter 2 ■ Define Game Layout and Environment

36

If your row of bricks is not centered like Figure 2-16 you will need to modify
Transform of the Bricks object to have a Position of X:8.2 Y:6 Z:0. Your bricks should now
be centered in your Scene View. Next we will add a Paddle to our scene.

■■ Note N ever played Super Breakout by Atari before? Well the Google Search
engine provides a free way for you to play online through the browser. Simply visit
http://google.com and search for “Atari Breakout.” Click on Images and you will see a
playable version of the game using random images. Pretty cool!

Add the Paddle
The Paddle is one of the main interactive objects that are included in our game. Users will
either use their directional pads or touch to move it left or right on the screen. It will be used
to prevent the ball from falling off the screen as well as to collect the power-ups that will
fall from our bricks. Since we will only have one Paddle in our screen, we will not create a
Prefab object for it. Instead we will have the one main object and modify it as needed.

	 1.	 To add the Paddle to our scene, go to the Sprites folder in the
Project View and select the Paddle object.

	 2.	 Drag and drop the object in the Hierarchy View so that it
appears in the scene at Position 0.

	 3.	 Modify the Transform Properties in the Inspector to match
Figure 2-17, which includes the appropriate scale and
positioning on the screen.

Figure 2-16.  Row of green brick objects under Bricks game object

http://google.com/

Chapter 2 ■ Define Game Layout and Environment

37

The Paddle should now be located in the middle of our Game View beneath the
bricks. If we click on it or try to move it using the directional keys on our keyboard, it will
not move. We will need to add interactivity and movement in the next chapter.

Figure 2-17.  Inspector for our Paddle

Figure 2-18.  Game View with Paddle in position

Chapter 2 ■ Define Game Layout and Environment

38

Ok, as you see our game is really starting to take the basic shape of a typical Super
Breakout or Arkanoid game. We have one last key piece to our game that is missing: our ball!

■■ Note  For more information on setting up your system for iOS development, please refer
to the Unity documentation on iPhone development: http://docs.unity3d.com/Manual/
iphone-GettingStarted.html.

Add the Ball
Finally we will add the main object of our game. The ball is what will be used by the
player of our game to remove the bricks, obtain power-ups, and simply amaze with cool
effects. Initially the game will start with one ball located on the paddle in the middle of
the screen. During gameplay we will have additional balls introduced from certain bricks
in order to make things both more challenging and fun for our players.

	 1.	 To add the ball, navigate to the Assets/Sprites folder in the
Project View.

	 2.	 Select the object named ball and drag it to the Hierarchy View.
This will add the ball at the lower left of our background in the
Scene View.

	 3.	 Next change the Transform properties of Position X to 8 and Y
to 1.3.

	 4.	 Also change the Scale for both X and Y to 3. Our Scene View
should now look like Figure 2-19.

Figure 2-19.  Ball over our Paddle in our game

http://docs.unity3d.com/Manual/iphone-GettingStarted.html
http://docs.unity3d.com/Manual/iphone-GettingStarted.html

Chapter 2 ■ Define Game Layout and Environment

39

We now have the bare minimum setup for our classic bricks game. While there is no
movement or interactivity yet we can see how the game is coming together. We finalize
what we are doing in this chapter by saving our Scene.

Summary
In this chapter we discussed the basics of a 2D game project setup in Unity. We walked
through the basic framework and layout of the key components of a Brick Breaker game
including bricks, paddle, and ball.

In the next chapter we will start to add interactivity to each of our game assets and
begin the establishment of game play.

Don’t panic.

—Douglas Adams, Hitchhiker’s Guide to the Galaxy

41

Chapter 3

Create Positioning and
Movement

One of the most important parts of our game is the level of interactivity and movement
centered around effective game play. How we position the objects on the screen and the
way we create interactive movement will help our game player understand and enjoy our
game play.

In Chapter 2 we learned about the various layout options that Unity provides for
developers to tailor their environment preferences. In this chapter we will add movement
to our paddle and ball. In addition we will learn about how to script the objects involved
in our game.

Let’s get the ball rolling!

Making Our Ball Move
In the last chapter we ended our initial game layout process by adding a ball to our scene.
The ball sits right about our paddle and acts the main character of interactivity for our
brick breaking game. However right now our ball is pretty small and doesn’t do anything
when we play our game. Let’s make our ball a little bigger in the scene by increasing the
size relative to our paddle.

Click on the Sprites folder and select the ball sprite we imported. In the Inspector
view on the right you will see the properties of the Sprite. Modify the Pixel per Unit size by
changing the number 100 to 50 (Figure 3-1).

http://dx.doi.org/10.1007/978-1-4842-1494-7_2

Chapter 3 ■ Create Positioning and Movement

42

Changing the option in the Inspector will resize our ball based on the world units
defined in Unity. One world unit equates to 1 meter so setting the object to 50 means
50 meters in the game space. Figure 3-2 displays the new larger ball sitting on the paddle
in our scene.

Figure 3-1.  Ball Sprite settings in the Inspector

Chapter 3 ■ Create Positioning and Movement

43

■■ Note T he Pixels per Unit can also be adjusted without typing by using the mouse. Hover
your cursor over the text in the Inspector to see the Unity drag and scale feature. Hold the
left mouse key and drag left or right to increase or decrease the scale.

The larger-sized ball makes it easier to see and collide with our brick objects. It also
looks more prominent in our scene. Next we will make our ball move in the scene.

In order to see the movement in the ball, let’s elevate the object over the paddle
some. Select the ball object in the Hierarchy View. In the Inspector change the Transform
Y property from 1.3 to 2.0. This will place the ball over the paddle at a higher point in the
scene so we can watch it drop.

Now with the ball still selected, click the Add Component option in the Inspector.
Select Physics 2D from the list and then select Rigidbody 2D. This will add a Rigidbody to
our ball that contains the options for physics aspects for movement. Figure 3-3 shows the
options available to us. For now we will leave the defaults and test our ball by pressing the
Play button of our game. Our ball should now fall through the bottom of our scene and off
the screen.

Figure 3-2.  Resized ball on the paddle object in our scene

Chapter 3 ■ Create Positioning and Movement

44

With the physics engine for 2D, objects can only move in the XY plane and can only
rotate on an axis that is perpendicular to that plane. We have a lot of control within the
Inspector for customizing our ball, but the real power comes from dynamic changes we
can add through scripting.

Handling Ball Collisions
With the Rigidbody on our ball we now have gravity and motion on our ball. However
right now the object falls through whatever else is in the scene. The object does not detect
any other objects in the scene (like our paddle) even though they are visible to us. The
reason this occurs is that we need to add the collision detection to the objects that we
want to interact with in our game. Unity provides an easy way for us to do that with a
component called Colliders.

Colliders are often invisible and define the shape of an object for the purposes of
physical collisions. For our ball object to detect the objects around it, we will need to
add a collider to it and the objects we want to be detected. Add a collider to our ball by
selecting the object in the Hierarchy View, navigating to the Inspector View on the right
and clicking add component. Select Physics 2D and then the Circle Collider. If you zoom
in closer to our object in the scene you will see a green circle around the white of our ball
as in Figure 3-4.

Figure 3-3.  Rigidbody options for our ball object

Chapter 3 ■ Create Positioning and Movement

45

If we press Play in our scene our ball will still fall through the paddle. That is because
our paddle needs to have its own collider added to it as well. Click on the paddle in the
Hierarchy View and view to the Inspector on the right. Select add component and select
Box Collider from the list. This will add a green square around our paddle to show that we
have a collider around it. Now press Play in the scene and our ball will land on the paddle.

■■ Note  You can find out more information on the different types of 2D colliders in the
Unity Manual here: http://docs.unity3d.com/Manual/CollidersOverview.html. The
collision action matrix is very useful for understanding the impacts of the different colliders
on objects.

With our ball successfully landing on our paddle we may think that we have
completed our paddle setup. Unfortunately this assumption would not be correct. The
collider we just added to our paddle is static and will not work correctly in our game. To
complete our setup we will need to add a Rigidbody to our paddle like we did with the
ball object.

Select the paddle in the Hierarchy View again and click Add Component in the
Inspector. Select Physics 2D and then Rigidbody 2D to add the Rigidbody to our paddle. If
we click Play in our scene, we will now see the ball and the paddle fall off the Game View.
This is, of course, not what we want to happen.

Figure 3-4.  Circle Collider around the ball object

http://docs.unity3d.com/Manual/CollidersOverview.html

Chapter 3 ■ Create Positioning and Movement

46

To correct this issue we will need to add one more step that is different from the
setup of our ball Rigidbody. In the Inspector for the paddle, click the box “Is Kinematic”
under the Rigidbody 2D component. Selecting this option informs Unity that the object
will be moved only by its Transform and not by the physics engine. This feature is very
useful for things like a platform or our paddle since we don’t want their mass or gravity to
be managed by the physics engine.

Now that we have our ball and paddle setup with colliders, let’s make our ball more
interactive.

Making Our Ball Bounce
To add friction or bounce to an object, Unity provides something called Physics Material.
For 2D games it is actually called Physics Material 2D and can be created through the
Assets menu. Let’s build ours by first Right-clicking on the Assets folder in the Project
View. Select Create Folder and name the folder Materials. We will use this folder to store
all of the physics materials we create in our game.

Next select the Materials folder, right-click within it and select Create/Physics
Material 2d (Figure 3-5). Name the material “bounce” and set the Friction to 0 and the
Bounce to 1.

Figure 3-5.  Physics material with appropiate name

The physics material needs to be added to the collider of our ball game object for it
to work. Select the ball in the Hierarchy View and drag/drop the bounce material to the
Circle Collider in the Inspector View (Figure 3-6).

Chapter 3 ■ Create Positioning and Movement

47

Press Play for the scene and you should see the ball bouncing on our paddle. Right
now the ball only bounces up and down to the same height in the scene, but we will
correct this later.

Beginning Scripting
So far we have used the Unity editor to create all of our objects and our movement.
However, in order to create the movement of our paddle using our mouse, we will need
to write our first Unity script. Unity offers three scripting language options for developers
to choose from. Developers can use the JavaScript, C#, or Boo language to write custom
code for their games. It’s a good idea to start with a language that you are familiar with or
that is close in syntax to a language you typically code in.

For the purposes of this book we will be writing all scripts in C#. C# provides more
flexibility but involves a steeper learning curve for coders with limited experience. C# is
a true object-oriented language so it could require that beginners learn and understand
advanced coding logic for certain implementations. In addition with C#, you do have full
access to the .NET library and therefore potentially additional flexibility.

Figure 3-6.  Bounce material added to our ball

Chapter 3 ■ Create Positioning and Movement

48

The Rules of C Sharp (C#)
Since we are using C# for our code, we must understand the rules for implementing C#
scripts in Unity. Here are a few of the key rules that we need to know and understand:

•	 All behavior scripts must inherit from MonoBehaviour.
MonoBehaviour is the base behavior class for a Unity game. This
inheritance will happen by default if you create a new C# script
through the Unity menu.

•	 You must use the Start or Awake functions for initialization script
commands. We will discuss and use the Start function later in
this chapter.

•	 The class name for a C# script must match the actual script name
(i.e., a class named Cube must be saved as Cube.cs).

Knowing these basic rules will help you avoid errors in your scripts when coding for
C#. Before we actually write our first line of code, however, let’s evaluate the text editors
available to use with the Unity platform.

Selecting an Editor
In order to write a script in Unity, you will need use a text editor. By default, Unity comes
with its own propriety editor called MonoDevelop. However, let’s look a few text editors
that Unity supports for developers:

•	 Notepad++ (Windows) – It is a free text editor designed to replace
the basic Notepad application installed by default on Windows.
The application supports numerous programming languages and
offers various features to make editing text easier.

•	 TextWrangler (Mac) – Similar to BBEdit, TextWrangler is a feature-
rich; free, plain text editor. It is considered to be a powerful tool
for transforming and modifying plain text.

•	 MonoDevelop – A cross platform integrated development
environment (IDE) editor created for writing code in many
programming languages. This is the default editor for Unity.

MonoDevelop is the editor that will be referenced for the examples in this book.

Our First Script
Let’s go ahead and create our first script. First navigate to the Project View and select the
drop-down menu at the top, next to the word Create.

As I mentioned in the beginning of this chapter, we will code in C# for a majority of
our scripts. Therefore, click on C# Script on the menu. This will create a new script for
us in the Asset folder with a default name of “NewBehaviourScript.” The name will be
highlighted so we can edit it to our own unique name. Go ahead and change the name to
Paddle. We will be adding this script to the paddle we created earlier.

Chapter 3 ■ Create Positioning and Movement

49

■■ Note I f you do not set a name for your script, you could see the error “The namespace
‘global::’ already contains a definition for ‘NewBehaviourScript’.” This error means you
left another script named the default name in your project. It will go away if you rename
NewBehaviourScript to something else.

For cleanliness, let’s drag the new script we created into the Scripts folder under
Assets in the Project View. Now double-click on the Paddle script in your Project View.
This will open the script in the editor that you configured, which by default should be
MonoDevelop.

When the script first opens, it will have the default constructor set up for us.
Listing 3-1 shows us what this will look like.

Listing 3-1.  Basic default layout of a C# script

using UnityEngine;
using System.Collections;
 
public class Paddle : MonoBehaviour {
 
 // Use this for initialization
 void Start () {
  
 }
  
 // Update is called once per frame
 void Update () {
  
 }
}

Let’s break down this basic script created for us. The Start() method is called once
in the lifetime of an object and first before the Update() method is called. It is only called
if the instance of the script is enabled.

The Update() method runs multiple times a second since it is right before creating a
frame in the Scene. Most of the game behavior (besides physics code) is typically scripted
in the Update() method. Figure 3-7 shows how the script looks once we open it in the
MonoDevelop editor.

Chapter 3 ■ Create Positioning and Movement

50

Now that we have a basic understanding of the initial methods, let’s add some code
in them. Let’s change our code to match Listing 3-2.

Listing 3-2.  Adding a variable and the print statements

using UnityEngine;
using System.Collections;
 
public class Paddle : MonoBehaviour {
 public int i=0;
 
 // Use this for initialization
 void Start () {
 print("This is my first Unity script!");
 }
  
 // Update is called once per frame
 void Update () {
 print(Input.mousePosition);
 }
}

So what did we just do? Well we first defined a public variable named I and set the
value to 0. Then, we added a print statement with a message in our Start() method.
This will output the text “This is my first Unity script!” in the Unity console located next
to the Project View in our scene (see Figure 3-8). Next we added the mouse position

Figure 3-7.  MonoDevelop view of the Paddle script

Chapter 3 ■ Create Positioning and Movement

51

details to the Update section so the information on the location of our mouse will print
out whenever we move it. OK, let’s run it. Click the Save button in MonoDevelop (or press
command S on a Mac) to save our Paddle.cs script.

Figure 3-8.  Paddle.cs script added to the Paddle object

■■ Note I f the script does not show in the Inspector with the correct updated information,
verify that you saved the information in MonoDevelop and refresh the script. Refreshing is
done by right-clicking on the script and selecting Refresh from the menu.

Our script is now created and saved. However it is not tied to any of the objects in
our scene so it will not run. Let’s add the Paddle.cs script to our paddle object for it to
execute. Select the Hierarchy View and choose the paddle object. Next navigate to the
Scripts folder in the Project View and select the Paddle.cs script. Drag and drop the script
in the Inspector of the paddle object to add the script to it. You should now see the script
attached to the object (Figure 3-9).

Chapter 3 ■ Create Positioning and Movement

52

The script component in the Inspector will show the name of the script as well as the
public variables defined for that particular script. We defined I as a public variable so it
shows up as an editable variable. This allows us to define the value of the variable here in
the Inspector before the game runs or even change it dynamically as the game is running.

Press Play on the Scene and click on the Console View. We should see the statement
that we created and constantly updating information on the position of our mouse
(Figure 3-9). We will use this information in the next section as we move our paddle
across the screen.

Moving the Paddle with the Mouse
Our paddle has a script attached to it that we can modify to achieve movement. We want
the paddle to attach to our mouse pointer on the X axis only so that it moves from left to
right across our screen. Let’s start by modifying our script to match Listing 3-3.

Listing 3-3.  Updated script to make the paddle move

using UnityEngine;
using System.Collections;
 
public class Paddle : MonoBehaviour {
 
 public int i=0;
  

Figure 3-9.  Output of the mouse information in the console

Chapter 3 ■ Create Positioning and Movement

53

 // Use this for initialization
 void Start () {
 print("This is my first Unity script!");
 }
  
 // Update is called once per frame
 void Update () {
  
 //Set variable for current position
 Vector3 paddlePos = new Vector3 (8f, this.transform.position.y, 0f);
 
 //Get mouse position
 float mousePos = Input.mousePosition.x / Screen.width * 16;
 
 //Set new mouse X position
 paddlePos.x = Mathf.Clamp(mousePos, 0.5f, 15.5f);
 
 //Change paddle to match new X position
 this.transform.position = paddlePos;
 }
 
}

In our updated script we have now modified the Update() method to connect our
paddle to the position of the mouse on the X axis. Let’s walk through the script line by line
so we understand how everything works together.

//Set variable for current position
 Vector3 paddlePos = new Vector3 (8f, this.transform.position.y, 0f);

In this line we define the current Paddle position as a Vector3 variable. The variable
allows us to set the X, Y, and Z coordinates for our current object (in this case, the paddle)
dynamically. We already have the information on our paddle defined based on the logical
world unit based spacing of our game scene. The only changes we will make will be to the
X position in our object’s Transform so we can keep the existing y information. The Z axis
is not relevant for us since we are building a 2D game. Therefore we can simply define it as
0f. The f after our number stands for float since the Vector requires the use of float values.

//Get mouse position
float mousePos = Input.mousePosition.x / Screen.width * 16;

The next line grabs the current mouse X position in the Scene and sets it as a float
variable. There are numerous input types and the mouse position is one of them. We also
divide it by the screen width multiplied by 16 to keep the paddle centered on the mouse
pointer. The 16 value represents the number of world units for our screen (refer to Chapter 1).
This will allow us to see our paddle clearly and move it across the screen smoothly.

//Set new mouse X position
 paddlePos.x = Mathf.Clamp(mousePos, 0.5f, 15.5f);

http://dx.doi.org/10.1007/978-1-4842-1494-7_1

Chapter 3 ■ Create Positioning and Movement

54

This line in the code sets the paddle position to the variable that we defined for the
floating mouse position. It also uses a method defined as Mathf.Clamp() to restrict the
paddle to the width of the screen. Without this restriction, the paddle would be able to
leave the screen on the left or the right when the player pulls the mouse off the screen.
We set the restriction to 0.5f on the left and 15.5f on the right since our screen is 16 world
units long. This will allow enough of the paddle to leave the screen without going
completely out of view from the player.

//Change paddle to match new X position
this.transform.position = paddlePos;

Finally we add the code to change the actual position of the paddle to the new
position that we have created using variables. The this identifier lets Unity know that we
are referencing the object that the script is connected to. The line modifies the transform
of that object to the new position of where the mouse is located.

OK, we are done with our paddle script for now. Let’s test it out by saving our script
in MonoDevelop and playing our scene. You should now be able to move the paddle back
and forth across the scene but now outside of the game. Cool beans!

Launching the Ball with the Mouse
We have our paddle setup with our ball falling on it. When you look at the older paddle
games like Arkanoid and Super Breakout, the ball usually starts connected to the paddle.
Let’s connect our ball to the paddle and have it launch on start by adding a script to our ball.

First let’s follow the steps we did before to create our Paddle script. Navigate to the
Scripts folder under Assets in the Project View. Right-click on the folder and select create
C# script. Name the script Ball and double-click on the file. Modify the script to match the
syntax of Listing 3-4.

Listing 3-4.  Ball script

using UnityEngine;
using System.Collections;
 
public class Ball : MonoBehaviour {
 
 public Paddle paddle;
 private bool gameStarted = false;
 private Vector3 paddleVector;
 
 // Use this for initialization
 void Start () {
 //Set the ball on the paddle position
 paddleVector = this.transform.position - paddle.transform.position;
 }
  

Chapter 3 ■ Create Positioning and Movement

55

 // Update is called once per frame
 void Update () {
 if(!gameStarted){
 �this.transform.position = paddle.transform.position +

paddleVector;
 if(Input.GetMouseButtonDown(0)){
 print("Mouse clicked!");
 gameStarted = true;
 �this.GetComponent<Rigidbody2D>().velocity = new Vector2

(2f,10f);
 }
 }
 }
}

■■ Note I n order for the scripts to execute in the correct order, you can set it under Edit,
Project Settings, Script Execution Order. If you run into any challenges with the script objects
not being identified it may make sense to set the order manually.

Save the script in MonoDevelop and refresh the script in the Scripts folder. Next drag
and drop the script onto our ball object in the object Inspector similar to what we did for
our paddle. For our ball to sit on our paddle we need to also change the Y position of the
ball object to 1.3. Our scene should now look like Figure 3-10.

Figure 3-10.  Paddle with ball attached

Chapter 3 ■ Create Positioning and Movement

56

Now let’s walk through the script so we understand the key components.

public Paddle paddle;
private bool gameStarted = false;
private Vector3 paddleVector;

We start by defining the variables we will use in the script. The Paddle object is our
paddle defined in the scene. We make the variable public so we can access it from the
Inspector. The next two private variables represent the true/false value for whether our
game has started and the ball position relative to the paddle.

//Set the ball on the paddle position
 paddleVector = this.transform.position - paddle.transform.position;

Next in our Start() method we populate our paddleVector variable with the
difference between the ball transform position and the paddle position. This will place
the ball right on top of the paddle when the scene starts. Now let’s check the update to
decide when to launch the ball.

if(!gameStarted){
 �this.transform.position = paddle.transform.position + paddleVector;
 if(Input.GetMouseButtonDown(0)){
 print("Mouse clicked!");
 gameStarted = true;
 �this.GetComponent<Rigidbody2D>().velocity = new Vector2

(2f,10f);
 }
 }

The final section of our code is in the Update() method. We will check to see if the
game has not been started. If it has not started we will make sure the ball stays attached to
the paddle as it is moved. If the mouse is clicked we display a message in the console, set
the gameStarted Boolean to true, and launch the ball object to a specific velocity for the
Rigidbody.

Next let’s modify our Ball object slightly to ensure that it launches correctly in
our Scene. In the Hierarchy View select the Ball object and look at the Rigidbody 2D
component in the Inspector View. Change the Gravity Scale attribute to 0. This will
remove the force of gravity on our Ball object.

Now you can test the Scene by pressing Play. When you move your mouse the ball
will stay attached to the paddle object. If you click screen the ball will launch into the
bricks above.

Looks great, right? Let’s modify our brick prefab objects to take impact from the ball
and disappear on contact.

Chapter 3 ■ Create Positioning and Movement

57

Destroy the Blocks on Hit
In this section we will modify our bricks to accept collision by the ball and to disappear
once hit. Right now when our ball touches a brick it floats right through it. This is because
our ball has a collider and Rigidbody attached to it but our brick does not. Let’s update
our brick prefab object to allow for and react to ball collisions.

First in the Project View, navigate to the PreFab folder under Assets. Highlight the
green brick object to view the Inspector on the right-hand side. Next add the Rigidbody2D
and Box Collider components by following the steps we did for adding colliders to
our platform. Don’t forget to select the Is Kinematic check box on the Rigidbody 2D
component as well. Next change the Sleeping Mode selection in the drop-down to “Start
Asleep” so our bricks do not interact with anything until impacted by the Ball object.
When completed your green brick object should look like Figure 3-11.

Figure 3-11.  Brick with Rigidbody and Box Collider attached

■■ Note T ypically for a brick in this type of game we would only need to use a box collider
since it doesn’t move. However, we may want to move our brick in the future to add a
different type of game play so the Rigidbody is necessary.

Now press Play on your Scene and launch your ball. You should see your ball bounce
off the brick when it hits it and return back to the paddle.

Chapter 3 ■ Create Positioning and Movement

58

The last step is to add a script to our brick to destroy it when it is touched. Select the
Script folder under Assets in the Project View. Right-click on the folder and select Create,
C# Script. Name the script “Brick” and double-click on it. Now modify the Brick script to
match Listing 3-5.

Listing 3-5.  Brick script with Destroy

using UnityEngine;
using System.Collections;
 
public class Brick : MonoBehaviour {
 
 public int maxHits;
 public int timesHit;
 
 // Use this for initialization
 void Start () {
 timesHit = 0;
 }
  
 // Update is called once per frame
 void Update () {
  
 }
 
 void OnCollisionEnter2D(Collision2D col){
 print ("Ouch you hit me!");
 timesHit++;
 
 if (timesHit == maxHits) {
 print ("Destroyed!");
 Destroy(gameObject);
 }
 }
 
}

Again, let’s walk through our script so we understand what is going on.

 public int maxHits;
 public int timesHit;
 
 // Use this for initialization
 void Start () {
 timesHit = 0;
 }

Chapter 3 ■ Create Positioning and Movement

59

The first thing we do is set the variables that will keep track of the max number of
times each brick can be hit and the number of times each brick is hit. This will allow us to
enhance our game play by allowing for different brick types within our game that react to
single or multiple hits by the ball. In the Start() method we simple set the default value
of timesHit to 0 to start the game.

void OnCollisionEnter2D(Collision2D col){
 print ("Ouch you hit me!");
 timesHit++;
 
 if (timesHit == maxHits) {
 print ("Destroyed!");
 Destroy(gameObject);
 }
 }

Finally we override the OnCollisionEnter2D() method for our brick Box Collider to
track when the object is touched. Method overriding is an object-oriented programming
feature that allows us to rewrite a specific implementation of a method provided by a
parent class. We print out a message when the object is hit and increase the variable
timesHit by 1. Then we check to see if the number of times hit matches the maximum
times allowed for our brick object. If it matches then we destroy our game object with is
the current object that the script is connected to.

■■ Note R ead more about the OnCollisionEnter2D enter method in the
documentation here: http://docs.unity3d.com/ScriptReference/MonoBehaviour.
OnCollisionEnter2D.html.

Once our script is updated in MonoDevelop, select File and Save to complete the
update. Then return to the Unity editor to refresh the script. Drag the Brick script to the
PreFab green brick object in the Inspector. This will add the script to all of our bricks since
we are modifying the PreFab object (Figure 3-12). Modify the Max Hits to 1 and leave the
Times Hit option at 0.

Figure 3-12.  Brick script added to the green brick PreFab object

http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnCollisionEnter2D.html
http://docs.unity3d.com/ScriptReference/MonoBehaviour.OnCollisionEnter2D.html

Chapter 3 ■ Create Positioning and Movement

60

Press Play to start the game and launch the ball in the game view. When the ball
strikes the brick it will disappear from the scene (Figure 3-13).

Figure 3-13.  Bricks being destroyed when the ball hits them

Summary
In this chapter we created movement for the key objects in our game. We created our first
scripts and learned what each section of the scripts meant. In addition we learned how to
launch a ball with the mouse click and destroy the bricks in our scene.

In the next chapter we will continue adding interactive functionality to our game.
We will learn how to keep the ball within the scene and add some sound effects to our
objects.

The world is very different now. For man holds in his mortal hands
the power to abolish all forms of human poverty, and all forms of
human life.

—John F Kennedy

61

Chapter 4

Scripting a Game Manager

In the last chapter we built the basic structure of the game. We have our bricks, paddle,
and ball together in the scene and can destroy bricks by launching our ball. The game still
needs the logic to keep track of how many bricks were destroyed and the framing of our
scene to keep our ball in play.

In this chapter we will work with colliders to frame our scene and limit the area our
ball can travel. We will also build a Game Manager object and script to control some of
the objects in the game. In addition we add display text so our user knows the current
game state.

Let’s make it happen!

Keeping Our Ball in the Game Space
When we play our game now, the ball will bounce and destroy the bricks in our scene.
However, when the ball gets to the edges of our scene, it will travel right off the screen
and leave us in an unplayable game state. (Figure 4-1) You can see how our game players
would not be happy if the ball disappears off the screen to never return.

Chapter 4 ■ Scripting a Game Manager

62

We will begin this chapter by adding colliders to the borders of our game play area.
The colliders on the top, left, and right will act as bumpers to keep our ball in the main
play area for our user. The bottom collider will act as a notifier to let us know that the user
missed the ball and to end the level.

Creating Invisible Collider Walls
In Chapter 3 we were introduced to the use of colliders and how our ball responds to
collisions in the game play space. In order for our ball to stay in the scene, we will create
invisible colliders surrounding our game space for the ball to react to.

First let’s create an empty game object in our scene. Using the top menu in the Unity
editor, select GameObject and then Create Empty. Rename the object to “Game Area” by
modifying the name in the Inspector. We will use this object to keep all of our play space
pieces. Let’s drag the object to the top of the Hierarchy view under the Main Camera
object. In the Inspector of the Play Area object, select the gear at the top right of the
Transform component. This will give you the option to reset the game object in the scene.
Click reset to move the object to the bottom left of our scene.

Next drag the background object under the Play Area object so that it is associated
with the play area. This will tidy up our design area and make it easier to identify the play
area pieces. Once you have completed all of the steps your Hierarchy View should look
like Figure 4-2.

Figure 4-1.  No ball on the scene

http://dx.doi.org/10.1007/978-1-4842-1494-7_3

Chapter 4 ■ Scripting a Game Manager

63

■■ Note  Be sure to press enter after changing the name in the Inspector. Otherwise the
name of your GameObject may not retain the change

Now let’s add another empty game object to our scene by following the same steps.
Name this game object “Left Side” and reset the position to the origin in the Transform
as well. Move the new object under the Play Area in the Hierarchy Window. This game
object will act as the left wall of our game play area.

Under the Inspector View, select Add Component, choose Physics 2D and then Box
Collider 2D. You should now have a small invisible box area on your screen in the origin
position of the game. This is the collider that will repel the ball back into our play area so
we will need to resize it to the game height. To position the wall correctly we will need to
modify our Box Collider 2D attributes to match Figure 4-3.

Figure 4-2.  Cleaned-up Hierarchy view with new Play Area game object

Figure 4-3.  Box Collider attributes for the Left Side game object

Chapter 4 ■ Scripting a Game Manager

64

Next let’s create the right buffer by duplicating the Left Side. This can be
accomplished by right-clicking on the Left Side game object in the Hierarchy View and
selecting duplicate. Rename the created Object to “Right Side,” change the X under the
Transform section from 0 to 16 and the Offset X under the Box Collider 2D component
from -0.5 to 0.5.

We now have both a left and right side for our play area. Next follow the same steps to
create the top collider for the game area. Duplicate the Right Side object and change the
Box Collider 2D component to have an Offset X=0 Y=0.5 and Size X=18 Y=1. Also change
the Transform positions of X to 8 and Y to 12. This will place an invisible collider at the
top of the game area. Figure 4-4 shows how our play area looks now. As you see the area is
completely enclosed by our colliders so there is no way for our ball to escape the area.

Figure 4-4.  Our scene with the top, left, and right colliders

■■ Note  You may have noticed that the coordinates we define for our play area are based
on the 16 world units spacing that we defined in Chapter 1.

OK, now save your scene (File, Save Scene) and the game by pressing Play in the Game
View. Even if your ball bounces on the sides of the scene, it will not leave the play area.

Changing the Impact of Gravity
If you tried playing the game when testing the walls in the last section, you may have
noticed that our ball does not have much force. The ball launches up to our bricks but
does not have enough power to reach to the top of our game. We can modify the gravity of

http://dx.doi.org/10.1007/978-1-4842-1494-7_1

Chapter 4 ■ Scripting a Game Manager

65

the ball to make it work better in our game but we don’t want to do this. We want all of the
objects in our game to start with the same gravity impact and only modify directly when
we are adding feature functionality.

The best approach for improving the motion of our ball is to change the gravity
definition in the game. You can accomplish this by modifying the 2D Physics Settings of
the game. In the Unity Editor top menu, select Edit, Project Settings, and Physics 2D. This
will open the Physics 2D Settings in the Inspector View and allow us to change the gravity
defined for the project.

The default gravity is defined as X=0 Y=-9.81 as displayed in Figure 4-5. Let’s change
the Y attribute to -1 and then test our game. Now when we run our game our ball will
bounce all the way to the top of the screen in the Game View. We can play the game to
eliminate all the bricks in the scene, and the ball will keep bouncing within our play area
with velocity since the impact of the gravity has been reduced.

Figure 4-5.  Physics 2D Settings that include gravity for the project

OK, things are looking really good in our scene. Now let’s clean up the project some
so we can standardize the objects in our scene.

Chapter 4 ■ Scripting a Game Manager

66

Relabeling the Game Objects in Our Scene
In order to begin some of the advanced scripting in our game, we need to tidy up our
project a bit. Some of our game objects have weird names that were created when we
duplicated or added them to our scene. In this section we will relabel these objects so
they will be easier to find and identify when writing our scripts. Table 4-1 describes each
of the objects that need to be modified.

Table 4-1.  Summary of the Objects to be Modified

GameObject Relabeling

Ball_03 Ball

Paddle_03 Paddle

greenbrick_03 (x) Brick

Now that you have modified your objects your Hierarchy View should look like
Figure 4-6. With the main pieces of our game uniformly named, we can build the object
that will manage the flow of our user experience.

Figure 4-6.  Our game objects with uniform names

■■ Note T he green bricks can all be relabeled at once if you select them all in the
Hierarchy View and change the name in the Inspector View. Another option is to accomplish
this is to change the PreFab name.

Chapter 4 ■ Scripting a Game Manager

67

Scripting Our Game Manager
In this section we will define the script that will keep track of the status of our objects. Our
Game Manager script will let the game know when the user has won or lost the game,
how many bricks and balls are in the scene, and instruct the game where to go based on
the results of these findings. In addition the manager will start the sound aspects of our
game, identifying when the game has begun and when the player has failed.

Let’s begin by creating an empty GameObject to hold our script. Select GameObject,
and Create Empty from the main Unity Editor menu. Rename the object to GameManager
in the Inspector View and press Enter. Next click the Add Component button and select
New Script. Name the script GameManager, make sure C Sharp is selected, and click the
Create and Add button. Now modify the script to match Listing 4-1 below.

Listing 4-1.  Game Manager Script

using UnityEngine;
using System.Collections;
 
//List of all the possible gamestates
public enum GameState
{
 NotStarted,
 Playing,
 Completed,
 Failed
}
//Require an audio source for the object
[RequireComponent(typeof(AudioSource))]
 
public class GameManager : MonoBehaviour {
 
 //Sounds to be played when entering one of the gamestates
 public AudioClip StartSound;
 public AudioClip FailedSound;
  
 private GameState currentState = GameState.NotStarted;
 
 //All the blocks found in this level, to keep track of how many are left
 private Brick[] allBricks;
 private Ball[] allBalls;
 private Paddle paddle;
  
 public float Timer=0.0f;
 private int minutes;
 private int seconds;
 public string formattedTime;
  
 

Chapter 4 ■ Scripting a Game Manager

68

 // Use this for initialization
 void Start () {
  
 Time.timeScale=1;
  
 //Find all the blocks in this scene
 allBricks = FindObjectsOfType(typeof(Brick)) as Brick[];
  
 //Find all the balls in this scene
 allBalls = FindObjectsOfType(typeof(Ball)) as Ball[];
 
 paddle = GameObject.FindObjectOfType<Paddle>();
 
 print ("Bricks:" + allBricks.Length);
 print ("Balls:" + allBalls.Length);
 print ("Paddle" + paddle);
 
 //Prepare the start of the level
 SwitchState(GameState.NotStarted);
 
 }
  
 // Update is called once per frame
 void Update () {
  
 switch (currentState)
 {
 case GameState.NotStarted:
 //Check if the player taps/clicks.
 �if (Input.GetMouseButtonDown(0)) �//Note: on mobile this will

translate to the first
touch/finger so perfectly
multiplatform!

 {
 SwitchState(GameState.Playing);
 }
 break;
 
 case GameState.Playing:
 {
 Timer += Time.deltaTime;
 minutes= Mathf.FloorToInt(Timer/60F);
 seconds= Mathf.FloorToInt(Timer-minutes *60);
 formattedTime=string.Format("{0:0}:{1:00}", minutes, seconds);
 
 //Display Time
 //print(formattedTime);
 
 bool allBlocksDestroyed = false;
  

Chapter 4 ■ Scripting a Game Manager

69

 //Are there no balls left?
 if (FindObjectOfType(typeof(Ball)) == null)
 SwitchState(GameState.Failed);
  
 if (allBlocksDestroyed)
 SwitchState(GameState.Completed);
 }
 break;
 //Both cases do the same: restart the game
 case GameState.Failed:
 print ("Gamestate Failed!");
 break;
 case GameState.Completed:
 bool allBlocksDestroyedFinal = false;
  
 //Destroy all the balls
 Ball[] others = FindObjectsOfType(typeof(Ball)) as Ball[];
  
 foreach(Ball other in others) {
 Destroy(other.gameObject);
 }
 break;
 }
 
 }
 
 public void SwitchState(GameState newState)
 {
 currentState = newState;
  
 switch (currentState)
 {
 default:
 case GameState.NotStarted:
 break;
 
 case GameState.Playing:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 
 case GameState.Completed:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 

Chapter 4 ■ Scripting a Game Manager

70

 case GameState.Failed:
 GetComponent<AudioSource>().PlayOneShot(FailedSound);
 break;
 }
 }
 
}

Let’s break down this script so we understand how it will impact our game. The first
thing we do is to define the Unity libraries we are including in the script and then set
an enumerated value for our game state information. An enumeration lets you create a
collection of related constants that you can refer to in the game. We need to know what
state the game play is in so we use an enumerator to define our state constants of Not
Started, Playing, Completed, and Failed. Setting and knowing the game state will allow us
to implement game state conditions that our player will experience during the game.

■■ Note  You can find out more on enumerations by viewing the video in the online Unity
Manual here: https://unity3d.com/learn/tutorials/modules/beginner/scripting/
enumerations.

Next we define an audio source that we will use to play our audio files. We will talk
more about this later in the book.

Next we define the variables that will be accessed in the script (private) and by other
objects in the game (public). These include our audio files, brick, paddle, ball, and our
Timer. The timer will be used to show how long the player is playing the game.

Next we look at our Start() method that is called once when the level begins. We
use a method called FindObjectsOfType() to locate all the bricks and balls in our scene
and FindObjectOfType() to find our paddle. These two methods are very useful in Unity
for finding objects within a Scene and is the primary reason we renamed all of our objects
at the beginning of the chapter. Since all of our objects have the correct names and class
scripts defined to them, we can use these methods to locate and modify the objects in our
scene. We also switch the state of the game to NotStarted since the level is just beginning.

Next in our Update() method we have a Switch conditional statement that checks
the state of our game and determines what will happen. Remember the Update() method
is called repeatedly as the game plays so in this case it will be checking the game state
repeatedly for decision making. Table 4-2 describes each case and what decisions are
occurring:

https://unity3d.com/learn/tutorials/modules/beginner/scripting/enumerations
https://unity3d.com/learn/tutorials/modules/beginner/scripting/enumerations

Chapter 4 ■ Scripting a Game Manager

71

Table 4-2.  Summary of Cases

Case Decision

GameState.NotStarted If the user clicks on the mouse during this state, set the game
state to Playing.

GameState.Playing Defines and formatted the Timer. If there are no balls left in
the scene, sets the game state to Failed. If there are no bricks
in the scene, sets the game state to Completed.

GameState.Failed Prints failure to console. We will use this later.

GameState.Completed Destroys any Ball objects left in the scene since the level is
done.

Finally at the bottom of our script is the method for defining sounds when our
GameState changes. This script will be used later when we add sound to our game. Let’s
Save our script in MonoDevelop and refresh it in the Project View. Also if the script is not
in your Assets, Scripts folder, please move it there now using drag and drop in the Project
View. Now save your scene and press Play in the Game View. You won’t see a change in
the game but you should see the number of Bricks and Balls print out in the Console View
(Figure 4-7).

Figure 4-7.  Console View showing the number of Balls and Bricks in our Scene

Let’s go ahead and add a way to know when a player has lost the ball in our game.

Scripting Our Lose Collider
Up to this point the ball in our scene was restricted to bouncing around in the game play
area at the top, left, and right. If the user misses the ball with the paddle, it falls through
the bottom never to be seen again. We need our game to let us know when the player has
missed the ball in order for us to restart the level so that we enable them to try again. In
order to accomplish this we will add an additional collider to tour the game at the bottom
and call it our Lose Collider.

Chapter 4 ■ Scripting a Game Manager

72

Begin by selecting the Top game object from the Hierarchy View. Right-click on it
and select Duplicate. Rename the object to Bottom in the Inspector View and press Enter.
This will give us the Bottom object in the same location as our Top game object in our
Scene. Change the Y attributes in the Inspector View of the Transform to 0 and the Offset
(under Box Collider 2D) to -0.5. Select the Game Area object in the Hierarchy View and
your Scene View should look like Figure 4-8.

Figure 4-8.  Completely enclosed game area

Right now our Bottom object with collider matches our other game area objects.
If you press Play in the Game View and miss the ball with the paddle, the ball will stay
bouncing in our scene. This is not what we want with our game so we will need to change
this collider to make it work properly.

Select the Bottom object in the Hierarchy View and look at the Inspector View for our
Box Collider 2D component. Click on the check box next to IsTrigger and play the game
again. This time the ball will fall of the scene as it did before we added the collider. Why
is that, you ask? Well when the IsTrigger option is selected on a Collider component, the
Rigidbody of the colliding object is not registered. Instead the collider executes OnTrigger
events that can be used to capture and define what happens when an object collides with it.

In order to define these events we will need to add a script to our Lose Collider
object. In the Inspector of the Bottom object select Add Component. Select NewScript,
name the script Lose, and click the Create and Add button. Our Bottom object should
now look like Figure 4-9.

Chapter 4 ■ Scripting a Game Manager

73

Figure 4-9.  Box Collider 2D in Bottom object Inspector View

We will need to modify our script to remove the default Start() and Update()
methods and include our OnTrigger() detection method (Listing 4-2).

Listing 4-2.  Lose collider script connected to Lose object

using UnityEngine;
using System.Collections;
 
public class Lose : MonoBehaviour {
 private Ball ball;
 
 IEnumerator Pause() {
 print("Before Waiting 2 seconds");
 yield return new WaitForSeconds(2);
 
 //Find the ball and reset game start
 ball = GameObject.FindObjectOfType<Ball>();
 ball.gameStarted = false;
 
 //Reload level
 Application.LoadLevel(Application.loadedLevel);
 
 print("After Waiting 2 Seconds");
 }
 
 void OnTriggerEnter2D (Collider2D trigger){
 print ("Lost Triggered!");
 

Chapter 4 ■ Scripting a Game Manager

74

 //Wait before restarting level
 StartCoroutine(Pause());
 
 }
}

In our new Lose script we start by declaring our Unity packages to include and a
private instance of our Ball object. Then we enter the main premise of our script. We
define a Coroutine that is a function executed in intervals in order to use a yield statement
for returning code. This sounds complicated but really it just allows us to execute code
after a certain number of seconds. This is useful for out game since it enables us to put a
slight pause before resetting the level for our game player.

In the OnTriggerEnter2D() method of our script, we call the StartCoroutine()
method of Unity to execute our Pause() method we define. Within the Pause() method
we use the Unity yield base class instruction to tell our game to wait 2 seconds before
executing the next step. The next step that will execute is to search for the ball objects in
the game and to set the GameStarted Boolean of our Ball to false.

Before we can execute our game, however, we will need to modify our Ball script
to make the Boolean accessible to our Lose script. Right now in the Ball script the
GameStarted Boolean is private, which means only the script itself can call it. We will
need to change the variable definition from private to public for this script to work.
Listing 4-3 shows the updated Ball script.

Listing 4-3.  Updated Ball script with public GameStarted variable

using UnityEngine;
using System.Collections;
 
public class Ball : MonoBehaviour {
 
 public Paddle paddle;
 public bool gameStarted = false;
 private Vector3 paddleVector;
 
 // Use this for initialization
 void Start () {
 //Set the ball on the paddle position
 paddleVector = this.transform.position - paddle.transform.position;
 }
  
 // Update is called once per frame
 void Update () {
 if(!gameStarted){
 �this.transform.position = paddle.transform.position + paddleVector;
 if(Input.GetMouseButtonDown(0)){
 print("Mouse clicked!");
 gameStarted = true;

Chapter 4 ■ Scripting a Game Manager

75

 �this.GetComponent<Rigidbody2D>().velocity = new Vector2
(2f,10f);

 }
 }
 }
}

■■ Note  Still don’t understand Coroutines? You can find out more about them by viewing
the video in the online Unity Manual here: https://unity3d.com/learn/tutorials/
modules/intermediate/scripting/coroutines.

Now save both your Ball and you Lose Script in MonoDevelop. Right-click on the
Lose or Ball script in the Project View of the Unity editor and select Refresh. Move the
Lose Script to the Scripts folder under Assets. Navigate to the Game View and press Play
to test the game. When you miss the ball with the paddle, the game will pause 2 seconds
and reset the game.

Cool beans! Save your Scene in the Unity Editor.

Using UI Text to Display Information
Our game is working and we have defined our win/lose condition. However, our player
has no idea how to start our game or whether they won or lost. We have not visually
presented any instruction to the user on what to do and the result of their actions. We
need to place some minimal instruction to our user and we can use the Unity UI Text
object to do that.

■■ Note  Find out more about UI Text objects them by viewing the video here:
http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-text.

In Unity 4 there was an object called GUIText that was used to display text on the
screen. The display was pretty generic and led to numerous third party creations to
provide enhanced text. The UI Text object offers advanced text options including rich
text to give the developer more control of the user interface display. The text is laid in a
Canvas object that can be modified to fit the screen. Let’s add a text object to our scene.

Select GameObject, UI, Text from the Unity Editor menu. This will create a UI text
object in your scene and add a Canvas object to your Hierarchy View. Under the Canvas
object will be a Text object containing the text “New Text.” Modify the Canvas object
by selecting it and navigating to the Inspector View. Change the Canvas component to
match Figure 4-10.

https://unity3d.com/learn/tutorials/modules/intermediate/scripting/coroutines
https://unity3d.com/learn/tutorials/modules/intermediate/scripting/coroutines
http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-text

Chapter 4 ■ Scripting a Game Manager

76

Figure 4-10.  Canvas object for UI Text object

We change the Render Mode to match our screen space for our game since it is in
2D. Then click on the small icon next to the Render Camera option and select the Main
Camera for our scene. This will set the size of the Canvas to the screen and place our text
within the screen space. Finally, change the Order in Layer to 1 so the Canvas and Text are
in the front of our scene.

Now modify the Text object by selecting it in the Hierarchy View. In the Inspector
View modify the Rect Transform Pos X to 0 and Pos Y to 164. This will place the Text in the
top middle of our Game View. Modify the Text (Script) component by changing the Font
Size to 20 and Align to center. Figure 4-11 shows the updated Text object Inspector View,
and Figure 4-12 shows how our Game View should look now.

Figure 4-11.  Text component settings for the Canvas Text object

Chapter 4 ■ Scripting a Game Manager

77

Figure 4-12.  Text object in middle of Game View

With our text now in the middle of our screen, let’s modify the Game Manager script
(Listing 4-4) to find and change the text in our start and end game states.

Listing 4-4.  Modified Game Manager script with Text object changing function

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
 
//List of all the possible gamestates
public enum GameState
{
 NotStarted,
 Playing,
 Completed,
 Failed
}
//Require an audio source for the object
[RequireComponent(typeof(AudioSource))]
 
public class GameManager : MonoBehaviour {
 
 //Sounds to be played when entering one of the gamestates
 public AudioClip StartSound;
 public AudioClip FailedSound;
  
 private GameState currentState = GameState.NotStarted;
 

Chapter 4 ■ Scripting a Game Manager

78

 //All the blocks found in this level, to keep track of how many are left
 private Brick[] allBricks;
 private Ball[] allBalls;
 private Paddle paddle;
  
 public float Timer=0.0f;
 private int minutes;
 private int seconds;
 public string formattedTime;
 
 public Text text;
 
 // Use this for initialization
 void Start () {
  
 Time.timeScale=1;
  
 //Find all the blocks in this scene
 allBricks = FindObjectsOfType(typeof(Brick)) as Brick[];
  
 //Find all the balls in this scene
 allBalls = FindObjectsOfType(typeof(Ball)) as Ball[];
 
 paddle = GameObject.FindObjectOfType<Paddle>();
  
 print ("Bricks:" + allBricks.Length);
 print ("Balls:" + allBalls.Length);
 print ("Paddle" + paddle);
 
 //Change start text
 ChangeText ("Click To Begin");
 
 //Prepare the start of the level
 SwitchState(GameState.NotStarted);
 }
  
 // Update is called once per frame
 void Update () {
  
 switch (currentState)
 {
 case GameState.NotStarted:
 //Change start text
 ChangeText ("Click To Begin");

Chapter 4 ■ Scripting a Game Manager

79

 //Check if the player taps/clicks.
 �if (Input.GetMouseButtonDown(0)) �//Note: on mobile this will

translate to the first
touch/finger so perfectly
multiplatform!

 {
 SwitchState(GameState.Playing);
 }
 break;
 
 case GameState.Playing:
 {
 Timer += Time.deltaTime;
 minutes= Mathf.FloorToInt(Timer/60F);
 seconds= Mathf.FloorToInt(Timer-minutes *60);
 formattedTime=string.Format("{0:0}:{1:00}", minutes, seconds);
 
 //Change start text
 ChangeText ("Time: "+formattedTime);
 
 bool allBlocksDestroyed = false;
  
 //Are there no balls left?
 if (FindObjectOfType(typeof(Ball)) == null)
 SwitchState(GameState.Failed);
  
 if (allBlocksDestroyed)
 SwitchState(GameState.Completed);
 }
 break;
 //Both cases do the same: restart the game
 case GameState.Failed:
 print ("Gamestate Failed!");
 ChangeText ("You Lose :(");
 
 break;
 case GameState.Completed:
 bool allBlocksDestroyedFinal = false;
  
 //Destroy all the balls
 Ball[] others = FindObjectsOfType(typeof(Ball)) as Ball[];
  
 foreach(Ball other in others) {
 Destroy(other.gameObject);
 }
 break;
 }
 
 } 

Chapter 4 ■ Scripting a Game Manager

80

 public void ChangeText (string text) {
 //Find Canvas and modify text
 GameObject canvas = GameObject.Find("Canvas");
 Text[] textValue = canvas.GetComponentsInChildren<Text>();
 textValue[0].text = text;
 }
 
 public void SwitchState(GameState newState)
 {
 currentState = newState;
  
 switch (currentState)
 {
 default:
 case GameState.NotStarted:
 break;
 
 case GameState.Playing:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 
 case GameState.Completed:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 
 case GameState.Failed:
 GetComponent<AudioSource>().PlayOneShot(FailedSound);
 break;
 }
 }
 
}

In our modified script we have added a ChangeText() method that takes in a string
variable. First we include our UnityEngine UI package. The string is the text displayed in
our Text object replacing the “New Text” text. The method searches for the Canvas object
and then finds the child Text object to place in an array. It then sets the first one it finds
to the text passed into the method. Since we only have one text object in our scene, this
works for our game.

■■ Note A nother option for changing the text dynamically by setting text =
GetComponent<Text>(); and defining the text object using text.text = "value";

Chapter 4 ■ Scripting a Game Manager

81

Let’s also modify our Lose script to notify the player when they lose (Listing 4-5).

Listing 4-5.  Adding of GameManager object to Lose script in order to change text when
user loses

using UnityEngine;
using System.Collections;
 
public class Lose : MonoBehaviour {
 private Ball ball;
 private GameManager gameManager;
 
 IEnumerator Pause() {
 print("Before Waiting 2 seconds");
 //Switch GameManager State
 gameManager = GameObject.FindObjectOfType<GameManager>();
 gameManager.SwitchState (GameState.Failed);
  
 yield return new WaitForSeconds(2);
 
 //Find the ball and reset game start
 ball = GameObject.FindObjectOfType<Ball>();
 ball.gameStarted = false;
 
 //Reload level
 Application.LoadLevel(Application.loadedLevel);
 
 print("After Waiting 2 Seconds");
 }
 
 void OnTriggerEnter2D (Collider2D trigger){
 print ("Lost Triggered!");
 
 //Wait before restarting level
 StartCoroutine(Pause());
 
 }
}

In the script we have added an object for our GameManager. We then search for the
GameManager in our game and switch the state to failed. We then change the text to
"You Lose :(" so the player can see that they missed the ball.

Chapter 4 ■ Scripting a Game Manager

82

Summary
In this chapter we finalize the game space of our game so the ball will not leave the play
area. We build a Game Manager to control what happens in our game and to set the game
states. Finally, we set up some visible text so our players could see the status of the game.

In the next chapter we will enhance our Game Manager and game play attributes. We
will also begin to work with sound effects and background music for our game.

I can accept failure. Everyone fails at something. But I can’t accept not
trying.

—Michael Jordan

83

Chapter 5

Adding Sound and Music

Now that we have a basic Game manager in place from the last chapter, we can focus
on adding audio and sound to our game. One of the key components of any game is
the sounds and effects your user engages with when playing. If you think of memorable
games like Angry Birds, for example, the music and sound effects made the game so
much better. When the intro music of the game played, you knew someone was playing
Angry Birds.

In this chapter we will add sound and sound effects to our game. We will include
background music for our level and interactive sound for our game play.

Let the music begin!

Adding Background Music
Cool background music will add an element of fun and interactivity to our game. Let’s
add some background music to our game to add some life to our player experience. The
first thing we need to do is to understand how sound works in Unity. In order to play
a sound, the two components that are required are the Audio Listener and the Audio
Source.

The Audio Listener acts like a microphone by receiving audio input and playing it
through the device speakers. Usually there is only one listener attached in a game, and it’s
usually connected to the Main Camera. Figure 5-1 shows the audio listener displayed in
the Inspector View that is connected to the camera in our game. There are no attributes to
set for the listener since its sole purpose is to listen for audio.

Chapter 5 ■ Adding Sound and Music

84

■■ Note  You can find out more on the Audio Listener by reviewing the Unity Manual here:
http://docs.unity3d.com/Manual/class-AudioListener.html.

The Audio Source is the speaker in the Scene that plays the selected AudioClip. It
works in conjunction with the Audio Listener to provide the sound experience in the
game. When an Audio Source is connected to a gameobject that is in the vicinity of the
Audio Listener, the sound can be heard through the speakers.

Now that we have a general idea on how this works in the game, let’s add background
music to our scene. Select the GameManager object in the Hierarchy View and view the
Inspector View on the right. You should see a component called Audio Source already
attached to the gameobject. Expand the component by clicking on the arrow so you
can see the advanced options. The key option we need to modify at this point is the

Figure 5-1.  Main Camera with Audio Listener attached

http://docs.unity3d.com/Manual/class-AudioListener.html

Chapter 5 ■ Adding Sound and Music

85

“AudioClip” selection. Click the little circle to the right of the option, and this will display
a selection window. Select the file Level1BGM file.

Next make sure the “Play on Awake” check box is selected. Press Play in the Game
View window and you should hear background music as your game plays. Figure 5-2
shows how the Audio Source option should look in the Inspector for the GameManager.

Figure 5-2.  Audio Source with options expanded

Another key option check box to select is the “Loop” check box. This will allow our
background music to replay when it ends and allow us to use a shorter looping clip. This
will reduce the size of our app since our audio files can be smaller.

Adding Start and End Sounds
We have background music in the game, so let’s start adding some sound effects. Initializing
sound effects will guide our game player through the experience of the game. Fortunately
when we built our GameManager script we already included variables for our start and end
sounds in the script. The beginning of our script includes the following details:

//Require an audio source for the object
[RequireComponent(typeof(AudioSource))]
 
public class GameManager : MonoBehaviour {
 
 //Sounds to be played when entering one of the gamestates
 public AudioClip StartSound;
 public AudioClip FailedSound;

Chapter 5 ■ Adding Sound and Music

86

The RequireComponent() function specifies what components need to be included
for the script to function correctly. It will add the required component automatically to
the game object that helps prevent scripting errors. We set the AudioSource as required
since we are adding sounds to this object. Next we set the variables for the AudioClip
objects for our start and fail sounds in the game.

To add the start and end sounds to the script, navigate to the GameManager object
Inspector and expand the GameManager script component. Select the circle option next
to the Start Sound option and select the “game-started” sound. Select the circle option
next to the Failed Sound and select the “game-ended” sound.

Play the game now and you should hear a start sound when you launch the ball. If
you miss the ball by letting it fall pass the paddle, you should hear the failed sound play.
Figure 5-3 shows how the Game Manager script should look in the Inspector View now.

Figure 5-3.  Shows the GameManager script with sounds selected

Let’s add some sounds to our game environment now.

Bricks with Action and Impact Sound
When we play our game now, the ball bounces and removes our bricks. This is the basic
structure of a brick breaker game, but without sound the play is underwhelming. To
enhance the game play we should add some type of visual effect to the bricks and a sound
when the ball impacts it. We will keep the effect small but the change will make our game
more fun.

Let’s begin by adding a simple animation to the brick. The animation will be called
Woggle and will cause our brick to shrink when it is hit. Let’s navigate to our Brick prefab
object in the Assets/Prefabs folder. Select the Brick object, click the Add Component
button, and select Animation. Under the component you will find an attribute called
Animations. Change the number from 0 to 1. Now select the circle next to and select the
Animation Clip called Woggle. Next unselect the “Play Automatically” check box since
we want to control when the Animation is played in our script. This will add the Woggle
animation effect to your brick (Figure 5-4).

Chapter 5 ■ Adding Sound and Music

87

Since we added the animation to the brick Prefab object, all of the bricks in our
Scene will have the animation tied to them. Prefabs make it really easy to modify all the
Bricks at once and ensure they all behave in the same way.

Modify Brick Script for Sound
Our Brick objects now have animation tied to them and that is great. However the
animation will not run until we instruct it to start in the script tied to the game object. For
the game play to function correctly, we only want our animation to run when the brick is
impacted. Back in Chapter 3 we added a script to the Brick object to destroy it on impact
(Listing 3-5). Listing 5-1 shows our modified Brick script with the changes highlighted for
audio playback on impact:

Listing 5-1.  Modified Brick script with additions for impact sound play

using UnityEngine;
using System.Collections;
  
//Make sure an AudioSource component on the GameObject where the script is
added.
[RequireComponent(typeof(AudioSource),typeof(Animation))]
public class Brick : MonoBehaviour {
 
 public int maxHits;
 public int timesHit;
 private bool BrickIsDestroyed=false;
 

Figure 5-4.  Woggle animation added to the brick Prefab object

http://dx.doi.org/10.1007/978-1-4842-1494-7_3

Chapter 5 ■ Adding Sound and Music

88

 //Define the AudioClip and Pitch
 public AudioClip Sound;
 public float PitchStep = 0.05F;
 public float MaxPitch = 1.3F;
 
 //Make the current pitch value global
 public static float pitch = 1;
 
 //Falling variables
 public bool FallDown = false;
  
 [HideInInspector]
 public bool BlockIsDestroyed = false;
  
 private Vector2 velocity = Vector2.zero;
 
 // Use this for initialization
 void Start () {
 timesHit = 0;
 }
  
 // Update is called once per frame
 void Update () {
 if (FallDown && velocity != Vector2.zero)
 {
  
 Vector2 pos = (Vector2)transform.position;
 pos += velocity * Time.deltaTime;
 }
 }
 
 void OnBecameInvisible()
 {
 BlockIsDestroyed = true;
 Destroy(gameObject);
 }
 
 private IEnumerator OnCollisionExit2D(Collision2D c)
 {
 if (timesHit == maxHits) {
 print ("Destroyed on Exit!");
  
 print ("Play Woggle!");
 GetComponent<Collider2D> ().enabled = false;
  

Chapter 5 ■ Adding Sound and Music

89

 //Play the Woggle animation
 GetComponent<Animation> ().Play ();
    
 //Wait here for the length of the Woggle animation
 �yield return new WaitForSeconds (GetComponent<Animation> ()

["Woggle"].length);
  
 �//Animation Woggle has finished, now decide what to do, falldown

or just disappear
 if (FallDown) {
 print ("Falling!");
 �//Falldown to the direction the ball hit it, with a random

speed and plus a little downwards "gravity"
 velocity = new Vector2 (0, Random.Range (1, 12.0F) * -1);
 } else {
 GetComponent<Renderer> ().enabled = false;
 }
 Destroy (gameObject);
 } else {
 print ("Max hits not reached");
 }
 }
 
 void OnCollisionEnter2D(Collision2D col){
 
 timesHit++;
 print ("Ouch you hit me this many times:"+timesHit);
 
 print ("Playing brick sound!");
 //Increase pitch
 pitch += PitchStep;
  
 //Limit pitch
 if (pitch > MaxPitch)
 �pitch = 1; //Reset pitch to one so it starts over with the

lower tone
  
 //Apply pitch
 GetComponent<AudioSource>().pitch = pitch;
  
 //Play it once for this collision hit
 GetComponent<AudioSource>().PlayOneShot(Sound);
 
 StartCoroutine(OnCollisionExit2D(col));
  
 }
 
}

Chapter 5 ■ Adding Sound and Music

90

OK, let’s walk through the changes in our script and get a better understanding of
what is happening. First we require our gameobject to have an Audio Source and an
Animation component using the same method we did for our GameManager script.

//Make sure an AudioSource component on the GameObject where the script
is added.
[RequireComponent(typeof(AudioSource),typeof(Animation))]

Next we add the variables we need to control when the sound is played. We make the
AudioClip object public so we can set it in the Inspector when placing the Brick prefab.

private bool BrickIsDestroyed=false;
 
 //Make the AudioClip and Pitch modifiable in the editor
 public AudioClip Sound;
 public float PitchStep = 0.05F;
 public float MaxPitch = 1.3F;
 
 //Make the current pitch value global
 public static float pitch = 1;
 
 //Falling variable
 public bool FallDown = false;
  
 [HideInInspector]
 public bool BlockIsDestroyed = false;
  
 private Vector2 velocity = Vector2.zero;
 

Next we include the method in our Update script for checking the FallDown variable
and velocity. We check to see if the FallDown flag is enabled and then grab our Vector2
position for the gameobject. This will allow our Brick position to always be known
throughout the game play.

if (FallDown && velocity != Vector2.zero)
{
 
 Vector2 pos = (Vector2)transform.position;
 pos += velocity * Time.deltaTime;
}

Next we have a function to play our Woggle animation and wait for the animation
to complete when the collision exits. Once the animation is complete the script checks
to see if the Fall Down check box is selected. If it is, then it moves the brick down in by a
restricted velocity and destroy the object.

Next we need to set the variable objects in the Inspector for our Brick script. The new
variable for sound is the main attribute that we need to set for now. Set the sound to the
block-hit sound by selecting the circle next to the Sound attribute.

Chapter 5 ■ Adding Sound and Music

91

Finally we add an Audio Source component to our Brick object. We don’t need to set
the source since we have defined the block-hit sound in our Brick script to be played on
hit. The sound will be placed in the Audio Source component through the script.

Press Play in the Game View and play the game. You should hear the bricks make
a noise when the ball hits them and see the bricks disappear with an effect on impact
(Figure 5-6).

Figure 5-6.  Minimized brick effect on contact of ball

Figure 5-5.  Brick script variables set

Chapter 5 ■ Adding Sound and Music

92

Save your scene by selecting Save Scene from the main Unity Editor file menu.

Game Area Sounds for the Walls and Paddle
One of the final areas we need to add sound effects to is the walls of our game area. We
will follow the same process we did for our other game objects and add a script with the
Audio Source. First select the Left Side game object from the Hierarchy View. Then click
the Add Component button, Select Audio, and then Audio Source from the Inspector
View. This will add the audio source for our listener to play.

Next we will need to add a script to control setting the sound on contact like we did
for our other gameobjects. In the Inspector View select Add Component, New Script, and
name the script Wall. Listing 5-2 shows our script for the Walls in our game area.

Listing 5-2.  Walls script

using UnityEngine;
using System.Collections;
 
//Make sure there is always an AudioSource component on the GameObject where
this script is added.
[RequireComponent(typeof(AudioSource))]
public class Wall : MonoBehaviour {
 
 //Make the AudioClip and Pitch configurable in the editor
 public AudioClip Sound;
 
 // Use this for initialization
 void Start () {
  
 }
  
 // Update is called once per frame
 void Update () {
  
 }
 
 void OnCollisionEnter2D(Collision2D col){
 print ("Ouch you hit my wall!");
  
 //Play it once for this collision hit
 GetComponent<AudioSource>().PlayOneShot(Sound);
 }
}

Chapter 5 ■ Adding Sound and Music

93

The script is very similar to our Brick script. We start by requiring an Audio Source
be attached to our gameobject and setting our public AudioClip variable. Next we
define the OnCollisionEnter2D() method to print a message to the Console and set our
AudioSource component to the AudioClip we defined. This will only play the sound when
the wall is hit with the ball.

We then can take the steps to add the Audio Source component and Wall script to the
Right Side and Top game objects in the Hierarchy View.

For our Paddle we will modify our script so that the Paddle will make a sound when
the ball collides with it. Listing 5-3 shows highlights of the changes in our Paddle script.

Listing 5-3.  Paddle script

using UnityEngine;
using System.Collections;
 
//Make sure there is always an AudioSource component on the GameObject where
this script is added.
[RequireComponent(typeof(AudioSource))]
public class Paddle : MonoBehaviour {
 
 public int i=0;
 //Make the AudioClip configurable in the editor
 public AudioClip Sound;
  
 // Use this for initialization
 void Start () {
 print("This is my first Unity script!");
 }
  
 // Update is called once per frame
 void Update () {
 //print(Input.mousePosition);
 //Set variable for current position
 Vector3 paddlePos = new Vector3 (8f, this.transform.position.y, 0f);
 
 //Get mouse position
 float mousePos = Input.mousePosition.x / Screen.width * 16;
 
 //Set new mouse X position
 paddlePos.x = Mathf.Clamp(mousePos, 0.5f, 15.5f);
 
 //Change paddle to match new X position
 this.transform.position = paddlePos;
 }
 

Chapter 5 ■ Adding Sound and Music

94

 �//OnCollisionEnter will only be called when one of the colliders has a
rigidbody

 void OnCollisionEnter2D(Collision2D c)
 {
 //Change the sound pitch if a slowdown powerup has been picked up
 GetComponent<AudioSource>().pitch = Time.timeScale;
  
 //Play it once for this collision hit
 GetComponent<AudioSource>().PlayOneShot(Sound);
 }
 
}

The additions we made to the script are very similar to the Wall script with one
exception. The script will modify the pitch of the sound based on the Time.timescale
setting of the game. We will look more at time in the next chapter when we discuss effects
of different game power-ups.

When we play our game now and allow the ball pass the bricks to the top of our
scene, the ball should bounce back with a bouncy sound (Figure 5-7).

Figure 5-7.  Ball bouncing off the top of the scene and making sound

Save your scene by selecting Save Scene from the main Unity Editor file menu.

Chapter 5 ■ Adding Sound and Music

95

Summary
In this chapter we added background music that plays while the player plays the game.
We also added sound effects to the game objects in our game including the walls,
paddle, and bricks. Finally, we set up some visible text so our players could see the status
of the game.

In the next chapter we will enhance our game play by adding power-ups and particle
effects to add more interactivity to the game.

I can accept failure. Everyone fails at something. But I can’t accept not
trying.

—Michael Jordan

97

Chapter 6

Game Power-Ups

When we think about the Super Breakout game, one of the key features in game play is
the enhancement of the game through power-ups. Power-Ups in the game are additions
or subtractions to the game play by adding a level of interactivity for the game.

In this chapter we will walk through the creation of Power-Up prefab objects for the
game. We will add an extra ball and paddle resizing by allowing the game player to collect
the falling prefabs.

Time to drop some power-ups!

Building Power-Up Scripts
Setting up the base class for the power-up objects will allow for us to build the foundation
of our power-up prefab objects. These objects will define the key features of our game
and allow certain game objects to inherit functionality. Listing 6-1 is the script for our
BasePowerUp object.

Listing 6-1.  Base Power-Up class

using UnityEngine;
using System.Collections;
 
[RequireComponent(typeof(Rigidbody2D), typeof(Collider2D),
typeof(AudioSource))]
public class BasePowerUp : MonoBehaviour {
 
 public float DropSpeed = 1; //How fast does it drop?
 public AudioClip Sound; //Sound played when the powerup is picked up
  
 // Use this for initialization
 void Start()
 {
 GetComponent<AudioSource>().playOnAwake = false;
 }
  

Chapter 6 ■ Game Power-Ups

98

 // Update is called once per frame
 protected virtual void Update()
 {
  
 }
  
 IEnumerator OnTriggerEnter2D(Collider2D other)
 {
 //Only interact with the paddle
 if (other.name == "Paddle")
 {
 //Notify the derived powerups that its being picked up
 OnPickup();
  
 //Disable further collisions
 GetComponent<Collider2D>().enabled = false;
 GetComponent<Renderer>().enabled = false;
  
 //Change the sound pitch
 GetComponent<AudioSource>().pitch = Time.timeScale;
  
 //Play audio and wait
 GetComponent<AudioSource>().PlayOneShot(Sound);
 yield return new WaitForSeconds(Sound.length);
 }
 }
  
 //Every powerup which derives from this class should implement this.
 protected virtual void OnPickup()
 {
  
 }
 
}

Now let’s walk through what is going on in this script. The first thing we do after
requiring the Unity libraries that we need is to set the required components for the
object. We want to make sure that each object that inherits from this base object has a
RigidBody2D, Collider2D, and an AudioSource. The rigid body and collider allow the
falling object to interact with the paddle when the two make contact. We will use this
contact to trigger an event to make an effect take place in the game. The audio source
will be used to play a sound when the objects collide so the user knows something has
happened in the game.

After that we define our variables for how fast the object will fall in the scene and the
sound that will play. Next we set our audio to not play on awake when the object starts.
We only want our sound to play on impact so setting this will have the sound play only
when the object is awoken.

Chapter 6 ■ Game Power-Ups

99

Finally the main component of our script is the OnTriggerEnter2D() method. The
method checks to see if the object is interacting with the Paddle. If it is, then it will call the
OnPickUp() method, disable additional collisions by turning off the collider and renderer
components, and play a sound while waiting for 2 seconds.

■■ Note P lease remember to include the 2D versions of the rigidbody and collider objects
and not the 3D ones. There are both 2D and 3D versions of the components and methods
with the same names so it’s easy to make a mistake in the naming without realizing it.

Save your script using the main File menu in MonoDevelop. With the foundation of
our power-ups now defined, we can set up our script for our power-up prefabs scripts.
These will be the actual scripts attached to our game objects.

Building Base Power-Up Prefab Scripts
When you think about the traditional Break Out games, two of the most popular power-
ups are the paddle size change and the addition of extra balls. The paddle size change
makes it easier or harder for our player to keep the ball in play while the extra balls extend
the life of the player by giving them more opportunity to stay alive.

We will now create the base script for all of our game objects that will have power-
ups falling from them.

	 1.	 Right-click in the Scripts folder of the Unity Editor and select
Create, C# Script.

	 2.	 Name the script PowerUpDrop and press Enter.

	 3.	 Double-click on the script and change it to match the script in
Listing 6-2.

Listing 6-2.  Power-Up Prefab script

using UnityEngine;
using System.Collections;
 
[RequireComponent(typeof(BoxCollider2D))]
public class PowerUpDrop : MonoBehaviour {
 
 public BasePowerUp PowerUpPrefab;
  

Chapter 6 ■ Game Power-Ups

100

 //OnCollision create the powerup
 void OnCollisionEnter2D(Collision2D c)
 {
 �GameObject.Instantiate(PowerUpPrefab, this.transform.position,

Quaternion.identity);
 }
 
}

If we take a look at this script we see that we start off by requiring a BoxCollider2D
component on our object. This ensures that the object will be able to collide with the ball
in the scene. Therefore a game object that cannot be destroyed by the ball should not
have a power-up attached to it.

Next we include the appropriate power up prefab object to the game object. We have
not created our power up prefabs objects yet but will create them shortly. Finally in the
OnCollisionEnter2D() method we instantiate or create our prefab object at the current
transform position. Using the Quaternion.identity variable means that there is no
rotation on the object and it is perfectly aligned with the World space of the game.

We will attach this script to certain brick objects later in the chapter.

Extra Balls Script
The next script, shown in Listing 6-3, will inherit the Power-Up base script. The purpose
of the script is for the balls that will fall from our Brick objects. These balls will be the
extra balls in the game and will handle the interaction of them in the game.

Listing 6-3.  Extra ball prefab script

using UnityEngine;
using System.Collections;
 
public class ExtraBall : BasePowerUp {
 
 //BallPrefab instantiated when the powerup is picked up
 public GameObject BallPrefab;
 
 //Make the min and max speed to be configurable in the editor.
 public float MinSpeed = 10;
 public float MaxSpeed = 20;
  
 �//To prevent the ball from keep bouncing horizontally we enforce a

minimum vertical movement
 public float MinVerticalMovement = 0.5F;
  

Chapter 6 ■ Game Power-Ups

101

 //Override of the OnPickup method of the base class
 protected override void OnPickup()
 {
 //Call the default behaviour of the base class first
 base.OnPickup();
 print ("On pickup Call!");
 }
 
 void Update () {
 
 }
  
 void OnCollisionEnter2D(Collision2D c)
 {
 print ("Extra Collison");
 
 if (c.gameObject.tag == "Paddle"){
 print ("Extra Collison Paddle");
 launchBall();
 }
 }
 
 public void launchBall() {
 //Get current speed and direction
 Vector2 direction = GetComponent<Rigidbody2D>().velocity;
 //float speed = 20f;
 float speed = direction.magnitude;
 direction.Normalize();
  
 �//Make sure the ball never goes straight horizotal else it could

never come down to the paddle.
 �if (direction.x > -MinimumVerticalMovement && direction.x <

MinimumVerticalMovement)
 {
 �//Adjust the x, make sure it goes in a direction within the

range limit set
 �direction.x = direction.x < 0 ? -MinimumVerticalMovement :

MinimumVerticalMovement;
  
 �//Adjust the y, make sure it keeps going into the direction it

was going (up or down)
 �direction.y = direction.y < 0 ? -1 + MinimumVerticalMovement :

1 - MinimumVerticalMovement;
  
 //Apply it back to the ball
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  

Chapter 6 ■ Game Power-Ups

102

 if (speed < MinimumSpeed || speed > MaximumSpeed)
 {
 //Limit the speed so it always above min en below max
 speed = Mathf.Clamp(speed, MinimumSpeed, MaximumSpeed);
  
 //Apply the limit
 �//Note that we don't use * Time.deltaTime here since we set the

velocity once, not every frame.
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  
 }
}

Let’s walk through the script. First we define the variables for the minimum/
maximum speed and vertical movement of the ball. The next major section in the script
is the OnCollisionEnter2D() method that will handle the collision of the object. The first
thing the method checks for is that the collision is happening with the Paddle. We don’t
want the ball to react unless it is hitting the Paddle.

Once this is confirmed, we call the launchBall() method in order to set the
direction that the ball will launch in. We want the direction to be random and at an angle
so the ball doesn’t react the same every time. This will make the game less predictable
and harder for the player of the game. The launchBall() method grabs the information
on the rigidbody component and then sets a variable for the speed using the magnitude
of the object’s direction.

■■ Note W ant to learn more about the meaning of Vector object math? Check out
Understanding Vector Arithmetic in the Unity Manual here: http://docs.unity3d.com/
Manual/UnderstandingVectorArithmetic.html.

Next we ensure the direction of the ball is set at an angle that is within the minimum
and maximum values we have defined for the ball. The variables are public so they can
be customized for the ball in the Inspector View. One important thing to notice in our
script is that we use something called the ternary operator to define this condition. For
example, we set the direction of x using the following ternary operator:

direction.x = direction.x < 0 ? -MinimumVerticalMovement :
MinimumVerticalMovement;

The first part of the condition we check is the Boolean condition or true or false.
This is the direction.x<0 portion of the script. If this test is true we set direction.x to
negative MinimumVerticalMovement. If it is false we just set it to the value of the variable.
Using a ternary operator instead of the if/then statement reduces the number of lines of
code in our scripts.

http://docs.unity3d.com/Manual/UnderstandingVectorArithmetic.html
http://docs.unity3d.com/Manual/UnderstandingVectorArithmetic.html

Chapter 6 ■ Game Power-Ups

103

We also make sure the speed of the ball is limited as well to a specific value. Every
time the ball has a collision with our Paddle, the ball will be launched at a velocity within
the minimum and maximum values.

Click Save on the MonoDevelop File menu and return to the Unity Editor. Before
we use the Extra Ball script we will need to modify our Ball script. Navigate to the Assets
folder and find the Scripts folder. Select the Ball Script and modify it to match the details
in Listing 6-4.

Listing 6-4.  Ball script modified

using UnityEngine;
using System.Collections;
 
public class Ball : MonoBehaviour {
 
 public Paddle paddle;
 public bool gameStarted = false;
 private Vector3 paddleVector;
 
 //Make the min and max speed to be configurable in the editor.
 public float MinimumSpeed = 10;
 public float MaximumSpeed = 20;
  
 �//To prevent the ball from keep bouncing horizontally we enforce a

minimum vertical movement
 public float MinimumVerticalMovement = 0.5F;
 
 // Use this for initialization
 void Start () {
 //Set the ball on the paddle position
 paddleVector = this.transform.position - paddle.transform.position;
 }
  
 // Update is called once per frame
 void Update () {
 if(!gameStarted){
 �this.transform.position = paddle.transform.position +

paddleVector;
 if(Input.GetMouseButtonDown(0)){
 print("Mouse clicked!");
 gameStarted = true;
 �this.GetComponent<Rigidbody2D>().velocity = new Vector2

(Random.Range(-2.0f, 2.0f),10f);
 }
 }
 launchBall ();
 }
 

Chapter 6 ■ Game Power-Ups

104

 public void launchBall() {
 //Get current speed and direction
 Vector2 direction = GetComponent<Rigidbody2D>().velocity;
 //float speed = 20f;
 float speed = direction.magnitude;
 direction.Normalize();
  
 �//Make sure the ball never goes straight horizotal else it could

never come down to the paddle.
 �if (direction.x > -MinimumVerticalMovement && direction.x <

MinimumVerticalMovement)
 {
  
 //Adjust the x to limit it to the movement left or right
 �direction.x = direction.x < 0 ? -MinimumVerticalMovement :

MinimumVerticalMovement;
 
 �//Adjust the y, make sure it keeps going into the direction it

was going (up or down)
 �direction.y = direction.y < 0 ? -1 + MinimumVerticalMovement :

1 - MinimumVerticalMovement;
 
 //print(direction.x);
 
 //Apply it back to the ball
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  
 if (speed < MinimumSpeed || speed > MaximumSpeed)
 {
 //Limit the speed so it always above min en below max
 speed = Mathf.Clamp(speed, MinimumSpeed, MaximumSpeed);
 
 //Apply the limit
 �//Note that we don't use * Time.deltaTime here since we set the

velocity once, not every frame.
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  
 }
}

Our script will be very similar to the Extra Ball script now. Really the main difference
is the starting point where we place our ball on the paddle in the Start() method. Now
with our Ball and Extra Ball prefab scripts set, let’s add a script for modifying Paddle size.

Chapter 6 ■ Game Power-Ups

105

Change Paddle Size Script
Resizing the paddle is another feature of the game that adds interactivity and fun. Making
a larger paddle reduces the odds that the player will not lose their ball off the screen,
while making it small increases the odds. Let’s extend the BasePowerUp class we have with
a script to make the paddle modifications.

	 1.	 While in the Unity Editor, navigate to the Assets, Scripts folder.

	 2.	 Right-click and select Create, C# Script to add a new script to
the folder.

	 3.	 Name the script “ChangePaddleSize” and press enter.

	 4.	 Double-click on the created script and change it to match the
script in Listing 6-5.

Listing 6-5.  Change Paddle Size script

using UnityEngine;
using System.Collections;
 
public class ChangePaddleSize : BasePowerUp
{
 �//How much units should the paddle change when this powerup is picked up?
 //Can also be negative to shrink the paddle!
 public Vector3 SizeIncrease = Vector3.zero;
  
 public Vector3 MinPaddleSize = new Vector3(0.1F, 0.1F, 0.4F);
  
 //Notice how we override we the OnPickup method of the base class
 protected override void OnPickup()
 {
 //Call the default behaviour of the base class first
 base.OnPickup();
  
 �//Then do the powerup specific behaviour, changing the size in this case
 Paddle p = FindObjectOfType(typeof(Paddle)) as Paddle;
 p.transform.localScale += SizeIncrease;
  
 //Limit the minimal size of the paddle
 Vector3 size = p.transform.localScale;
 if (size.x < MinPaddleSize.x) {
 size.x = MinPaddleSize.x;
 }
  

Chapter 6 ■ Game Power-Ups

106

 if (size.y < MinPaddleSize.y) {
 size.y = MinPaddleSize.y;
 }
  
 if (size.z < MinPaddleSize.z) {
 size.z = MinPaddleSize.z;
 }
  
 p.transform.localScale = size;
 }
}

The Change Paddle Size script starts off by extending the BasePowerUp script
that we created earlier in this chapter. Next it defines two public variables that we
can modify through the Inspector View of our prefab object. The SizeIncrease and
MinimumPaddleSize variables will define by how much our paddle increases or decreases
in size when the power-up is engaged.

Next we override the OnPickUp() method from the BasePowerUp class, search for
the object of type Paddle in our scene, and transform it. We set the localScale of the
object to the new Vector 3 size after we define it. Save the script by using the File Menu in
MonoDevelop.

Ok, that was a lot of creating and changing scripts. Let’s go back to the Unity Editor
now to view some of the fruits of our labor.

Creating Prefab Game Objects for Ball and Paddle
Changes
In our Unity Editor we should see all scripts defined in our Scripts folder under Assets.
Figure 6-1 shows the scripts we should have available.

Figure 6-1.  Script list in the Assets folder

Chapter 6 ■ Game Power-Ups

107

Now we will use the ExtraBall and ChangePaddleSize scripts in our prefabs that we
will drop in our scene. We begin with the extra ball addition.

Sprites for Prefabs
In order to add the prefab objects to our project, we need to include the sprites for each
of the Power-Ups. Navigate to the project files and find the shrinkarrow, growarrow, and
ball_04 images to the Sprites folder. Your Sprites folder should now look like Figure 6-2.

Figure 6-2.  List of sprites in the Assets, Sprites folder

Select ball_04 of the Sprites and navigate to the Inspector View. Change the Pixels
per unit from 100 to 50 so that it matches the ball_03 sprite. With our sprites in the
project, we can build the prefabs we need for our game.

Extra Ball Prefab
To build the Prefab for the Extra Ball, we will start with the existing Ball Prefab that we
have in our project. Navigate to the Assets, Prefab folder. Select the Ball prefab object that
you created, click on the Edit button from the main Unity menu and select Duplicate.
Click the name of the duplicate object and rename it to “ExtraBall.”

In the Inspector View, let’s change the sprite to the new sprite we just imported.
Select the circle next to the Sprite and choose ball_04 from the selection window. Next
add an Audio Source component to the object by clicking Add Component, selecting
Audio, and selecting Audio Source.

Next add the ExtraBall script that we created by selecting Add Component, Scripts,
and choosing the ExtraBall script. Modify the settings to match Figure 6-3 where
Drop Speed is 5, Minimum Speed is 10, Maximum Speed is 20, and Minimum Vertical
Movement is 0.6.

Chapter 6 ■ Game Power-Ups

108

Next let’s create the prefabs for modifying our Paddle.

Shrink and Grow Prefabs
The shrink and grow prefab objects will be used to increase and decrease the size of our
paddle. Let’s build the prefab objects using the sprites that we imported. First navigate
to the Sprites folder under Assets to the growarrow and shrinkarrow sprites. Select both
sprites and drag then into the Hierarchy View. Next drag them from the Hierarchy View
down to the Assets, Prefab folder. This will convert them into prefab objects. Finally delete
the two objects from the Hierarchy View. Now you should have a Prefab folder that looks
like Figure 6-4 with 5 prefab objects.

Figure 6-3.  ExtraBall Prefab object

Chapter 6 ■ Game Power-Ups

109

We will need to modify both the growarrow and shrinkarrow prefabs to include
the components that we need. Starting with the growarrow, select the prefab object.
In the Inspector View click the Add Component button, select Physics2D, and select
RigidBody2D.

Next repeat the same steps but select BoxCollider2D. This will add the collision
component that the object needs to interact with the paddle after it drops. Next add the
audio component by selecting Add Component, Audio and select Audio Source.

Finally add the ChangePaddleSize script to the growarrow prefab by selecting Add
Component, Scripts, and selecting the script. Modify the attributes to have a Drop Speed
of 2; Size settings of X=0.7, Y=0.1, Z=0; and Min Paddle Size settings of X=0.1, Y=0.1, and
Z=0.4. After all is complete, your prefab should look like Figure 6-5.

Figure 6-4.  List of prefab objects

Chapter 6 ■ Game Power-Ups

110

Figure 6-5.  Growarrow Prefab attributes

For the shrinkarrow prefab simply repeat the steps. However set the attributes of the
ChangePaddleSize script for the Size settings to X=-0.7, Y=-0.1, Z=0. This will reduce the
paddle instead of increasing it since the values are negative.

All of our prefab objects are now built and we are ready to set up our scene. Select
File and Save Scene from the main Unity menu to save what we have created.

Chapter 6 ■ Game Power-Ups

111

Putting it All Together in the Scene
Our prefab objects are complete so we can make our bricks more interactive. First let’s
add two more rows of bricks to our scene. In the Hierarchy View collapse, the Bricks game
object that contains our row of bricks. Right-click on the name and select Duplicate.
Rename the created duplicate from Bricks(1) to Bricks Row 2. Duplicate the step again
and rename the create object to Bricks Row 3. In the Inspector View, set Transform
Position Y to 6.5 for the Bricks Row 2 object and Transform Position Y to 7 for Bricks Row 3.
Our scene should now look like Figure 6-6.

Figure 6-6.  New Brick Rows

Press play in the Game View. The game should play as it did before. Stop the game
and choose the third Brick object under the Bricks game object. Click Add Component,
select Script, and add the PowerUpDrop script. In the Project View under the Prefabs
folder, select the growarrow prefab and drag/drop it in the Inspector View under Power-
Up Prefab attribute of the ChangePaddleSize script (Figure 6-7).

Chapter 6 ■ Game Power-Ups

112

Play the game and try to hit the Brick with the ball. When you succeed you should
see the growarrow object floating down in the scene. If you collect the object with your
paddle, the paddle will increase in size (Figure 6-8).

Figure 6-7.  Selected Brick game object with ChangePaddleSize prefab

Figure 6-8.  Growarrow prefab falling after brick was hit by ball

Chapter 6 ■ Game Power-Ups

113

You can randomly add the PowerUpDrop script to Brick objects on each of the three
rows. Mix it up by adding ExtraBall, growarrow, and shrinkarrow prefabs to the Power-Up
Prefab attribute of the components.

Modify the Lose Script
Finally let’s make a slight modification to our Lose script (see Listing 6-6). We will instruct
our script to only trigger the lose routine if the object passing through it is a Ball.

Listing 6-6.  Lose Script

using UnityEngine;
using System.Collections;
 
public class Lose : MonoBehaviour {
 private Ball ball;
 private GameManager gameManager;
 
 IEnumerator Pause() {
 print("Before Waiting 2 seconds");
 //Switch GameManager State
 gameManager = GameObject.FindObjectOfType<GameManager>();
 gameManager.SwitchState (GameState.Failed);
 gameManager.ChangeText ("You Lose :(");
 
 yield return new WaitForSeconds(2);
 
 //Find the ball and reset game start
 ball = GameObject.FindObjectOfType<Ball>();
 ball.gameStarted = false;
 
 //Reload level
 Application.LoadLevel(Application.loadedLevel);
 
 print("After Waiting 2 Seconds");
 }
 
 void OnTriggerEnter2D (Collider2D trigger){
 if (trigger.name == "Ball") {
 print ("Lost Triggered!");
 
 //Wait before restarting level
 StartCoroutine (Pause ());
 }
 }
}

Chapter 6 ■ Game Power-Ups

114

When we play our game now the prefab power-up objects will fall through the
bottom without impacting the game play.

Summary
In this chapter we added power-up objects and scripts to our game. We set up scripts on
our bricks objects to allow the release of power-up prefab objects on collision with our
ball. In addition we updated our Lose script to only end the game when the ball object
interacts with it.

■■ Note O ur current Lose script will end when the main ball object passes through.
However we don’t want our game to end if there are extra balls still alive. We will solve this
in the next chapter.

In the next chapter we will add some final touches to the game. In addition we will
add additional Scenes and develop a basic user menu.

Just because something doesn’t do what you planned it to do doesn’t
mean it’s useless.

—Thomas Edison

115

Chapter 7

Level Manager and Menu

Controlling the flow of the game when a user plays involves many important decisions.
For example, do you want the user to navigate through the levels themselves, or do you
want to force them into specific levels? Can the user retain their progress through the
game or will they be forced to start over every time? Will the high score be retained by the
game and shown to the next player? These and other game design decisions impact how
your game is perceived by players and whether it is an easy, enjoyable experience for your
game player.

In this chapter we will design the game object that controls the level navigation.
In addition we will create a Menu for our user to select which level that they want to play.
We will also force the user to the main game menu when they complete the level (i.e., win).

Let’s get leveled up!

Creating Intro Scene
After the splash scene is loaded for the game, the first, or introductory, scene is what your
user will see. Right now our game goes straight into the Main level of our game. We will
change this and have the user see a menu scene first when they enter the game.

Let’s begin by creating a new scene in Unity. Select the Assets, Scenes folder in the
Hierarchy View. From the main Unity menu select File and then the New Scene option.
This will create the scene we will use for building our Menu. Select File again and then the
Save Scene As option. Name the Scene Intro and Save it to the Scenes folder under Assets.

Add a Main Title and Buttons
In the Using UI text to Display Information in Chapter 4, we learned how to create a UI
Text object to display text information. We will follow similar steps here to create our
main title text for the Intro scene. Select GameObject, UI, Text (Figure 7-1) from the main
Unity menu.

http://dx.doi.org/10.1007/978-1-4842-1494-7_4

Chapter 7 ■ Level Manager and Menu

116

This will create a new Canvas option in the Hierarchy View of the scene. You should
also see under the Canvas object a Text object containing the text “New Text” as you saw
in Chapter 4. Modify the Canvas object by selecting it and navigating to the Inspector
View. Change the name in the Inspector to “Title.” In the Text (Script) component, change
the text to “BREAK THOSE BRICKS,” set the Font Size to 35, and both the Horizontal and
Vertical Overflow to “Overflow.”

Next modify the Rect Transform Width to 440 and Height to 58. Alter the positions yo
Pos X = 0, Pos Y = 163, and Pos Z = 0. Make sure the paragraph alignment is center so the
title text is always in the middle of the screen.

Your Canvas component should now match Figure 7-2, and we should see our text in
the middle of the screen like Figure 7-3. Save your scene using the main Unity menu and
selecting Save Scene.

Figure 7-1.  Gameobject selection for creating a new Canvas UI Text object

http://dx.doi.org/10.1007/978-1-4842-1494-7_4

Chapter 7 ■ Level Manager and Menu

117

Figure 7-2.  Canvas Title object

Figure 7-3.  Break those bricks title text in Game View

Chapter 7 ■ Level Manager and Menu

118

Next we will need to add some buttons to our title screen. The buttons will allow
our game player to navigate to the levels that we want them to access. Adding a button is
relatively simple since we have our Canvas already defined. To add a button we just select
Gameobject, UI, and select Button from the main Unity menu. Select the button and
change the name of it to “Level 1 Button” in the Inspector View.

Now let’s modify the attributes of the button so that it is in the right location on our
screen. In the Inspector View of the button, change the Height and the Width to 100 and the
Pos X = -209, Pos Y=50, and Pos Z=0. In the Hierarchy View expand the Button and select the
text. In the Inspector View change the Text (Script) component Text attribute to “Level 1.” Set the
Font Size to 14. Modify the Rect Transform and set the Left, Top, Pos Z, and Right to 0. Change
the Bottom attribute to 50. Figure 7-4 below shows what our Scene View should now look like.

Figure 7-4.  Level 1 button in Scene View of Canvas object

One of the great features of using the UI Canvas system that Unity has included is
that it has an EventSystem built in to handle input, raycasting, and sending events. We
will use this system to handle our button interaction so we don’t need to code our buttons
ourselves. However we do need to script what the button will do once it is clicked. Let’s
add a level loader script to load the specified level on button click.

Script for Loading a Level
Unity makes it easy for us to add interactivity to our button using the UI elements.
However we still need to add our own custom method to accept a level number passed
in and then load the scene. Navigate to the Assets, Scripts folder to create a new script.

Chapter 7 ■ Level Manager and Menu

119

Right-click in the folder and select Create, C# Script. Name the script LevelLoader, and
double-click to modify it to the script in Listing 7-1.

Listing 7-1.  LevelLoader script used for loading the specified level

using UnityEngine;
using System.Collections;
 
public class LevelLoader : MonoBehaviour {
 
//Basic function for loading level
 public void LoadScene (int level)
 {
 Application.LoadLevel(level);
 }
}

In the script we set a LoadScene() method that takes the integer of the level to be
loaded. Right now we only have once level created, but we will create three more shortly. We
use the LoadLevel() method of Application provided by the Unity libraries to move our
user to the defined scene. Save the script in MonoDevelop and return to the Unity Editor.

Select the Canvas object and drag/drop the LevelLoader script in the objects
Inspector View (Figure 7-5).

Figure 7-5.  Level Loader script added to the Canvas object

Chapter 7 ■ Level Manager and Menu

120

Under the Inspector View of our button under the Button (Script) component there
is an OnClick section. To interact with the Canvas we created we will need to add the
object under this section. Click the plus button to add an object that will run at runtime.
From the Hierarchy View, drag the Canvas object to the space under the Runtime Only
drop-down option. In the drop-down on the right, search for and find the LoadScene()
method you just created. Select it and change the number from 0 to 1 (Figure 7-6).

Figure 7-6.  Level 1 Button with Canvas in On Click() method

■■ Note  If the LoadScene() method is not visible, try refreshing your script folder and
verify that the method is defined as public void. Also make sure the there is no text showing
up as red in Monodevelop. An error will stop the method from showing up in the list. This
includes misspellings and case issues. Verifying the code status in the Unity Editor Console
View will help identify any errors as well

We are now set with our button. Since we have an Intro scene, let’s modify our level
scene to handle our Lose scenario better.

Chapter 7 ■ Level Manager and Menu

121

Modifying the Game Lose Scenario
In Chapter 4 we scripted our Lose Collider to automatically restart the level when
a player misses the ball. The Lose Collider triggers the level to restart using the
ApplicationLoadLevel() method. In this section we modify the game to present the
player button options to restart the level or return to the main scene. This makes the
game more user friendly since they aren’t forced to restart a level they don’t want to play
again. In addition it allows them to escape the scene since the current game play does not
allow for that.

Let’s begin by modifying our Canvas first. Select the Canvas in the Hierarchy View.
In the Project View navigate to the Assets, Scripts folder to find the LevelLoader script
we created earlier in the chapter. Drag and drop that script into the Inspector View of the
Canvas object. This will allow us to reference this script when we define our buttons for
the scene.

Add Restart and Main Menu Buttons
Next on the main Unity Editor menu select GameObject, UI, Button. This will add a
button to our scene and automatically place it in our existing Canvas. With the Scene
View tab visible, double-click on the Canvas object in the Hierarchy View so we can see
where the new button is located. Select the button under the Canvas in the Hierarchy
View and rename it to “Restart” by modifying the name of the object at the top in the
Inspector View. Under the Rect Transform section set the Pos X = 1.5, Pos Y = 0, and
Pos Z = 0. This will center the button in our scene over the bricks.

Now select the Text object under the Button in the Hierarchy View. In the Inspector
of the Text object rename the Text (Script) text to “Restart.” In the On Click() section, click
the plus sign and then drag/drop the Canvas object from the Hierarchy View to the object
section under the Runtime Only drop-down. Since we are restarting Level 1, change the
value to 1.

Repeat the steps to build a “Main Menu” button. For this button set the name to
“MainMenu,” the Rect Transform section set the Pos X = 1.5, Pos Y = -41, and Pos Z = 0,
the text to “Main Menu,” and the Load Level number to 0.

Add a Panel for the Buttons
Adding a Panel to the scene will provide a visual overlay on top of our bricks for the
buttons. This helps add a level of separation for the buttons and helps the user see
that an action by them is required to continue. On the main Unity Editor menu select
GameObject, UI, Panel. This will create a Panel object under our Canvas in the Hierarchy
View that covers our entire Canvas. Select the Panel object and modify the Rect
Transform attribute in the Inspector View to Left = 152.5, Top = 124, Pos Z = 0,
Right = 152.5, and Bottom = 102.

If you look at the Scene View after double-clicking the Game Area in the Hierarchy
View you should see the Panel overlaying the bricks in our scene (Figure 7-7).

http://dx.doi.org/10.1007/978-1-4842-1494-7_4

Chapter 7 ■ Level Manager and Menu

122

In the Inspector View for the Panel, Restart, and MainMenu objects, disable them by
unchecking the check box next to their names. We will use scripting to enable the objects
since we want them only to appear when the lose scenario occurs.

Updating the GameManager and Lose Scripts
The GameManager script we created in Chapter 4 will need to be updated to enable our
Canvas objects. In the Project View, navigate to the Assets, Scripts folder and double-click
the GameManager script. Modify the script in MonoDevelop to match the script in
Listing 7-2.

Listing 7-2.  Updated GameManager script for showing Canvas objects

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
 
//List of all the possible gamestates
public enum GameState
{
 NotStarted,
 Playing,
 Completed,
 Failed
}
//Require an audio source for the object
[RequireComponent(typeof(AudioSource))]
 

Figure 7-7.  Panel view with buttons on Canvas object

http://dx.doi.org/10.1007/978-1-4842-1494-7_4

Chapter 7 ■ Level Manager and Menu

123

public class GameManager : MonoBehaviour {
 
 //Sounds to be played when entering one of the gamestates
 public AudioClip StartSound;
 public AudioClip FailedSound;
  
 private GameState currentState = GameState.NotStarted;
 
 //All the blocks found in this level, to keep track of how many are left
 private Brick[] allBricks;
 private Ball[] allBalls;
 private Paddle paddle;
  
 public float Timer=0.0f;
 private int minutes;
 private int seconds;
 public string formattedTime;
 
 private Text feedback;
 public Text text;
 
 public GameObject restartButton;
 public GameObject mainMenuButton;
 public GameObject buttonBackground;
  
 // Use this for initialization
 void Start () {
  
 Time.timeScale=1;
  
 //Find all the blocks in this scene
 allBricks = FindObjectsOfType(typeof(Brick)) as Brick[];
  
 //Find all the balls in this scene
 allBalls = FindObjectsOfType(typeof(Ball)) as Ball[];
 
 paddle = GameObject.FindObjectOfType<Paddle>();
  
 print ("Bricks:" + allBricks.Length);
 print ("Balls:" + allBalls.Length);
 print ("Paddle" + paddle);
  
 //Change start text
 ChangeText ("Click To Begin");
 
 //Prepare the start of the level
 SwitchState(GameState.NotStarted);
 
 }
  

Chapter 7 ■ Level Manager and Menu

124

 // Update is called once per frame
 void Update () {
  
 switch (currentState)
 {
 case GameState.NotStarted:
 //Change start text
 ChangeText ("Click To Begin");
 //Check if the player taps/clicks.
 �if (Input.GetMouseButtonDown(0)) �//Note: on mobile this will

translate to the first
touch/finger so perfectly
multiplatform!

 { 
 SwitchState(GameState.Playing);
 }
 break;
 
 case GameState.Playing:
 {
 Timer += Time.deltaTime;
 minutes= Mathf.FloorToInt(Timer/60F);
 seconds= Mathf.FloorToInt(Timer-minutes *60);
 formattedTime=string.Format("{0:0}:{1:00}", minutes, seconds);
 
 ChangeText ("Time: "+formattedTime);
 
 bool allBlocksDestroyed = false;
  
 //Are there no balls left?
 if (FindObjectOfType(typeof(Ball)) == null)
 SwitchState(GameState.Failed);
  
 if (allBlocksDestroyed)
 SwitchState(GameState.Completed);
 }
 break;
 //Both cases do the same: restart the game
 case GameState.Failed:
 print ("Gamestate Failed!");
 ChangeText ("You Lose :(");
 break;
 case GameState.Completed:
 bool allBlocksDestroyedFinal = false;
  
 //Destroy all the balls and extra balls
 Ball[] others = FindObjectsOfType(typeof(Ball)) as Ball[];
  

Chapter 7 ■ Level Manager and Menu

125

 foreach(Ball other in others) {
 Destroy(other.gameObject);
 }
 break;
 }
 
 }
 
 public void EnableButtons () {
 //Enable buttons for when the player loses
 restartButton.SetActive (true);
 mainMenuButton.SetActive (true);
 buttonBackground.SetActive (true);
 }
 
 public void ChangeText (string text) {
 //Find Canvas and modify text
 GameObject canvas = GameObject.Find("Canvas");
 Text[] textValue = canvas.GetComponentsInChildren<Text>();
 textValue[0].text = text;
 }
 
 public void SwitchState(GameState newState)
 {
 currentState = newState;
  
 switch (currentState)
 {
 default:
 case GameState.NotStarted:
 break;
 
 case GameState.Playing:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 
 case GameState.Completed:
 GetComponent<AudioSource>().PlayOneShot(StartSound);
 break;
 
 case GameState.Failed:
 GetComponent<AudioSource>().PlayOneShot(FailedSound);
 break;
 }
 }
 
}

Chapter 7 ■ Level Manager and Menu

126

The key changes to the script are highlighted. We added variables for the MainMenu
button, Restart button, and Panel. Then we added a method called EnableButtons() for
enabling the objects that we can call from our Lose script. Save the script.

Next it’s time to change the Lose script to utilize the Canvas objects we just created.
In the Project View, navigate to the Assets, Scripts folder and double-click the Lose script.
Modify the script in MonoDevelop to match the script in Listing 7-3.

Listing 7-3.  Updated Lose script for showing Canvas objects

using UnityEngine;
using System.Collections;
 
public class Lose : MonoBehaviour {
 private Ball ball;
 private GameManager gameManager;
 public GameObject[] players;
 public GameObject[] extras;
 
 IEnumerator Pause() {
 print("Before Waiting 2 seconds");
 //Switch GameManager State
 gameManager = GameObject.FindObjectOfType<GameManager>();
 gameManager.SwitchState (GameState.Failed);
  
 //enable the restart and main menu buttons
 gameManager.EnableButtons();
 
 yield return new WaitForSeconds(2);
 
 print("After Waiting 2 Seconds");
 }
 
 void OnTriggerEnter2D (Collider2D trigger){
 if (trigger.name == "Ball") {
 print ("Lost Triggered!");
  
 //Wait before restarting level
 StartCoroutine (Pause ());
 }
 }
 
}

Our Lose script now will call our GameManager to enable the buttons instead of
restarting our level.

Finally in the Unity Editor refresh the Scripts folder under the Project View. In the
Hierarchy View select the GameManager object. You should now see options for the three
public variables that we created. Drag and drop the Panel, Restart button, and MainMenu
button into the appropriate areas in the Inspector View of the GameManager Script
component (Figure 7-8).

Chapter 7 ■ Level Manager and Menu

127

Figure 7-8.  GameManager object with the Canvas objects included

Figure 7-9.  Menu screen with options to restart or go to main menu

Save the scene and press Play in the Game View to review the scene. When you miss
the ball you will see the menu we created instead of the level restarting (Figure 7-9).

Chapter 7 ■ Level Manager and Menu

128

Rename and Duplicate Main Scene
The main level of our game is currently defined in our Scenes folder as Main. We are
now going to create multiple levels for our game so we need a more uniform naming
convention for our Scenes. Let’s go ahead and rename our Main scene to a level name
that makes sense for our game. In the Assets, Scenes folder, single-click the text of the
Main scene. This should make the text editable. Change the text to “Level1” and hit Enter.

Now with our Scene named correctly, let’s create three more that we will map
buttons to. Select the Level1 scene. On the main Unity menu select Edit, Duplicate. Unity
will duplicate our scene and automatically increment the number for you to 2. Repeat
the process until you have four scenes in your Scenes folder along with your Intro scene
(Figure 7-10).

Figure 7-10.  Level Scenes with Intro Scene in folder

For now this is all that we need to do. We will modify the scenes later to make them
unique for each level.

Modifying Level 1 to Include Level Manager
To manage the navigation between the levels in our game, we will need more than the
buttons in our Intro level. Game players will also need to be redirected to the main scene
when they complete the level by eliminating all of the bricks. Let’s create a script called
LevelManager to control how our player will move between the scenes (see Listing 7-4).

Listing 7-4.  Level Manager Script

using UnityEngine;
using System.Collections;
 
public class LevelManager : MonoBehaviour {
 
 public GameObject[] bricks;
 public int count=0;
 private GameManager gameManager;
 public string FinishTime;
 

Chapter 7 ■ Level Manager and Menu

129

 // Use this for initialization
 void Start () {
  
 }
  
 // Update is called once per frame
 void Update () {
 bricks = GameObject.FindGameObjectsWithTag ("Brick");
 Debug.Log("Brick Count: "+bricks.Length);
 count = bricks.Length;
 
 if (count == 0) {
 Debug.Log("All bricks are gone!");
 
 //Wait before returning to Main level
 StartCoroutine (Pause ());
 
 }
 
 }
 
 IEnumerator Pause() {
 print("Before Waiting 5 seconds");
 //Switch GameManager State
 gameManager = GameObject.FindObjectOfType<GameManager>();
 gameManager.SwitchState (GameState.Completed);
 gameManager.ChangeText ("You Win :)");
 FinishTime = gameManager.formattedTime;
 
 Debug.Log("Took "+FinishTime+ " to finish the game");
 
 yield return new WaitForSeconds(5);
  
 //Reload Main Menu
 LoadScene (0);
 print("After Waiting 5 Seconds went to main menu");
 }
 
 public void LoadScene (int level)
 {
 Application.LoadLevel(level);
 }
}

In this script we start by defining public objects for our bricks, count, and finish
time. We will use these variables to track how many bricks we have left in our scene and
how long it takes us to clear the level. We will use this information of the game play in the
future to identify the players who are the best in finishing particular levels and possibly
for adding game play performance stars to our levels.

Chapter 7 ■ Level Manager and Menu

130

Next we set our Update script to constantly check for the number of bricks left in our
scene. We search for objects labeled with the tag of Brick and update our count with the
number. When the count reaches zero we begin our Pause() method defined later in the
script.

Next we set up our Pause() method. The method will search for the GameManager
object we defined earlier in the book. It will call the SwitchState() method and pass the
GameState.Completed enumerator to set the game as completed. Calling this method will
destroy the main ball object we have left in our scene. We then switch the text in the scene
from the timer countdown to the “You Win :)” text and save the formattedTime variable
to the FinishTime variable. We display this for 5 seconds then make the call to load our
Intro Scene we defined as scene 0 in our Build Settings.

■■ Note  Now is a good time to verify your Brick prefab and Paddle object to make sure
they are tagged appropriately in the Inspector View. Both should be tagged appropriately as
Brick and Paddle, respectively.

Adding Scenes to the Build Settings
Ok, we have our scenes and our one-button setup. However, running the game and
pressing the button now will not do anything in our game. In order for the scene to load,
Unity needs to know what levels are available in the game and that needs to be defined
in our Build Settings area. This area can be found under File in the Unity Editor menu.
Select Build settings to view the scene definition in the Scenes In Build section.

To add our scene to the settings area, we need to open each of the scenes we created
and click the Add Current button. All the scenes should show up in the Scenes In Build
section now (Figure 7-11).

Chapter 7 ■ Level Manager and Menu

131

Press the Play button in the Game View to test your Intro scene. You should now be
able to click the Level 1 button. On click you should be taken to the Level 1 scene.

■■ Note  If the Scenes are not in the right order, just drag and drop them in the Scenes In
Build window. You can delete scenes by hitting the delete button with the selected scene
as well.

Add Additional Buttons
Without scenes defined in the settings, we can add additional buttons to our Intro scene.
In the Hierarchy View, select the Level 1 button, right-click on it, and select Duplicate.
Rename the button to Level 2, change the text to match, and set the On Click() number
to 2. Repeat the process for levels 3 and 4, setting the attributes for each according to
Table 7-1.

Figure 7-11.  Build Settings with Scenes in Build section

Chapter 7 ■ Level Manager and Menu

132

One more thing we want to do before testing the game is to change the background
color of our intro scene. Select the main camera object in the Hierarchy View. In the
Inspector View under the Camera component change the Clear Flags from Skybox to
Solid Color and select the Background color. Change the hex color to #31793105 so that
our scene now has a green background (Figure 7-12).

Table 7-1.  Button Settings

Button Rec Transform Attributes

1 Pos X = -209
Pos Y = 50
Pos Z = 0
Width = 100
Height = 100

2 Pos X = -76
Pos Y = 50
Pos Z = 0
Width = 100
Height = 100

3 Pos X = 76
Pos Y = 50
Pos Z = 0
Width = 100
Height = 100

4 Pos X = 212
Pos Y = 50
Pos Z = 0
Width = 100
Height = 100

Chapter 7 ■ Level Manager and Menu

133

Test your game in the Game View (Figure 7-13) and make sure each button navigates
to the appropriate level scene.

Figure 7-12.  Hex color change for Intro scene background

Figure 7-13.  Intro scene with all buttons

Chapter 7 ■ Level Manager and Menu

134

Great! We have the ability to move between levels from the intro Scene. Click Save
Project and Save Scene to make sure we have saved everything.

Background Music
In the Intro Scene we will add background music for our Scene. Select GameObject,
Create Empty from the main Unity Editor menu. Rename the object in the Hierarchy
View to Background Music and select it. In the Inspector View, select Add Component
and choose Audio Source. Set the Audio Source to “introBGM” in order to play the
background music created for our Intro Scene.

■■ Note  The music for the game was created by D. J. Twoods. You can find more
soundtracks to buy on his web site at www.gametrackpros.com or in the iTunes store in the
ringtones section.

The AudioListener for the scene is already attached to our camera so it will listen
for the sound to play. Press Play in the Game View and we should hear our music. Click
on the Level 1 button and the music will change to the sounds we defined for the Level
in the GameManager Audio source. Change each GameManager audio source to match
Table 7-2.

Table 7-2.  Audio Source Settings

Level GameManager Audio Source

1 Level1BGM

2 Level2BGM

3 Level3BGM

4 Level4BGM

When we play our game now, we have different music for each level we choose.

Trailing Ball Effect
Unity has some built-in features we can use to create effects in our game. The Particle
System and Trail Renderer options allow for some cool effects to be added to the game. In
this section we will add a simple Trail Renderer to our Ball that will create a trailing effect
behind the ball as it bounces. The trail can be used to give a visual element of speed and
some color as the ball travels.

http://www.gametrackpros.com/

Chapter 7 ■ Level Manager and Menu

135

To add it to our Ball object, select Add Component, Effects, and Trail Renderer in the
Inspector View. Modify the Trail Renderer Time, Start Width and End Width attributes
to 0.5, 0, and 0.1, respectively. Disable the Trail Renderer component by deselecting the
checkbox next to it in the Inspector View. Last, modify the Ball script to the following line
in bold in Listing 7-5.

Listing 7-5.  Ball script updated to enable Trail Renderer

using UnityEngine;
using System.Collections;
 
public class Ball : MonoBehaviour {
 
 public Paddle paddle;
 public bool gameStarted = false;
 private Vector3 paddleVector;
 
 //Make the min and max speed to be configurable in the editor.
 public float MinimumSpeed = 10;
 public float MaximumSpeed = 20;
  
 �//To prevent the ball from keep bouncing horizontally we enforce a

minimum vertical movement
 public float MinimumVerticalMovement = 0.5F;
  
 // Use this for initialization
 void Start () {
 //Set the ball on the paddle position
 paddleVector = this.transform.position - paddle.transform.position;
 }
  
 // Update is called once per frame
 void Update () {
 if(!gameStarted){
 this.transform.position = paddle.transform.position + paddleVector;
 if(Input.GetMouseButtonDown(0)){
 print("Mouse clicked!");
 gameStarted = true;
 �this.GetComponent<Rigidbody2D>().velocity = new Vector2

(Random.Range(-2.0f, 2.0f),10f);
 this.GetComponent<TrailRenderer>().enabled = true;
 }
 }
 launchBall ();
 }
 

Chapter 7 ■ Level Manager and Menu

136

 public void launchBall() {
 //Get current speed and direction
 Vector2 direction = GetComponent<Rigidbody2D>().velocity;
 //float speed = 20f;
 float speed = direction.magnitude;
 direction.Normalize();
  
 �//Make sure the ball never goes straight horizotal else it could

never come down to the paddle.
 �if (direction.x > -MinimumVerticalMovement && direction.x <

MinimumVerticalMovement)
 {
  
 //Adjust the x to limit it to the movement left or right
 �direction.x = direction.x < 0 ? -MinimumVerticalMovement :

MinimumVerticalMovement;
 
 �//Adjust the y, make sure it keeps going into the direction it

was going (up or down)
 �direction.y = direction.y < 0 ? -1 + MinimumVerticalMovement :

1 - MinimumVerticalMovement;
 
 //print(direction.x);
 
 //Apply it back to the ball
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  
 if (speed < MinimumSpeed || speed > MaximumSpeed)
 {
 //Limit the speed so it always above min en below max
 speed = Mathf.Clamp(speed, MinimumSpeed, MaximumSpeed);
 
 //Apply the limit
 �//Note that we don't use * Time.deltaTime here since we set the

velocity once, not every frame.
 GetComponent<Rigidbody2D>().velocity = direction * speed;
 }
  
 }
}

Save the script in MonoDevelop, refresh the scripts in the Unity Editor, and press
Play in the Game View. You should see a tail following your ball that only appears when
the game is started (Figure 7-14).

Chapter 7 ■ Level Manager and Menu

137

Figure 7-14.  Tail following our ball using the Trail Renderer

■■ Note  We are not using the Particle System for our game, but you can view details here
in the Unity Manual at https://unity3d.com/learn/tutorials/modules/beginner/
live-training-archive/particle-systems

Summary
In this chapter we built our Level Manager for overseeing navigation between the various
levels in our game. We also built a simple menu screen for the players to select which
level that they want to play.

In the next chapter we will build our game using the Unity Cloud. In addition, look at
the different options for deployment across various platforms.

Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke, Profiles of the Future:
An Inquiry Into the Limits of the Possible

https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/particle-systems
https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/particle-systems

139

Chapter 8

Publishing to the App Store

We have worked hard throughout the book, and now the basics of our game are complete.
We have a simple menu system and four levels for our game player to experience. Our
game has cool music and power-ups that can be collected to enhance the gaming
experience.

In this chapter we will build our game for various platforms including mobile, Web,
and desktop. Then we learn how to deploy our game to app stores and build the game
using the Unity Cloud.

Time to build and deploy!

Investigating Deployment Options
Unity3d is a cross-platform development tool. It allows for developers to deploy their
application on a multitude of supported platforms including desktop, Web, mobile, game
console (i.e., Playstation, WiiU, Xbox), Virtual Reality (VR), and Smart TV. Although the
options available are numerous, not all of the options are available out of the box with
Unity. Some require a special license or version of Unity either directly from the platform
manufacturer or from Unity themselves. Below is a table listing information on how to
develop Unity for some of the major platform manufacturers.

Table 8-1.  Platform Manufacturers that support Unity deployment

Platform Web site

Microsoft XBox http://www.xbox.com/en-US/Developers

PlayStation https://www.playstation.com/en-us/develop/

Nintendo WiiU https://wiiu-developers.nintendo.com

Samsung Smart TV http://docs.unity3d.com/Manual/
samsungtv-gettingstarted.html

For the purpose of this book, we will focus on building our game for the desktop as
a stand-alone executable, for the Web in the recently released WebGL format and as an
Android app using the Unity Cloud.

http://www.xbox.com/en-US/Developers
https://www.playstation.com/en-us/develop/
https://wiiu-developers.nintendo.com/
http://docs.unity3d.com/Manual/samsungtv-gettingstarted.html
http://docs.unity3d.com/Manual/samsungtv-gettingstarted.html

Chapter 8 ■ Publishing to the App Store

140

Defining Build Settings
To build our game for deployment, we start by viewing and modifying our game build
settings. We looked at the Build Settings windows in the last chapter when we set up our
scenes for navigation. On the main Unity Editor menu, select File, Build Settings. This will
bring up our Build Settings window (Figure 8-1) that shows the multitude of platforms we
can build our game for.

Figure 8-1.  Build Settings Window with deployment options

Our settings currently have “PC, Mac & Linux Standalone” selected as the platform
to build for and is indicated by the Unity icon next to the option. The stand-alone option
builds the Unity Game as a non-Web game for the desktop. I’m building my game on a
Mac Book Pro but you can choose your platform from the Target Platform drop-down if
you are not building for a Mac.

■■ Note I f the Unity icon is not shown next to the PC, Mac & Linux Standalone option,
select the option and click the Switch Platform button. This will change our project to build
appropriately.

Chapter 8 ■ Publishing to the App Store

141

Clicking on the Player Settings button will reveal the settings we can define for our
stand-alone build in the Inspector View of Unity. Here we can change our company
name, define our icons, resolution, Splash Image, and other settings of our deployment
(Figure 8-2).

Figure 8-2.  Inspector for PC, Mac & Linux build option

For now let’s leave the default settings and click the Build and Run button on the
Build Settings window. This will bring up the Save As display (Figure 8-3) for us to choose
a name for the build and save location. Change the game name in the Save As field to
“BreakThoseBricks” and click the save button.

Chapter 8 ■ Publishing to the App Store

142

This will start the build process and compile the game. You should see a small
window appear as the game builds highlighting the steps of the build. Once the
generation of the compiled game is complete, the stand-alone player configuration
window will appear (Figure 8-4). This window allows for us to set the size of the screen
that we are building for and the quality level of the graphics. These options are very
helpful if we are building a graphic intensive game that we want to test at different screen
sizes and on different PC hardware.

Figure 8-3.  Saving the build as a stand-alone desktop game

Chapter 8 ■ Publishing to the App Store

143

Our game has simple graphics, so let’s launch the game using the default settings.
Click the Play button to launch the game. Since we left the defaults, our game was built to
run full screen. Therefore our game should launch off the entire screen at the 1024 by 768
resolution. Test out your game by playing the first level.

To view your game file, navigate to the folder where you saved it and search for the
application file. Figure 8-5 shows how our application file will look on the Mac. We will set
the icons for our game later in the chapter.

Figure 8-4.  Stand-alone player configuration window

Figure 8-5.  BreakThoseBricks game in the folder of our game

Chapter 8 ■ Publishing to the App Store

144

Adding a Quit Button
Once we are done playing our first level, we will notice that there is no easy way to escape
full screen mode. This could confuse the players of our game and give the impression
that they cannot exit the game after the launch. Unity provides a way to escape full screen
mode by hovering with our mouse at the top of the screen of the game. Doing this will
display the window menu of the stand-alone player and allow us to close the application.

To close the application, click the red X or select Close BreakThoseBricks from
the BreakThoseBricks menu (Figure 8-6). This will end the game and return us to our
desktop. While this may work for us, our users will not understand this experience.

Figure 8-6.  Stand-alone player window

Let’s make it easier for our users by adding a Quit button to our game. The button
will need to close the game on multiple platforms. The button also should not do
anything on in a web player or on WebGL since there is nothing to close on those
platforms.

■■ Note I f you are running the program on a Windows PC, you will need to use Alt-F4 to
close the program. You can also use CMD-Q as a shortcut to quit on a Mac

Chapter 8 ■ Publishing to the App Store

145

Button Creation and LevelLoader Script Modification
Time to create our new button. We will follow the same steps we used to add the four
buttons to our Intro scene in the last chapter. Start by opening the Intro Scene. In
the Hierarchy View select the Canvas object. On the main Unity Editor menu, select
GameObject, UI, Button. This will add another button to our Canvas that we can
manipulate in the Scene View. Select the button and rename it to “Quit Button” in the
Inspector View.

Now lets add a Tag to the button. In the Inspector View select the drop-down next to
the Tag attribute. Click Add Tag at the bottom of the list and add the “Quit” tag shown in
Figure 8-7.

Figure 8-7.  Quit Tag added to Quit button on Canvas

This will label our button as Quit in the tagging system and allow for us to reference
it in our script. Now let’s modify the LevelLoader script that we created in the last chapter.
Listing 8-1 shows our modified LevelLoader script:

Listing 8-1.  LevelLoader script with QuitGame() method

using UnityEngine;
using System.Collections;
 
public class LevelLoader : MonoBehaviour {
 public GameObject quitButton;
 
//Basic function for loading level
public void LoadScene (int level)
 {
 Application.LoadLevel(level);
 }
 

Chapter 8 ■ Publishing to the App Store

146

public void QuitGame(){
  
 if (Application.isEditor) {
 Debug.Log ("Attempted to quit from the Editor.");
 } else if (Application.isWebPlayer) {
 quitButton = GameObject.FindGameObjectWithTag ("Quit");
 quitButton.SetActive (false);
 Debug.Log ("Attempted to quit from the Web Player.");
 } else if (Application.platform == RuntimePlatform.WebGLPlayer) {
 quitButton = GameObject.FindGameObjectWithTag ("Quit");
 quitButton.SetActive (false);
 Debug.Log ("Attempted to quit from the WebGL Player.");
 }
 else {
 Application.Quit();
 }
 }
}

The bold section above contains the changes to the script. We have added a new public
method for quitting our application. The QuitGame() method will check the Application
runtime data to see what type of application is running. This is very useful since, as was
mentioned earlier in the chapter, the platform offers numerous options for deployment.

In our if/then/else condition, we check to see if we are running in the Editor first.
If so then the script just prints to the log since there is nothing for us to close. We can use
the condition to verify that the button works while we test our app in the Game View.

The second check is to see if we are running in a Web Player. The Unity Web Player is
a plug-in that allows for your games to run in the browser. The plug-in has been around
for a long time and is very stable. However, one day browsers will stop supporting it since
the days of enabling plug-ins in browsers are numbered. For example, Google Chrome no
longer supports this plug-in so you people cannot play your game deployed this way on
the Chrome browser. If a web player is being used, we just cause our button to disappear.

The third check is to see if the game is running in WebGL. WebGL is the latest web
technology that allows us to deploy our game without a plug-in. We will discuss WebGL
later in the chapter since we will also build our game in WebGL format. If we are running
in WebGL we again cause our button to disappear from the scene.

Finally for any other format we quit the application. With our Quit button finalized,
let’s build our game for the Web. We will build for WebGL since this is the latest web
standard and will not require our players to have a plug-in.

Deploying to WebGL
As I mentioned earlier in the chapter, WebGL is the latest web technology for rendering
3D/2D computer graphics without the need of a browser plug-in. It stands for Web
Graphics Library and essentially is a JavaScript API integrated in all standards of the web
browser. While most major browsers support WebGL, its availability is dependent on
factors external to the browser (like GPU).

Chapter 8 ■ Publishing to the App Store

147

Let’s build our game for WebGL. Start by changing the build settings for generating
a WebGL app. On the main Unity Editor menu, select File, Build Settings. Next select
WebGL from the list of platforms available and click the Switch Platform button. This
will switch our build generation to WebGL and move the Unity icon next to the selection
(Figure 8-8).

Figure 8-8.  WebGL selected as build platform

If you click the Player Settings button you will see the setting we can modify for
WebGL. Change the Resolution for the Default Screen Width from 960 to 800. This will
ensure our game fits the 4:3 resolution we defined for our project. Click the Build and Run
button to see our game. You should see the game on the Unity default WebGL template as
you see in Figure 8-9. When you click the button to quit the app, it should just disappear
from the screen.

Chapter 8 ■ Publishing to the App Store

148

Unity Cloud Build
Our final build walkthrough will be on the Unity Cloud. The Unity Cloud Build is the
online solution offered by Unity for building, installing, and testing your applications
(Figure 8-10). The system allows for you to upload your project from a variety of online
repositories including GitHub, BitBucket, SVN, Perforce, and Mercurial. Once the project
is uploaded, you can build it for numerous platforms simultaneously. This will save you
a ton of time since you won’t need to continuously switch between the platforms in the
Build Settings to deploy your applications.

Figure 8-9.  WebGL version of the game running in the browser

Chapter 8 ■ Publishing to the App Store

149

Let’s test out our game for Android through the Unity Build Cloud.

Placing Our Game in GitHub
Before we can build our game in the Unity Cloud system we need to have our code in
a repository. Since GitHub is a well-known solution and is free, we will use it as the
repository of our game. First create an account or log into your existing account in
GitHub. Once logged in, click the plus icon on the top right and select “New Repository”
from the drop-down.

Figure 8-10.  Unity Cloud Build at build.cloud.unity3d.com

Figure 8-11.  GitHub account repositories

Chapter 8 ■ Publishing to the App Store

150

Figure 8-12.  New respository for BreakThoseBricks game

This will start the process for creating a repository for our game. Name the repository
“BreakThoseBricks” and leave it as public for now. Do not select the option to “Initialize
this repository with a README.” We will add a README file later. Figure 8-12 shows the
new repository creation.

■■ Note  Creating your repository as public means that the public can view your project
and your code. When you make your game unique you will want to save it to a private
repository instead. GitHub charges a fee for saving a repository as private.

Change the description to “Breaking bricks game for Unity3D” and then click the
Create Repository button. This will create an empty repository where we can add our
files. We will not be able to upload our files from here, however. We will need to install the
GitHub desktop app to push the files from our local instance.

Chapter 8 ■ Publishing to the App Store

151

The details on how to commit files to your repository are displayed on the site. In order
to commit the files from your machine you will need to visit https://desktop.github.com
and install GitHub locally on your desktop. After the desktop install is complete, visit the
command line and navigate to the folder containing the BreakThoseBricks app. Run the
commands listed on the site to push your files to GitHub. Your directory should now look
like Figure 8-14.

Figure 8-14.  Repository with files added

Figure 8-13.  New GitHub repository

https://desktop.github.com/

Chapter 8 ■ Publishing to the App Store

152

Adding your GitHub to the Cloud
With our repository setup in GitHub, we can now pull it into the Unity Cloud Build. In
your browser, go to the Unity Build Cloud site at https://build.cloud.unity3d.com.
Sign into the site using your Unity account login and select the Add New tab. We will now
need to walk through the process of building our application online. There are six steps
we need to walk through for us to instantiate the build for the game.

Figure 8-15.  Add New area for Source Control location

The first step is to add our URL for the GitHub repository that we just created. We
can use the secure URL (i.e., https) and change the SCM type to GIT. The second step of
access is the automated pull of the Unity Cloud of the project information from GitHub.
You should see a spinning icon displayed with the Unity logo in the center as the data is
collected.

The third step allows us to evaluate the settings that were acquired from the GitHub
repository. Leave the default settings for now with all of the Auto-build platforms selected
and the Branch of “master” (Figure 8-16). We will only focus on the Android and web
builds for this book since building for iOS involves more than using a compiled file. When
you are prompted for credentials for iOS, simply click the Skip option for now.

https://build.cloud.unity3d.com/

Chapter 8 ■ Publishing to the App Store

153

■■ Note  Due to the extensive details needed to build for iOS, Unity has provided a
complete build guide. That guide is located online at https://build.cloud.unity3d.com/
support/guides/ios

For our Android build we will need to set up the credentials for deploying the game
to the store. Enter a Bundle ID that uses the reverse of your domain name along with the
game name. My domain is http://breakthosebricks.com so my bundle id is set to
com.breakthosebricks.BreakThoseBricks. This id must be unique in order to deploy the
game to any of the various Android app stores.

Figure 8-16.  Evaluate Settings step for new build

Figure 8-17.  Credentials for building for the Android platform

https://build.cloud.unity3d.com/support/guides/ios
https://build.cloud.unity3d.com/support/guides/ios
http://breakthosebricks.com/

Chapter 8 ■ Publishing to the App Store

154

Table 8-2 shows a few of the Android app stores available to deploy your game to.
Google Play and Amazon are the top two stores for Android apps so I recommend you
deploy anything you develop to those stores first. To test our game we don’t need to
deploy the game to the store. You can simply load and test the game directly on your
device.

Figure 8-18.  Project building after all credentials are set

Table 8-2.  Top App Stores for Android games and apps

App Store Website

Google Play https://play.google.com/apps/publish/

Amazon https://developer.amazon.com/home.html

Samsung http://developer.samsung.com/

SlideME http://slideme.org/developers

GetJar http://developer.getjar.mobi

After your credentials are set for Android, press the Next button and move to the
build screen. We will see our project building and have the opportunity to wait for the
build to complete (Figure 8-18).

Click the “Project History Page” to go to the page that provides information on the
build. You will see the time the build started, duration of the build, and result (Figure 8-19).
If you need to restart all the builds or just a specific build, you can restart them from this
screen as well.

https://play.google.com/apps/publish/
https://developer.amazon.com/home.html
http://developer.samsung.com/
http://slideme.org/developers
http://developer.getjar.mobi

Chapter 8 ■ Publishing to the App Store

155

Figure 8-19.  Project History page

Finally once the build is complete, we can download our Android APK file to our
desktop. To load and test the APK on your device you will need to put the file in a place
where you can download it to your device. I typically place the file on Google Drive or
Dropbox and access the URL to the file from there.

Figure 8-20.  Completed builds with options to download or play

Summary
In this chapter we compiled our game for various platforms. This included building for
desktop, WebGL, and Android. We reviewed building the game locally and in the cloud
using the Unity Cloud Build System. Also we discussed using GitHub as our repository for
the code files and building our application from it online.

Congratulations, your quest to build a game in a weekend is now complete!

A quest is more than a goal. A person sets a goal assuming it is attainable,
but a quest is forbidding, and the prospect of failure is very real.

—Dr Marcus Ryan, Restless Journey

157

�       � A
ApplicationLoadLevel()

method, 121
App stores

Build Settings
BreakThoseBricks game, 143
button creation, 145
Inspector View, 141
LevelLoader Script

modification, 145
“PC, Mac & Linux

Standalone”, 140
Quit button, 144
Save, 141
stand-alone player configuration

window, 142–143
Unity Game, 140

deployment options, 139–140
Unity Cloud Build see (Unity Cloud

Build)
WebGL

build platform, 147
definition, 146
Unity default WebGL

template, 147

�       � B
Background music

“AudioClip” selection, 85
AudioListener, 83, 134
Audio Source, 84, 134
GameManager object, 84
“Loop” check box, 85
“Play on Awake”

check box, 85

�       � C
Classic Arkanoid game, 29
Click() method, 120
Console View, 16
Custom Layout, 17

�       � D
Default layout, 16

�       � E, F
EnableButtons() method, 126

�       � G
Game layout

adding balls, 38
bricks

adding Paddle, 36
camera adjustment, 32
game background, 29
importing assets, 26
PreFab, 33
row of bricks, 35
screen resolution, 28
2D game design setup, 23

Game Manager object and script
case and what decisions, 70
game space, 61
gravity impact, 64
invisible collider walls, 62
lose collider, 71
relabeling game object, 66
UI Text objects, 75

Game View, 14

Index

■ index

158

�       � H
Hierarchy View, 13, 17
Hotkeys, 20

�       � I, J, K
Inspector View, 15
Integrated development environment

(IDE) editor, 48

�       � L, M, N
launchBall() method, 102
Level manager and menu

ApplicationLoadLevel() method, 121
background music, 134
Build Settings, 130
EnableButtons() method, 126
GameManager script

updation, 122, 126
Intro scene

additional buttons, 131
bricks title text, 117
buttons, 118
Canvas option, 116
Canvas Title object, 117
Gameobject selection, 116
Inspector View, 118
Rect Transform Width

and Height, 116
Scene View, 118
UI Canvas system, 118

LevelLoader, 119
LevelManager, 128
Lose script, 126
menu screen, 127
Panel add, 121
rename and duplicate

main scene, 128
restart and main menu buttons, 121
Trail Renderer, 134

LoadLevel() method, 119
LoadScene() method, 119–120

�       � O
OnCollisionEnter2D()

method, 59, 93, 100, 102
OnPickUp() method, 99, 106
OnTriggerEnter2D() method, 74, 99

�       � P
Pause() method, 130
Playmode tint option, 18
Positioning and movement

ball collisions, 44, 57
ball friction/bounce, 46
ball movement, 41
ball script, 54
Brick script, with Destroy, 58
paddle movement, 52
scripting language

C Sharp (C#), 48
editor selection, 48
first script, 48

Power-ups
AudioSource, 98
BasePowerUp object, 97
bricks rows, 111
ChangePaddleSize script, 111
Collider2D, 98
Extra Balls script

Ball script modification, 103
Boolean condition, 102
launchBall() method, 102
Paddle, 102–103
prefab script, 100
Start() method, 104
ternary operator, 102

Growarrow prefab fall, 112
Lose script, 113
OnPickUp() method, 99
OnTriggerEnter2D()

method, 99
Paddle size script changes, 105
Prefab game objects

Extra Ball, 107
script list, 106
shrink and grow prefab

objects, 108
sprites, 107

Prefab scripts, 99
RigidBody2D, 98
saving script, 99
variables, 98

PreFab, 33
Project View, 12–13

�       � Q
QuitGame() method, 145

■ Index

159

�       � R
RequireComponent() function, 86

�       � S
Scene View, 14, 17
Sounds
Brick prefab object, 86

Brick script modification
AudioClip object, 90
Audio Source component, 91
FallDown variable, 90
GameManager script, 90
impact sound play, 87
minimized brick effect, 91
variables set, 90
Woggle animation, 90

start and end, 85
walls and paddle, 92

Sprite Editor, 31
Start() method, 50, 104
SwitchState() method, 130

�       � T
2D Brick Breaker game, 25

�       � U, V
Unity

computer equipment, 1
editor and 3D engine, 1
installation

component selection window, 4
configuring Unity, 8
download introduction window, 3

license management window, 7
license options, 4
online Unity account, 6
Projects window, 7
Sign-Inwindow, 6
Unity Download Assistant, 3
Windows and Mac PCs, 2

layouts, 16
runtime background color, 18
views, 11

Unity Cloud Build
build.cloud.unity3d.com, 149
definition, 148
GitHub

account creation, 149
Android APK file, 155
Android games and apps, 154
Android platform, 153
BreakThoseBricks game, 150
definition, 149
empty repository, 150
evaluate settings step, 153
files, 151
project building, 154
Project History Page, 155
Source Control location, 152
URL, 152

project upload, 148
Update() method, 49, 53, 56

�       � W, X, Y, Z
WebGL

build platform, 147
definition, 146
Unity default WebGL template, 147

Woggle, 86, 90

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	 Prerequisites
	 Install Unity
	 Choosing a License
	 Welcome to Unity
	 Configuring Unity

	 Skinning the Interface
	 Learning the Views
	 Understanding Layouts

	 Development Tips and Tricks
	 Changing Runtime Background Color
	 Useful Hotkeys

	 Summary

	Chapter 2: Define Game Layout and Environment
	 2D Game Design Setup
	 Laying Out the Game
	 Importing Assets
	 Define Screen Resolution
	 Adding Background
	 Adjusting Our Camera
	 Adding Bricks
	 Creating PreFabs
	 Creating Row of Bricks
	 Add the Paddle

	 Add the Ball
	 Summary

	Chapter 3: Create Positioning and Movement
	 Making Our Ball Move
	 Handling Ball Collisions
	 Making Our Ball Bounce
	 Beginning Scripting
	 The Rules of C Sharp (C#)
	 Selecting an Editor
	 Our First Script
	 Moving the Paddle with the Mouse
	 Launching the Ball with the Mouse
	 Destroy the Blocks on Hit

	 Summary

	Chapter 4: Scripting a Game Manager
	 Keeping Our Ball in the Game Space
	 Creating Invisible Collider Walls
	 Changing the Impact of Gravity
	 Relabeling the Game Objects in Our Scene
	 Scripting Our Game Manager
	 Scripting Our Lose Collider
	 Using UI Text to Display Information
	 Summary

	Chapter 5: Adding Sound and Music
	 Adding Background Music
	 Adding Start and End Sounds
	 Bricks with Action and Impact Sound
	 Game Area Sounds for the Walls and Paddle
	 Summary

	Chapter 6: Game Power-Ups
	 Building Power-Up Scripts
	 Building Base Power-Up Prefab Scripts
	 Extra Balls Script
	 Change Paddle Size Script
	 Creating Prefab Game Objects for Ball and Paddle Changes
	 Sprites for Prefabs
	 Extra Ball Prefab
	 Shrink and Grow Prefabs

	 Putting it All Together in the Scene
	 Modify the Lose Script
	 Summary

	Chapter 7: Level Manager and Menu
	 Creating Intro Scene
	 Add a Main Title and Buttons

	 Script for Loading a Level
	 Modifying the Game Lose Scenario
	 Add Restart and Main Menu Buttons
	 Add a Panel for the Buttons
	 Updating the GameManager and Lose Scripts

	 Rename and Duplicate Main Scene
	 Modifying Level 1 to Include Level Manager
	 Adding Scenes to the Build Settings
	 Add Additional Buttons
	 Background Music
	 Trailing Ball Effect
	 Summary

	Chapter 8: Publishing to the App Store
	 Investigating Deployment Options
	 Defining Build Settings
	 Adding a Quit Button
	 Button Creation and LevelLoader Script Modification

	 Deploying to WebGL
	 Unity Cloud Build
	 Placing Our Game in GitHub
	 Adding your GitHub to the Cloud

	 Summary

	Index

