EEEEEEEEEEEEEE

César Pérez Lopez

MATLAB

Cont \IC)KMM\(
System

Englneermg

2 Springer APIESS”

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AULNOFccciiiiieiiiiisesnns s a s an s e s nn R e e s nnnnen s nnnnnRRann ix
Chapter 1: Introducing MATLAB and the MATLAB Working Environmentccccccemnnnnns 1
Chapter 2: Variables, Numbers, Operators and Functions..........cccusssmsmsnmmnmnnmmsssssssssnnnns 23
Chapter 3: Control Systems.......c..ccccmnnnsmmnmmmssssnmmmmsssnmmmssssnmmsssssmssas———————— 77
Chapter 4: Robust Predictive Controlccuccemmmmssmmmmmssssssmmmssssssnsssssssssmssssssssnsssssssnnssns 145

iii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introducing MATLAB and the MATLAB
Working Environment

Introduction

MATLAB is a platform for scientific calculation and high-level programming which uses an interactive environment
that allows you to conduct complex calculation tasks more efficiently than with traditional languages, such as C, C++
and FORTRAN. It is the one of the most popular platforms currently used in the sciences and engineering.

MATLAB is an interactive high-level technical computing environment for algorithm development, data
visualization, data analysis and numerical analysis. MATLAB is suitable for solving problems involving technical
calculations using optimized algorithms that are incorporated into easy to use commands.

It is possible to use MATLAB for a wide range of applications, including calculus, algebra, statistics, econometrics,
quality control, time series, signal and image processing, communications, control system design, testing and
measuring systems, financial modeling, computational biology, etc. The complementary toolsets, called toolboxes
(collections of MATLAB functions for special purposes, which are available separately), extend the MATLAB
environment, allowing you to solve special problems in different areas of application.

In addition, MATLAB contains a number of functions which allow you to document and share your work.

It is possible to integrate MATLAB code with other languages and applications, and to distribute algorithms and
applications that are developed using MATLAB.

The following are the most important features of MATLAB:

e [Itis a high-level language for technical calculation
e TItoffers a development environment for managing code, files and data
e [Itfeatures interactive tools for exploration, design and iterative solving

e Itsupports mathematical functions for linear algebra, statistics, Fourier analysis, filtering,
optimization, and numerical integration

e Itcan produce high quality two-dimensional and three-dimensional graphics to aid data
visualization

e Itincludes tools to create custom graphical user interfaces

e Itcan be integrated with external languages, such as C/C++, FORTRAN, Java, COM, and
Microsoft Excel

The MATLAB development environment allows you to develop algorithms, analyze data, display data files and
manage projects in interactive mode (see Figure 1-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

[CHATLAS 7100 GoToor I — RO
File -+ Bk Deboe siel Desktop W .
1 AR B E | O CumentFolder CAUsers\CESAR\Documents\MATLAE - [] &

Shomcuts 8] Howto Add 2] What's New

8 Folder w0 * X Command Window -0 & X | Woerkipace “0r x
- M * 0 G- W Newto MATLAR? x) gl %) B W | LD sdectdsatopict -
TACTUXIEL (N * RI N E
Name «
[mrchavalmat >> limic(subs (L, (ndl| Fide Edit Veew bset Tooh Desktop | Window | Help
archavol tat % &5 , -, 7 A nE (n]
B Fchars.mat e NEadS AKX OIRL- Q0B mD
e P ERssE OF (- 1P 9+)
limis((p*n L
>> vpa(simplify(li
ans
1/p
>> vpa(symsu=(£f,1, 84
ans =
{oy=
v numeric: :sum|factog| {simple (symsum
ELJ Naeme Value »» vpa(simplify (symil
He 10.6797,0.5551
tdq <1010 doubl. ans =
numeric: ! sum|factonl
>> ezsurt (y 2= (x-1)
f 5>
4 Start

Figure 1-1.

Developing Algorithms and Applications

MATLAB provides a high-level programming language and development tools which enable you to quickly develop
and analyze algorithms and applications.

The MATLAB language includes vector and matrix operations that are fundamental to solving scientific and
engineering problems. This streamlines both development and execution.

With the MATLAB language, it is possible to program and develop algorithms faster than with traditional
languages because it is no longer necessary to perform low-level administrative tasks, such as declaring variables,
specifying data types and allocating memory. In many cases, MATLAB eliminates the need for ‘for’ loops. As a result,
a line of MATLAB code usually replaces several lines of C or C++ code.

At the same time, MATLAB offers all the features of traditional programming languages, including arithmetic
operators, control flow, data structures, data types, object-oriented programming (OOP) and debugging.

Figure 1-2 shows a communication modulation algorithm that generates 1024 random bits, performs the
modulation, adds complex Gaussian noise and graphically represents the result, all in just nine lines of MATLAB code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Flo EGt View bset ook Window Heb > % Generate a
Ded& kK aans v 08 0 vector of N bits

2 ; - T N = 1024;

: : : Bits = rand(N,1)>0.5;
% Convert to symbols
Tx = 1-2*Bits;

% Add white Gaussian noise

P = 0.4;

Nz = P*(randn(N,1)+i*randn(N,1));
Rx = Tx + Nz;

% Display constellation

plot(Rx,’.’);
| : : : axis([-2 2 -2 2]);
“2 1 0 1 2 axis square, grid;

Figure 1-2.

MATLAB enables you to execute commands or groups of commands one at a time, without compiling or linking,
and to repeat the execution to achieve the optimal solution.

To quickly execute complex vector and matrix calculations, MATLAB uses libraries optimized for the processor.
For general scalar calculations, MATLAB generates instructions in machine code using JIT (Just-In-Time) technology.
Thanks to this technology, which is available for most platforms, the execution speeds are much faster than for
traditional programming languages.

MATLAB includes development tools, which help efficiently implement algorithms. Some of these tools are
listed below:

e MATLAB Editor - used for editing functions and standard debugging, for example setting
breakpoints and running step-by-step simulations

e M-Lint Code Checker - analyzes the code and recommends changes to improve performance
and maintenance (see Figure 1-3)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

% "M-Lint Code Checker Report =IEE |
File Edit View Go Debug Desktop Window Help £
= 8 M
uyfunction 1l: Function name ‘'my func' will be known to MATLAB -:J
5 messages by its file name: 'myfunction'.
7: The value assigned here to variable 'x' is never
used
8: The value assigned here to variable 'y' is never
used

20: Use && instead of & as the AND operator in
conditional statements

2l: Array 'ww' is constructed using subscripting.
Consider preallocating for speed

nested 20: The value assigned here to variable 'y' is never
15 messages used
20: Terminate line with semicolon to sSuppress output
38: The value assigned here to wariable 'y' is never
used
38: Terminate line with semicolon to suppress output

LA Tarmimata lima with samicalon o sumrass ooatmiot

Figure 1-3.

e MATLAB Profiler - records the time taken to execute each line of code

e Directory Reports - scans all files in a directory and creates reports about the efficiency of the
code, differences between files, dependencies of files and code coverage

You can also use the interactive tool GUIDE (Graphical User Interface Development Environment) to design and
edit user interfaces. This tool allows you to include pick lists, drop-down menus, push buttons, radio buttons and
sliders, as well as MATLAB diagrams and ActiveX controls. You can also create graphical user interfaces by means of
programming using MATLAB functions.

Figure 1-4 shows a completed wavelet analysis tool (bottom) which has been created using the user
interface GUIDE (top).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Q@@ e ANE LK >

el o '

D R e L L L L0 =)

| L L =
. ‘\J l e

: .3 U [4 LTSy
D T) € % ¥ B @ M » Fowne I Tiwee
- “ - r T
LN “
n]
LH b
L (] n
o »
' '
V= —] -
| L]
(]]
' B
- IS N | WRPEPE. Wp.
3 | 3 |
3 2
1 ! 1 ' 1

R P D B ®

" "

25 0 an "

Figure 1-4.

Data Access and Analysis

MATLAB supports the entire process of data analysis, from the acquisition of data from external devices
and databases, pre-processing, visualization and numerical analysis, up to the production of results in
presentation quality.

MATLAB provides interactive tools and command line operations for data analysis, which include: sections of
data, scaling and averaging, interpolation, thresholding and smoothing, correlation, Fourier analysis and filtering,
searching for one-dimensional peaks and zeros, basic statistics and curve fitting, matrix analysis, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

The diagram in Figure 1-5 shows a curve that has been fitted to atmospheric pressure differences averaged

between Easter Island and Darwin in Australia.

Selct dat | cata ! 4|
[™ Corter and scale X datn
Pt s

cmu»m-rlunm

[splew rterpolart Fle Bt View [nset Tooks Window el
p - -
e PN RS R RANS W08 a0
™ quadratic
™ cubic
™ 4 degree potyromial Pressure dtferences between Easter Island and Darwin, Australia
[S cegroee potyromssl 18 v v v v v
anmw - @ O Pressure
,—mum (| SEECEEEPPE-SETPR () POT-TOPPPPRORT-Pp mgmw
[~ e degree potyromsal 4 \'\ @ - e
I~ 10th degree potynomiad 8 J\VW: j : :
r_m 14 ﬁ?--'é”\'llrj'?- “.c;c.} | TO.II.‘H
'_ 12 | P d:‘ sew ... | EEERE r..l.:., ahbRLE | ,I;).Ir. o] . "e I. . “[‘,
Pl roukdosts e || [/ :¥ : | A N ¢/
IN phct 'I % 10 fecsnp | T ‘ I\ ‘ “ / \Q‘Q- -fl «as
|9¢¢u -] & - : : N\ f \
I~ show of resid el v asvannniuia PR 0. 7 Y AR e - S— 4
noem of ¢ 8 Oé .\._olfoo : e
Help I Cloze I 8.. ~ bu ;
o .
al
2 ; L H 1 ;
0 5 10 15 20 25 30
Month

Figure 1-5.

The MATLAB platform allows efficient access to data files, other applications, databases and external devices.
You can read data stored in most known formats, such as Microsoft Excel, ASCII text files or binary image, sound and
video files, and scientific archives such as HDF and HDF5 files. The binary files for low level I/O functions allow you to
work with data files in any format. Additional features allow you to view Web pages and XML data.

It is possible to call other applications and languages, such as C, C++, COM, DLLs, Java, FORTRAN, and Microsoft
Excel objects, and access FTP sites and Web services. Using the Database Toolbox, you can even access ODBC/JDBC

databases.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Data Visualization

All graphics functions necessary to visualize scientific and engineering data are available in MATLAB. This includes
tools for two- and three-dimensional diagrams, three-dimensional volume visualization, tools to create diagrams
interactively, and the ability to export using the most popular graphic formats. It is possible to customize diagrams,
adding multiple axes, changing the colors of lines and markers, adding annotations, LaTeX equations and legends,
and plotting paths.

Various two-dimensional graphical representations of vector data can be created, including:

e Line, area, bar and sector diagrams
e Direction and velocity diagrams
e Histograms
e Polygons and surfaces
e Dispersion bubble diagrams
e Animations
Figure 1-6 shows linear plots of the results of several emission tests of a motor, with a curve fitted to the data.

=} Figure 1 H=1E3
Fle Edt View Incert Tooks Window Help -

D& L RAQANP | 08 =0

Emission Tests

—o— Test 1
18- Quadratic Fit
Test 2

10 12 14 16 18 20
Airfuel Ratio

Figure 1-6.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

MATLAB also provides functions for displaying two-dimensional arrays, three-dimensional scalar data and
three-dimensional vector data. It is possible to use these functions to visualize and understand large amounts
of complex multi-dimensional data. It is also possible to define the characteristics of the diagrams, such as the
orientation of the camera, perspective, lighting, light source and transparency. Three-dimensional diagramming
features include:

e Surface, contour and mesh plots
e Space curves
e Cone, phase, flow and isosurface diagrams

Figure 1-7 shows a three-dimensional diagram of an isosurface that reveals the geodesic structure of a fullerene
carbon-60 molecule.

J Bucky Ball Isosurface _ (O]]
File Edit View Insert Tools Desktop Window Help N

Dedée | eaMms (@ 0B =0

10 10

Figure 1-7.

MATLAB includes interactive tools for graphic editing and design. From a MATLAB diagram, you can perform
any of the following tasks:

e Dragand drop new sets of data into the figure
e Change the properties of any object in the figure

¢ Change the zoom, rotation, view (i.e. panoramic), camera angle and lighting

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

e Add data labels and annotations
e Draw shapes
e Generate an M-file for reuse with different data

Figure 1-8 shows a collection of graphics which have been created interactively by dragging data sets onto the
diagram window, making new subdiagrams, changing properties such as colors and fonts, and adding annotations.

) Figure 2 H=1E3

File Edit View Insert Tools Desktop Window Help B

I NEEREREEE

[Figure Palette = Signal Power (myY) Pressure (dB) [Plot Browser x|
80 : =

W New Subplots = : [V Signal Power (miv)
; 5 M — inputt
D2DAXBS H» VM — input2
1. 3D Axes B PO
. . q’ }_Jﬁl J\ ™ Pressure (dB)
\ ﬁ‘v" "'\Jh\“‘ ~ Pressure
AR = [V Electrode Charge (pC)
ecirode arge (P
Ba 20 1000 2000 g onae
£ amp 1x1 Electrode Charge (pC)
EH channen 1000x1
HH channel2 1000x1 B '
EH channeis 1000x1
E ChannelTime 1000x1
4-D
1x7550 ; .
HH pataset2 1x7550 ; °
FH petasets 1x7550
F‘H Fren 1%1 ll M

. Property Editor - Axes x |
Title: rressure (dB) X Axis I : Axisl I Axis | Fornt] Inspector... |

T X Labet: | Ticks... |
Colors: 'l s 'l
X Limits: |0 to 2000 IV Auto

cie IMx v [Nz

X Scale: ILinear Ll ™ Reverse
v Box

Figure 1-8.

MATLAB is compatible with all the well-known data file and graphics formats, such as GIE, JPEG, BMP, EPS,
TIFE, PNG, HDE AV], and PCX. As a result, it is possible to export MATLAB diagrams to other applications, such as
Microsoft Word and Microsoft PowerPoint, or desktop publishing software. Before exporting, you can create and apply
style templates that contain all the design details, fonts, line thickness, etc., necessary to comply with the publication
specifications.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Numerical Calculation

MATLAB contains mathematical, statistical, and engineering functions that support most of the operations carried
out in those fields. These functions, developed by math experts, are the foundation of the MATLAB language. To cite
some examples, MATLAB implements mathematical functions and data analysis in the following areas:

e Manipulation of matrices and linear algebra
e Polynomials and interpolation

e Fourier analysis and filters

e Statistics and data analysis

e Optimization and numerical integration

e Ordinary differential equations (ODEs)

e Partial differential equations (PDEs)

e Sparse matrix operations

Publication of Results and Distribution of Applications

In addition, MATLAB contains a number of functions which allow you to document and share your work. You can
integrate your MATLAB code with other languages and applications, and distribute your algorithms and MATLAB
applications as autonomous programs or software modules.

MATLAB allows you to export the results in the form of a diagram or as a complete report. You can export
diagrams to all popular graphics formats and then import them into other packages such as Microsoft Word or
Microsoft PowerPoint. Using the MATLAB Editor, you can automatically publish your MATLAB code in HTML format,
Word, LaTeX, etc. For example, Figure 1-9 shows an M-file (left) published in HTML (right) using the MATLAB Editor.
The results, which are sent to the Command Window or to diagrams, are captured and included in the document and
the comments become titles and text in HTML.

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

& Editor - D:\MATLAB\filter_example.m H=1E

File Edit Text Cel Tools Debug Desktop Window Help A x

DESH|! B~ &AL DD|RRE BA|E: J OJ
G|8B 8| ~ho [+ | =1 x|

T %% Paramecters Ll

8 % Specify parameters and construct tiwe base. The two frequencies ar

=) % = =

10 5 * 10Hz $"Web Browser - Filter Example)

11 % * 300H=z Fle Edt View Go Debug Desktop Window Help | R
12 ¢ = | & | ¢ | Locstion: [:aTLABmIfiter_example himi ~| BmB &0
13 - f£s=1000: ¥ Sample rate [;I
14 - £1=10; s £1 Parameters

b T2T300: v 12 Specify parameters and construct time base. The two frequencies are:

16 = t=0:1/fs:.2: % Time base

477, » 10Hz

18 %% Low frequency + 300Hz

;Z % First define a sample rate, £5=1000; % 'Samnie raca

1£1=10; % 11

2q0=l y=sin{2=pivfivc): e eRDh; A £

gl riotic-m: t=0:1/£s:.2; % Time hase

23

A uioi I e Luw f['gqug“cy

scrig | First define a sample rate, signal frequencies and a time base

| y=sin(2%pi*f1*t);
ploctic,y):

i«l 0:4 /\ /\ Iﬂ

/4

Figure 1-9.

It is possible to create more complex reports, such as mock executions and various parameter tests, using
MATLAB Report Generator (available separately).

MATLAB provides functions enabling you to integrate your MATLAB applications with C and C++ code,
FORTRAN code, COM objects, and Java code. You can call DLLs and Java classes and ActiveX controls. Using the
MATLAB engine library, you can also call MATLAB from C, C++, or FORTRAN code.

You can create algorithms in MATLAB and distribute them to other users of MATLAB. Using the MATLAB
Compiler (available separately), algorithms can be distributed, either as standalone applications or as software
modules included in a project, to users who do not have MATLAB. Additional products are able to turn algorithms
into a software module that can be called from COM or Microsoft Excel.

The MATLAB Working Environment

Figure 1-10 shows the primary workspace of the MATLAB environment. This is the screen in which you enter your
MATLAB programs.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Menu Command window Help Working folder Workspace

J MATLAB 7.10.0 (R2010Da)

Current Fol.. " O & X Command Window
$ Dem.» v O®IIE > [P select datatoplet + »
Im ; I Name I\'d.n
jisd mssiund i
| Command History » O .P x
ele ﬂ
clear
CLC
cle
clear
ele -
my test files Foider 7™ .l I 3
4 start \ '
Start button Window size Commands Command history
Figure 1-10.

The following table summarizes the components of the MATLAB environment.

Tool Description

Command History This allows you to see the commands entered during the session in the Command
Window, as well as copy them and run them (lower right part of Figure 1-11)

Command Window This is where you enter MATLAB commands (central part of Figure 1-11)

Workspace This allows you to view the contents of the workspace (variables, etc.) (upper right part of
Figure 1-11)

Help This offers help and demos on MATLAB

Start button This enables you to run tools and provides access to MATLAB documentation (Figure 1-12)

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

) MATLAB 7.10.0 (R2010a)
Fle Edt View Graphics Debug Parallel Desktop Window Help
S A ¢ $rd F)] @ CurentFolder: | C:\Documents and Settings\alumno|Mis documentos\MATLAE Q B

. shortcuts 2] HowtoAdd 2] what's New

Current Folder w O a x| Command Window e s [Workspace = iy

- Dam. v O #5- (@ Newto MATLAB? Watch this Video, see Demos, or read Getting Started. x |® ol & . | »
~
MName « MATLABE desktop kevboard shortcuts, such as Ctrl+S, are now s Value
";‘_‘Eacn‘:xioerwa,m In addition, many keyboard shortcuts have changed for impro Eans 7
across the desktop. HH v 2.7081
HH- 15

To customize keyboard shortcuts, use Preferences. From ther
restore previous default settings by selecting "R2009a Wind
from the active settings drop-down list. For more informati

Click here if you do not want to see this message again.

>> 2+42:
> 344 < L4
ans = L d History = O 2 X
TCIP LUty
- roots (x*4-4) ;
roots('x*4-4'):
>> w=log(15) I K
roots('x*4-4');
v o= roots('x 4-4' 1 x);
roots('x"4-4',x);
2.7081 B-%-- 28/01/11 14:51 -
242:
>> z=exp(v) L X=345;
_ B-%-- 11/02/11 9:23 --
A 242:
15 344
~v=log(15)
Jx 5s v - z=exp (v) v
Details ’\ £3]] > < >

<4 S_I:art]

Figure 1-11.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

J MATLAB 7.10.0 (R2010a)

File Edit Debug Parallel Desktop Window Help Financial Time Series Tool (ftstool)
MNMES | s B2 KD @ . Financial Derivatives » @ Help Z@ =
: Shortcuts (2] How to Add _] Wihat's New <\ Fixed-Income ¥/ g+ Demos
Current Fooe = 0 2 x | [T T @ Fired-Pont » @ Product Page (Web) —
e»@am. ~[p]> OWJ<JW , sttt x| o e -
Mame ~ ﬂ Image Acquisition » 2 | Name - va
7 actxlicense.m >> 2423 < Image Processing » %ans)
7> 344 i Instrument Control » 33: 1:%
_ ans = <\ Mapping »
4\ MaTLAB » | i Model Predictive Control
ﬂ Aerospace » ﬂ Model-Based Calibration »
& Simulink » & Bioinformatics b & Neural Network » P | 5
&b Elocksets » i Communications » i OPC »
ﬁ Links and Targets » ﬂ Control System » 4\ Optimization » Comman... » O a x
‘i Curve Fitting » 4\ Parallel Computing » roots('x"4-4 A
@ shortauts | Data Acquisition » i Partial Differential Equation » | rreots('xt4-4
£ Desktop Tools » i Database » L RF » W %5__ 28/01/11 14
@ web b i Datafeed » i Robust Control » : 2+2;
@ GetProduct Trials | fi Econometrics b < Signal Processing ’ | g
& Checkfor Updates ﬂ Filter Design 3 «‘i Spline » = :s;__ 11/0z/11 95
&y Preferences.. 4 It Design HDL Coder »| <ffl Statistics » 2:2:
@ Find Fles... _oe LR ’ v=1log(15)
© Help s E Lez=exp (V) E
v Demos o~ < > < >
l| 4\ Start| J [
Figure 1-12.

MATLAB commands are written in the Command Window to the right of the user input prompt “»” and the
response to the command will appear in the lines immediately below. After exiting from the response, the user input
prompt will re-display, allowing you to input more entries (Figure 1-13).

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

fﬁ New to MATLAB? Watch this Yideo, see Demos, or read Getting Started, X
>> 242:
>> 3+4
ans =
7

>> v=log(1l5)

2.7081

>> z=explv)

15
f o> 3
L e
Figure 1-13.

When an input is given to MATLAB in the Command Window and the result is not assigned to a variable, the
response returned will begin with the expression “ans=", as shown near the top of Figure 1-13. If the results are
assigned to a variable, we can then use that variable as an argument for subsequent input. This is the case for the
variable v in Figure 1-13, which is subsequently used as the input for an exponential.

To run a MATLAB command, simply type the command and press Enter. If at the end of the input we put a
semicolon, the program runs the calculation and keeps it in memory (Workspace), but does not display the result
on the screen (see the first entry in Figure 1-13). The input prompt “»” appears to indicate that you can enter a new
command.

Like the C programming language, MATLAB is case sensitive; for example, Sin(x) is not the same as sin(x).

The names of all built-in functions begin with a lowercase character. There should be no spaces in the names of
commands, variables or functions. In other cases, spaces are ignored, and they can be used to make the input more
readable. Multiple entries can be entered in the same command line by separating them with commas, pressing
Enter at the end of the last entry (see Figure 1-14). If you use a semicolon at the end of one of the entries in the line, its
corresponding output will not be displayed.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Command Window b

@ New to MATLAB? Watch this Video, see Demas, or read Getting Started.

>> sin(pi/2), sinipi/4), sin(pi/8)

ans =

ans

0.7071

ans =
0.3827

Jx s>
<

X
. -

£

Figure 1-14.

Descriptive comments can be entered in a command input line by starting them with the “%” symbol. When you
run the input, MATLAB ignores the comment and processes the rest of the code (see Figure 1-15).

[€ommand Window S =

(@) New to MATLAB? Watch this Yideo, see Demos, or read Getting Started.

>> L=log(123) % L is a Naperian logarithm
L =
4.8122

x>
<

Figure 1-15.

X
~

To simplify the process of entering script to be evaluated by the MATLAB interpreter (via the Command Window
prompt), you can use the arrow keys. For example, if you press the up arrow key once, you will recover the last entry
you submitted. If you press the up key twice, you will recover the penultimate entry you submitted, and so on.

If you type a sequence of characters in the input area and then press the up arrow key, you will recover the last

entry you submitted that begins with the specified string.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Commands entered during a MATLAB session are temporarily stored in the buffer (Workspace) until you end the
session, at which time they can be stored in a file or are permanently lost.

Below is a summary of the keys that can be used in MATLAB’s input area (command line), together with their
functions:

Up arrow (Ctrl-P) Retrieves the previous entry.

Down arrow (Ctrl-N) Retrieves the following entry.

Left arrow (Ctrl-B) Moves the cursor one character to the left.
Right arrow (Ctrl-F) Moves the cursor one character to the right.
CTRL-left arrow Moves the cursor one word to the left.
CTRL-right arrow Moves the cursor one word to the right.
Home (Ctrl-A) Moves the cursor to the beginning of the line.
End (Ctrl-E) Moves the cursor to the end of the current line.
Escape Clears the command line.

Delete (Ctrl-D) Deletes the character indicated by the cursor.
Backspace Deletes the character to the left of the cursor.
CTRL-K Deletes (kills) the current line.

The command clc clears the command window, but does not delete the contents of the work area (the contents
remain in the memory).

Help in MATLAB

You can find help for MATLAB via the help button @ in the toolbar or via the Help option in the menu bar. In

addition, support can also be obtained via MATLAB commands. The command help provides general help on all
MATLAB commands (see Figure 1-16). By clicking on any of them, you can get more specific help. For example, if you
click on graph2d, you get support for two-dimensional graphics (see Figure 1-17).

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

J MATLAB 7.10.0 (R2010a)

INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

File Edt Debug Parallel Desktop Window Help
g sl Ry R @Cmfddec:lf and \abumnc\Mis d AMATLAB v@m
© shortouts 2] How to Add (2] What's New
Curren... .0 | = Workspace w0 e x
@ [«n. | p| = |@ NewtoMATLAB? Watch this Video, ses Demos, or read Gelting Started. x| & o & %R |[Dsee.. -
Name - »> help | Name - L
) actrlicense.m HELP topics: e 4.8122
s 0.3827
. v 2.7081
Mis documentos)MATLAE = (No table of contents file) ==} 15
matlablgeneral - General purpose commands.
mat lablops = Operators and special characters
matlab) lang = Programming language constructs.
mat lab'elmat = Elementary matrices and matrix m ||£ ¥
mat lab} randfun - Random matrices and random strea Command History wO A x
matlablelfun - Elementary mwath funcrions.
mat lablspecfun - Specimlized math functions. - Emexpivi =]
mat lab\matfun - Matrix functions - numerical lin Sinfz)
mat lab' datafun - Data analysisz and Fourier transt rein(?)
mat labipolyfun - Interpolation and polynomials. sin(z*pi)
matlablfunfun - Function functions and ODE solve sin(3Tpi)
mat lab\sparfun - Sparse matrices. =in(pi/fz)
mat labyscribe - Annotation and Plot Editing. sin(pif2), sin(pifd),
mat lab\graphid - Two dimensional graphs. L=log{123] %L es un 1
S Syl T I el e vf| new vl
Details A > £ >
4 Start|

Figure 1-16.

J MATLAB 7.10.0 (R2010a)

File Edt Debug Parallel Desktop Window Help
NG sl o o B | @ | curentFoldes:|C and s 3 pmates v () @
© shortouts 2] How to Add (2] What's New
Curen... . 0» || N R orispace 0%]
@ [« m. v 0| » |@ Newto MATLAB? Watch this idso, see Demos, or read Getting Started, x| & o B Psel.. v »
~
Name ~ Two dimensional graphs. i \u\g‘
Elementary X-Y graphs. =p 2.7061
plot - Linear plot. =R 15
loglog - Log-log scale plot.
semilogx - Semi-log scale plot.
semilogy - Semi-log scale ploc.
polar - Polar coordinate plot.
plotyy - Graphs with y tick labels on the left and right.
Ahxis control. < 3|
axis = Control axis scaling and appearance. |
zoom - Zoom in and out on a 2-D plot. Command... O # 2
grid - Grid lines. 8-%-- 11/02/11 9:24|
box = Awis hox. 242
rhbox = Rubberband box. I+
hold - Hold current graph. v=log(15)
axes - Create axes in arbitrary positions. - z=exp (v)
subplot - Create axes in tiled positions. ~Sin(z)
—ein(?)
Graph annotation.
plotedit - Tools for editing and annotating plots. sin(27pi)
title - Graph title. sin(37pi)
xlabel - ¥-axis label. -ein(pifa)
yiabel - ¥-axis label. Csin(pifi], si
texlabel - Produces the TeX format from a character string. - L=log(123) sL
fx Lext = Text annotation. w “help v|
Details T & > < >
4 Start|

Figure 1-17.

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

You can ask for help about a specific command command (Figure 1-18) or on any topic topic (Figure 1-19) by
using the command help command or help topic.

J MATLAB 7.10.0 (R2010a)

S A B9 ™~ Y F) @ CurentFolder: | C:\Documents and Settings\alumnolMis d

rospatLaE v (L) @

>> help plot
PLOT

Linear plot.

PLOT(X,¥) plots vector ¥ wversus vector X. If X or ¥ i=s a matrix,
then the vector is plotted versus the rovs or columns of the matrix,
whichever line up. If X is a scalar and Y is a wvector, disconnected
line objects are created and plotted as discrete points vertically at
X.

PLOT(Y) plots the columns of Y versus their index.
If ¥ is complex, PLOT(Y) is equivalent to PLOT (real(Y),imagi(¥)).
In all other uses of PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with
PLOT(X,¥,5) where 5 is a character string made from one elem=nt
from any or all the following 3 colunns:

b blue . point - solid

o green o circle H dotted
r red ® x-mark = dashdot
=] cyan + plus - dashed
m magenta L star [none) no line
v yellow El square

Curren... *= 0O » x| [Command Window Sl Workspace =+ 0O 2 x|

(@) New to MATLAB? Watch this Video, see Demos, or read Getting Started.

x

= o = (Psel.. v
Name -« alue
HHL 4.81
FH ans 0.3
HHv 2,708
K= 15
< >
Command... % O 2 X
Lo L)
.
z=exp (V)
Sin(z)
—3in(7)
sin(2Fpi)
sin(3*pi)
sin(pi/2)

~sin(pi/2), sit
“L=log(123) %L
~—help

“help plot w

Fle Edt Debug Parallel Desktop Window Help
© Shortcuts (2] Howto Add (2] What's New
&« Qu«M. v 0>
Name -«

E]actxkense.m
[E—
Details A
4\ start

Figure 1-18.

www.it-ebooks.info

19

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

/) MATLAB 7.10.0 (R2010a) E]@@

fle Edt Debug Parallel Desktop Window Help
NS LB~ oy)| @ | CurentFolder: | C:\Documents and Settings\alumnolMis d kos\MATLAE E],Q
© Shorkeuts 2] How to Add 2] What's New
Curren... * O a x ||[@HERERIIE el Workspace = DO 8 x
& 3« M. v © » |@ NewtoMATLAB? Watch this Video, see Demos, or read Getting Started, x| & @ & Psel.. v *
Name >> help matlabielfun A1 Name - \'dug|
1) acticense.m Elementary wath functions. %;ﬁ ;':lzél
Trigonometric. %: f;gﬂ
sin = Sine.
sind = Sine of argument in degrees.
sinh - Hyperbolic sine.
asin = Inverse sine.
aszind = Inverse =ine, result in degrees. < >
asinh = Inverse hyperbolic sine.
cos - Cosine. Cnmmsgg_‘.‘.l‘.'“:' 02 x
cosd - Cosine of argument in degrees. Sin(z) e
cosh - Hyperbolic cosine. Lsin(T)
acos - Inverse cosine.
acosd - Inverse cosine, result in degrees. rsinl2®pi)
acosh - Inverse hyperbolic cosine, sin({3¥pi)
Lan - Tangent. =in(pil2)
tand - Tangent of argument in degrees. sin(pi/z), =i
tanh - Hyperbolic tangent. ~L=log(123) =L
atan - Inverse tangent. “help
atand - Inverse tangent, result in degrees. ~help plot
ﬁ; atand = Four guadrant inverse tangent. 7 L help matlab\ew
A 2 P S S . 2 5
4\ Start

Figure 1-19.

The command lookfor string allows you to find all those MATLAB functions or commands that refer to or contain
the string string. This command is very useful when there is no direct support for the specified string, or to view the
help for all commands related to the given string. For example, if we want to find help for all commands that contain
the sequence inv, we can use the command lookfor inv (Figure 1-20).

20

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB 7.10.0 (R2010a)

CHAPTER 1

INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

fle Edt Debug Parallel Desktop Window Help
NS LB~ oy)| @ | CurentFolder: | C:\Documents and Settings\alumnolMis d kos|MATLAB v|@@
© Shorteuts (2] Howto Add (2] What's New
Curren... *= 0O #» x| [Command Window =Bl Workspace = 0O 7 x|
& 3« M. v © » |@ NewtoMATLAB? Watch this Video, see Demos, or read Getting Started, x| & o & LPse. ~ *
Name -~ >> lookfor inv 21| Name « Value:
f;_-lactmmm ulvidyn = Creates an uncertain linear time-invaris EEI. 4.51
keyboard - Invoke keyboard from M-file. Hans 0.3
retucn - Return to invoking function. Hv 2.708
invhilb = Inverse Hilbert matrix. Ez 15
ipermute - Inverse permute array dimensions.
acos - Inverse cosine, result in radians.
acosd - Inverse cosine, result in degrees.
acosh = Inverse hyperbolic cosine, P 5
acot - Inverse cotangent, result in radian.
acotd - Inverse cotangent, result in degrees. Command... = 0O 2 x
acoth - Inverse hyperbolic cotangent. '“_'“‘”) ~
acsc - Inverse cosecant, result in radian. sin{zTpd)
acscd - Inverse cosecant, result in degrees. sin(3tpd)
acsch - Inverse hyperbolic cosecant. —sin(pi/2)
asec - Inverse secant, result in radians. ~sin(pi/2), sir
asecd - Inverse secant, result in degrees. L=log(123) sL
asech - Inverse hyperbolic secant. “help
asin - ;nverse sine, resuit in ;:dl.ans. - help plot
asind - Inverse sine, result in rees.
s. ! g “help matlab\e!
asinh - Inverse hyperbolic sine. i
N N look for inv
atan - Inverse tangent, result in radians. _
| acenz - Four cusdrant inverse tangent. A lockfor inv 9
Details A < < >
<\ Start
Figure 1-20.
21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Variables, Numbers, Operators
and Functions

Variables

MATLAB does not require a command to declare variables. A variable is created simply by directly allocating a value
to it. For example:

»v=13

vV =

The variable v will take the value 3 and using a new mapping will not change its value. Once the variable is
declared, we can use it in calculations.

»v”hr3
ans =
27

»V+S

ans =

The value assigned to a variable remains fixed until it is explicitly changed or if the current MATLAB session
is closed.
If we now write:

»v=34+7

10

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

then the variable v has the value 10 from now on, as shown in the following calculation:
»vhg
ans =
10000
A variable name must begin with a letter followed by any number of letters, digits or underscores. However, bear
in mind that MATLAB uses only the first 31 characters of the name of the variable. It is also very important to note that

MATLARB is case sensitive. Therefore, a variable named with uppercase letters is different to the variable with the same
name except in lowercase letters.

Vector Variables

A vector variable of n elements can be defined in MATLAB in the following ways:

V = [vi, v2, v3,..., vn]

V = [vi v2 v3... vn]

When most MATLAB commands and functions are applied to a vector variable the result is understood to be that
obtained by applying the command or function to each element of the vector:

»> vector1 = [1,4,9,2.25,1/4]
vectorl =

1.0000 4.0000 9.0000 2.2500 0.2500

»> sqrt (vectori)
ans =
1.0000 2.0000 3.0000 1.5000 0.5000

The following table presents some alternative ways of defining a vector variable without explicitly bracketing all
its elements together, separated by commas or blank spaces.

variable = [a:b] Defines the vector whose first and last elements are a and b, respectively, and the
intermediate elements differ by one unit.

variable = [a:s:b] Defines the vector whose first and last elements are a and b, respectively, and the
intermediate elements differ by an increase specified by s.

variable = linespace [a, b, n] Defines the vector with n evenly spaced elements whose first and last elements are
a and b respectively.

variable = logspace [a, b, n] Defines the vector with n evenly logarithmically spaced elements whose first and
last elements are 10° and 10", respectively.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Below are some examples:
»> vector2 = [5:5:25]
vector2 =
510 15 20 25
This yields the numbers between 5 and 25, inclusive, separated by 5 units.
»> vector3=[10:30]
vector3 =
Columns 1 through 13
10 11 12 13 14 15 16 17 18 19 20 21
Columns 14 through 21
23 24 25 26 27 28 29 30
This yields the numbers between 10 and 30, inclusive, separated by a unit.
»> t:Microsoft.WindowsMobile.DirectX.Vectorgd = linspace (10,30,6)
t:Microsoft.WindowsMobile.DirectX.Vectord =
10 14 18 22 26 30
This yields 6 equally spaced numbers between 10 and 30, inclusive.
»> vector5 = logspace (10,30,6)
vectors =
1. Oe + 030 *

0.0000 0.0000 0.0000 0.0000 0.0001 1.0000

22

This yields 6 evenly logarithmically spaced numbers between 10'° and 10%, inclusive.
One can also consider row vectors and column vectors in MATLAB. A column vector is obtained by separating its
elements by semicolons, or by transposing a row vector using a single quotation mark at the end of its definition.

»» a = [10;20;30;40]
a =
10
20

30
40

www.it-ebooks.info

25

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
» a = (10:14);b = a'

b =

10

11

12

13

14

» c=(a")’

10 11 12 13 14

You can also select an element of a vector or a subset of elements. The rules are summarized in the following table:

x (n) Returns the n-th element of the vector x.
x(a:b) Returns the elements of the vector x between the a-th and the b-th elements, inclusive.
x(a:p:b) Returns the elements of the vector x located between the a-th and the b-th elements, inclusive, but

separated by p units (a > b).

x(b:-p:a) Returns the elements of the vector x located between the b-th and a-th elements, both inclusive, but
separated by p units and starting with the b-th element (b > a).

Here are some examples:

» x = (1:10)

This yields the sixth element of the vector x.

» x (4:7)
ans =
4567
26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
This yields the elements of the vector x located between the fourth and seventh elements, inclusive.
»> x(2:3:9)
ans =
258

This yields the three elements of the vector x located between the second and ninth elements, inclusive,
but separated in steps of three units.

»> x(9:-3:2)
ans =
96 3

This yields the three elements of the vector x located between the ninth and second elements, inclusive, but
separated in steps of three units and starting at the ninth.

Matrix Variables

MATLAB defines arrays by inserting in brackets all its row vectors separated by a semicolon. Vectors can be entered
by separating their components by spaces or by commas, as we already know. For example, a 3 x 3 matrix variable
can be entered in the following two ways:

o o
[an a, a;a, a, a;a, a, a33]
o o
[an’a1z’ala’azn’azz’aza’asl’asz’asal

Similarly we can define an array of variable dimension (MxN). Once a matrix variable has been defined, MATLAB
enables many ways to insert, extract, renumber, and generally manipulate its elements. The following table shows
different ways to define matrix variables.

A(m,n) Defines the (m, n)-th element of the matrix A (row m and column n).

A(a:b,c:d) Defines the subarray of A formed between the a-th and the b-th rows and between the c-th and
the d-th columns, inclusive.

A(a:p:b,c:q:d) Defines the subarray of A formed by every p-th row between the a-th and the b-th rows,
inclusive, and every g-th column between the c-th and the d-th column, inclusive.

A([ab],[cd]) Defines the subarray of A formed by the intersection of the a-th through b-th rows and c-th
through d-th columns, inclusive.

A([abc...],[efg...]) Defines the subarray of A formed by the intersection of rows a, b, ¢,...and columnse, f, g,...

A(:,c:d) Defines the subarray of A formed by all the rows in A and the c-th through to the d-th columns.
A(ylcde...]) Defines the subarray of A formed by all the rows in A and columns ¢, d, e,...
A(a:b,2) Defines the subarray of A formed by all the columns in A and the a-th through to the b-th rows.
A([abec...],?) Defines the subarray of A formed by all the columns in A and rows a, b, c,...
(continued)
27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

A(a,?)

A(:,b)

A()

A(:2)

[A, B, C,...]
s,=11

diag (v)

diag (A)

eye (n)

eye (m, n)
zeros (m, n)
ones (m, n)
rand (m, n)
randn (m, n)
flipud (A)
fliplr (A)
rot90 (A)
reshape(A,m,n)
size (A)

find (condA)
length (v)
tril (A)

triu (A)

A

Inv (A)

Defines the a-th row of the matrix A.

Defines the b-th column of the matrix A.

Defines a column vector whose elements are the columns of A placed in order below each other.
This is equivalent to the entire matrix A.

Defines the matrix formed by the matrices A, B, C,...

Clears the subarray of the mairix A, S,, and returns the remainder.

Creates a diagonal matrix with the vector v in the diagonal.

Extracts the diagonal of the matrix as a column vector.

Creates the identity matrix of order n.

Creates an mxn matrix with ones on the main diagonal and zeros elsewhere.

Creates the zero matrix of order mxn.

Creates the matrix of order mxn with all its elements equal to 1.

Creates a uniform random matrix of order mxn.

Creates a normal random matrix of order mxn.

Returns the matrix whose rows are those of A but placed in reverse order (from top to bottom).
Returns the matrix whose columns are those of A but placed in reverse order (from left to right).
Rotates the matrix A counterclockwise by 90 degrees.

Returns an mxn matrix formed by taking consecutive entries of A by columns.

Returns the order (size) of the matrix A.

Returns all A items that meet a given condition.

Returns the length of the vector v.

Returns the lower triangular part of the matrix A.

Returns the upper triangular part of the matrix A.

Returns the transpose of the matrix A.

Returns the inverse of the matrix A.

Here are some examples:
We consider first the 2 x 3 matrix whose rows are the first six consecutive odd numbers:

> A =[135;79 11]

A =

135
79 11

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Now we are going to change the (2,3)-th element, i.e. the last element of A, to zero:

> A(2,3) = 0
A =
135
790

We now define the matrix B to be the transpose of A:
» B =A'

B =

w
o

We now construct a matrix C, formed by attaching the identity matrix of order 3 to the right of the matrix B:

» C = [B eye (3)]

C =
1 7 1 0
3 9 0 1 0
5 0 0 0 1

We are going to build a matrix D by extracting the odd columns of the matrix C, a matrix E formed by taking the
intersection of the first two rows of C and its third and fifth columns, and a matrix F formed by taking the intersection
of the first two rows and the last three columns of the matrix C:

»» D = C(:,1:2:5)
D =
110

3
501

o
o

» E = ¢([1 2],[3 5])

E =

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
»» F = ¢([1 2],3:5)
F=

100
010

Now we build the diagonal matrix G such that the elements of the main diagonal are the same as those of the
main diagonal of D:

»» G = diag(diag(D))

G =

(e}
[}
(e}

We then build the matrix H, formed by taking the intersection of the first and third rows of C and its second, third
and fifth columns:

» H = ¢([1 3],[2 3 5])

Now we build an array I formed by the identity matrix of order 5 x 4, appending the zero matrix of the same order
to its right and to the right of that the unit matrix, again of the same order. Then we extract the first row of I and, finally,
form the matrix J comprising the odd rows and even columns of I and calculate its order (size).

»> I = [eye(5,4) zeros(5,4) ones(5,4)]

ans =

1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1
» I(1,:)

ans =

1 0 0 0 0 0 0 0 1 1 1 1
30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»» J = I(1:2:5,2:2:12)

J =
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1

»» size(J)
ans =
36
We now construct a random matrix K of order 3 x4, reverse the order of the rows of K, reverse the order of the
columns of K and then perform both operations simultaneously. Finally, we find the matrix L of order 4 x 3 whose
columns are obtained by taking the elements of K sequentially by columns.
»» K = rand(3,4)
K =
0.5269 0.4160 0.7622 0.7361

0.0920 0.7012 0.2625 .3282
0.6539 0.9103 0.0475 0.6326

o

»> K(3:-1:1,:)
ans =
0.6539 0.9103 0.0475 0.6326

0.0920 0.7012 0.2625 .3282
0.5269 0.4160 0.7622 0.7361

o

»> K(:,4:-1:1)
ans =
0.7361 0.7622 0.4160 0.5269

0.3282 0.2625 0.7012 .0920
0.6326 0.0475 0.9103 0.6539

o

»> K(3:-1:1,4:-1:1)
ans =
0.6326 0.0475 0.9103 0.6539

0.3282 0.2625 0.7012 .0920
0.7361 0.7622 0.4160 0.5269

(]

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»» L = reshape(K,4,3)
[=

0.5269 0.7012 0.0475
0.0920 0.9103 0.7361
0.6539 0.7622 0.3282
0.4160 0.2625 0.6326

Character Variables

A character variable (chain) is simply a character string enclosed in single quotes that MATLAB treats as a vector form.
The general syntax for character variables is as follows:

c = 'string'

Among the MATLAB commands that handle character variables we have the following:

abs (‘character_string’)
setstr (numeric_vector)
str2mat (t1,t2,t3,...)
str2num (‘string’)
num2str (number)
int2str (integer)

sprintf (‘format) a)
sscanf (‘string) ‘format’)
dec2hex (integer)
hex2dec (‘string hex’)
hex2num (‘string hex’)
lower (‘string’)

upper (‘string’)

stremp (s1, s2)

strcmp (s1, s2, n)

strrep (c, ‘expl) ‘exp2’)
findstr (c, ‘exp’)

isstr (expression)
ischar (expression)
strjust (string)

blanks (n)

Returns the array of ASCII characters equivalent to each character in the string.
Returns the string of ASCII characters that are equivalent to the elements of the vector.
Returns the matrix whose rows are the strings tl, t2, t3,..., respectively

Converts the string to its exact numeric value used by MATLAB.

Returns the exact number in its equivalent string with fixed precision.

Converts the integer to a string.

Converts a numeric array into a string in the specified format.

Converts a string to a numeric value in the specified format.

Converts a decimal integer into its equivalent string in hexadecimal.

Converts a hexadecimal string into its integer equivalent.

Converts a hexadecimal string into the equivalent IEEE floating point number.
Converts a string to lowercase.

Converts a string to uppercase.

Compares the strings s1 and s2 and returns 1 if they are equal and 0 otherwise.

Compares the strings s1 and s2 and returns 1 if their first n characters are equal and 0
otherwise.

Replaces expl by exp2 in the chain c.

Finds where exp is in the chain c.

Returns 1 if the expression is a string and 0 otherwise.
Returns 1 if the expression is a string and 0 otherwise.
Right justifies the string.

Generates a string of n spaces.

32

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

deblank (string) Removes blank spaces from the right of the string.

eval (expression) Executes the expression, even if it is a string.

disp (‘string’) Displays the string (or array) as has been written, and continues the MATLAB process.
input (‘string’) Displays the string on the screen and waits for a key press to continue.

Here are some examples:
»> hex2dec ('3ffe56e’)
ans =
67102062
Here MATLAB has converted a hexadecimal string into a decimal number.
»> dec2hex (1345679001)
ans =
50356E99
The program has converted a decimal number into a hexadecimal string.
»> sprintf('%f',[1+sqrt(5)/2,pi])
ans =
2.118034 3.141593
The exact numerical components of a vector have been converted to strings (with default precision).
»> sscanf('121.00012"', '%f')
ans =
121.0001
Here a numeric string has been passed to an exact numerical format (with default precision).
»> num2str (pi)
ans =

3.142

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The constant has been converted into a string.
»» str2num('15/14")
ans =
1.0714
The string has been converted into a numeric value with default precision.
»> setstr(32:126)
ans =

1"#3% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]
_'abcdefghijklmnopqrstuvwxyz {[}~

This yields the ASCII characters associated with the whole numbers between 32 and 126, inclusive.
»> abs('{]1}><#je?>*")
ans =
123 93 125 62 60 35 161 191 63 186 170
This yields the integers corresponding to the ASCII characters specified in the argument of abs.
>> lower ('ABCDefgHIJ')
ans =
abcdefghij
The text has been converted to lowercase.
»> upper('abcd eFGHi jK1Mn')
ans =
ABCD EFGHI JKLMN
The text has been converted to uppercase.
»» str2mat ('The woxld',' The country',' Daily 16', ' ABC')
ans =
The world
The country

Daily 16
ABC

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The chains comprising the arguments of str2mat have been converted to a text array.
»> disp('This text will appear on the screen')
ans =
This text will appear on the screen

Here the argument of the command disp has been displayed on the screen.

»> ¢ = '"This is a good example';
»> strrep(c, 'good', 'bad’)

ans =
This is a bad example

The string good has been replaced by bad in the chain c. The following instruction locates the initial position of
each occurrence of is within the chain c.

»» findstr (c, 'is')
ans =

36

Numbers

In MATLAB the arguments of a function can take many different forms, including different types of numbers and
numerical expressions, such as integers and rational, real and complex numbers.

Arithmetic operations in MATLAB are defined according to the standard mathematical conventions. MATLAB is
an interactive program that allows you to perform a simple variety of mathematical operations. MATLAB assumes the
usual operations of sum, difference, product, division and power, with the usual hierarchy between them:

x+y Sum

Xy Difference
x*yorxy Product
x/y Division

xNy Power

To add two numbers simply enter the first number, a plus sign (+) and the second number. Spaces may be
included before and after the sign to ensure that the input is easier to read.

» 2+ 3

ans =

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

We can perform power calculations directly.
> 100 * 50
ans =
1. 0000e + 100

Unlike a calculator, when working with integers, MATLAB displays the full result even when there are more
digits than would normally fit across the screen. For example, MATLAB returns the following value of 99 A 50 when
using the vpa function (here to the default accuracy of 32 significant figures).

»> vpa '99 ~ 50'
ans =
. 60500606713753665044791996801256€100

To combine several operations in the same instruction one must take into account the usual priority criteria
among them, which determine the order of evaluation of the expression. Consider, for example:

»» 2 %3424+ (5-2) *3
ans =
27

Taking into account the priority of operators, the first expression to be evaluated is the power 342. The usual
evaluation order can be altered by grouping expressions together in parentheses.

In addition to these arithmetic operators, MATLAB is equipped with a set of basic functions and you can also
define your own functions. MATLAB functions and operators can be applied to symbolic constants or numbers.

One of the basic applications of MATLAB is its use in realizing arithmetic operations as if it were a conventional
calculator, but with one important difference: the precision of the calculation. Operations are performed to whatever
degree of precision the user desires. This unlimited precision in calculation is a feature which sets MATLAB apart
from other numerical calculation programs, where the accuracy is determined by a word length inherent to the
software, and cannot be modified.

The accuracy of the output of MATLAB operations can be relaxed using special approximation techniques
which are exact only up to a certain specified degree of precision. MATLAB represents results with accuracy, but
even if internally you are always working with exact calculations to prevent propagation of rounding errors, different
approximate representation formats can be enabled, which sometimes facilitate the interpretation of the results. The
commands that allow numerical approximation are the following:

format long Delivers results to 16 significant decimal figures.
format short Delivers results to 4 decimal places. This is MATLAB's default format.
formatlonge Provides the results to 16 decimal figures more than the power of 10 required.
format short e Provides the results to four decimal figures more than the power of 10 required.
formatlong g Provides the results in optimal long format.
format short g Provides the results in optimum short format.
(continued)
36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

bank format Delivers results to 2 decimal places.

format rat Returns the results in the form of a rational number approximation.
format + Returns the sign (+, -) and ignores the imaginary part of complex numbers.
format hex Returns results in hexadecimal format.

vpa ‘operations’ n Returns the result of the specified operations to n significant digits.
numeric (‘expr’) Provides the value of the expression numerically approximated by the current active format.

digits (n) Returns results to n significant digits.

Using format gives a numerical approximation of 174/13 in the way specified after the format command:
> 174/13
ans =
13.3846
»> format long; 174/13
ans =
13.38461538461539
»> format long e; 174/13
ans =
1.338461538461539e + 001
»> format short e; 174/13
ans =
1.3385e + 001
»> format long g; 174/13
ans =

13.3846153846154

»> format short g; 174/13
ans =

13.385

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> format bank; 174/13
ans =
13.38
»> format hex; 174/13
ans =
402ac4ecqecqecsf
Now we will see how the value of sqrt (17) can be calculated to any precision that we desire:
> vpa ' 174/13 ' 10
ans =
13.38461538
> vpa ' 174/13 ' 15
ans =
13.3846153846154
»» digits (20); vpa ' 174/13 '
ans =

13.384615384615384615

Integers

In MATLAB all common operations with whole numbers are exact, regardless of the size of the output. If we want the
result of an operation to appear on screen to a certain number of significant figures, we use the symbolic computation
command vpa (variable precision arithmetic), whose syntax we already know.

For example, the following calculates 62400 to 450 significant figures:

> '6 vpa " 400" 450

ans =
182179771682187282513946871240893712673389715281747606674596975493339599720905327003028267800766283
867331479599455916367452421574456059646801054954062150177042349998869907885947439947961712484067309

738073652485056311556920850878594283008099992731076250733948404739350551934565743979678824151197232
629947748581376.

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The result of the operation is precise, always displaying a point at the end of the result. In this case it turns
out that the answer has fewer than 450 digits anyway, so the solution is exact. If you require a smaller number of
significant figures, that number can be specified and the result will be rounded accordingly. For example, calculating
the above power to only 50 significant figures we have:

> '6 vpa " 400' 50
ans =

. 18217977168218728251394687124089371267338971528175e312

Functions of Integers and Divisibility

There are several functions in MATLAB with integer arguments, the majority of which are related to divisibility.
Among the most typical functions with integer arguments are the following:

rem (n, m) Returns the remainder of the division of n by m (also valid when n and m are real).
sign (n) Thesignofn (i.e. 1ifn>0,-1ifn<0).

max (nl, n2) The maximum of nl and n2.

min (nl, n2) The minimum of nl and n2.

gcd (n1, n2) The greatest common divisor of nl and n2.

Icm (nl, n2) The least common multiple of n1 and n2.

factorial (n) n factorial (i.e. n(n-1) (n-2)...1)

factor (n) Returns the prime factorization of n.

Below are some examples.
The remainder of division of 17 by 3:

»> rem (17,3)

ans =

The remainder of division of 4.1 by 1.2:
»> rem (4.1,1.2)
ans =

0.5000

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The remainder of division of - 4.1 by 1.2:
»> rem (-4.1,1.2)
ans =
-0.5000
The greatest common divisor of 1000, 500 and 625:
»» ged (12000, ged (500,625))
ans =
125.00
The least common multiple of 1000, 500 and 625:
»> lcm (2000, lcm (500,625))
ans =

5000.00

Alternative Bases

MATLAB allows you to work with numbers to any base, as long as the extended symbolic math toolbox is available.
It also allows you to express all kinds of numbers in different bases. This is implemented via the following functions:

dec2base (decimal, n_base) Converts the specified decimal number to the new base n_base.
base2dec(number,b) Converts the given number in base b to a decimal number.
dec2bin (decimal) Converts the specified decimal number to base 2 (binary).
dec2hex (decimal) Converts the specified decimal number to base 16 (hexadecimal).
bin2dec (binary) Converts the specified binary number to decimal.

hex2dec (hexadecimal) Converts the specified base 16 number to decimal.

Below are some examples.
Represent in base 10 the base 2 number 100101.

»> base2dec('100101',2)
ans =

37.00

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Represent in base 10 the hexadecimal number FFFFAAQO0.
»> base2dec ('FFFFARO', 16)
ans =
268434080.00
Represent the result of the base 16 operation FFFAA2+FF-1 in base 10.
»> base2dec('FFFAA2',16) + base2dec('FF',16)-1
ans =

16776096.00

Real Numbers

As is well known, the set of real numbers is the disjoint union of the set of rational numbers and the set of irrational
numbers. A rational number is a number of the form p/q, where p and g are integers. In other words, the rational
numbers are those numbers that can be represented as a quotient of two integers. The way in which MATLAB treats
rational numbers differs from the majority of calculators. If we ask a calculator to calculate the sum 1/2 + 1/3 + 1/4,
most will return something like 1.0833, which is no more than an approximation of the result.

The rational numbers are ratios of integers, and MATLAB can work with them in exact mode, so the result of an
arithmetic expression involving rational numbers is always given precisely as a ratio of two integers. To enable this,
activate the rational format with the command format rat. If the reader so wishes, MATLAB can also return the results
in decimal form by activating any other type of format instead (e.g. format short or format long). MATLAB evaluates
the above mentioned sum in exact mode as follows:

»> format rat
» 1/2 + 1/3 + 1/4

ans =
13/12

Unlike calculators, MATLAB ensures its operations with rational numbers are accurate by maintaining the
rational numbers in the form of ratios of integers. In this way, calculations with fractions are not affected by rounding
errors, which can become very serious, as evidenced by the theory of errors. Note that, once the rational format is
enabled, when MATLAB adds two rational numbers the result is returned in symbolic form as a ratio of integers, and
operations with rational numbers will continue to be exact until an alternative format is invoked.

A floating point number, or a number with a decimal point, is interpreted as exact if the rational format is

enabled. Thus a floating point expression will be interpreted as an exact rational expression while any irrational
numbers in a rational expression will be represented by an appropriate rational approximation.

»> format rat
»> 10/23 + 2.45/44

ans =
1183 / 2412

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The other fundamental subset of the real numbers is the set of irrational numbers, which have always created
difficulties in numerical calculation due to their special nature. The impossibility of representing an irrational number
accurately in numeric mode (using the ten digits from the decimal numbering system) is the cause of most of the
problems. MATLAB represents the results with an accuracy which can be set as required by the user. An irrational
number, by definition, cannot be represented exactly as the ratio of two integers. If ordered to calculate the square
root of 17, by default MATLAB returns the number 5.1962.

» sqrt (27)

ans =
5.1962
MATLAB incorporates the following common irrational constants and notions:
pi The number = 3.1415926...
exp (1) The number e = 2.7182818...
Inf Infinity (returned, for example, when it encounters 1/0).
NaN Uncertainty (returned, for example, when it encounters 0/0).
realmin Returns the smallest possible normalized floating-point number in IEEE double precision.
realmax Returns the largest possible finite floating-point number in IEEE double precision.

The following examples illustrate how MATLAB outputs these numbers and notions.

»> long format
» pi

ans =
3.14159265358979
»> exp (1)

ans =
2.71828182845905

> 1/0
Warning: Divide by zero.
ans =

Inf

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

» 0/0

Warning: Divide by zero.
ans =

NaN

»> realmin

ans =
2. 225073858507201e-308
»> realmax

ans =

1. 797693134862316e + 308

Functions with Real Arguments

VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The disjoint union of the set of rational numbers and the set of irrational numbers is the set of real numbers. In turn,
the set of rational numbers has the set of integers as a subset. All functions applicable to real numbers are also valid
for integers and rational numbers. MATLAB provides a full range of predefined functions, most of which are discussed
in the subsequent chapters of this book. Within the group of functions with real arguments offered by MATLAB, the

following are the most important:

Trigonometric functions

Function Inverse

sin (x) asin (x)

cos (x) acos (x)

tan(x) atan(x) and atan2(y,x)
csc (x) acsc (x)

sec (x) asec (x)

cot (x) acot (x)

Hyperbolic functions

Function Inverse

sinh (x) asinh (x)
cosh(x) acosh(x)
tanh(x) atanh(x)
csch(x) acsch(x)
sech(x) asech(x)
coth (x) acoth (x)

www.it-ebooks.info

43

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Exponential and logarithmic functions

Function Meaning

exp (x) Exponential function in base e (e " x).
log (x) Base e logarithm of x.

logl0 (x) Base 10 logarithm of x.

log2 (x) Base 2 logarithm of x.

pow2 (x) 2 raised to the power x.

sqrt (x) The square root of x.

Numeric variable-specific functions

Function Meaning

abs (x) The absolute value of x.

floor (x) The largest integer less than or equal to x.

ceil (x) The smaller integer greater than or equal to x.
round (x) The closest integer to x.

fix (x) Removes the fractional part of x.

rem (a, b) Returns the remainder of the division of a by b.
sign (x) Returns the sign of x (1ifx>0,0ifx=0,-1ifx<0).

Here are some examples:

»» sin(pi/2)

ans =

1

»» asin (1)

ans =

1.57079632679490

>> log (exp (1) ~ 3)

ans =

3.00000000000000

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
The function round is demonstrated in the following two examples:
»> round (2.574)
ans =
3
»> round (2.4)

ans =

The function ceil is demonstrated in the following two examples:
»> ceil (4.2)
ans =
5
»> ceil (4.8)

ans =

The function floor is demonstrated in the following two examples:
»> floor (4.2)
ans =
4
»> floor (4.8)

ans =

The fix function simply removes the fractional part of a real number:

» fix (5.789)

ans =

www.it-ebooks.info

VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

45

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Complex Numbers

Operations on complex numbers are well implemented in MATLAB. MATLAB follows the convention that i or j
represents the key value in complex analysis, the imaginary number +- 1. All the usual arithmetic operators can be
applied to complex numbers, and there are also some specific functions which have complex arguments. Both the real
and the imaginary part of a complex number can be a real number or a symbolic constant, and operations with them
are always performed in exact mode, unless otherwise instructed or necessary, in which case an approximation of the
result is returned. As the imaginary unit is represented by the symbol i or j, the complex numbers are expressed in the
form a+bi or a+bj. Note that you don't need to use the product symbol (asterisk) before the imaginary unit:

> (1-5i)*(1-i)/(-1+21)
ans =
-1.6000 + 2.80001

»> format rat
»> (1-5i) *(1-i) /(-2+2i)

ans =

-8/5 + 14/51

Functions with Complex Arguments

Working with complex variables is very important in mathematical analysis and its many applications in engineering.
MATLAB implements not only the usual arithmetic operations with complex numbers, but also various complex
functions. The most important functions are listed below.

Trigonometric functions

Function Inverse
sin (z) asin (z)
cos (z) acos (z)
tan (z) atan(z) and atan2(imag(z),real(z))
csc (z) acsc (z)
sec (z) asec (z)
cot (z) acot (z)

Hyperbolic functions

Function Inverse
sinh (z) asinh (z)
cosh(z) acosh(z)
tanh(z) atanh(z)
csch(z) acsch(z)
sech(z) asech(z)
coth (z) acoth (z)
46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Exponential and logarithmic functions

Function Meaning

exp (z) Exponential function in base e (e " z)
log (z) Base e logarithm of z

log10 (z) Base 10 logarithm of z.

log2 (z) Base 2 logarithm of z.

pow2 (z) 2 to the power z.

sqrt (z) The square root of z.

Specific functions for the real and imaginary part

Function Meaning

floor (z) Applies the floor function to real(z) and imag(z).
ceil (z) Applies the ceil function to real(z) and imag(z).
round (z) Applies the round function to real(z) and imag(z).
fix (z) Applies the fix function to real(z) and imag(z).

Specific functions for complex numbers

Function Meaning

abs (z) The complex modulus of z.
angle (z) The argument of z.

conj (z) The complex conjugate of z.
real (z) The real part of z.

imag (z) The imaginary part of z.

Below are some examples of operations with complex numbers.

»> round(1.5-3.4i)
ans =

2 - 31

»> real(i*i)

ans =

0.2079

www.it-ebooks.info

47

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

» (2+#2i)"2/(-3-3*sqrt(3)*i)*90

ans =

0502e-085 - 1 + 7. 4042e-0701

»> sin (1 + i)

ans =

1.2985 + 0. 63501

Elementary Functions that Support Complex Vector Arguments

MATLAB easily handles vector and matrix calculus. Indeed, its name, MAtrix LABoratory, already gives an idea of its
power in working with vectors and matrices. MATLAB allows you to work with functions of a complex variable, but in
addition this variable can even be a vector or a matrix. Below is a table of functions with complex vector arguments.

max (V)

min (V)

mean (V)
median (V)
std (V)

sort (V)

sum (V)
prod (V)

cumsum (V)

The maximum component of V. (max is calculated for complex vectors as the complex number
with the largest complex modulus (magnitude), computed with max(abs (V)). Then it computes
the largest phase angle with max(angle(x)), if necessary.)

The minimum component of V. (min is calculated for complex vectors as the complex number with
the smallest complex modulus (magnitude), computed withmin(abs(A)). Then it computes the
smallest phase angle withmin(angle(x)), if necessary.)

Average of the components of V.
Median of the components of V.
Standard deviation of the components of V.

Sorts the components of V in ascending order. For complex entries the order is by absolute value
and argument.

Returns the sum of the components of V.
Returns the product of the components of V, so, for example, n! = prod(1:n).

Gives the cumulative sums of the components of V.

cumprod (V) Gives the cumulative products of the components of V.

diff (V) Gives the vector of first differences of V (Vt - V-t-1).

gradient (V) Gives the gradient of V.

del2 (V) Gives the Laplacian of V (5-point discrete).

fft (V) Gives the discrete Fourier transform of V.

fft2 (V) Gives the two-dimensional discrete Fourier transform of V.

ifft (V) Gives the inverse discrete Fourier transform of V.

ifft2 (V) Gives the inverse two-dimensional discrete Fourier transform of V.
48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

These functions also support a complex matrix as an argument, in which case the result is a vector of column
vectors whose components are the results of applying the function to each column of the matrix.
Here are some examples:

> V =2:7, W= 1[5+ 31 2-i 4i]

V=

W =
2.0000 - 1.0000i 0 + 4.00001 5.0000 + 3.00001
»> diff(V), diff(w)

ans

ans

-2.0000 + 5.00001 5.0000 - 1.00001
»> cumprod(V), cumsum(V)

ans

2 6 24 120 720 5040

ans =

2 5 9 14 20 27

»> cumsum(W), mean(W), std(W), sort(W), sum(W)
ans =

2.0000 - 1.0000i 2.0000 + 3.00001i 7.0000 + 6.00001
ans =

2.3333 + 2.00001

ans =

3.6515

ans =

2.0000 - 1.00001 O + 4.00001 5.0000 + 3.00001

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
ans =

7.0000 + 6.00001

»> mean(V), std(V), sort(V), sum(V)

ans =

4.5000

ans =

1.8708

ans

ans
27
> FFt(W), ifft(W), FFt2(W)

ans =

7.0000 + 6.00001 0.3660 - 0.16991 -1.3660 - 8.8301i
ans =

2.3333 + 2.00001 -0.4553 - 2.94341 0.1220 - 0.05661
ans =

7.0000 + 6. 00001 0.3660 - 0. 16991 - 1.3660 - 8. 83011

Elementary Functions that Support Complex Matrix Arguments

o Trigonometric

sin (z) Sine function

sinh (z) Hyperbolic sine function
asin (z) Arcsine function

asinh (z) Hyperbolic arcsine function
cos (z) Cosine function

cosh (z) Hyperbolic cosine function

(continued)

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

acos (z)
acosh (z)
tan(z)
tanh (z)
atan (z)
atan2 (z)
atanh (z)
sec (z)
sech (z)
asec (z)
asech (z)
csc (z)
csch (z)
acsc (z)
acsch (z)
cot (z)
coth (z)
acot (z)
acoth (z)
Exponential
exp (z)
log (z)
log10 (z)
sqrt (z)
Complex
abs (z)
angle (z)
conj (z)
imag (z)
real (z)
Numerical
fix (z)
floor (z)

ceil (z)

Arccosine function

Hyperbolic arccosine function
Tangent function

Hyperbolic tangent function
Arctangent function

Fourth quadrant arctangent function
Hyperbolic arctangent function
Secant function

Hyperbolic secant function
Arccosecant function
Hyperbolic arccosecant function
Cosecant function

Hyperbolic cosecant function
Arccosecant function
Hyperbolic arccosecant function
Cotangent function

Hyperbolic cotangent function
Arccotangent function

Hyperbolic arccotangent function

Base e exponential function
Natural logarithm function (base e)
Base 10 logarithm function

Square root function

Modulus or absolute value
Argument

Complex conjugate
Imaginary part

Real part

Removes the fractional part
Rounds to the nearest lower integer

Rounds to the nearest greater integer

www.it-ebooks.info

(continued)

51

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

round (z) Performs common rounding
rem (z1, z2) Returns the remainder of the division of zI by z2
sign (z) The sign of z

e Matrix
expm (Z) Matrix exponential function by default
expml (Z) Matrix exponential function in M-file
expm2 (Z) Matrix exponential function via Taylor series
expm3 (Z) Matrix exponential function via eigenvalues
logm (Z) Logarithmic matrix function
sqrtm (Z) Matrix square root function
funm(Z,function’) Applies the function to the array Z

Here are some examples:

>> A =[789;123;456], B=[1+2i 3+i;4+i,i]

A =
7 8 9
1 2 3
4 5 6
B =

1.0000 + 2.0000i 3.0000 + 1.00001
4.0000 + 1.00001 0 + 1.00001

»» sin(A), sin(B), exp(A), exp(B), log(B), sqrt(B)
ans =

0.6570 0.9894 0.4121

0.8415 0.9093 0.1411

-0.7568 -0.9589 -0.2794

ans =

3.1658 + 1.95961 0.2178 - 1.16341
-1.1678 - 0.76821 0+ 1.1752i

ans =
1.0e+003 *
1.0966 2.9810 8.1031

0.0027 0.0074 0.0201
0.0546 0.1484 0.4034

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

ans =

-1.1312 + 2.47171 10.8523 +16.90141
29.4995 +45.94281 0.5403 + 0.84151

ans =

0.8047 + 1.10711 1.1513 + 0.32181
1.4166 + 0.24501 0 + 1.57081

ans =

1.2720 + 0.78621i 1.7553 + 0.28481
2.0153 + 0.24811 0.7071 + 0.70711

VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The exponential functions, square root and logarithm used above apply to the array elementwise and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

»> expm(B), logm(A), abs(B), imag(B)
ans =

-27.9191 +14.86981 -20.0011 +12.06381
-24.7950 + 17.68311-17.5059 + 14.04451

ans =

11.9650 12.8038 - 19.9093
-21.7328-22.1157 44.6052

11.8921 12.1200 - 21.2040

ans =

2.2361 3.1623
4.1231 1.0000

ans =
2 1
1 1

»» fix(sin(B)), ceil(log(A)), sign(B), rem(A,3*ones(3))

ans =
3.0000 + 1.00001 0 - 1.00001
-1.0000 0 + 1.00001

www.it-ebooks.info

53

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

ans =
2 3 3
0 1 2
2 2 2
ans =

0.4472 + 0.89441
0.9701 + 0.24251

ans =

1 2 0
1 2 0
1 2 0

0.9487 + 0.31621

0 + 1.00001

Random Numbers

MATLARB can easily generate (pseudo) random numbers. The function rand generates uniformly distributed random
numbers and the function randn generates normally distributed random numbers. The most interesting features of
MATLAB’s random number generator are presented in the following table.

rand

rand (n)

rand (m, n)

rand (size (a))

rand (‘seed’)
rand(‘seed)n)
randn

randn (n)

randn (m, n)

randn (size (a))

randn (‘seed’)

randn(‘seed)n)

Returns a uniformly distributed random decimal number from the interval [0,1].

Returns an array of size nxn whose elements are uniformly distributed random decimal
numbers from the interval [0,1].

Returns an array of dimension mxn whose elements are uniformly distributed random
decimal numbers from the interval [0,1].

Returns an array of the same size as the matrix A and whose elements are uniformly
distributed random decimal numbers from the interval [0,1].

Returns the current value of the uniform random number generator seed.
Assigns to n the current value of the uniform random number generator seed.
Returns a normally distributed random decimal number (mean 0 and variance 1).

Returns an array of dimension nxn whose elements are normally distributed random decimal
numbers (mean 0 and variance 1).

Returns an array of dimension mxn whose elements are normally distributed random
decimal numbers (mean 0 and variance 1).

Returns an array of the same size as the matrix A and whose elements are normally
distributed random decimal numbers (mean 0 and variance 1).

Returns the current value of the normal random number generator seed.

Assigns to n the current value of the uniform random number generator seed.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Here are some examples:
»> [rand, rand (1), randn, randn (1)]
ans =
0.9501 0.2311 -0.4326 -1.6656

»» [rand(2), randn(2)]

ans =
0.6068 0.8913 0.1253 -1.1465
0.4860 0.7621 0.2877 1.1909

»» [rand(2,3), randn(2,3)]
ans =

0.3529 0.0099 0.2028 -0.1364 1.0668-0.0956
0.8132 0.1389 0.1987 0.1139 0.0593 - 0.8323

Operators

MATLAB features arithmetic, logical, relational, conditional and structural operators.

Arithmetic Operators

There are two types of arithmetic operators in MATLAB: matrix arithmetic operators, which are governed by the rules
of linear algebra, and arithmetic operators on vectors, which are performed elementwise. The operators involved are
presented in the following table.

Operator Role played

+ Sum of scalars, vectors, or matrices

- Subtraction of scalars, vectors, or matrices

* Product of scalars or arrays

* Product of scalars or vectors

\ A\B=inv (A) * B, where A and B are matrices

A A. \B=[B(i,j) /A (i, j)], where A and B are vectors [dim (A) = dim (B)]
/ Quotient, or B/A = B *inv (A), where A and B are matrices

. A/ B=[A(ij)/b (i, j)], where A and B are vectors [dim (A) = dim (B)]
A Power of a scalar or matrix (M)

A

Power of vectors (A. N B = [A(i,j)? ¢P], for vectors A and B)

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Simple mathematical operations between scalars and vectors apply the scalar to all elements of the vector
according to the defined operation, and simple operators between vectors are performed element by element. Below
is the specification of these operators:

a=1{al, a2,..., an}, b = {bl, b2,..., bn}, c = scalar

a + ¢ = [al +c, a2+ c,..., an+c] Sum of a scalar and a vector
a*c=[al * c,a2*c,...,an *] Product of a scalar and a vector
a+b=[al+bl a2+b2...an+bn] Sum of two vectors
a.*b=[al*bl a2*b2...an*bn] Product of two vectors
a./b=[al/bl a2/b2...an/bn] Ratio to the right of two vectors
a.\b=[al\bl a2\b2...an\bn] Ratio to the left of two vectors
a.Nc=[al Ac,a27c,...,an A c] Vector to the power of a scalar
c.Aa=[cral,cha2,..,cNan] Scalar to the power of a vector
a.Ab = [alAbl a2/b2...an" bn] Vector to the power of a vector

It must be borne in mind that the vectors must be of the same length and that in the product, quotient and power
the first operand must be followed by a point.

The following example involves all of the above operators.
» X = [5,4,3]; Y = [1,2,7]; a = X-Y, c=x *VY,d =2, *X,...
e=2/X, f=2.\Y,g=x/Y, h

X+VY, b

e\, i=x"2, j=2."X k=X ~Y
a-
6 6 10
b =
4 2 -4
c =
5 8 21
d =

0.4000 0.5000 0.6667

f =

0.5000 1.0000 3.5000

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

g =

5.0000 2.0000 0.4286

5.0000 2.0000 0.4286

j =
32 16 8
k =

5 16 2187

The above operations are all valid since in all cases the variable operands are of the same dimension, so the
operations are successfully carried out element by element. For the sum and the difference there is no distinction
between vectors and matrices, as the operations are identical in both cases.

The most important operators for matrix variables are specified below:

A+B,A-B,A*B Addition, subtraction and product of matrices.

A\B IfAis square, A\B = inv (A) *B. If A is not square, A\B is the solution, in the sense of
least-squares, of the system AX = B.

B/A Coincides with (A’ \ B')".

A" Coincides with A * A * A *... *A n times (n integer).

p* Performs the power operation only if p is a scalar.

Here are some examples:

> X =[5,4,3]; Y=1[2,2,7]; 1 =X'*Y, m=X*Y ', n=2%X,0=X/Y, p=Y\X

1=
510 35
4 8 28
3621
m =
34
n =
10 8 6

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

0 =
0.6296

p =

0 0 0
0 0 0

0.7143 0.5714 0.4286

All of the above matrix operations are well defined since the dimensions of the operands are compatible in every
case. We must not forget that a vector is a particular case of matrix, but to operate with it in matrix form (not element
by element), it is necessary to respect the rules of dimensionality for matrix operations. For example, the vector
operations X. ' *Y and X. *Y" make no sense, since they involve vectors of different dimensions. Similarly, the matrix
operations X *Y, 2/X, 2\Y, X * 2,2 A Xand X * Y make no sense, again because of a conflict of dimensions in the arrays.

Here are some more examples of matrix operators.

» M= [1,2,3;1,0,2;7,8,9]

M =

N R R
o O N
o N W

>>B=1dnv (M), C=M*2,D=M"(1/2), E=2"*MN
B =
-0.8889 0.3333 0.2222

0.2778 -0.6667 0.0556
0.4444 0.3333 -0.1111

C =
24 26 34
15 18 21
78 86 118
D =

0.5219 + 0.84321 0.5793 - 0.0664i 0.7756 - 0.23441
0.3270 + 0.02071 0.3630 + 1.06501 0.4859 - 0.20121
1.7848 - 0.58281 1.9811 - 0.75081 2.6524 + 0.30801

1. Oe + 003 *

0.8626 0.9568 1.2811
0.5401 0.5999 0.8027
.9482 3.2725 4.3816

N

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Relational Operators

MATLAB also provides relational operators. Relational operators perform element by element comparisons between
two matrices and return an array of the same size whose elements are zero if the corresponding relationship is true, or
one if the corresponding relation is false. The relational operators can also compare scalars with vectors or matrices,
in which case the scalar is compared to all the elements of the array. Below is a table of these operators.

< Less than (for complex numbers this applies only to the real parts)
<= Less than or equal (only applies to real parts of complex numbers)

> Greater than (only applies to real parts of complex numbers)

>= Greater than or equal (only applies to real parts of complex numbers)
X==y Equality (also applies to complex numbers)

X~=Yy Inequality (also applies to complex numbers)

Logical Operators

MATLAB provides symbols to denote logical operators. The logical operators shown in the following table offer a way
to combine or negate relational expressions.

~A Logical negation (NOT) or the complement of A.

A&B Logical conjunction (AND) or the intersection of A and B.

A|B Logical disjunction (OR) or the union of A and B.

XOR (A, B) Exclusive OR (XOR) or the symmetric difference of A and B (takes the value 1 if A or B,

but not both, are 1).

Here are some examples:
> A = 2:7;P =(A>3) & (A<6)
P =
0 0 1 1 0 0
Returns 1 when the corresponding element of A is greater than 3 and less than 6, and returns 0 otherwise.
> X =3 *ones (3.3); X>=[789; 456 ; 12 3]

ans

000
00
111

(o]

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

The elements of the solution array corresponding to those elements of X which are greater than or equal to the
equivalent entry of the matrix [78 9; 45 6 ; 1 2 3] are assigned the value 1. The remaining elements are assigned

the value 0.

Logical Functions

MATLAB implements logical functions whose output can take the value true (1) or false (0). The following table shows

the most important logical functions.

exist(A)

any(V)
any(A)

all(V)
all(A)

find (V)
isnan (V)
isinf (V)
isfinite (V)
isempty (A)

issparse (A)
isreal (V)
isprime (V)
islogical (V)
isnumeric (V)

ishold

Checks if the variable or function exists (returns 0 if A does not exist and a number between 1
and 5, depending on the type, if it does exist).

Returns 0 if all elements of the vector V are null and returns 1 if some element of V is non-zero.

Returns 0 for each column of the matrix A with all null elements and returns 1 for each column
of the matrix A which has non-null elements.

Returns 1 if all the elements of the vector V are non-null and returns 0 if some element of V is null.

Returns 1 for each column of the matrix A with all non-null elements and returns 0 for each
column of the matrix A with at least one null element.

Returns the places (or indices) occupied by the non-null elements of the vector V.

Returns 1 for the elements of V that are indeterminate and returns 0 for those that are not.
Returns 1 for the elements of V that are infinite and returns 0 for those that are not.
Returns 1 for the elements of V that are finite and returns 0 for those that are not.

Returns 1 if A is an empty array and returns 0 otherwise (an empty array is an array such that
one of its dimensions is 0).

Returns 1 if A is a sparse matrix and returns 0 otherwise.

Returns 1 if all the elements of V are real and 0 otherwise.

Returns 1 for all elements of V that are prime and returns 0 for all elements of V that are not prime.
Returns 1 if Vis a logical vector and 0 otherwise.

Returns 1 if Vis a numeric vector and 0 otherwise.

Returns 1 if the properties of the current graph are retained for the next graph and only new
elements will be added and 0 otherwise.

isieee Returns 1 if the computer is capable of IEEE standard operations.

isstr (S) Returns 1 if S is a string and 0 otherwise.

ischart (S) Returns 1 if S is a string and 0 otherwise.

isglobal (A) Returns 1 if A is a global variable and 0 otherwise.

isletter (S) Returns 1 if S is a letter of the alphabet and 0 otherwise.

isequal (A, B) Returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

ismember(V, W) Returns 1 for every element of V which is in W and 0 for every element V that is not in W.
60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

Below are some examples using the above defined logical functions.
» V = [1,2,3,4,5,6,7,8,9], isprime(V), isnumeric(V), all(V), any(V)
V =

1 2 3 4 5 6 7 8 9

ans

ans

ans =

ans

1

»>> B = [Inf, -Inf, pi, NaN], isinf(B), isfinite(B), isnan(B), isreal(B)
B -

Inf - Inf 3.1416 NaN

ans =

1100

ans

0010

ans

0001

ans

1

»> ismember ([1,2,3], [8,12,1,3]), A = [2,0,1];B = [4,0,2]; isequal (2A * B)
ans =

101

ans

www.it-ebooks.info

61

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-1

Find the number of ways of choosing 12 elements from 30 without repetition, the remainder of the division
of 2'% by 3, the prime decomposition of 18900, the factorial of 200 and the smallest number N which when
divided by 16,24,30 and 32 leaves remainder 5.

»» factorial (30) / (factorial (12) * factorial(30-12))
ans =

8.6493e + 007

The command vpa is used to present the exact result.

»> vpa 'factorial (30) / (factorial (12) * factorial(30-12))' 15
ans =

86493225.

»> rem(2134,3)

ans =

0

»» factor (18900)

ans =

2 2 3 3 3 5 5 7

»» factorial (100)

ans =

9. 3326e + 157

The command vpa is used to present the exact result.

»> vpa ' factorial (100)' 160

ans =

933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761
56518286253697920827223758251185210916864000000000000000000000000.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

N-5 is the least common multiple of 16, 24, 30 and 32.
»> lem (lem (16.24), lcm (30,32))
ans =

480

Then N = 480 + 5 = 485.

EXERCISE 2-2

In base 5 find the result of the operation defined by a25aaff6, + 6789aba,, + 35671, + 1100221, - 1250.
In base 13 find the result of the operation (666551,)* (aa199800a,,) +(fffaaa125 ;) / (33331, + 6).

The result of the first operation in base 10 is calculated as follows:

>> base2dec('a25aaf6',16) + base2dec('6789aba',12) +...
base2dec('35671',8) + base2dec('1100221"',3)-1250

ans =

190096544

We then convert this to base 5:
>> dec2base (190096544,5)
ans =

342131042134

Thus, the final result of the first operation in base 5 is 342131042134.

The result of the second operation in base 10 is calculated as follows:

>> base2dec('666551',7) * base2dec('aa199800a',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)

ans =

2. 7537e + 014

We now transform the result obtained into base 13.
>> dec2base (275373340490852,13)

ans =

BA867963C1496

www.it-ebooks.info

63

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-3

In base 13, find the result of the following operation:
(666551)* (aa199800a,) + (fffaaa125) / (33331, + 6).

First, we perform the operation in base 10:

A more direct way of doing all of the above is:

»> base2dec('666551',7) * base2dec('aa199800a’',11) +...
79 * base2dec('fffaaa125',16) / (base2dec ('33331', 4) + 6)

ans =

2. 753733404908515e + 014

We now transform the result obtained into base 13.
»> dec2base (275373340490852,13)

ans =

BA867963C1496

EXERCISE 2-4

Given the complex numbers X = 2 + 2i and Y=-3-3 /3i , calculate Y3 X2/Y%, Y"2, Y32 and In (X).

»> X=242%i; Y=-3-3*sqrt(3)*i;
» Y3

ans =
216

»X*~2/Y"90

ans =

050180953422426e-085 - 1 + 7. 404188256695968e-0701
» sqrt (Y)

ans =

1.22474487139159 - 2.121320343559641

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> sqrt(¥Y3)

ans =
14.69693845669907
»> log (X)

ans =

1.03972077083992 + 0.785398163397451

EXERCISE 2-5

Calculate the value of the following operations with complex numbers:

i i

3-4i

»> (i~8-i~(-8))/(3-4%i) + 1

ans =

1

»> i*(sin(1+i))

ans =

-0.16665202215166 + 0.329041394503071
»> (2+log(i))"~(2/1)

ans =

1.15809185259777 - 1.563880539890231
» (1+i)0i

ans =

0.42882900629437 + 0.154871752464251
»» i*(log(1+i))

ans =

0.24911518828716 + 0.150819744847171

www.it-ebooks.info

8 1 . . .
+1, 0D (2+In(@)F, (L+i), "D, (1++/3i)

65

http://www.it-ebooks.info/

CHAPTER 2 = VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS
»> (1+sqrt(3)*i)~(1-i)
ans =

5.34581479196611 + 1. 975948834528731

EXERCISE 2-6

Calculate the real part, imaginary part, modulus and argument of each of the following expressions:
i, +~30) i i

 Z1 =i "3 *i; 72 = (1 + sqrt (3) * i) ~(1-i); Z3 =(i*i) ~ i;24 = i ~ i;

»> format short

»» real ([Z1 22 73 Z4])

ans =

1.0000 5.3458 0.0000 0.2079

»» imag ([Z1 Z2 Z3 Z4])

ans =

0 1.9759 - 1.0000 0

»» abs ([Z1 22 Z3 Z4])

ans =

1.0000 5.6993 1.0000 0.2079

»> angle ([21 z2 Z3 24])

ans =

0 0.3541 - 1.5708 0

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-7

Generate a square matrix of order 4 whose elements are uniformly distributed random numbers from [0,1].
Generate another square matrix of order 4 whose elements are normally distributed random numbers from [0,1].
Find the present generating seeds, change their value to ¥ and rebuild the two arrays of random numbers.

»> rand (4)

ans =

0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057
»> randn (4)

ans =

-0.4326-1.1465 0.3273 - 0.5883
-1.6656 1.1909 0.1746 2.1832
0.1253 1.1892-0.1867-0.1364
0.2877-0.0376 0.7258 0.1139
»> rand ('seed")

ans =

931316785

»> randn ('seed')

ans =

931316785

»> randn ('seed', 1/2)

»> rand ('seed', 1/2)

»> rand (4)

ans =

0.2190 0.9347 0.0346 0.0077
0.0470 0.3835 0.0535 0.3834

0.6789 0.5194 0.5297 0.0668
0.6793 0.8310 0.6711 0.4175

www.it-ebooks.info

67

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

»> randn (4)
ans =

1.1650-0.6965 0.2641 1.2460
0.6268 1.6961 0.8717 -0.6390
0.0751 0.0591-1.4462 0.5774
0.3516 1.7971-0.7012-0.3600

EXERCISE 2-8

68

Given the vector variables a = [r, 2, 3, 4w, 5] and b = [e, 2e, 3e, 4e, 5¢], calculate ¢ = sin (a) + b, d = cos (a),
e=In(h),f=c*d,g=c/d,h=d”2,i=d~2-e~2andj=3d " 3-2e A 2.

>>a=[Pi:2*Pi:3*Pi:4*Pi:5*Pi],

b= [exp (1), 2 * exp (1), 3 * exp (1), 4 * exp (1),5%exp(1)],
c=sin(a)+b,d=cos(a),e = log(b),f = c.*d,g = c./d,]

h=d.”2, i = d.*2-e.”2, j = 3*d.*3-2*e."2

a =
3.1416 6.2832 9.4248 12.5664
b =
2.7183 5.4366 8.1548 10.8731 13.5914
Cc =

2.7183 5.4366 8.1548 10.8731 13.5914

1.0000 1.6931 2.0986 2.3863 2.6094

f =

15.7080

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914

g:

-2.7183 5.4366 - 8.1548 10.8731 - 13.5914

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

h =
1 1 1 1 1

i-=

0 - 1.8667 - 3.4042 - 4.6944 - 5.8092
j =

-5.0000 - 2.7335 - 11.8083 - 8.3888 - 16.6183

VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-9

Given a uniform random square matrix M of order 3, obtain its inverse, its transpose and its diagonal.

Transform it into a lower triangular matrix (replacing the upper triangular entries by 0) and rotate it 90 degrees
counterclockwise. Find the sum of the elements in the first row and the sum of the diagonal elements. Extract the
subarray whose diagonal elements are at ., and ,, and also remove the subarray whose diagonal elements are

at, and .

»> M = rand(3)

M =

0.6868 0.8462 0.6539

0.5890 0.5269 0.4160
0.9304 0.0920 0.7012

»> A = inv(M)
A =

-4.1588 6.6947 -0.0934
0.3255 1.5930 -1.2487
5.4758 -9.0924 1.7138
»B=M

B =

0.6868 0.5890 0.9304
0.8462 0.5269 0.0920
0.6539 0.4160 0.7012
»> V = diag(M)

V=

0.6868

0.5269
0.7012

www.it-ebooks.info

69

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

» TI = tril(M)

TI =
0.6868 0 0
0.5890 0.5269 0

0.9304 0.0920 0.7012

»» TS = triu(M)

TS =

0.6868 0.8462 0.6539
0 0.5269 0.4160
0 0 0.7012
»> TR = rot9o(M)

TR =

0.6539 0.4160 0.7012
0.8462 0.5269 0.0920
0.6868 0.5890 0.9304

» s = M(1,1)+M(1,2)+M(1,3)
s =

2.1869

»> sd = M(1,1)+M(2,2)+M(3,3)
sd =

1.9149

»> SM = M(1:2,1:2)

SM =

0.6868 0.8462
0.5890 0.5269

M([2 31, [23])

> SM1

SM1 =

0.6868 0.6539
0.9304 0.7012

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-10

Given the following complex square matrix M of order 3, find its square, its square root and its base 2 and — 2

exponential:

i 20
M=|4i b5i
70 8i

> M = [i 2%i 3*i; 4% 5*i 6*i; 7*i 8*i 9*i]

M =

0 + 1.00001 0 + 2.00001

0 + 4.00001 0 + 5.00001

0 + 7.00001 0 + 8.00001

» C = M2

C =

-30 -36 -42

-66 -81 -96

-102 -126 -150

» D = M*(1/2)

D =

0.8570 - 0.22101 0.5370 + 0.24451
0.7797 + 0.6607i 0.9011 + 0.86881
0.7024 + 1.54241 1.2651 + 1.49301
» 2°M

ans =

0.7020 - 0.61461
-0.2320 - 0.30551
-0.1661 + 0.00361

-0.1693 - 0.27231
0.7366 - 0.32201
-0.3574 - 0.37171

> (-2)"™M
ans =
4.3404 - 4.56961

1.1826 - 0.50451
-3.9751 + 3.56071

17.3946 -16.84431
1.5685 - 1.85951
-13.2575 +13.12521

0 + 3.00001
0 + 6.00001
0 + 9.00001

3i
6i |.
9i

0.2169 + 0.71011
1.0224 + 1.07691
1.8279 + 1.44371

-0.0407 + 0.06991

-0.2947 - 0.33861
0.4513 - 0.74711

-7.7139 + 7.70501

-1.2033 + 0.85061

6.3073 - 6.00381

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-11

Given the complex matrix M in the previous exercise, find its elementwise logarithm and its elementwise base e
exponential. Also calculate the results of the matrix operations e™ and In (M).

> M = [1i 2% 3*i; 4% 5*i 6*i; 7*i 8*i 9*i]

»> log(M)

ans

0 + 1.57081
1.3863 + 1.57081
1.9459 + 1.57081

»> exp(M)
ans =

0.5403 + 0.84151
-0.6536 - 0.75681
0.7539 + 0.65701

»> logm(M)

ans

-5.4033 - 0.84721
12.3029 + 0.05371
-4.7574 + 1.61381

»> expm(M)
ans =
0.3802 - 0.69281

-0.5312 - 0.17241
-0.4426 + 0.34791

0.6931 + 1.57081
1.6094 + 1.57081
2.0794 + 1.57081

-0.4161 + 0.90931
0.2837 - 0.95891
-0.1455 + 0.98941

11.9931 - 0.31091
-22.3087 + 0.89531
12.9225 + 0.78281

-0.3738 - 0.23061
0.3901 - 0.14341
-0.8460 - 0.05611

1.0986 + 1.57081
1.7918 + 1.57081
2.1972 + 1.57081

-0.9900 + 0.14111
0.9602 - 0.27941
-0.9111 + 0.41211

-5.3770 + 0.88461
12.6127 + 0.41831
-4.1641 + 0.61121

-0.1278 + 0.23161
-0.6886 - 0.11431
-0.2493 - 0.46021

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

EXERCISE 2-12

Given the complex vector V =[1 + i, i, 1-i], find the mean, median, standard deviation, variance, sum, product
maximum and minimum of its elements, as well as its gradient, its discrete Fourier transform and its inverse
discrete Fourier transform.

»> [mean(V),median(V),std(V),vax(V),sum(V),prod(V),max(V),min(V)]’
ans =

.6667 - 0.33331
.0000 + 1.00001
.2910

.6667

.0000 - 1.00001
- 2.0000i
.0000 + 1.00001
- 1.00001

OR ONRKRRRKRO

»> gradient(V)

ans =

1.0000 - 2.00001 0.5000 0 + 2.00001

» FFt(V)

ans =

2.0000 + 1.0000i -2.7321 + 1.0000i 0.7321 + 1.00001
»> ifft(V)

ans =

0.6667 + 0. 33331 0.2440 + 0. 33331 - 0.9107 + 0. 33331

EXERCISE 2-13

Given the arrays

1 10 i 1-1i 2+i 1 1 1
A=|0 1 1| B=|0 -1 3-i| C=|0 sqrt(2)i -sqrt(2)i
0 01 0 0 —i 1 -1 -1

calculate AB — BA, A? + B2 + C?, ABC, sqrt (A)+sqrt(B)+sqrt(C), e*(e®+ €%, their transposes and their inverses. Also
verify that the product of any of the matrices A, B, C with its inverse yields the identity matrix.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

74

>>A=[110;011;001]; B=[i1-i2+i;0 -1 3-i;0 0 -i]; C = [1 1 1; 0 sqrt(2)*i
-sqrt(2)*iz;1 -1 -1];

»» M1 = A*B-B*A

M1 =

0 -1.0000 - 1.00001 2.0000

0 0 1.0000 - 1.0000i1
0 0 0

»» M2 = A*2+B"2+C*2

M2 =

2.0000 2.0000 + 3.41421 3.0000 - 5.41421
0 - 1.41421i -0.0000 + 1.41421 0.0000 - 0.58581
0 2.0000 - 1.4142i 2.0000 + 1.41421
» M3 = A*B*C

M3 =

5.0000 + 1.00001 -3.5858 + 1.0000i -6.4142 + 1.00001
3.0000 - 2.00001 -3.0000 + 0.58581 -3.0000 + 3.41421
0 - 1.00001 0 + 1.00001 0 + 1.00001

»> M3 = sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =

0.6356 + 0.83611 -0.3250 - 0.82041 3.0734 + 1.28961
0.1582 - 0.15211 0.0896 + 0.57021 3.3029 - 1.80251
-0.3740 - 0.26541 0.7472 + 0.33701 1.2255 + 0.10481
»> M5 = expm(A)*(expm(B)+expm(C))

M5 =

14.1906 - 0.08221i 5.4400 + 4.2724i 17.9169 - 9.5842i
4.5854 - 1.4972i 0.6830 + 2.15751 8.5597 - 7.65731
3.5528 + 0.35601 0.1008 - 0.74881 3.2433 - 1.84061
»> inv(A)

ans =

11 1

01 -1
00 1

www.it-ebooks.info

http://www.it-ebooks.info/

»> inv(B)

ans =

CHAPTER 2 ' VARIABLES, NUMBERS, OPERATORS AND FUNCTIONS

0 - 1.00001 -1.0000 - 1.00001 -4.0000 + 3.00001

0
0

»> inv(C)
ans =
0.5000

0.2500
0.2500

-1.0000 1.0000 + 3.00001
0 0 + 1.00001

0] 0.5000
0 -0.3536i -0.2500
0 +0.35361 -0.2500

»> [A*inv(A) B*inv(B) C*inv(C)]

ans =

Q
S
(%)
n

O R R
R RO
R O O

» B’

ans =

0 - 1.00001 0 0

1.0000 +
2.0000 -

» C'

ans =

1.0000
1.0000

1.0000

1.00001 -1.0000 0
1.00001 3.0000 + 1.00001 0 + 1.00001

0 1.0000
0 -1.4142i -1.0000

0 +1.4142i -1.0000

www.it-ebooks.info

75

http://www.it-ebooks.info/

CHAPTER 3

Control Systems

Introduction to Control Systems

MATLAB offers an integrated environment in which you can design control systems. The diagram in Figure 3-1 shows how
an engineering problem leads to the development of models and the analysis of experimental data, which in turn lead to
the design and simulation of control systems. The subsequent analysis of these systems leads to further modifications of
the design, this development loop resulting in rapid prototyping and implementation of effective systems.

Modeling
Experimental analysis and
data _ dla_lta_ Hardware

visualization simulation

A
Design
and
system >|q: o> SYSTEM
control <_Slmulatlon] code

analysis

v N\ Y
Prototyping

Engineering |—— Modeling

problem

Figure 3-1.

MATLAB provides a high-level platform for technical model generation, data analysis and algorithm
development. MATLAB combines comprehensive engineering and mathematics functionality with powerful
visualization and animation features, all within a high-level interactive programming language. The MATLAB
toolboxes extend the MATLAB environment to incorporate a wide range of classical and modern techniques for the
design of control systems, providing cutting edge control algorithms developed by internationally recognized experts.

MATLAB contains more than 600 mathematical, statistical and engineering functions, providing the power
of numerical calculation you need to analyze data, develop algorithms and optimize the performance of a system.
With MATLAB, you can run fast iterations of designs and compare performances of alternative control strategies.

In addition, MATLAB is a high-level programming language that allows you to develop algorithms in a fraction of the
time spent in C, C++ or FORTRAN. MATLAB is open and extendible, you can see the source code, modify algorithms
and incorporate existing C, C++ and FORTRAN programs.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

The interactive Control System Toolbox tools facilitate the design and adjustment of control systems. For example,
you might drag poles and zeros and see immediately how the system reacts (Figure 3-2). In addition, MATLAB
provides powerful interactive 2-D and 3-D graphics features showing data, equations, and results (Figure 3-3).

It is possible to use a wide range of visualization aids in MATLAB or you can take advantage of the specific control
functions which are provided by the MATLAB toolboxes.

Modeling

Analysis and design

Optimization

=} 5150 Design for System 1ps_dc

System Identification Toolbox <

Classical

l

Advanced

Control System Toolbox

Robust Control Toolbox

Fuzzy Logic Toolbox

Mu Analysis Toolbox

LMI Control Toolbox

Model Predictive Toolbox

s Edt Vien Conperuster Took Wiedow Heb
[xo + 2 timEX N

v

Optimization Toolbox

4

Cusrent C:
(7] (9]
Cisl= |84 x | =
F ' o @ es
Opon. Loop Bodo Diagram
My 10 pe—
| e
1 e
| e
15¢ A0 \
= | B
8 .20
10 I i \'\
3 -0
|
g ..i.
2 lomsm N
= 50 | Freq 164 radivec N
E i | Stabde kocp

- Fize Tre: 0448
'

Figure 3-2.

78

1
i
1
i
i
|
() .
v
i

_
- i

» (73
Tims (sec)

A tme 0961

7 1 Sritem Coed Loo: £ 1o v

.
| o
_ st - LTI Viewed for SIS0 Deaign Tool CIE)|
§ | Eie B Window Heb
§ 180
14 | Flop Rasponse
| 140 :
:m Choted Lode £ b0
|PH B57¢ -l ?:lmniluﬂelol i
o ..LFI« 2831 . Owershoct (%1 3

Fﬂmuhwmumm

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * CONTROL SYSTEMS

J Vehicle Input- 0

(Flo Edt Unts Modd Heb
Vehicle Input

|_g| kU B

1

al

Mator] Posiion | I "'-l Motoe2 Position | I "'I

fe_emissions O ¥

Ergina Out CO Emissions Mo (g/5) -
Prazs 1. 5L (430W) from FAmodel and AL test dxta

r

120 Pl weeanse || = 2| =lfwaipaos T o]
100 A e
= [acctwony]| 2 i e focommoontens 2
< e | v Y | | O T |
g &
=
§' 40 T (g 2rmass (B S Yinesls
w
20

gmrrm1mmmammam

e e i

Figure 3-3.

The MATLAB toolboxes include applications written with MATLAB language-specific functionality. The MATLAB
control-related toolboxes encompass virtually all of the fundamental techniques of control design, from LQG and
root-locus to H and logical diffuse methods. For example, it might add a fuzzy logic control system design using the
built-in algorithms of the Fuzzy Logic Toolbox (Figure 3-4).

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

<} FIS Editor: tipper H=E
Fle Edt View

service lippes
/ e
i)
food
FIS Name: tpper FIS Type: mamdani
And method [=] || Cusent Varizble
Or method = =)
5 Type output
Impheation I T ;I
Range [030]
Aggregation | ot :I
Defuzzification [[centreid ~| Hep Close
Ready
Figure 3-4.

The most important MATLAB toolboxes for control systems can be classified into three families: modeling
(System Identification Toolbox), classical design and analysis products (Control System Toolbox and Fuzzy Logic
Toolbox), design and advanced analysis products (Robust Control Toolbox, Mu-Analysis Toolbox, LMI Control Toolbox
and Model Predictive Toolbox) and optimization products (Optimization Toolbox). The following diagram illustrates
this classification.

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Control System Design and Analysis: The Gontrol System Toolbox

The Control System Toolbox is a collection of algorithms, mainly written as M-files, that implement common
techniques of design, analysis, and modeling of control systems. Its wide range of services includes classical and
modern methods of control design, including root locus, pole placement and LQG regulator design. Certain graphical
user interfaces simplify the typical tasks of control engineering. This toolbox is built on the fundamentals of MATLAB
to facilitate specialized control systems for engineering tools.

With the Control System Toolbox you can create models of linear time-invariant systems (LTI) in transfer function,
zero-pole-gain or state-space formats. You can manipulate both discrete-time and continuous-time systems and
convert between various representations. You can calculate and graph time response, frequency response and loci of
roots. Other functions allow you to perform placement of poles, optimal control and estimates. The Control System
Toolbox is open and extendible, allowing you to create customized M-files to suit your specific applications.

The following are the key features of the Control System Toolbox:

e LTI Viewer: An interactive GUI to analyze and compare LTI systems.

e SISO Design Tool: An interactive GUI to analyze and adjust single-input/single-output (SISO)
feedback control systems.

e GUI Suite: Sets preferences and properties to give full control over the display of time and
frequency plots.

e LTI objects: Structures specialized data to concisely represent model data in transfer function,
state-space, zero-pole-gain and frequency response formats.

e MIMO: Support for multiple-input/multiple-output (MIMO) systems, sampled data,
continuous-time systems and systems with time delay.

e Functions and operators to connect LTI models: Creates complex block diagrams
(connections in series, parallel and feedback).

e Support for various methods of converting discrete systems to continuous systems,
and vice versa.

¢ Functions to graphically represent solutions for time and frequency systems and compare
various systems with a single command.

e Tools for classical and modern techniques of control design, including root locus analysis,
loop shaping, pole placement and LQR/LQG control.

Construction of Models

The Control System Toolbox supports the representation of four linear models: state-space models (SS), transfer
functions (TF), zero-pole-gain models (ZPK) and frequency data models (FRD). LTI objects are provided for each
model type. In addition to model data, LTI objects can store the sample time of discrete-time systems, delays, names
of inputs and outputs, notes on the model and many other details. Using LTI objects, you can manipulate models as
unique entities and combine them using matrix-type operations. An illustrative example of the design of a simple
LQG controller is shown in Figure 3-5. The code extract at the bottom shows how the controller is designed and how
the closed-loop system has been created. The plot of the frequency response shows a comparison between the
open-loop system (red) and closed loop system (blue).

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

d
. I 4
% s2+ s+ 100
" Y L — .
F(s) THES VAL, BED
Yo #
LOG Regulator s

oo vi
I MO L fight-click menus
= simplify customizotions

of plots and GUIs

»

G = ss{tf(100,(1 1 100]})

Klgr = lqry(G,10,1)

Kest = kalman(G(:,[1 1]),1, 0.04)
F = lqgreg{Kest, Klqr)

clsys = feedback(G,F,+1)
impulse(G, 'r', clsys, 'b')

state-space plant model

: design feedback gain matrix
Kalman estimator design

combine regulator and estimator
form closed-loop system

: generate and plot impulse response

» ow»»

» o»

Figure 3-5.

The Control System Toolbox contains commands which analyze and compute model features such as I/0
dimensions, poles, zeros and DC gain. These commands apply both to continuous-time and discrete-time models.

Analysis and Design

Some tasks lend themselves to graphic manipulation, while others benefit from the flexibility of the command line.
The Control System Toolbox is designed to accommodate both approaches, providing a complete set of functions for
the design and analysis of models via the command line or GUI.

Graphical Analysis of Models Using the LTI Viewer

The Control System Toolbox LTI Viewer is a GUI that simplifies the analysis of linear time-invariant systems (it is
loaded by typing >>1tiview in the command window). The LTI Viewer is used to simultaneously view and compare
the response plots of several linear models. It is possible to generate time and frequency response plots and to inspect
key response parameters such as time of ascent, maximum overshooting and stability margins. Using mouse-driven
interactions, you can select input and output channels for MIMO systems. The LTI Viewer can simultaneously display

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

up to six different types of plots including step, impulse, Bode (magnitude and phase or magnitude only), Nyquist,
Nichols, sigma, and pole/zero. Right-clicking will reveal an options menu which gives you access to several controls
and LTI Viewer Options, including:

e Plot Type: Change the type of plot.

e Systems: Selects or deselects any of the models loaded in the LTI Viewer.

e Characteristics: Displays parameters and key response characteristics.

e Zoom: Enlargement and reduction of parts of the plot.

e Grid: Add grids to the plots.

e Properties: Opens the Property Editor, where you can customize attributes of the plot.

In addition to the right-click menu, all the response plots include data markers. These allow you to scan the plot
data, identify key data and determine the system font for a given plot. Using the LTI Viewer you can easily graphically
represent solutions for one or several systems using step response plots, zero/pole plots and all frequency response
plots (Bode, Nyquist, Nichols and singular values plots), all in a single window (see Figure 3-6). The LTI Viewer allows
you to display important response characteristics in the plots, such as margins of stability, using data markers.

<J LTI Viewer H=E3
Eds Edt Window Help
Step Response
(¥] . - * . v v ¥ —— o N S
" | | y —_— 4 T — ;
! s g
R | I 1 L Genmergn (cB) 266
814 I ’/] | 60 + Al trequency (rodfisecy 127
: . ClosedJoop slable? Yes
a2 | i | | 80 TS T T St £ 44 L
04 I f."z] Add
| / N 0 pmm=s
LR /
Y |
(L / | 3
sl |/ 1| :
!f.' 1 z AL --- -
L1 7] /l I 1
ol L N " T R L T TP T UL T TR, T P PDE A
¢ 02 04 06 08 1 12 14 18 18 2 10" 10 10 10°
Time (sec) Frequency (red/sec)
Hyquist Diagram Pole-Zero Map
. : ———g v 10 o
(7] e 0, S] 8
i ./ “ i
/ E.’l'l \ £ .
1) \
085 £ 4
3 f | g
3 o - 1
t é .
H _|!
085 'Y jl 4
\ Al f i A
. I'\\ r - ‘:’
-84 e 3
Z] i e :""_f : L 10 . L . . : — i
02 045 04 085 ® 005 04 045 02 20 48 46 44 42 A0 8 & a2 0

Figure 3-6.
83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Analysis of Models Using the Command Line

The LTI Viewer is suitable for a wide range of applications where you want a GUI-driven environment. For situations
that require programming, custom plots or data unrelated to their LTI models, the Control System Toolbox provides
command line functions that perform the basic frequency plots and time domain analysis used in control systems
engineering. These functions apply to any type of linear model (continuous or discontinuous, SISO or MIMO)

or arrays of models.

Compensator Design Using the SISO Design Tool

The Control System Toolbox SISO Design Tool is a GUI that allows you to analyze and adjust SISO control feedback
systems (loaded by typing >>sisotool in the command window). Using the SISO Design Tool, you can graphically
adjust the dynamics and the compensator gain using a mixture of root locus and loop shaping techniques. For
example, you can use the view of the locus of the roots to stabilize a feedback loop and force a minimum buffer, and
use Bode diagrams to adjust bandwidth, gain and phase margins or add a filter notch to reject disturbances. The SISO
Design GUI can be used for continuous-time and discrete-time time plants. Figure 3-7 shows root locus and Bode
diagrams for a discrete-time plant.

Current Compensator — e — i a1l Feedback Structure
D — L e - o |!'_|,_ -

Open-Loop Bode Diagram

I] = el e - Cain Margin

Root Locyy ———»

‘o T—] - Phase Margin

Status Bar —— o EESEIE
QRS e
==

Figure 3-7.

The SISO Design Tool is designed to work closely with the LTI Viewer, allowing you to quickly reiterate a design
and immediately see the results in the LTI Viewer. When making a change to the compensator, the LTI Viewer
associated with the SISO Design Tool automatically updates the plots of the solution you have chosen. The SISO
Design Tool integrates most of the functionality of the Control System Toolbox in a single GUI, dynamically linking
time, frequency, and pole/zero plots, offering views of complementary themes and design goals, providing graphical
changes in Design view and helping to manage the complexity and iterations of the design. The right-click and
drop-down menus give you flexibility to design controls with a click of the mouse. In particular, it is possible to view
Bode and root locus diagrams, place poles and zeros, add delay/advance networks and notch filters, adjust the
compensator parameters graphically with the mouse, inspect closed loop responses (using the LTI Viewer), adjust
gain and phase margins and convert models between discrete and continuous time.

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Compensator Design Using the Command Line

In addition to the SISO Design Tool, the Control System Toolbox provides a number of commands that can be used
for a wider range of control applications, including functions for classical SISO design (data buffer, locus of the roots
and gain and phase margins) and functions for modern MIMO design (placement of poles, LQR/LQG methods and
Kalman filtering). Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique used for the design
of optimal dynamic regulators, allowing the balance of benefits of regulation and control costs, taking into account
perturbations of the process and measuring noise.

The Control System Toolbox Commands

The Control System Toolbox commands can be classified according to their purpose as follows:

General
Ctripref: Opens a GUI which allows you to change the Control System Toolbox preferences (see Figure 3-8).
Creation of linear models

tf: Creates a transfer function model
zpk: Creates a zero-pole-gain model
ss: Creates a state-space model

dss: Creates a descriptor state-space model
Jfrd: Creates a frequency-response data model
set: Locates and modifies properties of LTI models

Data extraction

tfdata: Accesses transfer function data (in particular extracts the numerator and denominator of the transfer function)
zpkdata: Accesses zero-pole-gain data

ssdata: Accesses state-space model data

get:Accesses properties of LTI models

Conversions

s: Converts to a state-space model

zpk: Converts to a zero-pole-gain model

tf: Converts to a transfer function model

Jrd: Converts to a frequency-response data model

c2d: Converts a model from continuous to discrete time
d2c: Converts a model from discrete to continuous time
d2d: Resamples a discrete time model

System interconnection

append: Groups models by appending their inputs and outputs
parallel: Parallel connection of two models

series: Series connection of two models

feedback: Connection feedback of two systems

Ift: Generalized feedback interconnection of two models
connect: Block diagram interconnection of dynamic systems

(continued)

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Dynamic models

iopzmap: Plots a pole-zero map for input/output pairs of a model

bandwidth: Returns the frequency-response bandwidth of the system

pole: Computes the poles of a dynamic system

zero: Returns the zeros and gain of a SISO dynamic system

pzmap: Returns a pole-zero plot of a dynamic system

damp: Returns the natural frequency and damping ratio of the poles of a system
dcgain: Returns the low frequency (DC) gain of an LTI system

norm: Returns the norm of a linear model

covar: Returns the covariance of a system driven by white noise

Time-domain analysis

ltiview: An LTI viewer for LTI system response analysis

step: Produces a step response plot of a dynamic system

impulse: Produces an impulse response plot of a dynamic system

initial: Produces an initial condition response plot of a state-space model
Isim: Simulates the time response of a dynamic system to arbitrary inputs

Frequency-domain analysis

ltiview: An LTI viewer for LTI system response analysis

bode: Produces a Bode plot of frequency response, magnitude and phase of frequency response
sigma: Produces a singular values plot of a dynamic system

nyquist: Produces a Nyquist plot of frequency response

nichols: Produces a Nichols chart of frequency response

margin: Returns gain margin, phase margin, and crossover frequencies

allmargin: Returns gain margin, phase margin, delay margin and crossover frequencies
freqresp: Returns frequency response over a grid

Classic design

sisotool: Interactively design and tune SISO feedback loops (technical root locus and loop shaping)
rlocus: Root locus plot of a dynamic system

Pole placement

place: MIMO pole placement design
estim: Forms a state estimator given estimator gain
reg: Forms a regulator given state-feedback and estimator gains

LQR/LQG design

lgr: Linear quadratic regulator (LQR) design

dlgr: Linear-quadratic (LQ) state-feedback regulator for a discrete-time state-space system
lgry: Linear-quadratic (LQ) state-feedback regulator with output weighting

lgrd: Discrete linear-quadratic (LQ) regulator for a continuous plant

Kalman: Kalman estimator

kalmd: Discrete Kalman estimator for a continuous plant

(continued)

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

State-space models

rss: Generates a random continuous test model

drss: Generates a random discrete test model

ss2ss: State coordinate transformation for state-space models

ctrb: Controllability matrix

obsv: Observability matrix

gram: Control and observability gramians

minreal: Minimal realization or pole-zero cancelation

ssbal: Balance state-space models using a diagonal similarlity transformation
balreal: Gramian-based input/output balancing of state-space realizations
modred: Model order reduction

Models with time delays

totaldelay: Total combined input/output delay for an LTI model

delay2z: Replaces delays of discrete-time TF, SS, or ZPK models by poles at z=0, or replaces delays of FRD models
[Note: in more recent versions of MATLAB, delay2z has been replaced with absorbDelay.]

pade: Padé approximation of a model with time delays

Matrix equation solvers

lyap: Solves continuous-time Lyapunov equations
dlyap: Solves discrete-time Lyapunov equations

care: Solves continuous-time algebraic Riccati equations
dare: Solves discrete-time algebraic Riccati equations

<} Control System Toolbox Preferences Q@@

Units | Style | Characteristis | S150Tool |

Units

Frequency in |radrsec | using |Iog scale -
Magnitude in |dEI v

Phase in | degrees w

OK Cancel Help

>> ctrlpref

Figure 3-8.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

The following sections present the syntax of the above commands, appropriately grouped into the previously

mentioned categories.

LTI Model Commands

Command

Description

sys = drss(n, m, p)

sys = drss(n, p)

sys = drss(n)

sys = drss(n,m,p,sl,...sn)

dss (A,B,C,D,E)

dss (A,B,C,D,E, Ts)

dss (A,B,C,D,E, ltisys)

dss (A,B,C,D,E, p1, p2, vl, v2,...)

dss (A,B,C,D,E, Ts, p2, p1, v1, v2,...)

sys = filt(num,den)
sys = filt(num,den,Ts)
sys = filt (M)

sys = filt(num,den, p1,v1,p2,v2,...)

sys = filt(num,den,Ts, p1,vl,p2,v2,...)

Generates a random discrete-time state-space model of order n with m
inputs and p outputs.

Equivalent to drss(n,m,p) with m = 1.
Equivalent to drss(n,m,p) withn=m = 1.
Generates an array of state-space models.

Creates the continuous-time descriptor state-space model:

E@:AerBu
dt
y=Cx+Du

Creates the discrete -time descriptor state-space model (with sample time
Ts in seconds):
Ex[n+ 1]=Ax[n]Bul[n]
y{n] = Cx{n] + Du[n]
Creates the descriptor state-space model with generic LTI properties
inherited from the model ltisys.

Creates the continuous-time descriptor state-space model with generic LTI
properties given by the propery/value pairs (pi, vi).

Creates the discrete-time descriptor state-space model (with sample time
Ts in seconds) with generic LTI properties given by the property/value
pairs (pi, vi).

Creates a discrete transfer function in the DSP format with numerator
num and denominator den.

Creates a discrete transfer function in the DSP format with numerator
num, denominator den and sample time Ts in seconds.

Specifies a static filter with gain matrix M.

Creates a discrete transfer function in the DSP format with numerator
num and denominator den and generic LTI properties given by the
property/value pairs (pi, vi).

Creates a discrete transfer function in the DSP format with numerator
num and denominator den, sample time Ts in seconds, and generic LTI
properties given by the property/value pairs (pi, vi).

88

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

sys = frd(r,f)

sys = frd(r,f,Ts)

sys = frd
sys = frd(r,f,1tisys)

sysfrd = frd(sys,f)
sysfrd = frd(sys,f,u)

[r,f] = frdata(sys)
[r,£,Ts] = frdata(sys)

[r,f] = frdata(sys,v’)

get(sys)
get(sys, ‘P’)

sys = rss(n,m,p)

sys = rss(n,p)
sys = rss(n)

sys = rss(n,m,p,sl,...sn)

set(sys; P}V)

set(sys,P1,V1,P2)V2,...)

set(sys,P’)
set(sys)
ss (A,B,C,D,E).

ss (A,B,C,D,E, Ts)

ss (D)

Creates a frequency-response data (FRD) model from the frequency
response data stored in 1, where f represents the underlying frequencies for
the frequency response data.f

Creates a frequency-response data model with scalar sample time Ts in
seconds.

Creates an empty frequency-response data model.

Creates a frequency-response data model object with generic LTI
properties inherited from the model ltisys.

Converts a TE SS, or ZPK model to an FRD model with frequency samples
given by f.

Converts a TE SS, or ZPK model to an FRD model with frequency samples
given by fin units specified by the string u (for example ‘rad/s’ or ‘Hz’).
Returns the response data and frequency samples of the FRD model sys.

Returns the response data, frequency samples and sample time of the FRD
model sys.

Returns the response data and frequency samples of the FRD model sys
directly as column vectors.

Displays all the properties and values of the FRD model sys.

Displays the current value of the property name P of the FRD model sys.

Generates a random continuous test model of order n with m inputs and p
outputs.

Equivalent to rss(n,m,p) with m = 1.

Equivalent to rss(n,m,p) withn=m = 1.

Generates an s1x...xsn array of nth order state-space models with m inputs
and p outputs.

Assigns the value V to the given property of the LTI model sys.

Allocates values V1,...,VN to the properties P1,...,PN of the LTI model sys.
Returns the permissible values for the property P.

Displays all sys properties and their values.

Creates the continuous-time state-space model:

E@IAX+BM
dt
y=Cx+Du

Creates the discrete-time state-space model (with sample time Ts in
seconds):

Ex[n+1]=Ax[n]Bu[n]
yln] = Cx[n] + Du[n]

Equivalenttoss([],[],[],D).

(continued)

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

ss (A,B,C,D,E, ltisys)

ss (A,B,C,D,E, p1, p2,vl, v2,...)

ss (a, b, c,d, e, Ts, p2, p1,vl, v2,...)

sys_ss = ss(sys)

sys_ss = ss(sys, minimal’)

[A,B,C,D] = ssdata(sys)
[A,B,C,D,Ts] = ssdata(sys)

[A,B,C,D] = dssdata(sys)
[A,B,C,D,Ts] = dssdata(sys)
sys = tf(num,den)

sys = tf(num,den,Ts)

sys = tf (M)

sys = tf(num,den,ltisys)

sys = tf(num,den, p1,v1,p2,v2,...)
sys = tf(num,den,Ts, p1,vl,p2,v2,...)
s = tf(‘s’)

z = tf(‘z)Ts)

tfsys = tf(sys)
tfsys = tf(sys,inv’)

[num,den] = tfdata(sys)

[num,den] = tfdata(sys,v’)
[num,den,Ts] = tfdata(sys)
TD = totaldelay (sys)

Creates a state-space model with generic LTI properties inherited from the
model ltisys.

Creates a state-space model with properties given by the property/value
pairs (pi, vi).

Creates a discrete state-space model with properties given by the
property/value pairs (pi, vi)) and sample time T in seconds.

Converts the (TF or ZPK) model sys to a state-space model.

produces a state-space realization with no uncontrollable or unobservable
states.

Extracts the model data [A, B, C, D] from the state-space model sys.

Extracts the model data [A, B, C, D] and the sample time Ts from the
state-space model sys.

Extracts the model data [A, B, C, D] from the descriptor state-space
model sys.

Extracts the model data [A, B, C, D] and the sample time Ts from the
descriptor state-space model sys.

Creates a continuous-time transfer function with specified numerator and
denominator.

Creates a discrete-time transfer function with specified numerator and
denominator and sample of Ts time in seconds.

Creates a static gain M (matrix or scalar).

Creates a transfer function with specified numerator and denominator
and generic properties inherited from the LTI model Itisys.

Creates a continuous-time transfer function with specified numerator and
denominator and with properties given by the property/value pairs (pi, vi).

Creates a discrete-time transfer function with specified numerator and
denominator, sample time Ts in seconds, and properties given by the
property/value pairs (pi, vi).

Specifies a TF model using a rational function in the Laplace variable s.
Specifies a TF model with sample time Ts using a rational function in the
discrete-time variable z.

Converts a (TF or ZPK) model sys to a transfer function.

Converts a (TF or ZPK) model sys to a transfer function using investment
formulas.

Returns the numerator and denominator for type TE SS, or ZPK sys
transfer function models.

Returns the numerator and denominator as row vectors.

In addition to the above, also returns sample time Ts.

Gives the combined total input/output lag of the LTI model sys

90

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTE

MS

Command

Description

sys = zpk (z, p, k)
sys = zpk (z, p, k, Ts)

sys = zpk(M)
sys = zpk(z,p,k,ltisys)

sys=zpk(z,p,k,p1,vl,p2,v2,..)
sys=zpk(z,p,k,Ts,p1,v1,p2,v2,..)
sys = zpk(‘s’)

sys = zpk(‘z,Ts)

zsys = zpk(sys)
zsys = zpk(sys,inv’)

[z,p,k] = zpkdata(sys)
[z,p,k] = zpkdata(sys,Vv’)
[z,p,k,Ts,Td] = zpkdata(sys)

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k.

Creates a discrete-time zero-pole-gain model with zeros z, poles p, gains k
and sample time Ts in seconds.

Specifies a static gain M.

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k with generic properties inherited from the LTI model ltisys.

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k and properties given by the property/value pairs (pi, vi).

Creates a discrete-time zero-pole-gain model with zeros z, poles p, gains k
and sample time T5, and properties given by the property/value pairs (pi, vi).
Specifies a continuous-time zero-pole-gain model using a rational
function in the Laplace variable s.

Specifies a discrete-time zero-pole-gain model using a rational function in
the discrete-time variable z.

Converts an LTI model sys into a zero-pole-gain model.

Converts an LTI model sys into a zero-pole-gain model using investment
formulas.

Returns the zeros z, poles p and gains k of the model sys.

Returns the zeros z, poles p and gains k of the model sys as column vectors.

Returns in addition to the above the sample time Ts and the input lag Td.

As a first example, we generate a random discrete LTI system with three states, two inputs and two outputs.

»> sys = drss(3,2,2)

a =
x1 X2 X3
x1 -0.048856 0.40398 0.23064
x2 0.068186 0.35404 -0.40811
X3 -0.46016 -0.089457 -0.036824
b =
ul u2
x1 -0.43256 0.28768
X2 0 -1.1465
X3 0.12533 1.1909
C =
x1 X2 X3
y1 1.1892 0.32729 -0.18671
y2 -0.037633 0.17464 0.72579
d =
ul u2
y1 0 -0.1364
y2 2.1832 0

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Sampling time: unspecified
Discrete-time model.
>>

In the following example, we create the model

d
5—x:x+2u
dt
y=3x+4u

with a gap of 0.1 seconds and tagged as ‘voltage’ entry.

»> sys = dss(1,2,3,4,5,0.1, " inputname’, 'voltage')

a =
x1
x1 1

b =
voltage
X1 2

C =
X1
y1 3

d =
voltage
y1 4

e =
x1
x1 5

Sampling time: 0.1
Discrete-time model.

The example below creates the following two-input digital filter:

H(zl):{ 1 1+0.321}

1+z'+2z7 542z
specifying time displays and channel entries channell’ and channel2’:
> num = {1, [1 0.3]}
den = {[1 1 2] ,[5 2]}
H = filt(num,den, 'inputname',{'channell’ 'channel2'})

NUM =

[1.00] [double 1 x 2]

92

www.it-ebooks.info

http://www.it-ebooks.info/

den =

[double

1 x 3]

[double 1 x 2]

Transfer function from input "channel1" to output:

1+ z"1+ 2 z"-2

Transfer function from input "channel2" to output:

Sampling time: unspecified

Next we create a SISO FRD model.

»> freq = logspace(1,2);
resp = .05*(freq).*exp(i*2*freq);
sys = frd(resp,freq)

From input 1 to:

Frequency(rad/s)
10.
10.
10.
11.
12.
12.
13.
13.
14.
15.
15.
16.
17.
18.
19.

86.
91.
95.
100.000000

000000
481131
985411
513954
067926
648552
257114
894955
563485
264180
998587
768329
575106
420700
306977

851137
029818
409548

-2.
4.
-3.
2.

output 1

.204041+0.
.270295+0.
.549157+0.
.293037-0.
.327595-0.
.623904+0.
.124737+0.
.614812+0.
.479139-0.
.481814-0.
.668563+0.
.438184+0.
.728874-0.
.602513-0.
.588781+0.

649156-3.
498503-0.
261293+3.
435938-4.

4564731
4489721
0111641
4955371
5067241
1034801
6510131
3235431
5483281
5918981
4392151
7147991
4908701
6966231
7650071

4408971
6924871
4815831
3664861

Continuous-time frequency response data model.

www.it-ebooks.info

CHAPTER 3 © CONTROL SYSTEMS

93

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Now we define an FRD model and its data is returned.

>> freq = logspace(1,2,2);

resp = .05*%(freq).*exp(i*2*freq);
sys = frd(resp, freq);

[resp, freq] = frdata(sys,'v')

resp =
0.20
2.44

freq =
10.00
100.00

The following example creates a 2-output/1-input transfer function:

_p+l
p+2p+2
1

p

H(p)=

»> num = {[1 1] ; 1}
den = {[1 2 2] ; [1 0]}
H = tf(num,den)

NUM =

[double 1 x 2]
[1.00]

den =

[double 1 x 3]
[1x2 double]
Transfer function from input to output...
s+ 1
#Ll: ---mmmeeme---
Ss*"2+2s+2

1
#2: -

S

The following example computes the transfer function for the following state-space model:

A:{_l2 _;},B:E IJ,C:[I 0], D=[0 1]

94

www.it-ebooks.info

http://www.it-ebooks.info/

»> sys = ss([-2 -1;1 -2],[1 152 -1],[1 o],[0 1])

tf(sys)
a =
x1 X2
x1 -2 -1
X2 1 -2
b =
u1 u2

x1 1 1
X2 2 -1
C =

x1 X2
y1 1 0
d =

ul u2
y1 0 1

Continuous-time model.

Transfer function from input 1 to output:
S - 2.963e-016

Transfer function from input 2 to output:
$s*"2+5s+8

S "2+45Ss+5

The following example specifies two discrete-time transfer functions:
z+1 1+z7
zZ)=——"—— h(z')=——F——=2g(z
(=) z*+2z+3 (=7) 1+2z7 4327 8(2)
»» g = tf([1 1],[2 2 3],0.12)
Transfer function:

z’2 +2z+3

Sampling time: 0.1

www.it-ebooks.info

CHAPTER 3 © CONTROL SYSTEMS

95

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

> h = tf([1 1],[1 2 3],0.1, 'variable', 'z"-1")
Transfer function:

1+2z"1+32z"-2

Sampling time: 0.1

We now specify the zero-pole-gain model associated with the transfer function:

1
z—0.3
2(z+0.5)
(z-0.1+j)(z=0.1-)

H(z)=

»» z = {[]; -o0.5}

p = {0.3 ; [0.14i 0.1-i]}
k=[1;2

H = zpk(z,p,k,-1)

Z =

[]

[-0.5000]

p =

[0.3000]

[1x2 double]
k =

1
2

Zero/pole/qgain from input to output...

(z*2 - 0.2z + 1.01)

Sampling time: unspecified

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

In the following example the transfer function tf([-10 20 0],[1 7 20 28 19 5]) is converted into

zero-pole-gain format.
>> h = tf([-10 20 0],[1 7 20 28 19 5])
Transfer function:

-10 s"2 + 20 s

S"5 + 7 8™ + 20 s"3 + 28 s”2 + 195 + 5

>> zpk(h)
Zero/pole/gain:

-10 s (s-2)

(s) "3 (s”*2+4s +5)

Model Feature Commands

Command

Description

str = class(object)

hasdelay(sys)

k= isa(obj,class’)
boo = isct(sys)

boo = isdt(sys)
boo = isempty(sys)
boo = isproper(sys)
boo = issiso(sys)

n = ndims(sys)
size(sys)

d = size(sys)

Ny = size(sys,1)

Nu = size(sys,2)

Sk = size(sys,2+k)

Ns = size(sys,order’)

Nf = size(sys,frequency’)

(o

Displays a string describing which type of model object is (‘tf;] ‘zpk, 'ss, or ‘frd’).

Returns 1 if the LTI model sys has input, output, input/output or internal delays,
and returns 0 otherwise.

Returns 1 if the object is of the given class.

Returns 1 if the LTI model sys is continuous.

Returns 1 ifthe LTI model sys is discrete.

Returns 1 if the LTI model sys has no input or output.

Returns 1 if the LTI model sys is proper.

Returns 1 if the LTI model sys is SISO.

Returns the number of dimensions in the LTI model or model array sys.
Displays the number of inputs/outputs of sys.

Assigns the number of inputs/outputs of sys to d.

Returns the number of outputs of sys.

Returns the number of inputs of sys.

Returns the length of the k-th dimension of the array when sys is an LTI array.
Returns the order of the (TS, SS, or ZPK) model sys.

Returns the frequency of the FRD model sys.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Model Conversion Commands

Command Description

sysd = c2d(sys,Ts) Converts a continuous model sys to a discrete model sysd using zero-order
hold on the inputs and a sample time of Ts seconds.

sysd = c2d(sys,Ts,method) Converts a continuous model sys to a discrete model sysd using zero-order
hold on the inputs and a sample time of Ts seconds using the specified
method of discretization. The method can be zero-order hold (zoh), triangle
approximation (foh), impulse invariant discretization (impulse), Bilinear
(Tustin) (tustin) or zero-pole matching (matched).

[sysd, G] = c2d(sys,Ts,method) In addition to the above, returns a matrix G that maps the continuous

initial conditions x0 and u0 of the state-space model sys to the discrete-time
initial state vector x[0]. The possible methods of discretization are

descxribed above.
sys = chgFreqUnit(sys,units) Changes units of the frequency points in sys to new units given by units.
sysc = d2c(sysd) Converts a discrete model sysd to a continuous model sysc using zero-order

hold on the inputs.

sysc = d2¢(sysd,method) Converts a discrete model sysd to a continuous model sysc using the
conversion method given by method. The possible methods of conversion are
zoh, foh, tustin and matched (see above).

sysl = d2d(sys,Ts) Resamples the discrete-time model sys to produce an equivalent discrete-time
model sys1 with new sample time Ts.

sys = delay2z(sys) Replaces delays of discrete-time TE SS or ZPK models by poles at z=0, or
replaces delays of FRD models by phase shift. [Note: more recent versions of
MATLAB have replaced delay2z by absorbDelay.]

sys = frd(r,f) Creates an FRD model sys from the frequency response data stored in the
array r. The vector frepresents the underlying frequencies for the frequency
response data.

sys = frd(r,f,Ts) Creates a discrete-time FRD model with sample time Ts in seconds.

sys = frd Creates an empty FRD model.

sys = frd(r,f,1tisys) Creates an FRD model which inherits the generic properties of the
LTI model ltisys.

sysfrd = frd(sys,f) Converts a TE SS or ZPK model to an FRD model with frequencies f.

sysfrd = frd(sys,f,units) Converts a TE SS or ZPK model to an FRD model with frequencies f

specifying the units (‘rad/s’ or ‘Hz’).

(continued)

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

[num, den] = pade(T,N)

pade(T,N)
sysx = pade(sys,N)

sysx = pade(sys,Nu,Ny,NINT)

sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1s2... sk])
[r, p, k] = residue(b,a)

[b,a] = residue(r,p,k)

sys = ss(A,B,C,D,E).

sys = ss(A,B,C,D,E,Ts)

sys = ss(A,B,C,D,E, Itisys)
sys = ss(A,B,C,D,E,p1,p2,v1,v2,...)
sys=ss(A,B,C,D,E,Ts,p1,v1,p2,v2,...)

sys_ss = ss(sys)

sys_ss = ss(sys, minimal’)
sys = tf(num,den)

sys = tf(num,den,Ts)

Returns the Padé approximation of order N of the continuous-time I/0 delay
exp(=sT) in transfer function form. The row vectors num and den contain the
numerator and denominator coefficients in descending powers of s. Both are
Nth-order polynomials.

Plots the step and phase responses of the Nth-order Padé approximation and
compares them with the exact responses of the model with I/0 delay T.

Produces a delay-free approximation sysx of the continuous delay system sys.
All delays are replaced by their Nth-order Padé approximation.

Specifies independent approximation orders for each input, output,

and I/0 or internal delay. Here NU, NY and NINT are integer arrays:

NU is the vector of approximation orders for the input channel; NY is

the vector of approximation orders for the output channel; NINT is the
approximation order for I/0 delays (TF or ZPK models) or internal delays
(state-space models).

Reshapes the LTI model sys to an array of LTI models.

Finds the residues, poles, and direct term of a partial fraction expansion of
the ratio of two polynomials, b(s) and a(s), where b and a are the vectors
listing the numerator and denominator coefficients, respectively.

Converts the partial fraction expansion back to the polynomials with
coefficients in b and a.

Creates the continuous-time state-space model:

EﬂzAx+Bu
dt
y=Cx+Du

Creates the discrete-time state-space model (with sample time Ts in seconds):
Ex[n+1]=Ax[n]Bu[n]
yln] = Cx[n] + Du[n]

Creates a continuous-time state-space model with generic properties
inherited from the LTI model ltisys.

Creates a continuous-time state-space model with properties given by the
property/value pairs (pi, vi).

Creates a discrete-time state-space model with sample time Ts and properties
given by the property/value pairs (pi, vi).

Converts the (TF or ZPK) model sys to a state-space model.

Produces a state-space realization with no uncontrollable or
unobservable states

Creates a continuous-time transfer function with specified numerator and
denominator.

Creates a discrete-time transfer function with specified numerator and
denominator and sample time of Ts seconds.

(continued)

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

sys = tf(M)

sys = tf(num,den,ltisys)

sys = tf(num,den,p1,vl,p2,v2,...)

sys = tf(num,den,Ts,p1,v1,p2,v2,...)

s = tf(‘s’)
z = tf(‘z,Ts)

tfsys = tf(sys)
tfsys = tf(sys,inv’)

sys = zpk(z,p,k)
sys = zpk(z,p,k,Ts)

sys = zpk(M)
sys = zpk(z,p,k,Itisys)

sys = zpk(z,p,k,p1,vl,p2,v2,...)
sys = zpk(z,p,k,Ts,p1,v1,p2,v2,..)
sys = zpk(‘s’)

sys = zpk(‘z;Ts)

zsys = zpk(sys)
zsys = zpk(sys,inv’)

Creates a static gain M (matrix or scalar).

Creates a transfer function with specified numerator and denominator and
generic properties inherited from the LTI model ltisys.

Creates a continuous-time transfer function with specified numerator and
denominator and with properties given by the property/value pairs (pi, vi).

Creates a discrete-time transfer function with specified numerator and
denominator, sample time Ts in seconds, and properties given by the
property/value pairs (pi, vi).

Specifies a TF model using a rational function in the Laplace variable s.
Specifies a TF model with sample time Ts using a rational function in the
discrete-time variable z.

Converts a (TF or ZPK) model sys to a transfer function.

Converts a (TF or ZPK) model sys to a transfer function using investment
formulas.

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k.

Creates a discrete-time zero-pole-gain model with zeros z, poles p, gains k
and sample time Ts in seconds.

Specifies a static gain M.

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k with generic properties inherited from the LTI model Itisys.

Creates a continuous-time zero-pole-gain model with zeros z, poles p and
gains k and properties given by the property/value pairs (pi, vi).

Creates a discrete-time zero-pole-gain model with zeros z, poles p, gains k
and sample time Ts, and properties given by the property/value pairs (pi, vi).
Specifies a continuous-time zero-pole-gain model using a rational function in
the Laplace variable s.

Specifies a discrete-time zero-pole-gain model using a rational function in the
discrete-time variable z.

Converts an LTI model sys into a zero-pole-gain model.

Converts an LTI model sys into a zero-pole-gain model using investment
formulas.

As a first example, we consider the system:

_os—1
s +4s+5

H(s)

with input lag Td = 0.35 seconds. The system is discretized using triangular approximation with sampling time

Ts=0.1sec.

»>> H = tf([1 -1],[1 4 5], 'inputdelay’,0.35)

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Transfer function:
exp(-0.35%s) * —-coooeoooo--

»> Hd = c2d(H,0.1,'foh")
Transfer function:
0.0115 z"3 + 0.0456 z"2 - 0.0562z - 0.009104
z"3 - 1.629 z"2 + 0.6703z
Sampling time: 0.1

If we want to compare the step response and its discretization (see Figure 3-9) we can use the following
command:

»> step(H,'-',Hd,"--")

) Figure No. 1 E]E|

File Edit View nsert Tools Window Help
DEE& A A/ 220

Step Response
045 T T T T T T

01

0.05

-0.05

Amplitude

-01

045

-0:2

025 L L I 1 1 1
1] 05 1 1S 2 235 3 35

Figure 3-9.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

The next example computes a Padé approximation of third order with I/0O lag 0.1 seconds and compares the time
and frequency response with its approximation (Figure 3-10).

»> pade(0.1,3)
Step response of 3rd-order Pade approximation

<) Figure No. 2 Q@

File Edit View Insert Tools Window Help
DEE&S NAL2/ 2P

15 T T T T T T T T T
1
0.5
0
0.5

Amplitude

-10 002 004 006 008 041 012 014 016 018 02

PP'Egl'aer ssep%s se

8 &5 8
o o o o

Phase (deg.)

8
(==}

-1000 |) , A \ .
10' 10° 10°
Frequency (rad/s)

Figure 3-10.

Commands for Reduced Order Models

Command Description

[sysb,g] = balreal(sys) Computes a balanced realization sysb for the stable portion of the LTI model
sys. balreal handles both continuous and discrete systems.

[sysb,g,T,Ti] = balreal(sys) In addition returns the vector g containing the diagonal of the balanced
gramian, the state similarity transformation x, = Tx used to convert sys to
sysb, and the inverse transformation Ti=T!

(continued)

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

sysr = minreal(sys)

sysr = minreal(sys,tol)

[sysr,u] = minreal(sys,tol)

rsys = modred(sys,elim)

rsys = modred(sys,elim,/method’)

MSYS = sminreal(sys)

Eliminates uncontrollable or unobservable states in state-space models, or
cancels pole-zero pairs in transfer functions or zero-pole-gain models.

Specifies the tolerance used for state elimination or pole-zero cancellation.
The default value is tol = sqrt(eps) and increasing this tolerance forces
additional cancellations.

In addition finds an orthogonal matrix U such that (U*A*U;U*B,C*U’) isa
Kalman decomposition of (A,B,C).

Reduces the order of a continuous or discrete state-space model sys by
eliminating the states found in the vector elim. The full state vector X is
partitioned as X = [X1;X2] where X1 is the reduced state vector and X2 is
discarded.

In addition specifies the state elimination method, which can be MatchDC
(enforce matching DC gains) or Truncate (delete X2).

Eliminates the states of the state-space model sys that don’t affect the
input/output response.

In the example that follows we consider the zero-pole-gain model defined by sys = zpk([- 10 - 20.01],
[-5-9.9-20.1], 1) and estimate a balanced realization, presenting the diagonal of the balanced grammian.

»> sys

Zero/pole/gain:

(s+10) (s+20.01)

(s+5) (s+9.9) (s+20.1)

»> [sysb,g] = balreal(sys)

a =

zpk([-10 -20.01],[-5 -9.9 -20.1],1)

x1 X2 X3
x1 -4.97 0.2399 0.2262
X2 -0.2399 -4.276 -9.467
X3 0.2262 9.467 -25.75

b =
ul
x1 -1
X2 -0.02412
X3 0.02276
C =
x1 x2 X3
y1 -1 0.02412 0.02276

www.it-ebooks.info

103

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

d =
ul
yl 0

Continuous-time model.

g:
0.1006
0.0001
0.0000

The result shows that the last two states are weakly coupled to the input and output, so it will be convenient to
remove them by using the syntax:

»> sysr = modred(sysb,[2 3],"'del")

a =
x1
X1 -4.97
b =
uil
x1 -1
C =
x1
y1 -1
d =
ul
y1 o

Continuous-time model.
Now we can compare the answers of the original and reduced models (Figure 3-11) by using the following syntax:

»> bode(sys,'-',sysr, 'x")

104

www.it-ebooks.info

http://www.it-ebooks.info/

<) Figure No. 1
File Edit View Insert Tools Window Help
D& "AA2A/ PP D

Bode Diagram

CHAPTER 3 © CONTROL SYSTEMS

A=

-45 +

Phasze (deg)

-90

10 10'
Frequency (radfsec)

Figure 3-11.

Commands Related to State-Spaces

Command

Description

csys = canon(sys,‘type’)
[csys,T] = canon(sys,‘type’)

Co = ctrb(A,B)

Co = ctrb(sys)

[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C)
[Abar,Bbar,Cbar,T,k] = ctrbf(A,B,C,tol)

Wec = gram(sys,c’)
Wo = gram(sys,0’)
Ob = obsv(A,B)
Ob = obsv(sys)

Transforms the linear model sys into a canonical state-space model
csys. The argument ‘type’ can be either ‘modal’ or companion.

In addition returns the state-coordinate transformation T that relates
the states of the state-space model sys to the states of csys.

Returns the controllability matrix for state-space systems.

Decomposes the state-space system represented by A, B, and C into the
controllability staircase form, Abar, Bbar, and Cbar. T is the similarity
transformation matrix and k is a vector of length n, where n is the
order of the system represented by A. The number of non-null values
of k indicates the number of iterations needed to calculate T.

Calculates the controllability and observability grammians of the
state-space model sys.

Calculates the observability matrix for state-space models.

(continued)

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C,tol)

sysT = ss2ss(sys,T)

[sysb,T] = ssbal(sys)
[sysb,T] = ssbal(sys,condT)

Decomposes the state-space system with matrices A, B, and C into the
observability staircase form Abar, Bbar, and Cbar. T is the similarity
transformation matrix and k is a vector of length n, where n is the
order of the system represented by A. The number of non-null values
of k indicates the number of iterations needed to calculate T.

Returns the transformed state-space model sysT given sys and the state
coordinate transformation T.

Balances state-space models using a diagonal similarity
transformation.

As a first example we consider the following continuous state-space model:

1
A=|0
10

10
10> 10° |, B=|1|, C=[0.1 10 100]

10 1

0 1

We calculate the balanced model as follows:

> a = [1 1e4 1e2; 0 1e2 1e5; 10 1 0];

b = [1; 15 1];
c = [0.1 10 1e2];
sys ss (a, b, c, 0) =

a =
x1 X2 X3
x1 1 1e+004 100
X2 0 100 1e+005
X3 10 1 0
b =
ui
X1 1
X2 1
x3 1
C =
x1 X2 X3
yl1 0.1 10 100
d =
ul
yi o0

Continuous-time model.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

In the following example we calculate the observability matrix of the ladder system
A= []-r 1;4, - 2]; B= [1; -L1,-]-]; C= [0; 1; 110]

>> A =[1, 2; 4, - 2]; B =[21, -1, 1, - 1]; C = [1,0; 0.1];
»> [Abar, Bbar, Cbaxr, T, k] = obsvf(A,B,C)

Abar =

1 1

4 -2
Bbar =

1 -1

1 -1
Char =

1 0

0 1
T =

1 0

0 1
k =

2 0

Below we calculate the controllability matrix of the system in the previous example.

>> A =[1, 1; 4, - 2]; B = [1, - 1, 1, - 1]; C = [1,0; 0.1];
»> [Abar, Bbar, Cbar, T, k] = ctrbf(A,B,C)

Abar =

-3.0000 0.0000
3.0000 2.0000

Bbar =

-1.4142 1.4142
Char =

-0.7071 -0.7071
0.7071 -0.7071

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

T -
-0.7071 0.7071
-0.7071 -0.7071

k =

1 0

Commands for Dynamic Models

Command

Description

[Wn,Z] = damp(sys)
[Wn,Z,P] = damp(sys)
k = dcgain(sys)

[P,Q] = covar(sys,W)

s = dsort(p)
[s,ndx] = dsort(p)
s = esort(p)
[s,ndx] = esort(p)
norm(sys)
norm(sys,2)
norm(sys,inf)
norm(sys,inf,tol)

[ninf,fpeak] = norm(sys)

p = pole(sys)

d = eig(A)

d = eig(A,B)

[V,D] = eig(A)

[V,D] = eig(A,nobalance’)
[V,D] = eig(A,B)

[V,D] = eig(A,B,flag)

pzmap(sys)
pzmap(sysl,sys2,...,sysN)
[p,z] = pzmap(sys)

Displays a table of the damping ratio, natural frequency, and time constant of the
poles of the linear model sys. You can also get the vector P of the poles of sys.

Calculates the low-frequency (DC) gain of the model sys.

Calculates the stationary covariance of the output of an LTI model sys driven by
Gaussian white noise inputs W. P is the steady-state output response covariance and
Q is the steady-state state covariance.

Sorts the discrete-time poles contained in the vector p in descending order by
magnitude.

Sorts the continuous-time poles contained in the vector p by real part.

Calculates the H? norm of the model sys.

Calculates the H? norm of the model sys.

Calculates the H_ norm of the model sys.

Calculates the H , norm of the model sys with tolerance tol.

Calculates, in addition to the H_ norm, the frequency fpeak at which the gain
reaches its peak value.

Calculates the poles of the LTI model sys.

Returns the vector of eigenvalues of A.

Returns the generalized eigenvalues of the pair(A,B).

Returns the eigenvalues and eigenvectors of the matrix A.

Returns the eigenvalues and eigenvectors of A without a preliminary balancing step.
Returns the eigenvalues and generalized eigenvectors of (A,B).

Returns the eigenvalues and generalized eigenvectors of (A,B). The factorization
method (‘chol’ or ‘gz’) is specified by flag.

Creates a pole-zero plot of the continuous-time or discrete-time dynamic system sys
or of several LTI systems sysl, sys2,..., sysn at the same time. [p, z] gives the poles and
zeros and not the graph.

108

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command Description
rlocus(sys) Calculates and plots the root locus of the open-loop SISO model sys.
rlocus(sys,k) Uses the user-specified vector k of gains to plot the root locus.

rlocus(sysl,sys2,...)
[r,k] = rlocus(sys)

r = rlocus(sys,k)

r = roots(c)

sgrid

zgrid

z = zero(sys)

[z,gain] = zero(sys)

Calculates and plots the root locus of several systems in a simple graph.
Returns the vector k of selected gains and the complex root locations r for these gains.

Returns the root locations r for a system sys with selected gains given by the vector k.
Returns the roots of the polynomial c as a column vector.

Generates, for pole-zero and root locus plots, a grid of constant damping factors from
zero to one in steps of 0.1 and natural frequencies from zero to 10 rad/sec in steps of
one rady/sec, and plots the grid over the current axis.

Similarly generates a grid from zero to in steps of /10, and plots the grid over the
current axis.

Calculates the zeros of the LTI model sys.
Returns the zeros and gain of the LTI system sys.

As a first example, we calculate the eigenvalues, natural frequencies and damping factors of the continuous

transfer function model:

> H = tf([2 5 1],[1 2 3])

Transfer function:

2s"2+5s+1

»> damp(H)

Eigenvalue

25 +5s+1

H(s) =
(s) s +2s+3

Damping Freq. (rad/s)

00e - 1 + 000 + 1. 41e + 0001 5. 77e-001 1. 73e + 000
00e - 1 + 000 - 1. 41e + 0001 5. 77e-001 1. 73e + 000

In the following example we calculate the DC gain of the MIMO transfer function model:

s—1
1 2
= ' :—4—8;3

s+1 s—3

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

> H = [1 tf([2 -1],[2 1 3]) ; tf(2,[2 1]) tF([2 2],[2 -3])]
dcgain(H)

Transfer function from input 1 to output...

#1: 1

S
#1: -
s"2 +s + 3
s +2
#2: -----
3s
ans =

1.0000 - 0.3333
1.0000 - 0.6667

Next we consider the discrete-time transfer function

z*—2.841z° +2.8752—1.004
z*—2.417z* +2.003z —0.5488

H(z)=

with 0.1 second sampling time and calculate the 2-norm and the infinite norm with its optimum value.

»> H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
noxrm(H)

Transfer function:
z"3 - 2.841 z"2 + 2.875 z - 1.004
23 - 2.417 22 + 2.003 7 - 0.5488
Sampling time: 0.1

ans =

1.2438

110

www.it-ebooks.info

http://www.it-ebooks.info/

»> [ninf,fpeak] = noxm(H,inf)
surrounded =
2.5488

fpeak =

3.0844

CHAPTER 3 © CONTROL SYSTEMS

We then confirm the previous values by generating the Bode plot of H(z) (see Figure 3-12).

»> bode (H)

) Figure No. 1 E]E|

File Edit View Insert Tools Window Help
DEE& YA~/ BAPD
Bode Diagram
10 ’ v
g s :
§ .
=
5 L 1
90 F T T
0 4
@ 80
o
g 180 -
o
210+
=360 k= " n MR A | il
10" 10° 10'
Frequency (radfsec)
Figure 3-12.

Next we calculate and graph the root locus of the following system (see Figure 3-13):

» h = tf([2 5 1],[1 2 3]);
rlocus (h)

www.it-ebooks.info

h(s)=

25 +55+1

s’ +25+3

111

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

) Figure No. 1 E]E|

File Edit View Insert Tools Window Help
DEEa& A A/ [PPD
Root Locus
1k 4
05+
g
0 Ty —
£ \
i :
05 1
1 4
I I \u(L 1
2 15 1 -05 0
Real Axis
Figure 3-13.

In the example below we plot a z-plane grid over the root locus of the following system (see Figure 3-14):

2z*-34z+1.5
z*—1.6z+0.8

H(z) =
> H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)
Transfer function:
222 -3.4z+1.5
22 - 1.62+0.8
Sampling time: unspecified
»> rlocus(H)

zgrid
axis('square')

112

www.it-ebooks.info

http://www.it-ebooks.info/

<) Figure No. 1
File Edit View Insert Tools Window Help
DEE& AL/ 20D

CHAPTER 3 © CONTROL SYSTEMS

A=

Figure 3-14.

Commands for Interconnecting Models

Command

Description

sys = append(sysl,sys2,...,sysN)

asys = augstate (sys)

sysc = connect(sys,Q,inputs,outputs)

sys = feedback(sys1,sys2)

sys = feedback(sys1,sys2,sign)

sys = feedback(sysl,sys2,feedin,feedout,sign)
sys = Ift(sys1,sys2)

sys = Ift(sys1,sys2,nu,ny)

[A,B,C,D] = ord2(wn,z)

[num,den] = ord2(wn,z)

Combines models in a diagonal configuration block. Groups the
models together by appending their inputs and outputs
(Figure 3-15).

Appends the state vector to the output vector.

Connects the subsystems in a block according to a chosen
interconnection scheme (given by the connection matrix Q).

Returns a model sys for the negative feedback interconnection of
models sys1 and sys2 (see Figure 3-16). May include sign and closed
loop (see Figure 3-17).

Forms the linear fractional transformation (LFT) of two models
(see Figure 3-18).

Generates continuous second-order systems (wn is the natural
frequency and z is the damping factor).

(continued)

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command Description

sys = parallel(sys1,sys2) Connects two systems in parallel (see Figure 3-19).
sys = parallel(sys1,sys2,inp1,inp2,outl,out2)

sys = series(sysl,sys2) Connects two systems in series (see Figure 3-20).
sys = series(sys1,sys2,outputsl,inputs2)

sys = stack(arraydim,sysl,sys2,...) Produces an array of dynamic system models by stacking the
models sys1,sys2,... along the array dimension arraydim.

Uy ——| sysi LS
Ug —p»| sSYysS2 >y,
Upn —p-| SYySN > YN
sys
Figure 3-15.
+
U —pO—m sysi -y
SYS2 |ag
Figure 3-16.
v —I- - =z
1 sys1 .
o g -y
; sys2 g i
sys
Figure 3-17.
114

www.it-ebooks.info

http://www.it-ebooks.info/

sys
w - -z
b sysl b
u y
y i
sys2
wy - > 2y
Figure 3-18.
sys
»| sysl
+
u —- Y
+
»| sys2 |
Figure 3-19.
sys
—s—p»| Sysl |——p» sys2
Figure 3-20.

CHAPTER 3 © CONTROL SYSTEMS

As a first example we will combine the systems #f(1, [1 0]) and ss(1,2,3,4). We should bear in mind that for systems
with transfer functions H,(s), H,(s), ..., H (s), the resulting combined system has as transfer function:

www.it-ebooks.info

115

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

For two systems sys1 and sys2 defined by (A, B,,C,, D)) and (A,, B, C,, D,), their combination append(sys1, sys2)
yields the system:
X, _ A 0| x . B 0 |y
X, 0 A l|x, 0 B, |u,
A _ C, 0| «x N D 0|y
Vs 0 G |lx, 0 D,|lu,

For our example we have:
»> sys1 = tf(1,[1 0])
sys2 = ss(1,2,3,4)
sys = append(sys1,10,sys2)
Transfer function:
1

S

X1
ul
x1

uil
y1 4

Continuous-time model.

a =
x1 x2
x1 0 0
x2 0 1
b =
ul u2 u3
x1 1 0 0
x2 0 o0 2
116

www.it-ebooks.info

http://www.it-ebooks.info/

C =
x1 x2
yi 1 0
y2 0 o0
y3 0 3
d =
ul u2 u3
yi 0 0 o0
y2 0 10 0
y3 0 0 4

Continuous-time model.

CHAPTER 3 © CONTROL SYSTEMS

The following example, illustrated in Figure 3-21, attaches the plant G(s) to the driver H(s), defined below, using

negative feedback:

25> +5s5+1
G(s)=—F—F——

§s°+25s+3

5(s+1

H(S):M

s+10

+
torque — O 4 = velocity

1

Figure 3-21.

»» G = tf([2 5 1],[1 2 3], 'inputname', 'torque’,...)
'outputname’, 'velocity');

H = zpk(-2,-10,5)

Cloop = feedback(G,H)

Zero/pole/qain:

Zero/pole/qgain from input "torque" to output "velocity":
0.18182 (s+10) (s+2. 281) (s+0. 2192)

(s+3. 419) (s * 2 + 1. 763s + 1.064)

www.it-ebooks.info

117

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

The following example builds a second-order transfer function with damping factor 0.4 and natural

frequency 2.4 rad/sec.
»> [num,den] = ord2(2.4,0.4)

num

1

den

1.0000 1.9200 5.7600
>> sys = tf(num,den)
Transfer function:

s "2+ 1.92s + 5.76

Response Time Commands

Command

Description

[w, t] = gensig(type,tau)

[u, t] = gensig(type,tau,Tf,Ts)

impulse(sys)

impulse(sys,t)
impulse(sysl,sys2,...,sysN)
impulse(sysl1,sys2,...,sysN,t)

impulse(sys1,PlotStylel)...,sysN,PlotStyleN’)
[y, t, x] = impulse(sys)

initial(sys,x0)

initial(sys,x0,t)

initial(sys1,sys2,...,8ysN,x0)
initial(sys1,sys2,...,sysN,x0,t)
initial(sys1,PlotStylel)...,sysN,PlotStyleN,x0)
[y, t, x] = initial(sys,x0)

Generates a scalar signal u of class type and with period tau
(in seconds). The type can be sine, square or pulse.

Also specifies the time duration Tf of the signal and the spacing
Ts between the time samples t.

Calculates and plots the impulse response of the model sys.
Uses the user-supplied time vector t for simulation.
Calculates and plots the impulse response of several models.

Calculates and plots the impulse response of several models
using the user-supplied time vector t for simulation.

In addition sets graphics styles.

Returns the length of t, the number of outputs and the number
of inputs for the impulse response of the model sys.

Calculates and plots the unforced response of the state-space
model sys, or of several models, with initial condition x0. A
user-supplied time vector t can be supplied as well as specified
graphics styles. You can also obtain the length of t, the number
of outputs and the number of inputs for the unforced response
of the model sys.

118

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command Description
Isim(sys,u,t) Calculates and plots the time response of the state-space
Isim(sys,u,t,x0) model sys, or of several models, with initial condition x0. A

Isim(sys,u,t,x0,zoh’)

Isim(sys,u,t,x0,foh’)
Isim(sysl1,sys2,...,sysN,u,t)
Isim(sys1,sys2,...,sysN,u,t,x0)
Isim(sys1,PlotStylel)...,sysN,PlotStyleN)u,t)
[y, t, x] = Isim(sys,u,t,x0)

step(sys)

step(sys,t)

step(sysl,sys2,...,sysN)
step(sysl,sys2,...,sysN,t)
step(sys1,PlotStylel)...,sysN, PlotStyleN’)
[y, t, x] = step(sys)

Itiview

Itiview(sys1,sys2,...,sysn)
Itiview(‘plottype)sysl,sys2,...,sysn)
Itiview(‘plottype;sys,extras)
Itiview(‘clear)viewers)
Itiview(‘current’sysl,sys2,...,

sysn,viewers)

user-supplied time sample t can be supplied as well as specified
graphics styles. The options zoh and foh specify how the input
values should be interpolated between samples (zero-order
hold or linear interpolation, respectively). You can also obtain
the output response y, the time vector t used for simulation, and
the state trajectories x.

Calculates and plots the step response of the LTI model sys, or
several models. A user-supplied time sample t can be supplied
as well as specified graphics styles. You can also obtain the
output response y, the time vector t used for simulation, and the
state trajectories X.

Opens an LTI Viewer for LTI system response analysis for one
or more systems and with different graphics options defined
by plottype (‘step, ‘impulse; ‘initial] ‘Isim/ ‘pzmap’ ‘bode;
‘nyquist, ‘nichols’ and ‘sigma’).

As a first example we generate and plot a square signal with period 5 seconds, duration 30 seconds and sampling

every 0.1 seconds (see Figure 3-22).

»> [u,t] = gensig('square',5,30,0.1);
»> plot(t,u)
axis([o 30-1 2])

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

<) [Figure No. 1 E]D:(J

File Edit View Insert Tools Window Help
DEE&S NAL2/ 2P

0.5 1

= I 1 1 1 1

Figure 3-22.

In the example below we generate the response plot for the following state-space model (see Figure 3-23):
%] [-05572 -0.7814] x,
%, | | 0.7814 0 X,
xl
y=[1.9691 6.4493]

2

with initial conditions

» a = [-0.5572 -0.7814;0.7814 o0];
c = [1.9691 6.4493];
x0 = [1 ; o]

sys = ss(a,[1,¢,[1);
initial (sys, x 0)

X 0 =

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

) Figure No. 1 E]E|

Fle Edit View Insert Tools Window Help
IDEEHS RA 2/ | BPLD

Response to initisl Conditions

5 T T T T T T

smplitude
To: Y(1)

i L L
2 4 L] g 10 12 14 16 18 20

Figure 3-23.

Below we generate the step response plot of the following second order state-space model (see Figure 3-24):
%] [-05572 -0.7814] x, NEEA(ED
x,| | 0.7814 0 x,| [0 2| u,

xl
y=[1.9691 6.4493]

2

The following syntax is used:

» a = [-0.5572 -0.7814;0.7814 0];
b = [1 -150 2];

c = [1.9691 6.4493];

sys = ss(a,b,c,0);

step(sys)

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

<) Figure No. 1 B@

From: Li(1)

File Edit View Insert Tools Window Help
DEE& AL/ 20D

Step Responze

From: L(2)

Amplitude
T Y(1)

5

0 5 10 15 20 0 10 15 20
Time (sec)
Figure 3-24.
Frequency Response Commands
Command Description

S = allmargin(sys)

bode(sys)

bode(sys,w)
bode(sysl,sys2,...,sysN)
bode(sysl,sys2,...,sysN,w)
bode(sysl,PlotStylel;...,
sysN,PlotStyleN’)
[mag,phase,w] = bode(sys)

Computes the gain margin, phase margin, delay margin and the
corresponding crossover frequencies of the SISO open-loop
model sys.

Creates a Bode plot of the frequency response of the model sys,
or of several systems. The frequency range can be specified by
w as well as various graphics options. You can also obtain the
magnitude, phase and frequency values of bode(sys).

122

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)
bodemag(sysl,sys2,...,sysN,w)
bodemag(sys1,PlotStylel,...,
sysN,PlotStyleN’)

frsp = evalfr(sys,f)

H = freqresp(sys,w)

isys = interp(sys,freqs)

y = linspace(a,b)

y = linspace(a,b,n)

y=logspace(a,b)

y = logspace(a,b,n)

y = logspace(a,pi,n)

[Gm,Pm,Wgm,Wpm] = margin(sys)
[Gm,Pm,Wgm,Wpm] = margin(mag,phase,w)

margin(sys)

ngrid

nichols(sys)

nichols(sys,w)
nichols(sys1,sys2,...,sysN)
nichols(sys1,sys2,...,sysN,w)
nichols(sys1,PlotStylel)...,
sysN, PlotStyleN’)
[mag,phase,w] = nichols(sys)

[mag,phase] = nichols(sys,w)

Creates a Bode plot of the frequency response of the model sys,
or of several models, without the phase diagram. The frequency
range and various graphics options can be user-specified.

Evaluates the transfer function of the system sys at the complex
frequency f.

Returns the frequency response of sys on the real frequency grid
specified by the vector w.

Interpolates the frequency response data contained in the FRD
model sys at the frequencies freqs.

Creates a vector with 100 or n values equally spaced between a
and b.

Creates a vector with uniform logarithmic spacing between 10*
and 10° (50 points between 10° and 10", n points between 10° and
10* or n points between 10 and r).

Calculates the minimum gain margin, Gm, phase margin, Pm,
and associated frequencies Wgm and Wpm of SISO open-loop
models. Magnitude, phase and frequency vectors can be specified,
and the Bode plot can be generated.

Superimposes Nichols chart grid lines over the Nichols frequency
response of a system.

Creates a Nichols chart of the frequency response of a model. The
arguments have the same meanings as for the Bode plot.

(continued)

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Command Description
nyquist(sys) Creates a Nyquist plot of the frequency response of a model. The
nyquist(sys,w) arguments have the same meanings as for the Bode plot.

nyquist(sysl1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,PlotStylel’...,
sysN,PlotStyleN’)

[re,im,w] = nyquist(sys)

[re,im] = nyquist(sys,w)

sigma(sys)

sigma(sys,w)
sigma(sys,w,type)
sigma(sysl,sys2,...,sysN)
sigma(sysl,sys2,...,sysN,w)

sigma(sysl,sys2,...,sysN,w,type)

sigma(sys1,PlotStylel)...,
sysN, PlotStyleN’)
[sv,w] = sigma(sys)

sv = sigma(sys,w)

Calculates the singular values of the frequency response of a
model.

As a first example we generate the Bode plot for the following continuous SISO system (see Figure 3-25):

»> g = tf([1 0.1 7.5],[1 0.122 9 0 0]);

bode (g)

124

H(s)=

s*+0.1s+7.5
s'+0.125% +95*

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

J Figure No. 1 Dg|

File Edit View Insert Tools Window Help
DEEa& A A/ [PPD
Bode Diagram
0
. Aok 4
g
g 20} .
= a0k 4
-40
-45
o 90+ .
g
B
2 35l -
-180
10° 10'
Frequency (radfsec)
Figure 3-25.

Next we evaluate the following discrete-time transfer function atz=1 +i:

z—1
H(z)=—"""—
) Z2+z+1

»» H = tf([1 -1],[21 1 1],-2)
z = 1+j

evalfr(H,z)

Transfer function:

z’2 +z + 1

Sampling time: unspecified
z =

1.0000 + 1. 00001

ans =

0.2308 + 0. 15381

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

Next we generate the Nichols chart, with grid, for the following system (see Figure 3-26):

_ —4s" +48s° —18s” + 2505+ 600

H(s
() s +30s° +2825* + 5255 +60

> H = tf([-4 48 -18 250 600],[1 30 282 525 60])
Transfer function:

-4 s™4 + 48 s”3 - 18 s”2 + 250s + 600

s™4 + 30 s*3 + 282 s"2 + 5255 + 60
»> nichols(H)

»> ngrid

J Figure No. 1 D@g|

Fle Edit View [nsert Tools Window Help
DEE& YA~/ HPD

40 T T T T T T T T T T

0 v

Open-Loop Gain (dB)
=

. IR, e N T I WM O 2
-540 -435 -450 -405 -360 -3 =270 -225 180 -135 90 45 0
Open-Loop Phase (deg)

Figure 3-26.

126

www.it-ebooks.info

http://www.it-ebooks.info/

Pole Location Commands

CHAPTER 3 © CONTROL SYSTEMS

Command

Description

k = acker(A,b,p)

K = place(A,B,p)

est = estim(sys,L)

est = estim(sys,L,sensors,known)

rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)

Given the single input system

@:Ax+bu

and a vector p of desired closed-loop pole locations, using
Ackermann'’s method, k is determined such that the eigenvalues of
A - bk match the entries of p (up to ordering).

Given the single or multi-input system

@:AJH—Bu
dt

and a vector p of desired closed-loop pole locations, k is determined
such that the eigenvalues of A— bk match the entries of p (up to
ordering).

Produces a state/output estimator est given the plant state-space
model sys and the estimator gain L. The measured outputs
(sensors) and the known inputs (known) can be specified.

Forms a dynamic regulator or compensator rsys given a state-space
model sys of the plant, a state-feedback gain matrix K, and an
estimator gain matrix L. The measured outputs (sensors) and the
known inputs (known) can be specified.

LQG Design Commands

Command

Description

[K, S, e] =1qr(A,B,Q,R)

[K, S, e] =1qr(A,B,Q,R,N)

[K, S, e] = dlgr(a,b,Q,R)

[K, S, e] = digr(a,b,Q,R,N)

[K,S,e] = lqry(sys,Q,R)

[K,S,e] =1qry(sys,Q,R,N)

[Kd,S,e] =1qrd(A,B,Q,R,Ts)

[Kd,S,e] =1qrd(A,B,Q,R,N,Ts)
[kest,L,P] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalman(sys,Qn,Rn,Nn)
[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)
rlqg = lqgreg(kest,k)

rlqg = lqgreg(kest,k,controls)

Calculates the LQ-optimal gain for continuous models.

Calculates the LQ-optimal gain for discrete models.

Calculates the LQ-optimum gain with weighted output.

Calculates the discrete LQ gain for continuous models.

Computes the Kalman estimator for continuous and discrete models.

Computes the discrete Kalman estimator for continuous models.

Forms the linear-quadratic-Gaussian (LQG) regulator by connecting
the Kalman estimator designed with kalman and the optimal
state-feedback gain designed with lgr, dlqr or Iqry.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Commands for Solving Equations

Command Description

[X,L,G,rr] = care(A,B,Q) Solves algebraic Riccati equations in continuous time.
[X,L,G,rr] = care(A,B,Q,R,S,E)

[X,L,G,report] = care(A,B,Q,...,report’)

[X1,X2,L,report] = care(A,B,Q,...,implicit’)

[X,L,G,rr] = dare(A,B,Q,R) Solves algebraic Riccati equations in discrete time.
[X,L,G,rr] = dare(A,B,Q,R,S,E)

[X,L,G,report] = dare(A,B,Q,...,report’)

[X1,X2,L,report] = dare(A,B,Q,...,implicit’)

X =1lyap(A,Q) Solves continuous-time Lyapunov equations.
X =lyap(A,B,C)
X =dlyap(A,Q) Solves discrete-time Lyapunov equations.

As an example, we solve the Riccati equation:
A"X+XA-XBR'B'X+C"C=0

where:

>»a=[-32;11];b=[0; 1]; ¢ =[1-1]; r = 3;
[x,1,g] = care(a,b,c'*c,r)

X =

0.5895 1.8216
1.8216 8.8188

1=

-3.5026
-1.4370

g:

0.6072 2.9396

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-1

Create the continuous state-space model and compute the realization of the state-space for the transfer function

H(s) defined below. Also find a minimal realization of H(s).

s+1

s +3s%+3s5+2
H(s)=)
s°+3

s4+s+1

»> H = [tf([1 1],[2 3 3 2]) ; tf([2 0 3],[2 2 1])];
»> sys = ss(H)

a =

x1 X2 X3 x4 X5
x1 -3 -1.5 -1 0 0
X2 2 0 0 0 0
X3 0 1 0 0 0
X4 0 0 0 -1 -0.5
x5 0 0 0 2 0
b =

U1
x1 1
X2 0
X3 0
x4 1
x5 0
C =

x1 X2 X3 x4 x5
y1 0 0.5 0.5 0 0
y2 0 0 0 -1 1
d =

U1
y1 0
y2 1

Continuous-time model.
»> size(sys)

State-space model with 2 outputs, 1 input, and 5 states.

www.it-ebooks.info

129

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

We have obtained a state-space model with 2 outputs, 1 input and 5 states. A minimal realization of H(s) is found
by using the syntax:

»> sys = ss(H, 'min")

a =

x1 X2 X3
x1 -1.4183 -1.5188 0.21961
X2 -0.14192 -1.7933 -0.70974
X3 -0.44853 1.7658 0.21165
b =
ul
x1 0.19787
X2 1.4001
X3 0.02171
C =
x1 X2 X3
y1 -0.15944 0.018224 0.27783
y2 0.35997 -0.77729 0.78688
d =
ul
y1 0
y2 1

Continuous-time model.
»> size(sys)
State-space model with 2 outputs, 1 input, and 3 states.

A minimal realization is given by a state-space model with 2 outputs, 1 input and 3 states.

This result is in accordance with the following factorization of H(s) as the composite of a first order system with a
second order system:

1 s+1
— 0| s®+s+1
H(s)=|s+2 2, 3
0o 1[5
P +s+1

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-2

Find the discrete transfer function of the MIMO system H(2) defined below where the sample time is 0.2 seconds.

1 z
z+03 z+0.3
—z+2 3
z+03 z+0.3

H(z)=

»> nums = {1 [1 0];[-1 2] 3}
TS = 0.2
H = tf(nums,[1 0.3],Ts)

nums =

[1.00] [1x2 double]
[1x2 double] [3.00]

Ts
0.20
Transfer function from input 1 to output...

#1: -------

#1: -------

Sampling time: 0.2

www.it-ebooks.info

131

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-3

Given the zero-pole-gain model

7—0.7

Hz)= z—-0.5

with sample time 0.01 seconds, perform a resampling to 0.05 seconds. Then undo the resampling and verify that
you obtain the original model.

»> H = zpk(0.7,0.5,1,0.1)
H2 = d2d(H,0.05)

Zero/pole/qain:

Sampling time: 0.1

Zero/pole/gain:

(z-0.8243)

(2-0.7071)

Sampling time: 0.05

We reverse the resampling in the following way:

»> d2d(H2,0.1)

Zero/pole/qain:

Sampling time: 0.1

Thus the original model is obtained.

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-4

Consider the continuous fourth-order model given by the transfer function A(s) defined below. Reduce the order
by eliminating the states corresponding to small values of the diagonal balanced grammian vector g. Compare the
original and reduced models.

s +11s* +365+26

h(s)

T 5" +14.65% +74.965% +153.75 +99.65

We start by defining the model and computing a balanced state-space realization as follows:

» h

[hb,g]

tf([1 11 36 26],[1 14.6 74.96 153.7 99.65])

balreal(h)

Transfer function:

x1
X2
X3
X4

x1
X2
X3
X4

y1

s”3 + 11 s"2 + 36s + 26

S + 14.6 s"3 + 74.96 s"2 + 153.7s

x1 X2
-3.601 -0.8212
0.8212 -0.593
-0.6163 1.027
-0.05831 0.09033
u1
-1.002
0.1064
-0.08612
-0.008112
x1 x2
-1.002 -0.1064
ul
0

Continuous-time model.

X3
-0.6163
-1.027
-5.914
-1.127

X3
-0.08612

X4
0.05831
0.09033

1.127
-4.492

x4
0.008112

www.it-ebooks.info

133

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

g:
0.1394
0.0095
0.0006
0.0000

ans =

0.1394 0.0095 0.0006 0.0000
We now remove the three states corresponding to the last three values of g using two different methods.

»> hmdc = modred(hb,2:4, 'mdc")
hdel = modred(hb,2:4,"'del’)

a =
x1
X1 -4.655
b =
ul
x1 -1.139
C =
x1
y1 -1.139
d =
ul
y1 -0.01786

Continuous-time model.

a =
X1
x1 -3.601
b =
ul
x1 -1.002
C =
x1
y1 -1.002
d =
ul
yi o0

Continuous-time model.

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Next we compare the responses with the original model (see Figure 3-27).
»> bode(h, '-',hmdc, 'x"',hdel,'*")

3 Figure No. 1 E]E|

Fle Edit View Insert Tools Window Heb
DEE& NAA/, PO

N

Magnitude (dB)
a2 &

b -

Phase (deg)
8
%
¥

135 - L -

=180 = " 44 iais M EE e | i i asasl
10 10° 10 10 10°

Figure 3-27.

We see that in both cases the reduced model is better than the original. We now compare the step responses
(see Figure 3-28)

»> step(h,'-',hmdc,'-.' ,hdel,"'--")

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DEeE& "AA/ PPD

0.0s - E

0.5 1 15 2 25 3
Time (sec)

Figure 3-28.

EXERCISE 3-5

Calculate the covariance of response of the discrete SISO system defined by H(2) and T_below, corresponding to a
Gaussian white noise of intensity W= 5.

2z+1

H(z)=—"——,
@ 22 +0.22+0.5

T,=0.1

s

»» sys = tf([2 1],[1 0.2 0.5],0.1)

Transfer function:
2z+1

z"2 + 0.2 z + 0.5

Sampling time: 0.1
>>p = covar(sys,5)

p:

30.3167

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-6

Plot the poles and zeros of the continuous-time transfer function system defined by

25° +55+1
H(s)==2 1251
s“+2s5+3

>> H = tf([2 5 1],[1 2 3])
Transfer function:

25”2 + 55 +1

sr2+25+ 3

>> pzmap (H)
>> sgrid

Figure 3-29 shows the result.

) Figure No. 1 QE|

File Edit View Insert Tools Window Help
DEE& YA~/ BAPD
Pole-Zero Map
osan__;" 0.72.7 06 * 044_..-08 014 "
10092 W ot R %R e o
05 il-QS i
% 2I 1s'l I
(1 || S ¢ T T e i
g
E
05thes- T L
-1 “932"‘1:_ ':-.<:' 2 1
L o .\\) e \:).:N ,. J‘ ,J
084.-% 0727 0B% 04F°--03_ 014
s ; . bes e ; itk Tt
25 2 1.5 1 0.5 0
Real Axis
Figure 3-29.

www.it-ebooks.info

137

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

EXERCISE 3-7

Consider the diagram in Figure 3-30 in which the matrices of the state-space model sys2 are given by:

A=[-9.0201,17.7791; —1.6943, 3.2138];
B=[-5112, .5362; —0.002, —1.8470];

C =[-3.2897, 2.4544; —13.5009,18.0745];
D =[-.5476, —.1410; —.6459, .2958].

sys2
1 uy
i = Ax+Bu > Y1
10 + -
u, > y = Cx+Du - ¥
Hz
sys3
2(s+1)

s+2 -

Figure 3-30.

First join the unconnected blocks, and secondly find the state-space model for the global interconnection given by
the matrix Q = [3.1, — 4; 4, 3,0] with inputs = [1,2] and outputs = [2,3].

The blocks are joined using the following syntax:

> A =] -9.0201, 17.7791; -1.6943 3.2138];

B=[-.5112, .5362; -.002 -1.8470];
C=[-3.2807, 2.4544; -13.5009 18.0745];
D = ['05416, '-14105 '-6459 -2958];

»> sys1 = tf(10,[1 5], 'inputname’, uc')

sys2 = ss(A,B,C,D, 'inputname’,{'u1’ 'u2'},...
'outputname’,{'y1' 'y2'})

sys3 = zpk(-1,-2,2)

Transfer function from input "uc" to output:

10
s +5
a =
x1 X2
x1 -9.02 17.78
X2 -1.694 3.214
b =
ul u2
x1 -0.5112 0.5362
X2 -0.002 -1.847
138

www.it-ebooks.info

http://www.it-ebooks.info/

X1 X2
y1 -3.29 2.454
y2 -13.5 18.07

d =
ui u2
y1 -0.5476 -0.141
Y2 -0.6459 0.2958

Continuous-time model.

Zero/pole/qain:

The union of the unconnected blocks is created as follows:

sys = append(sys1,sys2,sys3)

a =
X1 X2
X1 -5 0
X2 0 -9.02
X3 0 -1.694
X4 0 0
b =
uc u1
X1 4 0
X2 0 -0.5112
X3 0 -0.002
x4 0 0
C =
X1 X2
? 2.5 0
y1 0 -3.29
y2 0 -13.5
? 0 0
d =
uc ui
? 0 0
y1 0 -0.5476
y2 0 -0.6459
? 0 0

Continuous-time model.

X3 X4
0 0
17.78 0
3.214 0
0 -2

u2 ?

0 0

0.5362 0

-1.847 0

0 1.414
X3 X4
0 0
2.454 0
18.07 0
0 -1.414

u2 ?

0 0

-0.141 0

0.2958 0

0 2

www.it-ebooks.info

CHAPTER 3 © CONTROL SYSTEMS

139

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

We then obtain the state-space model for the global interconnection.

» Q= [3, 1, -4; 4, 3, 0];

»> inputs = [1 2];

»> outputs = [2 3];

»» sysc = connect(sys,0,inputs,outputs)

a =
pel X2 X3 X4
x1 -5 0 0 0
X2 0.8422 0.07664 5.601 0.4764
X3 -2.901 -33.03 45.16 -1.641
X4 0.6571 -12 16.06 -1.628
b =
uc ul
x1 4 0
X2 0 -0.076
X3 0 -1.501
X4 0 -0.5739
C =
x1 x2 X3 X4
y1 -0.2215 -5.682 5.657 -0.1253
y2 0.4646 -8.483 11.36 0.2628
d =
uc ul
y1 0 -0.662
y2 0 -0.4058

Continuous-time model.

EXERCISE 3-8

Plot the unit impulse response of the second-order state-space model defined below and store the results in an
array with output response and simulation time.

%] _[-08572 07814 %] [1 -1]w,
%, | | 0.7814 0 x,| [0 2| u,

The requested plot is obtained by using the following syntax (see Figure 3-31):

The model is defined as follows:

> a = [-0.5572 -0.7814;0.7814 o0];
[1 -150 2];

[1.9691 6.4493];

sys = ss(a,b,c,0);

impulse (sys)

>
b
c

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

<} Figure No. 1 Q@

Fle Edit View [nsert Tools Window Help
IDEEHS RA 2/ | BPLD

Impulse Response
From: U(1) From: L(2)

= 4
i
£ = 27 .
0
2+ J
-4
-5 I 1 1 L L 1
0 5 10 15 20 0 5 10 15 20
Time (sec)
Figure 3-31.

The output response and simulation time are obtained using the syntax:

»> [y t] = impulse (sys)

y(:J:Jl) =

1.9691
2.6831
3.2617
3.7059
4.0197
4.2096

)’(-’;-',2) =

10.9295
9.4915
7.9888
6.4622
4.9487

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3~ CONTROL SYSTEMS

EXERCISE 3-9

Graph and simulate the response of the system with transfer function H(s) defined below to a square signal of
period 4 seconds, sampling every 0.1 seconds and every 10 seconds.

2s* +55+1
2
H(S)Z s°+25+3
s—1
s +5+5

We begin by generating the square signal with gensys and then perform the simulation using /sim (see Figure 3-32)
as follows:

»> [u,t] = gensig('square’,4,10,0.1);

> H = [tf([2 5 1],[1 2 3]) ; tf([2 -1],[1 1 5])]
1sim(H,u,t)

<) Figure No. 1 Q@

Fle Edit View [nsert Tools Window Help
IDEEHS RA 2/ | BPLD

Linear Simulation Results

Figure 3-32.

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © CONTROL SYSTEMS

Transfer function from input to output...

2s"2+5s+1

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Robust Predictive Control

Predictive Control Strategies: The Model Predictive
Control Toolbox

The Model Predictive Control Toolbox is a complete set of tools which can be used to implement model predictive
control strategies. Model predictive control strategies are often used in chemical engineering and in other industries.
The most important characteristics of this toolbox are:

¢ Modeling, identification and validation.

e Support for MISO, MIMO, step response and state-space models.

e Analysis of systems.

e Conversion between state-space, transfer function and step response models.

Model predictive control approximates a linear dynamic plant model to predict future changes and the effect
of manipulating variables. The online optimization problem is formulated as a quadratic program which is resolved
repeatedly using the most recent measurements.

The Model Predictive Control Toolbox includes more than 50 specialized MATLAB functions which help you to
design, analze and simulate dynamical systems using a model predictive control approach. The toolbox supports
finite step (or impulse) response, discrete and continuous-time transfer function and state-space formats. The toolbox
handles non-square systems and supports a wide variety of state estimation techniques. Simulation tools test systems
response with or without restrictions. For the identification of models, the toolbox has an interface that makes it easy
to use models developed using the system identification toolbox.

ID Commands

[mx, ax, stdx] = autosc (x) Scales an input matrix or vector x by its column means (mx) and standard

sx = scal(x,mx) deviations (stdx) automatically and outputs mx and stdx as options. By using scal, the

sx = scal(x,mx,stdx) input can also be scaled by some specified means and,/or standard deviations. rescal

rx = rescal(x,mx) converts scaled data back to the original data.

rx = rescal(x,mx,stdx)

plant = Builds a MIMO (multi-input multi-output) model in MPC step format. Each thetai is an

imp2step(delt,nout,thetal, nxm matrix corresponding to the impulse response coefficients for output i. n is the number

theta2,..., theta25) of the coefficients and m is the number of inputs. delt is the sampling interval used for

obtaining the impulse response coefficients. nout is the output stability indicator.
(continued)
145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

[theta, yres] = mlr (xreg,
yreg, ninput)

[theta, yres] = mlir (xreg yreg,
ninput, plotopt,

wtheta, wdeltheta)

[theta, yres, w, cw, ssqdif] =
plsr(xreg,yreg,ninput,lv)
[theta, yres, w, cw, ssqdif] =
plsr(xreg,yreg,ninput,lv,
plotopt)

yres = validmod

(xreg, yreg, theta)

yres = validmod

(xreg yreg, theta, plotopt)

[xreg, yreg] = wrtreg (x, y, n)

Determines impulse response coefficients for a multi-input single-output system

via Multivariable Least Squares Regression or Ridge Regression. xreg and yreg are

the input matrix and output vector produced by routines such as writreg. ninput is
number of inputs. Least Squares is used to determine the impulse response coefficient
matrix, theta. Columns of theta correspond to impulse response coefficients from each
input. Optional output yres is the vector of residuals, the difference between the actual
outputs and the predicted outputs.

Optional inputs include plotopt, wtheta, and wdeltheta. No plot is produced if plotopt
is equal to 0 which is the default; a plot of the actual output and the predicted output
is produced ifplotopt=1; two plots -- plot of actual and predicted output, and plot

of residuals -- are produced for plotopt=2. Penalties on the squares of theta and the
changes in theta can be specified through the scalar weights wtheta and wdeltheta,
respectively (defaults are 0).

Determines the impulse response coefficients for a multi-input single-output system via
Partial Least Squares (PLS).

Validates an impulse response model for a new set of data.

Writes input and output data matrices for a multi-input single-output system so that
they can be used in regression routines mlr and pls for determining impulse
response coefficients.

Information Matrix Plotting Commands

mpcinfo(mat) Returns information about the type and size of the matrix mat.

plotall(y,u) Plots outputs and manipulated variables from a simulation. Input variables y and u

plotall(y,u,t) are matrices of outputs and manipulated variables, respectively. (t = period).

plotfrsp(vmat) Plots the frequency response generated by modZ2frsp as a Bode plot. vmat is the

plotfrsp(vmat,out,in) array containing the data.

ploteach(y) Plots outputs and manipulated variables from a simulation on separate graphs.

ploteach(y, u) Input variables y and u are matrices of outputs and manipulated variables,

ploteach([], u) respectively. (t = period).

ploteach(y, [], 1)

ploteach([], u, t)

ploteach(y, u, t)

plotstep(plant) Plots multiple step responses. plant is a step-response matrix in the MPC step

plotstep(plant,opt) format created by mod2step, ss2step or tfd2step. opt is an optional scalar or row
vector that allows you to select the outputs to be plotted.

146

www.it-ebooks.info

http://www.it-ebooks.info/

Model Conversion Commands

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

c2dmp

[numd,dend] = cp2dp(num,den,delt)
[numd,dend] = cp2dp(num,den,delt,delay)

d2cmp

newmod = mod2mod (oldmod, delt2)

[phi,gam,c,d] = mod2ss(mod)
[phi,gam,c,d,minfo] = mod2ss(mod)

plant = mod2step(mod,tfinal)
[plant,dplant] = mod2step(mod,tfinal,delt2,nout)

g = poly2tfd(num,den)
g = poly2tfd(num,den,delt,delay)

pmod = ss2mod(phi,gam,c,d)
pmod = ss2mod(phi,gam,c,d,minfo)

plant = ss2step(phi,gam,c,d,tfinal)
plant = ss2step(phi,gam,c,d,tfinal,delt1,delt2,nout)
ss2tf2

tf2ssm

model = tfd2mod(delt2,ny,gl,g2,g3,...,825)

plant = tfd2step(tfinal,delt2,nout,g1)
plant = tfd2step(tfinal,delt2,nout,gl,...,g25)

umod = th2mod(th)
[umod,emod] = th2mod(thl,th2,...,thN)

Converts a state-space model from continuous-time to
discrete-time. (Equivalent to c2d in the Control System
Toolbox)

Converts a single-input-single-output, continuous-time
transfer function in standard MATLAB polynomial form
(including an optional time delay) to a sampled-data
transfer function. (delt is the sampling period and delay is
the time delay.)

Convertsa state-space model from discrete-time to
continuous-time. (Equivalent to d2c in the Control System
Toolbox.)

Changes the sampling period of a model in MPC mod
format. oldmod is the existing model in MPC mod format.
delt2 is the new sampling period for the model.

Extracts the standard discrete-time state-space matrices
and other information from a model stored in the MPC
mod format.

Uses a model in the mod format to calculate the step
response of a SISO or MIMO system in MPC step format.

Converts a transfer function (continuous or discrete) from
the standard MATLAB poly format into the MPC tf format.

Converts a discrete-time state-space system model into the
MPC mod format.

Uses a model in state-space format to calculate the step
response of a SISO or MIMO system, in MPC step format.

Converts state-space model to transfer function.
(Equivalent to ss2tf in the Control System Toolbox.)

Converts a transfer function to a state-space model.
(Equivalent to tf2ss in the Control System Toolbox.)

Converts a transfer function (continuous or discrete) from
the MPC tf format into the MPC mod format, converting to
discrete time if necessary.

Calculates the MIMO step response of a model in the
MPC tf format. The resulting step response is in the MPC
step format.

Converts a SISO or MISO model from the theta format

(as used in the System Identification Toolbox) to one in the
MPC mod format. Can also combine such models to form a
MIMO system.

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

Model Building Commands - MPC Mod Format

model = addmd (pmod, dmod)

Adds one or more measured disturbances to a plant model in the

MPC mod format.

pmod = addmod (mod1, mod2)

Combines two models in the MPC mod format such that the output

of one combines with the manipulated inputs of the other.

model = addumd (pmod, dmod)

Adds one or more unmeasured disturbances to a plant model in

MPC mod format.

pmod = appmod (mod1, mod2)

Appends two models to form a composite model that retains the inputs

and outputs of the original models.

pmod = paramod (mod1, mod2)

pmod = sermod (mod1, mod2)

Puts two models in parallel by connecting their outputs.

Puts two models in series by connecting the output of one to the

input of the other.

Control Design and Simulation Commands - MPC Step Format

yp = cmpc(plant,model,ywt,uwt,M,P,tend,r)
[yp,u,ym] = cmpc(plant,model,ywt,uwt,M,P,tend,...)

[clmod] = mpccl(plant,model, Kmpc)
[clmod,cmod] = mpccl(plant,model, Kmpc, tfilter,...
dplant, dmodel)

KMPC = mpccon (model)
KMPC = mpccon (model, ywt uwt, M, P)

yp = mpcsim(plant,model, Kmpc,tend,r)

[yp,u,ym] = mpcsim(plant,model, Kmpc,tend,r,usat,...

tfilter, dplant, dmodel, dstep)

nlcmpc

nlmpcsim

Simulates closed-loop systems with hard bounds on
manipulated variables and/or outputs using models
in the MPC step format. Solves the MPC optimization
problem by quadratic programming.

Combines a plant model and a controller model in MPC
step format, yielding a closed-loop system model in the
MPC mod format.

Calculates MPC controller gain using a model in MPC
step format.

Simulates closed-loop systems with saturation constraints
on the manipulated variables using models in the MPC
step format.

Model predictive controller for simulating closed-loop
systems with hard bounds on manipulated variables
and/or controlled variables using linear models in the
MPC step format for nonlinear plants represented as
Simulink S-functions.

Model predictive controller for simulating closed-loop
systems with saturation constraints on the manipulated
variables using linear models in the MPC step format for
nonlinear plants represented as Simulink S-functions.

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

Control Design and Simulation Commands - MPC Mod Format

yp = scmpc(pmod,imod,ywt,uwt,M,P,tend,r)

[yp,u,ym] = scmpc(pmod,imod,ywt,uwt,M,P,tend, ...

r,ulim,ylim,Kest,z,d,w,wu)

[clmod,cmod] = smpccl(pmod,imod,Ks)
[clmod,cmod] = smpccl(pmod,imod,Ks,Kest)

Ks = smpccon(imod)

Ks = smpccon(imod,ywt,uwt,M,P)
[Kest] = smpcest(imod,Q,R)

yp = smpcsim(pmod,imod,Ks,tend,r)

[yp,u,ym] = smpcsim(pmod,imod,Ks,tend,r,usat,...

Kest, z, d, w, wu)

Simulates closed-loop systems with hard bounds on
manipulated variables and/or outputs using models in the
MPC mod format. Solves the MPC optimization problem
by quadratic programming.

Combines a plant model and a controller model in the
MPC mod format, yielding a closed-loop system model in
the MPC format.

Calculates MPC controller gain using a model in MPC
mod format.

Sets up a state-estimator gain matrix for use with MPC
controller design and simulation routines using models in
MPC mod format.

Simulates closed-loop systems with saturation constraints
on the manipulated variables using models in the MPC
mod format.

Script Analysis Commands

frsp = mod2frsp(mod,freq)
[frsp,eyefrsp] = mod2frsp(mod,freq,out,in,balflg)

g = smpcgain(mod)
poles = smpcpole(mod)

[sigma, omega] = svdfrsp (vmat)

Calculates the complex frequency response of a system in
MPC mod format.

Calculates the steady-state gain matrix or poles for a
system in the MPC mod format.

Calculates the singular values of a varying matrix,
for example, the frequency response generated by mod2fisp.

Robust Control Systems: The Robust Control Toolbox

The Robust Control Toolbox provides tools for the design and analysis of robust multivariate control systems.
It includes systems in which it is possible to model errors, and dynamic systems with uncertain elements or with
parameters that can vary during the life of the product. The powerful algorithms included in this toolbox allow you to
run complex calculations, allowing for a large number of variations in the parameters.

The most important characteristics of this toolbox are:

e H?and H_ control based on LQG (synthesis).

e Multivariate frequency response.

e Construction of state-space models.

e Unique values based on model conversion.

¢ Reduction of high-order models.

e Spectral and inner-outer factorization.

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

Optional Data Structure System Commands

[b1,b2,...,bn] = branch(tr,PATH1, Recovers the matrices packed in a mksys or tree variable selectively. The
PATH2,...,PATHN) branches returned are determined by the paths PATHI, PATHZ,..., PATHN.
TR = graft(TR1,B) Adds root branch B onto a tree variable TRI (previously created by tree or
TR = graft(TR1,B,NM) mksys). If TR1 has N branches, then the numerical index of the new branch

is N+1; and the numerical indices of other root branches are unchanged.

[i,TY,N] = issystem(S) Returns a value for i of either 1 (true) or 0 (false) depending on whether or
not the variable S is a system created by the function mksys. Also returned is
the type of system TY and the number N of variable names associated with
a system of type TY, except that if S is not a system then TY = [|; and N = 0.

[i] = istree(T) Checks whether a variable T is a tree or not. When the second input

[i,b] = istree(T,path) argument path is present, the function istree checks the existence of the
branch specified by path.

S = mksys(a,b,c,d) Packs several matrices describing a system of type TY into a MATLAB

S = mksys(v1,v2,v3,vn, TY) variable S, under “standard” variable names determined by the value of the
string TY.

T = tree(nm,b1,b2,bn) Creates a tree data structure T containing several variables and their
names.

[VARS,N] = vrsys(NAM) Returns a string VARS and an integer N where VARS contains the list

(separated by commas) of the N names of the matrices associated with
a system described by the string name NAM.

Modeling Commands

[a,b1,b2,c1,c2,d11,d12,d21,d22] =... State-space or transfer function plant augmentation for use
augss(ag,bg,awl,bwl,aw2,bw2,aw3,bw3) in weighted mixed-sensitivity H2 and Hoo design.
[a,b1,b2,c1,c2,d11,d12,d21,d22] =...

augss(ag,bg,awl,bwl,aw2,bw2,aw3,bw3,w3poly)

[a,b1,b2,cl,c2,d11,d12,d21,d22] =....

augtf(ag,bg,cg,dg,wl,w2,w3)

[tss] = augss(ssg,ssw1,ssw2,ssw3,w3poly)

[tss] = augtf(ssg,wl,w2,w3)

[tss] = augss(ssg,ssw1,ssw2,ssw3)

[acl,bcl,ccl,dcl] = interc(a,b,c,d,m,n,f) Multivariate general interconnection of systems.
[sscl] = interc(ss,m,n,f)

150

www.it-ebooks.info

http://www.it-ebooks.info/

Model Conversion Commands

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

[ab,bb,cb,db] = bilin(a,b,c,d,ver,type,aug)
[ssb] = bilin(ss,ver,type,aug)

[aa, bb, cc, dd] = des2ss(a,b,c,d,E,k)
[ss1] = des2ss (ss, E, k)

[a,b1,b2,c1,c2,d11,d12,d21,d22] =
1ftf(A,B1,B2,a,b1,b2,)

[aa,bb,cc,dd] =
1ftf(a,b1,b2,c1,c2,d11,d12,d21,d22,aw,bw,cw,dw)
[aa,bb,cc,dd] =
1ftf(aw,bw,cw,dw,a,bl,b2,c1,c2,d11,d12,d21,d22)
tss = Iftf(tss1,tss2)

ss = Iftf(tss1,ss2)

ss = Iftf(ss1,tss2)

[ag,bgl,dg22,at,bt1,dt21,dt22] =
sectf(af,bfl,df22,secf,secg)
[ag,bg,cg,dg,at,btl,dt21,dt22] =
sectf(af,bf,cf,df,secf,secg)
[tssg,tsst] = sectf(tssf,secf,secg)
[ssg,tsst] = sectf(ssf,secf,secg)

[al,bl,cl1,d1,a2,b2,c2,d2,m] = stabproj(a,b,c,d)
[al,bl,cl,d1,a2,b2,c2,d2] = slowfast(a,b,c,d,cut)
[ss1,s82,m] = stabproj(ss)

[ss1,ss2] = slowfast(ss,cut)

[a,b,c,d] = tfm2ss(num,den,r,c)
[ss] = tfm2ss(tf,r,c)

Computes the effect on a system of the frequency-variable
substitution

S_az+§.
rz+pB

The variable ver is either 1 (forward transform: s to z) or -1
(reverse transform: z to s) (S or z). The variable type denotes
the type of bilinear transformation and can be ‘BwdRec’
(backward rectangular), ‘FwdRec’ (forward rectangular),
‘S_Tust’ (shifted Tustin), ‘S_ftjw’ (shifted jw-axis, bilinear
pole-shifting, continuous-time to continuous-time) or
‘G_Bilin’ (general bilinear, continuous-time to
continuous-time). aug = [0, 3,7, 0].

Converts a descriptor system into SVD state-space form.

Two-port or one-port state-space linear fractional
transformation.

State-space sector bilinear transformation.

Stable and antistable projection. Slow and fast modes
decomposition.

Converts a transfer function matrix (MIMO) into
state-space form.

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

Utility Commands

[p1,p2,lamp,perr,wellposed,p] = Solves the continuous generalized Riccati equation ATP+ PA- PRP+Q=0
aresolv(a,q,r) where P=p=p'/p>.

[p1,p2,lamp,perr,wellposed,p] = Solves the discrete generalized Riccati equation

aresolv(a,q,r,Type) ATPA-P-A"PB(R+B"PB)"'B"PA+ Q=0

[p1,p2,lamp,perr,wellposed,p] = where P=p+ p?*/p* is the solution for which the eigenvalues of A- RP are
daresolv(a,b,q,r) inside the unit disk.

[p1,p2,Jamp,perr,wellposed,p] =
daresolv(a,b,q,r,Type)

[tot] = riccond(a,b,qrn,p1,p2) Provides the condition numbers of the continuous Riccati equation.
[tot] = driccond(a,b,q,r,p1,p2) Provides the condition numbers of the discrete Riccati equation.
[v,t,;m] = blkrsch(a,Type,cut) Block ordered real Schur form.

[v,t,m,swap] = cschur(a,Type) Ordered complex Schur form via complex Givens rotation.

Commands for Bode Multivariate Graphics

[cg, ph, w] = cgloci (a, b, ¢, d(,Ts)) [cg, ph, w] = cgloci
(a, b, ¢, d(;Ts), ‘inv’) [Cg, ph, w] = cgloci (a, b, ¢, d(;Ts), w)
[cg, ph, w] = cgloci (a, b, ¢, d(,Ts), w, ‘inv’)[cg, ph, w] = cgloci (ss)

[cg, ph, w] = dcgloci (a, b, ¢, d(,Ts)) [cg, ph, w] = dcgloci
(a, b, ¢, d(,Ts), ‘inv’) [cg, ph, w] = dcgloci (a, b, ¢, d(,Ts), w) [cg,
ph, w] = dcgloci (a, b, ¢, d(;Ts), w, ‘inv’) [cg, ph, w] = dcgloci (ss)

[sv,w] = dsigma(a,b,c,d(,Ts))

[sv,w] = dsigma(a,b,c,d(,Ts),inv’)
[sv,w] = dsigma(a,b,c,d(,Ts),w)
[sv,w] = dsigma(a,b,c,d(,Ts),w,inv’)
[sv, w] = dsigma (ss...)

[sv,w] = sigma(a,b,c,d(,Ts))

[sv,w] = sigma(a,b,c,d(,Ts),inv’)
[sv,w] = sigma(a,b,c,d(,Ts),w)
[sv,w] = sigma(a,b,c,d(,Ts),w,inv’)
[sv, w] = sigma (ss...)

[mu,ascaled,logm,x] = muopt(a)
[mu,ascaled,logm,x] = muopt(a,k)

[mu,ascaled,logd] = osborne(a)
[mu,ascaled,logd] = osborne(a,k)

[mu] = perron (a)

[mu] = perron (a, k)
[mu,ascaled,logd] = psv(a)
[mu,ascaled,logd] = psv(a,k)

[mu,logd] = ssv(a,b,c,d,w)
[mu,logd] = ssv(a,b,c,d,w,k)
[mu,logd] = ssv(a,b,c,d,w,k,opt)
[mu,logd] = ssv(ss,)

Continuous characteristic gain loci frequency
response.

Discrete characteristic gain loci frequency
response.

Computes the discrete version of the singular
value Bode plot.

Computes the singular value Bode plot.

Computes an upper bound on the structured
singular value using the multiplier approach.

Computes an upper bound on the structured
singular value via the Osborne method.

Computes an upper bound on the structured
singular value via the Perron eigenvector
method.

Computes the structured singular value
(multivariable stability margin) Bode plot.

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

EXERCISE 4-1

Given the double-input single-output model y(s) defined below, whose input and output data are in the mirdat file,
determine the standard deviation of the input data using the autoesc function and scale the input by its standard
deviation only. Arrange the input and output data in a form which allows you to calculate the impulse response
coefficients (35 coefficients) and find these coefficients using mir. Finally, scale theta based on the standard
deviation of the input, convert the model to MPC step format and plot the step response coefficients.

5.72¢7 1.52¢7" || u,(s)
60s+1 25s+1 || u,(s)

¥(s) —{

The following MATLAB syntax is used to generate the plots shown in Figure 4-1:

>> load mlrdat;

>> [ax, mx, stdx] = autosc (x);

>> mx = [0,0];

sx = scal(x,mx,stdx);

>> n = 35;

[xreg, yreg] = wrtreg (sx, y, n);

>> ninput = 2;

plotopt = 2;

[theta, yres] = mlr (xreg, yreg, ninput, plotopt);

<) [Figure No. 1 g@

File Edit View Insert Tools Window Help
DEE& "A2/ 2P

Actual value (g) versus Predicted Value (+)

0 20 40 60 80 1100 120 140 160 180
Output Resssfg'u%ga':lwpe%snr:ﬁnn Error

Residual
=)

_4 1 L L 1 1 1 1 1
b 0 20 40 B0 80 00 120 140 160 180

Sample Number

Figure 4-1.

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ROBUST PREDICTIVE CONTROL

The scaling of theta, model conversion and plotting of the step response coefficients (see Figure 4-2), with a
sample time of 7 minutes to find the impulse, uses the following syntax:

>> theta = scal(theta,mx,stdx);

>> nout = 1;

delt = 7;

model = imp2step(delt,nout,theta);
>> plotstep (model)

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DEE& "AL2/ PP

ul step response : y1
B r r r r

Figure 4-2.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

EXERCISE 4-2

Convert the continuous-time transfer function model G(s) defined below to the corresponding MPC transfer
function model. Perform the same task, assuming a delay of 2.5, and find the equivalent discrete transfer
function.

The model G(s) without delay is defined as:

3s—-1
55 +2s+1

which is converted into transfer function format as follows:
»> g = poly2tfd(o.5*[3 -1],[5 2 1])
g =

0 1.5000 -0.5000

5.0000 2.0000 1.0000
0] 0 0]

If there is a delay of 2.5 the model is represented as:

3s-1 —2.55
— ¢
55" +2s+1

and the conversion to transfer function format is as follows:
»> g = poly2tfd(o.5*[3 -1],[5 2 1],0,2.5)
g =

0 1.5000 -0.5000

5.0000 2.0000 1.0000
0 2.5000 0

To find the equivalent discrete transform function using a sampling period of 0.75 units, use the following syntax:

»> delt=0.75;
[numd,dend]=cp2dp(0.5*[3 -1],[5 2 1],delt,rem(2.5,delt))

numd =
0.1232 0 - 0.1106 - 0.0607
DEnd =

1.0000 - 1.6445 0.7408 0

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

EXERCISE 4-3

Given the following system build separate variables to create response models u and w with a sample time of

T=3and combine them to form a model of the complete system.

12.8¢° -18.9¢™* 3.8¢%
{yl(sq_ 16.7s+1 21.0s+1 {ul(s)} 14.95+1
= + T w(s)
Y.(8)] | 667 —19.4°% |[u,(s)] | 4.9¢*
10.95s+1 14.4s+1 13.2s+1

»> gli=poly2tfd(12.8,[16.7 1],0,1);
g21=poly2tfd(6.6,[10.9 1],0,7);
g12=poly2tfd(-18.9,[21.0 1],0,3);
g22=poly2tfd(-19.4,[14.4 1],0,3);
delt=3; ny=2;
umod=tfd2mod(delt,ny,g11,g21,g812,822);
gwi=poly2tfd(3.8,[14.9 1],0,8);
gw2=poly2tfd(4.9,[13.2 1],0,3);
wmod=tfd2mod(delt,ny,gw1,gu2);
pmod=addumd(umod ,wmod)
pmod =
Columns 1 through 14
3.0000 13.0000 2.0000 0 1.0000 2.0000 o} 0 o} 0 o}
NaN 1.5950 -0.6345 0 o} 0 o} 0 o} 0 o}
0 1.0000 0 0 0 0 0 0 0 0 0
0 0 1.0000 0 o} 0 o} 0 o} 0 o}
0 o} 0 1.0000 o} 0 o} 0 o} 0 o}
0 o} 0 0 1.0000 0 o} 0 o} 0 o}
0 o} 0 0 o} 0 1.6788 -0.7038 o} 0 o}
0 o} 0 0 o} 0 1.0000 0 o} 0 o}
0 0 0 0 0 0 0 1.0000 0 0 0
0 o} 0 0 o} 0 o} 0 0 1.6143 -0.6514
0 o} 0 0 o} 0 o} 0 0 1.0000 o}
0 o} 0 0 o} 0 o} 0 o} 0 1.0000
0 o} 0 0 o} 0 o} 0 o} 0 o}
0 o} 0 0 o} 0 o} 0 o} 0 o}
0 1.4447 -0.4371 -0.5012 o} 0 0 -2.5160 2.0428 0 0
0 o} 0 1.1064 -0.4429 -0.4024 0 -3.6484 3.1627 0 0.9962

156

www.it-ebooks.info

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1.0000 0 0
0 1.0000 0

0.2467 0.2498 -0.3556

-0.8145

0 0

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

Columns 15 through 17

0 0 0
1.0000 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1.0000 0
0 0 0
0 0 0
0 0 1.0000
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

EXERCISE 4-4

For the following system build individual variables to form the transfer function model and calculate and plot its
MIMO step response.

12.8¢° -18.9¢™™ 3.8¢7%

y(8) | | 16.7s+1 21.0s+1 [t (8) | |14.95+1
= , + L [w(s)

.08 | 6677 —19.4°% |[u.(8)] | 4.9¢*

10.9s+1 14.4s+1 13.25+1

The following syntax is used to create the graph shown in Figure 4-3:

»> gli=poly2tfd(12.8,[16.7 1],0,1);
g21=poly2tfd(6.6,[10.9 1],0,7);
g12=poly2tfd(-18.9,[21.0 1],0,3);
g22=poly2tfd(-19.4,[14.4 1],0,3);

delt=3; ny=2; tfinal=90;
plant=tfd2step(tfinal,delt,ny,g11,g21,g12,g22,gw1,gu2);
plotstep(plant)

Percent error in the last step response coefficient
of output yi for input uj is :

0.48% 1.6% 0.41%

0.049% 0.24% 0.14%

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DEE& "AL2/ PP

ul step response : y1
15 r T

10} 1

Figure 4-3.

EXERCISE 4-5

For the linear system described in the previous problem, measure the effect of setting a limit of 0.1 in the
exchange rate and a minimum of — 0.15 for u2 and u1. Then apply a lower limit of zero for both outputs.

We build the model using the following syntax:

»> gli=poly2tfd(12.8,[16.7 1],0,1);
g21=poly2tfd(6.6,[10.9 1],0,7);
g12=poly2tfd(-18.9,[21.0 1],0,3);
g22=poly2tfd(-19.4,[14.4 1],0,3);

delt=3; ny=2; tfinal=90;
model=tfd2step(tfinal,delt,ny,g11,g21,g12,g22);
plant=model;

P=6; M=2; ywt=[]; uwt=[1 1];

tend=30; r=[o0 1];

Percent error in the last step response coefficient
of output yi for input uj is :

0.48% 1.6%

0.049% 0.24%

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

The effect of the restrictions can be seen using the following syntax (see Figure 4-4):

»> ulim=[-inf -0.15 inf inf 0.1 100];

ylim=[];
[y,u]=cmpc(plant,model,ywt,uwt,M,P,tend,r,ulim,ylim);
plotall(y,u,delt),pause

Time remaining 30/30

Time remaining 0/30
Simulation time is 0.03 seconds.

<) Figure No. 1 E]@

File Edit View Insert Tools Window Help
DSE& YA/ 2P0
Outputs
15 T
1F
-
05} / .
0
-D'SEI 5 10 .15 20 25 30
Manipula.[ggﬁlariables
0 T T T
0051 .
01F £
0.15 ’—'—’—.
I B e
-0'20 5 10 15 20 25 30
Time
Figure 4-4.

A lower limit of zero is applied to both outputs by using the following syntax (see Figure 4-5):

»> ulim=[-inf -0.15 inf inf 0.1 100];

ylim=[0 o0 inf inf];
[y,u]=cmpc(plant,model,ywt,uwt,M,P,tend,r,ulim,ylim);
plotall(y,u,delt),pause

Time remaining 30/30

Time remaining 0/30
Simulation time is 0.03 seconds.

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DSE& NAL2A/ PP
Outputs
1.5 T
1 -
"
uo '
0
_DS 1 L L L 1
0 5 10 15 20 25 30
Manipula.[gge\lariables
0 T T T
0051 -
01F
L ——r
-0.15
o L |
22 5 10 15 20 2 30
Time
Figure 4-5.

EXERCISE 4-6

For the linear system described in the previous exercises, design a controller for setting model parameters, calculate
the closed loop of the system and check the poles for stability. Then create a graph of the frequency response of the
sensitivity and complementary sensitivity and calculate and graph the singular values of the sensitivity.

»> gli=poly2tfd(12.8,[16.7 1],0,1);
g21=poly2tfd(6.6,[10.9 1],0,7);
gi12=poly2tfd(-18.9,[21.0 1],0,3);
g22=poly2tfd(-19.4,[14.4 1],0,3);
delt=3; ny=2;
imod=tfd2mod(delt,ny,g11,g21,812,822);
pmod=imod;

» P=6;.

M=2;

ywt=[]1;

uwt=[];
Ks=smpccon(imod,ywt,uwt,M,P);

»> clmod=smpccl(pmod,imod,Ks);
maxpole=max(abs(smpcpole(clmod)))

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

maxpole =
0.8869

The graphs of the frequency response of the sensitivity (Figure 4-6) and complementary sensitivity (Figure 4-7)
are generated as follows:

»> freq = [-3,0,30];

in = [1:ny]; % input is r for comp. sensitivity
out = [1:ny]; % output is yp for comp. sensitivity
[frsp,eyefrsp] = mod2frsp(clmod,freq,out,in);
plotfrsp(eyefrsp); % Sensitivity

pause;

over estimated time to perform the frequency response: 0.61 sec

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DEE&S NAL2/ PP

2 BODE PLOTS
10 T T

Log Magnitude

=]

==
(=1 =)
T T
1 L

Phase (degrees)

&
(=]
fl

" 10* 10" 10
Frequency (radians/time)

N
=

Figure 4-6.

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ROBUST PREDICTIVE CONTROL

<) Figure No. 1 Q@

File Edit View Insert Tools Window Help
DSE& NAL2A/ PP
2 BCDE PLOTS
10
@
Rl _—
§‘ /
= . e
§h 1E|:I 3 PR e 4
T
4§__
10 " b gl " AT | " P R A
10° -2 10" 0
0
o
@ 200
=
2
% .400[
=
o
600 " " e aal " M | " N PR
10° 10* 10" 10°
Frequency (radians/time)
Figure 4-7.

The syntax for the complementary sensitivity graph is as follows:
»> plotfrsp(frsp); % Complementary Sensitivity pause;
To calculate and graph the singular values for the sensitivity (see Figure 4-8) we use the following syntax:

»> [sigma, omega] = svdfrsp (eyefrsp);
CLG;

semilogx(omega,sigma);

title('Singular Values vs. Frequency');
xlabel('Frequency (radians/time)');
ylabel('Singular Values');

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ROBUST PREDICTIVE CONTROL

<} Figure No. 1 Q@

File Edit View Insert Tools Window Help
DEE& NAL2A/ PP

Singular Values vs. Frequency
2 T T

Singular Values
o o i = =
o L=x] —_ L) £y o o

=]
P
T

0.2

U Tl i n L i 2l i L " PR]
10° 10* 10" 10°
Frequency (radians/time)

163

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Control Systems
Engineering

César Pérez Lbépez

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Control Systems Engineering
Copyright © 2014 by César Pérez Lopez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0290-6
ISBN-13 (electronic): 978-1-4842-0289-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Dominic Shakeshaft

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Barnaby Sheppard

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Contents

About the AUtROrccccsiimmsis s ———————_————————— ix
Chapter 1: Introducing MATLAB and the MATLAB Working Environmentcccceunninnnes 1
INEFOTUCTION ..t ————————— 1

Developing Algorithms and APPlICALIONSccecieiriernic e s e s p e e r e nas 2
Data ACCESS ANU ANAIYSIScoururuecrerrrreeririrese e e e e s e s e s s se e e e sae e e s e sae e e s sRe e e s sReas e e saaae e e nnans 5
Data VISUANIZALION ..o 7
Numerical CalCUIAtION ... ——————————— 10
Publication of Results and Distribution of AppliCations.........cccevererrnenrrrrr e eens 10
The MATLAB Working ENVIrONMENt ..o s s s sesssssssessssesnes 11
HEIP iN MATLABooeeeeereresessess s se s s e e e s e e e s e s sn s e s nn s na e s s e s e e e nnnnnannsnnesnensnnnnnsnnsnns 17
Chapter 2: Variables, Numbers, Operators and Functions..........cccusssmmmemnnnnnsmmssssssssssnnnns 23
VarIADIES.....cececrieccr i ——————————————— 23
VECtor VariabIes ... ————————————— 24
LD T o] 27
Character Variables ... 32
NUMDBEIS ... ————— 35
11 C= 0[] T 38
Functions of Integers and DiViSiDIlITY.........ccoouverircrinnienrerr e e e 39
AREINALIVE BASES......coiiiciriiiiisisesise e 40
REAI NUMDEIS ...t 41
Functions with Real ArgUMENTS........ccci it ne s sp s p e p e e e nenneaens 43
COMPIEX NUMDELS ...ttt e e s e e e R e R e e e Re A e e e R et Re e nenenne e nanes 46

v

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

Functions with COMPIEX AFGUMENTS ... e e s 46
Elementary Functions that Support Complex Vector ArgUMENts...........cceierniernnnesenenesse s sessesessesesaens 48
Elementary Functions that Support Complex MatriX Arguments........cccoevrrninnnnnnnesre e sesaens 50
RANAOM NUMDEIS ..o 54
00 TS T 10 SRR 55
ArthMETIC OPEIATOIScovevccceerrce e e e e e s R e e s se e e s Re e e e nnannnnnes 55
RelatioNal OPEIALOrScceuieeererrrreeserrsreese e e s s e e s s s e s e e e s e Re e e s nRe e e e nse e e nenpnsnnes 59
LOGICAI OPEIALOLSceeerrrreereressesesessssssesesessssesssesssssssesssss s sesssssse e ssssssa s e s s ssase e ssssasesssssssenssssnsessnsnsnsesensssnsasenes 59
[ITo o7z L T e (0] PSRRI 60
Chapter 3: Control Systems..........ccccmmmnmmmmmmmssssnnmmmsssnmmmssssmmmmssssnmssssn—————— 77
Introduction to Control SYSTEMS........ccceiceieeiieresr e re e nnens 77
Control System Design and Analysis: The Control System TOOIDOXcccuceeeeeriernseresenseresenaens 81
CoNSLrUCHION Of MOUEIS........ccreirriricniiriss bbb 81
ANAIYSIS ANA DESIGNcvieiirierrer st se s e s e se e e e e s e s 82
Graphical Analysis of Models USiNg the LTI VIBWET...........ccceveererrererersereresesersssessesessssssssssssessssessssessssesssssssssassens 82
Analysis of Models Using the COMMANG LiNE..........ccccvrerrererierenreresereseresesessssessssessssssssssssessssessessssssssssssssesssnenes 84
Compensator Design Using the SISO DESIgN TOOL........ccccveererrererrereerersererersssersssessssessesssssssssessssessssessssessssssssssssens 84
Compensator Design Using the COMMANA LiNEccevvrereriereriernreresereresesesessssessssesssssssessssessssessssesssssssssassens 85
The Control System Toolbox COMMANGSccocrerverircrcr s 85
LTI Model COMMANGScocverereiririririsisisisesise st 88
Model Feature COMMEANGS...........covrrnininininiisii e 97
Model Conversion COMMEANGSc.vrerririririnisississese e 98
Commands for Reduced Order MOEIS..........cocovrnrninininninnnsss s sssssees 102
Commands Related t0 State-SPaCeS.........ccuvvierrirnirr e e nn e 105
Commands for DYNamiC MOTEIS...........ccceerurueercrereeciri et se s 108
Commands for Interconnecting MOGEIS...........ccccoururercrirircrerrrccer e 113
Response Time COMMANUScccuireiieriienisire s s se e as e s e e e sa e e e s a et b e e s e e s e e e e et ne e e nenananes 118
Frequency Response COMMANGScccvveverieniniereniesseses e sessesessessssesseses e sessssassesassessesesssssssessssessssesssssssessssens 122
Pole Location COMMANGScovreirinininisisiisisise s 127
LQG DeSIgN COMMEANGSccceururueerererseeseresseesesessssssesessssssssessssssssessssssssesssnsnes 127
Commands for SOIVING EQUALIONS.........cccoruriicrereescriee e 128

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 4: Robust Predictive Controlccvcemissmimmimnsmmssmmssssssssss s sssssssssssnsasns 145
Predictive Control Strategies: The Model Predictive Control ToolboX........cccccveeevverrercerreriennnn, 145
1D 0T] 1 T T 145
Information Matrix Plotting COMMANGS..........ccocvurueercririrescrerr e s 146
Model Conversion COMMEANGS ..o e 147
Model Building Commands - MPC Mod FOrMAL............coeoirneienrnsesisess e sesssnnnes 148
Control Design and Simulation Commands - MPC Step FOrmat............cccovevenennenencnnnescsesssesesesssesesesssnenes 148
Control Design and Simulation Commands - MPC Mod FOrmatccccoveienenmnnnsncnenenesesess s 149
Script ANalysiS COMMANGScovrueeererreeeserrse e se s e e s se e e se e e ae e e s n e e nnans 149
Robust Control Systems: The Robust Control TOOIDOX..........cccvrerververrersersensessesses s ses e 149
Optional Data Structure System COMMANGSccoerererereerirererrererrereesererereres e sassessesesaesessessssesassesssssssesanaens 150
MOdeling COMMEANGS.........cccrrerererererererterereesersesereresseraesersesessersssesassessesessesesassassesassessenssassssesssserssesssnsssesanaens 150
Model Conversion COMMEANGS ... s 151
ULIlItY COMMANGSooereeeecreerere s rer e ree e raese s e se s e saesesaesesaesasaesas e sae e s aenesae e s aesaesesae e saeesaesaesesassesasnssaeanaene 152
Commands for Bode Multivariate GraphiCscccerrererrerrrererersreree s rere s e ressessesesaesessessssesassesssssssssanaens 152

vii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

César Pérez Lopez is a Professor at the Department of Statistics and Operations Research at the University of
Madrid. César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body
which belongs to the Superior Systems and Information Technology Department of the Spanish Government. César
also currently works at the Institute for Fiscal Studies in Madrid.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

Coming Soon

e MATLAB Programming for Numerical Analysis, 978-1-4842-0296-8
e MATLAB Differential Equations, 978-1-4842-0311-8

e MATLAB Linear Algebra, 978-1-4842-0323-1

e MATLAB Differential and Integral Calculus, 978-1-4842-0305-7

e MATLAB Matrix Algebra, 978-1-4842-0308-8

www.it-ebooks.info

Xi

http://www.it-ebooks.info/

	Contents at a Glance
	Copyright
	Contents
	About the Author
	Chapter 1: Introducing MATLAB and the MATLAB Working Environment
	Introduction
	Developing Algorithms and Applications
	Data Access and Analysis
	Data Visualization
	Numerical Calculation
	Publication of Results and Distribution of Applications

	The MATLAB Working Environment
	Help in MATLAB

	Chapter 2: Variables, Numbers, Operators and Functions
	Variables
	Vector Variables
	Matrix Variables
	Character Variables

	Numbers
	Integers
	Functions of Integers and Divisibility
	Alternative Bases
	Real Numbers
	Functions with Real Arguments
	Complex Numbers
	Functions with Complex Arguments
	Elementary Functions that Support Complex Vector Arguments
	Elementary Functions that Support Complex Matrix Arguments
	Random Numbers

	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Logical Functions

	Chapter 3: Control Systems
	Introduction to Control Systems
	Control System Design and Analysis: The Control System Toolbox
	Construction of Models
	Analysis and Design

	The Control System Toolbox Commands
	LTI Model Commands
	Model Feature Commands
	Model Conversion Commands
	Commands for Reduced Order Models
	Commands Related to State-Spaces
	Commands for Dynamic Models
	Commands for Interconnecting Models
	Response Time Commands
	Frequency Response Commands
	Pole Location Commands
	LQG Design Commands
	Commands for Solving Equations

	Chapter 4: Robust Predictive Control
	Predictive Control Strategies: The Model Predictive Control Toolbox
	ID Commands
	Information Matrix Plotting Commands
	Model Conversion Commands
	Model Building Commands - MPC Mod Format
	Control Design and Simulation Commands - MPC Step Format
	Control Design and Simulation Commands - MPC Mod Format
	Script Analysis Commands

	Robust Control Systems: The Robust Control Toolbox
	Optional Data Structure System Commands
	Modeling Commands
	Model Conversion Commands
	Utility Commands
	Commands for Bode Multivariate Graphics

