MATLAB
SOLUTIONS
SERIES

APIESS

ACADEMIC

César Pérez Lopez

4\\v
N\
\\\ﬂi\.ﬁ N &

\r A
\

,./(

| o 1 DI

/N [/
' ’ |l|

" !

.;‘ |

| I

+ | 1] '

PRACVTYCAL HANDS-ON\MATLAB SOLUTIONS

A Springer APIESS®

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AULROFccoccmiiimsmnmsmns s n e na i nn e annn s ix
Chapter 1: Introducing MATLAB and the MATLAB Working Environment 1
Chapter 2: First Order Differential Equations. Exact Equations, Separation of Variables,
Homogeneous and Linear EQUatioNS.......cuouusssmssmssssssssassassassassassassassassassassassassassassassassansassanss 33
Chapter 3: Higher Order Differential Equations. The Laplace Transform and
Special Types of EqUationsSuuneeeemmmminmmmmmssssssssmmmmmssssssssssesssssssssssssssssssssssssssssnnn 45
Chapter 4: Differential Equations Via Approximation Methodsccceimnnssnenmmnsssnnnnsnns 61
Chapter 5: Systems of Differential Equations and Finite Difference Equations 67
Chapter 6: Numerical Calclus with MATLAB. Applications to Differential Equations........ 73
Chapter 7: Ordinary and Partial Differential Equations with Initial and
Boundary ValuesS.....cccccuummmmmmsssssssnnnnnmmmssssssssssnnnnnnnsssssssssnsnnnnnsssssssssssnnnnnnnssssssssssnnnnnnnsssssss 101
Chapter 8: Symbolic Differential and Integral Calculus..........cccccvnnnssnmmmmnnnmnsnsssssssssnnnn 125

iii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introducing MATLAB and the MATLAB
Working Environment

Introduction

MATLAB is a platform for scientific calculation and high-level programming which uses an interactive environment
that allows you to conduct complex calculation tasks more efficiently than with traditional languages, such as C, C++
and FORTRAN. It is the one of the most popular platforms currently used in the sciences and engineering.

MATLAB is an interactive high-level technical computing environment for algorithm development, data
visualization, data analysis and numerical analysis. MATLAB is suitable for solving problems involving technical
calculations using optimized algorithms that are incorporated into easy to use commands.

It is possible to use MATLAB for a wide range of applications, including calculus, algebra, statistics, econometrics,
quality control, time series, signal and image processing, communications, control system design, testing and
measuring systems, financial modeling, computational biology, etc. The complementary toolsets, called toolboxes
(collections of MATLAB functions for special purposes, which are available separately), extend the MATLAB
environment, allowing you to solve special problems in different areas of application.

In addition, MATLAB contains a number of functions which allow you to document and share your work.

It is possible to integrate MATLAB code with other languages and applications, and to distribute algorithms and
applications that are developed using MATLAB.

The following are the most important features of MATLAB:

e [Itis a high-level language for technical calculation
e TItoffers a development environment for managing code, files and data
e [Itfeatures interactive tools for exploration, design and iterative solving

e Itsupports mathematical functions for linear algebra, statistics, Fourier analysis, filtering,
optimization, and numerical integration

e Itcan produce high quality two-dimensional and three-dimensional graphics to aid data
visualization

e Itincludes tools to create custom graphical user interfaces

e Itcan be integrated with external languages, such as C/C++, FORTRAN, Java, COM, and
Microsoft Excel

The MATLAB development environment allows you to develop algorithms, analyze data, display data files and
manage projects in interactive mode (see Figure 1-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

i NaTE 700 pe010e ~— =@ 8

£RE7 ™ | B0 E | @ | Cumet Foder Cilhers CESAR) AR+ L] W

Shortouts [# Howto Add 2] Weut's New

w oA x| Coms “oax

T -~ 5@ O m.-.;l'_ummpme. read e Sipned EE Select drtataplot =
e g |l e 2 Valoe Miny
] archivel.mat 14 Al | Fle Edt View Jwent Teoks Desttop | Wadow | Hep = E‘ <l gy
archivel T -~ , n 1 gyem=
| Pl & NS kAL 0DRL- (2 08 a0 o i
et 4 ”
b 0 - PV 1) o By
©n P
Cp 1l syem>
ax 1ad sy
¥ 1af gyem>

= numersss s sum (fasrod

[Vot

H- 106737, 06551
EHy <1010 doubl R

Figure 1-1.

Developing Algorithms and Applications

MATLAB provides a high-level programming language and development tools which enable you to quickly develop
and analyze algorithms and applications.

The MATLAB language includes vector and matrix operations that are fundamental to solving scientific and
engineering problems. This streamlines both development and execution.

With the MATLAB language, it is possible to program and develop algorithms faster than with traditional
languages because it is no longer necessary to perform low level administrative tasks, such as declaring variables,
specifying data types and allocating memory. In many cases, MATLAB eliminates the need for ‘for’ loops. As a result,
a line of MATLAB code usually replaces several lines of C or C++ code.

At the same time, MATLAB offers all the features of traditional programming languages, including arithmetic
operators, control flow, data structures, data types, object-oriented programming (OOP) and debugging.

Figure 1-2 shows a communication modulation algorithm that generates 1024 random bits, performs the
modulation, adds complex Gaussian noise and graphically represents the result, all in just nine lines of MATLAB code.

www.it-ebooks.info

http://www.it-ebooks.info/

Fis BX Vew Ireot Took Window Heb

D& kR AaOe W iB O

Figure 1-2.

MATLAB enables you to execute commands or groups of commands one at a time, without compiling or linking,

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

% Generate a

vector of N bits

N = 1024;

Bits = rand(N,1)>0.5;

% Convert to symbols
Tx = 1-2*Bits;

% Add white Gaussian noise

P = 0.4;

Nz = P*{randn(N,1)+i*randn(N,1));
Rx = Tx + Nz;

% Display constellation
plot(Rx,’.");

axis([-2 2 -2 2]);
axis square, grid;

and to repeat the execution to achieve the optimal solution.

To quickly execute complex vector and matrix calculations, MATLAB uses libraries optimized for the processor.
For general scalar calculations, MATLAB generates instructions in machine code using JIT (Just-In-Time) technology.
Thanks to this technology, which is available for most platforms, the execution speeds are much faster than for
traditional programming languages.

MATLAB includes development tools, which help efficiently implement algorithms. Some of these tools are

listed below:

e MATLAB Editor - used for editing functions and standard debugging, for example setting

breakpoints and running step-by-step simulations

e M-Lint Code Checker - analyzes the code and recommends changes to improve performance
and maintenance (see Figure 1-3)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

%' M-Lint Code Checker Report

File Edt View Go Debug Desktop Window Help £

-2 S| M

nyfunction
5 messages

nested
15 messages

=
_Af: Tarmiratra lina mith samicalon ta sumnrass adtmuat _I

by its file name: 'myfunction'.

7: The value assigned here to wvariable 'x' is never
used

8: The walue assigned here to wvariable 'y' is never
used

20: Use ¢& instead of & as the AND operator in
conditional statements

2l: Array 'ww' is constructed using subscripting.

Consider preallocating for speed

1: Function name 'my func' will be knowm to MATLAB :I
78

20: The value assigmed here to variable 'y' is never
used
20: Terminate line with semicolon to suppress output
38: The value assigned here to variable 'y' is never
used
38: Terminate line with semicolon to suppress output

Y

Figure 1-3.

e MATLAB Profiler - records the time taken to execute each line of code

¢ Directory Reports - scans all files in a directory and creates reports about the efficiency of the

code, differences between files, dependencies of files and code coverage

You can also use the interactive tool GUIDE (Graphical User Interface Development Environment) to design and
edit user interfaces. This tool allows you to include pick lists, drop-down menus, push buttons, radio buttons and
sliders, as well as MATLAB diagrams and ActiveX controls. You can also create graphical user interfaces by means of

programming using MATLAB functions.

Figure 1-4 shows a completed wavelet analysis tool (below) which has been created using the user interface

GUIDE (above).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

e LR s Lassd Jek te ; Tt
Q#F@ L2 ANE LUl >
r‘- B ot L =
123 F T parmenn o
:E \ R
- o - =
=~ || -
3 :u—nu
.1 /’

Vi

Famrer e an arig phansed w syt wtrran el 8 e v pyeier

1 \ " A 1 s et puriarna
i o ‘Fi H o || _“‘“ <
N .‘U 1 -1 - “F _‘__ o et
e

AT, ol - I

|
1 R v
E I) :..-...IJ_—:]J‘,T

[eeomsesee |
87 w2 80 &M 68 &K+

e e T eI mam] o |

cuwsseweeB282233
<=

T

I

=

i

I
-t

-
H
|
]
|
L]
L]
.
H

¥

Figure 1-4.

Data Access and Analysis

MATLAB supports the entire process of data analysis, from the acquisition of data from external devices and databases,
pre-processing, visualization and numerical analysis, up to the production of results in presentation quality.

MATLAB provides interactive tools and command line operations for data analysis, which include: sections of
data, scaling and averaging, interpolation, thresholding and smoothing, correlation, Fourier analysis and filtering,
searching for one-dimensional peaks and zeros, basic statistics and curve fitting, matrix analysis, etc.

The diagram in Figure 1-5 shows a curve that has been fitted to atmospheric pressure differences averaged
between Easter Island and Darwin in Australia.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

) Basic Fitting - 1 M= E
Selact datx |Ma| v|
[T Certer and scole X dets
ot 1es
Check to disglay fts on |
[splrw ntorpolart ﬁe Bt Viewr Insert Took Window MHeb
F! - 3
e DS ES kRQNSIN0E 80
Prmmdﬂaum between Easter Island and Darwin, Australia
18 - v -
. @ . -~ O Pressure
. SR | WO shape-presenving
i R : 7th degree
o) 3 : i 5
| IR ﬁc;u SRR I e
9 : f : o po9 '
1] | Y £ RS P (AP Vol DR T W o %, IR .
. d . ks . {‘/: {\ . ',
-4]) : ol aN: ¢/ é
%10 .l ‘f OQ.'
& . : N :
3 . * O o/ !
ki 8 Od - . N P_,:"DC : .{5
s} - 8y
4.
) i H H A A
0 - 10 15 20 25 30
Month

Figure 1-5.

The MATLAB platform allows efficient access to data files, other applications, databases and external devices.
You can read data stored in most known formats, such as Microsoft Excel, ASCII text files or binary image, sound and
video files, and scientific archives such as HDF and HDF5 files. The binary files for low level I/O functions allow you to
work with data files in any format. Additional features allow you to view Web pages and XML data.

Itis possible to call other applications and languages, such as C, C++, COM, DLLs, Java, FORTRAN, and Microsoft
Excel objects, and access FTP sites and Web services. Using the Database Toolbox, you can even access ODBC/JDBC
databases.

Data Visualization

All graphics functions necessary to visualize scientific and engineering data are available in MATLAB. This includes
tools for two- and three-dimensional diagrams, three-dimensional volume visualization, tools to create diagrams
interactively, and the ability to export using the most popular graphic formats. It is possible to customize diagrams,
adding multiple axes, changing the colors of lines and markers, adding annotations, LaTeX equations and legends and
plotting paths.

Various two-dimensional graphical representations of vector data can be created, including:

e Line, area, bar and sector diagrams

e Direction and velocity diagrams

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

e Histograms

e Polygons and surfaces

e Dispersion bubble diagrams
e Animations

Figure 1-6 shows linear plots of the results of several emission tests of a motor, with a curve fitted to the data.

<) Figure 1 Hmﬂ
Fle Edt View Insert Tooks Window Help -

Dela& ka9 w 08 a0

—o— Tast 1
Quadratic Fit
Test 2 o

184

Airfuel Ratio

Figure 1-6.

MATLAB also provides functions for displaying two-dimensional arrays, three-dimensional scalar data and
three-dimensional vector data. It is possible to use these functions to visualize and understand large amounts
of complex multi-dimensional data. It is also possible to define the characteristics of the diagrams, such as the
orientation of the camera, perspective, lighting, light source and transparency. Three-dimensional diagramming
features include:

e Surface, contour and mesh plots
e Space curves
e Cone, phase, flow and isosurface diagrams

Figure 1-7 shows a three-dimensional diagram of an isosurface that reveals the geodesic structure of a fullerene
carbon-60 molecule.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

J Bucky Ball Isosurface |_ Ol]
File Edit Wiew Insert Tools Desktop Window Help £

DEHS& L QRAM®|w 0| =0

Figure 1-7.

MATLAB includes interactive tools for graphic editing and design. From a MATLAB diagram, you can perform
any of the following tasks:

e Dragand drop new sets of data into the figure

e Change the properties of any object in the figure

e Change the zoom, rotation, view (i.e. panoramic), camera angle and lighting
e Add datalabels and annotations

e Draw shapes

e Generate an M-file for reuse with different data

Figure 1-8 shows a collection of graphics which have been created interactively by dragging data sets onto the
diagram window, making new subdiagrams, changing properties such as colors and fonts, and adding annotations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT
. Figure 2 M= E3
Fla Edt View Insert Tools Desktop Window Help ™
D& aaq® (€ 08/ o=
Figure Palette x Plot Browser x

Signal Power (mW)

Pressure (dB)

v New Subplots = 1 r[f Sigrial Power ()
i ———

] 20 Ases =3 BO{ ‘ 001 *p % ~ Ingat2
L. 30 A& =8 0t ,1

. . “ 002 If’. .lhw!‘".l R [Pressure (dB)

201 £ Jk.l‘..ul W — Pressure
¥ Variables .
-0 03 ¥ Electrode Char,
o gz (pC)
H 22 u Ly A0 T charge
%Mn Tt 201t Electrode Charge (pC)
Channell 1000x1 o
FH channeiz 1000x1 401 S
HH channels 1000x1
H channemime 1000:1 B0}
Ho 40
1x7550 80
FHostaser 1x7550 100
Hoatasets 1x7550 0 Ak Dt
Fren 1%1 =l

Property Editor - Axes X

X ausie | v msts | Z axis | Fort]

xuaoet [Ticks.. I
xumts o b oo Foaue

™ Reverse

Tithe: ressure (dB)

s | 2

eie Mx Fy [z
X Scale: | Linear %
¥ Box

Figure 1-8.

MATLAB is compatible with all the well-known data file and graphics formats, such as GIE, JPEG, BMP, EPS,
TIFE, PNG, HDE AV], and PCX. As a result, it is possible to export MATLAB diagrams to other applications, such as
Microsoft Word and Microsoft Powerpoint, or desktop publishing software. Before exporting, you can create and apply
style templates that contain all the design details, fonts, line thickness, etc., necessary to comply with the publication
specifications.

Numerical Calculation

MATLAB contains mathematical, statistical, and engineering functions that support most of the operations carried
out in those fields. These functions, developed by math experts, are the foundation of the MATLAB language. To cite
some examples, MATLAB implements mathematical functions and data analysis in the following areas:

e Manipulation of matrices and linear algebra
e Polynomials and interpolation

e Fourier analysis and filters

e Statistics and data analysis

e Optimization and numerical integration

e Ordinary differential equations (ODEs)

e Partial differential equations (PDEs)

e Sparse matrix operations

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Publication of Results and Distribution of Applications

In addition, MATLAB contains a number of functions which allow you to document and share your work. You can
integrate your MATLAB code with other languages and applications, and distribute your algorithms and MATLAB
applications as autonomous programs or software modules.

MATLAB allows you to export the results in the form of a diagram or as a complete report. You can export
diagrams to all popular graphics formats and then import them into other packages such as Microsoft Word or
Microsoft PowerPoint. Using the MATLAB Editor, you can automatically publish your MATLAB code in HTML format,
Word, LaTeX, etc. For example, Figure 1-9 shows an M-file (left) published in HTML (right) using the MATLAB Editor.
The results, which are sent to the Command Window or to diagrams, are captured and included in the document and
the comments become titles and text in HTML.

W Editor - DAMATLAB\fiter_example.m [-[o] x]

Fie Edt Tet Cel Tools Detwg Desktop Window Help | x
DE|!aBo~|GAf BRRABERGE ||c-._.._ = |
|88 18| -fs | =pr x|

7 %% Paramcters LI

8 Specify parameters and construct time base. The two freguencies ar

a

10 % * 10Hz %' Web Browser - Filter Example

11 % * 300H: Fle Edt View Go Debug Desitop Window Hep *|ax
12 & = | & | | Location | p:aaTLABMmItiter_exampte Himil x| BOB 5!|E
13 - £s=1000: % Sample cate _ﬂ
14 - f£1=10; ¥ £1 Parameters

15 = £2=300; ¢ 12 Specify parameters and construct lime base. The two frequencies are:

16/ = t=0:1/f3:.2Z: % Time base

17 « 10Hz

18 &k Low fregquency + 300Hz

19 % First define a sawple rate, £3=1000: % Sample rate

2:_ 2 SRniRgENCl s 11=10; % f1

Ex yusiag B) £2=300; % £2

“ Bttt teD:1/£8:.2; % Tine base
23
aa M‘a[B Tkl Mt A Low frequency

|sery | First define a sample rate, signal frequencies and a time base

y=sin(2*pi*flrc);
plocit,v):

kAN

It is possible to create more complex reports, such as mock executions and various parameter tests, using
MATLAB Report Generator (available separately).

MATLAB provides functions enabling you to integrate your MATLAB applications with C and C++ code,
FORTRAN code, COM objects, and Java code. You can call DLLs and Java classes and ActiveX controls. Using the
MATLAB engine library, you can also call MATLAB from C, C++, or FORTRAN code.

You can create algorithms in MATLAB and distribute them to other users of MATLAB. Using the MATLAB Compiler
(available separately), algorithms can be distributed, either as standalone applications or as software modules included
in a project, to users who do not have MATLAB. Additional products are able to turn algorithms into a software module
that can be called from COM or Microsoft Excel.

s Lzl

Figure 1-9.

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

The MATLAB working environment

Figure 1-10 shows the primary workspace of the MATLAB environment. This is the screen in which you enter your
MATLAB programs.

Menu Command window Help Working folder Workspace

<) MATLAB 7.10.0 (RZD10a)
File Edt Debug Paralel Deskt

]

4 A O~

=

Shortcuts #) How to Add #] docfoot for Adoc AH #] What's New 2] R2008b_doc

CurrentFol.. + O 2 X Command Window Workspace + 0O X
® em.r > P21 >> [fP select datatoplet ~ =
|l imaes) i
Command History + O & X
ele d
clear
CLC
ecle
clear
cle -
my test files jer ™ M Jl____J »

« start \
Start button Window size Commands Command history

Figure 1-10.

The following table summarizes the components of the MATLAB environment.

Tool Description

Command History This allows you to see the commands entered during the session in the Command Window,
as well as copy them and run them (lower right part of Figure 1-11)

Command Window This is where you enter MATLAB commands (central part of Figure 1-11)

Workspace This allows you to view the contents of the workspace (variables, etc.) (upper right part of
Figure 1-11)

Help This offers help and demos on MATLAB

Start button This enables you to run tools and provides access to MATLAB documentation (Figure 1-12)

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

MATLAB .0 (R2010a)

Ele Edt Wew Graphics Debug orslel Desitop Window Heb
NS 4B 9 0~ B F| @ curenrodgc and SattingslalmnciMs d e vl W
Shortouts | & How to Add (2] What's New
Current Folder w0 2 x| Command Window -0 3 x
- M. w| 0 g3 (T Hewto MATLAB? Watch this Video, see Demos, of read Getting Sarted. x
~
Rame = HATLAE desktop keyboard shortcucs, such as Corl+S, are now
1] setxheanze.m In addition, many keyboard shortcuts have changed for impro
across the desktop.
To customize keyboard shortcuts, use Preferences. From ther
restore previous detault sercings by selecting "R2Z009a Wind
Zrom the active settings drop-down list. For more informati
Click here if you do not vant to see this wessage sgain.
> 242
>> 344 < ¥
ans = Command History = 0 & X
(TP Tro b ey
- roocs(x"4-4) ;
coors(*x"4-4");
>> v=log[15) B
coots (" x"4=4");
¥ = roots("x"4-4";x);
coots(x -4, %)
2.7081 B-4-- 28/01/11 14:51 -
ze2:
Fr zmexp[v) X=345:
. B-%-- 11/02/11 9:23 -~
- 242;
15 Ivd
w=legils)
fz 5 - —z=axp(v] v
Details it < b < >
dwl
Figure 1-11.

MATLAB 7.10.0 (

Fie Edt Debug Faralel Deskiop Window Help

[} 1 Financial Time Series Tool (ftstool)

®

TS 4B | B 2| @4 e Dervatives v & e
| Shoetcuts (2] Howto Add (A] What's New o Feced-Income ¥ g Demes
CurrentF... * 0O P x| o Fixed-Poink "Pmdu:tﬂwe(web}.
«n Dam. v 0| ® @mwmmn\f:m“’f :M =
Name - ""‘Wﬂ »
O A
o Instrument Control b
ans = o Mapping ¥
4\ matLag » | ok Model Predictive Contral ~ »
¥ i Model-Based Calbeation »
& sedok » b Bonformatics ¥ @ Naural Metwork »
& Blodsets + b Communications » 4 opc 5
G Unks and Targets b fl, Control System +| ofh Optinization .
Sk o\ Curve Fiting ¥ b Paralll Computing »
2 a * 4 Dt Acquistion b i Partial Oiferentisl Equation
5§ Deskiop Tools ¥ ofl Database » re "
@ web ¥ 4\ Datafeed » < Rabust Contral »
@ GetProduct Tridls | ofl, Econometrics 3k Signal Processing "
@ Checkfor Updates | ofl, Fiker Design ¥ b Sphoe .
iy Preferences... b Fiker Desion HOL Coder ¥ A Statistics)
(8 Find Fies... * B v
@ Help
y Demas

v @

0 = I

< >

Comman... # 0 2 x
roots|'x"4-4 Al
roota (' x*d=-4

28/01/11 1<
2+2:

X=345;

B-%-- 11/02/11 9:

242;

I+4

v=log(15)

z=exp (v] |

-

Figure 1-12.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

MATLAB commands are written in the Command Window to the right of the user input prompt “»” and the
response to the command will appear in the lines immediately below. After exiting from the response, the user input
prompt will re-display, allowing you to input more entries (Figure 1-13).

d Windo u

(i) New to MATLAB? Watch this Video, see Demos, or read Getting Started. x
) N
>> 242;
>> 344
ans =
2

>> v=log(1l5)

2.7051

>> z=exp(v)

15
f’& > v
< >
Figure 1-13.

When an input is given to MATLAB in the Command Window and the result is not assigned to a variable, the
response returned will begin with the expression “ans=", as shown near the top of Figure 1-13. If the results are
assigned to a variable, we can then use that variable as an argument for subsequent input. This is the case for the
variable v in Figure 1-13, which is subsequently used as the input for an exponential.

To run a MATLAB command, simply type the command and press Enter. If at the end of the input we put a
semicolon, the program runs the calculation and keeps it in memory (Workspace), but does not display the result on the
screen (see the first entry in Figure 1-13). The input prompt “»” appears to indicate that you can enter a new command.

Like the C programming language, MATLAB is case sensitive; for example, Sin(x) is not the same as sin(x). The
names of all built-in functions begin with a lowercase character. There should be no spaces in the names of commands,
variables or functions. In other cases, spaces are ignored, and they can be used to make the input more readable.
Multiple entries can be entered in the same command line by separating them with commas, pressing Enter at the end of
the last entry (see Figure 1-14). If you use a semicolon at the end of one of the entries in the line, its corresponding output
will not be displayed.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Command Window el <

@ New to MATLAB? Wakch this Yideo, see Demos, or read Getting Started. X

~
>» 3in(pi/2), sin(pi/4), sin(pi/8)

ans =

ans =

0.7071

ans =
0.3827

fe >> v
& | >

Figure 1-14.

Descriptive comments can be entered in a command input line by starting them with the “%” symbol. When you
run the input, MATLAB ignores the comment and processes the rest of the code (see Figure 1-15).

[€ommand Window g X
(@) New to MATLAB? Watch this Yideo, see Demos, or read Getting Started. X
-~
>> L=log(123) % L is a Naperian logarithm
L =
4.8122
£ >> v
< >
Figure 1-15.

To simplify the process of entering script to be evaluated by the MATLAB interpreter (via the Command Window
prompt), you can use the arrow keys. For example, if you press the up arrow key once, you will recover the last entry
you submitted. If you press the up key twice, you will recover the penultimate entry you submitted, and so on.

If you type a sequence of characters in the input area and then press the up arrow key, you will recover the last
entry you submitted that begins with the specified string.

Commands entered during a MATLAB session are temporarily stored in the buffer (Workspace) until you end the
session, at which time they can be permanently stored in a file or are permanently lost.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Below is a summary of the keys that can be used in MATLAB's input area (command line), together with their
functions:

Up arrow (Ctrl-P) Retrieves the previous entry.

Down arrow (Ctrl-N) Retrieves the following entry.

Left arrow (Ctrl-B) Moves the cursor one character to the left.
Right arrow (Ctrl-F) Moves the cursor one character to the right.
CTRL-left arrow Moves the cursor one word to the left.
CTRL-right arrow Moves the cursor one word to the right.
Home (Ctrl-A) Moves the cursor to the beginning of the line.
End (Ctrl-E) Moves the cursor to the end of the current line.
Escape Clears the command line.

Delete (Ctrl-D) Deletes the character indicated by the cursor.
Backspace Deletes the character to the left of the cursor.
CTRL-K Deletes (kills) the current line.

The command clc clears the command window, but does not delete the contents of the work area (the contents
remain in the memory).

Help in MATLAB

You can find help for MATLAB via the help button & in the tool bar or via the Help option in the menu bar. In

addition, support can also be obtained via MATLAB commands. The command help provides general help on all
MATLAB commands (see Figure 1-16). By clicking on any of them, you can get more specific help. For example, if you
click on the command graph2d, you get support for two-dimensional graphics (see Figure 1-17).

J MATLAB 7.10.0 (R2010a)
Ele Edk Debup Paralel Deskiop Window Hel

S B2 o E) | @ | cureFod| ¢ and watee [@
Shortcuts [#] How bo Add] What's New
@ e M. v 0 » |@)Newto MATLA? Watch this Yidep, see Denos, of read Getting Started, x| @ s ||t v
Al r
Name »> help =1 - :;:2
] y HELP copics: i
| actxbcense.m P B oes 0.3627
H 2.7081

Mis documentos)MATLAB {Ho table of contents file) H:

15
General purpose commands.

mat lab) general

mat labl ops - Operators and special characters

mat labh lang = Programeing language conatructs.

mat labh e lmat - Elementary matrices and matrix < bl

matlabl randfun - Random matrices and random strea Command Histary “wO o ox

matlabielfun - Elementary math functions. 1

— z=exp (V) |

mat labh apecfun = Specialized math functions.

mar lab marfun - Matrix functions - numerical lin Sin(z)

mat labh datafun = Data analysis and Fourier transt =1n(7)

mat lab polyfun - Interpolacion and polynomials. sini2*pi)

mat labh funfun - Function functions and ODE solve sini3*pi)

mat lab\spacfun - Sparse matrices. =inipif2)

mat labl scribe - Annotation and Plot Editing. =in(pifz), sin(pifd),

mat lab graphzd - Two dimensional graphs. Lelog(123) L e= un 1

& Inﬂtlu?:\ghuﬂh!d - Three dimensional graphs. a help 3

Details . z‘. s R » < >

4 Start

Figure 1-16.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Ede Edt Debug Baralel Deskiop Window Help

BEIFLY BT EI0IE 0 CPoruments ond Scttngplakemolt docmentorpiarie_][] @
© shortcuts 2 Howto Add (2] What's New

(AT L = LR Comimand Window Ll Workspace + O 2 X |

& D« M., v 0 » |G)Newto MATLAB? Watch this Video, see Demos, or read Getting Started, x| @ o % . » *
-
7 Lot Two dimensional geaphs. ::ﬁm = :;:
] actdicense.m [ans 0.9z
Elementacy X-V graphs. = 2708
plot = Linear plot. H: 15
loglog - Log-log =cale plot.
=emilogx - Semi-log scale plot.
semilogy - Semi-log scale plot.
polar - Polar coordinate plot.
plotyy - Graphs with y tick labels on the left and right.
Axis control. ¢ 3
axis - Control axis scaling and appearance.
zoom - Zoom in and out on & 2-D plot. Command... = O * *
grid g ey B-%-- 11/02/11 9:24
box - Axis box. 242:
rhbax = Rubberband box. 344
nold - Hold current graph. v=log(15)
axes - Create axes in arbitrary positions. z=eup (v
subplot - Create axes in tiled positions. Sin(z)
2ini7)
Graph annotation. : .
FiniZ*pi)
plotedit - Tools for editing and anpotating plots.
ritle - Graph title. ainjampt)
xlabel - X-axis label. =inipilz)
ylobel = Y-axis label. sinipifz), =iz
texlabel = Produces the TeX format from a character atring. L=log(123) =L
Jx rext - Text annotation. ~ help »
Details - ¢ » < >

(@)

Figure 1-17.

You can ask for help about a specific command command (Figure 1-18) or on any topic topic (Figure 1-19) by
using the command help command or help topic.

J MATLAB T.10
Blo Edk Debug Pwall Deskop Window Help
DS smB2c AR Q¢ x| CofDocuments ond SettingrlshamnoM documentozpiaTLAS (][] @

i Shortcuts (2 Howto Add (2] What's New

(AT = RERE R Command Window Il Workspace O 2 X |

@ Sy wM., v 0 # |6 Newto MATLAB? Watch this Yde, see Demos, or read Getting Started. x| & o B EPs. ~| *
A | Nere « Vaue
A »> help plot vy
1] actudcense.m PLOT Linear plot. %L\s Ul;l?
PLOT(X,¥) plots vector Y wersus vector X. If ¥ or ¥ is a matrix, = 2708
then the vector is plotted versus the rows or columns of the matrix, H: 15
whichever line up. If X is a scalar and Y iz a vector, disconnected
line objects are created and plotted as discrete points vertically at
X.
PLOT(Y) plots the columns of Y versus cheir index. (3]
If ¥ i» complex, PLOT(Y) is eguivalent to PLOT(ceal (¥),imag(¥)]. Command... + 0O & X
In all other uses of PLOT, the imaginary part is ignored. VLU LT =
z=exp (v
Various line types, plot symbols and colors may be obtained with Siniz)
PLOT(X,Y,5) where S iz a character string made from one element 2in(7)
from any or all the following 3 columns: sin(2¥pi)
Fini{3*pi)
B blue 5 poinc - =olid
g green ° sirele N dotted sinipifz)
T red ® x=mark = dashdot sin(pif2), six
= cyan + plus - dashed L=log(123) L
m magenta * star {none) no line help
- |E v vellow s squace v help plot ~
Details 2 < > I3 >

(4 stort)

Figure 1-18.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

J MATLAB 7.10.
Ele Edt Debug Paralel Deskiop Window Help
DG4 mm9 ™ hTB|@|¢ x| Clbocments ond Sottingchomeiits docmertuipanid. (B[] 62
i Shortcuts (2 Howto Add (2] What's New
(AT = RERE R Command Window IR Workspace v O & x|
& Cyu M., v o |0 Newto MATLAB? Walch this Video, see Demos, or read Getting Started, x| @ o B s, » *
A
Name - »> help marisbielfun Name & Vaiue
= 5 Elemencary math functions. k ek
f+] actbcense.m ¥ il S5
Trigonometric, B : fsm
=in - Sine. f
=ind - Sine of argument in degrees.
zinh - Hyperbolic sine.
azin - Inverse zine.
asind - Inverse sine, result in degrees. I3
asinh - Inverse hyperbolic sine. ":' = - =
ommand... 0 & x
coa = Cozine. f sl B —
cosd - Cosine of argumsnt in degrees. Siniz)
cosh - Hyperbolic cosine. s4n(7)
acos - Inverse cosine. .
acosd - Inverse cosine, result in degrees. sinkdrel)
mcosh - Inverse hyperbolic cosine. =ini3*pi)
an = Tangent. ainipil2)
cand - Tangent of arguwment in degrees, sin(pif2), six
tanh - Hyperbolic tangent. L=log(123) L
acan = Inverse tangent. , help
acand - Inverse tangent, result in degrees. help plot
[- T amedh s i of[| pery macianiew
Details o < ¥ | |= ¥
‘S&&ll

Figure 1-19.

The command lookfor string allows you to find all those MATLAB functions or commands that refer to or contain
the string string. This command is very useful when there is no direct support for the specified string, or to view the
help for all commands related to the given string. For example, if we want to find help for all commands that contain
the sequence inv, we can use the command lookfor inv (Figure 1-20).

J MATLAB 7.10.0 0
Ele Edt Debug Baralel Deskiop iWindow Help
2al=1FLY X Y- 500G olc e v ®@
© Shoetcuts 2] Howto Add 2] What's New
Curren.... 0 x| |] Viorkspace .0 2 X |
& Dy M., w o |0 Newto MATLAB? Walch this Video, see Demos, or read Getting Started, x| @ o B s, » *
=y »> lookfor inv T Vaiuel
] acth - ultidyn - Creates an uncertain linear time-invarie |[HL 48122
kevboard - Invoke keyboard from M-file. (] ans 0.332
return - Return to invoking function. =k 2,708
invhill - Inverse Hilbert matrix. =B 15
ipermute - arcay d ions.
acos - Inverse cosine, result in radisnsz.
acosd - Inverse cosine, result in degrees.
acosh - Inverse hyperbolic cosine. P .
acot = Inverse cotangent, result in radian. —_— =
acocd - Inversze cotangent, result in degrees. Command... 0 & X
acoch - Inverse hyperbolic cotangent. searn
acse - Inverse cosccant, cesult in radian. siniz*pi)
acsed - Inverse cosecant, result in degrees. =ini3*pi)
[-T=131 - Inverse hyperbolic cosecant. =2in(pifz)
asec = Inverse secant, result in radisns. =in(pif2), =i
asecd - Inverse secant, result in degrees. L=log(123) *L
asech - Inverse hyperbolic secant. help
asin - Inverse sine, result in radians. help plot
asind - Inverse sine, re=ult in degrees. .
asinh - Inverse hyperbolic sine. help maclable.
look for inv
Aatan - Inverse cangent, result in radians.
R 1 - Four auadrant inverse CAncent. At lookfor inv
Details -~ < » < >
4 Start]

Figure 1-20.

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Numerical Computation with MATLAB

You can use MATLAB as a powerful numerical computer. While most calculators handle numbers only to a preset
degree of precision, MATLAB performs exact calculations to any desired degree of precision. In addition, unlike
calculators, we can perform operations not only with individual numbers, but also with objects such as arrays.

Most of the topics of classical numerical analysis are treated in this software. It supports matrix calculus,
statistics, interpolation, least squares fitting, numerical integration, minimization of functions, linear programming,
numerical and algebraic solutions of differential equations and a long list of further numerical analysis methods that
we'll meet as this book progresses.

Here are some examples of numerical calculations with MATLAB. (As we know, to obtain the results it is
necessary to press Enter once the desired command has been entered after the prompt “»”)

1. We simply calculate 4 + 3 to obtain the result 7. To do this, just type 4 + 3, and then Enter.
n4+3
ans =
7

2. We find the value of 3 to the power of 100, without having previously set the precision. To do
this we simply enter 3 A 100.

»n 3 "~ 100
ans =
5. 1538e + 047
3. We can use the command “format long e” to obtain results to 15 digits (floating-point).
n foxmat long e
» 3100
ans =
5.153775207320115e+047

4. We can also work with complex numbers. We find the result of the operation raising (2 + 3i) to
the power 10 by typing the expression (2 + 3i) A 10.

n (2 +3i) * 10
ans =

-1 415249999999998e + 005 - 1. 456680000000000e + 0051

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

The previous result is also available in short format, using the “format short” command.

» format short
n (2 + 3i)*10

ans =
-1.4152e+005- 1.4567e+0051

We can calculate the value of the Bessel function J, at 11.5. To do this we type besselj(0,11.5).
»> besselj(0,11.5)

ans =

-0.0677

Symbolic Calculations with MATLAB

MATLAB perfectly handles symbolic mathematical computations, manipulating and performing operations on
formulae and algebraic expressions with ease. You can expand, factor and simplify polynomials and rational and
trigonometric expressions, find algebraic solutions of polynomial equations and systems of equations, evaluate
derivatives and integrals symbolically, find solutions of differential equations, manipulate powers, and investigate
limits and many other features of algebraic series.

To perform these tasks, MATLAB first requires all the variables (or algebraic expressions) to be written between
single quotes. When MATLAB receives a variable or expression in quotes, it is interpreted as symbolic.

Here are some examples of symbolic computations with MATLAB.

1.

We can expand the following algebraic expression: ((x+1)(x+2)-(x+2)A2)A3.

This is done by typing: expand('(x+1)(x+2)-(x+2)A2)A3"). The result will be another
algebraic expression:

n syms x; expand(((x + 1) *(x + 2)-(x + 2) * 2) * 3)

ans =

-X " 3-6 * x *2-12 * x-8

We can factor the result of the calculation in the above example by typing:
factor(‘((x + 1) *(x + 2)-(x +2) A 2) A 3')

»n syms x; factor(((x + 1)*(x + 2)-(x + 2)*2)"3)
ans =

-(x+2)"3

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

3. We can find the indefinite integral of the function (x » 2) sin(x) A 2 by typing:
int(‘x A 2 *sin(x) A 2, ‘x’)

» int('x"2*sin(x)"2', 'x')
ans =

X * 2 *(-1/2 * cos(x) * sin(x) + 1/2 * x)-1/2 * x * cos(x) "~ 2 + 1/4 * cos(x) *
sin(x) + 1/4 * 1/x-3 * x * 3

4. We can simplify the previous result:
»> syms x; simplify(int(x*2*sin(x)"2, x))
ans =
sin(2*x)/8 -(x*cos(2*x))/4 -(x"2*sin(2*x))/4 + x"3/6
5. We can present the previous result using a more elegant mathematical notation:
»> syms x; pretty(simplify(int(x*2*sin(x)"*2, x)))
ans =

2 3
sin(2 x) x cos(2 x) x sin(2 x) x

6. We can solve the equation 3ax-7 x A 2 + x A 3 = 0 (where a is a parameter):
» solve('3*a*x-7*x"2 + x*3 = 0", 'x")
ans =

[0]
[7/2 + 1/2 *(49-12%a) "(1/2)]
[7/2-1/2 *(49-12%a) ~(1/2)]

On the other hand, MATLAB can use the Maple program libraries to work with symbolic math, and can thus
extend its field of action. In this way, MATLAB can be used to work on such topics as differential forms, Euclidean
geometry, projective geometry, statistics, etc.

At the same time, Maple can also benefit from MATLAB’s powers of numerical calculation, which might be used,
for example, in combination with the Maple libraries (combinatorics, optimization, number theory, etc.)

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Graphics with MATLAB

MATLAB can generate two- and three-dimensional graphs, as well as contour and density plots. You can graphically

represent data lists, controlling colors, shading and other graphics features. Animated graphics are also supported.

Graphics produced by MATLAB are portable to other programs.
Some examples of MATLAB graphics are given below.

1.

We can represent the function xsin(1/x) for x ranging between -n/4 and n/4,
taking 300 equidistant points in the interval. See Figure 1-21.

n x = linspace(-pi/4,pi/4,300);
» y=X.*sin(1./x);
» plot(x,y)

NG |

File Edit Windows Help

08

\ //

1o\

08 08 04 D2 0 0.2 04 06 08

04}

o

Figure 1-21.

We can give the above graph a title and label the axes, and we can add a grid. See Figure 1-22.

n x = linspace(-pi/4,pi/4,300);

n y=X.*sin(1./x);

» plot(x,y);

» grid;

» xlabel('Independent variable X');
» ylabel('Dependent variable Y');

n title('The function y=xsin(1/x)')

www.it-ebooks.info

21

http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

B Figure 1 l_:!@&
File Edit Miew [Insert Tools Desktop Window Help]
Ddde | RN OIEA- S 08 0D
The function y=xsin{1/x)

T T T

1 T T

0.8

= =
I =]

Dependentvariable Y
o
LS]

0.8 06 0.4 -0.2 0 02 0.4 06 08
Independent vanable X

Figure 1-22.

3. We can generate a graph of the surface defined by the function z = sin(sqrt(x"2+y/2))
/sqrt(xA2+y~2), where x and y vary over the interval (- 7.5, 7.5), taking equally spaced
points 0.5 apart. See Figure 1-23.

n X ==7.52. 5:7.5;

»ny = Xj

» [X, Y] = meshgrid(x,y);

» Z=sin(sqrt(X. 2+Y.*2))./sqrt(X. 2+Y.*2);
» surf(X, Y, Z)

File Edit Windows Help

Figure 1-23.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

These 3D graphics allow you to get a clear picture of figures in space, and are very helpful in
visually identifying intersections between different bodies, and in generating all kinds of space
curves, surfaces and volumes of revolution.

We can generate the three dimensional graph corresponding to the helix with parametric
coordinates: x = sin(£), y = cos(#), z = t. See Figure 1-24.

» t=0:pi/50:10%pi;
» plot3(sin(t),cos(t),t)

G [|

File Edit Windows Help

40

Figure 1-24.

We can represent a planar curve given by its polar coordinates r = cos(2¢) * sin(2¢) for ¢ varying
in the range between 0 and 7 by equally spaced points 0.01 apart. See Figure 1-25.

nt =0:. 132 * pi;

n ¥ = sin(2*t). * cos(2*t);
» polar(t,r)

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

=

File Edit Windows Help

=12]]

Figure 1-25.

6. We can make a graph of a symbolic function using the command “ezplot”. See Figure 1-26.

ny='x "3 /(x"2-1)";
» ezplot(y,[-5,5])

T ||
File Edit Windows Help

*3(x2-1)

Figure 1-26.

We will go into these concepts in more detail in the chapter on graphics.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

General Notation

As for any program, the best way to learn MATLAB is to use it. By practicing on examples you become familiar with the
syntax and notation peculiar to MATLAB. Each example we give consists of the header with the user input prompt “»”
followed by the MATLAB response on the next line. See Figure 1-27.

EAMATLAB Command Window -01x]
Fle Edt Options Windows Help

Commands to get started: intro, demo, help help

Commands for more information: help, whatsnew, info, subscribe

-

» A=[12 3; 456; 78 9]

A=
1 2 3
4 5 6
7 8 9
» B=inu(A)

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 2.937385e-018

B =
1.0e+016 =
8.3152 -0.6304 0.3152
-0.6304 1.2609 -0.6304
8.3152 -0.6304 8.3152
» -
5l 7
B Inicio | [EIMATLAB Command W... | 2031
Figure 1-27.

At other times, depending on the type of entry (user input) given to MATLAB, the response is returned using the
expression “ans =" See Figure 1-28.

EAMATLAB Command Window S [=] S |
Fie Edit Options Windows Help

Commands to get started: intro, demo, help help

Commands for more information: help, whatsnew, info, subscribe

» 202
ans =
K
»
>
1] _ (el
HRinicio| T Microsoh Word - Documen. | [MATLAB Command W... | a2

Figure 1-28.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

It is important to pay attention to the use of uppercase versus lowercase letters, parentheses versus square
brackets, spaces and punctuation (particularly commas and semicolons).

Help with Commands

We have already seen in the previous chapter how you can get help using MATLAB’s drop down menus.
But, in addition, support can also be obtained via commands (instructions or functions), implemented as

MATLAB objects.

You can use the help command to get immediate access to diverse information.

» help

HELP topics:

matlab\general General purpose commands.

matlab\ops Operators and special characters.
matlab\lang Programming language constructs.
matlab\elmat Elementary matrices and matrix manipulation.
matlab\elfun Elementary math functions.

matlab\specfun Specialized math functions.

matlab\matfun Matrix functions - numerical linear algebra.
matlab\datafun Data analysis and Fourier transforms.
matlab\polyfun Interpolation and polynomials.
matlab\funfun Function functions and ODE solvers.
matlab\sparfun Sparse matrices.

matlab\graph2d Two dimensional graphs.

matlab\graph3d Three dimensional graphs.

matlab\specgraph Specialized graphs.

matlab\graphics Handle Graphics.

matlab\uitools Graphical user interface tools.
matlab\strfun Character strings.

matlab\iofun File input/output.

matlab\timefun Time and dates.

matlab\datatypes Data types and structures.

matlab\winfun Windows Operating System Interface Files(DDE/ActiveX)
matlab\demos Examples and demonstrations.
toolbox\symbolic Symbolic Math Toolbox.

toolbox\tour MATLAB Tour

toolbox\local Preferences.

For more help on directory/topic, type "help topic”.

As we can see, the help command displays a list of program directories and their contents. Help on any given
topic topic can be displayed using the command help topic. For example:

» help inv

INV Matrix inverse.

INV(X) is the inverse of the square matrix X.

A warning message is printed if X is badly scaled or
nearly singular.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

See also SLASH, PINV, COND, CONDEST, NNLS, LSCOV.

Overloaded methods
help sym/inv.m

» help matlab\elfun

Elementary math functions.

Trigonometric.

sin
sinh
asin
asinh
cos
cosh
acos
acosh
tan
tanh
atan
atan2
atanh
sec
sech
asec
asech
csc
csch
acsc
acsch
cot
coth
acot
acoth

Exponential.

exp
log
log10
log2
pow2
sqrt
nextpow2

Sine.

Hyperbolic sine.

Inverse sine.

Inverse hyperbolic sine.
Cosine.

Hyperbolic cosine.

Inverse cosine.

Inverse hyperbolic cosine.
Tangent.

Hyperbolic tangent.

Inverse tangent.

Four quadrant inverse tangent.
Inverse hyperbolic tangent.
Secant.

Hyperbolic secant.

Inverse secant.

Inverse hyperbolic secant.
Cosecant.

Hyperbolic cosecant.

Inverse cosecant.

Inverse hyperbolic cosecant.
Cotangent.

Hyperbolic cotangent.
Inverse cotangent.

Inverse hyperbolic cotangent.

Exponential.
Natural logarithm.
Common(base 10) logarithm.

INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Base 2 logarithm and dissect floating point number.
Base 2 power and scale floating point number.

Square root.
Next higher power of 2.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

Complex.

abs - Absolute value.

angle - Phase angle.

conj - Complex conjugate.

imag - Complex imaginary part.

real - Complex real part.

unwrap - Unwrap phase angle.

isreal - True for real array.

cplxpair - Sort numbers into complex conjugate pairs.

Rounding and remainder.

fix - Round towards zero.

floor - Round towards minus infinity.

ceil - Round towards plus infinity.

round - Round towards nearest integer.

mod - Modulus(signed remainder after division).
rem - Remainder after division.

sign - Signum.

There is a command for help on a certain sequence of characters (lookfor string) which allows you to find all
those functions or commands that contain or refer to the given string string. This command is very useful when there
is no direct support for the specified string, or if you want to view the help for all commands related to the given
sequence. For example, if we seek help for all commands that contain the sequence complex, we can use the lookfor
complex command to see which commands MATLAB provides.

» lookfor complex

ctranspose.m: %' Complex conjugate transpose.

CONJ Complex conjugate.

CPLXPAIR Sort numbers into complex conjugate pairs.

IMAG Complex imaginary part.

REAL Complex real part.

CDF2RDF Complex diagonal form to real block diagonal form.
RSF2CSF Real block diagonal form to complex diagonal form.

B50DE Stiff problem, linear with complex eigenvalues(B5 of EHL).
CPLXDEMO Maps of functions of a complex variable.

CPLXGRID Polar coordinate complex grid.

CPLXMAP Plot a function of a complex variable.

GRAFCPLX Demonstrates complex function plots in MATLAB.
ctranspose.m: XTRANSPOSE Symbolic matrix complex conjugate transpose.
SMOKE Complex matrix with a "smoke ring" pseudospectrum.

MATLAB and Programming

By properly combining all the objects defined in MATLAB, according to the rules of syntax of the program, you can
build useful mathematical research programming code. Programs usually consist of a series of instructions in which
values are calculated, are assigned names and are reused in further calculations.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

As in programming languages like C or FORTRAN, in MATLAB you can write programs with loops, control flow
and conditionals. MATLAB can write procedural programs, i.e., it can define a sequence of standard steps to run. As
in C or Pascal, a Do, For, or While loop can be used for repetitive calculations. The language of MATLAB also includes
conditional constructs such as If—Then—Else. MATLAB also supports different logical operators, such as AND, OR,
NOT and XOR.

MATLAB supports procedural programming (with iterative processes, recursive functions, loops, etc.), functional
programming and object-oriented programming. Here are two simple examples of programs. The first generates the
Hilbert matrix of order n, and the second calculates all the Fibonacci numbers less than 1000.

% Generating the Hilbert matrix of order n
t = "1/(i+j-1)';
for i = 1:n

for j = 1:n
a(i,j) = eval(t);
end

end

%4 Calculating the Fibonacci numbers
f=[11];1i=1;

while f(i) + f(i-1) < 1000

f(i+2) = f(i) + f(i+1);

i=in

end

Commands to Escape and Exit to the MS-DOS Environment

There are three ways you can escape from the MATLAB Command Window to the MS-DOS operating system
environment in order to run temporary assignments. Entering the command ! dos_command in the Command
Window allows you to run the specified DOS command in the MATLAB environment. For example:

! dir
The volume of drive D has no label

The volume serial number £ is 145 c-12F2
Directory of D:\MATLAB52\bin

<DIR> 13/03/98 0:16 .
.. <DIR> 13/03/98 0:16 ..
BCCOPTS BAT 1.872 19/01/98 14:14 bccopts.bat
CLBS110 DLL 219.136 21/08/97 22:24 clbs110.d11
CMEX BAT 2.274 13/03/98 0:28 cmex.bat
COMPTOOL BAT 34.992 19/01/98 14:14 comptool.bat
DF500PTS BAT 1.973 19/01/98 14:14 df500pts.bat
FENG DLL 25.088 18/12/97 16:34 feng.dll
FMAT DLL 16.896 18/12/97 16:34 fmat.dll
FMEX BAT 2.274 13/03/98 0:28 fmex.bat
LICENSE DAT 470 13/03/98 0:27 license.dat
W325SI DLL 66.560 02/05/97 8:34 w32ssi.dll
10 file(s) 11.348.865 bytes

directory(s) 159.383.552 bytes free

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

The command ! dos_command & is used to execute the specified DOS command in background mode. The
command is executed by opening a DOS environment window on the MATLAB Command Window, as shown in
Figure 1-29. To return to the MATLAB environment simply right-click anywhere in the Command Window (the DOS
environment window will close automatically). You can return to the DOS window at any time to run any operating
system command by clicking the icon labeled MS-DOS symbol at the bottom of the screen.

g r——— - o)

. 7|

>>

st
v df
WBINSTALL.doex
MHPP . doc
MHHPP.docx
XAMHPPL .doc
B e
A
= o’ J._J
Ready
Figure 1-29.

The command >>dos_command is used to execute the DOS command in the MATLAB screen. Using the three
previous commands, not only DOS commands, but also all kinds of executable files or batch tasks can be executed
(Figure 1-30).

>> dir
fixedponit.m gl.asv gl.m
>> type gl.m

function g=gl(x)
g=x"2-sin(x+0.15);

fx >> |

Figure 1-30.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCING MATLAB AND THE MATLAB WORKING ENVIRONMENT

The command >>dos dos_command is also used to execute the specified DOS command in automatic mode in
the MATLAB Command Window (Figure 1-31).

>> dos dir

16/06/2014 17:26 <DIR> .
16/06/2014 17:26 <DIR> .-
16/06/2014 17:03 420 fixedponit.m

17/06/2014 16:48 92 gl.asv
16/06/2014 17:28 38 gl.m
Figure 1-31.

To exit MATLAB, simply type quit in the Command Window, and then press Enter.

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

First Order Differential Equations.
Exact Equations, Separation of
Variables, Homogeneous and
Linear Equations

First Order Differential Equations

Although it implements only a relatively small number of commands related to this topic, MATLAB’s treatment of
differential equations is nevertheless very efficient. We shall see how we can use these commands to solve each type
of differential equation algebraically. Numerical methods for the approximate solution of equations and systems of
equations are also implemented.

The basic command used to solve differential equations is dsolve. This command finds symbolic solutions
of ordinary differential equations and systems of ordinary differential equations. The equations are specified by
symbolic expressions where the letter D is used to denote differentiation, or D2, D3, etc, to denote differentiation of
order 2,3,..., etc. The letter preceded by D (or D2, etc) is the dependent variable (which is usually y), and any letter
that is not preceded by D (or D2, etc) is a candidate for the independent variable. If the independent variable is not
specified, it is taken to be x by default. If x is specified as the dependent variable, then the independent variable is
t. That is, x is the independent variable by default, unless it is declared as the dependent variable, in which case the
independent variable is understood to be ¢.

You can specify initial conditions using additional equations, which take the form y(a) = b or Dy(a) = b,..., etc.
If the initial conditions are not specified, the solutions of the differential equations will contain constants of
integration, C1, C2,..., etc. The most important MATLAB commands that solve differential equations are the following:

dsolve(‘equation) ‘v’): This solves the given differential equation, where v is the independent variable
(if ‘v’ is not specified, the independent variable is x by default). This returns only explicit solutions.

dsolve(‘equation) ‘initial_condition,..., ‘v’): This solves the given differential equation subject to the
specified initial condition.

dsolve(‘equation) ‘condl), ‘cond2)..., ‘condn) ‘v’): This solves the given differential equation subject to the
specified initial conditions.

dsolve(‘equation) ‘condl, cond2,..., condn, ‘v’): This solves the given differential equation subject to the
specified initial conditions.

dsolve(‘eql) ‘eq2)..., ‘eqn) ‘condl), ‘cond2)..., ‘condn’, ‘v’): This solves the given system of differential
equations subject to the specified initial conditions.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQOUS AND LINEAR EQUATIONS

dsolve(‘eql, eq2,..., eqn) ‘condl, cond2,..., condn’, ‘v’): This solves the given system of differential equations
subject to the specified initial conditions.

maple(‘dsolve(equation, func(var))’): This solves the given differential equation, where var is the
independent variable and func is the dependent variable (returns implicit solutions).

maple(‘dsolve({equation, condl, cond2,... condn}, func(var))’): This solves the given differential equation
subject to the specified initial conditions.

maple(‘dsolve({eql, eq2,..., eqn}, {funcl(var), func2(var),... funcn(var)})’): This solves the given system of
differential equations (returns implicit solutions).

maple(‘dsolve(equation, func(var), explicit’)’): This solves the given differential equation, offering the
solution in explicit form, if possible.

Examples are given below.
First, we solve differential equations of first order and first degree, both with and without initial values.

» pretty(dsolve('Dy = aty'))

C2 exp(a t)
» pretty(dsolve('Df = f + sin(t)'))

sin(t) cos(t)
C6 exp(t) - ------ - ------
2 2
The previous two equations can also be solved in the following way:

n pretty(sym(maple('dsolve(diff(y(x), x) = a * y, y(x))')))
y(x) = exp(a x) (1
» pretty(maple('dsolve(diff(f(t),t)=F+sin(t),f(t))"))
f(t) = - 1/2 cos(t) - 1/2 sin(t) + exp(t) _C1

» pretty(dsolve('Dy = a*y', 'y(0) = b'))

exp(a x) b

n pretty(dsolve('Df = f + sin(t)', 'f(pi/2) = 0'))

/ pi\

exp| - -- | exp(t)
\ 2/ sin(t) cos(t)

Now we solve an equation of second degree and first order.
ny = dsolve('(Dy) *2+y ~2=1", ' y(0) =0', 's')
y =
cosh((pi*i)/2 + s*i)

cosh((pi*i)/2 - s*i)

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQUS AND LINEAR EQUATIONS

We can also solve this in the following way:

» pretty(maple('dsolve({diff(y(s),s)"2 + y(s)"2 = 1, y(0) = 0}, y(s))'))

y(s) = sin(s), y(s) = - sin(s)
Now we solve an equation of second order and first degree.
» pretty(dsolve('D2y = - a ~ 2 *y ', 'y(0) = 1, Dy(pi/a) = 0'))

exp(-a t i) exp(at i)

Next we solve a couple of systems, both with and without initial values.
»> dsolve('Dx = y', 'Dy = -x")
ans =

y: [1x1 sym]
x: [1x1 sym]

»y
y =

cosh((pi*i)/2 + s*i)
cosh((pi*i)/2 - s*i)

» X

X =

X

»> y=dsolve('Df = 3*f+4*g', 'Dg = -4*f+3*g’)
y =

g: [1x1 sym]
f: [1x1 sym]

» Y.g
ans =

C27%cos (4*t)*exp(3*t) - C28*sin(4*t)*exp(3*t)

www.it-ebooks.info

35

http://www.it-ebooks.info/

CHAPTER 2~ FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEOUS AND LINEAR EQUATIONS
» y.f

ans =

C28*cos (4*t)*exp(3*t) + C27*sin(4*t)*exp(3*t)

»> y=dsolve('Df = 3*f+4*g, Dg = -4*f+3*g', 'f(0)=0, g(0)=1")

y =

g: [1x1 sym]
f: [1x1 sym]

 y.g
ans =
cos(4*t)*exp(3*t)
» y.f
ans =
sin(4*t)*exp(3*t)
This last system can also be solved in the following way:

» pretty(maple('dsolve({diff(f(x),x)= 3*f(x)+4*g(x), diff(g(x),x)=-4*F(x)+3*g(x),
(0)=0,g(0)=1}, {f(x),g(x)})"))

{f(x) = exp(3 x) sin(4 x), g(x) = exp(3 x) cos(4 x)}

Separation of Variables
A differential equation is said to have separable variables if it can be written in the form
J(x)dx=g(y)dy.

This type of equation can be solved immediately by putting J f(x)dx :j g(y)dy+c.

If MATLAB cannot directly solve a differential equation with the function dsolve, then we can try to express it
in the above form and solve the given integrals algebraically, which does not present particular difficulties for the
program, given its versatility in symbolic computation.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQUS AND LINEAR EQUATIONS

EXERCISE 2-1

Solve the differential equation:
ycos(x)dx—(1+y*)dy=0,y(0)=1.
First of all we try to solve it directly. The equation can be written in the form:

ooy c0s(x)y(x)
y()= 1+y(x)?

» dsolve('Dy = y * cos(x) /(1+y"2)")
ans =

0
exp(C33 + t*cos(x))*exp(-wrightOmega(2*C33 + 2*t*cos(x))/2)

Thus the differential equation appears not to be solvable with dsolve. However, in this case, the variables are
separable, so we can solve the equation as follows:

» pretty(solve('int(cos(x), x) = int((1+y*2) / vy, y)'))

f—_—

/ 2

I y
asin| log(y) + --

\ 2

/ 2
| y
2

+_
|

|

|

|

|

|

|

| pi - asin| log(y) + --
| \

+_

Thus, after a little rearrangement, we see that the general solution is given by:
sin(x)=log(y)+1/2y*+C.

We now find the value of the constant C via the initial condition, putting x=0and y=1.

n € = simple('solve(subs(x = 0, y = 1, sin(x) = log(y) + 1/2 * y ~ 2 + (), C)')

C =

-1/2

Thus the final solution is sin(x)=log(y)+1/2y* Y.
In the same way you can solve any other differential equation with separable variables.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQOUS AND LINEAR EQUATIONS

The above differential equation is also solvable directly by using:

» pretty(maple('dsolve(diff(y(x), x) = y(x) * cos(x) /(1 + y(x) * 2), y(x))'))

2
log(y(x)) + 1/2 y(x) - sin(x) = =Cl

Homogeneous Differential Equations

Consider a general differential equation of first degree and first order of the form
M(x,y)dx=N(x,y)dy.

This equation is said to be homogeneous of degree n if the functions M and N satisfy:

M((tx,ty)=t"M(x,y),
N(tx,ty)=t"N(x,y),

For this type of equation, we can transform the initial differential equation (with variables x and y), via the change
of variable x = vy, into another (separable) equation (with variables v and y). The new equation is solved by separation
of variables and then the solution of the original equation is found by reversing the change of variable.

EXERCISE 2-2

Solve the differential equation:
(x* —y*)dx+xydy=0.
First we check if the equation is homogeneous
» maple('m:i=(x,y) - > x ~ 2 -y * 2');
» maple('n:=(x,y) - > x ¥y ');
» factor('m(t*x,t*y)')
ans =
t "2 *(x-y) *(x +y)
» factor('n(t*x,t*y)')
ans =
tr2*x*y

Thus the equation is homogeneous of degree 2. To solve it we apply the change of variable x = vy.

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQUS AND LINEAR EQUATIONS

Before performing the change of variable, it is advisable to load the library difforms, using the command
maple(‘with(difforms)’), which will allow you to work with differential forms. Once this library is loaded it is
also convenient to use the command maple(‘defform(v=0,x=0,y=0)’), which allows you to declare all variables
which will not be constants or parameters in the differentiation.

» maple('with(difforms)');
» maple('defform(v=0,x=0,y=0)");

Now we can make the change of variable x = vy, and group the terms in d(v) and d()).
» simplify('subs(x = v * y m(x,y) * d(x) + n(x,y) * d(y))')

ans =

vA2Xy A3 ¥dlv) +v i3 Ry A2%dly) -y 3 *d(v)

» pretty(maple(’'collect(v » 2 *y ~ 3 * d(v) + v~ 3 ¥y *2*d(y) -y "3 *d(v)
{d(v), d(y)})"))

2 2 2 2
(v.y -y)lydv)+vdly))+y vdly)

If we divide the previous expression by v3y3, and group the terms in d(v) and d(y), we already have an equation in
separated variables.

» pretty(maple('collect(((v*2*y"3-y"3) * d(v) + v * 3 * y * 2 * d(y)) /(v"3*y"3),
{d(v), d(y))"))

The previous expression can be simplified.
» pretty(maple(’convert(collect(((v"2*y*3-y*3) * d(v) + v # 3 * y * 2 * d(y))
/(v"3*y"3), {d(v), d(y)}), parfrac, y)'))

2
(v -1)dv) dy)

_____________ + =—=--

3 y

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQOUS AND LINEAR EQUATIONS

Now, we solve the equation:
» pretty(simple('int((v*2-1)/v * 3, v) + int(1/y,y)'))

1

log(v) + ---- + log(y)
2

2 v
Finally we reverse the change of variable:
n pretty(simple('subs(v = x / y log(v) + 1/2/v * 2 + log(y))'))

2

y
log(x) + 1/2 ----
2

X

Thus the general solution of the original differential equation is:

ly
log(x)+—2-=C.
g(x) ppe

Now we can represent the solutions of this differential equation graphically. To do this we graph the solutions with
parameter C, which is equivalent to the following contour plot of the function defined by the left-hand side of the
above general solution (see Figure 18-1):

» [x,y]=meshgrid(0.1:0.05:1/2,-1:0.05:1);
n z=y.*2./(2%x.%2)+log(x);
» contour(z,65)

Figure 2-1.

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQUS AND LINEAR EQUATIONS

Exact Differential Equations

The differential equation

M(x,y)dx+N(x,y)dy=0
is said to be exact if IN/0x=0M/dy. If the equation is exact, then there exists a function F such that its total differential
dF coincides with the left-hand side of the above equation, i.e.:

dF=M(x,y)dx+ N(x,y)dy

therefore the family of solutions is given by F(x,y) = C.
The exercise below follows the usual steps of an algebraic solution to this type of equation.

EXERCISE 2-3

Solve the differential equation:
(—1+ye*y+ycos(xy))dx+(1+xe*y+xcos(xy))dy:0

First of all, we try to solve the equation with dsolve:

» maple('ms=(x,y) - » - 1 + y * exp(x*y) + y * cos(x*y)');

»n maple('n:=(x,y) - > 1 + x * exp(x*y) + x * cos(x*y)');

» dsolve('m(x,y) + n(x,y) * Dy = 0')

??? Error using ==> dsolve
Explicit solution could not be found.

Thus the function dsolve does not give a solution to the proposed equation. We are going to try to solve the
equation using the classical algebraic method.

First we check that the proposed differential equation is exact.

n pretty(simple(diff('m(x,y)','y"')))

exp(y x) + x y exp(y x) + cos(y x) - x sin(y x) y

n pretty(simple(diff('n(x,y)', 'x")))

exp(y x) + x y exp(y x) + cos(y x) - x sin(y x) y

Since the equation is exact, we can find the solution in the following way:
» solution1 = simplify('int(m(x,y), x) + g(y)')

solution1 =

-x+exp(y*x) + sin(y*x) + g(y)

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQOUS AND LINEAR EQUATIONS

Now we find the function g(y) via the following condition:
diff (int(m(x,), x)+ g(¥),y)=n(x,y)
» pretty(simplify('int(m(x,y), x) + g(y)'))
-x + exp(y x) + sin(y x) + g(y)
n pretty(simplify('diff(-x+exp(y*x) + sin(y*x) + g(y), y)'))

d

x exp(y x) x + x cos(y x) + -- g(y)
dy

» simplify('solve(x * exp(y*x) + x * cos(y*x) + diff(g(y), y) = n(x,y), diff(g(y), y))')
ans =

1

Thus g'(y) = 1, so the final solution will be, omitting the addition of a constant:

» pretty(simplify('subs(g(y) = int(1,y),-x+exp(y*x) + sin(y*x) + g(y))'))

-x + exp(y x) + sin(y x) +y

To graphically represent the family of solutions, we draw the following contour plot of the above expression
(Figure 18-2):

» [x,y]=meshgrid(-2*pi/3:.2:2*pi/3);

n z =-x+exp(y.*x) + sin(y.*x) + y;
» contour(z,100)

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQUS AND LINEAR EQUATIONS

20

18
16
14

12

Figure 2-2.

In the following section we will see how any reducible differential equation can be transformed to an exact
equation using an integrating factor.

Linear Differential Equations

A linear first order differential equation is an equation of the form:
dy/dx+P(x)y=Q(x)
where P(x) and Q(x) are given functions of x.
Differential equations of this type can be transformed into exact equations by multiplying both sides of the
equation by the integrating factor:
e [P
and the general solution is then given by the expression:

(e,jp(x)dx J U ef”"‘)de(x)dxj

MATLAB implements these solutions of linear differential equations, and offers them whenever the integral
appearing in the integrating factor can be found.

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' FIRST ORDER DIFFERENTIAL EQUATIONS. EXACT EQUATIONS, SEPARATION OF VARIABLES, HOMOGENEQOUS AND LINEAR EQUATIONS

EXERCISE 2-4

Solve the differential equation:

xdy/dx+3y =xsin(x).

n pretty(simple(dsolve('x * Dy + 3 * y = x * sin(x)')))

/3t

C36 exp| - --- |

x sin(x) \ x /
3 3

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Higher Order Differential Equations.
The Laplace Transform and Special
Types of Equations

Ordinary High-Order Equations

An ordinary linear differential equation of order » has the following general form:

kzz;ak(X)y(k)(x)=ao(x)y(x)+a1(x)y'(x)+a2(x)y~(x)+“Hra”(x)y(n)(x)
= f(x).

If the function f(x) is identically zero, the equation is called homogeneous. Otherwise, the equation is called
non-homogeneous. If the functions a(x) (i=1, ..., n) are constant, the equation is said to have constant coefficients.

A concept of great importance in this context is that of a set of linearly independent functions. A set of functions
{,(x), £(%), ..., f(x)} is linearly independent if, for any x in their common domain of definition, the Wronskian
determinant of the functions is non-zero. The Wronskian determinant of the given set of functions, at a point x of
their common domain of definition, is defined as follows:

() A A . LK)
) A A . L)
)) fx) e fi(x) |=W(x).

FOO0))) e)

The MATLAB command maple(‘Wronskian’) allows you to calculate the Wronskian matrix of a set of functions.
Its syntax is:

maple(‘Wronskian(V,x)’): This computes the Wronskian matrix corresponding to the
vector of functions V with independent variable x.

Aset S={f,(x),...,f, (x)} of linearly independent non-trivial solutions of a homogeneous linear equation of order n
ay(x)y(x)+a,(x)y'(x)+a,(x)y"(x)++a,(x)y" (x)=0

is called a set of fundamental solutions of the equation.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

If the functions a(x) (i=1,...,n) are continuous in an open interval I, then the homogeneous equation has a set
of fundamental solutions S={f(x)} in I.
In addition, the general solution of the homogeneous equation will then be given by the function:

f(x)= icl.fi(x)

where {c} is a set of arbitrary constants.
The equation:

n
2 n _ i
a,+am+a,m”+---+a,m" = Eaim =0
i=0

is called the characteristic equation of the homogeneous differential equation with constant coefficients. The
solutions of this characteristic equation determine the general solutions of the corresponding differential equation.

EXERCISE 3-1

Show that the set of functions
{e*, xe*, X’ e}
is linearly independent.
» indfunctions = maple('vector([exp(x), x * exp(x), x * 2 * exp(x)])")
indfunctions =
[exp(x), x * exp(x), x * 2 * exp(x)]

» W=maple('Wronskian(indfunctions,x)")

W =
[exp(x), x*exp(x), x"2%exp(x)]
[exp(x), exp(x)+x*exp(x), 2¥x*exp(x)+x"2*exp(x)]

[exp(x), 2*exp(x)+x*exp(x), 2*exp(x)+4*x*exp(x)+x"2*exp(x)]
» pretty(detexm(W))

3
2 exp(x)

This gives us the value of the Wronskian, which is obviously always non-zero. Therefore the set of functions is
linearly independent.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Linear Higher-Order Equations. Homogeneous Equations with
Constant Coefficients

The homogeneous linear differential equation of order n

kZ:;ak ()9 (x)=a, (x)y(x)+a,(x)y (x)+a,(x)y"(x)++a,(x)y" (x)
=0

is said to have constant coefficients if the functions a(x) (i=1,...,n) are all constant (i.e. they do not depend on the
variable x).
The equation:

ay+am+a,m’ +---+a,m" =y am =0
i=0
is called the characteristic equation of the above differential equation. The solutions (m,, m,, ..., m) of this
characteristic equation determine the general solution of the associated differential equation.
If the mi (i=1, ..., n) are all different, the general solution of the homogeneous equation with constant
coefficients is:

y(x)=ce™ +c,e™ +--+c,e™

where €€,y ..y C, ATE arbitrary constants.
If some m, is a root of multiplicity k of the characteristic equation, then it determines the following k terms of the
solution:

m;x 2 mx k ,mx
aXe " e ,xTe +e e xe .

ce™ +c

If the characteristic equation has a complex root m = a+bi , then its complex conjugate m,, = a-biis also aroot.
These two roots determine a pair of terms in the general solution of the homogeneous equation:

c,e” cos(bx)+c;,e™ sin(bx).

MATLAB directly applies this method to obtain the solutions of homogeneous linear equations with constant
coefficients, using the command dsolve or maple(‘dsolve’).

EXERCISE 3-2

Solve the following equations:
3y"+2y'-5y=0

2y"+5y'+5y=0, y(0)=0, y'(0)=1%.

» pretty(dsolve('3*D2y+2*Dy-5*y=0"))

/ 5t\
(38 exp(t) + (39 exp| - --- |
\ 3/

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

» pretty(dsolve('2 * D2y + 5 * Dy + 5 *y = 0', ' y(0) = 0 Dy(0) = 1/2 "))

EXERCISE 3-3

Solve the differential equation
9y"" —6y" +46y"—-6y'+37y=0.

» pretty(simple(dsolve(' 9*D4y-6*D3y+46*D2y-6*Dy+37*y=0")))

/ t\ / t\
C46 cos(t) + C47 sin(t) + C44 cos(2 t) exp| - | + C45 sin(2 t) exp| - |
\ 37/ \ 37/

Looking at the solution, it is evident that the characteristic equation has two pairs of complex conjugate solutions.

» solve('9*x"4-6*x"3+46*x"2-6*x+37=0")

ans =
i
-1
1/3 + 2*i
1/3 - 2*1

Non-Homogeneous Equations with Constant Coefficients.
Variation of Parameters

Consider the non-homogeneous linear equation with constant coefficients:

gak(x)y(kl(x):ao(X)Y(x)+a1(x)y'(x)+a2(x)y"(x)+...+a”(x)y(n)(x)
= f(x).

Suppose {y,(x), y,(x),.....,y (x)} is a linearly independent set of solutions of the corresponding homogeneous
equation:

a,(x)y(x)+a,(x)y (x)+a,(x)y (x)+-+a, (x)y(”)(x): 0.

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

A particular solution of the non-homogeneous equation is given by:
Yy (x) = Zui(x)yi(x)
i=1

where the functions u(x) are obtained as follows:

(o (LW)y () BN
O O m)G & G

Here W[y, (x), y,(x), ...,y (x)] is the determinant of the matrix obtained by replacing the i-th column of the
Wronskian matrix W[y, (x),y,(x), ...,y (x)] by the transpose of the vector (0, 0,..., 0, 1).

The solution of the non-homogeneous equation is then given by combining the general solution of the homogeneous
equation with the particular solution of the non-homogeneous equation. If the roots m; of the characteristic equation of the
homogeneous equation are all different, the general solution of the non-homogeneous equation is:

y(x)=ce™ +c,e™ +..+c,e" +y, (x).

If some of the roots are repeated, we refer to the general form of the solution of a homogeneous equation
discussed earlier.

EXERCISE 3-4

Solve the following differential equations:
y' +4y +13y=xcos®(3x),
y -2y +y=e*In(x).

We will follow the algebraic method of variation of parameters to solve the first equation. We first consider the
characteristic equation of the homogeneous equation to obtain a set of linearly independent solutions.

» solve('m*2+4*m+13=0")

ans =
[- 2 +3*1i]
[-2-3%*1i]

n maple('f: = x - » x * cos(3*x) * 2');

»n maple('yl: = x - > exp(-2*x) * cos(3*x)');

» maple('y2: = x - » exp(-2*x) * sin(3*x)');

» maple('W: = x - » Wronskian([y1(x), y2(x)], x)');
» pretty(simplify(maple('det(W(x))")))

3 exp(-4 x)

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

50

We see that the Wronskian is non-zero, indicating that the functions are linearly independent. Now we calculate
the functions W.(x), i=1,2.

» maple(‘Wa: x-= > array([[o, y2(x)], [1, diff((y2)(x), x)1])");
» pretty(simplify(maple('det(W1(x))')))

-exp(-2 x) sin(3 x)

» maple('W2: x-= > array([[y1(x), o], [diff((y1)(x), x), 1]])");
» pretty(simplify(maple('det(W2(x))')))

exp(-2 x) cos(3 x)
Now we calculate the particular solution of the non-homogeneous equation.

» maple('ul:=x->factor(simplify(int(f(x)*det(W1(x))/det(W(x)),x)))");
» maple('u1(x)")

ans =

1/14652300%exp (2*x)*(129285*cos (9*x) *x-6084*cos (9*x)-28730*sin(9*x) *x-
13013*sin(9*x)+281775%cos (3*x)*x-86700*cos (3*x)-187850*sin(3*x)*x-36125*%sin(3*x))

» maple('u2:=x-s>factor(simplify(int(f(x)*det(W2(x))/det(W(x)),x)))"');
» maple('u2(x)")

ans =

1/14652300 * exp(2*x) *(563550 * cos(3*x) * x+108375 * cos(3*x) + 845325 * sin(3*x) * x-260100
* sin(3*x) + 28730 * cos(9*x) * x+13013 * cos(9*x) + 129285 * sin(9*x) * x-6084 * sin(9*x))

» maple('yp: = x - » factor(simplify(ya(x) *(x) ui + y2(x) * u2(x)))');
» maple('yp(x)")

ans =

-23/1105 * x * cos(3*x) * 2 + 13436/1221025 * cos(3*x) " 2 + 24/1105 * cos(3*x) * sin(3*x)
* x + 3852/1221025 * cos(3*x) * sin(3*x) + 54/1105 * x-21168/1221025

Then we can write the general solution of the non-homogeneous equation:

»n maple(' y: = x - > simplify(c1 * ya(x) + c2 * y2(x) + yp(x))');
» maple('combine(and(x), trig)')

ans =

C1 * exp(-2*x) * cos(3*x) + c2 * exp(-2*x) * sin(3*x)-23/2210 * x * cos(6*x) + 1/26
* x + 6718/1221025 * cos(6*x)-2/169 + 12/1105 * x * sin(6*x) + 1926/1221025 * sin(6*x)

Now we graphically represent a set of solutions, for certain values of ¢1 and c¢2 (see Figure 3-1)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

n fplot(simplify('subs(c1=-5,c2=-4,y(x))"),[-1,1])
» hold on

n fplot(simplify('subs(c1=-5,c2=4,y(x))"),[-1,1])
» fplot(simplify('subs(c1=-5,c2=2,y(x))"),[-1,1])
» fplot(simplify('subs(c1=-5,c2=-2,y(x))"'),[-1,1])
» fplot(simplify('subs(c1=-5,c2=-1,y(x))"'),[-1,1])
n fplot(simplify('subs(c1=-5,c2=1,y(x))"),[-1,1])
» fplot(simplify('subs(c1=5,c2=1,y(x))"'),[-1,1])

n fplot(simplify('subs(c1=5,c2=-1,y(x))"),[-1,1])
n fplot(simplify('subs(c1=5,c2=-2,y(x))"),[-1,1])
» fplot(simplify('subs(c1=5,c2=2,y(x))"'),[-1,1])

» fplot(simplify('subs(c1=5,c2=4,y(x))"'),[-1,1])

n fplot(simplify('subs(c1=5,c2=-4,y(x))"),[-1,1])
n fplot(simplify('subs(c1=0,c2=-4,y(x))"),[-1,1])
n fplot(simplify('subs(c1=0,c2=4,y(x))"'),[-1,1])

» fplot(simplify('subs(c1=0,c2=2,y(x))"'),[-1,1])

» fplot(simplify('subs(c1=0,c2=-2,y(x))"),[-1,1])
» fplot(simplify('subs(c1=0,c2=-1,y(x))"),[-1,1])
» fplot(simplify('subs(c1=0,c2=1,y(x))"'),[-1,1])

- =

50
40
30
20
10
0
-0

n
=

Figure 3-1.

For the second differential equation we directly apply dsolve, obtaining the solution:

n pretty(simple(dsolve('D2y-2 * Dy + y = exp(x) * log(x)')))

exp(x) log(x) + C49 exp(t) + C50 t exp(t)

www.it-ebooks.info

51

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Non-Homogeneous Equations with Variable Coefficients.
Cauchy-Euler Equations

A non-homogeneous linear equation with variable coefficients of the form
Zakxky(k) (x)=a,y(x)+axy (x)+a,x*y (x)+ cota,x"y™ (x)=f(x)
k=0

is called a Cauchy-Euler equation.
MATLAB can solve this type of equation directly with the command dsolve or maple(‘dsolve’).

EXERCISE 3-5

Solve the following differential equation:
x*y" +16x%y" +79xy +125y =0.
n pretty(simple(dsolve(' x*3*D3y+16*x"2*D2y+79*x*Dy+125%y=0")))

C1 + C2 sin(3 log(x)) x + C3 cos(3 log(x)) x

The Laplace Transform

Suppose f(1) is a function defined in the interval (0, «). The Laplace transform of f() is the function F(s) defined by:

0

F(s)=L{f(t)}(s)=[e f(t)at.

0

We say that f(¢) is the inverse Laplace transform of F(s), so that
LH{F(s)}(t)=f(0).

MATLAB provides the commands maple(‘laplace’) and maple(‘invlaplace’) to calculate the Laplace transform
and inverse Laplace transform of an expression with respect to a variable. Its syntax is as follows:

maple(‘laplace(expression, t, s)’): This calculates the Laplace transform of a given
expression with respect to t. The transformed variable is s.

maple(‘(expression, s, t) invlaplace’): This computes the inverse Laplace transform of
the given expression with respect to s. The inverse variable is t.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Here are some examples.
» pretty(maple('laplace(t”(3/2)-exp(t)+sinh(a*t), t, s)'));

1/2

n pretty(maple('invlaplace(s~2/(s"2+a"2)*(3/2), s, t)'))
- t BesselJ(1, a t) a + Bessell(0, a t)

The Laplace transform and its inverse are used to solve certain differential equations. The method is to calculate
the Laplace transform of each term of the equation to obtain a new differential equation, which we then solve. Finally,
we find the solution of the original equation by applying the inverse Laplace transform to the solution just found.

MATLAB provides the ‘laplace’ option in the maple(‘dsolve’) command, which forces the program to solve the
differential equation using the Laplace transform method. The syntax is as follows:

maple('dsolve(equation, func(var), 'laplace’)’)

EXERCISE 3-6

Solve the differential equation

y 42y +4y=x-e~,y(0)=Ly(0)=1

using the Laplace transform method.

First, we calculate the Laplace transform of each side of the differential equation, and we apply the initial
conditions.

» maple('L:=s-»laplace(diff(y(x),x$2)+2*diff(y(x),x)+4*y(x),x,s)"');
» pretty(simplify(’subs(y(0)=1,(D(y))(0)=1,L(s))"))

laplace(y(x), x, s) s - s - 3 + 2 laplace(y(x), x, s) s
+ 4 laplace(y(x), x, s)
» maple('L1:=s->laplace(x-exp(-x),x,s)"');

» pretty(simplify('L1(s)"))

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

We then solve the Laplace transformed differential equation:
» pretty(simplify(maple('solve(L(s)=L1(s),laplace(y(x),x,s))")))

4 3 2
s y(0) + (3y(0) +D(y)(0)) s + (2y(0) +D(y)(0) - 1) s +s+1

s (s +3s +6s+4)
Now we substitute the given initial conditions into the solution.
» maple('TL:=s->solve(L(s)=L1(s),laplace(y(x),x,s))"');
» pretty(simplify('subs(y(0)=1,(D(y))(0)=1,TL(s))"))

4 3 2
S +45s +25s +5+1

s (s+1) (s +2s+4)

This gives the solution of the Laplace transformed equation. To calculate the solution of the original equation we
calculate the inverse Laplace transform of the solution obtained in the previous step.

» maple('TLO:=s->simplify('subs(y(0)=1,(D(y))(0)=1,TL(s))')");
» solucion=simple(maple('invlaplace(TLO(s),s,x)"'));
» pretty(solution)

1/2 1/2 1/2
1 sin(3 x) 3 35 cos(3 x)
1/4 x - 1/8 - -------- + 5/8 —---mmmeo - T

3 exp(x) exp(x) 24 exp(x)
This gives the solution of the original differential equation.
We could also have solved it directly via:

n pretty(simple(sym(maple(' dsolve({diff(y(x),x$2)+2*diff(y(x),x)+4*y(x) = x-exp(-x), y(0)=1,D(y)
(0)=1},y(x),1aplace)')))) , , ,
1/2 1/2 1/2

1 sin(3 x) 3 35 cos(3 X)
y(x) = 1/4 x - 1/8 - -------- O Y/ T —— Fommmm e

3 exp(x) exp(x) 24 exp(x)

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Orthogonal Polynomials

Two functions f(x) and g(x) are said to be orthogonal on an interval [q, b] if their inner product is 0, i.e. if
b
J.f(x)g(x)dx =0.

An example of an orthogonal family of functions (i.e. such that any two distinct functions in the family are
orthogonal) is given by:

f(x) = sin(nx) and g (x) = cos(nx),n =1, 2, 3,..., in the interval [-7, 7].

MATLAB provides a broad list of orthogonal polynomials, which are very useful in solving certain non-linear
differential equations of higher order. The functions that allow us to work with these polynomials are the following:

T(n,x), Chebychev polynomials of the first kind.
U(n,x), Chebychev polynomials of the second kind.
P(n,x), Legendre polynomials.

H(n,x), Hermite polynomials.

L(n,x), Laguerre polynomials.

L(n,a,x), Generalized Laguerre polynomials.
P(n,a,b,x), Jacobi polynomials.

G(n,m,x), Gegenbauer polynomials.

Now let us look at their relationship to differential equations. It is precisely this relationship which allows us
to find solutions of some non-linear equations of higher order. To use these functions we first need to run
maple(‘with orthopoly’).

Chebychev Polynomials of the First and Second Kind

The Chebychev polynomials of the first kind are defined as the solutions T (x) of the differential equation:
(1—x2)y” -xy+n’y=0,n=0,1,2,...
Their orthogonality is given by the weighted inner product:

LWL
-1 (1 -)C2)

The Chebychev polynomials of the second kind U, (x) are special cases of the Jacobi polynomials (see below) with
a=b=1/2. They satisfy the orthogonality relationship:

=0, m#n.

o0, ()1 =0, men.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Legendre Polynomials

The Legendre polynomials P (x) are solutions of the Legendre differential equation:

(l—xz)y” —2xy+n(n+1)y=0.
Their orthogonality is given by the relation

1
IPn (x)P,(x)dx=0, m=n.
-1

Associated Legendre Polynomials

The solutions of the differential equation

. m?
(l—xz)y —2xy+{n(n+l)—1 2}yo
-x

are called associated Legendre polynomials.
Their orthogonality is given by the relation

!
J‘l PP dx = 2(1+m)! 5.,
-1 @l+D(-m) ~

where d, ,is the Kronecker delta.

Hermite Polynomials
The solutions H, (x) of the Hermite differential equation

y —2xy+2ny=0

are known as Hermite polynomials.
Their orthogonality is given by the weighted inner product:

an(x)Hm(x)e’x2 dx=0,m#n.

—0

Generalized Laguerre Polynomials
The solutions L (x) of the general Laguerre differential equation
xy +(a+1-x)y +ny=0

are known as generalized Laguerre polynomials.
Their orthogonality is given by the weighted inner product:

jLn(x)Lm(x)x“e *dx=0, m=#n.
0

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

Laguerre Polynomials
The solutions of the Laguerre differential equation
xy+(1-x)y +ny=0

are known as Laguerre polynomials. This is the particular case a=0 of the generalized Laguerre polynomials.

Jacobi Polynomials

The solutions of the Jacobi differential equation
(1—x2)y” +(b—a—(a+b+2)x)y'+n(n+a+b+1)y:0

are known as Jacobi polynomials.
Their orthogonality is given by the weighted inner product:

.I[Pn(x)Pm(x)(l—x)a (1+x)h dx=0,m=#n.

Gegenbauer Polynomials

The Gegenbauer polynomial G(n, a, x) is defined as follows:

F(a-ké)l"(n-rzg) 1(d

e e
(-2) n!l"(Za)F(a-knﬁ-gj(l—x) .

G(n,a,x)=

The solutions of the Gegenbauer differential equation
(l—xz)y" +(2a+1)xy +n(n+2a)y=0

are known as Gegenbauer polynomials.
Their orthogonality is given by the weighted inner product:

jG(n,a,x)G(m,a,x)(l—xz)a_é dx=0m#n.

-1

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

EXERCISE 3-7

Find the solutions to the following differential equations:
(1-x*)y —xy +49y =0,
(1-x*)y —2xy +42y=0,
¥y —2xy +10y =0,
xy +(1-x)y +5y=0.
» pretty(simple(maple('T(7,x)"')))

7 5 3
64 x - 112 x + 56 x -7 x

» pretty(simple(maple('P(6,x)")))
231 6 315 4 105 2

== X - --- X +---Xx - 5/16
16 16 16

» pretty(simple(maple('H(5,x)")))

5 3
32 x - 160 x + 120 x

» pretty(simple(maple('L(5,x)')))

2 3 4 5
1-5 X + 5 x - 5/3 x + 5/24 x - 1/120 x

Bessel and Airy Functions

The linearly independent solutions of the following second order differential equation are called Airy functions:
¥"-xy=0 (Airy equation)

The linearly independent solutions of the following second order differential equation are called Bessel
functions:

! 2
v+l [kz - nz]y =0 (Bessel equation)
X X
The linearly independent solutions of the following differential equation are called modified Bessel functions:

V' + y_ (k2 + nzx)y =0 (modified Bessel equation)
X

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' HIGHER ORDER DIFFERENTIAL EQUATIONS. THE LAPLACE TRANSFORM AND SPECIAL TYPES OF EQUATIONS

MATLAB implements the following related functions:
Ai(z) and Bi(z) are the linearly independent solutions of the Airy differential equation.

BesselJ(n,z) and BesselY(n,z) are the linearly independent solutions of the Bessel
differential equation.

Bessell(n,z) and BesselK(n,z) are the linearly independent solutions of the modified
Bessel differential equation.

EXERCISE 3-8

Find the solutions of the differential equation

Xy +xy +[x2 fijy =0.
The equation is the Bessel differential equation with n = 1/2. We obtain two linearly independent solutions
as follows:

» pretty(simple(maple('Bessell(1/2,x)')))

1/2 1/2
pi X

n pretty(simple(maple('BesselY(1/2,x)"')))

1/2 1/2
X pi

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Differential Equations Via
Approximation Methods

Higher Order Equations and Approximation Methods

When the known algebraic methods for solving differential equations and systems of differential equations offer no
solution, we usually resort to methods of approximation. The approximation methods can involve both symbolic
and numerical work. The symbolic approach yields approximate algebraic solutions, and its most representative
technique is the Taylor series method. The numerical approach yields a solution in the form of a finite set of
solution points, to which a curve can be fitted by various algebraic methods (interpolation, regression,...). This curve
will be an approximate solution of the differential equation. Among the most common numerical methods is the
Runge-Kutta method.

Approximation methods are most commonly employed to find the solution of equations and systems of
differential equations of order and degree greater than one, where the exact solution cannot be obtained by other
methods.

The Taylor Series Method

This method provides approximate polynomial solutions of general differential equations, and is based on the Taylor
series expansion of functions. MATLAB offers the option ‘series’ for the command maple(‘dsolve’), which allows you to
solve equations by this method. Its syntax is as follows:

maple('dsolve(equation, func(var), 'series'))

There is also the command maple(‘powsolve’), which gives a power series solution of linear differential
equations, and whose syntax is as follows:

maple('powseries [powsolve](equation, condi,...,condn) ')

Using the command maple(‘convert(polynom)’) you can convert a complicated solution to a polynomial in
powers of the variable.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' DIFFERENTIAL EQUATIONS VIA APPROXIMATION METHODS

EXERCISE 4-1

Solve the following two equations by the Taylor series method:

2_n

4x*y" +4xy’ + (x> —=1)y =0,

y"+ (') +1=0,with the initial conditions y(0) + 1 and y’(0) = 1.
n pretty(simple(maple('dsolve(4 * x ~ 2 * diff(y(x), x$ 2) + 4 * x * diff(y(x), x) +(x * 2-1)
* y(x) = 0 y(x), series)’)))

2 4 6 6
y(x) = (C1 x(1 - 1/24 x + 1/1920 x + O(x)) + _C2 log(x)(0(x))

2 4 6 / 1/2
+ C2(1 - 1/8 x +1/384 x +0(x))) / x

» pretty(simplify(maple('convert(_C1 * x ~(1/2) *(1-1 / 24 * x * 2 + 1/1920 * x * 4 + 0(x"6))
+ _C2 *(2/x ~(1/2) * log(x) *(0(x"6)) + 1/x ~(1/2) *(1-1/ 8 * x * 2 + 1/384 * x * 4 + 0(x"6))),
polynom)')))

3 5 6
1/1920(1920 (1 x - 80 x _C1 + C1 x + 1920 (1 x o(x))

6 2 4
+ 1920 €2 log(x) o(x) + 1920 (2 - 240 (2 x + 5 C2 x

6 1/2
(+1920 C2 o(x)) / x

» pretty(maple('dsolve({y(x) * diff(y(x), x$ 2) + diff(y(x), x) *2 +1 =0, y(0) = 1,
D(y)(0) = 1}, y(x), series)'))

2 3 4 5 6
y(x) =1+x-x +x -3/2x +5/2x +0(x)

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' DIFFERENTIAL EQUATIONS VIA APPROXIMATION METHODS

EXERCISE 4-2

Solve the following two systems of equations using the Taylor series method:

x"+y —4x+12=0
y'-10x—y+7=0
x(0) = y(0) =x’(0) = y'(0) =1

and x"+2x'+2y'+3z'=1
y+z -x=0
x'+z=0.

» pretty(simple(maple('dsolve({diff(x(t), t$ 2) + diff(y(t), t) - 4 * x + 12 = 0, diff(y(t),
t$ 2) - 10 * diff(x(t), t) y(t) + 7 = 0, x(0) = 1, y(0) = 1, D(0) = 1, D(x)(y)(0) = 1},
{x(t), y(t)}, series)')))

2 3 4 387 5 6
{y(t) =1+t +2t +(-43/2+20/3 x)t -3/2t +(--- -3x)t +0(t),
40

2 3 4 5 6
x(t) =1+t +(-13/2+2x)t -2/3t +(43/8 -5/3x)t +3/10t + 0(t)}

» pretty(simple(maple('dsolve({diff(x(t),t$2)+2*diff(x(t),t)+2*diff(y(t),t)+ 3*diff(z(t),t)+x
(t)=1,diff(y(t),t)+diff(z(t),t)-x(t)=0,diff(x(t),t)+z(t)=0}, {x(t),y(t),z(t)}, series)’)))

2
{x(t) = x(0) + D(x)(0) t +(- D(x)(0) - 1/2 x(0) + 1/2) t
3 4
+(1/2 D(x)(0) + 1/3 x(0) - 1/3) t +(- 1/6 D(x)(0) - 1/8 x(0) + 1/8) t
5 6
+(1/24 D(x)(0) + 1/30 x(0) - 1/30) t + O(t),

2 3
z(t) = z(0) + x(0) t + 1/2 D(x)(0) t +(- 1/3 D(x)(0) - 1/6 x(0) + 1/6) t
4
+(1/8 D(x)(0) + 1/12 x(0) - 1/12) t
5 6
+(- 1/30 D(x)(0) - 1/40 x(0) + 1/40) t + O(t),

2 3
y(t) = y(0o) + x(0) t + 1/2 D(x)(0) t +(- 1/3 D(x)(0) - 1/6 x(0) + 1/6) t
4
+(1/8 D(x)(0) + 1/12 x(0) - 1/12) t
5 6
+(- 1/30 D(x)(0) - 1/40 x(0) + 1/40) t + O(t) }

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' DIFFERENTIAL EQUATIONS VIA APPROXIMATION METHODS

The Runge—Kutta Method

The Runge-Kutta method gives a set of data points to which you can fit a curve, approximating the solution of
a differential equation. Maple provides the option numeric for the command maple(‘solve’) which enables the
calculation of approximate numerical solutions of differential equations. Its syntax is:

maple('dsolve(equation, func(var), 'numeric'))

EXERCISE 4-3

Solve the following equation using the Runge—Kutta method:

3(y")* =y y’ with the initial conditions y'(0) = y"(0) =1.

» maple('f: = dsolve({3 * diff(y(x), x$ 2) * 2 = diff(y(x), x$ 3) * diff(y(x), x), y(0) = 1/2, D(y)
(0) = 1,(0@@2)(y)(0) = 1}, y(x), numeric)')

ans =
f := proc(x) “dsolve/numeric/result2"(x,3879004,[3]) end

Now, in order to graph the solution, we calculate various points of the solution function fgenerated above
(see Figure 4-1).

» [maple('f(-0.3)"),maple('f(-0.2)"),maple('f(-0.1)"),maple('f(0)'), maple('f(0.1)'),
maple('f(0.2)"),maple('f(0.3)"')]

ans =

{x = -.3,y(x) = .2350889359260396}{y(x) = .3167840433732281, x = -.2}
{y(x) = .4045548849869109, x = -.1}{y(x) = .5000000000000000, x = O}
{x = .1, y(x) = .6055728090006967}{y(x) = .7254033307597474, X = .2}
{y(x) = .8675444679682489, x = .3000000000000000}

n y = [.2350889359260396, .3167840433732281, .4045548849869109, .5, .6055728090006967

.7254033307597474, . 8675444679682489] ;
» plot((-0.3:.1:0.3), y)

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = DIFFERENTIAL EQUATIONS VIA APPROXIMATION METHODS

Figure 4-1.

We find the degree 2 polynomial which is the best fit to the set of solution points. The equation of this parabola will
be an approximate solution of the differential equation.

» pretty(vpa(poly2sym(polyfit((-0.3:.1:0.3),y,2))))

2
.5747427827483573 x + 1.041293962469090 x +.4991457846921903

This yields a degree 2 polynomial approximation to the solution y () of the equation.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Systems of Differential Equations and
Finite Difference Equations W,

Systems of Linear Homogeneous Equations with Constant
Coefficients

MATLAB can solve this type of system directly, simply by using the command dsolve or maple(‘dsolve’) with the
familiar syntax.
A system of differential equations, written as X’(£)=AX(¢) has a general solution of the form:

X()=) cVie™
i=1

where the eigenvalues {1} (K=1,2,... n) corresponding to the eigenvectors {V} of the matrix of the system are all
assumed to be different.
If an eigenvalue A, is a complex number @, +b,i, then it generates the following component of the overall solution:

ut At
Ci Wy,e™ +C,W;e™

where:

W, = %(vk +V)cos(bt) 4V, +7)sin(b1),

Wey = (V,+7)eos(bit)+ é(vk +7)sin(b,t).

Here V, is the eigenvector corresponding to the eigenvalue A, and V, is its conjugate.
If there is an eigenvalue A, of multiplicity m > 1, then it will generate a portion of the general solution of the form:

e’V +c, eV,

kit
i+l i+l i+2 i+2+"'+c' e Vk'

At

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © SYSTEMS OF DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE EQUATIONS

EXERCISE 5-1
Solve the following system of equations:
x'=—5x+3y,
y'=—2x-10y.

» pretty(dsolve('Dx=-5*x+3*y,Dy=-2%x-10*y"','t"))
y(t) = Clexp(- 7t) + C2exp(- 8 t),

x(t) = -3/2 C1exp(-7t) - C2exp(-8t)

You can also use the following syntax:

» pretty(maple(’dsolve({diff(x(t), t) =-5 * x(t) + 3 * y(t), diff(y(t), t) =-2 * x(t)
- 10 * y(t)}, {x(t), y(t)})"))

{y(t) = Ciexp(-71t)+ C2exp(-8t),

x(t) = -3/2 Clexp(-71t)-_C2exp(-8t)}

Systems of Linear Non-Homogeneous Equations with Constant
Coefficients

Now let us consider systems of non-homogeneous differential equations with constant coefficients of the form
X' = AX+ F().

The general solution of the homogeneous system X’ = AX takes the form X = ¢(¢)C. A particular solution of the
non-homogeneous system is:

X, =4(0) [0 (O F(t)dr.

The general solution of the non-homogeneous system will be X= ¢(£)C + X » which is, using the previous
expression:

X=(1)C +(0)] ¢ (F(D)ar.

This method is a generalization to systems of equations of the method of variation of parameters for simple
equations.

MATLAB can solve such systems of equations directly with the command dsolve or maple(‘dsolve’), provided the
integrals that appear in the solution can be evaluated.

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © SYSTEMS OF DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE EQUATIONS

EXERCISE 5-2

Solve the following system of equations:

x’_y’:e—t
¥ +5x+2y=sin(3+t)

with initial conditions x(0) = x0 and y(0) = y0.

» pretty(simple(dsolve('Dx-Dy = exp(-t), Dy+5 * x + 2 * y =sin(3 + t) ', ' x(0) = xo,
y(0) =yo *, 't ")))

y(t) = 7/50 sin(3) cos(t) + 7/50 cos(3) sin(t) + 5/6 exp(-t)
+ 1/50 sin(3) sin(t) - 1/50 cos(3) cos(t) - 5/7 + 5/7 yo - 5/7 xo

+(-7/50 sin(3) + 2/7 yo + 1/50 cos(3) - 5/42 + 5/7 xo) exp(-7t)

Finite Difference Equations

The MATLAB function maple(‘rsolve’) enables you to solve finite difference equations and recurrence equations in
general. Its syntax is:

maple('rsolve({equation, initial_conditions}, function)')

EXERCISE 5-3

Find the solutions of the following recurrence equations:

Y=y, +(m+1)!y, =2,
y2n24yn+5 ylza'
yr7+2_3yn+1+2yn:4n y0:y1:1'

» pretty(maple('rsolve({y(m + 1) = m * y(m) +(m + 1)!, y(1) = 2}, y)"))

2
1/2 GAMMA(m)(m + m + 2).

» pretty(maple(’rsolve({y(2*n) = 4 *y(n) + 5, y(1) = a}, y)"))

2 2 log(2)
an +n (- 20/3(1/4) +5/3)

» pretty(maple('rsolve({y(n + 2) - 3 * y(n + 1) + 2 *y(n) = 4 ~ n, y(0) = 1 y(1) = 1}, y)'))

n n
4/3 - 1/2 2 + 1/6 4

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © SYSTEMS OF DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE EQUATIONS

EXERCISE 5-4

70

Find the general term of the sequences of real numbers defined by the following recurrence laws:

* - -
Xy =Wy " XXy =X Xo = 17

Vs =2V +5Y,=cos(3n) y,=y,=1

n+l

» pretty(maple('rsolve({x(n) - n *x(n) * x(n + 1) = x(n + 1),

x(0) = 1}, x)*))

» maple('rsolve({x(n + 2) - 2 * x(n + 1) + 5 * x(n) = cos(3*n), x(0) = 1, x(1) = 1}, x)")
ans =

+10*cos(n-3)"3*cos(1)"2+10*cos(n-3)"3*cos(3)"2-72*cos(n-3)"3*cos(3)-72*cos(n-3)"3*cos(1)
-49*cos(n-4)"3* 1/2*%(1-2%*1)"n+1/2*(1+2*1)"n+(-39*cos(n-2)"3+22*cos(n-5)"3-19*cos(n-4)"3+32*
cos(n-3)"3-25%cos(n-2)"3*cos(1)-25%cos(n-2)"3*cos(3)+100*cos(n-2)"3*cos(1)"2+100*cos(n-2)"3*
cos(3)"2cos(1) + 120 * cos(n-4) * 3 * cos(3) "~ 2 + 120 * cos(n-4) * 3 * cos(1) * 2-49 *
cos(n-4) * 3 * cos(3)-60*cos(n-5)"3%cos(3)-60*cos(n-5)"3*cos(1)+169*cos(n-2)"3*cos(1)*
cos(3)-120*cos(n-2)"3 * cos(3) * cos(1) ~ 2-120 * cos(n-2) * 3 * cos(3) * 2 * cos(1) - 290 *
cos(n-3) ~ 3 * cos(3) » 2 * cos(1) + 200 * cos(n-3) ~ 3 * cos(3) ~ 2 * cos(1) * 2 + 208 *
cos(n-3) "3 * cos(1) * cos(3) - 290 * cos(n-3) " 3 * cos(3) * cos(1)"2-100*cos(n-4)"3*cos(3)*
cos(1)"2+265%cos(n-4)"3*cos(1)*cos(3)-100*cos(n-4)*3 * cos(3) ~ 2 * cos(1) + 50 * cos(n-5) * 3
* cos(1) * cos(3) + 100 * cos(n-2) * 3 * cos(3) ~ 2 * cos(1) * 2) /(25 * cos(3) » 2 + 36 *
cos(1) * cos(3) - 30 * cos(3) - 30 * cos(3) » 2 * cos(1) + 25 * cos(1) * 2-30 * cos())1)-30

* cos(3) * cos(1) » 2 + 25 + 25 * cos(3) » 2 * cos(1) * 2) + 1/4 *(- 30 * 1 *(1+2*i) * n-35
(1-2%1) ~ n * cos(3) * 2-+27*%(1-2*1)"n*cos(1)-25*%(1-2*1)*n*cos(1)"2-35%(1+2*1)"n*cos(3)"
2-37*%i*(1-2%1)"n*cos(3)-25*%(1+2*1)*n*cos(1)"2+21%(1-2*%1)"n*cos(3)"2*cos(1)+23*(1-2*1) n*
cos(3)*cos(1)")2-20%(1-2*1i)"n*cos(3)"2*cos(1)"2+25%1*(1-2*1) n*cos(3)"2+15*1*(1-2%1) n*
cos(1)"2-20%(1+2*%i)"n * cos(3) * 2 * cos(1) * 2-15 * i *(1+2*%i) " n * cos(1) * 2 + 37 * i
*(1+2%1) * n * cos(3) + 39 * i *(1+2*i) * n * cos(1) - 39 * i *(1-2%i) * n * cos(1) + 21
*(142*i) ~'n * cos(3) * 2 * cos(1) + 41 *(1+2%)(i) * n * cos(3) + 27 *(1+2*i) * n * cos(1)

+ 48 * i *(1-2*%i) * n * cos(1) * cos(3) + 10 * i *(1-2*i) * n * cos(3) * 2 * cos(1) " 2-25 *
i *(1+42*%i) * n * cos(3) * 2 + 19 * i *(1+2*i) * n * cos(3) * cos(1) * 2-48 * i *(1+2*i) * n *
cos(1) * cos(3) + 33 * 1 *(1+2*%1) * n * cos(3) * 2 * cos(1) - 24 *(1+2*i) "~ n * cos(1) * cos(3)
+ 23 *)(1+2%i)"n*cos(3)*cos(1)"2-40*(1-2*1)"n-40*(1+2*1)*n+41*(1-2*1)*n*cos(3)-10*i*(1+2*i)"n*
cos(3)"2*cos(1)"2-33*i*(1-2*1) n*cos(3)"2*cos(1)+30*i*(1-2%i)"n-24*(1-2*1i) n*cos(1)*
cos(3)-19*i*(1-2*i)"n*cos(3) * cos(1) ~ 2) /(5 * cos(1) * 2-6 * cos(1) + 5) /(5-6 * cos(3)

+ 5 * cos(3) »2) - 3 /2*%(-2%cos(n-2)*cos(1)-2*cos(n-2)+10*cos(n-2)*cos(1)"2-5%cos(n-3)*
cos(1)+cos(n-3))/(5*cos(1)"2-6*cos(1)+5)-3/8*(i*(1-2*1)"n*cos)1)"2-2*(1-2*1) n*cos(1)"2-4*
1*(1-2%i)"n*cos(1)+3*1*(1-2*1)"n-4*(1-2%1) n+2*(1-2*1)*n*cos(1)-2*(1+2*i)*n*cos(1)"2-1*
(1+2*1)*n*cos (1) 2+4*1*(1+2*1) n*cos (1)-4*(1+2*1) n-3*i*(1+2*1)*n+2*(1+2*i)"n*cos (1))/
(5%cos(1)"2-6*cos(1)+5)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © SYSTEMS OF DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE EQUATIONS

Now we try to simplify the above non-trivial result.

» pretty(simple(maple('evalf(rsolve({x(n+2)-2*x(n+1)+5*x(n)=cos(3*n), x(0)=1,x(1)=1},x))")))
.4373424525 exp((.8047189562 - 1.107148718 I) n)

+ .4373424525 exp((.8047189562 + 1.107148718 I) n)

3 3
- .9160727930 cos(n - 3.) + .4362567143 cos(n - 5.)

3 3
+ .1725076052 cos(n - 2.) - .1986350636 cos(n - 4.)

- .06265675740 I exp((.8047189562 + 1.107148718 I) n)
+ .06265675750 I exp((.8047189562 - 1.107148718 I) n)

+ .7931668115 cos(n - 3.) + .07520876265 cos(n - 2.)

Partial Differential Equations

MATLAB implements several commands which can be used when working with partial differential equations, all of
which require the prior use of the maple command. We have:

pdesolve (pdeqn, fnc (var 1,.., varn)): This solves the partial differential equation
pdeqn for the function fnc (varl,.., varn).

pdesolve (exprpd, fnc (varl,.., varn)): This solves the partial differential equation
exprpd=0.

DEtools[PDEchangecoords] (pdeqn, [varind, 1,.., varind, n], option): This converts the
partial differential equation pdeqn in the independent variables varindl,.., varindn

to the new coordinate system defined by the option. The possible two-dimensional
coordinate systems are bipolar, cardoid, cassinian, elliptic, hyperbolic, invcassinian,
invelliptic, logarithmic, logcosh, maxwell, parabolic, polar, rose and tangent. For three
dimensions possible systems include, among others, bispherical, cardoidal, conical,
cylindrical, ellipsoidal, paraboloidal, sixsphere, spherical and toroidal.

DEtools [PDEchangecoords] (pdeqn, [val,.., van], option, [vnl, .., vin]): This converts
the partial differential equation pdeqn to the specified new coordinate system in the
given independent variables.

DEtools[PDEchangecoords] ({pdeqnl, .., pdeqnm}, [varind]l, .., varindn], option):
This converts the given system of partial differential equations to the specified new
coordinate system in the given independent variables.

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © SYSTEMS OF DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE EQUATIONS
EXAMPLES:
w pretty(syn(maple(’pdesolve(diff(f(x,y),x,x)+5*diff(£(x,y),%,y)=3, F(x,y))')))

2
f(x, y) =3/2x + Fi1(y) + _F2(y - 5 x)

» pretty(sym(maple(’pdesolve(3*diff(g(x,y),x)+7*diff(g(x,y),x,y)=x*y, g(x,y)))))

2 2
g(x, y) =1/6 x y - 7/18 x + Fi(y) + exp(- 3/7 y) _F2(x)

n pretty(sym(maple('pdesolve(diff(h(x,y),x,x)-diff(h(x,y),y,y)=0, h(x,y)) ')))
h(x, y) = _F1(y + x) + _F2(y - x)
n pretty(sym(maple('pdesolve(y*diff(U(x,y),x)+x*diff(U(x,y),y)=0, U(x,y)) ')))

2 2
Ulx, y) = F1(-x +y).

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Numerical Calclus with MATLAB.
Applications to Differential Equations'y

MATLAB and Programming

MATLAB can be used as a high-level programming language including data structures, functions, instructions for flow
control, management of inputs/outputs and even
object-oriented programming.

MATLAB programs are usually written in files called M-files. An M-file is nothing more than a MATLAB code
(script) that executes a series of commands or functions that accept arguments and produce an output. The M-files
are created using the text editor.

Text Editor

The Editor/Debugger is activated by clicking on the create a new M-file button j in the MATLAB desktop or by selecting
File » New » M-file in the MATLAB desktop (Figure 6-1) or Command Window (Figure 6-2). The Editor/Debugger
opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB programming code (Figure 6-3).
You can open an existing M-file using File » Open on the MATLAB desktop (Figure 6-1) or, alternatively, you can use the
command Open in the Command Window (Figure 6-2). You can also open the Editor/Debugger by right-clicking on the
Current Directory window and choosing New » M-file from the resulting pop-up menu (Figure 6-4). Using the menu
option Open, you can open an existing M-file. You can open several M-files simultaneously, each of which will appear in
a different window.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

70 Edit View Web Window Help
(e [e]
COpen... Ctrl+0 Figure
Close Command Window Chrl+'wW Model
GUI
Import Data...
Save Workspace As... Ctrl+S
Set Path... L
Preferences...
ne.
Brint... is the sine of the elements
- d methods
1 D:\... 12yworKimatriz1 . asc yu/sin. m
2 D:\..Afinancelacrubond.m
3 DL financelacrudisc.m 4
4 D\, \financelamortize.m)
S1Ne.
Exit MATLAB Ctr+Q is the cosine of the elemer
[l |
Overloaded methods
B SRTGE help syn/cos.n
Dmatriz.asc =
-] i [EN
Qg 3
b g
4 |)l Command Hi| | «| [
Ready
Figure 6-1.

<) Command Window g@@l

FCN Edit View Web Window Help

AT NI

Cpen... Chrl+0 Figure
Close Command Window Chrl+w Madel
GUI

Impork Data. ..
Save Workspace As... Crl+S

lements of X.
Set Path...
Preferences. ..

Print...

1 D:\.. . 12\workimatrizl . asc
2 D:\.. Minancelacrubond.m slements of X.
3 0:\.. Minancelacrudisc.m
4 D\, Minancelamortize.m

Exit MATLAB Ctr+Q
>> =
4| 3
Ready
Figure 6-2.
74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

=) Untitled*

File Edit Wiew Text Debug Breakpoints Web Window Help
DEE& bR~ | AH| 88| E6EE R E | sl x|
« (o
Ready
Figure 6-3.

<) MATLAB
File Edt View Web Window Hel
- Open
D@ | & B2 dq e,
Open as Text
-4 mLan Import Data...

L —ﬂ. Communications Tod . .
—ﬂ Control Jystem Tnlm
E --ﬂ.Dace Acquisition Model
Folder
¢\ Database Toolbox
#- el Narafasd Tanlhav | Cut =l
4 | b ‘ Launch Pad | WWoi Copy

3

File Fitter .
L@ ek

| ¥iymatlabRl2\work Add to Path
Modified

S .

+

+

-

All files Refresh

DZ-ene-zZ001

matri c a.
jmatrizl.asc 02-ene-2001 03:27 a.

<| > | _Command History Current Directory I

Ready

Figure 6-4.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Figure 6-5 shows the functions of the icons in the Editor/Debugger.

Open new empty M-file
p Py Search and replace strings in an M-file

Open existing M-file Go to a function
Save M-file Place cut-off for debugger(breakpoinf)
Print M-file Delete breakpoint
Cut Run M-filecurrent line
Copy Run a function
Paste Step-pause function
I Run up to new breakpoint
|czeae @ WhH B B sl | A
Figure 6-5.

Scripts

Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once the
syntax of the script has been entered into the editor (Figure 6-6), it is stored in the work library (work) and
simultaneously executes by clicking the button GJ or by selecting the option Save and run from the Debug menu
(or pressing F5). To move from one chart to the next press ENTER.

Fle Edt View Iext Debug Breskpoints Web Window Help
DR & B | MAH BB B B

$M-file script producing graphics of petals
theta = -pi:0.01l:pi;
rho(l,:) = 2*sin(S*theta)."2;
tho(Z,:) = cos(l0*theta)."3;
rtho(3,:) = sin(theta)."2;
tho(4,:) = 5%cos(3.5*theta).*3;
for i = 1l:4
polacr(theta,rho(i,:))
pause
end -1

Jl 1>

LARE

= 00O NOUEWN =

-

K]

Ready

Figure 6-6.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

2 Figure No. 1 E"EJE'

Fle Edt Yiew [nsert Tools Window Help

DEEd& A A/ 22D

Figure 6-7.

) Figure No. 1
Fle Edt Yiew [nsert Tools Window Help

DEEd& A A/ 22D

20

Figure 6-8.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

. 2 Figure No. 1 g@@

Fle Edt View [nsert Tools Window Help

DEEd& A A/ 22D

Figure 6-9.

. 2 Figure No. 1 g@@

Fle Edt View [nsert Tools Window Help

DEEd& A A/ 22D

I

S0
_< 2-1-““\“. ":‘. b,

1

20%

270

Figure 6-10.

Functions and M-Files. Function, Eval and Feval

We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program.
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the
function to be used whenever required.

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of
commands in batch mode, in which case a sequence of commands can be submitted which were previously written
in a file. This file (M-file) must be stored on disk with the extension “m” in the MATLAB subdirectory, using any ASCII
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the
command echo on is active and only the results of successive executions of the interpreted commands are displayed.
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually,
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful
applications of M-files. The syntax of this command is as follows:

function output_parameters = function name (input_parameters)
the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by
commas. If there is more than one input parameter, they are separated by commas. The body of the function is the
syntax that defines it, and should include commands or instructions that assign values to output parameters. Each
command or instruction of the body often appears in a line that ends either with a comma or, when variables are
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is
stored in the M-file named function_name.m.

Let us define the function funi(x) = x A 3 - 2 x + cos(x), creating the corresponding M-file funI.m. To define this
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button {:] in the MATLAB
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the
function, as shown in Figure 6-11.

¥ Untitled® =]

Fl= Edit View Text Debug Breakpoints Web Window Help
DB & ® - M £ 3 D %) st | x|

function p=funl(x)
tDefinition of a simple function

pax*3-2"x4coS(X)

h & W by =

Ready

Figure 6-11.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB
Editor/Debugger. This opens the Save dialog of Figure 6-12, which we use to save our function with the desired name
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button
or select Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the
function and in MATLAB'’s default work subdirectory C: \MATLAB6pI1\work.

Save file as: @@

Guacdar en Iq work, ;] «~ @B c¥ BB
: ;
K9 = cosint.m
Documentos | [Z] exponen
recientes Em
@ =
Escritonio
</
Mis documentos
8
MiPC
«
Mis stios dered Nombre: |funl.m ~| [[Guacar_|
Tiog: [N Fies) ~] _ Concels |
Figure 6-12.

Once a function has been defined and saved in an M-file, it can be used from the Command Window.
For example, to find the value of the function at 37/2 we write in the Command Window:

»> funi(3*pi/2)
ans =
95.2214

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the
command help, as follows:

»> help funi(x)
A simple function definition

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax
of which is as follows:

feval ('F', argi, argi,..., argn)

This evaluates the function F (the M-file Em) at the specified arguments argl, arg2, ..., argn.

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

As an example we build an M-file named equation2.m which contains the function equation2, whose arguments
are the three coefficients of the quadratic equation ax? + bx + ¢ = 0 and whose outputs are the two solutions (Figure 6-13).

Fie Edt View Text Debug Breskponts Web Window Hebp
D@8 & R AH B B sus| x|
1 function x21=equat a
2| | 3¥This function solv T
3 W
4 tand who
5|=| d=b~2-4%a%c:
Bl=| xl=(-besqrr(d))/(2%a):
7|=| x2=(-b-sqrt(d))/(2%a);
g -
9 =)
I [+
Ready
Figure 6-13.

Now if we want to solve the equation x* + 2 x + 3 = 0 using feval, we write the following in the Command Window:
» [x 1, x 2] = feval('equation2',1,2,3)
X1-=
-1.0000 + 1. 41421
X 2 =
-1.0000 - 1. 41421

The quadratic equation can also be solved as follows:
» [x 1, x 2] = equation2 (1,2,3)
X 1=

-1.0000 + 1. 41421

X2 =
-1.0000 - 1. 41421

If we ask for help about the function equation2 we do the following:

»>>help equation2

This function solves the quadratic equation ax * 2 + bx + ¢ = 0
whose coefficients are a, b and c (input parameters)
and whose solutions are x 1 and x 2 (output parameters)

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval,
whose syntax is as follows:

eval (expression)

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

»>n=4;

»>eval(['M' num2str(n) ' = magic(n)'])
M4 =

16 2 3 13

51110 8

9 7 612

4 14 15 1

Local and Global Variables

Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary to
define global variables with the GLOBAL command whose syntax is as follows:

GLOBAL X y z...

This defines the variables x, y and z as global.

Any variables defined as global inside a function are available separately for the rest of the functions and in the
base workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an
empty array. If there is already a variable with the same name as a global variable being defined, MATLAB will send
a warning message and change the value of that variable to match the global variable. It is convenient to declare a
variable as global in every function that will need access to it, and also in the command line, in order to access it
from the base workspace. The GLOBAL command is located at the beginning of a function (before any occurrence of
the variable).

As an example, suppose that we want to study the effect of the interaction coefficients o and 3 in the
Lotka-Volterra predator-prey model:

V=N —ayy,
J./zz_yz +ByY,

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 6-14.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

“ C:\MATLAB6p1\workilotka. m = 8X
File Edit View Text Debug Breakpoints Web Window Help
DERB&S » @dw - AH | AR D0 IR L s« x|
1 function yp = lotka(t,y) =
2 2 LOTEA Lotka-Volterra predator-prey model.
3| - global ALPHA BETA
4= wp = [¥{l) - ALPHA®Y(1l)*y(2):; -y(2) + BETA®Y(l)*y(2)]):
5
6
4 —
| [»]

Figure 6-14.

Later, we might type the following in the command line:

»>global ALPHA BETA
ALPHA = 0.01
BETA = 0.02

These global values may then be used for o and B in the M-file lotka.m (without having to specify them).
For example, we can generate the graph (Figure 6-15) with the following syntax:

» [t, y] = ode23 ('lotka', 0.10, [1; 1]); plot(t,y)

) Figure No. 1 E|E|[X|

Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

Figure 6-15.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Data Types

MATLAB has 14 different data types, summarized in Figure 6-16 below.

ARRAY
Char NUMERIC cell structure function handle
userclass ~ javaclass
[|
int8, uints, single double
int16, uint16,
int32, uint32 sparse
Figure 6-16.
Below are the different types of data:
Data Type Example Description
single 3* 10 " 38 Simple numerical precision. This requires less storage than double
precision, but it is less precise. This type of data should not be
used in mathematical operations.
Double 3*10"300 5+61 Double numerical precision. This is the most commonly used
data type in MATLAB.
sparse speye(5) Sparse matrix with double precision.

int8, uints,
int16, uinti6,
int32, uint32

char
cell

structure

user class

java class

function handle

UInt8(magic (3))

'Hello'

{17 'hello' eye (2)}

a.day = 12;

a.color = 'Red’;
a.mat = magic(3);

inline('sin (x)')

Java.awt.Frame

@humps

Integers and unsigned integers with 8, 16, and 32 bits. These
make it possible to use entire amounts with efficient memory
management. This type of data should not be used in
mathematical operations.

Characters (each character has a length of 16 bits).
Cell (contains data of similar size).

Structure (contains cells of similar size).

MATLAB class (built with functions)
Java class (defined in API or own) with Java.

Manages functions in MATLAB. It can be last in a list of
arguments and evaluated with feval.

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Flow Control: FOR Loops, WHILE and IF ELSEIF

The use of recursive functions, conditional operations and piecewise defined functions is very common in
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition
of the functions will be made via M-files.

The FOR Loop

MATLAB has its own version of the DO statement (defined in the syntax of most programming languages). This
statement allows you to run a command or group of commands repeatedly. For example:

» for i=1:3, x(i)=0, end
X =

0

000
The general form of a FOR loop is as follows:

for variable = expression
commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order
to avoid repetition in the output. Typically, loops are used in the syntax of M-files. Here is an example (Figure 6-17):

Ede Edit View Text QRebug Breakpoints Webh Window Help
D& & B AHK R | x|
1 function A =matrixl(a,n) s
2 ADefinition f a macrix
3= for i=l:m,
4| = for j=l:n,
5| = A(1,3)=1/(i+3-1);
6|~ end
7= end; —_—
8
9 ha
| 1>

Figure 6-17.

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matrix1.m, we can build any
Hilbert matrix later by running the M-file and specifying values for the variables m and n (the matrix dimensions) as
shown below:

»» M = matrix1 (4,5)
M =

1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250

The WHILE Loop

MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages.
This statement allows you to repeat a command or group of commands a number of times while a specified logical
condition is met. The general syntax of this loop is as follows:

while condition
commands
end

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes
in its interior a whole set of commands that are separated by commas which continually loop while the condition is
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output.

As an example, we write an M-file (Figure 6-18) that is saved as whilel.m, which calculates the largest number whose
factorial does not exceed 10'.

Fle Edit View Text Debug Breakpoints Web Window Help
DR & R AH 88 x|
1= n=1: =
2= while prod(l:n) < 1l.el00,
3| - n=n+l;:
4| - end,
5li= n o
6
d ~
| | i
Figure 6-18.

We now run the M-file.
»> while1
n =

70

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

IF ELSEIF ELSE END Loops

MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:

if condition
commands
end

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.

if condition
commands1
else
commands2
end

In this case, the commands commandsl are executed if the condition is true, and the commands commands2 are
executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF
statement, the general syntax is as follows:

if conditioni
commands1

elseif condition2
commands2

elseif condition3
commands3

else
end

In this case, the commands commands1 are executed if conditionl is true, the commands commands2 are
executed if conditionl is false and condition2 is true, the commands commands3 are executed if conditionl and
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:

if conditioni
commands1
else

if condition2
commands2
else

if condition3
commands3
else

end
end
end

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Consider, for example, the M-file elsel.m (see Figure 6-19).

% C:\MATLAB6p1\worklelse1.m N =]2d

Fle Edt View Text Debug Eresponts Web Window Heb
DR & Bo - AH DR 0 x
1 function elsel(n) :I
2 teven, odd, positive, negative.
3-| it n<o0,
4 - A="'n is n e’
5/=| elseif rem(n,2) =0
Bl - A='n is even' —
1= else
8| - A= 'n i3 cdd’
a - end -
| |]
\l b | equation2.m| whilel.m elsel.m I
Ready
Figure 6-19.

When you run the file it returns negative, odd or even according to whether the argument 7 is negative,
non-negative and odd, or non-negative and even, respectively:

»>else1 (8), else1i (5), elsei (- 10)
A =

n is even

n is negative

Switch and Case

The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax
is as follows:

switch expression (scalar or string)
casevaluel

statements % runs if expression is value1
casevalue2

statements % runs if expression is value2

otherwise
statements % runs if neither case is satisfied

end

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

’

Below is an example of a function that returns ‘minus one, ‘zero, ‘one, or ‘another value’ according to whether the
input is equal to —1,0,1 or something else, respectively (Figure 6-20).

) C:\MATLAB6p 1\worklcase1.m _,: ”:D|B_|
Ede Edt View Text Debug Breakponts Web Window Help
DR & ®e - A 0N v x|
1 function casel(n) =1
2 %-1, 0, 1 or another number.
3= switch n
4| - case -1
Sz disp('minus one')
8l - case ©
7| = disp('zexro'):
8 - case 1
9 - disp(‘gone’):
10| - otherwise
11| = disp ('ancother value'):
12| = end
13
14 1
| |+
4 | » equacion?-mj whilel . m] elsel.m M
Ready
Figure 6-20.

Running the above example we get:

»> casel (25)
another value

»> casel (- 1)
minus one

Continue

The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 6-21) that counts the lines of
code in the file magic.m, ignoring the white lines and comments.

4 C:\MATLAB6p 1\work\continue1.m* (=]
Fle Edt View Text Debug Breakponts Web Window Hebp
D=8 & B #AH 8B x|
1]=| tid = fopen('magic.n','r'): -
2|-| count = 0;
3|=| while ~teof(tid)
4~ line = fgetl(fid):;
5| if isempty(line) | scrncmp(line,’'s’,l)
Bl - continue
7= end
8- count = count + 1;
9=| end
10|=| disp(sprincf(‘'kd lines',count)); =
1
12 L'
_ILIES] [+]
(| » |equacion2.m| whietm | elsetm continuerm |
Ready
Figure 6-21.

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6~ NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS
Running the M-file, we get:
»> continue1

25 lines

Break

The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which appears
outside of the loop. Below is an M-file break1.m (Figure 6-22) which reads the lines of code in the file ff.m, exiting the
loop as soon as it encounters the first empty line.

¥} C:\MATLAB6p 1\workicontinue1.m* g@@

Fle Edt View Text Debug Breakpoints Web Window Help
De@ & B> AH BB x|
1]1- £id = fopen('magic.m','x'); =g
2|-| count = 0;
3|-| while ~feof(fid)
4| - line = fgetl(fid):;
5= if isempty(line) | strncmp(line,'s’',l)
Bl - continue
= end
8- count = count + 1;
9|-| end
10|-| disp(sprincf('%d lineas',6count)): =
1
12 Lj
Ll [
(| » [equation2.m| whiletm | elset.m continuet.m |
Ready
Figure 6-22.

Running the M-file we get:
> breaki

ZFFT Discrete Fourier transform.

FFT(X) is the discrete Fourier transform (DFT) of vector X. For
matrices, the FFT operation is applied to each column. For N-D
arrays, the FFT operation operates on the first non-singleton
dimension.

FFT(X,N) is the N-point FFT, padded with zeros if X has less
than N points and truncated if it has more.

FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
dimension DIM.

3R 3R 3R 3R 3R 3R IR 3R I 3 X

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

% For length N input vector x, the DFT is a length N vector X,

% with elements

% N

% X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
4 n=1

% The inverse DFT (computed by IFFT) is given by

% N

4 x(n) = (1/N) sum X(k)*exp(j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
% k=1

%

% See also IFFT, FFT2, IFFT2, FFTSHIFT.

Try ... Catch

The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the cause
of the error. The general syntax of the command is as follows:

try,
instruction
ves
instruction
catch,
instruction

ey
instruction

end

Return

The return statement terminates the current script and returns the control to the invoked function or the keyboard.
The following is an example (Figure 6-23) that computes the determinant of a non-empty matrix. If the array is empty
itreturns the value 1.

Fle Edt View Text Debug Breakpoints Web Window Help
DEE& B~ (AH| ARG DEX
1|- function d = detl(A) =
2| - if isempry(A)
3| - d=1;
4| - return 1
5 - else
6l - det{k)
7l- end LI
. L
.1| b eq:.zat.:.on2.m] while1.m I elsel.m deti.m Ji
Ready
Figure 6-23.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Running the function for a non-empty array we get:

> A = [-1,-1,1; 1,0,1; 1,1,1]

A =
-1 -1 -1
1 0 1
1-1-1
»> det1 (R)
ans =
2
Now we apply the function to an empty array:
»> B =[]
B =
[]
»> det1 (B)
ans =
1

Subfunctions

M-file-defined functions can contain code for more than one function. The main function in an M-file is called a
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary
function may be added which are only visible for the primary function or another subfunction within the same M-file.
Each subfunction begins with its own function definition. An example is shown in Figure 6-24.

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

% Untitled5* (=]

Fle Edit View Text Debug Breakpoints Web Window Help
DER& Qoo |(AHp| 2R DD B sl x|
1 function [avyg,med] = newstats(u) $Pri ti =
2 % NEWSTATS Calculates the nean and al functions3
3 n = length(u):;
4 avg = mean(u,n);
5 ned = median(u,n);
6
7 function a = mean{v,n) $Subfunction
8 %Calculates the mean
9 a = sum(v)/n:
10
11 function m = median(v,n) $Subfunction
12 $Calculates the median
13 v = sort(v):
14 if ren(n,2) == }1
15 m o= wi(n+l)/2);
16 else
17 n = (vin/2)+w(n/2+l))/2;
18 end
19
20 =
LR 2]
{ | 4 |eaua\:ionz.rr. whilel.m elsel.m detl.m Unftitled5
Ready
Figure 6-24.

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and n
as the second argument. When executing the main function, it is enough to provide as input a list of values for which
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.

»> [mean, median] = newstats ([10,20,3,4,5,6])
mean =
8

median =

5.5000

Ordinary Differential Equations Using Numerical Analysis

Obtaining exact solutions of ordinary differential equations is not a simple task. There are a number of different
methods for obtaining approximate solutions of ordinary differential equations. These numerical methods include,
among others, Euler’s method, Heun'’s method, the Taylor series method, the Runge-Kutta method (implemented in
MATLAB's Basic module), the Adams-Bashforth-Moulton method, Milne’s method and Hamming’s method.

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Euler’s Method

Suppose we want to solve the differential equation y '= (1, y), y(a) =y,, on the interval [a, b]. We divide the interval [a, b]

into M subintervals of the same size using the partition given by the points f, =a + kh, k=0,1,.., M, h= (b-a)/M. Euler’s

method then finds the solution of the differential equation iteratively by calculating y,, =y, + hf(¢,y,), k=0,1, .., M—1.
Euler’s method is implemented using the M-file shown in Figure 6-25.

%) D:\matlabR1 2\workieuler.m”® Q@@

File Edit View Text Debug Breakpoints Web Window Help
DR & B> AN | 2R EDETBEH| X
1 function E=euler(f,a,b,ya, M) et
2
3
4
5
6
7
] h={b-a) /M:
9|-| T=zeros(l,M+l):
10{-=| Y=zeros(l,M+l):
11|=| T=a:h:b;
12(-] Y(l)=ya;
13
14|-| for j=1:M
15{= Y(3+1)=Y(J)+h*feval (£,T(3),¥(1)):
16|=| end
17
18| - E=[T' Y']: 1
19 ﬂ
| i3
Figure 6-25.
)
Heun’s Method

Suppose we want to solve the differential equation y = f(t, y), y(a) =y, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a + kh, k=0,1,..., M, h = (b-a)/M.
Heun'’s method then finds the solution of the differential equation iteratively by calculating

Ve =Y b, y) + 1, , v+, ¥)))/2,k=0,1,..., M1
Heun’s method is implemented using the M-file shown in Figure 6-26.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

%) D:imatlabR12\workiheun.m
File Edit Yiew Text Debug Breakpoints Web Window Help

DEE& @8« éH 8 x|

1 function H=heun(f,a,b,ya,M) =
2
3| h=i(b-a)/M:
4/—| T=zeros(l,M+l);
5 -] TY=zeros{l,M+l);
B6|=| T=a:h:b;
7= TYi(l)=vya:
8- for j=1:M
9| - kl=feval (£,T(3),V(3)):
10| - kZ=feval (f,T(j+1),¥(J)+h*kl);
11| = Y(3+1)=¥(j)+(h/2)*(k1+k2);
12|-| end
2]]
14/-| H=[T' Y']:
{5 2
¥ N

1| P[simpsonsimple.m | eulerm heun.m I

Ready

Figure 6-26.

The Taylor Series Method

Suppose we want to solve the differential equation y’ = f(t, y), y(a) = y,, on the interval [a, b]. We divide the interval
[a, b] into M subintervals of the same size using the partition given by the points ¢, = a + kh, k=0,1,..., M, h = (b-a)/M.
The Taylor series method (let us consider here the method to order 4) finds a solution to the differential equation by
evaluating y’, y”, y" and y"" to give the 4th order Taylor series for y at each partition point.

The Taylor series method is implemented using the M-file shown in Figure 6-27.

%) D:\matlabR1 2\workitaylor.m

Eile Edit Yiew Text Debug Breakpoints Web Window Help
DRSS R AN | 88 BB RE
1 function T4=taylor(df,a,b,ya,H) -
2
3 % de=[y' y'' y''* y''''] is the string ‘df'
4 % T4=[T' Y']
5
B| - h=(b-a) /M:
7|=| T=zexos(l,M+l):
8|-| Y=zeros(l,M+l):
9|-| T=ath:b:
10|=]| Y(l)=va:
1
12|=| for j=1:H
13|- D=feval (df,T(3),Y(3)):
14| Y(3+1)=Y(3)+h* (D{1)+h* (D(2) /2+h* (D(3) /6+h*D (4) /24)));
15|=| end
16 |
17|=| T4=[T' Y'):
18 v
4| | »
Figure 6-27.

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

As an example we solve the differential equation y’(¢) = (¢ - y)/2 on the interval [0,3], with y(0) = 1, using Euler’s
method, Heun’s method and by the Taylor series method.
We will begin by defining the function f(, y) via the M-file shown in Figure 6-28.

File Edit View Text Debug Breakpoints Web Window Help
DEE & L © @ 88 x
1 function f=difl(t,y) =
2
3-| £=i(t-v)r2: r—
4 -
| | »
1[| euler.m] heunm dift.m]
Ready
Figure 6-28.

The solution of the equation using Euler’s method in 100 steps is calculated as follows:
»>E = euler('dif1',0,3,1,100)
E =

1.00000000000000

.03000000000000
.06000000000000
.09000000000000
.12000000000000
.15000000000000
.18000000000000

QO O O O OO

.85000000000000
. 88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

W NNDNNN .

0.98500000000000
0.97067500000000
0.95701487500000
0.94400965187500
0.93164950709688
0.91992476449042

1.56377799005910
1.58307132020821
1.60252525040509
1.62213737164901
1.64190531107428
1.66182673140816

This solution can be graphed as follows (see Figure 6-29):

»»plot (E (:,2))

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

J Figure No. 1 9 (=163
Fle Edt View Insert Iools Window Help
DEd& MAA/ AOD
18 T : T -
17 _
16 /]
150 _
1410 .
13t §
12t .
11 .
1\]
09 \ / .
0% 0 @ &0 00 120
Figure 6-29.

The solution of the equation by Heun’s method in 100 steps is calculated as follows:

»> H = heun('dif1',0,3,1,100)

H
0

0.

S O O

wNNDNN

1.00000000000000

03000000000000
.06000000000000
.09000000000000
.12000000000000

. 88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

0.98533750000000
0.97133991296875
0.95799734001443
0.94530002961496

1.59082209379464
1.61023972987327
1.62981491089478
1.64954529140884
1.66942856088299

The solution using the Taylor series method requires the previously defined function df=[y'y"” y"’y""] using the
M-file shown in Figure 6-30.

www.it-ebooks.info

97

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

%) D:\matlabR12\workidf.m

CEX

File Edit VWiew Text Debug Breakpoints Web Window Help
DB & Lo o MM B8 x|
1 function £=df(t,y) =1
2
3= £=[it-v) /2, (2-t+y)/4, (-2+t-¥)/8, (2-t+y)/16]. p—
4 h g
4| | »
(|: | eulerm] heun.m dfm
Ready
Figure 6-30.

The differential equation is solved by the Taylor series method via the command:

»» T = taylox('df',o0,3,1,100)

.03000000000000
.06000000000000
.09000000000000
.12000000000000

O OO0 oo H

.88000000000000
.91000000000000
.94000000000000
.97000000000000
.00000000000000

W N NNDN .

1.00000000000000
0.

PR R R R

98533581882813

0.97133660068283
0.
0.94529360082516

95799244555443

.59078327648360
.61020109213866
.62977645599332
.64950702246046
.66939048087422

EXERCISE 6-1

Find an approximate solution of the following differential equation in the interval [0, 0.8]:

y'=t'+y" y(0)=1

We start by defining the function f{t,y) via the M-file shown in Figure 6-31.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

File Edit View Text Debug Breakpoints Web Window Help

b @& R o o | M| A%
1 function f=dif2(t,¥) -]
2
3| - | f£=trz4yrz; 5
4

A D[]
4| b | milne.m | hamming.m | dift.m dif2.m
Ready
Figure 6-31.

We then solve the differential equation by Euler’s method in 20 steps by using the following syntax:

»> E = euler('dif2',0,0.8,1,20)

1.00000000000000

.04000000000000 1.04000000000000
.08000000000000 1.08332800000000
.12000000000000 1.13052798222336
.16000000000000 1.18222772296696
.20000000000000 1.23915821852503
.24000000000000 1.30217874214655
.28000000000000 1.37230952120649
.32000000000000 1.45077485808625
.36000000000000 1.53906076564045

1

1

1

1

1

1

1

1

1
.40000000000000 1.63899308725380
.44000000000000 1.75284502085643
.48000000000000 1.88348764754208
.52000000000000 2.03460467627982
.56000000000000 2.21100532382941
.60000000000000 2.41909110550949
.64000000000000 2.66757117657970
.68000000000000 2.96859261586445
.72000000000000 3.33959030062305
.76000000000000 3.80644083566367
.80000000000000 4.40910450907999

QO 0000000000000 OOmM

www.it-ebooks.info

99

http://www.it-ebooks.info/

CHAPTER 6 = NUMERICAL CALCLUS WITH MATLAB. APPLICATIONS TO DIFFERENTIAL EQUATIONS

The solution can be graphed (Figure 6-32) as follows:

»> plot(E(:,2))

2 Figure No. 1 g@@

Fle Edt Yew [nsert Tools Window Help

DEEd& A A/ 22D

45

35

Figure 6-32.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Ordinary and Partial Differential
Equations with Initial and
Boundary Values -

Numerical Solutions of Differential Equations

MATLAB provides commands in its Basic module allowing for the numerical solution of ordinary differential
equations (ODEs), differential algebraic equations (DAEs) and boundary value problems. It is also possible to solve
systems of differential equations with boundary values and parabolic and elliptic partial differential equations.

Ordinary Differential Equations with Initial Values

An ordinary differential equation contains one or more derivatives of the dependent variable y with respect to the
independent variable t. A first order ordinary differential equation with an initial value for the independent variable
can be represented as:

y’ = f(try)
y(to) =Yo

The previous problem can be generalized to the case where y is a vector,
Y=Yy ¥,)-

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

MATLAB’s Basic module commands relating to ordinary differential equations and differential algebraic
equations with initial values are presented in the following table:

Command Class of Problem Solving, Numerical Method and Syntax

ode45 Ordinary differential equations by the Runge-Kutta method

ode23 Ordinary differential equations by the Runge-Kutta method

odell3 Ordinary differential equations by Adams’ method

odel5s Differential algebraic equations and ordinary differential equations using
NDFs (BDFs)

ode23s Ordinary differential equations by the Rosenbrock method

ode23t Ordinary differential and differential algebraic equations by the

trapezoidal rule
ode23tb Ordinary differential equations using TR-BDF2

The common syntax for the previous seven commands is the following:

, y] = solver(odefun,tspan,y0)

, y] = solver(odefun,tspan,yo0,options)

y] = solver(odefun,tspan,yo0,options,p1,p2...)

» ¥, TE, YE, IE] = solver(odefun,tspan,y0,options)

,—.ﬁ.ﬁ.—.
—

In the above, solver can be any of the commands ode45, ode23, odel13, odel5s, ode23s, ode23t, or ode23tb.

The argument odefun evaluates the right-hand side of the differential equation or system written in the form
¥’ =f(t y) or M(z, y)y '=f(¢, y), where M(%, y) is called a mass matrix. The command ode23s can only solve equations
with constant mass matrix. The commands odel5s and ode23t can solve algebraic differential equations and systems
of ordinary differential equations with a singular mass matrix. The argument tspan is a vector that specifies the
range of integration [t, t] (tspan=[t, t,...,t], which must be either an increasing or decreasing list, is used to obtain
solutions for specific values of t).The argument y, specifies a vector of initial conditions. The arguments p1, p2,... are
optional parameters that are passed to odefun. The argument options specifies additional integration options using
the command options odeset which can be found in the program manual. The vectors T and y present the numerical
values of the independent and dependent variables for the solutions found.

As a first example we find solutions in the interval [0,12] of the following system of ordinary differential
equations:

W= VsYs »(0)=0
y; ==Y Y2(0):1
Vs = - 051y, y,(0)=1

For this, we define a function named system1 in an M-file, which will store the equations of the system.
The function begins by defining a column vector with three rows which are subsequently assigned components that
make up the syntax of the three equations (Figure 7-1).

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

% C:\MATLABGpT\workinewstats.m* [|[E1|X]

File Edit Wiew Text Debug Breakpoints Web Window

Help

D& & B MAfH a8 0 x
il function dy = systeml(t,y) -l
2|- dy = zeros(3,1): %column vector
3= dy(l) = v(2) * y(3):
4 =1 dyi(2) = -y(l) * y(3): =
5/=| dy(3) = -0.51 * y(1) * y(2):
B hd

| | .2J_J

< |) equation2 | whilel.m | elselm | detl.m newstats|
Ready

Figure 7-1.
We then solve the system by typing the following in the Command Window:

»» [T, Y] = ode45(@system1,[0 12],[0 1 1])

T =
0

0.0001

0.0001

0.0002

0.0002

0.0005

11.6136

11.7424

11.8712

12.0000

Y =

0 1.0000 1.0000
0.0001 1.0000 1.0000
0.0001 1.0000 1.0000
0.0002 1.0000 1.0000
0.0002 1.0000 1.0000
0.0005 1.0000 1.0000
0.0007 1.0000 1.0000
0.0010 1.0000 1.0000
0.0012 1.0000 1.0000
0.0025 1.0000 1.0000
0.0037 1.0000 1.0000
0.0050 1.0000 1.0000
0.0062 1.0000 1.0000

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

0.0125 0.9999 1.0000
0.0188 0.9998 0.9999
0.0251 0.9997 0.9998
0.0313 0.9995 0.9997
0.0627 0.9980 0.9990
0.8594-0.5105 0.7894
0.7257-0.6876 0.8552
0.5228-0.8524 0.9281
0.2695-0.9631 0.9815

-0.0118-0.9990 0.9992
-0.2936-0.9540 0.9763
-0.4098-0.9102 0.9548
-0.5169-0.8539 0.9279
-0.6135-0.7874 0.8974
-0.6987-0.7128 0.8650

To better interpret the results, the above numerical solution can be graphed (Figure 7-2) by using the following
command:

» plot (T, Y(:,1), "-', T, ¥(:,2),"-", T, ¥(5,3),". ')

) Figure No. 1

Fle Edit Wew Insert Tools

DEEH& "AA2A/ 22D

*aa® LIl .
[1

Window Help

1

08

-
4
T
/
.
P
o
L s

06 f \

oaf/ !
\ ;]

0.2 | ! :

of A !
!
02} : ,
\ ;

04+

06

| |
Rl \ \ ! \ H
-1 . v \\\mJZ/ . L~/

08
] 2 4 6 8 10 12
Figure 7-2.

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

Ordinary Differential Equations with Boundary Values

MATLAB also allows you to solve ordinary differential equations with boundary conditions. The boundary conditions
specify a relationship that must hold between the values of the solution function at the end points of the interval on
which it is defined. The simplest problem of this type is the system of equations

Y =flxy)

where x is the independent variable, y is the dependent variable and y’is the derivative with respect to x
(i.e., y’ = dy/dx). In addition, the solution on the interval [a, b] has to meet the following boundary condition:

g(y(a), y(b)) = 0
More generally this type of differential equation can be expressed as follows:

v = flx,y,p)
g(y(a),y(b),p) =0

where the vector p consists of parameters which have to be determined simultaneously with the solution via the
boundary conditions.
The command that solves these problems is bup4c, whose syntax is as follows:

Sol = bvp4c (odefun, bcfun, solinit)
Sol = bvp4c (odefun, bcfun, solinit, options)
Sol = bvp4c (odefun, bcfun, solinit, options, p1, p2...)

In the syntax above odefun is a function that evaluates f(x, y). It may take one of the following forms:

dydx = odefun(x, y)
dydx = odefun(x, y, p1, p2, ...)
dydx = odefun(x, y, parameters)

dydx = odefun(x, y, parameters, pi, p2, ...)

The argument bcfun in bvp4c is a function that computes the residual in the boundary conditions. Its form is as
follows:

Res = bcfun(ya, yb)

Res = bcfun(ya, yb, p1, p2, ...)

Res = bcfun(ya, yb, parameters)

Res = bcfun(ya, yb, parameters, pi1, p2, ...)

The argument solinit is a structure containing an initial guess of the solution. It has the following fields:
x (which gives the ordered nodes of the initial mesh so that the boundary conditions are imposed at a = solinit.x(1)
and b = solinit.x(end)); and y (the initial guess for the solution, given as a vector, so that the i-th entry is a constant
guess for the i-th component of the solution at all the mesh points given by x). The structure solinit is created using
the command bupinit. The syntax is solinit = bvpinit(x,y).

As an example we solve the second order differential equation:

y'+lyl=0

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

whose solutions must satisfy the boundary conditions:

yl(o) =0
y(4) = -2

This is equivalent to the following problem (where y, = yand y, =y"):
hs 1' =Y
y 2' ==\l

We consider a mesh of five equally spaced points in the interval [0,4] and our initial guess for the solutionis y, = 1
and y, = 0. These assumptions are included in the following syntax:

»» solinit = bvpinit (linspace (0,4,5), [1 0]);
The M-files depicted in Figures 7-3 and 7-4 show how to enter the equation and its boundary conditions.

File Edit View Text Debug Breakpoints Web Window

Help

DeE@& @ "B >~ épH a8 o x|
1 function dydx = twoode(x,¥y) -
2|- dydx = [¥(2)
3- -abs(¥(l))]:
4
5 -
6 -

K| | j_l

4| » [whiletm | elsetm | dettm twoogem |

Ready

Figure 7-3.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

%) C:AMATLABG6p 1\workitwobc.m D@@

File Edit WView Text Debug Breakpoints Web Window

Help

DFEE »22Ro o AH R x|
1 function res = twobc(ya,yb) =
2|= res = [ya(l)
3[- vb{l) + 2]:
4 =
5
E -

|| | L'J

| » [whiletm | elsetm | dettm twopem |

Ready

Figure 7-4.
The following syntax is used to find the solution of the equation:
»> Sun = bup4c (@twoode, @twobc, solinit);

The solution can be graphed (Figure 7-5) using the command bvpval as follows:

»> y = bupval (Sun, linspace (0,4));
»> plot (x, y(1,:));

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

Partial Differential Equations

MATLAB'’s Basic module has features that enable you to solve partial differential equations and systems of partial
differential equations with initial boundary conditions. The basic function used to calculate the solutions is pedepe,
and the basic function used to evaluate these solutions is pdeval.

The syntax of the function pedepe is as follows:

Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan)
Sol = pdepe (m, pdefun, icfun, bcfun, xmesh, tspan, options)
Sun = pdepe(m, pdefun, icfun, bcfun, xmesh, tspan, options, p1, p2...)

The parameter m takes the value 0, 1 or 2 according to the nature of the symmetry of the problem (block,
cylindrical or spherical, respectively). The argument pdefun defines the components of the differential equation,
icfun defines the initial conditions, bcfun defines the boundary conditions, xmesh and tspan are vectors [x, X,,...,x, |
and [¢,, t,...,t,] that specify the points at which a numerical solution is requested (n, f>3), options specifies some
calculation options of the underlying solver (RelTol, AbsTol,NormControl, InitialStep and MaxStep to specify
relative tolerance, absolute tolerance, norm tolerance, initial step and max step, respectively) and p1, p2,... are
parameters to pass to the functions pdefun, icfun and bcfun.

pdepe solves partial differential equations of the form:

[8u)6u w o (éuj (auj
clx, tu,— |—=x"—| x"f|x,t,u,— || +s| x,t,u,—
ox) ot ox ox ox

where a<x<b and {<i< t. Moreover, for ¢ = #, and for all x the solution components meet the initial conditions:
u(x,t,) = uy(x)

and for all £ and each x = a or x = b, the solution components satisfy the boundary conditions of the form:

P(x; tr L{) + Q(x; t)f(x; t, u/alj =0
0x

In addition, we have that a= xmesh (1), b = xmesh (end), tspan (1) =t andtspan (end) =t.Moreover
pdefun finds the terms ¢, fand s of the partial differential equation, so that:

[e, f, s] = pdefun (x, t, u, dudx)
Similiarly icfun evaluates the initial conditions
u = icfun (x)
Finally, bcfun evaluates the terms p and g of the boundary conditions:

[pl, q1, pr, qr] = bcfun (x1, ul, xr, ur, t)

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7~ ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES
As a first example we solve the following partial differential equation (x<[0,1] and £0):
,0u 0 (ﬁuj
e e
ot 0Ox\ox
satisfying the initial condition:
u(x,0) = sinzx

and the boundary conditions:
u(0,1)=0

zet+ 2401, =0
ox

We begin by defining functions in M-files as shown in Figures 7-6 to 7-8.

¥l C:\MATLAB6p 1\work\pdexipde.m Q@”Z]

Fle Edit \iew Text Debug Breakpoints Webh Window
Help
DERB& @ =@ | dH 88 & x
1 function [c,£,s] = pdexlpde(x,t,u,Dubx) =
2= c = pi*2;
3 £ = Dubx;
4-| =3 =0:
5
d [»[]
Ready
Figure 7-6.

£} C:\MATLAB6p 1\work\pdex1ic.m

File Edit Wiew Text Debug Breakpoints Weh Window
Help
DEE@& @+ @B o MAH a8 & x|
1 function ud = pdexlic(x) =
2(—| ud = =in(pi*x):
3
4
((]
Ready
Figure 7-7.

www.it-ebooks.info

109

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

%) C:\MATLABGp1iworkipdexibc. m L OX

File Edit View Text Debug Ereakpoints Web Window Help
DEES& =B« |#H B LD x
1 function [pl,ql,pr,qr] = pdexlbe(xl,ul,xr, ur,t) =
2|=| pl = ul:
3|-| gl = 0;
4=| pr = pi * exp(-t):
8-| dgr = 1;
B | |
7 =
4 D
Ready
Figure 7-8.

Once the support functions have been defined, we define the function that solves the equation (see the M-file
in Figure 7-9).

%) C:\MATLAB6p1\work\pdex1.m EHE‘[E

File Edt View Text Debug Breakpoints Web Window Help
Dzl & Bo o A R E R | s x|
1 function pdexl =
2
3-| m=0;
4-| x = linspace{0,1,20);
5|-| t = linspace(0,2,5):
B
7l=| sol = pdepe(m,Bpdexlpde,@pdexlic,@pdexlbc,x,t):
8 $Extracts the first component of the solution as u
9l-| u=sol(:,:,1):
10
11 £The solution is represented graphically as a surface
12|-| figure(l)
13|=| sucfix,t,u)
14| - cticle('Numerical solution with 20 grid points.')
15|=| xlabel('Distance x')
16| - ylabel ('Time t')
17
18 §Profile of the solution
19|=| figure(2)
20|=| ploti(x,ulend,:))
21|=| tcicle('Solution in t=2') =
22|-| xlabel ('Distance x')
23|-| vlabel('u(x,2)")
24 I;I
{I I 3
Ready
Figure 7-9.

To view the solution (Figures 7-10 and 7-11), we enter the following into the MATLAB Command Window:

> pdex1

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

) Figure Mo. 1 :; 'EJ'SZ
Fle Et Yew Juat Jok Wrdow Heb

DEFES xAr2/ PO
Numerical solution with 20 grid points

Distance x

Figure 7-10.

) Figure No. 2 =]
_!,b Bt Yew jmat Took Window e
DFES YAy, PR
Solution at t=2|
014
e,
01 /~ N
7 N
01 / \\
008
- >
S 00
¥
004
002
/ \
(1] -
0057 2 03 04 05 06 07 03 09 1
Distance x
Figure 7-11.

As a second example we solve the following system of partial differential equations (xe[0,1] and ¢ > 0):

ou o’u
6_t1 =0.024 ale - F(u, —u,)
ou o’u
a—; =0.170 ax22 + F(u, —u,)

F(y) = exp(5.73y) — exp(— 11.46y)

www.it-ebooks.info

111

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES
satisfying the initial conditions:

u,(x,0)=1
u,(x,0)=0

and the boundary conditions:

ou,
—(0,1t)=0
ax()

u,(0,£)=0
u,(1,0)=1
ou,
—=(1,1) =0
e 1,1
To conveniently use the function pdepe, the system can be written as:
1|, o|w| 0]0.024(0u,/ox) N —F(u,—u,)
1| ot|u,| ox|0.170(6u, /ox) F(u, —u,)
The left boundary condition can be written as:
0 . 1]]0.024(0u, /0x) |0
u, 0 0.170(0u, /ox) | |0
and the right boundary condition can be written as:
u-1] o], 0.024(0u, /ox)| [0
0 1 0.170(0u, /ox) | |0
We start by defining the functions in M-files as shown in Figures 7-12 to 7-14.

File Edit View Text Debug Breakpoints Web
Window Help
DEe@& @ "B - AfH &%
1 function [c,£,s] = pdexdpde(x,t,u,Dubx) 4
2/-| ¢ =r1;11:
3|- £ = [0.024; 0.17] .* Dubx;
4= ¥ =ull) - uiz);
5—| F = exp(5.73*y)-expi-11.47%y);]
6| - s = [-F: F]: -
« | ﬂ_‘
Ready
Figure 7-12.
112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

% C:\MATLAB6p1iworkipdex4bc. m M =]p=q

File Edit wiew Text Debug Breskpoints Web Window Help
DSEE& &+ "B #AH 88 LT x

1 function [pl,ql,pr,qr] = pdexdbe(xl,ul,xr,ur,t) =]

2|=| pl = [0; ul{2)]:

3= gl =[1: 0]

4| - pr = [ur(l)-1: 0]:

5-| qr=[0:1]:

dl [>f]

Ready

Figure 7-13.

3} C:\MATLAB6p 1\workipdex4ic.m Q@@

File Edit View Text Debug Breskpoints ‘Web Window
Help
DEE&E @@~ 4H | 88| ¢ x|
1 function w0 = pdexdic(x): ;
2/-| uo = [1: 03:
4 | »f
Ready

Figure 7-14.

Once the support functions are defined, the function that solves the system of equations is given by the M-file
shown in Figure 7-15.

%) C:\MATLAB6p1\work\pdex4.m g@‘@

Fle Edit View Text Debug Breskpoints Weh Window Help

DB & B | MAH| BB EDE R E | sus x|
function pdexd =
=| m=0;
= x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1]:
= t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdexdpde,fpdexdic,Bpdexdbe,x,t);
ul = sol(:,:,1):
uz = sol(:,:,2):

figure

surf (x,t,ul)
title('ulix,c)')
xlabel('Distance x')
ylabel('Time t')

figure

surf (x,t,u)
title('u2(x,t)')
xlabel('Distance x')
ylabel ('Time t')

e ey
OWW -0 th & k)= OWOW Dt & b=

o
==

|]

Ready

Figure 7-15.
113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

To view the solution (Figures 7-16 and 7-17), we enter the following in the MATLAB Command Window:

»> pdexq

) Figure No. 3

Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

Distance x

Figure 7-16.

<) Figure No. 4 Qg|g|

Ele Edt Vew [nsert Jook Wndow Heb
DESEEd& XA A/ PROD

Distance x

Figure 7-17.

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

EXERCISE 7-1

Solve the following Van der Pol system of equations:

V=Y, 1(0)=0
¥, =10000-y;)y, -y, y,(0)=1

We begin by defining a function named vdp100 in an M-file, where we will store the equations of the system.
This function begins by defining a vector column with two empty rows which are subsequently assigned the
components which make up the equation (Figure 7-18).

Fle Edt Wew Text Debug Breskpoints Web Window

Help

h=z8 & Bo - AH| 8B .
1 function dy = wdplo0D(t,y -
2|-| dy = zeros(z,l): % Co
3=| dy(l) = y(2);
4| - dy(2) = 1000%({1 - y(l)*2)*y(2) - ¥(l):
5
6 -

1| | |
‘| | while1l.m] elsel.m detl.m sistemal.m
Ready
Figure 7-18.

We then solve the system and plot the solution y, =y,(#) given by the first column (Figure 7-19) by typing the
following into the Command Window:

» [T, Y] = ode15s(@vdp1000,[0 3000],[2 0]);
»» plot (T, Y(:,1),'-")

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

) Figure No. 1

Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

1 4

051 i

05 .

ak J

15} /
-2

255 500 1000 1200 2000 2500 3000

Figure 7-19.

Similarly we plot the solution y, = y,(t) (Figure 7-20) by using the syntax:

»> plot (T, ¥(:,2),"-")

) Figure No. 1

Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

1500

1} 500 1000 1500 2000 2500 3000

Figure 7-20.

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

EXERCISE 7-2

Given the following differential equation
y" + (A — 2gcos(2x))y =0
subject to the boundary conditions y(0) = 1, y(0) = 0, y(n) = 0, find a solution for g= 5 and A = 15 based on

an initial solution defined on 10 equally spaced points in the interval [0,] and graph the first component of the
solution on 100 equally spaced points in the interval [0, 7].

The given equation is equivalent to the following system of first order differential equations:

V=Y
¥y = — (A—2gcos2x))

with the following boundary conditions:

7©0)-1=0
yz(o) =0
¥,(m)=0

The system of equations is introduced in the M-file shown in Figure 7-21, the boundary conditions are given in
the M-file shown in Figure 7-22, and the M-file in Figure 7-23 sets up the initial solution.

8] C:\MATLAB6p1\work\matd4ode.m D@@

Fle Edit WView Text Debug Breakpoints Web Window Help

DeE & CBo o dH 8] x
1 function dydx = matdode(x,v,lambda) =
2|1-| gq=5;
3= dydx = [¥(2) -
4= -({lamwbda - Z*qg*cos(2*x))*y(l)];

5 =
4| | i
Ready
Figure 7-21.

www.it-ebooks.info

117

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

5 C:\MATLAB6p 1\workimat4bc. m E]@@

Fle Edit View Text Debug Breakpoints Web Window Help
L& tBw > AH 88 x|
1 function res = matdbcivya,vb,lanbda) -]
2|-| res = [va(2)
3|- ¥b(2) =
4= vail)-1 1;
5 =
< o
Ready
Figure 7-22.

5) C:\MATLAB6p 1\work\mat4init. m Q@g

Fle Edit View Text Debug Breakpoints Web Window Help
DeE & t@Bo | MH a8 B s x
1 function yinit = matdinitix) -
2|-| winit = [cos(4%x)
3= -4*3in(4*x) 1: —
4
: =
4| o
Ready
Figure 7-23.

The initial solution for A = 15 and 10 equally spaced points in [0, &] is calculated using the following
MATLAB syntax:

»> lambda = 15;
solinit = bvpinit (linspace(0,pi,10), @mat4init, lambda);

The numerical solution of the system is calculated using the following syntax:
»» sol = bvpac(@matqode,@matqbc,solinit);
To graph the first component on 100 equally spaced points in the interval [0, © | we use the following syntax:

»» xint = linspace(0,pi);
Sxint = bvpval (ground, xint);
plot (xint, Sxint(1,:)))
axis([o pi-1 1.1])

xlabel ('x')

ylabel('solution y')

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

The result is shown in Figure 7-24.

) Figure No. 4

Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

N
o /\\ / :

=
)

solucion y
_/
~—
——
"‘____\\

\/ _

& & & o
W ;e b

o
f=1
n
n
[X]
5]
n
w

Figure 7-24.

EXERCISE 7-3

Solve the following differential equation
YV+@-y)y +y=0
in the interval [0,20], taking as initial solution y = 2, y’ = 0. Solve the more general equation

YV +ud-y)y +y=0 u>o.

The general equation above is equivalent to the following system of first-order linear equations:

y{ =Y,
Y, —=u-y2)y, - »

which is defined for x = 1 in the M-file shown in Figure 7-25.

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

5) C:\MATLAB6p1\workivdp1.m g@@

File Edit Wiew Text Debug Breakpoints Web Window Help
DEeE& @ @~ AH 88 o fx|
1 function dydt = vdplit,y) =
2/=| dydt = [¥(2): (1-¥(l)*2)*y(2)-y(1)]:
3 —
4
5 =i
| 0
Ready
Figure 7-25.

Taking the initial solution y, = 2 and y, = 0 in the interval [0, 20], we can solve the system using the following
MATLAB syntax:

» [t, y] = oded5(@vdpa, [0 20],[2; 0])

t =

.0000
.0001
0001
.0001
.0002
.0004
.0005
.0006
.0012

ISIRSIRS IS IR RS BRSNS RS IS

19.9559
19.9780
20,0000

y:

2.0000 0

2.0000 - 0.0001
2.0000 - 0.0001
2.0000 - 0.0002
2.0000 - 0.0002
2.0000 - 0.0005

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

1.8729 1.0366
1.9358 0.7357
1.9787 0.4746
2.0046 0.2562
2.0096 0.1969
2.0133 0.1413
2.0158 0.0892
2.0172 0.0404

We can graph the solutions using the following syntax (see Figure 7-26):

» plot (t, y(:,1),'-", t, y(:,2),"-")
»> xlabel ('time t')

»> ylabel('solution y')

>> legend ('y_1', 'y 2')

) Figure No. 4

Fle Edit Vew [nsert Tools Window Hslp

DEEH& "AA2A/ 22D

solucion y

tiempao t

Figure 7-26.

To solve the general system with the parameter y, we define the system in the M-file shown in Figure 7-27.

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

5) C:\MATLAB6p1\workivdp2.m [:‘ @‘@

File Edit Wiew Text Debug Breakpoints Web Window Help
DEEHES { 2o | H| 88| 49
1 function dydt = vdp2(t,y,nu) =
2(=| dydt = [y(2): mu*(l-y(1)*2)*y(2)-¥(1)]:
3 picd
4
5 =i
| 0
Ready
Figure 7-27.

Now we can graph the first solution y,= 2 and y,= 0 corresponding to x = 1000 in the interval [0,1500] using the
following syntax (see Figure 7-28):

»> [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],2000);
»> xlabel ('time t')
»> ylabel ('solution y_1')

) Figure No. 1
Be Edt Vew jrsert Jook Wndow Heb
DEEH& "AA/s PO

2

154 4

Time t

Figure 7-28.

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS WITH INITIAL AND BOUNDARY VALUES

To graph the first solution y,= 2 and y,= 0 for another value of the parameter, for example y= 100, in the interval
[0,1500], we use the following syntax (see Figure 7-29):

» [t, y] = ode15s(@vdp2,[0 1500],[2; 0],[],200);
> plot (t, y(:,1),'-');

) Figure No. 1

Fle Edit Wew Insert Tools Window Help

DEE&E A2/ 220

25

2k 4

15+ .

1+ 4

051+ 8

(1} B

051 4

|8 i

15k -

2t i

25 L L
]

Figure 7-29.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Symbolic Differential and
Integral Calculus

Symbolic Computation with MATLAB. Symbolic Variables

MATLAB's Symbolic Math Toolbox module allows you to easily manipulate and operate on formulae and expressions
symbolically. It is possible to expand, factor and simplify polynomials and rational and trigonometric expressions;
find algebraic solutions of polynomial equations and systems of equations; evaluate derivatives and integrals
symbolically; find symbolic solutions of differential equations; manipulate powers, limits and many other facets of
algebraic series. To do this, MATLAB first requires that all variables (or algebraic expressions) are declared as symbolic
with the command syms (or sym). For example, if we want to treat 6 *a*b + 3 *a? + 2 *a*b as a symbolic expression and
simplify it, we first need to declare the two variables a and b as symbolic as follows:

> syms a b
»> simplify(6*a*b + 3*a"2 + 2*a*b)

ans =
8*a*b+3*a"2

Alternatively, we could have used the following expression:
»> simplify(sym('6*a*b + 3*a*2 + 2*a*b'))
ans =

8*a*b+3*an

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

The MATLAB symbolic mathtoolbox provides several commands which can be used to define and manipulate
symbolic variables. These are described below:

Syms Xy Z... t
Symsxy z... t real
Syms Xy z... t unreal
syms

x = sym (')

x = sym (‘x) real)

x = sym(‘xjunreal)

s =sym (A)

s =sym (A, ‘option’)

double(x)

sym2poly (poly)
poly2sym (vector)
poly2sym(vector, ‘v’)

char (X)

latex (S)
ccode (S)
fortran (s)
pretty (expr)
digits (d)
digits

vpa (expr)

vpa (expr, n)
vpa(‘expr) n)
findsym (S)
isvarname (S)

vectorize (S)

Creates symbolic variables x, y, z,..., t.

Creates symbolic variables x, y, z,..., t and assumes they are real.

Creates symbolic variables x, y, z,..., t and assumes that they are not real.
Lists the symbolic variables in the workspace.

The variable x becomes symbolic (equivalent to syms x).

The variable x becomes a real symbolic variable.

The variable x becomes a non-real symbolic variable.

Creates a symbolic object from A, where A may be a string, a scalar, an array, a numeric
expression, etc.

Converts an array, scalar or numeric expression A to a symbolic object according to the
specified option. The option can be ‘f’ for floating point, ‘r’ for rational, ‘¢’ for an error
format or ‘d’ for decimal.

Converts the variable or expression x to numeric double-precision.
Returns a vector whose components are the coefficients the symbolic polynomial poly.
Returns a symbolic polynomial whose coefficients are the components of the vector vector.

Returns a symbolic polynomial in the variable v whose coefficients are the components of
the vector vector.

Converts the array X of non-negative integers (interpreted as ASCII values) into a
character string.

Convers the symbolic expression S into Latex code.

Converts a symbolic expression S into C code.

Converts a symbolic expression S into Fortran code.

Converts a symbolic expression into typeset mathematics.

Returns symbolic variables with a precision of d significant decimal digits.
Returns the current accuracy for symbolic variables.

Returns the numerical result of the expression to the number of significant digits specified
by digits.

Returns the numerical result of the expression to n significant decimal digits.
Numerical result of the expression to n significant decimal digits.

Returns all the symbolic variables in the symbolic expression or symbolic matrix S.
Returns TRUE if S is a valid symbolic variable.

Inserts a point in the string S before any symbol », *or /.

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

As a first example we consider H=3a*-2a+7, F=6a®*-5a+2 and G=5a+4a-3, and calculate:
H+F+G H-F+G and H-F-G.

»> syms a
> H = 3*a"2 - 2*a + 7; F = 6*a"3 - 5%a + 2; G = 5*a"2 + 4*a - 3;
»> pretty(H+F+G)

2 3
8a -3a+6+6a

»> pretty(H-F+G)

2 3
8a +7a+2-6a

»> pretty(H-F-G)

2 3
-2a -a+8-6a

In the following example, we carry out the following symbolic rational operations:

1 1-a° 1 1 1

1 1 1 1
—t—t—+—, sand —+——— + ———.
2a 3b 4a 5b 6¢ 1-a 1+a (+a)> (1+a)

We will begin by defining the variables a, b and ¢ as symbolic and subsequently perform the specified operations.

> syms abc
»> pretty(1/(2*a)+1/(3*b)+1/(4*a)+1/(5*b)+1/(6%*c))

3/4 1/a + 8/15 1/b + 1/6 1/c
»»> pretty((1-a)"9/(1-a)"3)

6
(1-a)

»> pretty(1/(1+a)+1/(1+a)"2+1/(1+a)"3)

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

2 1 1
Next we calculate 2 +3+v2 7§ and m + m symbolically.

»> pretty(sym(sqrt(2)+3*sqrt(2)-sqrt(2)/2))

1/2
7/2 2

»> pretty (sym (12 / (1 + sqrt (2)) + 1 / (1-sqrt (2))))
-2
In the following example, we calculate ﬁ symbolically and pass the result to numerical form.
»> r=sym(1/(2+sqrt(5)))
T =
8505245244017276*2"(-55)
»> numeric(r)

ans =
0.24

We then solve the equation x*+ 1 = 0 and present the result in typeset mathematical form.
»> solve('x*4+1=0")
ans =
[1/2*%27(1/2)+1/2%i*2°(1/2)]
[-1/2%27(1/2)-1/2*%i*27(1/2)]
[1/2%27(1/2)-1/2*%i*27(1/2)]

[-1/2%27(1/2)+1/2*i*27(1/2)]

»> pretty(solve('x"4+1=0"'))

[1/2 1/2]
[1/2/2 + 1/2 1 2]

[1
[1/2 1/2]
[-1/2 2 - 1/2 1 2]

[]
[1/2 1/2]
[1/72 2 - 1/2 1 2]

[)|
[1/2 1/2]

[-1/2 2 + 1/2 1 2]

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Next we transform a vector to a polynomial and vice versa.
»> pretty(poly2sym([1 0 9 6 2]))

4 2
X +9Xx +6x+2

»> sym2poly(x"4+9*x*2+6*x+2)
ans =
1.00 0 9.00 6.00 2.00
Below is a Hilbert matrix of order 2 whose entries have been evaluated to five significant decimal digits.
»> vpa (hilb (2), 5)
ans =

[1.,. 50000]
[. 50000,. 33333]

In the following example we define a symbolic matrix and calculate its determinant.

»> syms X
A = [cos(a*x), sin(a*x);-sin(a*x), cos(a*x)]

A =

[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

»> det (A)
ans =
cos(a*x) * 2 + sin(a*x) * 2

Next we define the previous symbolic matrix in an alternative form and calculate
its inverse.

»> A = sym ([cos(a*x), sin(a*x);-sin(a*x), cos(a*x)])
A=

[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

129

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

>> pretty (inv (A))

[cos(a x) sin(a x)]

[-------- - e]
[%1 1]
[]
[sin(a x) cos (a x)]
[----mmeemeees]
[%1 %1]

2 2

%1: = cos(a x) + sin(a x)

In the following example, we calculate 1/2 + 1/3 symbolically, set the numerical precision to 25 digits and
calculate the numerical value of the same expression. We finish by checking the current level of numerical accuracy.

»> sym(1/2+1/3)
ans =
5/6

»> digits(25)
vpa('1/2+1/3")

ans =
-8333333333333333333333333
»> digits
digits = 25

In the following example the ASCII characters whose numeric codes are 93, 126 and 115 are obtained.
»> char (93,126,115)

ans =

]

s
The following example transforms the series expansion of In(1 +x) into Latex code, C code and FORTRAN code

»> syms X

»» f = taylor(log(1+x));

»> latex(f)

ans =

Xx-1/2\, {x}*{2}+1/3\, {x}*{3}-1/4\, {x}*{4}+1/5\, {x}*{5}

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

»> ccode(f)

ans =

A = X-X*X/2.0+x*X*X/3.0-X*X*X*X/4. 0+ X Xx*x*X*Xx/5.0;
»> fortran(f)

ans =

A = X-X**2/2+x**3/3-x**4/4+x**5/5

Symbolic Functions. Substitution and Functional Operations

MATLAB'’s symbolic mathematics module allows you to define symbolic functions directly using the syntax
f= function’ (or f= function) provided the variables have previously been defined as symbolic with syms.

Once a symbolic function has been explicitly defined, it is possible to substitute values for the variables in the
function, i.e., calculate the value of the function at a given point, using the commands shown below:

subs(f, a) Applies the function f at the point a.

subs(f,a,b) Substitutes b in place of a in the function f.

subs (f, variable, value) Replaces the variable variable by the value value in the function f.

subs(f, {x,y,...}, {a,b,...}) Replaces the variables {x, y,...} respectively by the values {a, b,...} in the function f.

As a first example we define the function f{x) = x* and calculate f{(2) and f{b+ 2).
» f="x*3'
f =
x"3

»> A=subs(f,2)

A=

8

»> syms b

»> B=subs(f,b+2)
B =

(b+2) * 3

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

In the following example we consider the two-variable function fla, b) = a+b and first replace a by 4, and then a
and b respectively by 3 and 5 (i.e., we find f{3,5)).

»> syms a b
»> subs(a+b,a,q)

ans =
4+b
»> subs(a+b,{a,b},{3,5})
ans =
8
Here are three additional examples of substitutions.
»> subs (cos (a) + (b), {a, b}, {sym ('alpha’), 2})
ans =
cos (alpha) + sin (2)
»> subs('exp(a*t)','a’,-magic(2))
ans =

[exp (t), exp(-3*t)]
[exp(-4*t), exp(-2*t)]

>> syms X y
> subs(x*y,{x,y},{[0 1;-1 0],[1-15-2 1]})

ans =

0-1
20

In addition to replacement, MATLAB also provides commands that allow functional operations, such as summation,
subtraction, multiplication and division of functions, as well as composition and inversion. The following list summarizes
the syntax of these commands:

symadd (f, g) Adds the functions fand g (f+ g)
symop(f, ‘+,g, ‘+, h, ‘+).....) Returns the sum f+g+h +.... Note that symop is obsolete

in more recent versions of MATLAB.
symsub (f, g) Returns the difference of fand g (f-g)
symop(f, ‘-, g, ‘-, h,‘-).....) Returns the difference f-g-h-...
symmul (f, g) Returns the product of fand g (f*g)

(continued)

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

symop(f, ‘*,g, ‘¥ ,h,“*).....) Returns the product f*g *h *...

symdiv (f, g) Returns the quotient of fand g (f/g)
symop(f, ‘/} g,/ h, /}eees) Returns the successive quotient((f/g)/h)/ ...
sympow (f, k) Raises fto the power k (k a scalar)
symop(f, ‘A, g) Raises a function to the power of another function (f¢)
compose (f, g) Composesfand g (fog (x)=f(g (x)))
compose(f, g, u) Composes fand g, taking the
expression u as the domain of fand g
g = finverse (f) Returns the inverse of the function f
g = finverse(f, v) Returns the inverse of the function f using the symbolic

variable v as an independent variable

In the following example, given the functions f{x)=x% g(x)=x’+1 and h(x) = sin(x)+cos(x), we calculate

(+8)(x), (F-g+h)(x), (#/8)(x), flg(x)), flh(7/3)) and fig(h(sin(x)))).
»> syms X

»» f=x"2;g=x"34+1; h=sin (x) + cos (x);
»> sum = symadd(f,g)

sum =

X"2+x"3+1

»> combination = symadd(symsub(f,g),h)

combination =

X * 2-x * 3-1 + sin (x) + cos (x)

»> combination = symop(f,’'-',g,'+",h)

combination

X * 2-x * 3-1 + sin (x) + cos (x)
»> quotient = symdiv (f, g)
quotient =

X N 2-/(x"3+1)

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS
»> composite = subs (compose (g, f), x-1)
composite =
(x-1) 6 + 1
»> composite1l = subs (compose (f, h), pi/3)
compositel =

1.8660
»> composite1l = subs (compose (f, h), ' pi/3')

compositel =

+

(sin ((pi/3)) + cos ((pi/3))) " 2

»> composite2 = subs (compose (f , compose (g, h)), 'sin (x)')
composite2 =

((sin (sin (x)) + cos (sin (x))) ~ 3 + 1) * 2

In the following example we find the inverse of the function f(x) = sin(x?) and check that the result is correct.

> syms x
»» f = sin(x"2)

f =
sin(x"2)

»> g = finverse(f)
g =

asin(x)*(1/2)

»> compose(f,g)
ans =

X

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

MATLAB also provides a group of predefined symbolic special functions, whose syntax is presented in the
following table:

cosint (x) The cosine integral, Ci(x)=y +In(x)+ J':Mdt

where vy is the Euler-Mascheroni constant 0.5772156649...

sinint(x) The sine integral, Si(x)= j s1n(t)

hypergeom(n,d,z) The generalized hypergeometric function.

lambertw(x) The Lambert function A(x), which is defined by the equation AMx)er = x.,
zeta(x) The Riemann zeta function {(x), defined as ¢ (x) = zk 1k» .
zeta (n, x) The Nth derivative of zeta (x).

As a first example we find the sum of the series z et whose value is {(4).
»> zeta (4)
ans =

1.0823
n(t)

Next we find the integral _[dr We use the sine integral function.

»> sinint (2)
ans =

1.6054

Mathematical Analysis Functions. Limits, Continuity, and Series

MATLAB's symbolic mathematics module allows you to work on mathematical analysis with ease. It is possible to
calculate limits, obtain derivatives, sum series, find the Taylor series of functions, calculate integrals and work with
equations.

When working with limits, the same functions are applied to calculate limits of sequences, functions and
sequences of functions, and of course, to analyze the continuity of functions and convergence of numerical series and
power series. The analysis for one and several variables is similar. The following functions are available.

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

limit (sequence, inf) Calculates the limit of the sequence, indicated by its general term, as n tends to
infinity.

limit (sequence, inf) Calculates the limit of the sequence, indicated by its general term, as n tends to
infinity.

limit (function, x, a) Calculates the limit of the function of the variable x, indicated by its analytical

expression, as the variable x tends towards the value a.

limit (function, a) Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends towards the value a.

limit (function, x, a, ‘right’) Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends to the value a from the right.

limit (function, x, a, ‘left’) Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends to the value a from the left.

symsum (S, v, a, b) Finds the sum of the series with general term S where the variable v runs from a to b.

symsum (S, v) Finds the sum of the series with general term S where the value of the variable v
ranges from 0 to v-1.

r = symsum (S) Returns the sum of the series with general term S in terms of the symbolic variable k
(as determined by findsym) where the value of k ranges from 0 to k-1.

symsum (S, a, b) Finds the sum of the series with general term S in terms of the symbolic variable k
(as determined by findsym) where the value of k ranges from a to b.

As a first example we calculate the following sequential limits:

lim

n—wo

2

—3-2n\ . 1+7n*+3n° . (1+n\'1+n . [1+n
, Im———, i —, limy—r-—.
—7+3n e 5-8n+4n” o n e\ on
We have:

»> syms n
»> limit (((2*n-3) /(3*n-7)) * 4, inf)

ans =

16/81

»> limit ((3*n"3+7*n"2+1) /(4*n"3-8*n+5), n, inf)
ans =

3/4

»» limit (((n+1)/2) * ((n"4+1)/n * 5), inf)

ans =

1/2

136

www.it-ebooks.info

http://www.it-ebooks.info/

»> limit (((n+1)/n ~ 2) ~(2/n), inf)

ans =
1
Next we calculate the following function limits:
—1+x X—~2+x sin((ax)?
lim , lIim—————, limy1+x, lim#.
x—1 _1+\/; X2 _3+4/1+4x x>0 x—-0 X
We have:
> syms x a

»> limit((x-1)/(x"(1/2)-1),x,1)
ans =

2

»> limit((x-(x+2)"(1/2))/((4*x+1)"(1/2)-3),2)
ans =

9/8

»> limit((1+x)*(2/x))

ans =

exp (1)

»>» limit(sin(a*x)"*2/x"2,x,0)
ans =

a’2

CHAPTER 8

SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

In the following example we calculate the limit of the sequence of functions g (x) = (x*+nx) /n with x € R.

»> limit((x*2+n*x)/n,n,inf)
ans =

X

We see that the graph of the limit function is given by the diagonal passing through the first and third quadrants.

We can demonstrate this as follows (see Figure 8-1):

»» fplot('[(x*2#x), (x"2+2*x)/2,(x*243*x)/3, (x"2+4*x)/4,

(x*2+5*x)/5, (x*2+5*x) /5, (x"2+46*x) /6, (x"2+7*x)/7, (x"2+8*x) /8,

(x~249%x)79]",[-2,2,-2,2])

www.it-ebooks.info

137

http://www.it-ebooks.info/

CHAPTER 8 = SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

) Figure No. 1
Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

2

15
1
05
0k
{05+

-1

-15

Figure 8-1.

The following example verifies the continuity of the function f{x) in R-{0} where f{x) = sin(x) /x . The following
command checks thatlim_, _f(x)=f(a).

»> syms x a
»» limit (sin (x) / x, x, a)

ans =
sin (a) /a

Next we show that the function f(*)=%e is not continuous at the point x = 0 by showing that the lateral limits do
not match (one is zero and the other is infinite).

»> syms x
»> limit((exp(1/x)),x,0, 'right')

ans =
inf

>> limit((exp(1/x)),x,0, 'left')
ans =

0

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

In the following example we determine whether the series iﬁ is convergent by applying the ratio test

n=1
(hma(ni+)1) <1) and if it is, we calculate its sum.

n—m a(n

»> syms n
> f=n/2"n

f =

n/(2"n)

»» limit (subs(f,n,n+1)/f, n, inf)
ans =

1/2

We see that the limit of the ratio of successive terms is less than 1, which means the series converges. We calculate
its sum using the following:

»> symsum(f,n,1,inf)
ans =

2

Derivatives, Integrals and Differential Equations

We describe below the MATLAB functions which are used in mathematical analysis when dealing with derivatives,
integrals and differential equations. We will begin with the differentiation-related functions.

diff(‘f, ‘x’) Returns the derivative of fwith respect to x.

syms x, diff(f, x) Returns the derivative of f with respect to x.

diff(‘f), ‘x, n) Returns the nth derivative of fwith respect to x.

syms x, diff(f, x, n) Returns the nth derivative of fwith respect to x.

r = taylor(f, n, v) Returns the MacLaurin series of order n-1 for the
Junction fin the variable v.

r = taylor(f) Returns the MacLaurin series of order 5 for the function fin
the default variable.

r = taylor(f, n, v, a) Returns the Taylor series of order n-1 for the

Junction fin the variable v in a neighborhood of the point a.

R = jacobian(w, v) Returns the Jacobian matrix of w with respect to v.

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Below are the integration-related functions:

syms x, int(f(x), x) or int(‘f(x)} ‘x’) Computes the indefinite integral J. f(x)dx
int (int (‘f(x, y), X’), ‘v)) Calculates the double integral _[.f f(x)dxdy
(syms x y int (int (f(x, y), x),y)) Calculates the double integral I I f(x)dxdy

int (int (int (... int (‘€ (X, y...,)} '), ‘¥)...),'2) Calculates j j .. j f(x,y,...2)dxdy...dz

Symsxyz Calculates ”...If(x,y,...z)dxdy...dz
int (int (int (... int (f (x, y...z), X), y)...), Z)

syms x a b, int(f(x), x, a, b) Calculates the definite integral jb f(x)dx
int(‘f(x))} ‘x, ‘a) ‘b’) Calculates the definite integral jb f(x)dx
int (int (‘f(x,y), ‘x} ‘a} ‘b’), ‘y, ‘c) ‘d’)) Calculates the integral J.b'ffl f(x,y)dxdy
symsxyabcd, Calculates the integral jb I ‘ f(x,y)dxdy

(int (int (f(x,y), x, a, b), y, ¢, d))
int (int (int (... int (‘f(x, y,...,2)} ‘x} ‘a, ‘b’), ‘y, Calculates the integral
), 5) P Sy 2ty .d

symsxyzabcdef, Calculates the integral

int (int (int (... int (f(x, y,...,2), X, a,b),))) bped of flx
VY,...z)dxdy...dz

v, ¢, d),...), z,¢e,f) L .L .L

The following table summarizes the functions related to differential equations:

dsolve(‘e, ‘v’) Solves the differential equation e where v is the independent variable (if you don’t specify ‘v;
the independent variable is by default x). It returns only explicit solutions.

dsolve(‘e) ‘c}‘v’) Solves the differential equation e subject to the initial condition specified by c and where v is the
independent variable.

dsolve(‘e)cl)c2)...,cn)V’) Solves the equation differential e subject to the initial conditions specified by cl,...,cn, where v
is the independent variable.

dsolve(‘eycl,c2,...,cn)v’) Solves the differential equation e subject to the specified initial conditions cl,..,cn, where v is
the independent variable.

dsolve(‘el) ‘e2)..., ‘enjcl, Solves the system of differential equations el,...,en, subject to the specified initial
‘c2,...,‘cn, ‘v’) conditions cl,...,cn, where v is the independent variable.

dsolve(‘el, e2,..., en)cl, Solves the system of differential equations el,...,en subject to the specified initial
c2,...,cn, ‘v’) conditions cl,...,cn where v is the independent variable.

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

As a first example, we calculate the derivative of the function In(sin(2x)).
»> pretty(diff('log(sin(2*x))", 'x"))
2 cos (2 x)

This derivative can be simplified:

»> pretty(simple(diff('log(sin(2*x))"', 'x")))

In the following example we calculate the first, second, third and fourth derivatives of the function f{x) =1 /x.

» f="1/x";
[diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]

ans =
[-1/x ~ 2, 2/x ~ 3, - 6/x ™ 4, 24/x ~ 5, - 120/x " 6]

Then, given the function f(x, y) = sin(xy) +cos(xy?), we calculate the following partial derivatives:
of/ 9x, df1 Ay, 3*f] 9x?, *f13y?, I*f/ 9xdy, *f/dydx y 9*f/d*xd%*y

> syms X y
»» f = sin(x*y) + cos(x*y"2)
f =

sin(x*y) + cos(x*y*2)

»> diff(f,x)

ans =

cos(x*y) *-sin(x*y”2) * y * 2

»> diff(f,y)

ans =

cos(x*y) * x-2 * sin(x*y"2) * x *y
»> diff(diff(f,x),x)

ans =

-sin(x*y) * y * 2-cos(x*y”2) * y * 4

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

»> diff (diff(f,y), y)

ans =

-sin(x*y) * x * 2-4 * cos(x*y’2) * x A2 ¥y A 2-2 ¥ sin(x*y"2) * x

»> diff(diff(f,x),y)

ans =

-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y"2) * x * y * 3-2 * sin(x*y”2) *y

»> diff(diff(f,y),x)

ans =

-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y"2) * x * y * 3-2 * sin(x*y*2) *y

»> diff(diff(diff(diff(f,x),x),y,y))

ans =

sin(x*y) * y * 3 * x-3 * cos(x*y) ¥ y * 2 + 2 * cos(x*y*2) *y 7 *¥ x + 6 * sin(x*y*2) *y * 5
Next we find the Taylor series up to order 10 of the function 1 /(2-x) in a neighborhood of the point x= 1:

> syms x
»» f=1/(2-x)

f:
1/(2-x)
»»> pretty(taylor(f,11,x,1))

2 3 4 5 6 7
x+ (x-1) +(x-1) +(x-1) +(x-1) +(x-1) + (x-1)

8 9 10
+(x-1) +(x-1) + (x-1)

dx -

The following example computes the integral I -
x -1
»» int('1/(x*2-1)",'x")

ans =

-atanh (x)

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

The following example estimates the integral ja In(1+ bx)dx for arbitrary parameters a and b.
»> syms x a b, pretty(simple(int(a*log(1+b*x),x)))
a (log(1 + b x)-1) (1+bx)
The following example computes the double integral I Jaln(l +bx)dxdb where a is an arbitrary parameter.
»> syms x a b, pretty(simple(int(int(a*log(1+b*x),x),b)))
a (-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b -1 -2 b x - log(b))
The following example computes the triple integral .[Ha In(1+ bx)dxdba.
»> syms x a b, pretty(simple(int(int(int(a*log(1+b*x),x),b),a)))

2
1/2a(-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b - 1 - 2 b x - log(b))

We calculate J: aln(1+bx)dx .
»> syms x a b, pretty (simple (int (a * log(1+b*x), x, 0, 1)))
ab + log(1+b)+ b log (1+b) - b
The following example computes I: 'C aln(1+ bx)dxdb , where a is an arbitrary parameter.
»> syms x a b, pretty(simple(int(int(a*log(1+b*x),x,0,1),b,2,3)))
a (8 log (2) - 2 - dilog (4) - 3 log (3) + dilog (3))

In the following example we solve the first order first degree differential equation y' () = ay(t) where a is an
arbitrary parameter.

»> pretty(dsolve('Dy = a*y'))
C1exp (at)

Thus we see that the family of solutions turns out to be y() = c,e“.
Now we solve the above differential equation with the initial condition y(0) = b.

»> pretty(dsolve('Dy = a*y', 'y(0) = b'))

bexp (at)

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Next we solve the first order second degree differential equation y' (s)+ y*(s) = 1 with the initial condition y(0) = 0.

> y = dsolve (‘(Dy) "2 +y*~2=1", " (0) =0",y's'")

y =
[-sin (s)]
[sin (s)]

Now we solve the second order first degree differential equation y” (f)= a?y’(¢) with the initial conditions
¥(0)=1and y'(n/a) = 0.

»> pretty (dsolve ('D2y = - a ~ 2 *y ', 'y(0) = 1, Dy (pi/a) = 0'))
cos (a t)

Therefore, the solution is the function y(f) = cos(at).
In the following example we solve the system of equations: x'() = y(£), y' () = -x(?).

»> [x, y] = dsolve('Dx = y', "Dy =-x')
X =

cos (t) * C1 + sin (t) * C2

y =

-sin (t) * C1 + cos (t) * C2

Next we calculate the solution of the previous system of differential equations for the initial conditions
x(0)=0and y(0)=1.

» [x, y] = dsolve ('Dx =y, Dy = - x', 'x (0) =0, y (0) =1")
X =

sin (t)

y =

cos (t)

Linear Algebra: Simplifying and Solving Equations

Calculations with simple, rational and complex algebraic expressions are specially treated in MATLAB. The Symbolic
Match toolbox functions efficiently implement the operations of simplification, factorization, grouping and expansion
of algebraic expressions, and includes trigonometric expressions and expressions in a complex variable. The syntax of
these functions is as follows.

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

r = collect(S) Each polynomial in the array of polynomials S is grouped in terms of the variable v
r = collect(S, v) (or x if v is not specified).
r = expand (S) Expands each polynomial or trigonometric, exponential or logarithmic function

contained in S.

factor(x) Factors x (symbolic or numerical).

r = horner (p) Converts the polynomial p into its Horner, or nested, polynomial representation.

[n, d] = numden (A) Converts each element of the symbolic or numerical matrix A to a simplified rational form.
r = simple(s) Simplifies the symbolic expression s looking for the shortest possible output. The second
[r,;how] = simple(s) option presents only the final result and a string describing the particular simplification.

r = simplify (S) Simplifies each element of the symbolic matrix S.

[y, sigma] = Reuwrites the symbolic expression x in terms of a common subexpression, substituting this
subexpr (x, sigma) subexpression with the symbolic variable sigma.

[y, sigma] =

subexpr (x, ‘sigma’)

As a first example we group the expression y(sin(x) + 1) +sin(x) in terms of sin(x).

»> syms x and
»> pretty (collect (y * (sin (x) + 1) + sin (x), sin (x)))

(y + 1) sin (x) +y
Next we group, firstly in terms of x, and then In(x), the function f{x) = aln(x)-xIn(x)-x.

»> syms a x
»> f=a*log(x)-log(x)*x-x

f =

a*log(x)-1og(x)*x-x

»> pretty(collect(f,x))

(- log (x) - 1) x + log (x)
»> pretty(collect(f,log(x)))

(

Q

- x) log (x) - x
In the following example we expand various algebraic expressions.

> synsabxyt
»> expand([sin(2*t), cos(2*t)])

ans =
[2 * sin (t) * cos (t), 2 * cos (t) " 2-1]
145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

»> expand(exp((a+b)*2))

ans =

exp(a”2) * exp(a*b) * 2 * exp(b*2)

»> expand (cos (x + y))

ans =

cos (x) * cos (y) - sin (x) * sin(y)

»> expand((x-2)*(x-4))

ans =

Xx"2-6*x+8
Next we factorize various expressions.

»» factor(x"3-y"3)

ans =

(x - y) *(x"24x*y+y"2)

»» factor([a"2-b"2, a"3+b"3])

ans =

[(a-b)*(a+b), (a+b)*(a’”2-a*b+b"2)]

»> factor(sym('12345678901234567890"))

ans =

(2) * (3) ~ 2 * (5) * (101) * (3803) * (3607) * (27961) * (3541)
Below we simplify various expressions.

>»»symss xyzabc
»> simplify(exp(c*log(sqrt(a+b))))

ans =
(a + b) *(1/2*c)

»> simplify (sin (x) * 2 + cos (x) * 2)
ans =

1

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

» S = [(x*245*x+6)/(x+2),sqrt(16)];
R = simplify(S)

R =
[x+3, 4]

The following functions can be used to solve symbolic equations and systems of equations:
solve(‘equation), ‘x’) Solves the equation in terms of the variable x.
syms X; solve(equation,x) Solve the equation in terms of the variable x.

solve(‘el,e2,...,en) ‘x1,x2,...,xn’) Solves the system of equations el,...,en in terms of the variables x1,...

syms x1 x2... Xxn; Solves the system of equations el,...,en in terms of the variables x1, ...

solve(el,e2,...,en, x1,x2,...,xn)

As a first example we solve the equation 3ax- 7x*+x*= 0 in terms of x, where a is a parameter.
» 501\le('3*a¥*x-7*x"24x"3=0", 'x')
ans =

[0]
[7/2 + 1/2 *(49-12%a) ~(1/2)]
[7/2-1/2 *(49-12%a) *(1/2)]
Next we solve the above equation where a is the variable and x is the parameter.
»> pretty(solve('3*a*x-7*x"2+x"3=0',"'a"))
-1/3 x (- 7 + x)
In the following example, we calculate the fourth roots of - 1 and 1.
»> S=solve('x"4+1=0")
S =
[1/2*%27(1/2)+1/2%1*2(1/2)]
[-1/2*%27(1/2)-1/2%1*27(1/2)]
[1/2*%27(1/2)-1/2*%i*27(1/2)]
[-1/2%27(1/2)+1/2*%i*27(1/2)]
»> numeric(S)
ans =
0.70710678118655 + 0.707106781186551
-0.70710678118655 - 0.707106781186551

0.70710678118655 - 0.707106781186551
-0.70710678118655 + 0.707106781186551

www.it-ebooks.info

147

http://www.it-ebooks.info/

CHAPTER 8 = SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS
»> Si=solve('x"4-1=0")
S1 =
[1]
[-1]
[1]
[-1]
Next we calculate the fifth roots of the complex number 2 + 2i.
»> numeric(solve('x"5-(2+2*i)=0"))
ans =
1.21598698264961 + 0. 192593417688881
0.19259341768888 + 1. 215986982649611
-1.09695770450838 + 0. 558927867466011
-0.87055056329612 - 0. 870550563296121
0.55892786746601 1. 096957704508381
In the following example we solve the equation sin(x)cos(x)=a in the variable x:
»> simple (solve ('sin (x) * cos (x) = a', 'x'))

ans =

pi/2 - asin(2*a)/2
asin(2*a)/2

»> pretty(ans)

+- -+

If we solve the above equation for the particular case a= 0 we get:

»> solve ('sin (x) * cos (x) = 0', 'x")

ans =

[0]
[1/72 * pi]
[-1/2 * pi]
148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

In the following example we solve the system u + v+ w=a, 3u+v=>b, u—2v— w =0, where , vand w are
variables and a, b and ¢ parameters.

»synssuvuwabc
»> [u, v, w] = solve('u+viw=a,3*u+v=b,u-2*v-w=c',u,v,w)

u =
1/5 * b + 1/5 * + 1/5 * ¢
v =
2/5 * b-3/5 * a-3/5 * ¢
W =

-3/5 *b + 7/5 * + 2/5 * ¢

EXERCISE 8-1

Consider the symbolic matrix A below:

a b c
3c a-3c b
3b -3b+3c a-3c

Calculate A’, A', determinant (A), trace (A), range (A).

We start by defining the symbolic matrix of our problem as follows:
»> A=sym('[a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3%*c,a-3*c]’)
A=

[a, b, c]

[3%c, a-3*, b]
[3*b,-3*b+3*c,a-3*c]

Alternatively, the same symbolic matrix can be defined by previously declaring all the variables as symbolic
as follows:

»> syms abc
»> A=sym([a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c])

A =

[a, b, c]
[3*c, a-3*c, b]
[3*b, -3*b+3*c, a-3*c]

149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

»> transpose (A)

ans =

[a, 3 * ¢, * 3B]

[b, a-3*c, -3*b+3*c]
[c, b, a-3*c]

»> pretty(inv(A))

2 2 2 2 2 2
[a -6ac+9c +3b -3bc ab-3c -b +ac-3c]
[-neemmmmeessssseessssesosieeseeeoieeeiisooceeoseoe]
[%1 %1 %1]
[]
[2 2 2 2]
[-b +ac-3c a -3ac-3bc ab-3c]
e < eeeele |
[%1 %1 %1]
[]
[2 2 2]
[ab-3c ab-ac+b a -3ac-3bc]
[-3 - R R EE L]
[%1 %1 %1]

3 2 2 2 3 3
%1 := a -6ca +9¢c a+3ab -9abc+9c +3b +9bc

»> pretty(det(n))

3 2 2 2 3 3
a -6ca +9¢c a+3ab -9abc+9c +3b +9bc

2

»> pretty(trace (A))

3a-6c¢

»> rank(A)

ans =

3

> A"2

ans =

[a*2+6*b*c, a*b+b*(a-3*c)+c*(-3*b+3*c), a*c+b*2+c*(a-3*c)]

[3*a*c+3*c*(a-3*c)+3*b"2, 3*b*c+(a-3*c)"2+b*(-3*b+3%*c), 3*c"2+2*b*(a-3*c)]
[3*a*b+3*c*(-3*b+3%c)+3*b*(a-3%c), 3*b"2+2*(-3*b+3*c)*(a-3*c), 3*b*c+(a-3*c)"2+b*(-3*b+3*c)]

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-2

Find the intersection of the hyperbolas with equations x? - y?= 1 and y?x?2 - b2y?= 16 with the parabola 22 =2 x.
We solve the system of three equations as follows:

» [x, y, z] = solve('a*2*x"2-b*2*y~2=16", 'x"2-y*2=1",'z*2=2*%x", 'x,y,z')
X =

[1/2%(((b"2-16)/(a"2-b"2))"(1/4)+i*((b"2-16)/(a"2-b"2)) (1/4))"2]
[1/2*%(((b*2-16)/(a*2-b"2))"(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4))" 2]
[1/2*%(-((b*2-16)/(a*2-b"2))"(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4)) 2]
[1/2*%(-((b"2-16)/(a"2-b"2))*(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/72*%(((b"2-16)/(a"2-b"2))*(1/4)-1*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/2%(((b"2-16)/(a"2-b"2))~(1/4)-i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/2%(-((b"2-16)/(a"2-b"2))"(1/4)-i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/72%(-((b"2-16)/(a"2-b"2))"(1/4)-i*((b"2-16)/(a"2-b"2))*(1/4))"2]

y

[1/(a*2-b*2)*(-(a”2-b"2)*(a”2-16))"(1/2)]
[-1/(a*2-b*2)*(-(a"2-b"2)*(a2-16))"(1/2)]
[1/(a*2-b*2)*(-(a*2-b"2)*(a2-16))"(1/2)]
[-1/(a”2-b"2)*(-(a2-b*2)*(a"2-16))"(1/2)]
[1/(a”2-b"2)*(-(a2-b*2)*(a"2-16))"(1/2)]
[-1/(a"2-b"2)*(-(a2-b*2)*(a"2-16))"(1/2)]
[1/(a*2-b*2)*(-(a”2-b"2)*(a”2-16))"(1/2)]
[-1/(a*2-b*2)*(-(a*2-b"2)*(a”2-16))"(1/2)]

N

((b”2-16)/(a"2-b*2))*(1/4)+i*((b*2-16)/(a"2-b*2))"(1/4)]
((b"2-16)/(a"2-b"2)) (1/4)+1i*((b"2-16)/(a"2-b"2))"(1/4)]
-((b*2-16)/(a*2-b"2))*(1/4)+i*((b*2-16)/(a*2-b"2))*(1/4)]
-((b"2-16)/(a"2-b*2))~(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4)]
((b"2-16)/(a"2-b"2))*(1/4)-1*((b"2-16)/(a"2-b"2))"(1/4)]
((b”2-16)/(a"2-b*2))*(1/4)-i*((b*2-16)/(a"2-b*2))"(1/4)]
-((b"2-16)/(a"2-b*2))"(1/4)-1*((b"2-16)/(a"2-b"2))"*(1/4)]
-((b”2-16)/(a"2-b"2))"(1/4)-i*((b"2-16)/(a"2-b*2))"(1/4)]

Il L R K K N N |

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-3

Evaluate the following integrals:

’

3 1sin(21) dt J-S cos(x)—ldx.
=3t 0 X

For the first integral the integrand is an even function, so our integral between -3 and 3 will be twice the integral
between 0 and 3. Then we make the change of variable 2t = v, and arrive at the integral:

31 sm(2t) —2J3 1 s1n(2t) :%IB sin(v) v

whose solution by MATLAB is as follows:
»» (2/3) * (sinint (6))
ans =

0.9498

To calculate the second integral we have in mind the following:

dt= dx =Ci(5)—y +In(5)

Ci(x)=y +In(x) + J: cos(tt) -1

5cos(x)—1
N

which can be calculated in MATLAB as follows:
»> cosint(5) - 0.577215664-log(5)
ans =

-2.3767

EXERCISE 8-4

Given the function h defined by h(x,y) = (cos(x?-)#), sin(x*-}?)), calculate h(1,2), h(-r,7) and h(cos (2), cos (1-&)).

We create a vector of two functions as follows:

»> syms X y a.
»» h = [cos(x*2-y*2), sin(x*2-y*2)]

h =

[cos(x"2-y*2), sin(x"2-y"2)]

152

www.it-ebooks.info

http://www.it-ebooks.info/

Now we calculate the requested values:
»> subs(h,{x,y},{1,2})
ans =
-0.9900-0.1411
»> subs(h,{x,y},{-pi,pi})
ans =
10
»> subs (h, {x, y}, {cos(a"2), cos(1-a"2)})

ans =

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

[cos (cos(a*2) * 2-cos(-1+a”2) * 2), sin (cos(a’*2) * 2-cos(-1+a’"2) * 2)]

EXERCISE 8-5

Given the function fdefined by:

flx,y)=31-x)*e —lo[éx—f —éyje’x v

find £(0,0) and represent fgraphically.

2 17, 2 2
7e(x+1) Y

In this case, since it is necessary to represent the function graphically, we define it in the M-file shown

in Figure 8-2.

2} D:imatlabR12%work\funcZ.m
File Edit View Text Debug Brealpoints Web Window Help

|

m= = =) #H B8 B
1 function h=funcz(x,y) -
2|-| h=3*%(l-x)*2%exp(- (y+1)*2-x*2)-10% (x/5-x*3-Y*5) *exp (-x*2-y*2) -1/3%exp (- (x+1) *2-y*2) ;
3

CEX
stadc [E5e <] x|

of

4| | milne.m [hamming.m] difl.m func2.m

Ready

Figure 8-2.

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Now we calculate the value of fat (0,0):
>> func2 (0,0)

ans =

0.9810

To create the graph of the function (in a neighborhood of the origin), we use the command meshgrid to define the
surface characteristics, and the command surfto draw the surface:

»» [x, y] = meshgrid(-0.5:.05:0.5,-0.5:.05:0.5);
» z = func2(x,y);
»» surf (x, y, 2z)

This yields the graph shown in Figure 8-3:

<) [Figure No. 1 Q@@

File Edit ‘iew Insert Tools Window Help

D& A2/ &L D

3.932

393
3.928
3.926
3.924
3922

392
05

Figure 8-3.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-6

Given the functions f(x) = sin (cos (x2) and g (x) = sart (tan(x?) calculate the composite of fand g and the composite of
gand £ Also calculate the inverses of fand g.

»> syms x, f = sin (cos (x ~(1/2)));
»> g=sqrt(tan(x"2));

»> simple(compose(f,g))

ans =

sin (cos (tan(x"2) ~(1/4)))

»> simple (compose(g,f))

ans =

tan (sin (cos (x ~(1/2))) * 2) *(1/2)
»> F = finverse (f)

F =

acos (asin (x)) * 2

»» G = finverse (g)

G =

atan(x*2) *(1/2)

EXERCISE 8-7

Define the function f(x) as:

1
f(X):1+{/E

and study its continuity on the real line.

if x#0and f(x)=1if x=0

Except at the point x = 0 the continuity is clear. To analyze the behavior of the function at the point x =0 we
calculate the lateral limits as x—0:

» syms x
limit(1/(1+exp(21/x)),x,0, 'right')

ans =

0

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS
»> limit(2/(1+exp(1/x)),x,0, 'left")
ans =
1

The limit of the function as x—0 does not exist because the lateral limits are different. But, since the lateral limits
are finite, the discontinuity at x = 0 is a finite jump (also known as a discontinuity of the first kind). We illustrate
this result in the graph shown in Figure 8-4.

»> fplot('1/(1+exp(1/x))",[-5,5])

[) Figure No. 1 E|@®

File Edit Yiew Insert Tools Window Help

D& A2/ &L D

D3t .
02 -

01 -

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-8

Study the continuity of the function £ R>—R defined by:

(x-1)°y*

flx,y)= —— if (x,y)#(1,0) and f(1,0)=0.
(x-1)*+y*

Since the function is clearly continuous elsewhere, we only need to check the continuity of the function at (1,0).
We need to show that.
lim f(x,y)=0.

(x,y)-(1,0)

nsyms xymar
» limit (limit (y ~ 2 *(x-1) ~ 2 / (y * 2 +(x-1) *~ 2), x, 0), y, 0)

ans =
0

» limit (limit (y ~ 2 *(x-1) ~ 2/ (y * 2 + (x-1) * 2), y, 0), x, 0)
ans =

0

n limit((m*x)"2*(x-1)"2/((m*x)*2+(x-1)"2),x,0)

ans=

0

n limit ((m*x) *(x-1) ~ 2/7((m*x) +(x-1) *~ 2), x, 0)

ans =

0

Thus we see that the iterated and directional limits (along the lines y = mx) coincide, which leads us to believe
that the limit exists and that its value is zero. To corroborate these results we calculate the limit in polar
coordinates:

» limit (limit ((r ~ 2 * sin (a) ~ 2) * (xr * cos (a) - 1) * 2/ ((r * 2 * sin (a) * 2)
+ (r * cos (a) - 1) * 2), r, 1), a, 0)

ans =

0

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

We conclude that the limit is zero at the point (1,0), which ensures the continuity of the function. In Figure 8-5 we
graph the surface defined by f, and in particular illustrate the continuity and the tendency to 0 of the function in a
neighborhood of the point (1,0).

» [x, y] = meshgrid(0:0.05:2,-2:0.05:2);
z=y."2.%(x-1).*2./(y. "2+(x-1) . *2);
mesh(x,y,z), view ([- 23, 30])

I) Figure No. 1 E|@@

File Edit Yiew Insert Tools Window Help
D& MNA A/, 2RPDT

0.44....

024....

Figure 8-5.

EXERCISE 8-9

Find the sum of each of the following series:

3+2n
“7"n(1+n)’

M

where p is a parameter.

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Before finding the sums we first need to determine whether the series do indeed converge. We apply the ratio test
for the first series:

»> syms n
»> f=(3+2*n)/((1-n)*n*7"n);
»> pretty(f)

»> limit(subs(f,n,n+1)/f,n,inf)
ans =
1/7

As the limit is less than 1, the series is convergent. We will calculate its sum. The result MATLAB returns will often
be complicated and depend on certain special functions. We obtain the following:

»» S1 = symsum(f,n,2,inf)

S1 =

-6 * log(6/7)-22/21 + 13/343 * hypergeom([2, 2],[3],1/7)
Now we apply the ratio test for the second series.

> syms n p

»> g=n/p"n;
»> pretty(g)

n

n
p

»> limit(subs(g,n,n+1)/g,n,inf)
ans =

1/p

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Thus, if p > 1, the series converges, and if p < 7, the series diverges, and if p = 7, we get the series with general
term n, which diverges. When pis greater than 1,we can find the sum of the series:

»> S2=symsum(g,n,2,inf)
S2 =
2/p"2*(1/2/(-14p)"3*p4*(-1/p+1)-1/2*p)

»> pretty(simple(S2))

EXERCISE 8-10

Find the MaClaurin series of order 13 of the function sinh(x). Also find the Taylor series of order 6 of the function
1/(1+x) in a neighborhood of the point x=1.

»> pretty(taylor(sinh(x),13))

3 5 7 9 11
X+ 1/6 X + 1/120 x + 1/5040 x + 1/362880 x + 1/39916800 x

»»> pretty(taylor(1/(14x),6,1))

2 3 4 5
3/4 - 1/4 x +1/8 (x - 1) -1/16 (x - 1) +1/32 (x - 1) - 1/64 (x - 1)

EXERCISE 8-11

Study the function

xS

x*-1

flx)=

calculating the asymptotes, maxima, minima, inflexion points, intervals of growth and decrease and intervals of
concavity and convexity.

» f="x * 3 /(x*2-1)'
f =

x "3 /(x*2-1)

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS
»> syms x, limit (x * 3 /(x*2-1), x, inf)
ans =

NaN

Thus, there are no horizontal asymptotes. To see if there are vertical asymptotes, we look at the values of x that
make y infinite:

»> solve('x"2-1")
ans =

[1]
[-1]

The vertical asymptotes are the lines x = 7 and x =-7. Now let us see if there are any oblique asymptotes:
»> limit(x*3/(x"2-1)/x,x,inf)

ans =

1

»> limit(x"*3/(x"2-1)-x,x,inf)

ans =

0

The line y = xis an oblique asymptote. Now we will analyze the maxima and minima, inflection points and
intervals of concavity and growth of the function:

»> solve (diff (f))

ans =

[0]
[0]
[3 ~(1/2)]
[*(172) - 3]

The first derivative vanishes at x = 0, x=+/3 and x=+/3. These include maximum and minimum candidates.
To verify if they are maxima or minima, we find the value of the second derivative at those points:

»> [numeric(subs(diff(f,2),0)),numeric(subs(diff(f,2),sqrt(3))),
numeric(subs(diff(f,2),-sqrt(3)))]

ans =

0 2.5981 - 2.5981

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

Therefore, at the point with abscissa x=+/3 there is a maximum and at the point with abscissa x=+/3 there is a
minimum. At x = 0 we know nothing:

»> [numeric (subs (f, sqrt (3))), numeric (subs (f, - sqrt (3)))]
ans =

2.5981 - 2.5981

Therefore, the maximum is at (-V3,-2.5981) and the minimum is at /3, 2.5981).

We will now analyze the points of inflection:
»> solve(diff(f,2))

ans =

[0]

[i*3%(1/2)]

[-i*3 ~(1/2)]

The only possible turning point occurs at x = 0, and as f(0) = 0, this possible turning point is (0,0):
»> subs (diff(f,3), 0)

ans =

-6

As the third derivative at x = 0is not zero, we see that the origin is indeed a turning point:

»> pretty(simple(diff(f)))

The curve is increasing when y’ > 0, i.e., in the intervals(-co,-V3) and (\'3, o).

The curve is decreasing when y’ < 0, i.e., in the defined intervals (V3,-1), (-1,0), (0,1) and (1, V3).

»> pretty(simple(diff(f,2)))

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

The curve is concave when y "> 0, i.e., in the intervals (-7,0)and (7, =).
The curve is convex when y “< 0, i.e. in the intervals (0,7) and (- o=, - 7).

The curve has a horizontal tangent at the three points at which the first derivative is zero. The equations of the
horizontal tangents are y = 0, y = 2.5987 and y = -2.5981.

The curve has a vertical tangent at the points that make the first derivative infinite. These are x = 7 and x =-1.
Therefore, the vertical tangents coincide with the two vertical asymptotes.

We graph the curve together with its asymptotes (see Figure 8-6):
» fplot('[x"3/(x*2-1),x]",[-5,5,-5,5])

9 Figure No. 1 (=113

File Edit Yiew Insert Tools Window Help

D& A2/ &L D

Figure 8-6.

We can also show the curve, its asymptotes and its horizontal and vertical tangents in the same graph (Figure 8-7):

»> fplot('[x*3/(x"2-1),x,2.5981,-2.5981]",[-5,5,-5,5])

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

9 Figure No. 1 (=113

File Edit Yiew Insert Tools Window Help

D& A2/ &L D

N\

\

N

N\

EXERCISE 8-12

Given the vector function (u(x,y), v(x,y)), where:

xt+yt

u(x,y)= , v(x,y)=sin(x)+cos(y)

determine the conditions under which we can find the inverse vector function (x(u,v), y(u,v)) with x = x(u, v) and
y = y(u,v) and find the derivative and the Jacobian of the inverse transformation. Find the value of this inverse
function at the point (7/4,-7/4).

To find the conditions under which the function is invertible we appeal to the inverse function theorem. The
functions are differentiable with continuous derivatives, except perhaps at x= 0. Now we consider the Jacobian of
the transformation o (u(x, y), vix,y)) / 9(x, y):

»> syms x y
»> J=simple((jacobian([(x"4+y*4)/x,sin(x)+cos(y)],[x,y])))

J =
[3*x72-1/x"2*y"4, 4*y*3/x]
[cos(x), -sin(y)]
164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

»> pretty(det(J))

4 4 3
3 sin(y) x - sin(y) y + 4y cos(x) x

Therefore, at the points where this expression does not vanish, we can solve for x and yin terms of vand v.
In addition, we must also have xz0.

We calculate the derivative of the inverse function. Its value is the inverse of the Jacobian matrix of the original
function found above and the determinant of its Jacobian is the reciprocal of the determinant of the Jacobian of
the original function:

>> I=simple(inv(J));
>> pretty(simple(det(I)))

3 sin(y) x4 - sin(y) y4 + 4 y3 cos(x) x
We now find the value of this inverse function at the point (n/4,-7/4).
»> numeric(subs(subs(determ(I),pi/a,'x"),-pi/a,'y"))
ans =
0.38210611216717
»> numeric(subs(subs(symdiv(1,determ(J)),pi/a, 'x"'),-pi/a,'y"))
ans =
0.38210611216717

These results confirm that the determinant of the Jacobian of the inverse function is the reciprocal of the
determinant of the Jacobian of the original function.

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-13

Given the function f(x,y)=e"" and the transformation u = u(x.y) = x + y, v = v(x,y) = x, find f(u,v).

We calculate the inverse transformation and its Jacobian to apply the change of variables theorem:

> Syms X y u v
»> [x,y]=solve(u=x+y,v=x','x",'y")

»» jacobian([v,u-v],[u,v])
ans =

[o, 1]
[1, '1]

»> f=exp(x-y);
»> pretty(simple(subs(f,{x,y},{v,u-v})* abs(det(jacobian(
[v,u-v],[u,v])))))

exp(2 v - u)

The requested function is f(u,v)= e,

EXERCISE 8-14

Find the following integrals:

J dx J-\/9—4x2

1
dx, Ix8(3+5x3)4dx.

O +3x-1 X
»> syms x
»> pretty(simple(int(x~(-3)*(x*2+3*x-1)"*(-1/2),x)))
2 1/2 2 1/2
(x +3x-1) (x +3x-1)
1/2 —--mmmmme oo +9/4 -
2 X
X

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

+ 31/8 atan(1/2 ----------ommmunn)

(x +3x-1)
»> pretty(simple(int(x~(-1)*(9-4*x"2)*(1/2), x)))

2 1/2 3
(9-4x) -3 atanh(-------------)
2 1/2
(9 -4x)
»> pretty(simple(int(x"8*(3+5*x"3)"(1/4),x)))
3 6 9 3 1/4

4/73125 (288 - 120 x + 125 x + 1875 x) (3 + 5 x)

EXERCISE 8-15

Consider the following curve, given in polar coordinates, r = 3-3cos (a). Calculate the length of the arc
corresponding to one complete revolution (0<a<2n).

»» r="3-3*cos(a)’;
»» diff(r,'a")

ans =
3 * sin (a)

»> R = simple (int ('((3-3 * cos (a)) ~ 2 + (3 * sin (a)) ~ 2) ~(2/2) '," a ', "0','2 * pi"))
R =

24

EXERCISE 8-16

Calculate the value of the following integral:

2

J~1.96\ ei7 dx

-1.96 271-

which represents the area under the normal curve between the specified limits.
»> numeric(int('exp(-x~2/2)/(2*pi)~(2/2)','x",-1.96,1.96))

ans =

0.95000420970356

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-17

Find the intersection of the surfaces ax*+)?= zand z=a?-)? and calculate the volume enclosed in the intersection.
Also find the volume enclosed in the intersection of the surfaces z= X and 4 -)’=z

The first volume is calculated by means of the integral:

»> pretty(simple(int(int(int('1’,'z', 'a*x"2+y 2",
‘at2-y"2'),'y",0, 'sqrt((a"2-a*x"2)/2) "), 'x’,,0, 'sqrt(a) ')))

/
| 2 2 2 1/2
1/24 | lim 3a x(2a -2ax)
| 1/2
\x -> (a)-
1/2 1/2 \
7/2 1/2 2 a x 2 2 3/2|
+3a 2 atan(------------------)+x (2a -2ax) |
2 2 1/2 |
(2a -2ax) /

To calculate the second volume we first produce a graph of the requested intersection, with the aim of clarifying the
limits of integration, using the following syntax:

»» [x, y] = meshgrid(-2:.1:2);
z=x " 2;

mesh(x,y,z)

hold on;

z=4-y. "2

mesh (x, y, z)

168

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

I) Figure No. 1 E|@@

File Edit Wiew Insert Tools Window Help
D& MNA A/, 2RPDT

Figure 8-8.

Now we can find the requested volume by calculating the following integral:

»> pretty(simple(int(int(int('1’,'z', 'x*2',"'4-y*2"),
'y'»0, 'sqrt(4-x*2)"), 'x",0,2)))

2 pi

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-18

Solve the following equation:

dy __xy
dx y'-x

»> pretty(simple(dsolve('Dy=(x*y)/(y"*2-x2)"')))

0
1
/ /o /1 0\ 2(C3+tx)\
| wrightOmega| log| - -- | - -==-------- |
2] 2 |
| \ \' x / X /
| exp| -==-mmm
\ 2

+ — — — — — — — — —— —
~N
Q
+
~
x

EXERCISE 8-19

Solve the following equations:

9y''-6y"' + 46y"-6y +37y=0
3y'+2y-5y=0
2y'+5y +5y=0

wherey (0) =0and y" (0) = 1%.

»> pretty(simple(dsolve('9*D4y-6*D3y+46*D2y-6*Dy+37*y=0")))

C1 sin(t) + C2 cos(t) + C3 exp(1/3 t) sin(2 t) + C4 exp(1/3 t) cos(2 t)

»> pretty(dsolve('3*D2y+2*Dy-5*y=0"))

C1 exp(t) + C2 exp(- 5/3 t)

»> pretty(dsolve('2*D2y+5*Dy+5*y=0",'y(0)=0,Dy(0)=1/2"))

2/15 15

1/2

1/2
exp(- 5/4 t) sin(1/4 15 t)

170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © SYMBOLIC DIFFERENTIAL AND INTEGRAL CALCULUS

EXERCISE 8-20

Subject to the initial conditions x(0) = 1 and y(0) = 2, solve the following system of equations:

X' -y=e-t
y'+5x+2y=sin (31).

»> [x,y]=dsolve('Dx-Dy=exp(-t),Dy+5*x+2*y=sin(3+t)", 'x(0)=1,y(0)=2",'t")

X =
(-7/50%sin(3)+1/50%cos(3)+7/6)*exp(-7*t)+7/50*sin(3+t)-1/50%cos(3+t)-1/6%exp(-t)
y =

(-7/50*sin(3)+1/50*%cos(3)+7/6)*exp(-7*t)+5/6%exp(-t)+7/50*sin(3+t)-1/50*cos (3+t)

171

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Differential
Equations

César Pérez Lépez

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Differential Equations
Copyright © 2014 by César Pérez Lopez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0311-8
ISBN-13 (electronic): 978-1-4842-0310-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Publisher: Heinz Weinheimer

Lead Editor: Dominic Shakeshaft

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Barnaby Sheppard

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

Contents

About the AUtROKccovvmiimnismss s ix
Chapter 1: Introducing MATLAB and the MATLAB Working Environmentccccceemnnnnens 1
LU0 11T (o] PRSP SN 1

Developing Algorithms and APPlICALIONScccceeureeriririesisrsse e srs s sr s sesas s nsnns 2
Data ACCESS ANU ANAIYSIScourrerererrrrrrererersssesesessssssesessssssesesssssssssssssssssssssssssssssssssssessssssesssssssssessssssassssssssssnsnsssans 5
Data VISUANIZALIONcccoveveeeeerisreecres e e s s e e s e s s ae e s s R e e e nan e e nnnnnns 6
NUMEKICAl CAICUIALION ...t e e s e se e s s s s R e e e s an e e nnnnns 9
Publication of Results and Distribution of ApPlICAIONSccvvceeerrnereserresesrsse s 10
The MATLAB working environment ... s s see s ssesesssessessassnssnnsns 11
HEIP iN MATLAB ..ottt se s ne s e a e e e e 15
Numerical Computation With MATLAB.............ccocrrrirrirrr e s se e e sassnssnesnesnens 18
Symbolic Calculations With MATLAB.............ccccoorerrnnernese s ssssessssesssssssesssssnsens 19
Graphics With IMATLABcoe s se e ssesse e ssessessesaessessesasssesaesressssssssesaesnessesaessensessansnns 21
(61<T L] £ L L0 T 25
Help With COMMANGScoeirerccesr e 26
MATLAB and Programming.........cccceeersersessrsssssesssesssssassens 28
Commands to Escape and Exit to the MS-DOS Environmentcccecrvevirievienreevcenseessesseennes 29

Chapter 2: First Order Differential Equations. Exact Equations, Separation of Variables,
Homogeneous and Linear EQUAtiONSccccuseemmmnsssenmmmmssssssnmmssssssnmmssssssnssssssssssessssssssnssnns 33
First Order Differential EQUAtiONS..........ccoceciieenicresnerr e e 33
Separation of VariabIes ... s 36
Homogeneous Differential EQUALIONSccocvvrvernrsersin s sss s sss s s saesaesaesanns 38
v

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

Exact Differential EQUALIONSccvvevieere e e s sse s ssese s s sn s snessesnesnssnnesaeen 41
Linear Differential EQUALtiONS.........c.ccvviriiirnnnir e sn e sn e 43
Chapter 3: Higher Order Differential Equations. The Laplace Transform and
Special Types of EQUAtIONS........cccciemrnsmmmmssssmmsssnsmsssssssssssssssssesssssesssnsesssnssssssnssssnnssssnnssnns 45
Ordinary High-0rder EQUALIONSc.coeoiiiiercccrere e sse s s s sse s s s snssnssnesnssnennnns 45
Linear Higher-Order Equations. Homogeneous Equations with Constant Coefficients 47
Non-Homogeneous Equations with Constant Coefficients. Variation of Parameters................... 48
Non-Homogeneous Equations with Variable Coefficients. Cauchy—Euler Equations................... 52
(Lo 10 T 14 L (0] 52
Orthogonal POIYNOMIALSccceeeeieieierre e ssessessesse e ssesnesnesnesnesnesresnessessessesnssaesaesnenanssansens 55
Chebychev Polynomials of the First and Second Kind...........cccuvrnnninnnnicnnnse e sesss e sessssssenes 55
Legendre POIYNOMIAISccoiciriicieieic e a e n s s e bt ae e e e e p et ne e nennnnennnnnas 56
Associated Legendre POIYNOMIAIS.........cccorurererirenecnirne s se s ss s 56
Hermite POIYNOMIAIS..........cccoiieiiiirccere e s e e a e s e b b ae e R e e ae e e e R e e ne e e nennnnenrnneas 56
Generalized Laguerre POIYNOMIAISccceieinicnecire e sn e sn s n e s snsnsnnnnens 56
Laguerre POIYNOMUAISccovicireriireeeise e se s s sss e s s e s e b s et ae e Re e s ae e e e R e e e ne e nennnnennnanes 57
JACODI POIYNOMIAIS.........ceeecee e 57
Gegenbauer POIYNOMIAIScoucieeeieriresesses e se s se s sss s s se s se e s s s s et ese e se e s ae e s e e s e e e ne e e nesnnnensnnnns 57
Bessel and Airy FUNCHIONSc.cocreriereriersir st sn e s sn s sn e sn s sn s sn e snesnn e 58
Chapter 4: Differential Equations Via Approximation Methodscccinnnsennnnnsssnnnnnnans 61
Higher Order Equations and Approximation Methodsc.ccocvervrrrsrssssss s 61
The Taylor Series Method..........cccvviveriririrr e 61
The Runge—Kutta Method...........coorircrcrcrrr s 64
Chapter 5: Systems of Differential Equations and Finite Difference Equations.............. 67
Systems of Linear Homogeneous Equations with Constant Coefficients..........ccceevvrverververiennn. 67
Systems of Linear Non-Homogeneous Equations with Constant Coefficientsccceeerverrennne. 68
Finite Difference EQUAtIONSc.ccvverieeririeeririee s rseesessss s s sssssesssesssssesssssssssesssssssssssssessssnesanes 69
Partial Differential EQUAtiONS.........c.ccocvcrcisnsir s snesnenn 4l

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 6: Numerical Calclus with MATLAB. Applications to Differential Equations....... 73
MATLAB and Programming.........cccceeersersessessessesssassans 73
L= = 1 o] TSRS 73
RS]] RSO RSSTRSSRRRN 76
Functions and M-Files. Function, Eval and Fevalccccvvmrirnmninnnninnenses s sesseessesssesaens 78
Local and GIODal VArIi@DIESccceeeerierrenirerrssersessssesssssssessssesssssssessssssssssssesssssssessssssssssssessensnnens 82
D7 L B] TSRS 84
Flow Control: FOR Loops, WHILE and IF ELSEIF ... e e s e 85
QL TC I 0 S 1o OO 85
QLTGRO 86
IF ELSEIF ELSE END LOOPS......cvtuesrusrssssessssesssssessssesssssessssssssnessssssssssessssesssssessssesssssessssssssanessssssssasessssssssanessssnsess 87
T o Ty O T RSO SR 88
0]] 3T OO RO 89
5T 1RSSR 920
L 0 (v OO 91
3L 1T | OO 91
SUDTUNCHIONS ...t n e n e e s ne e naenn e nnennnnnas 92
Ordinary Differential Equations Using Numerical Analysis..........cccoovrrernscrenensesnsesesessessesenaens 93
EUIEI’S METNO...... .o e e e R e R e ne e nennnaeas 94
HEUN’'S METNOM........cceeee e e e e e R e e Re e e nennnnennnnens 94
The Taylor SEries MELNOMc.ccceriiierr e e b e e se e R e s aeae e 95
Chapter 7: Ordinary and Partial Differential Equations with Initial and
Boundary Values.......cccsmmusssnsnmsssssnsnssssssnssssssssnsnssssssnsnssssssnssnsssssnnnnsssssnnnssssssnnnsnssssnnnnnssns 101
Numerical Solutions of Differential Equations.............ccccoerervrrrcrss s 101
Ordinary Differential Equations with Initial Valuesccceeererrrerrrssesss e ses e 101
Ordinary Differential Equations with Boundary Values...........cccceoevnirennennsnesnsesesese e 105
Partial Differential EQUAtioNS.........c.ccocvircerinrircr s n e 108
vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii

CONTENTS

Chapter 8: Symbolic Differential and Integral Calculus.........c.cccossmmmsssnsrsssnsssssssssssansns 125
Symbolic Computation with MATLAB. Symbolic Variablesccecvvrrrercrsssrsscssessescennnns 125
Symbolic Functions. Substitution and Functional Operations...........ccccevvvrvrvrvrsnsssensensennenns 131
Mathematical Analysis Functions. Limits, Continuity, and Series...........ccecvvrrrrrrrrensessensensennns 135
Derivatives, Integrals and Differential EQUALIONScccccvvverrircrcrcnsc e 139

Linear Algebra: Simplifying and Solving Equations

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

César Pérez Lopez is a Professor at the Department of Statistics and Operations Research at the University of Madrid.
César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which belongs
to the Superior Systems and Information Technology Department of the Spanish Government. César also currently
works at the Institute for Fiscal Studies in Madrid.

ix

www.it-ebooks.info

http://www.it-ebooks.info/

Coming Soon

e MATLAB Programming for Numerical Analysis, 978-1-4842-0296-8
e MATLAB Control Systems Engineering, 978-1-4842-0290-6

e MATLAB Linear Algebra, 978-1-4842-0323-1

e MATLAB Differential and Integral Calculus, 978-1-4842-0305-7

e MATLAB Matrix Algebra, 978-1-4842-0308-8

www.it-ebooks.info

Xi

http://www.it-ebooks.info/

	Contents at a Glance
	Copyrigh
	Contents
	About the Author
	Chapter 1: Introducing MATLAB and the MATLAB Working Environment
	Introduction
	Developing Algorithms and Applications
	Data Access and Analysis
	Data Visualization
	Numerical Calculation
	Publication of Results and Distribution of Applications

	The MATLAB working environment
	Help in MATLAB
	Numerical Computation with MATLAB
	Symbolic Calculations with MATLAB
	Graphics with MATLAB
	General Notation
	Help with Commands
	MATLAB and Programming
	Commands to Escape and Exit to the MS-DOS Environment

	Chapter 2: First Order Differential Equations. Exact Equations, Separation of Variables, Homogeneous and Linear Equations
	First Order Differential Equations
	Separation of Variables
	Homogeneous Differential Equations
	Exact Differential Equations
	Linear Differential Equations

	Chapter 3: Higher Order Differential Equations. The Laplace Transform and Special Types of Equations
	Ordinary High-Order Equations
	Linear Higher-Order Equations. Homogeneous Equations with Constant Coefficients
	Non-Homogeneous Equations with Constant Coefficients. Variation of Parameters
	Non-Homogeneous Equations with Variable Coefficients. Cauchy–Euler Equations
	The Laplace Transform
	Orthogonal Polynomials
	Chebychev Polynomials of the First and Second Kind
	Legendre Polynomials
	Associated Legendre Polynomials
	Hermite Polynomials
	Generalized Laguerre Polynomials
	Laguerre Polynomials
	Jacobi Polynomials
	Gegenbauer Polynomials

	Bessel and Airy Functions

	Chapter 4: Differential Equations Via Approximation Methods
	Higher Order Equations and Approximation Methods
	The Taylor Series Method
	The Runge–Kutta Method

	Chapter 5: Systems of Differential Equations and Finite Difference Equations
	Systems of Linear Homogeneous Equations with Constant Coefficients
	Systems of Linear Non-Homogeneous Equations with Constant Coefficients
	Finite Difference Equations
	Partial Differential Equations

	Chapter 6: Numerical Calclus with MATLAB. Applications to Differential Equations
	MATLAB and Programming
	Text Editor
	Scripts
	Functions and M-Files. Function, Eval and Feval
	Local and Global Variables
	Data Types
	Flow Control: FOR Loops, WHILE and IF ELSEIF
	The FOR Loop
	The WHILE Loop
	IF ELSEIF ELSE END Loops
	Switch and Case
	Continue
	Break
	Try ... Catch
	Return

	Subfunctions
	Ordinary Differential Equations Using Numerical Analysis
	Euler’s Method
	Heun’s Method
	The Taylor Series Method

	Chapter 7: Ordinary and Partial Differential Equations with Initial and Boundary Values
	Numerical Solutions of Differential Equations
	Ordinary Differential Equations with Initial Values
	Ordinary Differential Equations with Boundary Values
	Partial Differential Equations
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3

	Chapter 8: Symbolic Differential and Integral Calculus
	Symbolic Computation with MATLAB. Symbolic Variables
	Symbolic Functions. Substitution and Functional Operations
	Mathematical Analysis Functions. Limits, Continuity, and Series
	Derivatives, Integrals and Differential Equations
	Linear Algebra: Simplifying and Solving Equations

