ik |
Eierh;

— SORERATEY
et
ingnuu‘ gedpan

&
REEATE
Fesnnsas
L4

Unreal Engine 4 Game
Development Essentials

Master the basics of Unreal Engine 4 to build stunning
video games

PACKT

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Engine 4 Game
Development Essentials

Master the basics of Unreal Engine 4 to build stunning
video games

Satheesh PV

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Engine 4 Game Development Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016
Production reference: 1220216

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-196-6

www . packtpub.com

Cover image by Satheesh PV (mindfreak2040@gmail . com)

www.it-ebooks.info


www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Satheesh PV

Reviewer
Omer Shapira

Commissioning Editor
Edward Bowkett

Acquisition Editor
Kevin Colaco

Content Development Editor
Deepti Thore

Technical Editor
Deepti Tuscano

Copy Editor
Merilyn Pereira

Project Coordinator
Dinesh Rathe

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monterio

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info


http://www.it-ebooks.info/

About the Author

Satheesh PV is a game programmer living in Mumbai, India. He was selected by
Epic Games as one of the closed beta testers for Unreal Engine 4 before its public
release. He started his career as a game developer in 2012 by making a first person
multiplayer game with his brother and close friend using Unreal Development Kit.
He also created Unreal X-Editor, which was an IDE developed for UnrealScript,
the native scripting language of Unreal Engine 3. He is also a moderator at Unreal
Engine forums as well as a spotlight member and engine contributor.

www.it-ebooks.info


http://www.it-ebooks.info/

Acknowledgements

I am using this opportunity to thank God for giving me talent and a wonderful
family, who are my real inspiration. I am grateful to them for their aspiring guidance
and continuous support while writing this book. I am thankful to Epic Games for
giving out such an amazing Engine to the world for free! You guys are the best!

I express my warm thanks to my fiancée Gale Fernandes; without her amazing
support and constructive criticism, this book possibly would not have happened.

I would also like to thank my brother Rakesh PV for introducing me to the world
of games and game technologies. It is through him I learned everything related to
games and I am proud to say that he is my first mentor.

I wish to extend my deep thanks and gratitude to my good friends Alexander
Paschall (Epic Games) and Chance Ivey (Epic Games) and also to my best friend
Reni Dev, with whom I created my first game.

I also wish to thank my dear friend and C++ mentor, Nathan Iyer (Rama) for his
great support. With his amazing articles and examples on C++, he has taught many
(including me) in the Unreal Community. He was kind enough to review my C++
chapter, point out mistakes and gave honest feedbacks including spending his
valuable time to remove some technical discrepancies. Thank you so much Rama!
You can visit his website at: http://ue4code.com/

Finally, I would like to thank Vasundhara Devi and Lucy Fernandes for giving me all
those joyous moments that put a smile on my face. Thank you moms! I love you.

www.it-ebooks.info


http://ue4code.com/
http://www.it-ebooks.info/

About the Reviewer

Omer Shapira is an artist, software developer, and virtual reality researcher. He
has worked on Game Engine projects for Nike, Google, Microsoft, Disney, Universal
Pictures, and Samsung. His projects and collaborations have been exhibited at
Sundance Festival, The Atlantic, The New York Times, The Guardian, Wired, Adage,
and Eyebeam, and have won awards from Tribeca Film Festival, Ars Electronica, the
Art Directors Club, and The Webbys.

Omer is currently head of virtual reality and game engines at Fake Love, an
experiential design studio. Previously, he worked as a developer at Framestore,
The NYU Media Research Lab, and the MIT Media Lab, and as a filmmaker and
VFX artist for Channel 10. Omer studied mathematics at Tel Aviv University and
human-computer interaction at New York University.

Omer's four-dimensional video game, Horizon (written in Unreal Engine), will be
released in 2017.

You can find him at omershapira.com.

I'd like to thank the people who contributed the most to my ability
to write game engines: Ken Perlin, Casey Muratori, Jonathan Blow,
Fred Ford, and Paul Reiche III.

I'd like to thank Surya Mattu and Jenn Schiffer for being good
parents, and my cat, Nitzu.

www.it-ebooks.info


omershapira.com
http://www.it-ebooks.info/

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercareepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

¢  On demand and accessible via a web browser

www.it-ebooks.info


www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Preface vii
Chapter 1: Introduction to Unreal Engine 4 1
Unreal Engine 4 download 1
Downloading the launcher version 2
Downloading the GitHub version 3
Forking Unreal Engine repository 3
Compiling Unreal Engine 5
Getting familiar with Unreal Engine 5
The viewport toolbar 8
Modes 10
Content Browser 11
Content Browser view options 12
World outliner 13
Details panel 14
Navigating the Viewport 14
BSP 16
Creating BSP 16
Default starting level, splash screen, and game icon 17
Summary 19
Chapter 2: Importing Assets 21
Creating asset in a DCC application 21
Creating collision meshes 23
Custom collision shapes 23
Unreal Engine 4 collision generator 24
Simple shapes 25
K-DOP shapes 26
Auto convex collision 26
Materials 27
LOD 28

[il

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Exporting and importing 29
Exporting 29
Importing 30

Context menu 30

Drag and drop 30
Content Browser import 31
Automatic import 31
Configuring automatic import 31
Result 32
Summary 33
Chapter 3: Materials 35

Material user interface 36

Toolbar 36
Live preview 39
Live nodes 40
Live update 40

Preview panel 40

Details panel 41

Graph panel 42

Palette panel 42

Common material expressions 42
Constant 43
Constant2Vector 44
Constant3Vector 45
Texture coordinate (TexCoord) 46
Multiply 46
Add 47
Divide 49
Subtract 50
Texture sample (Texture2D) 51
Component mask 53
Linear interpolate (lerp) 54
Power 55
PixelDepth 56
Desaturation 59
Time 60
Fresnel 61
Material types 62
Material instances 62

Material Instance Constant 62
Material Instance Constant example 64

www.it-ebooks.info

Lii]


http://www.it-ebooks.info/

Table of Contents

Material functions 67
Material function example 67
Summary 75
Chapter 4: Post Process 77
Adding Post Process 78
LUT 81
Post Process Materials 82
Creating a Post Process Material 83
Summary 86
Chapter 5: Lights 87
Lighting basics 87
Placing lights 88
Various lights 89
Common light settings 89
Light mobility 91
Lightmass Global lllumination 93
Preparing your assets for precomputed lighting 97
Building a scene with Lightmass 102
Tweaking Lightmass settings 104
Summary 113
Chapter 6: Blueprints 115
Different Blueprint types 116
Getting familiar with the Blueprint user interface 117
Components tab 118
What are components? 118
Adding a component 118
Transforming the component 119
Adding events for components 120

My Blueprints tab 122
Creation buttons 122
Searching in my Blueprint 122
Categorizing in My Blueprint 123
Toolbar 124
Graph editor 124
Details panel 124
Blueprint graph types 124
Function graph 125
Creating functions 125
Graph settings 126
Editing functions 127

[iii ]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Macro graph 129
Interface graph 131
Blueprint node references 136
Node colors 137
Variables 138
Math expression 138
Creating our first Blueprint class 140
Creating a new Blueprint 140
Spinning static mesh 142
Destroying our Blueprint Actor after some seconds 143
Spawning our Blueprint class in Level Blueprint 144
Summary 146
Chapter 7: Matinee 147
Creating a new Matinee 147
Matinee window 149
Manipulating an object 152
Cutscene camera 160
Director group 163
Summary 165
Chapter 8: Unreal Motion Graphics 167
Setting up a project 167
Creating the HUD Widget 170
Creating the health bar 172
Assigning our HUD to Character 175
Creating floating health bars 177
Summary 181
Chapter 9: Particles 183
Cascade particle editor 183
Toolbar 184
Viewport 185
Navigation 186
Details 187
Emitter 187
Emitter types 188
Curve editor 188

[iv]

www.it-ebooks.info


http://www.it-ebooks.info/

Table of Contents

Creating a simple particle system 188
Creating a simple material 189
Adding gravity 193
Applying the color over life module 195
Adding collision module 196

Playing particle in Blueprints 197

Summary 199

Chapter 10: Introduction to Unreal C++ 201

Setting up Visual Studio 2015 201
Workflow improvements 203

Creating a C++ project 204
The character class 205

Adding the health system 209

C++ to Blueprint 215

Summary 218

Chapter 11: Packaging Project 219

Recap 219

Packaging the project 226
Quick packaging 226
Packaging the release version 229

Summary 235

References 236

Index 237

[v]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

The purpose of Unreal Engine 4 Game Development Essentials is to teach people
interested in using Unreal Engine how to create video games. You will learn what
Unreal Engine is and how to download and use it. From there, we will go through
the collection of tools available in Unreal Engine 4 including Materials, Blueprints,
Matinee, UMG, C++, and more.

What this book covers

Chapter 1, Introduction to Unreal Engine 4, is where we begin our journey on Unreal
Engine 4 Game Development Essentials. In this chapter, the reader will learn how and
where to download Unreal Engine as well as the difference between the source
version and launcher version. After the Engine's installation (or compilation, if it was
the source version) we will get comfortable with the user interface of Unreal Engine.
We will also learn about the basics of Content Browser, BSP, and how to change the
splash screen and the icons for your game.

Chapter 2, Importing Assets, teaches how to import your custom FBX assets into
Unreal Engine once we get the Engine up and running. You will learn about
collisions, materials, and the level of detail.

Chapter 3, Materials, teaches you about the Material editor and some common nodes
used to create shaders for your assets. After learning the basics of Material, we will
create an example material function that can change the intensity of a normal map.

Chapter 4, Post Process, continues to post-processing after teaching you about
materials. In this chapter, you will learn how to override the default post process
settings. After that, we will learn how to add our own post process volume and learn
a simple but very powerful feature called LUT. After that, we will create a special
material that can be used with post process, and this material will have the ability

to highlight user-defined objects in the world.

[ vii ]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

Chapter 5, Lights, gets us halfway through our Unreal Engine 4 Game Development
Essentials journey, and this chapter will introduce you to the lighting system. We
start of by covering the basics, such as placing lights and going through the common
settings. You will then learn more about the Lightmass Global [llumination system,
including how to properly prepare a UV channel for your asset to be used with
Lightmass. By the end of this chapter, you will learn how to build your scene with
Lightmass as well as Lightmass settings.

Chapter 6, Blueprints, teaches you what Blueprints are and about the various types of
Blueprints that are available in the Engine. Blueprints are Unreal Engine's number
one tool that allows artists and designers to quickly prototype their game (or even
make one!). You will also learn about the different graph types, such as event graph,
function graph, macro graph, and so on, and how to spawn a Blueprint dynamically
at runtime.

Chapter 7, Matinee, looks at the cinematic side of Unreal Engine 4 and the tool
associated with it, called Matinee. You will learn what Matinee is, how to create
one, and get familiar with the Ul After the basics, we will learn how to manipulate
objects in Matinee as well as create a very basic cutscene, which we will trigger
using Blueprints.

Chapter 8, Unreal Motion Graphics, teaches you to create a basic HUD that shows

the health of the player. Unreal Motion Graphics (UMG) is the UI authoring tool in
Unreal Engine. UMG is used to create Player HUD, Main Menu, Pause Menu, and so
on. You will also learn how to create 3D widgets, which can be placed in the world
or attached to an actor class.

Chapter 9, Particles, looks at the extremely powerful and robust tool called cascade
particle editor and creates a particle system, as no game is good without good visual
effects. We then combine this with simple Blueprint scripting to create randomly
bursting particles.

Chapter 10, Introduction to Unreal C++, goes over C++ as we draw close to the end

of our Unreal Engine 4 Game Development Essentials journey. In this chapter, you will
learn how to get Visual Studio 2015 Community Edition and learn the basics of C++
by inspecting the Third Person Template character class. We will then extend this
class to add support for health and the health regeneration system. You will also
learn how to expose variables and functions to Blueprint Editor.

Chapter 11, Packaging Project, brings us to the end of our Unreal Engine 4 Game
Development Essentials journey. In this final chapter, we will recap all the things
we've done, including a few tips, and finally, you will learn how to create a release
version of your game.

[ viii ]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

What you need for this book

Unreal Engine 4.9 or higher

Who this book is for

This book is aimed at anyone who is interested in learning game development using
Unreal Engine 4. If you are passionate about developing games and want to know
about the essentials of Unreal Engine 4 and its tools, then this book will get you up
and running quickly. Unreal Engine 4 will be your next step towards creating next
gen video games for all platforms, including mobile and consoles.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"This adds or removes a path (it can be a virtual package path such as \Game\
MyContent\ or an absolute path such as ¢:\My Contents) for the engine to
monitor new content."

A block of code is set as follows:

void APACKT CPPCharacter::RegenerateHealth()
{
if (Health >= GetClass()->GetDefaultObject<ABaseCharacters>() -
>Health)
{
Health = GetClass () ->GetDefaultObject<ABaseCharacters> () -
>Health;

}

else
{
Health += RegenerateAmount;
FTimerHandle TimerHandle ReRunRegenerateHealth;
GetWorldTimerManager () .SetTimer ( TimerHandle
ReRunRegenerateHealth, this, &APACKT CPPCharacter::RggenerateHealth,
RegenDelay ) ; B

}
}

[ix]

www.it-ebooks.info


http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Once
you log in, you can download the launcher by clicking on the big orange Download
button under Get Unreal Engine."

“ Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

[x]

www.it-ebooks.info


www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk N

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

*  WinRAR / 7-Zip for Windows
* Zipeg / iZip / UnRarX for Mac
» 7-Zip / PeaZip for Linux

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the

changes in the output. You can download this file from http: //www.packtpub.
com/sites/default/files/downloads/UnrealEngine4GameDevelopment
Essentials ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or

added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

[xi]

www.it-ebooks.info


http://www.packtpub.com/sites/default/files/downloads/UnrealEngine4GameDevelopment Essentials_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/UnrealEngine4GameDevelopment Essentials_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/UnrealEngine4GameDevelopment Essentials_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[ xii]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal
Engine 4

Welcome to Unreal Engine 4 Game Development Essentials. In this chapter, you will
learn how to download Unreal Engine's source version and launcher version. After
that, we will get familiar with the Unreal Engine 4 Ul and Content Browser.

Unreal Engine 4 download

Unreal Engine 4 is completely free (including all future updates!) to download and
use. You get all the Unreal Engine tools, free sample contents, complete C++ source
code which includes code for the entire editor, and all of its tools; you also get access
to official documentation that includes tutorials and support resources, plus you get
access to UE4 marketplace, which offers tons of free and commercial content.

Unreal Engine 4 can be downloaded in two different versions. One is a binary
version (launcher) and the other is the source version (GitHub). The differences
between the GitHub and launcher version are as follows:

* Launcher (binary) version: These are compiled by Epic and are available
through launcher. You will also get all source files (* . cpp) with the launcher
version, but you cannot make any modifications to Unreal Engine since
launcher versions do not generate a solution file.

* GitHub version: These do not have any binary files so you have to compile
the Engine yourself. You get the entire source and you can modify virtually
anything in Unreal Engine. You can add new Engine features, modify
existing features or remove them (which no one does), and create a pull
request on GitHub so if Epic likes it, they will integrate it officially into
Unreal Engine.

In this guide, I'll show you how to get both versions.

[11]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

Downloading the launcher version

To download the launcher version of Unreal Engine, you obviously need the
launcher. To download the launcher, follow these steps:

1. First go to https://www.unrealengine.com/ and log in using your
credentials.

2. Once you log in, you can download the launcher by clicking on the big
orange Download button under Get Unreal Engine.

Download
Get Unreal Engine Get Unreal Tournament Get UE4 Full Source Code
Learn about
to download the LIES Source Code.
or choose your platform: or choose your platform:
NEED HELP?

When you open the launcher for the first time after installation, it should
automatically download the latest version of Unreal Engine 4. If it doesn't, then go
to the Library tab and click on Add Engine. A new Engine slot will now appear and
here, you can select your Unreal Engine version and install it.

Unreal Engine

Launch
Uneeal Engine 4.7.2

News
Learn
Marketplace

Library

[2]

www.it-ebooks.info


https://www.unrealengine.com/
http://www.it-ebooks.info/

Chapter 1

Downloading the GitHub version

To download the source of Unreal Engine 4, follow these steps

1. First create a GitHub account (it's free!).

2. After that, you need to go to https://www.unrealengine.com/dashboard/
settings and update your GitHub account name and click on Save:

Profile

-

English v

INDIA =

Forking Unreal Engine repository

After you have successfully linked your GitHub account with your Unreal Engine
account, you need to log in to GitHub and navigate to the Unreal Engine repository.

Make sure you have linked your GitHub account to your Unreal
% Engine account. Otherwise, you will not be able to see the Unreal
Engine repository.

[31]

www.it-ebooks.info


https://www.unrealengine.com/dashboard/settings
https://www.unrealengine.com/dashboard/settings
http://www.it-ebooks.info/

Introduction to Unreal Engine 4

When you are at the repository page:

1.
2.
3.

Click on Fork at the top right of the page.
Select your username to fork it to your GitHub repository.

Then, you need to download GitHub for Windows (if you are on Windows)
or GitHub for Mac (if you are on Mac) and install it.

You need this Git client to clone (download) your forked repository, make your
own changes to Unreal Engine, and submit the changes as a pull request to Epic to
integrate them into the editor.

To clone your forked repository follow these steps:

1. Start GitHub and log in using your credentials.
2. Click on the plus (+) sign on the top left corner of the Git client.
3. Then, click on the Clone tab and select your username (you should now
see Unreal Engine).
4. Now, click on Clone Unreal Engine and choose a folder where you want to
save your Unreal Engine repository.
Click on OK.
You should now see GitHub cloning Unreal Engine to your hard disk.
+- master ¥ moc o
& ryanjon2040 Filter repositories Engine\Source\Editor\ContentBrowser\Private\AssetContextMenu.cpp
B0 cpiccames

¥ &

G Engine\Source\Editor\ContentBrowser\Private\AssetContextMenu.h
RTS-Community-Project
y i

e Engine\Source\Editor\ContentBrowser\Private\SAssetView.h
UE4-Map-Editor

g Unrealéngine Engine\Source\Editor\ContentBrowser\ Private\SContentBrowser.cop

Engine\Source\Runtime\SlateCore\PubliciWidgets\SWidgeth

{ # ) Clone UnrealEngine

T W AOOed WOTKarounds Tor AGreno 2 GPU o...
Chris Babcock

[4]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Once cloning is complete, navigate to that directory and run the Setup.bat file.
1. This will download all the necessary files that are needed to compile the
engine and will also install all the required prerequisites for the Engine.

2. This might take some time depending on your Internet speed because it has
to download more than 2 GB of files.

Compiling Unreal Engine

Once setup.bat has finished, run GenerateProjectFiles.bat, which will generate
the Visual Studio Solution file. Open the UE4 . s1n file and now, you are all set

to compile your own copy of Unreal Engine 4 ©. Now, right-click on UE4 in the
Solution Explorer and click on Build.

UE4

4 @l Engine
P (5] UES

UnrealVs Quick Build » P Bl Programs

5 Build
Rebuild

This will take from 15 minutes to 1 hour depending on your system hardware. So sit
back, grab a cup of coffee, and wait till Engine finishes compiling.

Getting familiar with Unreal Engine

Once your Engine finishes compiling (or downloading, if you are using launcher)
it's time to start it:

* Starting your custom build: You can either press F5 in Visual Studio
to start debugging the Engine or navigate to the directory where you
downloaded it and go to Engine\Binaries\Winée4 folder and double-click
on UE4Editor.exe.

* Starting launcher build: Simply click on that big Launch button and you're
good to go.

[51]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

. You might experience long loading time when you start the
Engine for the first time after compiling. This is because Unreal
% Engine will optimize the contents for your platform to derive

data cache. This is a one-time process.

After the splash screen, you should now see the Unreal project browser. Perform the
following steps:

1.
2.

Select the New Project tab, and this is where you create your new projects.

For this book, we will stick with a Blank Blueprint Project. So, in the
Blueprint tab, select Blank project.

You can choose which platform you want for your project. There are two
platforms available: Desktop/Console and Mobile/Tablet. Feel free to
change this setting for your project. The second setting determines the
graphics settings for your platform. If you choose Desktop/Console, it's
better to stick with Maximum Quality and if your project is targeting
Mobile/Tablets, you should choose scalable 3D or 2D, which is aimed at
low-end GPUs. The third and final setting lets you add some Starter Content
from Epic, which contains some basic meshes, materials, and textures. You
can choose not to include Starter Content so the project will only contain
essential elements for the selected project.

Note that it is not recommended to include Starter Content when creating
a project for the Mobile/Tablet platform. This can significantly increase the
package size of your project.

Choose a name for your project and the location where you want to save it.

[6]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

6. Finally, click on Create Project to start Unreal Engine 4 with your project:

A Unreal Project Browse g o s o5
Projects | New Project &~ 1]

ing point for yous

Nt gl C++

o = E?
ik Fy
o -
First Flying Puzzle Ralling
Person

.

Third Top Down Twi Vehicle Vehicle
Person Advanced

.

Blank

A clean empty project with no code.

ur project to b 1

4 > C:\Users\pvADocuments\Unreal Projects )
C Folder . Name
T

3 G NP

[71

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

Once Unreal Engine starts up, you should see a scene similar to the preceding
screenshot. This is the scene that will be displayed by default, if you choose to
include Starter Content. If you skip Starter Content, then the startup scene
will be different.

The viewport toolbar

The viewport toolbar contains various tools that you will use throughout your level
design process. Let's take a quick look at them:

PREE BTETEIERE

gy 8 4 5 B

~a

¢ Transform Tools: These three tools are the move tool, the rotate tool, and the
scale tool.

* Coordinate System: This allows you to move, rotate, or scale your Actor
either on world axes (world space) or on its own local axes (local space). By
default, Unreal editor starts in world axes but you can toggle by clicking on
the icon. The globe icon means world space and the cube icon means local
space.

* Snapping and Move Grid: Snapping allows you to snap one Actor to
another Actor's surface, and move grid allows you to snap to a three-
dimensional implicit grid within the scene.

* Rotation Grid: This provides incremental rotation snaps.

* Scale Grid: This snaps to additive increments.

M Snapping preferences for move, rotate, and scale can be adjusted
Q in Editor Preferences. Go to Edit | Editor Preferences |
Viewports and then scroll to Grid Snapping Category.

Camera Speed: This lets you control how fast the camera moves in viewport.

M You can fine-tune the camera speed by holding down the right mouse
Q button (while using WASD controls) and scrolling the mouse wheel
up or down to speed up or slow down the camera's movement.

[8]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

* Maximize Viewport: This toggles between a single viewport and a 4-view
split style.

You can adjust the layout of Viewport by changing the Layout
option, as shown in the following screenshot:

Field of View

Far View Plane _

) Allow Matinee Preview

N Lock Viewport to Actor
-~
Bookmarks
Create Camera Here

High Resolutio

Layouts

Advanc

Later in this chapter, you will learn how to use Binary Space Partitioning (BSP) and
change some project settings such as Splash screen, game Icon, and so on.

[o]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

Modes

The Modes tab contains all five modes of the editor. They are as follows:

Place mode (shortcut key is Shift + 1): Place mode allows you to quickly
place your recently placed objects and also Engine primitives such as lights,
geometries, triggers, volumes, and so on.

Paint mode (shortcut key is Shift + 2): Paint mode (also known as Mesh
Paint) allows you to interactively paint vertex colors on Static Mesh in Level
Viewport.

Landscape mode (shortcut key is Shift + 3): Landscape mode lets you create
a new landscape entirely in Unreal Editor or import a height map from an
external program, such as World Machine, TerreSculptor, and so on, and
make modifications to it.

Foliage mode (shortcut key is Shift + 4): Foliage mode allows you to paint or
erase multiple static meshes on Landscapes, other static meshes, and so on.
An example workflow is to paint grass, trees, and so on on a large area.

Geometry Editing mode (shortcut key is Shift + 5): Geometry mode allows
you to edit BSP brushes.

J~ Modes

Recently Placed

— Camera
Basic

Lights Player Start
Visual e

Point Light
BSP

Volumes Box Trigger

All Classes
! Sphere Trigger

Target Point

[10]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Content Browser

Content Browser is what you call the heart of your project. This is where you

create, import, view, edit, organize, and modify all the assets for your game.

It also lets you rename, delete, copy, and move assets across other folders just like
you do in Windows Explorer. Additionally, Content Browser also lets you search for
specific assets based on keywords or asset type and you can exclude assets from your
search by adding '-' (hyphen) as the prefix.

You can also create Collections to arrange your commonly used assets for
quick access.

M Collections are just references to assets and are not moved into
Q collections. That means a single asset can exist in multiple collections
and you can create an unlimited number of collections.

There are three types of collections:

* Shared collection: These are visible to you and to other users. This option is
active only if you have Source Control (for example: Perforce, Subversion
and so on.) enabled.

* Private collection: These are visible only to those who are invited to view the
collection. This option is active only if you have Source Control (for example:
Perforce, Subversion and so on.) enabled.

* Local collection: These are only for you. That means they only exist on your
local machine.

If you want to transfer an asset from one project to another, you can right-click on
the asset and choose Migrate..., which will copy that asset and all its dependencies
to your new project.

Content Browser can be accessed by pressing Ctrl+Shift+F or from the Windows
menu on the menu bar. You can also have four instances of Content Browser at the
same time.

[11]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

This can be really useful when you want to move assets to different folders or to
preview various assets in different folders.

== ContentBrowser

) Create - F‘Impnrt =" save All

[ == Game »

N
Fiters~

> Il Starter _

4=

4 ColleciEq

1 item

@ View Options

Content Browser view options

View options lets you do the following:

Change the thumbnail size
Change the view style
Modify the 3D thumbnail, and more

[12]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

View Options can be accessed from the bottom-right corner of Content Browser.

ype
& Tiles
List

Columns

Show Folders

Show Developers Folder

Show Plugin Content
Show Engine Content
Show Collections
Thumkbnails
Scale —ff———
Thumbnail Edit Mode

¥ Real-Time Thumbnails

w View Options

World outliner

World Outliner shows all the Actors within the level in a tree view. Actors can be
selected and modified from world outliner. Right-clicking on an Actor in World
Outliner will show the same context menu used in Viewport so you can modify it
without having to navigate to them in Viewport. You can drag an Actor to another
Actor and attach them together.

[13]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

World outliner allows you to search for a specific Actor. You can exclude a specific
Actor by adding - (hyphen) before the search term and you can force a term to match
exactly by adding + before the search term.

i= World Outlimer

_Template_Map_Floor

9 actors @ View Options ~

Details panel

The Details panel shows all the information, utilities, and functions specific to the
selection in the viewport. It displays all the editable properties for the selected Actor
and provides additional functionality based on the selected Actor. For example, if you
select a Blueprint, the Details panel will show everything related to that Blueprint,
that is exposed variables, Blutility events, and so on. If you select a Static Mesh actor,
the Details panel will show which material was applied, the collision settings, the
physics settings, the rendering settings, and more. The Details panel can be locked

to the selected Actor so it does not change based on Actor selection. Just like Content
Browser, you can have four instances of Details panel open at the same time.

Navigating the Viewport

You can navigate the viewport easily using the mouse and keyboard.

A high-level explanation of navigating the viewport can be found here:
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/
Viewports/ViewportControls/index.html

[14]

www.it-ebooks.info


https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/ViewportControls/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/LevelEditor/Viewports/ViewportControls/index.html
http://www.it-ebooks.info/

Chapter 1

M At the bottom-left corner of the viewport, there is a small
Q question mark button. If you click on that, you will see some
commonly used viewport shortcut keys.

Navigation

Perspective Viewport

Move forward [
backward

Rotate left / right
Free Rotate
Move up / down

Zoom in [ out

LMB + Drag up / down

LMB + Drag left f right
RMB + Drag
LMB + RMB + Drag

Mouse Scroll Whael

Top f Front / Side Viewport

Pan

Zoom in [ out

Selection

Select
Toggle selection

Marguee
Selection

Clear Selection

Focusing

Focus selected
object

RMB + Drag

LMB + RMB + Drag
or
Mouse Scroll Whael

LMEBE on Actor
Ctrl + LMB on Actor

LMB + Drag

LMBE = Left Mouse Button
RMB = Right Mouse Button

WWW.it-

[15]

ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

BSP

Now that we have some solid understanding of Engine U], let's use BSP to create

a simple level. BSP is a geometry tool (also known as Geometry Brush or simply
Brush) used for quickly prototyping levels (also known as blocking out levels). Some
developers prefer to call this Constructive Solid Geometry (CSG), which is the more
accurate term since geometry in Unreal editor is created by adding and subtracting
brushes. BSP has been there since the first release of Unreal. It was used for level
designing long ago but later, this role has been passed to static meshes because BSP
is more expensive in performance.

So basically, BSP should only be used to prototype a level. Once you have the basic
idea of how a level should look, you should start replacing it with static meshes.

a1

~ CSG and BSP are used interchangeably to refer the
geometry in Unreal. Both are the same.

Creating BSP

Unreal Engine 4 comes with seven Brushes and all of them can be customized in
Details panel. They are as follows:

* Box: You can adjust the X, Y, and Z axes and set it to Hollow, which is a fast
way to make a room, and adjust Wall Thickness, which defines the thickness
of the inside walls.

* Cone: You can customize the number of sides, height, and both outer and
inner radius in Details panel. You can also set this to Hollow and adjust
Wall Thickness to define the thickness of the inside walls.

* Cylinder: You can customize the number of sides, height, and both outer
and inner radius in Details panel. You can also set this to Hollow and adjust
Wall Thickness to define the thickness of the inside walls.

* Curved Stair: This creates a staircase shape that bends around an angle but
cannot wrap over itself.

* Linear Stair: This creates a straight staircase that does not bend.

* Spiral Stair: This creates a spiral staircase that can repeatedly wrap
over itself.

* Sphere: This creates a sphere shape. The radius can be customized in
Details panel.

[16]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Just like any other actor, you can use Transform Tools to move, rotate, and scale as
you see fit.

There are two types of Brushes. They are as follows:

* Additive: These brushes are solid. This will add geometry to the level. For
example, you will use the Additive type to create walls, floors, ceilings, and
so on.

* Subtractive: These brushes are hollow. This will subtract solid space
from a previously created Additive brush. For example, you will use the
Subtractive type to create windows or doors on walls.

You can also convert BSP geometry to Static Mesh and save them in Content
Browser, but remember, they will have no UVs or additional Material elements.
It is also worth mentioning that this is not a good or recommended workflow.
You should only use BSP to block out your level and later, you should import
your assets created from a DCC application.

a1

~ You can go to Geometry Editing mode (Shift+Fb5) to edit
vertices and create a custom shape.

Default starting level, splash screen, and
game icon

You can change the default starting level for both the game and editor. For example,
for the game you may want the Main Menu map as the default and for editor you
want another level as the default startup level.

It's easy to set them in Unreal editor:

1. Click on Edit in the menu bar.
2. Click on Project Settings.
3. Go to Maps & Modes.

[17]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal Engine 4

4. Here, you can change the game and editor default map.

JEnganeMaps/Entry | = |
JEngme/Maps/ Templates Template Default | |

You can adjust Splash screen through Project Settings:

1. Go to Windows sections.
2. Change the Splash screen and the game Icon from here.

Al

~ The default dimensions for Splash screens are 600 x 200 and requires
a .bmp image. The game Icon requires a 256 x 256 . 1CO file.

[18]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 1

Platforms - Windows

Engine

in DefaultEngine.in

4 Splash

4lcon

Plugins

o}

Summary

Now that you understand the basics of Unreal Engine, it's time to import some assets
from a DCC application such as 3ds Max, Maya, or Blender. In the next chapter,

we will create a simple mesh in 3ds Max and import it into Unreal Engine and go
through various options, such as setting up materials, collisions, and LODs.

[19]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

In the previous chapter, you learned the basics of Unreal Engine. In this chapter, you
will learn about importing assets from Autodesk 3ds Max.

Creating asset in a DCC application

In the previous chapter, you learned how to use BSP to block out a level.

However, we need to replace them with static meshes for better performance and
more control of materials, collisions, and so on. We will create models in the Digital
Content Creation (DCC) application (such as Autodesk 3ds Max, Autodesk Maya,
Blender, and so on) that are imported into Unreal Engine through Content Browser.
Unreal Engine supports the import of both FBX and OBJ but its recommended to use
the FBX format.

[21]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

The following screenshot is an example asset that I will use in this chapter:

Note that at the time of writing this book, Unreal Engine import pipeline
uses FBX 2014. Trying to import using a different version might result in
g incompatibilities.

A few things that you need to keep in mind when modeling are as follows:

* Units: Unreal Units (UU) are critical when modeling assets for games.
Incorrect units will result in assets looking larger or smaller than they are
supposed to look. 1 Unreal Unit is equal to 1 cm. The sample character that
comes with Unreal Engine 4 is 196 cm high. So when you are modeling assets
for Unreal Engine 4, it's best to use a box that is 196 cm high as reference.

To learn how to change units for Autodesk 3ds Max, you can refer to
https://knowledge.autodesk.com/support/3ds-max/learn-
explore/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax/
files/GUID-69E92759-6CD9-4663-B993-635D081853D2-htm.
s html.

To learn how to change units for Blender, you can refer to http: //www.
katsbits.com/tutorials/blender/metric-imperial-units.

php.

[22]

www.it-ebooks.info


https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax/files/GUID-69E92759-6CD9-4663-B993-635D081853D2-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax/files/GUID-69E92759-6CD9-4663-B993-635D081853D2-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax/files/GUID-69E92759-6CD9-4663-B993-635D081853D2-htm.html
https://knowledge.autodesk.com/support/3ds-max/learn-explore/caas/CloudHelp/cloudhelp/2015/ENU/3DSMax/files/GUID-69E92759-6CD9-4663-B993-635D081853D2-htm.html
http://www.katsbits.com/tutorials/blender/metric-imperial-units.php
http://www.katsbits.com/tutorials/blender/metric-imperial-units.php
http://www.katsbits.com/tutorials/blender/metric-imperial-units.php
http://www.it-ebooks.info/

Chapter 2

* Pivot Point: This represents the local center and local coordinate system of
an object. When you import a mesh into Unreal Engine, the pivot point of
that mesh (as it was in your DCC application) determines the point where
any transformation (such as move, rotate, and scale) will be performed.
Generally, it is best to keep your meshes at origin (0, 0, 0) and set your pivot
point to one corner of the mesh for proper alignment in Unreal Engine.

* Triangulation: Remember that, the Unreal Engine importer will
automatically convert the quads to triangles so there is no skipping
from triang]es.

* UV: When you do UVs for assets, you can go beyond the 0-1 space, especially
when you are dealing with big objects. UV channel 1 (which is channel 0 in
Unreal) is used for texturing and UV channel 2 (which is channel 1 in Unreal)
is used for lightmaps.

Creating collision meshes

You can create collision meshes and export them with your asset. Unreal Engine 4
provides a collision generator for static meshes but there are times when we have to
create our own custom collision shapes especially if the mesh has an opening (such
as doors or walls with window cutouts). In this section, we will see both options.

A\l

~ Collision shapes should always stay simple because it is much
faster to calculate simple shapes.

Custom collision shapes

Collision meshes are identified by Unreal importer based on their names. There are
three types of collision shapes that you can define. They are as follows:

* UBX_MeshName: UBX stands for Unreal Box and as the name says,
it should be in a box shape. You cannot move the vertices in any way
or else it will not work.

* USP_MeshName: USP stands for Unreal Sphere and as the name says, it
should be in the sphere shape. The number of segments of this sphere does
not matter (although somewhere around 6-10 seems to be good) but you
cannot move any vertices around.

[23]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

* UCX_MeshName: UCX stands for Unreal Convex and as the name says, it
should be a convex shape and should not be hollow or dented. This is the
most commonly used collision shape because basic shapes such as boxes
and spheres can be generated right inside Unreal.

In the following screenshot, you can see the red wireframe object, which is what I
created for the collision shape:

Unreal Engine 4 collision generator

Collision shapes for static meshes can be generated inside the static mesh editor.
To open this editor, double-click on a static mesh asset in Content Browser and
click on the Collision menu, which will then list all the options for Collision.

[24]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

File Edit A Mesh

. @ Add Sp nplified Collision y [ 1
1] 4 O Addc n 3 ~ b -'

FindimnCE  Realtimt addB nplified Collisio vPivot  Normals Tangents Binormals

Add 10DOP
Add 10DOP-¥Y
Add 10DOP

Auto Convex Collision

Opens the Auto Convex Collision Tool for generating a new convex collision mesh, or meshes.

Simple shapes

The first three options in this menu are simple shapes and they are as follows:

* Sphere Collision: This creates a simple sphere collision shape
* Capsule Collision: This creates a simple capsule collision shape

* Box Collision: This creates a simple box collision shape

[25]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

K-DOP shapes

K Discrete Oriented Polytope (K-DOP) shapes are basically bounding volumes.
The numbers (10, 18, and 26) represents the K-axis aligned planes.

Auto convex collision

This option is used to create much more accurate collision shapes for your models.
Once you click on this option, a new dock window appears at the bottom-right
corner of static mesh editor; using Max Hulls (the number of hulls to be created

to best match the shape of the object) and Max Hull Verts (which determines the
complexity of the collision hulls) you can create more complex collision shapes for
your Static Mesh.

As you can see in the following screenshot, the auto convex result is reasonably
accurate:

Collision shapes support transformation (move, rotate, and scale)
M and you can duplicate them to have multiple collisions. Click on
@ the collision shape inside static mesh editor and you can switch
between move, rotate, and scale using IV, E, and R. You can use
Alt + left click drag (or Ctrl + W) to duplicate an existing collision.

[26]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Materials

Unreal Engine can import materials and textures to apply to the mesh while
exporting from 3D application. From Autodesk 3ds Max, only the basic materials
are supported. They are Standard and Multi/Sub-Object. In those basic materials,
only specific features are supported. This means FBX will not export all settings but
it supports certain maps or textures used in that material type.

In the following example, you can see a model with multiple materials assigned.

Note that it is very important to have unique names for each sub
material in the Multi/Sub-Object material. Each sub material has a
unique name as shown in the following screenshot:

[27]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

LOD

Level of Detail (LOD) is a way to limit the impact of meshes as they get farther away
from the camera. Each LOD will have reduced triangles and vertices compared to

the previous one and can have simpler materials. That means base LOD (LOD 0) will
be the high quality mesh that appears when the player is near. As the player goes
farther from that object, it will change to LOD 1 with reduced triangles and vertices
than LOD 0 and as the player goes even farther away it will switch to LOD 2, which
has much fewer triangles and vertices than LOD 1.

The following figure should give you an idea about what LOD does. The mesh on
the left is base LOD (LOD 0), the middle is LOD 1, and the right is LOD 2.

, More information about LODs can be found at https://docs.
% unrealengine.com/latest/INT/Engine/Content/Types/
e StaticMeshes/HowTo/LODs/index.html.

Tris: 2600 Tris: 2000 Tris: 1500
Vert: 1300 Vert: 1000 Vert: 800

[28]

www.it-ebooks.info


https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/HowTo/LODs/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/HowTo/LODs/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/Types/StaticMeshes/HowTo/LODs/index.html
http://www.it-ebooks.info/

Chapter 2

Exporting and importing

We will now cover how to export and import a mesh into Unreal.

Exporting

Exporting a mesh is a pretty straightforward process. You can export multiple
meshes in a single FBX file or export each mesh individually. Unreal importer can
import multiple meshes as separate assets or combine them as a single asset by
enabling the Combine Meshes option at import time.

In the following screenshot, you can see that I have selected both the collision mesh
and the model for exporting;:

Smoothing Groups should be turned on when exporting,
~=

otherwise Unreal Engine will show a warning when importing.

[29]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

Importing
Importing a mesh into Unreal is simple. There are three ways you can import.
They are explained here.

Context menu

You can right-click inside Content Browser and select Import to <Your folder
name>.

Al LOD_Testhiap = Gontent Broweer

i AddNew'~ X Import [Z)Save All & | = Content » StarterContent » Shapes »

PEY Search Folders ORRLLECA caich Shapes

I Textures
5 New Folder

Shape_Cube

.~ Import to /Game/StarterContent/Shapes...
ate Basic Assel Imports an asset from file to this folder.

FB elueprin

'-"J‘, Level

Drag and drop

As the name states, you can easily drag a FBX or OB] model from Windows Explorer
to Content Browser to import.

[30]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Content Browser import

Content Browser has an Import button that you can use to import meshes.

AL LOD_ Testhap == ContentErowser

I AddNew - BENTPOREN (O Save All & & | & Content » StarterContent »

Search Folders Import to /Game/StarterContent/Shapes.. | coq o Shapes

Automatic import

If you place FBX files in your project's Content folder (including any subfolders),
Unreal will automatically detect this and trigger the import process (if you have
the editor open. Otherwise, the next time you run it).

Configuring automatic import

You can choose whether you want this option enabled or disabled. To configure,
go to Edit | Editor Preferences | Loading & Saving | Auto Reimport.

General General - Loading & Saving

T - [} - -

Level Editor

ntent Editors

[31]

www.it-ebooks.info


http://www.it-ebooks.info/

Importing Assets

*  Monitor Content Directories: This enables or disables automatic importing
of assets.

* Directories to Monitor: This adds or removes a path (it can be a virtual
package path such as \Game\MyContent\ or an absolute path such
as C:\My Contents) for the engine to monitor new content.

* Auto Create Assets: If enabled, any new FBX files will not be automatically
imported.

* Auto Delete Assets: If enabled, and you delete the FBX file from Explorer,
Unreal Engine will prompt whether you want to delete the asset file as well.

Result

When you import your asset, you will see the Import Options dialog. You can read
all about the import settings here:

11 FEX Import Options
Current File: /Ga

4 Mesh

Remove Degenerates

Generate Lightmap

4 Transform

» Import Translatio
Import Unifor ale
Material
Import Materials

Import Textures

> Miscellaneous

ipart Al

[32]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 2

Once you click on Import (or Import All if you're importing multiple FBX files) you
will see the asset in Content Browser. In the following screenshot, see how Unreal
automatically imported the material from Autodesk 3ds Max:

Top_Cones Tower_Example Woods

If you double-click on the static mesh (Tower_Example), you will see the static mesh
editor. In the following screenshot, you can see that Unreal successfully imported my
custom collision shape too.

Summary

In the next chapter, you will learn more about Materials and Textures.

[33]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Material is an asset that defines the look of a mesh with various graph nodes that
include images (textures) and math expressions. Since Unreal Engine 4 utilizes
Physically Based Rendering (PBR), creating realistic materials such as metal,
concrete, bricks, and so on, can be quite easy. Materials in Unreal Engine define
everything about the surface of the mesh, such as its color, shininess, bumpiness, and
tessellation, and can even animate objects by manipulating the vertices! At this point
you might think Ok, Materials are only used for meshes but, no, they are not actually
limited to meshes. You use Materials for decals, post process, and light functions too.

Creating a Material is a pretty straightforward process. All you have to do is
right-click in Content Browser, select Material, and give it a name. Done!

[35]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Material user interface

Now that we know what a Material is and what it does, let's take a look at the user
interface of Material graph.

Toolbar

The Toolbar panel contains various buttons that help to preview graph nodes,
remove isolated nodes, Material stats, and so on. Let's take a look at what these
buttons do:

* Save: Applies the changes you made to the Material and saves the asset

[36]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Find in CB: Navigates and selects this Material in Content Browser

®

Find in CBE

Apply: Applies the changes to the Material. Note that this will not save the
Material

Search: Searches for Material expressions or comments

8

[ %

Search

Home: Navigates to and selects the main canvas node

[37]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

* Connectors: Shows or hides unconnected pins

_,_1"" . |

Connectors

* Live Preview: Toggles a real-time update of preview material

* Live Nodes: Toggles a real-time update of graph nodes

e

-
Live Modes

* Live Update: Recompiles a shader for every node in the graph

.
Live Update

» Stats: Toggles Material stats and compilation errors

e Mobile Stats: Same as stats but for mobile

B. |;,

Stats Mohile Stats

Live nodes might be confusing for new users so I'll explain about them further.

[38]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Live preview
Sometimes we need to preview the result of a specific node before connecting it to
the main node or for debugging purposes.

To preview a node you need to right-click on the node and select Start
Previewing Node.

0.165,0.485,0.795 &

Texture Sample

Vs

Unless you enable Live Preview, you will not see any changes in the preview
material.

Q You can press the spacebar to force a preview.

[39]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Live nodes

This will show a real-time update of nodes due to changes made by expressions to
that node. See the following example:

 Multiply(,1) ¥
A o
B

In the preceding screenshot, the Sine node is getting a constant update from Time,
multiplied by one. If you enable Live Nodes, you will see the Sine node pulsing
between black and white. If you change the Multiply value from 1 to anything else
(for example, 5) you will not see the changes unless you enable Live Update too.

Live update

When enabled, all expressions are compiled whenever you make a change, such as
adding a new node, deleting a node, changing a property, and so on. If you have

a complex graph, it is recommended to disable this option as it has to compile all
nodes every time you make a change.

Preview panel

The Preview panel shows the result of the Material that you are currently editing.
You can navigate in preview Material using these options:

* Rotate the mesh: Drag with the left mouse button

* Pan: Drag with the middle mouse button

e Zoom: Drag with the right mouse button

* Update light: Hold L and drag with the left mouse button

[40]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

In the top-right corner of the preview viewport you can change some settings. This
changes the preview mesh to the selected primitive shape:

This changes the preview mesh to a custom mesh. You need to select a Static Mesh

in Content Browser:

This toggles the rendering of the grid in the preview viewport:

This toggles real-time rendering in the preview viewport:

Details panel

The Details panel shows all the properties you can edit when you select a node in
the graph. If no nodes are selected, it will show the properties of the Material itself.

For more information on these settings, please visit the Material properties
documentation at https://docs.unrealengine.com/latest/INT/Engine/
Rendering/Materials/MaterialProperties/index.html.

[41]

www.it-ebooks.info


https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/MaterialProperties/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/MaterialProperties/index.html
http://www.it-ebooks.info/

Materials

Graph panel

This is the main area where you create all the nodes that decide how the Material
should look and behave. By default, a Material graph contains one master node that
has a series of inputs, and this master node cannot be deleted. Some of the inputs are
grayed out and can be enabled by changing the Blend mode in the Details panel.

M_Example

O» Base Color
O Metallic
O Specular
O Roug

O Emissive Color

O Normal
O» World Position Offset

O Ambient Occlusion

Palette panel

The Palette panel lists all the graph nodes and Material functions that can be placed
in the graph using drag and drop.

1
‘\Q Using the Category option, you can filter Palette contents

between expressions or Material functions.

Common material expressions

There are some common Material nodes that we use most of the time when we create
a material. To create a node you need to right-click on the graph canvas and search
for it, or you can use the Palette window to drag and drop. Some nodes also have
shortcut keys assigned to them.

Let's take a look at these common nodes.

[42]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Constant
Constant expression outputs a single float value and can be connected to almost any
input. You can convert a constant expression to a parameter and make real-time
changes to the Material instance. You can also access a parameter through Blueprint
or C++ and see the changes in the game.

* Shortcut key: Hold 1 and click on the graph area

* Parameter shortcut key: Hold S and click on the graph area

* Example usage: Brighten or darken a texture

Q Constant parameter is called a scalar parameter

Texture Sample &

Uvs
M_Example

@ Base Color
O Metallic

Or Emissive Color

O Normal
O World Position Offset

Or Ambient Occlusion

You can see a constant expression (0.2) being used to darken a texture.

[43]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Constant2Vector

The Constant2Vector expression outputs two float values, which is a

two-channel vector value (for example, red channel and green channel).

You can convert Constant2Vector to a parameter and make real-time changes to the
Material instance or access it in Blueprint or C++ to make dynamic changes to the
material while playing the game.

* Shortcut key: Hold 2 and click on the graph area
* Parameter shortcut key: Hold V and click on the graph area
* Example usage: Adjust the UVs of a texture separately

TexCoord ¥ ¢ Multiply v " Texture Sample A M_Example

» — A » — Uvs & @ Base Color

| B O Metallic
" am )
. EEBE " O Specular
...... O Roughness
. . . (@0 O» Emissive Color

O+ Normal
Or World Position Offset

O Ambient Occlusion

You can see a Constant2Vector being used to tile a texture in the preceding
screenshot.

[44]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Constant3Vector

The Constant3Vector expression outputs three float values, which is a three-channel
vector value (for example, red channel, green channel, and blue channel). You can
convert Constant3Vector to a parameter and make real-time changes to a Material
instance or access it in Blueprint or C++ to make dynamic changes to a material
while playing the game.

* Shortcut key: Hold 3 and click on the graph area
* Parameter shortcut key: Hold V and click on the graph area

* Example usage: Change the color of a given texture

" Texture Sample &

UVs

M_Example
@ Base Color
Or Metallic
O specular
Or Roughness

Or Emissive Color

Or Normal
Or World Position Offset

Or Ambient Occlusion

You can see Constant3Vector being used to color a grayscale texture in the preceding
screenshot.

[45]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Texture coordinate (TexCoord)

The texture coordinate expression outputs texture UV coordinates as a two-channel
vector (for example, U and V), which helps with tiling and also allows you to use
different UV coordinates.

* Shortcut key: Hold U and click on the graph area

[ ———— — (T ———
TexCoord A Texture Sample A M_Example
® UVs [ or
3

O Normal
O World Position Dffset

O Ambient Occlusion

The preceding screenshot shows a texture coordinate being used to tile a texture. You
can see the values used by looking at the Details panel in the bottom left corner.

Multiply

This expression multiplies the given inputs and outputs the result:

* Multiplication happens per channel. For example, if you multiply two
vectors (0.2, 0.3, 0.4) and (0.5, 0.6, 0.7), the actual process is the following:
0.2 x 0.5 = 0.1

0.3 x 0.6 0.18
0.4 x 0.7 = 0.28

[46]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

So the output is as follows:

(0.1, 0.18, 0.28)

* The Multiply node expects inputs to be the same type unless one of
them is constant. In short, you cannot multiply Constant2Vector and
Constant3Vector, but you can multiply Constant2Vector or Constant3Vector
by a constant expression.

°  Shortcut key: Hold M and click on the graph area

M_Example

Texture Sample A

 Multiply(,3) ¥
UVs LS R

ey -
. i ’ i

Or Normal
O world

The preceding screenshot shows a multiply node being used to boost an
emissive effect.

Add

This expression adds the given inputs and outputs the result:

Addition happens per channel. For example, if you add two vectors (1, 0, 0) and (0, 1,
0), the actual process is the following:

1 +0=1
0+ 1
0+ 0

So the output is as follows:

[47]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

The Add node expects inputs to be the same type unless one of them is constant.
In short, you cannot add Constant2Vector and Constant3Vector, but you can add
Constant2Vector or Constant3Vector to a constant expression. Let's take a look
at why it is like this. See the following screenshot:

M_Test
@ Base Color
O Metallic

Or Specular

O Roughness

O Emissive Color

Here we are trying to add Constant3Vector and Constant2Vector but it will not
work. This is because, when the Material editor tries to compile the Add node,
it fails since the last element of Constant3Vector has nothing to add to. It will be
like the following calculation:

1+ 2 =3
1+ 2 =3
1 + ? = fail

But you can add Constant3Vector to a constant expression, as in the following figure:

M_Test
@ Base Color
O Metallic

O Specular

O Roughness

[48]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

The result will be as follows:

1+ 2
1+ 2
1+ 2

And that will compile fine.

Shortcut key: Hold A and click on the graph area

Divide

The divide expression divides the given inputs and outputs the result:

M_Example

_ @ Base Color

Or Metallic

O Roughness

O Emissive Color

O Normal
O World Position Offset

O Ambient Occlusion

Division happens by channel. For example, if you divide two vectors (0.2, 0.3, 0.4)
and (0.5, 0.6, 0.7), the actual process is like this:

o O O

So the output is as follows:

W N

(0.

S~ O S

4,

0.

o O O

< o U

5,

0.4
0.5
0.571

0.571)

[49]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

The Divide node expects inputs to be the same type unless one of them is constant.
In short, you cannot divide Constant2Vector by Constant3Vector, but you can divide
Constant2Vector or Constant3Vector by a constant expression.

* Shortcut key: Hold D and click in the graph area

~ M_Example

@ Base Color
O Metallic
O Specular
Or Roughness

(O Emissive Color

Subtract

This expression subtracts the given inputs and outputs the result:

Subtraction happens by channel. For example, if you subtract two vectors (0.2, 0.3,
0.4) and (0.5, 0.6, 0.7), the actual process is the following;:

0.2 - 0.5 = -0.3
0.3 - 0.6 = -0.3
0.4 - 0.7 = -0.3

So the output is as follows:

(-0.3, -0.3, -0.3)

[50]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

The Subtract node expects inputs to be the same type unless one of them is constant.
In short, you cannot subtract Constant2Vector from Constant3Vector, but you can
subtract Constant2Vector or Constant3Vector from a constant expression.

* Shortcut key: No shortcut key

* M_Example
@ Base Color
O Metallic

Ilr o 11l
Texture Sample & O Specular

UVs [T ‘ Or Roughness

O+ Emissive Color

O Normal
O World Position Offset

O Ambient Occlusion

Texture sample (Texture2D)

Texture sample outputs the given texture. It also outputs all four channels (namely,
red, green, blue, and alpha) from the texture separately so you can use them for
various things. This is especially useful if you work on multiple grayscale textures
(such as mask textures, roughness textures, and so on). Instead of importing multiple
textures, you can just create one texture in Photoshop and assign other textures to
different channels and, in Material editor, you can get each channel and do all the
fancy things. Oh, and did I mention Texture2D can use movie textures too?

[51]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

You can convert Texture Sample to TextureSampleParameter2D and change
textures in real-time via Material instance. You can also change textures dynamically
in the game through Blueprints or C++.

* Shortcut key: Hold T and click in the graph area

* Parameter shortcut key: No shortcut key

Texture Sample A ~ M_Example

UVs [ B @ Base Color
O Metallic
C» Specular
O Roughness

O Emissive Color

O Normal
O World Position Offset

O Ambient Occlusion

[52]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Component mask

The component mask expression can extract different channels from the input,

which should be a vector channel such as Constant2Vector, Constant3Vector,
Constant4Vector, TextureSample, and so on. For example, you know Constant4Vector
has only one output, which is RGBA. So, if you want the green channel from RGBA,
you use a component mask. You can right-click on a component Mask and convert it
into a Parameter and make real-time changes in Material instance.

* Shortcut key: No shortcut key

* Parameter shortcut key: No shortcut key

Mask (RGB) ¥ “M_Example

- & — @ BaseColor
{ O Metallic
muj— O» Specular
O» Roughness
O Emissive Color

@ Opacity

O MNormal

O Waorld Position Offset

O Ambient Ocelusion

O» Refraction

In this screenshot, we extract the alpha channel and plug it into Opacity and plug
the RGB channel into Base Color.

[53]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Linear interpolate (lerp)

This blends two textures or values based on alpha. When the alpha value is 0
(black color), A input is used. If the alpha value is 1 (white color), B input is used.
Most of the time, this is used to blend two textures based on a mask texture.

* Shortcut key: Hold L and click in the graph area

* Example usage: Blend two textures based on the alpha value, which can
be a constant or a mask texture

Texture Sample &

Uvs

* M_Example
@ Base Color
O Metallic
O Specular
O Roughness
O Emissive Color

Or Normal
Or World Position Offset

O Ambient Occlusion

Here, the lerp node is outputting 100% of input A because the alpha value is 0. If we
set the alpha value to 1 then we'll see 100% of B. If alpha is 0.5 then we'll see a blend
of both A and B.

[54]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Power

The Power node multiplies the base input by itself with Exp times. For example,
if you have 4 in Base and 6 in Exp then the actual process is like this:

4 X 4 x4 X 4 x4 x 4 = 4096
So the result of Power is 4096.

If you apply a Texture to Base input and have a constant value (for example, 4)
then the Texture is multiplied four times.

* Shortcut key: Hold E and click in the graph area

* Example usage: Adjust the contrast of the height map or ambient
occlusion map

"M Example
O Base Color
Or Metallic
O» Specular
O Roughness
O Emissive Color

Or Normal
O World Position Offset

Texture Sample &

UVs

@ Ambient Ocelusion

The preceding image shows a Power node being used to boost the contrast of a
Texture Sample.

[55]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

PixelDepth

PixelDepth outputs the distance to the camera of the pixel currently being rendered.
This can be useful to alter the appearance of the material based on the distance from
the player.

* Shortcut key: No shortcut key

* Example usage: Change the color of an object based on the distance
from the player

* M_Example
O» Base Color
O Metallic

O» Specular

PixelDepth "Divide(,4006) ¥

Or Roughness
A ®» — @ Emissive Color
B

O Normal
Or World Position Offset

O Ambient Occlusion

[56]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

If you apply the previous material to a mesh, then the color of the mesh will be
changed based on the distance to the player camera.

Level: Untitled (Persistent)

[57]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

The preceding screenshot shows how the mesh will look closer to the player camera.

U == Viewport|

() (& Perspective ] (@9 it (show @o B @ @) (=

Layal: Untitled (Parsistant)

The preceding screenshot shows how the mesh will look when it's farther away from
the player camera.

[58]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Desaturation

As the title says, the Desaturation expression desaturates its input. Simply put, it can
convert a color image to grayscale based on a certain percentage.

* Shortcut key: No shortcut key

Texture Sample &

" M_Example
Vs & -

‘\\\ Desaturation . @ Base Color
T~ @ O Metallic

_— @ Fraction O Specular

"/ O» Roughness

O+ Emissive Color

O Normal
O+ World Position Offset

C» Ambient Occlusion

[59]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Time
This expression outputs the Time passage of the game (in seconds). This is used if
you want your Material to change over time.

* Shortcut key: No shortcut key

* Example usage: Create a pulsing Material

Multiply ¥ Sine ¥ ConstantBiasScale ¥ M_Test

» — A > — o & — o ® — @ BaseColor

B O Metallic

T ol et
N - O Specular

Or Emissive Color

O Normal
O World Position Offset

O Ambient Occlusion

O Pixel Depth Offset

In the previous material, we multiply Time by a constant expression. The

result of the Multiply node is plugged into the Sine node, which outputs a
continuous oscillating waveform that outputs the value in a range of -1 to 1. We
then use a ConstantBiasScale node to prevent the value from going below 0. A
ConstantBiasScale node is basically a node that adds a bias value to the input and
multiplies it by a scale value. By default, bias is set to 0.5 and scale to 1. So if the
Sine value is -1, then the resultis (-1 + 1) * 0.5, which equals 0.

[60]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Fresnel
Fresnel creates rim lighting, which means it will highlight the edges of the mesh.

* Shortcut key: No shortcut key

£ M_Example

- @ Base Color
O Metallic
O» Specular
O Roug
O Emissive Colo

Fresnel
O Normal
Exponentin
O World Position Offset
Fractionin

O Ambient Occlusion

The result of the previous network is as follows:

[61]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Material types

Now that you know some of the basic expressions, let's take a look at different
Material types. First of all, obviously, is the main Material editor, but then you
also have Material instances, Material functions, and layered Materials.

Material instances

Material instance is used to change the appearance of a Material without recompiling
it. When you change any value in Material editor and apply it, it will recompile the
whole shader and create a set of shaders. When you create a Material instance from
that Material, it will use the same set of shaders so you can change the values in real
time without recompiling anything. But when you use Static Switch Parameter or
Component Mask Parameter in your Parent Material, then it's different because
each of those parameters has unique combinations. For example, let's say you have
Material_1 with no Static Switch Parameter, and Material_2 with Static Switch
Parameter called bEnableSwitch. Material_1 will create only one set of shaders,
while Material_2 will create two sets of shaders with bEnableSwitch = False and
bEnableSwitch = True.

An example workflow is to create a master Material that contains all the necessary
parameters and let the designers make different versions.

There are two types of Material instances. They are:

e Material Instance Constant
* Material Instance Dynamic

Only Material Instance Constant has a user interface. Material Instance Dynamic has
no user interface and cannot be created in content browser.

Material Instance Constant

As the title says, Material Instant Constant (MIC) is only editable in the editor.
That means you cannot change the values at runtime. MIC exposes all parameters
you created in the parent Material. You can create your own groups and organize
all your parameters nicely.

[62]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Material Instance User Interface

Toolbar (1): The following are toolbar options:

o

Save: Saves the asset

° Find in CB: Navigates to this asset in Content Browser and selects it

o

Params: Exposes all parameters from Parent Material
° Mobile Stats: Toggles Material stats for Mobile

Details (2): Displays all the parameters from parent Material and other
properties of Material instance. Here you can also assign a physics Material
and override the base properties of the parent Material, such as blend mode,
two-sided, and so on.

Instance parents (3): Here you will see a chain of parents all the way up
to the main master Material. The instance currently being edited is shown
in bold.

Viewport (4): The viewport displays the material on a mesh so you can
see your changes in real time. You can change the preview shape in
the top-right corner. This is the same as it was in Material editor.

[63]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Material Instance Constant example

In order for Material instance to work, we need a master Material with parameters.
Let's create a simple Material that will change its color based on the distance to

the player, that is, when the player is near the mesh it will have a red color, and as
they move further away it will change its color. Note that there are 21 parameter
expressions in UE4.

Right now we will stick with two common parameters, and they are as follows:

* Scalar parameter

* Vector parameter

M_Example

O Base Color

Alpha

PixelDepth o  [Divide ¥ “Power ¥ “Clamp (Min=0) (Max=1) ¥
/

= A @ — @Base & — @ ® -
Exp Min

TransitionDistance Max

O» Ambient Occlusion

[64]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

As you can see in the previous screenshot, we created two vector parameters
(Colorl, Color2) and two scalar parameters (TransitionDistance, Speed). We will
use these parameters to modify in real time. To create an instance of this Material
you need to right-click on this Material in Content Browser and select Create
Material Instance. This will create a new instance Material right next to this Material.

If you open that instance you will see all these parameters there, and you can edit
them in real time without having to wait for the Material to recompile:

[65]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

To change values in Material instance, you need to override them first. You need
to click the checkbox near the parameter to override the values. As shown in the
following screenshot:

1'1 EN CEXEmp] e st

File  Edit it Window  Help

E . ol

S FindinCB = P:

Search

4 General

Phys Material

Parent

[ Lightrn

[» Material Pre

4 Parameter Groups
Float Parameter
Texture Parameter Va

alar Parameter Values

‘== [fstance Parents

Parent

Material

Current M_Example_Inst

[66]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Material functions

Material functions are graphs that contain a set of nodes that can be used across any
number of Materials. If you often find yourself creating complex networks then it's
better to make a Material function so you can contain all these complex networks in
one single node. One thing to keep in mind is that Material function cannot contain
any parameter nodes (for example, Scalar Parameter, Vector Parameter, Texture
Parameter, and so on). To pass data into a Material function, you need to use a
special FunctionInput node. Similarly, if you want data out of a Material function,
you need to use the FunctionOutput node. By default, Material function creates one
output for you but you can create more outputs if you want.

The Ul of Material function is almost the same as of Material editor. If you check
the Details panel you will see some options to help you get the most out of your
Material function. Let's take a look at these options:

* Description: This appears as a tooltip when you hover the mouse on this
function node in Material graph.

* Expose to Library: Enable this to show your Material function when you
right-click inside your Material graph.

* Library Categories: This list the categories this function belongs to. By
default, it belongs to the Misc category but you can change it and add as
many categories as you want.

Material functions cannot be applied surface, so if you want to use a
Material function you must use it in a Material.

Material function example

To create a Material function, first right-click in Content Browser and go to
Materials & Textures and select Material Function. In this example, we will create
a Material function called Normal Map Adjuster that can boost the intensity of a
normal map. Let's see what we need to create such a function:

* Texture [INPUT]: Obviously we need to pass a texture that needs to be
modified.

* Intensity [INPUT]: We also need to pass how intense the normal should be.
A value of 0 means no changes to the normal map and a value of 1 means a
boosted normal effect.

* Result [OUTPUT]: Finally we will output the result, which we can connect to
the normal channel in our Material.

[67]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

M The final output node (result) can be renamed with any
Q custom name you want. Select the node and, in the Details
panel, change Output Name.

Open your Material function and right-click on the graph and search for Input.

4 Functions

Select the FunctionInput node. You will see some properties in the Details panel for
the Input node you just selected.

1 Details

Search D Eﬂv

4 Material Expression Function Input

Input Name Naormal Texture 2

Input Normal Texture (Vector3) A

Preview o

Description Takes a Texture 2D node jal
Input Type Function Input Vector 3w

Let's take a look at these settings:
* Input Name: A custom name for the input. You can name it whatever you
want. Here, I called it Normal Texture.

* Description: Will be used as a tooltip when you hover over this input in
Material graph.

* Input Type: Defines the type of input for this node.

* Preview Value: Value to use if this input is not connected in Material graph.
Only used if Use Preview Value as Default is checked.

e Use Preview Value as Default: If checked, it will use the Preview Value and
will mark this input as optional. So when you use this function, you can leave
this input unconnected. But if you disable this option, then you must connect
the required node to this when in Material graph.

* Sort Priority: Arranges this input in relation to other input nodes.

[68]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Let's create a simple network to boost the normal effect. Take a look at the following
screenshot:

Input Normal Texture (Vector3) A f Mask (RG) ¥

Preview [ 2 L 2 ® —
A B e
%\ Output Result

b —_—
—_— Append ¥
\\ Mask (B) ¥ B o

~—or & — @
e LN
\ . @B

\ “Muttiply ¥ /

Input Intensity (Scalar) & f Clamp (Min=0) (Max=1) ¥ S A L
Preview e — @ *-® & — E
Min

Max

Here we are extracting the red, green, and blue channels separately. The reason
behind this is simply that we need to multiply Intensity (scalar input value) by only
the blue channel to increase the normal effect. The Intensity needs to be clamped
between 0 and 1 and then inverted using the 1-x (OneMinus) node because, when
we use this Material function in a Material, we need 0 to have the default normal
intensity and 1 to really boost the effect. Without the OneMinus node it will be the
opposite, that is, 0 will boost the normal map effect and 1 will have a regular effect.

Now that the function is done, click the Save button on the toolbar.

Al

Q Saving automatically compiles the Material.

[69]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Now to get this into Material, right-click inside the Material graph and search for
NormalMapAdjuster. Then all you have to do is plug a Normal map and a Scalar
Parameter to NormalMapAdjuster and connect it to the Normal channel.

1
‘\Q If it doesn't show up in the context menu, make sure you enabled

Expose to Library in Material Function.

" Texture Sample 4 O Roughness

Or Emissive Color
UVs ® - -

X

\. "~ NormalMapAdjuster
@ Mormal Texture (V3) Result @ — & Normal

- @ Intensity (S) O World Position Offset

" Normalintensity v-'

In your Material instance you can adjust Normallntensity in real time.

Layered Material

Layered Materials are basically Materials within Materials and exist as an extension

of Material function. The basic workflow is as follows: you create a Make Material
Attribute (which features all the material attributes, such as Base Color, Metallic,
Specular, Roughness, and so on) and you connect your nodes to it. Then you connect
the output of Make Material Attributes to the input of the Output Result node.

Layered Materials are most beneficial when your assets have different layers of
materials. For example, think about a character with different elements such as
metallic armor, leather gloves, skin, and so on. Defining each of these materials and
blending them in a conventional way will make the material complexity increase
significantly. If you use layered Material in such cases, you can define each of those
materials as a single node and blend them very easily.

[70]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Creating layered Material using make material attributes

For this example we will create two simple layered Materials and blend them
together in our final material. First, create a Material function and open it. In
Material function, follow these steps:

1.

5.

Right-click on the graph editor and search for Make Material Attributes
and select the node from that menu.

Create a Constant3Vector node and connect it to BaseColor of Make
Material Attributes.

Create a constant value and connect it to Metallic of Make Material
Attributes.

Create one more constant value and connect that to Roughness of Make
Material Attributes.

Finally, connect Make Material Attributes to the output of Material function.

The final Material function should look like this. Note the values I'm using for
constant nodes.

T0131,0517,0.765 4 “MakeMaterialAttributes ¥

[ 3 \.‘

Output Blue

[71]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

Since we want this to be Metallic, we set Metallic to 1.

We will create a duplicate of this same Material function and make it a non-metallic
Material with a different color. See the following image:

0.765,0.118,0.0668 &

“MakeMaterialAttributes ¥
@ BaseColor
@ Metallic
(00
Rough
EmissiveColor
Opacity
OpacityMask

Output Red
A

Normal
O WorldPositionOffset
O WorldDisplacement - (o]
Or TessellationMultiplier
ceColor

ClearCoat

Refraction

CustomizedUVs0
CustomizedUVs1
CustomizedUVs2
CustomizedUVs3
CustomizedUVs4
CustomizedUVs5
CustomizedUVs6

izedUVsT

This is a non-metallic Material and we are going to blend these two Materials in our
Material editor using a default Material Layer Blend function.

[72]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

Make sure you expose both of these Material functions so we can use them in
Material editor.

Open an existing Material or create a new one in Content Browser and open it:

1.

Right-click on the graph and search for your Material functions (select both
of them).

Right-click again on the graph and search and select MatLayerBlend_
Simple.

Connect your Material functions to MatLayerBlend_Simple. Connect one
function to Base Material and the other one to Top Material.

Now, to blend these two materials we need an Alpha (Scalar) value. A value
of 1 (white) will output Base Material and a value of 0 will output Top
Material. A value of 0.5 will output a mix of both Base and Top materials.

Since we are using layered Material we cannot directly connect this to the Material
editor like other nodes. To make this work, there are two ways we can connect.

Method 1:

We can make the material use Material attributes instead of regular nodes.

To use this feature, click anywhere on the graph and in the Details panel select
Use Material Attributes:

1\ [Details

Search
I Physical Material
4 Material

Material Domain

Shading Model
Opacity Mask Clip Value

Two Sided .

Tange ;

Use Material Attributes B

EILEIEN when true, the material attributes pin is used instead of the reqular pins.
¥

[73]

www.it-ebooks.info


http://www.it-ebooks.info/

Materials

When you enable this, the main material node will show only one node called
Material attributes so you can connect the output of MatLayerBlend_Simple
to this node.

The following is a screenshot of the final material using this method:

Layerediaterial_Function_1

Method 2:

In this method, instead of using Material attributes for the main node we use
BreakMaterial Attributes and connect them as regular nodes:
1. Right-click on the graph area and search and select BreakMaterial Attributes.
2. Connect the output of MatLayerBlend_Simple to BreakMaterial Attributes.

3. And finally, connect all the output nodes of BreakMaterial Attributes to the
main node of Material editor.

[74]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 3

The following is a screenshot of the final material using this method:

LayeredMaterial_Function_1
Blue @ —_

MatLayerBlend_Simple BreakMaterialAttributes LayeredMatrial_Example

A) Blended Material @ —— @ Attr Ba: se Color

I — —,, Top Material (MA) tallic @
LayeredMaterial_Function_2 ‘

Red @ —

Alpha (5)

Texture Sample a

uvs

Or Normal
O World

ceColor O
ClearCoat O

O Ambient Ocel

Summary

In the next chapter we will use post processing techniques to enhance the look of
your scene. We will also create a simple Material and use it in post process Material.

[75]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

Post Process in Unreal Engine 4 allows you to create a variety of artistic effects and
change the overall look and feel of the whole game. Post Process effects are activated
using Post Process Volumes and can be used individually to affect only a specific
area or the entire scene. You can have multiple Post Process Volumes overlapping
and render their effects based on their priority. Post Process Volumes can be used to
add or modify simple effects such as Bloom, Lens Flares, Eye Adaptation, Depth of
Field, and so on and they can also be used to get advanced effects using Materials.
Another great feature of Post Process Volume is Look up Table (LUT), which is
used to store color transformations from image editing software, such as Adobe
Photoshop or GIMP. They are very easy to set up and can yield very good results.
We will get into LUT later in this chapter.

When you first start a project without starter content, there will be no Post Process
Volumes present in the scene, so Engine will use the default settings. You can change
these settings per project under Project Settings:

1. Click on Edit in the menu bar.

2. Click on Project Settings.

3. Go to the Rendering section.

[77]

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

4. Expand Default Postprocessing Settings:

Al
Frojecaetmae

Project Engine - Rendering

d in DefaultEngine.ini, wh urrently writable.

CEES) (TS T

or baked lightin

IN!!EHN

Optimizati

Earl; Decide automatically v

Here, you will see the default settings for Unreal Engine when there is no Post
Process Volume in your scene. You can modify these settings or add a Post Process
Volume to override them independently.

Adding Post Process

To use Post Process, you need a Post Process Volume in your scene:

1. Go to the Modes tab (if you closed it, press Shift + 1).
2. Select the Volumes tab.

[78]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

3. Drag and drop Post Process Volume into the scene:

A~ Modes

Recently Placed
Basic
Lights

Visual Effects

All Classes

er Indir
ance Volume

"
Nav Mesh Bound lume

L ]
Nav Modifier

[79]

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

You now have a Post Process Volume in your scene. However, it only shows the
effects when the player is inside that volume. To make it affect the whole scene
perform the following steps:

1.
2.

3.

Select Post Process Volume

In the Details panel, scroll down and expand the Post Process Volume
section

Enable Unbound

Enabling Unbound will ignore the bounds of this volume and affect the whole scene.
Now, let's take a quick look at these Post Process settings:

4 Post Process Volume
Pricrity

Blend Radius

Blend Weight

Enabled

Unbound

Priority: If multiple volumes are overlapping each other, then the volume
with higher priority overrides the lower one.

Blend Radius: This is the radius of the volume used for blending. Generally,
a value of 100 works best. This setting is ignored if you have Unbound
enabled.

Blend Weight: This defines the influence of properties. 0 means no effect and
1 means full effect.

Enabled: This enables or disables this volume.

Unbound: If enabled, then Post Process effects will ignore the bounds of this
volume and will affect the whole scene.

[80]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

LUT

LUTs are color neutral textures unwrapped to a 256 x 16 size texture. They are used
to create unique artistic effects and are modified using image editing software such as
Adobe Photoshop. If you are not familiar with Photoshop, you can use free and open
source software such as GIMP. The following is an image of the default LUT texture:

The procedure of LUT is as follows:

1. First you take a screenshot of your world and bring it into Photoshop.
2. On top of that screenshot, you insert the LUT texture.

3. Then on top of both, apply color manipulations (for example:
adjustment layer).

4. Now select the LUT texture and save it with your color manipulation as
PNG or TGA.

5. Finally, import your LUT into Unreal Engine.

,  Note that after you import your LUT into Content Browser,
@@j%“ open it and set the Texture Group to ColorLookupTable.
g This is an important step and should not be skipped.

To apply the LUT, select the Post Process volume, and under the Scene Color
section, you can enable Color Grading and set your LUT texture:

[ Color Grading ““" [T Moning > 4 DA

With the Color Grading Intensity option, you can change the intensity of the effect.

[81]

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

Post Process Materials

Post Process Materials help you create custom post processing with the help of
Material Editor. You need to create a Material with your desired effect and assign it
to Blendables in Post Process Volume. Click on the plus sign to add more slots:

4 Misc

4 Blendables Telements = @ =

Wone - 4= 0O

Before I explain about Post Process Materials, let's take a quick look at one of the
most important Post Process nodes in Material Editor:

* Scene Texture: This node has multiple selections that output different
textures:

Search o) E o~
4 UMaterial Expression Scene Texture SceneTexture'PostProcessinput0 . I
Texture Id PostProcessinput0w sl
~ ) UVs Color O
Filtered

4 Material Expression

Desc

[82]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

UVs (optional): This input tiles the texture. For UV operations on the
SceneTexture node, it is good to use the ScreenPosition node instead
of the regular Texture Coordinate node.

* Color: This outputs the final texture as RGBA. If you want to multiply this
with a color, you first need to use a component mask to extract R, G, and B
and then multiply it by your color.

* Size: This outputs the size (width and height) of the texture.
* InvSize: This is the inverse of the Size output. (1/width and 1/height).

. Itis important to keep in mind that you should only use Post Process
Materials when you really need them. For Color Correction and
= various other effects, you should stick with the settings from Post
Process Volume since they are more efficient and optimized.

Creating a Post Process Material

With Post Process Material, you can create your own custom Post Processing effects.
Some examples are:

* Highlighting a specific object in your game

* Rendering occluded objects

* Edge detection, and so on
In this quick example, we will see how to highlight an object in our world. To render

a specific object separately, we need to put them to a custom depth buffer. The good
thing is, it's as easy as clicking on a checkbox.

[83]

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

Select your Static Mesh and under the Rendering section, expand the options and
enable Render Custom Depth:

4 Rendering

Hidden In Ga| [

4 TextureStreaming

lgnore Instance 1) [

4 LOD
Forced Lod Mode _
Min Draw Distam _
ired Max Draj _

Det
serride Materials| 1 elements + @ -

|

Render Custo

Now that the mesh is rendered in the custombepth buffer, we can use this
information in Material Editor to mask out and render it separately. To do that:
1. Create a new Material and open it.

2. First thing to do now is to set Material Domain to Post Process. This will
disable all inputs except Emissive Color.

3. Now, right-click on the graph and search for SceneTexture and select it. Set
Scene Texture Id to CustomDepth.

4. CustomDepth outputs a raw value so let's divide it by the distance we want.

[84]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 4

5. Add a new Divide node and connect CustomDepth to input A. Select the
divide node and for Const B give a high value (for example: 100000000).
Remember, 1 Unreal Unit is equal to 1 cm so if you give a small value like
100 or 1000, you need to go really close to the object to see the effect. This is
why we use a very large value.

Add a Clamp node and connect Divide to the first input of the Clamp node.

Create a Lerp node and connect the output of Clamp to the Alpha input of
Lerp. The Lerp node will blend input A and B based on the alpha value. If the
alpha value is 1, then input A is used. If it is 0 then input B is used.

8. Create another SceneTexture node and set its Scene Texture Id to
PostProcessInput0. PostProcessInput0 outputs the final HDR color so make
sure you use this. There's another output called SceneColor, which does the
same but it outputs lower quality of the current scene.

9. Right-click on the graph again and search for the Desaturation node.
Connect PostProcessInput0 Color output to Desaturation input. We will use
this to desaturate the whole scene except our mesh with CustomDepth.

10. Connect the Desaturation output to Lerp B and PostProcessInput0 to
Lerp A, and finally, connect the Lerp to Emissive Color.

Here is the final screenshot of the whole graph:
~ CustomDepth_PP_2

SceneTexture:PostProcessinputD v

uvs Color @

\

y * @ Emissive Color
\ “Desaturation ¥ - Alpha

N
~ @ o
O Fraction

SceneTexture:CustomDepth

“Divide(,1e+008) ¥ “Clamp (Min=0) (Max=1) ¥
UVs Color @ —— A [ 3 > [
Min

Max

[85]

www.it-ebooks.info


http://www.it-ebooks.info/

Post Process

And in this example scene, I've applied this Material to Post Process Blendables and
you can see the effect:

Do) @ NEE ) EEOE

Everything that is in color has Render Custom Depth enabled so the Post Process
Material is masking them out and applying the desaturation to the entire scene.

Summary

In next chapter, we will add lights and discuss Light Mobility, Lightmass, and
Dynamic Lights.

[86]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Lighting is an important factor in your game, which can be easily overlooked,
and wrong usage can severely impact on performance. But with proper settings,
combined with post process, you can create very beautiful and realistic scenes.

In this chapter, we will look into different light mobilities and learn more about
Lightmass Global Illumination, which is the static Global Illumination solver
created by Epic games. We will also learn how to prepare assets to be used with it.

Lighting basics
In this section, we will see how to place lights and how to adjust some
important values.

[87]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Placing lights
In Unreal Engine 4, lights can be placed in two different ways. Through the modes
tab or by right-clicking in the level:

e Modes tab: In the Modes tab, go to the place tab (Shift + 1) and go to the
Lights section. From there you can drag and drop various lights.

Qfr Modes

ViYW

.(;,,-' Directional Light

Recently Placed
Basic I
Lights ' Point Light

Visual Effects _
Spot Light

BSP

Volumes 43 sky Light

All Classes

¢ Right-clicking: Right-click in viewport and in Place Actor you can select
your light.

. ’ .e.;,..-' Directional Light
Flace Actor —

Repla ted Actors with A M ight

Attach To

Point Light

Transform

[88]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Once a light is added to the level, you can use the transform tool (# to move, E to
rotate) to change the position and rotation of your selected light.

1
‘Q Since Directional Light casts light from an infinite source,

updating their location has no effect.

Various lights
Unreal Engine 4 features four different types of light Actors. They are:

e Directional Light: Simulates light from a source that is infinitely far
away. Since all shadows cast by this light will be parallel, this is the
ideal choice for simulating sunlight.

e Spot Light: Emits light from a single point in a cone shape. There are two
cones (inner cone and outer cone). Within the inner cone, light achieves
full brightness and between the inner and outer cone a falloff takes place,
which softens the illumination. That means after the inner cone, light
slowly loses its illumination as it goes to the outer cone.

e Point Light: Emits light from a single point to all directions, much like
a real-world light bulb.

e Sky Light: Does not really emit light, but instead captures the distant
parts of your scene (for example, Actors that are placed beyond Sky
Distance Threshold) and applies them as light. That means you can have
lights coming from your atmosphere, distant mountains, and so on. Note
that Sky Light will only update when you rebuild your lighting or by
pressing Recapture Scene (in the Details panel with Sky Light selected).

Common light settings

Now that we know how to place lights into a scene, let's take a look at some of the
common settings of a light. Select your light in a scene and in the Details panel you
will see these settings:

e Intensity: Determines the intensity (energy) of the light. This is in lumens
so, for example, 1700 Im corresponds to a 100 W bulb.

e Light Color: Determines the color of the light.

[89]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

e Attenuation Radius: Sets the limit of the light. It also calculates the falloff
of the light. This setting is only available in Point Lights and Spot Lights.

Attenuation Radius from left to right: 100, 200, 500.

e Source Radius: Defines the size of specular highlights on surfaces.
This effect can be subdued by adjusting the Min Roughness setting.
This also affects building light using Lightmass. A larger Source Radius
will cast softer shadows. Since this is processed by Lightmass, it will
only work on Lights with mobility set to Static.

Source Radius 0. Notice the sharp edges of the shadow.

[90]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Source Radius 5. Notice the soft edges of the shadow.

e Source Length: Same as Source Radius.

Light mobility

Light mobility is an important setting to keep in mind when placing lights in
your level because this changes the way light works and impacts on performance.
There are three settings that you can choose. They are as follows:

e Static: A completely static light that has no impact on performance.
This type of light will not cast shadows or specular on dynamic
objects (for example, characters, movable objects, and so on). Example
usage: Use this light where the player will never reach, such as distant
cityscapes, ceilings, and so on. You can literally have millions of lights
with static mobility.

e Stationary: This is a mix of static and dynamic lights and can change its
color and brightness while running the game, but cannot move or rotate.
Stationary lights can interact with dynamic objects and are used where
the player can go.

e Movable: This is a completely dynamic light and all properties can be
changed at runtime. Movable lights are heavier on performance so use
them sparingly.

[91]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Only four or fewer stationary lights are allowed to overlap each other. If you have
more than four stationary lights overlapping each other, the light icon will change
to red X, which indicates that the light is using dynamic shadows at a severe

performance cost!

-

T 0 GLD OB CEEDE

In the following screenshot, you can easily see the overlapping light.

. Stationary Light Overlap || Show

Exposure

Visualizes overlap of stationary lights
hold (Ctrl + Alt) for more

[92]

www.it-ebooks.info



http://www.it-ebooks.info/

Chapter 5

In View Mode, you can change to Stationary Light Overlap to see which light is
causing an issue.

Lightmass Global lllumination

Lightmass is the high-quality static Global Illumination solver created by Epic
games. Global Illumination (GI) means the process that simulates indirect lighting
(for example, light bouncing and color bleeding from surfaces). In Unreal Engine,
light bounces by default with Lightmass and is based on the base color of your
material, which controls how much light should bounce from the surface of the
object. Even though a more highly saturated color will bounce more light, and a less
saturated color will bounce less, it all depends on the scene. In a simple room-like
scene, this can be noticeable, whereas if it's an outdoor day scene this might not be
that noticeable.

Let's take a quick look at the following scene:

[93]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

This is a simple scene in unlit mode.

Now I added one Directional Light and this is how it looks with no GI.
That means there is only direct lighting and no indirect lighting (meaning there
is no light bouncing).

[94]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

The previous screenshot is with static GI and you can see how the whole scene came
to life with GI. Notice how the pillars are casting shadows. These are called Indirect
Shadows since they are from Indirect Light.

The intensity and color of indirect light depends on the light and base color of the
material that the light is bouncing off. To illustrate this effect, let's take a look at the
following two screenshots:

[95]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Here I applied a pure red material (the red value is 1.0) to the sphere and you
can see bounced lighting picked up the base color of the red sphere changing
the environment. This is called color bleeding and is most noticeable with highly
saturated colors.

In this screenshot, I changed the value of red to 0.1 and rebuilt the lighting. And
since red is more dark now, less light is bouncing. This is because darker colors will
absorb the light instead of reflecting it.

Now that we know what Lightmass is, let's take a look at how we can prepare our
assets to use Lightmass and learn more about Lightmass settings.

[96]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Preparing your assets for precomputed
lighting

In order for your asset to have clean light and shadow details, it is necessary to

have uniquely unwrapped UV to represent its own space to receive dark and light
information. One rule of thumb when creating lightmap UVs is that the UV face
should never overlap with any other face within the UV space. This is because if
they are overlapping, then after light building, the lightmap corresponding to that
space will be applied to both faces, which will result in inaccurate lighting and
shadow errors. Overlapping faces are good for normal texture UVs since the texture
resolution will be higher for each face, but the same rule does not apply for lightmap
UVs. In a 3D program, we unwrap lightmap UVs to a new channel and use that
channel in Unreal Engine 4.

4 Static Mesh Settings

Double Sided Geometry .

Simple Collision Physical M: None
Collisicn Complexity
Light Map Resoluticn 128 O
Lpv Bias Multiplier 1.0

[» Walkable Slope Override
Light Map Coordinate Index [

Use Maximum Streaming Te [Jjj

Asset User Data

Here, you can see I'm using the second channel in my mesh for lightmap.

Unreal starts counting from 0 while most 3d programs count from
1. That means UV channel 1 in the 3d program is UV channel 0 in
% Unreal, and UV channel 2 means UV channel 1 in Unreal. Here, in
’ the previous screenshot, you can see the Light Map Coordinate
Index is 1, which means it is using the 2nd UV channel in mesh.

[97]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Even though you can generate lightmap UVs in Unreal Engine 4, it is highly
recommended to create these UVs in a 3d program (for example, Autodesk Maya,
Autodesk 3dsmax, Modo, and so on) in order to have clean lightmaps. Before
creating a lightmap UV you have to set up the grid setting in your 3d app's UV
editor. For example, if you have an asset that requires a lightmap resolution of 128,
then your grid setting should be /126, which is 0.00793650. 128 will be the lightmap
texture resolution. Higher values, such as 256, 512, 1024, and so on, will result in
high-quality lightmaps but will also increase memory usage. Once we decide what
lightmap resolution we need for our asset, we subtract 2 (you can also use 4) from
that resolution. The reason behind this is that in order for Lightmass to calculate
correctly without any filter bleeding errors, it is recommended to have a minimum
of 2 pixel gaps between UVs. So if your asset is going to use a lightmap resolution
of 128, it will be 128 — 2 = 126. The reason why we divide it by 1 is that by default,
Lightmass uses a 1 pixel border for filtering purposes.

Once you import your mesh into Unreal Engine 4, you set the Light Map Resolution
for your Static Mesh. This value controls how good the shadow will look when
another object casts a shadow onto this object.

Lightmaps are textures generated by Unreal Engine and overlayed on top of your
scene. Since this is a texture, it should be in power of two (for example, 16, 32, 64,
128, 256, 512, 1024, etc.).

v | Perspectve |t | (o

[98]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

The floor in the preceding screenshot has a lightmap resolution of 32. Notice
inaccurate shadows on the floor.

The floor in the preceding screenshot has a lightmap resolution of 256. Notice better
shadows on the floor.

Even though increasing the lightmap resolution gives accurate
shadows, it is not a good idea to increase it for every mesh in your
level as it will severely increase build times and may even crash the
whole editor. For smaller objects, it is always a good idea to keep it
low.

[99]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

In Unreal Engine 4, you can generate lightmap UVs when importing your mesh by
enabling Generate Lightmap UVs.

11 FEX Import Options

Current File: /Game/EditorSphere_2
4 Mesh

Import

ic Mesh LODGroup

olor Import Option

Remove Degenerates

Generate Lightmap U\V's

One Convex Hull Per

Import Mesh LODs

Normal Import Method Import Normals  w

Combine Mes

4 Transform
I Import Translaticn X 00 o
[» Import Rotatios itch [

Import Unifor ale i N
4 Material
Import Materials

Import Textures

[ Miscellaneous

import All | Import

In case you miss this option, you can still generate lightmap UVs after importing. To
do that perform the following steps:

Double-click on the Static Mesh in Content Browser.

2. Then, under the LOD tab, enable Generate Lightmap UVs.

3. Select Source Lightmap Index. Most of the time this will be 0 since that
is normal texture UVs, and Unreal generates your lightmap UVs from
texture UVs.

[100]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

4. Set Destination Lightmap Index. This is where Unreal will save your newly
created lightmap UVs. Set this to 1.

5. Click Apply Changes to generate lightmap UVs.

Triang

WorldGridMaterial
e D=

Element 0

Generate Lightmap UVs

Min Lightmap Rescluticn

ance Field as .
nce Field Replacemer None * 4= D

If you already have a lightmap UV in the Destination Lightmap
s Index, it will be replaced when generating a new one.

[101]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

You can preview UVs by clicking on the UV button in the toolbar and selecting your
UV Channel.

./ O 7 F - :
e FindinCB Realtime ] @ 5 30U olliEr S Mormals  Tangents  Binorm AdditionallData li
UV Channel 0

SN
NN

Building a scene with Lightmass

Building a scene with Lightmass is a pretty straightforward process. In order to have
high-quality static Global Illumination (aka Precomputed Lighting), you need to
have a Lightmass Importance Volume in your scene. This is because in many maps,
we have areas large enough and the playable area is actually smaller. So instead of
calculating lighting for the whole scene, which can increase light building heavily,
we limit the area by using Lightmass Importance Volume.

[102]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Once we have a Lightmass Importance Volume in the scene and start light building,
Lightmass will only calculate lighting within the volume. All objects outside the
volume will only get one bounce of light with low quality.

To enclose the playable area in Lightmass Importance Volume you just have

to drag and drop it from the Modes tab. Just like other objects, you can use transform
tools (W to move, E to rotate, and R to scale) to adjust Lightmass Importance
Volume in your scene. Once that is done, all you have to do is build the lighting
from the Build button.

1*-' »-@-

Build Compile  Play Launch

Lighting
Build Lighting Only  Ctrl+Shift+Semicolon

Alternatively, you can simply press the Build button, which will build the lighting.
Lightmass has four different quality levels that you can choose from. They are
Preview, Medium, High, and Production.

Build Compile  Flay Launch
Lighting
Build Lighting Only

Lighting Quality Quality

® Production
High

]

e Preview: Can be used while developing and this results in building the
light faster.

e Production: When your project is near-complete or ready to ship you
should use the production setting since it makes the scene more realistic
and corrects various light bleed errors.

~ Lighting quality are just presets. There are lots of settings that
should be tweaked to get the desired effect you want in your game.

[103]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

Tweaking Lightmass settings

Lightmass offers a lot of options in World Settings, which you can tweak to get
the best visual quality. You can access them by clicking on Settings and selecting
World Settings.

z. 8.8 8. TP

Settings Blueprints IMatinee Build Compile  Play

In World Settings, expand Lightmass Settings and you will see various settings you
can tweak to get the most out of Lightmass.

4 Lightmass
A Lightrr
atic Lighting Leve

Mum Indirect Lighting Bo

—
(=]
L

—_
=

Indirect Lighting Quality

E
=

_.
=
L7

Visualize Ambient O

-
=

Volume Light Sample Placement
Compre ightmaps

Level Lighting Quality

[104]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Controlling these settings helps you get the best visual quality when using
Lightmass. Let's take a look at these settings:

Static Lighting Level: This setting calculates the detail when building
the light. Smaller values will have more detail but greatly increase build
time! Larger values can be used for huge levels to lower build times.

Num Indirect Lighting Bounces: This determines how many times the
light should bounce off surfaces. 0 is direct lighting only, meaning there
will be no Global Illumination, and 1 is one bounce of indirect lighting,
and so on. Bounce 1 contributes most to the visual quality, and successive
bounces are nearly free but do not add very much light since bounced
light gets weaker after each bounce.

Num Indirect Lighting Bounces set to 1

Indirect Lighting Quality: Higher settings result in fewer artifacts such
as noise, splotchiness, and so on, but will also increase build time. Using
this setting with Indirect Lighting Smoothness helps to get detailed
indirect shadows and ambient occlusion.

[105]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

e Indirect Lighting Smoothness: Higher values will cause Lightmass to
smooth out indirect lighting but will lose detailed indirect shadows.

Indirect Lighting Quality: 4.0 and Indirect Lighting Smoothness: 0.5. Notice the difference in the
shadow cast by the pillar

[106]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Environment Color: Think of this as a big sphere surrounding the level,
emitting color in all direction. That is, this acts as the HDR environment.

Environment Intensity: Scales the intensity of Environment Color.

Diffuse Boost: This is an effective way of increasing the intensity of
indirect lighting in your scene. Since indirect lighting bounces off
surfaces, this value will boost the influence of the color.

Use Ambient Occlusion: Enables static ambient occlusion. Since ambient
occlusion requires dense lighting samples, it will not look good in
Preview builds. It's better to tweak ambient occlusion settings while you
are building using production preset.

Direct Illumination Occlusion Fraction: How much ambient occlusion
to be applied to direct lighting.

Indirect Illumination Occlusion Fraction: How much ambient occlusion
to be applied to indirect lighting.

Occlusion Exponent: Higher values increase the ambient occlusion
contrast.

Fully Occluded Samples Fraction: This value determines how much
Ambient Occlusion an object should generate on other objects.

Max Occlusion Distance: Maximum distance for an object to cause
occlusion on another object.

[107]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

e Visualize Material Diffuse: Overrides normal direct lighting and
indirect lighting with the material diffuse term exported to Lightmass.

Visualize Material Diffuse enabled

e Visualize Ambient Occlusion: Overrides normal direct lighting and
indirect lighting with ambient occlusion. This is useful when you are
tweaking Ambient Occlusion settings.

[108]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Visualize Ambient Occlusion enabled

e Volume Light Sample Placement Scale: Scales the distance at which
volume lighting samples are placed.

All these Lightmass settings require lighting rebuild. So if you
change any of these settings, make sure you rebuild the lighting
~>
for the changes to take effect.

Volume Light Samples are placed by Lightmass in the level after light building,
and are used for dynamic objects such as characters, since Lightmass only generates
lightmaps for static objects. This is also called Indirect Lighting Cache.

[109]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

In the following screenshots, you can see how the movable object (red sphere) is lit
using Indirect Lighting Cache:

Without Indirect Lighting Cache

[110]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

Volume Light Samples are only placed within Lightmass
%= Importance Volume and on static surfaces.

Indirect Lighting Cache also helps with previewing objects with unbuilt lighting.
After light building, if you move a static object, it will automatically use Indirect
Lighting Cache until the next light build.

To visualize volume lighting samples, click on Show | Visualize | Volume
Lighting Samples.

Volume Lighting Samples previewed in the level.

[111]

www.it-ebooks.info


http://www.it-ebooks.info/

Lights

You can adjust Global Illumination Intensity and Color in

% Post Process Volume. In Post Process Volume, expand Post
/~— Process Settings | Global Illumination and there you see
settings for Color and Intensity.

» Lens Flares
> Ambient Occlusion
Global lluminaticn
|
Indirect Lighting Intensity

e e

> Motion Blur

Blend Radius

Blend Weight

[112]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 5

To toggle specific lighting components for debugging, you can use the various
lighting component flags under the Show | Lighting Components section. For
example, if you want to preview your scene without any direct lighting, you can turn
off Direct Lighting and preview your scene in Indirect Lighting only. Keep in mind
that these are only editor features and do not affect your game. These are only for
debugging purposes.

Use Defaults

| Ambient Occlusion
ighting s » [/] Diffuse
» [/] Direct Lighting
b /| Dire i
» | Dyn
Editor /| Global lllum

Volumes
r Lighting
lar

/| Spot Lights

Summary

In this chapter, we learned about lights and how they can improve the realism of
your scene by using Lightmass Global Illumination, and how to prepare our assets
to use with Lightmass. We also learned about various lights and common settings.
In the next chapter we will dive into the best and most unique feature of Unreal
Engine 4: Blueprints.

[113]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

In this chapter, we will learn what Blueprints are and how they can be used to
prototype your game. We will learn about:

*  Getting familiar with Blueprint editor

* Various Blueprint graph types (for example, function graphs, event graphs,
and so on)

* Blueprint nodes

* And, finally, we will create a simple Blueprint that can be placed in world or
dynamically spawned while running the game

Blueprint Visual Scripting in Unreal Engine 4 is an extremely powerful and flexible
node-based interface to create gameplay elements and provides artists and designers
with the ability to program their game and to quickly iterate gameplay within

the editor without writing a single line of code! Using Blueprints you can create

and tweak gameplay, characters, inputs, environments, and virtually anything

in your game.

Blueprints work by using graphs that contain various nodes connected to each other,
which defines what the Blueprint does. For example, it can be gameplay events,
spawning new Actors, or anything really.

[115]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Different Blueprint types

Let's take a quick look at various Blueprint types that are available in Unreal
Engine 4:

* Level Blueprint: Level Blueprint is a special Blueprint that acts as a
level-wide global event graph, which the user can neither remove nor create.
Each level will have its own level Blueprint that the user can use to create
events that pertain to the whole level. The user can use this graph to call
events on a specific actor present in the level or play a Matinee sequence.
Users who are familiar with Unreal Engine 3 (or UDK) should be familiar
with this concept as this is similar to how Kismet worked in those Engines.

* Class Blueprint: Commonly referred to as just Blueprint, is an asset that
you create inside Content Browser. Once the asset is created, you define its
behavior visually instead of typing any code. This Blueprint is saved as an
asset in Content Browser so you can drag and drop this into your world as
an instance or spawn dynamically in another Blueprint graph.

* Animation Blueprint: These are specialized graphs that control the
animation of a skeletal mesh by blending animations, controlling the bones
directly, and outputting a final pose in each frame. Animation Blueprints
will always have two graphs, namely EventGraph and AnimGraph.

* EventGraph: This uses a collection of animation-related events to initiate
a sequence of nodes, which updates the values used to drive animations
within Animgraph.

* AnimGraph: This is used to evaluate the final pose for your Skeletal Mesh.
In this graph, you can perform animation blends or control bone transforms
using SkeletalControls.

* Macro Library: These are containers that can hold various macros or graphs
that you can use multiple times in any other Blueprint class. Macro libraries
cannot contain variables or inherit from other Blueprints or be placed in the
level. They are just a collection of graphs that you use commonly and can be
a time-saver. If you are referencing a macro in your Blueprint then changes
to that macro will not be applied to your Blueprint until you recompile your
Blueprint. Compiling a Blueprint means converting all the properties and
graphs into a class that Unreal can use.

* Blueprint Interface: These are graphs that contain one or more functions
without implementation. Other classes that add this interface must include
the functions in a unique manner. This has the same concept of interface in
programming where you can access various objects with a common interface
and share or send data to one another. Interface graphs have some limitations
in that you cannot create variables, edit graphs, or add any components.

[116]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Getting familiar with the Blueprint user
interface

The Blueprint User Interface (UI) contains various tabs by default. In the following
screenshot you can see the unified layout of the Blueprint UI:

Let's take a look at these tabs:

* Components

* My Blueprint
* Toolbar

* Graph editor

* Details panel

[117]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Components tab

Most Blueprint classes can have different types of components. These can be light
components, mesh components, Ul components, and so on. In this section, we will
see what they are and how we can use them in our Blueprint classes.

What are components?

Components are the bits and pieces that make up the whole Actor. Components
cannot exist on their own but when added to an Actor, the Actor will then have
access to all the functionalities provided by the component. For example, think
about a car. The wheels, body, lights, and so on can be considered as components
and the car itself as the Actor. Then in the graph, you can access the component and
do the logic for your car Actor. Components are always instanced and each Actor
instance will have its own unique instance of components. If this were not the case,
then, if we place multiple car Actors in world and if one starts moving, all the others
will also move.

Adding a component

To add a component to your Actor, click the Add Component button on
the Components tab. After clicking the button it will show a list of various
Components that you can add.

-=. Components

4+ Add Component =

® sphere
W Cube
P cylinder
& Cone

[118]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

After adding a component, you will be prompted to give it a name. Components
can also be directly added simply by dragging-and-dropping from Content Browser
to the Components window.

To rename a component, you can select it in the Components tab and press F2.

The drag-and-drop method only applies to StaticMeshes,
s SkeletalMeshes, SoundCues, and ParticleSystems.

With the component selected, you can delete it by pressing the Delete key. You can
also right-click on the component and select Delete to remove it as well.

Transforming the component

Once the component is added and selected, you can use the transform tools (WV, E,
and R) to change the location, rotation, and scale of the component either by entering
values in the Details panel or in the Viewport tab. When using moving, rotating,

or scaling, you can press Shift to enable snapping, provided you have enabled grid
snapping in the Viewport toolbar.

M If the Component has any child components attached to
Q it then moving, rotating or scaling that component will
propagate the transformation to all child components too.

[119]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Adding events for components

Adding events based on a component is very easy and can be done by different
methods. Events created in this manner are specific to that component and need
not be tested as to which component is involved:

* Adding events from the details panel: When you select the component you
will see all the events available for that component in the Details panel as
buttons. When you click on any of them, the editor will create the event node
specific for that component in the event graph.

1-1 i Detarls Sl

Ho-
I* Variable

I Transform
I Sockets

I» Shape

[ Navigation
I* Rendering
I» Physics

I Collision

I Tags

4 Events

OO0 cnent Hit

+
+
+
+
&
+
+
+
+
4
+
+

[120]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

* Adding events by right-clicking: When you right-click on a component, you
will see Add Event in the context menu. From there you can select any event
you want and editor will create the event node specific to that component in
the event graph.

<. COmponents

#+ Add|Component =

fi ThirdPersonChara

4 (] CapsuleComponent (Inherited)
LS Add Event

A% N
L]
Copy
Ol

Duplicate

Add OninputTouchEnd

1 Cantent B Add OninputTouchEnter

* Adding events in the graph: Once you select your component in the My
Blueprints tab, you can right-click on the graph and get all the Events for
that component.

BeginPlay . . .
Sheshie All Actions for this Blueprint

4 Add Event for Box

d N . .
Functions 4 Collision

#¢ ConstructionScript
Macros
4Variables

4 nput
4 Components P

<4Mouse Input

DefaultSceneRoot

Event Dispatchers

I Touch Input
4Physics Volume

dd Component
I Add Event

[121]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

My Blueprints tab

The My Blueprints tab displays a list of Graphs, Functions, Macros, Variables, and
so on that are contained within your Blueprint. This tab is dependent on the type of
Blueprint. For example, a class Blueprint will have EventGraph, ConstructionScript
Graph, Variables, Functions, Macros, and so on. An interface will only show the list
of functions within it. A Macro Library will show only the macros created within it.

Creation buttons

You can create new variables, functions, macros, event graphs, and event dispatchers
inside the My Blueprints tab by clicking the shortcut button (+).

+ Add New ~ [

4Graphs

4 Functions (1

# ConstructionScript

Macros

4\Variables
4 Components
Box

DefaultSceneRoot

Event Dispatchers

You can also add them by clicking the +Add New drop-down button.

Searching in my Blueprint
The My Blueprint tab also provides a search area to search for your variables,

functions, macros, event graphs, and event dispatchers. You can search based
on name, comment, or any other data.

[122]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Categorizing in My Blueprint

It is always a good practice to organize your variables, functions, macros, event
dispatchers, and so on into various categories. In the My Blueprints tab, you can
have as many categories with sub-categories. Check the following screenshot:

+ Add New - o-
4Graphs +
U'm= EventGraph

4 Functions

# ConstructionScript

Macros

4Variables

4 Camera
4 Components

elLookUpRate
A Attributes
4 Health
== Health
= MaxHealth
[ Armor
CharacterName
4spells

Event Dispatchers

Here you can see how I have organized everything into various categories and
sub-categories. To set a category for your variables, functions, macros, and event
dispatchers, simply select them and in the Details panel you can type your new
category name or select from an existing category. If you need sub-categories

then you need to separate your sub-category name with a vertical bar key (| ). For
example, if you want Health as a sub-category in Attributes, you can set it like this:
Attributes | Health.

[123]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Toolbar

The toolbar provides access to common commands required while editing
Blueprints. Toolbar buttons will be different depending on which mode (editing
mode, play in editor mode, and so on) is active and which Blueprint type you are
currently editing.

Graph editor

Graph editor is the main area of your Blueprint. This is where you add new nodes
and connect them to create the network that defines the scripted behavior. More
information on how to create new nodes and various nodes will be explained later
on in this book.

Details panel

The Details panel provides access to properties of the selected Components or
Variables. It contains a search field so you can search for a specific property.

Blueprint graph types

As we mentioned before, Blueprints are assets that are saved in Content Browser
that are used to create new types of Actors or script gameplay logic, events, and so
on, giving both designers and programmers the ability to quickly iterate gameplay
without writing a single line of code. In order for a Blueprint to have scripted
behavior, we need to define how it behaves using various nodes in graph editor.
Let's take a quick look at various graphs:

* Construction Script Graph: Construction graph is executed the moment
the Blueprint is initialized and whenever a change happens to any variables
within the Blueprint. This means that whenever you place an instance of
the Blueprint in the level and change its transformation or any variable, the
construction graph is executed. This graph is executed once every time it is
constructed and again when any of the properties or Blueprint is updated.
This can be used to construct procedural elements or to set up values before
the game begins.

* Event Graph: This is where all the gameplay logic is contained, including
interactivity and dynamic responses. Using various event nodes as entry
points to functions, flow controls, and variables, you can script the behavior
of the Blueprint. Event graphs are only executed when you start the game.

[124]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

* Function Graph: By default, this graph contains one single entry point with
the name of the function. This node can never be deleted but you can move
it around freely. Nodes in this graph are only executed when you call this
function in the construction or event graph or from another Blueprint that is
referencing the Blueprint that this function belongs to.

* Macro Graph: This is like a collapsed graph that contains your nodes. Unlike
function graphs, macros can have multiple inputs or outputs.

* Interface Graph: Interface graphs are disabled and you cannot move, create
graphs, variables, or components.

Only class Blueprints have Construction Script and it stops executing
s when gameplay begins and is considered completed before gameplay.

Function graph

Function graphs are node graphs created inside a Blueprint and can be executed
from another graph (such as Event Graph or Construction Script) or from another
Blueprint. By default, function graphs contain a single execution pin that is activated
when the function is called, causing the connected nodes to execute.

Creating functions

Function graphs are created through My Blueprints tab and you can create as many
functions as you want.

Inside My Blueprints tab you can hover your mouse over the functions header and
click on +Function to add a new function

BV Blueprint

+add vew ~ T =) < -

4 Graphs +
4 2 EventGraph
ent BeginPlay
ent ActorBeginOverlap
€ Event Tick
4 Functions Override
#¢ ConstructionScript
f PureFunctionExample
f ImpureFunctionExample

MewFunction_0|

Macros +

[125]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Clicking that button (the yellow highlighted button) will create a new function and
prompts you to enter a new name for it.

Graph settings

When you create a new function and select it, you will get some properties of that
function, which you can change in the Details panel. Let's take a quick look at them.

4 Graph

Description of my funct

Public =]
[ |

* Description: Appears as a tooltip when you hover your mouse over this
function in another graph.

* Category: Keeps this function in its given category (for organizational
purpose only).

* Access Specifier: Sometimes when you create functions, you don't want to
access some of them in another Blueprint. Access specifiers let you specify
what other objects can access this function.

* Public: This means any object can access this function from anywhere. This is
the default setting.

* Protected: This means current Blueprint and any Blueprints derived from the
current Blueprint can access this function.

* Private: This setting means only the current Blueprint can access this function.

e Pure: When enabled, this function is marked as a Pure Function and when
disabled it is an Impure Function.

e}

Pure Function will not modify state or members of a class in any way
and is considered a Constant Function that only outputs a data value
and does not have an execution pin. These are connected to other
Data Pins and are automatically executed when the data on them

is required.

Impure Function is free to modify any value in a class and contains
an execution pin.

[126]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

The following is a screenshot showing the difference between Pure Function and
Impure Function:

—
[ Pure Function Example

My Float

> Impure Function Example

Editing functions

To define the functionality of the function you need to edit it. You can have as many
inputs or outputs as you want, and can then create a node network between those
inputs and outputs to define the functionality. To add input or output, you first
need to select the function either in the My Blueprint tab or select the main pink
node when you open the Function Graph. Then, in the Details panel, you will see

a button labelled New that creates new inputs or outputs.

. Details

8 Function Example 8 ReturnNode

4 [nputs

B My Vectorlnput EE; -
ctor Input O O Integer Output [_|
[ MyBooleaninput -

My Boolean Input Actor Reference

4 Qutputs
5 IntegerOutput a@integer = H
I ActorReference

[127]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

In this screenshot you can see how I added new inputs and outputs to Function
Example.

ReturnNode is optional and will only appear if you have at least one

output data pin. If you remove all output pins then ReturnNode is
g automatically removed and you can still use your function.

For example, in the following screenshot I created a Blueprint function that appends
a prefix to my character name so I can use this one single function to change the
prefix anytime I want.

= et Team Prefix 2 = Retunbode

Now, back in Event Graph, [ call this function on the Begin Play event so I can set
the character name when the game starts.

> Event BeginPlay

[128]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Macro graph

Macro graphs are essentially collapsed graphs of nodes, which contain an entry
point and exit point designated by tunnel nodes but cannot contain variables. Macro
graphs can have any number of execution or data pins.

Macros can be created inside a Class Blueprint or Level Blueprint like functions or
you can organize your Macros in a Blueprint Macro Library, which can be created in
Content Browser.

Blueprint Macro Library can contain all your Macros in one place so you can use
them in any other Blueprint. These can be real time-savers as they can contain most
commonly used nodes and can transfer data. But changes to a macro graph are only
reflected when the Blueprint containing that macro is recompiled.

To create a macro library you need to right-click in Content Browser and select
Blueprint Macro Library from the Blueprints sub-category.

Folder
8 New Folder

D j‘ﬂ Blueprint Function Library
»

D % Blueprint Interface

L

4 E Blueprint Macro Library

[129]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Once you select that option you have to select a parent class for your Macro. Most of
the time we select Actor as the parent class. After the selection, you will be prompted
to type a name for your Macro library and save it.

If you just created your Macro library, the editor will create a blank Macro named
NewMacro_0 and will be highlighted for you to rename.

As you did with functions, you can type a description and define a Category for your
Macro. You also get an option to define a color for your Macro using Instance Color.

In the following screenshot you can see I created a Macro with multiple outputs and
defined a Description, Category, and an Instance Color for the Macro:

71 15 Packaged for Distribution

4 Dutpets
T ST X
© D M

In any other Blueprint I can now get this Macro and use it. If you hover you mouse
over the Macro, you can see the description you set as a Tooltip.

[130]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

All Actions for this Blueprint Context

I Input
I Leap Motion
I Live Streaming
> LOD
I Math
<4 My Macro
1} CheckGameBuild

b Networking Checks if game is for Shipping release.
I Niagara

I Online

I Painting

I Pawn

I Physics

I Physies Volume
I Rendering

I- Replication

I Slot

I Sprite

[ Steam VR

1% CheckGameBuild

[> Check Build Distribution Build [>

Development Build [

Interface graph

Interface graphs are a collection of functions without any implementation, which

can be added to other Blueprints. Any Blueprint class implementing an interface

will definitely contain all the functions from the interface. It is then up to the user to
give functionality to the functions in that interface. Interface editor is similar to other
Blueprints but you cannot add new variables, edit the graph, or add any components.

Interfaces are used to communicate between various Blueprints that share specific
functionality. For example, if the player is having a Flame Thrower gun and in

the game you have Ice and Cloth, both can take damage but one should melt

and the other should burn. You can create a Blueprint Interface that contains a
TakeWeaponFire function and have Ice and Cloth implement this interface. Then,
in Ice Blueprint, you can implement the TakeWeaponFire function and make the ice
melt and, in Cloth Blueprint, you can implement that same function and make the
cloth burn. Now when you are firing your Flame Thrower you can simply call the
TakeWeaponFire function and it calls them in those Blueprints.

[131]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

To create a new interface, you need to right-click on the Content Browser and select
Blueprint Interface from the Blueprints sub-category and then name it.

In the following example I named it BP_TestInterface:

D f‘% Blueprint Function Library
)

b Blueprint Interface

4

D é‘ﬂ Blueprint Macro Library

a Enumeration

iy

If you just created your interface the editor will create a blank function named
NewFunction_0, which will be highlighted for you to rename. If you implement this
interface on any Blueprint then it will have this function.

[132]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

In this example, I created a function called MyInterfaceFunction. We will use this
to simply print out the Actor name that implements this interface.

Of = 2

4 Graph

Default -

i

4 Inputs
x

4 Qutputs
U Owmeractor_abe Mamstring = x

To create functionality for this function, we first need to implement this interface in a
Blueprint. So open your Blueprint where you want this to be implemented and select
Class Settings in the Toolbar.

A Taallar

b . W ®

Compile Sav Find in CB

Now the Details panel will show the settings for this Blueprint and, under the
Interfaces section, you can add your interface.

4 Details

- ] < -

4 Blueprint Options I

D
Blueprint ] AlPerceptionListenerinterface
A ghtTargetinterface
FA Blendableinterface

4 Class Options )
Parent Class £ Leneric|eamAgentinterrace
P Interface_PostProcessVolume
PA slateWidc eContainerinterface
A TurnBasedMatchinterface
O Tutorial_BP_Interface

-

4 |nterfaces

4 |nherited Interfaces
No Interfaces

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Once you add that interface, the My Blueprints tab will update to show you the
interface functions. Now all you have to do is double-click on the function to open
the graph and add functionality.

My Bluepnint

+add e~ EXTIYS © -

+

eginPlay
ctorBeginOverlap

dinterfaces
™ MylinterfaceFunction
Macros

4Variables

4 Components

Sphere

DefaultSceneRoot

Event Dispatchers

The reason why MyInterfaceFunction appears in the My Blueprints tab is because
that function contains an output value. If you have an interface function without
an output then it won't appear in the My Blueprints tab. Instead it appears under
Events when right-clicking in your Blueprint. For example, in that same interface I
created another function without output data.

[134]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

This AnotherInterfaceFunction will not appear in the My Blueprints tab because it

has no output. So, to implement this function in your Blueprint, you have to add this
as an event.

1y Bllenrint

4lnterfaces {‘ Event Another Interface Function ‘$
7 MyinterfaceFunction
Macros S b Add Component

4Add Event
4Variables

-4 Components

DefaultSceneRoot [ Mouse Input
CharacterName b Touch Input

Event Dispatchers

<
<
<

CAl
b Animation
© Audio

[135]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Blueprint node references

The behavior of a Blueprint object is defined using various nodes. Nodes can be
Events, Function Calls, Flow Control, Variables, and so on that are used in the
graph. Even though each type of node has a unique function, the way they are
created and used is common.

Nodes are added to the graph by right-clicking inside the graph panel and selecting
the node from the Context Menu. If a component inside Blueprint is selected, events
and functions supported by that component are also listed.

All Actions for this Blueprint Context

itive

Select a Component to see available Events & Functions

I Actor

I Add Component
I Add Event

Al

[> Animation

> Audio

[ Call Function

I* Camera

I Canvas Render Target 2D
r Class

I Collision

I Components

[ Data Table

I Debug

I Development

I Effects

I Event Dispatchers
' Focus

After a node is added you can select it and move it around using the left mouse
button. You can use Ctrl to add or remove from the current selection of nodes.
Clicking and dragging inside the graph creates a Marquee Selection that adds
to the current selection.

Nodes can have multiple inputs and outputs and are of two types: Execution Pins
and Data Pins.

Execution pins start the flow of execution and when the execution is completed it
activates an output execution pin to continue the flow. Execution pins are drawn
as outlines when not wired and solid white when connected.

Execution Pin Wired [ |

Execution Pin Unwired [

[136]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Data pins are nodes that transfer (such as taking and outputting) data from one
node to the other. These nodes are type specific. That means they can be connected
to variables of the same type. Some data pins are automatically converted if you
connect them to another data pin that is not of the same type. For example, if you
connect a float variable to string, the Blueprint editor will automatically insert
a float to a string conversion node. Like execution pins, they are drawn as an
outline when not connected, and a solid color when connected.

Connected Pin

Unconnected Pin

Node colors

Nodes in Blueprint have different colors that show what kind of node it is.

A red-colored node means it's an event node and this is where execution starts.

< Event BeginPlay

A blue-colored node means it can either be a function or an event being called. These
nodes can have multiple inputs or outputs. The icon on top of the function will be
changed based on whether it's a function or event.

J Jump

Target [self]

A purple-colored node can neither be created nor destroyed. You can see this node in
Construction Script and Functions.

"B Construction Script

[137]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

A grey node can be a Macro, Flow Control, or Collapsed node.

Target |5E-|f| Return Value

A cyan-colored node means it's a cast node. This node converts the given object
to another.

"+ Cast To Actor

Object Cast Failed [

As Actor

Variables

Variables are properties that hold a value or an object reference. They can be accessed
inside the Blueprint editor or from another Blueprint. They can be created to include
data types (float, integer, Boolean, and so on) or reference types or classes. Each
variable can also be an array. All types are color coded for easy identification.

Math expression

Math expression nodes are essentially collapsed nodes that you can double-click

to open the sub graph to see the functionality. Whenever you rename the node, the
new expression is parsed and a new graph is generated. To rename the node, simply
select it and press F2.

To create a Math Expression node, right-click on the graph editor and select Add
Math Expression node. You will then be prompted to type your Math Expression.

[138]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

For example, let's type this expression: (vector(x, y, z)) + ((a+ 1) * (b + 1)) and
press Enter.

(vector(x,y,z)) #+ ((a+ 1) *(b+1))

Return Value O»

You will now see that the Math Expression node has automatically parsed your
expression and generated proper variables and a graph from your expression.

The following operators are supported and can be combined with logical and
comparison operators to create complex expressions:

* Multiplicative: *, /, % (modulo)

e Additive: +, -

* Relational: <, >, <=, >=

* Equality: == (equal), != (not equal)

* Logical: | | (or), && (and), ” (power)

[139]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Creating our first Blueprint class

Now that we have an idea of what Blueprint is and what it does, let's create a simple
Blueprint actor that spins on its own and destroys itself after a few seconds with a
particle effect and sound. After creating our Blueprint, we will drag and drop this
into the world and we will also use the Level Blueprint to dynamically spawn this
Blueprint while running the game.

Creating a new Blueprint

To create this Blueprint, first right-click inside Content Browser and select Blueprint
Class. Once you click that you will be prompted to select a parent class for the
Blueprint. You need to specify a parent class for your Blueprint as it will inherit

all properties from that parent class.

Even though you can choose all existing classes (even other Blueprint classes),
let's take a look at the most common parent classes:

* Actor: An Actor-based Blueprint can be placed or spawned in the level

* Pawn: Pawn is what you can call an agent which you can possess and
receives inputs from the controller

* Character: This is an extended version of Pawn with the ability to walk, run,
jump, crouch, and more

* Player Controller: This is used to control the Character or Pawn
* Game Mode: This defines the game being played

* Actor Component: This is a reusable component that can be added to
any actor

* Scene Component: This is a component with scene transform and can be
attached to other scene components

In this example, we will use the Actor class as our parent because we want to place it
in the level and spawn at runtime. So choose Actor class and Unreal will create and
place your new Blueprint in Content Browser. Double-click on your newly created
Blueprint and this will open the Blueprint editor. By default, it should open the
Viewport tab but if it doesn't then simply select the Viewport tab. This is where

you can see and manipulate all of your components.

Now we need a component that will spin when this Blueprint is spawned. On the
Components tab, click Add Component and select Static Mesh component. After
you add the component, rename it to Mesh Component (you can choose whatever
name you want but, for this example, let's choose that name) and note how the
Details panel has been populated with Static Mesh properties.

[140]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

In the Details panel, you can find the section that corresponds to your component
type where you can assign the asset to use.

But, in this example, instead of directly assigning a mesh in the Components tab, we
create a Static Mesh variable and use that to assign the mesh in the graph. This way,
we can change the mesh without opening the Blueprint editor.

In the My Blueprints tab, create a new variable and set the type to Static Mesh
(make sure to select reference).

M In versions before Unreal Engine 4.9, you can search for Static Mesh and
Q simply select the reference. There was no additional options to select
before 4.9.

After that, rename that variable to My Mesh. Since this variable is used to assign the
asset to use with our Static Mesh component, let's expose this variable so that we can
change it in the Details panel after placing it in world. To expose this variable, select
it and enable Editable in the Details panel inside the Blueprint editor. After making
it editable, compile the Blueprint (shortcut key: F7) and you will be able to assign

a default mesh for the My Mesh variable. For this example, let's add a simple cube
Static Mesh.

Now that our variable is set, we can assign it to our Static Mesh component. Since
we know that Construction Graph is executed every time this Blueprint is initialized
and whenever a variable or property is changed, that is where we are going to assign
the mesh for our Static Mesh component. So, open the Construction Graph and:

* Right-click on the graph editor and search for the Get Mesh component.

* Select Get Mesh component from the context menu.

* (lick and drag from the output pin and release it. You will now see a new
context menu and, in that resulting menu, search for Set Static Mesh and
select it.

* Right-click again on graph editor and search for Get My Mesh.

* Select Get My Mesh and connect the output pin to the input (New Mesh) of
the Set Static Mesh Blueprint node.

* And, finally, connect the execution pin of Construction Script to Set Static
Mesh Blueprint node and press Compile (shortcut key: F7).

[141]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

If you check the Viewport tab after compiling, you will see your new mesh there.
From this point, feel free to drag this Blueprint to the world and in the Details panel
you can change My Mesh to any other Static Mesh.

1
~ Press Ctrl+E to open the associated editor of the object you have selected
in world.

Spinning static mesh
In Blueprint editor, there are a couple of ways to rotate a mesh and in this section we
will look into the simplest way, which is using a Rotate Movement component.

Open the Blueprint if you have closed it and add a new component called Rotating
Movement. This component will make this Actor continuously rotate at a given
rotation rate optionally around a specified point. This component has three main
parameters that can be changed in the Blueprint graph. They are:

* Rotation Rate: The speed at which this will update the Roll/Pitch/Yaw axis.

* Pivot Translation: The pivot point at which we rotate. If set to zero then we
rotate around the object's origin.

* Rotation in Local Space: Whether rotation is applied in local space or
world space.

You can create two new variables (Rotator and Vector variables) and make them
editable so you can change it in the Details panel in world. The final graph should
look like this:

Mesh Component

f set static Mesh

B Construction Script g —_—
[ J » D e e el e S

Target Return Value _-—@ Rotation Rate o _——@ Pivot Translation

SET

My Mesh @ New Mesh / Target Target
s Rotation Rate @

' Rotating Movement 1 Pivot @

[142]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Destroying our Blueprint Actor after
some seconds

Once we place or spawn this Actor in world we will destroy this actor with a particle
effect and sound. To do that:

* Create a new variable (float) and name it DestroyAfter. Let's give it a
default value of five seconds.

* Go to Event Graph and add a new event called Event BeginPlay. This node
is immediately executed when the game starts or when the actor is spawned
in the game.

* Right-click on the graph editor and search for Delay and add it. Connect
Event BeginPlay to the Delay node. This node is used to call an action
after a number of specified seconds.

* The Delay node takes a £1loat value, which is used for the duration. After
the duration runs out, execution is continued to the next action. We will
connect our DestroyAfter variable to the duration of Delay.

* Right-click on the graph and search for Spawn Emitter At Location. This
node will spawn the given particle effect at the specified location and
rotation. Connect Delay to this node and set a particle effect by assigning
it in the Emitter Template. To set the location, right-click on the graph and
search for GetActorLocation and connect it to Location pin.

* Right-click on the graph and search for Spawn Sound At Location. This
node will spawn and play a sound at the given location. Connect Spawn
Emitter node to this one.

* And, finally, to destroy this actor, right-click on the graph editor and search
for DestroyActor and connect it to Spawn Sound node.

The final graph should look like this:

T o

Now, when you place this actor in world and start the game you will see it spin
and, after five seconds (or the value you used in Destroy After), this actor will be
destroyed after spawning the particle effect and sound.

[143]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Spawning our Blueprint class in Level
Blueprint

We will now see how we can spawn this Blueprint Actor in world while the game is
running, instead of directly placing when editing.

Before we continue we will make a change to the DestroyAfter variable in our
spinning Blueprint Actor. Open our spinning actor's Blueprint editor and, in
Variables, select the DestroyAfter variable and, in the Details panel, enable the
Expose On Spawn setting.

4Variables

[ Components

Event Dispatchers

i Details

4 Variable
Variable Name DestroyAfter

Variable Type

Default

4 Default Value

Destroy After

This setting means this variable will be exposed in the Spawn Actor node.

[144]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 6

Open your level and, on the toolbar, click the Blueprints button and select Open
Level Blueprint. In Level Blueprint perform the following steps:

Right-click on the graph and search for Event BeginPlay and add it.

Right-click on the graph and search for Spawn Actor from Class and add it.
This node will spawn the given actor class at the specified location, rotation
and scale.

In the class pin set the class to our Rotating Blueprint Actor. Note how the
Destroy After variable is now exposed to Spawn node. You can now adjust
that value from that Spawn node.

Drag from the Spawn Transform node and release the left mouse button.
From the resulting context menu, select Make Transform. The transform
node contains 3D transformation including translation, rotation, and scale.
For this example, let's set the Location to 0,0,300 so that is this Actor will be
spawned 300 units above the ground.

The resulting graph should look like this:

> Event BeginPlay @& SpawnActor BP Rotate Component

Return Value

*~ Make Transform
@ Spawn Transform

Location Return Value @ —
o'| 0.0][v 0.0][Z 300.0] Collision Handling Override

Default
__ Rotation

* [x 00][v 00][z 00]

le

© 10V 10]z 0]

If you play (Alt+P) or simulate (Alt+S) you will see this rotating Actor spawn
300 units above the ground and spinning,.

[145]

www.it-ebooks.info


http://www.it-ebooks.info/

Blueprints

Summary

In this chapter, we have learned what components are and how we can use them
to define a Blueprint Actor. We also learned about Blueprint nodes and how you
can create them. From what you have learned in this chapter, you can take it even
further by:
* Spawning this actor when overlapping a trigger volume placed in the level
* Playing a particle and sound effect when spawning this Blueprint

* Applying damage to a player if the player is in a certain radius

In the next chapter, we will use Matinee to create a cut scene.

[146]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

Matinee provides the ability to keyframe various properties of actors over time,
either dynamically in gameplay or in cinematic game sequences. The system is based
on specialized tracks in which you can place keyframes on certain properties of an
actor. The user interface (UI) of Matinee is similar to other nonlinear video editing
software, which makes it easier and familiar for video editors.

In this chapter, we will create a Matinee sequence and learn how we can play it
through Level Blueprint. So to get started, let's start Unreal Engine 4 and create a
new project based on Third Person Template.

Creating a new Matinee

To open the Matinee UlI, we first need to create the Matinee asset. You can create

a Matinee asset by clicking on the Matinee button and selecting Add Matinee in

the level editor toolbar. When you click on it, you might get a warning saying that
Undo/Redo data will be reset. This is because, while you are in the Matinee mode,
some changes are translated into keyframes and editor needs to clear the undo stack.
Click on Continue and a new Matinee Actor will be placed in the level and the
Matinee editor will open. Let's take a closer look at the Matinee window:

= &G Ny Al

Settings Elueprints es Build Play Launech

& Add Matinee

Creating new Matinee Actor

[147]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

This is the Matinee Actor icon:

Matinee Actor placed in world

After creating a new Matinee Actor, it will automatically open the Matinee Window.
If it doesn't, then select the Matinee Actor in world and click on Open Matinee in
the Details panel.

5 Details

e MatineeActor

4 Matinee Actor

Open Matinee

Matinee Data InterpBata 0 a

-

[148]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Matinee window

Let's take a quick look at the Matinee window:

The Matinee window consists of:

e Toolbar: This contains all the common buttons for Matinee editor, such as
playing the Matinee, stopping it, and so on. Let's take a closer look at the
toolbar buttons:

o

e}

Add key: This adds a new keyframe at the current selected track.

Interpolation: This sets the default interpolation mode when adding
new keys.

Play: This plays a preview from the current position in the track view
at normal speed to the end of the sequence.

Loop: This loops the preview in the loop section.

Stop: This stops the preview playback. Clicking twice will rewind the
sequence and place the time bar at the beginning of Matinee.

Reverse: This reverses the preview playback.

Camera: This creates a new camera Actor in world.
Playback Speed: This adjusts the playback speed.
Snap Setting: This sets the timeline scale for snapping.

Curves: This toggles curve editor.

[149]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

Snap: This toggles snapping of time cursor and keys.

Time to frames: This snaps the timeline cursor to the setting selected
in the Snap Setting dropdown. It is only enabled if Snap Setting is
using frames per second.

Fixed Time: This locks playback of Matinee to the frame rate
specified in Snap Setting. It is only enabled if Snap Setting is using
frames per second.

Sequence: This fits the timeline view to the entire sequence.
Selected: This fits the timeline view to the selected keys.
Loop: This fits the timeline view to the loop section.

Loop sequence: This automatically sets the start and end of the loop
section to the entire sequence.

End: This moves to the end of the track.
Record: Opens the Matinee Recorder window.

Movie: This allows you to export the Matinee as a movie or image
sequences.

Since Matinee is similar to other nonlinear video editors, you can use the
following common shortcut keys:

[e]

o

[e]

o

[e]

] to play the sequence backward

K to stop/pause

L to play the sequence forward
Plus (+) to zoom in to the time line

Minus (-) to zoom out of the time line

Curve editor: This allows you to visualize and edit the animation curves
used by tracks in the Matinee sequence. This allows for fine control over
properties that change over time. Certain tracks with animation curves can
be edited in curve Editor by toggling the Curve button. Clicking on it will
send the curve information to curve editor where the curve will be visible
to the user.

[150]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

* Tracks This is the heart of the Matinee window. This is where you set all
your keyframes for your tracks and organize them into tabs, groups, and
folders. By default, when you create a Matinee, the length is set to 5 seconds.

° Tabs: These are used for organization purposes. You can put your
tracks into various tabs. For example, you can put all your lights in
your Matinee to the Lights tab, camera to the Camera tab, and so on.
The All tab will show all tracks in your sequence.

°  Track List: This is where you create tracks that can create keyframes
in the timeline and organize them into different groups. You can also
create new folders and organize all groups into separate folders.

Timeline Info: This shows information about the timeline including
the current time, where the cursor is, and the total length of the
sequence.

° Timeline: This shows all the tracks within the sequence and this
is where we manipulate objects, animate cameras, and so on using
keyframes. The green area shows the loop section (in between the
green markers). At the bottom of track view, you can see a small
black bar, which is called the Time Bar. If you click on and hold
it, you can scrub the timeline forward or backward, which allows
you to quickly preview the animation. To adjust the length of the
sequence, you move the far right red marker to the length you want
this Matinee to be.

[151]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

Manipulating an object

Matinee can be used to create cut scenes where you move the camera and manipulate
objects or it can be used for simple gameplay elements such as opening doors and
moving lifts. In this example, we will see how we can move a simple cube from one
location to another location.

From Engine Content, we will drag and drop the Cube mesh into our world. This is
located in the Engine Content\BasicShapes folder.

== Content Browser

I AddiNew'~ XL Import Save All & = | & Engine Content » BasicShapes »

PRI search Folders ONRLCER S -=rch Basicshapes
s Content

4@ Engine Content
[ Ar 1

To get Engine Content, you need to enable it in Content Browser.

1. At the bottom right corner of Content Browser, you can see View Options.

2. Click on it and then enable Show Engine Content.

Show the engine content in the view.

After placing our Cube in world, let's open the Matinee editor window. Make sure
the Cube is selected in world and right-click in the track list area and select Add
New Empty Group. You will now be prompted to type a name for your group. Let's
call it Cube_Movement.

[152]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

Note that if you see a notification at the bottom-right corner of

& your screen saying Cube Mobility has been changed to Movable,
" don't panic. Actors that are being manipulated in Matinee must
set the Mobility to Movable.

If you click on this group in Matinee now, you can see the Cube in world will be
automatically selected for you. This is because, when we created the group, we had
the Cube selected in world and whatever object you have selected in world will
automatically be hooked to the group you create.

To move the cube in world, we need to add a Movement Track to our Cube_
Movement group. To create this track:

1. Right-click on our Empty Group (Cube_Movement).
2. Select Add New Movement Track.

== Tracks

All Cameras Skeletal Meshes Lights Particles Sounds Events

Gube ey

Actors ]

Add New Bool Property Track

Add Event Track

Add \nimation Track

Add New Float Anim BP Parameter Track

Float Material Parameter Track

al Parameter Track
ty Track
Add Ne

Cut

Create Group Tab -

[153]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

This will add a new movement track to our Empty Group and will set the current
position of our cube as the first keyframe.

The small triangle in the beginning of the timeline is the keyframe

Now, we want the cube to move to the right by some distance and, by the end of this
sequence, it should come back to its default position. So let's scrub the time bar to the
middle of the sequence (since the default length is 5 seconds long, we will move the
time bar to 2.5) and go back to Viewport editor. There, we select and move the cube
by some distance to the right side (Y axis) and press Enter. Note that now Matinee
has created a new keyframe for you at the time slot 2.5 and you will see a dotted
yellow line that represents the movement path of the cube.

[154]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

To set the keyframe at the exact time (for example, precisely at 2.5) you can left-click
on the key frame to select it and then right-click and select Set Time. You will now be
prompted to enter the new time to set the keyframe. Here, you can type and set 2.5.

[155]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

If you scrub the time bar now, you will see the cube move from its original position
to the new position that we keyframed at time 2.5. Now, to get the cube back to

its original position at the end of the sequence, we can simply copy paste the first
keyframe to the end of the sequence. To do so, click on the first keyframe and press
Ctrl+C to copy it. Then, scrub the time bar to the end of the sequence and press
Ctrl+V to paste it. The finished Matinee should look like this:

£ Tracks
Alll Cameras Skeletal Meshes Lights Particles Sounds Events

CUbesVovement =

L& ozt

If you hit Play in the toolbar now, you will see the cube move from its original
location to the new location and then, by the end of sequence, it will go back to its
original location.

Now that our Matinee is ready, we will see how to play the Matinee in game. What
we are going to do is place a trigger box in level and, when our player overlaps it,
Matinee will play. When our player steps out of the trigger box, Matinee will stop.

To place a trigger box in world, you need to drag it and drop it into the viewport
from the Modes tab (which is under Place in the Volume category). If you don't
have the Modes tab, then:

1. Press Shift+1 to open it (make sure your viewport is in focus).

2. Inthe Modes tab, go to the Place mode (Shift+1).

3. Select the Volumes tab.

4. Drag and drop the Trigger Volume box.

[156]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

T
Fila ___Fdit___Window
A Modes

- |

q

Recently Placed
Basic
Lights

Visual Effects

Volumes

AllClasses

Level Streaming

Lightm aracter Indi

Lightmas

[157]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

Once the trigger box is placed in world (feel free to adjust the size of the trigger box),
right-click on it and navigate to Add Event | OnActorBeginOverlap.

Called when another actor begins to overlap this actor, for example a player walking into a trigger.
For events when objects have a blocking collision, for example a player hitting a wall, see 'Hit' events.
@note Components on both this and the other Actor must have bGenerateQverlapEvents set to true to generate overlap events.

Layel: Testmap (Persisizni)

This will add a new Overlap Event for our Trigger Volume in Level Blueprint.
Since we need to stop the Matinee after exiting the trigger, we will right-click again
on the Trigger Volume and navigate to Add Event | OnActorEndOverlap. We now
have two events (Begin Overlap and End Overlap) in our Level Blueprint.

[158]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

> OnActorBeginOverlap (TriggerVolume)

Other Actor

<> OnActorEndOverlap (TriggerVolume)

Other Actor

As you can see, both overlap events give us the actor that is currently overlapping
this Trigger Volume. We will use this information to play the Matinee only when a
character is overlapping. To do so, we will have to follow this process:

1.

Click and drag from the other Actor pin in the OnActorBeginOverlap event.
From the resulting context window, type Cast to Character and select it.

Connect the execution pin of OnActorBeginOverlap to the Cast node we
just created.

To play the Matinee, we first need to create a reference of it in Level
Blueprint. To do so, select the Matinee icon in world and right-click inside
the Level Blueprint. From the resulting context window, select Create a
reference to Matinee Actor. This will add a new node, which is referred to
the Matinee Actor in world. From this node, drag a new wire and type Play
and select it.

Connect the output (unnamed) execution pin of the Character node to the
Play node of Matinee.

To stop the Matinee when exiting the trigger, you can do the same setup as
previously, but instead of the play node, use the Stop node.

[159]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

The final graph should look like this:

e

2..\ GnAclorBeginﬂverle?{TliggeNolume) " v+ Cast To Character
P—> rP——"
Other Actor Object Cast Failed > Target

As Character

14§ MatineeActor

i
&> OnActorEndOverlap (TriggerVolume) »+ Cast To Character Target is M:

P— > b
Other Actor Object Cast Failed Target

As Character

Now, when you play the game and overlap the trigger, our Matinee will play.

Cutscene camera
Since you have learned how to create a Matinee and move an object, it is time to

learn how to create a simple cut-scene. In this section, we will create a camera that
focuses on the cube when Matinee is triggered.

[160]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

To create a camera, let's first position the viewport camera at the right location. In
your editor Viewport, navigate to the place where you want the Matinee camera to
be. In the following screenshot, you can take a look at where I placed the camera:

) remmin 1] BT OE B O Do

After navigating to your desired location, open the Matinee window. On the toolbar,
click on the Camera button (this will prompt you to enter a new group name) to
create a camera at your current Viewport camera location.

Window  Help

Interpolation: Playback Speed:

Add Key CurveputoClamped Play  Loop

-[ —

!-ﬁ'# I .,r-_.,:" 4'1# +(§24

This will also create a new Camera group with two tracks. They are Field of View
(FOV) and Movement. Since we don't use the FOV track, you can right-click on it
and select Delete Track, or simply press Delete to remove it from the track list.

[161]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

With the Movement Track of the camera selected, scrub the time bar to the end of
the sequence. Then in the editor Viewport, select the camera created by Matinee and
move it to a new location. In this example, I moved the camera to the right side and
rotated it by 30 degrees. In the following screenshots, you can see the initial location
of the camera and the new location at the end of the sequence.

[ — liseinzar |
IVGAMErE

> i)

Bl e

[162]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

If you play now and trigger the Matinee from the Trigger Volume we placed earlier,
you will see the cube moving as usual but you will not see it from the camera
perspective. To see it through the camera we placed now, you need to add a Director
Track to your Matinee. Let's take a look at what a Director Group is.

Director group

Director group serves the main function of controlling the visual and audio of your
Matinee. The important function of this group is to control which camera group is
chosen to be seen in the sequence. We use this group to cut between one camera and
the next when we have multiple cameras in Matinee.

To create a new Director Group, right-click on the track list and select Add New
Director Group. A new separate group will be opened on top of all other groups.

Since we only have one camera in this group, we will add that one to our director
track. Select the director track and press Enter. A new pop up will ask you which
track to choose, so select MyCamera group (this is the group we created using the
Camera button in Matinee toolbar). The name MyCamera was something I chose. A
new keyframe will be added to the director track that says MyCamera [Shot0010].
This means that whenever this Matinee is played, you will see through the
MyCamera group. Later, if you add more cameras, you can switch between cameras
in Director Group.

[163]

www.it-ebooks.info


http://www.it-ebooks.info/

Matinee

The end result should look like this:

Now, if you play the Matinee in the game, you will see it through the new
Camera view.

Sometimes, when cutscenes are played, it's better to disable Player movement (so
that when the cutscene is active all player inputs, such as moving around, will be
disabled) and HUD and all that. To do these, select the Matinee Actor in world and
then in the Details panel, you can set the necessary options.

[164]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 7

3 De & world
o
Fo-
b Transform

4 Matinee Actor

Open Matinee

Matinee Data InterpBata_0 -

4 Play
Play Rate

o
=

Play on Level Load
Looping

Skip Update if N

pable

4 Rewind

Lt

EEQ

4 Cinematic
Disable Movement Input
ble L at Input

Hide Player

Hide Hud

Summary

Matinee is a very powerful tool to create in game cinematics. With multiple cameras
and other visual/audio effects, you can create good-looking and professional
cinematics. Since you learned how to manipulate objects and cameras in this chapter,
you should now try to create an elevator movement with a camera that acts as a CCTV.

[165]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

Unreal Motion Graphics (UMG) is a User Interface (UI) authoring tool that

is used to create in game Heads up Display (HUDs), Main Menu, and other Ul
elements. They are created using a special blueprint called Widget Blueprint, which
contains various predefined widgets that you can use to construct your interface.
Let's take a look at UMG now.

In this chapter, you will learn how to create UMG Widgets and assign one to
our character to display his health. You will also learn how to create floating
health bars.

Setting up a project
To get started, start Unreal Engine 4 and create a new project based on Third
Person Template.

[167]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

Since we are going to have a HUD with a health bar, let's add a new health variable
to our Third Person Character Blueprint. Open up the ThirdPersonCharacter
Blueprint in the ThirdPersonBP/Blueprints folder:

4Variables
[ My Character
== BaseTurnRate

== BaselookUpRate

Event Dispatchers +

i) Details

BHo-
4 Variable

Variable Mame Health

Variable Type

Editable

Slider Hange
S

Replication

4 Default Value
Health

Inside our character Blueprint, create a new variable called Health and follow
these steps:

* Set the variable type to £loat and give it a default value of 100. The next step
is to create a Pure function that shows the percentage of the total health of

the player.

[168]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

* Inside your Character Blueprint, create a new function (for example,
GetHealthPercentage) and open it.

* In the function graph, get your health variable and divide it by the default
value of health. By doing so, we will get the percentage of our player health.
To get the default value of any variable in your class, just right-click in graph
and search for Get Class Defaults. This node will return all the default
values of the variables you created.

* Now, create a new output for this function (float type) and connect the result
(divide node) to this output. This function will now return the percentage of
your player health. For example, if your player's health is 42, then dividing it
by 100 (default health value) will return 0.42. We can use this information for
our progress bar in HUD as well as the floating health bar.

The resulting Blueprint function should look like this:

9 Get Class Defoults
Class

4 Outpats

T T X

Note that it is very important to set the output name
s to ReturnValue.

We will now create a UMG Widget and make use of this function to display the
player's health.

[169]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

Creating the HUD Widget

To create a new Widget Blueprint:

* Right-click on Content Browser

* Select Widget Blueprint under the User Interface section:

Widget Blueprint

The widget blueprint enables extending UUserWidget the user extensible UWidget.
held (Ctrl + Alt) for more

Once you select that, a new Widget Blueprint will be placed in Content Browser and
it prompts you to enter a new name. For this example, I named it MyUMG_HUD.

[170]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Double-click on MyUMG_HUD to open it:

No Amimation Selected

Widget Blueprint User Interface

This is Widget Blueprint. This is where you create the Ul for your game. Let's take a
closer look at Widget Blueprint UI:

Toolbar: This is the common toolbar that lets you Compile, Save, Play, and
Debug your graph.

Editor Mode: This lets you switch between the Designer mode and the
Graph mode.

Visual Designer: This is the main area where you drag and drop all the
widgets to create your Ul as it appears in the game.

Palette: This is the list of widgets that you can drag and drop into Visual
Designer. This will also list any custom widgets you have created.

Hierarchy: This displays the structure of this widget. You can drag and drop
widgets in this too.

Animation List: This lets you create new Animation Tracks, which you can
use to animate various properties of widgets.

Animation Track Editor: After creating a new Animation, you can select that
Animation and create key frames here.

Since we will be using this as our player HUD, let's create a progress bar that shows
the player's health.

[171]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

Creating the health bar

From the Palette window, drag and drop the Progress Bar widget on to the Visual
Designer. Once placed on the Visual Designer, you can resize it to any size you
want. You can also place it anywhere, but, for this example, I decided to keep it at
the bottom-left corner of the screen.

When you select the Progress Bar widget, you will see all the properties that you can
edit in Details Panel including the name of your Progress Bar. For this example, I
have changed the name of our progress bar to HealthBar. The Progress Bar widget
offers a variety of settings that you can change including the look and feel.

The following screenshot is from the health bar that I have just placed:

A Details

ound Image

[: Marguee Image

4 Progress

Perc
Bar Fill Type
Is Marquee
4 Appearance
[ Fill Color and Opacity

4 Behavior

4 Performance
latile

4 Render Transform

[172]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Let's take a quick look at some of the common settings that you will change:

Anchors: These define the location of the widget and maintain it for varying

screen sizes. By default, there are 16 anchor positions and, typically, one of these is
sufficient for most needs. But there are times where you have to adjust the Anchor
position manually. For example, if your game has an inventory system where the
player can dynamically resize the contents, then you need to tweak the Anchor
position manually. For this example, we will set the Anchor position to the lower-left
corner of the screen.

Position X: This positions the widget on the X Axis. (horizontal).
Position Y: This positions the widget on the Y Axis. (vertical).
Size X: This scales the widget on the X Axis.

Size Y: This scales the widget on the Y Axis.

Alignment: This is the pivot point of the widget. Setting both X and Y to
0.0 will set the pivot point to the upper left corner and setting both to 1. 0
will set the pivot point to the lower-right corner. You can use the alignment
option with Anchors to precisely set a widget to the center of the screen.
For example, you can set alignment (both X and Y) to 0.5 and Anchors to
the center and set both position X and Y to 0. 0. This will bring your widget
exactly to the center of the screen. This can be used for setting a crosshair.

Size to Content: If enabled, this widget will ignore Size X and Size Y values
and, instead, scale according to the Widget content. For example, if your
widget is a Text Block, then it will scale automatically according to the

size of the given text.

ZOrder: This defines the render priority for this widget. Higher priority
widgets are rendered last, which makes them appear on top of other widgets.

Style: This defines the look and feel of this widget. Note that each widget
has its own unique style settings (you can either use a Texture or Material
to use as an image for your widget). If it's a progress bar widget, then style
category will let you change the progress bar fill image, background image,
and marquee image. If it was a button, then you can change the image of the
button based on the button state. For example, Normal state, Hover state,
Pressed state, and so on.

Percent: This fills the progress bar with the given value. It ranges from 0-1.
In this example, we will use the Health Percentage of our character to drive
this value.

[173]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

* Bar Fill Type: This defines how the progress bar fills. For example, from left
to right, right to left, from the center, and more.

* Is Marquee: This enables the marquee animation progress bar. This means that
the progress bar will show activity but does not indicate when it will stop.

* Fill Color and Opacity: This defines the color and opacity for the fill image of
the progress bar.

Now that we know the Progress Bar settings, let's continue and assign the Health
Percentage of our character to the health bar we created. To do that, first let's switch
our Editor mode to Graph mode by clicking on the Graph button on the top-left
corner of Widget Blueprint. Once you click, you will see the Blueprint graph editor
for this widget.

On the left side of the widget Blueprint, you will see the My Blueprint tab. As you
have learned previously in the chapter on Blueprints, this is where you create your
variables. So let's create a new variable (I named it MyCharacter) and set the type
for our Third Person Character. See the following screenshot for reference:

© EventTick g person character X

Functions | er , Object Types

Macros i Third Person Character >

4Variables

HealthBar

Event Dispatchers

Reference an instanced object of type 'Third Person Character’

4 Variable

Variable Mame

Variable Type . Third Person Ciw

[174]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

Once you create that, go back to the Designer mode and select your Progress
Bar. In the Details Panel, you can see a Bind option near the Percent value.
When you click on it, you will see a new dropdown menu that shows our newly
created MyCharacter variable. Move your mouse over it and you will see the
GetPlayerHealthPercentage function, which we created previously:

4 Progress
Bar Fill Type Left to Right  w # Create Binding

Is Marquee [ ]
Func

4 Appearang
PP .. GetPlayerHealthPercentage

[* Fill Color ar

Once you click on that, it will set the Health Percentage value from our character to
the progress bar.

If you don't see your character variable in the Bind dropdown, make
s sure you compiled the Widget Blueprint.

Assigning our HUD to Character

Now that we have finished setting up the HUD, it is time we assign it to the character.
Let's close Widget Blueprint for now and open ThirdPersonCharacter Blueprint.

Inside our Character Blueprint, open the Event Graph and:
* Right-click and, from the resulting context menu, search for Event BeginPlay
and select it.

* Drag a wire from the execution pin of Event BeginPlay and release the
mouse button. From the context menu, search for Create Widget and select it.

* In the Create Widget node, select MyUMG_HUD in the class pin.

* From the Return Value of the Create Widget node, drag a new wire and
release the mouse button. From the context menu, search for Set My
Character and select it.

* Right-click on the graph editor and search for self and select Get a reference
to self. Connect this node to the My Character pin.

[175]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

* Again, drag a wire from the Return Value of the Create Widget node and
search for Add to Viewport.

* Connect the output execution pin of the Set My Character node to the input
execution pin of Add to Viewport.

The resulting graph should look like this:

7 )

SET

& Event BeginPlay "8 Create My UMG HUD Widget /—J »-
» My Character

b— > @
s Target T "L]
Return Value _f Add to Viewport o

Owning Player

1 4

Now, if you play the game, you will see the health bar filled completely:

GetHealthPercentage to ReturnValue.

[ If your health bar is still empty, make sure you set the output name of ]
s

[176]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

To test it, we can create a new function called DecrementHealth and create a graph
like this:

i Decrement Health | 5 ‘Branch = | _fSe_I ?l;ve?hy_F-u;clion Name
—_— True [ » —_—

Condition False [ _——@ Heslth o cf Return Value

SET o

Looping

Health @—<

[ Random Float in Range

Return Value @ <——— <> Decrement Health

—»
| — —@ Health
8 Get Class Defaults @ Health
Class Base Tumn R:
Third Pe i
BaseLook Up R i
,/"
Health @ —

After that, drag and drop this function from your My Blueprints tab and connect it
after the Add to Viewport node. Now, if you start playing, you will see the player
health going down randomly.

Creating floating health bars

In this section, you will learn how to create a floating health bar above the character's
head. Let's go back to Content Browser and create a new Widget Blueprint (for this
example, I'll name it MyFloatingHealthbar) and open it.

In the Designer tab, you can see an option called Fill Screen at the top-right corner
of the visual designer. Click on that and change it to Custom:

g Designer

3 Details

[177]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

The Custom mode will let you assign the width and height of this widget. Let's set
the width and height to 256 and 32. Now, we will drag and drop a new Progress Bar
into the visual designer and use the following settings:

4 Slot (Canvas Panel Slot)

Anchors -

[» Alignment

Size To Content

4 Progress
Percent

Bar Fill Type

Set the Anchors to the very last anchor (this is the Fill Anchor). Anchor helps the
widget stay in its position with different screen sizes. This avoids the widget being
cropped off the screen. In addition to the fill anchor, there are other preset anchors
too, such as fill bottom left side, fill right side, fill bottom area, fill top area, top left,
center, right corners, and more. Based on the position of your widget, you can select
any Anchor you want and, in the game, the widget will be positioned relative to the
Anchor position.

In this example, since we set the anchor to fill, Position X and Y and Size X and Y
will be replaced with Offset Left, Top, Right, and Bottom respectively. Change the
Offset Right and Bottom to 0. 0. The Progress Bar will now be properly stretched
to the width and height of the visual designer.

Now, let's create a new variable called My Character with the type set to your
ThirdPersonCharacter Blueprint and bind the Percent value to your character's
GetHealthPercentage function. This is the exact same step we performed for our
HUD Widget.

[178]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

After setting the percent value, let's close this Widget Blueprint for now and open
ThirdPersonCharacter Blueprint. Switch to the Viewport tab and click on Add
Component in the Components tab and select Widget Component:

= Components

+ Add Component;=

® Pawn Sensing

¥ Cube
¥ cylinder
& Cone

le Collision
e Collision

LeapMotior
& Leap Motion Controller

Once you select it, this widget component will be added to your Player Character.
Select the newly added Widget Component and in Details Panel, set the Draw Size
to the same size we used for our MyFloatingHealthbar, which was 256 and 32. And
then set the Widget Class to MyFloatingHealthbar class and set Space to Screen.
Finally, move the Widget to your desired location. In this example, I've set it above
the character's head.

[179]

www.it-ebooks.info


http://www.it-ebooks.info/

Unreal Motion Graphics

For reference, here is the screenshot:

-=_ Components
+ Add Component=
i ThirdPersonCharacter(self)

4 ® CapsuleComponent (Inherited)

R ArrowComponent (Inherited)

4@ CameraBoom
%y FollowCamera
L, Widget

# CharacterMovement (Inherited)

&= Add New ~ EEEI]
4Graphs
[ e EventG

4 Functions

althPercentage
ntHealth

Macros +

o f
Ho-
[» Variable

I Transform

I Sockets

4 User Interface

€0+ xo

Max Inter: Gt 1000.0 W

If you play now, you will see the health bar floating on top of the player's head but
it will be empty. This is because we haven't assigned the My Character value to our
floating health bar. To make it work:

1. Switch to the Construction Script tab.

2. Right-click anywhere on the Construction Script tab, search for Get Widget,
and select it.

[180]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 8

3. Drag a new wire from the Widget node you just created, search for Get User
Widget Object, and select it.

4. Drag a new wire from Get User Widget Object Return Value pin, search for
Cast to MyFloatingHealthbar, and select it.

5. Connect the output execution pin of Construction Script to this newly
created Cast node.

6. From the output pin (such as My Floating Healthbar) drag a new wire and
search for Set My Character and select it.

7. Connect the unnamed output execution pin of the Cast node to the Set My
Character node.

8. Right-click on the graph editor, search for self, and select Get a reference
to self. Connect this node to the My Character pin.

That's it! Now if you press play, you will see your character's health bar floating on
top of your player's head:

Summary

UMG can be used to create a wide variety of Ul effects. From here, you can extend
this by adding a player portrait image next to your floating health bar or give a
weapon to your character and show the ammo count for that weapon and more.
You can also add the Widget component to other actors in your game (for example,
a treasure chest) that shows information about that actor. Remember that laying out
your Ul in Visual Designer is only the beginning. To make your Ul look good, you
have to change the look and feel by changing the style of your widgets.

[181]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

Particles in Unreal Engine 4 are created using cascade particle editor, which is a
powerful and robust editor that allows artists to create visual effects. Cascade editor
lets you add and edit various modules that make up the final effect. The primary job
of the particle editor is to control the behavior of the particle system itself whereas
the look and feel is often controlled by the material.

In this chapter you will learn about the cascade particle editor and create a simple
particle system.

Cascade particle editor

To access cascade particle editor, you need to create a Particle System in Content
Browser by right-clicking on the Content Browser and selecting Particle System.
When you select it, a new Particle System will be created and it prompts you to
rename it. Give it a name and double-click on it to open cascade particle editor.

[183]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

Once you open it you will see a window like this:

Cascade Editor User Interface

Cascade particle editor consists of five primary areas and they are:

* Toolbar: This contains visualization and navigation tools
* Viewport: This shows the current particle system
* Details: This lets you edit the current particle system, emitter, or modules

* Emitters: These are the actual particle emitters and contain modules that are
associated with the emitter

* Curve Editor: This is the editor that lets you modify properties in either
relative or absolute time

Toolbar

Toolbar contains various buttons. Let's take a quick look at them:

* Save: This saves the particle system
* Find in CB: This locates the current particle system in Content Browser

* Restart Sim: This restarts (resets) the current simulation

[184]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

* Restart Level: This is the same as Restart Sim but will also update all the
instances placed in level

* Thumbnail: This saves the viewport view as a thumbnail for
Content Browser

* Bounds: This enables or disables rendering of particle bounds
* Origin Axis: This displays the origin axis in viewport

* Regen LOD: Clicking on this generates the lowest LOD duplicating the
highest LOD

* Regen LOD: Clicking on this generates the lowest LOD using values based
on the highest LOD

* Lowest LOD: This switches to the lowest LOD

* Lower LOD: This switches to the next lowest LOD

* Add LOD: This adds a new LOD before the current LOD

* Add LOD: This adds a new LOD after the current LOD

* Higher LOD: This selects a higher LOD

* Highest LOD: This selects the highest LOD

* Delete LOD: This deletes the current LOD
LODs are ways to update the particle effects to use efficient screen space depending
on player distance. Based on the effect, there can be modules in a particle system that
can be too small to render if the player is far away. Imagine fire embers. If the player
is far away, the particle system will still process and calculate these effects which we

don't need. This is where we use LODs. Level of Detail (LODs) can turn off specific
modules or even shut down the emitter based on player distance.

Viewport

Viewport shows you the real-time changes made to the particle system as well as
other information's, such as total particle count, bounds, and so on. On the top left
corner, you can click on the View button to switch between various view modes,
such as Unlit, Texture Density, Wireframe mode, and so on.

[185]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

Navigation

Using the following mouse buttons you can navigate inside the viewport:

* Left Mouse Button: This moves the camera around the particle system.
* Middle Mouse Button: This pans the camera.

* Right Mouse Button: This rotates the camera.

* Alt + Left Mouse Button: This orbits the particle system.

* Alt + Right Mouse Button: This dollies the camera forward and backward
from a particle system.

* F: This focus on the particle system.
* L + Left Mouse: This rotates the light and only affects particles using Lit
material. Unlit materials have no effect.

Inside the Viewport, you can play/pause the particle simulation as well as adjust the
simulation speed. You can access these settings under the Time option in Viewport.

== Yiewport

 view Ji Time

|| Play/Pause

/| Realtime
| Loop

[186]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Details

The Details panel is populated by the currently selected module or emitter. The
main properties of the particle system can be accessed by selecting nothing in the
Emitters panel or by right-clicking on the Emitter list and navigating to Particle
System | Select Particle System.

* Emitters

Panticle Emtter

s

Emitter

H Particle System )|l
] Select Particle System

Emitter

The Emitter panel is the heart of the particle system, and contains a horizontal
arrangement of all the emitters. In each emitter column, you can add different
modules to change the look and feel of the particles. You can add as many emitters
as you want and each emitter will handle different aspects of the final effect.

= Emitters

Flaejuirael
Spawn
Lifetime

Initial Size

Initial Velocity

Color Over Life

[187]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

An Emitter contains three primary areas, and they are as follows:

*  On top of the emitter block are the primary properties of the emitter, such as
name, type, and so on. You can double-click on the gray area to collapse or
expand the emitter column.

* Below that, you can define the type of emitter. If you leave it blank (as in the
preceding screenshot), then particles are simulated on the CPU.

* Finally, you can add modules to define how particles look.

Emitter types

Cascade editor has four different emitter types, and they are as follows:

* Beam Type: When using this type, the particle will output beams connecting
two points. This means you have to define a source point (for example, the
emitter itself) and a target point (for example, an actor).

* GPU Sprite: Using this type lets you simulate particles on the GPU. Using
this emitter lets you simulate and render thousands of particles efficiently.

* Mesh Type: When using this, the particle will use actual Static Mesh
instances for particles. This is pretty useful for simulating destruction effects
(for example, debris).

* Ribbon: This type indicates that the particle should be like a trail. This
means, all particles (in order of their birth) are connected to each other
to form ribbons.

Curve editor

This is the standard curve editor that lets the user adjust any values that need to
change during the particle's lifetime or across the life of an emitter. To learn more
about curve editor, you can visit the official documentation available at https://
docs.unrealengine.com/latest/INT/Engine/UI/CurveEditor/index.html.

Creating a simple particle system

To create a particle system:

1. Right-click on Content Browser.

2. Select Particle from the resulting context menu.

[188]

www.it-ebooks.info


https://docs.unrealengine.com/latest/INT/Engine/UI/CurveEditor/index.html
https://docs.unrealengine.com/latest/INT/Engine/UI/CurveEditor/index.html
http://www.it-ebooks.info/

Chapter 9

4.
5.

A new particle system asset will be created in Content Browser and prompts
you to rename it.

For this example, let's call it MyExampleParticleSystem.

Now, double-click on it to open the Particle editor.

By default, Unreal creates a default emitter for you to work with. This emitter
contains six modules, and they are:

Required: This contains all the properties required by the emitter, such as the
material used to render, how long the emitter should run before looping, can
this emitter loop, and so on. You cannot delete this module.

Spawn: This module contains the properties that determine how the particles
are spawned. For example, how many particles to spawn per second. You
cannot delete this module.

Lifetime: This is the lifetime of the spawned particles.

Initial Size: This sets the initial size of particles when spawning. To modify
the size after spawning, use Size by Life or Size by Speed.

Initial Velocity: This sets the initial velocity (speed) of particles when
spawning. To modify the velocity after spawning, use Velocity/Life.

Color over Life: This sets the color of a particle over its lifetime.

For this example, we will modify the existing emitter and make it a GPU particle
system that looks like sparks. We will also add collisions so that our particles collide
with the world.

Creating a simple material

Before we start working with particles, we need to create a simple material that we
can apply to the particles. To create a new material:

1.

Right-click on Content Browser and select Material. Feel free to name it
anything.

Open Material editor and change Blend Mode to Translucent. This is
required because GPU particle collision will not work on opaque materials.

Then, change Shading Model to Unlit. This is because we don't want the
sparks to be affected by any kind of light since they are emissive.

[189]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

4. Finally, create a graph like this:

M_Example

Texture Sample &

L L
4 Physical Material @ Emissive Color
wys Material  None . @ Opacity
city
- B

O World Position Offset
“Particle Color o, -
Multiply ¥

4 Translucency

O Refraction
Lighting M

Dir

Note that the circular gradient texture in the Texture Sample
L= mnode comes with the Engine itself. It's called Greyscale.

Now that we have our material, it's time to customize our particle system:

1. Select the Required module and under the Emitters group, apply our
material created in the previous step.

2. Right-click on the black area below the emitter and select New GPU Sprites
under Type Data. This will make our emitter simulate particles on GPU.

* Emitters
Sparks
. 204

Emitter
Spaw

Initial

Color TT

Const Collision

Spher  color New Ribbon Data

[190]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

3. Select the Spawn module and under the Spawn group, set Rate to 0.
This is because instead of spawning a certain amount of particles per second,
we want to burst hundreds of them in one frame.

4. Under the Burst group, add a new entry in Burst List and set Count to 100
and Count Low to 10. This will select a random value between 100 and 10
and will spawn that many particles.

The final Spawn settings will look like this:

4 [Details

Search Eﬂv

4 Spawn

4 Rate

4 Distribution

4 Burst
Pa Burst Method
4 Burst List
40
Count

Count Low

[191]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

5. After adjusting the Spawn settings, we set the Lifetime of the particles to 0.4
and 3.0, so each spawned particles' lifetime is between 0.4 and 3.0. Now that
we have particles spawning, it's time to adjust their size. To do so, select the
Initial Size module and set Max to 1.0, 10.0, 0.0 and Min to 0.5, 8.0, 0.0.

]

4 Distribution Distributicn Vector Uniform
b Max V100
b Min

[» Mirror Flags 3 elements
Use Extremes B
Can be Baked

Note that since GPU sprites are 2D, you can ignore the Z value.
L That's why we set them to 0.0.

6. After that, select the Initial Velocity module and set Max to 100.0, 200.0,
200.0 and Min to -100.0, -10.0, 100.0.

7. Now, if you drag and drop this particle into the world, you will see the
particles bursting into the air.

Note that if you see nothing happening, make sure Real-Time is
L turned on for the editor (Ctrl+R).

[192]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Adding gravity

In order to make things a bit more real, we will simulate gravity on these particles.
Go back to your particle editor and follow these steps:

1. Right-click on the module area.

2. Select Const Acceleration from the Acceleration menu. This module will add
the given acceleration to the existing acceleration of particles and updates the
current and base velocity.

= Emitters

Sparks
& 101

GPU Spr

Lifetime
Initial Size
Initial Velocity

Coler Over Life

Emitter

Partic

TypeData

3
Cors Ao

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

3. For the Acceleration value, use 0.0, 0.0, -450.0. A negative value of Z
(that is, -450) will make the particles go down as if they are affected

by gravity.

Note that the default gravity value is -980.0. You can try
L= this value as well.

Now, if you look at the particle in world, you can see them going down as if they are
affected by gravity.

[194]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Applying the color over life module

Now that we have something like sparks, let's apply some color to it. Select the Color
Over Life module and apply the settings shown here:

ive Tangent
[ Leave Tangent

Interp Mode

ive Tangent
[ Leave Tangent

Interp Mode

Can be Baked

Ipha Over Life

Clamp Alpha

[195]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

Color Over Life is a curve value. It means you can define what color to apply at a
certain point in the lifetime of particle. The 0.0 value is the beginning and 1.0 is the
end. In the preceding screenshot, you can see I have applied a bright reddish orange
color (50.0, 20.0, 8.0) when the particle is spawning (In Val = 0.0) and bright white
color at the end (In Val =1.0).

Adding collision module

To complete this effect, we will add a Collision module so that our particles will
collide with the world. To add the Collision module, go through the following steps:

1.

Now,

Right-click on the modules area and select Collision from the
Collision menu.

Select the Collision module.

Set the Resilience value to 0.25. This will make the collided particles less
bouncy. Higher resilience means more bouncy particles.

Set Friction to 0.2. This will make the particles stick to the ground.
A higher friction value (1.0) will not let the particle move after colliding,
whereas lower values make the particle slide along the surface.

if you simulate or play the game with this particle in the world, you can see it

bursting and colliding with the world but it's very unrealistic. You can easily notice
that every second this particle keeps repeating. So to prevent this, follow these steps:

1.

Open the particle editor.
Select the Required module.

Under the Duration settings, set Emitter Loops to 1. By default, this is set
to 0, which means it will loop forever.

i Details

Y =) =] © -

I Emitter

4 Duration

Emitter Duration

Emitter Loops

[196]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Playing particle in Blueprints

Now that our particle effect is ready, let's play it using Blueprints:

1.

AN N

Right-click on Content Browser.

Select the Blueprint class.

From the resulting window, select Actor.
Double-click on the Blueprint to open the editor.
Select your bursting particles in Content Browser.

Open the Blueprint editor and add a new Particle System Component (if
you select the particle in Content Browser, it will automatically set that
particle as the template for the Particle System Component).

Go to the Event Graph tab.

Right-click anywhere on the graph and select Add Custom Event... from the
Add Event category.

All Actions for this Blueprint Context Sensitive

Select a Component to see available Events & Functions

I Add Component
4 Add Event
[ Actor
[ Collision
[ Game
[ Mouse Input
[ Touch Input
¢ add custom Event...
ent nPlay

<> Event Tick
kAl
I» Animation
I» Audio
I Call Function

[ N R (R ————"

[197]

www.it-ebooks.info


http://www.it-ebooks.info/

Particles

9. Rename that Custom Event with any name you like. For this example, I
renamed it ActivateParticle.

10. Create a graph like this:

“& Activate Par
&> Event BeginPlay Targel is BP

& ActivateParticle - [ Activate
i T Delay ° Target is Ac
»P— p Completed p ——— B

Vi @ Duration Target

—_ Reset
_f Random Float in Range / et

/
Return Value @

“ psPartic

This Blueprint will first execute ActivateParticle when the game begins and when
the event is executed, it randomly selects a time (in seconds) between 0.2 and 2.
When the time runs out, it activates the particle and calls this event again.

Now, if you drag and drop this particle into the world and start playing, you will see
the particles randomly bursting:

[198]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 9

Summary

From here, you can extend this particle and add some lights to make it look even
more real. Note that the Light module cannot be used with GPU particles so you
need to create another emitter and add a light module there. Since you learned about
the GPU particle data type, you can add more and more emitters that use other data
types, such as beam type, mesh type, ribbon type, and so on. From what you learned
in this chapter and other chapters, you can create a Blueprint that includes a light
mesh that emits this spark particle effect when it receives damage.

In the next chapter, we will dive into the world of C++.

[199]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

10

Introduction to Unreal C++

In Chapter 6, Blueprints, you learned about Blueprints, the visual scripting language
of Unreal Engine 4. Now you will learn about C++, which can be used to create base
classes for Blueprints. In this chapter, you will learn how to create a C++ project

(we will use the Third Person Template) and modify it to add support for health and
health regeneration for our character. You will also learn how to expose variables
and functions to Blueprint.

This chapter will be focused on writing C++ code using Visual Studio 2015 in
Microsoft Windows.

Setting up Visual Studio 2015

With Unreal Engine 4.10, you will need Visual Studio 2015 to compile C++ for your
projects. There are three editions of Visual Studio available. They are:

* Community edition: This is free for any individual and nonenterprise
organizations for up to five users. For this book, I will be using this edition.

* Professional edition: This is a paid version and is useful for small teams.

* Enterprise edition: This is for large teams working on projects of any size

and complexity.

You can download the Visual Studio 2015 community edition from https://www.
visualstudio.com/downloads/download-visual-studio-vs

[201]

www.it-ebooks.info


https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/downloads/download-visual-studio-vs
http://www.it-ebooks.info/

Introduction to Unreal C++

After visiting the above link, select Community 2015 and choose your format
to download. You can either download the web installer or the offline installer.
To download the offline installer, select the ISO format:

Visual Studio downloads

Visual Studio 2015

e

Enterprise 2015

Professional 2015

Test Professional 2015
Express 2015 for Desktop
Express 2015 for Web
Express 2015 for Windows 10

Visual Studio 2015 Update 1

Team Foundation Server 2015
Visual Studio Code

Tools for Visual Studio 2015
Visual Studio 2013

Team Foundation Server 2013
Tools for Visual Studio 2013
Visual Studio 2012

Top Third-Party Extensions

.NET Framework

Visual Studio Community 2015 with Update 1 - Free

Visual Studio Community 2015 with Update 1 is a free, fully featured, and extensible IDE for individual developers,
open source projects, academic research, education. and small professional teams. Create applications for
Windows, Android, and i0S as well as web applications and cloud services. Build apps for any platform, Use
designers, editors, debuggers, and profilers in a single tool. Access thousands of extensions and more.

These cumulative updates to Visual Studio 2015 include a variety of bug fixes and capability improvements. To
find out what's new in Visual Studio 2015 Update 1. see the Visual Studio 2015 Update 1 Release Motes. For a list
of fixed bugs and known issues, see the Visual Studio 2015 Update 1 MSDN Article.

If you have Visual Studio Community 2015 installed on a machine with Internet access, Visual Studio 2015 Update
1 displays in the Notifications Hub. Te install, select the notification, and then complete the installation actions.
You can also download Visual Studio 2015 Update 1 here.

Note: If you have Visual Studio Community 2015 (original release version) installed and run the download from
this page, only Visual Studio 2015 Update 1 is installed. If you don't have it installed and run the download, both
Visual Studio Community 2015 and Update 1 are installed. In either instance, Visual Studio 2015 Language Packs
(original release versions) can also be installed.

Choose language: | English v

Choose format: |® Web installer IS0 2

Visual Studio Community 2015 with Update 1 - Free - English

After downloading the setup, double-click on vs_community.exe to run the setup
and install Visual Studio 2015.

s Before installing Visual Studio 2015, make sure you select Visual C++
under the Programming Languages section. This is required to work
ASS . .
with Unreal Engine 4.

[202]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

0 Visual Studio

Community 2015
with L >

Features Languages

Select features

H Pro ming Languages

v

Setup requires up to 10 MB

When the installation is complete, the setup will prompt you to restart your
computer. Do this, and you are good to go with Unreal Engine 4 C++.

Workflow improvements

There are some recommended settings for Visual Studio 2015 to work with Unreal
Engine 4 that improves the overall user experience for developers. Some of them are:

* Turn off Show Inactive Blocks. If you do not, many chunks of code may
appear grayed out in the text editor. (Tools | Options | Text Editor |
C/C++ | View).

[203]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

* Set Disable External Dependencies Folders to True to hide unneeded
folders in the Solution Explorer. (Tools | Options | Text Editor | C/C++ |
Advanced).

* Turn off Edit & Continue features. (Tools | Options | Debugging | Edit
and click on Continue).

e Turn on IntelliSense.

Creating a C++ project

Now that we have Visual Studio installed, let's create a project that includes C++
code. In this project, we will extend the Third Person Template that comes with
Unreal Engine 4 and add support for health (including health regeneration):

Unreal Project Browser

Projects New Project

hoose a template to L ng point for your new project. Any. clicking Add Feature or Content Pack in Content Browser

8 Blueprint | g C++

>

I
Flying
o
®

Top Down tick Vehicle

character. As
k on a toucl

e settings for youl
Content Browser.

D:\Unreal Projects -~ MyProject

Folder Naie

Create Project

[204]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Start Unreal Engine 4 and when the project browser dialog appears:

* Select the New Project tab

* Select the C++ sub tab

* Select Third Person

* Name your project

* Click on Create Project
When you click on Create Project, Unreal Engine 4 will create all the base classes
required and will compile the project for you. This might take a minute or so.

Once this is completed, the solution file (Visual Studio file) for your project
will be automatically opened along with the project.

Once the project is opened, one main change you might notice is the new Compile
button that appears on the Toolbar. This will only appear if your project is a
code project:

This is used to recompile the code changes and reload them on the fly, even when
you are playing the game! This system is called Hot Reloading. As a programmer,
you will make use of this feature extensively.

The character class

In this project, we have a character class and a game mode class already available.
Let's take a quick look at how the character class is made.

Basically, what we have is a source file (with the extension . cpp) and a header file
(-h). In a nutshell, a header file contains all the declarations, and the source file
contains the definitions of those declarations. To access a specific method (or a
function) in another file, we use # include ExampleHeader.h. This way, we will
have access to all functions declared in that header file.

Accessing declarations on another header file are based on access specifiers. We will
learn more about them later in this chapter.

[205]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

To open the source file (. cpp) and header file (.h) from Unreal Engine 4:

*  Open Content Browser
* Go to C++ Classes
* Select your project name folder

* Double-click on your character class

This will open both source file (. cpp) and header file (.h) in Visual Studio:

w PA o =
File  Edit V¥ \ 3 3 Debug  Team 0 est A ze o Help
~ DebugGame Editor - Wing4

$(ProjectName).upr = 41% Build Startup Project _

" PACKT_CPPCharacterh + X PA haracter.cpp

Character.h = \Unreal Proje e\l CKT_CPPCharacter.h

ErrorList Co

Ready

[206]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

The preceding screenshot shows the header file of our character class. Let's analyze it
line by line.

#pragma once: Any line that is preceded by a hash (#) sign is called a
preprocessor directive. Think of it as instruction to the compiler to run before
any actual code is compiled. They start with the hash (#) sign and usually
ends with a new line. You can have multi-line by using the backslash (\) sign.
In this case, #pragma once is a preprocessor and its job is to protect against
multiple includes. #pragma once is known as header guard.

#include: In this file, we see two include files. One is Character.h from
the GameFramework folder (which is in the UE4 directory) and the other is
a generated.h file:

° Character.h: This file is included because our character class is
inherited from the ACharacter class that comes with Unreal Engine
4. This include is required to access all the declarations in the
Character class.

° generated.h: This is automatically generated for you by Unreal
Header Tool (UHT). These are generated whenever you have a
USTRUCT () or UCLASS () macro declared. They contain the details of
type declarations in your header file. This should be the last include
file in your header.

Macros: Macros are also preprocessor-directive, which starts with #define.
Right before the compile time, the compiler copies and pastes the actual
values anywhere this macro is used. For example, if you create a macro
like this: #define MyMacro 3.14, then 3.14 will be copied and pasted
everywhere that MyMacro is used.

UCLASS (config=game) : This is an Unreal macro that makes the editor aware
of the new class. Inside the parentheses, you specify the class specifiers and
metadata. In this example, we specify the config specifier. This indicates that
this class is allowed to store data in the given configuration file. In this case,
the name of your config file will be YourGameNameGame . ini.

class APACKT CPPCharacter:public ACharacter: This indicates the class
name and shows you which class we inherited this from. For this class, we
inherited it from the Character class.

[207]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

GENERATED_BODY () : This is a macro that must be placed at the very
beginning of the class body. When compiling, Unreal will replace it with

all the boilerplate code that is necessary. This means that, right before
compile time, GENERATED_BODY () is replaced by the actual code. Since this
chunk of code is required to compile the class, Epic has made it easier for us
by creating this macro.

private, public, and protected: These are called access specifiers. Access
specifiers let you decide whether a method can be accessed by other files or
not. There are three types of access specifiers. They are:

° private: This means you can access the members only in this class.
In this example, CameraBoom and FollowCamera are set as private
properties. That means, you can access them only inside this class.
If you create a new class deriving from this class, you cannot
access them.

°  public: This means all the members can be accessed from any
other class.

° protected: This means all the members can be accessed from this
class and any class that is derived from this class.

UPROPERTY () : This defines the property metadata and specifiers. These are
used on properties to serialize, replicate, and expose them to Blueprints.
There are a number of UPROPERTY () specifiers that you can use. To see the
full list, visit this link: https://docs.unrealengine.com/latest/INT/
Programming/UnrealArchitecture/Reference/Properties/Specifiers/
index.html.

void: This means it's a function that does not return any data type. A
function can return any type of data such as float, int, bool, or even
objects, but doesn't require a data type all the time. In such cases, you would
use the void return type to indicate that this method does not return any type
of data. This will also prevent overriding the function in any child classes.

If you want to override a function in child classes, then you need to make

it a virtual void. When you create a virtual void, it means child classes can
override this function, implement their own logic, and optionally call the
parent class function using the keyword Super.

Understanding the preceding things (preprocessors, macros, access specifiers, and so
on) will help a lot as you work in Unreal C++.

[208]

www.it-ebooks.info


https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
https://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/Reference/Properties/Specifiers/index.html
http://www.it-ebooks.info/

Chapter 10

Another thing that is worth mentioning is the use of double colons (: :), hyphen
arrows (->), and periods (.). Understanding what they are and how to use them is
crucial. Out of these, mostly we use the hyphen arrow (->) symbol. Let's see what
they are.

* Double colons (: :): When using this symbol, it means you are accessing a
method from a specific namespace or scope. For example, you will use this
symbol when you want to call static methods from other classes.

* Hyphen arrow (->): This is used when you are pointing to some data that
might or might not exist somewhere in the memory. Using this symbol
means you are trying to access a pointer. A pointer points to a location
somewhere in the memory where the actual data of that pointer is stored.
Before accessing a pointer, it is always a good idea to check them and make
sure they are valid. Pointers are one of the most important part in Unreal
C++ so I'd highly recommend to read this article provided by Nathan Iyer
(Rama): https://wiki.unrealengine.com/Entry Level Guide to_
UE4_C%2B%2B#Pointers

* Period (.): This is used to access the data itself. For example, you will use this
to access the data inside a struct.

Adding the health system

Now that we know about the character class, let's begin by modifying our character
to add support for the health and health regeneration system. Before we begin, let's
see a quick breakdown of what we will be doing. In this system:

* A float variable that holds the current health of the player when the game
begins. We will make sure that the player has maximum health when the
player is initialized.

e Override the default function TakeDamage () of the Actor class.

*  When the player is taking damage, we will check how much damage was
taken and subtract that amount from the health. We will then start a timer
that will execute an event that regenerates health.

Creating a health variable

So let's get started. Open up your character source file and add the following code
under private access specifier:

UPROPERTY ( EditAnywhere, BlueprintReadWrite, Category = "My
Character", meta = (AllowPrivateAccess = "true") )
float Health;

[209]

www.it-ebooks.info


https://wiki.unrealengine.com/Entry_Level_Guide_to_UE4_C%2B%2B#Pointers
https://wiki.unrealengine.com/Entry_Level_Guide_to_UE4_C%2B%2B#Pointers
http://www.it-ebooks.info/

Introduction to Unreal C++

Here, we declare a Health variable with the data type f1oat. We also added
UPROPERTY to our float variable and added the specifiers EditAnywhere,
BlueprintReadWrite, and Category. The EditAnywhere specifier lets you edit
this property in the Details panel. BlueprintReadwWrite allows you to get or set
this value in Blueprint. Whatever name you write as the category will appear in the
Details panel. If you compile and start your game and look at the Details panel of
the ThirdPersonCharacter Blueprint (in ThirdPersonCPP/Blueprints) you will see
our new property exposed:

== ContentBrowser u

Y el e mer
AddNew'>» X Import [2) Save All 5 | &5 Conte _ . -
k. i P €| 5= File  Edit ! Debug  Wir
fo] T Filters ~ ' @
"4

Compile e FindinCB

NOTE: This is a data only blueprint, so only the default values are shown.
I Activation
I Variable

4 My Character

As you can see, a value of 0.0 doesn't make sense to Health. So what we will do is
open the source file of our character class and type the following line under the class
constructor:

Health = 100.f; // .f is optional. If it's confusing you can replace
it with 100.0

The constructor class is usually the first definition in a source file. It looks like
YourClassName: : YourClassName ().

Any line preceded by // (double slash) is a comment and is ignored
< by the compiler.

The constructor class is basically where we set the default values of our class. In
this case, we want the default value of our player health to be 100.

Now, if you press the Compile button in Unreal Engine editor, the editor will
compile the new changes and hot reload it when it's finished. When the compilation
is finished, you should see the new value (which is 100) as the default value for
health.

[210]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Taking damage

Now that our health is set, we can access it and change it in our character class.
We now need to update this value whenever our player is taking damage. Since our
character is an Actor class, we can use the TakeDamage () function to update the
health. To do so, add the following code to your character header file:

virtual float TakeDamage( float Damage, struct FDamageEvent consté&
DamageEvent, AController* EventInstigator, AActor* DamageCauser )
override;

TakeDamage is a virtual function that already exists in the Actor class.
So when you want to have custom logic inside virtual functions, make
» sure you include an override keyword for them. This way you are telling
% the compiler to look in the parent class for a definition of this function. In
case if the base class definition could not be found or has been changed
then the compiler will throw an error. Keep in mind that if the override
keyword is not there then the compiler will treat this as a new definition.

The TakeDamage function takes some parameters and returns a £1oat value, which
is the actual damage applied. In this function, we will first check whether our health
value is larger than o. If it is, we decrease the Health value by the Damage value. If
not, then we simply return o:

float APACKT CPPCharacter::TakeDamage (float Damage, struct
FDamageEvent const& DamageEvent, AController* EventInstigator, AActor*
DamageCauser)

{

// Super key word is used here to call the actual TakeDamage function
from the parent class which returns a float value.We then assign this
value to ActualDamage which is a float type.

const float ActualDamage = Super::TakeDamage (Damage, DamageEvent,
EventInstigator, DamageCauser) ;

// Check if we have health

if (Health > 0.0)

{

// Reduce health by the damage received
Health = Health - ActualDamage;

// return the actual damage received
return ActualDamage;

}

// Player has no health. So return 0.0

return 0.0;

}

[211]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

In the preceding example, you can see the use of comments and how it can help
when reading the code later. TakeDamage function first calls the parent class function
which returns the actual damage to apply. We will save this value to a local variable
called ActualDamage. We then check whether the health value is greater than 0.0
and if it is then health value is reduced by the ActualDamage float variable and
return that value. Whenever you override a virtual function and implement your
custom logic, you use Super: : FunctionName () to inherit the basic functionality of
the parent class. Since the TakeDamage () function is virtual, and we override that
function, we use Super: : TakeDamage () to call the actual function defined in the
parent class, which does the logic of applying damage to the actor.

Health regeneration

Now that our character can take damage, we will modify this system further and add
health regeneration. Our health regeneration system will regenerate health based

on a float variable that is by default set to 1.0 every 1 second, which is also set to

a float variable. These settings will be exposed to the Blueprint editor, so we can
change them later without compiling the game again.

Let's take a quick look at the health regeneration system:

* We use a timer to regenerate health.
*  When the player takes damage, we clear this timer.

* After taking damage, we set the timer to restart after 2 seconds. The timer
will call a custom function that will regenerate health.

¢ When the timer finishes, it will call the custom event which will add 1 health.
This timer will continue to run until the player reaches maximum health.

So the first thing we need is a TimerHandle. This helps in identifying Timers that
have identical methods bound to them. To declare a TimerHandle, open up the
character header file and add the following line under GENERATED BODY ():

FTimerHandle TimerHandle HealthRegen;

% You can use any name for TimerHandle. Here, the use of
L= TimerHandle_ before HealthRegen is optional.

[212]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

Since we now know that we will be using timers, let's add two new float variables
that will act as the time to activate the RegenerateHealth function:

e We will call the first f1oat variable InitialDelay. This is used to call
RegenerateHealth after taking damage. We will set the default value to 2.

*  We will call the second float variable RegenDelay. When regenerating
starts from the TakeDamage function, we use this RegenDelay time to call
the RegenerateHealth function again. We will set the default value to 0. s.

The following are the variables:

/* After taking damage, Regenerate Health will be called after this
much seconds. */

UPROPERTY ( EditAnywhere, Category = "My Character" )

float InitialDelay;

/* Time to regenerate health. */
UPROPERTY ( EditAnywhere, Category = "My Character" )
float RegenDelay;

We will also add a new property called RegenerateAmount and expose it to the
Blueprint editor:

UPROPERTY ( EditAnywhere, BlueprintReadWrite, Category = "My
Character", meta = (AllowPrivateAccess = "true") )

float RegenerateAmount;

In the RegenerateAmount variable you can see a new meta specifier called
AllowPrivateAccess. This is used when you want a variable in private
access specifier but you need it in Blueprint as well (BlueprintReadOnly or
BlueprintReadWrite). Without AllowPrivateAccess compiler will throw
an error when you use BlueprintReadWrite or BlueprintReadOnly ona
variable under private access specifier. Finally, we will add a new function
called RegenerateHealth like this:

void RegenerateHealth() ;

For now, we are done with the header file. Let's open the character source file and
inside the class constructor (remember the class constructor is YourClassName: : You
rClassName () ), add the default value for RegenerateAmount as 1. 0.

The constructor class is not construction script in Blueprints.
% If you want construction script behavior in C++, then you need
"~ tooverride the OnConstruction method.

[213]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

We will also add the RegenerateHealth function into our source file like this:

void APACKT CPPCharacter::RegenerateHealth ()

{
}

Inside this function, we will write our code that will add the Regenerateamount
value to our existing health. So let's modify it like this:

void APACKT CPPCharacter::RegenerateHealth ()

{

if (Health >= GetClass()->GetDefaultObject<ABaseCharacters() -
>Health)

{

Health = GetClass () ->GetDefaultObject<ABaseCharacters() -
>Health;

}

else
Health += RegenerateAmount;
FTimerHandle TimerHandle ReRunRegenerateHealth;
GetWorldTimerManager () .SetTimer ( TimerHandle

ReRunRegenerateHealth, this, &APACKT CPPCharacter::RegenerateHealth,
RegenDelay ) ;

}
}

Now, let's analyze that code. The first thing we do inside this function is to check
whether our Health is greater than or equal to our default Health. If it is, we simply
set the health value to the default value (which is what we set in the constructor).

If it's not, we add RegenerateAmount to our existing health and rerun this function
using a timer.

Finally, we modify the TakeDamage function to add HealthRegeneration:

float APACKT CPPCharacter::TakeDamage( float Damage, struct
FDamageEvent const& DamageEvent, AController* EventInstigator, AActor*
DamageCauser )

{

// Get the actual damage applied

const float ActualDamage = Super::TakeDamage (Damage, DamageEvent,
EventInstigator, DamageCauser) ;

if (Health <= 0.0)

{

// Player has no health. So return 0.0

[214]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

return 0.0;

}

// Reduce health by the damage received
Health = Health - ActualDamage;

//Is the health reduced to 0 for the first time?
if (Health <= 0.0)

{

// Clear existing timer
GetWorldTimerManager () .ClearTimer (TimerHandle HealthRegen) ;
return 0.0;

}

// Set a timer to call Regenerate Health function, if it is not
running already
if (!GetWorldTimerManager () .IsTimerActive (TimerHandle HealthRegen) )

{

GetWorldTimerManager () .SetTimer (TimerHandle HealthRegen, this,
&APACKT CPPCharacter::RegenerateHealth, InitialDelay) ;

}

// return the actual damage received
return ActualDamage;

}

In the code above, we first check if our health is less than or equal to 0. 0. If it is then
we know the player has no health so we simply return 0. 0. Otherwise we reduce
our health value and check if health is less than or equal to 0. We clear the timer if
health is 0 otherwise we check if health regeneration is currently active. If it is not
active then we create a new timer to run the RegenerateHealth function and lastly
we return the ActualDamage applied.

C++ to Blueprint

We now have a health and health regeneration system in our character class. One
problem with our current system is that we have not yet defined what happens to
our character after the health reaches 0. In this section, we will create an event that
we will implement in Blueprint. This event will be called when the player's health
reaches 0.0. To create this Blueprint event, open our character header file and

add the following code:

UFUNCTION (BlueprintImplementableEvent, Category = "My Character")
void PlayerHealthIsZero() ;

[215]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

As you can see, we added a normal function called PlayerHealthIsZero (). To
make this available in Blueprint, we added a UFUNCTION specifier and inside that we
added BlueprintImplementableEvent. This means C++ can call this function and it
will execute inside Blueprint but we cannot add a definition for this in our character
source file. Instead, we will just call it inside the source file whenever we want. In
this example, we will call it inside our TakeDamage event if the player's health is o.
So let's modify our TakeDamage like this:

float APACKT CPPCharacter::TakeDamage( float Damage, struct
FDamageEvent const& DamageEvent, AController* EventInstigator, AActor*
DamageCauser )

{
// Get the actual damage applied

const float ActualDamage = Super::TakeDamage (Damage, DamageEvent,
EventInstigator, DamageCauser) ;

if (Health <= 0.0)

{

// Player has no health. So return 0.0
return 0.0;

}

// Reduce health by the damage received
Health = Health - ActualDamage;

//Is the health reduced to 0 for the first time?
if (Health <= 0.0)
{
// Clear existing timer
GetWorldTimerManager () .ClearTimer (TimerHandle HealthRegen) ;

// Call the BLueprint event
PlayerHealthIsZero() ;

return 0.0;

}

// Set a timer to call Regenerate Health function, if it is not
running already

if (!GetWorldTimerManager () .IsTimerActive (TimerHandle HealthRegen) )

{

[216]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 10

GetWorldTimerManager () .SetTimer (TimerHandle HealthRegen, this,
&APACKT CPPCharacter::RegenerateHealth, InitialDelay) ;

}

// return the actual damage received
return ActualDamage; }

In the preceding code, we call PlayerHealthIsZero right after clearing the
regen timer.

Now it's time to compile and run the project. In Visual Studio, press F5 to compile
and launch the project. Once the project is loaded, open our character Blueprint and
you will see our new variables exposed in the Details panel:

B AddNews: L import [ESaveAll €5 & Cont Ll gy

PE] search Folders fo] T Filters > File Edit Asse Debug  Windov
4 Content | | @
? ’

I i
mpile e FindinCE
i ThirdpP i
4 CPP NOTE: This is a data only blueprint, so only the default values are shown.

ThirdPersonCharacter I Variable
4 My Character
Health
Initial D
Regen Delay
Reg
> Clothing
haracter Movement (General Settings)
> Character Movement: Walking
B Fublic View

[217]

www.it-ebooks.info


http://www.it-ebooks.info/

Introduction to Unreal C++

From here, you can open the Blueprint graph and add our Player Health Is Zero

event:

> Event Player Health Is Zero

All Actions for this Blueprint Cont ive

Selecta Componentto s le Events & Functions

[ Actor
I Add Component
4Add Event
b Actor
b Collision
[ Game
[ Mouse Input
4 My Character
&> Event Player Health Is Zero
[ Pawn
& Touch Input

In this event, you can program your logic to play a death animation, show some

Ul screen, and so on.

Summary

Unreal C++ is easy to learn compared to actual C++. This is because the
programming wizards at Epic Games implemented so many features that makes
writing Unreal C++ fun! You can extend what you learned from this chapter

by including Armor system, Stamina system, and so on for your character. By
incorporating UMG and Blueprints, you can show a HUD that shows player health
and maybe a small warning system that pops up when the player's health goes
below 50. In the next chapter, you will learn how to package a project for shipping.

[218]

www.it-ebooks.info


http://www.it-ebooks.info/

11

Packaging Project

Throughout this book, you learned the basics of Unreal Engine 4. In this final
chapter, we will recap all that, as well as see how to package your project into
a standalone game. You will also learn how to package the game for quick
distribution and package a game as a release version.

Recap

In the first chapter, you learned the difference between Unreal Engine versions. As
I have mentioned, the launcher version is a binary version compiled by Epic and is
ready for you to use. But, if you want to get the latest build that is not yet available
through launcher, then your only choice is getting the source code from GitHub.

If you are going for the source code version of Unreal Engine then I recommend
getting the source from the promoted branch. Epic works hard on the promoted
build for their artists and designers, so most of the time it is updated daily and you
get the latest stuff too! if you really want to get your hands dirty or you have that
urge to grab the latest and the most cutting-edge build, then you should go for the
master branch. Keep in mind that this branch tracks live changes directly from Epic,
it might be buggy and it might even fail to compile.

Once you get the engine up and running, you can start importing your assets into
Content Browser. This is where you save and edit the assets that are used in your
game. Content Browser offers a lot of functionality such as searching based on
keyword, tags, asset type, filters, etc. and you can use the Collections feature in
Content Browser to add references to your most commonly used assets. When
searching, you can exclude specific keywords by adding the hyphen (-) before the
name. For example, if you want to exclude all assets that contain the name floor,
then you can search in Content Browser as -floor. This will show you all assets
that do not contain the word floor.

[219]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Another great feature of Content Browser is the Developers folder. This is especially
useful when you are working in a team where you want to try out different
techniques or assets in your game without affecting other parts. One thing to
remember is that you should only use this strictly for personal or experimental work
and you should never include references to external assets outside this folder. For
example, if you made an asset that you want to try out before adding it to the game,
then you can create a test level inside your Developers folder and test out everything
there. Think of the Developers folder as your own private playground where you
can do whatever you want without affecting others work. The Developers folder

is not enabled by default. To enable it, click on View Options at the bottom right
corner of your Content Browser and select Show Developers Folder:

® Ti
List
Columns
Fal
¥  Folders
Show Plugin Content
Show Engine Content
| Show Collections
Thumbnails
Scale —f}—
Thumbnail Edit Mode
| Real-Time Thumbnails

@ View Options~

[220]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Once you enable that, you will see a new folder called Developers under your
Content folder in Content Browser:

e AddiNew > X Import Save All

Search Folders D

= Content
4 8 Develop
L

[ Geometry
Il Mannequin
I ThirdPer
im ThirdPersonCPP
U g C++ Classes

The name of the folder inside the Developers folder is automatically set to your
Windows username. If you are using Source Control (for example, Perforce or
Subversion), then you can see the other Developers folder by enabling the Other
Developers checkbox available under Filters | Other Filters:

Artificial Inte nce b
g AddNew'ss X Import [S) Save All . =
] i [ Other Filters »[mX
PEL Search Folders Jo| T Filters ~
4@ Content
avel

Cathnnnk

! nnequin
ThirdPer
ThirdPer

Allow display of assets in developer folders that aren't yours.

Knowing this will help you a lot when you are working with a team or when you

have lots of assets.

[221]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Just like how you use Content Browser to find assets that are imported, you use
World Outliner to find assets that are placed in your level. You can also use Layers to
organize assets that are placed in the level. Both of these windows can be summoned
from Window in the menu bar:

= Warld Outlines

- =
o

-

34 actors

In Chapter 3, Materials, you learned about the awesome Material Editor and the
common nodes that we will use. A good material artist can totally change the realism
of your game. Mainly materials and post processing gives you the power to make the
game look realistic or cartoony. The common material expressions that we learned
are not just used for coloring your assets. For example, create the following material
network and apply to a simple mesh (for example, a sphere) and see what happens:

[222]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

M_Test

O Base Color

VertexNormalWs

[ 3
\J' Multiply ¥ “multiply ¥ O Normal
pEE— A ®» — A ® —— ® World Position Offset

g -
Sine ¥

Or Ambient Occlusion

O Pixel Depth Offset

If you find yourself using a specific network multiple times, then it's better for you to
create a material function which can tidy up your graph and make it more organized.

As you continue developing your game, you will eventually start tweaking with Post
Process Volume. This lets you modify the overall look and feel of your game. By
combining Post Process in blueprints or C++ you can even use it to affect your game
play too. A perfect example for this is the detective vision from the Batman Arkham
series games. You can use materials in post process to highlight a specific object in
world or even use it to render outlines for meshes that are behind other objects.

Another crucial part of the game that determines the final look is lighting. In this
book, you learned about different light mobilities, the differences between them
including common light settings and how it affects the game world. You also learned
about Lightmass Global [llumination which is the static global illumination solver
developed by Epic Games.

[223]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

As you know by now, Lightmass is used to bake lighting and because of that, dynamic
lights are not supported by Lightmass. When using Lightmass for your game, you
need to make sure that you have a second UV channel for all your static meshes (that
are not set to movable) to have proper shadows. If you want to use dynamic lights
(that means lights that can change any of their properties at runtime-think of the day
and night cycle as an example), Epic has included support for Light Propagation
Volume (LPV). At the time of writing this book, LPV is in experimental stage and

is not yet ready for production. One extra thing that is worth mentioning here is the
ability to change bounced lighting color. Take a look at the following material network:

GIReplace M_Test

@ Default ————— @ BaseColor
@ Staticindirect O Metallic
@ Dynamicindirect Or Specular
O Roughness
O» Emissive Color

O» Normal
Or World Position Offset

Using the GIReplace material node, you can change the color of the bounced light. If
you apply the preceding material to a mesh and use Lightmass to build lighting, the
result of the bounced light will be red color instead of white. Even though we don't
need to have a different color for bounced lights, we can still use this node to darken
or brighten the bounced lighting without the need to adjust Lightmass settings.

[224]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Once we have all the base setups, we then jump to Blueprints. Blueprint Visual
Scripting is a powerful and flexible node-based editor that lets artists and designers
quickly prototype their game. Mainly, we work with two common Blueprint types
and they are Level Blueprint and Class Blueprint. Inside these Blueprints, we

have Event Graph, Function Graph, and Macro Graph. In Class Blueprints, we

add components to define what that Blueprint is and how they behave. Nodes in
Blueprint have various colors applied to them to indicate what kind of node they are.
Once you start using Blueprints, you will get familiar with all the node colors and
what they mean. We saw how to create a Class Blueprint from an Actor class and
how to spawn it dynamically in the game. We also saw how we can interact with
objects in world through Level Blueprint. We placed triggers in the level and

in Level Blueprint we created overlap events for these triggers and learned how

to play a Matinee sequence.

Matinee is one of the powerful tools in Unreal Engine 4 that is mainly used to

create cinematics. You learned about Matinee UI and how to create a basic cut

scene. Since Matinee is similar to other nonlinear video editors, it is easy for video
editing professionals to get familiar with Matinee. Even though Matinee is used for
cinematics, you can also use it for gameplay-related elements such as opening doors,
elevator movement etc.. You can even use it to export your existing cinematics as
image sequences or in the AVI format.

After learning about Matinee, we continued to the next chapter to learn about Unreal
Motion Graphics (UMG). UMG is a Ul authoring tool developed by Epic. Using
UMG, we created a simple HUD for the player and learned how to communicate
with the player Blueprint to show a health bar for the player. We also made a 3D
widget for the player that floats on top of the character's head.

Continuing from there, you learned more about the Cascade Particle System. You
learned about Particle Editor and various other windows available inside Cascade
Editor. After learning the basics, you created a basic particle system using GPU Sprites
including collision. Lastly, we took the particle system to Blueprints and learned how
to randomly burst the particles using Custom events and delay node.

Finally, we dived into the magic world of C++. There you learned about various
versions of Visual Studio 2015 and how to download Visual Studio 2015 Community
Edition. Once we have the IDE installed, we created a new C++ project based on

the Third Person template. From there we extended it to include health and health
regeneration for our character class. You also learned how to expose variables and
functions to Blueprints and how to access them in Blueprints.

[225]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Packaging the project

Now that you have learned most of the basics of Unreal Engine 4, let's see how to
package your game. Before we package the game, we need to make sure that we set
a default map for our game which will be loaded when your packaged game starts.
You can set the Game Default Map option from the Project Settings window. For
example, you can set the Game Default Map option to your main menu map:

i

u e Pt S

e Default Map

»-;um.:‘m..«,‘- Project Project - Maps & Modes
o

Default maps, game modes
G The:

4 Default Maps

/Game/ThirdPersonBP/Maps/ThirdPersonExampleMap | = |
J/Game/Test_Map | ~ |

4 Local Multiplayer

To set a default map for the game, please follow these steps:

1. Click on the Edit menu.
Click on Project Settings.
Select Maps & Modes.

Choose your new map in Game Default Map.

Ll

Quick packaging
Once you set the Game Default Map option, you need to select the Build
Configuration:

[226]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Ul

Edit  Window

B New Projec
T Open Proj
. New C++ Class...

*] Exit

N "\
N

1pty Actor

pty Character

int Light

ayer Start

Up P

Build Configuration

there Trigger

There are three types of build configurations available Packaging the project:

* DebugGame: This configuration will include all the debug information. For
testing purposes, you can use this configuration.

* Development: This configuration offers better performance compared to the
DebugGame configuration build because of minimal debugging support.

* Shipping: This should be the setting you should choose when you want to

distribute the game.

[227]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Once you have selected your build configuration, you can package your game from
File | Package Project and then select your platform. For example, here is the option
to package your game for Windows 64-bit:

g

Edit Window Help

éf'i

pty Actor

pty Character

e Control...
int Light

ayer Start

% Android

B HTMLS

% i0S

A

m Window:s it)
Zip Up Project

Export All... - - -
Build Configuration »

I Recent Levels »
orted Platforms...
T® Recent Projects b

*] Exit here Trigger

Once you select that option, editor might prompt you to select a target directory
to save the packaged game. Once you set the path, editor will start building and
cooking the content for the selected platform. If the packaging is successful, you
will see the packaged game under the target directory you set earlier.

[228]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Packaging the release version

The previously mentioned method is for quickly packaging and distributing the
game to end users. However the preceding method cannot build DLCs or patches
for your game so in this section, you will learn how to create a release version for
your game.

To start let's first open the Project Launcher window. Project Launcher provides
advanced workflows to packaging your game:

',_PE JQ_LN_EECIEF
%= Advanced

Firefox j
E HTMLS %

Launch

VENENE Default= 6’
~

Launch

[229]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

To create a custom launch profile, click on the plus (+) button as shown in the

preceding screenshot. Once you click on that you will see a new window with
new settings as follows:

onfiguration

Build Configuration: = TGRS

[ Advanced Settings

you like to cook the content? By the book =

Cooked Platforms:

B Android_

B Andro

B Android ETC1
B Android_ETC2

Cooked Cultures:

Package ow would you like to p

In the preceding window, do the following:

1. Enable the Build checkbox.
2. Set the Build Configuration option to Shipping.
3. Set the dropdown to By the book.

[230]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

4. In this example we selected WindowsNoEditor to test on Windows.

5. Select the culture. This is used for localization. By default, en-US is selected.

Once all those settings are done, expand the Release/DLC/Patching Settings and
Advanced Settings sections:

Package

Deploy

figuration

lect: All Mone

Cooked Maps:
ow all Show cooked

@ No available maps were found.

F e / DLC / Patching Se

Create a rel ion of the game for distribution.

Name of the new release to create

]
a5E 0N @ Previous r e, applys to new creating new relea

5 T , dlc / ches.

B Generate patch
B Build dic
Name of the dlc to build.

B Include engine content
4 Advanced Settings

B Only cook modified content
& com content
without versions

Store all content in a single file (UnrealPak)
te Chunks
B Don't Include editor content in the build
[ Http Chunk ettings

Cooker build configuration:

Additional Cooker Options:

Do not package ~

Do not deploy ~

[231]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Inside those sections do the following;:

1. Enable Create a release version of the game for distribution.
Set the name of the new release to 1.0.

Enable Store all content in a single file (UnrealPak).

Set the Cooker build configuration section to Shipping.

Add the -stage command line as Additional Cooker Option. Note that
you do not press enter after typing it. Simply click anywhere else to apply
that command.

ARSI

After setting this, set the last two options of Package and Deploy to Do not package
and Do not deploy respectively:

Package How would you like to package the build?

Deploy How would you like to deploy the build? Do not deploy =

Launch The build is not being deployed and cannot be launched.

[232]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Once all those are done, click on the Back button on the top right corner of the
Project Launcher window and you will see your new profile ready to build:

: EEr=E
HETICHES

Project ‘}" Advanced

£, AlliOS_On_DESKTOP-LOC1BAZ

108

Firefox

5 HTMLS

DESKTOP-LOCT8A2 Variant ’EJ
&

| WindowsNoEditor

Launch

> and claimed

at is built using Shipping cenfiguration

[233]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

Simply click on the Launch button, ProjectLauncher will build, cook, and package
your game. This might take time depending on the complexity of your game:

Duration
0:00:00
0:00:04
0:00:00

alidates

e,
alidate/
alidate

R ———
nannnnnnnnn F

wn F

tNET\UnrealBuild ‘Wing4 shipping

If the packaging was successful, then you can see that in the ProjectLauncher window:

[234]

www.it-ebooks.info


http://www.it-ebooks.info/

Chapter 11

Duration

0:00:00  Completed
0:00:04  Completed
0:01:26  Completed
0:00:39  Completed
0:00:00  Completed

MyProject.uproject”

You can find your packaged game in your project folder under Saved |
StagedBuilds | WindowsNoEditor folder. Now you can distribute this
packaged game to other users.

Summary

Throughout this book, you learned the basics of Unreal Engine 4. We started this
journey with you learning how to download the engine and saw how to import your
own assets. From there you learned about Material Editor and its common aspects.
Then you learned about Post Process, how to use lights and the importance of lights
in video games. You also learned about Blueprints which is the visual scripting
language of Unreal Engine 4. We continued our journey from Blueprints to UMG
which you can use to create any kind of menu in the game. Since a game is nothing
without visual effects and cut scenes, you learned about Cascade Particle Editor
and Matinee. From there we dived into the world of C++ to learn the basics of this
awesome language. Finally you learned how to package the game and distribute

it to others.

[235]

www.it-ebooks.info


http://www.it-ebooks.info/

Packaging Project

References

Your journey of learning Unreal Engine 4 does not stop here. You can extend your
knowledge even further by visiting these links:

*  Unreal Engine Community

https://forums.unrealengine.com/

*  Unreal Engine Official Twitch Streams

http://www.twitch.tv/unrealengine

*  Unreal Engine YouTube channel

https://www.youtube.com/user/UnrealDevelopmentKit/videos

*  Unreal Engine AnswerHub

https://answers.unrealengine.com/index.html

*  Unreal Engine Documentation

https://docs.unrealengine.com/latest/INT/GettingStarted/index.
html

[236]

www.it-ebooks.info


https://forums.unrealengine.com/
http://www.twitch.tv/unrealengine
https://www.youtube.com/user/UnrealDevelopmentKit/videos
https://answers.unrealengine.com/index.html
https://docs.unrealengine.com/latest/INT/GettingStarted/index.html
https://docs.unrealengine.com/latest/INT/GettingStarted/index.html
http://www.it-ebooks.info/

A

asset
creating, in Digital Content Creation (DCC)
application 21-23
auto convex collision 26

Binary Space Partitioning (BSP)

about 16

creating 16, 17
Blueprint

creating 140, 141

graph types 124

implementing 215-218

node references 136

nodes 225

types 116

user interface (UI) 117

used, for playing particle 197, 198
Blueprint Actor

destroying, after few seconds 143
Blueprint class

common parent classes 140

creating 140-142

spawning, in Level Blueprint 144, 145

static mesh, spinning 142
Blueprint, types

Animation Blueprint 116

AnimGraph 116

Blueprint Interface 116

Class Blueprint 116

EventGraph 116

Level Blueprint 116

Macro Library 116

Index

Blueprint user interface (UI)
about 117
components tab 118
Details panel 124
Graph editor 124
My Blueprints tab 122
toolbar 124

Blueprint Visual Scripting 115, 225

build configurations
DebugGame 227
development 227
shipping 227

C

cascade particle editor

accessing 183

areas 184

curve editor 188

details panel 187

Emitter panel 187

Emitter panel, primary areas 188

Emitter panel, types 188

toolbar 184, 185

viewport 185

viewport, navigation 186
character

Heads up Display (HUDs),

assigning to 175-177

character class, C++ project

health system, adding 209
collections

local collection 11

private collection 11

shared collection 11

[237]

www.it-ebooks.info


http://www.it-ebooks.info/

collision meshes
collision generator 24
creating 23
custom collision shapes 23
common light settings 89
common material expressions
about 42
Add 47-49
component mask 53
constant 43
Constant2Vector 44
Constant3Vector 45
Desaturation 59
Divide 49, 50
Fresnel 61
linear interpolate (lerp) 54
Material function 67
Material instance 62
Material types 62
Multiply 46, 47
PixelDepth 56-58
Power 55
Subtract 50, 51
Texture coordinate (TexCoord) 46
Texture sample (Texture2D) 51, 52
Time 60
components, Blueprint user interface (UI)
about 118
adding 118, 119
events, adding by right-clicking 121
events, adding for 120
events, adding from details panel 120
events, adding in graph 121
transforming 119
Construction Script graph 124
Constructive Solid Geometry (CSG) 16
Content Browser
about 11, 219-221
view options 12, 13
World outliner 13
C++ project
character class, defining 205-208
creating 204, 205
custom collision shapes
UBX_MeshName 23
UCX_MeshName 24
USP_MeshName 24

cutscene camera, Matinee
creating 161-163
director group 163, 164

D

default starting level
changing 17, 18
details panel, cascade particle editor 187
Digital Content Creation (DCC) application
asset, creating 21-23
Directional Light 89

E

editions, Visual Studio 2015
Community edition 201
Enterprise edition 201
Professional edition 201

Emitter panel, cascade particle editor
about 187
areas 188
types 188

Event graph 124

F

floating health bars
creating 177-181

function graph
about 125
function, creating 125, 126
functions, editing 127, 128
settings 126

G

game icon 17,18

GitHub version, Unreal Engine 4
about 1
downloading 3
forked repository, cloning 4, 5
repository, forking 3

graph editor, Blueprint user

interface (UI) 124
Graph panel 42

[238]

www.it-ebooks.info


http://www.it-ebooks.info/

graph types, Blueprint common light settings 89

Construction Script graph 124 light mobility 91
Event graph 124 Lightmass 223, 224
function graph 125 Lightmass Global Illumination
interface graph 125-135 about 93, 94
macro graph 125-130 assets, preparing for precomputed
lighting 97-102
H Indirect Light 95
Indirect Shadows 95
Heads up Display (HUDs) Lightmass settings, tweaking 104-113
about 167 scene, building with Lightmass 102, 103
assigning, to character 175-177 light mobility
health bar about 91
creating 172-175 movable 91-93
health system, C++ project static 91
damage, taking 211, 212 stationary 91
health regeneration 212-215 Light Propagation Volume (LPV) 224
health variable, creating 209, 210 lights
Hot Reloading system 205 light Actors 89
HUD Widget modes tab 88
creating 170, 171 placing 88

right-clicking 88
I Look up Table (LUT)

Indirect Lighting Cache 109 about 77, 81

. i applying 81
interface graph 131-135 procedure 81

K M
K Dlsc;‘le;e (e?sn;gted Polytope (K-DOP) macro graph 125,129, 130
P Material Editor 222
L Material function
about 67

launcher version example 67-70

about 1,219 Layered Material 70

downloading 2 Material instance
Layered Material about 62

about 70 Material Instance Constant Example 64, 65

creating 71-75 Material Instant Constant (MIC) 62, 63
Level Blueprint m.aterial.s

Blueprint class, spawning 144, 145 importing 27
Level of Detail (LOD) 28 Material user interface
lighting about 36

about 87 Details panel 41

basics 87 Graph panel 42

[239]

www.it-ebooks.info


http://www.it-ebooks.info/

Palette panel 42
Preview panel 40
Toolbar panel 36
Matinee
about 225
creating 147, 148
cutscene camera, creating 160-163
object, manipulating 152-159
user interface (UI) 147
window 149
Matinee window
curve editor 150
toolbar 149, 150
tracks 151
mesh, importing
about 29, 30
automatic import 31
automatic import, configuring 31, 32
context menu 30
Drag and Drop 30
Import Options dialog 32, 33
in Content Browser 31
modes 10
My Blueprints tab, Blueprint
user interface (UI)
about 122
categorizing 123
creation buttons 122
search area 122

N

node references, Blueprint
about 136, 137
math expression 138, 139
node colors 137, 138
operators 139
variables 138

P

packaging project
about 226
of build configurations 227

quick packaging 226, 228
release version, packaging 229-235
Palette panel 42
particle
playing, with Blueprints 197, 198
particle system
collision module, adding 196
color, over life module 195, 196
creating 188, 189
default emitter, modules 189
effect of gravity, adding 193, 194
simple material, creating 189-192
Physically Based Rendering (PBR) 35
Point Light 89
Post Process
adding 78-80
LUT 81
Post Process Materials 82
Post Process Materials
about 82, 83
creating 83-86
Post Process Volume 223
Preview panel 40
project, based on Third Person Template
setting up 167-169

R

release version

packaging 229-235

S

simple shapes
K-DOP shapes 26
options 25
Sky Distance Threshold 89
Sky Light 89
source code version 219
specifiers
URL 208
splash screen
about 18
adjusting 17
Spot Light 89

[240]

www.it-ebooks.info


http://www.it-ebooks.info/

T Unreal Header Tool (UHT) 207
Unreal Motion Graphics (UMG) 167, 225

TakeDamage function 211 Unreal Sphere (USP) 24
Third Person Template 201 Unreal Units (UU) 22
Time Bar 151
toolbar, cascade particle editor V
buttons 184, 185
Toolbar panel viewport, cascade particle editor
about 36-38 about 185
Live nodes 40 navigation 186
Live preview 39 viewport toolbar
Live update 40 about 8,9
navigating 14
U URL 15
Visual Studio 2015
Unreal Box (UB) 23 setting up 201-203
Unreal Convex (UCX) 24 URL 201
Unreal Engine 4 workflow improvements 203
about 1
AnswerHub, URL 236 w
collision generator 24
community, URL 236 Widget Blueprint 167

compiling 5

Content Browser 11

custom build, starting 5

Details panel 14

documentation, URL 236
downloading 1

exploring 5-7

GitHub version 1

GitHub version, downloading 3
launcher (binary) version 1
launcher (binary) version, downloading 2
launcher build, starting 5-8
modes 10

Official Twitch Streams, URL 236
URL 2,3

viewport toolbar 8, 9

YouTube channel, URL 236

[241]

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Thank you for buying
rusLisnine 1 Unreal Engine 4 Game
Development Essentials

About Packt Publishing

Packt, pronounced 'packed’, published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub . com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info


http://www.it-ebooks.info/

PUBLISHING

Unreal Engine Game

Development Cookbook
ISBN: 978-1-78439-816-3 Paperback: 326 pages
Over 40 recipes to accelerate the process of learning

game design and solving development problems
using Unreal Engine

1. Explore the quickest way to tackle common
Unreal Engine Game challenges faced in Unreal Engine.

Development Cookbook 2. Create your own content, levels, light scenes,
and materials, and work with Blueprints and
C++ scripting.

3. Anintermediate, fast-paced Unreal Engine

guide with targeted recipes to design games
within its framework.

Learning Unreal Engine Android

Game Development
ISBN: 978-1-78439-436-3 Paperback: 300 pages

Tap into the power of Unreal Engine 4 and create
exciting games for the Android platform

1. Dive straight into making fully functional
Android games with this hands-on guide.

Learning Unreal Engine Android 2

Gaine Development Learn about the entire Android pipeline,

from game creation to game submission.

3.  Use Unreal 4 to create a first person
puzzle game.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

PUBLISHING

Unreal Engine Lighting
and Rendering Essentials

Unreal Engine Lighting and

Rendering Essential
ISBN: 978-1-78528-906-4 Paperback: 242 pages

Learn the principles of lighting and rendering
in the Unreal Engine

1. Getacquainted with the concepts of lighting
and rendering specific to Unreal.

2. Use new features such as Realistic Rendering
and Foliage Shading to breathe new life into
your projects.

3. A fast-paced guide to help you learn lighting
and rendering concepts in Unreal.

UNREAL

Learning Unreal® Engine
iOS Game Development

Learning Unreal® Engine iOS
Game Development
ISBN: 978-1-78439-771-5 Paperback: 212 pages

Create exciting iOS games with the power
of the newUnreal® Engine 4 subsystems

1. Learn about the entire iOS pipeline, from game
creation to game submission.

2. Develop exciting iOS games with the Unreal
Engine 4.x toolset.

3.  Step-by-step tutorials to build optimized
i0OS games.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info


http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Unreal 
Engine 4
	Unreal Engine 4 download
	Downloading the launcher version
	Downloading the GitHub version
	Forking Unreal Engine repository
	Compiling Unreal Engine


	Getting familiar with Unreal Engine
	The viewport toolbar
	Modes
	Content Browser
	Content Browser view options
	World outliner

	Details panel
	Navigating the Viewport

	BSP
	Creating BSP

	Default starting level, splash screen, and game icon
	Summary

	Chapter 2: Importing Assets
	Creating asset in a DCC application
	Creating collision meshes
	Custom collision shapes
	Unreal Engine 4 collision generator

	Simple shapes
	K-DOP shapes

	Auto convex collision
	Materials
	LOD
	Exporting and importing
	Exporting
	Importing
	Context menu
	Drag and drop
	Content Browser import
	Automatic import
	Configuring automatic import
	Result


	Summary

	Chapter 3: Materials
	Material user interface
	Toolbar
	Live preview
	Live nodes
	Live update

	Preview panel
	Details panel
	Graph panel
	Palette panel

	Common material expressions
	Constant
	Constant2Vector
	Constant3Vector
	Texture coordinate (TexCoord)
	Multiply
	Add
	Divide
	Subtract
	Texture sample (Texture2D)
	Component mask
	Linear interpolate (lerp)
	Power
	PixelDepth
	Desaturation
	Time
	Fresnel
	Material types
	Material instances
	Material Instance Constant
	Material Instance Constant example

	Material functions
	Material function example


	Summary

	Chapter 4: Post Process
	Adding Post Process
	LUT
	Post Process Materials
	Creating a Post Process Material

	Summary

	Chapter 5: Lights
	Lighting basics
	Placing lights
	Various lights
	Common light settings
	Light mobility

	Lightmass Global Illumination
	Preparing your assets for precomputed lighting
	Building a scene with Lightmass
	Tweaking Lightmass settings

	Summary

	Chapter 6: Blueprints
	Different Blueprint types
	Getting familiar with the Blueprint user interface
	Components tab
	What are components?
	Adding a component
	Transforming the component
	Adding events for components

	My Blueprints tab
	Creation buttons
	Searching in my Blueprint
	Categorizing in My Blueprint

	Toolbar
	Graph editor
	Details panel

	Blueprint graph types
	Function graph
	Creating functions
	Graph settings
	Editing functions

	Macro graph
	Interface graph

	Blueprint node references
	Node colors
	Variables
	Math expression

	Creating our first Blueprint class
	Creating a new Blueprint
	Spinning static mesh

	Destroying our Blueprint Actor after some seconds
	Spawning our Blueprint class in Level Blueprint
	Summary

	Chapter 7: Matinee
	Creating a new Matinee
	Matinee window
	Manipulating an object
	Cutscene camera
	Director group


	Summary

	Chapter 8: Unreal Motion Graphics
	Setting up a project
	Creating the HUD Widget
	Creating the health bar

	Assigning our HUD to Character
	Creating floating health bars
	Summary

	Chapter 9: Particles
	Cascade particle editor
	Toolbar
	Viewport
	Navigation

	Details
	Emitter
	Emitter types

	Curve editor

	Creating a simple particle system
	Creating a simple material
	Adding gravity
	Applying the color over life module
	Adding collision module

	Playing particle in Blueprints
	Summary

	Chapter 10: Introduction to Unreal C++
	Setting up Visual Studio 2015
	Workflow improvements

	Creating a C++ project
	The character class
	Adding the health system


	C++ to Blueprint
	Summary

	Chapter 11: Packaging Project
	Recap
	Packaging the project
	Quick packaging
	Packaging the release version

	Summary
	References

	Index



