APIESS | SSSSSSSSS

SSSSSS

César Pérez Lopez

MATLAB

Symbolic M\&(
Alge

Calculi‘]s* W

2 Springer APIESS”

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUThOFccceiiimimmmmmnnnrrrrr i rrrrrrrrrrrrraRRRRERRRRRRRRRRRRRRRRRRRD vii
Chapter 1: Symbolic Variables and FUNCtions.........cccciunsemmmmmsssesnmmmssssssmmssssassnnsssssssssssssann 1
Chapter 2: Algebraic Expressions and Operations: Factoring Algebraic Fractions......... 21
Chapter 3: Polynomial Divisibility, Interpolation, and Algebraic Extensions.........ccccuuunse 73
Chapter 4: Symbolic Matrix Algebracccciuseemmmmsssessmmssssessmmssssssnmssssssnnssssssnnssssnnsnnns 133
Chapter 5: Equations and Systems.........cccummmseemmsmmmmmmmmmmmsssssssmmmmmmssssssssnnmnnssssnn 195
Chapter 6: Series, Continuity, Derivatives, Integrals and Differential Equations........... 211

iii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Symbolic Variables and Functions)

1-1. Symbolic Variables

MATLAB deems as symbolic any algebraic expression whose variables have all been previously defined as symbolic;
variables are declared as symbolic using the command syms. For example, if we want to treat as symbolic the
expression 6*a*b +3*ar2+2*a*b, in order to simplify it, we need to declare the two variables a and b as symbolic,
as shown here:

>> syms a b
>> simplify(6*a*b + 3*a"2 + 2*a*b)

ans =

8*a*bhb+3*anr2

As we will see, the command needed to transform a numeric expression to symbolic is sym. For example, if we
want to simplify the numeric expression 2/5 + 6/10 + 8/20, we need to first transform it to a symbolic expression with
sym(2/5+6/10+8/20), performing the simplification as follows:

>> simplify(sym(2/5+6/10+8/20))

ans =

7/5

The variables of symbolic expressions must be symbolic. Some of the commands for working with symbolic and
numeric variables are detailed below:

syms x y z... tmakes thevariablesx,y, z,...,, t symbolic.

syms X y z... t real converts the variables X, y, z,..., t to symbolic variables with
real values.

syms X y z... t unreal undoes the previous declaration, so that the variables x, y,
Z,...,, t may now have non-zero imaginary parts.

syms lists all symbolic variables currently in the workspace.

x = sym('x") declares the variable x as symbolic (equivalent to syms x).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

x = sym('x", real) converts x to a real symbolic variable.
x = sym('x"',unreal) enables the symbolic variable x to have non-zero imaginary part.
S = sym(A) creates a symbolic object from A, where A may be a string, a scalar, an

array, a numeric expression, and so on.

S = sym(A, 'option"') converts the array, scalar or numeric expression to a symbolic
expression according to the specified option. The option can be f for floating point,
1 for rational, e for estimate error, or d for decimal.

numeric(x) or double(x) converts the variable or expression x to double-precision.

sym2poly(poly) converts the symbolic polynomial poly to a vector whose components
are its coefficients.

poly2sym(vector) returns a symbolic representation of the polynomial whose
coefficients are given by the vector.

poly2sym(vector,'v') converts a vector into a symbolic polynomial in the variable v.
digits(d) sets the precision of symbolic variables to d significant decimal digits.
digits returns the current precision for symbolic variables.

vpa(expr) returns the numerical result of the expression with a number of significant
decimal digits of precision determined by digits.

vpa(expr, n)orvpa('expr', n) returnsthe numerical result of the expression to n
significant decimal digits.

pretty(expr) displays the symbolic expression using standard mathematical
formatting.

EXERCISE 1-1

Solve the equation ax? + bx + ¢ = 0 assuming that the variable is x. Also solve it for the variables a, b and c,
respectively.

Because MATLAB considers x to be symbolic by default, we can solve the equation directly for x without having
to specify it as a symbolic variable using the command solve (note that in MATLAB the equations are introduced
within single quotes):

>> solve('a*x"2+b*x+c=0")

ans =

[1/2/a*(-b+(b"2-4*a*c)~(1/2))]
[1/2/a*(-b-(b"2-4*a*c)~(1/2))]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

SYMBOLIC VARIABLES AND FUNCTIONS

However, to solve the equation with respect to the variables a, b or ¢, it is necessary to first declare them as

symbolic variables:

>> syms a
>> solve('a*x"2+b*x+c=0",a)

ans =

- (b*x+c)/x"2

>> syms b
>> solve('a*x"2+b*x+c=0"',b)

ans =

- (a*x"2+c)/x

>> syms ¢
>> solve('a*x"2+b*x+c=0",c)

ans =

-a¥x"2 - b*x

EXERCISE 1-2

Find the roots of the polynomial x* - 8 x2 + 16 = 0, obtaining the result to default accuracy, to 20 significant
figures and to double-precision exact accuracy. Also generate the vector of coefficients associated with the

polynomial.

>> p = solve('x"4-8%x"2-16=0")

p:

[2*%(27(1/2)+1)~(1/2)]
[-2%(27(1/2)+1)"(1/2)]
[2%(2-27(2/2))"(2/2)]
[-2%(2-27(2/2))"(1/2)]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS
>> vpa(p)

ans =

3.1075479480600746146883179061262
-3.1075479480600746146883179061262
1.2871885058111652494708868748364*1
-1.2871885058111652494708868748364*1

[Iy

>> numeric(p)

ans =

3.1075

-3.1075
0 + 1.28721
0 - 1.28721

>> vpa(p,20)

ans =

[3.1075479480600746146]
[-3.1075479480600746146]
[1.2871885058111652495%1]
[-1.2871885058111652495%1]

> syms X
>> sym2poly(x"4-8*x"2-16)

ans =

10-80-16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

SYMBOLIC VARIABLES AND FUNCTIONS

EXERCISE 1-3

Find the numerical value, to default precision, of the abscissa of the intersection of the curves y = sin(x) and
y = cos(x) in the first quadrant. Find the exact (symbolic) solution. Find the abscissa to a precision of 12 decimal

places.

>> p = numeric(solve('sin(x) = cos(x)"))

p:

0.7854

>> q = sym (p)

q:
PI/4

>> digits(12); r=numeric(solve('sin(x)=cos(x)"))

Y =

785398163398

EXERCISE 1-4

Simplify the following expressions as much as possible:
1/2m - 1/3m + 1/4m + 1/5m + 1/6m
1/2-1/3+1/4+1/5+1/6

>> syms m
>> simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m))

ans =

47/60/m

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

>> pretty(simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m)))

47

60

>> sym(1/2 - 1/3 + 1/4 + 1/5 + 1/6)

ans =

47/60

1-2. Symbolic Vector Variables

A variable that represents a vector of length n can be defined in MATLAB in the following ways:

variable = [e1, e2, e3,..., en]
variable = [el e2 e3... en]

Therefore, to define a vector variable, simply insert brackets around the vector elements, separated by commas or
blank spaces.
On the other hand, you can also define symbolic vector variables, after previously using the syms command.

>> syms t
>> A=sym([sin(t),cos(t)])

A =

[sin (t), cos (t)]

1-3. Symbolic Matrix Variables

To define an array in MATLAB, simply enter in brackets all of its row vectors separated by semicolons. When entering
a vector, you can separate its components by spaces or commas, as we've already seen. For example, a 3 x 3 matrix
variable can be entered in the following two ways:

matrix = [au a5, A5353y @y, 353 3y aB]

matrix = [au’ Ay 85558y 3y, Ay53y, A, au]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

We would similarly define an M x N variable array. To work with symbolic matrices, we simply declare the
variables involved to be symbolic with the syms command:

>> syms t
>> Assym([sin(t),cos(t);tan(t),exp(t)])

A =

[sin (t), cos (t)]
[tan (t), exp (t)]

>> b = inv (A)

b =

[-exp (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), cos (t) / (-sin (t) * exp (t) + cos (t) *
tan (t))]

[:gn (t) 7 (-sin (t) * exp (t) + cos (t) * tan (t)), - sin (t) / (-sin (t) * exp (t) + cos (t) *

tan (t))]

Once a matrix variable has been defined, MATLAB provides many ways to insert, extract, renumber, and
generally manipulate its elements.

A(m,n) returns the (m, n)th element of the matrix A (row m and column n).

A(a:b,c:d) returns the subarray of A formed by the a-th through b-th rows, inclusive,
and the c-th and d-th columns, inclusive.

A(a:p:b,c:q:d) returns the subarray of A formed by every p-th row between the a-th
and b-th rows and by every q-th column between the c-th and d-th columns.

A([a b],[c d]) returns the subarray of A formed by the intersection of rows c and d
and columns a and b.

A([a b c...],[e f g...]) returns the subarray of A formed by the intersection of rows
a,b,c,...and columnse,f,g,...

A(:,c:d) returns the subarray of A consisting of all the rows of A and the c-th through
d-th columns, inclusive.

A(:,[c d e ...]) returns the subarray of A formed by all rows and columns c,d,e,...

A(a:b, :) returns the subarray of A formed by all the columns of A and the a-th through
b-th rows, inclusive.

A([a b c...],:) returns the subarray of A formed by all the columns of A and rows
a,b,c,...

A(a, :) returns the a-th row of the matrix A.
A(:,b) returns the b-th column of the matrix A.

A (:) returns a column vector whose elements are columns of A placed in order below
one another.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

A(:,:) is equivalent to all rows and columns of the matrix A.

[A, B, C,...] returns the matrix formedbyA, B, C,...

SA= [] deletes the subarray S of the matrix A, and returns the remaining matrix.
diag(v) creates a diagonal matrix with the vector v in the diagonal.

diag(A) returns the diagonal of the matrix A as a column vector.

flipud(A) returns the matrix whose rows are placed in reverse order (from top to
bottom) to the rows of A.

fliplr(A) returns the matrix whose columns are placed in reverse order (from left to
right) to those of A.

r0t90(A) rotates the matrix A 90 degrees counterclockwise.

reshape(A,m,n) returns the m X n matrix extracted from the matrix A, where consecutive
elements of the original matrix fill the new matrix column by column.

size(A) returns the order (size) of the matrix A.
find(condA) returns the items in A that satisfy the stated condition.
length(v) returns the length of the vector v.
tril(A) returns the lower triangular part of the matrix A.
triu(A) returns the upper triangular part of the matrix A.
A' returns the transpose of the matrix A.
inv(A) returns the inverse of the matrix A.
The most important operations with array variables are summarized below:
A + B, A - B, A * Bsum, difference and product of matrices.

A\B If Ais square, A\B = inv (A) * B. IfAis notsquare, A\B is the solution, in the
sense of least-squares, of the system AX = B.

B/A coincides with (A'\B")".
A”n coincideswith A * A * A *, . * A ntimes (nth power).

P~A performs the calculation only if p is a scalar.

1-4. Character Variables

MATLAB is capable of powerful numerical calculation, but it also provides versatility in handling character variables
(text variables). A character variable (string) is simply a string of characters, included in single quotes, which MATLAB
treats as a vector. For example:

>> ¢ = 'string’

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS
We have thus defined the variable c as a character variable. Among the MATLAB commands that handle
character variables are the following:

abs('string') returns the vector whose elements are the ASCII values of the characters
in the string.

setstr(numeric_vector) returns the string of ASCII characters that are equivalent to
the elements of the vector.

stramat(t1,t2,t3,...) returns the matrix whose rows are the strings t1, t2, t3,...,
respectively.

str2num('string') converts the string of characters into an exact numerical value
using eval.

num2str(number) converts the number into its string of equivalent characters with fixed
precision.

int2str(integer) converts the integer into a string.

sprintf('format', A) convertsthe exact numeric array A into a string using the
specified format.

sscanf('string', 'format') converts the string to a numeric value in the specified
format.

dec2hex(integer) converts the decimal integer into its equivalent string in
hexadecimal.

hex2dec('string_hex') converts the hexadecimal string into the equivalent integer.

hex2num('string_hex') converts the hexadecimal string into the equivalent IEEE
floating-point number.

lower('string') converts the string to lowercase.
upper('string') converts the string to uppercase.

strcmp(s1,s2) compares the strings s1 and s2 and returns 1 if they are equal, and 0
otherwise.

strcmp(s1,s2,n) compares the strings s1 and s2 and returns 1 if they are equal in their
first n characters and 0 otherwise.

strrep(c, 'exp1l', 'exp2') replaces expl with exp2 in the string c.
findstr(c, 'exp') returns the position of the expression exp in the string c.

isstr(expression) or ischar(expression) returns 1 if the expression is a string and 0 if
itis not.

strjust(string) right-justifies the string.
blanks(n) generates a string of n blank characters.
deblank(string) replaces the characters in the string with blanks.

eval(expression) executes the expression even if it is a string.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

disp('string') displays the string (or array) as written. MATLAB then continues
processing.

input('string') displays the string on screen, then MATLAB pauses until the user
presses a key to continue.

Here are some examples:
>> eval('4 * atan(1)')
ans =

3.1416

In the following examples you can see how MATLAB numerically evaluates the contents of a string (provided it is
in a form recognized by the program):

>> hex2dec('3ffes56e")

ans =

67102062

Here, MATLAB has returned a decimal from a string in hexadecimal. The opposite conversion looks like this:

>> dec2hex(1345679001)

ans =

50356E99

Here, the program has converted a decimal number to a hexadecimal string.
>> sprintf('%f',[1+sqrt(5)/2,pi])
ans =

2.118034 3.141593

With sprintf, the exact numerical components of a vector have been converted to a string (with default precision).

>> sscanf('121.00012", '%f')

ans =

121.0001

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

With sscanf, a numeric string was returned in exact numerical format (with default precision).

>> num2str (pi)

ans =

3.142

The exact number is now the value of 7 as a string.

>> str2num('15/14")

ans =

1.0714

A string has been converted to an exact numeric value, with default accuracy.

>> setstr(32:126)

ans =

1"#$% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] *
_'abcdefghijklmnopgrstuvwxyz {|}~

This operation obtained the ASCII characters associated with the whole numbers between 32 and 126.

>> abs('{]}><#js202")

ans =
123 93 125 62 60 35 161 191 63 186 170

With the abs command we have obtained the integers corresponding to each ASCII character specified in its
argument.

>> lower('ABCDefgHIJ")

ans =

abcdefghij

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

This command translated the text to lowercase.

>> upper('abcd eFGHi jKIMn')

ans =

ABCD EFGHI JKLMN

Here we have converted the text to uppercase.

>> str2mat ('The world','The country','Daily 16','ABC')

ans =
The world
The country

Daily 16
ABC

The str2mat command has created an array of text whose rows are the strings specified as its arguments.

>> disp('This text will appear on the screen')
This text will appear on the screen

This command has displayed as screen text the argument of the command disp.

>> ¢ = This is 'a good example';
>> strrep(c, 'good', 'bad')

ans =

This is a bad example

This command has replaced good with bad in the string c. The following command finds the position that the
expression is occupies within the string c.

>> findstr(c, 'is')

ans =

36

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

1-5. Logic Functions

MATLAB has a group of functions whose output is either true (value 1) or false (value 0). Among them are the

following:

exist(A) tests whether the variable or function A exists (returns 0 if A does not exist,
and a number between 1 and 5, depending on the type, if it does exist).

any(V) returns 0 if all elements of the vector V are zero, and returns 1 if some element of
Vis non-null.

any(A) returns 0 for each column of the matrix A with all null elements, and returns 1
for each column of the matrix A that has some non-null elements.

all(V) returns 1 if all the elements of the vector V are non-null, and returns 0 if some
element of V is zero.

all(A) returns 1 for each column of the matrix A in which no elements are null, and
returns 0 for each column of A that has any null elements.

find(V) returns the places (or indices) occupied by the non-zero elements of the vector V.

isNaN(V) returns 1 for the elements of V that are indeterminate, and returns 0 for those
that are not.

isinf(V) returns 1 for the elements of V that are infinite, and returns 0 for those that
are not.

isfinite(V) returns 1 for the elements of V that are finite, and returns 0 for those that
are not.

isempty(A) returns 1 if A is an empty array, and returns 0 otherwise (an empty array is
one that has one of its dimensions equal to 0).

issparse(A) returns 1 if A is sparse, and returns 0 otherwise.
isreal(V) returns 1 if all the elements of V are real, and 0 otherwise.

isprime(V) returns 1 for all elements of V that are prime numbers, and returns 0 for
elements of V that are not prime.

islogical(V) returns 1 ifV is a logical vector and 0 otherwise.
isnumeric(V) returns 1 ifV is a numeric vector and 0 otherwise.

ishold returns 1 if hold is on and 0 otherwise. When hold is on the current plot and
(most) axis properties are held so that subsequent graphing commands add to the
existing graph.

isieee returns 1 if the computer uses IEEE arithmetic and 0 otherwise.
isstr(S) returns 1if S is a string, and 0 otherwise.
ischart(S) returns 1if S is a string, and 0 otherwise.

isglobal(A) returns 1 if A is a global variable, and 0 otherwise.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

isletter(S) returns 1ifS is aletter of the alphabet, and 0 otherwise.
isequal(A,B) returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

ismember(V,W) returns 1 for every element of V that is in W, and 0 for every element
of V that is not in W.

Here are some examples:

>> isinf([pi NaN Inf -Inf])

>> any([pi NaN Inf -Inf])

ans =

>> ismember([1,2,3,5],[8,12,1,3,56,5])

>» A= [2;0)1]; B = [4:012];
>> isequal(2*A,B)

ans =

>> V=[-10,5,3,12,0];
>> isprime(V)

>> isnumeric(V)

ans =

14

www.it-ebooks.info

http://www.it-ebooks.info/

>> all(V)

ans =

>> any(V)

ans =

>>C=[023;012;046],D=[0000;4312;600 4]

>> any(C),all(C),any(D),all(D)

ans =

ans =

0000

CHAPTER 1

SYMBOLIC VARIABLES AND FUNCTIONS

1-6. Elementary Functions That Support Complex Symbolic
Matrices as Arguments

Trigonometric

sin(z)
sinh(z)
asin(z)
asinh(z)
cos(z)
cosh(z)
acos(z)
acosh(z)
tan(z)
tanh(z)
atan(z)

sine function

hyperbolic sine function
arcsine function

hyperbolic arcsine function
cosine function

hyperbolic cosine function
arccosine function
hyperbolic arccosine function
tangent function
hyperbolic tangent function
arctangent function

www.it-ebooks.info

15

http://www.it-ebooks.info/

CHAPTER 1

16

SYMBOLIC VARIABLES AND FUNCTIONS

atan2(z)
atanh(z)
sec(z)
sech(z)
asec(z)
asech(z)
csc(z)
csch(z)
acsc(z)
acsch(z)
cot(z)
coth(z)
acot(z)
acoth(z)

Exponential

exp(z)
log(z)
log10(z)
sqrt(z)

Complex

abs(z)
angle(z)
conj(z)
imag(z)
real(z)

Numerical

fix(Z)
floor(Z)
ceil(Z)
round(Z)

rem(Z1, Z2)
sign(Z)

Matrix

expm(Z)
expmi(Z)
expm2(Z)
expm3(Z)
logm(Z)
sqrtm(Z)
funm(Z, 'function')

arctangent function in the fourth quadrant
hyperbolic arctangent function
secant function

hyperbolic secant function
arcsecant function

hyperbolic arcsecant function
cosecant function

hyperbolic cosecant function
arccosecant function

hyperbolic arccosecant function
cotangent function

hyperbolic cotangent function
arccotangent function
hyperbolic arccotangent function

base e exponential function
Napierian logarithm function
decimal logarithm function
square root function

modulus or absolute value
argument

complex conjugate
imaginary part

real part

removes the decimal part

rounds decimals to the nearest lower integer

rounds decimals to the nearest greater integer

rounds Z to the nearest integer, rounding values mid way between
two integers to the integer with the largest magnitude.

remainder of the division of Z1 by Z2

sign function

matrix exponential function by default
matrix exponential function in M-file

matrix exponential function via Taylor series
matrix exponential function via eigenvalues
matrix logarithm

matrix square root

applies the function to the array Z

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

1-7. Symbolic Functions of Several Variables

Functions of one or several variables are defined using the command maple as follows:
maple('f: = x - > f (x)')or maple f: = x - > f (x) defines the function f(x).
maple ('f:=(x,y,z...)- > f(x,y,z...)") defines the function f(x,y,z,..).

maple ('f:=(x,y,z...)- > (f1 (x,y...), f2(x,y..),...)") defines the vector
function (f1(x,y,..), f2(x,y,..),...).

To find the value of the function (x, y, z) - > f(x,,z...) at the point (g, b, ¢,...), use the expression
maple('f(a,b,c,...)").

We can find the value of the vector function f:=(x,y,..)-> (f1(x,,..), f2(x,,..),...) at the point (a,b,...) by using the
expression maple('f(a,b,..)").

The function f(x,y) = 2x + y is defined in the following way:
>> maple ('f:=(x,y) - >2*x+y");

f(2,3) and f(a,b) are calculated as follows:

>> maple('f(2,3)")

ans =

>> maple('f(a,b)")

ans =

2*a+b

EXERCISE 1-5

Given the function h, defined as h(x,y) = (cos(x?-y?), sin(x2-y?); calculate h(1,2), h(-Pi,Pi) and h(cos(a?), cos(1 -a?)).
Because we have a vector function of two variables, we use the maple command:

>> maple ('h:=(x,y) - > (cos(x*2-y*2), sin(x"2-y"2))");
>> maple ('A = h(1,2), B = h(-pi,pi), C = h (cos(a*2), cos(1-a"2))")

ans =

(cos(3),-sin(3)), B = (1,0),
(cos(cos(a*2)"2-cos(-1+a"2)"2), sin(cos(a”2)"2-cos(-1+a"2)"2))

=
nou

www.it-ebooks.info

17

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

1-8. Functions of Single Variables

Functions of a single variable are a special case of vector functions, but they can also be defined in MATLAB via:
f = 'function'. To find the value of the function f at a point, you use the command subs, whose syntax is as follows:

subs(f, a) applies the function f at the point a
subs(f, a, b) substitutes each occurrence of a by b in the expression f.

Let’s see how to define the function f(x)=x"2:

>» f="x 2"

£ -

X "2

Now we calculate the values f(4), f(a+1) and f(3x+x12):

>> syms a x
>> A=subs(f,4),B=subs(f,a+1),C=subs(f,3*x+x"2)

A =
16
B -
(a+1) ~ 2
C =

B*x+x"2)"2

It should also be borne in mind that if we use the maple command, the special constants 7 e, i, and « are defined
asmaple('Pi'), maple('exp (1)'), maple('i')andmaple('infinity"), respectively.

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SYMBOLIC VARIABLES AND FUNCTIONS

EXERCISE 1-6

Define the functions f (x) = X2, g (x) = x"2 and h (x) = x + sin (x). Calculate f (2), g (4) and h (a-b?).
>> f="x"2"; g = 'x"(1/2)"; h = "x¢sin(x)";

>> syms a b
>> a = subs(f,2), b = subs(g,4), c = subs(h,'a-b"2")

b =
4 ~(1/2)
C =

a - b*2 + sin(a-b”*2)

We could also have done the following:

>> maple('f:=x->x"2: gr=x->sqrt(x):h:=x->x+sin(x)"');
>> maple('f(2),g(4),h(a-b"2)")

ans =

4, 2, a - b”*2 + sin(a-b*2)

www.it-ebooks.info

19

http://www.it-ebooks.info/

CHAPTER 2

Algebraic Expressions and
Operations: Factoring Algebraic
Fractions

MATLAB handles all calculations involving simple, rational, and complex algebraic expressions with mastery.

It quickly and efficiently performs the operations of simplification, factorization, grouping, and expansion of algebraic
expressions, no matter how complicated, including trigonometric expressions and expressions involving complex
variables. All of this is possible provided the symbolic math Toolbox is available. The following is a list of commands
which implement the algebraic transformations most commonly used in work with MATLAB.

2-1. Expansion of Algebraic Expressions

The following commands enable MATLAB to expand or develop algebraic expressions:

expand(expr) expands an algebraic expression, presenting the result as a sum of
products and powers. It applies multiple angle rules for trigonometric expressions
and formally applies the properties of exponential and logarithmic functions. It also
decomposes quotients of polynomials by expanding the numerator, presenting the
original expression as a sum of algebraic quotients.

maple('expand(expr)') completely expands the algebraic expression, transforming
products and powers into sums of terms, applying multiple angle rules for
trigonometric functions and expansion rules for exponential functions. It then
simplifies the end result.

maple('Expand(expr)') performs the inert expansion of expr (that is, it goes through
the steps of expansion without evaluation).

maple('expand(expr) mod n') performs the expansion of expr modulo n.
maple('Expand(expr) mod n') gives the inert expansion of expr modulo n.

maple('expand(expr, subi,...,subn)") expands expr without expanding its
subexpressions sub1,..., subn.

maple('expand(rational)') expands the numerator of the given rational algebraic
expression.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

maple('expand(equation)') expands both sides of the equation.
maple('expand([expri,...,exprn])") creates a list of expanded expressions.
maple('expand({expri,...,exprn})") creates a set of expanded expressions.

maple('expandoff(command)') suppresses the expansion of expressions involving the
specified command in future calculations.

maple('expandoff(comi,...,comn)") suppresses the expansion of expressions
involving the specified commands in future calculations.

maple('expand(expandoff ())') suppresses the expansion of expressions for all
commands in future calculations.

maple('expandon(command)') enables the expansion of expressions involving the
specified command in future calculations. First, it checks whether the command has
been previously affected by expandoff, and if so, it eliminates its effect.

maple('expandon(comi,...,comn)") enables the expansion of expressions involving the
specified commands in future calculations.

maple('expand(expandon ())') enables the expansion of expressions for all commands
in future calculations.

maple('frontend(command, [exprl,..., exprn])') paralyzes the expansion of the
given expressions before submitting to the specified command or procedure.

maple('frontend(command, [exprl,..., exprn], [argl,..., argm])') paralyzes the
expansion of the given expressions expri, .. .,exprn before submitting to the specified
command or procedure, but does not freeze argi, ...,argm.

Now let’s look at several examples of algebraic manipulations using the commands we've just seen:

>>syms x yztab
>> pretty(expand((x+1)*(x+2)))

X +3 X+ 2

>> pretty(expand((x+1)/(x+2)))

>> pretty (expand (sin (x + y)))

22

sin(x) cos(y) + cos(x) sin(y)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(expand(cos(2*x)))

2
2 cos(x) -1

>> pretty(expand(exp(a+log(b))))

exp(a) b

>> pretty(expand(log(x/(1-x)"2)))

log(x) - 2 log(1 - x)

>> pretty(expand((x+1)*(y+z)))

Xy+Xz+y+z

>> pretty(expand(Bessell(2,t)))

bessell(1, t)
2 s - bessell(o, t)
t

>> maple('expandoff(exp):expand(exp(a+b))")

ans =

exp(a+b)

>> maple('expandon(exp):expand(exp(c+d))")

ans =

exp(c)*exp(d)

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-1

Find the greatest common divisor of the following algebraic expressions a and b:
a=sin?x) + 2 sin(x) + 1, b = sin(x) + 1

First, we try to solve the problem directly.

>> syms a b x
>> maple ('a: = sin (x) ~ 2 + 2 * sin (x) + 1, b: = sin(x) + 1:gcd(a,b)")

Error, (in gcd) arguments must be polynomials over the rationals.

To avoid this error, use the command frontend as follows:

>> maple('frontend(gcd,[a,b])")

ans =

sin (x) +1

EXERCISE 2-2

Expand the polynomial (x+2)(x-2) as much as possible modulo 3. Also expand the polynomial (x +co)?(x -ot) where
o = RootOf (x2- 2). At the same time, expand the polynomial (x +[3)2(x -3) modulo 2 where = RootOf (x>+x-+1).

>> pretty(sym(maple('expand((x+2)"2*(x-2)) mod 3')))

3 2
X +2Xx +2x+1

>> pretty(sym(maple('alias(a=RootOf(x"*2-2)):evala(Expand((x+a)"2*(x-a)))')))

3 2
X +aXxX -2x-2a

>> pretty(sym(maple('alias(b=RootOf(x"2+x+1)):evala(Expand((x+b)"*2*(x-b)) mod 2)')))

3 2
X +X+bx +bx+1

The command alias is used to define abbreviations for objects, which helps to reduce the complexity of the output.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

2-2. Factoring Expressions over Fields and their Algebraic
Extensions

The following commands enable Maple to factorize algebraic expressions, whether univariate, multivariate, over the
field of real numbers or over the field of their coefficients or algebraic extensions thereof. The command syntax is as

follows:

factor(expr) writes an algebraic expression as a product of factors (the reverse

of expand). Factoring is performed by default over the field or ring defined by the
coefficients of the expression. For algebraic fractions, the numerator and denominator
are individually factored and common factors are cancelled.

maple('factor(expression)') factorizes a non-polynomial or polynomial algebraic
expression over the field or ring defined by its coefficients.

maple('factor(expr,a)') factorizes the polynomial algebraic expression over the field
defined by its coefficients and the extension element a (where a is usually a simple or
compound radical or an algebraic number defined by a RootOf expression).

maple('factor(expression,radical)") factorizes the polynomial expression over the
field extension Q(radical) of Q. For example, Q(vy2) or Q(RootOf(x/A2-3)).

maple('factor(expr,[radl,..., radn]) or factor(expr, {radi,..., radn})")
factorizes the polynomial expression over the field extension Q(radl,..., radn) of Q.
For example, Q (v2,v3).

maple('factor(rational)') factorizes the numerator and denominator of the given
rational expression, normalizing it.

maple('factor(equation)') factorizes both sides of an equation.

maple('factors(expression)') returns the factors and their multiplicities for the given
polynomial algebraic expression, over the field defined by their coefficients.

maple('factors(expr,radical)') returns factors and their multiplicities for the given
polynomial expression over the field extension Q(radical) of Q. For example,Q(+y2) or
Q(RootOf(xA2-3)).

maple('factors(expr,[radl,..., radn]) or factors(expr, {radi,..., radn})")
gives the factors and their multiplicities for the given polynomial expression over the
field Q(radl,..., radn); for example, Q(v2, ¥3).

maple('factor(expr) mod n') performs the factorization of the given non-polynomial
or polynomial expression over the field determined by its coefficients modulo 7.

maple('Factor(expression)') gives in inert form the factorization of the given
polynomial or non-polynomial expression over the field defined by its coefficients.

maple('Factors(expression)') represents in inert form the factors of the given
polynomial expression.

maple('Factor(expr) mod n') performs the inert factorization of the given expression,
whether non-polynomial or polynomial, over the field defined by its coefficients
modulo n.

maple('Factors(expression)') represents in inert form the factors of the given
polynomial expression modulo n.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
maple('AFactor(expression)') performs the inert absolute factorization of the given
expression.

maple('AFactors(expression)') represents in inert form the factors of the absolute
factorization of the given polynomial expression.

maple('Berlekamp(expr,var)') represents the inert form of the Berlekamp
factorization of varying degrees for the multivariate expression expr with respect to the
variable var.

maple('Berlekamp(expr, var) mod n') represents the inert form of the Berlekamp
factorization of varying degrees modulo n for the multivariate expression expr with
respect to var.

maple('readlib(split):split(expr, variable)') performs the complete factorization
of the given polynomial expression in the specified variable.

maple('grading(Inert command(expri,..., exprn))') evaluates the specified function
or inert command over the field defined by the coefficients of the expressions. Applies
to inert commands such as Factor, Factors, AFactor, AFactors, Expand, and so on.

maple('grading(Inert command(expri,..., exprn, n))') evaluates the specified
function or inert command over Z modulo r.

maple('value(expr_inert)') evaluates the given expression containing inert
commands or functions of the type Diff, Int, Product, Sum or Limit.

Here are some examples:

>> syms X y
>> pretty(factor(6*x"2+18%x-24))

6 (x +4) (x -1)

In the following example we simplify the numerator and denominator of an algebraic fraction, cancelling
common factors:

>> pretty (factor ((x*3-y*3) /(x"4-y*4)))

2 2
X +yx+y

(x+y) x +y)

The following examples show factorizations of expressions over field extensions defined by the coefficients of the
expression and the element(s) given in the second argument:

>> pretty(sym(maple('factor(x”3+5, 5%(1/3))")))

2 1/3 2/3 1/3
(x -5 X+5) (x+5)

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
>> pretty(sym(maple('factor(x"3+5, {5%(1/3),(-3)"(1/2)})")))

1/3 1/2 1/3 1/3 1/2 1/3 1/3
/4 2x-5 -(3) 5)Y@x-5 +(3) 5)(Xx+5)

>> pretty(sym(maple('factor(y"4-2,sqrt(2))")))

2 1/2 2 1/2
(y +2)@y -2)

>> pretty (sym (maple ('factor (y" 4-2, RootOf(x"2-2))')))

2 2 2 2
(y + RootOf(Z - 2)) (y - RootOf(Z - 2))

The following example highlights the difference between factoring a polynomial expression over the field defined
by its coefficients and the extension of this field by (- 3) A(1/2):

>> pretty (factor(x"3+y”3))

2 2
(x+y) (x -xy+y)

>> pretty(sym(maple('factor(x"3+y"3,(-3)"(1/2))")))

1/2 1/2
/4 (2x-y-(3) y)@x-y+(3) y) (x+y)

>> pretty (sym (maple ('factor(x*3+5,complex)')))

(x + 1.7099759466766969893531088725439). (x - .85498797333834849467655443627193
+ 1.4808826096823642385229974586353 +i)
(x -.85498797333834849467655443627193 - 1.4808826096823642385229974586353 i)

In the following examples we perform factorizations using factors. This command returns the factors together
with their multiplicities.

>> maple('readlib(factors)');
>> pretty(sym(maple('factors(3*x"2+6*x+3)')))

(3, [[x+1, 2]]]

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('Digits:=10:factors(x"4-4.0)')))

2
[1.,[[x+1.414213562, 1], [x-1.414213562, 1], [x +1.999999999, 1]]]

>> pretty(sym(maple(factors(x"4-4.0,complex)')))

[1., [[x + 1.414213562, 1], [x + 1.414213562 i, 1], [x - 1.414213562 i, 1],
[x - 1.414213562, 1]]]

The following are examples of the inert and complete factorization commands Factor, Factors, AFactor, AFactors,
split and Berlekamp.

>> pretty(sym(maple('Factor(x"2+3*x+3) mod 7')))
(x +6) (x +4)
>> pretty(sym(maple('alias(sqrt2=Root0f(x*2-2)):evala(Factor(x"2-2,sqrt2))"')))
(x + sqrt2) (x - sqrt2)
>> pretty(sym(maple('evala(Factor(x*2-2*y*2,sqrt2))")))
(x - sqrt2 y) (x + sqrt2 y)
>> pretty(sym(maple('expand((x"3+y"5+2)*(x*y"2+3)) mod 7')))

4 2 3 7 5 2
Xy +3X +y X+3y +2Xxy +6

>> pretty (sym (maple ('Factor ('') mod 7')))

3 5 2
(x +y +2) (xy +3)

>> pretty(sym(maple('Factors(2*x"2+6*x+6) mod 7')))
[2, [[x + 4, 1], [x + 6, 1]]]
>> pretty(sym(maple('Factors(x*5+1) mod 2')))

4 3 2
[1, [[x +1, 1], [x +x +x +x+ 1, 1]]]

28

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>

>>

(x

>>

>>

>>

(x

>>

>>

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty(sym(maple('evala(Factors(2*x*2-1,sqrt2))")))
[2, [[x + 1/2 sqrt2, 1], [x - 1/2 sqrt2, 1]]]
pretty(sym(maple('alias(sqrtx=RootOf(y”2-x,y)):evala(Factors(x*y*2-1,sqrtx))")))

sqrtx sqrtx

[X) [[y + ----- 1) 1]) [' """ Y, 1]]]
X X

pretty (sym (maple ('grading (AFactor(x"2-2*y*2))')))

sqrt2 y) (x + sqrt2 y)

pretty (sym (maple ('grading (AFactors(x*2-2*y*2))')))
[1, [[x - sqrt2 y, 1], [x + sqrt2 y, 1]]]

The following are examples of complete and Berlekamp factorizations.

pretty(sym(maple('readlib(split):split(x*2+x+1,x)")))

2 2
(x - RootOf((Z + Z+ 1)) (x+1 + RootOf(Z + Z + 1))

pretty(sym(maple('split(x"2+y*x+1+y*2, x, b)')))

2 2 2 2
- RootOf(Z+y Z+1+y))(x+y+RootOf(Z +y Z+1+y))

pretty(sym(maple('b')))

2 2
{RootOf(Z +y Z+1+y)}

pretty(sym(maple('p:= 10"10-33:Berlekamp(x*4+2,x) mod p')))

2 2
{x + 6972444635 x + 9284865757, x + 3027555332 x + 9284865757}

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-3

Factorize the polynomial x® + 5 in the algebraic extension defined by 5% and the algebraic extension defined by
{5"3, V-3}. Also perform the complete factorization.

>> pretty(sym(maple('factor(x * 3 + 5, 5 ~(1/3))")))

2 1/3 2/3 1/3
(x -5 X+5)(x+5)

>> pretty(sym(maple('factor(x"3+5, {5"(1/3),(-3)"(1/2)})")))

1/3 1/2 1/3 1/3 1/2 1/3 1/3
1/4 2x -5 +13 5)(2x-5 -i3 5)(x+5)

>> pretty(sym(maple('readlib(split):split(x"3+5,x)")))

2 3 3 2
(x - RootOf(Z + RootOf(Z + 5) Z + RootOf(Z + 5)))
3 2 3 3 2
(x + RootOf(_Z + 5) + RootOf(_ Z + RootOf(Z + 5) Z + RootOf(Z + 5)))

3
(x - Root0Of(Z + 5))

EXERCISE 2-4

30

Find the factors and their multiplicities for the polynomial x* - 4 over the real numbers, complex numbers, the
algebraic extension defined by V2, the algebraic extension defined by {v2,i}, the algebraic extension defined by
o = RootOf(x2-2), the algebraic extension defined by B = RootOf (x2+ 2), and the algebraic extension defined by

{o, B}

>> pretty(sym(maple('readlib(factors):factors(x"4-4)')))

2 2
[11 [[X -2, 1]) [X + 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors(x"4-4, complex)')))

[1, [[x + 1.414213562 i, 1], [x + 1.414213562, 1],
[x - 1.414213562 i, 1], [x - 1.414213562, 1]]]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
>> pretty(sym(maple('readlib(factors):factors(x"4-4, sqrt(2))')))

1/2 1/2 2
[1) [[X -2 > 1]) [X + 2 > 1]) [X + 2) 1]]]

>> pretty(sym(maple('readlib(factors):factors(x"4-4, {sqrt(2), i })")))

1/2 1/2 1/2 1/2
[11 [[X -i2 > 1]) [X +12 > 1]: [X -2 > 1]) [X + 2 > 1]]]

>> pretty(sym(maple('readlib(factors):alias(a=Root0f(x"2-2)):
alias(b=RootOf(x"2+2)):factors(x"4-4, a)")))

2
[1, [[X - a, 1]) [X + a, 1]) [X + 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors(x"4-4, b)")))

2
[1, [[X + b: 1]: [X - b: 1]: [X -2, 1]]]

>> pretty(sym(maple('readlib(factors):factors(x"4-4, {a,b})')))

[1) [[X + bJ 1]1 [X - a, 1]1 [X + a, 1]1 [X - bJ 1]]]

EXERCISE 2-5

Let oo = RootOf(x2 + x + 1) and 3 = RootOf(y? - x, y). Factorize modulo 2 the univariate polynomial x® + 1 over
the algebraic extension defined by o . Factorize modulo 5 the bivariate polynomial X2+ 2xy + y> +1 +x +y
over the algebraic extension defined by o . Factorize modulo 5 the following bivariate polynomial:

X2y + Xy% + 20y + o + 4xox + y +ou. Find the factors and their multiplicities modulo 5 for the bivariate
polynomial X%y + xy? + 20Xy +02 + 4 xox + Yy +o. Find the factors and their multiplicities modulo 2 for the
univariate polynomial x5 + 1 over the algebraic extension defined by o . Factorize the bivariate polynomial
xy? - 1 over the algebraic extension defined by 3 .

>> pretty(sym(maple('alias(a=RootOf(x*2+x+1)):Factor(x*3+1,a) mod 2')))

(x+a+1) (x+1) (x +a)

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty (sym (maple ('Factor(x”2+2*x*y+y"2+1+x+y,a) mod 5')))
(y+x+4) (y+x+a+1)
>> pretty (sym (maple ('Factor(x*2*y+x*y”2+2*a*x*y+a*x*2+4*¥a*x+y+a) mod 5')))
(xy+x+1) (y+x+a)
>> pretty (sym (maple ('Factors(x"2¥y+x*y 2+2*a*x*y+a*x 2+4*a*x+y+a) mod 5')))
[1, [[xy +x+1, 1], [y + x + a, 1]]]
>> pretty (sym (maple ('Factors(x"5+1,a) mod 2')))

2 2
[1, [[x+1, 2], [x+ (a+1) x+1, 1], [x+x+1, 1]]]

>> pretty (sym (maple ('alias (b = RootOf(y"2-x,y)):evala(Factor(x*y*2-1,b))"))))))

x (y - b/x) (b/x +y)

EXERCISE 2-6

Letp =x8+x°+ x* + x® + 2¢2 + 2 x + 1. Find the Berlekamp factorization of p modulo 2. Also factorize the
bivariate algebraic expression x*y? + 3x3+ y’x +3y° + 2xy? + 6 over the field defined by its coefficients.

>> pretty(sym(maple('p:=x"6+x"5+x"4+x"3+2*x"2+2%*x+1:Berlekamp(p,x) mod 2')))

4 2
{x+x+1, x+x + 1}

>> pretty(sym(maple('factor(x"4*yr2+3*x"3+y 7*x+3%¥y 5+2*x*y*2+6)"')))

2 3 5
(xy+3) (x+y+2)

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

2-3. Simplifying Algebraic Expressions
The following commands enable MATLAB to simplify algebraic expressions:

simplify(expr) simplifies an algebraic expression as much as possible. It sums
algebraic fractions, but does not completely simplify them.

simplify(expr, rulei, rule2,..., rulen) simplifies the expression taking into
account the rules specified. The possible values of the rules are Ei, GAMMA, atsign,
hypergeom, In, polar, power, radical, sqrt and trig, which allow simplification of
expressions containing the exponential integral, gamma functions, functional
operators, hypergeometric functions, logarithms, polar functions, powers, radicals,
square roots and trigonometric functions, respectively.

simplify(expr,assume=property) simplifies the expression taking into account the
specified mathematical property.

simplify(expr,symbolic) simplifies the expression so that all radical subexpressions
are positive.

R = simple('expr') returns the most simplified form R of the algebraic expression.
This is the most efficient command to completely simplify an algebraic fraction.

[R, HOW] = simple('expr') returns the most simplified form R of the given algebraic
expression together with a list HOW describing the path followed to reach the
simplification (i.e. the commands used).

maple ('simplify(expression,optioni,...,optionn)") simplifies the given algebraic
expression using the specified options. Valid options are atsign, Ei, exp, GAMMA,
Hypergeom, In, polar, power, radical, RootOf, sqrt, trig, symbolic, &*, piecewise and assume.

maple('simplify(expression,atsign) or simplify(expression, '@')"') simplifies
expressions containing functional operators, such as the composition of functions and
inverse functions. It is particularly useful when simplifying inversefunction (function

(x) =x.

maple('simplify(expression,polar)") simplifies complex expressions by
passing them to polar form and applying the rules of complex operations.

If necessary, the complex expression must first be simplified to its polar form with
convert(expression,polar) before applying the simplification.

maple('simplify(expression,power)') simplifies algebraic expressions containing
potential, exponential, and logarithmic functions, applying typical rules of
simplification, such as (a » b) A ¢ = a A (b*c), In(x*y) = In (x) + In (y) and

exp (a*In(x)+ 1) =(x"a) *exp (1).

maple('simplify(expr,exp)") simplifies algebraic expressions that contain base e
exponential functions, by applying typical rules of simplification such as
ex*eY=eN (x+Yy), (erx)Na=eN(x*a)and e N (x+In (y)*n) =(e"x) * (y A n).

maple('simplify(expr,radical)') simplifies algebraic expressions containing radicals
or fractional powers, applying typical rules of simplification.

maple('simplify(expr,radical,symbolic)') simplifies algebraic expressions
containing radicals or fractional powers, applying typical rules of simpllification and
assuming that all the radicals are positive.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

34

ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

maple('simplify(expr,Root0f)") simplifies algebraic expressions containing terms of
type RootOf.

maple('simplify(expr,sqrt)"') simplifies algebraic expressions containing square
roots or fractional powers of denominator 2, applying typical rules of simplification.

maple('simplify(expr,1ln)') simplifies algebraic expressions containing logarithms,
applying typical rules such as In(a*r) = r *In (a), In(a*b) = In (a) + In (b),

maple('simplify(expr,trig)"') simplifies trigonometric algebraic expressions,
applying the typical trigonometric rules such as sin(x) A 2 + cos(x)"\2=1,
cosh (x) N 2-sinh (x) A 2= 1, tan(x) = sin (x) /cos (x) and 1 + tan (x) N 2= 1/cos (x) " 2.

maple('simplify(expr,Ei)") simplifies algebraic expressions that include functions of
the type Ei, Si and Ci, using the existing relationships between them. Sometimes, it is
convenient to apply convert(expr, Ei) before applying this type of simplification.

maple('simplify(expr,GAMMA)") simplifies algebraic expressions involving GAMMA-
like functions using the existing relationships between the same. Sometimes, it is
convenient to apply convert(expr, GAMMA) before applying this type of simplification

maple('simplify(expression,hypergeom)') simplifies algebraic expressions involving
functions of the type hypergeom using existing relations between the same. Sometimes,
it is convenient to apply convert(expr, hypergeom) before applying this type of
simplification.

maple('simplify(expression,piecewise)") simplifies algebraic expressions involving
piecewise-defined functions.

maple('simplify(expr,' &* ')') simplifies algebraic expressions that include the &*
operator.

maple('simplify(expr,{equi,...,equn})") ormaple ('simplify(expr,[equi,...,
equn])") simplifies the given algebraic expression subject to the specified equations.

maple('simplify(expression,inequality variable)') simplifies the given algebraic
expression assuming the specified inequality in some given variable. For example,
simplify(expression, a> 0).

maple('simplify(expression,variable=type)"') simplifies the given algebraic
expression assuming that all the variables are of the type specified (for example,
assume = real assume = positive, and so on). In general, the type can be any option of
the command type.

maple('simplify(expression,assume(variable,property))") simplifies the given
algebraic expression, assuming the property specified for the specified variable (for
example, integer, rational, and so on.). In general, the property can be any option of
the command type.

maple('simplify(expr,assume(variable, AndProp(propi,...,propn)))") simplifies
the given algebraic expression by assuming all the given properties propl,..., propn for
the specified variable.

maple('simplify(expr,assume(variable, OrProp(propi,...,propn)))") simplifies the
given algebraic expression by assuming some of the properties propl,..., propn for the
specified variable.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

maple('simplify(expression,assume(variable, RealRange(a,b)))") simplifies the
given algebraic expression by assuming that the variable varies in the real closed
interval [a, b].

maple('simplify(expr,assume(variable, RealRange(Open(a),Open(b))))') simplifies
the given algebraic expression by assuming that the variable varies in the interval (a, b).

maple('simplify(expr, assume(variable, RealRange(Open(a),b)))') simplifies the
given algebraic expression by assuming that the variable varies in the interval (a, b].

maple('simplify(expr,assume(variable, RealRange(a,Open(b)))") simplifies the
given algebraic expression by assuming that the variable varies in the interval [a,b).

We give several examples which involve the command simplify:

>> syms X y b c
>> simplify (sin (x) ~ 2 + cos (x) ~ 2)

ans =

>> simplify(exp(a+log(b*exp(c))))

ans =

b*exp(a+c)
>> pretty(sym(maple('simplify((x*a)*b+4~(1/2), power)')))

(a b)
X +2

>> pretty (sym (maple ('simplify (sin (x) * 4 + 2 * cos (x) 2 - 2 * sin (x) "~ 2 - cos(2*x), trig)')))

4
cos(x)

>> pretty (sym (maple ('simplify(-1/3*x"5*y+x 4*y”2+1/3*x*y*3+1, {x"3=x*y, y"2=x+1})")))

5 4 2 3
1+y+y-y+y-2%

>> pretty (sym (maple ('simplify (((x-1) ~ 2) ~(3/2) * sqrt(a*2), assume(x-1>0))"')))

3
(x* - 1) csgn(a) a

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

The tilde (~) that appears at the top-right of the variable x indicates that a condition x has been assumed.

>> pretty(sym(maple('simplify(exp(5*1n(x)+1), power)')))

5
x exp(1)

>> pretty (sym (maple ('simplify (cos (x) 5 + sin (x) * 4 + 2 * cos (x) 2 -2 * sin (x) * 2 -

cos(2*x))")))

5 4
cos(x) + cos(x)

>> pretty (sym (maple ('simplify(-1/3*x"S*y + x*4*¥y"2 + 1/3*x*y*3 + 1,{x * 3 =x *y,
y " 2=x+1}"))

5 4 2 3
l+y +y -y +y-2y

>> pretty(sym(maple('simplify((x+1)"(4/3)-x*(x+1)"(1/3),radical)")))

1/3
(x +1)

>> pretty(sym(maple('simplify(Ei(1,i*x)+Ei(1,-i*x),Ei)")))
-2 cosint(x)
>> pretty(sym(maple('simplify(n!/((2*n)*2)!, GAMMA)')))

gamma(n + 1)

gamma(4 n + 1)

We now give some examples of how the simple command works:

>> pretty (sym (simple (cos (3 * acos (x)))))

4 X -3X

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> [R, HOW] = simple (cos (3 * acos (x)))

R =
4 * x " 3-3 %x
HOW =

expand

In the latter case, the command that led to the final simplification was expand:

>> pretty (simple (cos (x) + (-sin (x) ~ 2) ~(1/2)))
cos(x) + i sin (x)

>> pretty(simple((x"2-y*2) /(x-y) ~ 3))

EXERCISE 2-7

Given the functions g(x) = sqrt x? and e(x) =(-8ab3)"?, simplify them as much as possible. Perform the
simplification of g(x) for a real argument and a positive argument. Also simplify e(x) for positive radical and then
negative b.

>> pretty(sym(maple('simplify(sqrt(x*2))"')))
csgn(x) x

>> pretty(sym(maple('simplify(sqrt(x”2),assume=real)')))
signum(x) x

>> pretty(sym(maple('simplify(sqrt(x~2),assume=positive)')))

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('simplify((-8*b*3*a)*(1/3))")))

3 1/3
2 (-b a)

>> pretty(sym(maple('simplify((-8*b”3*a)~(1/3),radical,symbolic)"')))

1/3
2 b (-a)

>> pretty(sym(maple('simplify((-8*b”3*a)*(1/3),assume(b<0),radical)"')))

1/3
-2 b~ a

EXERCISE 2-8

Directly simplify the expression ((x-1)2%2 (a2 Then simplify it assuming the condition that x > 1. Finally, perform
a simplification assuming in addition that a > 0.

>> pretty(sym(maple('simplify(((x-1) * 2) ~(3/2) *(a"2) ~(1/2))")))

3
csgn(x - 1) (x - 1) csgn(a) a

>> pretty(sym(maple('simplify(((x-1)*2)"(3/2)*(a"2)"(1/2),assume(x>1))")))

3
(x* - 1) csgn(a) a

>> pretty(sym(maple('simplify(((x-1)*2)"(3/2)*(a"2)*(1/2), assume(x>1,a>0))")))

3
(x> -1) av

The last expression also can be simplified without assignments, assuming positive radicals with the option symbolic.

>> pretty(sym(maple('simplify(((x-1)*2)"(3/2)*(a"2)"(1/2),symbolic)")))

3
(x -1) a

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

2-4. Combining Algebraic Expressions

MATLAB allows you to combine terms composed of functions of certain types within an algebraic expression, in order
to simplify the expression as much as possible after grouping. Among the commands that enable you to do this are the
following (always preceded by the command maple):

combine(expression) combines terms that contain functions in the given algebraic
expression; they may be exponential, logarithmic, trigonometric, sums (Sum),
products (Prod), limits (Limit), integrals (Int), derivatives (Diff), and so on. Once the
combination or grouping of terms is done according to the different types of functions,
there is an overall simplification. Combine can be considered the reverse of expand; for
example, expand transforms sin (a + b) into sin (a) * cos (b) + cos (a) * (b) and combine
does the opposite.

combine(expression,optioni,...,optionn) combines terms in the given expression
using the specified options. The valid options are atsign, Psi, exp, artan conjugate,
polylog, In, product, power, plus range, RootOf, sqrt, trig, signum, radical, abs and
piecewise.

combine(expression,atsign) or combine(expression, '@') combines expressions
that contain functional operators, such as the composition of functions and inverse
functions. It is particularly useful when simplifying inversefunction(function (x)) = x.

combine(expression,product) combines expressions that contain products.
combine(expression,plus) combines expressions that contain sums.
combine(expression,artan) combines expressions that contain arctangent functions.

combine(expression,conjugate) combines expressions by grouping terms with their
conjugates.

combine(expression,power) combines terms of expressions containing exponential
functions, potentially by applying rules such as (x A y) *(x/z) =x A (y+z),
(x"y) Az=xA(y*2), ¥ -a=i*/a.

combine(expression,radical) combines terms of expressions that contain radicals or
fractional powers, applying the typical rules for working with radicals.

combine(expression,radical,symbolic) combines terms of expressions that contain
radicals or fractional powers, applying the typical rules for working with radicals and
assuming that all the radicals are positive.

combine(expression,abs) combines terms of expressions that contain absolute values
(moduli).

combine(expression,signum) combines terms of expressions that contain the function
signum.

combine(expression,1ln) combines terms of expressions that contain logarithms,
applying the typical rules of working with logarithms, such as r * In (a) = In(a’r),
In (a) + In (b) = In(a*b), and so on.

combine(expression,trig) combines terms of trigonometric expressions, eliminating
products and powers of sines and cosines, hyperbolic sines and hyperbolic cosines,
using multiple angle trigonometric rules such as sin (a) * cos (b) =sin ((a+b) / 2) +
sin ((a-b)/2) or sinh (a) * sinh (b) = cosh ((a + b) / 2)-cosh ((a-b)/2).

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>

v

>

v

>

v

>

v

>

v

>

v

40

combine(expression,Psi) combines terms of expressions that include functions of the
type Psi, applying rules suchas ¥® (z + 1) = ¥ (z) +(-1)"n! z("- 1),

combine(expression,range) combines terms of expressions that include ranges.

combine(expression,polylog) combines terms of expressions that include
polylogarithmic functions, using the existing relationships between them.

combine(expression,exp) combines expressions that contain base e exponential
functions, applying the typical rules for them such as (e A x) *(eAy) =e A (x +Y),
(e ~x) Aa=eA(x*a) and e A (x+In (y)*n) =(e/x) *yA n.

combine(expression,piecewise) combines terms of expressions involving

piecewise-defined functions.

combine(expression, 1ln, type) combines terms of expressions that include
logarithmic functions, only simplifying expressions whose coefficients are of
the given type.

Here are some examples:

pretty(sym(maple('combine(4 * sin (x) * 3, trig)')))

-sin(3 x) + sin (x) 3

pretty(sym(maple('combine(exp(x) ~ 2 * exp(y), exp)")))

exp(2 x +y)

pretty(sym(maple('assume(y>0,z>0):combine(2*1n(y)-1n(z),1n)")))

2
-
In(---)

7z~

pretty(sym(maple('combine((x*a)"2,power)"')))

(2 a)

pretty(sym(maple('combine(Psi(-x)+Psi(x),Psi)"')))

2 Psi(x) + Pi cot(Pi x) + 1/x

pretty(sym(maple('combine([2*sin(x)*cos(x),2*cos(x)"*2-1],trig)")))

[sin(2 x), cos(2 x)]

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>

>>

>>

>>

>>

>>

>>

>>

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty(sym(maple('combine(Int(x,x=a..b)-Int(x*2,x=a..b))")))
b 5
Lx—x%ﬁ
pretty(sym(maple('combine(Limit(x,x=a)*Limit(x*2,x=a)+c)")))
lim x* +c¢

pretty(sym(maple('combine(conjugate(x) ~ 3 + 3 * conjugate(y) * conjugate(z), conjugate)')))

3
X +3yz

pretty(sym(maple('combine(x*3%*x"(m-3),power)')))

pretty(sym(maple('combine((3*n)*m*3*n,power)"')))

nm n

(3) 3
pretty(sym(maple('assume(m,integer):combine((3n)*m*3"n,power)"')))

(n m~ + n)
3

pretty(sym(maple('combine(exp(x)*7*exp(y),power)')))
exp(7 x +y)
pretty(sym(maple('combine(piecewise(x > 0, cos(x) * 2 + sin(x) ~ 2, exp(x) * 2 * exp(y)))")))

| exp(2 x +y) X <=0

| 1 0< X

pretty(sym(maple('combine(piecewise(x<1, exp(x)*exp(-2*x), x>3, 4*sin(x)"3))")))

www.it-ebooks.info

41

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

| exp(-x) X <1
|

3 0 X <=3
|

| 3 sin(x) - sin(3 x) 3 <X

>> pretty(sym(maple('combine(b*1n(y)+3*In(y)-1n(1-y)+1ln(1+y)/2, 1ln,anything,symbolic)")))

EXERCISE 2-9

Simplify as much as possible the trigopnometric-exponential expression exp (sin (a) * cos (b)) * exp (cos (a) * (b),
as well as the polylogarithmic expression polylog(a, x) + polylog(a,-x). Simplify the polylogarithmic expression
defined by polylog(4,x) + polylog(4,1/x) assuming first that x > 1, and secondly that x is between - 1 and 1.

>> maple combine (exp (sin (a) * cos (b)) * exp (cos (a) * (b)), [trig, exp])
exp(sin(a + b))
>> maple combine(polylog(a,x)+polylog(a,-x),polylog)

(1 -a) 2
2 polylog(a, x)

>> pretty(sym(maple('polylog(4,x) + polylog(4,1/x)')))
polylog(4, x) + polylog(4, 1/x)
>> pretty(sym(maple('assume(x > 1):combine(polylog(4,x) + polylog(4,1/x), polylog)')))

22 4 4
- 1/12 In(-x~) Pi - 7/360 Pi - 1/24 In(-x")

>> pretty(sym(maple('assume(x, RealRange(-1,1)):combine(polylog(4,x) + polylog(4,1/x),polylog)')))

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

1 2 2 4 1 4
- 1/12 In(- ----) Pi - 7/360 Pi - 1/24 In(- ----)
X~ X~

EXERCISE 2-10

Simplify the following expressions as much as possible:
V26 +2Vx+1, Ja-BY4+3 Vxfy +v/2y(x+1)' [y

>> pretty(sym(maple('combine(sqrt(2)*sqrt(6) + sqrt(2)*sqrt(x+1),radical)')))

1/2 1/2
23 + (2 x+2)

>> pretty(sym(maple('combine(sqrt(4-sqrt(3))*sqrt(4+sqrt(3)),radical)')))

1/2
13

>> pretty(sym(maple('combine(sqrt(x)*sqrt(y) + sqrt(2)*sqrt(x+1)"3*sqrt(y), radical)')))

1/2 1/2 1/2 1/2
X y +(x+1)y (2 x +2)

EXERCISE 2-11

Combine terms as much as possible in the following expression:
a*Inx) + 3 *In(x) - In(1-x) + In(1+x)/2

Simplify assuming that is real and x > 0. Additionally, try to simplify assuming that x is real and that it varies
between 0 and 1.

>> pretty(sym(maple('combine(a*1n(x)+3*1n(x)-1n(1-x)+1n(1+x)/2,1n)")))
a In(x) +3 In(x) - In(2 - x) + 1/2 In(1 + x)

>> pretty(sym(maple('assume(a,real):assume(x>0):combine(a*1n(x)+3*1n(x)
-In(1-x)+1n(1+x)/2,1n)")))

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

3 1/2
a~ In(x~) - In(1 - x*) + In(x> (x> +1))

>> pretty(sym(maple('assume(a,real):assume(x,RealRange(0,1)): combine(a*1n(x)+3*1n(x)
-In(1-x)+1n(1+x)/2,1n)")))

The additional assumption does not improve the result.

EXERCISE 2-12

Expand and simplify the following trigonometric expressions as much as possible:
(@) sin[3 x] cos[5 X]
(b) cot[a)? + (sec[a])? - (csc[a])?

(c) sin[a] / (1 + cot[a]?) - sin[a]®

>> pretty(sym(maple('combine(sin(3*x)*cos(5*x),trig)")))
1/2 sin (x 8) - 1/2 sin (2 x)
>> pretty(sym(maple('simplify((cot(a))"2+(sec(a))*2-(csc(a))"2, trig)')))

2
cos(a) - 1

>> pretty(sym(maple('simplify(sin(a)/(1 + cot(a) ~ 2)-sin(a) * 3, trig)')))

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-13

Simplify the following trigonometric expressions as much as possible:
(@) sin[3 Pi/2 + a] cot[3 Pi/2] / cot[3 Pi/2 + a] + tan[3 Pi/2] cot[Pi/2 + a] / sin[3 Pi/2 + a] cot[-a]
(b) (a2 - b?) cot[Pi-a] / tan[Pi/2] - (@ + b?) tan[Pi/2-a] / cot[Pi-a]

(c) (cot[a] + tan[a]) / (cot[a]-tan[a]) - sec[2a]
(d) sin[a-b] cos|c] + sin[b- ¢] cos[a] + sin[c-a] cos[b]

>> pretty(sym(maple('simplify(sin(3*Pi/2+a)*cot(3*Pi/2-a)/cot(3*Pi/2+a)+
(tan(3*Pi/2-a) * cot(Pi/2+a) /sin(3*Pi/2+a) * cot(-a), trig)')))

cos(a) sin (a) - 1

>> pretty(sym(maple('combine(sin(3*Pi/2+a)*cot(3*Pi/2-a)/cot(3*Pi/2+a)+
(tan(3*Pi/2-a) * cot(Pi/2+a) /sin(3*Pi/2+a) * cot(-a), trig)')))

2
cos(2 a) + 1 - 2 cot (a) tan (a)

>> pretty(sym(maple('simplify((a*2-b*2)*cot(Pi-a)/tan(Pi/2-a)-
(a*2+b”2)*tan(Pi/2-a)/cot(Pi-a),trig)"')))

2
2b

>> pretty(sym(maple('combine((a*2-b*2)*cot(Pi-a)/tan(Pi/2-a)-
(a*2+b”2)*tan(Pi/2-a)/cot(Pi-a),trig)"')))

2
2b

>> pretty(sym(maple('simplify((cot(a)+tan(a))/(cot(a)-tan(a))-sec(2*a), trig)')))

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty (sym (maple ('combine (sin(a-b) * cos(c) + sin(b-c) * cos(a) +
sin(c-a) * cos(b), trig)')))

In general, you will get the most efficient simplification of trigonometric expressions using the commands
combine and simplify, with the option trig.

2-5. Grouping of Similar Terms in Algebraic Expressions

MATLAB allows you to group terms within algebraic expressions according to specified variables. This helps to
simplify the expression and possibly to optimize performance. Among the commands that enable the grouping of

similar terms in algebraic expressions, we have the following:

46

maple('collect(expr,x)") gathers the polynomial algebraic expression in ordinate
powers of the variable x. If the variable is not specified, it takes by default the main
symbolic variable.

maple('collect(expr,[x,y])") gathers the polynomial algebraic expression in
ordinate powers of the variables x and y.

maple('collect(expr,f(x))') gathers the algebraic expression in ordinate powers of a
function f(x) contained in the expression.

maple('collect(expr,var)') organises the algebraic expression, taking as the main
variable the variable var. It gathers terms with respect to the variable.

maple('collect(expr,[vari,..,varn])") ormaple('collect(expr,{vari,...,var
n})') organizes the algebraic expression and gathers terms for the given variables.

maple('collect(expr,expri)') organizes the algebraic expression expr by grouping in
terms of expr1, where expr1 is typically a sin(x) or exp(2*x) function.

maple('collect(expr,[vari,...,varn],distributed)') organizes the algebraic
expression grouping terms by the given variables and presenting the result as
polynomial expanded as a sum of terms. Each term of the sum is a product of powers of
the specified variables, the coefficient of the term being a constant or any expression in
terms of unspecified variables (which are considered constants in this case).

maple('collect(expr,[varil,...,varn],recursive)') organizes the algebraic
expression by grouping terms with respect to the variables given in a hierarchical
manner; that is, it first groups terms with respect to the variable varl, then uses the
resulting expression to group terms with respect to the variable var2, and so on.

maple('collect(expr,[varl,...,varn],option,command)') organizes the algebraic
expression grouping terms with respect to the variables given according to the specified
option (distributed or recursive). Organizing occurs once the specified command has
been applied to each coefficient of the expression. Any command can be used, but it is
usually one that works with algebraic expressions (factor, expand, and so on).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

Let’s see some examples of the command collect:

>> syms Xy z p a
>> pretty(collect((x+1)*(x+2)))

2
X+ 3 X+ 2

>> pretty (collect (y * (sin (x) + 1) + sin (x), sin (x)))

(y + 1) sin(x) +y

>> pretty(collect(x 3*y+x"2*¥y 3+x+3, y))

3 2 3
X Yy+X Yy +X+3

p=X*y+tz*x*y+ty*¥x"2-z*¥y*¥x"2+x+2z*x;
>> pretty(collect(p, [x,y]))

2 2
XYy+ZXYy+yYX -ZyX +X+2ZX

>> f = a*log(x)-log(x)*x-x;

>> pretty(collect(f,log(x)))

(a - x) In(x) - x

>> g = int(x*2*(exp(x)+exp(-x)),X);
>> pretty(collect(g,exp(x)))

2 -2 X-2-X
(2 +x -2x) exp(x) + --====-==--=-

>> pretty (sym (maple ('collect(x*y+a*x*y+y*x 2-a*y*x"2+x+a*x, [x,y], recursive)')))

2
(1-a)yx +((2+a)y+1+a)x

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>>

>>

pretty (sym (maple ('collect(x*y+a*x*y+y*x"2-a*y*x*2+x+a*x, [y,x], recursive)')))

2
((r-a)x +(1+a)x)y+(1+a)x

retty (sym (maple ('collect(x*y+a*x*y+y*x"2-a*y*x"2+x+a*x, [x,y], distributed)')))
p y (sy P y yt+y y y

2
(1+a)x+(1+a)xy+(1-2a)yx

EXERCISE 2-14

Given the function f (x) = a% - x + a® + a, group terms in the variable x, and then factorize the coefficients. Group
terms in x for the function p (x) = y/x+2z/x+x"- y"*x.

>> syms a X y z
>> pretty(collect(a”3*x-x+a3+a, X))

3 3
(@ -1)x+a +a

>> pretty(sym(maple('collect(a”3*x-x+a"3+a, x,factor)')))

2 2
(a-1)(@a +a+1)x+a(a +1)

>> pretty (collect (y/x+2 * z/x + x ~(1/3) - y* ~(1/3) x, x))

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-15

Given the following differential expression:
o .] , . (0 , o
[(kzy(x)] sin(x)— [ay(x)) sin (y(x)) +sin (ay(x)j +sin(y(x)) [axzy(x)j
Group terms in differentials. Subsequently, group terms into sines.

>> pretty (sym (maple ('DF: = diff (y (x), x, x) * sin (x) - diff (y (x), x) * sin (y(x)) +
sin (x) * diff (y (x), x) + sin (y (x)) * diff (y (x), x, x)")));
>> pretty(sym(maple('collect(DF,diff)")))

/2 \

/d \ Id |

(-sin(y (x)) + sin(x)) | -y () | +(sin(x) + sin(y(x))) |- y (x) |

\dx / 2 |

\dx /

>> pretty(sym(maple('collect(DF,sin)")))

/ /2 \\ /12 \ \
| /d \ o |d [| ld | /d \|

[<1== YOOI + [=== yOOI| sin(y()) + == y()| + 1-= y(] sin(x)
| \dx /] 2 [[l 2 | \dx /]
\ \dx // \\dx / /

2-6. Sorting Terms in Algebraic Expressions

MATLAB also allows the sorting of terms within algebraic expressions in terms of specified variables. This helps to

generate the best possible expression for optimal performance. Among the commands that enable the management

of terms in algebraic expressions are the following:

maple('sort(expression)') sorts the terms of the multivariate algebraic polynomial
expression according to the degrees of all terms of the expression (in descending
order). The degree of a term equals the sum of the exponents of its variables.

maple('sort(expr,plex)') performs the ordering of the algebraic expression for all
the indeterminates using pure lexicographic order (the dictionary order) for each
component of the algebraic expression.

maple('sort(expr,tdeg)') performs the ordering of the algebraic expression with
respect to all the indeterminates using the total degree for each term component of the
algebraic expression. For example, the total degree of x°y”z’ is 10. (This is the default
option.)

www.it-ebooks.info

49

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

maple('sort(expr,[varl,...,varn],option)"') or maple('sort(expr,{vari,...,varn},
option)') performs the ordering of the multivariate polynomial algebraic expression
with respect to the indeterminates varl,..., varn, according to the specified option
(plex or tdeg).

maple('sort(list)') ormaple('sort(list,lexorder)") or
maple('sort(list,string)') sorts the elements of a list using lexicographical order.

maple('sort([varl,...,varn])") ormaple(‘sort(list,'<")’) or
maple('sort(list,numeric)') sorts numeric values specified in the list in descending
numerical order.

maple('sort(list,address)') sorts the elements of the list according to their internal
addresses assigned by MATLAB.

Here are some examples:

>> pretty(sym(maple('sort([3,2,1])")))
[1, 2, 3]
>> pretty(sym(maple('sort(1+x+x*2)")))

2
X +X+1

>> pretty(sym(maple('sort([c,a,d],lexorder)")))
[a, ¢, d]
>> pretty(sym(maple('sort(y*3+y*2*x*2+x"3,[x,y])")))

2.2 3 3
X Yy +X +Yy

>> pretty(sym(maple('sort(y*3+y*2*x"2+x"3,[x,y],plex)")))

3 22 3
X +X Yy +y

>> pretty(sym(maple('sort((y+x)/(y-x),x)")))

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('sort(x+x"3+w"5+y*2+z"4,[w,x,y,2])")))

5 4 3 2
W +Z +X +Yy +X

>> pretty(sym(maple('sort(x+x"3+w"5+y*2+z"4,[w,x,y,z],plex)")))

5 3 2 4
W +X +X+y +2

>> pretty(sym(maple('sort(x+x"3+w"5+y*2+z4,[w,x,y,z],tdeg)"')))

5 4 3 2
W +Z +X +Yy +X

>> pretty(sym(maple('sort(x*y5+x"3*y*z+w 5*y 3+y"2*z 4424, [w,X,y,z],plex)")))

5 3 3 5 2 4 4
Wy +X YZ+Xy +y z +2

>> pretty(sym(maple('sort(x*y"5+x"3*y*z+w 5%y 3+y~2*z”4+z"4, [w,X,y,z],tdeg)")))

5 3 5 2 4 3 4
Wy +XY +Y Z +X yz+z

2-7. Algebraic Fractions

MATLAB also enables you to work fluidly with algebraic fractions. Among the commands that can be used we have
the following (all of which must be preceded by the command maple):

normal(exprational) simplifies the given algebraic fraction.

normal(expr,expanded) fully expands the numerator and denominator of the rational
algebraic expression after it has been simplified.

normal([exprati,...,expratn]) or normal({exprati,...,expartn}) normalizes the set
or list of rational algebraic expressions.

Normal(expratn) returns the inert normalization of a rational algebraic expression.

normal(expr) mod n finds the normalization of the given rational algebraic expression
modulo n.

numer (exprational) returns the numerator of the rational algebraic expression after
normalizataion.

denom(exprational) returns the denominator of the rational algebraic expression after
normalization.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

radnormal(exprational) normalizes a rational algebraic expression that contain
radical numbers by eliminating all possible radical levels. It is also valid for non-
rational algebraic expressions.

radnormal (exprational,rationalized) normalizes a rational algebraic expression that
contains radicals, rationalizing the denominator.

readsimp(exprational) normalizes a rational algebraic expression that contains
radicals. It is also valid for non-rational algebraic expressions.

readsimp(exprational,name) normalizes the algebraic expression by rationalizing the
denominator and assigns the specified name to the simplified expression.

expand(exprational) expands the numerator of a rational algebraic expression.

factor(exprational) factors the numerator and denominator of the rational algebraic
expression and normalizes it.

convert(expr,confrac) converts the algebraic expression into an approximate
continued fraction. Returns a list with the partial quotients of the continued fraction.

convert(expr,confrac,variable) converts the polynomial expression to its
approximation by the rational polynomial continued fraction in the variable var.

convert(numeric expression,confrac,n) converts the numeric expression to its
continued fraction expansion to at least n partial quotients.

convert(expression,parfrac,variable) converts the rational expression to simple
fractions in the given variable. (Breaks up an algebraic fraction into partial fractions.)

convert(expression,parfrac,variable,true) applies the command factor to the
denominator of the algebraic fraction prior to decomposing it into simple fractions.

convert(expression,fullparfrac,variable) fully decomposes a rational expression in
the variable given into simple fractions (using RootOf expressions if necessary).

Here are some examples:

>> pretty(sym(maple('normal((x"2-y"2) /(x-y) * 3)")))

>> pretty(sym(maple('normal((f (x) ~ 2-1) / (f (x) - 1))")))

f(x)+1
>> pretty(sym(maple('normal({2/x + y/3 = 0})')))
6 +yXx
{1/3 ------- = 0}
X

52

www.it-ebooks.info

http://www.it-ebooks.info/

>>

CHAPTER 2 " ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty(sym(maple('normal(1/x+x/(x+1))')))

>>

>>

pretty(sym(maple('numer((1+x)/x*(1/2)/y) ')))

X+ 1

>>

pretty(sym(maple('numer(2/x +y)')))

2 +yX

>>

pretty(sym(maple('numer(x+1/(x+1/x))")))

2

x (x + 2)

>>

pretty(sym(maple('denom(x+1/(x+1/x))")))

2
X+ 1

>>

pretty(sym(maple('Normal((x"3-2*x"2+2*x+1)/(x"4+1)) mod 5')))

www.it-ebooks.info

53

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('evala(Normal((x*2-2)/(x-RootOf(_Z*2-2))))")))

2
X + RootOf(Z-2)

>> pretty(sym(maple('expand((x+1)/(x+2))")))

>> pretty(sym(maple('expand(y"3*(x+1)"3/((x+2)*y"2))")))

>> pretty(sym(maple('factor((x*3-y*3)/(x*4-y*4))")))

(y +x) (x +y)

>> pretty(sym(maple('factor(y ~ 3 * (x + 1) ~ 3/((x*2+2*x+1) *(y*2+y)))")))

>> pretty(sym(maple('radsimp((1 + 27(1/2))"(-1)/(1 + 2*x + x*2)*(1/2))")))

(2 +1) (x +1)

54

www.it-ebooks.info

http://www.it-ebooks.info/

>>
>>

>>

>>

>>

>>

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty(sym(maple(' p:
pretty(sym(maple(' f:

XN5-2%X"4-2%x"34+4%x N 2+x-2")))
36 /p')))

pretty(sym(maple('convert(f,parfrac,x)')))

pretty(sym(maple('f:= 36 / convert(p,sqrfree,x)')))

pretty(sym(maple('convert(f,parfrac,x,true)')))

4 X + 2 X + 2
----- -4 - - 12 -mmmme---
X -2 2 2 2
X -1 (x - 1)
EXERCISE 2-16

Given the following algebraic fractions:

X2 -2x345-22V3 1

¥ —2x3+1 ’ V2 +3+6

Simplify them all as much as possible and rationalize the denominators.

>> maple("A:=((x 2+2%x*¥27(1/2)-2%x*37(1/2)+5-2*%27(1/2)*3~(1/2))/ (x"2-2*x*3~(1/2)+1)) ")
>> pretty(sym(maple(' radnormal(A) ')))

1/2 1/2
-X -2+ 3

1/2 1/2
=X+ 2+ 3

www.it-ebooks.info

55

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple(' readlib(rationalize):rationalize(A) ')))

2 1/2 1/2 1/2 1/2 2 1/2
(-x-2x2+2x3-5+22 3)(x+1+2x3)

>> pretty(sym(maple(' B:= 1/(27(1/2)+3~(1/2)+6"(1/2)) ')))
>> pretty(sym(maple(' radnormal(B) ')))

1/2 1/2 1/2 1/2
2 + 3 + 2 3

>> pretty(sym(maple(' radnormal(B,rationalized) ')))

1/2 1/2 1/2 1/2 12
5/23 3 - 1/23 2 3+ 7/232 - --
23
EXERCISE 2-17
Convert the following algebraic fractions to continued fractions:
2
1+£+f—
1 "2 12
X 3 2
e]__E_‘_xi
2 12

>> pretty(sym(maple(' convert(1/exp(x),confrac,x) ')))

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple(' r:= (1+1/2*x+1/12%x*2) / (1-1/2*x+1/12*x"2) ')))
>> pretty(sym(maple(' convert(r,confrac,x) ')))

EXERCISE 2-18

Break down the following algebraic fractions into simple fractions:

x°+1 X 53 X
xt—x?’ (x-b)*’ 5-4-x°-2-3-x+1

>> pretty(sym(maple(' f:= (x"5+1)/(x"4-x*2) ')))
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

>> pretty(sym(maple(' f:= x/(x-b)"2 ')))
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

>> pretty(sym(maple(' f:= (2.3*x)/(5.4*x"3-2.3*x+1) ")))

>> pretty(sym(maple(' convert(f,parfrac,x) ')))

.2240312285 .3421473558 + 1.209768633 x
- e + .1851851852 —----mm - oo e
X +.8091847442 2
X -.8091847442 x +.2288540244

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-19

Decompose into simple fractions the rational function given by f (x) = (4*x® - 6*x? - 2) / (x*-2*x® - 2*x + 4) over the
field of their coefficients, over the real field, over the complex field, and over the algebraic extension Q(V3).

>> pretty(sym(maple(' f:= (4*x"3-6*x"2-2)/(x"4-2*x"3-2*x+4) ')))
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

>> pretty(sym(maple(' convert(f,parfrac,x,real) ')))

1.000000000 1.000000000 1.259921050 + 2. X

X-1.259921050 X - 2. 2
X + 1.259921050 x + 1.587401052

>> pretty(sym(maple(' convert(f,parfrac,x,complex) ')))

-9 -9
1 +.2803082855 10 I 1. -.2803082855 10 I
_______________________________ + R L R R ——
X +.6299605249 + 1.091123636 I X +.6299605249 - 1.091123636 I
-10
1 +.2631183713 10 I 1.000000000
Homm e ommmmmmeen
X - 1.259921050 X -2

>> pretty(sym(maple(' convert(f,parfrac,x,2"(1/3)) ')))

1/3

2 +2x 1 1
__________________ b e g e
2 1/3 2/3 1/3 x - 2
X+ 2X+2 X - 2

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-20

Perform the following algebraic operations, simplifying the results as much as possible:

x vy, 2% 1+a2+1—b2_a3—H

x+y x-y x*-y*" b a ab

To treat operations with algebraic fractions, the best command to use is normal, but you can also use the simple
commands factor and simplify:

>> pretty (sym (maple ('normal (x / (x +y) - y/(x-y) + 2 * x * y/(x*2-y*2))")))

>> pretty (sym (maple ('factor (x / (x +y) - y/(x-y) + 2 * x * y/(x*2-y"2))")))

>> pretty (sym (maple ('simplify (x / (x +y) - y/(x-y) + 2 * x * y/(x*2-y*2))")))

>> pretty(sym(maple('normal((1+a*2)/b + (1-b”2)/a - (a*3-b”3)/(a*b))"')))

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-21

Simplify the following algebraic fractions as much as possible:

a’—a’b +ac® -bc’ (x2 —9)(x2 —2x+1)(x—3)
a’+ac* +a*b+bc*’ (x2 —6x+9)(x2 —1)(x—1)

Because these are simple algebraic fractions, use the commands standara, factor or simplify.

>> pretty(sym(maple('normal((a”3-a"2*b+a*c”2-b*c”2)/(a”3+a*c 2+a*2*b+b*c”2))")))

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-22

Perform the following algebraic operations, simplifying the results as much as possible.

a) 2
3x-1 5-Xx 4 x 2 2 4
(- -) ¥ (x (x+1) - (x+4))) 7 (4+5x)]
X + 2 X -2 2
X -4
b)
2 X 2
()
4 x
(x -y)
2 2
X+2Xy+y
[]
y
1+ —
X 4
()
y
1 - —
X

In this type of combined operations, featuring both sums and differences, as well as ratios products and powers
of algebraic expressions, the most efficient command is normat:

>> pretty(sym(maple('normal(((3*x-1)/(x+2)-(5-x)/(x-2)-4*x"2/(x"2-4))*
((x"2%(x"2+1)- (x"4+4))/ (4+5%x)))")))

-2

>> pretty (sym (maple ('normal (((2 * x /(x-y))/(4*x/(x 2+2*x*y+y*2)))" 2
/((1+y/x)/(1-y/x))"4)")))

2
1/4 (x - y)

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

2-8. Transforming Algebraic Expressions by Conversion

MATLAB enables the conversion of an algebraic expression dependent on a specific function into another
expression that depends on another function related to the first. An expression can be transformed from logarithmic,
trigonometric, inverse trigonometric or hyperbolic to exponentials, factorials to gamma functions, and so on. Among
the commands that enable you to do this are the following (all of them must be preceded by the maple command):

convert(expression,exp) converts all trigonometric functions of the expression into
their corresponding exponential form.

convert(expression,ln) converts all inverse trigonometric functions of the expression
into their corresponding logarithmic form.

convert(expression,trig) converts all exponential functions of the expression into
their corresponding trigonometric or hyperbolic trigonometric form.

convert(expression,tan) converts the trigonometric functions of the expression so
that it depends only on the tangent.

convert(expression,sincos) converts trigonometric functions of the expressions
depending only on sines, cosines, hyperbolic sines, and hyperbolic cosines.

convert(expression,expsincos) converts the trigonometric functions of the
expression in terms of only sines and cosines, and at the same time converts all
hyperbolic functions of the expression into its exponential form.

convert(expression,expln) converts the trigonometric functions of the expression
into its exponential form, and at the same time converts inverse trigonometric
functions into logarithmic form.

convert(expression,GAMMA) converts all factorials and binomial and multinomial
coefficients of the expression in terms of the GAMMA function.

convert(expression,factorial) converts all GAMMA functions, binomial and
multinomial coefficients of the expression in terms of factorials.

convert(expression,binomial) converts GAMMA and factorial expressions in terms of
the binomial function.

convert(expr,piecewise) converts an expression containing moduli (abs), sign
(signum), or Heaviside functions into a piecewise-defined function.

convert(expression,parlist) converts an expression containing defined functions
into a piecewise function according to the specified list.

convert(expr,Heaviside) converts an expression containing piecewise functions into
an expression in terms of Heaviside functions.

convert(expression, surd) converts an expression containing roots and standard
powers into its equivalent expresssion in terms of the surd function.

convert(expression,pair) converts an expression containing surd functions into its
equivalent expression containing standard powers.

convert(expression,erf) converts an expression containing erfc functions into its
equivalent in terms of the function erf.

convert(expression,erfc) converts an expression containing the function erf into its
equivalent in terms of the function erfc.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
convert(expression,Ei) converts an expression containing logarithmic, hyperbolic,
and trigonometric integrals into an equivalent expression with exponential integrals.

convert(expression,Airy) converts an expression containing Bessel functions into its
equivalent expression containing Airy functions.

convert(expression,Bessel) converts an expression containing Airy functions into an
equivalent expression containing Bessel functions.

convert(expr, '+') converts an expression in the form of sums (the first level of
operators must be sums, for example, a sum of products).

convert(expr,'.") converts an expression in the form of products (the first level of
operands must be products, for example, a product of sums).

convert(expression,degree) converts an expression in radians to degrees.
convert(expression,radian) converts an expression in degrees to radians.

convert(expression,metric) converts an expression of type number * units to the
metric system (for example, 34 * feet is converted to the decimal metric system).

convert(expr,metric,US) converts an expression given in U.S. units to the metric
system.

convert(expr,metric,imp) converts an expression given in terms of imperial units to
the metric system.

convert(expression,float) converts all the numeric values of an expression to their
floating-point form.

convert(expr,hypergem) converts the expression sums (sum or Sum) according to
terms to the equivalent hypergeometric functions.

convert(expr,rational) or convert(expr,fraction) converts all floating-point values
of an expression to their rational form.

convert(expr,rational,n) converts all floating-point values of an expression to its
rational form with n digits of precision.

convert(expression,rational and exact) converts all floating-point values of an
expression to its rational form with infinite precision.

convert(expression,mod2) converts the expression containing the Boolean operators
and, or, and not to an expression of the form modulo2 (an expression with only
numeric values 0 and 1).

convert(expression,string) or convert(expression,name) converts the expression to
a string.

convert(exprcompl,polar) converts the complex to expression to polar form.

convert(expression,radical) converts all RootOf expressions to their radical
equivalents.

convert(expression,RootOf) converts all radical expressions into RootOf notation.

convert(series,polynom) converts a Taylor series to a polynomial.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

convert(booleanexpression, 'and") converts all of the binary operators in a Boolean
expression (and, or, & and, or, & nand, $nor, & xor, & diff and & implies) into their
equivalent in terms of the operator and.

convert(booleanexpression, 'or') or convert(expression,disjcyc) converts all of the
binary operators in the Boolean expression (and, or, & and, or, & nand, $nor, & xor, &
diff e & implies) into their equivalents depending on the operator or. The permutations
of the expression are converted to disjoint cycles.

convert(expression,permlist) converts the expression’s disjoint cycles to their
equivalent permutations.

convert(expression,multiset) converts the expression into a list of lists. For each
element of the expression, it returns a list consisting of the element and its multiplicity
(the number of times it is repeated).

convert([expri,...,exprn],option) creates alist with the given expressions
converted according to the specified option (trig, exp, In,...).

convert({expressioni,...,expressionn},option) creates an array with the given
expression converted according to the specified option.

Here are some examples:

>> pretty(sym(maple('convert(exp(x"2)-2 * sinh(x"2),exp)')))

64

www.it-ebooks.info

http://www.it-ebooks.info/

>>

CHAPTER 2 " ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty(sym(maple('convert(tanh(x),sincos)"')))

sinh(x)

cosh(x)

>>

pretty(sym(maple('convert(arctanh(x),1n)")))

1/2 In(x + 1) - 1/

2 In(1 - x)

>>

pretty(sym(maple('convert(1/2*exp(x) + 1/2*exp(-x),trig)')))

cosh(x)

>>

pretty(sym(maple('convert(cos(x)*sin(x), expln)')))

/

- 1/2 1 |1/2 exp(I x) + 1/2

\

1 \/ 1 \

-------- | lexp(T x) - -]
exp(I x)/ \ exp(I x)/

>>

pretty(sym(maple('convert(binomial(m,3),GAMMA)"')))

GAMMA(m + 1)

GAMMA(m - 2)

>>

pretty(sym(maple('convert(binomial(m,3),factorial)')))

>>

pretty(sym(maple('convert(erfc(x),erf)')))

1 - erf(

x)

>>

pretty(sym(maple('convert(erfc(2,x),erf)")))

1/2 X

2

2
- 1/2 x erf(x) - 1/2

.......... + 1/4 - 1/4 erf(x)

www.it-ebooks.info

65

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('convert(",erfc) ')))

2 2 x exp(-x)
1/2 x - 1/2 x (1 - erfc(x)) - 1/2 ---------- + 1/4 erfc(x)

>> pretty(sym(maple('convert(BesselI(1/3,x),Airy) ')))

/ 1/3 2/3\ 1/2
3 2 |
1/2 |--------- |
| 2/3 |
\ X /

1/2 2/3 1/3 2/3 2/3 1/3 2/3
(-3 AiryAi(1/2 3 2 X) + AiryBi(1/2 3 2 X)

>> pretty(sym(maple('convert(HankelH2(-2/3,z),Bessel)")))
Bessell(-2/3, z) - I BesselY(-2/3, z)
>> pretty(sym(maple('convert(sin(BesselK(1/3,z%2)),Airy)")))

/ 1/3 2/3\1/2
13 2| 2/3 1/3 2 2/3
sin(Pi [--------- | AiryAi(1/2 3 2 (z))

2-9. Subexpressions and Parts of Expressions

MATLAB implements a broad group of commands that allow you to work with subexpressions, either to operate on
parts of expressions in general, to perform assignments of parts of expressions, to make substitutions in expressions,
or for any other operations on the contents of algebraic expressions. The most important commands for this kind of
task are summarized below (all of them must be preceded by the maple command):

indets(expression) determines all the indeterminates contained in the expression.

indets(expression,name) returns all subexpressions of the expression of the type given
by name.

has (expression, subexpression) determines whether the given expression contains the
specified subexpression.

has (expr, [subexp1,...,subexpn]) or has(expr,{subexpi,...,subexpn}) determines
whether the expression expr contains one of the given subexpressions.

hasfun(expression,command) determines whether the expression contains a call to the
command or function specified.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 = ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
hasfun(expression,function,variable,etc.) determines whether the expression contains
the specified function of the given variable.

hasfun(expression,[funi,...,funn]) or hasfun(expression,{funi,...,funn})
determines whether the expression contains at least one of the specified functions.

hasfun(expr,function,[vari,...,varn]) or hasfun(expr, function,{vars,...,
varn}) determines whether the expression contains at least one of the functions
function(vari)i=1...n.

hastype(expression,type) determines whether the expression contains a
subexpression of the specified type.

readlib(freeze): freeze(expr) replaces the (usually verylong) expression by the
variables _RO, _R1, etc. This is used to avoid overcomplicating expressions.

readlib(freeze): thaw(var) replaces the variable var by the expression that was
previously assigned to it by freeze.

alias(name=expression) or macro(name=expression) assigns to the alias name
the given expression. The aim is to work more easily with long expressions and
subexpressions.

alias(namel=expri,...,namen=exprn) or macro(namel=expri,...,namen=exprn)
assigns all the aliases to the specified expressions.

alias(name=name) or macro(name=name) removes the alias for name.

assign({vari=expri,...,varn=exprn}) orassign([vari=expri,...,varn=exprn])
assigns the specified expressions to the given variables. This is usually used for long
expressions or complicated subexpressions to facilitate further work.

assign(variable=expression) or assign(variable,expression) assigns the given
expression to the aforementioned variable.

unassign('varl',..., 'varn') removes the assignments for the given variables.

op(expression) displays the first level of elements, parts, or operands of the
expression.

op(i,expression) returns the ith element (part or operat or) of the expression
according to the first level of operations.

op(i..j,expression) returns the ith through to the jth elements of the expression.

nops (expression) returns the number of elements (parts or operators) of the
expression according to the first level of operations.

nops(op(i expression)) returns the number of elements of the ith element of the
expression.

subsop(i=expresion2,expressioni) replaces the ith element of expressionl according
to the first level of operations with expression2.

op(0,expression) returns the type of the expression.

op(-i, expression) returns the ith element of the expression starting from the end
according to the first level of operations.

applyop(function,expr) applies the function or specified command to the nth element
of the expression according to the first level of operations.

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

68

ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

select(function,expression) applies the Boolean function or command to each
term of the expression (sum or product) and selects the terms for which the Boolean
function or command returns true.

remove(function,expression) applies the Boolean function or command to all of the
terms of the expression of sums or products and removes those for which the given
Boolean function or command is true.

map (function,expr) applies the function to each operand of expr.

map2(function,arg,expr) applies the function with specified first argument to each
operator of the expression expr.

add(expression,variable=a..b) sums the sequence obtained by evaluating the
expression for the variable ranging over a, a+1,..., b-1, b.

mul(expression,variable=a..b) returns the product of the sequence obtained by
evaluating the expression for the variable ranging over the values a, a+1,..., b-1, b.

seq(expression,variable=a..b) creates the sequence of expressions obtained by
evaluating the specified expression for the variable over the values a, a+1,..., b-1, b.

numboccur (expr, subexpr) determines how many times the subexpression specified
occurs in the given expression.

readlib(optimize): optimize (expression) optimizes the representation of the
algebraic expression using common subexpressions.

readlib(optimize): optimize(expression, name=expression) optimizes the specified
equation whose right-hand side is an algebraic expression.

readlib(optimize): optimize(expression,[namel=expri,...,namen=exprn])
optimizes the specified equations whose right-hand sides are algebraic expressions.

shake(expression) creates a range of floating-point numbers that approximates the
value of the expression.

shake(expression,n) creates a range of floating-point numbers that approximates the
value of the expression with an accuracy given by n.

subs (exprold=exprnew,expression) replaces exprold with exprnew in the specified
expression.

subs(expoldi=expni,expold2=expn2,..., expoldn=expnn, expression) replaces the
specified old expressions in the given expression by the new expressions, sequentially.

subs ({expoldi=expnl,expold2=expn2,...,expoldn=expnn},expression) or subs
([expoldi=expn1,expold2=expn2,...,expoldn=expnn],expression) replaces the old
expressions with the new expression, simultaneously.

subsop(nl=expri,...,nk=exprk,expr) replaces the elements nl, n2,..., nk of the
expression by expressions exprl,..., exprk respectively (according to the first level of
operations), simultaneously.

readlib(trigsubs): trigsubs(identity,expression) applies the given trigonometric
identity to the specified expression.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS
algsubs(exprold=exprnew, expr) substitutes exprnew in place of exprant in the given
expression.

algsubs(exprold=exprnew,expression,exact) substitutes exprnew in place of exprant
in the given expression only if the exact division of monomials is possible.

asubs (exprold=exprnew,expression) substitutes exprnew in place of exprold in the
given expression in terms of sums.

asubs (exprold=exprnew,expression,always) substitutes exprnew in place of exprold in
the given expression in all its addends.

LHS (equation) returns the left-hand side of the equation.
LHS(inequality) returns the left-hand side of the inequality.
LHS(range) returns the left side of an expression of type range.
RHS(equation) returns the right-hand side of the equation.
RHS(inequality) returns the right-hand side of the inequality.
RHS(range) returns the right side of an expression of type range.

readlib(isolate): isolate (equation, expression) isolates the specified expression
in the given equation.

readlib(isolate): isolate (expri, expr2) isolates the subexpression expr2 in the
equation exprl = 0.

readlib(isolate): isolate (equation, expression, n) isolates the specified
expression in the given equation by running at least n transformations or passes.

setattribute(expression,attrii,...,attrin) assigns the attributes attril,..., attrin for
the specified expression. Only strings, lists, sets, floating-point values, and unevaluated
function calls can have attributes.

setattribute(expression) removes all attributes previously assigned to the specified
expression.

attributes(expression) returns all the attributes previously assigned to the specified
expression.

Here are some examples:
>> pretty(sym(maple('indets(x*y + z/x)")))
{y, z, x}

>> pretty(sym(maple('e:= x~(1/2) + exp(x*2) + f(9):")))
>> pretty(sym(maple('indets(e), indets(e,function)')))

1/2 2 2
{x x, exp (x)}, {exp (x), x (9)}

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

>> pretty(sym(maple('f:= (a+b"3+c)~(4/3)")))
>> pretty(sym(maple('has(f, a), has(f, b*3), has(f, b*2), has(f, a+b*3+c)')))

true, true, false, true

>> pretty(sym(maple('f:= Int(g(t),t=a..b)")))
>> pretty(sym(maple('has(f,a), has(f,g), has(f,t)")))

true, true, true

>> pretty(sym(maple('e:= sin(x)+exp(y)+1')))
>> pretty (sym (maple (' hasfun(e,exp), hasfun(e,cos), hasfun(e,exp,y), hasfun(e,exp,x),
hasfun(e,exp,[x,y]), hasfun(e,{sin,cos},x)")))

true, false, true, false, true, true

>> pretty(sym(maple(' f:= x*(1/2)*y ')))

>> pretty(sym(maple("hastype(f, *"), hastype(f, “+7), hastype(f, name*fraction),
hastype(f,integer"fraction), hastype(f,radical), hastype(f,function)')))

true, false, true, false, true, false

>> pretty(sym(maple('readlib(freeze): z:= freeze(x+y)')))
>> pretty(sym(maple(' thaw(z) ")))

X+y

>> pretty(sym(maple('w:= f(g(a,b),h(c,d))")))
>> pretty(sym(maple('op(1,op(2,w)), OP([2:1];W); OP(['1,'1],W)')))

¢, ¢, d
>> pretty(sym(maple('Int(sin(sqrt(x)),x=0..t)")))
J.; sin(\/;)dx

>> pretty(sym(maple('subsop([1,1]=u, "), subsop(1=2*u*op(1,"), [2,1]=u, "),
applyop(sqrt, [2,2,2], ")")))

‘o, oo Ve oo,
.[0 sin(u)dx, jﬂ 2usin(u)du, ,[0 2usin(u)dx

70

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>
>>

>>

>>

>>

CHAPTER 2 © ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

pretty (sym (maple ('readlib (isolate): isolate (4 * x * sin (x) = 3, sin (x)),
isolate(x”2-3*x-5,x*2)")))

2
sin (x) =3/4 X, x =3 X+ 5

pretty(sym(maple(' f:= 2*exp(a*x)*sin(x)*1n(y) ')))
pretty(sym(maple('select(has, f, x), remove(has, f, x)')))

exp (w x) sin (x), 2 1n (y)
pretty(sym(maple('attributes(a), setattribute(a,blue), attributes(a)')))
a, blue

pretty(sym(maple('setattribute(a,yellow,green)')))

pretty(sym(maple('attributes(a)')))

yellow, green

EXERCISE 2-23

Perform the substitution sin (x)2= 1-cos (x)? in the following expression: sin (x)® - cos (x) sin (x)? + cos (x)? sin (x) +
cos (x)*. Also substitute PV/T = R in the expression P2V/T? - PR.

>> pretty (sym (maple ('f: = sin (x) ” 3-cos (x) * sin (x) » 2 + cos (x) * 2 * sin (x) +

cos (x) * 3")))
>> pretty (sym (maple ('algsubs (sin (x) » 2 =1 - cos (x) * 2, f)')))

3
sin (x) - cos (x) + 2 cos (x)

>> pretty(sym(maple('algsubs(P*V/T=R, P*2*V/T*2-P*R) ')))

R P
PR+ ---
.

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * ALGEBRAIC EXPRESSIONS AND OPERATIONS: FACTORING ALGEBRAIC FRACTIONS

EXERCISE 2-24

Perform the replacement defined by x?+ 3 = k in the expressions (x> + 3 x + 3)°*+ x and ((x® + 3x + 3)* + X) / (x® +2)

>> pretty(sym(maple('readlib(asubs):')))
>> pretty(sym(maple('asubs(x*2 + 3 =k, (x*2 +3*x +3) * 3 +x)")))

3
(3 x+k) +x

>> pretty(sym(maple('asubs(x"2 + 3 =k, (x"2 + 3*x + 3) * 3 + x ,always)')))

3 2
3x+k) +x-x -3+k

>> pretty(sym(maple('asubs(x"2 + 3 =k, ((x"2 + 3*x + 3) ~ 3 + x)/(x*2 +2)"2)")))

3
(3 x+k) +x

EXERCISE 2-25

Change the variable x = r'”® in the expression 3xIn(x%) and also change the variable sin (x) =y in the expression
sin(x) / (1-sin (x))"2.

>> pretty(sym(maple('subs(x=r"(1/3), 3*x*log(x"3))"')))

1/3
31 log(r)

>> pretty (sym (maple ('subs (y= sin (x), sin (x) / (1 - sin (x)) ~(12/2))")))

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Polynomial Divisibility, Interpolation,
and Algebraic Extensions

3-1. Commands for Handling Polynomial Expressions

This chapter is about working with polynomials and algebraic extensions. We will study the MATLAB commands
that enable you to perform polynomial operations, working with roots, Galois extensions, Grobner bases, polynomial
interpolation, and operations modulo an integer. We will also present the commands that Maple implements to the
same effect.

MATLAB enables agile work with polynomials, providing several commands for handling polynomial algebraic
expressions. These expressions can also be treated as general algebraic expressions, but MATLAB offers particular
tools for polynomial algebraic expressions, including case-specific commands. Let’s take a look at some of these
commands:

conv(a,b) returns the vector whose entries are the coefficients of the polynomial
defined as the product of the polynomials whose coefficients are given by the
vectors a and b.

[q,x] = deconv(a,b) gives the vector q of coefficients of the polynomial defined as the
quotient of polynomials whose coefficients are given by the vectors a and b, and the
vector 1 of coefficients of the remainder polynomial.

poly2sym(a) returns the polynomial whose coefficients are those specified by the
vector a.

sym2poly(poly) returns the vector of coefficients of the specified polynomial (the
reverse of the previous operation).

roots(a) gives the roots of the polynomial whose coefficients are given by the vector a.
poly(v) gives the polynomial whose roots are the components of the vector v.
poly(A) gives the characteristic polynomial of the matrix A.

polyder(a) gives the vector whose coefficients are those of the first derivative of the
polynomial defined by a.

polyder(a,b) gives the vector whose coefficients are those of the first derivative of the
product of polynomials defined by a and b.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

[q,d] = polyder(a,b) returns the numerator q and denominator d of the derivative
of the polynomial quotient a/b (here all arguments are vectors of coefficients of
polynomials).

polyval(p,S) evaluates the polynomial p at S.
polyvalm(p,S) evaluates the polynomial p at a matrix S.

[r,p,k] = residue(a,b) gives the column vectors r, p and k such that:
b(s)/a(s)=r1/(s-p1)+r2/(s-p2)+...+rn/(s-pn) +k(s).

[a,b] = residue(r, p, k) performs the reverse of the previous operation.

Now let’s look at some examples of the above defined commands:
Let’s decompose the fraction (=x A 2 + 2 x + 1) /(x"2-1) into the sum of its simple fractions:

>> [r,p,k]=residue([-1,2,1],[1,0,-1])

Y =
1.0000
1.0000

p =
-1.0000
1.0000

k =
-1

So the decomposition will be:
(-x*2+2x+1) /(x*2-1) =1 /(-14x) + 1/ (x +1) - 1
The same result can be obtained in the following way:

>> pretty(sym(maple('convert((-x*2+2*x+1)/(x"2-1),parfrac,x)')))

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Next we will evaluate the polynomial x A 4-6 *x A 3-x A 2 + 10 *x-11 at the point x = 5 and at the unit matrix of
order 4.

>> polyval([1,-6,-1,10,-11],5)

ans =

-111

>> polyvalm([1,-6,-1,10,-11],0nes(4))

ans =
-37 - 26 - 26 - 26
-26 - 37 - 26 - 26
-26 - 26 - 37 - 26
-26 - 26 - 26 - 37

Now let’s find the roots of the polynomial x » 3-x:

>> roots([1,0,-1,0])

ans =

-1.0000
1.0000

Now we solve the equation -x A5 +2*xA4+xA3+x"2=0:

>> roots([-1,2,1,1,0,0])

ans =
0
0
2.5468
-0.2734 + 0.56381
-0.2734 - 0.56381

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-1

76

Consider the polynomials with coefficientsa=[2-4,5,8,0,0,1] and b = [- 7, 15, 0, 12, 0]. Calculate the
coefficients of the product and the quotient of polynomials defined by a and b, and also calculate the
coefficients of the derivatives of the product and quotient of the polynomials defined by a and b.

>> a=[2)_4)5J8)0J0)1]; b=[_7J15)O)12J0];
>> conv(a,b)

ans =

-14 58 -95 43 72 60 89 15 0 12 0
>> [g,r]=deconv(a,b)
q:

-0.2857 -0.0408 -0.8017
Y =

0 0 0 23.4548 0.4898 9.6210 1.0000
>> polyder(a)

ans =

12 -20 20 24 0 0
>> polyder(a,b)

ans =

-140-522 - 760 301 432 300 356 45 0 12

>> [q, d] = polyder(a, b)

-28 118 -120 251 -192 180 220 -45 0 -12

49 -210 225 -168 360 0 144 0 O

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

In the previous calculations, we could instead have transformed the coefficient vectors into the equivalent
polynomials with the command poly2sym, obtaining the results in polynomial form. The product polynomial is:

>> pretty(poly2sym(conv(a,b)))

10 9 8 7 6 5 4 3
-14 X + 58 X -95 X +43 X+ 72 X+ 60 x + 89 x + 15 X + 12 X

The quotient polynomial is:

>> pretty(poly2sym(q))

2 275
-2/7 x - 2/49 x - ---
343
The first derivative of the polynomial defined by a is:
>> pretty(poly2sym(polyder(a)))
5 4 3 2

12 X - 20 X + 20 X + 24 X

The first derivative of the product of polynomials defined by a and b is:

>> pretty(poly2sym(polyder(a,b)))

9 8 7 6 5 4 3 2
-140 X + 522 x - 760 X + 301 X + 432 x + 300 x + 356 x + 45 x + 12

The first derivative of the polynomial quotient a/b will be q/d where q and d are as follows:

>> [q,d]=polyder(a,b);
>> pretty(poly2sym(q))

9 8 7 6 5 4 3 2
-28 X + 118 X - 120 X + 251 x - 192 x + 180 X + 220 X - 45 x - 12

>> pretty(poly2sym(d))

8 7 6 5 4 2
49 x - 210 x + 225 x - 168 x + 360 x + 144 x

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-2

Find the characteristic polynomial of the matrix whose rows are the vectors [2,-4,5,8], [0,0,0,1],
[-7,15,0,12] and [0,-1,-1,0]. Also find the roots of this polynomial and verify that the matrix satisfies the
characteristic polynomial equation.

>> A=[2,-4,5,8;0,0,0,1;-7,15,0,12;0,-1,-1,0]

A =
2 -4 5 8
0 0 0 1
-7 15 0 12
0 -1 -1 (0]

>> p=poly(A)

p:

1.0000 -2.0000 48.0000 -67.0000 33.0000

>> pretty(poly2sym(p))

4 3 2
X -2X + 48 x - 67 x + 33
To find the roots of the characteristic polynomial we do the following:

>> roots(p)

ans =

0.2836 + 6.81151
0.2836 - 6.81151
0.7164 + 0.44351
0.7164 - 0.44351

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

To verify that the matrix A satisfies the characteristic polynomial, we evaluate the characteristic polynomial at the
matrix A and observe that it (almost) returns the null matrix.

>> polyvalm(p,A)

ans =
1.0E-012 *

0.4619 - 0.9663 0.0426 - 0.9095
0.0016 - 0.0071 0.0142 0.0142
0.1181 - 0.0568 0.6466 0.7390
-0.0995 0.2132 - 0.0140 0.1634

EXERCISE 3-3

Expand the following polynomial expressions:
a) (5x3y%z-4xy?z’)3
b) (x+) (x*+x2y*+y%) (x-))

>> syms X y z
>> pretty(expand(simple(5*x~3*yr2*z-4*x*yr2%z73)"3))

9 6 3 7 6 5 5 6 7 3 6 9
125 x y z -300Xx y z +240x y z -64X y z

>> pretty(expand((x+y)*(x 4+x"2*y"2+y*4)*(x-y)))

X -y

Here we see that the first polynomial presents difficulties when we try to expand it using only the command
expand; we need to use the simple command first.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-4

Factorize the following polynomial expressions as much as possible.
a) 4x%+ y2t? + z* - 4xyt+ 4xz? - 2ytz?
b) x* = x2y? 4+ 2xy? + x? = 2x% - y?

¢) amx+ amy- bmx- bmy+ bnx— anx- any+ bny

>>syms x yztabmn
>> pretty(factor(4*x"2+y 2*t 2427 4-4*x* y*t+4*x*z22-2*y*t*z72))

2 2
2x-yt+z)

>> pretty(factor(x*4- x"2*y"2+2*x*y 2+x"2-2*x"3-y"2))

2
(x-1) (x-y) (x+y)

>> pretty(factor(a*m*x+a*m*y-b¥m*x-b*m*y+b*n*x-a*n*x-a*n*y+b*n*y))

-(x+y)(n-m (-b+a)

In general, in polynomial expressions, the command expand performs operations and simplifies the result, and the
command factor factorizes as much as possible.

3-

2. Extracting Parts of a Polynomial

The following commands enable MATLAB to extract various parts of a polynomial (after prior use of the maple
command):

80

coeff(polynomial,var,n) extracts the coefficient of the polynomial in var
corresponding to the monomial of power n. Before applying coeff, be sure it is suitable
to do so, by first applying collect to group the terms in the variable.

coeff(polynomial,expression) extracts the coefficient corresponding to the specified
expression in the given polynomial.

coeffs(polynomial,variable) extracts the sequence of all the coefficients of the
polynomial in the given variable.

coeffs(polynomial) extracts the sequence of all the coefficients of all the variables of
the specified multivariable polynomial.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

coeffs(polynomial,{vari,...,varn}) or coeffs(polynomial,[vari,...,varn]) extracts
the sequence of coefficients of the given multivariate polynomials corresponding to the
specified set of variables.

coeffs(poly,var,name) finds the sequence of polynomial coefficients corresponding to
the variable var and assigns to it the specified name.

sign(poly) returns the sign of the leading coefficient of the given multivariate
polynomial. If the polynomial is positive, returns 1, and if it is negative, returns - 1.

sign(poly,var) gives the sign of the leading coefficient of the polynomial in the
variable var.

sign(poly,[vari,...,varn]) gives the sign of the leading coefficient of the polynomial
in the variables vari, ..., varn.

lcoeff(polynomial) finds the leading coefficient of the multivariate polynomial with
respect to all variables appearing in the polynomial.

lcoeff(polynomial,variable) finds the leading coefficient of the polynomial with
respect to the given variable.

lcoeff(polynomial,{vari,...,varn}) or lcoeff(polynomial,[vari,...,varn]) finds
the leading coefficient of the polynomial for the given variable set.

tcoeff(polynomial) finds the trailing coefficient of the polynomial for all its variables.

tcoeff(polynomial,variable) finds the trailing coefficient of the polynomial output in
the given variable.

tcoeff(polynomial,{vari,...,varn}) or tcoeff(polynomial,[vari,...,varn]) finds
the trailing coefficient of the polynomial for the given variables.

ldegree(polynomial,var) determines the lowest degree of the polynomial in the given
variable.

ldegree(polynomial) determines the lowest degree of the polynomial with respect to
all of its variables.

ldegree(polynomial,{vari,...,varn}) or ldegrace(polynomial, [vari,...,varn])
determines the lowest degree of the polynomial with respect to the given set of
variables.

degree(polynomial,variable) determines the highest degree of the polynomial in the
given variable.

degree(polynomial) determines the highest degree of the polynomial with respect to
all of its variables.

degree(polynomial,{vari,...,varn}) or dgree(polynomial,[vari,...,varn])
determines the highest degree of the polynomial for the given variables.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Here are some examples:

>> pretty (sym (maple('p:= 2*x*2 + 3*y"3-5:"))))
>> pretty(sym(maple('coeff(p,x,2), coeff(p,x"2), coeff(p,x,0) ")))
3
2,2,3)/'5
>> pretty (sym (maple ('q: =3 *a* (x +1) *2+sin(a) *x*2*y-yr2*x+x-a:')))
>> pretty(sym(maple('coeff(q,x)"')))

2
6a-y+1

>> pretty(sym(maple('q := collect(q,x)')))

2 2
q: = (sin (@) y+33a) x+ (6a-y+1) x+2a

>> pretty(sym(maple('coeff(q,x)')))

2
6a-y+1

>> pretty(sym(maple('s := 3*v 2*w 3*x"4+1")))

234
S:=3VWwX+1

>> pretty(sym(maple('lcoeff(s), tcoeff(s), lcoeff(s, [v,w], t), t')))

4 23
3, 1, 3 X, vw

>> maple('degree(2/x"2+5+7*x"3,x), ldegree(2/x"2+5+7*x"3,x),degree(x*sin(x),x)")
3, - 2, FAIL
>> maple('degree(x*sin(x),sin(x)), degree((x+1)/(x+2),x),degree(x*y"3+x"2,[x,y]) ")

1, FAIL, 2

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(syn(maple('degree(x*y"3+x"2,{x,y}), ldegree(x*y"3+x"2,[x,y]) ")))
4, 4

>> pretty(sym(maple('expr := 3*¥x"2%¥yr4 - 2¥x*yr5 + x')))
>> pretty(sym(maple('indets(expr), sign(expr), sign(expr, [x,y]), sign(expr, [y,x]),
sign(expr, [y,x], a), a')))

{x, v}, 1,1, -1, -1, x*y "5

3-3. Factorization of Polynomials

This section presents the commands that implement various polynomial factorizations (following prior use of the
maple command).

factor(polynomial) factorizes a multivariate polynomial over the ring determined by
its coefficients (integer, real, rational, and so on).

factor(polynomial,radical) factorizes the polynomial over the algebraic extension
Q(radical).

factor(polynomial,RootOf) factorizes the polynomial over the algebraic extension
Q(Root0f).

factor(polynomial,[radicali,...,radicaln]) factorizes the polynomial over the
algebraic extension Q(radicali,...,radicaln).

factor(polynomial, [RootOf1,..,Ro0t0fn]) factorizes the polynomial over the
algebraic extension Q(Root0f1,...,Root0fn).

factor([polynomiall,..., polynomialn] or factor({polynomiali,...,polynomial
n})) factorizes the specified polynomials.

factors(polynomial) returns a list with the multivariate polynomial factors and their
multiplicities.

factors(polynomial,radical) returns a list with the multivariate polynomial factors
and their multiplicities in the algebraic extension Q(radical).

factors(polynomial,RootOf) returns alist with the multivariate polynomial factors
and their multiplicities in the algebraic extension Q(RootOf).

factors(polynomial,[radi,...,radn]) or factors(polynomial,{radi,...,radn})
returns a list with the multivariate polynomial factors and their multiplicities in the
algebraic extension Q(radicali,...,radicaln).

factors(poly,[RootOf1,...,Root0fn]) or factors(poly,{Root0f1,...,Root0fn})
returns a list with the multivariate polynomial factors and their multiplicities in the
algebraic extension Q(Root0f1,...,Root0fn).

Factor(polynomial) performs the inert factorization of the polynomial.

factor(n) returns a row vector of prime factors of the positive integer n.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

84

ifactor(n,option) gives the entire factorization of n according to the given option.
Possible option values are sqfof (which uses the square free factorization method),
pollard (which uses the Pollard method), lenstra (which uses the Lenstra method)
and easy (which calculates only the easy factorizations).

Factor(polynomial) modn performs the inert factorization of the polynomial modulo n.

grading(Factor(polynomial,expr),option) factorizes the polynomial in the algebraic
extension defined by expr according to the method given in the option (lenstra,
trager, or linear).

Factors(polynomial) returns inert form factors and their multiplicities for the given
polynomial.
Factors(polynomial) modn gives the factors and their multiplicities for polynomial

modulo n.

grading(Factors(polynomial,expression),option) gives the list of factors and
multiplicities of the polynomial in the given algebraic extension defined by the
expression according to the specified option (lenstra, trager, or linear).

Afactor(polynomial) performs the inert absolute factorization of the polynomial.

Afactors(polynomial) returns the list of factors of the inert absolute factorization of
the polynomial.

Berlekamp(poly,variable) returns the inert form of the Berlekamp factorization of
varying degrees for the polynomial poly with respect to the given variable.

Berlekamp(poly,var) modn as above, but working modulo n.

Berlekamp(variable,radical,polynomial) returns the inert form of the Berlekamp
factorization of varying degrees for the polynomial over the algebraic extension
defined by radical.

DistDeg(polynomial,var) returns the inert form of the factorization of varying degrees
of the polynomial given with respect to the variable var.

DistDeg(poly,var) mod n gives the factorization of varying degrees of the given
polynomial with respect to the variable var modulo n.

readlib(split):split(polynomial,variable) performs the complete factorization
of the polynomial with respect to the variable given over the ring determined by its
coefficients.

readlib(splits):splits(polynomial,variable) returns the factors and their
multiplicities for the complete factorization of the polynomial with respect to the given
variable.

sqrfree(polynomial) returns the square-free factors and their multiplicities of a
polynomial with rational coefficients.

sqrfree(polynomial,variable) returns the square-free factors and their multiplicities
of a polynomial with rational coefficients in the specified variable.

Sqrfree(polynomial) returns the inert square-free factors and their multiplicities of a
polynomial with rational coefficients.

Sqrfree(polynomial) modn returns the inert square-free factors and their multiplicities
of a polynomial with rational coefficients modulo n.

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>

>>

>>

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
with(lattice): mipolys(n,p) gives the number of irreducible univariate monic
polynomials of degree n over Z (modp).

with(lattice): mipolys(n,p,m) gives the number of irreducible univariate monic
polynomials of degree n over the Galois field defined by p".

irreduc(polynomial) determines whether the multivariate polynomial is irreducible
over the ring defined by its coefficients.

irreduc(polynomial,radical) determines whether the multivariate polynomial is
irreducible over the algebraic extension Q(radical).

irreduc(polynomial,{radi,...,radn}) or irreduc(polynomial,[radi,...,radn])
determines whether the multivariate polynomial is irreducible over the extension
Q(radicali,...,radicaln).

Irreduc(polynomial) represents the inert form of irreduc.

Irreduc(polynomial) mod n determines whether the multivariate polynomial is
irreducible over the ring defined by its coefficients modulo n.

Here are some examples:

pretty(sym(maple('factor(x*3+5)")))

3
X +5

pretty(sym(maple('factor(x*3+5.0)"')))

2
(x + 1.709975947). (x - 1.709975947 X + 2.924017740).

pretty(sym(maple('factor(a®3+a2+a+1) ')))

2

(a+1) (a+1)

pretty(sym(maple('factor(a*3+a”2+a+1,complex) ')))

(a+1.) (a+1.)1I) (a-1.1)

pretty(sym(maple('readlib(factors):factors(a”10-2*a*5+1) ')))

3 4 2
[1, [[a -1, 2], [a+a+a+a+1, 2]]]

pretty(sym(maple('readlib(factors):factors(a”10-2*a*5+1,real) ')))

[1, [[a + 1.618033989 a + 1.000000000, 2], [a - 1., 2],]]

2

[[[a.6180339888 a + 1.000000000, 2]]]

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('Factors(a”10-2*a*5+1) mod 7')))

4 3 2
[1, [[a +6, 2], [a +a +a +a+1, 2]]]

>> pretty(sym(maple('Factor(a”10-2*a*5+1) mod 7')))

2 4 3 2 2
(a+6) (a +a +a +a+1)

>> pretty(sym(maple('Factor(a”10-2*a*5+1)')))

10 5
Factor(a -2a + 1)

>> pretty(sym(maple('evala(")')))

4 3 2 2 2
(a +a +a +a+1) (a-1)

>> pretty(sym(maple('readlib(split): split(x*2+x+1,x)"')))

2 2
(x - RootOf(Z + Z+ 1)) (x+ 1+ RootOf(Z + Z + 1))

>> pretty(sym(maple('readlib(splits): splits(x*2+x+1,x)")))

2 2
[1,[[x - RootOf(Z + Z + 1), 1], [x + 1 + RootOf(Z + Z + 1), 1] 1]

>> pretty(sym(maple(' f := x"3*y-x"3-x"2*y*2+x"2%y')))
>> pretty(sym(maple('sqrfree(f,x) ')))

[)’ -1, [['y + X, 1]: [X: 2]]]

>> pretty(sym(maple('sqrfree(f,y)')))

2 2
[-x, [[-xy+x+y -y, 1]]]

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
>> pretty(sym(maple('sqrfree(f,[x,y])")))
[1, [Iy - 1, 1], [-y + x, 1], [x, 2]]]
>> pretty(sym(maple('Sqrfree(4*x"2+4*x+1) mod 7')))
(4, [[x + 4, 2]]]

>> pretty(sym(maple('irreduc(x*3+5)')))

true
>> pretty(sym(maple('irreduc(x*3+5, 5°(1/3))")))

false
>> pretty(sym(maple('Irreduc(2*x*2+6*x+6) mod 7,Factor(2*x"2+6*x+6) mod 7')))

false, 2%(x+6)*(x+4)

>> pretty(sym(maple('Irreduc(x”4+x+1) mod 2, Factor(x"4+x+1) mod 2')))

true, x"4+x+1

As we have already seen many examples and exercises relating to factorization of univariate and multivariate
polynomials, we shall present only a pair of exercises.

EXERCISE 3-5

Factorize the polynomial a* - 9/4 in the following cases:
(a) over the field defined by its coefficients

(b) over the real field

(c) over the complex field

(d) over the algebraic extension Q(v2,V3)

(e) over the algebraic extension Q(V2,V3, i)

(f) over the algebraic extension Q(Root0f(ZA2+3/2)).

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('factor(a”4-9/4)")))

2 2
1/4 (2a -3) (2a +3)

>> pretty(sym(maple('factor(a”4-9/4,real)')))

2

(a + 1.224744871) (a - 1.224744871) (a + 1.499999999)

>> pretty(sym(maple('factor(a”4-9/4,complex)"')))

(a + 1.224744871)(a + 1.224744871 I)(a-1.224744871 I)(a-1.224744871)

>> pretty(sym(maple('factor(a”4-9/4,{(3)"(1/2),2~(1/2)})")))

2 1/2 1/2 1/2 1/2

-1/8 (2a +3) (2a+3 2)(-2a+3 2

>> pretty(sym(maple('factor(a”4-9/4,{(3)"(1/2),2"(1/2),I})")))

1/2 1/2 1/2 1/2 1/2 1/2
1/16 (-2 a+ 13 2) (2a+1I3 2) (2a+3 2)

1/2 1/2
(-2a+3 2)

>> pretty(sym(maple('factor(a”4-9/4,Root0f(Z*2+3/2))")))

2 2 2

)

1/2 (2 a - 3) (a + Root0Of(2 Z + 3)) (a - RootOf(2 Z + 3))

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-6

Determine whether the polynomial x° + 1 is irreducible in the following cases:
(a) over the field defined by its coefficients
(b) over the algebraic extension Q(V3 i).

Perform its factorization where possible.

>> pretty(sym(maple('irreduc(x"9+1)')))
false
>> pretty(sym(maple('factor(x"9+1)")))

2 6 3
(x+1) (x -x+1) (x -x +1)

>> pretty(sym(maple('irreduc(x*9+1,(-3)"(1/2))")))
false
>> pretty(sym(maple('factor(x"9+1,(-3)"(1/2))")))

3 1/2 3 1/2 1/2
1/16 (-2 x +1+I3)(2x -1+I3)(-2x+1+I3)

1/2
2x-1+I3) (x+1)

3-4. Roots of Polynomials

The following group of MATLAB commands, all of which require the prior use of the maple command, may be used to
work with roots of polynomials:

roots(polynomial) gives univariate polynomial roots by offering a list of lists with the
roots and their multiplicities. The calculation is performed over the ring defined by the
coefficients.

roots(polynomial,radical) finds the roots of the univariate polynomial over the
algebraic extension Q(radical)or Q(RootOf).

roots(polynomial,[radi,...,radn]) or roots(polynomial,{radi,...,radn}) finds the
roots of a univariate polynomial over Q(rad1,...,radn) or Q(Root0f1,...,Roof0fn).

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Roots(poly) returns the inert form of the roots of the polynomial poly.
Roots(poly) modn gives the roots of the polynomial poly modulo n.

reallib(realroot): realroot(polynomial) finds intervals in which the real roots of a
univariate polynomial with integer coefficients are contained.

reallib(realroot): realroot(polynomial,n) finds intervals with a maximum width
of n in which the real roots of a univariate polynomial with integer coefficients are
contained.

reallib(proot): proot(poly,n) calculates the nth root of the given polynomial with
rational coefficients.

reallib(psqrt): psqrt(poly) computes the square root of the given polynomial with
rational coefficients.

with(numtheory): cyclotomic(n,variable) returns the n-th cyclotomic polynomial in
the given variable.

readlib(sturm): sturmseq(polynomial,variable) gives alist of polynomials
representing the Sturm sequence for the given polynomial.

readlib(sturm): sturm(expression,variable,a,b) returns the number of real roots of
the polynomial in the interval (a, b] using the Sturm sequence.

readlib(lattice): minpoly(r,n) returns a polynomial of degree less than or equal to n
with small integer coefficients, such that r is one of its roots.

readlib(lattice): minpoly(r,n,e) returns a polynomial of degree less than or equal
to n with small integer coefficients, such that r is one of its approximate roots with an
accuracy given by e.

Here are some examples. First, we find the roots and their multiplicities over the field defined by the coefficients
of the given polynomials:

>> pretty(sym(maple('roots(2*x"3+11*¥x*2+12*x-9)")))

[['3) 2]) [1/21 1]]

>> pretty(sym(maple('roots(x"3+(-6-b-a)*x*2+(6*a+5+5*b+a*b)*x-5%a-5*%a*b,x)"')))

(s, 1]]

Next, we find modular integer roots and their multiplicities.

>> pretty(sym(maple('Roots(x"3-x) mod 6')))

90

(o, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1]]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
>> pretty(sym(maple('Roots(x"3-1) mod 2')))
[[1, 1]]

>> pretty(sym(maple('alias(a=RootOf(x"2+x+1))"))) ;
>> pretty(sym(maple('Roots(x"3-1,a) mod 2')))

[[a +1, 1], [1, 1], [a, 1]]

Next we solve a third-degree polynomial with integer coefficients that has 1.2324 as an approximate root:

>> pretty(sym(maple('readlib(lattice) : minpoly(1.234,3)')))
2 3
109. 61 X +5 X -22 X

Next we generate a Sturm sequence for a given polynomial in order to find the number of roots of the polynomial
in the specified ranges:

>> pretty(sym(maple('readlib(sturm): sturmseq(expand((x-1)*(x-2)*(x-3)),x)")))

3 2 2
[x -6x +11x -6, x -4x+11/3, x - 2, 1]

>> pretty(sym(maple('sturm(",x,3/2,4)")))

>> pretty(sym(maple('sturm("",x,1,2)")))

Next we calculate the square and cubic roots of the given polynomials:

>> pretty(sym(maple('readlib(psqrt): psqrt(x*2+2*x*y+y*2)')))
X +y
>> pretty(sym(maple('readlib(proot): proot(x"3+3*x*2+3*x+1,3)')))

X+ 1

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-7

Find the roots and their multiplicities of the polynomial x* - 4 in the following cases:
(a) over the field defined by its coefficients

(b) over the algebraic extension Q(v2)

(c) over the algebraic extension Q(V2, i)

(d) over the algebraic extension Q(Root0f(x?- 2))

(e) over the algebraic extension Q(Root0f(x2- 2),Root0f(x?+ 2))

>> pretty(sym(maple('roots(x"4-4)")))

>> pretty(sym(maple('roots(x*4-4,x)")))
>> pretty(sym(maple('roots(x"4-4,sqrt(2))")))

1/2 1/2
[[2 > 1]: ['2 > 1]]

>> pretty(sym(maple('roots(x"4-4, {sqrt(2),I})")))

1/2 1/2 1/2 1/2
[[I 2 1 1]) ['I 2 > 1]1 [2) 1]) ['2) 1]]

>> pretty(sym(maple('alias(a = RootOf(x*2-2))"))) ;
>> pretty(sym(maple('alias(b = RootOf(x*2+2))'))) ;
>> pretty(sym(maple('roots((x"4-4), x, a)')))

[[aJ 1]: ['a) 1]]
>> pretty(sym(maple('roots(x*4-4, {a, b})")))

[[b) 1]) ['b) 1]) [) 1]) ['a) 1]]

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-8

Find the intervals in which the real roots of the polynomial x® + 5 x” - 4 x® - 20 x* + 4 x* + 20 x® are
located, with the following specifications:

(a) intervals with default width
(b) intervals with a width of one unit
(c) intervals with a half-unit width

(d) intervals with a width of one thousandth of a unit

>> pretty(sym(maple('readlib(realroot)')));
>> pretty(sym(maple('realroot(x"8+5*x"7-4*x"6-20*x"5+4*x 4+20%x"3)")))

[[0) 0], [0) 8]) [' 4, 0]) [' 8) - 4]]
We deduce that zero is a root.
>> pretty(sym(maple('realroot(x"8+5*x 7-4*x"6-20*x"5+4*x 4+20%x"3,1)")))
[[0) 0], [1) 2]) [' 1, - 2] [' 5, - 5]]
We deduce that -5 is another root.
>> pretty(sym(maple('realroot (x"8+5*x"7-4*x"6-20*%x 5+4*x"4+20%x"3,1/2)")))
[[O, 0]: [1: 3/2], ['3/2) '1], ['51 '5]]
>> pretty(sym(maple('realroot (x"8+5*x"7-4*x"6-20%x"5+4*x"4+20*x"3,1/1000)")))

181 1449 -1449 -181
[[0, 0]) ["" ""]) [""" > ""]) ['5) '5]]

128 1024 1024 128

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

3-5. Grouping and Ordering Terms

This section presents commands that allow you to group terms into univariate and multivariate polynomials, as well
as to manage them according to certain criteria. The syntax of these commands is as follows (after using the maple
command):

collect(polynomial,variable) organizes the multivariate polynomial, taking the
specified variable as the main variable and gathering terms with respect to the same.

collect(polynomial, [vari,...,varn]) or collect(polynomial,{vari,...,varn})
gathers terms in the polynomial with respect to the specified variables.

sort(polynomial) sorts the univariate polynomial in decreasing order of powers.

sort(polynomial) or sort(polynomial, tedeg) sortsthe polynomial according to the
degree of its monomial multivariate components (in descending order).

sort(polynomial, plex) sorts the multivariate polynomial in lexicographical order.

sort(poly,[vari,...,varn],option) or sort(poly,{vari,...,varn},option) sorts the
polynomial with respect to the specified variable according to the given option (plex or
tedeg).

Here are some examples:

>> pretty(sym(maple('collect(x*y+a*x*y+y*x"2-a*y*x 2+x+a*x, [x,y],recursive)')))
2
(1-a)yx +((1+a)y+1+a)x

>> pretty(sym(maple('collect(x*y+a*x*y+y*x"2-a*y*x 2+x+a*x, [y,x],recursive)')))

2
((1-a)x +(1+a)x)y+(1+a)x

>> pretty(sym(maple('collect(x*y+a*x*y+y*x 2-a*y*x 2+x+a*x, [x,y], distributed)')))

2
(1+a)x+(1+a)xy+(1-a)yx

>> pretty(sym(maple('collect(x"3*y+x 2*y"3+x+3,y)")))

3 2 3
X y+X y +x+3

>> pretty(sym(maple('sort(",y)")))

2 3 3
X Yy +X y+X+3

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('sort(y*3+y*2*x"2+x"3,[x,y])")))

2 2 3 3
X Yy +X +Yy

>> pretty(sym(maple('sort(y*3+y*2*x"2+x"3,[x,y],plex)")))

3 22 3
X +X Yy +y

>> pretty(sym(maple('sort(y*3+y*2*x"2+x"3,[x,y],tdeg)")))

3-6. Handling of Polynomials

This section presents a group of commands that allow you to perform certain manipulations on univariate and
multivariate polynomials, such as conversions, compositions, working with their operands, and so on. The syntax of
these commands (following prior use of the maple command) is presented below:

compoly(poly,variable) determines the possible composition of the polynomial in the
specified variable. The result is a list whose first element is the polynomial basis polyb,
and whose second element is the polynomial equation eqnc such that sub(eqnc, polyb)

= poly.

compoly(poly,{vari,...,varn}) determines the possible composition of the
polynomial in the variables var1i, ... ,varn.

compoly(polynomial) determines the composition of the multivariate polynomial in all
its indeterminates.

indets(polynomial) determines all the indeterminates of the given polynomial.

readlib(student): completesquare(polynomial) transforms quadratic expressions to
completed square form.

readlib(numaprox): hornerform(polynomial,variable) converts the polynomial in the
given variable into Horner form.

convert(poly,horner,var) converts the polynomial in the variable var to Horner form.

convert(polynomial,horner,{vari,...,varn}) converts the polynomial in the given
variables to Horner form without specifying the order.

convert(polynomial,horner, [vari,...,varn]) converts the polynomial in the given
variables into Horner form in the order specified.

convert(polynomial,horner) converts the polynomial in all its variables to
Horner form.

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

convert(poly,mathorner,var)converts the polynomial in the given variable into matrix
Horner form.

convert(poly,sqrfree,var) converts the polynomial in the given variable into a
square-free polynomial by factoring it into its square-free factors.

content(polynomial,variable) determines the greatest common divisor of the
coefficients of the polynomial in the given variable.

content(polynomial, [vari,...,varn]) or content(polynomial,{vari,...,varn})
determines the greatest common divisor of the coefficients of the polynomial with
respect to the specified variables.

content(polynomial) determines the greatest common divisor of the coefficients of the
polynomial with respect to all of its variables.

Content(polynomial,variable) determines the greatest common divisor of the
coefficients of the polynomial in the given variable in inert form.

Content(poly,var) mod ndetermines the greatest common divisor of the coefficients
of the polynomial in the given variable modulo n.

primpart(polynomial) determines a rational value such that dividing the polynomial
by this value yields a primitive polynomial over the integers. If the primitive
polynomial is already over the integers, this command is equivalent to content.

with(combinat): fibonacci(n,variable) gives the nth Fibonacci polynomial in the
given variable.

with(combinat): euler(n, var) gives the nth Euler polynomial in the variable var.

with(linalg): hermite(M,var) determines the Hermite normal form of the matrix M of
univariate polynomials in the given variable.

with(linalg): hermite(M,var) mod n determines the Hermite normal form of the
matrix M of univariate polynomials in the given variable modulo n.

with(linalg): smith(M,var) determines the Smith normal form of the matrix M of
univariate polynomials in the given variable.

with(linalg): smith(M,var) mod n determines the Smith normal form of the matrix M
of univariate polynomials in the given variable modulo n.

readlib(bernstein): bernstein(n,var->exprvar,variable1) finds the degree n
Bernstein polynomial in variablel that approximates the functional operator var - >
exprvar in the interval [0,1].

op(polynomial) returns a string with all the operands (monomials) of the polynomial.
Any operand can be substituted using subsop.

op(n,rationalfunction) gives the first operand (numerator) and the second operand
(the inverse of the denominator) of the rational function given as a ratio of two
polynomials.

96

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>

>>

>>

>>

>>

>>

>>

>>

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Here are some examples:

pretty(sym(maple('compoly(x 2+2*x*y-7*x+y"2-7*y+16)')))

2
16 -7y+y,y=Yy+X

pretty(sym(maple('compoly(X 4+4*Xx"3*yr3+6*x"2*y 6+4%*x*¥y 9+y 124x+y"3-1, {X,y})"')))

2 3 4 3
-1-3y+6y -4y +y,y=x+1+y

pretty(sym(maple('indets(x*y + z/x)')))
{z, v, x}
pretty(sym(maple('e:=x"(1/2)+exp(x"2)+ f(9): indets(e), indets(e,function)')))

2 1/2 2
{exp(x), x, x}, {f(9), exp(x)}

pretty(sym(maple('convert(x*2+3*x+4,horner,x)"')))
4+ (3 + X)X

pretty(sym(maple('poly := yr2*x 2 + 2*yr2*x + 2%y*x 2 + 4*y*x + x*2 + 2*x: ')))
pretty(sym(maple('convert(poly,horner,x)"')))

2 2
2y +4y+2+(y +2y+1)x)x

pretty(sym(maple('convert(poly,mathorner,x)')))

2 2
2y +4y+2+(y +2y+1)x8&x

pretty(sym(maple('convert(poly,horner,[x,y])")))

2+ @+2y)y+@+@2+y)y) x)x

www.it-ebooks.info

97

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('convert(x"2+4*x+4,sqrfree,x)")))

2
(x +2)

>> pretty(sym(maple('content(3*x*y+6*y~2,x), content(3*x*y+6*y*2,[x,y])")))
3y, 3

>> pretty(sym(maple('icontent(3*x*y+6*y~2)")))

>> pretty(sym(maple('op(y”2*x"2 + 2¥yr2¥x + 2*y*x 2 + 4*y*x + x*2 + 2*%x)')))

2 2 2 2 2
Yy X, 2y X, 2yX,4YyX, X, 2X

EXERCISE 3-9

Transform into square-free form with respect to the variable x the polynomial y2x3+ 2y2x%+ y2x+2yx3+
4yx2+ 2yx. Also transform the same polynomial into square-free form with respect to the variable y.
Finally, find the greatest common divisor of the coefficients of the polynomial with respect to all variables,
with respect to the variable x only, and with respect to the variable y only.

>> pretty (sym (maple('poly:= y 2¥xA3+2¥yr2¥x 24y 2¥x+2*y*xA34+4%y*xA24+2%y*x:"))))
>> pretty(sym(maple('convert(poly,sqrfree,x) ')))

2 2
(y +2y)x(x+1)

>> pretty(sym(maple('convert(poly,sqrfree,y)')))

3 2 2
(x+x +2x)(y +2y)

>> pretty(sym(maple('content(poly)')))

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('content(poly,x)')))

2
2y+y

>> pretty(sym(maple('content(poly,y)')))

X +2X +X

EXERCISE 3-10

Transform the second degree polynomial 9 x2 + 24 x + 16 into completed square form. Transform

X2 - 2xa + a% + y? - 2yb + b? = 23 into completed square form with respect to the variable x. Transform the
same expression into completed square form simultaneously with respect to both variables x and y, and
with respect to the variable a.

>> pretty(sym(maple('with(student):completesquare(9*x"2 + 24*x + 16)"')))

2
9 (x + 4/3)

>> pretty(sym(maple('with(student):completesquare(x*2 - 2*x*a + a2 +
yr2-2%y*b+bnr2=23x)")))

2 2 2
(x-a) +y -2yb+b =23

>> pretty(sym(maple('with(student):completesquare(x*2 - 2*x*a + a2 +
y"2-2%y*b + b2 = 23, [x,y])")))

2 2
(y-b) +(x-a) =23

>> pretty(sym(maple('with(student):completesquare(x*2 - 2*x*a + a2 +
yr2-2%y*h + b2 = 23, a)')))

2 2 2
(@a-x) +y -2yb+b =23

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-11

Find the 10th Fibonacci and Euler polynomials in the variable x. Also find the degree 5 Bernstein
polynomial in the variable x that approximates the functional operator y—sin(y) in the interval [0,1].

>> pretty(sym(maple('with(combinat):fibonacci(10,x)")))

9 7 5 3
X +8x +21x +20Xx +5x

>> pretty(sym(maple('with(combinat):euler(10,x)")))

10 9 7 5 3
X -5x +30x -126 x + 255 x - 155 x

>> pretty(sym(maple('readlib(bernstein):bernstein(5,y->sin(y),x)")))

2 3 4 5
(5x-20x +30x -20x +5x) sin(1/5)

2 3 4 5
+ (10 x -30x +30x - 10 x) sin(2/5)

3 4 5 4 5 5
+ (10 x - 20 x + 10 x) sin(3/5) + (5 x - 5 x) sin(4/5) +x sin(1)

EXERCISE 3-12

Given the following polynomial matrix:
(x—l x+1]
M= 2 2
x -1 x"+1
Find its Hermite normal form in the variable x.
Find its Smith normal form in the variable x.

Find its Hermite normal form in the variable y.

Find its Smith normal form in the variable y.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
>> maple('p:=x-1;q:=x+1;T:=x"2-1;5:=x"2+1");

>> maple('M:=[[p,q],[r,s]]") ;
>> pretty(sym(maple('with(linalg):hermite(M,x)")))

[x -1 1]
[]

[o x]

>> pretty(sym(maple('with(linalg):smith(M,x)")))

[1 o] [1 0]

[0 1] [o 1]

3-7. Divisibility and Operations with Polynomials

MATLAB provides various tools for the analysis of divisibility. It can also perform a wide variety of operations on
polynomials. We summarize below the commands it provides for these tasks (each of which requires the prior use of
the maple command):

discrim(polynomial,variable) returns the discriminant of the polynomial with
respect to the specified variable.

Discrim(polynomial,variable) returns the inert discriminant of the polynomial with
respect to the specified variable.

Discrim(polynomial,variable) modn returns the inert discriminant of the polynomial
with respect to the specified variable modulo n.

resultant(poly1,poly2,var) returns the resultant of the given polynomials with
respect to the specified variable.

Resultant(poly1,poly2,var) returns the inert resultant of the given polynomials with
respect to the specified variable.

Resultant(poly1,poly2,variable) mod n returns the inert resultant of the given
polynomials with respect to the specified variable modulo n.

divide(poly1,poly2,name) determines whether poly1 is divisible by poly2, and if so
assigns the specified name to the ratio.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

102

Divide(poly1,poly2,name) determines whether poly1 is divisible by poly2, and if so
assigns the specified name to the inert ratio.

Divide(polynomiali,polynomial2,name) mod n determines whether polynomiali is
divisible by polynomial2 modulo n, and if so, assigns the specified name to the inert
ratio.

quo(poly1,poly2,var) returns the quotient polynomial of the ratio poly1/poly2 with
respect to the variable var.

quo(poly1,poly2,var,name) returns the quotient polynomial of the ratio poly1/poly2
with respect to the variable var and gives the remainder the name name.

Quo(poly1,poly2,var) returns the inert quotient polynomial of the ratio poly1/poly2
with respect to the variable var.

Quo(poly1,poly2,var) mod nreturns the quotient polynomial of the ratio poly1/poly2
modulo n with respect to the variable var.

rem(poly1,poly2,variable) returns the remainder of the division of two polynomials
in the given variable.

rem(poly1,poly2,var,name) returns the remainder of the division of the two
polynomials and gives the quotient polynomial the name name.

Rem(poly1,poly2,variable) returns the inert remainder of the division of two
polynomials with respect to the given variable.

rem(poly1,poly2,var) mod nreturns the remainder of the division of two polynomials
with respect to the given variable modulo n.

readlib(fixdiv): fixdiv(poly,var) computes the fixed divisor of the given
polynomial, i.e. the largest integer that divides poly(n) for all integers n.

gcd(poly1,poly?2) returns the greatest common divisor of two polynomials with
rational coefficients.

gcd(poly1,poly2,namel,name2) returns the greatest common divisor of two
polynomials with rational coefficients and assigns name1 to poly1/gcd(poly1,poly2)
and name2 to poly2/gcd(poly1,poly2).

gcdex(poly1,poly2,var,namel,name2) returns the greatest common divisor of

two polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and name2 to poly2/gcd(polyl,poly2) using the extended Euclidean
algorithm.

gcdex(poly1,poly2,poly3,var,namel, name2) returns the greatest common divisor
of two polynomials in var with rational coefficients and assigns to name1 and name2
expressions such as poly3 = namel * polyl + name2 * poly2.

Ged(poly1,poly2) returns the inert form of the greatest common divisor of two
polynomials with rational coefficients.

Ged(poly1,poly2) mod nreturns the greatest common divisor modulo n of polynomials
with rational coefficients.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Gcdex(poly1,poly2,var,namel,name2) returns the inert form of the greatest common
divisor of the polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and name2 to poly2/gcd(polyl,poly2) using the extended Euclidean
algorithm.

Gedex(poly1,poly2,var,namel,name2) mod nreturns the greatest common divisor
modulo n of polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and name2 poly2/gcd(polyl,poly2) using the extended Euclidean
algorithm.

lem(poly1,...,polyn) returns the least common multiple of the specified polynomials.

ispoly(expression,n,variable) determines whether the expression is a polynomial of
degree n in the specified variable. n can be replaced by 'linear', 'quadratic’, 'cubic’
or "quartic' forn=1, 2, 3, 4, respectively.

ispoly(expression,n,nameo0,...,namen) determines whether the expression is a
polynomial of degree n in the specified variable and assigns the coefficient of degree i
tonameifori = 1... n.

norm(polynomial,n,variable) calculates the nth norm of the polynomial, whose value
is S (abs (c))*, where c = coeffs(polynomial,variable)*.

norm(polynomial,n) calculates the nth norm of the polynomial with respect to
indets(polynomial).

norm (poly,infinity,variable) computes the infinity norm of the polynomial in the
given variable (the coefficient of the polynomial with greatest absolute value).

maxnorm(polynomial) calculates the infinity norm of the fully expanded polynomial.

readlib(maxorder): maxorder(RootOfexpression) returns a basis for the field
extension determined by the RootOf expression.

readlib (maxorder): maxorder({RootOfexpressioni,..., RootOfexpressionn})
returns a basis for the field extension determined by the given set of RootOf
expressions.

minpoly(algebraicnum,n) computes a polynomial of degree n or less with small integer
coefficients; the given algebraic number is one of its roots.

readlib(lattice): minpoly(algebraicnum,n,expression) computes a polynomial of
degree n or less with small integer coefficients such that the given algebraic number is
one of its roots, up to an accuracy given by expression.

Nextprime(polynomial,var) the inert command that finds the irreducible polynomial
in the variable var, which is the next highest with respect to the given polynomial.

Nextprime(poly,var,ext) the inert command that finds the irreducible polynomial in
the variable var, over the algebraic extension defined by expr, which is the next highest
with respect to the given polynomial.

Nextprime(poly,var) mod n the inert command that finds the irreducible polynomial
in the variable var, modulo n, which is the next highest with respect to the given
polynomial.

Prevprime(polynomial,var) the inert command that finds the irreducible polynomial
in the variable var which is the next lowest with respect to the given polynomial.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

104

Prevprime(poly,var,ext) the inert command that finds the irreducible polynomial in
the variable var which is the next lowest with respect to the given polynomial over the
algebraic extension defined by expr.

Prevprime(poly,var) mod n the inert command that finds the irreducible polynomial,
modulo n, in the variable var which is the next lowest with respect to the given
polynomial over the algebraic extension defined by expr.

modpol(expr,poly,var,p) evaluates the rational expression expr over Q in the variable
var with respect to the quotient space Zp[var]/poly(var), where p is prime and poly is
a polynomial in var over Q.

Power (polynomial,n) returns the nth inert power of the polynomial.
Power (polynomial,n) mod mreturns the nth inert power of the polynomial modulo m.

Powmod(poly1,n,poly2,var) gives the inert remainder Rem((poly1)n, poly2) with
respect to var.

Powmod (poly1,n,poly2,var) mod n gives the inert remainder ((poly1)n, poly2)with
respect to var modulo n.

prem(poly1,poly2,var) returns the pseudo-remainder of the quotient of polynomials
poly1/poly2 with respect to the variable var.

prem(poly1,poly2,var,namen,nameq) returns the value rem that satisfies the condition
namen * polyl = poly2 * nameq + rem.

Prem(polyl, poly2,var) gives the inert pseudo-remainder of the quotient of
polynomials poly1/poly2 with respect to the variable var.

Prem(poly1,poly2,var) mod n gives the pseudo-remainder modulo n of the quotient of
polynomials poly1/poly2 with respect to the variable var.

sprem(poly1,poly2,var) returns the sparse pseudo-remainder of the quotient of
polynomials poly1/poly2 with respect to the variable var.

sprem(poly1,poly2,var,namen,nameq) returns the value sprem that fulfills the condition
namen* polyl = poly2 * nameq + sprem.

Sprem(poly1,poly2,var) gives the inert sparse pseudo-remainder of the quotient of
polynomials poly1/poly2 with respect to the variable var.

Sprem(poly1,poly2,var) mod n gives the inert sparse pseudo-remainder of the
quotient, modulo n, of polynomials poly1/poly2 with respect to the variable var.
chrem([poly1,...,polyn],[m1,...,mn]) finds the polynomial p such thatp mod mj =
polyj j = 1... n.

primpart(polynomial,variable) gives the primitive part of the polynomial in the given

variable. The primitive part is the polynomial divided by the greatest common divisor
of its coefficients.

primpart(polynomial) gives the primitive part of the polynomial with respect to all of
its variables.

primpart(polynomial,{vari,...,varn}) or primpart(polynomial,[vari,...,varn])
gives the primitive part of the polynomial with respect to the specified variables.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Primpart(polynomial,variable) gives the primitive part of the polynomial in the
variable given in inert form.

Primpart(polynomial,variable) mod n gives the primitive part of the polynomial in
the given variable in inert form, modulo n.

Primitive(polynomial) determines whether the univariate polynomial is primitive.

Primitive(polynomial) mod n determines whether the univariate polynomial is
primitive modulo n.

Primfield({expr1,...,exprn}) gives the inert form of the algebraic extension given by
the RootOf expressions expri, . ..,exprn.

Primfield({expri,...,expren}) mod n gives the inert form, modulo n, of the algebraic
extension given by the RootOf expressions expri,...,exprn.

Primfield(expr1,expr2) gives the primitive element of the extension defined by the
first set of RootOf expressions over the extension defined by the second set of RootOf
expressions.

randpoly(variable) creates a univariate random polynomial of degree 6 in the
specified variable.

randpoly({variablei,...,variablen}) or randpoly([variablei,...,variablen])
creates a multivariate random polynomial in the variables specified.

randpoly(variable,coeffs=rand(a..b)) creates a polynomial whose coefficients are
random numbers between a and b.

randpoly(variable,expons=rand(n)) creates a polynomial whose exponents are
random numbers between 0 and n-1.

randpoly(variable,terms=n) creates a random polynomial of n terms.
randpoly(variable,dense) creates a dense random polynomial.

randpoly(variable,degree=n) creates a dense random polynomial of degree n. In case
of conflict, degree takes precedence over terms.

Randpoly(n,variable) creates an inert random polynomial of degree n in the given variable.

Randpoly(n,variable) mod m creates an inert random polynomial of degree n in the
given variable, modulo m.

Randprime(n,variable) creates an inert random irreducible and monic polynomial of
degree n.

Randprime(n,variable) mod p creates an irreducible and monic random polynomial of
degree n modulo p (prime).

Randprime(n,variable,expr) creates a random irreducible monic polynomial of
degree n over the algebraic extension defined by expr.

readlib(ratrecon): ratrecon(polyi,poly2,variable,n1,n2,namel,name2) assigns
namel and name2 such that name1/name2 = polyl mod poly2.If the allocation can be
made, the command returns true, and if it can’t, it returns false. The limits of the
assigned values are such that degree(name1)<nl and degree(name2) <n2.

readlib(iratrecon): iratrecon(mi,m2,n1,n2,namel,name2) assigns namel and name2
such that name1/name2 = m1 mod m2 with abs(name1)<n1, abs(name2)<n2.

www.it-ebooks.info

105

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
Ratrecon(poly1,poly2,variable,n1,n2,name1,name2) assigns in inert form name1 and
name2 such that name1/name2 = polyl mod poly2.

Ratrecon(poly1,poly2,variable,n1,n2,name1,name2) mod n assigns, modulo n, namel
and name2 such that name1/name2 = polyl mod poly2.

readlib(recipoly):recipoly(polynomial,variable) determines whether the
polynomial is self-reciprocal.

readlib(recipoly): recipoly(poly,var,name) assigns the specified name to the
polynomial p of degree degree(poly,var)/2 that meets the condition
var * (degree(poly,var)/2) * p(var+l/var) = poly.

readlib(translate): translate(polynomial,variable,number) translates the
polynomial into the polynomial in the new variable given by variable+number.

ztrans(expr,vari,var2) finds the z-transform of expr(var1) with respect to var2.

readlib(ztrans): invztrans(expression,vari,var2) returns the inverse z-transform
of the expression given in the old variable var1, with the result being an expression
based on the new variable var2.

Eval(poly,var=exp) evaluates in inert form the polynomial with the given variable
replaced by expr.

Eval(poly,var=exp) mod n evaluates the polynomial with the given variable replaced
by expr modulo n.

Eval(polynomial,{variblei=expri,...,variablen=exprn}) evaluates in inert form the
polynomial with the given variables replaced by expr1i,...,exprn.

grading(Fnc(exprl,...,exprn)) evaluates the inert command or function Fnc, whose
parameters are the given expressions, over the minimal algebraic closure of the field
defined by their coefficients. This applies to inert commands such as Factor, Factors,
Afactor, Afactors, Norm, Content, Ged, Gedex, Prem, Primfield, Quo, Rem, Resultant,
Sprem, Sqrfree, independence, and so on.

readlib(evalgf):evalgf(Fnc(expri,...,exprn),n) evaluates the inert command
or function Fnc, whose parameters are the specified expressions, over the minimal
algebraic extension of the finite field Zn.

Here are some examples. First, we find the discriminant of the polynomial ax*+ bx:

>> pretty(sym(maple('p := a*x"2 + b*x + c: discrim(p,x)')))

2
-4c+b

Now we calculate the resultant of several polynomials:

>> pretty(sym(maple('resultant(a*x+b,c*x+d,x), resultant((x+a)"5,(x+b)"5,x)")))

25
-cb+da, (-a+b)

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('Resultant(2*x+1, 3*x+4, x) mod 7')))

>> pretty(sym(maple('r := x + RootOf(_Z"2-2): s := RootOf(Z*2-2)*x + 1:
evala(Resultant(r,s,x))")))

Next we check divisibility among polynomials, and in the positive case, find the ratios:

>> pretty(sym(maple('divide(x"3-y"3, x-y, q),q')))

2 2
true, X +Xxy+y

>> pretty(sym(maple('Divide(x"3+x*2+2*x+3,x+2,q) mod 5,q")))

2
true, x +4x+ 4

Next we find quotients and remainders of division between polynomials:

>> pretty(sym(maple('rem(x 3+x+1, x*2+x+1, X, q), q')))
X+2, x-1

>> pretty(sym(maple('quo(x*3+x+1, x*2+x+1, x) ')))
X -1

>> pretty(sym(maple('a := x"4+5*x*3+6: b := x"24+2*x+7: r := Rem(a,b,x,q) mod 13, q')))
>> maple r

ans =

5*x+6, X 2+3*X

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-13

Find the greatest common divisor and least common multiple of the polynomials x2- y? and x3- y®, and
also the polynomials x+2 and x+3 modulo 7. Find the greatest common divisor for each of the sets of
polynomials {x3- 1, x2 - 1} and {xX?+ x + 1, x?- X + 1}, identifying the elements of Euclid’s algorithm. Also
find the greatest common divisor modulo 11 of the polynomials x2 + 3 x + 2 and x>+ 4 x + 3, identifying
the elements of Euclid’s algorithm.

>> pretty(sym(maple('gcd(x*2-y*2,x"3-y"3),lem(x"2-y*2,x*3-y*3)")))

4 3 3 4
Y+ X, X -XYy +yX -y

>> pretty(sym(maple('gcd(x+2,x+3) mod 7, lem(x+2,x+3) mod 7')))

2
1, X +5x+6

>> pretty(sym(maple('gcdex(x"3-1,x"2-1,x,s,t),s,t")))
X -1, 1, -X
>> pretty(sym(maple('gcdex(x 2+x+1,x"2-x+1,X,u,v),u,v")))
1, 1/2 - 1/2 x, 1/2 + 1/2 x
>> pretty(sym(maple('Ged(x 2+3*x+2,x"2+4*x+3,f,g) mod 11, f, g')))

1+ X, X + 2, X + 3

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-14

Find the 1, 2 and infinity norms of the polynomial x-3y. Also find the third and fourth powers of the
polynomial x + 1 modulo 2.

>> pretty(sym(maple('norm(x-3*y,1),norm(x-3*y,2),norm(x-3*y,infinity)")))

1/2
4, 10 , 3

>> pretty(sym(maple('Power(x+1,3) mod 2, Power(x+1,4) mod 2')))

3 2 4
X +X +x+1, x +1

EXERCISE 3-15

Find the polynomials r, m and q in the variable x such that
m(x*+ 1) = q(cx*+1) +r.

There are two solutions to the problem; one via the pseudo-remainder between the polynomial x*+ 1 and cx?+ 1,
and the other via the sparse pseudo-remainder between those polynomials.

>> pretty(sym(maple('a := x"4+1: b := c*x*2+1: r := prem(a,b,x,m,q)")))
>> pretty(sym(maple('r,m,q")))

2 3 2 2
c(c +1),c,x ¢ -c

>> maple('restart') ;
>> pretty(sym(maple('a := x*4+41: b := c*x"2+41: 1 :
>> pretty(sym(maple('r,m,q")))

sprem(a,b,x,m,q)")))

c +1, c,cx -1

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-16

Find the primitive part of the polynomial 4xy + 6y? and x/a-1/2 in the variable x. Also find the primitive
part of the polynomial x (y+4) + y2 + 4 in the variable x modulo 5.

>> maple ('restart')
>> pretty(sym(maple('primpart(-4*x*y + 6*y*2, x), primpart(x/a - 1/2,x)")))

3, -2X,2X-a
>> pretty(sym(maple('Primpart(x * (y+4) +y *~ 2 + 4 x) mod 5')))

X+y+1

EXERCISE 3-17

Perform the following tasks concerning random polynomials:
Create a random polynomial in x of 6 terms.

Create a random 20 term polynomial in the variables x and y.
Create a random polynomial in x, cos(x) and sin(x).

Create a polynomial with random coefficients between 1 and 100.

Create a polynomial with random exponents between -5 and 5.

>> pretty(sym(maple('randpoly(x)')))

5 4 3 2
-85 x - 55x -37x -35x +97 x+ 50

>> pretty(sym(maple('randpoly([x, y], terms = 20)')))

2 5 4 3 2
56 + 49 X + 63 y + 57 Xy - 59 X y + 45 X 8 X -93 x +92x

3 2 3 2 2 3 4
+43y -62xy +77X y+66x y +54xy -5x Yy

3 2 2 3 4 4 5
+99x y -61x y -50xy -12y - 18y

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('randpoly([x, sin(x), cos(x)])")))

2
-47 x - 61 x cos(x) + 41 x sin(x) cos(x) - 58 x cos(x)

3 3 2
- 90 sin(x) cos(x) + 53 sin(x) cos(x)

>> pretty(sym(maple('randpoly(x,coeffs=rand(1..100))"')))

5 4 3 2
82 x +71x +98x +64x + 77 X+ 39

>> pretty(sym(maple('randpoly(z,expons = rand(-5..5))")))

82 23 5

cee- 4 ---- +104z + 88z
5 z

z

EXERCISE 3-18

Change the variable x of the polynomial x2 to the variable x + 1. Make the change of variable x = r'? in the
expression 3xIn(x®) and also the change of variable sin(x) = y in the expression sin(x) / (1-sin(x))"2.

The first change of variable is a simple translation of a polynomial variable, so it will be done via the command
translate, but the other two changes involve general algebraic expressions, so we will use the command subs as
described in the previous chapter.

>> pretty(sym(maple('readlib(translate):translate(x2,x,1)")))

2
1+2X+X

>> pretty(sym(maple('subs(x=r"(1/3), 3*x*log(x"3))"')))

1/3
31 log(r)

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty (sym (maple ('subs (y = sin (x),sin (x) / (1 - sin (x)) ~(1/2))")))

EXERCISE 3-19

Find the reciprocal polynomial of the polynomial x* + x3 + x + 1. Also calculate the resultant of the
polynomial and its reciprocal.

>> pretty(sym(maple('readlib(recipoly):recipoly(x"4+x"3+x+1,X, 'p"'),p")))

2
true, -2+ Xx + X

>> pretty(sym(maple('resultant(x 4+x"3+x+1,x"2+x-2,x)")))

28

3-8. Interpolation and Polynomial Fitting

MATLAB provides several commands for polynomial interpolation and fitting that we will study next:

polyfit(x,y,n) gives the vector of coefficients of the polynomial p(x) of degree n in x
which best fits the data (xi,yi) in the least-squares sense (p(xi) = yi).

Yi = interpi1(X,Y,Xi, 'method') gives the vector Yi such that (Xi,Y1i) is the total set
of points found by interpolation between the given points (X, Y). The option method
can take the values linear, spline, or cubic, depending on whether the interpolation
is linear (the default option), staggered, or cubic (for xi uniformly separated). One-
dimensional interpolation.

Zi = interp2(X,Y,Z,Xi,Yi, 'method") gives the vector Zi such that (Xi,Yi,Zi) is the
total set of points found by interpolation between the given points (X,Y,Z). The option
method can take the value linear or cubic, depending on whether the interpolation

is linear (the default) or cubic (for xi uniformly separated). Two-dimensional
interpolation.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Zi = griddata(X,Y,Z,Xi,Yi) gives the vector Zi that determines the interpolation
points (Xi,Yi, Zi) between the given points (X, Y, Z). A method of inverse distance is
used to interpolate.

Y = interpft(X,n) gives the vector Y containing the values of the periodic function X
sampled at n equally spaced points. The original vector X is transformed to the domain
of Fourier transform frequencies using the Fast Fourier transform (FFT) algorithm. It
satisfies n>length(X).

maple('interp([exprx1,...,exprxn+l],[expryl,...,expryn+i],var)") returns

a polynomial in the specified variable of degree at least n that represents the
interpolated polynomial for points from [exprx1,expry1] to [exprxn+1,expryn+1]. The
coordinates of the points must all be different.

maple('Interp([exprx1,...,exprxn+1], [expryl,...,expryn+l], variable)')
returns in inert mode a polynomial in the specified variable of degree at least n
that represents the interpolated polynomial for points from [exprx1, expryi] to
[exprxn+1,expryn+1]. The coordinates of the points must all be different.

maple('Interp([exprx1,...,exprxn+1], [expryl,...,expryn+1], variable) mod
m') returns a polynomial modulo m in the specified variable of degree at least n
that represents the interpolated polynomial for points from [exprx1, expryl] to
[exprxn+1,expryn+1]. The coordinates of the points must all be different.

maple('readlib(thiele): thiele([exprxd,...,exprxn],[expryl,...,expryn],variable)")
finds an expression in the given variable that represents the entire function resulting in Thiele
interpolation points (exprxi,expryi) i = 1... n.

EXERCISE 3-20

Galculate the interpolated degree 2 polynomial passing through the points (- 1,4), (0,2) and (1,6) which is
the best fit in the least-squares sense.

>> x=[-1,0,1];y=[4,2,6];p=poly2sym(polyfit(x,y,2))

p:

3 X M2+ X+ 2

www.it-ebooks.info

113

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-21

Represent 200 points of cubic interpolation between the points (x,y) given by the values that the
exponential function e ~ x takes at 20 equally spaced x values between 0 and 2. Also represent the
difference between the function e ~ x and its approximation by interpolation. Use cubic interpolation.

First, we define the 20 given points (x, y), for x values equally spaced between 0 and 2:

> X
>y

0:0.1:2;
exp(x);

Now we find 200 points (xi, yi) using cubic interpolation, equally spaced between 0 and 2, and plot them on a
graph, together with the 20 initial points (x, y) (indicated by asterisks). See Figure 3-1:

>> xi = 0:0.01:2;
>> yi = interpi(x,y,xi, 'cubic');
>> plot(x,y,"*",xi,yi)

4 Figure No. 1 |_ (O] x|
File Edit Window Help

8

ir /

Figure 3-1.

We now graphically represent the difference between the exact function y = e ~ xand the function obtained by
the above interpolation. In the case of zero error, the graph would be a horizontal line coinciding with the x axis.
See Figure 3-2.

>> zi=(exp(xi));

>> di=yi-zi;
>> plot(xi,di)

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

4 Figure No. 1 H[=E
File Edit Window Help

-4
¥ 10
5

dF

3k

1F

0 w\f\/\/\/\/‘d\/\/\f\f \/\N\N\j\

Figure 3-2.

EXERCISE 3-22

Find 25 interpolation points of the parametric function X = cos(t), Y = sin(t), Z = tan(t) for values of t
between 0 and 7t/6, based on the set of points defined for values of t = in/6 with 0 <i <6.

First, we define the 25 given points (x, y, 2), equally spaced between 0 and /6.

>» t
>> X

0: pi/150: pi/6;
cos (t); y = sin (t); z = tan (t);

Now we find the 25 points of interpolation (xi, yi, zi), for values of the parameter fequally spaced
between 0 and = /6.

>> xi = cos (t); yi = sin (t);
>> zi = griddata(x,y,z,xi,yi);
>> points = [xi, yi, zi']

www.it-ebooks.info

115

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

points =

.0000
.9998
.9991
.9980
.9965
.9945
.9921
.9893
.9860
.9823
.9781
.9736
.9686
.9632
.9573
.9511
.9444
.9373
.9298
.9219
.9135
.9048
.8957
.8862
.8763
.8660

.0000
.0161
.0367
.0598
.0836
.1057
.1269
.1480
.1692
.1907
.2124
.2344
.2567
.2792
.3019
.3249
.3483
.3719
-3959
.4203
<4452
.4706
4969
.5236
.5505
5774

.0209
.0419
.0628
.0837
.1045
.1253
.1461
.1668
.1874
.2079
.2284
.2487
.2689
.2890
.3090
.3289
.3486
.3681
.3875
.4067
.4258
.4446
.4633
.4818
.5000

O 0O 0O 00O 0000000000000 O0O0OO0OO0OO0OO0O OO R
O OO0 0000000000000 O0DO0OO0O0OO0OO0OO0OO0OOoOOo
O OO0 0000000000000 O0DO0O0OO0OO0OO0OO0OO0OOoOOoO

EXERCISE 3-23

Find 30 interpolation points (xi, yi) for the periodic function y = sin(x) for values of x that are equally
spaced, interpolating them between values of (x, y) given by y = sin(x) for 20 x values evenly spaced in
the interval (0,2w), and using the interpolation method based on the fast Fourier transform (FFT).

First, we define the 20 x values equally spaced between 0 and 2r:

>> x =(0:pi/10:2%*pi);

Now we find the 30 interpolation points (x, y).

>> y = interpft(sin(x), 30);
>> points = [y', (asin(y))'l]

116

www.it-ebooks.info

http://www.it-ebooks.info/

points =

.0000
.1878
-4499
.6070
.7614
.9042
.9618
9963
.9913
.9106
.8090
.6678
4744
.2813
.0672
.1640
.3636
.5597
.7367
.8538
.9511
.0035
.9818
9446
.8526
-0.6902
-0.5484
-0.3478
-0.0807

0.0086

O OO0 O 0000000 O0OOoOOoOOo

| R R T R R R R |
O OO PFr OO0 O0OO0OOoOOo

.0000
.1890
.4667
.6522
.8654
.1295
.2935
.4848
.4388
.1448
<9425
<7312
.4943
.2852
.0673

.1647
.3722
-5940
.8282
.0233
.2566
.5708
-3799
.2365
.0210
.7617
.5805
3553
.0808
.0086

OO0 o0OO0OO0ORrRRRLRRERLRRLOOOO

- 0. 08371

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-24

Find the degree 3 polynomial that best fits the set of points (i, i?) for 1<i < 7, in the least-squares sense.
Find the value of the polynomial at x = 10 and graphically represent the fitted curve.

> x=(1:7);y=[1,4,9,16,25,36,49];p=poly2sym(polyfit(x,y,2))

p:

4503599627370495/4503599627370496 * x ~ 2 +
310800181380337/79228162514264337593543950336 * x-
3598276744230861/316912650057057350374175801344

www.it-ebooks.info

117

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Now we calculate the numerical value of the polynomial p at x = 70.

>> numeric(subs(p,10))

ans =

100

We can also approximate the coefficients of the polynomial p to 5 digits.

>> vpa(p,5)

ans =

1.00000 * x ~ 2 + 3 9228e-15 * x-1. 1354e-14

Figure 3-3 shows the graph of the fitted curve.

>> ezplot(p,[-5,5])

4 Figure No. 1 |_ (O] x|
File Edit Window Help

X"2+7748879091854583/126765060022 ~~~ 57/316912650057057350374175801344

25}

20r

Figure 3-3.

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-25

Find the interpolated degree 2 polynomial passing through the points (-1,4), (0,2) and (1,6). Find the
interpolated polynomial modulo 3 and, finally, perform Thiele interpolation for this case.

>> interp(['lxo)l]) [4)2)6]))();

2
3X + X+ 2

>> Interp([-1,0,1],[4,2,6],x) mod 3;
X + 2

>> readlib(thiele):thiele([-1,0,1],[4,2,6],x);

- 1/2 + 3/2 x

3-9. Galois Extensions

The Maple program has commands which enable you to work with the Galois theory of finite fields and their
extensions. The syntax of these commands is as follows:

maple('galois(polynomial)') returns the Galois group of the given rational univariate
irreducible polynomial of degree less than or equal to 8. It returns a list of three
expressions: the first is the name of the Galois group and includes a plus sign (+)

as the first character if the group is even and (-) if it is odd; the second is an integer
representing the order of the group, and the third is a set of strings representing the
group generators.

maple('readlib(GF):GF(p,n,polynomial)") returns a module of procedures and
constants for working in the finite Galois field with p" elements defined by the field
extension GF (p) [x]/polynomial. The polynomial is irreducible of degree n modulo p
(prime p). Once this has been done one can make use of the operator T to implement
various operations in the Galois field.

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

T[input] and T[output] convert between an integer in the range 1.. p"and its
corresponding polynomial in the Galois field. Alternatively T[ConvertIn] and
T[ConvertOut] convert an element of the Galois field to a Maple sum of products.
T('+'], T["-"1, T["*'], T['~"], T['inverse']and T['/'] execute the specified
operations in the Galois field. T[Tandom] returns a random element of the Galois
field. T[0] and T[1] represent the additive and multiplicative inverse, respectively.
T[trace], T[norm] and T[order] compute the trace, norm and order for elements of
the Galois field. T[PrimitiveElement] returns a primitive element of the Galois field.
T[isPrimitiveElement] determines whether an element is primitive. T[extension]
returns the polynomial extension used for the Galois field.

EXERCISE 3-26

Find the Galois group for each of the univariate polynomials x* + x + 1,t* - 5t + 12, x5 + 2 and
X7+ 4x5 - 3x2 + 5.

First, we check if the polynomials are irreducible; if so, we will calculate the Galois groups.

>> pretty(sym(maple('irreduc(x"4+x+1),irreduc(t"5-5*t+12),irreduc(x"5+2),
irreduc(x"7+4*x"5- 3*x"2+5)")))

true, true, true, true
>> pretty(sym(maple('galois(x"4+x+1)"')))
S4, 24, {(1234), (12)}

>> pretty(sym(maple('galois(t"5-5*t+12)")))

+D5, 10, {(1 23 4 5), (2 5)(3 4)}
>> pretty(sym(maple('galois(x"5+2)")))

F20, 20, {(1 23 45), (235 4)}
>> pretty(sym(maple('galois(x"7+4*x"5-3*%x"2+5)")))

S7, 5040, {(1234567), (12)}

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-27

Consider the polynomial q = o* + o + 1. Verify that it is irreducible over the integers and over the
integers modulo 2. Consider the finite Galois field GF(2*) and the Galois extension GF(2)[x]/(q). Perform
the operations 3 + 4, 3 * 4 and 34 in this field. Convert the integer 12¢ [0,2*- 1] to the corresponding
element in the finite Galois field GF(2*), and then do the reverse conversion. Gonvert the polynomial o to a
Maple sum of products ‘a’ in the finite Galois field GF(2*). Calculate o and o* and check if a is a primitive
element in GF(2%). Find the corresponding value of x =a® in the interval [0,2*- 1] and its polynomial form in
the Galois extension.

>> pretty(sym(maple('irreduc(alpha”4+alpha+1)')))
true

>> pretty(sym(maple('Irreduc(alpha”4+alpha+1) mod 2')))
true

>> pretty(sym(maple('readlib(GF):")))
>> pretty(sym(maple('G16 := GF(2,4,alpha*4+alpha+1):")))
>> pretty(syn(maple('G16[+ 1(3,4), G16[¥ 1(3,4), G16["" 1(3,4)")))

5 4, 3
>> pretty(sym(maple('G16[input](12)')))
1000100000000
>> pretty(sym(maple('Gi6[output](")')))
12

>> pretty(sym(maple('a := G16[ConvertIn](alpha)')))
>> pretty(sym(maple('a')))

10000
>> pretty(sym(maple('G16[*](a,a), G16["](a,4)")))

100000000, 10001

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
>> pretty(sym(maple('G16[isPrimitiveElement](a)")))
true

>> pretty(sym(maple('x := G16["~](a,8)")))
>> pretty(sym(maple('x"')))

100000001

>> pretty(sym(maple('G16[output](x)')))

>> pretty(sym(maple('G16[ConvertOut](x)')))

2
Alpha + 1

EXERCISE 3-28

Consider the polynomial q = b® + 7b* + b? + b+1. Check that it is irreducible over the integers and over
the integers modulo three. Consider the finite Galois field GF(3°) and the Galois extension GF(3)[x]/(q).
Calculate the product (b5+ 1)(b%+ b?+ 1) in the Galois extension and calculate its inverse.

First, we check that the polynomial is irreducible over the integers and over the integers modulo 3.

>> pretty(sym(maple('irreduc(b”5+7*b*4+b”2+b+1),irreduc(b”5+7*b 4+ b*2+b+1) mod 3')))

true, true

Then we transform the given polynomial to its corresponding value in the Galois field GF(3°) and find the stated
product in this field.

>> pretty(sym(maple('readlib(GF):")))
>> pretty(sym(maple('G243 := GF(3,5,b"5+7*b"4+b"2+b+1):")))

>> pretty(sym(maple('a1:=G243[ConvertIn](b”5+1)")))
>> pretty(sym(maple('a1')))

20000000200020000

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('a2:=G243[ConvertIn](b"3+b”2+1)")))
>> pretty(sym(maple('a2')))

1000100000001

>> pretty(sym(maple('prod1:=G243[*](a1,a2)')))
>> pretty(sym(maple('prodi')))

20000000100000001

Finally, we convert the value to its corresponding value in the extension GF(3)[x}/(q).

>> pretty(sym(maple('prod2:=G243[ConvertOut](prod1)')))
>> pretty(sym(maple('prod2')))

4 2
2b +b +1

To find the inverse of the product, we first convert it to the corresponding element in the Galois field GF(3°).
After finding the inverse we find the corresponding element in the extension GF(3)/x]/(q).

>> pretty(sym(maple('inv1:=G243[inverse](prod1)')))
>> pretty(sym(maple('invi')))

20000000200010001

>> pretty(sym(maple('G243[*"](prod1i,inv1)')))

>> pretty(sym(maple('inv2:=G243[ConvertOut](inv1)')))
>> pretty(sym(maple('inv2')))

4 2
2b +2b +b+1

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

3-10. Grobner Bases

Grobner bases are used in the solution and analysis of solutions of systems of polynomial equations. The related
MATLAB commands are as follows:

maple('with(groebner)') loads into memory the MATLAB package that contains
commands for working with Grobner bases.

maple('finduni(variable, [polynomiali,...,polynomin],[vari,...,varn])") finds
the univariate polynomial in the given variable of least degree in the ideal generated by
the specified set of polynomials for the given variables.

maple('finduni(variable,[variable],[poly1,...,polym])") constructs the Grébner
basis for the given polynomials in all of their variables.

maple('finite([polynomiald,...,polynomialm],[variablel,...,variablen])")
determines whether the specified set of polynomials has a finite number of solutions
for the set of specified variables. If the answer is True, one can apply the command
finduni.

maple('finite([poly1,..,polyn])") determines whether the specified set of
polynomials has a finite number of solutions with regard to all its variables.

maple('solvable([poly1,...,polym],[vari,...,varn])") determines whether the
given system of polynomials is solvable (algebraically consistent) with respect to the
given set of variables.

maple('solvable([poly1,...,polym])") determines whether the given system of
polynomials is solvable with respect to all of its variables.

maple('solvable([poly1,...,polym,],[varl,...,varn],tdeg)"') determines whether
the given system of polynomials is solvable with respect to the set of variables using
total degree.

maple('gsolve([poly1,..., polym])") ormaple('gsolve({poly1,...,polym})"))
gives a reduced Grobner basis for the given set of polynomials with respect to all of
the variables. Returns a list of lists where each list is a small subsystem of polynomials
identical to the original system roots. It can be applied to each reduced basis solve.
Essentially, gsolve prepares the algebraic system for solution.

maple('gsolve([poly1,...,polym],{polyr1,...,polyrn})") prevents the roots of the
second set of polynomials from being considered in the computation of Grobner bases.

maple('gsolve([poly1,...,polyn],[vari,...,varn],{polyr1,...,polyrn})")
specifies that the presentation of the specified variables will be used in the
computation of Grobner bases.

maple('gbasis([poly1,...,polym],[vari,...,varn])") returns a minimal reduced
Grobner basis for the specified polynomials in the given variables. The result is a list of
polynomials.

maple('gbasis([poly1,...,polym],[var1,...,varn],plex)") gives a Grobner basis in
which the polynomial terms are sorted lexicographically.

maple('gbasis([poly1,...,polym],[varl,...,varn],tdeg)") gives a Gribner basis in
which the polynomial terms are arranged by total degree.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

maple('normalf(polynomial,[poly1,...,polym],[varl,...,varn])") gives the full
reduced form of the given polynomial with respect to the Grobner basis represented by
the given polynomials in the specified variables. You can use the plex option to sort the
results into lexicographic order.

maple('leadmon(polynomial,[vari,...,varn])") returns the leading monomial of
the given polynomial with respect to the specified variables. It produces a list of two
elements. The first element is the coefficient of the monomial and the second is the
rest of the monomial. You can use the Plex option to sort the results into lexicographic
order.

maple('spoly(poly1,poly2,[varl,...,varn])") returns the s-polynomial of poly1 and
poly2 with respect to the given variables.

EXERCISE 3-29

Consider the following system of three polynomials: x? - 2xz + 5, xy? + yz?, 3y? - 82°. Test whether the
system is solvable with respect to its three variables and has a finite number of solutions. Find a Grébner
basis for such a system and from that try to solve it. Also find a minimal reduced Grébner basis in
lexicographical order and total order.

First, we try to solve the system directly, but we find that this is not possible; only an approximate solution can be
found.

>> pretty(sym(maple('solve({x"2-2*x*z+5=0,x*y*2+y*z"3=0,3%*y*2-8%2"3=0})")))

2
{x = RootOf(_ Z +5), y =0, z =0}, {}
2 5 4
X = - 3/4 %1 - 9/20% 1 + 12/5% 1,
2 2 3
y =2/5%1 (- 16% 1 + 3% 1+5), z=2 %1}

3 5 6
%1: = RootOf(30 Z + 25-48 Z +9 Z)

>> pretty(sym(maple('allvalues({x"22*x*z+5=0,x*y"2+y*z"3=0,3*y"28*z"3=0})")))

2 2 3 2 3
{x-2zx+5=0,xy+yz=0,3y-8z=0}

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

Now we confirm that the system is solvable with a finite number of solutions.

>> pretty(sym(maple('with(grobner):F:=[x"2-2*x*z+5,x*y 2+y*z"3,3*y"2-8%z"3]: ')))
>> pretty(sym(maple('solvable(F); finite(F)')))

true, true
Then we find a Grobner basis for the system with the command gsolve, and subsequently try to solve it with the
command solve.

>> pretty(sym(maple('gsolve(F)')))

2 5 4 2
[[y, z, x +5],[80y -3z +322z -402z,

4 5 2 3 5 6
96z +640 X +9 2z + 1202z, 240z + 1600 - 96 z + 9 z]]
A solution of the system could be obtained with solve in the following way:

>> pretty(sym(maple('solve({y=0, z=0, x"2 + 5=0})")))

2
{x = RootOf(Z +5), y =0, z = 0}

>> pretty(sym(maple('allvalues(")')))

1/2 1/2
{y=0,x=1I5 »2=0} {y=0, x=-I5 , z =0}
The rest of the solutions can be found as follows:

>> pretty(sym(maple('solve({80*y-3*z"5+32%2"4-40%2z"2=0, 96 * z ~ 4 + 640 * x + 9 * z ~ 5 +
120 * 2~ 2 =10, 240 ¥ Z ~ 3 + 1600-96 * z ~ 5+ 9 * z ~ 6 = 0}) ')))

2 2 3
{y=2/5% (-16 %1 +3 %1 +5), z =2 %1,

2 2 3
X =-3/20%1 (-16 %1 + 3 %1 +5)}

3 5 6
%1 := RootOf(30 Z +25-48 Z +9 7)

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
>> pretty(sym(maple('allvalues(")')))

{x = -.9186354143 + 1.100517108 I, y = 2.449694438 - 2.934712287 I,

z = -1.576863306 - .7885511972 I},

{x = -.9186354143 - 1.100517108 I, y = 2.449694438 + 2.934712287 I,
z = -1.576863306 + .7885511972 I},
{x = .2580043290 + 1.169756595 I, y = -.6880115440 - 3.119350920 I,
z = .5785194088 - 1.453171854 I},
{x = .2580043290 - 1.169756595 I, y = -.6880115440 + 3.119350920 I,

z = .5785194088 + 1.453171854 1},
{x
{z

2.058161202, y = -5.488429872, z = 2.243757078},

10.41959738, X = 20.59643412, y = -54.92382432}

Then we find a minimal reduced Grdbner basis, first in lexicographical order and then in order of total degree.

>> pretty(sym(maple('gbasis(F,[y,x,z],plex)")))

2 3 3 8 7 5 2
[3y -8z,8yz -3z +32z -402z,X -2X2Z+5,

7 8 5 3
-96 z + 9z + 120z + 640 z X,

6 3 8 9
240z + 1600z -96z +9 z |

>> pretty(sym(maple('gbasis(F,[x,y,z],tdeg) ')))

2 2 3 2 3 4 3 2
[x -2xz+5,-3y +8z,8xy +3y,9y +48zy +32vy]

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

3-11. The mod Operator: Modular Operations with Polynomials

The operator mod evaluates an expression modulo m for a non-zero natural number m. MATLAB uses two
representations for an integer modulo m. The positive mod m representation is an integer between 0 and m-1. The
symmetric mod mrepresentation is an integer between -floor ((abs(m)-1)/2) and floor(abs(m)/2). The first
operand of the mod operator generally tends to be an expression that will be evaluated by MATLAB over the ring of
integers modulo n. For polynomials, MATLAB reduces the coefficients modulo m. When the first operand is a power,
MATLARB uses the inert representation of the power, for example, i & * j mod mis calculated as iimod m. Among the
commands that use the mod operator with polynomials are, in addition to those we've already seen, the following (all
require the prior use of the maple command):

"mod"' (expr,m) is equivalent to expr mod m (expr can be a polynomial).

modp1(Fnc(expri,...,exprn),m) (mis a positive integer) uses efficient arithmetic
methods to calculate the inert command or function Fnc modulo m. The n given
expressions are univariate polynomials expressed in modp1 format. To express any
standard polynomial in the form modp1 modulo m it is necessary to use the command
modp1(convertIn). Here modpl refers to univariate polynomials with the operator mod
in its positive representation.

modp1(Add(polyp11,...,polypin),m) adds polynomials in the form modp1.

modp1(Coeff(polyp1,n),m) returns the coefficient of x" of the polynomial, in the form
modp1.

modp1(Degree(polyp1),m) returns the degree of the polynomial, in the form modp1.

modp1(Det(M),m) returns the determinant of the matrix M whose elements are
polynomials, in the form modp1.

modp1(Gausselimin(M),m) applies Gauss elimination to the matrix M whose elements
are polynomials, in the form modp1.

modp1(Gaussjord(M),m) returns the reduced Gauss-Jordan form for the matrix M whose
elements are polynomials, in the form modp1.

modp1(Lcoeff(polyp1),m) returns the leading coefficient of the polynomial polyp1 in
the form modp1.

modp1(Lcm(polypl,polyp2),m) finds the least common multiple of the polynomials
polyp1 and polyp2, in the form modp1.

modp1(Subtract(polyp1,polyp2),m) finds the difference polyp1-polyp2 of the given
polynomials, in the form modp1.

modp1(Multiply(polyp1,poly2),m) finds the product polypi*polyp2 of the polynomials
in the form modp1.

modp1(Ldegree(polyp1),m) returns the smallest degree of the polynomial polyp1 in
modp1 form.

modp1 (Power(polyp1,n),m) returns the n th power of the polynomial polyp1 in the
form modp1. With modp1 you can also use inert commands such as Tcoeff, Chrem, Diff,
divided, Embedded, Eval, Factors, Ged, Gecdex, Interp, Irreduc, Powmod, Prem, Quo, Rem,
spot, Root, Smith, Sgrfr, Vnormal, and so on.

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

modp1(ConvertIn(polynomial,variable),m) converts the given univariate polynomial
with integer coefficients in the given variable to the format modp1 modulo m. This
operation takes precedence over any of the operating commands modp1. Any
polynomial that is an argument of any operational function modp1 should be previously
transformed with modp1(ConvertIn).

modp1(ConvertOut(polynomiali,variable),m) converts the specified polynomial in the
form modp1 to standard format.

modp1(ConvertOut(poly1),m) gives the list of coefficients of the polynomial converted
to standard format.

modp1(Constant(expr),m) represents the constant expression as a polynomial modulo
m in the format modp1.

modp1(One(),m) represents the polynomial 1 modulo m in modp1 format.
modp1(Zero(),m) represents the polynomial 0 modulo m in modp1 format.

modp1(Randpoly(n),m) creates a random polynomial modulo m of degree n in modp1
format.

modp2 (Fnc(expr1, ..,exprn),m) (positive whole m) uses efficient arithmetic methods to
calculate the inert command or function Fnc modulo m. The n expressions specified as
arguments of the command Fnc are bivariate polynomials expressed in modp2 format
modulo m. The term modp2 indicates bivariate polynomials with the operator mod in

its finite representation. To express any standard polynomial in the form modp2 it is
necessary to use the command modp2 (ConvertIn). Such a transformation must be done
prior to the application of Fnc to any polynomial.

modp2 (Add(polyp21,...,polyp2n),m) adds polynomials in the form modp2.

modp2 (Degree(polyp2,i),m) returns the degree of the specified bivariate polynomial
modulo m in format modp2 and with reference to its ith variable.

modp2 (Diff(polyp2,1i),m) returns the derivative of the bivariate polynomial modulo m
specified in the format modp2 and with reference to its i th variable.

modp2 (FielMultiply(polyp2,k),m) returns the product of the scalar k and the specified
polynomial in the format modp2.

modp2 (Lcm(polyp21,polyp22),m) finds the least common multiple of polynomials in the
form modp2.

modp2 (Multiply(polyp21,polyp22),m) returns the product of the polynomials in the
form modp2.

modp2 (Power (polyp2,n),m) returns the nth power of the polynomial in the form modp2.

modp2 (TotalDegree(polyp2),m) returns the total degree of the polynomial modulo m in
the format modp2 in both variables. The inert commands can also be used with modp2,
including Coeff, Content, divided, Eval, Factors, Gcd, Prim, Primport, RingMultiply,
Sqrfree, Unit, Var-Swap, and so on.

modp2 (ConvertIn(polynomial,vari,var2),m) converts the given polynomial with
integer coefficients in the variables vari, var2 into standard polynomial format modp2
modulo m. This conversion must be applied to any polynomial that will be an argument
of any modp2command.

www.it-ebooks.info

129

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS
modp2 (ConvertOut(polyp2,vari,var2),m) converts the polynomial modulo m in format
modp?2 to its standard format.

modp2 (ConvertOut(polyp2),m) returns the list of coefficients of the polynomial into its
standard format.

modp2 (Constant (expr),m) represents the constant expression as a bivariate polynomial
modp2 modulo m.

modp2 (One(),m) gives 1 modulo the polynomial m in format modp2.
modp2(Zero(),m) gives the polynomial 0 modulo m in modp2 format.

modp2 (Rootpoly(r,s),m) creates a random bivariate polynomial in the format modp2
modulo m of degree 1 and s for its respective variables.

Here are some examples:

>> pretty(sym(maple('p:= 11: a:= x"4-1")))
>> pretty(sym(maple('a := modpi(ConvertIn(a,x),p)')))
>> pretty(sym(maple('a')))

a := 1000000000000000000000000000000000010
>> pretty(sym(maple('modp1(ConvertOut(a,x),p),modp1(ConvertOut(a),p)"')))

4
X + 10, [10, O, O, O, 1]

>> pretty(sym(maple('b:=modp1(Randpoly(3),p):c:=modp1(Rem(a,b),p):
d:=modp1(Roots(a),p)')))
>> pretty(sym(maple('b,c,d")))

7000400010008, 400050001, [[1, 1], [10, 1]]
>> pretty(sym(maple('modpi(Factors(a),p)')))
[1, [[1000000001, 1], [1000000010, 1], [1000000000000000001, 1]]]

>> pretty(sym(maple('a:=x"4*y"~2-1:b := modp2(ConvertIn(a,x,y),p)"')))
>> pretty(sym(maple('b")))

[10 0 0 0 100000000]

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

EXERCISE 3-30

Consider the matrix M = [[a, b, c], [d, e, f], [g, h, k]] whose elements are, respectively, the following
univariate modpa modulo 5 polynomials: [[1, x + 1, x - 1], [2, xX? + 1, X% - 1], [X, (x + 1)%,(x - 1)?]]. Find the
following:

- The sum, product, and least common multiple of a and b modp1 modulo 5.
- The fourth power of the polynomial k modp1 modulo 5.
- M?, the determinant of M, the inverse of M and the Jordan diagonal form of M.

We begin by transforming the given format polynomials modp1 modulo 5.

>> maple('a:=modp1(ConvertIn(1,x),5):b:=modp1(ConvertIn(x+1,x),5):
c:=modp1(ConvertIn(x-1,x),5):d:=modp1(ConvertIn(2,x),5):
e:=modp1(ConvertIn(x"2+1,x),5):f:=modp1(ConvertIn(x*2-1,x),5):
g:=modp1(ConvertIn(x,x),5):h:=modp1(ConvertIn(x"2+2*x+1,x),5):
k:=modp1(ConvertIn(x"2-2*x+1,x),5):")

Then we perform the operations requested on the variables a and b.

>> pretty(sym(maple('modp1(Add(a,b),5)")))

10002

>> pretty(sym(maple('modp1(Multiply(a,b),5)")))

10001

>> pretty(sym(maple('modp1(Lcm(a,b),5)")))

10001

>> pretty(sym(maple('modp1(Power(k,4),5)")))
100020003000400000004000300020001

Now we define the matrix M and carry out the specified matrix operations.
>> maple('M: = matrix([[a,b,c],[d,e,f],[g,h,k]])")

M := matrix([[1, 10001, 10004], [2, 100000001, 100000004], [10000, 100020001, 100030001]])

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © POLYNOMIAL DIVISIBILITY, INTERPOLATION, AND ALGEBRAIC EXTENSIONS

>> pretty(sym(maple('multiply(M,M)")))

[100060003 2000700110006 2000800180012
[]
[1000200040004 20002000700100007 20003001000140016]
[]
[1000500060002 20007001100080002 20008001700180005]
>> pretty(sym(maple('det(M)")))
-1999599949997

>> pretty(sym(maple('inverse(M)')))

[-999699949997 -200050003 299970000]
[---mommmooo e]
(1999599949997 1999599949997 1999599949997]
[]
[-999799979998 9999 99979996]
[---ommmmmeoo e]
[1999599949997 1999599949997 1999599949997]
[]
[999799969998 10001 -99979999]
[-oo-mmermoemn oo oo]
1999599949997 1999599949997 1999599949997]
>> pretty(sym((maple('evalf(jordan(M))'))))

[

[.20002500462526246741730553617573 10 0,

[

[-24

[0 , 5000.3739380021880602966411765771 - .86603 10 i

[

[-24

[0, 0, -1.9992004696053658328169045771 + .86603 10

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Symbolic Matrix Algebra

4-1. Vectors and Matrices

In the preceding chapter’s coverage of vector and matrix variables, we saw how to define vectors and matrices in
MATLAB. At the same time, we defined simple operations with vector and matrix variables. This chapter will expand
the concepts of matrix algebra, introducing commands that allow you to work with matrices.

Consider the matrix:

all alZ al3 1n
aZl a22 uZ3 2n

A:(A,.j): a, A, G ... A, |, 1=1,2,3,...,m j=1,2,3,...,n.
aml amZ amS amn

You can enter this in MATLAB in any of the following ways:
A=[a11,a12,...,aln ; a21,a22,...,a2n ; ... ; amil,am2,...,amn]
A=[a11 a12 ... ain ; a21 a22 ... a2n ; ... ; aml am2 ... amn]
A=maple('array([[al11,..,aln],[a21,..,a2n],..,[am1,..,amn]])")
A=maple('matrix(m,n,[a11,..,aln,a21,..,a2n,..,aml,..,amn])")
A=maple('matrix([[a11,..,a1n],[a21,..,a2n],..,[aml,..,amn]])")

At the same time, consider the vector

V=Lv2,...,vn)

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

This is a particular case of a matrix, consisting of a single row (i.e. it is a matrix of dimension 1x#n). One can define
it in any of the following ways in MATLAB:

V = [vi, v2,..., vn]

V = [vl v2... vn]

V = maple('vector([vi, v2,..., vn])")
V = maple('vector(n,[v1, v2,..., vn])")

V=maple('array([vi, v2, ..., vn])")

4-2. Operations with Symbolic Matrices

MATLAB supports most matrix algebra operations (sum, difference, product, scalar multiplication). Some operations
can always be applied while others depend on meeting certain dimensionality criteria.
The following MATLAB commands allow operations with matrices.

A + B gives the sum of matrices A and B.

A - Bgives the difference between the matrices A and B (A minus B).
c * Mgives the product of the scalar ¢ and the matrix M.

A * Bgives the product of the matrices A and B (A B).

A " p gives the matrix A raised to the power of the scalar p.

p " Agives praised to the matrix A.

expm(A) gives e’ calculated via eigenvalues.

expm1(A) gives e* calculated via Pade approximants.

expm2 (A) gives e* calculated via Taylor series.

expm3 (A) gives e calculated via the condition number of the matrix of eigenvectors.
logm(A) gives the Napierian logarithm of matrix A.

sqrtm(A) gives the square root of the square matrix A.

funm(A, 'function') applies the function to the square matrix A.
transpose(A) or A’ gives the transpose of the matrix A.

inv(A) gives the inverse of the square matrix A (i.e. the matrix A"%).
det(A) gives the determinant of the square matrix A.

rank(A) gives the rank of the matrix A.

trace(A) gives the sum of the elements of the diagonal of A.

Svd(A) gives the vector V of singular values of A. The singular values of A are the square
roots of the eigenvalues of the symmetric matrix A’ A.

[U,S,V] = Svd(A) gives the diagonal matrix S of singular values of A (ordered in
decreasing magnitude), and the matrices Uand Vsuch that=U *S *V".

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA
cond(A) gives the condition number of the matrix A (the ratio between the largest and
the smallest singular values of A).
rcond(A) gives the reciprocal of the condition number of the matrix A .
norm(A) gives the norm of A (the greatest singular value of the matrix A).

norm(A,1) gives the 1-norm of A (the maximum column sum of A, where the column
sum is the sum of the absolute values of the entries in a column).

norm(A,inf) gives the infinity norm of A (the maximum row sum of A, where the row
sum is the sum of the absolute values of the entries in a row).

norm(A, 'fro') gives the Frobenius norm of A, defined by sqrt(sum(diag(A'A))).

Z = null(A) gives an orthonormal basis of the kernel of A (sothatZ'Z = I).The
number of columns of Z is the nullity of A.

Q = orth(A) gives an orthonormal basis of the range of A (so that Q’Q = I). The columns
of Q generate the same space as the columns of 4, and the number of columns in Q is
the rank of A.

subspace(A, B) gives the angle between the subspaces specified by the columns of A and B.

rref(A) produces the row reduced echelon form of A. The number of non-zero rows of
rref(A) is the rank of the matrix A.

EXERCISE 4-1
Given the following matrices
110 i 1-i 2+i 1 1 1
A=|0 1 1| B=|0 -1 3-i| C=|0 sqrt(2)i -sqrt(2)i
0 0 1 0 0 —i 1 -1 -1

calculate AB - BA , A? + B2 + C?, ABG, sqrt(A)+ sqrt(B) - sqrt(C), e* (e® + €°) and find the rank, inverse,
trace, determinant, condition number and singular values of A, B and C.

>>A =[110;011;001]; B=[i1-i2+i;0 -1 3-i;0 0 -i];
C=1[111; 0sqrt(2)*i -sqrt(2)*i;1 -1 -1];
>> M1 = A*B-B*A

M1 =
0 -1.0000 - 1.0000i 2.0000
0 0 1.0000 - 1.0000i
0 0 0

135

www.it-ebooks.info

http://www.it-ebooks.info/

>> M2 = AM2+B"2+C72

M2 =
2.0000
0 - 1.41421
0
>> M3 = A*B*C
M3 =

5.0000 + 1.0000i
3.0000 - 2.00001
0 - 1.0000i

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

2.0000 +
0.0000 +
2.0000 -

3.41421
1.41421
1.41421

1.00001
0.58581
1.00001

-3.5858 +
-3.0000 +

>> M4 = sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =

0.6356 + 0.83611
0.1582 - 0.1521i
-0.3740 - 0.26541

-0.3250 - 0.82041
0.0896 + 0.57021
0.7472 + 0.33701

>> M5 = expm(A)*(expm(B)+expm(C))

M5 =

14.1906 - 0.0822i
4.5854 - 1.49721
3.5528 + 0.35601

5.4400 + 4.27241
0.6830 + 2.15751
0.1008 - 0.74881

>> ranks = [rank(A) rank(B) rank(C)]

ranks =

>> singularvalues =

singularvalues =
1.8019 4.2130
1.2470 1.4917
0.4450 0.1591

136

3.0000 - 5.4142i
0.0000 - 0.58581
2.0000 + 1.4142i
-6.4142 + 1.00001
-3.0000 + 3.41421

0 + 1.00001
3.0734 + 1.2896i1
3.3029 - 1.8025i
1.2255 + 0.10481
17.9169 - 9.5842i
8.5597 - 7.65731
3.2433 - 1.8406i1

[Svd(A),Svd(B),Svd(C)]

2.0000
2.0000
1.4142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> traces = [trace(A) trace(B) trace(C)]

traces =
3.0000 -1.0000 0 + 1.41421i
>> inv(A)
ans =
1 -1 1
0 1 -1
0 0 1
>> inv(B)
ans =
0 - 1.0000i -1.0000 - 1.0000i -4.0000 + 3.0000i
0 -1.0000 1.0000 + 3.0000i
0 0 0 + 1.00001
>> inv(C)
ans =
0.5000 0 0.5000
0.2500 0 - 0.3536i -0.2500
0.2500 0 + 0.3536i -0.2500

>> determinants = [det(A) det(B) det(C)]

determinants =

1.0000 -1.0000 0 - 5.65691

>> conditions = [cond(A) cond(B) cond(C)]

conditions =

4.0489 26.4765 1.4142

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

4-3. Other Symbolic Matrix Operations

MATLAB also provides the following commands that allow operations with symbolic matrices. (The maple command
is required to define symbolic matrices):

A = sym('[f1;f2;...;fm]") defines the symbolic m x n matrix with rows 1 to fm,
where fi = ai1, ai2,..., ain.

symadd (A, B) gives the sum of matrices A and B (A plus B).

symsub (A, B) gives the difference of the matrices A and B (A minus B).
symmul(A,B) gives the product of matrices A and B (A B).

sympow(A, p) gives A raised to the power of the scalar p.

transpose(A) gives the transpose of the matrix A (4”).

inv(A) gives the inverse of square matrix A (A7).

det(A) gives the determinant of the square matrix A.

rank(A) gives the rank of the matrix A.

Svd(A) or singvals(A) gives the vector of singular values of A. The singular values of A
are the square roots of the eigenvalues of the symmetric matrix A' A.

[U,S,V] = singvals(A)or [U,S,V] = Svd(A) returns the orthogonal matrices U and V
and the diagonal matrix S with singular values of A on the diagonal, such that A= USV".

symop (A, 'operation1',B, 'operation2',(C,...) performs the specified operations
between the given symbolic matrices and in the order given. This command allows you
to mix all kinds of operations between symbolic matrices.

maple('evalm(expr(A,B,C,..))") evaluates the expression in the matrices A, B, C,...
This expression has to be formed by the basic operators addition (+), subtraction (-),
product (& *) and power (). Within evalm the zero matrix is denoted by 0, the identity
matrix is denoted by & * () and the inverse matrix is denoted by A A(-1). In addition,

A A 0is always 1.

maple('matadd(A,B)") adds the matrices or vectors A and B (A+B).
maple('matadd(A,B,k,r)") calculates k *A + r *B.
maple(scalarmul(A,k)) calculates k * A (scalar multiple).

maple('multiply(A,B,C,...)")ormaple('A8*B&*C&*...") computes the product of the
given matrices in the order specified.

maple(exponential(A,t)) calculates e via Taylor series. It can be stated as
eM =1+ At+1/2!A%+....

maple('exponential(A)') calculates e** where x is the first variable found within the
matrix A.

maple('transpose(A)") gives the transpose of the matrix or vector A (A’).

maple('htranspose(A)') gives the hermitian transpose of the matrix or vector A.
Its (i, j)th element is defined as the conjugate of the (j, i)th element of A.

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = SYMBOLIC MATRIX ALGEBRA
maple('inverse(A)') ormaple(evalm(A*(-1))) finds the inverse of the square matrix A
(i.e. A'D).

maple('adjoint(A)") ormaple('adj(A)") finds the adjoint of the square matrix A
(adjoint(A) = inverse(A) * det(A)).

maple('minor(A,i,j)") returns the determinant of the matrix obtained by deleting the
i-th row and j-th column of the matrix A.

maple('det(A)") returns the determinant of the square matrix A.

maple(det(A,sparse)) returns the determinant of a sparse square matrix A, calculated
by an efficient method of minor expansion.

maple('Det(A)") returns the inert determinant of the square matrix A.
maple(Det(A) mod n) returns the determinant of A modulo n.

maple('permanent(A)') calculates the permanent of the matrix A (similar to the
calculation of the determinant of A but such that there are no alternating signs in the
terms of the sum).

maple('rank(A)') returns the rank of the matrix A.
maple('trace(A)') returns the sum of the elements of the diagonal of A.

maple('Svd(A)") ormaple(' (singularvals(A)") gives the vector of singular values of A.
The singular values of A are the square roots of the eigenvalues of the symmetric
matrix A’ A.

norm(A) or norm(A,2) returns the standard norm of A defined as the maximum of the
singular values of A.

norm(A, inf) or maple('norm(A) ") gives the infinity norm of A defined as the maximum
of the row sums of A (where a row sum is the sum of the absolute values of the entries of
the row).

norm(A,1) gives 1-norm of A defined by the maximum of the column sums of A (where a
column sum is the sum of the absolute values of the entries of the column).

noxm(A, fro) gives the Frobenius norm of A defined as sqrt(sum(diag(A'*A))).

maple('norm(A,option)") gives the norm of A according to the given option. Possible
values for option are 1, 2, infinity and frobenius. The I-norm is the maximum of the
column sums of A. The 2-norm is the square root of the largest eigenvalue of AA’. The
infinity norm is the maximum of the row sums of A. The Frobenius norm is the square
root of the sum of the squares of the elements of A.

normest(A) estimates the 2-norm of A.

cond(A) ormaple('cond(A)") gives the condition number of the matrix A (the product
of the infinity norm of A and the infinity norm of A"}, or the ratio between the largest
and the smallest singular values of A).

cond(A,P) gives norm(X,P) * norm(inv(X),P) wherePissetto1,2, infinity or fro
according to the type of norm one wants to use.

maple('cond(A,option)") returns the condition number of A according to the given
option. Possible values for option are 1, 2, infinity and frobenius. The options
determine the norm used in the calculation of the condition number.

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

140

SYMBOLIC MATRIX ALGEBRA

[C,V] = condest(A) gives C and V such that the condition norm(A*V,1) = norm(A, 1) *
norm(V,1)/c is met.

maple('orthog(A)') determines whether A is an orthogonal matrix (i.e. if A-! = A’).

maple('diag(A1,A2,...,An)") ormaple ('BlockDiagonal(A1,A2,...,An)") buildsthe
diagonal matrix whose diagonal elements are the subarrays (or elements) A1, A2,..., An.

maple('blockmatrix(m,n,B11,...,B1m,...,Bn1,...,Bnm)") constructs an m x n matrix
with the blocks given, taken in consecutive order.

maple('diag(V,n)") creates a square matrix of dimension n with diagonal elements
given by the vector V.

maple('submatrix(A,i..k,j...h)") extracts from A the subarray formed by rows i to k,
and by columns j to h.

maple('subvector(A,i,j1..j2)") extracts from the matrix A the subvector determined
by the ith row between columns j1 and j2, both inclusive.

maple('subvector(A,il1..i2,j)") extracts from the matrix A the subvector determined
by the jth column between rows il and i2, both inclusive.

maple('row(A,i)') extracts row i from A.

maple('row(A,i..k)") extracts from A the rows from i to k.
maple('column(A,j)") extracts column j from A.
maple('column(A,j..h)") extracts from A the columns from j to h.

maple('addcol(A,j1,j2,expr)")creates a new array, replacing column j2 of A by expr
* colummnj1 + columnj2.

maple('addrow(A,i1,i2,expr)"') creates a new array, replacing row i2 of A by expr *
rowil + rowi2.

maple('mulcol(A,j,expr)') creates a new matrix by multiplying column j of A by the
expression expr.

maple('mulrow(A,i,expr)') creates a new matrix by multiplying row i of A by the
expression expr.

maple('swapcol(A,j1,j2)"') exchanges columns j1 and j2 of A.
maple('swaprow(A,i1,i2)") exchanges rows il and i2 of A.

maple('stack(A,B)") creates a new array by placing A over B (A and B have the same
number of columns).

maple('augment(A,B)"') ormaple('concat(A,B)") creates a new array by placing the
array A to the left of B (A and B have the same number of rows).

maple('extend(A,m,n)") creates a new array by adding m rows and n columns to A
matrix, leaving unassigned new elements.

maple('extend(A,m,n,expr)') creates a new array by adding m rows and n columns to
the matrix A, filling the new elements with expr.

maple('copyinto(A,B,i,j)") updates B by copying elements of A into B starting at
elementB(i,j).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

maple('pivot(A,i,j)") pivots the matrix A on its element Ay

maple('pivot(A,i,j,ia...ib)") pivots the matrix A on its element A, but only modifies
the rows between ia and ib.

maple(' (rowdim(A)") gives the number of rows in A.

maple('coldim(A)") gives the number of columns in A.

maple(' (vectdim(V)") gives the dimension of the vector V.
maple('delrows(A,i..k)") deletes rows i to k from A.

maple('delcols(A,j...h)") deletes columns i to k from A.

maple('equal(A,B)") determines whether the matrices or vectors A and B are equal.

maple('issimilar(A,B)") determines whether the matrices or vectors A and B are similar.
A and B are similar if there exists an M such that A = evalm(inverse(M) & * B & * M).

maple('issimilar(A,B,name)") assigns name to the matrix such that A =
evalm(inverse(name) & * B & * name).

maple('iszero(A)') determines whether the matrix A is the zero matrix.

null(A) ormaple('kernel(A)') ormaple('nullspace(A)") gives a set of vectors that
span the kernel of the linear transformation defined by the matrix A.

expm(A) finds e* according to Padé’s algorithm.
expm1(A) finds e* according to Golub’s algorithm.
expm2 (A) finds e* via Taylor series.

expm3 (A) finds e via eigenvalues and eigenvectors.

diag(V,k) builds a diagonal square matrix of order n + |k| with the n elements of the
vector V in the kth diagonal. Ifk = 0, the diagonal is the main diagonal, ifk > 0, the
diagonal is k places above the main diagonal, and ifk < 0, the diagonal is k places
below the main diagonal. We have diag(V,0) = diag(V).

triu(A,k) constructs an upper triangular matrix with elements of A that are above
the kth diagonal. Ifk = 0, the diagonal is the main diagonal, ifk > 0, the diagonal is k
places above the main diagonal, andifk < 0, the diagonal is k places below the main
diagonal. We have triu(A,0) = triu(A).

tril(A,k) builds a lower triangular matrix with elements of A that are below the

kth diagonal. Ifk = 0, the diagonal is the main diagonal, ifk > 0, the diagonal is k
places above the main diagonal, and ifk < 0, the diagonal is k places below the main
diagonal.. We have, tril(A,0) = tril(A).

rref(A) or rrefmovie(A) produces the row reduced echelon form of the matrix A.
colspace(A) gives a basis for the vector space generated by the columns of the matrix A.

Q = orth(A) gives an orthonormal basis for the range of A, that is,0'Q = I and the
columns of Q generate the same space as the columns of A, where the number of
columns in Q is equal to the rank of A .

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

maple('randmatrix(m,n)') generates a random matrix of order (m x n). The

elements are by default between -99 and 99, but this range can be changed via the
command rand(a. .b) which yields a random number between a and b. The command
readlib(randomize): randomize(n) is used to set the generating seed for the value
randomize(n) (by default a seed generated by the system clock is used).

maple('randmatrix(m,n,option)') generates a random matrix of order (m x n)
according to the specified option. The options can be symmetric, antisymmetric,
diagonal, unimodular and sparse, depending on whether the random matrix to be
generated is symmetric, antisymmetric, diagonal, unimodular, or sparse, respectively.

maple('randvector(n)') generates a random vector of length n.

maple(' (entermatrix(A)') enables an interface to input values of a matrix, separating
elements by commas. You first need to specify the dimension of the array with the
command A = matrix(m,n).

maple('array(1.. m,1... n,[(1,1)=a11,...,(m,n)=amn],option)") specifies the
array of dimension (m x n) according to the option specified. The options can be
symmetric, antisymmetric, diagonal, identity and sparse, depending on the type of
array you want to define.

maple('matrix(m,n,f)"') defines a matrix of dimension m x n whose elements are
those specified by the function f(i,j) i = 1... m, j = 1... n.

maple('vector(n,f)"') defines the vector of dimension n whose elements are those
specified by the function (i) i = 1... n.

maple('array(identity,1..n,1..n) ') definesthe n x n identity matrix.

Some examples follow. First, let’s consider three alternative ways of defining the same symbolic matrix (let’s not
forget the maple command, which is always needed to define symbolic matrices and vectors):

>» A= Sym(‘[1)213;415)6;7)819]‘)

[1, 2, 3]
(4, 5, 6]
[7, 8, 9]

>> A = sym(maple('array([[1,2,3],[4,5,6],[7,8,9]11)"))

[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

142

www.it-ebooks.info

http://www.it-ebooks.info/

>> A =

[1) 2)
(4, 5,
[7) 8)

>> A =

sym(maple('matrix([[1,2,3],(4,5,6],[7,8,911)"))

3]
6]
9]

sym(maple('matrix(3,3,[1,2,3,4,5,6,7,8,9])"))

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

Next we define a symbolic matrix by using a function that defines its elements, in particular A =1 / (i+j).

>> A = sym(maple('matrix(3,3,(i,j)->1/(i+j))"))

A =

[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6]

Now let’s define the third-order identity matrix in two different ways:

>> A = sym(maple('array(1..3,1..3,identity)"))

0]
0]
1]

sym(maple('matrix(3,3,(i,j)->if i=j then 1 else 0 fi)'))

www.it-ebooks.info

143

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA
Next we define sparse, symmetric and antisymmetric matrices:
>> sym(maple('array(1..3,1..3,[(1,1)=1,(1,2)=2,(1,3)=3,(2,2)=4,(2,3)=6,(3,3)=5], symmetric)'))
ans =
[1, 2, 3]

[2, 4, 6]
(3, 6, 5]

>> sym(maple('array(1..3,1..3,[(1,1)=1,(1,2)=2,(1,3)=3,(2,2)=4,(2,3)=6,(3,3)=5], sparse)'))

ans =

[1, 2, 3]
[0, 4, 6]
[0, 0, 5]

>> sym(maple('array(1..3,1..3,[(1,2)=2,(1,3)=3,(2,3)=4], antisymmetric)'))

[0, 2, 3]
['2: 0, 4]
['3) -4, 0]

>> sym(maple('array(1..5,1..7,[(2,3)=4,(5,5)=12], sparse)'))

ans =

o o
-
o
-
o
-

-

o

-

~

<
-

o O
-
o
-
o
[t

— e

o O O

. v .

o O O

. e .

o O O

. e .

O O O O O
(S,
o
-

o
-

o
—

Next we define in different ways the symbolic vector whose components are the first six integers.

>> pretty(sym('[1,2,3,4,5,6]"))

[1) 2) 3) 4) 5) 6]

>> pretty(sym(maple('vector([1,2,3,4,5,6])")))

[1, 2, 3, 4, 5, 6]

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('vector(6,[1,2,3,4,5,6])")))
[1, 2, 3, 4, 5, 6]

>> pretty(sym(maple('array([1,2,3,4,5,6])"')))
[1, 2, 3, 4, 5, 6]

>> pretty(sym(maple('vector(6,i->i)")))

(1, 2, 3, 4, 5, 6]

EXERCISE 4-2

Consider the following symbolic matrix:

a b c
A=|3c a-3c b
3b -3b+3c a-3c

Calculate A',A"", determinant(A), trace(A), condition(A), range(A), standard norm(A), adjoint(A), A2 and the
complementary minor determined by the element (2,2).

We start by defining the symbolic form of our matrix as follows:

>> A = sym('[a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3%c]")

A =

[a, b,]
[3*C) 3'3*(:: b]
[3*b,-3*b+3*c,a-3*c]

Alternatively, the same symbolic matrix can be defined by previously declaring all of its variables as symbolic,
as follows:

>> syms a b c
>> A = sym([a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c])

A =

[a, b) C]
[3*c, a-3*c, b]
[3*b, -3*b+3*c, a-3*c]

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * SYMBOLIC MATRIX ALGEBRA

>> transpose(A)

ans =

[a, 3*c, 3*b]
[b, a-3*c, -3*b+3*c]
[c, b, a-3*]

>> pretty(inv(A))

2 2 2 2 2
[a -6ac+9c +3b -3bc ab-3c -b +ac-3c
[ommmm e e e
[%1 %1 %1
[
[2 2 2
[-b +ac-3c a -3ac-3bc ab-3c
[S 3 emeesemeeemoes e - mmmeeeeee
[%1 %1 %1
[
[2 2 2
[ab-3c ab-ac+b a -3ac-3bc
[=3 smeeeeeee- L e e
[%1 %1 %1
3 2 2 2 3 3 2

-6ca +9c a+3ab

-9abc+9c +3b +9bc

>

v

pretty(det (A))

3 2
a -6ca +9c

2

2 3 3

a+3ab -9abc+9c +3b +9bc

2

>> pretty(trace (A))

3a-6¢

>> rank(A)

ans =

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sympow(A,2))

2 2 2 2
[a +6bc,2ab-6bc+3c,2ac+b -3c]

2 2 2 2 2 2
[fac-9¢c +3b,6bc+a -6ac+9c -3b,2ab-6bc+3c]

2 2 2
[6ab-18bc+9c,3b -6ab+18bc+6ac-18c,

2 2 2
6bc+a -6ac+9c -3b]

To calculate the condition number, the norm, the adjoint and the complementary minor symbolic matrix it is
convenient to use Maple, in which case it is necessary to define the matrix A with a maple command before
issuing any other commands. See:

>> maple('A:=matrix(3,3,[a,b,c,3*c,a-3*c,b,3*b,-3*b+3%c,a-3*c])");
>> pretty(sym(maple('cond(A)")))

mx(|a|+|bl+]cl|,3]|cl+[a-3cl[+]b],

3| b|+]-3b+3c]|+]|a-3c])mx(

| 2 2| | 2 | 2 |
| -b +ac-3c | |a -3ac-3bc]| |ba-3c
3 [P |+] =memmenees I
| %1 I %1 | %1 |
| 2 2 2 [2 |
| a -6ac+9c +3b -3bc| |ba-3c
L |+] mmeeenees |
| %1 [%1 |
|2 2 |
| -b +ac-3c |
+| """""""" |)
I %1 |
| 2 | | 2] | 2 |
| ba-3c | | ba-ac+b | |a -3ac-3bc|
3| ~emmneeees | #3 | mmmemmmeeenees [S)
| %1 | | %1 | %1 |
3 2 2 2 3 3 2

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We now calculate the 1-norm, the infinity norm, and the Frobenius norm.

>> pretty(sym(maple('N1:=norm(A,1):N3:=norm(A,infinity):N4:=norm(A,frobenius)")))
>> pretty(sym(maple('N1'))),pretty(sym(maple('N3"))),pretty(sym(maple('N4"')))

max(| al+3]c|+3]|b|,|b|l+]a-3c|+]-3b+3c],
lcl+lbl+la-3cl)
mx(|a|+|b|]+]|cl|,3|c|+|a-3c|+]|b],
3| b|+]|-3b+3c|+]a-3c])

2 2 2 2 2 .1/2
(J]a|] #2122 |b|] +20]c]|] +2|a-3c| +|-3b+3c]|)

>> pretty(sym(maple('adjoint(A)')))

[2 2 2 2 2 2]
[2 -6ac+9c +3b -3bc,-ba+3c ,b -ac+3c]
[]
[2 2 2 2]
[(3ac+9c +3Db , a -3ac-3bc, -ba+3c]
[]
[2 2 2]
[9c -3ba, 3ba-3ac+3b , a -3ac-3bc]

>> pretty(sym(maple('minor(A,2,2)")))

[a c 1
[]
[3b a-3c]

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-3

Consider the following matrix:
1/3 1/4 1/5
M=[1/4 1/5 1/6
1/5 1/6 1/7

Find its transpose, its inverse, its determinant, its rank, its trace, its singular values, its condition number,

its norm and VB, considered as a symbolic matrix.

>> M = sym('[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]")

M=

[1/3,1/4,1/5]
[1/4,1/5,1/6]
[1/5,1/6,1/7]

>> transposed = transpose(M)

transposed =

[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6]
[1/5, 1/6, 1/7]

>> inversematrix = inv(M)

inversematrix =

[300, -900, 630]
[-900, 2880, -2100]
[630, -2100, 1575]

>> determinant=det(M)

determinant =

1/378000
>> matrixrank=rank(M)

matrixrank =

3

www.it-ebooks.info

149

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> matrixtrace = trace(M)

matrixtrace =

71/105
>> numeric(Svd(M))

ans =
0.6571

0.0002 - 0.0000i
0.0189 + 0.00001

>> matrixnorm = maple('norm([[1/3,1/4,1/5],[1/4,1/5,1/6],[1/5,1/6,1/7]])")

matrixnorm =

47/60
>> sympow(M,3)

ans =

[10603/75600, 1227/11200, 26477/294000]
[1227/11200, 10783/126000, 74461/1058400]
[26477/294000, 74461/1058400, 8927/154350]

Now we find norms and condition numbers of the numeric matrix M:

>> [norm(numeric(M)),norm(numeric(M),1),cond(numeric(M),inf), cond(numeric(M),'fro'),
normest(numeric(M))]

ans =
1. 0e + 003 *

0.7 0.0008 4.6060 3.0900 0.0007 0.8
>> [cond(numeric(M),1),cond(numeric(M),2),cond(numeric(M), 'fro'), condest(numeric(M))]

ans =
1. Oe + 003 *

4.6060 3.0886 3.0900 4.6060

150

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-4

Given the following matrices A and B:

A cosh(a) sinh(a) B sinh(a) cosh(a)
_Linh(a) cosh(a)} _Losh(a) sinh(a)}

Calculate M1 = A% + B?, M2 = A? - B, A", B", e*, e®.

Find the inverse, determinants, singular values, traces, norms, condition numbers, and adjoints of the
matrices A and B.

Are the matrices A and B orthogonal?
sym('[cosh(a),sinh(a);sinh(a),cosh(a)]");

sym('[sinh(a),cosh(a);cosh(a),sinh(a)]");
= symadd(sympow(A,2),sympow(B,2))

>> A
>> B
>> M1

M1 =
[2*cosh(a)”2+2*sinh(a)"2, 4*cosh(a)*sinh(a)]
[4*cosh(a)*sinh(a), 2*cosh(a)*2+2*sinh(a)"2]

This symbolic result can be simplified as much as possible using the simple command:

>> S1 = simple(M1)

S1 =

[2*cosh(2*a), 2*sinh(2*a)]
[2*sinh(2*a), 2*cosh(2*a)]

>> M2 = symsub(sympow(A,2),sympow(B,2))

M2 =

[0, 0]
[0, 0]

To calculate A" and B", we find their successive powers to try to find the pattern:
>> [simple(sympow(A,2)),simple(sympow(A,3)),simple(sympow(A,4))]

ans =
[cosh(2*a), sinh(2*a)][cosh(3*a), sinh(3*a)][cosh(4*a), sinh(4*a)]
[sinh(2*a), cosh(2*a)][sinh(3*a), cosh(3*a)][sinh(4*a), cosh(4*a)]

151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = SYMBOLIC MATRIX ALGEBRA
>> [simple(sympow(B,2)),simple(sympow(B,3)),simple(sympow(B,4))]

ans =

[cosh(2*a), sinh(2*a)] [sinh(3*a), cosh(3*a)] [cosh(4*a), sinh(4*a)]
[sinh(2*a), cosh(2*a)] [cosh(3*a), sinh(3*a)] [sinh(4*a), cosh(4*a)]

The pattern is now evident, so we write:
An {cosh(na) sinh(na)}

sinh(2a) cosh(2a)

>> matrixinverse = [simple(inv(A)),simple(inv(B))]

matrixinverse =
[sinh(a) cosh(a)] [-sinh(a) cosh(a)]
[-sinh(a) cosh(a)] [sinh(a) cosh(a)]

>> determinants = [simple(det(A)),simple(det(B))]

determinants =

1-1
>> singularvalues = [simple(singvals(A)),simple(singvals(B))]

singularvalues =

[exp(-Re(a))], [exp(Re(a))]
[exp(Re(a))], [exp(-Re(a))]

>> traceA = simple(trace(A))

traceA =

2 * cosh (a)
>> traceB = simple(trace(B))

traceB =

2 * sin(a)

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

Now let’s calculate the exponentials e and e?:
>> maple ('A: = matrix([[cosh(a),sinh(a)],[sin(a),cosh(a)]])");
expA = simple(sym(maple('exponential(A)')))

expA =

[(- exp (exp (a)) - exp (a) * cosh (a) * exp (1/exp (a)) + exp (a) * cosh (a) * exp (exp (a))
+exp (a) 2 *exp (1/exp (a))) / (-1 + exp (a) * 2), sinh (a) * exp (a) * (-exp (1/exp (a))
+exp (exp () / (-1 + exp (a) * 2)]

[sin () * exp (a) * (-exp (1/exp (a)) + exp (exp (3))) / (-1 + exp (a) " 2),

(-exp (exp (a))-exp (a) * cosh (a) * exp (1/exp (a)) + exp (a) * cosh (a) * exp (exp (a)) +
exp (a) » 2 * exp (/exp (a))) / (-1 + exp (a) * 2)]

>> maple('B:=matrix([[sinh(a),cosh(a)],[cosh(a),sinh(a)]])") ;
>> expB = simple(sym(maple('exponential(B)')))

expB =
[(exp(exp(a))-exp(a)*sinh(a)*exp(-1/exp(a))+exp(a)*sinh(a)*exp(exp(a))+exp(a)"2*
exp(-1/exp(a)))/(exp(a)*2+1), -cosh(a)*exp(a)*(exp(-1/exp(a))-exp(exp(a)))/(exp(a)"2+1)]

[-cosh(a)*exp(a)*(exp(-1/exp(a))-exp(exp(a)))/(exp(a)2+1), (exp(exp(a))-exp(a)*sinh(a)*
exp(-1/exp(a))+exp(a)*sinh(a)*exp(exp(a))+exp(a)*2*exp(-1/exp(a)))/(exp(a)*2+1)]

As for the calculation of exponentials, in order to find traces, norms and adjoints you must use matrices defined
with the maple command, since these calculations are made via maple commands that require the input array
again to be set with a maple command.

>> conditions = simple(sym(maple('cond(A)')))

conditions =

abs (cosh (a)) » 2 + 2 * abs (sin (a) * cosh (a)) + abs (sin (a)) * 2
>> conditionB = simple (sym (maple ('cond (B)')))

conditionB =

abs (cosh (a)) ~ 2 + 2 * abs (sin (a) * cosh (a)) + abs (sin (a)) * 2
>> normA = simple(sym(maple('norm(A)')))

normA =

abs(cosh(a))+abs(sinh(a))

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 = SYMBOLIC MATRIX ALGEBRA
>> normB = simple(sym(maple('noxm(B)')))

normB =

abs(cosh(a))+abs(sinh(a))
>> adjointA = simple(sym(maple('adjoint(A)')))

adjointA =

[cosh(a), -sinh(a)]
[-sinh(a), cosh(a)]

>> adjointB = simple(sym(maple('adjoint(B)')))

adjointaB =

[sinh(a), -cosh(a)]
[-cosh(a), sinh(a)]

>> pretty(sym(maple('orthog(A)')))

false
>> pretty(sym(maple('orthog(B)')))

false

Neither of the two arrays turn out to be orthogonal.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-5

Define a square matrix A of dimension 5, whose elements are given by A(i,j) = i® - j° Extract a subarray of
the matrix A formed by the elements of rows 2 to 4 and columns 3 to 4. Delete rows 2 to 4 of the matrix A,
as well as column 5. Exchange the first and last rows of the matrix A. Exchange the first and last columns
of the matrix A. Insert a column to the right of the matrix A. Insert a column to the left of the matrix A. Add
two rows at the top of thematrix A. Perform the same operation on the bottom of the matrix.

First, we generate the matrix A as follows:

>> A = sym(maple('matrix(5,5,(i,j)-> i*3-j2)"))

[0) '3) '81 '15) '24]
[7; 4) '1) _8J '17]
[26, 23, 18, 11, 2]
[63, 60, 55, 48, 39]
[124, 121, 116, 109, 100]

>> maple('A:=matrix(5,5,(i,j)-> i*3-j*2)");
>> sym(maple('submatrix(A,2..4,3..4)"))

ans =

[-1, '8]
[18, 11]
[55, 48]

>> sym(maple('delrows(A,2..4)"))

ans =

[O) '3) '8) '151 '24]
[124, 121, 116, 109, 100]

>> sym(maple('delcols(A,5..5)"))

[0, -3, -8, '15]
[7) 4) '1) '8]
[26, 23, 18, 11]
[63, 60, 55, 48]
[124, 121, 116, 109]

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('swapcol(A,1,5),swaprow(A,1,5)")))

[-24 -3 -8 -15 0] [124 121
[10
[-17 4 -1 -8 71 [7 4
[10
[2 23 18 11 26], [26 23
[10
[39 60 55 48 63] [63 60
[10
[100 121 116 109 124] [o -3

>> maple('B:=array([1,1,1,1,1])");
>> pretty(sym(maple('augment(A,B),augment(B,A);")))

[o -3 -8 -15 -24 1] [1 0
[1 [
[7 4 -1 -8 -17 1] [1 7
[1 [
[26 23 18 11 2 1], [1 26
[I
[63 60 55 48 39 1] [1 63
[1 [
[124 121 116 109 100 1] [1 124

>> maple('C:=array([[1,1,1,1,1],[2,1,1,1,1]])");
>> pretty(sym(maple('stack(C,A),stack(A,C)")))

[1 1 1 1 1] [o -3
[10
[1 1 1 1 1] [7 4
[10
[o -3 -8 -15 -24] [26 23
[10
[7 4 -1 -8 -17], [63 60
[10
[26 23 18 11 2] [124 121
[10
[63 60 55 48 39] [1 1
[I
[124 121 116 109 100] [1 1

116

18

55

23

60

121

18

55

116

109

11

48

-15

18

55

116

-15

11

48

109

-15

11
48

109

-24]
-17]
2]
39]
100]
1]

1]

-24]
-17]
2]
39]

100]

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

4-4, Eigenvalues and Eigenvectors: Diagonalization

MATLAB provides the following commands that allow you to work with eigenvalues and eigenvectors of a square

matrix:

eig(A) calculates the eigenvalues of the square matrix A.

[V,D] = eig(A) calculates the diagonal matrix D of eigenvalues of A and a matrix V

whose columns are the corresponding eigenvectors, such thatA * V = V * D,

eig(A,B) gives a vector that contains the generalized eigenvalues of the square

matrices A and B. The generalized eigenvalues of A and B are the roots of the
polynomial in A, det (A *B - A).

[V,D] = eig(A,B) calculates the diagonal matrix D of generalized eigenvalues of A and
B, and an array V whose columns are the corresponding eigenvectors, such that

A*V=B*V*D

[AA,BB,Q,Z,V] = qz(A,B) calculates the upper triangular matrices AA and BB and the
matrices Qand Zsuch thatQ *A*Z = AAandQ * B * Z = BB, and gives the matrix V of
generalized eigenvectors of A and B. The generalized eigenvalues are the elements of

the diagonals of AA and BB, such that A * V * diag(BB) = B * V * diag(AA).

[T,B] = balance(A) returns a similarity transformation T and a matrix B such that
B = T\A * T has eigenvalues approximately equal to those of A. The matrix B is called

the balanced matrix of the matrix A.

balance(A) calculates the balanced matrix B of the matrix A. Its use is essentially to

approximate the eigenvalues of A when they are difficult to estimate. We have
eig(A) = eig(balance(A)).

[V,D] = cdf2rdf(V,D) converts a complex diagonal form to a real block diagonal form.
Each complex eigenvalue in the diagonal of the input D becomes a 2 x 2 subarray in the

transformed matrix D.

[U,T] = schur(A) gives a matrix T and a unitary matrix Usuch thatA = U * T * U' and
U'* U = eye(U). If Ais complex, T is an upper triangular matrix with the eigenvalues of
A on its diagonal. If A is real, the matrix T has the eigenvalues of A on its diagonal, and
complex eigenvalues will correspond to 2 x 2 diagonal blocks on the diagonal of T. The

command schur (A) returns the matrix T only.

[U,T] = rsf2csf(U,T) converts a real Schur form to a complex Schur form.
[H,p] = hess(A) returns the unitary matrix P and Hessenberg matrix H such that
A=P*H*P andP'* P = eye(size(P)).

hess(A) returns the Hessenberg matrix H of A.

poly(A) returns the characteristic polynomial of the matrix A.

poly(V) returns a vector whose components are the coefficients of the polynomial

whose roots are the elements of the vector V.

vander (C) returns a Vandermonde matrix such that its j-th columnis A(:,j) = C * (n-j).

www.it-ebooks.info

157

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-6

Consider the following matrix:
1 -1 3
M=|-1 i -1-2i
i 1 i-2
Compute its eigenvalues and its eigenvectors, the balanced matrix with its eigenvalues, and its
characteristic polynomial.

>> M = [1,-1,3;-1,1,-1-2i;1,1,1i-2];
>> [V,D] = eig(M)

V =
0.9129 0.1826 + 0.54771i -0.1826 + 0.3651i
-0.2739 - 0.0913i 0.5477 - 0.1826i 0.3651 - 0.73031
-0.0913 + 0.2739i -0.1826 - 0.5477i 0.1826 - 0.36511
D =

1.0000 + 1. 0000i O O
2.0000 + 1.0 0000i
0 0 0

o
1

We see that the eigenvalues of Mare 7 + i, -2 + iand 0, and the eigenvectors are the columns of the matrix V.
We now calculate the balanced matrix and will see that its eigenvalues coincide with those of M:

>> balance(M)

ans =
1.0000 -1.0000 1.5000
-1.0000 0 + 1.00001 -0.5000 - 1.0000i
0 + 2.0000i 2.0000 -2.0000 + 1.00001

>> eig(balance(M))

ans =
1.0000 + 1.0000i

-2.0000 + 1.00001
0

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We now calculate the characteristic polynomial of M:

>> p = poly(M)

p:

1.0000 1.0000 - 2.0000i -3.0000 - 1.0000i 0

>> vpa(poly2sym(p))

ans =

XM3+xM2-2 Fi*¥x"2-3 . % x-1. ¥i¥x

We see that the characteristic polynomial is x° + X2 -2ix? - 3x - ix.

For working specifically with eigenvalues and eigenvectors of symbolic matrices, MATLAB provides the following

commands, among others:
eigensys(A) or eig(A) returns the eigenvalues of the matrix A.

[V,E] = eigensys(A)or [V,E] = eig(A) returns the vector E containing the eigenvalues of A,
and the matrix V, which contains its eigenvectors.

poly(A) returns the coefficients of the characteristic polynomial of A (in 1) whose value is
det(W¥I - A).

jordan(A) returns the Jordan canonical form J of the numerical or symbolic matrix A. Jhas the
eigenvalues of A on its diagonal.

[V,3] = jordan(A) returns the similarity transform V and the Jordan canonical form J of the
matrix A. The columns of V are the eigenvectors of A, so that V-* *A*V = J.

Svd(A) gives the singular values of the matrix A.

[U,S,V] = Svd(X) gives the diagonal matrix S and the unitary matrices U and V such
thatX = U * S * V',

maple('eigenvals(A)") returns the eigenvalues of the matrix A (the roots of the polynomial
det(h &* I - A)).

maple('eigenvals(A,name)") assigns to the variable name the eigenvalues of A.

maple('eigenvals(A,C)") returns the generalized eigenvalues of A and C, which are the roots
of the polynomial det(1 &* C - A), whose variable is A.

maple('Eigenvals(A)' returns the eigenvalues of the matrix A in inert mode (evaluated with
evalf).

maple(Eigenvals(A,name)) assigns to the variable name the eigenvalues of the matrix A in
inert mode.

maple(Eigenvals(A,C)) returns the generalized eigenvalues of A and C in inert mode.

maple(eigenvals(A, "implicit")) returns the eigenvalues of A in the form of RootOf
expressions for algebraic extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

maple('eigenvals(A, 'radical')") returns the eigenvalues of A in exact radical form.
maple('eigenvects(A)") returns the eigenvectors of the matrix A.

maple('eigenvects(A, 'implicit')") returns the eigenvectors of A in the form of RootOf
expressions for algebraic extensions.

maple('eigenvects(A, 'radical')") returns the eigenvectors of A in exact radical form.

maple('charmat(A,lambda)") returns the characteristic matrix of A as a function of lambda,
whose value isM = lambda * I - A

maple('charpoly(A,expr)") returns the characteristic polynomial of A according to
expr, whose value is det (expr * I - A).

maple('minpoly(A,x)") returns the minimal polynomial of A in the variable x. The minimal
polynomial of A is the polynomial p(x) of least degree such thatp(A) = o.

maple('jordan(A)") returns the canonical Jordan form J of the matrix A. J has the eigenvalues
of A on its diagonal.

maple('jordan(A,'P")") returns the matrix Pwhose columns are the eigenvectors of A and the
canonical Jordan form J of the matrix 4, such that evalm(P-*& * A & * P) = J.

maple('JordanBlock(expr,n)") creates the Jordan block matrix with the elements of the
main diagonal given by expr.

maple('Svd(A)") returns an array of the singular values of A.

maple('Svd(A,V,left)") returns an array with singular values of A and the array V with the
singular values to the left.

maple('Svd(A,V,right)") returns an array with singular values of A and the array V with the
singular values to the right.

condeig(A) returns a vector with the condition numbers for the eigenvalues of the matrix A.
[V,D,s] = condeig(A)equals [V,D] = eig(A) ands = condeig(A).

maple(Svd(A,U,V)) gives the square matrices U and V such that evalm(transpose(U) & *

V) = D, where D is a matrix whose diagonal entries are the singular values of A. If A is square, all
arrays are square and of the same size. If A is of dimension (n, p),thenUis (n, n),Vis(p, p)
andDis (n, p).

definite(A,option) determines whether the matrix A is positive definite, positive
semi-definite, negative definite, or negative semi-definite for the respective values of the option
given by positive_def, positive_semidef, negative def ornegative semidef.

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-7

Given the matrix

1 0 0
A=|0 cos(a) -—sin(a)
0 sin(a) cos(a)

calculate its eigenvalues, its characteristic polynomial, its Jordan canonical form, its minimal polynomial,
its characteristic matrix and its singular values.

We start by defining the matrix A as a symbolic matrix:

>> A =sym ('[1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]')

A =
[1, 0,

0]
[0,cos(a),-sin(a)]
[0,sin(a), cos(a)]

>> eigensys(A)

ans =

[1]
[cos(a) + 1/2 * (- 4 * sin(a) " 2) ~(1/2)]
[cos(a) - 1/2 * (- 4 * sin(a) ~ 2) "(1/2)]

>> pretty(simple(poly(A)))

3 2 2
X -2xcos (@) +x-x+2xcos (a) -1

>> jordan(A)

ans =

[1) 0, 0]
[0, cos(a) + 1/2 * (- 4 * sin(a) ~ 2) * (1/2), O]
[0, 0, cos(a) - 1/2 * (- 4 * sin(a) * 2) ~(1/2)]

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> simple(Svd(A))

ans =

[1]
[1/2 * (4 * cos(a-comp(a)) + 2 * (- 2 + 2 * cos(2 * a-2 * conj(a))) ~(1/2)) ~(1/2)]
[1/2 * (4 * cos(a-comp(a)) - 2 * (- 2 + 2 * cos(2 * a-2 * conj(a))) ~(1/2)) ~(1/2)]

>> pretty(simple(sym(maple('minpoly(matrix [[1, 0, 0], [0, cos(a), - sin(a)],

[0, sin(a), cos(a)]]), x)"))))

2 2 3
-1 +2xcos (a) +x -2xcos (a) - x +x

>> pretty(simple(sym(maple('charmat(matrix([[1, 0, 0], [0, cos(a), -sin(a)],

[0, sin(a), cos(a)]]), x)"))))

[x -1 0 0]
[]
[0 x - cos(a) sin(a)]
[]
[0 - sin(a) x - cos(a)]

EXERCISE 4-8

Consider the symbolic fifth-order square matrix whose (i,j)th element is defined by Aii =1 /(i+j-1/2).
Gompute its eigenvalues, eigenvectors, characteristic polynomial, minimum polynomial, characteristic
matrix, and singular values. Also find the vector of the condition numbers of the eigenvalues and analyze
whether the matrix is positive definite, negative definite, positive semi-definite or negative semi-definite.

MATLAB enables you to define this type of symbolic matrix in the general form:

>> A = sym(maple('matrix(5,5,(i,j)-> 1/(i+j-1/2))"))

A =

[2/3, 2/5, 2/7, 2/9, 2/11]
[2/5, 2/7, 2/9, 2/11, 2/13]
[2/7, 2/9, 2/11, 2/13, 2/15]
[2/9, 2/11, 2/13, 2/15, 2/17]
[2/11, 2/13, 2/15, 2/17, 2/19]

www.it-ebooks.info

http://www.it-ebooks.info/

>> [V,E] = eig(A)

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

V =

[-.1612e-1, -.6740e-2, .3578, 2.482, -288.7]

[.2084, .1400, -2.513, -15.01, 2298.]

[-.7456, -.6391, 3.482, 20.13, -3755.]

[1, 1, 1, 1, 1]

[-.4499, -.5011, -2.476, -8.914, 1903.]

E =

[2/55*.4005e-4, 0, 0, 0,
[0, 2/55* .3991e-2, 0, 0,
[0, 0, 2/55* .1629, 0,
[0, 0, 0, 2/55%* 3.420,
[0, 0, 0,

As we know, the eigenvectors are the columns of the matrix ¥, and the eigenvalues are the elements of the

diagonal of the matrix E.

>> pretty(simple(poly(A)))

5 10042 4 362807509088 3 268537284608 2
7315 2228304933855 285965799844725
22809860374528 34359738368

169975437532179654375 177624332221127738821875

We can approximate this output as follows:
>> pretty(simple(vpa(poly(A))))

5 4 3 2 -6
X - 1.373 X + .1628 x - .0009391 X + .1342 10

www.it-ebooks.info

X

0]
0]
0]
0]

0, 2/55*% 34.16]

.1934 10

-12

163

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

The singular values are calculated in the following way:

>> pretty(simple(Svd (A)))

The minimal polynomial and the characteristic matrix are calculated in the following way:

>> pretty(simple(sym(maple('minpoly(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)"))))

34359738368 22809860374528 268537284608 2
177624332221127738821875 169975437532179654375 285965799844725
362807509088 3 10042 4 5

2228304933855 7315
>> pretty(simple(sym(vpa(maple('minpoly(matrix(5,5,(1,])->1/(i+j-1/2)),x)")))))

-12 -6 2 3 4 5
-.1934 10 + .1342 10 x - .0009391 x + .1628 x - 1.373 X + X

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(simple(sym(maple('charmat(matrix(5,5,(1i,j)-> 1/(i+j-1/2)),x)"))))

e L R B R K B B K e K W e K W W W W M |

X - 2/3

-2/5

-2/7

-2/9

-2

11

-2/5

X - 2/7

-2/9

-2/7 -2/9
-2
-2/9 --
11
-2
X - 2/11 --
13
-2
-- X - 2/15
13
-2 -2
15 17

-2

11

-2

13
-2

15

X - 2/19

The vector of condition numbers of the eigenvalues is calculated as follows:

>> condeig(numeric(A))

ans

1.0000
1.0000
1.0000
1.0000
1.0000

www.it-ebooks.info

e et e e e e e e e e e e e e e e e]

165

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

In a more complete way, can calculate the matrix V whose columns are the eigenvectors of A, the diagonal matrix
D whose diagonal elements are the eigenvalues of A, and the vector S of condition numbers of the eigenvalues of
A, by using the command:

>> [V,D,s] = condeig(numeric(A))

V =
0.0102 0.0697 0.2756 -0.6523 0.7026
-0.1430 -0.4815 -0.7052 0.1593 0.4744
0.5396 0.6251 -0.2064 0.3790 0.3629
-0.7526 0.2922 0.2523 0.4442 0.2954
0.3490 -0.5359 0.5661 0.4563 0.2496
D =
0.0000 0 0 0 0
0 0.0001 0 0 0
0 0 0.0059 0 0
0 0 0 0.1244 0
0 0 0 0 1.2423
S =
1.0000
1.0000
1.0000
1.0000
1.0000

The matrix A is positive definite according to the command definite:

>> maple('definite(matrix(5,5,(i,j)-> 1/(i+j-1/2)),positive def)")

ans =

true

4-5. Matrix Decomposition

MATLAB provides commands that allow you to decompose matrices as a product of special matrices in a number of
different ways.

We have already seen how the command [U,S,V] = Svd(A) returns a diagonal matrix S of singular values of A
(ordered in decreasing order of magnitude), and orthogonal matrices U and V such that=U *S *V".

We have also seen that you can get the Jordan decomposition of a square matrix A via the command
[V,3] = jordan(A), which returns the canonical Jordan form J of A with the eigenvalues of A on its diagonal, and
where the columns of V are the eigenvectors of A, so that V' *A *V=.

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

On the other hand, we have also seen that you can obtain the Schur decomposition of a square matrix A via
the command [U,T] = schur(A), which returns an array T and an orthogonal matrix U such thatA = U * T * U’
andU'* U = eye(U).If Ais complex, Tis an upper triangular matrix with the eigenvalues of A on its diagonal. If A is
real, the matrix T has real eigenvalues of A on its diagonal, and the corresponding complex eigenvalues correspond
to diagonal 2 x 2 block submatrices of T. At the same time, we have also seen that a Hessenberg decomposition of
amatrix A can be achieved through the command [H, P] = hess(A), which gives the orthogonal matrix P and
Hessenberg matrix H, such that A= P * H * P'and P"™* P = eye (size (P)).

In addition, MATLAB has other commands that also perform the decompositon of numerical (and sometimes
symbolic) matrices. They include the following:

[L,U] = lu(A) decomposes the matrix A into the productA = L * U
(the LU decomposition of A), where U is an upper triangular matrix and L a lower
pseudotriangular matrix (triangulizable via a permutation).

[L,U,P] = 1lu(A) returns alower triangular matrix L, an upper triangular matrix U, and
a permutation matrix P such thatP * A = L * U.

R = chol(A) returns the upper triangular matrix R such thatR'* R = A (the Cholesky
decomposition), if A is positive definite. If A is not positive definite, it returns an error.

[Q,R] = gr(A) returns the upper triangular matrix R of the same dimension as A, and
the orthogonal matrix Q such that A= 0 * R (the QR decomposition of the matrix A).
This decomposition can be applied to non-square matrices.

[Q,R,E] = qr(A) returns the upper triangular matrix R of the same dimension as A,
where E is a permutation matrix and Q an orthogonal matrix such thatA * E = Q * R.

X = pinv(A) returns the matrix X (the Moore-Penrose pseudoinverse of A), of the same
dimensionasA' suchthatA * X * A = AandX * A * X = X,whereA * XandX * A
are hermitian.

In addition, the following commands allow the decomposition of both numeric and symbolic matrices. All of
them must be preceded by the maple command.

LUdecomp(A,P="p',L="1",U="u",U1="ul"',R="1") decomposes the matrix A into

the product A = evalm(P&*L&*U) (the LU decomposition of A), where U is an upper
triangular matrix and L a lower pseudotriangular matrix (that is, triangulizable via a
permutation). In addition, U= evalm(U1&*R) with U upper triangular and R a reduced
echelon form of A, so that A = evalm(P&*L&*U1*R).

cholesky(A) returns the lower triangular matrix R such that A= evalm(R&*R")
(the Cholesky decomposition of A), provided A is positive definite.

QRdecomp(A,Q="q") returns the upper triangular matrix R of the same dimension as A,
and the orthonormal matrix Q such that A = evalm(Q&*R) (the QR decomposition of A).

companion(poly,var) gives the matrix C associated with the given monic polynomial in
the specified variable. Ifpoly = a0 + ailx +... +anx", then:
C(i,n)=-coeff(poly,var,i-1) i=1...n, C(i,i-1)=1 i=2...n,

C (i,j) = ofor therest of the elements in the array.

Frobenius(A) or ratform(A) returns the canonical Frobenius form F of the matrix A. F
is a block diagonal matrix (F = diag(C1,C2,...,Cn)), where the blocks are associated
with polynomials p , p,,..., p, so that p, divides p,_, fori=2... k.

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

Frobenius(A,'P"') returns the transformation matrix P and the canonical Frobenius
form F of the matrix A, such thatevalm(P-*8& * A & * P) = F.

smith(A,var) gives the diagonal matrix S corresponding to the Smith normal form of
the square matrix A of polynomials in the variable var.

smith(A,var,U,V) gives the diagonal matrix S corresponding to the Smith normal form
of the square matrix A of polynomials in the variable var. It also gives the matrices U
and Vsuch thatS = evalm(U8*A&*V).

ismith(A,var) gives the diagonal matrix S corresponding to the integer Smith normal
form of the square matrix A of polynomials in the variable var.

ismith(A,var,U,V) gives the diagonal matrix S corresponding to the integer Smith
normal form of the square matrix A of polynomials in the variable var. It also gives the
matrices Uand Vsuch that S = evalm(U&*A&*V).

hermite(A,var) computes the Hermite normal form of the square matrix A of
polynomials in the variable var over the rational numbers.

hermite(A,var,U) computes the Hermite normal form of the square matrix A of
polynomials in the variable var over the rational numbers. It also gives the matrix U
such thatH = evalm(U&*A).

ihermite(A,var) computes the Hermite normal form of the square matrix A of
polynomials in the variable var over the integers.

ihermite(A,var,U) computes the Hermite normal form of the square matrix A of
polynomials in the variable var over the integers. It gives also the matrix U such that
H= evalm(U&*A).

gaussjord(A) gives an upper triangular matrix corresponding to the reduced row
echelon form of the matrix A. This is used to facilitate the resolution of systems of linear
equations whose coefficient matrix is the matrix A.

gaussjord(A,j) gives the row reduced echelon form of the matrix A terminating the
elimination at column j.

gaussjord(A,r,d) gives the row reduced echelon form of the matrix A and

assigns to the variable 1 the rank of A and the to the variable d the determinant of
submatrix(A,1..r,1..7). This subarray is used for solving systems of linear equations
whose coefficient matrix is A.

gausselim(A) performs Gaussian elimination on the matrix A. This is used to facilitate
the solution of systems of linear equations whose coefficient matrix is the matrix A.

gausselim(A, j) performs Gaussian elimination on the matrix A terminating the
elimination at the j-th column.

gausselim(A,r,d) performs Gaussian elimination on the matrix A and assigns

to the variable 1 the rank of A, and to the variable d the determinant of

submatrix(A, 1..r,1..r).This subarray is used for solving systems of linear equations
whose coefficient matrix is A.

168

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

backsub(A) gives the vector x such that A * x = V, where A is an upper triangular
matrix which is usually obtained with gaussjord(A) or gausselim(A), and where the
vector V vector is the last column of the matrix A.

backsub(A,V) gives the vector x such that A * x = V, where A is an upper triangular
matrix which is usually obtained with gaussjord(A) or gausselim(A).

backsub(A,V,t) gives the vector x such that A * x = V, where A is an upper triangular
matrix which is usually obtained with gaussjord(A) or gausselim(A) and where the
parameter t is used for a possible family of parametric system solutions.

forwardsub(A, V) gives the vector x such that A * x = V, where A is a lower row reduced
matrix, which is usually obtained via the LU decomposition.

forwardsub(A,V,t) gives the vector x such that A * x = V, where A is alower row
reduced matrix, which is usually obtained via the LU decomposition, and where the
parameter t is used for a possible family of parametric system solutions.

forwardsub(A) gives the vector x such that A * x = V, where A is alower row reduced
matrix, which is usually obtained via the LU decomposition, and where the vector V is
the last column of A.

forwardsub(A,B) gives the matrix X such that A * X = B, where A is alower row reduced
matrix, which is usually obtained via the LU decomposition, and B is a matrix with the
correct dimension and rank .

geneqgns (A, [x1,...,xn]) generates linear equations equated to zero, in the variables
given, corresponding to the coefficients of the matrix A.

genegns (A, [x1,...,xn],V) generates linear equations equated to the elements of the
vector V, in the variables given, corresponding to the coefficients of the matrix A.

genmatrix([equationi,...,equationm],[x1,...,xn]) generates the matrix
corresponding to the given linear equations with respect to the specified variables.

genmatrix([equationi,...,equationm],[x1,...,xn],flag) generates the matrix
corresponding to the given linear equations with respect to the specified variables,
using the last column of the matrix as the right-hand sides of the equations.

genmatrix([equation,...,equationm],[x1,..,xn],name) generates the matrix
corresponding to the given linear equations with respect to the specified variables, and
assigns to name the vector defining the right-hand sides of the equations.

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-9

Consider the 3 x 3 matrix A whose rows are the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Perform the Schur,
LU, OR, Cholesky, Hessenberg and singular value decompositions of A. Verify that the results are correct.
Also find the pseudoinverse of A.

First, we find the Schur decomposition, checking that the result is correct:

>» A= [1)5)'2;'7)3)1;2)2)'2];
>> [U,T] = schur(A)

U=
-0.0530 -0.8892 -0.4544
-0.9910 -0.0093 0.1337
0.1231 -0.4573 0.8807
T =

2.4475 -5.7952 -4.6361
5.7628 0.3689 2.4332
0 0 -0.8163

Now, we check that U *T * U' = A and that U * U' = eye(3):

>> [U* T *U', U*U"]

ans =
1.0000 5.0000 - 2.0000 1.0000 0.0000 0.0000

-7.0000 3,0000 1.0000 0.0000 1.0000 0.0000
2.0000 2.0000 - 2.0000 0.0000 0.0000 1.0000

Now we find the LU, QR, Cholesky, Hessenberg and singular value decompositions, checking the results for
each case:

>> [L,U,P] = 1u(A)

L =
1.0000 0 0
-0.1429 1.0000 0
-0.2857 0.5263 1.0000
170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

U =
-7.0000 3.0000 1.0000
0 5.4286 -1.8571
0 0 -0.7368
P =
0 1 0
1 0 0
0 0 1

>> [P * A, L * U]

-7 3 1 -7 3 1
-2 -2 we have that P * A =1L *U
2 2 -2 2 2 -2

vl
[N
[N
vl

>> [Q) R, E] = qI(A)

Q=
-0.1361 -0.8785 -0.4579
0.9526 -0.2430 0.1831
-0.2722 -0.4112 0.8700
R =
-7.3485 1.6330 1.7691
0 -5.9442 2.3366
0 0 -0.6410
E =
1 0 0
0 1 0
0 0 1

1.0000 5.0000 - 2.0000 1.0000 5.0000 - 2.0000
-7.0000 3,0000 1.0000 - 7.0000 3,0000 1.0000
2.0000 2.0000 - 2.0000 2.0000 2.0000 - 2.0000

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA
Then,A*E=Q*R.

>> R = chol(A)

??? Error using ==> chol
Matrix must be positive definite.

This returns an error message because the matrix is not positive definite.

>> [P,H] = hess(A)

P =
1.0000 0 0
0 -0.9615 0.2747
0 0.2747 0.9615
H =

1.0000 -5.3571 -0.5494
7.2801 1.8302 -2.0943
0 -3.0943 -0.8302

>> [P*H*P', P'*P]

ans =
1.0000 5.0000 - 2.0000 1.0000 O 0
-7.0000 3.0000 1.0000 O 1.0000 O
2.0000 2.0000 - 2.0000 O 0 1.0000

Then we solve for PHP' = A and P'P =1.

>> [U,S,V] = svd(A)

-0.1034 - 0.8623 0.4957
-0.9808 0.0056 - 0.1949
0.1653 - 0.5064 - 0.8463

7.8306 0 0
0 6.2735 ©
0 0 0.5700

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

V =
0.9058 - 0.3051 0.2940
-0.3996 - 0.8460 0.3530
-0.1411 0.4372 0.8882

>» U *S *xy'

ans =

1.0000 5.0000 - 2.0000
-7.0000 3.0000 1.0000 we see that USV'= A
2.0000 2.0000 - 2.0000

Now, we calculate the pseudoinverse of A:

>> X = pinv(A)

X =
0.2857 - 0.2143 - 0.3929

0.4286 - 0.0714 - 0.4643
0.7143 - 0.2857 - 1.3571

>> [A % X * A, X * A *X]

ans =
1.0000 5.0000 - 2.0000 0.2857 - 0.2143 - 0.3929

-7.0000 3,0000 1.0000 0.4286 - 0.0714 - 0.4643
2.0000 2.0000 - 2.0000 0.7143 - 0.2857 - 1.3571

Thus, it follows that AXA = A, XAX = X.

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-10

Consider the fifth-order square matrix whose (i,j)th element is defined by A. = 1 /(i+j-1/2). Calculate
its Jordan canonical form (verifying the result). Also find its LU, QR, Frobenius, Smith and Hermite
decompositions, calculating the matrices involved and verifying that the results are correct.

>> A = sym(maple('matrix(5,5,(i,j)-> i+j-1/2)"))

[3/2, 5/2, 7/2, 9/2, 11/2]
[s5/2, 7/2, 9/2, 11/2, 13/2]
[7/2, 9/2, 11/2, 13/2, 15/2]
[9/2, 11/2, 13/2, 15/2, 17/2]
[11/2, 13/2, 15/2, 17/2, 19/2]

>> [V,3] = Jordan(A);
>> pretty(sym(V))

[1/2 1/2 22 19]
[8/9 , - 9/170 17 + 3/10 , 9/170 17 +3/10 , --, --]
[45 45]
[]
[-71 1/2 1/2 -7]
[---, - 2/85 17 +1/5 , 2/85 17 +1/5 , --, -2/9]
[90 18]
[]
[-67 1/2 1/2 -49 -14]
[---, 1/170 17 + 1/10 , - 1/170 17 +1/10 , --- , ---]
[90 90 45]
[]
[1/2 1/2]
[3/10 , 3/85 17 , - 3/85 17 , 3/10 , -2/5]
[]
[31 11 1/2 11 1/2 13 23]
[--, ---17 -1/10 , - ---17 -1/10 , --, --]
[90 170 170 90 45]

174

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(J))

[0 0 0 0o o]
[]
[1/2]
[0 55/4 + 15/4 17 0 0 0]
[]
[1/2]
[0 0 55/4 - 15/4 17 0o 0]
[]
[0 0 0 0 0]
[]
[0 0 0 0 0]

>> pretty(simple(sym(symmul(symmul(V,3),inv(V)))))

3/2 5/2 7/2 9/2 11/2

5/2 7/2 9/2 11/2 13/2

9/2 11/2 13/2 15/2 17/2]
]

[
[
[
[
[7/2 9/2 11/2 13/2 15/2]
[
[
[
[11/2 13/2 15/2 17/2 19/2]

We have calculated the transformation matrix V and the diagonal matrix J. We have also verfied thatV * J *V''=A,
Now we will calculate the LU decomposition of A and the matrices involved, checking the result. Because it is a
symbolic matrix, we will use the maple command.

>> maple('A:=matrix(5,5,(i,j)-> i+j-1/2)");
>> pretty(sym(maple('LUdecomp(A,P=p,L=1,U=u,Ul=u1,R=1)")))

[372 5/2 7/2 9/2 11/2]
[]
[o -2/3 -4/3 -2 -8/3]
[]
[0 0 0 0 0]
[]
[o 0 0 0 0]
[]
[0 0 0 0 0]

175

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('print(p,1)')))

176

[y

o

o

s s R R R Ko R R Ko |

o

3/2

0

o

L L R K B K W W Ko |

o

5/2

7/2

9/2

11/2

13/2

5/2

-2/3

7/2

9/2

11/2

13/2

15/2

9/2

11/2

13/2

15/2

17/2

[N
o
1
[N
1
N

o
[
N
w

o
o
o
o

o

P T R R R S
-

— e e, — —
o
o
o
o

o
o
o
o

11/2] [3/2 5/2 7/2
13/2% Es/z 7/2 9/2
15/2}, %7/2 9/2 11/2
17/2% %9/2 11/2 13/2
19/2% %11/2 13/2 15/2

www.it-ebooks.info

o

o

o

— e e e

[y

~

o

e e e e e e e e

o

9/2

11/2

13/2

15/2

17/2

11/2]
13/2]
15/2]
17/2]

19/2]

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We see thatp *1*u1 *r=Aand that p *| * u = A. We now calculate the QR decomposition of A and the matrices

involved, checking the result.

>> pretty(sym(maple('print(R)")))

[1/2 71 1/2 85 1/2 33 1/2 113
[1/2 285 , --- 285 , --- 285 , -- 285 , --- 285
[114 114 38 114
[
[1/2 1/2 1/2
[0, 2/57 570 , 4/57 570 , 2/19 570 , 8/57 570
[
(o, 0, 0, 0,
[
(o, o, 0, 0,
[
(o, 0, 0, 0,
>> pretty(sym(maple('print(q)')))
[1/2 1/2 1/2
[1/95 285 ’ 3/95 570 , 1/5 10 , 0 ,
[1/2 11 1/2 1/2 1/2
[1/57 285 , --- 570 , - 1/5 10 , 1/10 30 s
[570
[1/2 1/2 1/2 1/2
[7/285 285 , 2/285 570 , - 1/10 10 , - 2/15 30 s
[1/2 1/2 1/2
[3/95 285 , - 1/190 570 , 0 , - 1/30 30 5=
[11 1/2 1/2 1/2 1/2
[--- 285 , - 1/57 570 , 1/10 10 , 1/15 30 ,
[285
>> pretty(sym(maple('evalm(q&*R)')))
[3/2 5/2 7/2 9/2 11/2]
[]
[5/2 7/2 9/2 11/2 13/2]
[]
[7/2 9/2 11/2 13/2 15/2]
[]
[9/2 11/2 13/2 15/2 17/2]
[]
[11/2 13/2 15/2 17/2 19/2]

www.it-ebooks.info

1/2]
]
]
]
1/2]
]
]
0]
]
0]
]
0]
]
0]
]
0]
]
1/2]
1/6 6]
1/2]
1/3 6 |
1/2]
1/6 6]
]

177

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We see that g * R = A. Next we will calculate the Smith decomposition of the matrix A and the matrices involved,
checking the result.

>> pretty(sym(maple('smith(A,X,U,V)")))

=
o
o
o
o

o
[EN
o
o
o

o
o
o
o
o

o
o
o
o
o

— e e e e
o
o
o
o
o
[T S T R i S S

>> pretty(sym(maple('print(U,V)')))

[-13]
[0 0 0 0 2/11] [1 1 2 3]
[10 11]
[o 0 0 11/2 -9/2] |]
[] [o 1 -2 -3 -4]
[-1 2 -1 0 o 1, []
[1 [o 0 1 0 0]
[o 1 -2 1 o] []
[] [o 0 0 1 0]
[0 0 1 -2 1] []

[0 0 0 0 1]

>> pretty(sym(maple('evalm(U&*A&*V)')))

=
o
o
o
o

o
[
o
o
o

o
o
o
o
o

e e e
o o
o o
o o
o o
o o
[T S T R R S S

Weseethatu * A * v = Smith matrix. Next we will calculate the Hermite decomposition of A and the
matrices involved, verifying the result.

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('H:=hermite(A,x,V); V:=evalm(V)')))
>> pretty(sym(maple('print(H,V)")))

[1 o -1 -2 -3] [-7/2 5/2 0 o0 0]
[1 []
[0 1 2 3 4] [5/2 -3/2 0 0 0]
[1 []
[o 0 0 0 o], [2 -4 2 0 0]
[1 []
[o o 0 0 o] [4 -6 o 2 o]
[1 []
[o o 0 0 o] [6 -8 o o0 2]
>> pretty(sym(maple('evalm(V&*A)')))

[T o -1 -2 -3]

[]

[o 1 2 3 4]

[]

[0 0 0 0 0]

[]

[0 0 0 0 0]

[]

[o 0 0 0 0]

Thus we see that V * A = H. Finally, we will calculate the Frobenius decomposition of A, checking the result.

>> pretty(sym(maple('F:=frobenius(A,P); P:=evalm(P)")))
>> pretty(sym(maple('print(F,P)"')))

[67 22 19]
[-- 3/2 285/4 -- --]
[45 45 45]
[]
[o o 0 o o] [-7 -7]
[1 [-- 5/2 355/4 -- -2/9]
[1 0 50 0 o] [18 18]
[10]
[o 1 552 0o o], [-49 49 <14]
[1 [--- 7/2 425/4 --- ---]
[0 o 0 o 0] [90 90 45]
[1 []
[0 o 0 o 0] [3/20 9/2 495/4 3/10 -2/5]
[]
[13 13 23]
[-- 11/2 565/4 -- --]
[90 90 45]

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('evalm(P*(-1)&*A&*P)"')))

[0 0 0 0 0]
[]
[1 0 50 0 0]
[]
[0 1 55/2 0 0]
[]
[0 0 0 0 0]
[]
[0 0 0 0 0]

Thus we see thatP-"™*A*P=F

EXERCISE 4-11

Consider the 3 x 3 matrix A whose rows are the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Let V be the vector
of ones and solve the system L * x = V based on the LU decomposition. Solve the system G * x = V by
performing Gaussian elimination on A. Solve the system J * x = V by transforming A into its Jordan
canonical form. Represent the matrix system in the form of equations, and perform the Hermite and Smith
decompositions for the integer matrix A.

First, we define the matrix A and vector V using maple commands as follows:
>> maple ('A: = matrix(3,3,[1,5,-2,-7,3,1,2,2,-2]);) V: = array([1,1,1])");
Then we find an LU decomposition, solving the system A * x =V using the command backsub.

>> pretty(sym(maple('L:=LUdecomp(A)')))
>> pretty(sym(maple('backsub(L,V)")))

[253 -233 -19]
[--- ---- ---]

[532 532 14]

Thus we have solved the system L * x =V, which can be expressed in the form of equations using the command
genegns as follows:

>> pretty(sym(maple('genegns(L,[x1,x2,x3],V)")))

14
{x1 +5x%x2-2x3=1,38x2-13 x3=1, - -- x3 = 1}
19

180

www.it-ebooks.info

http://www.it-ebooks.info/

Now, we solve the system G * x =V, transforming A via Gaussian elimination to G.

>> pretty(sym(maple('G:=gausselim(A)')))
>> pretty(sym(maple('backsub(G,V)")))

[79 -11]
[-- --—- -2/7]
[56 56]

The system of equations is found by:

>> pretty(sym(maple('genegns(G,[x1,x2,x3],V)")))

{x1+5%x2-2x3=1,8x2+2x3=1,-7/2x3-=

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

1}

Now, we need to solve the system J * x =V, transforming A to its canonical Jordan form and then using the

command forwardsub.

>> pretty(sym(maple('J:=gaussjord(A)')))
>> pretty(sym(maple('forwardsub(3,V)')))

[11 1]

Finally, we find the Smith and Hermite decompositions of A.

>> pretty(sym(maple('ihermite(A,x)")))

=
[N

6]

3]

e e
o
N

o
o

14]

>> pretty(sym(maple('ismith(A)")))

[y
o

0]

0]

— e
o o
o =

28]

www.it-ebooks.info

181

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

4-6. Similar Matrices and Diagonalization

Two matrices, A and B, of dimensions (M x N) are equivalent if there exist invertible U and V such that A = UBV.
The MATLAB command [U, S, V] = svd (A) calculates a diagonal matrix S, which is equivalent to A.

Two square matrices A and B of order n are said to be congruent if there is an invertible matrix P such that
A = PBP'.

The MATLAB command [U, T| = schur(A) calculates an array T'which is congruent with A. Congruence implies
equivalence, and two congruent matrices must always have the same rank.

Two square matrices of order n, A and B, are similar if there is an invertible matrix P, called the transformation
matrix, such that A = PBP.

Two similar matrices are equivalent.

A matrix A is diagonalizable if it is similar to a diagonal matrix D, that is, if there is an invertible matrix P such that
A=PDP!.

The process of calculating the diagonal matrix D and the matrix P is known as diagonalization.

Given a real square matrix 4, if all the eigenvalues of A are real and distinct, then A is diagonalizable. The
diagonal matrix D will have the eigenvalues of A as its diagonal elements.

The matrix P consists of columns that are the eigenvectors of A corresponding to the eigenvalues appearing on
the diagonal of D.

If an nxn matrix A has eigenvalues r with multiplicity greater than 1, then A is diagonalizable if, and only if, the
kernel of the matrix A - r *I_has dimension equal to the degree of multiplicity of the eigenvalue r.

The MATLAB command [V,J] = jordan(A) diagonalizes the matrix A, returning the transformation matrix V
and the diagonal matrix J.

EXERCISE 4-12

Diagonalize the symmetric matrix whose rows are the vectors:
(3! = 110)! (' 112 = 1)! (01 = 113)

Find the transformation matrix V and the diagonal matrix J, check the result, and verify that the
eigenvalues of the initial matrix are the elements of the diagonal of J.

We calculate the diagonal matrix J of A, which will have the eigenvalues of A on its diagonal, and the
transformation matrix V. To do this, we use the command [V,]] = jordan(A):

>>A=[3,0 -1, -1, 2, -1; 0 - 1, 3]

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> [V,3] = jordan(A)

V =

[1/6, 1/2, 1/3]
[1/3, 0, -1/3]
[1/6,-1/2, 1/3]
J =

[1, 0, 0]

[0, 3, 0]
[0, 0, 4]

We now show that the diagonal matrix J has the eigenvalues of A on its diagonal:

>> eigensys(A)

The matrices A and J are similar, because we have I/’ *A *V =J:

>> symmul(symmul(inv(V),A),V)

ans =

[1, 0, 0]
[0, 3, 0]
[0, 0, 4]

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-13

Find a diagonal matrix similar to each of the following matrices:

0 - 4 0 1 —sin(a) .
A= r 0 -p|, B=| -1 0 cos(a)|, c:{cf’s(“) —Sm(a)}
-4 p 0 —sin(a) cos(a) 0 sin(a) cos(a)

Find the transformation matrices and verify the results. Find the characteristic polynomial and the
minimal polynomial for each of the three matrices.

>> A = sym('[0,-1,9;1,0,-p;-q,p,0]");
>> [V,3] = jordan(A)

V=

[1 /7(gr2+x2+p™2) * p ™ 1/2, 2, 1/2 /(q2+1”2+p”2) *(g*2+r"2) /(g 2+r"2+p”2) *(g*2+1r"2)]
[1 /7(gqr2+x2+p™2) * q * p, 1/2 * 1 * (1 * *(gt2+r"2+p™2) ~(2/2) p * q+r * p ~ 2 + 1 *
q”™2+1"3) /(gh2+r 2+pn2) ~(3/2), 1/2 * 1 * (1 * *(gt2+r 2+4p~2) ~(1/2) p * g-r *
p~2-r*q"2-r”3) /(g*2+r"2+p~2) ~(3/2)]

[1 /7(q*2+4r™24p™2) * 1 * p, 1/2 * 1 * (1 * p *(gqr2+r"2+p"2) ~(2/2) *r-p~2*qq "~ 3-q*1r"2)
/(gt2+1"2+p~2) ~(3/2), 1/2 * 1 * (1 * p *(q"2+r"2+p”2) M(1/2) *r +p "~ 2*q+q 3+
q*r~2) /(gh2+r™2+pn2) ~(3/2)]

J =

(o, 0, 0]
[o, -(-q*2-1"2-p*2) "(1/2), 0]
[O) O) ('q ~2-r M2 p " 2) A(l/z)]

Thus we have found the diagonal matrix J, similar to the matrix A, and the transformation matrix V. Now, we
analyze the matrix B:

>> B = sym ('[0, 1, -sin(a); - 1, 0, cos (a); -sin(a), cos(a), 0]")
simple(jordan(B))

v

v

(-]
"

[0, 0, 0]
[0, 0, 0]

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We see that the matrix B has a single eigenvalue zero and its multiplicity is 3. In addition, the kernel of

B - 0 * eye(3) = B has dimension less than three, as the determinant of Bis zero. In particular, it has dimension
one (as we see by calculating a basis with the command nullspace(B)). As the multiplicity and the dimension of
the kernel differ, we conclude that the matrix B is not diagonalizable:

>> null(B)

ans =
[cos(a)]

[sin(a)]
[1]

We have calculated a basis of the kernel of B, which is formed by a single vector. It follows that the dimension of
the kernel of Bis 1:

>> det (B)

ans =

We now analyze the matrix C:

>> C = sym ('[cos(a) - sin(a); sin(a), cos(a)]');
>> [V,3] = jordan(C)

V =

[1/2, 1/2]
[(-1/2*%4~(1/2)/abs(sin(a))/(-1-signum(-sin(a)*2)-i+i*signum(-sin(a)"2))*sin(a),
1/2%4"(1/2)/abs(sin(a))/(-1-signum(-sin(a)"2)-i+i*signum(-sin(a)”*2))*sin(a)]

] =

[cos(a) + 1/2 * (- 4 * sin(a) " 2) ~ (1/2), O]
[0, cos(a) - 1/2 * (- 4 * sin(a) ~ 2) ~(1/2)]

We can try to simplify the Jordan matrix J.

>> simple(J)

ans =
[exp(i*a), 0]
[o, 1/exp(i*a)]

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

We already have the diagonal matrix J similar to the matrix C and the transformation matrix V. We now calculate
the characteristic and minimal polynomials of the three matrices:

>> pretty(poly(A))

3 2 2 2
X +Xp +T X+q X

>> prettY(Sym(maple(lmj'npO]'y(ar:fay([[O) 'I;Q] > [I)O) 'P]) ['Q»P)O]])JX) ')))

2 2 2 3
(r +q9 +p) xX+Xx

>> pretty(simple(sym(poly(B))))

>> pretty(simple(sym(maple('minpoly(array([[0,1,-sin(a)],[-1,0,cos(a)],
[-sin(a),cos(a),0]]), x)")))

>> pretty(simple(sym(poly(C))))

2
X -2xcos(a) +1

>> pretty(simple(sym(maple('minpoly(array([[cos(a),-sin(a)],[sin(a),cos(a)]]),x)"))))

2
X -2xcos (a) +1

186

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

4-7. Sparse Matrices

A matrix is called sparse if it has sufficiently many zero elements that one can take advantage of. Sparse matrix
algorithms do not store null elements in memory, so when working on matrix processing with sparse matrices one
gains time and efficiency. There are specialized commands that can be used to deal with sparse matrices.

Some ofthese commands are listed below.

S = sparse(i,j,s,m,n,nzmax), i = vector, j = vector, s = vector.Createsa
sparse matrix S of dimension mxn with space for nzmax non-zero elements given by s.
The vector i contains the i-input components of the non-null elements and the vector
j contains the corresponding j-input components.

S=sparse(i,j,s,m,n) creates the sparse matrix S using nzmax=1length(s).

S = sparse(i,j,s) creates a sparse matrix Swithm = max (i) andn = max (j).
S = sparse(A) converts the matrix A into sparse form.

A = full(S) converts the sparse matrix S into full matrix form A.

S = spconvert(D) converts an external ASCII file read with name D into a

sparse matrix S.

(i,j) = find(A) returns the row and column indices of the non-zero entries of the
matrix A,

B = spdiags(A,d) builds a sparse matrix by extracting the diagonal elements of A
specified by the vector d.

S = speye(m,n) creates the sparse mxn matrix with ones on the main diagonal.
S = speye(n) creates the sparse square identity matrix of order n.
R = sprandn(S) generates a random sparse matrix with non-zero values normally

distributed in (0,1) with the same structure as the sparse matrix S.

R = sprandsym(S) generates a sparse random symmetric matrix with non-zero entries
normally distributed in (0,1) whose lower diagonal triangle has the same structure as S.

r = sprank(S) gives the structural rank of the sparse matrix S.
n = nnz(S) gives the number of non-zero elements in the sparse matrix S.
k = nzmax(S) returns the amount of storage occupied by the non-zero elements in the

sparse matrix S. If S is a full matrix then nzmax(S) = prod(size(S)).

s=spalloc(m,n,nzmax) creates space in memory for a sparse matrix of dimension mxn.

R = spones(S) replaces the zero entries of the sparse matrix S with ones.
n = condest(S) computes alower bound for the 1-norm condition number of a square
matrix S.

m = normest(S) returns an estimate of the 2-norm of the matrix S.

issparse(A) returns 1 if the matrix A is sparse, and 0 otherwise.

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

Here are some examples:

>> SParse([1;1:2;2:3;4];[4;2;3:1;2:3]:['7:12;25;1:'6;8],4:4,10)

ans =
(2,1) 1
(1,2) 12
(312) -6
(2,3) 25
(4,3) 8
(1,4) -7

Now, we convert this sparse matrix into complete form:

>> full(ans)

ans =
0 12 0 -7
1 0 25 0
0 -6 0 0
0 0 8 0

Next, we define a sparse matrix whose full form is a diagonal matrix:

sparse(1:5,1:5,-6)

ans =
(111) -6
(2)2) -6
(3,3) -6
(4,4) -6
(5,5) -6

>> full(ans)

ans =
-6 0 0 0 0
0 -6 0 0 0
0 0 -6 0 0
0 0 0 -6 0
0 0 0 0 -6
188

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

4-8. Special Numeric and Symbolic Matrices

MATLAB provides commands to define certain special types of matrices. These include the following:
H = hadamard(n) returns the Hadamard matrix of order n, a matrix with values 1 or - 1
suchthatH' * H = n * eye(n).

Hankel (V) returns the square Hankel matrix whose first column is the vector V and
whose elements are zero below the first anti-diagonal. The matrix hankel(C,R) has first
column vector C and last row vector R.

Hilb(n) returns the Hilbert matrix of order n, a matrix whose ij-th elementis 1 /(i+j-1).
invhilb(n) returns the inverse of the Hilbert matrix of order n.

magic(n) returns a magic square of order n. Its elements are integers from 1 to n> with
equal sums of rows and columns.

pascal(n) returns the Pascal matrix of order n (symmetric, positive definite with
integer entries taken from Pascal’s triangle).

Rosser returns the Rosser matrix, an 8 x 8 matrix with a double eigenvalue, three
nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.

toeplitz(C,R) returns a Toeplitz matrix (not symmetric, with the vector C in the first
column and R as the first row vector).

vander (C) returns a Vandermonde matrix A whose penultimate column is the vector C.
In addition, A(:,j) = C*(n-j).
wilkinson(n) returns the Wilkinson matrix of order n (symmetric tridiagonal with

pairs of eigenvalues close but not the same).

compan(P) returns the corresponding companion matrix whose first row is
-P(2:n)/P(1), where P is a vector of polynomial coefficients.

maple('hadamard(n)"') returns the Hadamard matrix of order n, a matrix with values 1
or-1suchthatH'* H = n * eye(n).

maple('hilbert(n)") returns the Hilbert matrix of order n, a matrix whose ij-th
element is 1 /(i+j-1).

maple('hilbert(n,exp)') returns the matrix of order n with ij-th entry equal to
1/(i+j-exp).

maple('bezout(poly1,poly2,x)"') constructs the Bézout matrix of the given
polynomials in x, with dimension max(m,n), wherem = degree(poly1) and

n = degree(poly2). The determinant of this matrix is the resultant of the two
polynomials (resultant(poly1,poly2,x)).

maple('sylvester(p1,p2,x)') constructs the Sylvester matrix of the given polynomials
in x, with dimension n+m, wherem = degree(p1) and n =degree(p2). The determinant
of this matrix is the resultant of the two polynomials.

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

maple('fibonacci(n)') returns the n th Fibonacci matrix F(n) whose size is the sum of
the dimensions of F(n-1) and F(n-2).

maple('toeplitz([ex1,...,exn])") returns the symmetric Toeplitz matrix whose
elements are the specified expressions.

maple('vandermonde([exprl,..., exprn])') returns the Vandermonde matrix whose
(i,3j)th element is exprii-t.

maple('wronskian(V,x)") returns the Wronskian matrix of the vector V =(f1,...,fn)
with respect to the variable x. The ij-th element is diff(fj, x$(i-1)).
maple('jacobian([expri,...,exprm],[x1,..., xn])") returns the mxn Jacobian matrix
with ij-th element diff(expri,xj).

maple('hessian(exp,[x1,...,xn])") returns the mxn Hessian matrix with ij-th element
diff(exp,xi,xj).

EXERCISE 4-14

Find the eigenvalues of the Wilkinson matrix of order 8, a magic square of order 8 and the Rosser matrix.

>> [eig(wilkinson(8)), eig(rosser), eig(magic(8))]

ans =
1.0e+003 *
0.0042 1.0000 0.2600
0.0043 1.0000 0.0518
0.0028 1.0200 -0.0518
0.0026 1.0200 0.0000
0.0017 1.0199 0.0000 + 0.0000i
0.0011 0.0001 0.0000 - 0.0000i
0.0002 0.0000 0.0000 + 0.00001
-0.0010 -1.0200 0.0000 - 0.0000i

Observe that the Wilkinson matrix has pairs of eigenvalues which are close, but not equal. The Rosser matrix has
a double eigenvalue, three nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue
and a small non-zero eigenvalue.

190

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-15

Find the Smith and Hermite forms of the inverse of the Hilbert matrix of order 2 in the variable x. Also find
the corresponding transformation matrices.

>> maple('with(linalg):H:= inverse(hilbert(2,x))");
>> pretty(simple(sym(maple('H"))))

[2]
[-(-3+x) (-2 +x) (-3 +x) (-2 +x) (-4 +x)]
[]
[2]
[(-3+x) (-2 +x) (-4 +x) -(-3+x) (-4+x)]

>> maple ('B: = smith(H,x,U,V);)U: = eval (U); V: = eval (V)');
>> pretty(simple(sym(maple('B'))))

[-3 +x 0]
[]
[2]
[o (-2 +x) (x -7x+12)]
>> pretty(simple(sym(maple('U"))))
[-1 -1]
[]
[2 2]
[10 - 13/2 x + X - 13/2 X + 9 + x]

>> pretty(simple(sym(maple('V'))))

[- 772 + x -4 + X]

[]

[- 3/72 + x -2 + Xx]

191

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> maple('HM:=hermite(H,x,Q);Q:=evalm(Q)");
>> pretty(simple(sym(maple('HM'))))

[2]
[Xx -5x+6 0]
[]
[:]
[0 X -7 x+12]
>> pretty(simple(sym(maple('Q'))))
[—x+3 —X+2]

[]
[-x + 4 -X + 3]

EXERCISE 4-16

Confirm that the functions x, x2 and x? are linearly independent.

>> maple('v:=[x,x"2,x"3]:w:=wronskian(v,x)");
>> pretty(simple(sym(maple('w'))))

[2 3]
[x X x]
[]
[2]
[1 2 X 3 x]
[]
[o 2 6 x]

>> pretty(simple(sym(maple('det(w)'))))

3
2 X

Since the determinant of the Wronskian is non-zero, the functions are linearly independent.

192

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

EXERCISE 4-17

Find the Jacobian matrix and the Jacobian determinant of the transformation:

X =evsin (v),y = e cos (v).

>> pretty(sym(maple('jacobian(vector([exp(u) * sin(v), exp(u) * cos(v)]), [u,v])")))
[exp(u) sin(v) exp(u) cos(v)]
[]
[exp(u) cos(v) -exp(u) sin(v)]
>> pretty(simple(sym(maple('det(")"))))

2
-exp(u)

EXERCISE 4-18

Find the Bézout and Sylvester matrices B and T for the functions p=a + bx + cx?and q = d + ex + fx2
Verify that the determinants of B and T coincide with the resultant of p and q.

>> maple('p:=a+b*x+c*x"2:q:= d+e*x+f*x"2:B:=bezout(p, q, x);T:=sylvester(p, q, x)")
>> pretty(sym(maple('B')))

[dc-af db - ae]

[]
[ec-bf dc-af]

>> pretty(sym(maple('T")))

o (g]
[g] o
o [+3)
U o

.—..—..—..—..—..—..—.
-+
D
Q.
o
=2 2B

o
-+
(0]

Q.

193

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SYMBOLIC MATRIX ALGEBRA

>> pretty(sym(maple('det(B)'))),pretty(sym(maple('det(T)"))),
pretty(sym(maple('resultant(p,q,x)")))

2 2 2 2 2 2
d ¢c -2dcaf+a f -dbec+db f+ae c-aebf

2 2 2 2 2 2
d ¢c -2dcaf+a f -dbec+db f+ae c-aebf

2 2 2 2 2 2
d ¢c -2dcaf+a f -dbec+db f+ae c-aebf

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Equations and Systems

MATLAB offers certain commands that allow you to solve equations and systems. Among them are the following:
solve('equation', 'x") solves the equation in the variable x.
syms x; solve(equ(x),x) solves the equation equ(x)in the variable x.

solve('eql,eq2,...,eqn", 'x1,x2,...,xn") solves n simultaneous equations
eql,...,eqn (in the variables x1,. . ., xn).

syms x1 x2 ... xn; solve(eql,eq2,...,eqn,x1,x2,...,Xxn) solves n simultaneous
equations eqi,...,eqn (in the variables x1,..., xn).

X = linsolve(A,B) solvesA * X = B for a square matrix A, where B and X are matrices.
x = nnls(A,b) solves A * x = b in the least-squares sense, where X is a vector (x30).
x = lscov(A,b,V) gives the vector x that minimizes (A * x-b)'* inv(V) *(A*x-b).

roots(V) gives the roots of the polynomial whose coefficients are the components of

the vector V.
X = A\B solves the system A * X = B.
X = a/bsolves the system X * A = B.

5-1. Special Commands

In addition, equations and systems can be solved using the following commands (all of them must be preceded by the
maple command):

solve(equation,variable) solves the given equation in the specified variable.
solve(expression,variable) solves the equation expression = 0 in the given variable.

solve({expr1,..,exprn},{vari,..,varn}) solves the system given by the specified
equations in the given variables.

solve(equation) solves the equation for all of its variables.
solve(expri,...,exprn) solves the specified system of equations for all possible variables.
solve(inequality,variable) solves the inequality for the specified variable.

solve(s,var) solves the set of equations s for the specified variable.

195

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

196

LHS(equation) returns the left-hand side of the equation.
LHS(inequality) returns the left-hand side of the inequality.
RHS (equation) returns the right-hand side of the equation.
RHS (inequality) returns the right-hand side of the inequality.

readlib(isolate): isolate(equation,expression) isolates the specified expression in
the given equation.

readlib(isolate): isolate(expri,expr2) isolates the subexpression expr2 in the
equation exprl = 0.

reablib(isolate): isolate(equation,expression,n) isolates the specified expression
in the given equation by running at least n transformations or steps in the calculations.

testeq(expri=expr2) or testeq(expri,expr2) tests whether the expressions are
equivalent. The purpose may be to eliminate redundant equations in a system.

eliminate(setequ,setvar) eliminates the given set of variables in the specified set of
equations.

isolve(equation) returns the set of integer solutions of the given equation for all of its
variables.

isolve(expression) returns the set of integer solutions of the equation expression = 0
for all of its variables.

isolve({equi,..,equn}) gives the set of integer solutions of the specified system of
equations for all variables.

isolve(equation,variable) returns the integer solutions of the specified equation in
the given variable.

isolve({equi,...,equn},{varl,...,varn}) finds the integer solutions of the specified
system in the given variables.

isolve(equation,{vari,...,varn}) finds the set of integer solutions of the given
equation for the specified variables.

fsolve(equation,variable) solves the equation for the given variable, by Newton’s
method.

fsolve(expression,variable) solves the equation expression = 0 for the given
variable, by Newton’s method.

fsolve({equi,...,equn},{var1,...,varn}) solves the system of equations for the
variables given, by numerical methods (the number of equations is equal to the
number of unknowns).

fsolve(expr) or fsolve({equi,...,equn}) solves the equation expr = O or the system
of equations in the given variables by numerical methods.

fsolve(equation,var,a..b) solves the equation in the variable var by numerical
methods, obtaining solutions in the interval [a,b].

fsolve({equi,...,equn},{var1,...,varn},{var1=a1..B1,..., varn=an...BN}) finds
real solutions of the system in the given variables that are in the specified intervals (by
numerical methods).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS
fsolve(equation,variable, complex) finds all the complex solutions of the given
equation.

fsolve(equation,variable, 'maxsols'=m) finds only the m least solutions of the
equation.

fsolve(equation,variable, 'fulldigits') ensures an optimum value of digits for
computing the largest number of possible solutions of the given equation in the
specified variable.

msolve(equation,m) solves the equation modulo m in all its variables.
msolve(expression,m) solves the equation expression = 0 modulo min all its variables.
msolve({equi,...,equn},m) solves the given system modulo m in all its variables.

msolve(equation,variable,m) or msolve(equation,{vari,...,varn},m) solves the
equation modulo m in the variable or variables specified.

msolve({equi,...,equn},{vard,...,varn},m) solves the given system modulo m in the
specified variables.

RootOf(Equation,variable) represents the roots of the given equation in the variable
given in the form of RootOf expressions. The solution of certain transcendental
equations and systems are usually given in terms of RootOf expressions.

RootOf (expression,variable) presents the solutions of the equation expression = 0in
terms of RootOf expressions.

RootOf(equation) presents in the form of RootOf expressions the solutions of the given
univariate equation.

allvalues(expr) gives all the possible values of the specified RootOf expression. This
command uses solve to calculate the exact roots of the expression, and if this is not
possible, uses fsolve to calculate the approximate roots.

allvalues(expr,d) ensures that identical RootOfs in the expression are only evaluated
once, thus avoiding redundant calculations and increasing efficiency.

convert(ineq,equality) converts the given inequality to an equality by replacing the
signs < or < = by =.

convert(equ,lessequal) converts the given equation or strict inequality into a
non-strict inequality, by replacing < or = with < =.

convert(equ,lessthan) converts the equation or non-strict inequality into the
corresponding strict inequality, replacing the symbols = or < = with the symbol <.

with(student):equate(1list1,list2) creates a set of equations of the form
(lista[1] = list2[1],...,list1[n] = list2[n]).

equate(list) creates set of equations of the form {1ist[1] = 0,..., list[n] = 0}.
equate(arrayl,array2) converts the two arrays to a set of equations.
equate(Table1,Table2) converts the two tables to a set of equations.

equate(exprl,expr2) converts the two expressions to the equation exprl = expr2.

197

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

Here are some examples. First, we solve an equation in exact and approximate form and check one of the
solutions.

>> pretty(sym(maple('eq := x"4-5*x"2+6*x=2: solve(eq,x)')))

1/2 1/2
1+3 ,-1-3 ,1,1

>> pretty(sym(maple('sols := [solve(eq,x)] : evalf(sols,10)')))
[.732050808 -2.732050808 1. 1.]
>> pretty(simple(sym(maple('subs(x=sols[1],eq)'))))

2 =2

The previous equation also can be solved as follows:

>> solve('x"4-5*x"2+6*x=2")

ans =
[- 1+ 3 "(1/2)]
[~(1/2) - 1-3]
[1]
[1]
Another way to solve the same equation would be as follows:
>> syms X
>> solve(x"4-5*x"2+6*x-2)
ans =
[- 1+ 3 7(1/2)]
[~(2/2) - 1-3]
[1]
[

1]

198

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Next we solve a system and check its solutions.

>> maple('eqgns:= {u+v+w=1, 3*u+v=3, u-2*v-w=0}:sols:= solve(eqns)"')

ans =
sols := {w = -2/5, v = 3/5, u = 4/5}

>> maple('subs(sols,eqgns)")

The previous system can also be solved in the following way:

>> Syms u v w
>> [u,v,w] = solve(u+v+w-1, 3*u+v-3, u-2*v-w, u, v, w)

-2/5

The same system can also be solved in another way:

>> [u,v,w] = solve('u+v+w=1"', '3*u+v=3', 'u-2*v-w=0', 'u','v','w")

www.it-ebooks.info

EQUATIONS AND SYSTEMS

199

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

Finally, we can solve the system in the following way:

>> [u,v,w] = solve('u+v+w=1, 3*u+v=3, u-2*v-w=0', 'u,v,w")

Next we solve some systems, subject to certain conditions.
>> pretty(sym(maple('solve({x"2*y"~2=0, x-y=1})")))
{x=0,y=-1}, {x=0,y=-1}, {x=1,y=0}, {x=1,y =0}
>> pretty(sym(maple('solve({x"2*y"~2=0, x-y=1, x<>0})")))
{x=1,y=0}, {x=1,y=o0}

>> pretty(sym(maple('solve({x"2*y*2-b, x*2-y"2-a},{x,y})"')))
>> pretty(sym(maple('solve({x"2*y*2-b, x*2-y*2-a},{x,y})")))

{y = 1/2 %4, x = 1/2 %3}, {y = 1/2 %4, x = - 1/2 %3},

{y =-1/2%4, x=1/2%3}, {y = - 1/2 %, x = - 1/2 %3},

{y = 1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = 1/2 %1},

{y =-1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = - 1/2 %1}
2 1/2 1/2

% :=(-2a-2(a +4b))

2 1/2 1/2
% :=(2a-2(a@ +4b))

2 1/2 1/2
% :=(2a+2(a +4b))

2 1/2 1/2
% = (-2a+2 (@ +4b))
200

www.it-ebooks.info

http://www.it-ebooks.info/

>>

>>
>>

>>
>>

>>

>>

>>

>>

>>

CHAPTER 5 © EQUATIONS AND SYSTEMS

Next we find the integer solutions of an equation:

pretty(sym(maple('isolve(3*x-4*y=7)")))

{y=2+3 Ni, x =5+ 4 N1}

Now we solve system and an equation approximately.

maple('f: = sin(x +y) - exp(x) *y =0: "g:=x "2 -y =2:");
pretty(sym(maple('fsolve({f,g},{x,y},{x=-1..1,y=-2..0})")))

{y = -1.552838698, x = -.6687012050}

maple('f:=10-(1n(v+(v*2-1)"(1/2))-1n(3+(3%2-1)"(1/2)))");
pretty(sym(maple('fsolve(f,v)")))

64189.82535
pretty(sym(maple('fsolve(f,v,1..infinity)")))

64189.82535

In the two following equations, instead of solving for x, we solve for sin(x) in the first and x* in the second.

pretty(sym(maple('readlib(isolate):isolate(4*x*sin(x)=3,sin(x))")))
sin(x) = 3/4 x
pretty(sym(maple('isolate(x*2-3*x-5,x"2)")))

2
X=3X+75

Now we test whether two expressions are not equal but probabilistically equivalent.

(sin(x) ~ 2 - cos(x) * tan(x)) * (sin(x) * 2 + cos(x) * tan(x)) ~ 2:)
1/4 * sin(2*x) ~ 2 - 1/2 * sin(2*x) * cos(x) - 2 * cos(x) ~ 2

(+ 1/2 * sin(2*x) * cos(x) ~ 3 + 3 * cos(x) ~ 4 - cos(x) » 6:');
pretty(sym(maple('evalb(a = b)')))

maple('a:
b:

false

201

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS
>> pretty(sym(maple('evalb(expand(a) = expand(b))')))
false
>> pretty(sym(maple('testeq(a = b)')))
true
In the following example, we eliminate a variable from a system:
>> pretty(sym(maple('readlib(eliminate):eliminate({x"2+y"2-1,x"3-y"2*x+x*y-3},x)")))

3 6 4 5 3 2
[{x = - ---mmmmmees L{ay -7y -4y +6y +4y -2y+8}]
2

2y -y-1

EXERCISE 5-1

Find solutions to the following equations:

sin(x) cos(x) = 0, sin(x) = acos(x), ax * 2 + bx + ¢ = 0 and sin(x) + cos(x) = sqrt(3) / 2

>> solve('sin(x) * cos(x) = 0")

ans =

[0]
[1/2 * pi]
[-1/2 * pi]

>> solve('sin(x) = a * cos(x)','x")
ans =

atan (a)

>> solve('a*x"2+b*x+c=0",'x")

ans =
[1/2/7a * (-b + (b » 2-4 * a * ¢) ~(1/2))]
[1/2/a * (-b-(b*2-4*a*c) ~(1/2))]

202

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 = EQUATIONS AND SYSTEMS
>> solve('sin(x)+cos(x)=sqrt(3)/2")

ans =

[1/2 * 3 ~(1/2)]
[1/2 * 3 ~(1/2)]

EXERCISE 5-2

Find at least two solutions for each of the following trigonometric and exponential equations:
X sin (x) = 1/2and 23 = 4 (2%%)

Initially, we use the fsolve command:

>> maple ('fsolve(x * sin(x) = 1/2)")

ans =
-.74084095509549062101093540994313

>> maple('fsolve(2*(x"3)=4*2"(3*x))")

ans =
2.0000000000000000000000000000000

For both equations we get a single solution. For more solutions, we can plot a graphical representation of the
functions (see Figure 5-1) to determine the approximate intervals where possible solutions fall;

>> fplot('[x * sin (x) - 1/2.0]', [0, 4 * pi])

©® A NONSAGODOD

'
o
T

N
(=]
LN]
a
o
@
o
N

Figure 5-1.

203

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

We can see that there is a solution between 0 and 2, another between 2 and 4, another between 4 and 8, and so
on. We can calculate three of them as follows:

>> (('s1=maple('fsolve(x*sin(x)=1/2,%,0..2)")

sl =
.7408409550954906

>> s2=maple('fsolve(x*sin(x)=1/2,x,2..4)")

S2 =
2.972585490382360

>> s3=maple('fsolve(x*sin(x)=1/2,x,4..8)")

S3 =
6.361859813361645

We repeat the process for the second equation, starting with the plotted graph (see Figure 5-2):

>> subplot(2,1,1)

>> fplot('[27(x"3),4*2"(3*x)]",[-3,1,-1/4,3/2])
>> subplot(2,1,2)

>> fplot('[27(x"3),4*2~(3*x)]",[1,3,100,400])

400 L] I T

300 R

200 .

100 1 1 L

Figure 5-2.
204

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

Two areas where there are intersections for different values of the variables x and y have been represented on the
same graph. There are possible solutions between —4 and 0, and between 0 and 3. We try to find these solutions:

>> maple('fsolve(2 ~(x"3) = 4 * 2 ~(3*x), X, -4.. 0)")

ans =

-1.00000000000
>> maple('fsolve(2~(x"3)=4*2"(3*x),x,0..3)")

ans =

2.00000000000

We see that x =-7 and x = 2 are exact solutions of the equation.

EXERCISE 5-3

Solve each of the two following logarithmic and surd equations:

x*2 log(x) = x log(x*?), sqri[1-x]+sqrt[1+x] = a

>> maple('fsolve(x"(3/2)*Llog(x)=x*1log(x)"(3/2))")

ans =

We first generate the corresponding graphs (see Figure 5-3) to determine the intervals in which possible solutions
are found. This reveals that x = 7 is the only real solution.

205

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

0 05 1 15 2 25 3

Figure 5-3.
>> fplot('[x*(372) * log(x), x * log(x"(3/2))]', [0,3,-1,6])

Now, let's solve the surd equation:

>> pretty(sym(solve('sqrt(1-x)+sqrt(1+x)=a','x")))

2 1/2
[-1/2a (-a +4)]
[]
[2 1/2]
[]

1/2 a (-a + 4)

EXERCISE 5-4

Solve the following two equations:
X¥+16 X+ 7x3+17x%+ 11 x+5=0and x*-1=0

In addition, solve the first equation modulo 19 and the second modulo 5.

>> s1=solve('X 5 +16*Xx 4+7*x"3+17*x"2+11*x+5=0")

[-15.61870451719182]
[-.3867059805744952-.3977796861292117*1]
[-.3867059805744952+.3977796861292117*1]
[.1960582391704047-1.000858165543796%*1]
[.1960582391704047+1.000858165543796%*1]

206

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

>> s2=solve('x"4-1=0")

Now, we solve the first equation modulo 19:

>> maple('msolve(x"5 +16%*x 4+7*x 3+17*x"2+11¥x+5=0,19)")

ans =

{X = 1}) {X = 18}: {X = 31} {X = 7}) {X = 12}

Next, we solve the second equation modulus 5:

>> maple('msolve(x"4-1=0,5)")

ans =

{x =1}, {x =2}, {x =3}, {x =4}

Because we have two polynomial equations, there is also the option of solving the two equations with the roots
command, as shown here:

>> roots([5,11,17,7,16,5])

ans =

-1.2183 + 1.31641

-1.2183 - 1.31641
0.2827 + 0.93021
0.2827 - 0.9302i

-0.3289

>> roots([-1,0,0,0,1])

207

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

ans =

-1.0000
0.0000 + 1.0000i
0.0000 - 1.0000i
1.0000

EXERCISE 5-5

Solve the following system of two equations:
cos(x/12) /exp(x 2/16) =y
-5/4 + y = sin(x*?)

>> [x,y] = solve('cos(x/12)/exp(x"2/16) = y','- 5/4 + y = sin(x"(3/2))")

X =
2.412335896593778
y =

.6810946557469383

EXERCISE 5-6

Find the intersection of the hyperbolas of equations x2 - y>= r? and a?x?- b%y?= a?h? with the parabola
Z2 = 2px.

>> [x,y,2] = solve('a”2*x"2-b"2*yr2=a72%b 2", 'x"2-yr2=1"2", ' 2" 2=2%p*x", 'x,y,z")
X =

[1/2*RootOf((ar2-br2)* Z 4+4*b"2*12%pr2-4*a2%b 2%pr2) 2/p]
[1/2*RootOf((ar2-b 2)* Z 4+4*b"2* 1 2%pr2-4%a2¥b 2%pr2) 2/p]

y:

[1/2*(RootOf((ar2-b2)* Z"4+4*b 2*r 2*pn2-4*ar2*b"2%p”2)M4-4% 1 2%pr2)~(1/2) /p]
[-1/2*(RootOf((a"2-b"2)* Z74+4*b 2*1 2%*ph2-4%ar2*p 2*pr2)A4-4*r 2*p"2)~(1/2)/p]

208

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © EQUATIONS AND SYSTEMS

Z =

00 at2-b"2)* ZM4+4*b"2*1"2*pr2-4*a2*p 2% ph2
[RootOf bA2)*_Z74+4*%b"2*¥ 1" 2%ph2-4%at2*b"2%p"2)]
[RootOf((ar2-br2)* Z 4+4*b"2*r2%p"2-4*a”2*b"2%p”2)]

Now, we simplify the RootOf expressions in the above solutions:

>> [simple(allvalues(x)), simple(allvalues(y)), simple(allvalues(z))]

ans =

b*(-r~2+a*2) ~(1/2) /(a"2-b*2) ~(1/2) b] [a *(b*2-r"2) ~(1/2) /(a*2-b”2) ~(1/2)]
2 ~(1/2) * b ~(2/72) * p ~(2/2) *(-r"2+a"2) ~(1/4) /(a2-b"2) ~(1/4)]

b*(-r~2+a”2) ~(1/2) /(a"2-b*2) ~(1/2) b] [a *(b*2-r"2) ~(1/2) /(a*2-b"2) ~(1/2)]
-2 M(1/2) * b ~(1/2) * p ~(1/2) *(-r"2+a"2) ~(2/4) /(at2-b"2) ~(1/4)]

-b *(-r*2+a”2) ~(1/2) /(a*2-b”2) ~(1/2)] [a *(b"2-r"2) ~(1/2) /(a"2-b"2) ~(1/2)]
i*2~(1/2) * b ~(2/2) * p ~(1/2) *(-r"2+a”2) ~(1/4) /(a"2-b"2) "(1/4)]
b*(-r*2+a*2)"(1/2)/(a*2-b*2)*(1/2)] [a*(b*2-r*2)~(1/2)/(a"2-b*2)"*(1/2)]
i*27(1/72)*b"(1/2)*pr(2/2)* (-1 2+a2)"(1/4)/(a”2-b"2)"(1/4)]
b*(-r~2+a*2)"(1/2)/(a*2-b*2)*(1/2)] [-a*(b*2-1*2)~(1/2)/(a"2-b*2)"*(1/2)]

27 (1/2)*bM(1/2)*pr(1/72)* (-1 2+a*2) " (1/4) / (a*2-b"2) " (1/4)]
b*(-r*2+a*2)"(1/2)/(a"2-b"2)~(1/2)] [-a*(b*2-r*2)~(1/2)/(a”2-b"2)"(1/2)]
20(1/2)*br(2/2)*pr(2/2)* (- 2+ar2)~(1/4) / (a2-b"2)~(1/4)]
b*(-r"2+a*2)"(1/2)/(a*2-b*2)~(1/2)] [-a*(b*2-1*2)~(1/2)/(a"2-b*2)"(1/2)]
i*¥27(1/72)*bMN(2/2)*pn(1/2)* (-1 2+a”2)~(1/4)/ (a*2-b"2) " (1/4)]
b*(-r*2+a*2)"(1/2)/(a"2-b"2)*(1/2)] [-a*(b"2-r*2)~(1/2)/(a”2-b"2)*(1/2)]
i*27(1/2)*bM(1/2)*pr(1/2)* (-1 2+a”2) " (1/4)/ (ar2-b"2) " (1/4)]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Each line of this output (a set of three values) is a solution of the system, that is, a point of intersection of the
three curves.

EXERCISE 5-7

Solve the inequality x? + x > 5.

>> maple('solve(x*2+x>5,x)")

ans =

RealRange(-inf,Open(-1/2-1/2*%21~(1/2))),RealRange(Open(-1/2+1/2%¥21*(1/2)),inf)

209

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Series, Continuity, Derivatives,
Integrals and Differential Equations)

6-1. Predefined Symbolic Functions

MATLAB provides a group of predefined special symbolic functions, whose syntax is presented in the following table:

cosint(x) Cosine integral, Ci(x)=y +In(x)+ det y=0.57...
o t
sinint(x) Sine integral, Si(x):f%(t)dt.
0
hypergeom(n,d,z) Generalized hypergeometric function.
lambertw(x) Solves the equation A (x)e*® = x.
o 1
Zeta(x) Riemann zeta function, defined as Z(x)=_ s
Zeta (n,x) nth derivative of zeta (x).

o

! ., whose value will be Z(4).

As a first example, we find the sum of the series Z;{Zl F

>> zeta(4)

ans =

1.0823

sin(t)

dt we use the sine integral function:
t

2
Then to solve the integral J
0

>> sinint(2)

ans =
1.6054

211

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

6-2. Functions for Mathematical Analysis: Limits, Continuity
and Series

MATLAB'’s symbolic mathematics module enables you to explore mathematical analysis with ease. You can calculate
limits, obtain derivatives, find the sum of series, expand functions as Taylor series, calculate integrals, and work with
equations.

When calculating limits and working with numerical series, the same functions are used to calculate limits
of sequences, limits of functions, and limits of sequences of functions, and of course, to analyze the continuity of
functions and convergence of numerical series and power series. The analysis for single and multiple variables is
similar. This group of functions includes the following.

limit(sequence,inf) Calculates the limit of the sequence, indicated by its general term, as n tends to
infinity
limit(function,x,a) Calculates the limit of the function of the variable X, indicated by its analytical

expression, as the variable x tends towards the value a.

limit(function,a) Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends toward the value a.

limit(function,x,a, 'right") Calculates the limit of the function of the variable x, indicated by its analytical
expression, as the variable x tends toward the value from the right.

limit(function,x,a, 'left') Calculates the limit of the function of the variable X, indicated by its analytical
expression, as the variable x tends toward the value from the left.

symsum(S,v,a,b) Sums the series S with respect to the variable v varying fromatob.
symsum(S,v) Sums the series S with respect to the variable v varying from 0 tov-1.
r = symsum(S) Sums the series S with respect to its symbolic variable k (as determined by findsym)

Jrom Oup tok-1.

symsum(S,a,b) Sums the series S with respect to its symbolic variable k (determined by findsym),
varying between a and b.

As a first example we calculate the limits of the following sequences:

. (-3+2n\' . 1+70*+3n° . (1+n)1+n . [1+n
lim , im————, lim| —— —, limy/—
noe —7+3n now 5—8n+4n® " no=\ 2 n e\ n

We have:

>> syms n
>> limit(((2*n-3)/(3*n-7))"4,inf)

ans =

16/81

212

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> Limit((3*n”3+7*n"2+1)/(4*n"3-8*n+5),n,inf)

ans =

3/4

>> limit(((n+1)/2) * ((n*4+1)/n"5),inf)

ans =

1/2

>> limit(((n+1)/n*2)~(1/n),inf)

ans =

Next we calculate the limits of the following functions:

[2
lim “lx lim 2+x , limy1+x, lmm
=1] 44fx x+2—3+Jl+4x x50 x?
We have:
>> syms X a

>> limit((x-1)/(x"(1/2)-1),x,1)

ans =

>> limit((x-(x+2)7(1/2))/((4*x+1)"(1/2)-3),2)

ans =

9/8

>> limit((1+x)"*(1/x))

ans =

exp (1)

www.it-ebooks.info

213

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS
>> limit(sin(a*x)*2/x"2,x,0)
ans =

a2

In the following example, we calculate the limit function of the sequence of functions defined by g (x) = (x*+nx) /n
with xeR.

>> limit((x"2+n*x)/n,n,inf)

ans =

We have obtained the limit function, which is the diagonal of the first and third quadrants. We illustrate this
graphically (Figure 6-1) as follows:

>> fplot('[(x*24x), (x*2+2%x) /2, (x"2+3*x) /3, (x"2+4*x) /4,
(Xx*2+5%x) /5, (x"245*x) /5, (x"2+6*x) /6, (X 2+7*x) /7, (x"2+8*x) /8,
(XA2+9*X)/9] ' b [_ZJZ) _ZJZ])

) Figure No. 1
Fle Edit Wew Insert Tools Window Help

DEEH& "AA2A/ 22D

2

15
1
05
ok
{05+

-1

-15

2 s A 05 0 05 1 15 2

Figure 6-1.

214

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The following example checks the continuity in R-{0} of the function f(x) = sin(x) /x . This will verify
thatlim_, f(x)=f(a).

>> syms X a
>> limit(sin(x)/x, x, a)

ans =
sin(a)/a

We then confirm that the function f(x)= ¥/e is not continuous at the point x = 0, because the lateral limits do
not match (one is zero and the other infinite).

>> syms X
>> limit((exp(1/x)),x,0, 'right")

ans =
inf
>> limit((exp(1/x)),x,0, 'left")

ans =

0

In the following example we test whether the numerical series > is convergent by applying the ratio

o
n=l ~An

a(n+1)
a(n)

test (limw < 1j and, if so, we calculate its sum.

>> syms n
>> f = n/2"n

f =

n/(2"n)
>> limit(subs(f,n,n+1)/f, n, inf)

ans =

1/2

215

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

We can see that the limit is less than 1, so we conclude that the series converges. We calculate the sum in the
following way:

>> symsum(f,n,1,inf)

ans =

6-3. Derivatives, Integrals and Differential Equations

MATLAB provides the following functions for mathematical analysis, a group that includes commands relating to
derivatives, integrals, and differential equations. We will begin with the functions related to differentiation.

diff('f',"'x") Returns the derivative of the function T with respect to x.
syms x, diff(f,x) Returns the derivative of the function t with respect o X.
diff('f', 'x', n) Returns the nth derivative of f with respect to x.

syms x, diff(f,x,n) Returns the nth derivative of T with respect to x.

r = taylor(f,n,v) Returns the MacLaurin series up to order n-1 of the

Sfunction f in the variable v.

r = taylor(f) Returns the MacLaurin series up to order 5 of the function
f in the default variable.

r = taylor(f,n,v,a) Returns the Taylor series up to order n-1 of the function £
in the variable v in a neighbourhood of the point a.

R = jacobian(w,v) Returns the Jacobian matrix of w with respect to v.

The following are the integration-related functions:

syms x, int(f(x),x) or int('f(x)', 'x') Computes the indefinite integral jf(x)dx .

int(int("f(x,y)", 'x'), 'y") Calculates the double integral 'f j fx, y)dxdy

syms x y, int(int(f(x,y),x),y) Calculates the double integral j _[S, y)dxdy

int(int(int(... int('f(x,y...2)", 'x'), 'y'),..., 'z') Calculates I j I SOy, y2) dxdy---dz

syms X y z, Calculates J. j I f,y,,2)dxdy---dz .

int(int(int(... int(f(x, Y,..e52), X)) Y)eue, Z)

syms x a b, int(f(x),x,a,b) Calculates the definite integral .fhf(x)dx.

int("f(x)', 'x', 'a', 'b") Calculates the definite integral Ibf(x)dx .

. . b prd

int(int("f(x,y)", 'x', 'a', 'b"), 'y', 'c¢', 'd") Computestheintegml_[J. fx, y)dxdy

216

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

syms x y a b cd, Calculates jbfdf(x,y)dxdy.
int (int (f(x,y), x, a, b), y, ¢, d)
int(int(int(...int("f(x,y,...,2)", 'x', 'a', 'b'), 'y', Finds thd---'[)ff(x,y,~-~,z)dxdy---dz
'it, ' from),...), 'z', 'e', 'f') are T
b pd f
Syms xyzabcdef, Finds ["] fx,p,++,2) ddy---dz

int (int (int (... int(f(x,y,...,2), X, a, b), y, ¢,
d):---)) zZ, €, f)

The following table summarizes the functions related to differential equations:

dsolve('e', 'v') Solves the differential equation where v is the independent
variable (if you don't specify 'v', the independent variable
is assumed by default to be x). It returns only explicit

solutions.

dsolve('e', 'c', 'v') Solves the differential equation subject to the specified
initial condition c.

dsolve('e',"'c1','c2',...,'cen',"v") Solves the differential equation e subject to the specified
initial conditions ci.

dsolve('e',"'c1,c2,...,cn','v") Solves the differential equation subject to the specified
initial conditions.

dsolve('e1', 'e2',..., 'en',) Solves the given system of differential equations (explicitly)

(‘c1', 'c2',..., ‘en', V') subject to the specified initial conditions.

dsolve('e1, e2,..., en',) Solves the given system of differential equations subject to

('c1, €2,..., cn', 'v") the specified initial conditions.

As a first example, we calculate the derivative of the function log(sin(2x)).

>> pretty(diff('log(sin(2*x))",'x"))

sin(2 x)

We can then find the fully simplified derivative:

>> pretty(simple(diff('log(sin(2*x))"',"'x")))

217

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

In the following example, we calculate the first four derivatives of the function f{x) = 1/x.

>» f="1/x";
[diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]

ans =

[-1/x ~ 2, 2/x ~ 3, - 6/x ™ 4, 24/x » 5, - 120/x ™ 6]

Next, given the function f{x,y) = sin(xy) +cos(xy?), we calculate the following:

of of of of of of of
ox’ oy’ ox*’ oy*’ oxoy oyox’ 6°xdy

>> syms Xy
>> f = sin(x*y) + cos(x*y"2)

f =

sin(x*y) + cos(x*y”2)
>> diff(f,x)

ans =

cos(x*y) *-sin(x*yr2) * y ~ 2
>> diff(f,y)

ans =

cos(x*y) * x-2 * sin(x*yr2) * x * y
>> diff(diff(f,x),x)

ans =

-sin(x*y) * y ~ 2-cos(x*y*2) * y ~ 4

218

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 '~ SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> diff (diff(f,y), y)

ans =

-sin(x*y) * x " 2-4 * cos(x*y”2) * x A 2 * y A 2-2 * sin(x*y"r2) * x

>> diff(diff(f,x),y)

ans =

-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y*2) * x * y ~ 3-2 * sin(x*y*2) * y
>> diff(diff(f,y),x)

ans =

-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y?2) * x * y ~ 3-2 * sin(x*y*2) * y
>> diff(diff(diff(diff(f,x),x),y,y))

ans =

sin(x*y) * y ~ 3 * x-3 * cos(x¥y) ¥y ~ 2 + 2 * cos(x¥y?2) * y A 7 ¥ x + 6 * sin(x*y*2) *y A §

Next we find the Taylor series up to order 10 of the function 1 /(2-x) in a neighborhood of the point x = 1

>> syms X
>> f=1/(2-x)

f =
1/(2-x)
>> pretty(taylor(f,11,x,1))

2 3 4 5 6 7
X+ (x-1) +(x-1) +(x-1) +(x-1) + (x-1) + (x-1)

8 9 10
+(x-1) +(x-1) + (x - 1)

219

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

dx .

2

The following example computes the integral J'

>> int('1/(x*2-1)","'x")

ans =

-atanh (x)

The following example finds the integral JuLn(l —bx)dx, where a and b are parameters.

>> syms x a b, pretty(simple(int(a*log(1+b*x),x)))
a (log(1 +bx)-1) (2 +bx)

The following example computes the double integral J I aLn(1-bx)dxdb, where a is a parameter.

>> syms x a b, pretty(simple(int(int(a*log(1+b*x),x),b)))

a (-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b - 1 -2 b x - log(b))
The following example computes the triple integral m. aLn(1-bx)dxdbda .

>> syms x a b, pretty(simple(int(int(int(a*log(1+b*x),x),b),a)))

2
1/2a(-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b - 1 - 2 b x - log(b))
Next we calculate J: aLn(1-bx)dx

>> syms x a b, pretty(simple(int(a * log(1+b*x), x, 0, 1)))

a log(1 + b)
———————————— - a+a log(1+b)
b

220

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The following example computes E E aLn(1-bx)dxdb

>> syms x a b, pretty(simple(int(int(a*log(1+b*x),x,0,1),b,2,3)))
(- 2 + 8 log(2) - dilog(4) - 3 log(3) + dilog(3)) a
The following example solves the first-order, first-degree differential equation y'(¢) = ay(f) with a = parameter.
>> pretty(dsolve('Dy = a*y'))

C1 exp (a t)

The family of solutions turns out to be y(¢) = c,e“.
Next we solve the above differential equation with the initial condition y(0) = b.

>> pretty(dsolve('Dy = a*y', 'y(0) = b"))

b exp (a t)

Now we solve the second-degree, first-order differential equation y'(s) + y*(s) = 1 with the initial
condition y(0) = 0.

>>y = dsolve ("(Dy) *2+y ~2=1", 'y(0) =0', 's")

y:

[-sin(s)]
[sin(s)]

Now we solve the differential equation of second order and first degree y"(¢) = -a?y'(¢) with the initial conditions
y(0)=1andy'(p/a)=0.

>> pretty(dsolve('D2y = - a ~ 2 * y', 'y(0) = 1, Dy(pi/a) = 0"))

cos(a t)

Therefore, the solution is the function y(f) = cos(at).

221

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS
The following example solves the system: x'(t) = y(£), y'(£) = -x(1).

>> [x, y] = dsolve('Dx = y', 'Dy =-x')

X =

cos (t) * C1 + sin (t) * Q2

y =
-sin (t) * C1 + cos (t) * C2

We then calculate the solution of the previous system of differential equations subject to the initial conditions
x(0)=0and y(0) =1.

>> [x, y] = dsolve('Dx =y, Dy = - x', 'x(0) =0, y(0) =1")

X =
sin(t)
y =
cos(t)
EXERCISE 6-1
Consider the following symbolic matrix A:
a b c
3c a—3c b
3b -3b+3c a-3c
Calculate A', A, determinant(A), trace(A), rank(A) and A2,
We start by defining the symbolic form of our problem matrix as follows:
>> A=sym('[a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c]")
A =
[a b,]
[3*C1 0'3*(:) b]
[3*b,-3*b+3*c,a-3*c]
222

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 '~ SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

Alternatively, the same symbolic matrix can be defined by previously declaring all variables as symbolic, as
follows:

>> syms a b c
>> A=sym([a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c])

A =

[a, b, c]
[3*C: 3'3*CJ b]
[3*b, -3*b+3*c, a-3%*c]

>> transpose(A)

ans =
[a, 3 * ¢, * 3B]

[b, a-3*c, -3*b+3*c]
[c, b, a-3*%]

>> pretty(inv(A))

2 2 2 2 2 2
[a -6ac+9c +3b -3bc ab-3c -b +ac-3c]
e < eeeemneen - eeemmeseeoeees]
[%1 %1 %1]
[]
[2 2 2 2]
[-b +ac-3c a -3ac-3bc ab-3c]
[e - mmeeeeee]
[%1 %1 %1]
[]
[2 2 2]
[ab-3c ab-ac+b a -3ac-3bc]
[I IEEEEEEEEEE L e L R R R LR R e]
[%1 %1 %1]
3 2 2 2 3 3 2
%L := a -6ca +9c a+3ab -9abc+9c +3b +9bc
>> pretty(det(A))
3 2 2 2 3 3 2

a -6ca +9c a+3ab -9abc+9c +3b +9bc

223

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> pretty(trace(A))

3a-6¢c

>> rank(A)
ans =

3
>> A2
ans =
[a"2+6*b*c, a*b+b*(a-3*c)+c*(-3*b+3*c), a*c+b"2+c*(a-3%c)]
[3*a*c+3*c*(a-3*c)+3*b"2, 3*b*c+(a-3*c) 2+b*(-3*b+3*C), 3*c”2+2*b*(a-3*c)]

[3*a*b+3*c*(-3*b+3*c)+3*b*(a-3*c), 3*pA2+42*%(-3*b+3%*c)*(a-3*c), 3*b*c+(a-3*c) 2+b*(-3*b+3*C)]

EXERCISE 6-2

Find the intersection of the hyperbolas with equations x>- y>= 1 and a?x?>- b%?= 16 with the parabola 22 = 2 x.

We can solve the system formed by the three equations as follows:

> [x, y, z] = solve('ar2*x*2-br2*y*2=16", 'x"2-y"2=1","'z"2=2*x","'X,y,z2")

X =

[1/72%(((b"2-16)/(a"2-b"2))"(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/2%(((b"2-16)/(a"2-b*2))"(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/2*%(-((b*2-16)/(a*2-b"2))"(1/4)+i*((b"2-16)/(a"2-b*2))"(1/4)) 2]
[1/2*%(-((b"2-16)/(a"2-b"2))*(1/4)+i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/2*%(((b"2-16)/(a"2-b"2))*(1/4)-1*((b"2-16)/(a"2-b"2))"*(1/4))"2]
[1/72%(((b"2-16)/(a"2-b"*2))*(1/4)-1*((b"2-16)/(a"2-b"2))"*(1/4))" 2]
[1/2%(-((b"2-16)/(a"2-b"2))"(1/4)-i*((b"2-16)/(a"2-b"2))"(1/4))"2]
[1/72%(-((b"2-16)/(a"2-b"2))"(1/4)-i*((b"2-16)/(a"2-b"2))*(1/4))"2]

y =
1/(a*2-b*2)*(-(a”2-b"2)*(a”2-16))"(1/2)]
-1/(a*2-b"2)*(-(a*2-b*2)*(a"2-16))"(1/2)]

[
[
[1/(a*2-br2)*(-(ar2-b*2)*(a*2-16))"(1/2)]
[-1/(a*2-b*2)*(-(a"2-b"2)*(a"2-16))"(1/2)]

224

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

[1/(a*2-b*2)*(-(a"2-b"2)*(a”2-16))"(1/2)]
[-1/(a*2-b*2)*(-(a"2-b"2)*(a"2-16))"(1/2)]
[1/(a*2-b*2)*(-(a*2-b"2)*(a”2-16))"(1/2)]
[-1/(a”2-b"2)*(-(a"2-b*2)*(a"2-16))"(1/2)]

Z =

((b"2-16)/(a"2-b"2))*(1/4)+i*((b"2-16)/(a"2-b"2))"*(1/4)]
((b”2-16)/(a"2-b*2))*(1/4)+i*((b*2-16)/(a"2-b*2))"(1/4)]
-((b"2-16)/(a"2-b"*2)) (1/4)+1i*((b"2-16)/(a"2-b"2))"*(1/4)]
-((b*2-16)/(a"2-b*2)) (1/4)+i*((b"2-16)/(a"2-b"2))"(1/4)]
((b"2-16)/(a"2-b"2))*(1/4)-i*((b"2-16)/(a"2-b"2))"(1/4)]
((b"2-16)/(a"2-b"2))*(1/4)-1*((b"2-16)/(a"2-b"2))"(1/4)]
-((b"2-16)/(a"2-b*2))*(2/4)-i*((b"2-16)/(a"2-b"2))"(1/4)]
-(

[
[
[
[
[
i
[-((b"2-16)/(a"2-b"2))*(1/4)-i*((b"2-16)/(a"2-b"2))"(1/4)]

EXERCISE 6-3

Solve the following integrals:

3

. 5 h _1
J-lsm(Zt)dt’ J-cos (x) dx
3 t X

-3 0

For the first integral the integrand is an even function, so the integral will be double the integral of the function
between the limits 0 and 3. Then, we make the change of variable 2t = v, and arrive at the integral:

6

3 . 3 . 5 .
Jlsm(Zt) dt zzj-%sm(Zt) dt _2 sin(v) dv
v
0

3 3

-3 0

whose solution is given by MATLAB as follows:

>> (2/3) * (sinint(6))

ans =

0.9498

To calculate the second integral we have in mind the following:

Ci(x)=y +ln(x)+j;%dt = j%dx:Ci(S)—yﬂn(s)

www.it-ebooks.info

225

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

which can be calculated in MATLAB as follows:

>> cosint(5) - 0.577215664 - log(5)

ans =

-2.3767

EXERCISE 6-4

Given the function h defined by h(x,y) = (cos(x?-y?), sin(x>-y?)), calculate h(1,2), h(-Pi,Pi) and h(cos(a?, cos(1-a?)).
We create a two-dimensional vector function as follows:

>> syms X y a.
>> h = [cos(x*2-y*2), sin(x*2-y*2)]

h =
[cos(x"2-y*2), sin(x"2-y"2)]
Now we calculate the requested values:

>> subs(h, {x,y},{1,2})

ans =

-0.9900-0.1411

>> SUbS(h;{X;y},{‘Pi;Pi})

ans =

10
>> subs(h, {x,y}, {cos(a"2), cos(1-a*2)})

ans =

[cos(cos(a™2) ~ 2-cos(-1+a"2) " 2), sin(cos(a”2) "~ 2-cos(-1+a”2) " 2)]

226

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 '~ SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-5

Given the function f defined by
f(x,y) = 3 (1-x)2 @ ¥+ 0"2x*2 _1Q(x/5-x 3-y/5) € *"2-¥"2-1/3g X+ N 2-y"2
find f(0,0) and represent the function graphically.

In this case, since it is necessary to represent the function, we define it via the M-file shown in Figure 6-2.

2} D:wmatlabR12\workifunc2.m

File Edit View Text Debug Breakpoints Web Window Help

DRSS Bo o AH| AR ERE RS | st = X
1 function h=func2(%,y) -
2[=| h=3%(l-x)*2%exp (- [y+l)*2=-x 2] =10% (% /5=x*3=yA5) fexp (-x 2-y*2) =1/3%exp (- (x+1) *2-y*2) ;
3 hd
| < | 2

l| » | _minem | hammingm | diftm funcz.m |

Ready

Figure 6-2.

Now, we calculate the value of fat (0,0):

>> func2 (0,0)

ans =

0.9810

To graph the function, use the command meshgrid to draw the graph on screen (in a neighborhood of the origin),
and the command surf to generate the surface graph:

>> [x,y] = meshgrid(-0.5:.05:0.5,-0.5:.05:0.5);

>> z = func2(x,y);
>> surf(x,y,z)

227

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The result is the graph shown in Figure 6-3.

<) Figure No. 1 D@@

File Edit View Insert Took ‘Window Help

D& YA 2/ 200

3932

3.93
3928
3926
3.924
392

05 05

Figure 6-3.

EXERCISE 6-6

Given functions f(x) = sin(cos(x'”?) and g(x) = sqrt(tan(x?), calculate the composite of f and g and the composite of
g and f. Also calculate the inverse of the functions f and g.

>> syms x, T = (cos(x"(1/2)));

>> g=sqrt(tan(x"2));
>> simple(compose(f,g))

ans =

sin(cos(tan(x*2)"(1/4)))
>> simple(compose(g,f))
ans =

tan(sin(cos(x"(1/2)))"2)*(1/2)

228

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> F = finverse(f)

F=

acos(asin(x))"2
>> G = finverse(g)

G =

atan(x"2)~(1/2)

EXERCISE 6-7

Given the function defined as

f(x):I:%E:# x#0 and f(x)=1if x=0

study its continuity on the real line.

Except at the point x = 0, the continuity is clear. To analyze the function at the point x = 0 we calculate the lateral
limits as x— 0:

>> syms X
limit(1/(1+exp(1/x)),x,0, 'right")

ans =

>> limit(1/(2+exp(1/x)),x,0,"left")

ans =

229

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The limit of the function as x— 0 does not exist, because the lateral limits are different. But because the lateral
limits are both finite, the discontinuity at x = 0is a finite jump. We can illustrate this result with the plot shown in
Figure 6-4.

>> fplot('1/(1+exp(1/x))',[-5,5])

<) Figure No. 1
File Edit Vew Insert Took Window Help

D& YA 2/ 200

1 T T T T
09r /

08}
07t
)
05f
04f
03f
02t

01r

EXERCISE 6-8

Calculate the continuity of the function f: R2 — R defined by:

Fle)= E52 2 ()2 (00) and f (10)=0.

The only problem is at (1,0). To confirm that the function is continuous at this point, we need to check that

lim f(x,y)=0.

(x,y)>(1,0)

230

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 '~ SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>>syms x ymar
>> limit(limit(y ~ 2 *(x-1) ~ 2 / (y * 2 +(x-1) ~ 2), x, 0), y, 0)

ans =

>> limit(limit(y ~ 2 *(x-1) ~ 2/ (y * 2 + (x-1) ~ 2), y, 0), X, 0)

ans =

>> Limit((m*x)*2*(x-1)"2/((m*x)"2+(x-1)"2),x,0)

ans =

>> limit ((m*x) *(x-1)"2/((m*x) +(x-1)"2),x,0)

ans =

It turns out that the iterated and directional limits (as calculated along a straight line y = mx) coincide, which
leads us to believe in the existence of the limit and that its value is zero. To corroborate this, we can calculate the

limit in polar coordinates:

>> limit(limit((r ~ 2 * sin(a) ~ 2) * (r * cos(a) - 1) * 2/ ((r » 2 * sin(a) » 2) + (r *

cos(a) - 1) ~ 2), r, 1), a, 0)

ans =

www.it-ebooks.info

231

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

We find that the limit is zero at the point (1,0), which ensures the continuity of the function. Figure 6-5 shows the
surface, and in particular the continuity and the tendency toward 0 in a neighborhood of the point (1,0).

>> [x, y] = meshgrid(0:0.05:2,-2:0.05:2);
z=y. 2. %(x-1).%2./(y."2+(x-1)."2);
mesh(x,y,z), view ([- 23, 30])

I) Figure No. 1 E|@@

File Edit Wiew Insert Tools Window Help
D& MNA A/, 2RPDT

0.44....

024....

Figure 6-5.

232

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-9

Find the sum of the following series:

> 3+2n N
- E — P= parameter.
n=2 7 n(n + 1) n=1 P

Before attempting to find the sums we first need to show that the sums are indeed convergent. We apply the ratio
test for the first series:

>> syms n

>> f=(3+2*n)/((1-n)*n*7%n);
>> pretty(f)

>> limit(subs(f,n,n+1)/f,n,inf)

ans =

1/7

As the limit is less than 1, the series is convergent. We will calculate its sum. MATLAB tries to return the result,
which can be complicated. Often, the result returned depends on certain special functions defined by the

program. Here’s an example:

>> S1 = symsum(f,n,2,inf)

S1 =

-6 * log(6/7)-22/21 + 13/343 * hypergeom([2, 2],[3],1/7)

Now we apply the ratio test to the second series:
>> syms n p

>> g=n/p”n;
>> pretty(g)

233

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS
>> limit(subs(g,n,n+1)/g,n,inf)
ans =

1/p

Thus, if p > 1, the series converges; if p < 71, the series diverges; and if p = 7, we get the series of general term n,
which diverges. When p is greater than 1, we find the sum of the series:

>> S2=symsum(g,n,2,inf)

S2 =

2/p"2*(1/2/(-1+p)~3*pra*(-1/p+1)-1/2%*p)

>> pretty(simple(S2))

EXERCISE 6-10

Find the MacLaurin series up to order 13 of the function sinh(x). Also find the Taylor series up to order 6 of the
function 1/(1+x) in a neighborhood of the point x = 1.

>> pretty(taylor(sinh(x),13))

3 5 7 9 11
X+ 1/6 X + 1/120 x + 1/5040 x + 1/362880 x + 1/39916800 X

>> pretty(taylor(1/(1+x),6,1))

2 3 4 5
3/4 - 1/4 x + 1/8 (x - 1) - 1/16 (x - 1) + 1/32 (x - 1) - 1/64 (x - 1)

234

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-11

Conduct a full study of the function

3

f(x)=

Cx-1

calculating the asymptotes, maximum, minimum, inflection points, intervals of growth and decrease, and intervals
of concavity and convexity.

>> f="x * 3 /(x*2-1)'

f =

x*3 /(x"2-1)
>> syms x, limit (x3 /(x"2-1), x, inf)
ans =

NaN

We can see that there are no horizontal asymptotes. To see if there are any vertical asymptotes, let’s look at the
values of x that make y infinite:

>> solve('x"2-1")

ans =

The vertical asymptotes are the straight lines x = 7 and x =—7. Now let's see if there are any oblique asymptotes:

>> limit(x"3/(x*2-1)/x,x,inf)

ans =

235

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> Limit(x"3/(x*2-1)-x,X,inf)

ans =

The straight line y = x is an oblique asymptote. Now, the maximum and minimum, inflection points and intervals
of concavity and growth will be analyzed:

>> solve(diff(f))

ans =

[0]
[0]
[3 ~(1/2)]
[*(1/2) - 3]

The first derivative vanishes at the points with x-coordinates x = 0, x =¥3 and x = —V3. These include maximum
and minimum candidates. To test whether they are maxima or minima, we find the value of the second derivative
at those points:

>> [numeric(subs(diff(f,2),0)),numeric(subs(diff(f,2),sqrt(3))),
numeric(subs(diff(f,2),-sqrt(3)))]

ans =

0 2.5981 - 2.5981
Therefore, at the point with abscissa x= —V3 there is a maximum and at the point with abscissa x = V3 there is a
minimum. At x = 0 we know nothing:

>> [numeric(subs(f, sqrt(3))), numeric(subs(f, -sqrt(3)))]

ans =

2.5981 - 2.5981

236

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS
Therefore, the highest point is (-./3 ,-2.5981) and the minimum point is (,/3, 2.5981).
We will now analyze the points of inflection:

>> solve(diff(f,2))

ans =

[0]

[i*37(1/2)]

[-1* 3 ~(1/2)]

The only possible turning point occurs at x = 0, and because f{0) = 0, this possible turning point is (0,0):

>> subs(diff(f,3), 0)

As the third derivative at x = 0'is non-zero, the origin really is a turning point:

>> pretty(simple(diff(f)))

The curve is increasing when y' > 0, that is, in the intervals (-co,-v3)and (v3,c0).
The curve is decreasing when y' < 0, that is, in the intervals
(-\3,-1), (-1,0), (0,1) and (1, V3).

>> pretty(simple(diff(f,2)))

237

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

The curve is concave when y"> 0, that is, in the intervals (-7,0) and (7,).
The curve is convex when y“< 0, that is, in the intervals (0,7) and (-e= ,-7).

The curve has horizontal tangents at the three points at which the first derivative is zero. The equations of the
horizontal tangents are y = 0, y = 2.5981 and y = -2.5981.

The curve has vertical tangents at the points that make the first derivative infinite. These include x = 7 and x =-1.
Therefore, the vertical tangents coincide with the two vertical asymptotes.

We can then represent the curve along with its asymptotes as shown in Figure 6-6.

>> fplot('[x"3/(x"2-1),x]",[-5,5,-5,5])

<) Figure No. 1 g@|®

File Edit Vew Insert Took Window Help

D& YA 2/ 200

5

Figure 6-6.

We can also represent the curve, its asymptotes, and their horizontal and vertical tangents in the same graph
(see Figure 6-7).

238

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

<} Figure No. 1 g@|®

File Edit Vew Insert Took Window Help

D& YA 2/ 200

5
4k

Figure 6-7.

>> fplot('[x*3/(x*2-1),x,2.5981,-2.5981]",[-5,5,-5,5])

EXERCISE 6-12

Given the vector function (u(x,y), v(x,y)), where:

4 4

X +y
X

u(x,y)= , v(x,y)=sin(x)+cos(y)
find the conditions under which there is an inverse vector function (x(u,v), y(u,v)) with x = x(u,v) and y = y(u,v) and
find the derivative and the Jacobian of the inverse transformation. Find its value at the point (n/4,-w/4).

The conditions that must be met are the hypotheses of the inverse function theorem. The functions are
differentiable with a continuous derivative, except perhaps at x= 0. Now let's consider the Jacobian of the direct
transformation J(u(x.y), v(x.y)) /9(x.):

>> syms Xy
>> 1 = simple((jacobian ([(x"4+y*4)/x, sin(x) + cos(y)], [x, y1)))

J =

[3 * x"2 - 1/x"2 * y*4, 4 * y*3/x]
[cos(x),-sin(y)]

www.it-ebooks.info

239

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

>> pretty(det(J))

4 4 3
3 sin (y) x - sin (y) y + 4 y cos (x) x

Therefore, at the points where this expression is non-zero, it can be solved for x and yin terms of vand v. In
addition, it must also meet the requirement that x= 0.

We next calculate the derivative of the inverse function. Its value is the inverse of the initial Jacobian matrix, and
the determinant of the Jacobian is the reciprocal of the determinant of the Jacobian of the initial function:

>> I=simple(inv(J));
>> pretty(simple(det(I)))

3 sin (y) x - sin (y) y + 4 y cos (x) x
Next we are going to find the value of this function at the point (n/4,-7/4):
>> numeric(subs(subs(determ(I),pi/4, 'x"),-pi/4,'y"))

ans =

0.38210611216717
>> numeric(subs(subs(symdiv(1,determ(3)),pi/4,"'x"),-pi/4,'y"))

ans =
0.38210611216717

These results corroborate that the determinant of the Jacobian of the inverse function is the reciprocal of the
determinant of the Jacobian of the original function.

240

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-13

Given the function f(x,y)=e """ and the transformation u = u(x,y) = X + Y, v = v(x,y) = X, find f(u,v).

We calculate the inverse transformation and its Jacobian to apply the change of variables theorem:

>> syms Xy uv
>> [X) y] = SOlve('u=X+y,V=X','X','y')

>> jacobian([v,u-v],[u,v])

ans =

[0, 1]
[1) - 1]

>> f = exp(x-y);
>> pretty(simple(subs(f,{x,y},{v,u-v}) * abs(det(jacobian([v, u-v], [u, v])))

exp(2 v-u)

The requested function is f(u,v) = e

241

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-14

Solve the following integrals:

J' dx J\/9—4x2

, dx, |x®(3+5x*)""dx
Jx?+3x-1 X j

>> syms X
>> pretty(simple(int(x*(-3)*(x"2+3*x-1)"(-1/2),x)))

2 1/2 2 1/2
(x +3x-1) (x +3 x-1)
R Y A
2 X
X
-2 + 3 X

+ 31/8 tie 1/2 (-)
2 1/2
(x +3x-1)

>> pretty(simple(int(x*(-1)*(9-4*x"2)"(1/2), x)))

2 1/2 3
(9-4x) - 3atanh(-------------)

>> pretty(simple(int(x"8*(3+5*x"3)*(1/4),x)))

3 6 9 3 1/4
4/73125 (288 - 120 x + 125 x + 1875 x) (3 + 5 Xx)

242

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-15

Consider the curve given in polar coordinates by r = 3-3cos(a). Calculate the length of the arc corresponding to
one complete revolution (0<a<2r).

>> r="3-3*cos(a)’';
>> diff(r,'a")

ans =

3 * sin (a)
>> R = simple(int('((3-3 * cos(a))”2 + (3 * sin(a))"2)~(1/2)','a", '0','2 * pi'))

R =

24

EXERCISE 6-16

Calculate the value of the following integral

196 _-x%/2
e

N

which represents the area under the normal curve between the specified limits.

dx

>> numeric(int('exp(-x~2/2)/(2*pi)~(1/2)"',"'x",-1.96,1.96))

ans =
0.95000420970356

243

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-17

244

Find the intersection of the paraboloid ax? + y?> = z and the cylinder z = a? - y? and calculate the volume enclosed
by the intersection. Also find the volume of the intersection of the cylinder z=x?>and 4 - y? = z.

The first volume is calculated by means of the integral:

>> pretty(simple(int(int(int('1','z", "a*x 2+y*2',
‘a"2-y"2"),"y",0, 'sqrt((a"2-a*x"2)/2)"), 'x*,0, 'sqrt(a)")))

/
| 2 2 2 1/2
1/24 | lim 3a x(2a -2ax)
| 1/2
\x -> (@)-
1/2 1/2 \
7/2 1/2 2 a X 2 2 1/2 |
+3a 2 atan(--------------) + x (2a - 2ax) |
2 2 1/2 |
(2a -2ax) /

To calculate the second volume we graph the requested intersection, as shown in Figure 6-8, with the aim of
clarifying the limits of integration, using the following syntax:

>> [x, y] = meshgrid(-2:.1:2);
zZ=x"2;

mesh(x,y,z)

hold on;

z=4-y."2;

mesh (x, y, z)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 '~ SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

<) Figure No. 1
File Edit Vew Insert Took Window Help

D& YA 2/ 200

Figure 6-8.

Now we can calculate the volume requested via the following integral:

>> pretty(simple(int(int(int('1','z", 'x"2", '4-y"2"),
'y',0, sqrt(4-x"2)"), 'x",0,2)))

2 pi

www.it-ebooks.info

245

http://www.it-ebooks.info/

CHAPTER 6 * SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-18

Solve the following differential equation:

b_ v
dx y'-x°

>> pretty(simple(dsolve('Dy =(x*y)/(y*2-x*2)")))

EXERCISE 6-19

Solve the following equations:

9y" -6y +46y —6y +37y=0
3y +2y —5y=0
2y +2y +5y=0, y(0)=0, y (0)=1/2.
>> pretty(simple(dsolve('9*D4y-6*D3y+46*D2y-6*Dy+37*y=0")))
C1 sin(t) + cos(t) C2 + C3 exp(1/3 t)sin(2t) + C4 exp(1/3 t)cos(2t)
>> pretty(dsolve('3*D2y+2*Dy-5%y=0"))
exp(t) C1 + C2 exp(-5/3 t)

>> pretty(dsolve('2 * D2y + 5 * Dy + 5 * y =0', 'y (0) = 0 Dy (0) = 1/2 "))

1/2 1/2
2/15 15 exp(-5/4 t) sin(1/4 15 t)

246

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = SERIES, CONTINUITY, DERIVATIVES, INTEGRALS AND DIFFERENTIAL EQUATIONS

EXERCISE 6-20

With the initial conditions x(0) = 1 and y(0) = 2, solve the following system of equations:
X -y =e'
¥ +5x+2y =sin(3t)

>> [x,y] = dsolve('Dx-Dy = exp(-t), Dy+5 * x + 2 * y = sin(3 + t)','x(0) = 1, y(0) = 2")

X =

(-7/50 * sin(3) + 1/50 * cos(3) + 7/6) * exp(-7*t) + 7/50 * sin(3+t)-1/50 * cos(3+t)-1/6 *
exp(-t)

y =

(-7/50 * sin(3) + 1/50 * cos(3) + 7/6) * exp(-7*t) + 5/6 * exp(-t) + 7/50 * sin(3+t)-1/50 *
cos(3 + t)

247

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Symbolic
Algebra and
Calculus Tools

César Pérez Lépez

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB Symbolic Algebra and Calculus Tools
Copyright © 2014 by César Pérez Lopez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0344-6
ISBN-13 (electronic): 978-1-4842-0343-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jeffrey Pepper

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf, Jonathan Gennick,
Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado

Copy Editor: Barnaby Sheppard

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Contents

About the AUROKcccccmiiiemmniesnsisss s a s s n s nnnnmnnnnnnn s vii
Chapter 1: Symbolic Variables and FUNCions..........ccccuisseemmmnsssssnsmmsssssnsmssssssssssssssssssssssnns 1
1-1. SymDOIIC Vari@bIES........coceecercererersir s sr s n s nn s n s 1
1-2. Symbolic Vector Variables............cuceeriierinciennsesesesesssse s sessssssssssssssssssssssssssssessssssnens 6
1-3. Symbolic MatriX Variables.........c.ccvvrvririnrerrrrersesser s se s se e s s snssnssnssnssnes 6
1-4. Character VAriabIes..........couoiiicriiicnirese s sas s s 8
1-5. LOGIC FUNCHIONS......ccieeeieiecsnscrresn e sn s sns s snenn s ra s nnn s 13
1-6. Elementary Functions That Support Complex Symbolic Matrices as Arguments................. 15
1-7. Symbolic Functions of Several Variables..........c.ccoovercrcrcscsssser e 17
1-8. Functions of Single Variables..........c.ccvrvrrrinnrsnsn s ses e s e 18
Chapter 2: Algebraic Expressions and Operations: Factoring Algebraic Fractions.......... 21
2-1. Expansion of Algebraic EXPreSSIONScccvvveererversersesssnssssesses 21
2-2. Factoring Expressions over Fields and their Algebraic Extensions...........cccceeveeersessensennens 25
2-3. Simplifying Algebraic EXPreSSions.........ccveeerercessssessssses s ssssss s sssssssssssssnsssssssssssssssssens 33
2-4. Combining Algebraic EXPreSSIONS........ccvveverrerrersesssssesssens 39
2-5. Grouping of Similar Terms in Algebraic EXPressionsccccccueenvernnnnesnsesssssesessessesensens 46
2-6. Sorting Terms in AlgebraiCc EXPreSSiONnS.........ccueeeereesersessssssssessses 49
Py A [1o o] VLo T 1[0 S 51
2-8. Transforming Algebraic Expressions by CONVErSioNcccceeenvernsenesnsesssesesessessesensens 62
2-9. Subexpressions and Parts of EXPreSSiONS........cccceveeveesersensessessses 66

v

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

Chapter 3: Polynomial Divisibility, Interpolation, and Algebraic Extensions..........cccuruus 73
3-1. Commands for Handling Polynomial EXPreSSionsccccevervesnsensessesssssesssssessessessessensens 73
3-2. Extracting Parts of @ Polynomial...........cccocvvrvrnrnnnensessenses e se e e e e sesnns 80
3-3. Factorization of POlynomials...........cccceeeersssnsincsses s sn e snssnnnas 83
3-4. ROOtS Of POIYNOMIAIScceeeicrrerscrinirese s sn s 89
3-5. Grouping and Ordering TEIMSccvvrvrrerrrrer s se e ss e e sa s sn s sn s sassassaesnenes 94
3-6. Handling of POIYNOMIALScceemriercircee s sn s s sn s 95
3-7. Divisibility and Operations with POlyNOMIalS..........cccoueereninernnesesnsesesessessssessesessessesensens 101
3-8. Interpolation and Polynomial Fitting.........c.ccoccerirvmninninins e 112
3-9. GAl0iS EXIBNSIONS......cceieercrieircrisi s 119
3-10. GIODNEE BASEScoveceirerrrserressiesssssssessssessssssessssssssssssessasens 124
3-11. The mod Operator: Modular Operations with Polynomialscccecvvrvrrrvnressensensennnnns 128
Chapter 4: Symbolic Matrix Algebraccccccimmnnmmnmnmsssmmmssssmmssssss—————— 133
4-1.Vectors and MALIiCESccveeriernniresiserse s s s 133
4-2. Operations with Symbolic MAtriCes.........ccueverrrercrcrrrcr e 134
4-3. Other Symbolic MatriX Operations...........ccoeevrernserresessesessssessssessesssse e ssessssessesessesssssssens 138
4-4. Eigenvalues and Eigenvectors: Diagonalization.............cccveeereersensesssssessessessssssssessensensnnns 157
4-5. Matrix DEeCOMPOSILION........cccceceecercer et r s sn s sr e sn s sn e n e sn s srnnnenn 166
4-6. Similar Matrices and Diagonalizationccvvvvrrrrnrnnn s 182
4-7. SPAISE MALIICES.....ceveerreerrcrie st s a e s e s s a e ea e s ae e e ne e nnens 187
4-8. Special Numeric and Symbolic MatriCesccucvererercrcnss s 189
Chapter 5: Equations and Systems.........ccuccuuimmmmsssnmmsssnmmsssssssssssesssssesssssesssnsssssnsssssnnsss 195
5-1. Special COMMANGSccceeeecereecer s sn s sr s sr e n e snesn e 195
Chapter 6: Series, Continuity, Derivatives, Integrals and Differential Equations........... 211
6-1. Predefined Symbolic FUNCLIONScoorerceececece ettt 211
6-2. Functions for Mathematical Analysis: Limits, Continuity and Seriescccceevvrververierinnne 212
6-3. Derivatives, Integrals and Differential EQUatioNs...........cccceereeercscscs s 216

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

César Pérez Lopez is a Professor at the Department of Statistics and Operations Research at the University of Madrid.
César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which
belongs to the Superior Systems and Information Technology Department of the Spanish Government.

César also currently works at the Institute for Fiscal Studies in Madrid.

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Also Available

e MATLAB Programming for Numerical Analysis, 978-1-4842-0296-8
e MATLAB Control Systems Engineering, 978-1-4842-0290-6

e MATLAB Differential Equations, 978-1-4842-0311-8

e MATLAB Linear Algebra, 978-1-4842-0323-1

e MATLAB Differential and Integral Calculus, 978-1-4842-0305-7

e MATLAB Optimization Techniques, 978-1-4842-0293-7

www.it-ebooks.info

ix

http://www.it-ebooks.info/

	MATLAB Symbolic Algebra and Calculus Tools
	Contents at a Glance
	Contents
	About the Author
	Chapter 1: Symbolic Variables and Functions
	1-1. Symbolic Variables
	1-2. Symbolic Vector Variables
	1-3. Symbolic Matrix Variables
	1-4. Character Variables
	1-5. Logic Functions
	1-6. Elementary Functions That Support Complex Symbolic Matrices as Arguments
	1-7. Symbolic Functions of Several Variables
	1-8. Functions of Single Variables

	Chapter 2: Algebraic Expressions and Operations: Factoring Algebraic Fractions
	2-1. Expansion of Algebraic Expressions
	2-2. Factoring Expressions over Fields and their Algebraic Extensions
	2-3. Simplifying Algebraic Expressions
	2-4. Combining Algebraic Expressions
	2-5. Grouping of Similar Terms in Algebraic Expressions
	2-6. Sorting Terms in Algebraic Expressions
	2-7. Algebraic Fractions
	2-8. Transforming Algebraic Expressions by Conversion
	2-9. Subexpressions and Parts of Expressions

	Chapter 3: Polynomial Divisibility, Interpolation, and Algebraic Extensions
	3-1. Commands for Handling Polynomial Expressions
	3-2. Extracting Parts of a Polynomial
	3-3. Factorization of Polynomials
	3-4. Roots of Polynomials
	3-5. Grouping and Ordering Terms
	3-6. Handling of Polynomials
	3-7. Divisibility and Operations with Polynomials
	3-8. Interpolation and Polynomial Fitting
	3-9. Galois Extensions
	3-10. Gröbner Bases
	3-11. The mod Operator: Modular Operations with Polynomials

	Chapter 4: Symbolic Matrix Algebra
	4-1. Vectors and Matrices
	4-2. Operations with Symbolic Matrices
	4-3. Other Symbolic Matrix Operations
	4-4. Eigenvalues and Eigenvectors: Diagonalization
	4-5. Matrix Decomposition
	4-6. Similar Matrices and Diagonalization
	4-7. Sparse Matrices
	4-8. Special Numeric and Symbolic Matrices

	Chapter 5: Equations and Systems
	5-1. Special Commands

	Chapter 6: Series, Continuity, Derivatives, Integrals and Differential Equations
	6-1. Predefined Symbolic Functions
	6-2. Functions for Mathematical Analysis: Limits, Continuity and Series
	6-3. Derivatives, Integrals and Differential Equations

