Unity Game Development
Blueprints

Explore the various enticing features of Unity and learn
how to develop awesome games

www.it-ebooks.info

http://www.it-ebooks.info/

Unity Game Development
Blueprints

Explore the various enticing features of Unity
and learn how to develop awesome games

John P. Doran

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Unity Game Development Blueprints

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014
Production reference: 1041114

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-365-5

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
John P. Doran

Reviewers
James King

Gary Riches
Adam Single
Jacquelyn Soh

Kerrie Woollhouse

Commissioning Editor
Akram Hussain

Acquisition Editor
Harsha Bharwani

Content Development Editor
Ruchita Bhansali

Technical Editors
Shiny Poojary

Sebastian Rodrigues

Copy Editors
Roshni Banerjee

Sarang Chari
Adithi Shetty

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Lucy Rowland
Jonathan Todd

Indexers
Hemangini Bari

Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

John P. Doran is a technical game designer who has been creating games for over
10 years. He has worked on an assortment of games in teams with members ranging
from just himself to over 70, in student, mod, and professional projects.

He previously worked at LucasArts on Star Wars: 1313 as a game design intern;
the only junior designer on a team of seniors. He was also the lead instructor of
DigiPen-Ubisoft Campus Game Programming Program, instructing graduate-level
students in an intensive, advanced-level game programming curriculum.

John is currently a technical designer in DigiPen's Research and Development
department. In addition to that, he also tutors and assists students on various
subjects while giving lectures on game development, including C++, Unreal,
Flash, Unity, and more.

In addition to this title, he has authored Getting Started with UDK and Mastering
UDK Game Development, and co-authored UDK iOS Game Development Beginner's
Guide; he is also the author of the UDK Game Development video —all available
from Packt Publishing.

I want to thank my brother, Chris, and my wife, Hannah, for
being supportive and patient with me as I spent my free time
and weekends away from them to work on this book.

On that same note, as always, I also want to thank Samir Abou
Samra and Elie Hosry for their support and encouragement
while working on this book as well as the rest of the DigiPen
Singapore staff.

Last but not least, I'd love to thank my family as well as my
parents, Joseph and Sandra, who took me seriously when I
told them I wanted to make games.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Gary Riches is a senior software engineer and long-standing member of the iOS
developer community. He has a keen interest in emerging technologies and is
currently exploring what's possible with virtual reality.

Having worked as a software engineer for 16 years, he has had the opportunity to
present his work worldwide at technology events, such as CES, Electronica, and
Apps World.

He is the author of Ouya Unity Game Development, Packt Publishing and co-author
of You can make an APP, Future Publishing.

When not building apps for clients, he also creates games and educational experiences
for his own company, Bouncing Ball Games. The titles so far include Aztec Antics,
Amazed, and Nursery Rhymes: Volumes 1, 2, and 3.

Adam Single is a husband, father, professional developer, indie developer, lover
of music, and gamer. He's the coder for 7bit Hero; a programmer on the tech team at
Real Serious Games in Brisbane, Australia; cofounder, programmer, and codesigner
at Sly Budgie; and co-organizer of the Game Technology Brisbane meetup.

Since entering the professional game development industry in 2011, Adam has
worked on numerous mobile games, including the Android hit Photon and a
pre-installed game for specific Disney Japan handsets. He's been the programmer on a
team that created a huge, interactive display at Queensland University of Technology's
amazing multitouch screen installation, The Cube, as a part of Australia's first Digital
Writing Residency and worked on a team at Real Serious Games creating large-scale,
interactive simulations for the mining and construction industries. All of this has been
done using the Unity game engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Adam has a passion for the unique and engaging possibilities inherent in modern
technology. When he's not working on exciting new game mechanics for Sly Budgie,
he's experimenting with "homemade VR" using mobile phone technology and pushing
the exciting ideas behind 7bit Hero's live music/multiplayer game interaction down
whichever fascinating path it may lead.

Jacquelyn Soh is a game developer who has been creating games for over 7 years.
She is proficient in multiple aspects of game development, including programming,
game designing, producing, and even art development. She is skilled in multiple
languages and engines, including C, C++, C#, JavaScript, ActionScript, Python,
HTML, CSS, Unity, Scirra Construct, Microsoft XNA, and several others.

Jacquelyn began her programming career in Flash, working on an online virtual
world. Unsatisfied with her knowledge, she joined DigiPen Institute of Technology
and graduated with a Bachelor's degree in Computer Science and Game Design with
a Mathematics Minor.

Jacquelyn has since worked on a variety of games including virtual worlds, indie
games, serious games, and various professional projects. Some game titles she

has worked on include Tiny Dice Dungeon, Wiglington and Wenks, and Lord of the
Guardians. She is currently working as a software engineer and an indie developer.
She can be found online at www . jacquelynsoh.com and can be contacted at
jacquelyn.soh@gmail . com.

Kerrie Woollhouse is a very creative and artistic individual with 7 years of
experience in game development, web development, art, and photography. She has
also recently enjoyed being a technical reviewer for Packt Publishing Unity books,
including Learning Unity 2D Game Development by Example.

Kerrie continues to follow her passions with the highest ambitions and looks forward
to expanding on current and future projects.

I would like to say a special thank you to my wife for all her love
and continuous support.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[@]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface

1
Chapter 1: 2D Twin-stick Shooter 7
Project overview 7
Your objectives 7
8

9

Prerequisites
Setting up the project

Creating our scene 12
Scripting 101 16
Implementing player movement 17
Shooting behavior 26
Creating enemies 31
Adding GameController to spawn enemy waves 34
Particle systems for enemy explosion 39
Adding in sound effects/music 42
Adding in points, score, and wave numbers 44
Publishing the game 48
Summary 50
Challenges 50
Chapter 2: Creating GUIs 51
Project overview 51
Your objectives 52
Prerequisites 52
Project setup 52
The anatomy of a GUI control 56
ControlType 56
Position 56
Content 57

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

GUI.Button 57
GUl.Label 57
Customizing the GUI 58
Pausing the game 62
GUILayout 65
Restarting the game 67
More on the GUILayout class 69
Creating an Options menu 69
Summary 77
Challenges 77
Chapter 3: Side-scrolling Platformer 79
Project overview 79
Your objectives 79
Prerequisites 80
Setting up the project 80
Tile-based level creation 80
Working with arrays 84
Creating our player 87
Creating collectibles 99
Keeping score 106
Singletons 106
Winning the game 109
Summary 114
Challenges 114
Chapter 4: First Person Shooter Part 1 — Creating Exterior
Environments 115
Project overview 116
Your objectives 116
Prerequisites 116
The project setup 117
Level design 101 — planning 117
Exterior environment — terrain 118
Beautifying the environment — adding water, trees, and grass 131
Creating our player 137
Building the atmosphere 138
Creating a flashlight 143
Walking / flashlight bobbing animation 144
Summary 148
Challenges 149

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 5: First Person Shooter Part 2 — Creating Interior

Environments 151
Project overview 151
Your objectives 152
Project setup 152
Creating architecture overview 153
3D modeling software 153
Constructing geometry with brushes 154
Modular tilesets 154
Importing assets 155
Creating tiles 160
Placing tiles with grid snapping 168
Creating and placing props 172
Lightmapping quickstart 179
Summary 182
Challenges 182
Chapter 6: First Person Shooter Part 3 — Implementing
Gameplay and Al 183
Project overview 183
Your objectives 184
Setting up the project 184
Creating the shooting behavior 184
Creating an enemy 195
State machines 101 197
Enemy movement 198
Advanced FSMs 204
Damaging and killing enemies 205
Using controller input 208
Moving to other levels 214
Summary 215
Challenges 216
Chapter 7: Creating Save Files in Unity 217
Project overview 217
Your objectives 217
Saving a high score 218
The PlayerPrefs class 218
The Set functions 218
The Get functions 219
Level editor — introduction 223
Lists 225

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Level editor — adding/removing walls at runtime 229
Level editor — toggling editor, GUI, and selecting additional tiles 233
Level editor — saving/loading levels to file 241
FileStreams 244
BinaryFormatter 244
Summary 247
Challenges 248
Chapter 8: Finishing Touches 249
Project overview 249
Your objectives 249
Setting up the build settings 250
Customizing your exported project via the player settings 255
Building an installer for Windows 258
Summary 267
Challenges 267
Chapter 9: Creating GUIs Part 2 — Unity's New GUI System 269
Project overview 269
Your objectives 270
Project setup 270
Creating health bars 271
Adding in text 280
Working with buttons and anchors 285
Summary 295
Additional resources 296
Challenges 296
Index 297

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Unity, available in free and pro versions, is one of the most popular third-party game
engines available. It is a cross-platform game engine, making it easy to write your
game once and then port it to PC, consoles, and even the Web, which makes it

a great choice for both indie and AAA developers.

Unity Game Development Blueprints takes readers on an exploration into using Unity
to the fullest extent, working on 3D and 2D titles, exploring how to create GUIs, and
publishing the game for the world to see. Using this book, you will be able to create
a 2D twin-stick shooter, a side-scrolling platformer with an in-game level editor, a
first-person survival horror shooter game, and a GUI menu system to use in all your
future titles. In addition, you will learn how to publish your game with an installer
to make your title look really polished and stand out from the crowd.

Each chapter either pushes your skills in Unity into new areas or pushes them to
the very limits of what they can be used for. Finally, we will also explore Unity's
new GUI system, which is currently in beta, showing examples while discussing
the advantages and disadvantages of using it.

What this book covers

Chapter 1, 2D Twin-stick Shooter, shows us how to create a 2D multidirectional shooter
game. In this game, the player controls a ship that can move around the screen using
the keyboard and shoot projectiles in the direction the mouse is pointing at. Enemies
and obstacles will spawn towards the player, and the player will avoid/shoot them.
This chapter will also serve as a refresher on a lot of the concepts of working in Unity
and give an overview of the recent addition of native 2D tools to Unity.

Chapter 2, Creating GUIs, will expand on our twin-stick shooter game, adding
additional Ul elements, including a main menu as well as a pause menu and
options menu, and will give us the ability to restart our project.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 3, Side-scrolling Platformer, shows us how to create a side-scrolling platformer.
We will learn the similarities between working in 2D and 3D and the differences, in
particular, when it comes to Physics.

Chapter 4, First Person Shooter Part 1 - Creating Exterior Environments, discusses

the role of a level designer who has been tasked to create an outdoor environment
while learning about mesh placement. In addition, we will also learn some
beginner-level design.

Chapter 5, First Person Shooter Part 2 — Creating Interior Environments, discusses
the role of a level designer who has been tasked to create an interior environment
using assets already provided to us by the environment artist.

Chapter 6, First Person Shooter Part 3 - Implementing Gameplay and Al, shows how we
are going to be adding in interactivity in the form of adding in enemies, shooting
behaviors, and the gameplay to make our game truly shine. In addition, we'll also
learn how to use an Xbox 360 Controller to accept input in our game.

Chapter 7, Creating Save Files in Unity, talks about how to add in functionality to some
of our previously created games, adding in high scores and even an in-game level
editor that can be used for future projects.

Chapter 8, Finishing Touches, talks about exporting our game from Unity and
then creating an installer so that we can give it to all of our friends, family, and
prospective customers!

Chapter 9, Creating GUIs Part 2 - Unity's New GUI System, explores Unity's new GUI
system, including creating health bars that move with characters, with text. We
will also learn how to work with buttons using the new system, while also having
elements scale correctly to work with any resolution.

What you need for this book

Throughout this book, we will work within the Unity 3D game engine, which you
can download from http://unity3d.com/unity/download/. The projects were
created using Version 4.5.3, but the project should work with minimal changes, with
differences between this version and the 4.6 beta being pointed out when they occur.
In Chapter 9, Creating GUIs Part 2 — Unity's New GUI System, since we are using the
new GUI system, we will be using the Unity beta version, which can be downloaded
from http://unity3d.com/unity/beta/4.6.

For the sake of simplicity, we will assume that you are working on a
Windows-powered computer. Though Unity allows you to code in either C#,
Boo, or UnityScript; for this book, we will be using C#.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Who this book is for

This book is for those who want to do more with Unity and have a series of
completed projects by the end of the book. Readers who are familiar with the
basics of how to create things in Unity will have an easier time.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Once inside, go to your operating system's browser window, open up the Chapter
1/Assets folder that we provided, and drag the playership.png file into the folder
to move it into our project.”

A block of code is set as follows:

// Add game's title to the screen, above our button
GUI.Label (new Rect (buttonX + 2.5f ,
buttonY - 50,
110.0f, 20.0f),
"Twinstick Shooter", titleStyle);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// Add game's title to the screen, above our button
GUI.Label (new Rect (buttonX + 2.5f ,
buttonY - 50,
110.0f, 20.0f),
"Twinstick Shooter", titleStyle);

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, appear in the text like this: "From there, click
on Folder, and you'll notice that a new folder has been created inside of your
Assets folder."

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us as it helps us develop titles that you really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http: //www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https: //www.packtpub.
com/sites/default/files/downloads/36550T Graphics.pdf.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/support and enter the
name of the book in the search field. The required information will appear under the
Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

The shoot 'em up genre of games is one of the earliest kinds of games. In shoot 'em ups,
the player character is a single entity fighting a large number of enemies. They are
typically played with a top-down perspective, which is perfect for 2D games. Shoot 'em
up games also exist with many categories, based upon their design elements.

Elements of a shoot 'em up were first seen in the 1961 Spacewar! game. However, the
concept wasn't popularized until 1978 with Space Invaders. The genre was quite popular
throughout the 1980s and 1990s and went in many different directions, including

bullet hell games, such as the titles of the Touhou Project. The genre has recently gone
through a resurgence in recent years with games such as Bizarre Creations' Geometry
Wars: Retro Evolved, which is more famously known as a twin-stick shooter.

Project overview

Over the course of this chapter, we will be creating a 2D multidirectional shooter
game similar to Geometry Wars.

In this game, the player controls a ship. This ship can move around the screen using
the keyboard and shoot projectiles in the direction that the mouse points at. Enemies
and obstacles will spawn toward the player, and the player will avoid/shoot them.
This chapter will also serve as a refresher on a lot of the concepts of working in Unity
and give an overview of the recent addition of native 2D tools into Unity.

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Setting up the project

* Creating our scene

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

* Adding in player movement

* Adding in shooting functionality

* Creating enemies

* Adding GameController to spawn enemy waves
* Particle systems

* Adding in audio

* Adding in points, score, and wave numbers

* Publishing the game

Prerequisites

Before we start, we will need to get the latest Unity version, which you can always
get by going to http://unity3d.com/unity/download/ and downloading it there:

Pl Unity - Download and St= %

Industries Showcase Learn Community Assef Store Buy Download

Workfiow Quolify 2D &3D Animafion Performance Mulfiplatform Collaboration What's New.

DOWNLOAD AND GET
STARTED

Get the free version of Unity for Windows. It's fully
functional, yours to keep and includes publishing
support for the full range of mobile platforms,
desktop and the Web. It also comes with a 30-day
trial of Unity Pro.

DOWNLOAD UNITY 4.5.3

Loaking for patch releases?
System Requirements

Free vs Pro

Release Notes

Loaking for console deployment?

At the time of writing this book, the version is 4.5.3, but this project should work in
future versions with minimal changes.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We will also need some graphical assets for use in our project. These can be
downloaded from the example code provided for this book on Packt Publishing's
website (http://www.PacktPub.com).

Navigate to the preceding URL, and download the Chapterl.zip package and
unzip it. Inside the Chapter1 folder, there are a number of things, including an
Assets folder, which will have the art, sound, and font files you'll need for the
project as well as the Chapter_1_Completed.unitypackage (this is the complete
chapter package that includes the entire project for you to work with). I've also
added in the complete game exported (TwinstickShooter Exported)as well as
the entire project zipped up in the TwinstickShooter Project.zip file.

Setting up the project
At this point, I have assumed that you have Unity freshly installed and have started
it up.

1. With Unity started, go to File | New Project. Select Project Location of your
choice somewhere on your hard drive, and ensure you have Setup defaults
for set to 2D. Once completed, select Create. At this point, we will not need to
import any packages, as we'll be making everything from scratch. It should
look like the following screenshot:

Open Project | Create New Project

Project Location:
C:Wsers\John\Documents {TwinstickShooter

Import the following packages:

[] character Controller.unityPackage -
[] Light Cookies, unityPackage
[] Light Flares.unityPackage

[] Partides,unityPackage

[] Physic Materials. unityPackage
[] Projectors. unityPackage

[] scripts. unityPackage

— . . -

< >

Setup defaults for: | 2D W

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

2. From there, if you see the Welcome to Unity pop up, feel free to close it out
as we won't be using it. At this point, you will be brought to the general
Unity layout, as follows:

&4

File Edit Assets GameObject Component Window Help

'*0 S | ind =i Center | & Local umm [Layers - | [Layout -]
"= Hierarchy o 8 Animator o @ Inspector o=

Create ~ | (2rAll + || 20| 2 | <) | Effects [~
Main Camera

3 Project E consale & .=
| creat - 2 |4 %] *
Yﬂ:‘r Favorites Assets

(O All Materials) _
All Models This folder is empty

(©L Al Prefabs
(O all seripts

. Again, I'm assuming you have some familiarity with Unity before
% reading this book; if you would like more information on the interface,
i please visit http: //docs.unity3d.com/Documentation/Manual/
LearningtheInterface.html.

Keeping your Unity project organized is incredibly important. As your project moves
from a small prototype to a full game, more and more files will be introduced to your
project. If you don't start organizing from the beginning, you'll keep planning to tidy
it up later on, but as deadlines keep coming, things may get quite out of hand.

This organization becomes even more vital when you're working as part of a team,
especially if your team is telecommuting. Differing project structures across different
coders/artists/ designers is an awful mess to find yourself in.

Setting up a project structure at the start and sticking to it will save you countless
minutes of time in the long run and only takes a few seconds, which is what we'll be
doing now. Perform the following steps:

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Click on the Create drop-down menu below the Project tab in the bottom-left
side of the screen.

2. From there, click on Folder, and you'll notice that a new folder has been
created inside your Assets folder.

3. After the folder is created, you can type in the name for your folder. Once
done, press Enter for the folder to be created. We need to create folders for
the following directories:

° Animations
° Prefabs

° Scenes
Scripts

Sprites

If you happen to create a folder inside another folder, you can simply
" drag-and-drop it from the left-hand side toolbar. If you need to rename a
%‘ folder, simply click on it once and wait, and you'll be able to edit it again.

You can also use Ctrl + D to duplicate a folder if it is selected.

4. Once you're done with the aforementioned steps, your project should look
something like this:

File Edit Assets GameObject Component Window Help

‘*’ R =4 Center | & Local umm [Layers -] [Layout -]
= Hierarchy = 2% Animator +=| © Inspector | &=

| Create -| (@-AT : +|| 2D | ¥ | <)

Main Camera

Im Animations Prefabs Scenes Scripts Sprites

1 Project Bl console .=
| €reate - T [EIEYES
Yﬁ Favorites Assets »

(©1 All Materials
L Al Models
(QAH Prefabs
L Al Saripts

@ Animations
'l Prefabs
@ Scenes
Wl Scripts
Wl Sprites

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Creating our scene

Now that we have our project set up, let's get started with creating our player:

1. Double-click on the sprites folder. Once inside, go to your operating
system's browser window, open up the Chapter 1/Assets folder that we
provided, and drag the playership.png file into the folder to move it into
our project. Once added, confirm that the image is Sprite by clicking on it and
confirming from the Inspector tab that Texture Type is Sprite (Sprite (2D
and Ul) in 4.6). If it isn't, simply change it to that, and then click on the Apply
button. Have a look at the following screenshot:

. If you do not want to drag-and-drop the files, you can
% also right-click within the folder in the Project Browser
= (bottom-left corner) and select Import New Asset to
select a file from a folder to bring it in.

File Edit Assets GameObject Component Window Help

‘*’ < = Center | & Local umm [Layers - | [Layout -
= Hierarchy #8 Animator = | © Inspector

=
| create - | (AT 3| 20 | % | <) | Effects ||| Gizmos 7| (& playership Import Settings &, -
Main Camera W - 1 | cpen |
Texture Type Sprite :
Sprite Mode Single =
Packing Tag
Pixels To Units 100
Pivot Center 4
Filter Mode | Bilinear %]
pefau | [& [0 | % @ [£7] 0
[]override for Standalone
133 project El console S | vax size 1024
| create - = | &% | -
e . . Farmat Compressed
¥ /Favorites Assets » Sprites
= . [
(DL Al Materials | Revert || Apply |
L All Model }
'L All Models Only tzxtures with width/height being

(0 Al prefabs I _F /\ multip|e of 4 can be compressed to DXTS
(L All seripts o~ - Preview

V5 Assets
W Animations
@ Prefabs
@l Scenes
Wl Scripts
_
playerShip
99x75 (NPOT) ARGB 32 bit 29.0 KB

-

i4playerShip.png ——

The art assets used for this tutorial were provided by Kenney. To
" see more of their work, please check out www.kenney.nl.

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Next, drag-and-drop the ship into the Scene tab (the center part that's
currently dark gray). Once completed, set the position of the sprite to the
center of the Screen (0, 0) by right-clicking on the Transform component and
then selecting Reset Position. Have a look at the following screenshot:

ocal umm [Layers -] [Layout -]
ne € Game 2 Animator = © Inspector o=
red +| | RGB 4| 2o | & | <) | Effects | | Gizmos 7| (&7 = ™ [playership []static
Tag | Untagged 4| Layer | Default 3|
¥ .~ Transform [EIE. 3
Position X -4.0916 Reset
Rotation H0 . - a
Scale U lemove Componen
= Move Up
v |5 [Sprite Renderer ’ P
Sprite B Mowve Down
Color |: Copy Component
Material o Paste Component As MNew
Sorting Layer @ Paste Component Values
& -= | Orderin Layer o T .
Reset Position
|4 [% | *

add Com| .F‘\eset Rotation

Reset Scale

Now, with the player in the world, let's add in a background. Drag-and-drop
the background.png file into your Sprites folder. After that, drag-and-drop a
copy into the scene.

If you put the background on top of the ship, you'll notice that currently the
background is in front of the player (Unity puts newly added objects on top
of previously created ones if their position on the Z axis is the same; this is
commonly referred to as the z-order), so let's fix that.

Objects on the same Z axis without sorting layer are considered to be
equal in terms of draw order; so just because a scene looks a certain

way this time, when you reload the level it may look different. In

order to guarantee that an object is in front of another one in 2D space
is by having different Z values or using sorting layers.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

4. Select your background object, and go to the Sprite Renderer component
from the Inspector tab. Under Sorting Layer, select Add Sorting Layer.
After that, click on the + icon for Sorting Layers, and then give Layer 1 a
name, Background. Now, create a sorting layer for Foreground and GUI.
Have a look at the following screenshot:

= | Hscene 8 Animator = | O Inspector - .=
|| Textured = +|| 2D | % | <l | Effects || | Gizmes | (&) . Tags & Layers ¢.'

» Tags

¥ Sorting Layers
— Layer 0 Default
— Layer 1 Background
— Layer 2 Foreground

— Layer 3 GUI

+ -

5. Now, place the player ship on the foreground and the background by
selecting the object once again and then setting the Sorting Layer property
via the drop-down menu. Now, if you play the game, you'll see that the ship
is in front of the background, as follows:

@

At this point, we can just duplicate our background a number of times to
create our full background by selecting the object in the Hierarchy, but that
is tedious and time-consuming. Instead, we can create all the duplicates by
either using code or creating a tileable texture. For our purposes, we'll just
create a texture.

6. Delete the background sprite by left-clicking on the background object in the
Hierarchy tab on the left-hand side and then pressing the Delete key. Then
select the background sprite in the Project tab, change Texture Type in the
Inspector tab to Texture, and click on Apply.

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7. Now let's create a 3D cube by selecting Game Object | Create Other | Cube
from the top toolbar. Change the object's name from Cube to Background. In
the Transform component, change the Position to (0, 0, 1) and the Scale
to (100, 100, 1).

If you are using Unity 4.6 you will need to go to
v Game Object | 3D Object | Cube to create the cube.

Since our camera is at 0, 0, -10 and the player is at 0, 0, 0, putting the object
at position 0, 0, 1 will put it behind all of our sprites. By creating a 3D object
and scaling it, we are making it really large, much larger than the player's
monitor. If we scaled a sprite, it would be one really large image with
pixelation, which would look really bad. By using a 3D object, the texture
that is applied to the faces of the 3D object is repeated, and since the image
is tileable, it looks like one big continuous image.

8. Remove Box Collider by right-clicking on it and selecting
Remove Component.

9. Next, we will need to create a material for our background to use. To
do so, under the Project tab, select Create | Material, and name the
material as BackgroundMaterial. Under the Shader property, click on the
drop-down menu, and select Unlit | Texture. Click on the Texture box on
the right-hand side, and select the background texture. Once completed, set
the Tiling property's x and y to 25. Have a look at the following screenshot:

& Inspector | o =
. BackgroundMaterial @
Shader | Unlit/Texture + || Edit.. |
Base (RGRE) ‘ ’
Tiling Offset
® |25 [¥]
¥ 25 0

In addition to just selecting from the menu, you can also
drag-and-drop the background texture directly onto the
% Texture box, and it will set the property.
Ko

Tiling tells Unity how many times the image should repeat
in the x and y positions, respectively.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

10. Finally, go back to the Background object in Hierarchy. Under the Mesh
Renderer component, open up Materials by left-clicking on the arrow,
and change Element 0 to our BackgroundMaterial material. Consider
the following screenshot:

@ =

o KIEIFA [11 [>]

Maximize on Play | Stats | Gizmes |~

Now, when we play the game, you'll see that we now have a complete background
that tiles properly.

Scripting 101

In Unity, the behavior of game objects is controlled by the different components that
are attached to them in a form of association called composition. These components
are things that we can add and remove at any time to create much more complex
objects. If you want to do anything that isn't already provided by Unity, you'll have
to write it on your own through a process we call scripting. Scripting is an essential
element in all but the simplest of video games.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Unity allows you to code in either C#, Boo, or UnityScript, a language designed
specifically for use with Unity and modelled after JavaScript. For this book, we
will use C#.

C# is an object-oriented programming language —an industry-standard language
similar to Java or C++. The majority of plugins from Asset Store are written in

C#, and code written in C# can port to other platforms, such as mobile, with very
minimal code changes. C# is also a strongly-typed language, which means that if
there is any issue with the code, it will be identified within Unity and will stop you
from running the game until it's fixed. This may seem like a hindrance, but when
working with code, I very much prefer to write correct code and solve problems
before they escalate to something much worse.

Implementing player movement

Now, at this point, we have a great-looking game, but nothing at all happens. Let's
change that now using our player. Perform the following steps:

1. Right-click on the Scripts folder you created earlier, click on Create, and
select the C# Script label. Once you click on it, a script will appear in the
Scripts folder, and it should already have focus and should be asking you
to type a name for the script—call it PlayerBehaviour.

2. Double-click on the script in Unity, and it will open MonoDevelop, which is
an open source integrated development environment (IDE) that is included
with your Unity installation.

After MonoDevelop has loaded, you will be presented with the C# stub code that
was created automatically for you by Unity when you created the C# script.

Let's break down what's currently there before we replace some of it with new code.
At the top, you will see two lines:

using UnityEngine;
using System.Collections;

Downloading the example code

K You can download the example code files for all Packt Publishing books
5 you have purchased from your account at http: //www.packtpub.com.
Q If you purchased this book elsewhere, you can visit http: //www.
packtpub. com/support and register to have the files e-mailed directly
to you.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

The engine knows that if we refer to a class that isn't located inside this file, then
it has to reference the files within these namespaces for the referenced class before
giving an error. We are currently using two namespaces.

The UnityEngine namespace contains interfaces and class definitions that let
MonoDevelop know about all the addressable objects inside Unity.

The system.Collections namespace contains interfaces and classes that define
various collections of objects, such as lists, queues, bit arrays, hash tables, and
dictionaries.

We will be using a list, so we will change the line to the following:

using System.Collections.Generic;

The next line you'll see is:

public class PlayerBehaviour : MonoBehaviour

You can think of a class as a kind of blueprint for creating a new component type
that can be attached to GameObjects, the objects inside our scenes that start out with
just a Transform and then have components added to them. When Unity created
our C# stub code, it took care of that; we can see the result, as our file is called
PlayerBehaviour and the class is also called PlayerBehaviour. Make sure that
your .cs file and the name of the class match, as they must be the same to enable the
script component to be attached to a game object. Next up is the: MonoBehaviour
section of the code. The : symbol signifies that we inherit from a particular class;

in this case, we'll use MonoBehaviour. All behavior scripts must inherit from
MonoBehaviour directly or indirectly by being derived from it.

Inheritance is the idea of having an object to be based on another object or class
using the same implementation. With this in mind, all the functions and variables
that existed inside the MonoBehaviour class will also exist in the PlayerBehaviour
class, because PlayerBehaviour is MonoBehaviour.

For more information on the MonoBehaviour class and all the functions and
properties it has, check out http://docs.unity3d.com/ScriptReference/
MonoBehaviour.html. Directly after this line, we will want to add some variables
to help us with the project. Variables are pieces of data that we wish to hold on to
for one reason or another, typically because they will change over the course of a
program, and we will do different things based on their values.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Add the following code under the class definition:

// Movement modifier applied to directional movement.
public float playerSpeed = 2.0f;

// What the current speed of our player is
private float currentSpeed = 0.0f;

/*

* Allows us to have multiple inputs and supports keyboard,
* joystick, etc.

*/

public List<KeyCode> upButton;

public List<KeyCode> downButton;

public List<KeyCode> leftButton;

public List<KeyCode> rightButton;

// The last movement that we've made
private Vector3 lastMovement = new Vector3() ;

Between the variable definitions, you will notice comments to explain what each
variable is and how we'll use it. To write a comment, you can simply add a // to
the beginning of a line and everything after that is commented upon so that the
compiler/interpreter won't see it. If you want to write something that is longer
than one line, you can use /* to start a comment, and everything inside will be
commented until you write */ to close it. It's always a good idea to do this in your
own coding endeavors for anything that doesn't make sense at first glance.

For those of you working on your own projects in teams, there is an
. additional form of commenting that Unity supports, which may make
your life much nicer: XML comments. They take up more space than the
= comments we are using, but also document your code for you. For a nice
tutorial about that, check out http://unitypatterns.com/xml-
comments/.

In our game, the player may want to move up using either the arrow keys or the W
key. You may even want to use something else. Rather than restricting the player to
just having one button, we will store all the possible ways to go up, down, left, or
right in their own container. To do this, we are going to use a list, which is a holder
for multiple objects that we can add or remove while the game is being played.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

For more information on lists, check out http://msdn.microsoft.
o com/en-us/library/6sh2eyl19 (v=vs.110) .aspx

One of the things you'll notice is the public and private keywords before the
variable type. These are access modifiers that dictate who can and cannot use these
variables. The public keyword means that any other class can access that property,
while private means that only this class will be able to access this variable. Here,
currentSpeed is private because we want our current speed not to be modified or
set anywhere else. But, you'll notice something interesting with the public variables
that we've created. Save your script by pressing Ctrl + S and then go back into the
Unity project and drag-and-drop the PlayerBehaviour script onto the playership
object. Before going back to the Unity project though, make sure that you save your
PlayerBehaviour script. Not saving is a very common mistake made by people
working with MonoDevelop. Have a look at the following screenshot:

v @I [MPlayer Behaviour (Script) [#
Script - PlayerBehavioL @
Player Speed i

¥ Up Button

Size 0
¥ Down Button

Size 0
¥ Left Button

Size 0
¥ Right Button

Size 0

You'll notice now that the public variables that we created are located inside
Inspector for the component. This means that we can actually set those variables
inside Inspector without having to modify the code, allowing us to tweak values
in our code very easily, which is a godsend for many game designers. You may
also notice that the names have changed to be more readable. This is because of the
naming convention that we are using with each word starting with a capital letter.
This convention is called CamelCase (more specifically headlessCamelCase).

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Now change the Size of each of the Button variables to 2, and fill in the Element
0 value with the appropriate arrow and Element 1 with w for up, a for left, s for
down, and D for right. When this is done, it should look something like the
following screenshot:

e Inspector | =
Color 2 | a
Material m a [
Sorting Layer | Foreground $ |
Qrder in Layer o

Y@ M Player Behaviour (Script) ﬁ i,
Script - PlayerBehavioL, @
Player Speed [z]

¥ Up Button

Size 2

Element 0 | UpArrow ™

Element 1 | W ™
¥ Down Button

Size 2

Element 0 | DownArron ™

Element 1 |s ¢
¥ Left Button

Size 2

Element 0 | Leftarrow ™

Element 1 | & Ll
¥ Right Button

Size 2

Element 0 | RightArrow ™

Element 1 | D ™

Now that we have our variables set, go back to MonoDevelop for us to work on the
script some more.

The line after that is a function definition for a method called start; it isn't a user
method but one that belongs to MonoBehaviour. Where variables are data, functions
are the things that modify and/or use that data. Functions are self-contained
modules of code (enclosed within braces, { and }) that accomplish a certain task.
The nice thing about using a function is that once a function is written, it can be
used over and over again. Functions can be called from inside other functions:

void Start ()

}

Start is only called once in the lifetime of the behavior when the game starts and is
typically used to initialize data.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

If you're used to other programming languages, you may be
surprised that initialization of an object is not done using a
» constructor function. This is because the construction of objects
%“ is handled by the editor and does not take place at the start
’ of gameplay as you might expect. If you attempt to define a
constructor for a script component, it will interfere with the normal
operation of Unity and can cause major problems with the project.

However, for this behavior, we will not need to use the start function. Perform the
following steps:

1.

Delete the start function and its contents.

The next function that we see included is the Update function. Also
inherited from MonoBehaviour, this function is called for every frame that
the component exists in and for each object that it's attached to. We want to
update our player ship's rotation and movement every turn.

Inside the update function (between { and }), put the following lines of code:
// Rotate player to face mouse

Rotation() ;

// Move the player's body

Movement () ;

Here, I called two functions, but these functions do not exist, because we
haven't created them yet, which is why the text shows up as Red inside of
MonoDevelop. Let's do that now!

Below the Update function and before } that closes the class at the end of the
file, put the following function to close the class:

// Will rotate the ship to face the mouse.
void Rotation()

{

// We need to tell where the mouse is relative to the

// player

Vector3 worldPos = Input.mousePosition;

worldPos = Camera.main.ScreenToWorldPoint (worldPos) ;
/*

* Get the differences from each axis (stands for
* deltaX and deltaY)
*/
float dx = this.transform.position.x - worldPos.x;
float dy

this.transform.position.y - worldPos.y;

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

// Get the angle between the two objects
float angle = Mathf.Atan2(dy, dx) * Mathf.Rad2Deg;

/*
* The transform's rotation property uses a Quaternion,
* so we need to convert the angle in a Vector
* (The Z axis is for rotation for 2D).
*/
Quaternion rot = Quaternion.Euler (new Vector3 (0, 0, angle +
90));

// Assign the ship's rotation
this.transform.rotation = rot;

}

Now if you comment out the Movement line and run the game, you'll notice
that the ship will rotate in the direction in which the mouse is. Have a look
at the following screenshot:

Below the Rotation function, we now need to add in our Movement
function the following code. Uncomment the Movement function call
if you commented it out earlier:

// Will move the player based off of keys pressed
void Movement ()

{

// The movement that needs to occur this frame
Vector3 movement = new Vector3() ;

// Check for input

movement += MovelfPressed (upButton, Vector3.up);
movement += MovelfPressed (downButton, Vector3.down) ;
movement += MovelfPressed(leftButton, Vector3.left);
movement += MovelfPressed(rightButton, Vector3.right) ;

/*
* If we pressed multiple buttons, make sure we're only
* moving the same length.

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

*/

movement .Normalize () ;

// Check if we pressed anything
if (movement .magnitude > 0)

{

// If we did, move in that direction
currentSpeed = playerSpeed;

this.transform.Translate (movement * Time.deltaTime *
playerSpeed, Space.World) ;

lastMovement = movement;

}

else

{

// Otherwise, move in the direction we were going

this.transform.Translate (lastMovement * Time.deltaTime *
currentSpeed, Space.World) ;

// Slow down over time
currentSpeed *= .9f;

}

Now inside this function I've created another function called MoveIfPressed,
so we'll need to add that in as well.

5. Below this function, add in the following function as well:
/ *
* Will return the movement if any of the keys are pressed,
* otherwise it will return (0,0,0)
*/
Vector3 MovelIfPressed(List<KeyCode> keyList, Vector3 Movement)
{
// Check each key in our list
foreach (KeyCode element in keyList)

{

if (Input.GetKey (element))
{
/*
* Tt was pressed so we leave the function
* with the movement applied.
*/

return Movement;

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

// None of the keys were pressed, so don't need to move

return Vector3.zero;

}

6. Now, save your file and move back into Unity. Save your current scene as
Chapter_1.unity by going to File | Save Scene. Make sure to save the
scene to our Scenes folder we created earlier.

7. Run the game by pressing the play button. Have a look at the following
screenshot:

File Edit Assets GameObject Component Window Help

o EIE=IEA 11 [D]

Maximize on Play | Stats | Gizmas 7| |

Now you'll see that we can move using the arrow keys or the WA S D keys, and our
ship will rotate to face the mouse. Great!

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Shooting behavior

The next thing we will do is give our player the ability to shoot:

1. Open up the PlayerBehaviour script. In the top section where the other
variables are present, we need to add some additional ones that we'll use:

// The laser we will be shooting
public Transform laser;

// How far from the center of the ship should the laser be
public float laserDistance = .2f;

// How much time (in seconds) we should wait before
// we can fire again
public float timeBetweenFires = .3f;

// If value is less than or equal 0, we can fire
private float timeTilNextFire = 0.0f;

// The buttons that we can use to shoot lasers
public List<KeyCode> shootButton;

One thing you may have noticed is that we have a 1aser variable that is of
the type Transform. This is the laser we'll fire, which we will create shortly.

2. Inside our Update function, we will need to add some additional code, which
is as follows:

// a foreach loop will go through each item inside of

// shootButton and do whatever we placed in {}s using the
// element variable to hold the item

foreach (KeyCode element in shootButton)

{

if (Input.GetKey (element) && timeTilNextFire < 0)

{

timeTilNextFire = timeBetweenFires;
ShootLaser () ;
break;

timeTilNextFire -= Time.deltaTime;

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

In a manner very similar to what we did before with the player movement,
we check each of the keys we allow the player to shoot with (such as the
spacebar and Enter keys). If they press any of these keys and can fire again,
then we will reset our timer and shoot a laser. However, we haven't made the
ShootLaser function. Let's do that now.

Underneath the functions, add the following function:
// Creates a laser and gives it an initial position in front

// of the ship.
void ShootLaser ()

{

// calculate the position right in front of the ship's

// position lazerDistance units away

float posX = this.transform.position.x +
(Mathf.Cos ((transform.localEulerAngles.z - 90) *
Mathf.Deg2Rad) * -laserDistance) ;

float posY = this.transform.position.y + (Mathf.Sin((transform.
localEulerAngles.z - 90) * Mathf.Deg2Rad) *
-laserDistance) ;

Instantiate(laser, new Vector3 (posX, posY, 0), this.transform.
rotation) ;

}

Save your file, and go back into Unity. You'll now see a number of additional
variables that we can now set. Be sure to set the Shoot Button variable in the
same manner that we did the movement buttons, changing the Size to 2 and
setting Element 0 to Mouse0 and Element 1 to Space.

If, for some reason, your Inspector window doesn't update, save your
s project, and restart Unity. Upon reset, it should be updated.

Next, we will need to create our laser. Go back into our assets folder
from the example code, and move the laser.png file into our Project
tab's sprites folder.

Following that, drag-and-drop it into your scene from the Scene tab to place
it in the level.

Right-click the scripts folder you created earlier, click on Create, and
select the C# Script label. Call this new script LaserBehaviour. Go into
MonoDevelop, and use the following code:

using UnityEngine;

using System.Collections;

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

public class LaserBehaviour : MonoBehaviour
{

// How long the laser will live

public float lifetime = 2.0f;

// How fast will the laser move
public float speed = 5.0f;

// How much damage will this laser do if we hit an enemy
public int damage = 1;

// Use this for initialization

void Start ()

{
// The game object that contains this component will be
// destroyed after lifetime seconds have passed
Destroy (gameObject, lifetime);

}

// Update is called once per frame
void Update ()

{

transform.Translate (Vector3.up * Time.deltaTime * speed) ;

}
}

8. Attach LaserBehaviour to the laser object. Finally, add a Box Collider
component by first selecting the laser object and then going to Component |
Physics 2D | Box Collider 2D. The collision box, by default, will be the size
of the image, but I want to shrink it to fit what is visually seen of it. To do
that, we will change the Size attribute's X property to .06 and Y to . 5.

Now, the laser will move in the direction that it's facing and die after a period
of 2 seconds! Next, let's make it so that the player can shoot them.

9. In the Project tab, go to the Assets | Prefabs folder, and drag-and-drop
the laser object from our Hierarchy tab into it. You'll notice that the object
Hierarchy will turn blue to show that it is a prefab.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Prefabs or prefabricated objects are the objects that we set aside to
make copies during runtime, such as our bullets and eventually
enemies that we'll spawn into the world, and we can create as many
as we want. When you add a prefab to a scene, you create an instance
of it. All of these instances are clones of the object located in our
Assets. Whenever you change something in the prefab located in
our Prefab folder, those changes are applied to all the objects that
are already inside of your scene. For example, if you add a new
a component to Prefab, all the other objects we have in the scene will
s instantly contain the component as well. We can also apply any of the
ones in our scene to be the blueprint for the others as well, which we
will do later on. However, it is also possible to change the properties
of a single instance while keeping the link intact. Simply change any
property of a prefab instance inside your scene, and that particular
value will become bolded to show that the value is overridden, and
they will not be affected by changes in the source prefab. This allows
you to modify prefab instances to make them different (unique) from
their source prefabs without breaking the prefab link.

Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

m 4*’ i G i :ﬂ: . = Center| @ Local | [Layers T | [La\rout -

‘= Hierarchy .= | #5Scene | € Game Animator = | ® Inspector | =
| Create 7| (GrAll || | Textured | RGE #|| 2D | M laser [|static » *

Tag | Untagged 4| Layer | Default ™

Backgr.m]ﬁd
laser
Main Camera ﬂ YA - Transform @ %
playership Position H11.8511 ¥ -2.981¢ Z 0

Rotation H0 ¥ |0 20
Scale K1 X1 2 i Y

v [M Sprite Renderer @ %,
Sprite “llaser (c]
Color —

Material W Sprites-Default (o]

Sorting Layer | Default =

3 Project | Console
a

Order in Layer 1]

Create ™ | | —

7 Favorites Assets » Prefabs) I ME Laser Behaviio.ur (Script) - g =
prasiit e R e s Script i LaserBehaviour @ @

Lifetime 2

Preview

v55 Assets
Wl Animations
= .}:“\.'*"'”‘"
LS A |
& Scenes
&5 Scripts
&5 Sprites

! laser.prefab

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

10. Now, delete the 1aser object from our scene, and then go to the playership
object. Drag-and-drop the laser prefab into the Laser property of the
PlayerBehavior component.

11. Finally, add a circle collider to our ship by going to Component | Physics
2D | Circle Collider 2D. Change the Radius property to . 3.

Generally, in games, we want to be as efficient as possible toward calculations.
Polygon collision is the most accurate collision, but it is much slower than using
a box or a circle. In this case, I wanted to use a circle, because not only is it more
efficient but it also allows the player some leeway in how close they can get to
enemies without being hurt. Players will always think it's their skill if they get
away, but if the collider is too big they will think the game is broken, which we
want to avoid.

Have a look at the following screenshot:

= =

File Edit Assets GameObject Component Window Help

= Center

Maximize on Play | Stats | Gizmas (™

Now, our ship can shoot in the direction that the mouse is currently facing.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Creating enemies

Now, it's really cool that we have a player, but it'll get really boring if all we can do
is move around and shoot some lasers in the dark. Next, we'll introduce some simple
enemies that will move toward the player that we'll be able to shoot later. Perform
the following steps:

1.

2.

Exit the game and access our example code's Assets folder; move the
enemy . png file into our Sprites folder.

Following that, drag-and-drop it into your scene from the Scene tab to place
it in the level.

Right-click on the Scripts folder you created earlier, click on Create, and
select the C# Script label. Call this new script MoveTowardsPlayer. Go to
MonoDevelop and use the following code:

using UnityEngine;

using System.Collections;

public class MoveTowardsPlayer : MonoBehaviour

{

private Transform player;
public float speed = 2.0f;

// Use this for initialization
void Start ()

{
}

player = GameObject.Find ("playerShip") .transform;

// Update is called once per frame
void Update ()

{

Vector3 delta = player.position - transform.position;
delta.Normalize () ;

float moveSpeed = speed * Time.deltaTime;

transform.position = transform.position + (delta * moveSpeed) ;

}
}

In the beginning of the game, I find the player ship and get his transform
component. Then, in every frame of the project, we move the enemy from
where it currently is to the direction where the player is at.

If you ever want to have objects run away from the player,
=" use a negative value for the speed variable.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Drag-and-drop this newly added behavior onto our enemy object.

Next, add a circle collider to our enemy by going to Component | Physics
2D | Circle Collider 2D. Change the Radius property to . 455, and run the
game. Have a look at the following screenshot:

File Edt Assets GameObject Component Window Help

Now, you'll see that the enemy will always move toward you! But if we shoot it,
nothing happens. Let's fix that as follows.

1.

Right-click on the Scripts folder you created earlier, click on Create, and
select the C# Script label. Call this new script EnemyBehaviour. Go to
MonoDevelop, and use the following code:

using UnityEngine; // MonoBehaviour

public class EnemyBehaviour : MonoBehaviour

{

// How many times should I be hit before I die
public int health = 2;

void OnCollisionEnter2D(Collision2D theCollision)

{

// Uncomment this line to check for collision
//Debug.Log ("Hit"+ theCollision.gameObject.name) ;

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

// this line looks for "laser" in the names of
// anything collided.
if (theCollision.gameObject.name.Contains ("laser"))

{

LaserBehaviour laser = theCollision.gameObject.
GetComponent ("LaserBehaviour") as LaserBehaviour;

health -= laser.damage;

Destroy (theCollision.gameObject) ;

}

if (health <= 0)

{

Destroy (this.gameObject) ;

}
}
}

Now, you will notice that we have commented a line of code calling the
function Debug . Log. This function will print something onto your console,
which may help you when debugging your own code in the future.

Save the file, and then go back into Unity. Attach the EnemyBehaviour
behavior to your enemy object. For collision events to register we need to add
a Rigidbody 2D component to our enemy by going to Component | Physics
2D | Rigidbody 2D. Change the Gravity Scale to 0 so it will not fall. Have a
look at the following screenshot:

& £3

o EXEIEA e

€ Game
16:9 - Maximize on Play | Stats | Gizmos |~

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

OnCollisionEnter2D is a function that will trigger when two objects
with 2D colliders collide. It is important to note collision events are only
- sent if one of the colliders also has a non-kinematic rigidbody attached
% (which we just did).
i
For more info on OnCollisionEnter2D check out http://

docs.unity3d.com/ScriptReference/Collider2D.
OnCollisionEnter2D.html.

Now, whenever we hit the enemy with our bullets twice, it will die. Nice!

Adding GameController to spawn

enemy waves

We have all the mechanics of our game completed at this point. Now, we need to
actually create the game or manage what happens in the game. This game controller
would be required to run our game, keep track of and display the game's score, and
finally end the game whenever the player dies. Later on, we'll discuss a game state
manager, which we can use for larger projects with multiple states, but for the sake
of this simple project, we will create a single game controller. That's what we'll

do now:

or coins that are placed in the scene; and so on. This could also have been
L

1. First, create an empty game object by going to GameObject | Create Empty.

From there, with the object selected, go to Inspector and set its name to
GameController, and optionally, for neatness sake, set its Position to
(0, 0,0).

Underneath the name, you'll see the Tag property. Change it from Untagged
to GameController.

A Tag is a way to link to one or more game objects in a collected group.
For instance, you might use Player and Enemy tags for players and
enemies respectively; a Collectable tag could be defined for power-ups

used with EnemyBehaviour to check whether something was a bullet or
not. One thing to note is the fact that GameObject can only have one tag
assigned to it. Tags do nothing to the scene but are a way to identify game
objects for scripting purposes.

Next, select Add Component | New Script, and once you are brought to
the next menu, change the language to C# (C Sharp), and set the name of the
script to GameController. Then press Enter or click on Create and Add.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Select the newly created script in the Assets folder of the Project tab,
and move it to the Assets\Scripts folder. Go to MonoDevelop by
double-clicking on the script file.

While our game does many things, the most important thing is the spawning
of enemies, which is what we'll be adding in first. Let's create a variable
to store our enemy.

5. Inside of the class definition, add the following variable and then save
the file:

// Our enemy to spawn
public Transform enemy;

6. Now, we can set the enemy that we currently have in the scene, but we
should instead make the enemy a prefab and use it. To do so, drag the enemy
from Hierarchy into your Assets\Prefabs folder. Once we've created the
prefab, we can remove the enemy object from our scene by deleting it.

7. Next, drag-and-drop the enemy prefab into the Enemy variable in the
GameController component.

File Edit Assets GameObject Component Window Help

m 4‘* | < | A= [=8 Center| @ Local | [Layers ~ | | Layout - |

= Hierarchy | = | #Scene | & Game =Animator == ® Inspector | - =

| Create 7| '_0_'ﬁ|| Textured +| | RGB #|| 2D = M [GameController [static «
Backg |"
R i |

Tag | GameControllert | Layer | Default 4|

Main Camera ¥~ Transform @ %
Position X0 Y0

Rotation Ho Y0
Scale Hil ¥4l

b @I [¥ Game Controller (Script) @ %
Script - GameContraoller Q

playership

Enemy Aenemy (Transform] | @

[Add Component]

53 Project | B console
Craats * <

Favorites | Assets » Prefabs
All Materials

All Models
All Prefabs
All Scripts

v55 Assets
@l Animations
&=
& Scripts
&5 Sprites

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

8. Next, go back into our GameController script by double-clicking it to go into
MonoDevelop. Add the following additional variables to the component:

// We want to delay our code at certain times
public float timeBeforeSpawning = 1.5f;
public float timeBetweenEnemies = .25f;
public float timeBeforeWaves = 2.0f;

public int enemiesPerWave = 10;
private int currentNumberOfEnemies = 0;

We now need a function to spawn enemies; let's call it SpawnEnemies. We
don't want to spawn all the enemies at once. What we want is a steady
stream of enemies to come to the player over the course of the game.
However, in C#, to have a function pause the gameplay without having to
stop the entire game, we need to use a coroutine that looks different from
all the code that we've used so far.

9. Inside the start method, add the following line:

StartCoroutine (SpawnEnemies ()) ;

A coroutine is like a function that has the ability to pause execution
and continue where it left off after a period of time. By default, a
% coroutine is resumed on the frame after we start to yield, but itis
also possible to introduce a time delay using the WaitForSeconds
function for how long you want to wait before it's called again.

10. Now that we are already using the function, let's add in the SpawnEnemies
function as follows:

// Coroutine used to spawn enemies

IEnumerator SpawnEnemies ()
// Give the player time before we start the game
yield return new WaitForSeconds (timeBeforeSpawning) ;

// After timeBeforeSpawning has elapsed, we will enter this loop
while (true)
{
// Don't spawn anything new until all the previous
// wave's enemies are dead
if (currentNumberOfEnemies <= 0)
{
float randDirection;
float randDistance;

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11.

//Spawn 10 enemies in a random position
for (int 1 = 0; 1 < enemiesPerWave; 1++)
{
// We want the enemies to be off screen
// (Random.Range gives us a number between the
// first and second parameter)
randDistance = Random.Range (10, 25);

// Enemies can come from any direction
randDirection = Random.Range (0, 360) ;

// Using the distance and direction we set the position

float posX = this.transform.position.x + (Mathf.
Cos ((randDirection) * Mathf.Deg2Rad) * randDistance) ;

float posY = this.transform.position.y + (Mathf.
Sin((randDirection) * Mathf.Deg2Rad) * randDistance) ;

// Spawn the enemy and increment the number of

// enemies spawned

// (Instantiate Makes a clone of the first parameter

// and places it at the second with a rotation of

// the third.)

Instantiate (enemy, new Vector3 (posX, posY, 0), this.
transform.rotation) ;

currentNumberOfEnemies++;

yield return new WaitForSeconds (timeBetweenEnemies) ;

}

// How much time to wait before checking if we need to
// spawn another wave
yield return new WaitForSeconds (timeBeforeWaves) ;

}

Now, when we destroy an enemy, we want to decrement the number of
currentNumberOfEnemies, but it's a private variable, which means that it
can only be changed inside the GameController class or one of the methods
inside of the class. Simple enough? Now let's add a new function in our
GameController class:

// Allows classes outside of GameController to say when we killed

// an enemy.
public void KilledEnemy ()

{

currentNumberOfEnemies--;

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

12. Finally, let's go back into our EnemyBehaviour class. Inside the
OnCollisionEnter2D function under the Destroy function call, add the
following two lines:

GameController controller = GameObject.FindGameObjectWithTag ("Game
Controller") .GetComponent ("GameController") as GameController;
controller.KilledEnemy () ;

The preceding line gets the script GameController with the tag
GameController. The as keyword casts the object to a GameController
object. Casting basically tells the computer, "Even though the code says
it's some class, I'm telling you that it's another one."

This will call the KilledEnemy function from GameController, onto which
we set the GameController tag in step 2.

13. With all those changes, save both script files and run the game! Have a look
at the following screenshot:

@ =

o EIEIFA [11| >] [orers - J[Lavow -]

Mazximize on Play | Stats | Gizmos ™

We now have waves of enemies that will now move toward the player! When we
kill all the enemies inside a wave, we will spawn the next wave. In such a short
period of time, we already have so much going on!

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Particle systems for enemy explosion

Now that we have the basis for our game, let's spend some time to make the

project look nicer. Particle systems are one of my go-to things to add juiciness to a
game project and helps to set your project apart from others. Particles systems are
composed of two separate parts: a particle and the thing that emits it. A particle is a
small object that stores properties; generally we try to make these objects as simple
as possible, as we want to spawn a large number of them. The emitter's job is to
spawn a number of these and initialize their properties. Thankfully, Unity has a fully
featured particle editor that's included with the engine, and we're going to use it in
this section. Perform the following steps:

1. Create a new particle system by going to GameObject | Create Other |
Particle System. Have a look at the following screenshot:

= Hierarchy o= | i scene | € Game e Animator

"= © nspector | a-=|
| Create = (GrAll O ||| Testured : | RGB s | 20| 2 | <) | Effects - || Gizmes ~| (BrAT > B [Parficie Syaterm Dlstatic ~ |&
Background T Tag | Untagged ¢ | Layer | Default
GameController
Main Camera ¥ A~ Transform @) %
Position X[-0.0701 ¥ 0.2324 Z 0
playership Rotation X |-90 Y0 Z\0
Scale HiL Y1 Z1
¥ % Pparticle System) =

| OpenEditor...

m Particle System ;

Duration .00

Start Lifetime
Start Speed
Start Size

| P”al;ticl-e 'S;stem Curves

If you are using Unity 4.6 use GameObject | Particle System
= to create the particle system.

Once you do this, you should see a default particle system show up. Do note

that the system will only animate if it is the object selected and Unity is the
active window.

2. Change the object's name to Explosion. First, under the Particle System tab,
change Duration to 1. 00, and then uncheck Looping.

3. Click on the downwards-facing arrow on the right-hand side of Start
Lifetime, and change the values to be Random Between Two Constants.
Change those values to 0 and 1. Do the same with Start Speed. Make Start
Size use random values between 0 and . 5.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

4.

10.

Next, we will set the object's Start Color value to the same color as the UFO
ship (you can use the eyedropper tool or set it to 210, 224, 230) and an Alpha
value of 125. Have a look at the following screenshot:

Z | |

¥ Colors "

¥ Sliders _E
R 1210

G [224]
B [230 |
AN
¥ Presets =

([O) click ta add new presef

Open the Emission tab, and change Rate to 200. This is how many particles
are spawned at a time.

Open the Shape tab, change the Shape property to Sphere, and then set
Radius to .35 to fit the rim of the ship. Enable the Random Direction option.

Back in the Explosion section, change the Simulation Space to World; that
way, if this object moves, the already-spawned particles will not move.

Now, make this object a prefab by dragging-and-dropping it into

the prefabs folder. After that, delete the Explosion object in your
Hierarchy object.

Go back to your EnemyBehaviour script file. We will first want to add in
a new variable for us to use to spawn this explosion when it dies:

// When the enemy dies, we play an explosion
public Transform explosion;

Back in Inspector, drag-and-drop your new explosion prefab to fill in the
explosion variable slot in our enemy prefab.

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11. Coming back to the EnemyBehaviour script, let's spawn an explosion
whenever we die. Inside your if (health <= 0) section of
CollisionEnter2D, add in the following lines:

// Check if explosion was set
if (explosion)
{

GameObject exploder = ((Transform)Instantiate (explosion, this.
transform.position, this.transform.rotation)) .gameObject;

Destroy (exploder, 2.0f);

}

12. Save your script and scene files, and run your project! Have a look at the
following screenshot:

x

-

File Edit Assets GameObject Component Window Help
o E3EY (111

Mazximize on Play

And now, whenever an enemy dies, it will spawn an explosion for us to see!

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Adding in sound effects/music

Another thing that we can do to give the project a little more polish is add in sound
effects and background music. Let's do that now. Perform the following steps:

1. Select your enemy prefab, and add an Audio Source component to it by
selecting Component | Audio | Audio Source. An audio source lets the
audio listener into Main Camera knowing that this is an object that can play
sounds. Once you create the Audio Source, open the 3D Sound Settings and
change the Min Distance of the Volume Rolloff to 10. Unity will attempt
to alter the volume and pan sounds to make the project sound nicer, but for
this project, it just makes everything much softer, so we're going to undo the
effect unless it's far away.

2. After this, let's go into our EnemyBehaviour script! As usual, we'll need
to add in a new variable for us to use to play whenever we're hit:

// What sound to play when we're hit
public AudioClip hitSound;

3. Next, go into the collisionEnter2D function. After the
Destroy (theCollision.gameObject) line, add the following code:

// Plays a sound from this object's AudioSource
audio.PlayOneShot (hitSound) ;

For more information about the P1ayOneShot function, check
out http://docs.unity3d.com/ScriptReference/
AudioSource.PlayOneShot.html.
/~(

For more information on the Audio Source component (audio),
check out http://docs.unity3d.com/ScriptReference/
AudioSource.html.

Now, we need some actual sounds to play. I've set aside a folder of assets for you
in the Example Code folder, so drag-and-drop the Sounds folder into your project's
Assets folder:

1. Back in the inspector for our enemy, let's set the Hit Sound variable in
the EnemyBehaviour script to the hit sound that we've imported by using
drag-and-drop. Now if we play the game, when we hit an enemy, the
sound will be played! Now, let's have a sound if we destroy the enemy!

2. Go to the Explosion prefab, and add an Audio Source component in the
same way we did in step 1. Once you create the audio source, open up the
3D Sound Settings, and change the Min Distance of the Volume Rolloff
to 10. After this, set the Audio Clip property in the component to the
explode sound.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. Now, going back to our EnemyBehaviour script, go to the line after we
instantiate the exploder object, and add the following line before we
destroy the exploder:

exploder.audio.Play () ;

Now, if you play the game, hitting the object will play one sound, and when
the object is destroyed, the explosion will play a sound. Because the sound
is in the Audio Clip property, we can just call the p1ay function. However,
if you want an object to play multiple sounds, it's better to have separate
AudioClip variables just as we did with EnemyBehaviour.

4. Finally, I want to play a sound whenever we fire a shot. To do that, let's go to
playership and add an audio source. Once you create the audio source, open
3D Sound Settings, and change the Min Distance of Volume Rolloff to 10.

5. Next, go into PlayerBehaviour, and add in a new variable, as follows:

// What sound to play when we're shooting
public AudioClip shootSound;

6. After this, whenever we shoot a bullet, let's play the new sound at the
beginning of the SshootLasers function:

audio.PlayOneShot (shootSound) ;

7. Coming back to Inspector, set the Shoot Sound property in the
PlayerBehaviour component to the shoot sound effect.

8. Finally, let's add in our background music. Go to your Main Camera object
in Hierarchy. Add an Audio Source component. There's no need to set Min
Distance in this case, because this object is where the audio listener is. Change
Audio Clip to bgm, check the Loop option, and set the Volume to . 25.

The background music is provided for this project by Stratkat

(Kyle Smith). If you are interested in more of his work, check out
’ his website at http: //daydreamanatomy .bandcamp.com/.

9. Save everything, and run the game!

While we won't see any changes at this point for those of you actually running the
game, you'll notice quite a change when the game is started. It's already feeling much
more like a game.

If you don't want to deal with the 3D settings, you can also select
the sound files and uncheck the 3D sound option, but this will
T give you less control.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Adding in points, score, and wave
numbers

One of the most important things to do in a game is reward the player and give them
a sense of progression. For now, let's reward the player with a score we will display
for them and also let the player know exactly which wave he is on. Perform the
following steps:

1. Create a new GUI Text object by going to the Hierarchy tab and selecting
Create | GUI Text.

If you are using the Unity 4.6 beta or higher versions, instead
» of creating the object in this way, you will need to select
% GameObiject | Create Empty to create an empty object.
"~ Once you've done that with the object selected, then click on
Component | Rendering | GUIText to add the component there.

2. After this, switch to the Game tab, as you will be unable to see GUI Text in
the Scene view. Note that the game should still not be started as yet, so don't
hit the Play button. Have a look at the following screenshot:

@ Inspector | =
- M [GUT Text []static «

= Hierarchy | .= #sScens | € Game | ‘Animator .
| Create ~ {arAll | 16:9 *| Maximize on

Background v Tag | Untagged + | Layer | Default |
Ga roller |
s it ¥ .~ Transform @

Fosition ® 05 Y05 Z[o
Rotation ®|0 Yo Zi0

Scale w1 Y1 211

|7 [0 M GUIText @ %
Text Gui Text

Anchor | upper left s |
Alignment | left &
Pixel Offset

Main Camera
playerShip

‘t?ui Text

3. Change the GUI Text object's name to Score Counter. Under the GUI Text
component, change the Text to Score: 0. After that, change the Position of
Transform to (0, 1, 0) to put it on the left-hand side of the screen.

GUI elements are placed in viewport space, which means that the space
of the GUI is a value from (0,0) in the bottom-left corner to (1,1) in the
top-right corner.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Though this is technically fine, it would be nice to have some space so
that the text isn't completely off the screen. To give us a bit of padding, let's
set the Pixel Offset property to (10, -10) to move it 10 pixels toward the
right-hand side and 10 pixels down. Note that Pixel Offset uses pixel space.
Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

m "" | < | b= = Center| @ Local m [Layers vJ [Layout -]

= Hierarchy | .— #5cene | € Game | -Animator o= | ® Inspector | a .=

AN G 16:2 QiitaximizZElEr ™ [Score Counter []static «
Background
GameController
Main Camera YA » Transform @ %
playership Pcsm.on X|0 X1l
Rotation Ho Y0
h

Scale H1

v 6 M GuIText
Text Score: 0
Anchaor | upper left

h Tag | Untagged + | Layer | Default t |

Alignment | left
Fixel Offset
3 Project | E console X|10 ¥ -10
Create * Line Spacing 1
v i Assets » Tab Size 4
Fant (4 Arial

Material Mone (Material)
T I
- Font Style |Mormal 4]
vﬁ Animations Prefabs Scenes Scripts Color l:lf

W Animations Pixel Correct =)
&5 Prefabs Rich Text i)

& Scenes
55 Scripts Add Component

&5 Sounds)
&3 Sprites SPUEEE

5. Now that we have the text set up, let's set the font. Drag-and-drop the Font
folder into your project. Then set Font to 0sp-DIN and Font Size to 25.

» The font used in this project was created by the OSP Foundry. For
%“ more information about their stuff check out http://ospublish.
’ constantvzw.org/foundry/.

6. Next, duplicate the Score Counter object by right-clicking and selecting
Duplicate. Set this duplicate's name to Wwaves Counter, and change its
text to wave: 0.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

7. Set the Waves Counter object's Position to (1, 1, 0). Then set Anchor
to upper right and Pixel Offset to (-10, -10). Have a look at the
following screenshot:

File Edit Assets GameObject Component Window Help

l:: 4*’ i S i :ﬂ: [= Center| & Local | |La?re|'s -] [Layout - J

= Hierarchy | .= HsScene € Game | ‘Animator © Inspector | =
| Greme | frAT) VT - Masimize on Fl o [[Waves Counter | [JStatic +
Backaround o Tag | Untagged i | Layer | Default 4|
GameController = = = oe
Main Camera . . -~ E=iEs D BRI v
playership 5(:0!‘0. U wa"‘e. U Position X1 vt
Score Counter Rotation X0 Y0
Waves Counter Scale x[1
v | M GuIText
Text Wave: 0
Anchor | upper right

Alignment [lefe]
Pixel Offset
i3 Project Console ®-10 i-10
Create ™ Q | &% | % | Line Spacing 1
Favorites | Assets - Font Tab Size 4
Font (4 OSP-DIN
Material ‘None (Material)
0 | uoepm Font Size z5

abqraen
qui tsrom, Font Style | Mormal

Vi Assets OSP-DIN SIL OpenF.. C.olor |:|j
&l Animations Pixel Correct =i
== For M”’j Rich Text =i

g Font

7ﬁ;refabs
& Scenes Add Component
&5 Scripts
&5 Sounds
{5 Sprites

8. Now that we have our text files created, let's now have them function
correctly! First, let's go into the GameController class. Inside, we need
to create some new variables as follows:

// The values we'll be printing
private int score = 0;

private int waveNumber = 0;

// The actual GUI text
public GUIText scoreText;
public GUIText waveText;

9. Next, we will need to add a function to call whenever our score increases,
as follows:

public void IncreaseScore (int increase)

{

score += increase;

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

scoreText.text = "Score: " + gcore;

}

The += operator will take the current value and add the right-hand side's
value to it.

10. Then, we'll need to call this function inside our EnemyBehaviour component.
After the controller.KilledEnemy () line, add the following line:

controller.IncreaseScore(10) ;

11. Finally, whenever we increase the wave number we need to
change its text as well. Back in the GameController class after the
if (currentNumberOfEnemies <= 0) line, add the following lines:
waveNumber++;
waveText.text = "Wave: " + waveNumber;

The ++ operator will take the current value of a number and increment
it by 1.

12. Save all the script files, go back to Inspector, and set the Score Text and
Wave Text objects to the proper variables. After that, run the game.
Have a look at the following screenshot:

& 20

File Edit Assets GameObject Component Window Help

= Center| ® Locsl (1]

Maximize an Play | Stats | Gizmos =

Score: 320

And with that, you can see that everything is working together, killing enemies
rewards points, and killing all the enemies in a wave triggers the next wave to start!

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Publishing the game

The final thing that we are going to touch on for the project is actually publishing it:

1. Go to File | Build Settings. From here, you can decide which platforms
and/or scenes to include with your project.

2. Click on the Add Current... button to add our current scene to the game,
as follows:

Scenes In Build
[Scenes/Chapter_1.unity

Add Current

Platform

w Weh Player &_, PC, Mac & Linux Standalone

Target Platform Windows &

Architecture [=88 &
Development Build |
Autoconnect Profiler

Script Debugging

@ BlackBerry

{T wWindows Store Apps

i Windows FPhone 8

| Switch Platform |[Player settings. . || euild And Run |

3. After that, since we are just publishing to our current platform, confirm that
the settings are correct, and click on the Build and Run button.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

4. Once you press the button, you'll be brought to a menu to name your
application that you are going to save. Give it a name, save it, and wait. If all
goes well, you should be brought to a menu allowing you to set some options
before the game starts:

Graphics | Input

Screen resolution v [windowed
Graphics quality Good v
Qut

5. After that, click on the Play! button to see your completed project. Have a
look at the following screenshot:

Score: 440

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

2D Twin-stick Shooter

Summary

And there we have it! Within this first chapter, you've already completed an entire
game project and learned how to publish it. Moving on, in the next chapter, we will
tackle more advanced game types, learn additional things about Unity, and do more
to push Unity to do as much as possible.

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

* Add in feedback whenever the player hits an enemy — perhaps an animation
or a change of sprites.

* Give the player lives, and each time he is hit by an enemy, have him lose one
life. Add a GUI Text to display lives as well.

* Once you learn how to use a Game State Manager, create a main menu,
pause screen, and restart button.

* Add in Xbox control and mobile touch support.

* As alearning experiment, convert the player shooting behaviour code
to use co-routines to enable/disable being able to shoot. Discuss the
advantages/disadvantages towards this method.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

A Graphical User Interface (GUI) is way the players interact with your games.
You've actually been using a GUI in the previous chapter (the Unity Editor) and also
when interacting with your operating system. Without a GUI of some sort, the only
way you'd be able to interact with a computer is a command prompt such as DOS
or UNIX.

When working on GUIs, we want them to be as intuitive as possible and only contain
the information that is pertinent to the player at any given time. There are people
whose main job is programming and/or designing user interfaces and there are
college degrees on the subject as well. So, while we won't talk about everything that
we have to work with on GUIs, I do want to touch on the aspects that should be
quite helpful when working on your own projects in the future.

Project overview

Over the course of this chapter, we will be expanding on our twin-stick shooter by
adding additional UI elements that will include a main menu, a pause menu, and an
options menu and will give us the ability to restart our project. This chapter uses the
UnityGUI system that existed before Unity 4.6. Even though the new system does
have its advantages, the old system is still quite useful to learn. It's still the only way
to create Ul elements for the Unity Editor (which you can use to create plugins that
you can sell on the Asset Store), and it has a much larger amount of documentation
out there to help new users.

If you are interested in learning specifically about the new GUI

system, please check out Chapter 9, Creating GUIs Part 2 - Unity's
= New GUI System, where I talk about specific cases in which you'd

want to use the new system.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Creating a main menu

* Customizing the GUI

* Implementing a pause menu
* Restarting the game

* Adding an Options screen

Prerequisites

This chapter assumes that you have completed the previous chapter and are
working with that project. If you have not completed the project yet, please take the
Chapter 1_Completed.unitypackage file and import it to a blank project in Unity.

We will also need some graphical assets for use in our project. These can be
downloaded from the example code provided for this book on the Packt Publishing
website at https://www.packtpub.com/books/content/support.

Browse through the code files and download the chapter2.zip package and unzip
it. Inside the Chapter2 folder there are a number of things, including an Assets
folder that will have the art, sound, and font files that you'll need for the project as
well as the Chapter 2 Completed.unitypackage (this is the completed chapter
package that includes the entire project for you to work with). I've also added in the
completed game exported (TwinstickShooter GUI Exported) as well as the entire
project zipped up in the GUI TwinstickShooter Project.zip file.

Project setup

At this point, I have assumed that you have a fresh installation of Unity, and have
started it up. You need to perform the following steps:

1. Open the previous project. Now, let's first create a new scene by navigating
to File | New Scene. With the new scene created, save it by navigating
to File | Save Scene. Name it Main Menu.unity and save it inside your
Scenes folder.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Let's first grab the background from our previous level so that we do not
need to create it once again. To do that, double-click on the scene you created
in the first chapter. Left-click on the Background object in the Hierarchy
view and navigate to Edit | Copy. Go back to your Main_Menu scene and
paste it into the world by navigating to Edit | Paste:

File Edit Assets GameObject Component Window Help

m 4’ | G | :U: = Center | & Local m [Layers -] [Layout

= Hierarchy — | #scene | € Game 28 Animator .= | ©® Inspector |
Create =| (G All V||| Testured + | ReR +|| 20 | & | <) | Effe

Background
Main Camera

3 Project | El console
Create ~ Q

"i_:_ffavorites Assets » Scenes
(O All Materials

(Al Models
(All Prefabs
LAl Scripts

V55 Assets Chapter_1 Main_Menu
W Animations
5 Font
{5l Prefabs
=]
&5 Scripts
55 Sounds
&5 Sprites

Unity has an inbuilt GUI functionality through the UnityGUI system that
allows us to create interfaces through scripts.

Unless you are using Unity 4.6 or later, Unity doesn't have an
. included visual GUI development system, but you can find tools on
% the Unity Asset Store that can be used to create your GUI in a What
s You See Is What You Get (WYSIWYG) fashion. Otherwise, you can
also use Autodesk's popular Scaleform system, which allows you to
create your GUIs in Adobe Flash for an additional cost.

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

This system uses a function called onGguz, which is similar to the Update
function we used previously in the way that it gets called every frame that
the component is enabled on a game object within the scene. All of your
rendering of the GUI controls should be performed inside this function

or in a function called inside of the onGUI function.

3. The first thing we're going to do is add a start button to our game. Right-click
on the Scripts folder you created earlier, and then click on Create and select
the C# Script label. Call this new script MainMenuGUI. Open MonoDevelop
and use the following code:
using UnityEngine;
using System.Collections;

public class MainMenuGUI : MonoBehaviour
public int buttonWidth = 100;
public int buttonHeight = 30;
void OnGUI ()
{
//Get the center of our screen
float buttonX = (Screen.width - buttonWidth) / 2.0f;

float buttonY = (Screen.height - buttonHeight) /
2.0f;

//Show button on the screen and check if clicked
if (GUI.Button(new Rect (buttonX, buttonY,
buttonWidth, buttonHeight),
"Start Game"))

// If button clicked, load the game level
Application.LoadLevel ("Chapter 1");

}

// Add game's title to the screen, above our button
GUI.Label (new Rect (buttonX + 2.5f , buttonY - 50,
110.0f, 20.0f),
"Twinstick Shooter");

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

What this code basically does is place a title and button on our screen.
Whenever we click on the button, the next level will be loaded. Now,
this code may look quite different from what we've done before, so I will
explain it after we see exactly what this code does.

4. After saving the code, attach the MainMenuGUTI script to the Main Camera
object by dragging the script onto the object in the Hierarchy view. Once

you complete that, save everything and start up the game! The following
screenshot shows what we've created:

X

x
o EIEIFA L[] T— rr—

€ Game
Standalene (1024x768) -

Maximize on Play | Stats | Gizmaos (7

Twinstick Shooter

Start Game

At this point, you should have a very simple main menu screen. Now when
we click on the Start Game button, we will move on to our game!

M If you are not able to load the game level, make sure that
Q your Scene from the last chapter is named Chapter_1 and
itis included in the Build Settings.

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

The anatomy of a GUI control

The most important concepts to grasp first are the GUI . Button and GUI.Label
functions. Both of these functions are what we refer to as a GUI control, and there
are many others which we will be using in the future. So, to clear up any confusion,
let's talk about them now.

Creating any GUI control consists of the following:

ControlType (Position, Content)

The parts of the preceding line of code are explained in the following sections.

ControlType

The controlType function is a function that exists in Unity's GUI class, and is the
name of the element that you want to create in the world. In the preceding code,
we used GUI.Button and GUI.Label, but there are many more.

. For more information on all the different kinds of controls, there
& are additional definitions for the functions. You can check them
s outathttps://docs.unity3d.com/Documentation/
Components/gui-Controls.html.

Position

The Position parameter is where you want to place the object in the screen space.
In the previous chapter, we talked about viewport and screen space (pixel space).
When working with the GUI class like we are in this example, we have to manually
position each element that we place on the screen based on the screen space in pixels.
To do that, we want to know the position (x, y) that we want to place the object at,
and the size (width, height) of that object. These are the four parameters of the Rect
structure, which itself is the first parameter that we provide to many of the GUI

class functions.

Since we want this code to work on as many projects as possible, I don't want to
hardcode what the middle of the screen is. Thankfully, the Screen.width and
Screen.height properties can be used to let me know the current dimensions
of the screen in pixels, no matter what screen size the game is on.

The first thing I need to know is how large I want my displayed objects to be. The
constructor of the Rect class takes in four floats, so I need to use floating point
numbers (add . 0f to whole number values to use them as floats).

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

For my button, I'm creating two variables, buttonWidth and buttonHeight, to fill in
values for the third and fourth parameters of the Rect variable.

By setting the but tonX and buttonY values inside the onGUI function, if at any time
during the game we change the resolution of the game or port our game to other
places, the GUI will work without any modifications, which is pretty great. For the
title of our screen, I'll just put in some values to show that we do not need to create
variables for this.

The X and the Y position set the top-left of our object, which is great if we're putting
something on the top-left. However, if we just set the middle of the screen, it will be
a tad offset. So, we'll need to move our position to fit the size of our buttons as well.

Content

The second and final argument for the control is the actual content that we want to
display with the ControlType we are using. Right now, we're just passing in a string
to display, but we can also display images and other content as well, including other
controls. We will talk about other pieces of content that we can add in later.

GUIL.Button

One of the most common Ul elements is the But ton control. This function is used to
render a clickable object. If you look at the code from the MainMenuGUT script, you'll
notice that the button is cased inside of an if statement. This is because if the button
is clicked on, then the function will return true when the button is released. If this is
true, we will load the level we created in the previous chapter.

GUIl.Label

The Label control is used to display static data on the screen that the player will not
be able to interact with. This is quite similar to the GUIText objects that we created
in the previous chapter. Labels can contain text, textures, or both. In our case, we are
just displaying some text.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

Customizing the GUI

While it is great that Unity provides us with all of this functionality to save us time
in creating elements, the actual aesthetics leaves a little to be desired. Thankfully,
UnityGUI allows us to customize the appearance of our controls by making use of
GUIStyle, which is an optional third parameter to our control functions. If we do
not specify a GUIStyle parameter, Unity's default will be used, which is what we
experienced last time. This can work fine while testing something out. However,
since we're trying to create a polished and complete project, we're going to create
one of our own by performing the following steps:

1. Open up the MainMenuGUI script file and modify the function to
accommodate the changes in bold:
using UnityEngine;
using System.Collections;

public class MainMenuGUI : MonoBehaviour {
public int buttonWidth = 100;
public int buttonHeight = 30;
public GUIStyle titleStyle;
public GUIStyle buttonStyle;

void OnGUI ()
{
//Get the center of our screen
float buttonX = (Screen.width - buttonWidth) / 2.0f;
float buttonY = (Screen.height - buttonHeight) /
2.0f;

//Show button on the screen and check if clicked
if (GUI.Button(new Rect (buttonX, buttonY,
buttonWidth, buttonHeight),
"Start Game", buttonStyle))

// If button clicked, load the game level
Application.LoadLevel ("Chapter 1");

}

// Add game's title to the screen, above our button
GUI.Label (new Rect (buttonX + 2.5f , buttonY - 50,
110.0f, 20.0f),
"Twinstick Shooter", titleStyle);

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Once finished, save the file into your scripts folder and then move
back into Unity. You should see the two variables showing up in the

Inspector section:

File Edit Assets GameObject Component

E$|S|:ﬂ: [=8 Center| @ Local |

= Hierarchy |
Create = | (orAll

Backgrﬁl.]ﬁd_
e

. Console

3 Project

Window Help

.= ﬁSce_ne_]_G Game | Animator .=

) ||| Standalone (1024x768)

T | Maximize an

Create © @

¥ Favorites Assets - Scripts

1T

V%Assets EnemyBeh..

Wl Animations
ﬁFont
&5 Prefabs = 4

= =
B i LS.

5 Sounds
& Sprites

MaveTowar..

GameContr.. LaserBehav.

PlayerBeha..

T -

MainMenu...

| Layers

-] | Layout

® Inspector |

Depth

Rendering Path
Target Texture
Occlusion Culling
HDR

i
0

¥ & ¥ GuiLayer

[%

Y M Flare Layer

& %

» (0 M Audio Listener

%,

v || M Main Menu GUI (Script)

Script
Button Width
Button Height

|| = Title Style

¥ Button Style
Marme
¥ Normal
* Hover
» Active
* Focused
¥ On Normal
On Hover
» On Active
P On Focused
¥ Border
Left

Right

[%
It MainMenuGUIL Lo}
100

30

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

3. For the Title Style option, navigate to Normal | Text Color and put in
white. Change the Font option to the OSP-DIN font we added in the
previous chapter, the Font Size option to 42, and the Alignment option
to Middle Center:

File Edit Assets GameObject Component Window Help

E & | 'S | [s Center| @ Local | [Layers

= Higrarchy | .= #5Scene | € Game |Animater .= | © Inspector |

Create = | (oo All) | Standalone (1024x768) " | Maximize on Rl w Tit|e Style

Background 3 Mame

¥ Normal
Background m o
TextColor [|#
* Hover
P Active
* Focused
» on Normal
= On Hover
P On Active
_@ProjT] Console i fopused
» Border

Create ™ a
: » Margin

¥ _ Favorites Assets » Scripts
All Materials = Padding
All Models | \ » Overflow
All Prefabs ~ gy = 5 =11 1 Fant |4 OSP-DIN
I All Scripts L1 1T b 1T i Font Size 42
Font Style | Mormal 4]
W Animations Alignment
& Font Word Wrap -
&5 Prefabs = ma Rich Text)
il Scenes L IT 1T Text Clipping 0
== | Image Position | Image Left

Vﬁﬂssets EnemyBeh.. GameCantr. LaserBehawv. MainMeanu..

ﬁs::unds MoveTowar.. PlayerBeha.. Content Offset

5 sprites - - [0 v [0

4. Now, for the buttonStyle variable (Button Style in the inspector), we're
first going to need some additional images for our buttons. So, go into
your Chapter 2/Assets location, which you should have obtained from
Packt Publishing's website, and drag-and-drop the new images into our
Sprites folder.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

5. Once that's finished, set the Normal, Hover, and Active Background
properties to the blue, yellow, and green buttons, respectively. Next, set the
Border property to 10 in each of the four directions. Setting the border will
make sure that the background images do not exceed those many pixels in
each of those directions. This is great for objects that can be different sizes,
such as buttons and text fields. Finally, set the Font option to OSP-DIN and
the Alignment option to Middle Center:

File Edit Assets GameObject Component Window Help

-] | Layout

H#:Scene | € Game | -Animator .

| Layers

‘= Hierarchy | -=) Inspector |

Create = | (arAll

" || | standalone (1024:768)

3 project

Create ~

v Assets
@l Animations
& Font
& Prefabs
ﬁScenes
& Scripts

| Hconsole

T | Maximize on

[Assets » Sprites

background Backgroun..

°o @¢

buttanVellaw enemy

buttanBlue buttanGreen

o1 § ¢

plavership

——

¥ Mormal
Background
Text Color
¥ Hover
Background
Text Color
¥ Active
Background
Text Color
» Focused
¥ On Normal
* On Haver
¥ On Active
¥ On Focused
¥ Border
Left
Right
Top
Bottom
» Margin
& Padding
= Overflow
Font
Font Size
Font Style
Alignment

buttenBlus

I

buttonyellow o]

¥

buttonGreen o]

7

[405P-DIN
0
| Marmal

| Middle Centar

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

6. With all of that done, save your scene and run the game as shown in the
following screenshot:

o =

o EIFIFA el

€ Game =
Standalone (1024:x768) + Maximize on Play | Stats | Gizmes =

Twinstick Shooter

We now have something that already looks a lot better than what we had before, and
you learned how to work with different styles!

Pausing the game

Now that we have started on our main menu, let's add some additional GUI
functionality to our game, adding in the ability to pause our game and restart it.
However, before we do that, let's take a look at some stuff we can do to make our
lives easier when it comes to customization:

1. We also want to make these buttons have the same appearance as the stuff
we've done previously. However, instead of having to set these properties
every single time, we can use something called a GUISkin to change what
the default controls will appear like by setting the GUI . skin property to a
new one.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

2. Create a GUISkin by navigating to Project | Create | GUI Skin, and rename
the skin to GuISkin. Open up the Button tab, and you should notice it looks
exactly the same as the previous section. Do those same changes that we did
previously here, but change the Text Color property to black by clicking on
the current color and then selecting black from the color cube that pops up.
Alternatively, you can set the R (red), G (green), and B (blue) values to 0 and
the a (alpha, which is the transparency) to 255 in the slider section.

RGBA colors use values between 0 and 255, with 0 being no
+ color and 255 being full color. Unlike in painting where if
you keep adding colors, it'll get darker on the computer, the
’ colors will get brighter and the screen lighter. All the colors
on your computer monitor can be represented in this way.

3. Also, change the Font property to OSP-DIN so that our fonts will not
change anywhere. Finally, for the Label section, change Alignment
option to Upper Center.

4. Now that we have a basic knowledge of GUISkins, let's actually implement
the pause menu. Right-click on the scripts folder you created earlier and
then click on Create and then select the C# Script label. Call this new script
pauseMenu. Open the MonoDevelop IDE and use the following code:
using UnityEngine;
using System.Collections;

public class PauseMenu : MonoBehaviour

{

public static bool isPaused;
public float windowWidth = 256;
public float windowHeight = 100;

public GUISkin newSkin;

void Start ()

//We don't want the game paused when it starts and/or resets
isPaused = false;

}

void OnGUI ()

{

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

// Set the GUI's default skin to the one we set here
GUI.skin = newSkin;
if (isPaused)
{
// First, we pause the game
Time.timeScale = 0.0f;

// Then we need to display the pause menu
ShowPauseMenu () ;

}

else

{

// Make the game run like normal
Time.timeScale = 1.0f;

void ShowPauseMenu ()

{

// Then we need to display the pause menu
float windowX = (Screen.width - windowWidth) /
float windowY = (Screen.height - windowHeight)

I

2
/ 2;

GUILayout .BeginArea (new Rect (windowX, windowY,
windowWidth, windowHeight)) ;

if (GUILayout.Button ("Resume"))

{

//resume the game
isPaused = false;

}

if (GUILayout.Button ("Main Menu"))

{

Application.LoadLevel ("Main Menu") ;

}

if (GUILayout.Button ("Exit Game"))

{

// Only works when published
Application.Quit () ;

}

GUILayout .EndAreal() ;

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This script uses a Boolean (true/ false) value to determine if the game is
paused or not. If the game is paused, we set the Time.timeScale property to
0, which means that nothing can move because time has frozen. The Time.
timeScale property changes the scale time. For example, if we set it to 0.5f%,
then time will run two times slower than normal (1. 0£). This will freeze the
normal objects, but GUI buttons will still work. In addition, I also called the
ShowPauseMenu function, which will display a series of buttons that will let
the player resume, go to the main menu, or quit the game.

GUILayout

Another thing you may have noticed is the fact that I am using the GuILayout class
instead of the GUI class that we used in the Adding in points, score, and wave numbers
section in Chapter 1, 2D Twin-stick Shooter without writing code. Using the GUI class
is great if you want to have precise control on where and how things are drawn.
However, if you do not want to manually specify a position and are okay with
Unity automatically modifying the size and position of controls, you can use the
GUILayout class.

By default, the GuILayout class will just put the buttons up at the top-left side, but

I want our pause menu to be on the center of the screen. So, I specify an area that I
want the menu to be in using the Beginarea function. Anything I place before I call
the Endarea function will be inside that area, and GuILayout will attempt to place it
in a pleasing way for me. You need to perform the following steps:

1. With the script written, add the behavior to the Main Camera object by
dragging and dropping. Set the New Skin property to the GUISkin we
created previously.

When working on larger projects, it may be a good idea
to use a GUISkin instead of GUIStyles to skin everything,
%“ by default, to something else. For more information on
’ GUISkins, check out https://docs.unity3d.com/
Documentation/Components/class-GUISkin.html.

2. Now, we need to configure the game such that the player can pause the game
when he/she presses the Esc key. Also, if the game is paused, no one can
move but the player can still rotate and shoot, which we don't want. To fix
this, we will need to modify the player behavior script; specifically, we need
to modify the Update function to support pausing:

void Update ()

{

if (Input.GetKeyUp ("escape"))

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

// If false becomes true and vice versa
PauseMenu.isPaused = !PauseMenu.isPaused;

}

if (!PauseMenu.isPaused)

{
// Rotate player to face mouse
Rotation () ;
// Move the player's body
Movement () ;

foreach (KeyCode element in shootButton)

{

if (Input.GetKey (element) && timeTilNextFire < 0)

{

timeTilNextFire = timeBetweenFires;
ShootLaser () ;
break;

timeTilNextFire -= Time.deltaTime;

}

Normally, we'd need a component to be attached to an object to use it.
However, since the PauseMenu. isPaused variable is both public and static,
anyone can modify it.

3. Now, navigate to File | Build Settings and add both the Main Menu and
Game (Chapter_1) scenes to your Scenes In Build property if you haven't
already. Afterward, make sure that the Main Menu scene is in the 0 place.
If it is not, feel free to drag it up there via the mouse.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

4. Save your files and start up the game once again, as shown in the
following screenshot:

File Edit Assets GameObject Component Window Help

o EIEIEA

€ Game =
Standalone {1024:768) = Mazximize on Play | Stats | Gizmes ~

—%
~ Resume

Main Menu

Now, we have a fully functional pause menu that will allow us to press the Esc key
and leave what we're doing in the project. We've also made it incredibly easy for us
to draw buttons in the style that we created for other sections.

Restarting the game

There may come a time in a game when a player makes a mistake and would like to
restart the level in the game they're currently playing. If you prepared your project
ahead of time like we have, it's actually quite easy to get this functionality placed
into your game. With that being said, let's implement that functionality now! We will
perform the following steps:

1. Open up the pauseMenu script and add the following highlighted code:

GUILayout.BeginHorizontal () ;

if (GUILayout.Button ("Resume"))

{

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

//resume the game
isPaused = false;

if (GUILayout.Button ("Restart"))

{

Application.LoadLevel (Application.loadedLevelName) ;

}

GUILayout.EndHorizontal () ;

2. Once finished, save your file and move back into Unity and play the game!
The following screenshot depicts the game screen:

£

File Edit Assets GameObject Component Window Help

o EIEFA me
€ Game
Standalene (mzunnj_ =

Score: 80

[Layers - [Layout -]

Maximize on Play | Stats | Gizmes

MainMenu
Exit Game

Simple enough! We've now added a new button to our menu and when we click on
it, we load the currently loaded level.

If you use this implementation in your own projects, be sure to
initialize all static variables inside your Start function unless

you want them to be consistent between run-throughs.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

More on the GUILayout class

By default, when you use the GuILayout class, controls will appear one after another,
from top to bottom, by default. However, there will be times in which you'd like to
have more control over what's going on without wanting to hardcode the positions
of each element. Some of the various options available to you is horizontal and
vertical groups.

Just like we called GUILayout .BeginArea and GUILayout . EndArea previously,
you will need to call functions to start or end these groups, such as the GuILayout.
BeginVertical and GUILayout.EndVertical methods we used in the preceding
example.

Any controls placed inside a horizontal group will always be laid out horizontally.
Any controls inside a vertical group will always be laid out vertically. This sounds
simple enough, and it is. However, when you realize that we can use these groups
inside each other, it gives us the ability to create whatever you can imagine for

the UL

For more information on the GUILayout class, check out
s http://docs.unity3d.com/ScriptReference/GUILayout.html.

Creating an Options menu

Something that many games also need is an Options menu, so let's create it by
performing the following steps:

1. Go back into our PauseMenu script.

The first thing we're going to want to do is add an additional variable, but
we can't use a Boolean value (true/false) because we want an option of
one of three constant things. We could create an integer and do something if
the value is 0, something else if 1, and something else if it is 2. However, that
wouldn't look very elegant and would require us to memorize the values we
associate with a particular thing. To solve these issues, we will instead create
an enumeration. Enumerations, often referred to as enums, are a distinct
type that we create, that is, they are themselves a collection of constant
values. Place the following two lines after you enter the class:

enum Menu{None, Pause, Options};
private Menu currentMenu;

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

Notice how we are able to create a variable of the type Menu here; that's
because we used the enum keyword to define a type called Menu, which can
have one of the three values: Menu . None, Menu. Pause, and Menu.Options.

We will be using this value to determine whether we should show which
menu we currently want to be at: the normal pause menu, the Options
screen, or nothing when we enter each onGuUT call.

Under the hood, currentMenu is actually an integer with a value of o for
Menu.None, 1 for Menu. Pause, and so on. However, it is much easier
to read and understand what it is doing.

2. After this, we need to initialize the variable inside our Start function:

currentMenu = Menu.None;

The following screenshot shows the code:

void Start()

i
//He don't want the game psused when it starts and/or resets
isPaused = false;
currentMenu = Menu.

£ Hone Menu
Hone
void OnGUI () Options —

i =
#| Pause
GUI.skin = newS5}

if(isPaused &L&
{
currentMenu

One of the neat things about using an enum is the fact that when you use it
inside MonoDevelop, it will display all the possible options that you want to
pick. Using this system, we will make it quite easy to add additional menus
of your own!

3. After this, we will need to rewrite the onGUI function to reflect our new state:
void OnGUI ()

{

GUI.skin = newSkin;

if (isPaused && currentMenu == Menu.None)

{

currentMenu = Menu.Pause;

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

//Check if we are at a menu

if (currentMenu == Menu.None)
Time.timeScale = 1.0f;
return;

//We're at a menu, so let's pause the game
Time.timeScale = 0.0f;

switch (currentMenu)
{
case Menu.Options:
ShowOptionsMenu () ;
break;
case Menu.Pause:
ShowPauseMenu () ;
break;

}

The first change you'll notice is the fact that now we check to see if we are
currently not at a menu and paused before going to the pause menu. This
will ensure we can go to any other menu that you'd want to go to and the
game would still be paused.

Next, you'll see the other new aspect of C# that we'll talk about now:
a switch statement:

int caseSwitch = 1;
switch (caseSwitch)
{
case 1:
print ("Case 1");
break;
case 2:
print ("Case 2");
break;
default:
print ("Default case");
break;

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

A switch statement (as seen in the preceding code) is used when we want

to do something based on a number of single values, and doing something
different based on the values (going to the default value if none of the other
values are valid). These are commonly used with enumerations. Based on the
value that currentMenu has, it will either return in the first i £ check or show
the Options or Pause menu.

Unlike some other programming languages, C# requires the
end of the switch sections, including the final one, to be
unreachable. That is, your code may not fall through into the
" next part of code. Typically, we solve this by adding a break
% to exit outside a switch statement.

Y

For more information about switch statements,
check out http://msdn.microsoft.com/en-us/
library/06tcl47t.aspx.

4. Now, at this point, we need to write the ShowOptionsMenu function and
update the showPauseMenu function to add access to the Options menu.
Since both of these functions need to draw a window, the first thing I'm
going to do is create a new function called Buildwindow:

void BuildWindow ()

{

float windowX = (Screen.width - windowWidth) /
float windowY = (Screen.height - windowHeight)

’

2
/ 2;

GUILayout .BeginArea (new Rect (windowX, windowY,
windowWidth, windowHeight)) ;

}

5. Next, we will need to rewrite the ShowPauseMenu function to add access
to the Options menu:

void ShowPauseMenu ()

{

BuildWindow () ;
GUILayout .BeginHorizontal () ;

if (GUILayout.Button ("Resume"))

{

//resume the game
isPaused = false;

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

currentMenu = Menu.None;

}

if (GUILayout.Button ("Restart"))

{

Application.LoadLevel (Application.loadedLevelName) ;

}

GUILayout .EndHorizontal () ;

if (GUILayout.Button ("Options"))

{

currentMenu = Menu.Options;

}

GUILayout .BeginHorizontal () ;

if (GUILayout.Button ("Main Menu"))

{

Application.LoadLevel ("Main Menu") ;

}

if (GUILayout.Button ("Exit Game"))

{

// Only works when published
Application.Quit () ;

}

GUILayout .EndHorizontal () ;

GUILayout .EndArea () ;

}

Now, let's implement our new function, ShowOptionsMenu:

void ShowOptionsMenu ()

{

BuildWindow () ;

// Instead of the default blank background,

// we will use what the GUISkin uses for the box
properties

GUILayout.BeginVertical ("box") ;

// Set our volume

GUILayout .Label ("Master Volume - (" +
AudioListener.volume.ToString ("f2") + ")");

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

AudioListener.volume = GUILayout.HorizontalSlider
(AudioListener.volume, 0.0f, 1.0f);

// Display and add the ability to change graphics
quality
int currentQuality = QualitySettings.GetQualityLevel () ;
string qualityName = QualitySettings.names [currentQuality] ;
GUILayout.Label ("Quality - " + qualityName) ;

GUILayout .BeginHorizontal () ;

if (GUILayout.Button ("Decrease"))

{

QualitySettings.DecreaseLevel () ;

}

if (GUILayout.Button ("Increase"))

{

QualitySettings.IncreaseLevel () ;

GUILayout .EndHorizontal () ;

if (GUILayout.Button ("Back"))

{

currentMenu = Menu.Pause;

GUILayout.EndVertical () ;

GUILayout .EndArea () ;

}

If we go to the Options screen, then the first thing I do is create a vertical
group passing in a parameter. This parameter is a string that tells the group
to use that following type's properties for this group. Since we are using box,
it looks at our GUISkin and grabs whatever background texture was used for
it. Note that this is a texture provided to us by Unity, which you should feel
free to replace on your own.

The first item that we add to the GUL is a label displaying the value of
AudioListener.volume, the master volume of our scene. To do so, use the
ToString function to convert the float to a string. The £2 parameter stands
for fixed point 2. It rounds the number into a fixed-point value with two
decimal places.

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

+ If you want to convert a float to an integer, you may consider
using the Mathf . Round function, which will round a number

to the nearest integer.

The next section has us using horizontal sliders. The GUI.HorizontalSlider
and GUI.VerticalSlider functions are used to draw horizontal and vertical
sliders respectively. This slider can be used to specify a number within a
certain range. In the preceding example, we have a horizontal slider that

we used for the volume of our game in the range of 0 to 1. AudioListener.
volume is a static variable, so it will keep whatever value you have set for it
as long as the game is going on.

The slider functions take the current value of the slider and the minimum
and maximum values of the slider. The preceding example shows how to
use a horizontal slider, but a vertical slider uses exactly the same parameters
except the slider is drawn vertically instead of horizontally.

After this, we save all of our files and then go back into Unity and run the
game, as shown in the following screenshot:

=

File Edit Assets GameObject Component Window Help

(O EXS[=] IIC] | rrr—

€ Game
Standalons (1024x768) -

Score: 10 @

.Resyma ’[\ 3
Dpiians'

Main Menu

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs

Over the course of this section, we've done two things. First of all we changed the
pause menu to now have an additional Options menu.

And when we click on the Options button, we will see a separate menu that will
allow users to modify the Master Volume value as well as the Graphics Quality
value of their project. This is shown in the following screenshot:

£

File Edit Assets GameObject Component Window Help

Standalone (1024x768)

Score: 10

P\

Master’o‘n}ume_ =(0.22)

Graphics Quality - Fantastic
Decrease Increase

Back

For more information on the UnityGUI system, there is a GUI scripting guide
available at http://docs.unity3d.com/Manual /GUIScriptingGuide.html.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Summary

With that, we now have most of the commonly needed features that most games
need to be completed. With the basis created here, you can easily add menus and
features to make your game great! In the next chapter, we will start with a new
project with more exciting things for us to work with

and explore even more of what Unity has to offer!

Challenges
For those of you who want to do more with this project, there are still plenty of

things you can do, especially after finishing the rest of this book. Here are some
ideas to get you thinking;:

Add a Credits screen to your main menu

Add in three color sliders to customize your ship's color (renderer.
material.color) with red, green, and blue values

Add in Music Volume and SFX Volume sliders, and use those values to set
the volume of sounds you play!

Modify the GuIStyle parameter to reflect your own game!

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

At this point, we have a chance to work on a full game, but we've only used 2D so
far. In this chapter, we will explore how we can use the concepts that we learned in
2D and use them with a 3D game with 2D gameplay.

As long as we have played games, there has been one particular genre that has stayed
with us almost from the beginning, the platformer. Starting with Donkey Kong with
the familiar content that we know, refined in Super Mario Brothers, given more action
with Mega Man, taken faster with Sonic the Hedgehog, and used even today with games
such as Terraria, Super Meat Boy, and Child of Light, there is something that draws us to
this specific type of game, especially within the indie game community.

A platform game (known commonly as a platformer) consists of a player controlling
a character that can move around a game environment with extensive jumping
between platforms, hence the name.

Project overview

Over the course of this chapter, we will create a complete side-scrolling platformer
project. We will learn the similarities between working in 2D and 3D and the
differences, in particular when it comes to Physics.

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Tile-based level creation

* Adding player functionality

* Adding collectables/power ups

* Designing the level layout and background

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

Prerequisites

As in Chapter 1, 2D Twin-stick Shooter, you will need Unity installed on your
computer, but we will start a new project from scratch.

This chapter uses no graphical assets; however, the completed project and source
files can be downloaded from the example code provided for this book on Packt's
website (http://www.packtpub.com).

Setting up the project

At this point, I assume that you have a fresh install of Unity and have started it up:

1. With Unity started, go to File | New Project. Select a Project Location of
your choice somewhere on your hard drive, and ensure that you have Setup
defaults for set to 3D. Once completed, select Create. At this point, we will
not need to import any packages, as we'll make everything from scratch.
From there, if you see the Welcome to Unity pop up, feel free to close it out,
as we won't be using it.

2. Create the following folders just as we described in the previous chapters:

° Prefabs

°® Scenes

o

Scripts

Tile-based level creation

While our previous game worked by only needing to spawn enemies in the

world, for most games with content, you'll typically have levels, each with its own
environment. When building levels in games, there are some advantages to placing
everything by hand, but if you're creating a game with many levels, that work will
decrease your productivity. It's also important to note that the more assets you create
for your game, the higher the cost.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

With that in mind, it's a much better idea to create parts that can be reused to create
games. If you've played older 2D games in the past, such as an adventure, RPG,

or platforming games, you may have realized that there were a lot of places in the
worlds that looked similar to each other, such as the trees, a wall, a chest, door, and
so forth.

The reason they looked similar is due to the fact that they were using the same
sprites. This is because they were truly tile-based games. A tile-based game is where
the playing area consists of small rectangular, square, or hexagonal graphic images,
referred to as tiles. Imagine a grid of blocks where every block is given a number or
ID. Based on the ID, the game will determine how that grid is drawn and behaves
when a player interacts with it.

An important thing to mention is that tile-based games are not a distinct genre; rather,
the term refers to the technology a game engine uses for its visual representation. For
example, most of the Pokémon series of games are top-down, role-playing video games,
and the traditional Mario series of games are side-scrolling platformers, but both use

a tile-based system for graphics. Tile-based engines allow developers to create large
levels quickly with relatively few art assets, which is great as a programmer.

To show how easy it is to build, we will code a tile-based system for this project:

1. The first thing that we're going to want to do is actually create the
blocks we'll be placing for the world. Let's first create a cube by selecting
GameODbject | Create Other | Cube.

2. We want this cube to have a collision so that our player can collide against
it, but this time we will use a box collider. Check Inspector to confirm that
it is there. If not, add this component by selecting Component | Physics |
Box Collider.

The box collider is the 3D equivalent of the box collider 2D component
for 3D space.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

3. Rename the cube to wall by selecting the top bar in Inspector, renaming it,
and pressing Enter. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

E '*’ | S | iz =1 Center @Locai | | Layers = | | Layout -]
= Hierarchy | B it scene € Game 28 A = ®Inspector | LR
| Textured +| | RGR +|| 20] 3 | *| | Gizmos E Clstatic + |~

| Create ~ !_=_<A'a1\l ’
Tag | Untagged | Layer | Default |

¥ .~ Transform @ %
Position X0 jria lz{o
Rotation X 0 |¥io Z/0

Scale H1 | Z|1

¥ . Cube (Mesh Filter) I .
Mesh Wi Cube @

¥ 4 ¥ Box Collider @ .
Is Trigger -
Material [Nane (Physic Mati ©
3 Project

_E consale = X0 [xio zZo
| creste | i ' '

avorites Assets -) X1 [211
Il Materials
¥ ./ ¥ Mesh Renderer G %
Il Prefabs
Il Seripts Receive Shadows [
= Materials

Il Models
Cast Shadows (&%)
Prefabs Scenes Scripts Uselight Braseat L]

Wil Prefabs
& Scenes
Wl Scripts

4. In the Project tab, go to the Prefabs folder, and drag-and-drop the Wall
object from Hierarchy into it. Once that is finished, select Wall in Hierachy,
and then delete it by pressing the Delete key.

5. Now, we will be spawning a large amount of objects into our world. It would
be a good idea to have a parent object to store all of these objects to avoid
cluttering our Hierarchy. To do this, let's create an empty game object by
going to GameObject | Create Empty. From there, with the object selected,
go to Inspector, set its name to DynamicObjects, and optionally, for neatness
sake, set its Position to (0, 0, 0).

6. The next thing we will do is create a game controller to hold the
behavior to create our blocks. Create an empty game object with the
name _GameController, and reset its Position to (0, 0, 0).

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

|

before the actual name of the object in my projects, so

it's always at the top of my hierarchy, and hence I have easy access
to it. If this does not work, you can also drag-and-drop objects to

change their place in the hierarchy.

I put the

7. Underneath the name, you'll see the Tag property. Change it from Untagged

to GameController.

8. Next, with the game controller selected, go to the Inspector tab and then select

Add Component | New Script. Once brought to the next menu, change the

language to C#, and set the name of the script to GameController.

9. Select the newly created script, and move it to the Assets\scripts folder.

Go to MonoDevelop by double-clicking on the script file.

10. Inside the newly created code, we will first need to add two new variables

for us to use: 1evel, which will contain the data needed to create our level

and wall, which will contain the block we want to spawn:

new int[] []

level

private int[] []

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

new int

public Transform wall;

}i

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

The wall variable looks similar to things we've created before, but the 1evel variable
looks a bit different.

Working with arrays

The level variable is an array. We could create an integer for each place inside of our
level, detailing what type is there; however, this is quite tedious, and we would have
to remember each element's identifier. An array is a holder of multiple elements of the
same type. To access an individual element of the array, we simply need to specify an
index of where it is placed in between square brackets (the [and] characters). Arrays
are played sequentially in memory, which means it's really easy to move between
elements of them, and it's a very fast operation to access an individual element.

The level variable is actually a multidirectional array, which can be thought of as an
array of an array of integers. We will use a multidirectional array, because it allows
us to draw with numbers like a grid to place each of the elements in our level.

That being said, now we actually need to build the level. To do that, perform the
following steps:

1. Let's create a function called BuildLevel:
void BuildLevel ()

// Get the DynamicObjects object that we created already in the
// scene so we can make it our newly created objects' parent
GameObject dynamicParent = GameObject.Find ("DynamicObjects");

//Go through each element inside our level variable
for (int yPos = 0; yPos < level.Length; yPos++)

{

for (int xPos = 0; xPos < (level[yPos]) .Length; xPos++)

{

// Do nothing if the value is 0

// If the value is 1, we want a wall
if (level [yPos] [xPos] == 1)
{
// Create the wall
Transform newObject = Instantiate (wall, new Vector3 (xPos,
(level.Length - yPos), 0), Quaternion.identity) as Transform;

// Set the object's parent to the DynamicObjects
// variable so it doesn't clutter our Hierachy
newObject.parent = dynamicParent.transform;

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The quaternion class is what is used for rotations inside
4 of Unity. In this instance, Quaternion.identity
@'é‘\ stands for a matrix on rotation. For more information on
quaternions, please check out http://docs.unity3d.com/
ScriptReference/Quaternion.html.

As you can see, we access each of the arrays stored in the level by using
array [index], and for an index inside of that array, we use array [index1]
[index2].

2. Next, we need to actually call this function. Do so in your Start function:
void Start ()

{

}

3. Save the script, and exit out to the Unity editor. When you get back, you
should see under the GameController script that is there in the wall
variable, which still needs a value for its variable. In order to assign the
prefab we created previously, we'll need to go to the folder, and then
drag-and-drop it into the box for the variable and then release the mouse.
Have a look at the following screenshot:

BuildLevel () ;

File Edit Assets GameObject Component Window Help

l*' S o = Center | @ Local umm [Layers ~ | [Layout -

= Hierarchy | -= | #5Scene | € Game 22 Animator o= | © Inspector | e
Create | (GrAll Textured | | RGE || 2p | % | <) | Effects - || Gizmos —’ ™ [GamecContraller [Cstatic
_GameCantraller ™ Tag [Untagged %] Layer [Default 1)
DynamicObjects O %
T - ¥ A~ . Transform v

Position X0 Y0 FA (]
Rotation X 0 Yoo Z|0
Scale ®1 Y1 Z[1
¥ [M Game Controller (Script) @ %
Script - GameController | @
wall A Wall (Transform) | @
[Add Compaonent]
23 Project | Bl Console a.=
| Create L) | &%
v /Favorites Assets - Prefabs

(01 Al Materials

Vi Assets wall

| | = Prefabs |

Wl Scenes
5 Scripts

(1)18,24

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

4. After this, click on the Start button to see the code execute:

o £2

File Edit Assets GameObject Component Window Help

You may see a bit of the result in the Game screen that pops up, but if you click on
the Scene tab, you'll see the level has been built for us!

You can drag-and-drop the Scene tab to share space with the Game tab
if you want, as you can see in the preceding screenshot.

There are a number of other ways that you can use to modify your
layout as well. Some of them are provided and will help your workflow.

To view them, you can either go to the Window | Layouts menu or

select the right-most drop-down menu on the toolbar.
~ I personally use the Default layout for this book, but when I have two

monitors, I like to spread things out with the Game tab on one monitor
and everything else.

One of our technical editors prefers the 2 by 3 layout with a one-column
Project tab (right-click the Project tab, and then select One Column
Layout.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Creating our player

Having the basis of our world is great, but if we don't have a player, it doesn't matter
how nice the level looks. In this section, we will create the actual player that will
walk around and move in the world:

1. Let's first create a capsule by selecting GameObject | Create Other |
Capsule. Have a look at the following screenshot:

| #H scene € Game #2 Animator = | O Inspector | - -
Textured +|| RGB ~ -(_:apsul_e_ | []static =
I Tag | Untagged # | Layer | Default =
¥ .~ Transform ﬁ o,
Position X[-1.937i v 0 lz[o |
Rotation X0 ro 'zlo
Scale ol il B | 211 |
¥ .| Capsule (Mesh Filter) &,
Mesh Wi Capsule | o
¥ & Fcapsule collider [%,
Is Trigger]
Material MNaone (Physic Mat @
L Center
s . . .
~ If you are using Unity 4.6 or above, use the GameObject |
3D Object | Capsule

2. Right now, the capsule is too big to fit in our world because it is larger than
our blocks. To easily fix this, we will set Scale of our capsule to (.4, .4, . 4).
Also, set Position to (1, 2, 0).

3. Now, we want our player to use gravity and forces, so we will need to add a
rigid body component by going to Component | Physics | Rigid Body.

The 2D and 3D Physics systems are not interchangeable. You'll

need to choose one or the other when working on a project.
We're using 3D right now, so you can have a good idea of what

to look out for, and the differences between 2D and 3D.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

4. Next, since we are creating 2D gameplay, we don't want our player to move
in the Z axis, so under Rigid Body, open the Constraints box, and check Z in
the Freeze Position variable. After that, check each axis for Freeze Rotation,
as we do not want our character to change its rotation via Rigid Body (we'll
rotate it via code). Have a look at the following screenshot:

[T Textured :[[RGB s[[20 & [<) | Effects (-] [Gizmas [& ° Mass It .
A y Drag o |
: ‘ Angular Drag |0.05 |
H B - Use Gravity
‘ Is Kinermnatic (|
I. & Interpolate | 1Mone +
i ! Collision Detection | Discrete 3
L, ¥ Constraints
Freeze Position [J® Y Mz
Freeze Rotation (¥ My Mz
4 Default-Diffuse &g %=

5.

After this, all that's left is to create some custom functionality, which
means another script. Create a new script file in the scripts folder
called PlayerBehaviour, and open it in MonoDevelop.

With the PlayerBehaviour script opened, let's first write down each of the
issues we need to solve and make them functions. As programmers, it's our
job to solve problems, and separating problems into smaller pieces will make
it easier to solve, rather than trying to solve the entire thing all at once. Have
a look at the following code:

void FixedUpdate ()

{
// Move the player left and right
Movement () ;

// Sets the camera to center on the player's position.
// Keeping the camera's original depth
Camera.main.transform.position = new Vector3 (transform.
position.x,
transform.position.y,
Camera.main.transform.position.z) ;

}

Next, we write the following code in the Update function:
void Update ()

{

// Have the player jump if they press the jump button
Jumping () ;

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

10.

Update () is great and is called in every frame, but it's called
at random times leading to more instant, but less constant,
» things, such as input. Instead of that, FixedUpdate () is a great
%“ function to use for things that need to happen consistently and
’ for things like Physics (due to its fixed delta time). However, in a
platformer, the player needs to feel a jump instantly, so that's why
I put the Jumping function inside Update.

So, at this point, we have broken apart the player's behavior into two
sections: their movement and their jumping.

Next, we need to declare some variables for us to use as follows:

// Force to apply when player jumps
public Vector2 jumpForce = new Vector2 (0, 450);

// How fast we'll let the player move in the x axis
public float maxSpeed = 3.0f;

// A modifier to the force applied
public float speed = 50.0f;

// The force to apply that we will get for the player's movement
private float xMove;

// Set to true when the player can jump
private bool shouldJump;

I initialized the public data here, but the user can modify the numbers in
Inspector. However, we still need to initialize the private variables in the
Start function, as follows:

void Start ()
{
shouldJump = false;
xMove = 0.0f;
}
Now that we have the variables, we think we need to fill in the
implementation for the Movement function now, as follows:

void Movement ()

{

//Get the player's movement (-1 for left, 1 for right, 0 for
// none)

xMove = Input.GetAxis("Horizontal");

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

if (xMove != 0)

{

}

// Setting player horizontal movement

float xSpeed = Mathf.Abs (xMove * rigidbody.velocity.x) ;

if (xSpeed < maxSpeed)

{

Vector3 movementForce = new Vector3(1,0,0);
movementForce *= xMove * speed;
rigidbody.AddForce (movementForce) ;

// Check speed limit
if (Mathf.Abs(rigidbody.velocity.x) > maxSpeed)

{

Vector2 newVelocity;

newVelocity.x = Mathf.Sign(rigidbody.velocity.x)
newVelocity.y = rigidbody.velocity.y;

rigidbody.velocity = newVelocity;

else

{

}

// If we're not moving, get slightly slower
Vector2 newVelocity = rigidbody.velocity;

// Reduce the current speed by 10%
newVelocity.x *= 0.9f;
rigidbody.velocity = newVelocity;

* maxSpeed;

In this section of code, we use a different way to get input from the player,
the Getaxis function. GetAxis will return a value for directional movement.
The value will be in the range -1 to 1 for keyboard and joystick input, so

it can work on controllers or on various places on your keyboard. Unity
already provides a few preset axes for us, which you can look at. We will

go to these preset axes now.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

11. Back in the Unity Editor, Access the Input properties by going to Edit | Project
Settings | Input. Once there, extend the Jump tab. In Alt Positive Button, put
in up. Have a look at the Axes and Jump tabs in the following screenshot:

It's okay if there is an error shown in the console right now,
v as we haven't created the Jumping function yet.

File Edit Assets GameObject Component Window Help

E ‘*’ G :U: = Center | & Local [Layers =] [Layout -]
= Hierarchy .= #Scene € Game %8 Animatar .= ®© Inspector =

| Create ~ cr ATl Free Aspect Mazximize on Play | Stats | Gizmos * . InputManager
_GameController kr';
Capsule
Directional light ¥ Axes
DynamicObjects Size
Main Camera ¥ Horizontal

» Vertical

b Firel

M Firez

P Fire3

¥ Jump
Mame Jump
Descriptive Mar
Descriptive Neg
MNegative Buttor
Positive Button space

Alt Negative Bu
Alt Positive Butfupl |
Gravity 1000
Dead 0.001
Yﬁses Sensitivity 1000
== Prefabs
ﬁScenes Snap =

. I t
&5 Scripts e]
Type | Key or Mouse Button ¢ |

Axis | X axis ™
Joy Mum | Get Mation from all Ji# |

P Mouse X]
|| InputManaaer.asset b Mo b

12. Next, let's implement the Jumping function, as follows:

void Jumping()

{

if (Input.GetButtonDown ("Jump"))

{

shouldJump = true;

// If the player should jump
if (shouldJump)

{

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

rigidbody.AddForce (jumpForce) ;
shoulddJump = false;

}
}

Now, if we press space bar or the up arrow key, we will turn the shouldJump
Boolean value to true. If it's true, then we'll apply jumpForce to our character.

13. With that completed, let's save our script and jump back into the Unity
editor. Attach the newly created behavior to our player if you haven't
done so already. Have a look at the following screenshot:

o £2

o EIEIES [11 []

€ Game .
Standalone (1024x768) ~ Maximize on Play | Stats | Gizmes

Great start! We now have a player in our world, and we're able to move around and
jump. However, if you keep playing with it, you'll notice some of the issues this has:
namely, the fact that you can always jump up as many times as you want, and if you
hold a direction key hitting a wall, you'll stay stuck in the air. This could make for
interesting game mechanics, but I'm going to assume this is not what you're looking
for. In addition, all we see at this time is dark grey.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Let's solve those issues now. Perform the following steps:

1. Make sure you have exited the game by clicking on the play button again,
and then create a directional light by going to GameObject | Create Other |
Directional Light.

Make sure you exit the game before making changes, otherwise
s you will lose everything that you've done.

If you go to the Game tab and play the game, you'll see immediately
that the game changes for the better, graphics-wise. Have a look at the
following screenshot:

@ e

File Edit Assets GameObject Component Window Help
M + EXES mel Levers -] [Layows -
T a ats | Gizmos

This is due to our inclusion of the directional light. You can think of a
directional light like the sun in that no matter where you place it, it will affect
objects. You may notice in Inspector that there are a number of properties
that you can use to change the rotation of the light, the color, and how strong
it is. Depending on the game, you may want to modify these properties
accordingly. We'll be looking at it, and other light types, more closely in

our next project.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

i

2. Next, before we solve our movement issues, I wanted to show you a tool that

you can use as a developer to help you when working on your own projects.
Add the following function to your script:

void OnDrawGizmos ()

{

Debug.DrawLine (transform.position, transform.position +
rigidbody.velocity, Color.red);

}

OnDrawGizmos is a function inherited by the MonoBehaviour class that will
allow us to draw things appearing in the Scene view, and sure enough, you
will not see anything in the Game view, but if you look at the Scene tab while
the game is being played, you'll be able to see the velocity that our object is
traveling at. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

Note that the Game tab needs to be active before Input registers any keys

pressed, which is why I have both tabs open. You can also click on the
L

Gizmos button on the right hand side of the Game tab in order to see the
Gizmos during the game as well.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

In this example, the red line shows that I'm jumping up and moving to the
left-hand side. If you look at the Scene view when the player is walking,
you'll see little bumps occurring. This isn't something we like to see, as

we expect the collision to flow together. These bumps occur, because the
moment we hit the edges of two separate boxes, the collision engine will

try to push the player in different directions to prevent the collision from
happening. After the collisions occur, the Physics engine will try to combine
both of those forces into one, which causes these hiccups. We can fix this by
telling Unity to spend some extra time doing the calculations.

Go into Unity's Physics properties by going to Edit | Project Settings |
Physics. Change the Min Penetration for Penalty property to 0.0001.

The Min Penetration for Penalty property tells us how deep two objects
are allowed to be penetrated by another before the collision solver pushes
them apart.

Now there's the matter of being able to jump anytime we want. What we
want to happen is if the player is on the ground, they can jump, but they
cannot jump again until they are on the ground. This is to prevent the case
of being able to jump while falling. So, to do this, we will need to introduce
some new variables inside of our PlayerBehaviour script, as follows:

private bool onGround;
private float yPrevious;

Just like any private variables, we will need to initialize them in our Start
function. Have a look at the following code:

onGround = false;
yPrevious = Mathf.Floor (transform.position.y) ;

Now, in our Jumping function, we just need to add the highlighted part of
the following code:

void Jumping ()

{

if (Input.GetButtonDown ("Jump"))

{

shouldJump = true;

}

// If the player should jump
if (shouldJump && onGround)

{

rigidbody.AddForce (jumpForce) ;
shoulddJump = false;

}
}

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

7.

In our Update function, we will add in a new function for us to check if we
are grounded, as follows:

// Update is called once per frame
void Update ()
{
// Check if we are on the ground
CheckGrounded () ;

// Have the player jump if they press the jump button
Jumping () ;

}

Now, we just need to add in the code for CheckGrounded. Sadly, this isn't
exactly a simple issue to solve without math, so we will actually need to
use some linear algebra to solve the issue for us, as follows:

void CheckGrounded ()
{
// Check if the player is hitting something from
// the center of the object (origin) to slightly below the
// bottom of it (distance)
float distance = (GetComponent<CapsuleCollider>().height/2 *
this.transform.localScale.y) + .01f;
Vector3 floorDirection = transform.TransformDirection (-Vector3.
up) ;
Vector3 origin = transform.position;

if (!onGround)

{

// Check if there is something directly below us
if (Physics.Raycast (origin, floorDirection, distance))

{

onGround = true;

}
// If we are currently grounded, are we falling down or jumping?
else if ((Mathf.Floor (transform.position.y) != yPrevious))

{

onGround = false;

// Our current position will be our previous next frame
yPrevious = Mathf.Floor (transform.position.y) ;

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This function uses a Raycast function to cast an invisible line (ray) from origin in
the direction of the floor for a certain distance, which is just slightly further than our
player. If it finds an object colliding with this, it will return true, which will tell us
that we are indeed on the ground.

In the game, we can leave the ground in two ways, by jumping or by falling down

a platform; either way, we will change our y position. If that's the case, we are no
longer on the ground, so onGround will be set to false. The Floor function will
remove the decimal from a number to allow for some leeway for floating point error.

Now, our only issue resides in the fact that the player sticks to walls if they press into
it. To solve this, perform the following steps:

1. We will simply not allow the player to move into a wall, by not adding a
force if we're right next to a wall. Add the following bolded code to this
section of code in the Movement function:

// Movement ()

// if xMove != 0...

if (xSpeed < maxSpeed)
Vector3 movementForce = new Vector3(1,0,0);
movementForce *= xMove * gpeed;

RaycastHit hit;
if (lrigidbody.SweepTest (movementForce, out hit, 0.05f))
{
rigidbody.AddForce (movementForce) ;
}
}

// Etc.

The sweepTest function will check in the direction the rigid body is
traveling, and if it sees something within a certain direction, it will get hit
with the object that it has touched and return true. We want to stop the
player from being able to move into the wall, so we will not add the force
if that's the case.

2. Now, this works for the most part, except for when we are already along the
wall, jumping up, and other fringe cases. To fix these issues when we touch
a wall, we will do just as we solved the last problem. We will have a variable
that will keep track if we touch a wall, as follows:

private bool collidingWall;

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

3.

After that, we need to initialize it in Start, as follows:

collidingWall = false;

After this, we will use the 3D collision detection functions to determine
whether we're touching a wall, as follows:

// If we hit something and we're not grounded, it must be a wall
or // a ceiling.
void OnCollisionEnter (Collision collision)

{

if (!onGround)

{

collidingWall = true;

void OnCollisionExit (Collision collision)

{

collidingWall = false;

}

You'll notice that the functions look quite similar to the 2D functions apart
from... well, the word 2D.

Next, inside of your Movement function, add the following bolded code:

void Movement ()

{

//Get the player's movement (-1 for left, 1 for right, 0 for
// none)
xMove = Input.GetAxis ("Horizontal");

if (collidingWall && !onGround)

{

XMove = 0;
}
// Etc.

Now, if we collide against a wall, we will stop the player from applying
a force.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

6. Save the script, and go back to Unity. Refresh the scripts if needed, and hit
the play button. Have a look at the following screenshot:

o

File Edit Assets GameObject Component Window Help

Now, our player can jump along walls, fall normally, and can only jump when he is
on the ground! We now have the basis to complete a platformer game!

Creating collectibles

At this point, we have the basis of our game, but now, we need to add some
gameplay to our world. Perhaps we will have it so that we need to collect all
of the coins in the level, and then the goal will open:

1. Create a new particle system by going to GameObject | Create Other |
Particle System (in case of Unity 4.6, go to GameObject | Particle System).
Change the name of the object to Collectible. Next, we need to assign the
object's tag to orb. To do so, select Tag | Add Tag. Once in the Tag menu,
assign Element 0 as orb, and press Enter. Select the Collectible game object
in Hierarchy again, and then select Tag as orb.

2. Under the Shape section, change the Shape variable to sphere and the
Radius to 0.01.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

3. Click on the downward-facing arrow on the right-hand side of Start
Lifetime, and change the values to Random Between Two Constants.
Change those values to 0 and . 2. Do the same with Start Speed between 0
and 1. Make Start Size use random values between 0 and 1.5.

4. Under Start Color, change the value to yellow by clicking on the color to
bring up the color select dialogue. Once there, set alpha (A) to 39. Have a
look at the following screenshot:

Zi| |

¥ Colors ” ;|
Q

¥ Sliders _E
R 255

|
A 55
¥ Presets =
@ Click to add new oreset

5. Next, under Emission, set Rate to 100.

6. Now, add a sphere collider by selecting Component | Physics | Sphere
Collider. Inside Inspector, trigger the Is Trigger Boolean to true,
set Center to (0, 0, 0), and then set Radius to 0. 4. Have a look at the
following screenshot:

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

File Edit Assets GameObject Component Window Help

‘:: 4*’ | o | :I'-': =1 Center| @ Local m [La\rers v] [Layout -]
= Hierarchy # scene 22 Animator Game = | © Inspector | &=
|| Create *| (GrAll | Textured :| | RER | Free Aspect | Maximize| | ™ [Collectible | [/Static v |~
_GameController Tag | @rb + | Layer | Default 5|
Prefab | Select | Rewvert Apply
Directional light (- : » .~ Transform [
DynamicObjects ¥ % Particle System @ %
Main Camera | ©penEditor.,, |
m Collectible
4 R
Duration 5.00
Laaping v,
Prewarm (]}
Start Delay]
— Start Lifetime 1] 0.2 -
B3 project E console - | | Start Speed 0 1 .
G | & [| * Start Size o 1.5 =
A e Tule S reriee o | |start Rotatian o -
T Start Coler
Gravity Multiplier]
Inherit Velocity o
Simulation Space Local 3
Play On Awake v
el Mai Particles 1000 9
/ Emission -

Particle System Curves

7. Finally, drag-and-drop the orb object into the pPrefabs section of the
project folder, and delete the object in Hierarchy.

8. Now, we need to modify our original build-level function to have support
to add these collectibles as well to our level. While we're at it, let's make it
so the level can spawn the player as well. Rename our player object to
Player, and drag-and-drop it to the prefabs folder as well, and delete it
from the Hierarchy section as we will now learn how to spawn it via code.

9. Because we're writing a new function, we have some new variables to
introduce in the GameController class:

public Transform player;
public Transform orb;

10. Then, change the build-level function, replacing what was inside of our for
loops to:

void BuildLevel ()

{
// Get the DynamicObjects object so we can make it our newly
// created objects' parent
GameObject dynamicParent = GameObject.Find ("DynamicObjects");

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

// Go through each element inside our level variable
for (int yPos = 0; yPos < level.Length; yPos++)

{

for (int xPos = 0; xPos < (level[yPos]) .Length; xPos++)
{
Transform toCreate = null;
switch(level [yPos] [xPos])
{
case 0:
//Do nothing because we don't want anything there.
break;

case 1:
toCreate = wall;
break;

case 2:
toCreate = player;

break;
case 3:
toCreate = orb;
break;
default:
print ("Invalid number: "+ (level [yPos] [XPos]) .ToString()):;
break;
}
if (toCreate != null)
{
Transform newObject = Instantiate(toCreate, new
Vector3 (xPos, (level.Length - yPos), 0), Quaternion.identity) as
Transform;

// Set the object's parent to the DynamicObjects
// variable so it doesn't clutter our Hierachy
newObject.parent = dynamicParent.transform;

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

11.

This is the first time you may have seen a switch statement. A switch
statement can be thought of as a nice way to compare a single variable with
a number of different values. In this case, the switch statement that we wrote
in the preceding example could be rewritten as follows:

if (level [yPos] [xPos] == 0)

{
}
else if (level [yPos] [xPos] == 1)
{
toCreate = wall;
}
else if (level [yPos] [xPos] == 2)
{
toCreate = player;
}
else if (level [yPos] [xPos] == 3)
{
toCreate = orb;
}
else
{
print ("Invalid number: "+ (level [yPos] [xPos]) .ToString());
}

But I'm sure you can tell, writing it as a switch statement is much nicer to
look at and requires less code duplication, which is something we want to
reduce as much as possible.

For those of you with a programming background, you are required
% to put a break at the end of each case so that fall-throughs are not
A~ . .
possible in C#.

After this, we need to modify our level array to actually have the collectibles
and player in it. Replace one of the 0s in your level to a 2 to put the

player there and add in some 3s for the player to collect. Mine looks

like the following:

private int[] [] level = new int[] []

{
new intf(J{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
new int([]{1, 0, 0o, 0, 0, 0, O, 0, 0, O, O, O, O, O, O, O, O, O, 1},
new int([]{1, 0, 0o, 0, 0, O, O, 0O, 0, O, O, O, O, O, O, O, O, O, 1},
new int([]{1, 3, o, 0, 0, 0, O, 0O, 0, O, 3, 3, 3, 0, O, O, O, O, 1},
new int([]{1, 0, 0o, 0, 0, O, O, 0O, 0, O, O, O, O, O, O, 1, 1, 1, 1},

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

new int(]{1, o0, 0, 0, 0, 0, O, O, 0O, O, O, O, O, O, O, 1, 1, 1, 1},

’

0

’

1

new int(Jl{1, 1, 1, 1, o, 0, 0, O, O, O, O, O, O, O, O, O, O

new int[]

. 0, 1},
. 0, 1},
. 0, 1},
. 0, 1},
, 0, 1},
. 0, 1},
. 3, 1},
. 0, 1},
. 1, 1},
, 1, 1},
.1, 1},
, 1, 1},
.1, 1},
, 1, 1},
.1, 1},
, 1, 1},

new int[]{1, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, O

new int([]{1, o0, 0, 0o, 0, O, 3, 0, 3, 0, O, O, O, O, O, O, O

new int[l{1, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, O

new int(J{1, 1, 1, 1, 1, 1, 1, o, 0, O, O, O, O, O, O, O, O

new intf(J{1, 1, 1, 1, 1, 1, 1, 0, 0, O, 1, 1, 1, 1, 0, 0, O

new int([]{1, o0, 0, 0, 0, 0, O, O, O, O, 1, 1, 1, 1, 0, 0, O

new int[]{1, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, O

new int([]{1, o0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O

new int[]{1, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, O, O, 1

new int[]{1, o0, 0, 0, 0, 0, O, O, 3, 0, O, O, O, O, O, 1, 1

new int[]{1, 0, 0, 0, 0, O, 0, O, O, O, O, O, O, O, 1, 1, 1

new int[]{1, 0, 0, 0, 3, 0, 0, 1, 1, 1, 1, 0, O, 1, 1, 1, 1

new int[]{1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, 1, 1, 1, 1

new int[]{1, 0, 0, 0, 1, 1, 0, 0O, O, O, O, O, O, 1, 1, 1, 1

new int[]{1, 0, 0, 0, 1, 1, 0, O, O, O, O, O, O, 1, 1, 1, 1

new int[]1{1, 0, 2, O,

new intfJ{1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

} .

7

12. Save your script, and exit back into the editor. Once there, select your

Stats | Gizmos |~

Maximize on Play

n
o
T
z
g
2
£
=
H
5
g
5
2
£
&
S
8
g
o
(=]
2
£
o
]
A
z
2
o
&

o EIEIF:A

GameController class, and then assign the Player and orb variables with

the appropriate prefabs. Finally, save your scene, and run the game. Have

a look at the following screenshot:

(= Center[® Local |

Free Aspect

€ Game

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

And there we go! Our player as well as collectibles are now spawning
via our BuildLevel function. Lastly, let's make it so that we can actually
collect them.

13. After we have the physical representation of the object done, let's now
implement its functionality. Create a new script in our Scripts folder, which
we will name orbBehaviour. Open it up in MonoDevelop and fill it in with
the following;:

using UnityEngine;

public class OrbBehaviour : MonoBehaviour

{

void OnTriggerEnter (Collider other)
{
Destroy (this.gameObject) ;
}
}

14. Assign the orbBehavior component to the orb prefab. Save the scene, and
then play the game. Have a look at the following screenshot:

o
File Edit Assets GameObject Compenent Window Help

o EIEIE [11]

€ Game =
Frae Aspact M Maximize on Play | Stats | Gizmos |+

And with that we can now collect orbs, and they disappear when we touch them!

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

Keeping score

We now want to make it so that when we collect all of the orbs in the level, the goal
will appear, and then you will win the game when you touch it:

1. Go back into MonoDevelop, and select the GameController class. Once there,
add the following variables:

public static GameController instance;
private int orbsCollected;
private int orbsTotal;

While it may make more sense English-wise to use totalOrbs
and collectedOrbs, programming-wise, putting the common
%“ word first means that when you start typing orbs, it will show
’ both options for you when working with code completion in your
own projects.

2. Asnormal, we will need to set these variables as well in the start function
after the BuildLevel function call, otherwise the orb objects will not exist:

GameObject [] orbs;
orbs = GameObject.FindGameObjectsWithTag ("Orb") ;

orbsCollected = 0;
orbsTotal = orbs.Length;

3. We will also want to initialize the _instance variable, but instead of using
Start, we will use awake, as follows:

void Awake ()

{

_instance = this;

}

Awake gets called before start, which is important, because you have to initialize
the _instance variable before you use it. This is known as a lazy singleton.

Singletons

As you work in Unity, you may find that you have certain managers, such as
GameController, that we will only have one of. Rather than having to have other
objects, store them as variables, or find them at runtime, we can use a design pattern
called the singleton pattern. The gist of this is that there is one, and only one, object
of this class that can be created. The version that I am using is the quickest way to get
singleton-like behavior going.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Never use the GameController. instance variable inside
another Awake function, as you are not guaranteed the order

in which they'll be called. However, if you use it in Start
"=~ or any of the other functions we talked about, you'll be okay

because Start is guaranteed to be called after Awake.

As we collect orbs, we want to increase the value of our orbsCollected
variable. Rather than just giving other things access to the variable, let's
wrap this around a function so that we can do other things, such as updating
the GUI later on. Have a look at the following code snippet, which will
increment our orbsCollected variable by 1:

public void CollectedOrb ()

{
}

In our orbBehaviour script we call the function:

orbsCollected++;

void OnTriggerEnter (Collider other)

{

GameController. instance.CollectedOrb();
Destroy (this.gameObject) ;

}

When you access the _instance variable, you get access to the public
functions and variables that exist in the class.

With that completed, save the file and go back to the Unity Editor. Now that
we have this data stored, let's display it on the screen so that players can see.
Go to GameObject | Create Other | GUIText. Place it in the top-left corner

of the screen (a position of 0, 1, 0 with an anchor of upper-left and alignment
of left), and give the object the name GUI - Score.

If you are using the Unity 4.6 beta or higher, simply create
an empty game object, and add a GUIText component from
’ Component | Rendering | GUIText.

Add one last variable to add to GameController, as follows:

public GUIText scoreText;

We need to initialize it in the Start function, as follows:

void Start ()

{

BuildLevel () ;

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

GameObject [] orbs;
orbs = GameObject.FindGameObjectsWithTag ("Orb") ;

orbsCollected = 0;
orbsTotal = orbs.Length;

scoreText.text = "Orbs: " + orbsCollected + "/" + orbsTotal;

}

5. And now, because we have text displaying the orbs, we can now update our
text accordingly. Have a look at the following screenshot:

public void CollectedOrb ()
{
orbsCollected++;
scoreText.text = "Orbs: " + orbsCollected + "/" + orbsTotal;

}

6. With that, save the script, and then go back into the Unity editor. Once there,
set our newly created variable with the GUI text object we created, and then
click on the play button, as shown in the following screenshot:

@ =

File Edit Assets GameObject Component Window Help
o EIEEA [11| D]

€ Game

Free Aspect - Maximize on Play | Stats | Gizmes =

Orbs: 4/9

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

At this point, you can move around the level, and when you collect the orbs, they
will now update the GUI, letting us know how many coins you collected and how
many there are in total in the level. We're making great progress, and we almost
have a full game; we just need one last thing, a way to win!

Winning the game
Now that we have the goals showing, we now need some way in order to complete
the project. With that in mind, let's create our goal:

1. Create a new particle system by going into GameObject | Create Other |
Particle System (in case of Unity 4.6, go to GameObject | Particle System).
Change the name of the object to Goal.

2. Under the Shape section, change the Shape variable to Box, and change Box
Xto 1 and Box Y and Box Z to o.

3. Click on the arrow on the right-hand side of Start Lifetime, and change the
values to Random Between Two Constants. Change those values to 0 and 1.
Do the same with Start Speed between 2 and 4. Make Start Size use random
values between 0 and 0. 5. Change Start Color to Random Between Two
Colors using a green and purple color. Finally, uncheck the Play On Awake
variable. Have a look at the following screenshot:

File Edit Assets GameObject Cemponent Window Help

4{# S | = Center | & Local umm [Layers - J [Layout = I
= Hierarchy = | # Scene e Animator »=| € Game |—'|Which layers are visible in the Scene views | & =
Create 7| (@rAll Textured :| | RGB - | Maxi

-
-
¥ % Particle System Q@ % —

_GameController —C
| open Editor.. |

Directional light "
DynamicObjects m Goal

e
Duration oo
Looping
Prewarm
Start Delay
Start Lifetime
Start Speed
Start Size
Start Rotation

S E ’

GUI - Score
Main Camera

cowocol&wm

3 Project | Elconsole Gravity Multiplier [
Create ~ Q IEIR Inherit Velacity]
¥ Favorites Assets » Scripts Simulation Space Local

Play ©On Awake (m)
Max Particles 1000

All Materials

All Models \

All Prefabs ~ .)
LAl Scripts \ #+ \ # \.’.

' Emission

Rate 10
Time

Y55 Assets GameContr.. OrbBehavi. PlayerBeha.,

& Prefabs e —
& Scenes article System Curves

Bursts Particles

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

With that, you should have a nice stream of particles coming in for your new
goal object!

4. Add in a box collider by selecting Component | Physics | Box Collider.
Toggle the Is Trigger option to true, set Center to (0, 0, 0), and Size
to(1, 1, 1).

5. Now that we have completed the goal's object, let's now have it spawn within
our BuildLevel function in GameController. So, just as we did before, we
drag-and-drop the object to our prefabs folder and delete the original object.
Then, we need to add two new variables for us to use, which are as follows:

public Transform goal;

private ParticleSystem goalPS;

6. After we add the new variables, add in the following in bold to BuildLevel:

void BuildLevel ()

{

// Get the DynamicObjects object so we can make it our newly
// created objects' parent
GameObject dynamicParent = GameObject.Find("DynamicObjects") ;

//Go through each element inside our level variable
for (int yPos = 0; yPos < level.Length; yPos++)

{
for (int xPos = 0; xPos < (level[yPos]) .Length; xPos++)
{
Transform toCreate = null;
switch (level [yPos] [xPos])
{
case 0:
//Do nothing because we don't want anything there.
break;
case 1:
toCreate = wall;
break;
case 2:
toCreate = player;
break;
case 3:
toCreate = orb;
break;
case 4:
toCreate = goal;

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

break;
default:
print ("Invalid number: " + (level [yPos] [xPos]) .
ToString()) ;
break;
}
if (toCreate != null)
{
Transform newObject = Instantiate(toCreate, new
Vector3 (xPos, (level.Length - yPos), 0), Quaternion.identity) as
Transform;
if (toCreate == goal)
{

goalPS = newObject.gameObject.

GetComponent<ParticleSystems () ;

}

// Set the object's parent to the DynamicObjects
// variable so it doesn't clutter our Hierachy
newObject.parent = dynamicParent.transform;

}
}

}

}

7. We also need to add in a 4 somewhere inside our level array, as follows:

private int[] [] level = new int[] []

{
new int(J{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
new int([]{1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1},
new int([]{1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1},
new int([]{1, 3, 0, 0, 0, 0, 0, O, O, O, 3, 3, 3, 0, O, O, 4, 0, 1},
new int([]{1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, 1, 1, 1, 1},
new int([]{1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, 1, 1, 1, 1},
new int(J]{1, o, 0, 0, 0, 0, 0, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
new int[]{1, 1, 1, 1, 0, 0, 0, O, O, 0, 0O, O, O, O, O, O, O, O, 1},
new int([]{1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1},
new int([]{1, o, 0, 0, 0, 0, 3, O, 3, 0, O, O, O, O, O, O, O, O, 1},
new int([]{1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1},
new intfJ{1, 1, 1, 1, 1, 1, 1, 0, 0, 0, O, O, O, O, O, O, O, O, 1},
new int(J{1, 1, 1, 1, 1, 1, 1, o, o, 0, 1, 1, 1, 1, 0, 0, O, O, 1},

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

new int([J]{1, o, 0, 0, 0, 0, 0, O, O, O, 1, 1, 1, 1, 0, 0, O, 3, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, O, 0O, O, O, O, O, O, O, O, 1, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, O, 0O, O, O, O, O, O, O, 1, 1, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, 3, 0, O, O, O, O, O, 1, 1, 1, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, 1, 1, 1, 1, 1},
new int(J]{1, 0, 0, 0, 3, 0, O, 1, 1, 1, 1, o, 0, 1, 1, 1, 1, 1, 1},
new int([J]{1, o, 0, 0, 0, 0, 0, O, O, O, O, O, O, 1, 1, 1, 1, 1, 1},
new int(J]{1, 0, 0, 0, 1, 1, 0, O, O, O, O, O, O, 1, 1, 1, 1, 1, 1},
new int(J]{1, 0, 0, 0, 1, 1, 0, O, O, O, O, O, O, 1, 1, 1, 1, 1, 1},
new int(J{1, 0, 2, 0, 1, 1, 0, O, O, 0, O, O, O, 1, 1, 1, 1, 1, 1},
new intf(J{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

bi

8. Next, in UnityIinspector, go in and assign the Goal object with your prefab
of the game name.

9. With that done, we now need to go in and add in the ability to win. Go to the
CollectedOrb function, and start our particle system when we get all of the
orbs. Have a look at the following code:

public void CollectedOrb ()

{ orbsCollected++;
scoreText.text = "Orbs: " + orbsCollected + "/" + orbsTotal;
if (orbsCollected >= orbsTotal)
{
goalPS.Play () ;
}
}

10. After that, we need to create the script for our goal. Create a new script in our
Scripts folder, which we will name GoalBehaviour. Open it in MonoDevelop,
and fill it in with the following:

using UnityEngine;

public class GoalBehaviour : MonoBehaviour

{

ParticleSystem ps;
void Start ()

{

ps = GetComponent<ParticleSystems () ;

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

void OnTriggerEnter (Collider other)

{ if (ps.isPlaying)
{
print ("You Win!") ;
}
}

}

11. Save the file, and attach it to the Goal prefab. With that all done, save the
scene and hit the play button. Have a look at the following screenshot:

o =

File Edit Assets GameObject Component Window Help
o EIRIFA me

Maximize on Play | Stats Gizmas *

And with that, whenever we collect all of the coins we've placed in our level, the

goal will appear, and then, when we touch it, the Console window will tell us that
we've won!

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Side-scrolling Platformer

Summary

With that, we now have all you need to get started building a side-scrolling
platformer game on your own, adding in unique features and GUI as we discussed
in the previous chapter. While doing so, we also gained an understanding of how
working on 3D games is really not at all different than working with 2D. This will
serve us greatly when we move on to the next chapter, where we will get started
on a new game project!

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

Add in sounds and music to the game, and customize the GUI in the ways
we talked about earlier.

Create levels of your own. Danny Calleri has created a really nice level

editor called Toast Editor that you can run from your web browser to design
levels graphically. To use it, go to http://dannycalleri.github.io/
toasteditor/index.html. When exporting, use the C++ option, and replace
the top line with our levels line, and add new int [] to the beginning of
every line in the array.

Going one step further, instead of creating arrays for the levels, it is possible
to load in text files in Unity so that you can load the levels from a file. For
more information on text assets, see http://docs.unity3d.com/Manual/
class-TextAsset.html.

As it stands, when the player hits one of the orbs, they can jump again.
Adding an additional parameter to the Raycast function with the tag
of the object will solve the issue.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter
Part 1 — Creating Exterior
Environments

Now that we have experience working on all parts of the game in 2D and 3D, let's
spend the next few chapters creating a full-featured game. We will be creating a first
person shooter; however, instead of shooting a gun to damage our enemies, we will
be shooting a picture in a survival horror environment; similar to the Fatal Frame
series of games and the recent indie title DreadOut. To get started on our project,
we're first going to look at creating our level or, in this case, our environments
starting with the exterior.

In the game industry, there are two main roles in level creation: the environment
artist and level designer.

An environment artist is a person who builds the assets that go into the
environment. He/she uses tools such as 3ds Max or Maya to create the model,
and then uses other tools such as Photoshop to create textures and normal maps.

The level designer is responsible for taking the assets that the environment artist
has created and assembling them into an environment for players to enjoy. He/she
designs the gameplay elements, creates the scripted events, and tests the gameplay.
Typically, a level designer will create environments through a combination of
scripting and using a tool that may or may not be in development as the game is
being made. In our case, that tool is Unity.

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

One important thing to note is that most companies have their own
definition for different roles. In some companies, a level designer may
need to create assets and an environment artist may need to create a level
’ layout. There are also some places that hire someone to just do lighting, or
just to place meshes (called a mesher) because they're so good at it.

Project overview

In this chapter, we take on the role of an environment artist whose been tasked with
creating an outdoor environment. We will use assets that I've placed in the example
code as well as assets already provided to us by Unity for mesh placement. In
addition to this, you will also learn some beginner-level design.

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from the beginning to end. Here is an outline of our tasks:

* Creating the exterior environment - Terrain

* Beautifying the environment - adding water, trees, and grass

* Building the atmosphere

* Designing the level layout and background

Prerequisites

As in Chapter 1, 2D Twin-stick Shooter, you will need Unity installed on your
computer, but we will be starting a new project from scratch.

This chapter uses graphical assets that can be downloaded from the example code
provided for this book on Packt's website:

https://www.packtpub.com/books/content/support

In addition, the completed project and source files are located there for you if you
have any questions or need clarification.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The project setup

At this point, I assume you have a fresh installation of Unity and have started it. You
can perform the following steps:

1. With Unity started, navigate to File | New Project.

2. Select a project location of your choice somewhere on your hard drive and
ensure that you have Setup defaults for set to 3D.

3. Once completed, click on Create. Here, if you see the Welcome to Unity pop
up, feel free to close it as we won't be using it.

Level design 101 — planning

Now just because we are going to be diving straight into Unity, I feel it's important to
talk a little more about how level design is done in the gaming industry. While you
may think a level designer will just jump into the editor and start playing, the truth
is you normally would need to do a ton of planning ahead of time before you even
open up your tool.

Generally, a level design begins with an idea. This can come from anything; maybe
you saw a really cool building, or a photo on the Internet gave you a certain feeling;
maybe you want to teach the player a new mechanic. Turning this idea into a level is
what a level designer does. Taking all of these ideas, the level designer will create a
level design document, which will outline exactly what you're trying to achieve with
the entire level from start to end.

A level design document will describe everything inside the level; listing all of

the possible encounters, puzzles, so on and so forth, which the player will need to
complete as well as any side quests that the player will be able to achieve. To prepare
for this, you should include as many references as you can with maps, images, and
movies similar to what you're trying to achieve. If you're working with a team, making
this document available on a website or wiki will be a great asset so that you know
exactly what is being done in the level, what the team can use in their levels, and how
difficult their encounters can be. Generally, you'll also want a top-down layout of your
level done either on a computer or with a graph paper, with a line showing a player's
general route for the level with encounters and missions planned out.

Of course, you don't want to be too tied down to your design document and it
will change as you playtest and work on the level, but the documentation process
will help solidify your ideas and give you a firm basis to work from.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

For those of you interested in seeing some level design documents, feel free to check
out Adam Reynolds (Level Designer on Homefront and Call of Duty: World at War) at
http://wiki.modsrepository.com/index.php?title=Level Design: Level
Design_ Document Example.

If you want to learn more about level design, I'm a big fan of Beginning
Game Level Design, John Feil (previously my teacher) and Marc Scattergood,
Cengage Learning PTR. For more of an introduction to all of game design
from scratch, check out Level Up!: The Guide to Great Video Game Design,
Scott Rogers, Wiley and The Art of Game Design, Jesse Schell, CRC Press.

%@‘ For some online resources, Scott has a neat GDC talk called Everything I
Learned About Level Design I Learned from Disneyland, which can be found
athttp://mrbossdesign.blogspot.com/2009/03/everything-
i-learned-about-game-design.html, and World of Level Design
(http://worldofleveldesign.com/)is a good source for learning
about level design, though it does not talk about Unity specifically.

Exterior environment — terrain

When creating exterior environments, we cannot use straight floors for the most part,
unless you're creating a highly urbanized area. Our game takes place in a haunted
house in the middle of nowhere, so we're going to create a natural landscape. In
Unity, the best tool to use to create a natural landscape is the Terrain tool. Unity's
terrain system lets us add landscapes, complete with bushes, trees, and fading
materials to our game.

To show how easy it is to use the terrain tool, let's get started.

The first thing that we're going to want to do is actually create the terrain we'll be
placing for the world. Let's first create a terrain by navigating to GameODbiject |
Create Other | Terrain:

If you are using Unity 4.6 or later, navigate to GameObject |
o Create General | Terrain to create the Terrain.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

& £S

File Edit Assets GemeObject Component Window Help

4 -+ B3

= Hierarchy .= | “ Scene - ~=| O Inspector i o=
| create -| G@rAT 0 || Testured + + B ec| | 4t - Maximize on Pla = o [Terrain (@ Static

I Main Camera Tag | Untagged + | Layer | Default i)
CTeran |
¥ .~ Transform

2o

Position x[o Y0

Rotation

Y1 z
¥ M Terrain (Script) 2,
Lol [ad[ak [7] 0[5 %]

No tool selected ‘

Please select a taol

¥ s M Terrain Collider L
Is Trigger
Terrain Data

Create Tree Collider[s]

New Terrain (=]

Add Component

3 Project | O console i
| Create -| 0 [&% [*
¥/ Favorites Assets
©LAll Materials
(L All Models
(. all prefabs
(L All Scripts

| B R

At this point, you should see the terrain. Right now, it's just a flat plane, but we'll
be adding a lot to it to make it shine. If you look to the right with the Terrain object
selected, you'll see the Terrain Editing tools, which can do the following (from left
to right):

* Raise/Lower Height: This option will allow us to raise or lower the height of
our terrain up to a certain radius to create hills, rivers, and more.

* Paint Height: If you already know the exact height that a part of your terrain
needs to be, this option will allow you to paint a spot on that location.

* Smooth Height: This option averages out the area that it is in, and then
attempts to smooth out areas and reduce the appearance of abrupt changes.

* Paint Texture: This option allows us to add textures to the surface of our
terrain. One of the nice features of this is the ability to lay multiple textures
on top of each other.

[119]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

* Place Trees: This option allows us to paint objects in our environment,
which will appear on the surface. Unity attempts to optimize these objects
by billboarding distant trees so that we can have dense forests without a
horrible frame rate.

* Paint Details: In addition to trees, we can also have small things such as
rocks or grass covering the surface of our environment. We can use 2D
images to represent individual clumps using bits of randomization to make
it appear more natural.

* Terrain Settings: These are settings that will affect the overall properties of
a particular terrain; options such as the size of the terrain and wind can be
found here.

By default, the entire terrain is set to be at the bottom, but we want to have some
ground above and below us; so first, with the terrain object selected, click on the
second button to the left of the terrain component (the Paint Height mode). From
here, set the Height value under Settings to 100 and then click on the Flatten button.
At this point, you should notice the plane moving up, so now everything is above

by default.

Next, we are going to add some interesting shapes to our world with some hills by
painting on the surface. With the Terrain object selected, click on the first button

to the left of our Terrain component (the Raise/Lower Terrain mode). Once this is

completed, you should see a number of different brushes and shapes that you can

select from.

Our use of terrain is to create hills in the background of our scene so that it does not
seem like the world is completely flat.

Under the Settings area, change the Brush Size and Opacity values of your brush to
100 and left-click around the edges of the world to create some hills. You can increase
the height of the current hills if you click on top of the previous hill. This is shown in
the following screenshot:

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

x“

File Edit Assets GameObject Component Window Help

X

> il]

-—| © Inspector | e

- | Gizmos 3 ™ Terrain [Mstatic +

e — T e .
i Y~ Transform (IS

X0 v
X0 v
X[T v

Position
Rotation

Scale

z'o
zo
[T

¥ MTerrain (Script)

@ %

A ad ([[(W %]

Raise / Lower Terrain ‘

Click ta raise. Hold dawn shift ta lawer,

Brushes

F"‘ﬂﬁﬁﬁgf
T LI s

& s
% s
Settings

[100
100

Brush Size

Opacity

¥ i M Terrain Collider *,
1s Trigger
Terrain Data [=NewTerran | ®

Create Tree Collider(¥]

3 Project | Bl console
Create ~ fX

RERRELE

Add Component

(0, Al Seripts

(=

When creating hills, it's a good idea to look at multiple angles while
you're building them, so you can make sure that none are too high or
too short. Generally, you want to have taller hills as you go further back,
otherwise you cannot see the smaller ones since they would be blocked.

In the Scene view, to move your camera around, you can use the toolbar
in the top right corner or hold down the right mouse button and drag it in
the direction you want the camera to move around in, pressing the W, A,
S, and D keys to pan. In addition, you can hold down the middle mouse
button and drag it to move the camera around. The mouse wheel can be
scrolled to zoom in and out from where the camera is.

Even though you should plan out the level ahead of time on something
like a piece of graph paper to plan out encounters, you will want to avoid
making the level entirely from the preceding section, as the player will
not actually see the game with a bird's eye view in the game at all (most
likely). Referencing the map from the same perspective of your character
will help ensure that the map looks great.

To see many different angles at one time, you can use a layout with
multiple views of the scene, such as the 4 Split.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

Once we have our land done, we now want to create some holes in the ground,
which we will fill in with water later. This will provide a natural barrier to our
world that players will know they cannot pass, so we will create a moat by first
changing the Brush Size value to 50 and then holding down the Shift key, and
left-clicking around the middle of our texture. In this case, it's okay to use the Top
view; remember this will eventually be water to fill in lakes, rivers, and so on, as
shown in the following screenshot:

x

u

File Edit Assets GemeObject Component Window Help

© EIRFIE]) Ty

= Hierarchy | o= | #scene € Game. = @ inspector | s
e — +||RB_ +|| 20| % | 4 | Effects -] | Gizmas -| (GAT o ¥ Teran Wit v
= Tag [Untagged %] Layer [Default i)
¥ .~ Transform & %
Position %[0 ¥[o 120

Rotation %[0 ¥/o |

Scale x|l ¥il |
¥ MTerrain (Script) P

il ad a2 S| W B B

Raise / Lower Terrain |

Click to raise, Hald down shift to lawer,

F".ﬁ%@%s*
Y Uy e o e

Settings

50
100

Brush Size

Gpacity

¥ s M Terrain Collider &,

@ Project | B console & .= IsTrigger
| Create - | Y | & | % | Terrain Data |euMew Terrain °

¥ Favorites Assets Create Tree Collider[¥]

Add Component

| All Scripts

Hew Terrain

| | = Assets

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

At this point, we have done what is referred to in the industry as
"greyboxing', making the level in the engine in the simplest way
possible but without artwork (also known as "whiteboxing" or

"orangeboxing" depending on the company you're working for).

At this point in a traditional studio, you'd spend time playtesting
the level and iterating on it before an artist or you takes the time to
make it look great. However, for our purposes, we want to create a
finished project as soon as possible. When doing your own games,
be sure to play your level and have others play your level before
you polish it.

For more information on greyboxing, check out http: //www.
worldofleveldesign.com/categories/level design
tutorials/art of blocking in your map.php.

For an example with images of a greybox to the final level, PC
Gamer has a nice article available at http: //www.pcgamer.
com/2014/03/18/building-crown-part-two-layout-
design-textures-and-the-hammer-editor/.

This is interesting enough, but being in an all-white world would be quite boring.
Thankfully, it's very easy to add textures to everything. However, first we need to
have some textures to paint onto the world and for this instance, we will make

use of some of the free assets that Unity provides us with.

1.

So, with that in mind, navigate to Window | Asset Store.

The Asset Store option is home to a number of free and commercial assets
that can be used with Unity to help you create your own projects created by

both Unity and the community. While we will not be using any unofficial

assets, the Asset Store option may help you in the future to save your time
in programming or art asset creation.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

2. An the top right corner, you'll see a search bar; type terrain assets and
press Enter. Once there, the first asset you'll see is Terrain Assets, which is
released by Unity Technologies for free. Left-click on it and then once at the

menu, click on the Download button:

Price Free

%]v] £]2

This is a collection of assers made by Unity
Technologies and our wonderful community. It

errain Assets
Bushes

[l Bush2.fbx
[l Bush3.fbx
[l Bushd.fbx
[l BushS fhx
[l BushSLowPoly fx
[l Bushé.fbx

[l BushioLowPoly fx
[l Bush7.fbx

[l Fernfhx

[l FernMesh fbx

[l Crass]Leaves fhx
(3 Materials

¥ Characters
¥ Enwironments

> Props

contains: v Vegetation
-1Ztrees
-12 bushes Flosiets
-F grass types Plants
-22 terrain textures
They are all configured correctly Tor use with Trees
Unity's terrain engine - justimport therm into your Other
project and watch your world come alive!
* Wehicles
Other
» Animation
Applications
* Audio

v

Complete Projects

v

Editor Extensions.

* Particle Systems
WVersion: 1.04 (0Oct 19, 20107 Size: 43.9 M Wisit Publisher's Website =
*» Scripting
* Services
Package Contents EARAE » Shaders

v

Textures & Materials

a
i Asset Store é
< A & v Language: English ~ John Daran =
H P
Terrain Assets @ Remove lomwih st [@ terrain aseets
Category: 3D Models fvegetation Categories
Publisher: Unity Technologies & g
Rating: % ok k
¥ 3D Models

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

3. Once it finishes downloading, you should see the Importing Package dialog
box pop up. If it doesn't pop up, click on the Import button where the

Download button used to be:

Items to Import

M5 Terrain Assets

M E5 Terrain Assets/Bushes

i Terrain Assets/Bushes/Bushl fbx
Terrain Assets/Bushes/Bushz fbx
Terrain Assets/Bushes/Bush3.fbx
Terrain Assets/Bushes/Busha fbx
Terrain Assets/Bushes/Bushs.fbx

s Terrain Assets/Bushes/Bush&lLowPoly fhx
Terrain Assets/Bushes/Bush7? fhx
Terrain Assets/Bushes/Fern.fbx
Terrain Assets/Bushes/FernMesh.fbx
Terrain Assets/Bushes/Grasslleaves . fbx
&5 Terrain Assets/Bushes/Materials
() Terrain Assets/Bushes/Materials/bushl.mat
() Terrain Assets/Bushes/Materials/bush2 mat
() Terrain Assets/Bushes/Materials/bush3.mat

i T S toiDiak Bl ntociola fhialkh A +

o
™
o
™
o
o
o
o
o
™
o
™
o
o
o
o
.

<<

Preview

All None

Cancel

Generally, you'll only want to select the assets that you want to use and
uncheck the others. However, since you're exploring the tools, we'll just

click on the Import button to place them all.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

4. Close the Asset Store screen; if it's still open, go back into our game view.
You should notice the new Terrain Assets folder placed in our Assets folder.
Double-click on it and then enter the Textures folder:

u

File Edit Assets GemeObject Component Window Help

© EIEIES (T (ET—
=Higraretivanl == H#Scene L

= ©Inspector | Faie

| Create ~| @zAT

Main Camera
Terrain

1 Project | O consale .=

| Craate - T (4% | %
¥ Favorites | Assets » Terrain Assets ~ Textures

s Vi

Cliff (Layer.

Grass (Hill) Grass {Law.

inGrass ForestFloor GoodDirt

v Assets Cliff (Grass
¥ Terrain Ass(

Grass (Mea

"~ Grass(Mea. Grass(Mud. GrassBRock Path (Rack Pebbles Rock (Basic) Rock (Moss) RockyDirt Sand (Beac

@ url: hteps://kharma.unity3d.com/

These will be the textures we will be placing in our environment.

5. Select the Terrain object and then click on the fourth button from the left to
select the Paint Texture button. Here, you'll notice that it looks quite similar
to the previous sections we've seen. However, there is a Textures section as
well, but as of now, there is the information No terrain textures defined in
this section. So let's fix that. Click on the Edit Textures button and then select
Add Texture.

6. You'll see an Add Terrain Texture dialog pop up. Under the Texture
variable, place the Grass (Hill) texture and then click on the Add button:

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Texture MNormal Map

7. At this point, you should see the entire world change to green if you're far

away. If you zoom in, you'll see that the entire terrain uses the Grass (Hill)
texture now:

File Edit Assets GameObject Component Window Help

° EIFIEY| CEmmETTn CICY 7 rr—

= Hierarchy = | #scene “Game = OInspector | Cie
| Create =| AT | Textured . - | <) | Effects - | Gizmos - | (oAl o @ T Wstatic
| Tag | Untagged + | Layer [Defaulc ™

¥ .~ Transform

Position xlo ¥l]z
Rotation X0 Yo zo
Scale X1 Jxi1 Jz[x
- [Terrain (Script) (FE=S

Paint Texture ‘

Selsct a taxture balow, then click ta paint

Heoe®: % cw® -
e LR R R P

Textures

3 Project | [console A=
| Create - | = | [] # Edit Textures...
7 Favorites Assets » Terrain Assets - Textures Settings
© P o
2 AH Ma:r"ﬂ‘s Brush size —_——[50
All Madels ——
Y Opacit) [100
All Prefabs Tpemt"st th 1
: —_—
(0 Al Scripts I * arget Strengf
Cliff (L. . Cliff (s - DintGs Fe t Fl GoodD <] (Hilly G . G (Mea..
- iff (Layer., CIiff (Sands. itGrass Forest Floar 0adDi rass (Hil rass (Lav.. Grass (Mea O P =
v Assets sl o
VS Terrain Asse _——
»a Bushes Terrain Data New Terrain | ©
& Grass Create Tree Colliderl¥
Grass (Mea.. Grass (Mud. Grass8Rack Path (Rock Pabbles Rock (Basic) Rock (Moss) RockyDirt Sand (Beac

Add Component

Band {Bnacs Sand(Bmace Sand (mith Siiax

@ url: https://kharma unity3d.com/

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

8. Now, we don't want the entire world to have grass. Next, we will add cliffs
around the edges where the water is. To do this, add an additional texture by
navigating to Edit Textures... | Add Texture. Select Cliff (Layered Rock) as
the texture and then select Add. Now if you select the terrain, you should see
two textures. With the Cliff (Layered Rock) texture selected, paint the edges
of the water by clicking and holding the mouse, and modifying the Brush
Size value as needed:

£d Ea

File Edit Assets GemeObject Component Window Help

© KRR ICINC] [lavers - [Layout -]

= Hierarchy o | H#5cene | € Game = ©Inspector | e

| Creats = (GrATl :|| RaB +| |20 % | <) | Effects - || Gizmos ~| (EAIl

Main Camera
Terrain

B1project | [lconsole A=
| creats | T e

carch by Label

i

Cliff (Sands.. DirtGrass Forest Floor

Grass (Hill) Grass (Law.. Grass (Mea

GoodDirt

Y& Assets Cliff (Grass.. Cliff (Layer.

¥ Terrain Asse

G Bushes
& Grass
> Rocks

b Trees am O1ss (Mea. Grass(Mud. SrassBRock Path (Rock Pebbles Rock (Basic) Rock (Moss) RockyDirt Sand (Beac

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

9. We now want to create a path for our player to follow, so we're going to
create yet another texture this time using the GoodDirt material. Since this
is a path the player may take, I'm going to change the Brush Size value to 8
and the Opacity value to 30, and use the second brush from the left, which
is slightly less faded. Once finished, I'm going to paint in some trails that the
player can follow. One thing that you will want to try to do is make sure that
the player shouldn't go too far before having to backtrack and reward the
player for exploration. The following screenshot shows the path:

&

X

File Edit Assets GameObject Component Window Help

Sl & S[E] [=cener] @ ol Y rr— | ErT—
s

“=Hierarchy | .= Hscene € Game : B O nspecior |
| Ereats | oAl </ RGB < 2D | it | <) | Effects ~ | Gizmos ~| (GrAll - e Estatic +
Capsule Tag | Untagged | Layer | Default 2|
Main Camera ———
| | Terrain ¥ .~ Transform =
Position ¥o v[o |4 [—
Ratation xo vlo |
Scale ®[1 Kim lz[L

Terrain (Script) @ %
-
Paint Texture |

Selsct a taxture belov, then click ta paint

e @®: v ev® -
el LA ELE XDl

Textures

B Project O consele

SCIRES
| Create - | > 48]
¥ i Favorites | Assets + Terrain Assets » Textures Settings
“ | Brush size e [8
Opacity e —— 30 |
Target Strength —_—]
Vi Assets Cliff (Grass.. Clifi{Layer.. Clff(Sands. DirtGrass ForestFloor GoodDirt Grass (Hil) Grass (Law.. Grass (Mea '[“'T"'ii" Cﬂ"iﬂE‘F ,
s Trigger
¥ Terrain Asst 9 -_
¥ Bushes Terrain Data |caNew Terrain e
Create Tree Calliderid
5 Grass Ml
» & Rocks
; : S + - [Add Companant
» i Trees Ay Grass (Mes. Grass (Mud. GrassBRock Path (Rack Pebbles Rock (Basic) Rock {Moss) RockyDirt Sand (Beac. |
| P IS C 0402 I}
| | e 4a| The Damage in Your Heart
Weezar

Mske Befieve [2005]

However, you'll notice that there are two problems with it currently. Firstly,
it is too big to fit in with the world, and you can tell that it repeats.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

10. To reduce the appearance of texture duplication, we can introduce new

11.

materials with a very soft opacity, which we place in patches in areas where
there is just plain ground. For example, let's create a new texture with the
Grass (Meadow) texture. Change the Brush Size value to 16 and the Opacity
value to something really low, such as 6, and then start painting the areas
that look too static. Feel free to select the first brush again to have a smoother
touch up.

Now, if we zoom into the world as if we were a character there, I can tell that
the first grass texture is way too big for the environment but we can actually
change that very easily. Double-click on the texture to change the Size value
to (8,8). This will make the texture smaller before it duplicates. It's a good idea
to have different textures with different sizes so that the seams of each texture
aren't visible to others. The following screenshot shows the size options:

Texture Normal Map

] Mane
__!x‘tl._!re_.'![)]

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

12. Do the same changes as in the preceding step for our Dirt texture as well,
changing the Size option to (8, 8):

& 2>

File Edit Assets GameObject Component Window Help

o EIEIET (> »]
e FiE e B d:scene | € Game = | ® Inspector | &=
| Create | farAll +| | RGB. + | 20| % | <) | Effects *| | Gizmas ~| (GrAll = & [Terram Mstatic +
Capsule Tag | Untagged | Layer | Default 2|
Main Camera 7
| | Terrain ¥~ Transform 3
Position ®0 | |Z]
Rotation x0 vio oz
Scale X1 1Yj1 |Z]1
¥ M Terrain (Script) @

-
Paint Texture
Selsct a taxture belov, then click ta paint

Brushes

Foo.nﬁﬁﬁs«
IAg

U e e P

Textures

B Project O consele

CRES
| Create * | E ‘4“‘,
¥ Favorites | Assets » Terrain Assets - Teutures Settings
5 % B 4 Brush size —— 16|
i Opasity e |
) Target Strength —_—h]
: S v
Vi Assets Cliff (Gra Cliff (Layer.. CIiff (Sands V?ﬁTerrim cnumg.- &,
s Trigger
v
?é:;r:!\:;m Terrain Data [GNewTerrain o
& Grass Create Tree Colliderd
» & Rocks
= Textures Add Companent
» @ Trees Am Cia Grass ocky Dirt San
EEEy 8 :

With this, we already have a level that looks pretty nice! However, that being said,
it's just some hills. To really have a quality-looking title, we are going to need to do
some additional work to beautify the environment.

Beautifying the environment — adding
water, trees, and grass

We now have a base for our environment with the terrain, but we're still missing a
lot of polish that can make the area stand out and look like a quality environment.
Let's add some of those details now:

1. First, let's add water. This time we will use another asset from Unity, but
we will not have to go to the Asset Store as it is included by default in our
Unity installation. Navigate to Assets | Import Package | Water (Basic)
and import all of the files included in the package.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

2. We will be creating a level for the night time, so navigate to Standard Assets
| Water Basic and drag-and-drop the Nighttime Simple Water prefab onto
the scene. Once there, set the Position values to (1000,50, 1000) and the Scale
values to (1000,1,1000):

File Edit Assets GameObject Component Window Help

S =

== ®Inspector | =

|| Tesured :| | RGB || 20| ¢ | <) | Effects +| | Gizmos - | (GrAT Vg [Wiohtme Smple watker | LJStatic v &
&)

Prefab | Select [Revert [Apply.]

Tag | Untagged | Layer | Water

Terrain : ¥ .~ Transform [FEN

Position X 1000 ¥ 50 2 1000
Rotation xXo Yo
Scale X 1000 Yl Z 1000

¥ .. Water Plane Mesh (Mesh Filter) @ %
Mesh | waterPlaneMesh o

¥ . M Mesh Renderer @ %
Cast Shadows (m}

Receive Shadows [
» Materials
Use Light Probes []
¥ [z M water Simple (Script) @ %
Seript I WaterSimple e

. Mighttime Simple
Shader [Fx/Water (;

Horizon color

7 Wave scale
| Hconsole — - \‘ = Reflective color (RGB) fresnel (A)
s Tiling Offset
Assets » Standard Assets - 9 o
v o
Reflective color cube (RGB) fresnel (A)
Tiling Offset
1 o
Water (Basi iy 5
Standard As Waves Normalmap
VS Water (B: . Offeat
» & Source ‘]”"g -
¥ Terrain Asst Ui 5
&5 Bushes X
& Gross Wave speed (mapl x,y; mapz x,y)
& Rocks X[9.6877 Y 4818982 | Z|-7.913228 W 2870297
G Textures Fallback texture T
b Trees Am Tiling Offzet
x11]
= = y 1 o —
— v

At this point, you want to repaint your cliff materials to reflect being next to
the water better.

3. Next, let's add some trees to make this forest level come to life. Navigate to
Terrain Assets | Trees Ambient-Occlusion and drag-and-drop a tree into
your world (I'm using ScotsPineTree).

By default, these trees do not contain collision information, so our player
could just walk through it. This is actually great for areas that the player
will not reach as we can add more trees without having to do meaningless
calculations, but we need to stop the player from walking into these. To do
that, we're going to need to add a collider.

4. To do so, navigate to Component | Physics | Capsule Collider and then
change the Radius value to 2.

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

You have to use a Capsule Collider in order to have the
collision carried over to the terrain.

5. After this, move our newly created tree into the Assets folder under the
Project tab and change its name to Col1lidingTree. Then, delete the object
from the Hierarchy view. With this finished, go back to our Terrain object
and then click on the Place Trees mode button. Just like working with
painting textures, there are no trees here by default, so navigate to Edit
Trees... | Add Tree, add our collidingTree object created earlier in this
step, and then select Add.

6. Next, under the Settings section, change the Tree Density value to 15 and
then with our new tree selected, paint the areas on the main island that do
not have paths on them. Once you've finished with placing those trees, up
the Tree Density value to 50 and then paint the areas that are far away from
paths to make it less likely that players go that way.

7. You should also enable Create Tree Collider in the terrain's Terrain
Collider component:

£

File Edit Assets GameObject Component Window Help

o EIFIEA| TR D> il] rT— rr—
rarchy e e Scene © Inspector | e

Creats.2 'Q:MH ~ Terrain M static ~

Capsule " Tag [Untagged ¢ Layer [Defaulr]

Main Camera

Nighttime Simpls Water ¥ ~ Transform @ #

| _Terrain Position [0

Rotation %[0 Yo
Scale X1 Yil |Z|1
¥ o= M Terrain (Script) [wE

ot a2 AW %

Place Trees

Hold down shift to erase trees,
Hold down ctrl to erase the selected tree type,

[# Edit Trees...|[Refresh

' All Scripts

Chapterd_..

lm[Standard A.. Terrain As. CollidingTr.
¥ Standard A
v water (B¢
& Source.
¥ Terrain Ass¢
» 5 Bushes
& Grass
& Rocks
5 Textures
> Trees Am

Hew Terrain

Settings
Brush Size —_——[7
@ Project | O console & .= Tree Density e | 5 01
Create * = 4% Color Variation — e (0.4
Assets -

s Tree Height —C——— 100

Variation —n

| Prefabs o Tree Width e e [100

Variation

—_— [0

¥ s M Terrain
Is Trigger
Terrain Data

Create Tree Collidery]

Collider By
]

o

\New Terrain

Add Componant

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

8. In our last step to create an environment, let's add some details. The mode
next to the Plant Trees mode is Paint Details. Next, click on the Edit
Details... button and select Add Grass Texture. Select the Grass texture
for the Detail Texture option and then click on Add. In the terrain's Settings
mode (the one on the far right), change the Detail Distance value to 250,
and then paint the grass where there isn't any dirt along the route in the
Paint Details mode:

£d L5
File Edit Assets GemeObject Component Window Help
© EIEIFH
rarchy | = | #scene | € Game = | ©Inspector |
Create »| (72) s |20 | e | <) | Effects (| | Gizmos - ||.i T [Mstatic ~
Capsule Tag [Untagged + | Layer [Defak ™
Main Camera
]
Nighttime Simple Water ¥ -~ Transform
IMM Position X0 Yo
Rotation %[0 Yo
Scale X1 Y1
¥ M Terrain (Script) @ =
ol | ad [ad | 7| % [T %
Paint Details
Hold dawn shift to erase,
Hold down ctrl to erase the selected datail typs.
Brushes
LEEXY EE Y
o ;o T e
el LR LK LBt
Details
@ Project | B console =
| Create - i &% %]
avorites | Assets » Terrain Assets - Bushes -]
| Materials e]
| Models # Edit Details...
| Prefabs Bart ngs
| Scripts N
: : Brush Size ———3
v Assets Materials Teutures Bushi Bush2 Bush3 Bush4 Bush BushSLouP. Bushé Opacity —_— 1
¥ Standard As Targst Strength e 0,8125
Vi Water (B:
» & source) ¥ w= M Terrain Collider &,
¥ Terrain Asse il L
| B Bush Terrain Data New Terrain o
Amf?m Bush&LowP Bush? Fern FernMesh Grassilea
& Grass Create Tree Collider[
» & Rocks
'_ﬁTemms Add Component
¥ 5 Trees Am
S

You may not see the results unless you zoom your camera in, which you can
do by using the mouse wheel. Don't go too far in though, or the results may
not show as well.

URS

This aspect of level creation isn't very difficult, just time consuming.
However, it's taking time to enter these details that really sets a game
apart from the other games. Generally, you'll want to playtest and
make sure your level is fun before performing these actions; but I feel
it's important to have an idea of how to do it for your future projects.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Lastly, our current island is very flat, and while that's okay for cities, nature
is random. Go back into the Raise/Lower Height tool and gently raise and
lower some areas of the level to give the illusion of depth. Do note that your

trees and grass will raise and fall with the changes that you make, as shown
in the following screenshot:

u

Brushes

e0Q® e ® -

3 LA R R

x
File Edit Assets GemeObject Component Window Help
LA 4 | S [im] [=cemer] & ool [lores -]
= Hierarchy | o= #Scene | € Game : -= | ®Inspector | P
| Create -| @A || Testured :| | RGB +|| 2D | # | <) | Effects (= | Gizmos ~| (EAT @ ™ Terrain [static ~
Capsule Tag | Untagged ¢ | Layer | Default ™)
Main Camera
@
Nighttime Simple Water ¥ A~ Transform R
= i Position %[0 ¥[o z[0
Rotation %[0 ¥[o z[o
Scale %[z n Jz[
¥ MTerrain (Script) [FE
| ad 4 | 7| W T OB
Raise / Lower Terrain
Click to raise, Hold dawn shift ta lower.

Settings
Brush size zt |
Gpacity 6
B project | El console
| Create | T | \ | % Vas@_ITerra.n Collider &,
¥ Favorites | Assets + Terrain Asscts » Bushes » 1L Ls
All Materials Terrain Data - New Terrain o
All Models Create Tree Collider(y]
All Prefabs
All Scripts Add Component
Y& Assets Materials Teuturas Bush1 Bush3 Bushd BushS BushSLowp. Bushs
¥ & Sstandard A
Vi Water (B¢
i Source.
Bush6Lowp Bush7 Fam FernMesh Grassiles
» Gl Rocks
& Textures

» Trees Am

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

10. With this done, let's now add some details to the areas that the player will not
be visiting, such as the outer hills. Go into the Place Trees mode and create
another tree, but this time select the one without collision and then place it
around the edges of the mountains, as shown in the following screenshot:

| = scene S

| Textured || RGB 4| | 2D | % | <) | Effects 7| Gizmaos 7| (Cr Al

At this point, we have a nice exterior shape created with the terrain tools!

If you want to add even more detail to your levels, you can add
- additional trees and/or materials to the level area as long as it makes
% sense for them to be there.
o

For more information on the terrain engine that Unity has, please visit
http://docs.unity3d.com/Manual/script-Terrain.html.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating our player

Now that we have the terrain and its details, it's hard to get a good picture of what
the game looks like without being able to see what it looks like down on the surface,
so next we will do just that. However, instead of creating our player from scratch as
we've done previously, we will make use of the code that Unity has provided us. We
will perform the following steps:

1. Start off by navigating to Assets | Import Package | Character Controller.

When the Importing Package dialog comes up, we only need to import the
files shown in the following screenshot:

Items to Import
[[J&5 Standard Assets/Character Controllers
- # Standard Assets/Character Controllers/3rd Person Controller.prefab
=i ¢ Standard Assets/Character Controllers/First Person Controller.prefab
55 Standard Assets/Character Controllers/Sources
&5 Standard Assets/Character Controllers/Sources/PrototypeCharacter
|z} Standard Assets/Character Controllers/Sources/PrototypeCharacter/ConstructgsdE
53 Standard Assets/Character Controllers/Sources/PrototypeCharacter/Materials
(o Standard Assets/Character Controllers/Sources/PrototypeCharacter/Materialiie
55 Standard Assets/Character Controllers/Sources/PrototypeCharacter/Textures
|| Standard Assets/Character Controllers/Sources/PrototypeCharacter/Texturaine
= Standard Assets/Character Controllers/Sources/PrototypeCharacter, Texturegsn
5 Standard Assets/Character Controllers/Sources/Scripts CHIEW |
@ Standard Assets/Character Controllers/Sources/Scripts/CharacterMator.js “NEW]
5| Standard Assets/Character Controllers/Sources/Scripts/FPSInputContraller.js gEy
@ Standard Assets/Character Controllers/Sources/Scripts/Mouselook .cs CHEW |
@ Standard Assets/Character Controllers/Sources/Scripts/PlatformInputControllegsy
@ Standard Assets/Character Controllers/Sources/Scripts/ThirdPersonCamera.js gy

0
|
u
d
|
|
d
|
0
o
o
o
|
U
[]

Now drag-and-drop the First Person Controller prefab under the Prefabs
folder in our Project tab into your world, where you want the player to
spawn, setting the Y Position value to above 100. If you see yourself fall
through the world instead of hitting the ground when you spawn, then
increase the Y Position value until you get there.

If you open up the First Person Controller object in the Hierarchy tab, you'll
notice that it has a Main Camera object already, so delete the Main Camera
object that already exists in the world.

Right now, if we played the game, you'd see that everything is dark
because we don't have any light. For the purposes of demonstration, let's
add a directional light by navigating to GameObject | Create Other |
Directional Light.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

If you are using Unity 4.6 or later, navigate to GameObject |
L Create General | Terrain to create the Terrain.

5. Save your scene and hit the Play button to drop into your level:

At this point, we have a playable level that we can explore and move around in!

Building the atmosphere

Now, the base of our world has been created; let's add some effects to make the
game even more visually appealing and so it will start to fit in with the survival
horror feel that we're going to be giving the game.

The first part of creating the atmosphere is to add something for the sky aside from
the light blue color that we currently use by default. To fix this, we will be using a
skybox. A skybox is a method to create backgrounds to make the area seem bigger
than it really is, by putting an image in the areas that are currently being filled with
the light blue color, not moving in the same way that the sky doesn't move to us
because it's so far away.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The reason why we call a skybox a skybox is because it is made up of six textures

that will be the inside of the box (one for each side of a cube). Game engines such as
Unreal have skydomes, which are the same thing; but they are done with a hemisphere
instead of a cube. We will perform the following steps to build the atmosphere:

1. Toadd in our skybox, we are going to navigate to Assets | Import Package
| Skyboxes. We want our level to display the night, so we'll be using the
Starry Night Skybox. Just select the StarryNight Skybox.mat file and
textures inside the Standard Assets/Skyboxes/Textures/StarryNight/
location, and then click on Import:

Items to Import

EEEEEREOO00000 0000000000 0000 00000000000 0000000 ogooon

|55 Standard Assets/Skyboxes

g Standard Assets/Skyboxes/_skybox info txt

() Standard Assets/Skyboxes/DawnDusk Skybox mat

() sStandard Assets/Skyboxes/Eerie Skybox.mat

Q Standard Assets/Skyboxes/MoonShine Skybox.mat

() standard Assets/Skyboxes/Overcastl Skybox.mat

() standard Assets/Skyboxes/Overcast2 Skybox.mat

Q Standard Assets/Skyboxes/StarryNight Skybox.mat

() Standard Assets/Skyboxes/Sunny1 Skybox.mat

() Standard Assets/Skyboxes/Sunny2 Skybox.mat

Q Standard Assets/Skyboxes/Sunny3 Skybox.mat

Standard Assets/Skyboxes/Textures

G5 Standard Assets/Skyboxes/Textures/DawnDusk

Standard Assets/Skyboxes/Textures/DawnDusk/DawnDusk_back tif
Standard Assets/Skyboxes/Textures/DawnDusk/DawnDusk_down tif
Standard Assets/Skyboxes/Texturss/DawnDusk/DawnDusk_front tif
Standard Assets/Skyboxes/Textures/DawnDusk/DawnDusk_|eft.tif
Standard Assets/Skyboxes/Textures/DannDusk/DawnDusk_right.tf
Standard Assets/Skyboxes/Textures/DawnDusk/DawnDusk_up.tif

tandard Assets/Skyboxes/Textures/Eerie
Standard Assets/Skyboxes/Textures/Eerie/Eerie_back tif
Standard Assets/Skyboxes/Textures/Eerie/Eerie_down tif
Standard Assets/Skyboxes/Textures/Eerie/Eerie_front.tif
Standard Assets/Skyboxes/Textures/Eerie/Eerie_left.tif
Standard Assets/Skyboxes/Textures/Eerie/Eerie_right tif
Standard Assets/Skyboxes/Textures/Eerie/Eerie_up tif

tandard Assets/Skyboxes/Textures/MoonShine
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_back tif
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_down tif
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_front.tif
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_left.tif
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_right.tif
Standard Assets/Skyboxes/Textures/MoonShine/MoonShine_up tif

tandard Assets/Skyboxes/Textures/Qvercastl
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_back tif
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_down.tif
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_front.tif
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_left if
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_right.tif
Standard Assets/Skyboxes/Textures/Overcastl/Overcastl_up tif

tandard Assets/Skyboxes/Textures/Overcast?
Standard Assets/Skyboxes/Textures/Overcastz/OvercastZ_back tif
Standard Assets/Skyboxes/Textures/Overcast?/OvercastZ_down tif
Standard Assets/Skyboxes/Texturss/Overcast?/Overcast?_front.tf
Standard Assets/Skyboxes/Textures/Overcastz/OvercastZ_left.tif
Standard Assets/Skyboxes/Textures/Overcast2/Overcast2_right tif
Standard Assets/Skyboxes/Textures/Overcast2/Overcast?_up tif

1

i

(0 R R e T e T R

Standard Assets/Skyboxes/Textures/StarryMight/StarryNight_back tf
Standard Assets/Skyboxes/Textures/StarryNight/StarryNight_down tf
Standard Assets/Skyboxes/Textures/StarryNight/StarryNight_front.tif
Standard Assets/Skyboxes/Textures/StarryMight/StarryNight_left.tf
Standard Assets/Skyboxes/Textures/StarryNight/StarryNight_right.tif
Standard Assets/Skyboxes/Textures/StarryMNight/StarryNight_up tif

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

2. With this file imported, we need to navigate to Edit | Render Settings
next. Once there, we need to set the Skybox Material option to the starry
Night skybox:

File Edit Assets GameObject Component Window Help

A S HE|

Maximize on Play | Stats | Gizmos =

If you go into the game, you'll notice the level starting to look nicer already
with the addition of the skybox, except for the fact that the sky says night
while the world says it's daytime. Let's fix that now.

3. Switch to the Game tab so that you can see the changes we'll be making next.
While still at the RenderSettings menu, let's turn on the Fog property by
clicking on the checkbox with its name and changing the Fog Color value to
a black color. You should notice that the surroundings are already turning
very dark. Play around with the Fog Density value until you're comfortable
with how much the player can see ahead of them; I used 0. 005.

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Fog obscures far away objects, which adds to the atmosphere and saves

the rendering power. The denser the fog, the more the game will feel like a
horror game. The first game of the Silent Hill franchise used fog to make the
game run at an acceptable frame rate due to a large 3D environment it had on
early PlayStation hardware. Due to how well it spooked players, it continued
to be used in later games even though they could render larger areas with the
newer technology.

File Edit Assets GameObject Component Window Help

A S HE|

Maximize on Play | Stats | Gizmos -

Let's add some lighting tweaks to make the environment that the player is
walking in seem more like night.

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

4. Go into the DirectionalLight properties section and change the Intensity value
to 0.05. You'll see the value get darker, as shown in the following screenshot:

_ If for some reason, you'd like to make the world pitch black, you'll
% need to modify the Ambient Light property to black inside the
= RenderSettings section. By default, it is dark grey, which will
show up even if there are no lights placed in the world.

&

File Ecit Assets GameObject Component Window Help

ol b ['S [0| == center] @ Locsl]

. In the preceding example, I increased the Intensity value to
% make it easier to see the world to make it easier for readers to
s follow, but in your project, you probably don't want the player
to see so far out with such clarity.

With this, we now have a believable exterior area at night! Now that we have this
basic knowledge, let's add a flashlight so the players can see where they are going.

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Creating a flashlight

Now that our level looks like a dark night, we still want to give our players the
ability to see what's in front of them with a flashlight. We will customize the First
Person Controller object to fit our needs:

1. Create a spotlight by navigating to GameObject | Create Other | Spotlight.
Once created, we are going to make the spotlight a child of the First Person
Controller object's Main Camera object by dragging-and-dropping it on

top of it.

2. Once a child, change the Transform Position value to (0, - .95, 0). Since
positions are relative to your parent's position, this places the light slightly
lower than the camera's center, just like a hand holding a flashlight. Now
change the Rotation value to (0,0,0) or give it a slight diagonal effect across
the scene if you don't want it to look like it's coming straight out:

File Edit Assets GameObject Component Window Help
Bl ® S [E| [=cener] 8ol (> 111] [Layers -] [Layout -]
"= Hierarchy | # scene | & game @ Inspector | =
| Create - | (arAll || Tewturad + | | RGE #{| 2D | 2 |) | Effects || | Gizmes - l ™ [Spotlight [C]static +
Capsule Tag | Untagged | Layer |Default 3]
Directional light -
¥ First Person Controller [0y ranstorm e — @ &
Graphics Position X 0 Ni-0.95 Zi0
¥ Main Camera Rotation X 0 Y0 Z[0
- 2 Scale x[1 ¥1 Z{1
Mighttime Simple Water v MLight @ &,
Terrain Type [Sper 3]
Range o
Spot Angle . | 3 0
Calor —
Intensity - C—1 |
Cookie None (Texture) | @
Shadow Type [MoShadaws %]
—— Draw Halo L.
i3 Project | B console o= Flare ‘None (Flare) |
Crestec = a% Render Mode | Auta
¥iFavorites « Assets . Culling Mask | Everything &
All Materi A i re——
All Model — =1 Lightmapping | Auto
All Prefat (]
All Seript Add Component J
e Standard A Terrain As.. Chapterd_.. CollidingTr.. Mew Terrain
Standard
» & Charag
¥ Skybo
¥ Water
» & Soul
¥ Terrain Al
Gl Bushes
& Grass
FGal Rocks
| STextur™)

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

3. Now, we want the flashlight to reach out into the distance. So we will change
the Range value to 1000, and to make the light wider, we will change the
Spot Angle value to 45. The effects are shown in the following screenshot:

If you have Unity Pro, you can also give shadows to the world
s based on your lights by setting the Shadow Type property.

& =

File Edit Assets GameObject Component Window Help

TR _

We now have a flashlight, so the player can focus on a particular area and not worry.

Walking / flashlight bobbing animation

Now the flashlight looks fine in a screenshot, but if you walk throughout the world, it
will feel very static and unnatural. If a person is actually walking through the forest,
there will be a slight bob as you walk, and if someone is actually holding a flash light,
it won't be stable the entire time because your hand would move. We can solve both of
these problems by writing yet another script. We perform the following steps:

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Create a new folder called scripts. Inside this folder, create a new C# script
called BobbingAnimation

Open the newly created script and use the following code inside it:

using UnityEngine;

using System.Collections;

/// <summary>

/// Allows the attached object to bob up and down through
/// movement or

/// by default.
/// </summarys>

public class BobbingAnimation : MonoBehaviour

{

/// <summary>

/// The elapsed time.

/// </summarys>

private float elapsedTime;

/// <summary>

/// The starting y offset from the parent.
/// </summarys>

private float startingy;

/// <summarys>

/// The controller.

/// </summarys

private CharacterController controller;

/// <summary>

/// How far up and down the object will travel
/// </summarys>

public float magnitude = .2f;

/// <summary>

/// How often the object will move up and down
/// </summarys>

public float frequency = 10;

/// <summary>

/// Do you always want the object to bob up and down or
/// with movement?

/// </summarys>
public bool alwaysBob = false;

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

/// <summary>
/// Start this instance.
/// </summarys>
void Start ()
{
startingY = transform.localPosition.y;
controller = GetComponent<CharacterController> () ;

/// <summary>
/// Update this instance.
/// </summarys>
void Update ()

{
// Only increment elapsedTime if you want the player to
// bob, keeping it the same will keep it still
if (alwaysBob)
{

elapsedTime += Time.deltaTime;

}

else
{
if ((Input.GetAxis ("Horizontal") != 0.0f) ||
(Input.GetAxis ("Vertical") 1= 0.0£f))

elapsedTime += Time.deltaTime;

float yOffset = Mathf.Sin(elapsedTime * frequency) *
magnitude;

//If we can't find the player controller or we're
// jumping, we shouldn't be bobbing
if (controller && !controller.isGrounded)

{

return;
//Set our position
Vector3 pos = transform.position;

pos.y = transform.parent.transform.position.y +
startingY + yOffset;

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

transform.position = pos;

The preceding code was prepared in the XML Comments style

that I discussed earlier. For more information on that, check out
’ Chapter 1, 2D Twin-stick Shooter.

The preceding code will tweak the object it's attached to so that it will bob
up and down whenever the player is moving along the x or y axis. I've also
added a variable called alwaysBob, which, when true, will make the object
always bob.

Math is a game developer's best friend, and here we are using sin
(pronounced sine). Taking the sin of an angle number gives you the ratio of
the length of the opposite side of the angle to the length of the hypotenuse
of a right-angled triangle.

If that didn't make any sense to you, don't worry. The neat feature of sin is
that as the number it takes gets larger, it will continuously give us a value
between 0 and 1 that will go up and down forever, giving us a smooth
repetitive oscillation.

& For more information on sine waves, visit
o http://en.wikipedia.org/wiki/Sine wave.

While we're using the sin just for the player's movement and the flashlight,
this could be used in a lot of effects, such as having save points/portals
bob up and down, or any kind of object you would want to have slight
movement or some special FX.

Next, attach the BobbingAnimation component to the Main Camera object,
leaving all the values with the defaults.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 1 - Creating Exterior Environments

4. After this, attach the BobbingAnimation component to the spotlight as well.
With the spotlight selected, turn the Always Bob option on and change the
Magnitude value to . 05 and the Frequency value to 3. The effects are shown
in the following screenshot:

& =

File Edit Assets GameObject Component Window Help
| ‘S ‘] Pivot --.-. Local | mm'l. _ayer: n _Layout =

Summary

With this, we now have a great looking exterior level for our game! In addition, we
covered a lot of features that exist in Unity for you to be able to use in your own future
projects. With this in mind, you will learn how to build an interior environment in the
next chapter!

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get you thinking;:

Add additional trees and textures to make the level appear even
more realistic.

Right now, the player can go down into the water and get stuck. Add a new
trigger, so that whenever the player hits it, it will reset his/her position back
to the starting position.

Have someone play your game and see if they can navigate your
environment to where you want to lead them.

Once you learn how to create encounters, add some additional combat
experiences in this level.

Create collectibles that the player can collect in the level, in the same manner
as the platformer project we did in Chapter 3, Side-scrolling Platformer, to
reward the player travelling the map. Adding a light can help players know
where to travel.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter
Part 2 — Creating Interior
Environments

Since nature is very chaotic, it makes sense to use tools such as terrain and placing
objects with randomness to create a natural-looking environment. However, not
all things are constructed like that. Man-made structures, such as office buildings,
stone pillars, and floor tiles, are all made of pieces that look similar to one another.
Rather than modeling out every single wall in your building, can't you use one
you made before?

As you might remember in Chapter 3, Side-scrolling Platformer, we learned how we
can use tiles to build a level using only a couple of different sprites, duplicating them
as needed to create our environment. In this chapter, we will use the same line of
thinking in a 3D environment using a method called modular level design.

Modular level design is a tool that AAA (pronounced triple A) developers (those
working with the highest development budgets and promotion) have been using

to create great-looking levels in the minimum amount of time possible. Breaking
apart buildings into modules creates building blocks that can be placed next to one
another, like building block pieces, to create an entire structure. This makes it much
easier to create levels than just trying to model everything from scratch.

Project overview

Unlike the preceding chapter, where we worked as an environmental artist, here
we take on the role of a level designer who has been tasked to create an interior
environment using assets already provided to us by the environment artist. We will
use already-provided assets as well as assets already provided to us by Unity for
mesh placement.

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Importing assets

* Creating tiles

* Placing tiles with grid snapping

* Creating and placing props

* Lightmapping quickstart prerequisites
In this chapter, we will continue from where the preceding chapter left off using the
same project. You can continue with your previous project or pick up a copy along

with the assets for this chapter from the example code provided for this book on
Packt Publishing's website.

In addition, the completed project and source files are located there for you to check
if you have any questions or need clarification.

Project setup

At this point, I have assumed that you have Unity started up and have our project
from the previous chapter loaded. Now, perform the following steps:

1. With Unity started, open the project from the previous chapter.

2. Since we want to keep our projects nice and tidy, we are going to do some
refining of our project's structure before starting with this project. Create
the following folders:

°® Scenes

° Terrains
°® Prefabs

° Materials

Place the scene from the previous chapter in your Scenes folder.

Next, move the terrain object and Terrain Assets folder to the Terrains
folder, so everything having to do with our terrains is in one place.

Place your tree prefab we made in the prefabs folder.

Place the scripts from Standard Assets\Character Controllers\Sources\
Scripts to your Scripts folder (optionally in a folder called character).

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7. Move the First Person Controller prefab to the prefabs folder.

8. Move the Skyboxes and Wwater folders to the Materials folder, deleting the
Daylight Simple Water prefab and moving the Nighttime Simple Water
prefab to the prefabs folder.

9. Finally, delete the standard Assets folder now that there are no files
inside it.

Astute readers may notice that the Water folder has more

content including a script inside it. Due to all of this being a part
s of implementing water in our exterior level, I decided to keep

everything in one place; but all of this comes to personal choice.

10. Finally, if you are on our previous level, create a new scene by selecting
File | New Scene.

Creating architecture overview

As a level designer, one of the most time-consuming parts of your job will be
creating environments. There are many different ways out there to create levels. By
default, Unity gives us some default meshes, such as a Box, Sphere, and Cylinder,
and while it's technically possible to build a level in that way, it could get really
tedious really quickly. Next, I'm going to quickly go through the most popular
options to build levels for games made in Unity before we jump into building

a level of our own.

3D modeling software

A lot of times, opening a 3D modeling software package and building architecture
that way is what professional games studios will often do. This gives you maximum
freedom in creating your environment and allows you to do exactly what you'd like
to do. However, that requires you to be proficient in that tool, whether that be Maya,
3ds Max, Blender (which can be downloaded for free at blender. org), or some other
tool. Then, you just need to export your models and import them into Unity.

Unity supports a lot of different formats for 3D models, but there are a lot of issues
to consider. For some best practices, when it comes to creating art assets, please visit
http://blogs.unity3d.com/2011/09/02/art-assets-best-practice-guide/.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

Constructing geometry with brushes

Using Constructive Solid Geometry (CSG), commonly referred to as brushes, has
been a long-existing way for games to have in-game level editors, which has led to
people creating levels for them. Tools such as Unreal Engine 4, Hammer, Radiant,
and other professional game engines make use of this building structure, making it
quite easy for people to create and iterate through levels quickly through a process
called white-boxing, as it's very easy to make changes to simple shapes. However,
just like learning a modeling software tool, there can be a higher barrier to entry in
using brushes to create your geometry, but for those creating certain types of games
where you need to create a lot of different content, it can be a great tool.

Unity does not support building things like this by default, but there are several
tools in the Unity Asset Store that allow you to do something like this. For
example, sixbyseven studio has an extension called ProBuilder, which can add
this functionality to Unity, making it very easy to build levels (it's what I use
normally when building environments for 3D games in Unity). However, as an
extension, you'll need to buy it either from them or through the Asset Store, as it
is not free. You can find out more information about ProBuilder at http://www.
protoolsforunity3d.com/probuilder/.

Modular tilesets

Another way to generate architecture is through the use of tiles that are created

by an artist. You can use them to build your level. Similar to using LEGO pieces, we
can use these tiles to snap together walls and other objects to create a building. With
creative uses of tiles, you can create a large amount of content with just a minimal
amount of assets. This is probably the easiest way to create a level at the expense of
not being able to create unique-looking buildings since you only have a few pieces
to work with.

Mix and match

Of course, it's also possible to use a mixture of the tools mentioned to get the
advantages of certain ways of doing things. For example, you could use brushes to
block out an area (which is why it is called greyboxing) and then use a group of tiles
called a tileset to replace boxes with highly detailed models, which is what a lot of
AAA studios do, using the boxes just for their collision. In addition, we could also
place tiles initially and then add in props to break up the repetitiveness of levels,
which is what we are going to do.

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Importing assets

In this chapter, we are going to create an interior environment. This will be useful to
know, because unlike a landscape, we can use straight floors and more structure as
most houses are that way, and we will use models to build the environment!

To show how easy it is to use, let's get started. Perform the following steps:

1. Start off by going to the Materials folder in the Project tab, and create
two new materials by selecting Create | New Material. Give one of the new
materials the name House and the other, props. Once you have that created
go to your example code folder and move over the 2048_House_TEX. jpg
and 2048_Props_TEX. jpg files. Once you've done that, apply that texture
to the materials. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

© EIEIFA| EEraETeE D> i] TR | rPTT—
= Hisrarchy .=| #Scens | € Game = ® |

Creste =| (ATl

+| | RGB || 20| @ | &) | Effects v || Gizmos =| (e AT . Props

Main Camera Shader | Diffuse

Main Color
Base (RGB)

B Project | B cansole

= BNE ¥5 3521

. Favorites & Assets - Materials ~

bl i i . . . -

vi Assets Skyboxes Water (Basi. 2048_Hou.. 2048_Prop Heuse

&3 Prefabs
G Scenes
G Scripts
¥ 3 Terrains
Vs Terrain|
& Bush
& Gras
VimRock
&am: ™ EIProps.mat

d

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

2. Create a new folder in our assets folder named Models.

+ Optionally, you can move the models from the Terrain
% Assets folder to here as well, but as we aren't using them
anymore, I didn't.

John Espiritu has very kindly provided some models in modular pieces
for us to work with. So, the next thing we will do is actually import

those models.

* For more info on John's stuff or to commission him
yourself, check out http://raynehaize. tumblr.com/

e or http://raynehaize.deviantart.com/.
3. With the Models folder selected, let's import the models by dragging-and-
dropping the Modular Pieces and Props folders in it. Have a look at the

following screenshot:

Home Share View
{ ~ HH select all

7< Delete = 3
Select none

S
Cut
L 4 Move to ~
Properties
- 0o Invert selection

[Copy path
2 Copyto ~ =0 Rename

& Search M... 2@

<« Example Code » Chapter3 » Assets » Models v
Date modified Type

) Mame

[Favourites
7/5/2014 346 PM File folder

Modular Pieces
7/5/2014 5:47 PM File folder

B Desktop

& Downloads

o\ Recent places
& Google Drive
41 Dropbox

& OneDrive

Props

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

4. Back in Unity, move to the Modular Pieces folder in the Project tab. At
this point, it should look somewhat as follows:

File Edit Assets GameObject Component Window Help
& [S| = | [sapivot | @ Local] > 1 M [Layers | [Layout =
= Higrarchy # Scene o= | ®Inspector | &=

Create = (o-all Textured % + | 2D -) | Effects *| Gizmos = (2rAll Modular Pieces L
i | OpEnl

Main Camera

83 Project E consale FE

| Create - q e

¥\ Favorites 4 Assets » Models - Modular Pieces

(O All Materi
v&5 Assets Materials Ceiling 01 Ceiling stai... Door Door Wall Floor 01 Stairs floor.

Madel]
Prefab|
(1 All Scripte
b 53 Materials
¥ &3 Models
Gl Props
& Prefabs

Stairs floor.. Stairsfloor. Stairsfloar. Stairs_01 Stairs_02 Wall Carner Wall Plain
&l Scenes

& Scripts |
¥Ed Terrains ¥ &5 Modular Pieces —

5. By default, Unity attempts to do some things automatically for us, which
creates a lot of stuff we don't need for simple environment pieces like this.
Select all the objects in this folder by selecting the ceiling 01 object, hold
down the Shift key, and then select the wall Plain object. This will bring
you to Model Importer. Once you are in the Inspector tab, you will see
three tabs you can select:

o

Model: It contains settings to import the model. For information,
check out http://docs.unity3d.com/Manual/FBXImporter-
Model .html.

Rig: It has settings that will either allow the model to support
animation or not. For more information, check out http://docs.
unity3d.com/Manual/FBXImporter-Rig.html.

Animations: It has settings to import different animations from the
model file. For more information, check out http://docs.unity3d.
com/Manual /FBXImporter-Animations.html.

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

6.

& assign it on your own.
e

Inside the Model tab, change the Scale Factor to . 025.

The Scale Factor property allows you to apply a scalar to the model that
you've imported. This is fine for this project, but generally, when working
with animations, changing the scale factor may hurt your rig. So, be sure
you have your artist create art at the correct scale.

Next, uncheck the Import Models option from the Materials section. After
that, click on the Apply button.

If left checked, Unity will have each object use its own material, which is
intended to have its own texture. All of our pieces use the same texture,
so there's no need to have multiple textures.

Select the Rig tab, change the Animation Type to None, and then click
on Apply.
If the object has animation, it will attempt to add an Avatar and more, which

is unnecessary for this. Note that now the Animations tab will be grayed out,
because we have no animations.

Delete the Materials folder inside the Modular Pieces folder.

When exporting an FBX file, it exports your model with UV coordinates
but doesn't include the textures in the FBX file. You have to import your
textures separately into Unity and add it to the material generated or

As of this version of Unity, there is no way to have models not generate a
material by default, hence our need to delete them. We will add materials
to these models when we create their prefabs.

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

10. Repeat steps 5-8 with the props folder as well. Once you finish, the folder
should look like the following screenshot:

File Edit Assets GameObject Component Window Help

Of' = |l ul Pivot | @ Local umm [Layers - | [Layout - |
= Hierarchy = .= © Inspector A=

| Create +| (@Al
Main Camera

3 project El Console & .=

| create -
Vf} Favorites + Assets » Models » Props

O, All Materif*
© Al Models
All Prefab
{20 All Scripts

YES Assets Bedframe Candle light Chair Curtains
>3 Materials

7> = =
Rug
= -

Table

Now, we have our models in the project! This is a great first step, but it's useless
unless it's actually in the game world. Let's get started with that now.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

Creating tiles

Before we get started, it's a good idea to see how the object looks to us, so let's add in
a temporary controller to give us an idea of what it looks like:

1. Go to the prefabs folder, and drag-and-drop one of the modified First
Person Controller prefabs that we made in the previous chapter into the
Scene view. Once done, set Position to (0, 1, 0). Rather than setting each
of the properties, we can easily do this by right-clicking on Transform and
selecting Reset Position and then setting the Y position to 1. After this, in the
Character Motor component, under the Movement section, set Gravity to 0
so that we do not fall for the time being (we will replace this controller later):

File Edit Assets GameObject Component Window Help

o EIEIE [ayers <) [Loyouwr]
= | #FScene € Game = | ® Inspector &=
| Textured | RGE :|| 20| ¥ | 4 | Effects (=] | Gizmos - | Sensitivity X 115 -

Sensitivity ¥ o
Minimum ¥ [-360
Maximum X 1360
Minimum ¥ o
Maximum ¥ 0
¥ s M character Motor (Script) %,
Script = CharacterMotor | @
Can Control

Use Fixed Update
¥ Movement

—— . Max Forward Spet 6 |
B Project B console &= Max Sideways Spi6
|.& -| T &% | * |
-j‘EitE— L — T EILY Max Backwards 5|6
Favorites & Assets - Models - Modular Pieces =
F Stope Speed Mul: I
Max Ground Accel 20
Max Air Accelerati 15
o . Gravity (1]
- " Max Fall Speed 20
v5i Assets Ceiling 01 Ceiling stal. Duor Doar Wall Flaor 01 Stairs floor.. Stairs floar. e
¥ Materials = » Moving Platform
1’{ » sliding
] E 3) -
F ’g - s v 5| M FPSInput Controller (Script) [%
S 2 = Script [FPSInputControllel &
Stairs floor.. Stairsfloor.. Stairs_01 Stairs_0Z Wall Comer Wall Plain
‘ﬁhfcrlPt.s | . [Add Component J E
I@fr}mm are 2 audio listeners in the scene, Please ensure there is always exactly one audio listener in the scene. I

2. Right now, if you play the game, there will be a warning about having two
audio listeners in the scene. This is due to having two main camera objects
in our scene that contain audio listener components. Delete the one that is
not part of our First Person Controller prefab by selecting the Main Camera
object and then pressing the Delete key.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Now, in the upper-right corner of the scene view is the scene gizmo. This
will display our current camera orientation, allow us to quickly modify the
viewing angle, and switch from Perspective to Isometric mode easily, which
will be great for us when placing objects in the world. (Note that in 2D mode,
this gizmo won't be shown, so untoggle the 2D button on the Scene toolbar if
that is the case.)

3. Click on the Y axis on the scene gizmo to switch our camera to an overhead
view. Once there, go to the Modular Pieces folder, and then drag-and-drop
the Floor 01 object into our world, and change Position to (0, 0, 0) from the
Transform section. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

&S| = 93 Pivot | @ Global > 1M [Layers - | [Layout -

= Hierarchy] = \ © Inspector | =

| Create ~| (GrATl autura E E e acts 7| | Gi - | (& v« o [Floor 01 [static «

P First Person Controller ™ Tag [Untagged 3| Layer | Default |
Floor 01

Model | Select | Revert | Cpen |

b8 v . Transform #*,

Position X 0
Rotation Xo Yo
Scale H1 ¥l Z1

Add Component

) Preject | Econsale a —
| | Create 3
¥ Favorites 4 Assets » Models » Modular Pieces

All Materi [

vis5 Assets Ceiling 01 Ceiling sta Door Wall Flaor 01 Stairsfloor.. Stairs floor

» G5 Materials
Y. Models
>
. Props
Prefabs
= Stairs_02 Wa H Corner Wall Plai

All Models
(©1 Al Prefab
(©) All Seripts

G5 Scenes Stairs floar. Stairs floor
-Scripts ‘;’

I@There are 2 audio listeners in the scene. Please ensure there is always exactly one audio listener in the scene.

You'll notice that instead of the floor tile being in the center of the world
when the position is reset, the bed is off on the Z axis. This is because the
art files that the artist provided to us placed the pivot there, which you will
see if the Gizmo Display Toggles are set to Pivot. Now, since we're going to
be placing these objects as tiles, we want them to snap together as easily as
possible. Generally, we want to place these pivots along one of the edges of
the object. Some people prefer to place it on the center of the mesh, which
you can easily do by changing the pivot toggle to Center by clicking on
Gizmo Display Toggle to the right-hand side of the Transform widgets,
but I don't like it, as it makes rotations and scaling more of a pain.

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

4. After this, open the Floor 01 object to see the Floor 01_Modular pieces_
grp object and select it. This is the actual mesh we want to work with. With
it selected, go to the Mesh Renderer component, and expand the Materials
section. Then change Element 0 to our house material either by dragging-
and-dropping or clicking on the right-hand side circle button and then
selecting it from the list shown. Finally, let's add in a box collider by going
to Component | Physics | Box Collider.

This collider is what the player will collide with in the world, so what you
see will be what they will be walking into.

5. Now that we have the revised version created, rename the Floor_01_
Modular_pieces_grp game object to Floor, and then drag-and-drop just that
object as a prefab in the Prefabs folder; optionally, you can place the object
in a new folder called Modular Pieces.

6. The floor may change to a really black color; this is because the material
provided is a bit on the dark side. Let's create a new directional light to
get a better view of the models by selecting GameObject | Create Other |
Directional Light. Once it's created, set Intensity up to 2 and X Rotation to
130. Have a look at the following screenshot:

£

File Edit Assets GameObject Component Window Help

E 4‘}' \ S | g ®i Pivot | @ Global [Layers - | | Layout - |
= Hlerarchv hy | # Scene | € Game .= | O Inspector | &=
Create *| EAT) ||| Textured | | RGB)

Directional light

¥ First Person Controller

¥ Floor 01
Floor_01_Modular_pieces_grp|

Pr’oJact | El console =
ea

;7 Favnrltes - Assets [Materlals [3

'%Assets Skyboxes Water(Basi. 2048_Hou. 2048 _Prop. House Praps

‘LAl Scripty

'% Mode\s
& Modula

& Props

& Prefabs
& scenes [
% Scr’\pts =

——
IOTher’.e are 2 audio listeners in the scene. Please ensure there is always exactly one audio listener in the scene,

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7. Now repeat steps 3-5 for the Wall Plain object. Next, move our player up in
the Z axis to 1 so that it doesn't collide with the walls:

@ =

| Fie Edit Asses GomeObject Comporent Window Hep |
LA 4 | S] [eariver [@lobal] [11| Pl

As you can see, the two pieces together are already starting to look like a
room. Not too hard, right?

8. Delete those two prefabs, and now do the same steps for the other models
in the Modular Pieces folders, thereby deleting them as they go on, using
Mesh Colliders on the Door Wall and Stairs aspects.

Everything besides the renaming and moving to
the Prefabs folder can be done to all the objects by
g shift-clicking on them all to do each of the steps.

9. Now that we have the models for our environment fixed, let's assemble them
into some tiles that we can place in the world. Create an empty game object,
name it Hallway, and reset its position.

The pivot of an object is extremely important when doing modular level
design. We want to make it extremely easy for us to duplicate objects and
snap them together, so picking a part of the object that will tile well can save
you a lot of time in the future.

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

For those interested in learning more about creating good

% modular game art, check out http://www.gamasutra.com/
2 view/feature/130885/creating modular game art

for fast .php.

10. Add a Floor, Ceiling, and Wall prefab to the object as children.

11. Duplicate the wall by pressing Ctrl + D, and then change Position of Z axis
to 3.2 and Rotation of Y axis to 180. Have a look at the following screenshot:

Ed
File Edit Assets GameObject Component Window Help

X & S [[oariot | ©Gibal T

Maximize an Play | Stats | Gizmas |+

This will act as our first building block, which we can use to create hallways
by merely duplicating these Hallway objects.

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

12. Now, inside the project, add a folder to the prefabs folder called Tiles.
Make Hallway a prefab by dragging-and-dropping it in the Tiles folder.
Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

E ‘*’ ‘ 'S | :l'-‘: ®l Pivot | @ Global [Layers - J {Layuut ']
E | = #Scene € Game = | O Inspector | i
| Texturad : RGB s | 2D | % |) | Effacts -] | Gizmes *| a REwar | Wstatc -
Directional light Tag | Untagged 4| Layer | Default £/
» First P Caontroll
irst Person Cantroller et s I PP e)
Ceiling L ¥ .~ Transform o,
Floor Position X0 ‘Yo
wall Rotation X0 Y0
Wall Seale %1 Y1 I
[Add Component
183 Project B console Far
| Create - & | & | %%

¥ Favorites 4 Assets » Prefabs - Tiles

v Assets Hallway
¥ & Materials
¥&a Models
& Modula
& Props
Vi Prefabs

13. Delete one of the wall objects, and you'll notice that the object is no longer a
prefab, as it's no longer colored blue. That is fine, because now we're going
to create a doorway. Rename Hallway to Hall Door. Then add a Door object
and a Door Wall object as children to the new Hall Door on the side that
your wall object was previously at. Then, add Hall Door as a prefab in the
Tiles folder.

You can make these doors functional later on, but for now, we are just
building the environment.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

14. Apart from these very simple tiles that we just made, we also want to create
some rooms that are larger than one big tile, so next, we need to create nine
additional prefab tiles that will look like the following screenshot:

) x

File Edit Assets GameObject Component Window Help

E ‘*‘ | = | :l'-‘: = Center GJG\oEa\ ILayeri -]I Layout v]
o= i Scene] .= | © Inspector | e

= | (Al

¢|| 20| 5 | &) | Effects ~ | Gizmos % ¥ Room Top-Right []static «
Tag | Untagged ¢ | Layer | Default =
¥ Room Top ¥ .~ Transform 3 %,
Ceiling Pasition %6.30252) ¥ [0.15428] 2 [4.21411
Floor Rotation %[0 ¥ [0 Z0
Wwall Scale x[1 2 Z1
¥ Room Top-Left
Ceiling [Add Componant
Floor
wall
wall
» Room Top-Right
3 Project | Bl consale Fie

& | %% | *
4 Assets » Prefabs » Tiles - Rooms

....... ——

ViE Assets Room Bott. Room Bott. Room Bott. Room Middle Room Middl. Room Middl. Room Tep
» G Materials

v Models
&5 Modula
&& Props -
v Prefabs
£ Modula Roam Top-..
¥ Tiles

1 ¥ W Room Top-Right.prefab ——

To name the objects, I went with the following convention:

o

Room Top-Left

° Room Top-Middle
Room Top-Right

° Room Middle-Left

° Room Middle

° Room Middle-Right

° Room Bottom-Left

° Room Bottom-Middle
Room Bottom-Right

15. With these pieces, we can make rooms of whatever size we want! Delete the
newly created prefabs from the hierarchy.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

16. Finally, let's get the staircase built! Place two floors next to each other, one at
Position (0, 0, 0) and the other at (-3.2, 0, 0). Next, add Stairs 1, Stairs Floor
1, and objects together, all at Position (0, 0, 0). Add Stairs Floor 2 at Position
(-3.2, 0, 0). Finally, add two walls on the first floor (one with 0.0 on X and
one with -3.2) and two on the second floor (Y at 3.2). Once completed, you
should have a staircase built, as shown in the following screenshot:

& 2

File Ecit Assets GameObject Component Window Help

BN+ S [H| [=center] @local] [Layers - [Layout al

= Hierarchy + Scene | € Game o= | © Inspector | =
Create ~ | (GrAll | Textured +| | RGB s|| 20| % |) | Effeces -] | Gizmas - | (@Al

Directional light

- First Person Controller

¥ LeftStairs

Floor

Floor

Stairs 1
Stairs Floor 1
Stairs Floor 2
Wall

Wall

wall

wall

Pr’cject | Oconsole i —
{9

Y]ﬁ avnrltes & Assets ~ Prefabs - Modular Pieces
Materi

.
Model

Prefab

Scripts

v Assets Ceiling Ceiling Stai Door Door Wall Floor Stairs 1 Stairs 2
¥ &l Materials

Gl Models
¥ & Prefabs
G Props

Y Tiles Stairs Floar.. Stairs Flaar. Stairs Floor.. Stairs Floor.. Wall Carner

(& Roor|
& Scenes

& Scripts & -
» Terrains | ¥ "

17. Create GameObject (empty), name it LeftStairs, and add all of those
items as children of that top object. Then make the object a prefab inside
the prefabs\Tiles folder. Be sure to reset the position of GameObject by
right-clicking on its Transform component and by selecting Reset Position.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

18. Finally, the character controller by default won't be able to go upstairs like
that correctly, as the stairs aren't a smooth surface. You will need to create
another empty game object with a box collider (Component | Physics | Box
Collider) to act as our stairs, so the player will glide above everything. This
will require tweaking with the Transform, Rotation, and Scale tools to get
them just right, but my options are set up in the following screenshot. Once
you're finished, apply your changes to the prefab so that you can use it for
others by clicking on Apply in the Prefab menu under the Inspector tab.
Have a look at the following screenshot:

= x

File Edit Assets GameObject Component Window Help

° I TrT— r—

= Hierarcl # scene | ® Game

.= ©Inspector | =

Craate = | (ErAll Teutursd +| | RGB || 20| % | <) | Effects 7| | Gizmos | (@Al

X i M [StairsCollider []Static =
Directional light

Tag | Untagged 4| Layer | Default $

¥ First Person Cantroller
¥ LeftStairs

Prefab | Select | Revert | Apply |

Floor
Floor
¥ Stairs 1

Stairs Floor 1

¥ . Transform & #
Position x[-0,2098 ¥ [1.92276 2 0.83285
Rotation %o ¥ o z[315.71 |
Scale x[T ¥[i 21

Stairs Floor 2
wall
Wall
Wall
wall

¥ i M Box Collider @ #
Is Trigger O
Material None (Physic Material) =]
Center
X0 Y0 Zi0
Size
X |6.38 ¥ |0.29 Z1.63

4 2l i i i
Blidiged

Add Compaonent

Project | Oconsole

s - = BEE 53|
All Model: & pssets » Prefabs » Tiles »

All Prefab™

LAl Seripte .
vEi Assets i

-l Materials

v Models Rooms Hall Doar Hallway LeftStairs
&5 Modula
& Props

i Prefabs
&5 Modula

& Props

& Roor|
(& Scenes
(& Scripts -

» S Terrains 7 S

And with that we now have our tiles all set!

Placing tiles with grid snapping
Now that we have all of our tiles created, let's start building out our area:
1. Put a tile prefab in the world of your choice. Hold down the Ctrl key, and

pull it in an axis' direction. You may have noticed a little snap that you
wouldn't see when moving normally. This is due to unit snapping.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Grid snapping is a really useful tool when it comes to building stuff inside
Unity. Instead of punching in numbers all the time when trying to set the
positions of all of these tiles, we can just set our Snap size to be the size of
ourtiles3.2x3.2x3.2.

[In addition to movement, we can also snap rotations and scaling.]

2. Go to Edit | Snap Settings; we can change the value to snap easily by
changing Move of X to 3.2 and Move of Z to 3. 561, taking into account
the wall's thickness.

3. Now that we have the snap settings working correctly, we will place a
hallway to start our level and reset its Position property to (0, 0, 0).

4. Next, duplicate the mesh by hitting Ctrl + D, and then, holding Ctrl,
drag the tile over to the right-hand side to continue the hallway.

5. After that I'm going to create a couple of other hallways and then place two
Hall Door prefabs to fill out the area, as shown in the following screenshot:

£ s

 Fle Edit Assets GameObject Componert Window Wp |
(A & | S F| [center] © lobal] [11 | P [ayers -]

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

6. Now, we need to create a few rooms. Open your rooms prefab and from
the top viewport, place your middle piece in front of each doorway by
first dragging it out, resetting its position, and then holding down Ctrl
and snapping it there.

Another way of placing assets in this way would be to place
%j%“ floors first wherever you want to create your layout and then
’ spawning walls around the edges.

7. Next, use the correct Room tiles to fill out your rooms as you want them to
look. Start with using your Top Left, Top, and Right prefabs. Have a look
at the following screenshot:

Remember that once you place the object for the first time, all

you need to do is duplicate, which should make it extremely
quick to build (or prototype) levels.

Once we get over the wall, you'll remember that normal tiles are still 3. 2,
so modify Move of Z as needed to 3.2 or 3.6 accordingly. You can also
assemble tiles by making use of the vertex snapping tool. Basically, you can
take any vertex of a mesh, and with your mouse, place that vertex in the
same position as a vertex from any other mesh.

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

8. Select the mesh you want to manipulate, and make sure the Transform tool
is active. Press and hold V to enter the vertex snapping mode. Move your
cursor over the vertex on the mesh you want to use as the pivot point. Hold
down the left button once your cursor is over the desired vertex, and drag
your mesh next to any other vertex on another mesh. You should see the
object moving around via your input.

9. Release your mouse button and the V key when you are happy with the
results. This should make it really easy to build out the rest of the rooms, but
make sure you check at multiple angles to make sure the part is placed in the
right area.

10. For the sake of trying it out, go to the Hall Door prefab inside the Project
tab, and you should see a little button to the right of the image of the prefab.
Once there, click on it to have all the children objects show up so that we
can modify them. From there, select the Door object and uncheck the Box
Collider component. This way, you can walk through the doors to see the
rooms. Have a look at the following screenshot:

= %

File Edit Assets GameObject Component Window Help

Maximize on Play | Stats | Gizmos =

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

11. Using these same tools and a little trial and error, you can create a large
amount of variety in your environments, such as the following;:

X x

File Edit Assets GameObject Component Window Help

= Center| @ Loca (1)

12. Finally, create an empty game object, name it Level 01, and then assign all
the rooms to it as children.

And there we go! We now know how to build out rooms using tiles and
vertex snapping!

Creating and placing props

Now, it's great that we have a layout, but just a floor plan would get really boring
really quickly in a first-person game. Luckily, we have a number of props that we
can use to spice up the level a bit and add additional detail to our world. Perform
the following steps:

1. First, let's move our Level 1 object out of the way for now by making it a
prefab and then deleting it from the Hierarchy tab.

2. Next, go to the props folder, and select all of your models. Under the Model
tab, check the Generate Colliders option, and click on Apply.

This will create collisions for all the objects that we want to use. We didn't
choose to generate colliders for the modular pieces, because we will generate
them from scratch for our rooms.

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Move the Bedframe object to your scene, and change the Position property
of the object to (0, 0, 0) from the Transform section. To focus on the object,
select it in Hierarchy, and then press the F key (this only works if the scene is
selected). Alternatively, you can also double-click on it. You'll notice that in
spite of being in the center of the world when the position is reset, the bed is off
on the X axis, and that's again because of the art that we were provided with.

4. The first thing that we want to do is assign the Props material to all of
these objects. We could do the same as before, but instead, I'm going to place
each of the objects at (0, 0, 0), then select the actual mesh for all of them by
holding down the Ctrl key (Command on Mac), selecting them, and then
setting the material.

You'll notice that the material fits really nicely with the models that were
created. This is because the artist who created this used a UV map to tell the
engine how to cut up the material and place it onto the faces that make up
the object (the vertices). The texture that we have on the material is drawn

in such a way that it has the appropriate part of the image at the right place.
Setting up the UVs of an object is something that is done in a 3D modeling
program, but when we load the model file, it contains this information. Have
a look at the screenshot following the next information box.

[For more information on UV mapping, check out]
A

http://en.wikipedia.org/wiki/UV_mapping.

File Edit Assets GameObject Component Window Help

B 4 [S o] [enrivot | ®Local | [Layers +] [Layout -]

= Hierarchy == | #Hscene | € Game = | @ Inspector | &=
(Al Y : | RGB - -
¥ .. Table_Props_grp (Mesh F:Iterﬁ# o
Mesh =
[MMesh Renderer (TS
Cast Shadows M
Receive Shadows
irs_Praps_grn 20 e ¥ Materials
. g 5 - Size 1
. = - 2 Element 0 W Props [}
Use Light Probes -
i v [MMesh collider @ =
T — £ Is Trigger -
& Pmle‘i | B console i Material None (Physic Materiz @
ekl e | %%l convex |
Smooth Sphere Colli]
Mesh = e
FeelE0@® .. -
(1 all Seripts =
Shader [Diffuse || Edit.|
v | Skyboxes Water (Basi. 2048_Hou. 2048_Prop e l:lﬁ
i ﬁ Maodels 1 B (_'?GB) |
& Modula ling
& Props Kl
¥ 6l Prefabs 74
& Modula
YeaTiles - - Add Component I
=k | —— b

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

5. Just as we did with each of the modular pieces, make each of these a prefab
inside a new props folder, as shown in the following screenshot:

£

File Edit Assets GameObject Component Window Help

o EIEIE
E= Hierarchy
Create *| (G7ATT),
Directional light
» First Person Controller

= ©Inspector | “i

3| 2D | % | &) | Effects 17| | Gizmos v | (GrAT

Project | B console =
G T LY

orites 4 Assets - Prefabs » Props

I
| Materi
| Model
LAl Prefab e
(LAl seripts
v Assets Bedframe Candle_light Chairs Curtains Light Matress Portrait

¥ Materials

Vs Models
& Modula
& Props
v
i Tabls
I!J. S -
=g b —_——

6. Now with that in mind, let's bring the Level 01 prefab back to the level. Let's
start off by adding the simplest of props to add, the chair. Drag-and-drop a
chair object in your level; you should notice that it automatically gets placed
on the floor at the right position, aside from the pivot looking quite out of
place. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help
] = | #Scene | € Game o= | © Inspector | &=
¢ O ||| Testured :|| Ree 2| | 20 [% | Q) | Effects i*| | Gizmos - | (AT] 5 o [Chairs Cstatic v |~
™ Tag|Untagaed | Layer | Default ™|
Directional light prefab | sel 1
¥ First Person Controller [
> Level 01 ¥ .~ Transform
Rug Position X
Rotation X0 Yo z'o
Scale x1 ¥{1 z[T
¥ . Chairs_Props_grp (Mesh Filtel] %
Mesh lii Chairs_Props_grp | ©
¥ . MMesh Renderer £,
| Cast Shadows o
B3 Project | B console == Receive Shadows
Create " = &% %y materials
Favorites + Assets - Prefabs - Props] e T 1
Element 0 @Props °
— Use Light Probes [
(L All scripts ¥ || M Mesh Collider &
Is Trigger O
v&5 Assets Bedframe Candle_light Chairs Curtains Light Matress Partrait Matanal TNone (Physic Materid @
&5 Materials hpie -
Vi Models Smooth Sphere Calli[]
& Modula Mash T
& Props es| it Chairs_Props_grp
¥ Prefabs - — Props @ =
Bt ’ Shader [Diffise +|[Edit.]
IS . ader [Diffise o[Edie.
T —

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

7. We could go back to our 3D modeling software to fix this problem, but
perhaps you don't have access to the software, so let's fix the problem in
Unity. Create a cube by going to Game Object | Create Other | Cube.

(in case of Unity 4.6 or above, create a cube by going to GameObject | 3D
Objects | Cube) Change the cube's Position property to (0, 0, 0) and Scale to
(0, 0, 0). Then, we'll use Vertex Snapping to move the bottom of the chair's
leg to be at (0, 0, 0), so it looks like it does in the following image. Feel free

to hide other objects in the scene to make it easier to see by selecting them in
Hierarchy and then toggling the check by their name in Inspector:

£

X
File Edit Assets GameObject Component Window Help

':I be | Co¥ | o] ®f Pivot | @ Local
= Hierarchy
|| Create ~| (GrATl || 2D | % |) | Effects
Chair
Cube
Directional light
¥ First Person Controller

o= #scene | € Game
| Textured :|| ree

| Layers - | [Layout -]
= | O Inspector | =

- =
~| | Gizmos = | (GrAll

3 Project | B console &=
| Create - Q || % | *
L All Prefab)
(1 Al Seripts 4
¥is Assets Madular Pi.. Props Tiles CollidingTr.. FirstPerson.. Level01 Nighttime 5.
»Ea Materials
¥ Models
&3 Modula
I Gl Modula
& Props = .
- —

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

8. Once this is done, delete the Cube object, and create GameObject (empty)
with the name FixedChair, and have the previous Chair be the child of our
new one. After that, create a prefab named FixedChair in our Prefabs)\
props folder, and then delete it from Hierarchy.

9. After this, bring back our Level 01 prefab, and now drop a chair in. As I'm
sure you can see, it's much easier to place them now. Have a look at the
following screenshot:

File Edit Assets GameObject Component Window Help

BEX &S =] [ervot| ®Local] Lapers - JlLarout ____J

Scene | € Game .=| © Inspector | =
;|| RGB :|| 20| @ | 4) | Effects ~| | Gizmas ~ | ™ Fwedchar | LlStatic «

™ Tag | Untagged 4| Layer | Default il
¥ Level 01

¥ Hall Door Prefab | Select | Revert | Apply |
I Ll Daor ¥ A Transform @ #
» Hallway Position x/9.3227/ [0 z/-5.976.
> Hallway Rotation X 0 Y0 zZo
¥ Hallway Scale ®1 i B Z[1
> Hallway
¥ Hallway Add Companent

¥ Room Bottom
¥ Room Bottom s

| soanmomattamgaf T
3 Project | B console &=
| Create - K BEE TE IEA

Favorites & Assets » Prefabs » Props
e
All Model
‘LAl Prefab
(1 all Seript

¥ Assets Bedframe Candle_light Curtains FixedChair Matress Portrait
Gl Materials

¥ Models
&3 Modula
& Props
¥ Prefabs
B Rug Table
T :

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

10. With this in mind, we can also use the Rotation tool to rotate the chairs
a little bit and create some duplicates. The E key will switch to the
Rotation tool:

File Edit Assets GameObject Component Window Help

b [S [[center| G oc | > Il b CTTTHENES (ET
E I—v| | € Game = ®Inspector | =
(s) | RGB #f| 20| @ | <) | Effects (~| | Gizmas ~ | (GAT |

. | i M [Level 01 [Istatic -
AT T Tag [Untagged ¢ Layer | Defaulr Y|
¥ FixedChair

bi;\‘\janm' = = 4 = ¥ ~ Transform &,
¥ Hall Door = Position X0 v zo

¥ Hallway Rotation X 0 Yo

¥ Hallway Scale ®/1 i B
> Hallway

> Hallway

> Hallway

¥ Room Bottom

ep 2t / 3
3 Project | B console .=
e | > [4)% | % |
Favorites 4| Assets » Pre

¥ Assets Bedframe Candle_light Curtains FixedChair Light Matress Portrait
Gl Materials

¥ Models
&3 Modula
& Props
¥ Prefabs
Rug

s Modula el
b !

T
|

Prefab | Select | Revert | Apply |

Add Componant

(1 all Seript

= —

11. Now, we can continue with this with the other props as well, placing them
how you feel would make the environment look more realistic.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

12. Turning down the Direction Light's Intensity to .5, I got the following
screenshot with some quick placement of objects:

2 x

File Edit Assets GameObject Component Window Help

+ < | T

13. Next, make sure all the newly added props are added to the Level 01 prefab,
and click on the Apply button to save all the changes we made.

We now have a first story all fixed; let's now show how simple it is to create
a second level.

14. Find a spot in your level that has an open space, and add in the LeftStairs
object, adding in walls if needed to finish the space. After this, start placing
tiles just as we did with Level 01.

A nice thing to keep in mind if you want to only focus on one level at a time, you can
select the Level 01 game object and click on the checkbox next to its name to disable
everything about it, which will let you focus on just what you are doing with this
level. In addition, we can use this in the future to also turn off and turn on levels to
help with the frame rate if we have too many objects on the screen. Have a look at
the following screenshot:

[178]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

File Ecit Assets GameObject Component Window Help

o EXEFE] e > L1 p) o 77

| € Game o= | © Inspector | &=
ic -

.= | #Scene
i | | Textured +| | RGB #|2n] & ects |~ | | Gizmos ~| (27 Cltevelor | CJstati
D"’“""’""' b T Tag [Untagged +| Layer [Dafaul
¥ First Person Controller
Prefab | Select | Revert | Apply |

¥ Level02 ¥ . Transform & .
» Hallway Position X0 Yo Z0
» LeftStairs Rotation xo yo zo
Scale x[T vl z[1

Add Component

r’c]ect | Hconsole
ate |
Favnrltes 4 Assets » Prefabs - Props

Candle_light ~ Chair Curtains

v Assets dframe

G Materials

¥ Models
L5 Modula:
&3 Props

¥ i Prefabs
(& Modula

Vi Tiles
Gl Roor_
& Scenes ¥

Lightmapping quickstart

Lightmapping is the process of baking or precalculating the lighting on a texture
to static objects to make the game run faster and allow us to get the most out of
our projects.

This generally isn't done as an optimization until you have your entire level finished,
but I think this is probably the best place to talk about it. If you prefer to wait, come
back to this section when you are done with your level, as doing a lightmapping pass
can take a long time:

1. Go to Edit | Render Settings, and set Ambient Light to Black, as we want
to have all the light to be from our lighting.
2. Next, we will need to select all of our model files in the Models/Props
and Models/Modular Pieces folders (not the prefabs). From there,
check Generate Lightmap UVs from the Model tab, and then click
on the Apply button.

[179]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

3. Lightmapping only works with static objects, that is, objects that will not be
moving. That's our level stuff for sure, so select our Level 01 parent object,
and click on the Static option. It will ask if you want the change for the

children as well, and you should click on Yes, change children. Have a look
at the following screenshot:

Change Static Flags
Do you want to enable the static flags for all the child
objects as well?

Yes, change children Mo, this object only Cancel

4. Next, go to Window | Lightmapping. This opens Lightmapping Editor,
which we can use to bake our object, and more.

5. Once you're ready, click on the Bake Scene option. This may take a while
on your larger projects. Once the process is completed, your scene will be
ligtmapped. Have a look at the following screenshot:

{ Lightmapping

il >

Object Bake Maps
Mode | Dual Lightmaps ™
Use in forward rend. [
Quality | High :]
Bounces 3
Ambient Occlusion C» o

LOD Surface Distance 1

Lock Atlas O
Resolution 50 texels per world unit
Padding (1] tevels

[Clear H Bake Scene | v]
Last bake toek 00:30
3 dual lightmaps: 3x1024x1024px 16.0 MB

Calor space Gamma

Preview

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. Let's see everything put together. Go back to the level we created in the
previous chapter, First Person Shooter Part 1 — Creating Exterior Environments,
and create a prefab of the controller with the Flashlight object named
Flashlight Controller.

7. Go back to the interior level we just created, and replace the previously
created controller with it.

8. Back in our level, select the Main Camera object of Flashlight Controller,
and set Background to Black, and lower the magnitude of the Bobbing
Animation component to . 1.

To see it in action, let's take a look inside our game! Have a look at the following
screenshot:

X x

File Edit Assets GameObject Compeonent Window Help

For more information on lightmapping, check out

http://docs.unity3d.com/Documentation/Manual/
' LightmappingInDepth.html.

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 2 - Creating Interior Environments

Summary

And with that, we now have a great-looking interior level for our game! In addition,
we covered a lot of features that exist in Unity for you to be able to use in your own
future projects. With that in mind in the next chapter, we actually implement the
mechanics we need to create a fully featured project!

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

Create the layout for your game project. Try to create interesting areas, which
you can use for encounters later on in the game.

Place the props in interesting ways to break up repetition.

Instead of having box colliders for every tile in our game, it would be much
more efficient to just create box colliders for all the walls that are together.

One of the major tools that level designers have is lighting. With it, we can
create a mood or feeling in a place using the color, intensity, or even the lack
of light. Players, in general, tend to follow lights, and you can use that as a
level designer to help lead players along. Try using this in your level to lead
players to the end of your level!

Currently, the doors do not do anything. Add a trigger to the door (box
collider with Is Trigger toggled), so when the player gets near a door, it
will disappear. Once the player leaves the trigger, make it visible again. In
addition, you can have a sound play when the door disappears to signify
that the door has opened.

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter
Part 3 — Implementing
Gameplay and Al

When I start teaching my game design students, one of the questions that

I'll often hear is "What is a game?". Now, to some people, the card game War
(http://en.wikipedia.org/wiki/War_(card_game)) is a game; however, the
game is already determined before anyone actually plays the game since players
have absolutely no interactions besides flipping cards.

Renowned game programmer and designer Sid Meier says that a game is "a series
of interesting choices," and I really like that definition. At my alma mater and
current employer DigiPen, we were taught that a video game was a real-time
interactive simulation.

Having an environment is an excellent first step towards creating your game project;
but, without anything to do but look around, this is a real-time simulation but it's not
very interactive.

Project overview

In this chapter, we are going to be adding in that interactivity in the form of adding
in enemies, shooting behaviors, and the gameplay to make our game truly shine. In
addition, we'll also learn how to use an Xbox 360 Controller to accept input in our
game as well.

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

Your objectives
This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Adding shooting behavior

* Creating an enemy

* Enemy movement

* Shooting/killing enemies

* Using Xbox 360 Controller Input

* Moving to other levels
In this chapter, we will continue where the last chapter left off using the same
project. You may continue with your previous project or pick up a copy along with

the assets for this chapter from the example code provided for this book on Packt's
website at https://www.packtpub.com/books/content /support.

In addition, the completed project and source files are located there for you to check
if you have any questions or need clarification.

Setting up the project
At this point, I assume that you have Unity started up and have our project from the
previous chapter loaded. You can perform the following steps:

1. With Unity started, open the project from the previous chapter.

2. With that done, open our exterior environment from Chapter 4, First Person
Shooter Part 1 - Creating Exterior Environments, by double-clicking on it in
the Scenes folder.

Creating the shooting behavior

Now, with a traditional first person shooter, we shoot a bullet from a gun to damage
enemies. However, we will create a camera that will shoot pictures to damage
enemies. To show how easy it is to do, let's get started! Perform the following steps:

1. The first thing we need to do is go to the FlashlightController object we
created earlier. So, with it selected, double-click on it to center the camera
on it.

[184]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

2. Our camera weapon is going to be another object, which will be a child of the
Main Camera object. To do this, first select the Main Camera object that is
located on our FlashlightController object and then navigate to GameObject
| Create Empty Child. Also, in the Inspector section for this newly created
object, confirm whether the object's position is 0, 0, 0. If it isn't, set it. Finally,
name the object Photo Camera. Have a look at the following screenshot:

File Ecit Assets GameObject Component Window Help

o | [># Center| @ Global > 1l

$ S| M

= Hierarchy
Create ~| (@Al

| Layers - | [Layout - |
= + Scene ?

| € Gams.

= 0 Inspector

Capsule
Directional light
¥ FlashlightController

|| Textured

i) | Effects -

Gizmos

&=

[[Photo Camera

|v Tag | Untagged

+| Layer | Default

| Clstatic «

¥ .~ Transform
Position X0

Graphics
¥ Main Camera

Rotation X0

Spotlight
Nighttime Simple Water
Terrain

Scale

Add Component

5 Project | B console

Create ~

¥ Favorites 4 Assets
O Al Materi (3
2 All Modely
_\ All Prefab)
. All Seripts

Scenes

vii Assets

» 5 Materials

¥ & Models
5 Modulal
3 Props

¥ Prefabs
G5 Modula

ChaptarS_1

Chapterd_

ChaptarS_1

G Props
e Ties |3
& Roor._
= scenes

3. Next, add a camera component by clicking on the Add Component button

at the bottom of the Inspector tab and then putting in the text Camera in the
search bar before selecting it.

Alternatively, you can just navigate to Component | Add... from
the top bar to bring up the menu.

This camera will be zoomed in from the normal camera, so I'm going to
change the Field of View value to 30.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

5. We also want this camera to be on top of the previously created one, so we
are going to change the Depth value to 1 (higher numbers put things in
front of the other cameras).

6. That being said, we still want to see our previous camera as well in the
background, so we're going to set the Viewport Rect values to put our new
camera in the center of the screen at 75 percent of the size of the previous
one. To do that, set the X and Y properties in the Viewport Rect option to
.125 and the W and H properties to . 75. To see the results of our work,
check out the Game tab. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help
S | :ﬂ:l = Center| @ Global | Layers ~ | | Layout - |
= Hierarchy | .= #Scens | € Gams] | @ Inspector | =]
| Create ~| Al | | 4:3 = Mazimize on Play | Stats | Gizmos * [[Phote Camera [_]static
Capsule Tag | Unragged 4| Layer | Default |
Directional light =
¥ FlashlightContreller ¥~ Transform I
Graphics Position X0 ¥|0
¥ Main Camera Rotation X0 Y [0
~ Pho mera Scale %1 i i
Spotlight v ¥ v Camera & %
Nighttime Simple Water Clear Flags T
il Backorownd N
Culling Mask | Evs ;|
Projection | Perspective |
Field of View p— | 30
Clipping Planes Near 0.3
Far 1000
— Viewport Rect
3 Project Bl console L me= w0125 v 0125
ErEaer : = L. 1 Wo.75 HID.75
¥ Favorites & Assets - Scenes »
LAl Materi Depth 1
L All Models - Rendering Path | Use Player Settings s
CLAll Prefab) i Target Texture None (Render Texture) o
S Al Seripte Occlusion Culling
V55 Assets Chapter5_I.. Chapterd_.. Chapters_I bR U
:g m:iflfls Add Component
&5 Modula
&5 Props
¥&a Prefabs
&5 Modula
&5 Props
Vi Tiles
) & Roor 7 —

7. Now, in our game, this camera isn't just going to be a camera; it's also going
to have a border around it. In this case, it'll be a cell phone. From the Chapter
6 /Assets location, grab the phone . png file, and move it into the Materials
folder inside your project browser.

8. Once it's imported, select it to bring up the properties in the Inspector tab.
By default, in a 3D project, . png files will be imported with a Texture Type
value of Texture. We want to change it to GUI (Editor \ Legacy), so click
on Apply.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

. Depending on the version of Unity you are using, you will
& most likely see different things. In 4.3, you'll just see GUL In
i 4.5, it'll look like the preceding screenshot. In 4.6, it will be

Editor GUI and Legacy GUI.

9. Next, we need to add this texture to a custom GUI Skin to replace the default
Box background, so let's go into the Project tab and navigate to Create | GUI
Skin and name it PhoneSkin.

10. With the new GUI Skin selected, in the Inspector section, expand the
Box property and, from there, expand the Normal selection, and change
the Background property to the phone image, as you can see in the
following screenshot:

File Edit Assets GameObject Component Window Help
(O & BN =] [cener] €iobal] >] T
‘= Hierarchy | e # Scene | € Game | = O Inspector | i
Create v | (QrAll ” 43 > Maximize on Play | Stats = Gizmos ~ Phoneskin ﬁ &, |~
Directional light =
¥ FlashlightController ‘ Fant [Arial =}
Graphics | ¥ Box
¥ Main Camera e e
Phota Camera ¥ ma
Spotlight _—_—
N\ghttlr:e S?mule Water Becesianu i ohone =
por Teccolr [|
» Hover
P Active
» Focused
» On Normal
» On Hover
¥ On Active
—— » On Focused
1 Project | Econsole o=, porder
Create -) @ 4% S
¥ Favorites & Assets - Materials -
L all Materi(] ARG
©All Models — A
©\, All Prefab) Font None (Font) [}
1 All Scripte i - Font Size 0
—_— Font Style | Hormal :]
,%_A_“ets_ Skyboxes Water (Basi.. 2048_Hou.. 2048 _Prop.. PhoneSkir Alignment PR —
_— Matarial Word Wrap -
Vi Models Rich Text o
&5 Modulal =,
& Props Text Clipping R
¥ Prefabs Image Position | Imageleft |
&5 Modula Brans Content Offset =
&5 Props Asset Labels
& Tiles
= &5 Roor o ¥ Phaneskin.auiskin ——

11. Finally, we need to add this border to our Photo Camera object, so let's
create a new C# script called PhoneBorder. Open the newly created script
in MonoDevelop and put the following code in it. Have a look at the
following code:
using UnityEngine;
using System.Collections;

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

// Code will run even if the game isn't playing

// so we can see it all the time in the Game tab.

[ExecuteInEditMode]

public class PhoneBorder : MonoBehaviour (
public GUISkin phoneSkin;

// How far to shift the image from the top left (in

// pixels)
public int
public int

// How far
// pixels)
public int
public int

xOffset
yOffset

to extend

xExtend =

yExtend

void OnGUI ()

{

if (phoneSkin)
GUI.skin = phoneSkin ;
Camera cam = transform.camera;

-30;
0;

the image from the bottom right

80;
20;

(in

// Will create a box which will fill the screen above
// our camera

GUI.Box (new Rect (cam.pixelRect.x + xOffset,

}

(Screen.height - cam.pixelRect.yMax) +
yOffset,
cam.pixelWidth + xExtend,

cam.pixelHeight + yExtend), "")

12. Now, save the script and exit back into the Unity Editor. Then, attach the
PhoneBorder script to the phone camera object, and assign the phone skin
variable to the GUI Skin we made in Step 10. You should now see the phone
pop up, as shown in the following screenshot:

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

What this code basically does is render a box onto the screen that is
positioned in the top-left corner of the camera, and is as large as the camera.
The variables that we created for the offset extend and alter the image so
that the camera we created is inside the phone. Take some time to modify
the variables to see how each of them modifies the image. Have a look at
the following screenshot:

£

File Edit Assets GameObject Component Window Help

[cCenter] © alab]

KD © K4

= Hierarchy

Create = | (arAl
Capsule
Directional light
¥ FlashlightController
Graphics

Spotlight
Nighttime Simple Water
Terrain

Maximize on Play | Stats Gizmos ~

Create ~ " . .

(0 Al Models * Assets
(LAl Prefab
(20 All Scripts

¥ Assets T
b & Materials oo
¥ Models
i Modula

G Props

¥ & Prefabs
i Modula

G Props

Vi Tiles
& Roor!

BobbingAn..

5_: r| p_ts

A

p

Character..

P

FPSInputC..

\ 1 LT

Mouselook PheneBorder

X
[Layers - | [Layout -
+=| ©Inspector | =
[[Photo Camera [static =
T Tag | Unragged : | Layer | Defaulr :]
¥ .~ Transform & #
Position o Y0
Rotation X0 Jefo |
Scale *[1 Yzt]
¥ & ¥ camera & %
Clear Flags [Skybox &
packgrond I ¥
Culling Mask | Everything +]
Projection | Perspeetive 3]
Field of View o p— R
Clipping Planes Mear03 |
Far 1000
Viewport Rect
¥o0izs ¥ 0.125
w075 H 0,75
Depth 1
Rendering Path | Use Player Settings 3|
Target Texture None (Render Texture) | @
Ocelusion Culling &
HDR -
¥ || ¥ Phone Border (Script) @ #
Script l= PhoneBorder o
Phone Skin [EPhoneskin [GUISkin) | @
XOffset | EF
YOffset ']
XExtend 80
YExtend 20

Add Componant

13. Right now, I have the aspect ratio set to 4:3, which we can see in the Game
tab in the top-left corner just below the tab. This ratio is of the same size as
old television sets and monitors, but the code we just created also works with
widescreen monitors and makes the camera look much better. So, let's make
the game use an aspect ratio of 16:9. We can do that by clicking on the
drop-down list beside 4:3 and then selecting 16:9.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

If you play the game at this point, the game should look something like the
following screenshot:

& £3

File Edit Assets GameObject Comp Window Help

Maximize an Play | Stats | Gi

Looks pretty good! But right now, the camera is always up there, and I only
want to see it if the player right-clicks to zoom in.

14. So, with that in mind, let's create another C# script called PhoneBehaviour
and open it inside MonoDevelop.

15. Place the following code into the PhoneBehaviour class as follows:
using UnityEngine;
using System.Collections;

public class PhoneBehaviour : MonoBehaviour {
private PhoneBorder border;

// Use this for initialization
void Start ()

{

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

border = GetComponent<PhoneBorders> () ;

}

// Update is called once per frame
void Update ()
{
if (Input.GetMouseButton (1))
{
this.camera.enabled = true;
border.enabled = true;

}

else

{
this.camera.enabled = false;
border.enabled = false;

}
}

Now, the camera will only come up whenever we hold down the right mouse
button! Awesome! It's just like a sniper rifle in most FPS games.

Next, we want to add the ability to shoot our weapon and flash it on the screen
whenever the camera is shot. To simulate this behavior, we will first create an
image to be placed over our entire screen. We perform the following steps:

1. Just to make it easier to see things, let's first go to the Photo Camera object
and disable the Camera and Phone Border scripts by unchecking their
components from the Inspector menu.

2. Next, we will add a new GUI texture object by navigating to GameODbject |
Create Other | GUITexture. Let's rename this object Phone Flash.

If you are using version 4.6 or later, you can create a GUI

texture by navigating to GameObject | Create General
i | GUITexture or create an empty game object and add a

GUITexture component.

3. Bringin the Flash.png image from our chapter's Assets folder into the
Materials folder of our project browser, and change the GUI texture's
Texture value to that.

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

4. Now, we need to set the image's width (W) and height (H) to the biggest
resolution that you want to support; I'm using a value of 4000. Next, set the
X and Y positions to negative; halve the value (-2000) to center the image
to your screen.

5. Click on the box beside the Color property, and change the A option (alpha)
to 0, so we can still see the rest of the world.

6. Next, go back into the PhoneBehaviour file, and add in the following variable:

public GameObject cameraFlash;

7. Now, a flash contains two parts: fading to white and then fading to a
transparent color. The pieces of code doing both of these things are very
similar, so we will create a helper function to do this for us, called Fade.
Have a look at the following code:

IEnumerator Fade (float start, float end, float length,
GameObject currentObject)

if (currentObject.guiTexture.color.a == start)
{
Color curColor;
for (float i = 0.0f; i < 1.0f; i +=
Time.deltaTime* (1/length))
{
// Cannot modify the color property directly, so we
// need to create a copy
curColor = currentObject.guiTexture.color;

// Do a linear interpolation of the value of the
// transparency from the start

// value to the end value in equal increments
curColor.a = Mathf.Lerp(start, end, 1i);

// Then we assign the copy to the original object
currentObject.guiTexture.color = curColor;

yield return null;

}

curColor = currentObject.guiTexture.color;

// ensure the fade is completely finished (because
// lerp doesn't always end on the exact value due to
// rounding errors)

curColor.a = end;

currentObject.guiTexture.color = curColor;

[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

As you may recall from Chapter 1, 2D Twin-stick Shooter, we can use
coroutines to pause functionality, yielding for a time and then resuming
functionality. The IEnumerator class holds the current state of the program
and tells us where to continue. The yield return here is asking us to stop the
function now and resume after a period.

Since coroutines are just functions, we can also have parameters in them,
just as in the preceding function. With this in mind, we can also nest them
together in order to have complex interactions and use our abstracted
functions in multiple ways to create interesting behaviors.

8. And then, we will call this function twice with our main function,
CameraFlash, as follows:

IEnumerator CameraFlash ()

{
yield return StartCoroutine (Fade(0.0f, 0.8f, 0.2f,
cameraFlash)) ;

yield return StartCoroutine (Fade(0.8f, 0.0f, 0.2f,
cameraFlash)) ;

StopCoroutine ("CameraFlash");

For more examples on how coroutines can be used, check out http://

unitypatterns.com/introduction-to-coroutines/ and

http://unitypatterns.com/scripting-with-coroutines/.

9. Finally, this function will never be called if we don't call it, so add the
following highlighted code to our Update function:

void Update ()

{

if (Input.GetMouseButton (1))

{

// Flash the camera if I am aiming and I click
if (Input.GetMouseButtonDown (0))

{

StartCoroutine (CameraFlash()) ;

this.camera.enabled = true;
border.enabled = true;

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

else

{

this.camera.enabled = false;
border.enabled = false;

}

10. Save the file and go back into the Unity Editor. Finally, back at the photo
Camera object, assign the Phone Flash object to the Camera Flash variable,
and add a GUILayer component to the Photo Camera object by navigating to
Component | Rendering | GUILayer (otherwise the flash won't show up on
the actual camera).

11. Save the scene (Ctrl + S), and then click on the Play button and try out your
new camera. Have a look at the following screenshot:

File Edit Assets GameObject Compenent Windew Help

= Center| @ Global

Looks like everything is in working order! We can look around with our camera,
zoom in and out, and shoot pictures.

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating an enemy

Now that we can take pictures, let's create an enemy to take pictures of! We will
perform the following steps:

1. The first step to adding in an enemy is to import the assets required to use it.

Inside our Chapter 6\Assets\Ghost Model location, you'll find a series
of files.

2. First, let's create the material for our new mesh. To do this, go into either
the 1024 Textures or 2048 Textures folder, and move the files into the
Materials folder. Afterwards, navigate to Create | Material, and give it
the name GhostMaterial. Change the Shader value to Bumped Diffuse,
and move the Ghost Tex file into the Base and Ghost TEX_ NRM file in the
Normalmap selection. You'll get a warning indicating the texture isn't
marked as a normal map; feel free to click on Fix Now, or go back into
the file, and change its Texture Type value to Normal map. The following
screenshot shows the Unity screen with these changes:

File Edit Assets GameObject Component Window Help
XN @ Global > 1 [Layers - | [Layout =]
= Hierarchy Hscene € Game © Inspector | &=
| Craars - (GAT & Mazimize on Play | Stats | Gizmes GhostMaterial [FE-5
Capsule . Shader [Bumped Diffuse - | [Edit.. |
Directional light | - :

¥ FlashlightController
Graphics
¥ Main Camera

Main Color
Base (RGE)

7 € GhostMaterial.mat

ESnoaa

Tiling
Photo Camera A
Spotlight Y e
Nighttime Simple Water
Phone Flash Mormalmap
Terrain Tiling Offset
=L 0
P 0
i Project B console R
Create 7| q Al
¥ (Favorites & Assets - Materials »
[od al
(L All Prefab - :&-:,,J
= ! f=
LAl Script x|
i Assets Skyboxes Water (Basi. 2048_Hou.. 2048_Prop flash Ghost_TEX.
¥ Models
%-fMatema D o
& Madula
S5 Props
Y‘-'.if—efabps House phone Phaneskin Praps
(8 Modula

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

3. Now, move to the Models folder on the Project tab, and drag-and-drop
the Ghost_mesh.obj file in there. Now, select the object to bring up its
properties in the Inspector tab. Under Scale Factor in the Model tab, change
the value to .10 to scale the object to 1/10th of its starting size. Then, check

Generate Colliders, and uncheck the Import Materials option, making sure
to hit Apply.

4. Under the Rig tab, change the Animation Type value to None, as this model
doesn't have any animations, and then click on Apply.

5. Now, go somewhere in your world in the Scene view, and drag-and-drop

the character onto the screen near your player and terrain. have a look at
the following screenshot:

File Edit Assets GameObject Component Window Help

'S | :“:] =0 Center | @ Global > 11l
= Hierarchy | -= | #Scene | € Game -
Create v | (BrAll Textured | | RER || 20| ¥ | &) | Effects v | | Gizamos ~| (G AT
Capsule |
Directional light
¥ FlashlightController

Graphics
¥ Main Camera

| Layers - | [Layout - |

== | © Inspector e
« ¥ [Ghost_mesh []static +
Tag [Untagged | Layer [Default

| Model | Select | Rever [open

| ¥ .~ Transform & %
Position X[932.04 Y 99.526 2(741.14
Rotation X 0 Yo zo |
Scale x[T vt 21

Photo Camera
Spatlight

Nighttime Simple Water
Phone Flash
Terrain

{ Add Component

63 Project | Blconsale)
| Create | Q

¥ Favorites 4 Asssts » Models »
(LAl Materi
(LAl Models

(L All Prefab - - :
(L Al Scripts |

V&5 Assets Materials Modular Pi.. Props Ghost_mesh
» 55 Materials
.= Madels
sl Materiz
5 Modula
G5 Props
¥l Prefabs
ity —=

6. Right now, the mesh is just using the default material, so let's fix that. Expand
the Ghost_mesh object, and select its child. In the Inspector tab, extend the
Mesh Renderer tab, and change the material's Element 0 property to our
Ghost material, as shown in the following screenshot:

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

&

File Ecit Assets GameObject Component Window Help

And now, the character has a material that makes it appear as an enemy much
nicer. Spooky!

State machines 101

We oftentimes write code to provide the reactive or interactive parts within our
simulation (or game world) — things such as when you're pressing a button or if
you're walking or jumping. If you look at real life, you should notice that a lot of
things are reactive systems in that same way, such as your mobile phone and toaster.
Depending on the stimuli provided to these objects, the state of these objects may
change. We describe something that can be in one of multiple states at a time as a
state machine.

Almost every program that we write is or can be a state machine of some sort,
because technically, the moment you write an if statement, you've created code that
can be in one of at least two states. However, having a number of switch and if
statements can quickly get out of hand, making it very hard for people to understand
what your code is actually doing. As a programmer, we want to isolate problems
and break them down into their simplest parts before jumping in to solve them.

[197]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

There are different kinds of state machines, but for this first example, we are going to
create a simple Finite State Machine (FSM). When I say finite, it means that each of
the states is already defined ahead of time. With a finite state machine, we can have
different states in which we can process input differently depending on the state.

For example, if you are on a ladder, you can only move up and down and not to
the sides.

Enemy movement

As spooky as the character is, right now, it is just a static mesh. It will not come to us
to damage us, and we cannot damage it. Let's fix that next using the state machines
we've just learned about! Perform the following steps:

1. Create a new script called EnemyBehaviour.

We want our enemy to follow the player if they get too close to them;
however, they will stay where they are if the player gets far enough away.
Finally, if, for some reason, we defeat the enemy, they should no longer

run this behavior, and we should kill them. The first step to creating a state
machine is to extract the states that the object can be in. In this case, we have
three states: Idle, Following, and Death. Just as we discussed in Chapter 2,
Creating GUIs, using an enumeration is the best tool for the job here as well.

2. Add the following code to the top of the EnemyBehaviour class:

public enum State

{

Idle,
Follow,
Die,

}

// The current state the player is in
public State state;

Now, depending on the value that the state is currently in, we can do
different things. We could use something like the following code:

void Update ()

{

if (state == State.Idle)

{
}

else if (state == State.Follow)

//And so on

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

//And so on

}

//etc. ..

}

But, as I'm sure you can already see, this is incredibly messy. Also, what if
we want to do something when we first enter the state? What about when
you leave? To fix this issue, let's use a tool we covered earlier, the coroutine
function, which we will have each of our states contain.

3. Next, we need to add in some additional variables we will use. Have a look
at the following code:

// The object the enemy wants to follow
public Transform target;

// How fast should the enemy move?
public float moveSpeed = 3.0f;
public float rotateSpeed = 3.0f;

// How close should the enemy be before they follow?
public float followRange = 10.0f;

// How far should the target be before the enemy gives up
// following?

// Note: Needs to be >= followRange

public float idleRange = 10.0f;

4. Now, we need to add in a coroutine function for each of the possible states,
starting with the 1d1e state. Have a look at the following code:

IEnumerator IdleState ()

{

//OnEnter
Debug.Log("Idle: Enter");
while (state == State.Idle)
{
//OnUpdate
if (GetDistance () < followRange)

{

state = State.Follow;

yield return 0;

[199]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

//OnEnd
Debug.Log("Idle: Exit");
GoToNextState () ;

}

This state will continuously check whether the players are close enough
to the target to start following it until its state is no longer state. Idle.
You'll notice two functions we'll need to create later, GetDistance and
GoToNextState, which we will implement after we finish the other states.

5. Continue with the Following state, as follows:

IEnumerator FollowState ()

{
Debug.Log("Follow: Enter");
while (state == State.Follow)

{

transform.position =
Vector3 .MoveTowards (transform.position,

target.position,
Time.deltaTime * moveSpeed) ;

RotateTowardsTarget () ;

if (GetDistance () > idleRange)

{

state = State.Idle;

yield return 0;
Debug.Log ("Follow: Exit");
GoToNextState () ;

}

This state will move the enemy closer to the player while continuously
checking if the target is far enough to go back to 1dle. In addition to the
other functions we talked about earlier, we also have a new function called
RotateTowardsTarget, which we will also need to add in.

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

6. Finish off by adding in the Die state, as follows:

IEnumerator DieState ()

{

Debug.Log("Die: Enter");

Destroy (this.gameObject) ;
yield return 0;

}

This state just destroys the object attached to it. Right now, there is no way
to get here aside from us setting it in the Inspector tab, but it will be useful

when we add in damage.

Now, we need to add in those functions we talked about earlier. First, let's
add in GetDistance and RotateTowardsTarget, which are self-explanatory

in terms of what they do. Have a look at the following code:

public float GetDistance ()

{

return (transform.position -
target.transform.position) .magnitude;

}

private void RotateTowardsTarget ()

{

transform.rotation =
Quaternion.Slerp (transform.rotation,

Quaternion.LookRotation (target.position -
transform.position),
rotateSpeed * Time.deltaTime) ;

The Vector3 class also has a Distance function you can use.

Vector3.Distance (transform.position, target.
%ji\ transform.position) ; will do the same thing as our
’ GetDistance function does, but knowing the math behind
things can be extremely helpful!

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

8. Now, we need to add in the ability to go to another state, as follows:

void GoToNextState ()
// Find out the name of the function we want to call
string methodName = state.ToString() + "State";

// Searches this class for a function with the name of
// state + State (for example: idleState)

System.Reflection.MethodInfo info =
GetType () .GetMethod (methodName,
System.Reflection.BindingFlags.NonPublic |
System.Reflection.BindingFlags.Instance) ;

StartCoroutine ((IEnumerator) info.Invoke (this, null)) ;

}

The preceding code is fairly advanced stuff, so it's okay if you do not
fully understand it at a glance. For the preceding code, I could have
written something like the Update example I wrote previously, calling
the appropriate coroutine based on the state to go to.

Instead, this code will call the appropriate function with the name of the state
plus the word state. The nice thing about this is that you can now write as
many additional states as you want without having to modify this function.
All you have to do is add an item to the state enumerator and then write a
function for it with a proper name!

For information on the GetMethod function and the different kinds
% of BindingFlags, you can visithttp://msdn.microsoft.com/
’ en-us/library/05eey4y9 (v=vs.110) .aspx.

Then, we need to start this whole state machine up with the following code:
void Start ()

{

GoToNextState () ;

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

10. Finally, we need to save our file and exit back to the Unity Editor. Attach
the Enemy Behaviour script to our Ghost_mesh object, and set the Target
property to our FlashlightController object. Have a look at the following
screenshot:

&S| x
= Hierarchy |
Create = [GAll

Capsule
Directional light
¥ FlashlightController
Graphics
¥ Main Camera
Photo Camera
Spotlight
= e
Ghost_mesh

Phone Flash
Terrain

@ project

Nighttime Simple Water

| B consale I
Clear | | Callapsz | Clear an Play | Errar Pause

[= center] © Gioball

= | 3 Scene
Textured

| € Game

File Edit Assets GameObject Component Window Help

+| | RGR

| Layers ~ | | Layout -
© Inspector =
[[Ghost_mesh [Jstatic

L =
Tag | Untagged

+| Layer | Dsfault

| Model | Select | Reverr | Open
| v ~ Transform [WE-5
Position X 932.04)Y/99.526 Z 741.14
Rotation X 0 Yo zo |
Scale K1 il)

Script

State

Target

Move Speed
Rotate Speed
Follow Range
Idle Range

v |o| M Enemy Behaviour (Script) [%

- EnemyBehaviou @
[mdle s
"~ FlashlightContr({ o
o
3
10
10

‘ Add Component

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

11. Save the scene and play the game. Have a look at the following screenshot:

«“

File Edit Assets GameObject Component Window Help

| o EIEIFA

= Hierarchy .| ©® Inspector
| Create v| (GrR) Maximize on Play | Stats Gizmos = Wl M [Ghost mesh | LStatic v

Tag | Untagged | Layer | Default b

¥ .~ Transform [P
Position ¥ 934.61 | ¥ 100.795 Z 724.92¢
Rotation X|359.154 Y [87.7758) 2[4.02117
Scale x[1 YT 2l

I EGIIRE -
. FlashlightControlle @
El

Rotate Speed 3
Follow Range 10
Idle Range 10

[Add Component l

3 Project. E consale
| Clear || Callapse | Clear on Play | Error Pause |

Follow: Enter
UnityEngine.Debug:Log{Object)
Faollow: Exit
UnityEngine.Debug:Log(Object)
Idle: Enter
UnityEngine.Debug:Log{Object)
Idle: Exit
UnityEngine.Debug:Log{Object)
Follow: Enter

UnityEngine .Debug:Log{Object)

As you can see now, you can follow the enemy's current state in the Inspector tab,
and they will turn and move towards you whenever you get too close!

Advanced FSMs

This is a good introduction to state machines and what you can use them for, but
there is a lot of additional information out there on their uses, such as an abstract
version of a state machine at http://playmedusa.com/blog/a-finite-state-
machine-in-c-for-unity3d/.

The Asset Store also features Playmaker, which is a fairly popular commercial
add-on that creates state machines with a visual editor, making it very easy

to add in states. For more information on Playmaker, check out http://www.
hutonggames.com/.

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Damaging and killing enemies
Now that we have enemies moving towards us, we need some way for them to be
damaged and killed! Let's do that now by performing the following steps:

1. The first thing we need to do is make it easy to get a reference to all of our
enemies, so let's add a tag by going to the Inspector tab and navigating to
Tag | Add Tag.... Once the Tag & Layer menus come up, type in Enemy into
Element 0. Then go back into the Ghost_mesh child object, add the Enemy
tag to it, and rename the parent object to Ghost:

File Edit Assets GameObject Component Window Help
‘S | :ﬂ:] =4 Center | @ Global 1 » |Layars .I ‘Layuut e
= Higrarchy | o= | i Scene | & Game » - ~ .= © Inspector -
Create -| G7AT) ||| Texwred <) | Effects |+ | Giamos | GeAT) |y @ [Ghostmesh | [JStatic ~
Capsule e AE— T —
Directional light —
¥ FlashlightController | _Model lafelatho o Reve ko Lo ORED.
Graphics ¥ ~ Transform Q%
¥ Main Camera Position X0 ¥ [0 zlo
Photo Camera Rotation X 0 Y0 Zao
Spotlight Scale x[1 Y1 Z{1
WAL ¥ . Ghost_mesh (Mesh Filter) [@ %,
nghtt\r.ne Simple Water Jieet M GRCR mein o
Phone Flash ¥ | ¥ Mesh Renderer @ %
Terrain Cast Shadows &4
Receive Shadows [
¥ Materials
Size 17
Element 0 [©GhostMateria ©
Use Light Probes []
7) M Mesh Collider & %
x 7 = = Is Trigger
SSESEE CConsol- I = aterial [None (Physic Mati ©
Clear | | Collapse | Clear on Play | Error Pause Dol Aol @ol|
|| Convex ()
Smooth Sphere Collil_]
Mesh [l Ghost_mesh | @
‘ GhostMaterial
Main Color
Base (RGB)
Tiling Offset
%1 o
vl [
Mormalmap
Tiling Offset 3

2. Next, let's dive back into MonoDevelop, edit our PhoneBehaviour script, and
add the following code in bold to its Update function:

// Update is called once per frame
void Update () {

if (Input.GetMouseButtonDown (0) &&
Input.GetMouseButton (1))

{

StartCoroutine (CameraFlash()) ;

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

GameObject[] enemyList =
GameObject.FindGameObjectsWithTag ("Enemy") ;

foreach (GameObject enemy in enemyList)

{

if (enemy.renderer.isVisible)

{

EnemyBehaviour behaviour = enemy.transform.parent.
gameObject.GetComponent<EnemyBehaviours () ;

behaviour.TakeDamage () ;

}
}

if (Input.GetMouseButton (1))

{

this.camera.enabled = true;
border.enabled = true;

}

else

{

this.camera.enabled = false;
border.enabled = false;

}

3. Now that we say there is a TakeDamage function in our EnemyBehaviour
class, we need to add that in. Open the EnemyBehaviour class, and first,
we need to create some variables as follows:
public float health = 100.0f;
private float currentHealth;

4. Next, we need to initialize currentHealth, so add the following code in bold
to the start function:

void Start ()

{

GoToNextState () ;
currentHealth = health;

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

5. Now, let's add in the TakeDamage function, as follows:

public void TakeDamage ()
{
// The closer I am, the more damage I do
float damageToDo = 100.0f - (GetDistance () * 5);

if (damageToDo < 0)
damageToDo = 0;

if (damageToDo > health)
damageToDo = health;

currentHealth -= damageToDo;

if (currentHealth <= 0)

{

state = State.Die;

}

else

{

// If we're not dead, now that we took a picture the
// enemy knows where we are

followRange = Mathf.Max (GetDistance (), followRange) ;
state = State.Follow;

print ("Ow! - Current Health: " +
currentHealth.ToString()) ;

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

6. Now, save your scene and all the script files, and play the game! The
following screenshot depicts the game screen:

£ 2.

o EIEIES [11| 1] [Layout -]
= Hierarchy | | f = O Inspector -
| Create +| G A) Maximize on Play | Stats Gizmes = ' '

Capsule
Directional light
¥ FlashlightContraller
Graphics
¥ Main Camera
‘Photo Camera
Spotlight
Nighttime Simpls Water
Phane Flash
Terrain

] ‘El Console
| Clear | | Collapse | Clearon Play | Error Pause |

Wiss| Ao @o]]

T Tdle: Exit =
=7 UnityEngine Debug:Log(Object)

Follow: Enter

UnityEngine Debug:Log(Object)
1 Qw! - Current Health: -11,56544
“< UnityEngine . MonoBehaviour:print(Object)

Follow: Exit

UnityEngine Debug:Log(Object)

v Die! Enter
=7 UnityEngine Debug:Log{Object)

Now, the enemy will follow you when you take its picture and the closer you are
to it, the more it will get damaged, which you can see by looking at the console!

Using controller input

One of the biggest advantages of using Unity as a game engine is the fact that you
can support multiple platforms with minimal changes to your base game. In fact,
right now, if you plug in an Xbox 360 Controller into your computer, restart Unity,
and then try to play the game, you'll notice that the left-hand side joystick already
moves the player, and if you press the Y button, you will jump into the air. However,
some of the aspects don't work, so let's get them implemented.

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let's get started by performing the following steps:

1. The first thing that we're going to need to do is let Unity know that we want
to work with some new input. So, to do that, we will need to navigate to Edit
| Project Settings | Input. Have a look at the following screenshot:

File | Edit | Assets GameObject Component Window Help
@ Undo [TN Layers ~ | [Layout -
= Redo _ -~ =) Inspectar =
Cre: Cut Chrl+X Mazximize on Play | Stats | Gizmes = | ||
Ca
o Copy ChrleC
b Fla Paste Cirl+V
¥ Gh
Nig Duplicate Ctrl+D
Phi Delete Shift+Del
Tel
Frame Selected F
Lock View to Selected Shift+F
Find Ctrl+F
Select All Ctri+A
Preferences...
Play Cirl+P
Pause Ctrl+Shift+P
Step Ctrl+ Alt+P
= Selection 3
Cles R
Project Settings (3 Input
() Render Settings Tags and Layers ‘
O Netwaork Emulation , S
7 Graphics Emulation 3 i |
N Player
.| Snap Settings... P
=~ UnityEnaine.Debug:Cog(Object] T o |
v Idle: Enter ki ‘
“" UnityEngine.Debug:Log(Object) CQuality
Graphics
Network
Editor
T Script Execution Order i

2. Once there, we need to add four new axes to our project, the first being
a new horizontal axis; so right-click on the Mouse X axis, and select
Duplicate Array Element.

3. Extend the newly created Mouse X axes, and rename it to 360 Right
Horizontal. The controller output is never 100-percent correct, so we want
to change the Dead value to . 05 so that any value between - .05 and .05
won't be counted.

4. Change the Type value to Joystick Axis and the Axis value to 4th
axis (Joysticks).

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

5. Do the same for the Mouse Y axis with the name 360 Right Vertical using
the 5th axis (Joysticks) option. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help
| S | | [4 center| © Glabal ST]
= tierarchy O nspector L e
Create - I | i & Maximize on Play | Stats | Gizmos - v 360 Right Horizental .
Sanalile Name 360 Right Horizontal
D\rect.lonal light Bt N
¥ FlashlightController .
¥ Ghost Descriptive Neg
Nighttime Simple Water Negative Butter
Phone Flash Positive Button
Terrain Alt Negative Bu
Alt Positive But,
Gravity 0
Dead 0.05
Sensitivity 0.1
Snap -
Invert (m)
Type | Joystick Axis
Axis [3th aiis Qoysticks) &
Joy Num [Ger Mation from all 1t
¥ Mouse Y
¥ 360 Right Vertical
@3 Project | Elconscle) e Name 360 Right Vertical
Create * & Al Descriptive Nar
',_-= Assets S A_ssets * Sc_ripts Descriptive Neg
» g Materials Negative Buttor
¥ Models Positive Button
&3 Materiz S - H % - i i i Alt Negative Bu
&5 Modula il e il il 42 T 1" bl Alt Positive But
- & Props BobbingAn.. Character.. Enemy EnemyBeh.. FPSInputC.. Mouselook PhoneBeha. PhoneBorder Gravity 0
Vi Prefabs Dead 0
?Mudma Sensitivity 0.1
?Props Sran
Yeare |
G Scenes Type
& Scripts Axis
| rESTerrains ¥ [|InoutManager.asset m——] Joy Num

6. Now, we will need to alter the character controller's MouseLook script file,
so double-click on it to open MonoDevelop. Once opened, add the following
highlighted code to its Update function:

void Update ()

{

if (axes == RotationAxes.MouseXAndY)
float rotationX = transform.localEulerAngles.y +

Input.GetAxis ("Mouse X") *
sensitivityX;

rotationY += Input.GetAxis("Mouse Y") * sensitivityY;

rotationY = Mathf.Clamp (rotationY, minimumY,
maximumy) ;

transform.localEulerAngles = new Vector3 (-rotationy,
rotationX, 0);

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

}

else if (axes == RotationAxes.MouseX)
{
transform.Rotate (0, Input.GetAxis ("Mouse X") *
sensitivityX, 0);
}
else
{
rotationY += Input.GetAxis("Mouse Y") * sensitivityY;

rotationY = Mathf.Clamp (rotationY, minimumY,
maximumyY) ;

transform.localEulerAngles = new Vector3 (-rotationy,
transform.
localEulerAngles.y, 0);

float rotationX360 = transform.localEulerAngles.y +
Input.GetAxis("360 Right
Horizontal") *

sensitivityX;

rotationY -= Input.GetAxis("360 Right Vertical") *
sensitivityY;
rotationY = Mathf.Clamp (rotationY, minimumy,
maximumY) ;

transform.localEulerAngles = new Vector3 (-rotationY,
rotationX360, 0);

}

This code will make the right joystick rotate the player's camera.

Now that we have that done, let's get the camera and shoot to work. To do
that, we need to now open the PhoneBehaviour script. First of all, we're
going to need to introduce a new variable to account for the fact that we want
the player to have to release the right trigger before they can shoot again:

bool shotStarted = false;

Now, we will update the Update function to the following code. Note the
changes in bold:

void Update ()

{

if ((Input.GetMouseButton(1l) ||
Input.GetAxis ("360 Left Trigger") > 0)

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

&& (Input.GetMouseButtonDown (0) ||
(Input.GetAxis ("360 Right Trigger") > 0
&& !shotStarted)))

shotStarted = true;
StartCoroutine (CameraFlash()) ;

GameObject [] enemyList =
GameObject .FindGameObjectsWithTag ("Enemy") ;

foreach (GameObject enemy in enemyList)

{

if (enemy.renderer.isVisible)
{
EnemyBehaviour behaviour =

enemy.transform.parent .gameObject.
GetComponent<EnemyBehaviours () ;

behaviour.TakeDamage () ;

}
}

else if (Input.GetAxis("360 Right Trigger") == 0)

{

shotStarted = false;

if (Input.GetMouseButton(1l) ||
Input.GetAxis("360 Left Trigger") > 0)

{
this.camera.enabled = true;
border.enabled = true;

}

else

{
this.camera.enabled = false;
border.enabled = false;

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

9. Save your scripts, and start the game. Have a look at the following screenshot:

X x

File Edit Assets GameObject Compeonent Window Help

Mazximize on Play | Stats | Gizmo

At this point, you should be able to play the project using an Xbox 360 Controller!

Now, depending on what platform you're running Unity on, there may be
special things to take into consideration. For more information about using
the Xbox 360 Controller, please visit http://wiki.unity3d.com/index.
php?title=Xbox360Controller.

For those that don't want to deal with input too much and just
want something that will standardize your input for common
controllers, I hear good things about Gallant Games' InControl input
- manager, which you can find out more about from http://www.
% gallantgames.com/incontrol.

While not all the features are included, they have an open source
version of most of the content at http://github.com/pbhogan/
InControl; but if you use their tool, I recommend that you buy it to
support further development.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

Moving to other levels

Finally, let's see what we can do to make the changes we've made in this chapter
show up in all of our levels. We perform the following steps:

1. We've been modifying a series of prefabs, so thankfully it's quite easy to
update them for other levels. Select the FlashlightController object, and
in the Prefab section, click on the Apply button to save our changes to
the prefab.

2. The Ghost object, however, is just a model, so let's open the Prefabs folder in
our project browser and drag-and-drop the object in there.

3. Move the Phone Flash object in as a prefab as well.

Now that we have everything set up, let's open our interior level.

5. Upon opening the level, you may notice that the other level already has
the camera showing up if you look at the Game tab. Have a look at the
following screenshot:

£

File Edit Assets GameObject Component Window Help

| 2o | [=s center] @ clobal > 1M [Layers - | [Layout -
.= #Scene € Game = ©Inspsctor | &=

Il 16:9 - Maximize on Play | Stats | Gizm Q e 2

[Open |

¥ FlashlightController
¥ Level 01
¥ Leveloz

B project El console =
Create - E &%
vEs Assets 4 Assets - Prefabs -
& Materials
¥ 53 Models — — =
. o . ,
&5 Modula
& Props Madular Pi Praps Tiles CollidingTr.. FirstPersan FlashlightC. Ghast Level 01

&5 Modula
G Props
¥ Tiles J
[l Roor|
b Scenes Mighttime 5. Phane Flash
& seripts
| »&STerrains 7| € ChapterS Interior.unity ==

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

6. Don't start the level yet though! Next, add in the Phone Flash object by
dragging-and-dropping it into the Hierarchy section. Then, open the
FlashlightController object, go to the Photo Camera object, and set the Camera
Flash object in your Phone Behaviour section to our Phone Flash object.

7. Then, you can drag-and-drop a Ghost prefab into the scene at a place of
your choice and set the Enemy Behaviour object's Target property to the
FlashlightController object.

8. After that, save the project and play the game. Have a look at the following
screenshot:

Summary

And with that, we now have a great looking interior level for our game! In addition,
we covered a lot of features that exist in Unity for you to be able to use in your own
future projects. With that in mind, in the next chapter, we will actually implement
the mechanics we need to create a fully featured project!

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

First Person Shooter Part 3 - Implementing Gameplay and Al

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get you thinking;:

Right now, the enemy will continue following you even if you're through
a tree or a wall. Use the Raycast function we talked about in Chapter 3,
Side-scrolling Platformer, to check a line from the player when the enemy
collides with something. If it does, then set the enemy's state to 1dle.

If you're interested in adding in more complex Al behavior to your ghost,
such as pathfinding, you can check out Unity 4.x Game Al Programming,
Aung Sithu Kyaw, Clifford Peters, and Thet Naing Swe, Packt Publishing.

Add sound effects to the ghost character so that the player knows when they
are coming closer to the player, and add some tension to the game. Adding
in other sound effects, such as those for taking a picture and walking around,
can help create ambience as well. A good website to visit for sound effects is
https://www.freesound.org/. However, you may need to edit them a bit
to help make them fit the game better. To do that, I suggest Audacity, which
you can download from http://audacity.sourceforge.net/.

Add in multiple ghosts in the level to create interesting encounters for the
player to work with.

In addition, you could create additional ghosts, which can be faster
and/or more aggressive. You could also use Unity's Culling Mask system
to make the ghosts only visible if you have the camera out by putting the
object on different layers (http://docs.unity3d.com/Documentation/
Components/Layers.html). Then, you can set the culling mask for each
camera to only display the layers that you want (http://docs.unity3d.
com/Documentation/Components/class-Camera. html).

In the last section, you saw that we set a couple of different objects to make
sure the game worked correctly. That's the most efficient way performance-
wise, but for convenience, you may want to get the objects through code with
the GameObject . Find function. For more information about it, check out
http://docs.unity3d.com/ScriptReference/GameObject.Find.html.

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

Now that we've created a series of projects in Unity, we have a firm foundation on
what works and what doesn't. But right now, every time the game is over and you
start again, you lose everything.

Project overview

In this chapter, we are going to add in functionality to some of our previously
created games, adding in high scores and even an in-game level editor, which
can be used for future projects.

Your objectives
This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Saving a high score

* Level editor - introduction

* Adding/removing walls at runtime

* Toggling editor, GUI, and selecting additional tiles

* Saving/loading levels to file
In this chapter, we will use projects that we created in the earlier chapters, specifically
the projects from Chapter 2, Creating GUIs, and Chapter 3, Side-scrolling Platformer. You
may continue with your previous projects or pick up a copy along with the assets

for this chapter from the example code provided for this book on Packt Publishing's
website (https://www.packtpub.com/books/content/support).

In addition, the completed project and source files are located there for you to check
if you have any questions or need clarification.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

Saving a high score

To begin with, let's look at one of the simplest ways to save/load data for individual
pieces of simple data using the playerprefs class.

The PlayerPrefs class

The PlayerPrefs class allows us to store small amounts of data on the end user's
machine. Using PlayerPrefs is a great way to save data for user levels, the
coordinates of where enemies are, or a high score so that when the user comes back
to the game, it shows the highest score achieved over the course of all games played.

When I say small amounts of data, on the WebPlayer you can store only 1 MB of
data, but this is the only limitation aside from hard drive space as of this writing.

The Playerprefs class can store the following types: £1loat, int, and string.
There are two key functions for each of the types Get and set with the type added
afterward (GetFloat, SetString, and so on).

The Set functions

The set functions take in two parameters: the first being a string and the second of
the type you're trying to set. This will save the value in the second parameter to the
registry on your computer with the string as a reference for you to get the data back
with the Get function. For example, creating a string and storing it will be somewhat
like the following code:

void Start ()

{

string authorName = "John Doran";
PlayerPrefs.SetString ("Author Name", authorName) ;

}

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If there was a value previously saved with that variable, its name will be overwritten
with the new value.

To be sure that your variables do not get overwritten by other projects,

it's important to make sure that you set Product Name and Company
"~ Name in Project Settings.

The Get functions

The Get functions will retrieve the value that it currently has set if there is one. If it
cannot find a value (that variable doesn't exist yet), it will return o (for the int and
float datatypes) or "" (for strings), or whatever you put in as the second parameter.
So, as an example, I could write something like the following code:

void Start ()
// If the above code was ran, it would return "John Doran"
// or whatever else was stored there. Otherwise, it will
// return "Bob"
print (PlayerPrefs.GetString ("Author Name", "Bob")) ;

}

Then, if there already is a value assigned for Author Name, it will print out that, but
otherwise, it will give you the value of Bob. This is great if you want to have a default
value other than 0 or an empty string " .

Depending on what operating system you're currently using for this project
or are porting to, the location of where the values are saved to are different.

Depending on what platform your game is running, the location of these values may
be different. For those locations, or for more information on the PlayerPrefs class,
check out http://docs.unity3d.com/ScriptReference/PlayerPrefs.html.

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

Now that we know how to use PlayerPrefs, let's see it in action by performing the
following steps:

1. We are going to first open our TwinstickShooter project we created back
in Chapter 1, 2D Twin-stick Shooter, and Chapter 2, Creating GUIs. Open your
gameplay scene (in the example code, saved as Chapter 2, Creating GUISs).
Have a look at the following screenshot:

« =

File Edit Assets GameObject Component Window Help

o= Scene | € Game
extured : | RGB

> 1M [Layers = [Layour]

-= | © Inspector &=

reate
Background
GameController
Main Camera
playership
Score Counter
Waves Counter

| E consol &=
Q 1%
Assets » Scenes
(L All Prefabs
(O all scripts
Vi Assets Chapter_1 Chapter_2 Main_Menu

& Animations
& Font
(&5 Prefabs
(& Scripts
5 sounds

&l Sprites

—_——

2. Since we want to add a high score, we'll need to add in a new GUI text object
to display it. Switch to the Game tab so that we can see our GUI elements.

3. Go to the Scene tab if not there already, select Waves Counter that we
created earlier, and duplicate it by pressing Ctrl + D. Rename this newly
created object to High Score Counter. After that, change the Position
property of X to .5 to center it. After this, change Anchor to Upper Center.
Finally, just to have it look correct, change Text to High Score: 0.Havea
look at the following screenshot:

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

File Edit Assets GameObject Component Window Help

O B 9§ Pivot | ® Local > 1M [Layers ~] [Layout -]
‘= Hierarchy | .= i Scene | € Game | %8 Animator -= O Inspector &=
Create ~| (G- Al Standalone (1024x768) = | Maximize on Play Stats | Gizmos |~ [[High Score Counter [Istatic +
Background . T Ta ntagge i | Layer [Default 3
e Score:0 HighScore:0 Wave: 0 e
T ey —— Position x[os |¥[T |z[o
pllEerEti Rotation %[0 Y0 z[o
Score Counter Scale X1 Y1 Z1
Waves Counter v 6 M GurText @ =
Text
‘Anchor | upper center
Alignment (e 3]
Pixel Offset
X -10 Y -10
Line Spacing 1
Tab Size 4
Font [+ OSP-DIN [c]
3 Project | B console Material [None (Material) | @
C_ee[e - Font Size 257
R Assets » Scripts Font Style [Nermal ¢
Color Z
Pixel Correct [}
L1 L L L L L1 L Richilext o
Vi Assets EnemyBeh. GameContr. LaserBehav.. MainMenu. MoveTowar PauseMenu PlayerBeha Add Component]
W Animations
& Font
&5 Prefabs
(& Scenes
&5 Sounds
&l Sprites
:
Again, while the text here is shown to us now, just like the score and lives, it
is merely for our reference, as we will need to update the text via code.
4. Now, we will need to access our GameController class to make some
modifications! From Project tab, open the Scripts folder, and
double-click on the GameController file to open MonoDevelop
5.

The first thing we will do is add a new variable for our new text object,
as follows:

public GUIText highScoreText;

The first thing we'll need to do is initialize the value in the text inside our
start function, so add in the following bolded code:
void Start ()
{
StartCoroutine (SpawnEnemies ()) ;
// Retrieves stored data if it exists from the
// PlayerPrefs, otherwise 0
highScoreText.text = "High Score: " +

PlayerPrefs.GetInt ("highScore") .ToString() ;

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

7. Now, we need to update that value whenever we increase our score, so let's
add the following bolded code to your IncreaseScore function:

public void IncreaseScore (int increase)
score += increase;
scoreText.text = "Score: " + score;

if(score > PlayerPrefs.GetInt ("highScore"))
{
// Now we are saving the value to the disk for
// retrieval later
PlayerPrefs.SetInt ("highScore", score);
highScoreText.text = "High Score: " + score.ToString();

}

8. Next, go back to the Unity editor, and then select the GameController object
in Hierarchy. Make sure that Wave Text is set to Waves Counter and High
Score Text is set to High Score Counter. After that, play the game and gain
some points, and then close the game. After that, play it again. Have a look at
the following screenshot:

X

File Edit Assets GameObject Component Window Help

Layers

Standalons (1024:x768) Mazximize on Play | Stats | Glzmes ~

Score: 0 High Score: 30

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

If all goes well, we should be able to notice that the high score has been saved and
will stay even when we restart the game!

Level editor — introduction

Of course, there can come a time when you want to save things other than just
string, int, or float variables. To deal with complex data types, there are more
things that we can do. Perform the following steps:

1.

We are going to first open up our 3D Platformer project we created back in
Chapter 3, Side-scrolling Platformer. Open your gameplay scene (in the example
code saved as Levell) from the link described in the project setup.

As it currently stands, the ability to create our levels is inside our
GameController script. For this project, however, we're going to extract that
functionality and move it over to a new class. In Project Browser, go to the
Scripts folder, and create a new C# script called LevelEditor. With that
finished, open MonoDevelop.

Once in MonoDevelop, click on the GameController.cs file, and highlight
the 1level variable. Cut it (Ctrl + X) and paste it (Ctrl + V) as a declaration
in the LevelEditor class.

After this, remove the BuildLevel function from the file and stop it from
being called in our GameController script's Start function. Instead of calling
it here, we will be writing a new version for our new LevelEditor script.

Next, we want access to our goalPs variable inside the LevelEditor class

so that we have a reference to the particle system to turn to when we collect
all the orbs, but right now, it's private. Now, I could set this variable as being
public and be done with it, but instead, we're going to use another aspect of
programming in C# called properties.

If you decide to make something public but don't want to see it in

Inspector, you can write code like the following:

[HideInInspector]
public ParticleSystem goalPS;

Add the following code after your goalps variable declaration:
public ParticleSystem GoalPS

{

get

{

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

return goalPS;

}

set

{

goalPS = value;

}
}

This will allow us to access this newly created GoalPps variable to modify goalps
(our original one). The value that you see in the set function is a keyword that
will be assigned.

Now, you may be asking why you should do this instead of making it public. There
are two main reasons. First, we are allowed to use get and set just like a normal
function. This will allow us to check the value of value before we actually assign
something, which can be really useful if you want to make sure that a variable is
within a certain range. Have a look at the following code:

private int health;
public int Health
{

get

{

return health;

}

set

{

// Value can only be up to 100
health = value % 100;
if (health <= 0)
print ("I'm dead");
}
}

Also, by omitting either Get or set, we can say that the variable cannot be changed
outside of the class or accessed outside of the class.

For more information on properties, check out http://unity3d.com/learn/
tutorials/modules/intermediate/scripting/properties

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Now that our level is no longer being created in the GameController, let's add the
functionality back to our LevelEditor. Perform the following steps:

1. Add the following function:
void BuildLevel ()

{

//Go through each element inside our level variable

for

{

}
}

for

{

(int yPos = 0; yPos < level.Length; yPos++)

(int xPos = 0; xPos < (level[yPos]) .Length; xPos++)

CreateBlock (level [yPos] [xPos], xPos, level.Length - yPos);

}

2. We haven't created the createBlock function, so right now it'll show up as
being red, but before we add it in, we need to create some variables:

int
int
int
int

xMin
xMax
yMin
yMax

public List<Transforms> tiles;

GameObject dynamicParent;

3. At this point, the List type will show up in red. This is because it doesn't
know what we're talking about. Add the following line to our using
statements up at the top of the file:

using System.Collections.Generic; // Lists

Lists

We used arrays previously in this book, which are containers for multiple copies
of an object. One of the problems with arrays is the fact that you have to know
how many you have before the game starts, and you cannot add or subtract
from that number.

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

The list type is basically a dynamically sized array, which is to say that we can add
and remove elements from it at any point that we want. It also gives us access to some
nice helper functions such as Indexof (which will return to us the index of an element
in a list, something that can be really useful when using the index operator [1).

For more information on lists, check out http://unity3d.com/

learn/tutorials/modules/intermediate/scripting/

lists-and-dictionaries

1. Now we need to actually create our createBlock function, as follows:

public void CreateBlock (int value, int xPos, int yPos)

{

Transform toCreate = null;

// We need to know the size of our level to save later
if (xPos < xMin)

{
}
if (xPos > xMax)

{
}

xMin = xPos;

xMax = xPos;
if (yPos < yMin)
{
!
if (yPos > yMax)

{
}

yMin = yPos;

yMax = yPos;

//If value is set to 0, we don't want to spawn anything
if (value != 0)

{
}

if (toCreate != null)

{

toCreate = tiles[value-1];

//Create the object we want to create
Transform newObject = Instantiate (toCreate, new Vector3 (xPos,
yPos, 0), Quaternion.identity) as Transform;

//Give the new object the same name as ours

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

newObject.name = toCreate.name;

if (toCreate.name == "Goal")

{

// We want to have a reference to the particle system

// for later

GameController. instance.GoalPS = newObject.gameObject.
GetComponent<ParticleSystems () ;

// Move the particle system so it'll face up
newObject.transform.Rotate (-90,0,0) ;

}

// Set the object's parent to the DynamicObjects
// variable so it doesn't clutter our Hierarchy
newObject.parent = dynamicParent.transform;

}
}

2. Finally, we need to initialize all of these variables in our Start function,
as follows:

public void Start ()

{

// Get the DynamicObjects object so we can make it our
// newly created objects' parent

dynamicParent = GameObject.Find ("DynamicObjects") ;
BuildLevel () ;

enabled = false;

As we used previously, the GameObject . Find function looks within
our scene to find an object with the name DynamicObjects. If it does
not find the object, it will return null. It's always a good idea to make sure
the value is not null, or you may be wondering why something in your
code doesn't work when it's a spelling error or something of that sort. It's
important to note that case is important and that DynamicObjects and
dynamicObjects are different! If anything is different, it will not work:

% if (dynamicParent == null)

{

print ("Object not found! Check spelling!");

}

This function should be used only on seldom occasions, as it can be quite
slow. For more info on GameObject .Find, check out http://docs.
unity3d.com/ScriptReference/GameObject.Find.html.

[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

3. Next, go back to Inspector, and attach the LevelEditor script to the
GameController object by dragging the script file on top of it. Afterward,
open up the Tiles variable, and change Size to 4. Then go to the prefabs
folder, and drag wall, Player, Collectible, and Goal to the Element 0,
Element 1, Element 2, and Element 3 variables, respectively.

4. Finally, save your scene and play the game! Have a look at the following
screenshot:

=

File Edit Assets GameObject Component Window Help

You'll notice that now, the class creates our level, and then turns itself off —a great
start for our level editor!

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Level editor — adding/removing walls at
runtime

Now that our level editor will be able to load in this data, we now want to have a
way to actually modify what we see onscreen. To do this, we'll need to create a GUI
interface and functionality for our level editor.

1.

The first thing we need to do is add a variable to keep track of what item we
want to spawn:

//The object we are currently looking to spawn
Transform toCreate;

Now, we need to initialize this variable inside our Start function:

toCreate = tiles|[0];

Next, we need to update our Update function and then explain how it's
working, as follows:

void Update ()
{
// Left click - Create object
if (Input.GetMouseButton (0) && GUIUtility.hotControl==0)

{

Vector3 mousePos = Input.mousePosition;

//Set the position in the z axis to the opposite of the
// camera's so that the position is on the world so

// ScreenToWorldPoint will give us valid values.
mousePos.z = Camera.main.transform.position.z * -1;

Vector3 pos = Camera.main.ScreenToWorldPoint (mousePos) ;

// Deal with the mouse being not exactly on a block
int posX = Mathf.FloorToInt (pos.x +.5f);
int posY = Mathf.FloorTolInt (pos.y + .5f);

// Convert from screenspace to worldspace using a Ray
Ray ray = Camera.main.ScreenPointToRay (mousePos) ;

// We need to check if there is an object already at
// the position we're trying to create at
RaycastHit hit = new RaycastHit () ;

[229]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

// If something within a distance of 100 in the

// direction hits something hit will get the data of
//the hit object.

Physics.Raycast (ray, out hit, 100);

if ((hit.collider != null) && (hit.collider.name != "Player"))

{
//If it's the same, just keep the previous one
if (toCreate.name != hit.collider.gameObject.name)

{
CreateBlock (tiles.IndexOf (toCreate) + 1,
Mathf.FloorToInt (hit.collider.gameObject.transform.position.x),
Mathf.FloorToInt (hit.collider.gameObject.transform.position.y)) ;

DestroyImmediate (hit.collider.gameObject) ;

}
}

else

{

CreateBlock (tiles.IndexOf (toCreate) + 1, posX, posY);

}

// Right clicking - Delete object
if (Input.GetMouseButton(l) && GUIUtility.hotControl==0)

{

Ray ray = Camera.main.ScreenPointToRay (Input.mousePosition) ;

RaycastHit hit = new RaycastHit () ;

Physics.Raycast (ray, out hit, 100);

// If we hit something other than the player, we

// want to destroy it!

if ((hit.collider != null) && (hit.collider.name != "Player"))
{

Destroy (hit.collider.gameObject) ;

}

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

You'll notice that we used something called hotControl when we were checking
for input. The reason we did this was that whenever a player holds down a mouse
button, it becomes "hot". No other controls are allowed to respond to mouse events
while some control is "hot".

Once the user releases their mouse, hotControl gets set to 0 to indicate that other
controls can respond to user input, which will be useful when we implement

our GUI system, as we don't want to draw something when we're clicking on

our mouse button.

For more information on GUIUtility.hotControl, check out

http://docs.unity3d.com/ScriptReference/GUIUtility-
= hotControl.html.

A lot of the stuff contained in this code is from reusing a lot of the aspects we learned
earlier in the book, back when we did our platformer game. Yet, now we are using
the same functions to work with the mouse position in the world and converting it
to world space.

We use the screenToWorldPoint function to convert our mouse position from
screenspace into world space with the Z position of the point being the units away
from the camera we want the position to be. Since our world is at 0, we want the
Z to be negative whatever the camera's Z position is.

For more information on ScreenToWorldPoint check out

http://docs.unity3d.com/ScriptReference/Camera.

ScreenToWorldPoint .html.

We use this information to get the position we want to place the block at. Once we
have this, we can just call Instantiate and create something; but, we also need to
make sure we only have one object per tile, so we will use a raycast to determine if
that area already has a block, and if it does, we will destroy it:

1. Now that we have all this set, let's save the file, and then exit back to the
Unity editor and play the game.

[231]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

2. If you select the GameController object, you'll notice that the checkbox next
to the LevelEditor component is unchecked. This is because we disabled
it in the Start function. We will enable it again in code later, but just for
demonstration purposes, click on the check to activate it once again, and
then in the Game tab, click on the screen, and right-click on areas in the level.
Have a look at the following screenshot:

. £3

File Edit Assets GameObject Component Window Help

You'll notice that now we can draw walls anywhere within our scene and delete
anything aside from our player!

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Level editor — toggling editor, GUI, and
selecting additional tiles

Now that we have the basic functionality in, it wouldn't be that enjoyable if all we
could do was add and remove walls. We also want to be able to spawn collectibles
and change the player's starting location. Let's work on that next:

1. Back in MonoDevelop in the LevelEditor class, we're going to want to first
add in an onGUI function to display the types of things we can create:

void OnGUI ()

{

GUILayout .BeginArea (new Rect (Screen.width - 110, 20, 100, 800));
foreach(Transform item in tiles)

{

if (GUILayout.Button (item.name))

{

toCreate = item;

}
}

GUILayout .EndArea () ;

}

2. Next, inside our GameController class, add the following code to our
Update function (create the function as well if it doesn't exist in your current
implementation, such as the example code):

void Update ()

{

if (Input.GetKeyDown ("f2"))

{

this.gameObject.GetComponent<LevelEditor> () .enabled = true;

}
}

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

Now, if we move back to the game, and press the F2 key, you'll see that a
menu pops up, which we can then select items from. This works fine for the
walls and the collectibles, but there's a bit of an issue with the player and the
collectibles. Have a look at the following screenshot:

o &2

File Edit Assets GameObject Component Window Help

As you can see, we are spawning more players that all respond to player
input, and the number of collectibles on our screen are not reflected properly
in our text. We will solve both of these issues now. We will first create a new
object called Playerspawner, which will act as the place where the player
will start when the game starts, and make it such that we can only have one
of them.

3. In Project Browser, select Create | New Material. Rename it to PlayerSpawn
by clicking on the name of the material in the project browser, typing in the
new name, and then pressing Enter.

4. With the PlayerSpawn object selected, set the Shader as Transparent |
Diffuse so that we can make the material semitransparent. Then, change the
Main Color property to a red color with a slight alpha. Have a look at the
following screenshot:

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

¥ sliders

¥ Presets =
(&) click ta add new oreset

If all goes well, it should look like the the following screenshot:

File Edit Assets GameObject Component Window Help

4 S| W wj Pivot | @ Local > 11 [Layers ~ | [Layout
= Hierarchy = #scene € Game 8 Animator -=| © Inspector

Create = | (@rAll Free Aspect Maximize on Play | Stats | Gizmos |- PlayerSpawn

Shader | Transparent/Diffuse -

_GameController
Directional light
DynamicObjects Main Color

GUL - Score Base [RGB) Trans (A) Mone
Main Camera Tiling o (Tenture)

x|l o

N 0

3 Project El console
Craate -

Yi:} Favorites Assets »
All Materials

All Models

All Prefabs
All Scripts

Prefabs Scenes Scripts
&5 Prefabs
& Scenes
5 Scripts

@ PlayerSpawn.mat

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

5. Now, let's create a cube to act as the visual representation of our level by
going to GameObject | Create Other | Cube. Once the object is created,
give it a name, PlayerSpawn. Switch to the Scene view if you haven't so
that you can see the newly created object.

6. Under the Mesh Renderer component, set the Materials | Element 0
property to our newly created PlayerSpawn material. Have a look at the
following screenshot:

File Edit Assets GameObject Component Window Help
S| wl Pivot | & Local umm [Layers - | [Layout -
= Hierarchy 8 Animator = O Inspector =
| Create TrAll = = <) | Effects 7| | Gizmos 7| (Gr Rotation /o |vlo | :\
_GameController Scale /1 Y T
Directional light
DynamicObjects ¥ . Cube (Mesh Filter) &,
GUI - Score Mesh |l Cube @
Main Camera ¥ iy M Box collider @ %,
I PlayerStart Is Trigger
Material None (Physic Mat| ©
Center
X0 Y |0 Z0
Size
X1 Y1 Z|1
¥ i [MMesh Renderer Gl
. Cast Shadows
I Project B console A= a Shad g
| creame - 5 |4 | % | * eceive Shadows
vy Favorites Assets e Ma“_”als
(1 all Materials Size 1
All Madels Element 0 WPlayerSpawn o]
All Prefabs Use Light Probes -
L All Scripts
PlayerSpawn o,
I Prefabs Scenes Scripts PlayerSpawn Shader | Transparent/Diffuse~ || Edit.. |
(5 Prefabs
(55 Scenes Main Color .
[Scripts Base (RGB) Trans (A)
Tiling Offset
(L 1]
vl o
> Add Component] .

7. Next, go to the scripts folder, and create a new C# script called
PlayerStart. Once that's finished, open MonoDevelop, and use
the following code:
using UnityEngine;
using System.Collections;

public class PlayerStart : MonoBehaviour

{

//A reference to our player prefab
public Transform player;

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

10.

//Have we spawned yet?
public static bool spawned = false;

public static PlayerStart _instance;

// Use this for initialization
void Start ()
{
// If another PlayerStart exists, this will replace it
if (_instance != null)
Destroy(instance.gameObject) ;

_instance = this;

// Have we spawned yet? If not, spawn the player
if (! spawned)

{

SpawnPlayer () ;
spawned = true;

void SpawnPlayer ()

{

Transform newObject = Instantiate (player,
this.transform.position,
Quaternion.identity) as Transform;

newObject.name = "Player";

}
}

Back in the editor, attach our new component to the PlayerStart object
in Hierarchy. Then, back in Inspector, set the Player variable to our
Player prefab.

Lastly, in the Box Collider component, check the Is Trigger property.

Now, drag the Playerstart object from Hierarchy to the prefabs folder
to make it a prefab. Then, delete the object from Hierarchy.

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

11. Next, select the _GameController object, and assign the Playerstart prefab
where you used to see the player in Tiles | Element 1. Save your scene, and
play the game. Have a look at the following screenshot:

& L]

File Edit Assets GameObject Component Window Help

We can now select the PlayerStart object from the button and place it
wherever we want, and there will always just be one. Also, once we have
levels saving/loading, the code will properly spawn the player wherever
the PlayerStart object is placed!

12. Now, to update the number of orbs we have in the level, we need to open
GameController and add in a new function, as follows:

public void UpdateOrbTotals (bool reset = false)

{

if (reset)
orbsCollected = 0;

GameObject [] orbs;
orbs = GameObject.FindGameObjectsWithTag ("Orb") ;

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

13.

14.

orbsTotal = orbs.Length;

scoreText.text = "Orbs: " + orbsCollected + "/" + orbsTotal;

}

Now that we have this function written, we need to call it every time we do
something to modify our level. Go to the LevelEditor class, and add the
following line to the end of our start function:

GameController. instance.UpdateOrbTotals (true) ;

Then, inside the Update function, we'll need to add the following lines
in bold:

void Update ()

{

// Left click - Create object
if (Input.GetMouseButton(0) && GUIUtility.hotControl==0)

{

Vector3 mousePos = Input.mousePosition;

//Set my position in the z axis to the opposite of mine.
mousePos.z = Camera.main.transform.position.z * -1;

Vector3 pos = Camera.main.ScreenToWorldPoint (mousePos) ;
// Deal with the mouse being not exactly on a block

Mathf.FloorTolInt (pos.x +.5f);
int posY = Mathf.FloorTolInt (pos.y + .5f);

int posX

// Convert from screenspace to worldspace using a Ray
Ray ray = Camera.main.ScreenPointToRay (mousePos) ;

// We need to check if there is an object already at
//the position we're trying to create at
RaycastHit hit = new RaycastHit () ;

// If something within a distance of 100 in the
//direction

// hits something hit will get the data of the hit object.
Physics.Raycast (ray, out hit, 100);

if ((hit.collider != null) && (hit.collider.name != "Player"))

{

//If it's the same, just keep the previous one

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

if (toCreate.name != hit.collider.gameObject.name)

{
CreateBlock (tiles.IndexOf (toCreate) + 1, Mathf.
FloorToInt (hit.collider.gameObject.transform.position.x),

Mathf.FloorToInt (hit.collider.gameObject.
transform.position.y)) ;

DestroyImmediate (hit.collider.gameObject) ;

}
}

else

{

CreateBlock (tiles.IndexOf (toCreate) + 1, posX, posY);

}

GameController. instance.UpdateOrbTotals();

}

// Right clicking - Delete object
if (Input.GetMouseButton(l) && GUIUtility.hotControl==0)

{

Ray ray = Camera.main.ScreenPointToRay (Input.mousePosition) ;
RaycastHit hit = new RaycastHit () ;
Physics.Raycast (ray, out hit, 100);

// If we hit something other than the player, we
// want to destroy it!
if ((hit.collider != null) && (hit.collider.name != "Player"))

{

Destroy (hit.collider.gameObject) ;

}

GameController. instance.UpdateOrbTotals();

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

15. Save the file, save your project, and start the game. Press F2 to open our
menu and then draw. Have a look at the following screenshot:

o x

File Edit Assets GameObject Component Window Help

As you can see, we're now able to draw over the other object and place everything
that we want for our level!

Level editor — saving/loading levels to file

Now that we have the groundwork all placed and ready, let's get to the real meat of
the level editor: saving and loading! Perform the following steps:

1. Open our LevelEditor class in MonoDevelop. The first step will be to include
some additional functionality at the beginning of our file:
//You must include these namespaces
//to use BinaryFormatter
using System;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

2. The first thing we'll want to add is a variable, as follows:

string levelName = "Levell";

[241]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

3. Now, we'll need to add the following code to the onGUI function:

GUILayout .BeginArea (new Rect (10, 20, 100, 100));
levelName = GUILayout.TextField(levelName) ;
if (GUILayout.Button ("Save"))

{

SaveLevel () ;

if (GUILayout.Button ("Load"))
{
//If we have a file with the name typed in, load it!

if (File.Exists (Application.persistentDataPath + "/" + levelName
+ ".1vlM))

{

LoadLevelFile (levelName) ;
PlayerStart.spawned = false;

// We need to wait one frame before UpdateOrbTotals
// will work (Orbs need to have Tag assigned)
StartCoroutine (LoadedUpdate()) ;

}

else

{

levelName = "Error";

if (GUILayout.Button ("Quit"))

{

enabled = false;

}

GUILayout .EndArea() ;

4. We are missing some of these functions, so let's start with saveLevel,
as follows:

void SaveLevel ()

{

List<string> newLevel = new List<strings> () ;

for(int i = yMin; i <= yMax; i++)
string newRow = "";
for(int j = xMin; j <= xMax; J++)

Vector3 pos = new Vector3(j, i, 0);

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Ray ray = Camera.main.ScreenPointToRay (pos) ;
RaycastHit hit = new RaycastHit () ;

Physics.Raycast (ray, out hit, 100);
int 1 = 0;

// Will check if there is something hitting us within
// a distance of .1
Collider[] hitColliders = Physics.OverlapSphere (pos, 0.1f);

if (hitColliders.Length > 0)

{

// Do we have a tile with the same name as this object?
for(int k = 0; k < tiles.Count; k++)

{

// If so, let's save that to the string

if (tiles[k] .name == hitColliders[0] .collider.gameObject.
name)
{
newRow += (k+1).ToString() + ",";
}
}
}
else
{
newRow += "O,";
}
}
newRow += "\n";

newLevel .Add (newRow) ;

}

// Reverse the rows to make the final version rightside up
newLevel .Reverse () ;

string levelComplete = "";

foreach(string level in newLevel)

{

levelComplete += level;

}

// This is the data we're going to be saving
print (levelComplete) ;

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

//Save to a file

BinaryFormatter bFormatter = new BinaryFormatter () ;

FileStream file = File.Create (Application.persistentDataPath +
"/ny levelName + ".1lvl");

bFormatter.Serialize (file, levelComplete) ;

file.Close ();

}

To do this, we will go through the map, see what tiles are at a certain place, and add
them to a string for each column using a list to store each of the rows. Then, we put
them all together into a single string, which we could just store in PlayerpPrefs.

However, instead of using the Playerprefs class as we did before, we will store our
data in an actual file using the FileStream class.

FileStreams

To determine where to save our file, we will use the Application.
persistentDataPath variable. This value will point to something differently,
depending on what platform you're working with. For instance, on a Windows 8
computer, it will save to C:\Users\YOUR_USER_NAME\AppData\LocalLow\COMPANY
NAME\ PROJECT NAME. For more information, check out http://docs.unity3d.com/
ScriptReference/Application-persistentDataPath.html.

For more information on FileStreams, check out the Microsoft Developers
Network's page onitat http://msdn.microsoft.com/en-us/library/system.
io.filestream(v=vs.110) .aspx.

BinaryFormatter

But we don't want the file to be easy to read, so we'll use the BinaryFormatter class,
which will convert our object into a byte array and be a stream of bytes, which will
be much harder for potential hackers to read.

For more information on the BinaryFormatter class, check out the Microsoft
Developers Network's page on it at http: //msdn.microsoft.com/en-
us/library/system.runtime.serialization.formatters.binary.
binaryformatter (v=vs.110) .aspx.

1. Now we need to add in the following functions to load the file that we'll be
creating from the save functionality:

void LoadLevelFile (string level)

{

// Destroy everything inside our currently level that's created
Y Y g Y

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

// dynamically
foreach (Transform child in dynamicParent.transform) {
Destroy (child.gameObject) ;

}

BinaryFormatter bFormatter = new BinaryFormatter() ;

FileStream file = File.OpenRead (Application.persistentDataPath +
"/ level + ".1vl");

// Convert the file from a byte array into a string
string levelData = bFormatter.Deserialize(file) as string;

// We're done working with the file so we can close it
file.Close ();

LoadLevelFromString (levelData) ;

// Set our text object to the current level.
levelName = level;

public void LoadLevelFromString(string content)
{
// Split our string by the new lines (enter)
List <string> lines = new List <string> (content.Split
("*\n"));
// Place each block in order in the correct x and y position
for(int i = 0; i < lines.Count; i++)
{
string[] blockIDs = lines([i].Split (',');
for(int j = 0; j < blockIDs.Length - 1; j++)

{

}
}

CreateBlock (int.Parse (blockIDs[j]), j, lines.Count - 1i);

}

2. Finally, we need to add in LoadedUpdate so that orbs will be updated after
they've been created, as follows:

IEnumerator LoadedUpdate ()

{
//returning 0 will make it wait 1 frame
yield return 0;

GameController. instance.UpdateOrbTotals (true) ;

}

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

3. Save the file, and exit to the editor. Save the project, and play the game! Have
a look at the following screenshot:

o x

File Edit Assetz GameObject Component Window Help

As you can see, when we play the game you'll see a new menu appear on the left-
hand side. We can now give a name to all of our files that we want, type in their
name, hit Save to save it to a file, and then Load to load the data for the level if it
exists! Finally, we can click on Quit to exit out of the editor whenever we want.

[246]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Have a look at the following screenshot:

Share View

MNew Properties
folder =

<« AppData » Locallow » DefaultCompany » Chapter3

P
~ Name Date modified

Libraries

o] Levell.hvl
=| Documents

| Testlvl

@' Music

k= Pictures

Subversion

B videos

#d Homegroup

18 Computer
= Local Disk (C:)
B3 DVD RW Drive (D
—w Robin (E)

Box

t"I,-I Metwork

B select all
Select none

DD Invert selection

(v Search Ch... @
Type

LVL File
LVL File

And as you can see here, the files are saved in our Application.persistentDataPath

location!

Summary

And with that, we now have an in-game level editor and explored some of the various
ways in which it's possible to save data inside Unity! This knowledge, plus exposure
to the list class, should leave you ready to add additional functionality, such as this,

to all of your projects!

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Save Files in Unity

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

In the same way that we can only create one Playerstart, change it so that
we can only place one goal! In that same line of thinking, have the player
start to be invisible when we are playing the game!

In our first-person "shooter" game, save the player's Position and Rotation so
that whenever you quit and resume the game, you start off where you were!

Now that we have the new level editor working, change the system so
that we start the game loading a level from a file instead of from the
provided array!

You may notice that at some places, collectibles are placed on top of one
another. Now, this doesn't really hurt levels loaded, as when you save the
level, it will only place one of them. However, should you want to fix this,
you can just change the collider from a sphere collider to a box collider,

as in the corners, it's not detecting that it's colliding.

There are other additional ways to save files, such as using XML. For an
example of this check out the Unity Wiki at http://wiki.unity3d.com/
index.php?title=Saving and Loading Data: XmlSerializer.

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

We've come a long way, and now we have a series of completed projects! But, taking
the time to get these projects out into the world is just as important. Playing the game
in the editor is nice and all, but actually getting the game as its own standalone thing
has a special feel to it that you can't duplicate in the editor.

And once you get the game published, you can just give someone a . zip file with
your game, but you spent quality time on your project and want to give it the respect
that it deserves.

People notice the polish that you put into your game and the little things, such as an
installer, can help to get players into the mood of your project early on and see your
game as a professional title.

Project overview

In this chapter, we're going to learn all about exporting our game from Unity and
then creating an installer so that we can give it to all of our friends, family, and
prospective customers!

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Setting up the build settings
* Customizing your exported project via the player settings

* Building an installer for Windows

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

In this chapter, we will be using one of the projects that we created in the previous
chapters, specifically the Twinstick Shooter project that we worked on in Chapter
1, 2D Twin-stick Shooter, Chapter 2, Creating GUIs, and Chapter 7, Creating Save Files in
Unity. You may continue with your previous projects or pick up a copy along with
the assets for this chapter from the example code provided for this book on Packt
Publishing's website at https://www.packtpub.com/books/content/support.

In addition, the complete project and source files are located there for you to check if
you have any questions or need clarification.

Setting up the build settings

There are many times during development that you may want to see what your

game looks like if you build it outside of the editor. It can give you a sense of
accomplishment; I know, I felt that way the first time I pushed a build to a console
devkit. Whether it's for PC, Mac, Linux, web player, mobile, or console, we all have to
go through the same menu, the Build Settings menu. We perform the following steps:

1. We are going to first open our Twinstick Shooter project that we created
back in Chapter 1, 2D Twin-stick Shooter, Chapter 2, Creating GUIs, and Chapter 7,
Creating Save Files in Unity. Open up your main menu scene (in the example
code, it is saved as Main_Menu). Have a look at the following screenshot:

£

File Edit Assets GameObject Component Window Help

(OB S =] [wriet[Soca (> 11 [M] rer— TT—
“=Hierarchy | .= #5cene | € Game | %8 Animator w=| © Inspector a.=
Create ~| (GrAT standalone (1024:x768) an Play | Stats | Gizmes * 5

Background
Main Camera

=] Plnjer:t | O console .=
Create 4%
vy (Favnrltes Assets - Scenes
L All Materials
. All Mode \
. All Prefabs
- All Scripts
V%A Et Chapter_1 Chapter_2 Chapter_7
W Animations
%Funt
(&5 Prefabs
=
& Scripts
&3 sounds
» & Sprites
| Asset Labels |
Main Menu unity — o
[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

2. Toaccess our Build Settings menu, we will need to navigate to File | Build
Settings from the top menu (or press Ctrl + Shift + B). Have a look at the
following screenshot:

Scenes In Build
[Scenes/Main_Menu.unity
o scenes/Chapter_2.unity

Add Current

Platform

w Web Player é_; PC, Mac & Linux Standalone

-nfe PC, Mac & Linux Standalone 4 Target Platform | Windows
- Architecture | x86
Development Build -
Autoconnect Profiler

Script Debugging

@ BlackBerry

{T Windows Store Apps

i Windows Phone 8

| switch Platform || Player Settings... |[_Build And Run

3. If you have been following thoroughly from Chapter 2, Creating GUIs, you
should see two icons in the Scenes In Build section. If you have not, click on
the Add Current button.

. Another way to add levels to your build is to just drag-and-drop
% them from the project browser. It's also important to note that you
L can also drag them around to order them however you want. The

level that is at index 0 will be the one that the game starts with.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

4. Now, we are going to use the map that we created in Chapter 7, Creating Save
Files in Unity, so left-click on the Chapter_2 scene, and press the Delete key
to remove it.

5. Then open the Chapter_7 map, go back to the Build Settings menu, and
click on Add Current again; alternatively, you can drag-and-drop the scene
files as well.

6. Finally, we no longer want to open up the Chapter_2 level, so open up
our MainMenuGUI . cs script in MonoDevelop, and change the 2 to 7 in
the LoadLevel function call.

For future projects, you may make a string variable to hold the

name of the level for the button to go to, and just change it inside
the Inspector tab.

7. Once you're ready, select a platform from the bottom-left corner menu. The
Unity logo shows which one you're currently compiling for. We're going to
compile for Windows now, so if it is currently not set to PC, Mac & Linux
Standalone, select that, and click on the Switch Platform button.

8. Once you have all this set up, click on the Build button. Once this is done,
it will ask you for a name and a location to put the game in. I'm going to
name it TwinstickShooter and put it in an Export folder located in the
same directory as the Assets and Library folder. Afterward, hit Save.
Have a look at the following screenshot:

» Libraries » Documents » TwinstickShooter » Export

Organise * Mew folder

) Mame Date modified

" Favourites

B Desktop Ne items match your search,
& Downloads

= Recent places
& Google Drive

%3 Dropbox

M2 Nnelirie M

File name: | TwinstickShooterexe

Save as type: | exe (*.exe)

“~ Hide Folders

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

9. You may need to wait a bit, but as soon as it finishes, it will open up the
folder with your new game. Have a look at the following screenshot:

Share View
| BH select all
f
Select none

Delete Renam Mew Properties

s folder #1 History .3"3 Invert selection

T <« Users ¢ John » My Documents » TwinstickShooter » Export

-

B Desktop 2 Mame Date modified

4. Downloads Lo g
, TwinstickShooter_Data

=1 Recent places
P Q TwinstickShooter.exe

& Google Drive
%3 Dropbox

When building for Windows, you should get something like the preceding
screenshot. We have the executable, but we also have a data folder that contains all
the assets for our application (right now called TwinstickShooter Data). You must
include the data folder with your game, or it will not run. This is a slight pain, but
later on in this chapter, we will create an installer so that we can put it on a computer
without any hassle.

If you build for Mac, it will bundle the app and data all together, so once you export
it, all you need to give people is the application.

. If you are interested in submitting your Mac game to the
% Mac App Store, there is a nice tutorial about doing just that
s athttp://www.conlanrios.com/2013/12/signing-
unity-game-for-mac-app-store.html.

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

If you double-click on the . exe file to run the game, you'll be brought to the
following startup menu, as shown in the following screenshot:

Graphics | Input

Sereen resclution | 1024 x 758 "] Windowed
Graphics quality Good v
Quit

This will allow players to customize their Screen Resolution values as well as other
options, such as what buttons to use for input. I personally feel this menu makes
projects look more unprofessional, so I'll be teaching you how to remove this as well.

Anyway, once we click on the Play! button, we'll be taken to the proper game screen,
as shown in the following screenshot:

Score: 10 High Score: 200

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

And it's working great. We can work at any resolution that we choose, and all the
menus are functioning as well!

- For more information on publishing and specific things to look out for,
% check out the following link:
/»,

Y

http://docs.unity3d.com/Manual/PublishingBuilds.html

Customizing your exported project via
the player settings

Now that we know what happens by default, let's take some time to customize the
project to make it look as nice as possible. The PlayerSettings section is where we

can define different parameters for each platform that we want to put the game onto.
We perform the following steps:

1. To open the player settings, you can either click on the Player Settings...
button from the Build Settings menu or navigate to Edit | Project Settings |
Player. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

o EIEIE Sme reer— | rerr—
‘= Hierarchy | .= #HScene | € Game | 2 Animator ==| © Inspector &=
Create ~| (GrAl Standalone (1024:768) - Maximize on Play | Stats | Gizmos '~

Background

Playersettings
Main Camera

Company Name
Product Name

DefauftCompany
TwinstickShooter

Default Icon

Hene
(Texture2D)
Default Cursor Tione
(Texturs2D)]
Cursor Hotspot X0 Y0
- Te— @+ 0 +|@ 0| F|lO©
3 Project | H console == | settings for PC, Mac & Linux Standalone
Create ™ T ry
¥iFavorites | Assets - Scenes Resolution and Presentation
(O all Materials -
(L all Models
(L all prefabs e —
(0 all seripts
Other Settings
vES Assets Chapter_1 Chapter_2 Chapter_7 Main_Msnu
@ Animations
(&5 Font
(& Prefabs
=
& Scripts
& Sounds
5 Sprites
| |ProjectSettings.asset —C—

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

The player settings are actually shown in the Inspector tab. There are some
key properties at the top, which are cross-platform, which means that they
will apply to all platforms (or rather, that they will be the defaults that you
can later override).

2. Now, in the Example Code folder, you'll find a cursor_hand image.
Drag-and-drop that image to the Assets/Sprites location of the project
browser. Once there, select the image, and in the Inspector tab, change
the Texture Type value to Cursor.

3. Then, in the PlayerSettings section, drag-and-drop the cursor_hand image
into the Default Cursor property and the playerShip image into the Default
Icon property. Have a look at the following screenshot:

&

File Edit Assets GameObject Component Window Help

= [loyers] [Layorr -]
= Hierarchy | .= ##Scens | € Game | 22 Animator .= ©Inspector i
Creats -| (AT || standalons (1024:758) | Maximize on Play | Stats | Gizmos Playersettings B,
Background H
Main Camera
Company Name John P. Daran
Product Name TwinstickShooter
Default [con

e

Default Cursor

slact]

Cursor Hotspet ~ X[0 ¥[o
£
o @ /s |D+|@|O| @
B Project | BlConsole ®= | sSettings for PC, Mac & Linux Standalone
Create ™ < |4
N o e Resolution and Presentation

(LAl Materials

(. All Models
(. all Prefabs
LAl Scripts

VS Assets Materials Backaroun.. b buttonVellow cursor_hand enemy laser
@ Animations
& Font
(& Prefabs L] | ?
[l Scenes v b

Icon

o
o
o
©

°

Splash Image

Other Settings

playership

| |ProjectSettings.asset —

If you want your game to have multiple cursors or change cursors at

runtime, the Cursor. SetCursor function will be quite helpful. For
i more information on that, check out http://docs.unity3d.com/

ScriptReference/Cursor.SetCursor.html.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

4. On your computer, in the Example Code folder, move the configBanner
image into the sprites folder. Then, under PlayerSettings, click on the
Splash Image section to open the Config Dialog Banner property, which
you should set to our newly imported image.

If you want to create a config dialog banner of your

own, make sure you make the image 432 x 200 pixels
s

in size or smaller.

5. Next, you'll need to decide whether you want to display the display
resolution dialog or not. If you want to keep it, skip this step. Otherwise,
open up the Resolution and Presentation section, and under Standalone
Player Options, set the Display Resolution Dialog value to Disabled.

6. With that finished, navigate to File | Save Project, and build the game once
more, overwriting the previously created one! Depending on your choice,
you'll see the menu shown in the following screenshot:

_/

Twinstick Shooter
N

Graphics | Input

Screen resolution | 1024 x 768 v Windawed

Graphics quality Good v

Play! . Quit

[257]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

Or just jump straight into the game. Have a look at the following screenshot:

Twinstick Shooter

The game already looks much better and more polished than before! There are a
number of other things that you can do, such as restrict the kind of aspect ratios your
game runs or resolutions, or force windowed, or fullscreen. I leave it to you to play
around and get your project as nice as possible before moving onward!

For more information on the properties for all the different platforms

that are available, check out http://docs.unity3d.com/Manual/
’ class-PlayerSettings.html.

Building an installer for Windows

Just as I mentioned previously, having a separate Data folder with our . exe file is
somewhat of a pain. Rather than give people a . zip file and hope they extract it all
and then keep everything in the same folder, I will have the process be automatic and
give the person an opportunity to have it installed just like a professional game. With
that in mind, I'm going to go over a free way to create a Windows installer, as follows:

1. The first thing we need to do is get our setup program. For our
demonstration, I will be using Jordan Russell's Inno Setup software. Go to
http://jrsoftware.org/isinfo.php, and click on the Download Inno
Setup link. Have a look at the following screenshot:

[258]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

R /e

2
C
C

» Home

» Inno Setup

» About
» Downloads
* Mailing List

* Donste
* Contribute

* Documentstion
» FAQ
* Knovledgs Baze

* Third-Barty Files
* Translations
* Links

» Toolbar2000
» Toolbarg?

» StripReloc

» More...

» Newsgroups
» Contact Me

nno Setup
[% jrsoftware.org/isinfo.php

(3 Personal (3 Professional (23 Tools

jrsoftwa re.org /I jordan russell’s software

*x

8, Amazon Cloud Player

e 8 00

The Public Domain J... m 1047 uuw”

[=@] 2 |

]

U vs

[m RainmeterHub |s a G... »

Inno Setup is a free installer for Windows programs. First introduced in 1997,
Inno Setup today rivals and even surpasses many commercial installers in
feature set and stability.

.

.

.

Features
Learn more about what Inno Setup can do.

Download Inno Setup

Get the latest version of Inno Setup here.

Mailing List

Be notified by e-mail whenever major new versions are released.

Frequently Asked Questions

Get answers to common questions and problems.

Third-Party Files
Here you can find various useful tools for Inno Setup (for example, GUI
script editors) and translations of the Setup text in many languages.

Donate
Support the Inno Setup project.

i

Setup Wizard

SetnCompier 35100 -~ = BEM|

s

el - w0
==

oo s

IDE

Don't forget to check out the Inno Setup newsgroups, the primary source for Inno Setup support (web-based
interface available). Additionally, a large number of questions and answers can be found on Stack Overflow.

2. From there, click on the Stable Release button, and select the isetup-5.5.5.exe
file. Once it's finished, double-click on the executable to open it, clicking on
the Run button. If it shows a security warning message, click on Yes to allow
the changes to take place. Have a look at the following screenshot:

Welcome to the Inno Setup
Setup Wizard

continuing,

Click Mext to continue, or Cancel to exit Setup.

This will install Inno Setup version 5.5.5 on your computer,

It iz recommended that you dose all other applications before

Cancel

[259]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

3. From there, run through the installation, making sure to uncheck the Install
Inno Setup Preprocessor option since we won't be using it. Upon finishing
this task, make sure that Launch Inno Setup is checked, and then click on
the Finish button.

4. When you open the program, it will look somewhat like the following
screenshot:

MNew file
() Create a new empty script file

(") Create a new saipt file using the Script Wizard

Open file

.l (®Dpen an existing script file:

Cxample scripts

More files. ..

[Don't show this dialog again Cancel

5. From there, choose Create a new script file using the Script Wizard and then
click on OK.

6. From there, click on the Next button, and you'll come to the Application
Information section. Fill in your information, and then click on Next.
Have a look at the following screenshot:

[260]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Application Information
Please specify some basic information about your application.

Application name:
Twinstick Shooter
Application version:
1.0
Application publisher:
John P. Doran
Application website:
http://iohnpdoran. com|

7. Next, you'll come to some information about the application folder. In
general, you will not want to change this information, so I will click on Next.

8. From here, we'll be brought to the Application Files section where we
need to specify the files we want to install. Under the Application main
executable file: section, click on Browse to go to the location of your Export
folder, where the . exe file is present, select it, and click on Open. Have a
look at the following screenshot:

(-I - v Libraries » Documents » TwinstickShooter » Export »

Organise Mew folder

Name Date modified
- Favourites

B Desktop TwinstickShooter_Data 8/20/20 g File folder
Mo preview

& Downloads 141 TwinstickShooter.exe 8/20/2014 5:59 P Application 11,024 KB available.

| Recent places
L Google Drive

File name: | TwinstickShooter.exe Application files (*.exe)

[261]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

9. Now, we need to add in the data folder. Click on the Add Folder... button,
select the data folder, and then click on OK. Have a look at the following
screenshot:

Please specdify the source folder.

4 TwinstickShooter
Assets
4 Export

rl TwinstickShooter_Data

Managed

Mono

Resources
Library
ProjectSettings

Temp

L
>

DKM KtV CY Chell

10. It will then ask if files in subfolders should be included as well. Select Yes.
Then, select the folder in the Other Applications file section, and click on the
Edit button. From there, set the Destination subfolder property to the same
name as your data folder, click on OK, and then click on Next. Have a look
at the following screenshot:

Source

\Documents \TwinstickShooter \Export\TwinstickShooter_Datal®

Recurse subfolders Indude empty subfolders

Destination

Destination base folder:

Application directory v

Destination subfolder:
TwinstickShooter_Data|

[262]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

11. In the next menu, check whichever options you want, and then click on Next.
Have a look at the following screenshot:

Application Icons
Flease specify which icons should be created for your application.

Application Start Menu folder name:

Twinstick Shooter

Allow user to change the Start Menu folder name
Allow user to dizable Start Menu folder creation
[Icreate an Internet shortcut in the Start Menu folder
Create an Uninstall icon in the Start Menu folder
Other main executable icons:

[] Allow user to create & desktop icon

12. Now, you'll have an option to include a license file, such as EULA or
whatever your publisher may require, and any personal stuff you want to
tell your users before or after installation. The program accepts . txt and
.rtf files. Once you're ready, click on the Next button. Have a look at the
following screenshot:

Application Documentation
Please specify which documentation files should be shown by Setup during

installation.
License file:
| Browse. ..
Information file shown before installation:

Browse, ..
Information file shown after installation:

Browse, ..

[263]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

13.

14.

Next, they'll allow you to specify what languages you want the installation
to work for. I'll just go for English, but you can add more. Afterward, click
on Next.

Finally, we need to set where we want the setup to be placed as well as

the icon for it or a password. I created a new folder on my desktop called
TwinstickSetup and used it. Then, click on Next, as shown in the
following screenshot:

Compiler Settings
Please specify some basic compiler settings.

Custom compiler output folder:
C:\Users\John\Desktop TwinstickSetup Browse...
Compiler output base file name:
TwinstickShooterSetup
Custom Setup icon file:
Browse...

Setup passward:

If you want to include a custom icon but don't have a . ico file,
s you can use the http: //www.icoconverter.com/ link.

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

15. Next, you'll be brought to the successfully completed script wizard screen.
After this, click on Finish. Have a look at the following screenshot:

‘You have successfully completed the Inno Setup Script
Wizard.

To close this wizard and generate the new script file, dick
Finish.

Cancel

< Back

16. Now, it will ask you if you want to compile the script. Select Yes. It'l] also ask
you if you want to save your script. You'll also want to say Yes, and I saved
it to the same folder as my exporting folder. It'll take a minute or two, but as
soon as you see Finished in the console window, it should be ready. Have a
look at the following screenshot:

[Ran]
o Filename: "{app!\IwinstickShooter.exe"; Description: "{cm:LaunchProgram,Iwinstick Shooter}"; Flg

<

Compressing: C:sers'John\Documents {TwinstickShooter \ExportiTwinstickShooter_Data\Mono\etcimono'\2. 0\settings. map
Compressing: C:sers'John\Documents {TwinstickShooter \ExportiTwinstickShooter_Data\Monoetcimono!2. 0\web. config

Compressing: C:\Users\John'\Documents{TwinstickShooter \Export{TwinstickShooter_DataMona'etc\mono\2.0\Browsers\Compat. browser
Compressing: C:sers'John'\Documents {TwinstickShooter \ExportiTwinstickShooter_Data \Monoetcimonoymconfigiconfig. xml
Compressing: C:WsersJohn\Documents{TwinstickShooter \Export{TwinstickShooter_Data \Resources\unity default resources
Compressing: C:sersJohn'\Documents {TwinstickShooter \ExportiTwinstickShooter _Data'\Resourcesunity_builtin_extra

Compressing Setup program executable

Updating version info

*** Finished. [6:43:05PM, 00:06.7531 elapsed]

Compiler Qutput

30: &0 Insert

[265]

www.it-ebooks.info

http://www.it-ebooks.info/

Finishing Touches

17. 1If you go to the same place as your Export folder, you should see your
installer, as shown in the following screenshot:

Application Tools

Home Share View Manage

& Cut

M| Copy path Cz
Move Copy
to~ to~

* 1 + TwinstickSetup

L Mame

¢ Favourites
B Desktop

/X =D :
i b =
Delete Rename
= folder

JSJ TwinstickShooterSetup.exe

MNew item ~ m:] Open ~

Easy access =

Properties

MNew
#1 History

Date modified Type

8/20/2014 6:43 PM

Application

4 Downloads

*| Recent places
& Google Drive
%7 Dropbox

18. If you run it, it'll look somewhat like the following screenshot:

Welcome to the Twinstick Shooter
Setup Wizard

This will install Twinstick Shooter wersion 1.0 on your
computer,

It is recommended that you close all other applications before
continuing.

Click Mext to continue, or Cancel to exit Setup.

LNext>]| cance

Select all
Select none

Invert selection

And with that, we now have a working installer for our game!

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

And with that, our game has been compiled with the possibility of running on
multiple platforms (including the Web), and we have learned how to create an
installer for Windows! This information will serve you quite well when you create
projects of your own to get them out to as many people as possible!

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

There are still a number of things you can do with Inno Setup. You may
wish to do more things, such as change the image on the right-hand side
of the installer welcome screen. For more information on that, check out
the documentation for Inno Setup at http://jrsoftware.org/ishelp/.

Now that you know how to export to PC, Mac, and Linux, you can try
exporting your game to Android as well! You'll need to have the Android
SDK and a few other things to take into consideration, but it's not too bad
at all. For more information on doing Android development, check out
http://docs.unity3d.com/Manual/android-GettingStarted.html.

You may also be interested in getting your game onto iOS. For information
on iOS, check out http://docs.unity3d.com/Manual/iphone-
GettingStarted.html.

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 —
Unity's New GUI System

Since the release of Unity 4.6, there are now some additional Ul tools that have been
added to make elements much more visual and easy to place, letting you know
exactly what you're going to get.

Everything that we did in Chapter 2, Creating GUISs, is still quite relevant and works
completely for now, and for the foreseeable future. In this chapter, we are going to
see how to create some new elements using these new tools so that you can compare
and contrast when it's a good idea to use one or the other.

The new Ul is actually created inside our scene. We've learned how to create Ul
elements by calling code several times a frame during the oncuz loop. The old Ul
system is still great to know, as it is still the backbone of the Ul system, and will for
the foreseeable future still be the means by which you can extend Unity's editor.

However, the new Ul system uses a lot of the new things that were added when
Unity added in their native 2D tools, and it is great for the more visually inclined
to see exactly what they're going to get in their final project.

Project overview

In this chapter, we will do some of the cool things that we can do with Unity's new
GUI system.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

Your objectives

This project will be split into a number of tasks. It will be a simple step-by-step
process from beginning to end. Here is the outline of our tasks:

* Creating health bars
* Adding in text

* Working with buttons and anchors

In this chapter, we will use one of the projects we created in the previous chapters,
specifically the First Person Shooter project that we worked on in Chapter 4, First Person
Shooter Part 1 - Creating Exterior Environments, Chapter 5, First Person Shooter Part 2 -
Creating Interior Environments, and Chapter 6, First Person Shooter Part 3 - Implementing
Gameplay and Al. You can continue with your previous projects or pick up a copy
along with the assets for this chapter from the example code provided for this book

on Packt's website at https: //www.packtpub.com/books/content /support.

In addition, the completed project and source files are located here for you to check,
if you have any questions or need clarification.

Project setup

For this chapter, you will need to use Unity 4.6 or later. At the time of writing, Unity
4.6 is available in beta, which can be downloaded from http://unity3d.com/
unity/beta/4.6. Specifically, I used Unity 4.6 Beta 17.

Though I have experienced no problems with the Unity 4.6 Beta version, it's
recommended that you do not use it for content you plan to ship soon, and it can be
used for testing purposes only, but the steps that I take in this chapter should carry
over when 4.6 is officially released.

That being said, I do recommend installing both the stable version of Unity and the
Beta version. However, if you just run the Unity Beta installer, it will overwrite your
previous version. For information on installing multiple versions of Unity, check out
http://docs.unity3d.com/Manual/InstallingMultipleVersionsofUnity.html.

[270]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Creating health bars

One of the advantages that the new Ul system has over the previous one is the fact
that you can place Ul elements in either 2D or 3D as an overlay to the screen, just

as we did before or as part of the game world itself. With that in mind, I thought a
good first thing to implement would be health bars above our enemy's heads from
our shooter project that we worked on in Chapter 4, First Person Shooter Part 1 -
Creating Exterior Environments, Chapter 5, First Person Shooter Part 2 - Creating Interior

Environments, and Chapter 6, First Person Shooter Part 3 - Implementing Gameplay and
Al We perform the following steps:

1. We are going to first open our first person shooter project we created back in
Chapter 4, First Person Shooter Part 1 - Creating Exterior Environments, Chapter 5,
First Person Shooter Part 2 — Creating Interior Environments, and Chapter 6, First
Person Shooter Part 3 - Implementing Gameplay and Al. Open up your exterior
scene (in the example code, saved as Chapter4 Exterior). Once loaded,
double-click on the Ghost object in order to center it on the screen. For
visibility's sake, toggle the lighting off by clicking on the sun icon to the right
of the 2D option under the Scene tab. Have a look at the following screenshot:

X

'S
File Edit Assets GameObject Component Window Help

= & ['S [] [enpives | © cocal] (> 11 [M] [Layers <] [Layout |
= Hierarchy | o= | HEscene | € game = ®nspector | e

| Create | (G-AT R | Teaxtured +| | RGE
Capsule
Nighttime Simple Water
¥ FlashlightController
Phone Flash
Directional light
» Ghost
Terrain

Project | E consale

Create ~ o

N - LW =
Rl e et scencs
L All Materials

' All Models
! All Prefabs
~) Al Scripts

V&5 Assets ChapterS_I.. Chaptard 1. ChapterS_I.
55 Materials
»5al Models
P Prefabs
Il: 4" SGen
& Scripts
¥ Terrains

|Die: Enter
i

[271]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

2. The first thing we need to do to add UI elements using the new Ul system is
create a canvas. To do that, navigate to GameObject | UI | Canvas. Have a
look at the following screenshot:

File Ecit Assets GameObject Component Window Help

o EIEIEANT SC [ayers <] [Lavour -]
= Hierarchy o= | Fscene € Game S) o= ©Inspector | =
Creats *| (CrAll | | Textured +| | RGB # | 2D | % | <) | Effects I~ | | Gizmos - | (&~ ' ™ [Canvas | [JStatic «
Capsule - Tag | Untagged # | Layer | UL 3
Nighttime Simple Water s R T

¥ FlashlightCantroller -

Some values driven by Canvas,
Phone Flash i

Directional light Pos X Pos Y Pos Z
¥ Ghost 214 120.5 a
Ghost_mesh Width Height
Terrain 428 241 RN
EventSystem | ¥ Anchors
Canvas Min X0 o
Max X0 Y0
Pivot 05 [0
Rotation % 0 Y0 Zi0
| Scale %[il z[i
& Project El console _ _ d-= v[]|#canvas
Create = 8 4% | Render Made
¥ Favorites Asscts + Scenes - Pixel Perfect O
Al Materials

L All Models —_— Sorting Layer Default 3
. Al Prefabs i Oirder in Layer a
S Al serpte v 5] M Graphic Raycaster (Script) ([&

Y& Assets ChapterS_1.. Chaprerd_ 1. ChapterS_T SC"‘P_t 5 GraphicRaycaster ©
» G Materials rgry =l
»&5 Models Ignore Reversed Gril
¥ G Prefabs Blocking Objects | Mone ™
et Blocking Mask | Everything 4]
(&5 Seripts

5 Terrains Add Component J

) 1dle: Enter

You can think of the canvas as a holder for how a group of Ul elements will
be rendered. It's possible to have more than one canvas in a scene but to have
an element of the new UI, you will have to place it onto a canvas.

If you try to create a Ul element, one doesn't already exist, one
a will be created for you automatically, and the element will be
e .
placed as a child.

When we create a Canvas object, we are given a new module called Rect that
replaces the Transform module we've been used to. This allows us to scale,
rotate, and modify the UI using one tool, which is the newly created one on
the right-hand side, next to the scaling tool in the top-left corner.

» For more information on the Rect component, check out
% the tutorial video at http://unity3d.com/learn/
g tutorials/modules/beginner/ui/rect-transform.

[272]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

3. Double-click on the Canvas object in the Hierarchy tab so that we can see
the whole object. Now, one of the first things you'll probably notice is that
the canvas is really, really big. That's because the size of the canvas is based
on the size of what's displayed on the Game tab, because the Render Mode

property is set to Screen Space - Overlay by default.

4. Change the Render Mode property to World Space, because we want it
to be in the game world. You should notice now that the Rect Transform
properties are no longer greyed out, showing us that now we are allowed
to modify them. Have a look at the following screenshot:

File Edit Assets

GameObject

Compeonent Window Help

= Hierarchy
Create 7| (orAll

Capsule

Phone Flash
Directional light
¥ Ghost
Ghost_mesh
Terrain
EventSystem

3 Project
Create
¥/ Favorites
0 Al Materials
L All Models
_ Al Prefabs
Al Scripts

vii Assets
» 5 Materials
» & Models
Gl Prefabs
T aes
(& Scripts
» & Terrains

Nighttime Simple Water
¥ FlashlightController

O console

Assets »

ChapterS_I

BN &[S 2 [TI| [eaivot [@ ocal |

_-=| # Scene
0| Textured +| | RGB

| € Game

> M

1) | Effects ' | Gizmos ~

Scenes »

94

Chapterd_I.. ChapterS_I..

— |

°chcat|on 0200000000 already registered @ C:/BuildAgent/work/d63dfc6385190b60/Runtime/GfxDevice/d3d/D3D9Utis.cpp:l167 size 0; now calling from C:/BuildAgent/wark/d

| Layers - | [Layout - |
' ® Inspector &=
] M Canvas []static «
Tag [Untagged ¢ Layer [UI 3
5% Rect Transform [F
Pos X Pos ¥ Pos Z
214 1205 a
Width Height .
478 241 Lo LE]
| ¥ Anchors
Min X0 Y |0
Max X[0 ¥ 0
Pivot x[0.5 Y05
Rotation X 0 Yo Zi0
Scale el v1 z[1
v |#canvas [ES
Renderpiods [Waldspres]
Event Camera None (Camera) [}
Sorting Layer | Default

Qrderin Layer

| Default 2
0

v i ¥ Graphic Raycaster (Script) [%

Script
Priority

Ignore Reversed Gril

5 GraphicRaycaster. @
= |

Blocking Objects [Hone s
Blocking Mask | Everything :|
Add Component]

Instead of just being placed in front of everything, this mode changes

our canvas to be an actual object in the world, which we can place wherever
we want but can still interact with. It's like a television or computer monitor
in our game world, onto which the elements we place in the canvas will

be printed.

[273]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

5. Since it's in the world now, we're going to want to adjust the size of our Rect
module to handle just the content that we want in the world. In this instance,
change the Width property to 130 and the Height property to 20.

You should change the width and height to fit everything in
your UL In this instance, we are just going to have a scrollbar
and some text, so I know the size of it is 130 x 20. This value
can be modified at anytime as long as the Render Mode
property is set to World Space.

We want to place the health bar above our enemies' heads, so we should
make this canvas a child of the Ghost object. To do that, click and hold the
Canvas object in the Hierarchy tab, and drop it on top of the Ghost object.

As we already know, children of an object have a position that is based

on the parent. So, with that in mind, we're going to use a trick to place the
canvas directly on the enemy. To do that, right-click on the Rect Transform
component on the Canvas object, and then select Reset Position. Have a look
at the following screenshot:

File Edit Assets GameObject Component Window Help
B+ S 5] [sapivet | 8 Local > [Layers | [Loyout ™
= Hierarchy | _.=| % Scene | € Game L L - © Inspector [
Create ~| (Al 0 ||| Textured +| | RGB 2D all) | Effects |~ | Gizmos ~ ' ™ [Canvas [Clstatic =
Capsule ag | Untagged & | Layer (UL s
Nighttime Simple Water T T
» FlashlightController i e s
Phone Flash) 6] o]
Directional light Width Height
YGh;‘st : s 130 Jzo 1 [e)(&]
| “’5 mes ¥ Anchors
Max X0 Y |0
Eventsystem —_—
Pivot X[0.5 Y 05
Rotation %[0 Y0 z[o
Scale X[l AL 211
v ™M canvas I #
@8 Project | Bl console e Render Mode | World Space. |
Creata ~ & s | Event Camera Mone (Camera)]
¥ Favorites Assets - Scenes ortnglayar T —
LAl Materials Order in Layer e]
0L All Models —
7 Al Prefabs v [¥ Graphic Raycaster (Script) [%
(2L Al Seripts Script i GraphicRaycaster| ©
Priority =
vE5 Assets ChapterS_I.. Chapterd_I. ChapterS_I R
?Materlals Blocking Objects | Mone s |
Gl Blocking Mask | Everything |
> Prefabs — ——————
b
50 nts ‘ Add Component I
»&ai Terrains
— |
) allocation 0x00000000 already registered @ C:/BuildAgent/work/d63dfc6385190b60/Runtime/GfxDevice/d3d/D3D9Uts.cpp: 167 size 0; now calling from €:/BuildAgent/work/d

[274]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

8. We're getting there, but the object is still way too big for what we want to do.
But we don't want to modify the width and height. In this instance, making
use of the Scale property would be a great solution. Change the Scale
property to . 010 in all of the axes. If you double-click, you'll see that
the object is now placed at the bottom of our enemy. Have a look at the
following screenshot:

& =
File Edit Assets GameObject Component Window Help
M + BEAE ermen S T
= Hierarchy = | #Scene | € Game o= © Inspector | &=
| create ~| (@FAT | Textured +|| ReB || 2D | % | <) | Effeces |~ | | Gizmas - | (@G- All T]Static -
Capsule Tag | Untagged ¢ | Layer | U1 8]
> Nllgh;lt.m:: S\FHI_!‘TI Watke ¥5C RectTransform L
FlashlightController S e s
Phone Flash o o i
'Z‘hr“:'“"al lig s Width Height
os : ; S
130 [z0 nn
Ghost_mesh =
Terrain Min X|0 Y0
Max X0 Yo
EventSystem e e
Pivat X|0.5 ¥ 0.5
Rotation X0 Y0 zlo
Scale %001 voor 2001
v [|™canvas 2,
18 Project | B conscle & .| RenderMode World Space T
| Creata = | | &% | % Event Camera Mone (Camera) e
EE=Eatgarer=xl Sorting Layer | Defauk s
Order in Layer 0
v 5] ¥ Graphic Raycaster (Script) =,
(2L All Scripts Script |E GraphicRaycaster ©
Priarity =
V&5 Assets Chapter5_I.. Chapterd_I.. ChapterS_I Tonate Revaresd Crind
:E Mat:rllﬂl! Elocking Objects IHone +
Models : e
Blacking Maslk Ewerythini $
Gl Prefabs 9 | Everything |
& Scripts { Add Component I
»EE Terrains
——

Isaa;mg‘%_n 0x00000000 alr=ady. ‘d53dfc6385190b60/Runtime/GFxDevice/d3d/D3D8Uts cpp: /167 size 0; now calling from C:/BuildAgent/wo wﬂl

[275]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

9. Now that we have this, let's use the translate tool and move the canvas so
that it's over our enemy's head, or you can just change the Pos Y property to
2.5. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help
= Hierarchy ~ Scene | & game .~ | O Inspector | e
| Creats = (AT | Textured +| | REB 20 | 3 | @) | Effects |7| | Gizmos = | (GrAT | ‘:‘ ol [Eanvas []static +
Capsule Tag [Untagged ¢ Layer [UI 5]
I e R e ste v5f Rect Transform @ *
¥ FlashlightCentroller o Pos X Pos ¥ Pos Z
Fhone Flash] Z5 il
Directional light Width Height
'Gho:‘t : 130 20 (o J(e]
Ehaslimes ¥ Anchors
Terrain Hin 0 e
M X0 Y0
S Pwo;“ X.O 5 Y |0.5
Rotation X 0 Y0 Zi0
Scale X001 Y 0.01 Z/0.01
v [|¥canvas Q) %
| SpProject | Bl console | _— Render Mode [World Space _ ¢]
| €lear | | Collapse | Clear on Play | Errer Pause | Do Ao/ @o| Event Camera None (Camera)]
Sorting Layer [Defaule &
Qrder in Layer 0
v [M Graphic Raycaster (Script) [
Script & GraphicR aycaster. ©
Priarity -1
Ignore Reversed Grild
Blocking Objects | Mone .
Blocking Mask | Everything %]
Add Component J

10. This looks pretty nice, but let's add in something so that we can actually see
it. For our purposes, we are going to use a slider as the basis of our lifebar.
To do that, with the Canvas object selected, navigate to GameObject | UI |
Slider, as shown in the following screenshot.

A slider is a graphic with a handle that the user can drag to change a value
between a minimum value and a maximum value. In this instance, we are
using a slider for its display purpose rather than the interaction that it offers,
but let's first see what it does. Have a look at the following screenshot:

[276]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

File Edit Assets GameObject Component Window Help

Ed4 <= E Pivot | @ Local [Layers | [Layout -

Hierarchy | 3 Scene | & Game © Inspector |
Create ~| (GoAll | Textured || RGB #| 2D <li) | Effects *| | Gizmos | (G- All Pl Slider [static +
Capsule Tag | Untagged ¢ | Layer [UI)

Nighttime Simple Water

) Rect Transform I %
¥ FlashlightController

enter Pos X Pos Y Pos Z

Phone Flash o 0 0
Directional light Width Height
¥ Ghost 130 0 [o (%]
Ghost_mesh B

¥ Anchors

v ———]
Max X055 Y[05
Terrain
EventSystem pivoet x[0.5 1 ¥[05
Rotation X0 v [0 zo |
Scale x[1 ¥l ZiT |
9 Canvas Renderer Q@ %,
Eproject | Elconsole | 12l M1mage (script)

Clear Collapse | Clear on Play | Error Pause Source Image ackground

Color

None (Material)

Sliced

Material

Image Type

Now, if you play the game, you'll notice that we can jump into the game and
actually change the slider. Have a look at the following screenshot:

File Edit Assets GameObject Component Windew Help

Maximize on Play | Stats | Gizmes *

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

Now, this is really cool if you want to actually create menus in your world
like in the Dead Space series, but we don't really want the player to change
that, as we'll be setting it in the code.

11. Expand the Slider object in the Hierarchy tab to see the Fill Area and Handle
Slide Area objects. Delete the Handle Slide Area object, as we won't need it.

12. After that, expand the Fill Area object, and select the Fill object. From there,
set the Color property on the Image component to a green color to make it
look more like a health bar:

File Edit Assets GameObject Component Window Help

= & 'S [G| [sarivet | @ Local | ANTRET] [Lase L Lovout =2
= Hierarchy # Scene | & Game — © mspector L &
e p

| Create ~| (GrAl tured +| | RGB || 20| % | <) | Effects I~ | | Gizmos ~ arAl ' ™ TFill []static «
Capsule Tag [Untagged ¢ | Layer (U1 ¢|
Mighttime Simple Water N et o =farm @ =
¥ FlashlightController Sl e B ar
Phaone Flash
Directional light stretch Pos X Pos ¥ Pos Z
¥ Ghost T—1| e] Ll
zhost_mesh & EEJ W Delta H Delta R
¥ Canvas v Bommll 2 i [b]L]
¥ slider | ¥ Anchors
¥ Fill Area Min {0 Y0
~Fi Max ¥ 1 Vit T
Terrain Pivot ® o5 ¥ 05
EventSystem o
Rotation X 0 Yo Zi0
1 | Scale K1 i1 ZjL
Eproject | Econsole | . _-= v @ Ccanvas Renderer Q=
Clear | Collapse | Clear on Play | Errar Pause ol /Ao @olf vl 1mage (Script) (FE

Source Image [l GUISprite
Color

Material None (Material

13. Now, back in the Slider object in the Slider component, uncheck the
Interactable property. Now, the object will not be able to receive the
mouse clicks to change its value.

14. We now have the objects created, but there's no interaction as of yet. With
that in mind, we're going to need to jump into some code, specifically in our
EnemyBehaviour script. Open it in MonoDevelop.

15. From there, the first thing we're going to need to do is add a new item to the
top of the code in our using section, as follows:

using UnityEngine.UI;

[278]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

16.

17.

18.

19.

After this, we also need to add a new variable, as follows:

// Reference for drawing the healthbar
public Slider healthBar;

Now, we need to add a new function, which we will call whenever this needs
to be updated:

private void UpdateHealthbar ()

{

healthBar.value

}

In this example, the value property of the health bar is a value from 0 to 1,
which is how much of the slider should be filled in.

currentHealth/health;

Now, we need to add a call to this function in both the start and
TakeDamage functions:

UpdateHealthbar () ;

Next, save your file, move back to Unity, and assign the Slider object to the
Health Bar property. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help
E ‘i‘ =R EII wg Pivot | @ Local | AN IEE | | Layers - | [Layout -
E Hierarchy | S| #3cene | ame © Inspector =
Create v | (@Al || | Textured #|| 20| %: | &) | Effects |7 | | Gizmos ~ ‘ ™ [Ghost []static +
Capsule | ™ Tag | Untagged ¢ | Layer | Defaulr
Nighttime Simple Water | Profab [Selecz | maver: | .
» FlashlightContraller I
Phone Flash ¥~ Transform @
Directional light Position X 932.04 Y 99.526 Z 741.14
Rotation X 0 Yo Z0
Ghost_mesh Scale x1 ¥[1 20
¥ Canvas v &/ MEnemy Behaviour (Script) [%
VSIld.er Seript EnemyBehaviour | @
Sl Health Bar der (Slider) | ©
i = 1 "
: Idl #
Terrain State Iei |
EventSystem Target A FlashlightContri ©
Move Speed 3
L Rotate Speed 3
3 Project | O console ___@.= Follow Range 10
Create T A % |+ || 1dle Range 10
¥ Favorites Assets » Scripts || Health 100
LAl Materials
2 All Models I Add Component
O Al Prefabs b, i
Al Scripts LT Js 7 L# Js L# L (#
v53 Assets BobbingAn.. Character.. Enemy. EnemyBeh.. FPSInputC.. Mousslook PhoneBeha.. PhonsBorder
» Gl Materials
» & Models
P&l Prefabs
» & Scenes
» G Terrains
p——

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

20. After this, save your scene, and click on the play icon! The following
screenshot comes up:

£ 2

File Edit Assets GameObject Component Window Help

[et | @ cocal i [Layers—J[ioyour -],

Maximize on Play | Stats | Gizmes ~

The health bar works, and we now have an easy way to tell how well our shots are
damaging enemies!

Adding in text

In addition to placing the health bar, to get some experience using text, let's use that
as well:

1. With the Canvas object selected, create a text object by navigating to
GameObject | UI | Text.

[280]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

2. Now, it may be hard to see it being added at first, so let's first change the
color of the text. Select the Text object, and go to its Text component. Once
there, change the Color property to white:

£

File Edit Assets GameObject Component Window Help

| o E3EEAE] [vapivot [@ cocal]

= Hierarchy

| € Game

| Layers hd J | Layout h J

Nighttime Simple Watar
» FlashlightController

B © inspector | ~i |
Craats *| (G2AT Textured *|| Gizmos =] (Al Canvas Renderer [P
Capsule 7 [Text (Script) @ =

Text

MNew Text

/7 Follow: Enter
+ UnityEngine.Debug:Log(Object)

~ Follaw: Exit

Phone Flash
Directional light
¥ Ghost Character
Ghost_mesh Font
Fieaxas Font Style
s e Font Size
¥ Fill Area
Fil Line Spacing
ST Rich Text
Terrain Paragraph
EventSystem Alignment
| Horizontal Overflo|
B3 Project. | Elconsols I = Vertical Overflow [T
Clear | | Collapse | Clear on Play | Errar Pause Dol MAo|@o Best Fit
7 Idle: Enter 44 color J
+ UnityEngine.Debug:Log{Dbject) Material THone (Material) | ©
1y Idles Exit -
= UnityEngine.Debug:Log{Object)

| Layout Properties ——————

Property value

“*/ UnityEngine.Debug:Log{Dbject)

/7y Idle: Enter
+ UnityEngine.Debug:Log(Object)

(idles Enter

. Inthe new Ul system, objects are drawn in order, which means
% that if the text object was before the slider, the slider would
L cover the text. However, you can drag objects into whichever
order you want.

3. At this point, you'll notice that the text is actually backwards. Fixing this
is very simple; just change the Rect Transform module on it to havea'Y
Rotation value of 180.

Make sure this is done on the Text object, or your health will go
— down from right to left rather than left to right.

[281]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

4. For our purposes, we will have this be displayed in the center of our object.
To do this, we can just set the Alignment property to the center, both
vertically and horizontally, as shown in the following screenshot:

File Edit Assets GameObject Component Window Help
o EXEIFANG] TrTT— rer——
= o=| #5cene | € Game o= | ©Inspector | e
axtured +| | RGB || 20| % |) | Efects I+ | | Gizmos ~| (@Al 7| M Text (Script) [FEE
Capsule i Text
Nighttime Simple Water New Text
¥ FlashlightController
Phone Flash
Directional light Character i
¥ Ghost Fant 4 Arial [}
Ghost_mesh Font Style T T —
¥ Canv;z Font Size 14
v slider Line Spacing i]
¥ Fill Area Rich Text o
- Fill Paragraph
HE Alignment =
:::;I;mem Horizontal Overflo
| Vertical Overflow | Tr
BiProject | ElcConsole | iz Best Fit [
| Clear | Collapss | Clzaron Play | ErorPause | [©s[Ao[@o] Color
1y Idle: Enter + Material None {Material)
</ UnityEngine.Debug;:Log{Object)
7y Idls: Exit | Add Component ‘ -
=~ UnityEngine .Debug:Log(Object)
(1 Follow: Enter
=~/ UnityEngine Debug:Log(Object)
(1 Follow: Exit
</ UnityEngine.Debug;:Log{Object)
7y Idle: Enter

" UnityEngine .Debug:Log(Object)

) 1dle: Enter

5. You can modify the Text property of the Text component, and it will change
what is being displayed, which is great to prototype things out before we set
them in the code. For example, right now, I can change the value to 100/100,
as shown in the screenshot following the next paragraph of text.

This is a great start, but there are still two problems that we will need to
solve. First, the text isn't being updated when the health changes. Secondly,
when we start the game and go towards the enemy, the health shows up
backwards, and when the character moves, we have to watch the Ul turn
with the enemy.

[282]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

File Edit Assets GameObject Component Window Help

L] b [S [0[] [enpivet | @ Local |
€ Game
16:9 =

Mazximize on Play | Stats | Gizmas |~

onoot

¥,

y,

Thankfully, we can fix this by turning the canvas to always face the player,
which is similar to how a billboard works in the particle and terrain
placement systems.

6. Open up our EnemyBehaviour script once again in MonoDevelop. First, we
need to create a new variable for our text:

// Reference to the textbox
public Text healthText;

7. Now, add the following line to the end of the TakeDamage function:

healthText.text = ((int)currentHealth) .ToString() + "/" +
health.ToString() ;

8. Finally, we need to have the canvas always face us. To do that, we will add in
the Update function, as follows:

public void Update ()

{

// Going to move the Canvas so that it moves both the
//slider and the text

[283]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

healthBar.transform.parent.GetComponent<RectTransforms () .Lo
OkAt (

Camera.main.gameObject.transform
) ;

To use the Rect Transform component, you can cast the transform, as
shown in the following information box:

& (RectTransform) transform;
e

Or you can call Get Component for the relevant component, as follows:

GetComponent<RectTransforms>;

9. Save your script, and go back to the Unity editor. Once there, assign the
Health Text property to the Text object. Finally, hit the Apply button under
Prefab so that our other ghosts can have this added functionality as well.

10. Save your scene, and play the game! The following screenshot comes up:

Ed =

File Edit Assets GameObject Component Window Help

I s pivor | @ Local | i [Lavers - JllDetautt -]

At this point, we now have the health bar working exactly the way we want to and
can see that setting the text object is almost exactly the same as doing it with the old
GUI tools!

[284]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Working with buttons and anchors

Now that we have the health bars working, let's tackle something similar to what
we did before, in creating a simple HUD with a reset button. We'll also learn how
to make our things look great at any resolution. We will need to perform the
following steps:

1. Let's start off with creating yet another canvas by navigating to GameObject
| UI | Canvas. In this case, we want this canvas to cover our entire screen
no matter which camera we are using, so this time we will keep the Render
Mode property at Screen Space - Overlay. In order to differentiate from our
last one, I will rename the canvas game object to HUD.

2. With the HUD object selected, next we will create a button by navigating to
GameObject | UI | Button.

If we just play the game now, you'll notice that the button will appear, but it
will seem like it's not anywhere in particular.

& x

File Edit Assets GameObject Component Window Help
e . - —
B4 S[X [El| [erivo | ©ciobal 11| pi] [Layers -] [Defaut -

[285]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

3. For this example, I want to place this button in the top-left corner of my
screen. Double-click on the Button object to center the camera on it. Once
you've done that, right-click on the camera gizmo in the top-right corner, and
set it to use the Back camera option. Have a look at the following screenshot:

scene € Game

. : : = | © Inspector
Textured | Frel]

Eﬁ'ects-' ' @ HUD
li Tag Untagg.eci.

Rect Transfor
Snme uaillpq r|.|'i\len b','

Free
Right
Top
Front
Left
Bottom
. v' Back

;v' | Perspective

v |Mcanvas

Render Mode
Pixel Perfect

4. With that done, to the right of the scale tool on the toolbar, you'll see a new
option of the Rect tool. With it selected, click inside the button (but not on
the blue circle), and drag it over to the top-left corner. Have a look at the
following screenshot:

[@ ‘*’ S | #aPivot | @ clobal | [|
= Hierarchy | .= | H# Scene | € Game R — = |
Create = | farAll Y | Textured : RGB || 2D | o | <) | Effects |=| |}

Capsule
Mighttime Simple Water
¥ FlashlightController
Graphics
¥ Main Camera
Spotlight

Fhoto Camera e
Phone Flash Restad Level !
[e —]

Directional light | —

e 2k +

[286]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

+ The Rect tool works almost exactly like 2D tools, so you can
scale, move, and rotate the elements all in one tool instead of
’ moving through others.

The following screenshot shows the working of the Rect tool:

File Edit Assets GameObject Component Window Help

E ‘*‘ =R E” uj Pivot | @ Global | AN IEN | | Layers ~ | | Default - |

= Hierarchy = # Scene € Game S © Inspector i
Create 7| (@rAll | Textured + + &) | Effects |~ | | Gizmas ~| (Gr Al o [Butten | []Static
Capsule

Tag | Untagged % | Layer | UL
MNighttime Simple Water ag | Untagge ayer

|
¥ FlashlightController Rect Transform @ =
Phone Flash Pos X Pos Y Pos Z
Directional light -149 104.5 []
¥ Ghost Width Height |
Ghost_mesh 130 30 nn
¥ Canvas
¥ Slider Min X 05 Y 05
b Fill Area Max ® o5 fE0:5:
Text Pivot x[0.5 ¥ [0.5
Terrain .
EventSystermn Rotation X0 Yo Z
¥ HUD Scale x1 Wl Zil
[2B ¥ @ canvas Renderer
Eproject | Econsole | - v Z[M1mage (Scr
€lear | | Collapse | Clear on Play | Error Pause W1 Ao Source Image
iy Idle: Enter Colar

/ UnityEngine Debug;iLog(Object)

Material None (Material)
Image Type [Slced 3

() 1dle: Enter

[287]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

5. This shows that you want the button there, and if you switch to the Game
tab, it will look like it's working correctly. But if you click on the play button
and change the resolution, you'll see that the button doesn't move. Have a
look at the following screenshot:

& =

File Edit Assets GameObject Component Window Help
q E—— -1
= |

S | |~ NIREER| [Layers -]

[288]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

6. To fix this, we will need to use anchors. Anchors work similarly to how we
moved the older GUI system's elements, except that if you click on the little
box in the center, you'll have some helpful graphics to help you see what
values to set the pivots and anchors to. So, click on the anchor box, and select
the top-left corner anchor. Have a look at the following screenshot:

File Edit Assets GameObject Component Window Help

a &S| m[E #i Pivot | @ Global [Layers | [Default -

= Hierarchy | -= #Scene | € Game | — | ®Inspector |]
Create 7| (BrATl) || 189 - Mazximize on Play | Stats Gizmes \‘ Button | LiStatic ~ 4

:I:iagist::':a Simple Water = Tag lbinisaged el Layer: (UL &)
¥ FlashlightCantroller Rect Transform @ %
Phone Flash lefi PosX PosY Pos Z
Directional light 65 -15 i
¥ Ghost g [] | width Height
Ghost_mesh 4 ({130 30 [b|[F]
¥ Canvas ¥ Anchaors
¥ slider Mmin - x[0__ |v[T |
P Fill Area Max X0 Y1
Text Pivot X055 v[0s
Terrain
EventSystem Rotation X 0 Y0
¥ HUD Scale el Y1 7 {1
53 v ¥ @ canvas Renderer @ %
] — v iM1image (Script) [WE=3
| Clear || Callapse | Clear on Play | Error Pause | |01 /o @o|| Source Image FlGUISprite <]
7 Idla: Enter Color |
" UnityEngine.Debug:Log(Object) Material m o
Image Type [Sliced |

(idle: Enter

If you hold down the Alt key while selecting an anchor, it will
L automatically move your object as well.

[289]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

7. Now, let's change the button's text by expanding the Button object and
selecting the Text object inside. Once inside, change the Text value
to Restart Level.Have alook at the screenshot following the next
information box:

> You do not have to have the Text object if your button doesn't

need it. In fact, you can also include images or any other Ul
T element to be part of your image.

File Ecit Assets GameObject Component Window Help

© € Global [Layers -] [oefault -
= Hierarchy _\ .= Hscene |_¢-Game _\ = o Inspector | =
Crears - | (GoAll || 189 - | Mastimize on Play | Stats | Gizmas -] || 7 MTese | Clstatic + |=
Nighttime Simple Water wi [1
Untagged ¢ [u1 §
¥ FlashlightController Restart Level ‘ Tag | Untagge Layer |]

¥ .o RectTransform (RS

Phene Flash
Directional light tretch Left Top Pos Z
¥ Ghost =] e 0 0
Ghost_mesh £ [Right Bottomn |
¥ Canvas s et 1| L 0 [J[]
¥ Slider ¥ Anchors
P Fill Area Min ¥[o |x¥ho |
Text Max X1 ¥il
Terrain Pivet ®05 |vos |
EventSystem IS R
¥ HUD. Rotation X v z[o
¥ Butt Scale X1 Wil Zil
h' ¥ @ Ccanvas Renderer *
Sproject | Elconsole | — 7| M Text (Script) e

| €lzar | | Collapse | Clear on Play | Error Pause [Dol Ao @0 Text
Restart Level

har(ter
Layout Properties

Property Value

Finally, we need to actually implement the action.

As you may have noticed, when we created a canvas, there was another game object
that was created called EventSystem. When the game starts, it will look at these
input modules and decide how to handle different types of inputs.

The EventSystem game object will determine when events are triggered, such as the
onClick event, which is called when we press and release our mouse over the button
we just created (which is different from how the old GUI system worked).

[290]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

For more information on the EventSystem game object, check

out http://unity3d.com/learn/tutorials/modules/

beginner/ui/ui-events-and-event-triggers.

If you select our Button object, you'll see a list of actions at the bottom that will be
executed when the button is clicked on, without having to write any additional code
to do so.

You can add additional events to be triggered from the Ul by
" adding an Event Trigger component.

We perform the following steps:

1. Click on the + button on the OnClick section of the Button component to
add a new action to be called when the button is clicked on. Here, we'll see
some options allowing us to pick an object and then call a function that is
on that object.

2. We currently don't have a reset function to call, so let's add that in really
quickly. Go to the scripts folder, and create a new C# script called Events.
Then open it up in MonoDevelop.

3. Once in MonoDevelop, replace the file with the following code:
using UnityEngine;
using System.Collections;

public class Events : MonoBehaviour

{

// Restarts the current level
public void RestartLevel ()

{

Application.LoadLevel (Application.loadedLevel) ;

}

}
4. Save the file, and attach the script onto the FlashlightController object.

[291]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

5. After this, go back to the Button object, and drag-and-drop the
FlashlightController object into the left-hand side of the OnClick
section. Once there, click on the right-hand side, and navigate to
Events | RestartLevel. Have a look at the screenshot following the
next information box:

In addition to calling functions, you can also modify
properties in this way as long as they are of the basic types.

% X
File Edit Assets GameObject Component Window Help
Bl %S = G0 veror | ©cona) e
= Hierarchy | o= | #Scene | € Game @ Inspector &=
reate - | (BrAT 7 ==
Creats Gt ||| Teutured Color I 1.2 -
Capsule Material None (Material) @
Nighttime Simple Water e [Sliced 3
¥ FlashlightController Fill Center o
Graphics =
¥ Main Camera v (20 M Butten (Script) [FR-S
Spotlight Interactable
Photo Camera Transition | ColarTint i)
Phone Flash Target Graphic 1 'Button (Image) =]
Drectonal it Normal Color [#
S Highlighted Color [) 2
errain
S Pressed Color | .
Dirsbled Color I

¥ HUD

. Button Color Multiplier O 2
Text Fade Duration 0.1
Mavigation | Automatic s]
| Visualize |
e~ I on Click [}
 — — 0 [FlashightCantid o] Evams Rasmariavel <
¥ Favorites A_s_sets * S_:_ri_pts +
Il Materials
Il Models { Add Component
L All Prefabs i s
(CL Al Scripts W17 7o 17 W1 1T
vE5 Assets BabbingAn Character. Enemy EnemyBeh Events
5 Materials
55 Models
» & Prefabs 1. =
< B 43 AT T
;ghrram&g FPSInputC MouseLook PhoneBeha PhoneBorder

[292]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

6. Save your scene, and then hit play to take a look at what we've done:

X

&
B3 # [S [l [enrivot [©lobal | | [Loyers]
I_l&:‘) '_-Mixlmlze on Play -Stits -Glzmus .'I

Restart Level

Now, when we hit the Restart Level button, the level will restart! Excellent!

For more information on the UI buttons, such as how to add

%j%“ animations between states, please visit http://unity3d.com/
’ learn/tutorials/modules/beginner/ui/ui-button.

[293]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

We still have a bit left to do. You see, this looks nice now; but if we were to
use a really large screen (or a retina display), the button will be extremely
small. Have a look at the following screenshot:

To solve this, we can use the ReferenceResolution component for the canvas
we'd like to scale.

7. With the HUD canvas selected, add in a reference resolution by navigating to
Component | Layout | Reference Resolution.

[294]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

8. Save your scene once more, and play the game again! The following
screenshot shows the game screen:

Now, the canvas will scale appropriately based on the resolution provided!

Summary

And now, we have a solid foundation that we can expand upon to build things

using the new Unity GUI system. I could write an entire book on how to create

user interfaces, but in the meantime, I have some additional resources that may be
beneficial as you go on from here! At this point, we also have all the knowledge we
need to create a wide array of various gameplay projects from here on! You've worked
in 2D and 3D; you've built levels in many different ways; you've programmed three
complete games; and on top of that, you've learned about both of Unity's Ul systems,
one of which isn't even out yet! This may be the end of the book; but it's only the start
of your Unity journey!

[295]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating GUIs Part 2 — Unity's New GUI System

Additional resources

As this is still in beta, there are not too many official resources that have been written
about the Ul system as of this writing, but there are some video lessons that are
available at http://unity3d.com/learn/tutorials/modules/beginner/ui.

However, the Unity forums have a very active community, including Unity
developers, who are happy to answer questions that developers may have. There
is a specific place to ask about the new Ul system at http://forum.unity3d.com/
forums/developer-preview-4-6-beta.60/.

There is also a set of example projects, which have a number of examples showing
how to use some of the aspects of the system at http://forum.unity3d.com/
threads/ui-example-project.263418/#post-1744107.

For those interested in seeing some additional things to make your life easier when
working with Unity 4.6, there is an excellent thread on the Unity forums with some
additional resources at http://forum.unity3d.com/threads/scripts-useful-4-
6-scripts-collection.264161/.

Challenges

For those of you who want to do more with this project, there are still plenty of
things you can do, especially after finishing the rest of this book. Here are some
ideas to get your mind thinking;:

* Redo the Ul that we did in Chapter 2, Creating GUIs, using the new Ul system
to note the similarities and differences between them.

¢ (Create a second button below the current one we created. Rather than
positioning it by hand, use the Vertical Layout Group component. Spend
time in the in-progress script reference (http://docs.unity3d.com/460/
Documentation/ScriptReference/index.html) and manual (http://
docs.unity3d.com/460/Documentation/Manual/) for the latest version
of the documentation in progress.

. These links may expire once 4.6 is released. If that's the case,
& remove the /460 section, and they should work fine to get a
s better foundation at all of the new components created for the
new Ul system!

[296]

www.it-ebooks.info

http://www.it-ebooks.info/

A

advanced FSMs 204
anatomy, GUI control
about 56
content 57
ControlType function 56
Position parameter 56, 57
Android development
URL 267
Asset Store 204
atmosphere, First Person Shooter Part 1
game
building 138-142
Audacity
URL 216

B

BinaryFormatter 244-247
BindingFlags 202
build settings

setting up 250-255

C

card game War
about 183
URL 183

collectibles, Side-scrolling Platformer
creating 99-105

controller input, First Person Shooter Part 3
using 208-213

controls
URL, for documentation 56

ControlType function 56

Index

Cursor.SetCursor function
URL 256
customization, GUI 58-62

E

enemies, First Person Shooter Part 3
damaging 205-208
killing 205-208
enemy creation, First Person Shooter Part 3
about 195-197
state machines 101 197, 198
enemy movement, First Person
Shooter Part 3
about 198-204
advanced FSMs 204
environment artist 115
EventSystem game object
URL 291
exported project
customizing, via player settings 255-258
exterior environment, First Person Shooter
Part 1 game
creating 118-131
enhancing 131-136

F

FileStreams 244

Finite State Machine. See FSM

First Person Shooter Part 1 game
atmosphere, building 138-142
challenges 149
exterior environment, creating 118-131
exterior environment, enhancing 131-136
flashlight, creating 143, 144

www.it-ebooks.info

http://www.it-ebooks.info/

player, creating 137, 138 grid snapping

project overview 116 about 169
project setup 117 tiles, placing with 168-172
walking / flashlight bobbing GUI
animation 144-148 about 51
First Person Shooter Part 2 customizing 58-62
challenges 182 GUIButton 57
props, creating 172-178 GUI control
props, placing 172-178 anatomy 56
tiles, creating 161-168 GUIHorizontalSlider function 75
tiles, placing with grid snapping 168-172 GUI.Label 57
First Person Shooter Part 3 GUILayout class
challenges 216 about 65-69
controller input, using 208-213 URL 69
enemies, damaging 205-208 GUIs creation
enemies, killing 205-208 about 269
enemy, creating 195-197 challenges 77, 296
enemy movement 198-204 game, pausing 62-65
moving, to other levels 214, 215 game, restarting 67, 68
project overview 183 health bars, creating 271-280
project setup 184 Options menu, creating 69-72
shooting behavior, creating 184-194 project overview 51, 269
FixedUpdate() function 89 project, setting up 52-55
flashlight, First Person Shooter Part 1 game text, adding 280-284
creating 143, 144 working with anchors 285-295
FSM 198 working with buttons 285-295
GUISkins
G URL 65
GUIStyles 65
game, GUISs creation GUIUtility.hotControl
pausing 62-65 URL 231
restarting 67, 68 GUIVerticalSlider function 75
GameODbject.Find function
about 227 |
URL 216, 227
game polishing if statement 197
about 249 InControl input manager
project overview 249 URL 213
game, Side-scrolling Platformer Inno Setup software
winning 109-113 URL 258, 267
Get functions 219-223 installer
GetMethod function 202 building, for Windows 258-266
Graphical User Interface. See GUI iOs
greyboxing URL 267
URL 123
[298]

www.it-ebooks.info

http://www.it-ebooks.info/

L

level design documents
about 117
references 118
level designer 115
level editor, Save Files creation
about 223-225
additional tiles, selecting 233-241
GUI 233-241
levels, loading to file 241-244
lists 225, 228
toggling editor 233-241
walls, adding at runtime 229-232
walls, removing at runtime 229-232
levels, First Person Shooter Part 3
moving to 214, 215
lightmapping
about 179-181
URL 181
lists
about 225,228
URL 226

Mac game, submitting to Mac App Store
URL, for tutorials 253
modular game art
URL 164
MonoBehaviour class
about 18
reference link 18
MonoDevelop 17

(0

OnGUI function 54
Options menu, GUISs creation
creating 69-76

P

platform game 79
PlayerBehaviour class
reference link 18

player, First Person Shooter Part 1 game
creating 137, 138
PlayerPrefs class
about 218
Get functions 219-223
Set functions 218
URL 219
player settings
exported project, customizing via 255-258
player, Side-scrolling Platformer
creating 87-99
Playmaker
URL 204
Position parameter 56, 57
prefabs 29
project overview, First Person Shooter
Part 1 game
about 116
objectives 116
prerequisites 116
project overview, First Person Shooter Part 3
about 183
objectives 184
project overview, game polishing
about 249
objectives 249, 250
project overview, GUIs creation
about 51, 269
objectives 52,270
prerequisites 52
project overview, Save Files creation
objectives 217
project overview, Side-scrolling Platformer
about 79
objectives 79
prerequisites 80
project overview, twin-stick shooter game
objectives 7
prerequisites 8, 9
project setup, First Person Shooter Part 1
game
about 117
level design 101 117
planning 117

[299]

www.it-ebooks.info

http://www.it-ebooks.info/

project setup, First Person Shooter shooting behavior, First Person

Part 3 184 Shooter Part 3

project setup, GUISs creation creating 184-194

about 52-55, 270 Side-scrolling Platformer

anatomy, GUI control 56 about 79

GULButton 57 challenges 114

GUI.Label 57 collectibles, creating 99-105
project setup, Side-scrolling Platformer 80 game, winning 109-113
properties player, creating 87-99

about 223 project overview 79

URL 224 project setup 80
properties, for different platforms score, keeping 106

URL 258 tile-based level creation 80-84
props, First Person Shooter Part 2 sine waves

creating 172-178 URL 147

placing 172-178 singleton pattern 106
publishing sound effects

URL, for tutorials 255 resources 216

state machine
Q URL 204
state machines 101 197, 198

quaternion class 85 SweepTest function 97
quaternions switch statements

URL 85

reference link 72
System.Collections namespace 18

T

R

Raycast function 114

Rect tool terrain editing tool options
about 287 Paint Details 120
URL, for tutorial 272 Paint Height 119
RGBA colors 63 Paint Texture 119
Place Trees 120
S Raise/Lower Height 119

Smooth Height 119
Terrain Settings 120
terrain engine, Unity

Save Files creation
challenges 248
high score, saving 218

level editor 223-225 URL 136
. . text assets
project overview 217
. . . URL 114
score keeping, Side-scrolling Platformer
. tile-based level creation, Side-scrolling
singletons 106-109
. Platformer
ScreenToWorldPoint
URL 231 about 80

coding 81-84
working with arrays 84-86
tiles
placing, with grid snapping 168-172

scripting 16, 17
Set functions 218
shoot 'em up game 7

[300]

www.it-ebooks.info

http://www.it-ebooks.info/

tiles, First Person Shooter Part 2
creating 161-168
placing, with grid snapping 168-172
Toast Editor
URL 114
twin-stick shooter game
about 7
challenges 50
enemies, creating 31-34
GameController, adding 34-38
particle systems, using for enemy
explosion 39-41
player movement, implementing 17-25
points, adding in 44
project overview 7
publishing 48, 49
scene, creating 12-16
score, adding in 44-47
scripting 16,17
setting up 9-11
shooting behavior, implementing 26-30
sound effects/ music, adding 42, 43
wave numbers, adding in 44-47

U

Unity

URL, for installing multiple versions 270
Unity 3D

resources 296

URL, for documentation 216

Unity 4.6

URL 270
UnityEngine namespace 18
Unity GUI system

about 53

URL, for scripting guide 76
Unity Wiki

URL 248
Update() function 89
UV mapping

URL 173

w

walking / flashlight bobbing animation,
First Person Shooter Part 1
game 144-148
Windows
installer, building for 258-266

X

Xbox 360 Controller
URL 213

Proudly sourced and uploaded by [StormRG]
Kickass Torrents | TPB | ExtraTorrent | h33t

[301]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
rusLisnine S Unity Game Development
Blueprints

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub . com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

L SN TAX S| Practical Game Design with Unity
"Q‘?&-‘ﬁ‘fﬁﬂf‘:“ and Playmaker
... : 'S - ISBN: 978-1-84969-810-8 Paperback: 122 pages

Xt/
XA Ay
By = .

Leverage the power of Unity 3D and Playmaker to
develop a game from scratch

1. Create artificial intelligence for a
game using Playmaker.

Practical Game Design

2. Learn how to integrate a game with external
with Unity and Playmaker & & X

APIs (Kongregate).

3. Learn how to quickly develop games in Unity
and Playmaker.

4. A step-by-step game development tutorial
using Al scripting, external APIs, and
Multiplayer implementation.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1. A wide range of topics are covered, ranging
in complexity, offering something for every
Unity 4 game developer.

2. Every recipe provides step-by-step instructions,
Un |ty 4.x followed by an explanation of how it all works,

and alternative approaches or refinements.
Cookbook

3. Book developed with the latest version of
Unity (4.x).

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHING

Unity Android Game Development
by Example

Unity Android Game Development
by Example Beginner's Guide
ISBN: 978-1-84969-201-4 Paperback: 320 pages

Learn how to create exciting games using Unity 3D
for Android with the help of hands-on examples

1. Enter the increasingly popular mobile market
and create games using Unity 3D and Android.

2. Learn optimization techniques for efficient
mobile games.

3. Clear, step-by-step instructions for creating a
complete mobile game experience.

Unity Multiplayer Games

Unity Multiplayer Games

ISBN: 978-1-84969-232-8 Paperback: 242 pages
Build engaging, fully functional, multiplayer games
with Unity engine

1. Create a variety of multiplayer games and apps
in the Unity 4 game engine, still maintaining
compatibility with Unity 3.

2. Employ the most popular networking
middleware options for Unity games.

3. Packed with ideas, inspiration, and advice for
your own game design and development.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: 2D Twin-stick Shooter
	Project overview
	Your objectives
	Prerequisites

	Setting up the project
	Creating our scene
	Scripting 101

	Implementing player movement
	Shooting behavior
	Creating enemies
	Adding GameController to spawn
enemy waves
	Particle systems for enemy explosion
	Adding in sound effects/music
	Adding in points, score, and wave numbers
	Publishing the game
	Summary
	Challenges

	Chapter 2: Creating GUIs
	Project overview
	Your objectives
	Prerequisites

	Project setup
	The anatomy of a GUI control
	ControlType
	Position
	Content

	GUI.Button
	GUI.Label

	Customizing the GUI
	Pausing the game
	GUILayout

	Restarting the game
	More on the GUILayout class

	Creating an Options menu
	Summary
	Challenges

	Chapter 3: Side-scrolling Platformer
	Project overview
	Your objectives
	Prerequisites

	Setting up the project
	Tile-based level creation
	Working with arrays

	Creating our player
	Creating collectibles
	Keeping score
	Singletons

	Winning the game
	Summary
	Challenges

	Chapter 4: First Person Shooter
Part 1 – Creating Exterior Environments
	Project overview
	Your objectives
	Prerequisites

	The project setup
	Level design 101 – planning

	Exterior environment – terrain
	Beautifying the environment – adding water, trees, and grass
	Creating our player
	Building the atmosphere
	Creating a flashlight
	Walking / flashlight bobbing animation
	Summary
	Challenges

	Chapter 5: First Person Shooter Part 2 – Creating Interior Environments
	Project overview
	Your objectives

	Project setup
	Creating architecture overview
	3D modeling software
	Constructing geometry with brushes
	Modular tilesets

	Importing assets
	Creating tiles
	Placing tiles with grid snapping
	Creating and placing props
	Lightmapping quickstart
	Summary
	Challenges

	Chapter 6: First Person Shooter
Part 3 – Implementing Gameplay and AI
	Project overview
	Your objectives

	Setting up the project
	Creating the shooting behavior
	Creating an enemy
	State machines 101

	Enemy movement
	Advanced FSMs

	Damaging and killing enemies
	Using controller input
	Moving to other levels
	Summary
	Challenges

	Chapter 7: Creating Save Files in Unity
	Project overview
	Your objectives

	Saving a high score
	The PlayerPrefs class
	The Set functions
	The Get functions

	Level editor – introduction
	Lists

	Level editor – adding/removing walls at runtime
	Level editor – toggling editor, GUI, and selecting additional tiles
	Level editor – saving/loading levels to file
	FileStreams
	BinaryFormatter

	Summary
	Challenges

	Chapter 8: Finishing Touches
	Project overview
	Your objectives

	Setting up the build settings
	Customizing your exported project via the player settings
	Building an installer for Windows
	Summary
	Challenges

	Chapter 9: Creating GUIs Part 2 – Unity's New GUI System
	Project overview
	Your objectives

	Project setup
	Creating health bars
	Adding in text
	Working with buttons and anchors
	Summary
	Additional resources
	Challenges

	Index

