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Chapter 1

Symbolic Variables and Functions

1-1. Symbolic Variables
MATLAB deems as symbolic any algebraic expression whose variables have all been previously defined as symbolic; 
variables are declared as symbolic using the command syms. For example, if we want to treat as symbolic the 
expression 6 * a * b + 3 * a^2 + 2 * a * b, in order to simplify it, we need to declare the two variables a and b as symbolic, 
as shown here:

>> syms a b
>> simplify(6*a*b + 3*a^2 + 2*a*b)

ans =
  
8 * a * b + 3 * a ^ 2 

As we will see, the command needed to transform a numeric expression to symbolic is sym. For example, if we 
want to simplify the numeric expression 2/5 + 6/10 + 8/20, we need to first transform it to a symbolic expression with 
sym(2/5+6/10+8/20), performing the simplification as follows:
 
>> simplify(sym(2/5+6/10+8/20))

ans =
  
7/5 

The variables of symbolic expressions must be symbolic. Some of the commands for working with symbolic and 
numeric variables are detailed below:

syms x y z... t makes the variables x, y, z,..., t symbolic.

syms x y z... t real converts the variables x, y, z,..., t to symbolic variables with 
real values.

syms x y z... t unreal undoes the previous declaration, so that the variables x, y, 
z,..., t may now have non-zero imaginary parts.

syms lists all symbolic variables currently in the workspace.

x = sym('x') declares the variable x as symbolic (equivalent to syms x).
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x = sym('x', real) converts x to a real symbolic variable.

x = sym('x',unreal) enables the symbolic variable x to have non-zero imaginary part.

S = sym(A) creates a symbolic object from A, where A may be a string, a scalar, an 
array, a numeric expression, and so on.

S = sym(A,'option') converts the array, scalar or numeric expression to a symbolic 
expression according to the specified option. The option can be f for floating point,  
r for rational, e for estimate error, or d for decimal.

numeric(x) or double(x) converts the variable or expression x to double-precision.

sym2poly(poly) converts the symbolic polynomial poly to a vector whose components 
are its coefficients.

poly2sym(vector) returns a symbolic representation of the polynomial whose 
coefficients are given by the vector.

poly2sym(vector,'v') converts a vector into a symbolic polynomial in the variable v.

digits(d) sets the precision of symbolic variables to d significant decimal digits.

digits returns the current precision for symbolic variables.

vpa(expr) returns the numerical result of the expression with a number of significant 
decimal digits of precision determined by digits.

vpa(expr, n) or vpa('expr', n)  returns the numerical result of the expression to n 
significant decimal digits.

pretty(expr) displays the symbolic expression using standard mathematical 
formatting.

EXERCISE 1-1

Solve the equation ax2 + bx + c = 0 assuming that the variable is x. Also solve it for the variables a, b and c, 
respectively.

Because MATLAB considers x to be symbolic by default, we can solve the equation directly for x without having 
to specify it as a symbolic variable using the command solve (note that in MATLAB the equations are introduced 
within single quotes):
 
>> solve('a*x^2+b*x+c=0')

ans =
 
[1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[1/2/a*(-b-(b^2-4*a*c)^(1/2))] 
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However, to solve the equation with respect to the variables a, b or c , it is necessary to first declare them as 
symbolic variables:
 
>> syms a
>> solve('a*x^2+b*x+c=0',a)

ans =
 
-(b*x+c)/x^2

>> syms b
>> solve('a*x^2+b*x+c=0',b)

ans =
 
-(a*x^2+c)/x

>> syms c
>> solve('a*x^2+b*x+c=0',c)

ans =
 
-a*x^2 - b*x
 

EXERCISE 1-2

Find the roots of the polynomial x4 - 8 x2 + 16 = 0, obtaining the result to default accuracy, to 20 significant 
figures and to double-precision exact accuracy. Also generate the vector of coefficients associated with the 
polynomial.
 
>> p = solve('x^4-8*x^2-16=0')

p =
 
[ 2*(2^(1/2)+1)^(1/2)]
[-2*(2^(1/2)+1)^(1/2)]
[ 2*(1-2^(1/2))^(1/2)]
[-2*(1-2^(1/2))^(1/2)]
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>> vpa(p)

ans =
  
[    3.1075479480600746146883179061262]
[   -3.1075479480600746146883179061262]
[  1.2871885058111652494708868748364*i]
[ -1.2871885058111652494708868748364*i]

>> numeric(p)

ans =
 
 3.1075
-3.1075
      0 + 1.2872i
      0 - 1.2872i

>> vpa(p,20)

ans =
 
[   3.1075479480600746146]
[  -3.1075479480600746146]
[ 1.2871885058111652495*i]
[-1.2871885058111652495*i]

>>  syms x
>>  sym2poly(x^4-8*x^2-16)

ans =
 
1 0 -8 0 -16
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EXERCISE 1-3

Find the numerical value, to default precision, of the abscissa of the intersection of the curves y = sin(x) and  
y = cos(x) in the first quadrant. Find the exact (symbolic) solution. Find the abscissa to a precision of 12 decimal 
places.
 
>> p = numeric(solve('sin(x) = cos(x)'))

p =
 
0.7854

>> q = sym (p)

q =

PI/4

>> digits(12); r=numeric(solve('sin(x)=cos(x)'))

r =
 
.785398163398

EXERCISE 1-4

Simplify the following expressions as much as possible:

1/2m - 1/3m + 1/4m + 1/5m + 1/6m

1/2 - 1/3 + 1/4 + 1/5 + 1/6
 
>> syms m
>> simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m))

ans =
  
47/60/m
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>> pretty(simplify(1/(2*m) - 1/(3*m) + 1/(4*m) + 1/(5*m) + 1/(6*m)))

47
--
60

>> sym(1/2 - 1/3 + 1/4 + 1/5 + 1/6)

ans =
  
47/60

1-2. Symbolic Vector Variables
A variable that represents a vector of length n can be defined in MATLAB in the following ways:
 
variable = [e1, e2, e3,..., en]
variable = [e1 e2 e3... en]
 

Therefore, to define a vector variable, simply insert brackets around the vector elements, separated by commas or 
blank spaces.

On the other hand, you can also define symbolic vector variables, after previously using the syms command.
 
>> syms t
>> A=sym([sin(t),cos(t)])

A =
 
[sin (t), cos (t)]

1-3. Symbolic Matrix Variables
To define an array in MATLAB, simply enter in brackets all of its row vectors separated by semicolons. When entering 
a vector, you can separate its components by spaces or commas, as we’ve already seen. For example, a 3 × 3 matrix 
variable can be entered in the following two ways:
 
matrix = [a

11
 a

12
 a

13
;a

21
 a

22
 a

23
;a

31
 a

32
 a

33
]

 
matrix = [a

11
, a

12
, a

13
;a

21
, a

22
, a

23
;a

31
, a

32
, a

33
]
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We would similarly define an M × N variable array. To work with symbolic matrices, we simply declare the 
variables involved to be symbolic with the syms command:
 
>> syms t
>>  A=sym([sin(t),cos(t);tan(t),exp(t)])

A =
 
[sin (t), cos (t)]
[tan (t), exp (t)]

>> b = inv (A)

b =
  
[-exp (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), cos (t) / (-sin (t) * exp (t) + cos (t) *  
tan (t))]
[tan (t) / (-sin (t) * exp (t) + cos (t) * tan (t)), - sin (t) / (-sin (t) * exp (t) + cos (t) *  
tan (t))] 

Once a matrix variable has been defined, MATLAB provides many ways to insert, extract, renumber, and 
generally manipulate its elements.

A(m,n) returns the (m, n)th element of the matrix A (row m and column n).

A(a:b,c:d) returns the subarray of A formed by the a-th through b-th rows, inclusive, 
and the c-th and d-th columns, inclusive.

A(a:p:b,c:q:d) returns the subarray of A formed by every p-th row between the a-th 
and b-th rows and by every q-th column between the c-th and d-th columns.

A([a b],[c d]) returns the subarray of A formed by the intersection of rows c and d 
and columns a and b.

A([a b c...],[e f g...]) returns the subarray of A formed by the intersection of rows 
a,b,c,... and columns e,f,g,...

A(:,c:d) returns the subarray of A consisting of all the rows of A and the c-th through 
d-th columns, inclusive.

A(:,[c d e ...]) returns the subarray of A formed by all rows and columns c,d,e,...

A(a:b,:) returns the subarray of A formed by all the columns of A and the a-th through 
b-th rows, inclusive.

A([a b c...],:) returns the subarray of A formed by all the columns of A and rows 
a,b,c,...

A(a,:) returns the a-th row of the matrix A.

A(:,b) returns the b-th column of the matrix A.

A (:) returns a column vector whose elements are columns of A placed in order below 
one another.
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A(:,:) is equivalent to all rows and columns of the matrix A.

[A, B, C,...] returns the matrix formed by A, B, C,...

SA = [ ] deletes the subarray S of the matrix A, and returns the remaining matrix.

diag(v) creates a diagonal matrix with the vector v in the diagonal.

diag(A) returns the diagonal of the matrix A as a column vector.

flipud(A) returns the matrix whose rows are placed in reverse order (from top to 
bottom) to the rows of A.

fliplr(A) returns the matrix whose columns are placed in reverse order (from left to 
right) to those of A.

rot90(A) rotates the matrix A 90 degrees counterclockwise.

reshape(A,m,n) returns the m × n matrix extracted from the matrix A, where consecutive 
elements of the original matrix fill the new matrix column by column.

size(A) returns the order (size) of the matrix A.

find(condA) returns the items in A that satisfy the stated condition.

length(v) returns the length of the vector v.

tril(A) returns the lower triangular part of the matrix A.

triu(A) returns the upper triangular part of the matrix A.

A' returns the transpose of the matrix A.

inv(A) returns the inverse of the matrix A.

The most important operations with array variables are summarized below:

A + B, A - B, A * B sum, difference and product of matrices.

A\B  If A is square, A\B = inv (A) * B. If A is not square, A\B is the solution, in the 
sense of least-squares, of the system AX = B.

B/A coincides with (A'\B')'.

A^n coincides with A * A * A *... * A n times (nth power).

P^A performs the calculation only if p is a scalar.

1-4. Character Variables
MATLAB is capable of powerful numerical calculation, but it also provides versatility in handling character variables 
(text variables). A character variable (string) is simply a string of characters, included in single quotes, which MATLAB 
treats as a vector. For example:
 
>> c = 'string'

c =
 
string 
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We have thus defined the variable c as a character variable. Among the MATLAB commands that handle 
character variables are the following:

abs('string') returns the vector whose elements are the ASCII values of the characters 
in the string.

setstr(numeric_vector) returns the string of ASCII characters that are equivalent to 
the elements of the vector.

str2mat(t1,t2,t3,...) returns the matrix whose rows are the strings t1, t2, t3,..., 
respectively.

str2num('string') converts the string of characters into an exact numerical value 
using eval.

num2str(number) converts the number into its string of equivalent characters with fixed 
precision.

int2str(integer) converts the integer into a string.

sprintf('format', A) converts the exact numeric array A into a string using the 
specified format.

sscanf('string', 'format') converts the string to a numeric value in the specified 
format.

dec2hex(integer) converts the decimal integer into its equivalent string in 
hexadecimal.

hex2dec('string_hex') converts the hexadecimal string into the equivalent integer.

hex2num('string_hex') converts the hexadecimal string into the equivalent IEEE 
floating-point number.

lower('string') converts the string to lowercase.

upper('string') converts the string to uppercase.

strcmp(s1,s2) compares the strings s1 and s2 and returns 1 if they are equal, and 0 
otherwise.

strcmp(s1,s2,n) compares the strings s1 and s2 and returns 1 if they are equal in their 
first n characters and 0 otherwise.

strrep(c, 'exp1', 'exp2') replaces exp1 with exp2 in the string c.

findstr(c, 'exp') returns the position of the expression exp in the string c.

isstr(expression) or ischar(expression) returns 1 if the expression is a string and 0 if 
it is not.

strjust(string) right-justifies the string.

blanks(n) generates a string of n blank characters.

deblank(string) replaces the characters in the string with blanks.

eval(expression) executes the expression even if it is a string.
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disp('string') displays the string (or array) as written. MATLAB then continues 
processing.

input('string') displays the string on screen, then MATLAB pauses until the user 
presses a key to continue.

Here are some examples:
 
>> eval('4 * atan(1)')

ans =
 
3.1416 

In the following examples you can see how MATLAB numerically evaluates the contents of a string (provided it is 
in a form recognized by the program):
 
>> hex2dec('3ffe56e')

ans =
 
67102062 

Here, MATLAB has returned a decimal from a string in hexadecimal. The opposite conversion looks like this:
 
>> dec2hex(1345679001)

ans =
 
50356E99 

Here, the program has converted a decimal number to a hexadecimal string.
 
>> sprintf('%f',[1+sqrt(5)/2,pi])

ans =
 
2.118034 3.141593 

With sprintf, the exact numerical components of a vector have been converted to a string (with default precision).
 
>> sscanf('121.00012', '%f')

ans =
 
121.0001 
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With sscanf, a numeric string was returned in exact numerical format (with default precision).
 
>> num2str (pi)

ans =
 
3.142 

The exact number is now the value of p as a string.
 
>> str2num('15/14')

ans =
 
1.0714 

A string has been converted to an exact numeric value, with default accuracy.
 
>> setstr(32:126)

ans =
 
!"#$% &' () * +, -. / 0123456789:; < = >? @ABCDEFGHIJKLMNOPQRSTUVWXYZ [\] ^ 
_'abcdefghijklmnopqrstuvwxyz {|}~ 

This operation obtained the ASCII characters associated with the whole numbers between 32 and 126.
 
>> abs('{]}><#¡¿?°ª')

ans =
123 93 125 62 60 35 161 191 63 186 170 

With the abs command we have obtained the integers corresponding to each ASCII character specified in its 
argument.
 
>> lower('ABCDefgHIJ')

ans =
 
abcdefghij 
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This command translated the text to lowercase.
 
>> upper('abcd eFGHi jKlMn')

ans =
 
ABCD EFGHI JKLMN 

Here we have converted the text to uppercase.
 
>> str2mat ('The world','The country','Daily 16','ABC')

ans =
 
The world
The country
Daily 16
ABC 

The str2mat command has created an array of text whose rows are the strings specified as its arguments.
 
>> disp('This text will appear on the screen')

This text will appear on the screen 

This command has displayed as screen text the argument of the command disp.
 
>> c = This is 'a good example';
>> strrep(c, 'good', 'bad')

ans =
 
This is a bad example 

This command has replaced good with bad in the string c. The following command finds the position that the 
expression is occupies within the string c.
 
>> findstr(c, 'is')

ans =
 
3 6
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1-5. Logic Functions
MATLAB has a group of functions whose output is either true (value 1) or false (value 0). Among them are the 
following:

exist(A) tests whether the variable or function A exists (returns 0 if A does not exist, 
and a number between 1 and 5, depending on the type, if it does exist).

any(V) returns 0 if all elements of the vector V are zero, and returns 1 if some element of 
V is non-null.

any(A) returns 0 for each column of the matrix A with all null elements, and returns 1 
for each column of the matrix A that has some non-null elements.

all(V) returns 1 if all the elements of the vector V are non-null, and returns 0 if some 
element of V is zero.

all(A) returns 1 for each column of the matrix A in which no elements are null, and 
returns 0 for each column of A that has any null elements.

find(V) returns the places (or indices) occupied by the non-zero elements of the vector V.

isNaN(V) returns 1 for the elements of V that are indeterminate, and returns 0 for those 
that are not.

isinf(V) returns 1 for the elements of V that are infinite, and returns 0 for those that 
are not.

isfinite(V) returns 1 for the elements of V that are finite, and returns 0 for those that 
are not.

isempty(A) returns 1 if A is an empty array, and returns 0 otherwise (an empty array is 
one that has one of its dimensions equal to 0).

issparse(A) returns 1 if A is sparse, and returns 0 otherwise.

isreal(V) returns 1 if all the elements of V are real, and 0 otherwise.

isprime(V) returns 1 for all elements of V that are prime numbers, and returns 0 for 
elements of V that are not prime.

islogical(V) returns 1 if V is a logical vector and 0 otherwise.

isnumeric(V) returns 1 if V is a numeric vector and 0 otherwise.

ishold returns 1 if hold is on and 0 otherwise. When hold is on the current plot and 
(most) axis properties are held so that subsequent graphing commands add to the 
existing graph.

isieee returns 1 if the computer uses IEEE arithmetic and 0 otherwise.

isstr(S) returns 1 if S is a string, and 0 otherwise.

ischart(S) returns 1 if S is a string, and 0 otherwise.

isglobal(A) returns 1 if A is a global variable, and 0 otherwise.
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isletter(S) returns 1 if S is a letter of the alphabet, and 0 otherwise.

isequal(A,B) returns 1 if the matrices or vectors A and B are equal, and 0 otherwise.

ismember(V,W) returns 1 for every element of V that is in W, and 0 for every element  
of V that is not in W.

Here are some examples:
 
>> isinf([pi NaN Inf -Inf])

ans =
 
0     0     1     1

>> any([pi NaN Inf -Inf])

ans =
 
1

>> ismember([1,2,3,5],[8,12,1,3,56,5])

ans =
 
1     0     1     1

>> A = [2,0,1]; B = [4,0,2];
>> isequal(2*A,B)

ans =
 
1

>> V=[-10,5,3,12,0];
>> isprime(V)

ans =
 
0     1     1     0     0

>> isnumeric(V)

ans =
 
1
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>> all(V)

ans =
 
0

>> any(V)

ans =
 
1

>> C = [0 2 3;0 1 2 ;0 4 6],D = [0 0 0 0;4 3 1 2;6 0 0 4]
>> any(C),all(C),any(D),all(D)

ans =
 
0 1 1
 
ans =
 
0 1 1
 
ans =
 
1 1 1 1
 
ans =
 
0 0 0 0

1-6. Elementary Functions That Support Complex Symbolic 
Matrices as Arguments

•	 Trigonometric

sin(z) 	 sine function
sinh(z) 	 hyperbolic sine function
asin(z) 	 arcsine function
asinh(z)	 hyperbolic arcsine function
cos(z)  	 cosine function
cosh(z)	 hyperbolic cosine function
acos(z)	 arccosine function
acosh(z)	 hyperbolic arccosine function
tan(z)	 tangent function
tanh(z)	 hyperbolic tangent function
atan(z)        	 arctangent function
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atan2(z)	 arctangent function in the fourth quadrant
atanh(z)	 hyperbolic arctangent function
sec(z)	 secant function
sech(z)	 hyperbolic secant function
asec(z)	 arcsecant function
asech(z)	 hyperbolic arcsecant function
csc(z)	 cosecant function
csch(z)	 hyperbolic cosecant function
acsc(z)	 arccosecant function
acsch(z)	 hyperbolic arccosecant function
cot(z)	 cotangent function
coth(z)	 hyperbolic cotangent function
acot(z)	 arccotangent function
acoth(z)	 hyperbolic arccotangent function

•	 Exponential

exp(z)	 base e exponential function
log(z)	 Napierian logarithm function
log10(z)	 decimal logarithm function
sqrt(z)	 square root function

•	 Complex

abs(z)	 modulus or absolute value
angle(z)	 argument
conj(z)	 complex conjugate
imag(z)	 imaginary part
real(z)	 real part

•	 Numerical

fix(Z)	 removes the decimal part
floor(Z)	 rounds decimals to the nearest lower integer
ceil(Z)	 rounds decimals to the nearest greater integer
round(Z)	� rounds Z to the nearest integer, rounding values mid way between 

two integers to the integer with the largest magnitude.
rem(Z1, Z2)	 remainder of the division of Z1 by Z2
sign(Z)	 sign function

•	 Matrix

expm(Z)	 matrix exponential function by default
expm1(Z)	 matrix exponential function in M-file
expm2(Z)	 matrix exponential function via Taylor series
expm3(Z)	 matrix exponential function via eigenvalues
logm(Z)	 matrix logarithm
sqrtm(Z)	 matrix square root
funm(Z,'function')	 applies the function to the array Z
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1-7. Symbolic Functions of Several Variables
Functions of one or several variables are defined using the command maple as follows:

maple('f: = x - > f (x)') or  maple f: = x - > f (x) defines the function f(x).

maple ('f:=(x,y,z...)- > f(x,y,z...)') defines the function f(x,y,z,..).

maple ('f:=(x,y,z...)- > (f1 (x,y...), f2(x,y..),...)') defines the vector 
function (f1(x,y,..), f2(x,y,..),...).

To find the value of the function (x, y, z) - > f (x,y,z...) at the point (a, b, c,...), use the expression 
maple('f(a,b,c,...)').

We can find the value of the vector function f :=(x,y,..)-> (  f 1(x,y,..), f 2(x,y,..),...) at the point (a,b,...) by using the 
expression maple('f(a,b,..)').

The function f (x,y) = 2x + y is defined in the following way:
 
>> maple ('f:=(x,y) - > 2 * x + y ');
 

f (2,3) and f (a,b) are calculated as follows:
 
>> maple('f(2,3)')

ans =
 
7

>> maple('f(a,b)')

ans =
 
2 * a + b

EXERCISE 1-5

Given the function h, defined as  h(x,y) = (cos(x2-y2), sin(x2-y2)); calculate h(1,2), h(-Pi,Pi) and h(cos(a2), cos(1 -a2)).
Because we have a vector function of two variables, we use the maple command:
 
>> maple ('h:=(x,y) - > (cos(x^2-y^2), sin(x^2-y^2))');
>> maple ('A = h(1,2), B = h(-pi,pi), C = h (cos(a^2), cos(1-a^2))')

ans =
 
A = (cos(3),-sin(3)), B = (1,0),
C = (cos(cos(a^2)^2-cos(-1+a^2)^2), sin(cos(a^2)^2-cos(-1+a^2)^2))
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1-8. Functions of Single Variables
Functions of a single variable are a special case of vector functions, but they can also be defined in MATLAB via:  
f = 'function'. To find the value of the function f at a point, you use the command subs, whose syntax is as follows:

subs(f, a) applies the function f at the point a

subs(f, a, b) substitutes each occurrence of a by b in the expression f.

Let’s see how to define the function f (x) = x ^ 2 :
 
>> f ='x ^ 2'

f =
 
x ^ 2 

Now we calculate the values f (4), f (a+1) and f (3x+x^2):
 
>> syms a x
>>  A=subs(f,4),B=subs(f,a+1),C=subs(f,3*x+x^2)

A =
 
16
 
B =
 
(a+1) ^ 2
 
C =
 
(3 * x + x ^ 2) ^ 2

It should also be borne in mind that if we use the maple command, the special constants p ,e, i, and ∞ are defined 
as maple('Pi'), maple('exp (1)'), maple('i') and maple('infinity'), respectively.
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EXERCISE 1-6

Define the functions f (x) = x2, g (x) = x1/2 and h (x) = x + sin (x). Calculate f (2), g (4) and h (a-b2).
 
>> f ='x^2'; g = 'x^(1/2)'; h = 'x+sin(x)';
 
>> syms a b
>> a = subs(f,2), b = subs(g,4), c = subs(h,'a-b^2')

A =
 
4
 
b =
 
4 ^(1/2)
 
c =
 
a - b^2 + sin(a-b^2) 

We could also have done the following:
 
>> maple('f:=x->x^2: g:=x->sqrt(x):h:=x->x+sin(x)');
>> maple('f(2),g(4),h(a-b^2)')

ans =
 
4, 2, a - b^2 + sin(a-b^2)
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Chapter 2

Algebraic Expressions and 
Operations: Factoring Algebraic 
Fractions

MATLAB handles all calculations involving simple, rational, and complex algebraic expressions with mastery.  
It quickly and efficiently performs the operations of simplification, factorization, grouping, and expansion of algebraic 
expressions, no matter how complicated, including trigonometric expressions and expressions involving complex 
variables. All of this is possible provided the symbolic math Toolbox is available. The following is a list of commands 
which implement the algebraic transformations most commonly used in work with MATLAB.

2-1. Expansion of Algebraic Expressions
The following commands enable MATLAB to expand or develop algebraic expressions:

expand(expr) expands an algebraic expression, presenting the result as a sum of 
products and powers. It applies multiple angle rules for trigonometric expressions 
and formally applies the properties of exponential and logarithmic functions. It also 
decomposes quotients of polynomials by expanding the numerator, presenting the 
original expression as a sum of algebraic quotients.

maple('expand(expr)')  completely expands the algebraic expression, transforming 
products and powers into sums of terms, applying multiple angle rules for 
trigonometric functions and expansion rules for exponential functions. It then 
simplifies the end result.

maple('Expand(expr)') performs the inert expansion of expr (that is, it goes through 
the steps of expansion without evaluation).

maple('expand(expr) mod n') performs the expansion of expr modulo n.

maple('Expand(expr) mod n') gives the inert expansion of expr modulo n.

maple('expand(expr, sub1,...,subn)') expands expr without expanding its 
subexpressions sub1,..., subn.

maple('expand(rational)') expands the numerator of the given rational algebraic 
expression.
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maple('expand(equation)') expands both sides of the equation.

maple('expand([expr1,...,exprn])') creates a list of expanded expressions.

maple('expand({expr1,...,exprn})') creates a set of expanded expressions.

maple('expandoff(command)') suppresses the expansion of expressions involving the 
specified command in future calculations.

maple('expandoff(com1,...,comn)') suppresses the expansion of expressions 
involving the specified commands in future calculations.

maple('expand(expandoff ())') suppresses the expansion of expressions for all 
commands in future calculations.

maple('expandon(command)') enables the expansion of expressions involving the 
specified command in future calculations. First, it checks whether the command has 
been previously affected by expandoff, and if so, it eliminates its effect.

maple('expandon(com1,...,comn)') enables the expansion of expressions involving the 
specified commands in future calculations.

maple('expand(expandon ())') enables the expansion of expressions for all commands 
in future calculations.

maple('frontend(command, [expr1,..., exprn])') paralyzes the expansion of the 
given expressions before submitting to the specified command or procedure.

maple('frontend(command, [expr1,..., exprn], [arg1,..., argm])') paralyzes the 
expansion of the given expressions expr1,...,exprn before submitting to the specified 
command or procedure, but does not freeze arg1,...,argm.

Now let’s look at several examples of algebraic manipulations using the commands we’ve just seen:
 
>> syms x y z t a b
>> pretty(expand((x+1)*(x+2)))

                                 2
                                x  + 3 x + 2

>> pretty(expand((x+1)/(x+2)))

                                   x         1
                                ------ + -------
                                x + 2     x + 2

>> pretty (expand (sin (x + y)))

                         sin(x) cos(y) + cos(x) sin(y)
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>> pretty(expand(cos(2*x)))

                                         2
                                 2 cos(x)  - 1

>> pretty(expand(exp(a+log(b))))

                                    exp(a) b

>> pretty(expand(log(x/(1-x)^2)))

                            log(x) - 2 log(1 - x)

>> pretty(expand((x+1)*(y+z)))

                               x y + x z + y + z

>> pretty(expand(BesselJ(2,t)))

                            besselJ(1, t)
                        2 ------------------ - besselJ(0, t)
                                     t

>> maple('expandoff(exp):expand(exp(a+b))')

ans =

exp(a+b)

>> maple('expandon(exp):expand(exp(c+d))')

ans =
 
exp(c)*exp(d) 
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EXERCISE 2-1

Find the greatest common divisor of the following algebraic expressions a and b:

a = sin2(x) + 2 sin(x) + 1, b = sin(x) + 1

First, we try to solve the problem directly.
 
>> syms a b x
>> maple ('a: = sin (x) ^ 2 + 2 * sin (x) + 1, b: = sin(x) + 1:gcd(a,b)')

Error, (in gcd) arguments must be polynomials over the rationals. 

To avoid this error, use the command frontend as follows:
 
>> maple('frontend(gcd,[a,b])')

ans =
 
sin (x) + 1
 

EXERCISE 2-2

Expand the polynomial (x+2)2(x-2) as much as possible modulo 3. Also expand the polynomial (x +a)2(x -a) where 
a = RootOf (x2- 2). At the same time, expand the polynomial (x +b)2(x -b) modulo 2 where b = RootOf (x2+x+1).
 
>> pretty(sym(maple('expand( (x+2)^2*(x-2) ) mod 3')))

                          3      2
                         x  + 2 x  + 2 x + 1

>> pretty(sym(maple('alias(a=RootOf(x^2-2)):evala(Expand( (x+a)^2*(x-a) ))')))

                          3      2
                         x  + a x  - 2 x - 2 a

>> pretty(sym(maple('alias(b=RootOf(x^2+x+1)):evala(Expand( (x+b)^2*(x-b) ) mod 2)')))

                          3          2
                         x  + x + b x  + b x + 1 

The command alias is used to define abbreviations for objects, which helps to reduce the complexity of the output.
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2-2. Factoring Expressions over Fields and their Algebraic 
Extensions
The following commands enable Maple to factorize algebraic expressions, whether univariate, multivariate, over the 
field of real numbers or over the field of their coefficients or algebraic extensions thereof. The command syntax is as 
follows:

factor(expr) writes an algebraic expression as a product of factors (the reverse 
of expand). Factoring is performed by default over the field or ring defined by the 
coefficients of the expression. For algebraic fractions, the numerator and denominator 
are individually factored and common factors are cancelled.

maple('factor(expression)') factorizes a non-polynomial or polynomial algebraic 
expression over the field or ring defined by its coefficients.

maple('factor(expr,a)')  factorizes the polynomial algebraic expression over the field 
defined by its coefficients and the extension element a (where a is usually a simple or 
compound radical or an algebraic number defined by a RootOf expression).

maple('factor(expression,radical)') factorizes the polynomial expression over the 
field extension Q(radical) of Q. For example, Q(√2) or Q(RootOf(x^2-3)).

maple('factor(expr,[rad1,..., radn]) or factor(expr, {rad1,..., radn})') 
factorizes the polynomial expression over the field extension Q(rad1,..., radn) of Q.  
For example, Q (√2,√3).

maple('factor(rational)') factorizes the numerator and denominator of the given 
rational expression, normalizing it.

maple('factor(equation)') factorizes both sides of an equation.

maple('factors(expression)') returns the factors and their multiplicities for the given 
polynomial algebraic expression, over the field defined by their coefficients.

maple('factors(expr,radical)') returns factors and their multiplicities for the given 
polynomial expression over the field extension Q(radical) of Q. For example,Q(√2) or 
Q(RootOf(x^2-3)).

maple('factors(expr,[rad1,..., radn]) or factors(expr, {rad1,..., radn})') 
gives the factors and their multiplicities for the given polynomial expression over the 
field Q(rad1,..., radn); for example, Q(√2, √3).

maple('factor(expr) mod n') performs the factorization of the given non-polynomial 
or polynomial expression over the field determined by its coefficients modulo n.

maple('Factor(expression)') gives in inert form the factorization of the given 
polynomial or non-polynomial expression over the field defined by its coefficients.

maple('Factors(expression)') represents in inert form the factors of the given 
polynomial expression.

maple('Factor(expr) mod n') performs the inert factorization of the given expression, 
whether non-polynomial or polynomial, over the field defined by its coefficients  
modulo n.

maple('Factors(expression)') represents in inert form the factors of the given 
polynomial expression modulo n.
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maple('AFactor(expression)') performs the inert absolute factorization of the given  
expression.

maple('AFactors(expression)') represents in inert form the factors of the absolute 
factorization of the given polynomial expression.

maple('Berlekamp(expr,var)') represents the inert form of the Berlekamp 
factorization of varying degrees for the multivariate expression expr with respect to the 
variable var.

maple('Berlekamp(expr, var) mod n') represents the inert form of the Berlekamp 
factorization of varying degrees modulo n for the multivariate expression expr with 
respect to var.

maple('readlib(split):split(expr, variable)') performs the complete factorization 
of the given polynomial expression in the specified variable.

maple('grading(Inert_command(expr1,..., exprn))') evaluates the specified function 
or inert command over the field defined by the coefficients of the expressions. Applies 
to inert commands such as Factor, Factors, AFactor, AFactors, Expand, and so on.

maple('grading(Inert_command(expr1,..., exprn, n))') evaluates the specified 
function or inert command over  Z modulo n.

maple('value(expr_inert)') evaluates the given expression containing inert 
commands or functions of the type Diff, Int, Product, Sum or Limit.

Here are some examples:
 
>> syms x y
>> pretty(factor(6*x^2+18*x-24))

                               6 (x + 4) (x - 1) 

In the following example we simplify the numerator and denominator of an algebraic fraction, cancelling 
common factors:
 
>> pretty (factor ((x^3-y^3) /(x^4-y^4)))

                                   2          2
                                 x  + y x + y
                               ---------------------
                                          2    2
                                (x + y) (x  + y   ) 

The following examples show factorizations of expressions over field extensions defined by the coefficients of the 
expression and the element(s) given in the second argument:
 
>> pretty(sym(maple('factor(x^3+5, 5^(1/3))')))

                           2    1/3      2/3        1/3
                        (x  - 5    x + 5   ) (x + 5   )
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>> pretty(sym(maple('factor(x^3+5, {5^(1/3),(-3)^(1/2)})')))

                 1/3       1/2  1/3          1/3       1/2  1/3        1/3
     1/4 (2 x - 5    - (-3)    5   ) (2 x - 5    + (-3)    5   ) (x + 5   )

 >> pretty(sym(maple('factor(y^4-2,sqrt(2))')))

                              2    1/2    2    1/2
                            (y  + 2   ) (y  - 2   )

>> pretty (sym (maple ('factor (y^ 4-2, RootOf(x^2-2))')))

                   2            2         2            2 
                 (y  + RootOf(_Z  - 2)) (y  - RootOf(_Z  - 2)) 

The following example highlights the difference between factoring a polynomial expression over the field defined 
by its coefficients and the extension of this field by (- 3) ^(1/2):
 
>> pretty (factor(x^3+y^3))

                                      2          2
                            (x + y) (x  - x y + y  )

>> pretty(sym(maple('factor(x^3+y^3,(-3)^(1/2))')))

                              1/2                  1/2
            1/4 (2 x - y - (-3)    y) (2 x - y + (-3)    y) (x + y)

>> pretty (sym (maple ('factor(x^3+5,complex)')))

 (x + 1.7099759466766969893531088725439). (x - .85498797333834849467655443627193
+ 1.4808826096823642385229974586353 +i)
(x -.85498797333834849467655443627193 - 1.4808826096823642385229974586353 i) 

In the following examples we perform factorizations using factors. This command returns the factors together 
with their multiplicities.
 
>> maple('readlib(factors)');
>> pretty(sym(maple('factors( 3*x^2+6*x+3 )')))

                          [3, [[x + 1, 2]]]
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>> pretty(sym(maple('Digits:=10:factors( x^4-4.0 )')))

                                               2
[1.,[[x+1.414213562, 1], [x-1.414213562, 1], [x +1.999999999, 1]]]

>> pretty(sym(maple(factors( x^4-4.0,complex)')))

[1., [[x + 1.414213562, 1], [x + 1.414213562 i, 1], [x - 1.414213562 i, 1],
    [x - 1.414213562, 1]]] 

The following are examples of the inert and complete factorization commands Factor, Factors, AFactor, AFactors, 
split and Berlekamp.
 
>> pretty(sym(maple('Factor(x^2+3*x+3) mod 7')))

                           (x + 6) (x + 4)

>> pretty(sym(maple('alias(sqrt2=RootOf(x^2-2)):evala(Factor(x^2-2,sqrt2))')))

                       (x + sqrt2) (x - sqrt2)

>> pretty(sym(maple('evala(Factor(x^2-2*y^2,sqrt2))')))

                     (x - sqrt2 y) (x + sqrt2 y)

>> pretty(sym(maple('expand((x^3+y^5+2)*(x*y^2+3)) mod 7')))

                4  2      3    7        5        2
               x  y  + 3 x  + y  x + 3 y  + 2 x y  + 6

>> pretty (sym (maple ('Factor ('') mod 7')))

                          3    5          2
                       (x  + y  + 2) (x y  + 3)

>> pretty(sym(maple('Factors(2*x^2+6*x+6) mod 7')))

                    [2, [[x + 4, 1], [x + 6, 1]]]

>> pretty(sym(maple('Factors(x^5+1) mod 2')))

                                     4    3    2
             [1, [[x + 1, 1], [x  + x  + x  + x + 1, 1]]]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

29

>> pretty(sym(maple('evala(Factors(2*x^2-1,sqrt2))')))

            [2, [[x + 1/2 sqrt2, 1], [x - 1/2 sqrt2, 1]]]

>> pretty(sym(maple('alias(sqrtx=RootOf(y^2-x,y)):evala(Factors(x*y^2-1,sqrtx))')))

                         sqrtx         sqrtx
               [x, [[y + -----, 1], [- ----- + y, 1]]]
                           x             x

>> pretty (sym (maple ('grading (AFactor(x^2-2*y^2))')))

(x sqrt2 y) (x + sqrt2 y)

>> pretty (sym (maple ('grading (AFactors(x^2-2*y^2))')))

                   [1, [[x - sqrt2 y, 1], [x + sqrt2 y, 1]]] 

The following are examples of complete and Berlekamp factorizations.
 
>> pretty(sym(maple('readlib(split):split(x^2+x+1,x)')))

                    2                              2
      (x - RootOf(_Z  + _Z + 1)) (x + 1 + RootOf(_Z  + _Z + 1))

>> pretty(sym(maple('split(x^2+y*x+1+y^2, x, b)')))

              2             2                    2               2
(x - RootOf(_Z +y _Z + 1 + y ))(x + y + RootOf(_Z  + y _Z + 1 + y ))

>> pretty(sym(maple('b')))

                              2               2
                    {RootOf(_Z  + y _Z + 1 + y )}

>> pretty(sym(maple('p:= 10^10-33:Berlekamp(x^4+2,x) mod p')))

     2                               2
   {x  + 6972444635 x + 9284865757, x  + 3027555332 x + 9284865757} 
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EXERCISE 2-3

Factorize the polynomial x3 + 5 in the algebraic extension defined by 51/3 and the algebraic extension defined by 
{51/3, √-3}. Also perform the complete factorization.
 
>> pretty(sym(maple('factor(x ^ 3 + 5, 5 ^(1/3))')))

                          2    1/3      2/3        1/3
                        (x  - 5    x + 5   ) (x + 5   )

>> pretty(sym(maple('factor(x^3+5, {5^(1/3),(-3)^(1/2)})')))

                 1/3      1/2  1/3          1/3      1/2  1/3        1/3
     1/4 (2 x - 5    + i 3    5   ) (2 x - 5    - i 3    5   ) (x + 5   )

>> pretty(sym(maple('readlib(split):split(x^3+5,x)')))

              2            3        3           2
(x - RootOf(_Z  + RootOf(_Z  + 5) _Z + RootOf(_Z  + 5) ))
                 3                 2            3        3           2
   (x + RootOf(_Z  + 5) + RootOf(_Z  + RootOf(_Z  + 5) _Z + RootOf(_Z  + 5) ))
 
                  3
    (x - RootOf(_Z  + 5))
 

EXERCISE 2-4

Find the factors and their multiplicities for the polynomial x4 - 4 over the real numbers, complex numbers, the 
algebraic extension defined by √2, the algebraic extension defined by {√2,i}, the algebraic extension defined by  
a = RootOf(x2-2), the algebraic extension defined by b = RootOf (x2+ 2), and the algebraic extension defined by 
{a, b }.
 
>> pretty(sym(maple('readlib(factors):factors( x^4-4 )')))

                           2           2
                   [1, [[x  - 2, 1], [x  + 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors( x^4-4, complex)')))

[1, [[x + 1.414213562 i, 1], [x + 1.414213562, 1],
    [x - 1.414213562 i, 1], [x - 1.414213562, 1]]]
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>> pretty(sym(maple('readlib(factors):factors( x^4-4, sqrt(2) )')))

                         1/2             1/2        2
               [1, [[x - 2   , 1], [x + 2   , 1], [x  + 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors( x^4-4, {sqrt(2), i } )')))

                  1/2              1/2            1/2            1/2
     [1, [[x - i 2   , 1], [x + i 2   , 1], [x - 2   , 1], [x + 2   , 1]]]

>> pretty(sym(maple('readlib(factors):alias(a=RootOf(x^2-2)):  
alias(b=RootOf(x^2+2)):factors( x^4-4, a )')))

                                                 2
                  [1, [[x - a, 1], [x + a, 1], [x  + 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors( x^4-4, b )')))

                                                 2
                  [1, [[x + b, 1], [x - b, 1], [x  - 2, 1]]]

>> pretty(sym(maple('readlib(factors):factors( x^4-4, {a,b} )')))

             [1, [[x + b, 1], [x - a, 1], [x + a, 1], [x - b, 1]]]
 

EXERCISE 2-5

Let a = RootOf(x2 + x + 1) and b = RootOf(y2 - x, y). Factorize modulo 2 the univariate polynomial x3 + 1 over  
the algebraic extension defined by a . Factorize modulo 5 the bivariate polynomial x2+ 2xy + y2 + 1 + x + y  
over the algebraic extension defined by a . Factorize  modulo 5 the following bivariate polynomial:  
x2y + xy2 + 2axy + a2  + 4xax + y +a. Find the factors and their multiplicities modulo 5 for the bivariate 
polynomial x2y + xy2 + 2axy +a2 + 4 xax + y +a. Find the factors and their multiplicities modulo 2 for the 
univariate polynomial x5 + 1 over the algebraic extension defined by a . Factorize the bivariate polynomial  
xy2 - 1 over the algebraic extension defined by b .
 
>> pretty(sym(maple('alias(a=RootOf(x^2+x+1)):Factor(x^3+1,a) mod 2')))

                      (x + a + 1) (x + 1) (x + a)
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>> pretty (sym (maple ('Factor(x^2+2*x*y+y^2+1+x+y,a) mod 5')))

                         (y + x + 4) (y + x + a + 1)

>> pretty (sym (maple ('Factor(x^2*y+x*y^2+2*a*x*y+a*x^2+4*a*x+y+a) mod 5')))

                          (x y + x + 1) (y + x + a)

>> pretty (sym (maple ('Factors(x^2*y+x*y^2+2*a*x*y+a*x^2+4*a*x+y+a) mod 5')))

                   [1, [[x y + x + 1, 1], [y + x + a, 1]]]

>> pretty (sym (maple ('Factors(x^5+1,a) mod 2')))

                           2                        2
        [1, [[x + 1, 1], [x + (a + 1) x + 1, 1], [x + x + 1, 1]]]

>> pretty (sym (maple ('alias (b = RootOf(y^2-x,y)):evala(Factor(x*y^2-1,b))'))))))

                             x (y - b/x) (b/x + y)
 

EXERCISE 2-6

Let p = x6 + x5 + x4 + x3 + 2x2 + 2 x + 1. Find the Berlekamp factorization of p modulo 2. Also factorize the 
bivariate algebraic expression x4y2 + 3x3+ y7x +3y5 + 2xy2 + 6 over the field defined by its coefficients.
 
>> pretty(sym(maple('p:=x^6+x^5+x^4+x^3+2*x^2+2*x+1:Berlekamp(p,x) mod 2')))

                         4          2
                       {x + x + 1, x + x + 1}

>> pretty(sym(maple('factor(x^4*y^2+3*x^3+y^7*x+3*y^5+2*x*y^2+6)')))

                               2       3   5
                           (x y + 3) (x + y + 2)
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2-3. Simplifying Algebraic Expressions
The following commands enable MATLAB to simplify algebraic expressions:

simplify(expr) simplifies an algebraic expression as much as possible. It sums 
algebraic fractions, but does not completely simplify them.

simplify(expr, rule1, rule2,..., rulen) simplifies the expression taking into 
account the rules specified. The possible values of the rules are Ei, GAMMA, atsign, 
hypergeom, ln, polar, power, radical, sqrt and trig, which allow simplification of 
expressions containing the exponential integral, gamma functions, functional 
operators, hypergeometric functions, logarithms, polar functions, powers, radicals, 
square roots and trigonometric functions, respectively.

simplify(expr,assume=property) simplifies the expression taking into account the 
specified mathematical property.

simplify(expr,symbolic) simplifies the expression so that all radical subexpressions 
are positive.

R = simple('expr') returns the most simplified form R of the algebraic expression. 
This is the most efficient command to completely simplify an algebraic fraction.

[R, HOW] = simple('expr') returns the most simplified form R of the given algebraic 
expression together with a list HOW  describing the path followed to reach the 
simplification (i.e. the commands used).

maple ('simplify(expression,option1,...,optionn)') simplifies the given algebraic 
expression using the specified options. Valid options are atsign, Ei, exp, GAMMA, 
Hypergeom, ln, polar, power, radical, RootOf, sqrt, trig, symbolic, &*, piecewise and assume.

maple('simplify(expression,atsign) or simplify(expression, '@')') simplifies 
expressions containing functional operators, such as the composition of functions and 
inverse functions. It is particularly useful when simplifying inversefunction ( function 
(x)) = x.

maple('simplify(expression,polar)') simplifies complex expressions by  
passing them to polar form and applying the rules of complex operations.  
If necessary, the complex expression must first be simplified to its polar form with 
convert(expression,polar) before applying the simplification.

maple('simplify(expression,power)') simplifies algebraic expressions containing 
potential, exponential, and logarithmic functions, applying typical rules of 
simplification, such as (a ^ b) ^ c = a ^(b*c), ln(x*y) = ln (x) + ln (y) and  
exp (a * ln (x) + 1) =(x^a) * exp (1).

maple('simplify(expr,exp)') simplifies algebraic expressions that contain base e 
exponential functions,  by applying typical rules of simplification such as  
ex *ey = e^ (x + y) , (e ^ x) ^ a = e ^(x*a) and e ^ (x+ln (y)*n) =(e^x) * (y ^ n).

maple('simplify(expr,radical)') simplifies algebraic expressions containing radicals 
or fractional powers, applying typical rules of simplification.

maple('simplify(expr,radical,symbolic)') simplifies algebraic expressions 
containing radicals or fractional powers, applying typical rules of simpllification and 
assuming that all the radicals are positive.
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maple('simplify(expr,RootOf)') simplifies algebraic expressions containing terms of 
type RootOf.

maple('simplify(expr,sqrt)') simplifies algebraic expressions containing square 
roots or fractional powers of denominator 2, applying typical rules of simplification.

maple('simplify(expr,ln)') simplifies algebraic expressions containing logarithms, 
applying typical rules such as ln(a^r) = r * ln (a), ln(a*b) = ln (a) + ln (b), ....

maple('simplify(expr,trig)') simplifies trigonometric algebraic expressions, 
applying the typical trigonometric rules such as sin(x) ^ 2 + cos(x)^2 = 1,  
cosh (x) ^ 2-sinh (x) ^ 2 = 1, tan(x) = sin (x) /cos (x) and 1 + tan (x) ^ 2 = 1/cos (x) ^ 2.

maple('simplify(expr,Ei)') simplifies algebraic expressions that include functions of 
the type Ei, Si and Ci, using the existing relationships between them. Sometimes, it is 
convenient to apply convert(expr, Ei) before applying this type of simplification.

maple('simplify(expr,GAMMA)') simplifies algebraic expressions involving GAMMA-
like functions using the existing relationships between the same. Sometimes, it is 
convenient to apply convert(expr, GAMMA)  before applying this type of simplification

maple('simplify(expression,hypergeom)') simplifies algebraic expressions involving 
functions of the type hypergeom using existing relations between the same. Sometimes, 
it is convenient to apply convert(expr, hypergeom) before applying this type of 
simplification.

maple('simplify(expression,piecewise)') simplifies algebraic expressions involving 
piecewise-defined functions.

maple('simplify(expr,' &* ')') simplifies algebraic expressions that include the &* 
operator.

maple('simplify(expr,{equ1,...,equn})') or maple ('simplify(expr,[equ1,..., 
equn])') simplifies the given algebraic expression subject to the specified equations.

maple('simplify(expression,inequality _variable)') simplifies the given algebraic 
expression assuming the specified inequality in some given variable. For example, 
simplify(expression, a> 0).

maple('simplify(expression,variable=type)') simplifies the given algebraic 
expression assuming that all the variables are of the type specified (for example, 
assume = real assume = positive, and so on). In general, the type can be any option of 
the command type.

maple('simplify(expression,assume(variable,property))') simplifies the given 
algebraic expression, assuming the property specified for the specified variable (for 
example, integer, rational, and so on.). In general, the property can be any option of 
the command type.

maple('simplify(expr,assume(variable, AndProp(prop1,...,propn)))') simplifies 
the given algebraic expression by assuming all the given properties prop1,..., propn for 
the specified variable.

maple('simplify(expr,assume(variable, OrProp(prop1,...,propn)))') simplifies the 
given algebraic expression by assuming some of the properties prop1,..., propn for the 
specified variable.
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maple('simplify(expression,assume(variable, RealRange(a,b)))') simplifies the 
given algebraic expression by assuming that the variable varies in the real closed 
interval [a, b].

maple('simplify(expr,assume(variable, RealRange(Open(a),Open(b))))') simplifies 
the given algebraic expression by assuming that the variable varies in the  interval (a, b).

maple('simplify(expr, assume(variable, RealRange(Open(a),b)))') simplifies the 
given algebraic expression by assuming that the variable varies in the interval (a, b].

maple('simplify(expr,assume(variable, RealRange(a,Open(b)))') simplifies the 
given algebraic expression by assuming that the variable varies in the interval [a,b).

We give several examples which involve the command simplify:
 
>> syms x y b c
>> simplify (sin (x) ^ 2 + cos (x) ^ 2)

ans =
 
1

>> simplify(exp(a+log(b*exp(c))))

ans =

b*exp(a+c)

>> pretty(sym(maple('simplify((x^a)^b+4^(1/2), power)')))

                                  (a b)
                                 x      + 2

>> pretty (sym (maple ('simplify (sin (x) ^ 4 + 2 * cos (x) ^ 2 - 2 * sin (x) ^ 2 - cos(2*x), trig)')))

                                          4
                                    cos(x)

>> pretty (sym (maple ('simplify(-1/3*x^5*y+x^4*y^2+1/3*x*y^3+1, {x^3=x*y, y^2=x+1})')))

                               5   4   2        3
                          1 + y + y - y + y - 2y

>> pretty (sym (maple ('simplify (((x-1) ^ 2) ^(3/2) * sqrt(a^2), assume(x-1>0))')))

                                      3
                              (x~ - 1)  csgn(a) a 
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The tilde (~) that appears at the top-right of the variable x indicates that a condition x has been assumed.
 
>> pretty(sym(maple('simplify(exp(5*ln(x)+1), power)')))

                               5
                              x  exp(1)

>> pretty (sym (maple ('simplify (cos (x) ^ 5 + sin (x) ^ 4 + 2 * cos (x) ^ 2 - 2 * sin (x) ^ 2 - 
cos(2*x))')))

                                5         4
                          cos(x)  + cos(x)

>> pretty (sym (maple ('simplify(-1/3*x^5*y + x^4*y^2 + 1/3*x*y^3 + 1,{x ^ 3 = x * y,  
y ^ 2 = x + 1})')))

                          5    4    2          3
                     1 + y  + y  - y  + y - 2 y

>> pretty(sym(maple('simplify((x+1)^(4/3)-x*(x+1)^(1/3),radical)')))

                                     1/3
                              (x + 1)

>> pretty(sym(maple('simplify(Ei(1,i*x)+Ei(1,-i*x),Ei)')))

                             -2 cosint(x)

>> pretty(sym(maple('simplify(n!/((2*n)^2)!, GAMMA)')))

                                 gamma(n + 1)
                                ---------------
                                         2
                                gamma(4 n  + 1) 

We now give some examples of how the simple command works:
 
>> pretty (sym (simple (cos (3 * acos (x)))))

                                       3
                                   4 x  - 3 x
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>> [R, HOW] = simple (cos (3 * acos (x)))

R =
 
4 * x ^ 3-3 * x
 
HOW =
 
expand 

In the latter case, the command that led to the final simplification was expand:
 
>> pretty (simple (cos (x) + (-sin (x) ^ 2) ^(1/2)))

                               cos(x) + i sin (x)

>> pretty(simple((x^2-y^2) /(x-y) ^ 3))

                                      x + y
                                    ----------
                                            2
                                    (x - y) 

EXERCISE 2-7

Given the functions g(x) = sqrt x2 and e(x) =(-8ab3)1/3, simplify them as much as possible. Perform the 
simplification of g(x) for a real argument and a positive argument. Also simplify e(x) for positive radical and then 
negative b.
 
>> pretty(sym(maple('simplify(sqrt(x^2))')))

                              csgn(x) x

>> pretty(sym(maple('simplify(sqrt(x^2),assume=real)')))

                             signum(x) x

>> pretty(sym(maple('simplify(sqrt(x^2),assume=positive)')))

                                  x
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>> pretty(sym(maple('simplify((-8*b^3*a)^(1/3))')))

                                  3   1/3
                             2 (-b  a)

>> pretty(sym(maple('simplify((-8*b^3*a)^(1/3),radical,symbolic)')))

                                      1/3
                             2 b (-a)

>> pretty(sym(maple('simplify((-8*b^3*a)^(1/3),assume(b<0),radical)')))

                                      1/3
                              -2 b~ a
 

EXERCISE 2-8

Directly simplify the expression ((x-1)2)3/2 (a2)1/2. Then simplify it assuming the condition that x > 1. Finally, perform 
a simplification assuming in addition that a > 0.
 
>> pretty(sym(maple('simplify(((x-1) ^ 2) ^(3/2) *(a^2) ^(1/2))')))

                                       3
                    csgn(x - 1) (x - 1)  csgn(a) a

>> pretty(sym(maple('simplify(((x-1)^2)^(3/2)*(a^2)^(1/2),assume(x>1))')))

                                 3
                         (x~ - 1)  csgn(a) a

>> pretty(sym(maple('simplify(((x-1)^2)^(3/2)*(a^2)^(1/2), assume(x>1,a>0))')))

                                     3
                             (x~ - 1)  a~

The last expression also can be simplified without assignments, assuming positive radicals with the option symbolic.

>> pretty(sym(maple('simplify(((x-1)^2)^(3/2)*(a^2)^(1/2),symbolic)')))

                                     3
                              (x - 1)  a
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2-4. Combining Algebraic Expressions
MATLAB allows you to combine terms composed of functions of certain types within an algebraic expression, in order 
to simplify the expression as much as possible after grouping. Among the commands that enable you to do this are the 
following (always preceded by the command maple):

combine(expression) combines terms that contain functions in the given algebraic 
expression; they may be exponential, logarithmic, trigonometric, sums (Sum), 
products (Prod), limits (Limit), integrals (Int), derivatives (Diff), and so on. Once the 
combination or grouping of terms is done according to the different types of functions, 
there is an overall simplification. Combine can be considered the reverse of expand; for 
example, expand transforms sin (a + b) into sin (a) * cos (b) + cos (a) * (b) and combine 
does the opposite.

combine(expression,option1,...,optionn) combines terms in the given expression 
using the specified options. The valid options are atsign, Psi, exp, artan conjugate, 
polylog, ln, product, power, plus range, RootOf, sqrt, trig, signum, radical,  abs and 
piecewise.

combine(expression,atsign) or combine(expression, '@') combines expressions 
that contain functional operators, such as the composition of functions and inverse 
functions. It is particularly useful when simplifying inversefunction(function (x)) = x.

combine(expression,product) combines expressions that contain products.

combine(expression,plus) combines expressions that contain sums.

combine(expression,artan) combines expressions that contain arctangent functions.

combine(expression,conjugate) combines expressions by grouping terms with their 
conjugates.

combine(expression,power) combines terms of expressions containing exponential 
functions, potentially by applying rules such as (x ^ y) *(x^z) = x ^ (y+z),  
(x ^ y) ^ z = x ^(y*z), √ -a = i *√a .

combine(expression,radical) combines terms of expressions that contain radicals or 
fractional powers, applying the typical rules for working with radicals.

combine(expression,radical,symbolic) combines terms of expressions that contain 
radicals or fractional powers, applying the typical rules for working with radicals and 
assuming that all the radicals are positive.

combine(expression,abs) combines terms of expressions that contain absolute values 
(moduli).

combine(expression,signum) combines terms of expressions that contain the function 
signum.

combine(expression,ln) combines terms of expressions that contain logarithms, 
applying the typical rules of working with logarithms, such as r * ln (a) = ln(a^r),   
ln (a) + ln (b) = ln(a*b), and so on.

combine(expression,trig) combines terms of trigonometric expressions, eliminating 
products and powers of sines and cosines, hyperbolic sines and hyperbolic cosines, 
using multiple angle trigonometric rules such as sin (a) * cos (b) = sin ((a + b) / 2) +  
sin ((a-b)/2) or sinh (a) * sinh (b) = cosh ((a + b) / 2)-cosh ((a-b)/2).
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combine(expression,Psi) combines terms of expressions that include functions of the 
type Psi, applying rules such as   Y(n) (z + 1) =  Y( n) (z) +(-1)n n! z(- n - 1 ).

combine(expression,range) combines terms of expressions that include ranges.

combine(expression,polylog) combines terms of expressions that include 
polylogarithmic functions, using the existing relationships between them.

combine(expression,exp) combines expressions that contain base e exponential 
functions, applying the typical rules for them such as (e ^ x) *(e^y) = e ^ (x + y) ,  
(e ^ x) ^ a = e ^(x*a) and e ^ (x+ln (y)*n) =(e^x) * y^ n.

combine(expression,piecewise) combines terms of expressions involving  
piecewise-defined functions.

combine(expression, ln, type) combines terms of expressions that include 
logarithmic functions, only simplifying expressions whose coefficients are of  
the given type.

Here are some examples:
 
>> pretty(sym(maple('combine(4 * sin (x) ^ 3, trig)')))

                         -sin(3 x) + sin (x) 3

>> pretty(sym(maple('combine(exp(x) ^ 2 * exp(y), exp)')))

                             exp(2 x + y)

>> pretty(sym(maple('assume(y>0,z>0):combine(2*ln(y)-ln(z),ln)')))

                                    2
                                  y~
                               ln(---)
                                  z~

>> pretty(sym(maple('combine((x^a)^2,power)')))

                                 (2 a)
                                x

>> pretty(sym(maple('combine(Psi(-x)+Psi(x),Psi)')))

                    2 Psi(x) + Pi cot(Pi x) + 1/x

>> pretty(sym(maple('combine([2*sin(x)*cos(x),2*cos(x)^2-1],trig)')))

                         [sin(2 x), cos(2 x)]
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>> pretty(sym(maple('combine(Int(x,x=a..b)-Int(x^2,x=a..b))')))
 

x x dx
a

b
-ò 2

 
>> pretty(sym(maple('combine(Limit(x,x=a)*Limit(x^2,x=a)+c)')))
 

lim
x a

x c
®

+3

 
>> pretty(sym(maple('combine(conjugate(x) ^ 3 + 3 * conjugate(y) * conjugate(z), conjugate)')))

                                   3
                                  x  + 3 y z

>> pretty(sym(maple('combine(x^3*x^(m-3),power)')))

                                   m
                                  x

>> pretty(sym(maple('combine((3^n)^m*3^n,power)')))

                                 n m  n
                               (3 )  3

>> pretty(sym(maple('assume(m,integer):combine((3^n)^m*3^n,power)')))

                              (n m~ + n)
                             3

>> pretty(sym(maple('combine(exp(x)^7*exp(y),power)')))

                             exp(7 x + y)

>> pretty(sym(maple('combine(piecewise(x > 0, cos(x) ^ 2 + sin(x) ^ 2, exp(x) ^ 2 * exp(y)))')))

                     | exp(2 x + y)        x <= 0
                     í
                     |      1              0 < x

>> pretty(sym(maple('combine(piecewise(x<1, exp(x)*exp(-2*x), x>3, 4*sin(x)^3))')))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

42

                 |       exp(-x)              x < 1
                 |
                 í          0                 x <= 3
                 |
                 | 3 sin(x) - sin(3 x)        3 < x

>> pretty(sym(maple('combine(b*ln(y)+3*ln(y)-ln(1-y)+ln(1+y)/2, ln,anything,symbolic)')))

                                 b  3        1/2
                                y  y  (1 + y)
                             ln(----------------)
                                     1 – y 

EXERCISE 2-9

Simplify as much as possible the trigonometric-exponential expression exp (sin (a) * cos (b)) * exp (cos (a) * (b), 
as well as the polylogarithmic expression polylog(a, x) + polylog(a,-x).  Simplify the polylogarithmic expression 
defined by polylog(4,x) + polylog(4,1/x) assuming first that x > 1, and secondly that x is between - 1 and 1.
 
>> maple combine (exp (sin (a) * cos (b)) * exp (cos (a) * (b)), [trig, exp])

                           exp(sin(a + b))

>> maple combine(polylog(a,x)+polylog(a,-x),polylog)

                        (1 - a)             2
                       2        polylog(a, x )

>> pretty(sym(maple('polylog(4,x) + polylog(4,1/x)')))

                   polylog(4, x) + polylog(4, 1/x)

>> pretty(sym(maple('assume(x > 1):combine(polylog(4,x) + polylog(4,1/x), polylog)')))

                         2   2           4               4
           - 1/12 ln(-x~)  Pi  - 7/360 Pi  - 1/24 ln(-x~)

>> pretty(sym(maple('assume(x, RealRange(-1,1)):combine(polylog(4,x) + polylog(4,1/x),polylog)')))
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                     1   2   2           4              1   4
        - 1/12 ln(- ----)  Pi  - 7/360 Pi  - 1/24 ln(- ----)
                     x~                                 x~
 

EXERCISE 2-10

Simplify the following expressions as much as possible:

2 6 2 1+ +x , 4 3 4 3- + , x y x y+ +( )2 1
3

 
>> pretty(sym(maple('combine(sqrt(2)*sqrt(6) + sqrt(2)*sqrt(x+1),radical)')))

                                1/2            1/2
                             2 3    + (2 x + 2)

>> pretty(sym(maple('combine(sqrt(4-sqrt(3))*sqrt(4+sqrt(3)),radical)')))

                                       1/2
                                     13

>> pretty(sym(maple('combine(sqrt(x)*sqrt(y) + sqrt(2)*sqrt(x+1)^3*sqrt(y), radical)')))

                      1/2  1/2            1/2          1/2
                     x    y    + (x + 1) y    (2 x + 2)
 

EXERCISE 2-11

Combine terms as much as possible in the following expression:

a * ln(x) + 3 * ln(x) - ln(1-x) + ln(1+x)/2

Simplify assuming that is real and x > 0. Additionally, try to simplify assuming that x is real and that it varies 
between 0 and 1.
 
>> pretty(sym(maple('combine(a*ln(x)+3*ln(x)-ln(1-x)+ln(1+x)/2,ln)')))

            a ln(x) + 3 ln(x) - ln(1 - x) + 1/2 ln(1 + x)

>> pretty(sym(maple('assume(a,real):assume(x>0):combine(a*ln(x)+3*ln(x)  
-ln(1-x)+ln(1+x)/2,ln)')))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

44

                                                3         1/2
                 a~ ln(x~) - ln(1 - x~) + ln(x~  (x~ + 1)   )

>> pretty(sym(maple('assume(a,real):assume(x,RealRange(0,1)): combine(a*ln(x)+3*ln(x) 
-ln(1-x)+ln(1+x)/2,ln)')))

                                                  3         1/2
                                               x~  (x~ + 1)
                               a~ ln(x~) + ln(---------------)
                                                   1 - x~ 

The additional assumption does not improve the result.

EXERCISE 2-12

Expand and simplify  the following trigonometric expressions as much as possible:

(a) sin[3 x] cos[5 x]

(b) cot[a]2 + (sec[a])2 - (csc[a])2

(c) sin[a] / (1 + cot[a]2) - sin[a]3

 
>>  pretty(sym(maple('combine(sin(3*x)*cos(5*x),trig)')))

                          1/2 sin (x 8) - 1/2 sin (2 x)

>>  pretty(sym(maple('simplify((cot(a))^2+(sec(a))^2-(csc(a))^2, trig)')))

                                         2
                                   cos(a) - 1
                                 - --------------
                                           2
                                     cos(a)

>> pretty(sym(maple('simplify(sin(a)/(1 + cot(a) ^ 2)-sin(a) ^ 3, trig)')))

                                       0
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EXERCISE 2-13

Simplify the following trigonometric expressions as much as possible:

(a) sin[3 Pi/2 + a] cot[3 Pi/2] / cot[3 Pi/2 + a] + tan[3 Pi/2] cot[Pi/2 + a] / sin[3 Pi/2 + a] cot[-a]

(b) (a2 - b2) cot[Pi-a] / tan[Pi/2] - (a2 + b2) tan[Pi/2-a] / cot[Pi-a]

(c) (cot[a] + tan[a]) / (cot[a]-tan[a]) - sec[2a]

(d) sin[a-b] cos[c] + sin[b- c] cos[a] + sin[c-a] cos[b]
 
>> pretty(sym(maple('simplify(sin(3*Pi/2+a)*cot(3*Pi/2-a)/cot(3*Pi/2+a)+ 
(tan(3*Pi/2-a) * cot(Pi/2+a) /sin(3*Pi/2+a) * cot(-a), trig)')))

                               cos(a) sin (a) - 1
                               ----------------------
                                     sin(a)

>> pretty(sym(maple('combine(sin(3*Pi/2+a)*cot(3*Pi/2-a)/cot(3*Pi/2+a)+ 
(tan(3*Pi/2-a) * cot(Pi/2+a) /sin(3*Pi/2+a) * cot(-a), trig)')))

                                                2
                        cos(2 a) + 1 - 2 cot (a) tan (a)
                 1/2 -------------------------------
                                 cos(a)

>> pretty(sym(maple('simplify((a^2-b^2)*cot(Pi-a)/tan(Pi/2-a)- 
(a^2+b^2)*tan(Pi/2-a)/cot(Pi-a),trig)')))

                                    2
                                 2 b

>> pretty(sym(maple('combine((a^2-b^2)*cot(Pi-a)/tan(Pi/2-a)- 
(a^2+b^2)*tan(Pi/2-a)/cot(Pi-a),trig)')))

                                    2
                                 2 b

>>  pretty(sym(maple('simplify((cot(a)+tan(a))/(cot(a)-tan(a))-sec(2*a), trig)')))

                                       0
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>> pretty (sym (maple ('combine (sin(a-b) * cos(c) + sin(b-c) * cos(a) +  
sin(c-a) * cos(b), trig)')))

                                       0 

In general, you will get the most efficient simplification of trigonometric expressions using the commands 
combine and simplify, with the option trig.

2-5. Grouping of Similar Terms in Algebraic Expressions
MATLAB allows you to group terms within algebraic expressions according to specified variables. This helps to 
simplify the expression and possibly to optimize performance. Among the commands that enable the grouping of 
similar terms in algebraic expressions, we have the following:

maple('collect(expr,x)') gathers the polynomial algebraic expression in ordinate 
powers of the variable x. If the variable is not specified, it takes by default the main 
symbolic variable.

maple('collect(expr,[x,y])') gathers the polynomial algebraic expression in 
ordinate powers of the variables x and y.

maple('collect(expr,f(x))') gathers the algebraic expression in ordinate powers of a 
function f(x) contained in the expression.

maple('collect(expr,var)') organises the algebraic expression, taking as the main 
variable the variable var. It gathers terms with respect to the variable.

maple('collect(expr,[var1,..,varn])') or maple('collect(expr,{var1,...,var
n})') organizes the algebraic expression and gathers terms for the given variables.

maple('collect(expr,expr1)') organizes the algebraic expression expr by grouping in 
terms of expr1, where expr1 is typically a sin(x) or exp(2*x) function.

maple('collect(expr,[var1,...,varn],distributed)')  organizes the algebraic 
expression grouping terms by the given variables and presenting the result as 
polynomial expanded as a sum of terms. Each term of the sum is a product of powers of 
the specified variables, the coefficient of the term being a constant or any expression in 
terms of unspecified variables (which are considered constants in this case).

maple('collect(expr,[var1,...,varn],recursive)') organizes the algebraic 
expression by grouping terms with respect to the variables given in a hierarchical 
manner; that is, it first groups terms with respect to the variable var1, then uses the 
resulting expression to group terms with respect to the variable var2, and so on.

maple('collect(expr,[var1,...,varn],option,command)') organizes the algebraic 
expression grouping terms with respect to the variables given according to the specified 
option (distributed or recursive). Organizing occurs once the specified command has 
been applied to each coefficient of the expression. Any command can be used, but it is 
usually one that works with algebraic expressions (factor, expand, and so on).
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Let’s see some examples of the command collect:
 
>> syms x y z p a
>> pretty(collect( (x+1)*(x+2) ))

                                    2
                                  x + 3 x + 2

>> pretty (collect (y * (sin (x) + 1) + sin (x), sin (x)))

                               (y + 1) sin(x) + y

>> pretty(collect(x^3*y+x^2*y^3+x+3, y))

                               3      2  3
                              x  y + x  y  + x + 3

' p = x * y+ z * x * y+ y* x ^ 2-z * y* x ^ 2 + x + z * x;
>> pretty(collect(p, [x,y]))

                                       2        2
                     x y + z x y + y x  - z y x  + x + z x

>> f = a*log(x)-log(x)*x-x;
 
>> pretty(collect(f,log(x)))

                          (a - x) ln(x) - x

>> g = int(x^2*(exp(x)+exp(-x)),x);
>> pretty(collect(g,exp(x)))

                                                 2
                           2                 -2 x - 2 - x
                     (2 + x  - 2 x) exp(x) + -------------
                                             exp(x)

>> pretty (sym (maple ('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x, [x,y], recursive)')))

                           2
                 (1 - a) y x  + ((1 + a) y + 1 + a) x
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>> pretty (sym (maple ('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x, [y,x], recursive)')))

                          2
                ((1 - a) x  + (1 + a) x) y + (1 + a) x

>> pretty (sym (maple ('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x, [x,y], distributed)')))

                                                     2
                (1 + a) x + (1 + a) x y + (1 - a) y x 

EXERCISE 2-14

Given the function f (x) = a3x - x + a3 + a, group terms in the variable x, and then factorize the coefficients. Group 
terms in x for the function p (x) = y/x+2z/x+x1/3- y1/3x.
 
>> syms a x y z
>> pretty(collect(a^3*x-x+a^3+a, x))

                           3           3
                         (a  - 1) x + a  + a

>> pretty(sym(maple('collect(a^3*x-x+a^3+a, x,factor)')))

                           2                  2
                 (a - 1) (a  + a + 1) x + a (a  + 1)

>> pretty (collect (y/x+2 * z/x + x ^(1/3) - y* ^(1/3) x, x))

                                 1/3     y + 2 z
                        (1 - y) x    +   -------
                                            x
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

49

EXERCISE 2-15

Given the following differential expression:

¶
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y x( ) sin( ) ( ) sin sin ( )öö
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÷sin ( ) ( )y x

x
y x

2

2

Group terms in differentials. Subsequently, group terms into sines.
 
>> pretty (sym (maple ('DF: = diff (y (x), x, x) * sin (x) - diff (y (x), x) * sin (y(x)) + 
sin (x) * diff (y (x), x) + sin (y (x)) * diff (y (x), x, x)')));
>> pretty(sym(maple('collect(DF,diff)')))

                                                                / 2      \
                              /d      \                        |d       |
      (-sin(y (x)) + sin(x)) | - y (x) | +(sin(x) + sin(y(x))) |- y (x) |
                              \dx     /                        |  2     |
                                                               \dx      /

>> pretty(sym(maple('collect(DF,sin)')))

     /             / 2      \\             // 2      \            \
     | /d      \   |d       ||             ||d       |   /d      \|
     |-|-- y(x)| + |--- y(x)|| sin(y(x)) + ||--- y(x)| + |-- y(x)|| sin(x)
     | \dx     /   |  2     ||             ||  2     |   \dx     /|
     \             \dx      //             \\dx      /            /

2-6. Sorting Terms in Algebraic Expressions
MATLAB also allows the sorting of terms within algebraic expressions in terms of specified variables. This helps to 
generate the best possible expression for optimal performance. Among the commands that enable the management 
of terms in algebraic expressions are the following:

maple('sort(expression)') sorts the terms of the multivariate algebraic polynomial 
expression according to the degrees of all terms of the expression (in descending 
order). The degree of a term equals the sum of the exponents of its variables.

maple('sort(expr,plex)') performs the ordering of the algebraic expression for all 
the indeterminates using pure lexicographic order (the dictionary order) for each 
component of the algebraic expression.

maple('sort(expr,tdeg)') performs the ordering of the algebraic expression with 
respect to all the indeterminates using the total degree for each term component of the 
algebraic expression. For example, the total degree of x y z5 2 3  is 10. (This is the default 
option.)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

50

maple('sort(expr,[var1,...,varn],option)') or maple('sort(expr,{var1,...,varn}, 
option)') performs the ordering of the multivariate polynomial algebraic expression 
with respect to the indeterminates var1,..., varn, according to the specified option  
(plex or tdeg).

maple('sort(list)') or maple('sort(list,lexorder)') or 
maple('sort(list,string)') sorts the elements of a list using lexicographical order.

maple('sort([var1,...,varn])') or maple(‘sort(list,'<')’) or 
maple('sort(list,numeric)') sorts numeric values specified in the list in descending 
numerical order.

maple('sort(list,address)') sorts the elements of the list according to their internal 
addresses assigned by MATLAB.

Here are some examples:
 
>> pretty(sym(maple('sort([3,2,1])')))

                              [1, 2, 3]

>> pretty(sym(maple('sort(1+x+x^2)')))

                               2
                              x  + x + 1

>> pretty(sym(maple('sort([c,a,d],lexorder)')))

                              [a, c, d]

>> pretty(sym(maple('sort(y^3+y^2*x^2+x^3,[x,y])')))

                            2  2    3    3
                           x  y  + x  + y

>> pretty(sym(maple('sort(y^3+y^2*x^2+x^3,[x,y],plex)')))

                            3    2  2    3
                           x  + x  y  + y

>> pretty(sym(maple('sort((y+x)/(y-x),x)')))

                                x + y
                                ------
                                -x + y
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>> pretty(sym(maple('sort(x+x^3+w^5+y^2+z^4,[w,x,y,z])')))

                         5    4    3    2
                        w  + z  + x  + y  + x

>> pretty(sym(maple('sort(x+x^3+w^5+y^2+z^4,[w,x,y,z],plex)')))

                         5    3        2    4
                        w  + x  + x + y  + z

>> pretty(sym(maple('sort(x+x^3+w^5+y^2+z^4,[w,x,y,z],tdeg)')))

                         5    4    3    2
                        w  + z  + x  + y  + x

>> pretty(sym(maple('sort(x*y^5+x^3*y*z+w^5*y^3+y^2*z^4+z^4,[w,x,y,z],plex)')))

                   5  3    3          5    2  4    4
                  w  y  + x  y z + x y  + y  z  + z

>> pretty(sym(maple('sort(x*y^5+x^3*y*z+w^5*y^3+y^2*z^4+z^4,[w,x,y,z],tdeg)')))

                   5  3      5    2  4    3        4
                  w  y  + x y  + y  z  + x  y z + z

2-7. Algebraic Fractions
MATLAB also enables you to work fluidly with algebraic fractions. Among the commands that can be used we have 
the following (all of which must be preceded by the command maple):

normal(exprational) simplifies the given algebraic fraction.

normal(expr,expanded) fully expands the numerator and denominator of the rational 
algebraic expression after it has been simplified.

normal([exprat1,...,expratn]) or normal({exprat1,...,expartn}) normalizes the set 
or list of rational algebraic expressions.

Normal(expratn) returns the inert normalization of a rational algebraic expression.

normal(expr) mod n finds the normalization of the given rational algebraic expression 
modulo n.

numer(exprational) returns the numerator of the rational algebraic expression after 
normalizataion.

denom(exprational) returns the denominator of the rational algebraic expression after 
normalization.
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radnormal(exprational) normalizes a rational algebraic expression that contain 
radical numbers by eliminating all possible radical levels. It is also valid for non-
rational algebraic expressions.

radnormal(exprational,rationalized) normalizes a rational algebraic expression that 
contains radicals, rationalizing  the denominator.

readsimp(exprational) normalizes a rational algebraic expression that contains 
radicals. It is also valid for non-rational algebraic expressions.

readsimp(exprational,name) normalizes the algebraic expression by rationalizing the 
denominator and assigns the specified name to the simplified expression.

expand(exprational) expands the numerator of a rational algebraic expression.

factor(exprational) factors the numerator and denominator of the rational algebraic 
expression and normalizes it.

convert(expr,confrac) converts the algebraic expression into an approximate 
continued fraction. Returns a list with the partial quotients of the continued fraction.

convert(expr,confrac,variable) converts the polynomial expression to its 
approximation by the rational polynomial continued fraction in the variable var.

convert(numeric expression,confrac,n) converts the numeric expression to its 
continued fraction expansion to at least n partial quotients.

convert(expression,parfrac,variable) converts the rational expression to simple 
fractions in the given variable. (Breaks up an algebraic fraction into partial fractions.)

convert(expression,parfrac,variable,true) applies the command factor to the 
denominator of the algebraic fraction prior to decomposing it into simple fractions.

convert(expression,fullparfrac,variable) fully decomposes a rational expression in 
the variable given into simple fractions (using RootOf expressions if necessary).

Here are some examples:
 
>> pretty(sym(maple('normal((x^2-y^2) /(x-y) ^ 3)')))

                                x + y
                               --------
                                      2
                               (x y)

>> pretty(sym(maple('normal((f (x) ^ 2-1) / (f (x) - 1))')))

                               f (x) + 1

>> pretty(sym(maple('normal({2/x + y/3 = 0})')))

                               6 + y x
                          {1/3 ------- = 0}
                                  x
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>> pretty(sym(maple('normal( 1/x+x/(x+1) )')))

                                       2
                              x + 1 + x
                              ----------
                              x (x + 1)

>> pretty(sym(maple('normal( 1/x+x/(x+1),expanded)')))

                                       2
                              x + 1 + x
                              ----------
                                 2
                                x + x

>> pretty(sym(maple('numer( (1+x)/x^(1/2)/y ) ')))

                                x + 1 

>> pretty(sym(maple('numer( 2/x + y )'))) 

                               2 + y x

>> pretty(sym(maple('numer( x+1/(x+1/x))')))

                                  2
                              x (x + 2)

>> pretty(sym(maple('denom(x+1/(x+1/x))')))

                                 2
                                x + 1

>> pretty(sym(maple('Normal( (x^3-2*x^2+2*x+1)/(x^4+1)) mod 5')))

                                x + 3
                                ------
                                 2
                                x + 3
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>> pretty(sym(maple('evala(Normal((x^2-2)/(x-RootOf(_Z^2-2))))')))

                                      2
                         x + RootOf(_Z-2)

>> pretty(sym(maple('expand((x+1)/(x+2))')))

                              x       1
                            ----- + -----
                            x + 2   x + 2

>> pretty(sym(maple('expand(y^3*(x+1)^3/((x+2)*y^2))')))

                     3         2
                   yx        yx        yx      y
                  ----- + 3 ----- + 3 ----- + -----
                  x + 2     x + 2     x + 2   x + 2

>> pretty(sym(maple('factor((x^3-y^3)/(x^4-y^4))')))

                             2          2
                            x + x y + y
                          -----------------
                                2   2
                          (y + x) (x + y)

>> pretty(sym(maple('factor(y ^ 3 * (x + 1) ^ 3/((x^2+2*x+1) *(y^2+y)))')))

                                       2
                              (x + 1) y
                              ----------
                                y + 1

>> pretty(sym(maple('radsimp((1 + 2^(1/2))^(-1)/(1 + 2*x + x^2)^(1/2))')))

                                      1
                              ------------------
                                1/2
                              (2    + 1) (x + 1)
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>> pretty(sym(maple(' p:= x^5-2*x^4-2*x^3+4*x^2+x-2')))
>> pretty(sym(maple(' f:= 36 / p')))
 
>> pretty(sym(maple('convert(f,parfrac,x)')))

                   4        9          3         4
                 ----- - -------- - -------- - -----
                 x - 2          2          2   x + 1
                         (x -1)    (x + 1)

>> pretty(sym(maple('convert(f,parfrac,x,sqrfree)')))

                     4       x + 2         x + 2
                   ----- - 4 ------ - 12 ---------
                   x - 2      2            2     2
                             x  - 1      (x  - 1)

>> pretty(sym(maple('f:= 36 / convert(p,sqrfree,x)')))
 
>> pretty(sym(maple('convert(f,parfrac,x,true)')))

                     4       x + 2         x + 2
                   ----- - 4 ------ - 12 ---------
                   x - 2      2            2     2
                             x  - 1      (x  - 1) 

EXERCISE 2-16

Given the following algebraic fractions:

A
x x x

x x
=

+ - + -
- +

2

2

2 2 2 3 5 2 2 3

2 3 1
, B =

+ +
1

2 3 6

Simplify them all as much as possible and rationalize the denominators.
 
>> maple('A:=((x^2+2*x*2^(1/2)-2*x*3^(1/2)+5-2*2^(1/2)*3^(1/2))/(x^2-2*x*3^(1/2)+1))')
>> pretty(sym(maple(' radnormal(A) ')))

                                     1/2 1/2
                               -x - 2 + 3
                               ----------------
                                     1/2 1/2
                               -x + 2 + 3
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>> pretty(sym(maple(' readlib(rationalize):rationalize(A) ')))

            2       1/2     1/2       1/2 1/2   2           1/2
        (- x - 2 x 2 + 2 x 3 - 5 + 2 2   3  ) (x + 1 + 2 x 3 )
      - -------------------------------------------------------
                                  4      2
                                 x - 10 x + 1

>> pretty(sym(maple(' B:= 1/(2^(1/2)+3^(1/2)+6^(1/2)) ')))
>> pretty(sym(maple(' radnormal(B) ')))

                                       1
                            -----------------------
                             1/2    1/2     1/2 1/2
                            2    + 3    + 2    3

>> pretty(sym(maple(' radnormal(B,rationalized) ')))

                        1/2      1/2 1/2      1/2 12
                  5/23 3 - 1/23 2   3 + 7/23 2  - --
                                                  23
 

EXERCISE 2-17

Convert the following algebraic fractions to continued fractions:

1

e x , 
1

2 12

1
2 12

2

2

+ +

- +

x x

x x

 
>> pretty(sym(maple(' convert(1/exp(x),confrac,x) ')))

                                    x
                     1 + -----------------------
                                      x
                         -1 + ------------------
                                         x
                              -2 + -------------
                                           x
                                   3 + ---------
                                       2 1/5 x
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>> pretty(sym(maple(' r:= (1+1/2*x+1/12*x^2) / (1-1/2*x+1/12*x^2) ')))
>> pretty(sym(maple(' convert(r,confrac,x) ')))

                                    12
                           1 + ------------
                                        12
                               x - 6 + ----
                                         x
 

EXERCISE 2-18

Break down the following algebraic fractions into simple fractions:

x

x x

5

4 2

1+
-

, 
x

x b( )- 2 , 2 3
5 4 2 3 13

× ×
× × - × × +

x

x x
 
>> pretty(sym(maple(' f:= (x^5+1)/(x^4-x^2) ')))
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

                                 1          1
                           x + -----   -   ----
                               x - 1         2
                                            x

>> pretty(sym(maple(' f:= x/(x-b)^2 ')))
>> pretty(sym(maple('  convert(f,parfrac,x) ')))

                              b         1
                           -------- + -----
                                  2   x - b
                           (x - b)

>> pretty(sym(maple(' f:= (2.3*x)/(5.4*x^3-2.3*x+1) ')))
 
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

       .2240312285                  .3421473558 + 1.209768633 x
   - --------------- + .1851851852 --------------------------------
     x +.8091847442                 2
                                   x -.8091847442 x +.2288540244
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EXERCISE 2-19

Decompose into simple fractions the rational function given by f (x) = (4*x3 - 6*x2 - 2) / (x4-2*x3 - 2*x + 4) over the 
field of their coefficients, over the real field, over the complex field, and over the algebraic extension Q(√3).
 
>> pretty(sym(maple(' f:= (4*x^3-6*x^2-2)/(x^4-2*x^3-2*x+4) ')))
>> pretty(sym(maple(' convert(f,parfrac,x) ')))

                                        2
                             1         x
                           ----- + 3 ------
                           x - 2      3
                                     x - 2

>> pretty(sym(maple(' convert(f,parfrac,x,real) ')))

     1.000000000      1.000000000         1.259921050 + 2. x
   --------------- +  ----------- + -------------------------------
   x-1.259921050        x - 2.       2
                                   x + 1.259921050 x + 1.587401052

>> pretty(sym(maple(' convert(f,parfrac,x,complex) ')))

                     -9                                -9
    1 +.2803082855 10  I              1. -.2803082855 10 I
------------------------------- + -------------------------------
x +.6299605249 + 1.091123636 I     x +.6299605249 - 1.091123636 I
                        -10
       1 +.2631183713 10   I      1.000000000
     + ------------------------ + -----------
           x - 1.259921050             x - 2

>> pretty(sym(maple(' convert(f,parfrac,x,2^(1/3)) ')))

                     1/3
                    2    + 2 x          1          1
                ------------------ +  -------- + -----
                 2   1/3   2/3              1/3  x - 2
                x + 2 x + 2          x - 2
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EXERCISE 2-20

Perform the following algebraic operations, simplifying the results as much as possible:

x

x y

y

x y

xy

x y

a

b

b

a

a b

ab+
-

-
+

-
+

+
-

-
-2 1 1

2 2

2 2 3 2

,

To treat operations with algebraic fractions, the best command to use is normal, but you can also use the simple 
commands factor and simplify:
 
>> pretty (sym (maple ('normal (x / (x + y) - y/(x-y) + 2 * x * y/(x^2-y^2))')))

                                  1

>> pretty (sym (maple ('factor (x / (x + y) - y/(x-y) + 2 * x * y/(x^2-y^2))')))

                                  1

>> pretty (sym (maple ('simplify (x / (x + y) - y/(x-y) + 2 * x * y/(x^2-y^2))')))

                                  1

>> pretty(sym(maple('normal((1+a^2)/b + (1-b^2)/a - (a^3-b^3)/(a*b))')))

                                a + b
                                -----
                                 a b

>> pretty(sym(maple('factor((1+a^2)/b + (1-b^2)/a - (a^3-b^3)/(a*b))')))

                                a + b
                                -----
                                 a b

>> pretty(sym(maple('simplify((1+a^2)/b + (1-b^2)/a - (a^3-b^3)/(a*b))')))

                                a + b
                                -----
                                 a b
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EXERCISE 2-21

Simplify the following algebraic fractions as much as possible:

a a b ac bc

a ac a b bc

x x x x

x x

3 2 2 2

3 2 2 2

2 2

2

9 2 1 3

6 9

- + -
+ + +

-( ) - +( ) -( )
- +( ),

xx x2 1 1-( ) -( )
Because these are simple algebraic fractions, use the commands standard, factor or simplify:
 
>> pretty(sym(maple('normal((a^3-a^2*b+a*c^2-b*c^2)/(a^3+a*c^2+a^2*b+b*c^2))')))

                                a - b
                                -----
                                a + b

>> pretty(sym(maple('factor((a^3-a^2*b+a*c^2-b*c^2)/(a^3+a*c^2+a^2*b+b*c^2))')))

                                a - b
                                -----
                                a + b

>> pretty(sym(maple('simplify((a^3-a^2*b+a*c^2-b*c^2)/(a^3+a*c^2+a^2*b+b*c^2))')))

                                a - b
                                -----
                                a + b

>> pretty(sym(simple(((x^2-9)*(x^2-2*x+1)*(x-3))/((x^2-6*x+9)*(x^2-1)*(x-1)))))

                                x + 3
                                -----
                                x + 1
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EXERCISE 2-22

Perform the following algebraic operations, simplifying the results as much as possible.
 
a)                        2
  3 x - 1    5 - x     4 x     2    2        4
(———————— - ——————— - ————————) * (x  (x + 1) - (x + 4))) / (4 + 5 x)]
   x + 2     x - 2      2
                       x - 4
b)
             2 x            2
 (—————————————————————————)
                 4 x
  (x - y) ———————————————
           2           2
          x + 2 x y + y
[———————————————————————————]
                  y
            1 + ————
                  x   4
          (——————————)
                  y
            1 - ————
                  x
 
In this type of combined operations, featuring both sums and differences, as well as ratios products and powers 
of algebraic expressions, the most efficient command is normal:
 
>> pretty(sym(maple('normal(((3*x-1)/(x+2)-(5-x)/(x-2)-4*x^2/(x^2-4))*  
((x^2*(x^2+1)-(x^4+4))/(4+5*x)))')))

                                  -2

>> pretty (sym (maple ('normal (((2 * x /(x-y))/(4*x/(x^2+2*x*y+y^2)))^ 2  
/((1+y/x)/(1-y/x))^4)')))

                                        2
                             1/4 (x - y)
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2-8. Transforming Algebraic Expressions by Conversion
MATLAB enables the conversion of an algebraic expression dependent on a specific function into another 
expression that depends on another function related to the first. An expression can be transformed from logarithmic, 
trigonometric, inverse trigonometric or hyperbolic to exponentials, factorials to gamma functions, and so on. Among 
the commands that enable you to do this are the following (all of them must be preceded by the maple command):

convert(expression,exp) converts all trigonometric functions of the expression into 
their corresponding exponential form.

convert(expression,ln) converts all inverse trigonometric functions of the expression 
into their corresponding logarithmic form.

convert(expression,trig) converts all exponential functions of the expression into 
their corresponding trigonometric or hyperbolic trigonometric form.

convert(expression,tan) converts the trigonometric functions of the expression so 
that it depends only on the tangent.

convert(expression,sincos) converts trigonometric functions of the expressions 
depending only on sines, cosines, hyperbolic sines, and hyperbolic cosines.

convert(expression,expsincos) converts the trigonometric functions of the 
expression in terms of only sines and cosines, and at the same time converts all 
hyperbolic functions of the expression into its exponential form.

convert(expression,expln) converts the trigonometric functions of the expression 
into its exponential form, and at the same time converts  inverse trigonometric 
functions into logarithmic form.

convert(expression,GAMMA) converts all factorials and binomial and multinomial 
coefficients of the expression in terms of the GAMMA function.

convert(expression,factorial) converts all GAMMA functions, binomial and 
multinomial coefficients of the expression in terms of factorials.

convert(expression,binomial) converts  GAMMA and factorial expressions in terms of 
the binomial function.

convert(expr,piecewise) converts an expression containing moduli (abs), sign 
(signum), or Heaviside functions into a piecewise-defined function.

convert(expression,parlist) converts an expression containing defined functions 
into a piecewise function according to the specified list.

convert(expr,Heaviside) converts an expression containing piecewise functions into 
an expression  in terms of Heaviside functions.

convert(expression,surd) converts an expression containing roots and standard 
powers into its equivalent expresssion in terms of the surd function.

convert(expression,pair) converts an expression containing surd functions into its 
equivalent expression containing standard powers.

convert(expression,erf) converts an expression containing erfc functions into its 
equivalent in terms of the function erf.

convert(expression,erfc) converts an expression containing the function erf into its 
equivalent in terms of the function erfc.
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convert(expression,Ei) converts an expression containing logarithmic, hyperbolic, 
and trigonometric integrals into an equivalent expression with exponential integrals.

convert(expression,Airy) converts an expression containing Bessel functions into its 
equivalent expression containing Airy functions.

convert(expression,Bessel) converts an expression containing Airy functions into an 
equivalent expression containing Bessel functions.

convert(expr,'+') converts an expression in the form of sums (the first level of 
operators must be sums, for example, a sum of products).

convert(expr,'.') converts an expression in the form of products (the first level of 
operands must be products, for example, a product of sums).

convert(expression,degree) converts an expression in radians to degrees.

convert(expression,radian) converts an expression in degrees to radians.

convert(expression,metric) converts an expression of type number * units to the 
metric system (for example, 34 * feet is converted to the decimal metric system).

convert(expr,metric,US) converts an expression given in U.S. units to the metric 
system.

convert(expr,metric,imp) converts an expression given in terms of imperial units to 
the metric system.

convert(expression,float) converts all the numeric values of an expression to their 
floating-point form.

convert(expr,hypergem) converts the expression sums (sum or Sum) according to 
terms to the equivalent hypergeometric functions.

convert(expr,rational) or convert(expr,fraction) converts all floating-point values 
of an expression to their rational form.

convert(expr,rational,n) converts all floating-point values of an expression to its 
rational form with n digits of precision.

convert(expression,rational and exact) converts all floating-point values of an 
expression to its rational form with infinite precision.

convert(expression,mod2) converts the expression containing the Boolean operators 
and, or , and not to an expression of the form modulo2 (an expression with only 
numeric values 0 and 1).

convert(expression,string) or convert(expression,name) converts the expression to 
a string.

convert(exprcompl,polar) converts the complex to expression to polar form.

convert(expression,radical) converts all RootOf expressions  to their radical 
equivalents.

convert(expression,RootOf) converts all radical expressions into RootOf notation.

convert(series,polynom) converts a Taylor series to a polynomial.
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convert(booleanexpression,'and') converts all of the binary operators in a Boolean 
expression (and, or, & and, or, & nand, $nor, & xor, & diff and & implies) into their 
equivalent in terms of the operator and.

convert(booleanexpression,'or') or convert(expression,disjcyc) converts all of the 
binary operators in the Boolean expression (and, or, & and, or, & nand, $nor, & xor, & 
diff e & implies) into their equivalents depending on the operator or. The permutations 
of the expression are converted to disjoint cycles.

convert(expression,permlist) converts the expression’s disjoint cycles to their 
equivalent permutations.

convert(expression,multiset) converts the expression into a list of lists. For each 
element of the expression, it returns a list consisting of the element and its multiplicity 
(the number of times it is repeated).

convert([expr1,...,exprn],option) creates a list with the given expressions 
converted according to the specified option (trig, exp, ln,...).

convert({expression1,...,expressionn},option) creates an array with the given 
expression converted according to the specified option.

Here are some examples:
 
>> pretty(sym(maple('convert(exp(x^2)-2 * sinh(x^2),exp)')))

                                  1
                               -------
                                    2
                               exp(x )

>> pretty(sym(maple('convert(cot(x),expsincos)')))

                                cos(x)
                                ------
                                sin(x)

>> pretty(sym(maple('convert(sinh(x),expsincos)')))

                                          1
                       1/2 exp(x) - 1/2 ------
                                        exp(x)

>> pretty(sym(maple('convert(cot(x),sincos)')))

                                cos(x)
                                ------
                                sin(x)
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>> pretty(sym(maple('convert(tanh(x),sincos)')))

                               sinh(x)
                               -------
                               cosh(x)

>> pretty(sym(maple('convert(arctanh(x),ln)')))

                    1/2 ln(x + 1) - 1/2 ln(1 - x)

>> pretty(sym(maple('convert(1/2*exp(x) + 1/2*exp(-x),trig)')))

                               cosh(x)

>> pretty(sym(maple('convert(cos(x)*sin(x), expln)')))

                  /                      1    \ /              1    \
          - 1/2 I |1/2 exp(I x) + 1/2 --------| |exp(I x) - --------|
                  \                   exp(I x)/ \           exp(I x)/

>> pretty(sym(maple('convert(binomial(m,3),GAMMA)')))

                               GAMMA(m + 1)
                           1/6 ------------
                               GAMMA(m - 2)

>> pretty(sym(maple('convert(binomial(m,3),factorial)')))

                                    m!
                             1/6 --------
                                 (m - 3)!

>> pretty(sym(maple('convert(erfc(x),erf)')))

                              1 - erf(x)

>> pretty(sym(maple('convert(erfc(2,x),erf)')))

                                               2
               2        2              x exp(-x )
          1/2 x  - 1/2 x  erf(x) - 1/2 ---------- + 1/4 - 1/4 erf(x)
                                           1/2
                                         Pi
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>> pretty(sym(maple('convert(",erfc) ')))

                                                     2
              2        2                     x exp(-x )
         1/2 x  - 1/2 x  (1 - erfc(x)) - 1/2 ---------- + 1/4 erfc(x)
                                                 1/2
                                               Pi

>> pretty(sym(maple('convert(BesselI(1/3,x),Airy) ')))

     / 1/3  2/3\ 1/2
    |3    2   |
1/2 |---------|
    |   2/3   |
    \  x      /
 
       1/2             2/3  1/3  2/3                2/3  1/3  2/3
    (-3    AiryAi(1/2 3    2    x   ) + AiryBi(1/2 3    2    x   ))

>> pretty(sym(maple('convert(HankelH2(-2/3,z),Bessel)')))
                BesselJ(-2/3, z) - I BesselY(-2/3, z)
>> pretty(sym(maple('convert(sin(BesselK(1/3,z^2)),Airy)')))

                    / 1/3  2/3\1/2
                    |3    2   |                2/3  1/3   2 2/3
             sin(Pi |---------|    AiryAi(1/2 3    2    (z )   ))
                    |   2 2/3 |
                    \ (z )    /

2-9. Subexpressions and Parts of Expressions
MATLAB implements a broad group of commands that allow you to work with subexpressions, either to operate on 
parts of expressions in general, to perform assignments of parts of expressions, to make substitutions in expressions, 
or for any other operations on the contents of algebraic expressions. The most important commands for this kind of 
task are summarized below (all of them must be preceded by the maple command):

indets(expression) determines all the indeterminates contained in the expression.

indets(expression,name) returns all subexpressions of the expression of the type given 
by name.

has(expression,subexpression) determines whether the given expression contains the 
specified subexpression.

has(expr,[subexp1,...,subexpn]) or has(expr,{subexp1,...,subexpn}) determines 
whether the expression expr contains one of the given subexpressions.

hasfun(expression,command) determines whether the expression contains a call to the 
command or function specified.
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hasfun(expression,function,variable,etc.) determines whether the expression contains 
the specified function of the given variable.

hasfun(expression,[fun1,...,funn]) or hasfun(expression,{fun1,...,funn}) 
determines whether the expression contains at least one of the specified functions.

hasfun(expr,function,[var1,...,varn]) or hasfun(expr,function,{var1,..., 
varn}) determines whether the expression contains at least one of the functions 
function(vari) i = 1... n.

hastype(expression,type) determines whether the expression contains a 
subexpression of the specified type.

readlib(freeze): freeze(expr)	 replaces the (usually very long) expression by the 
variables _R0, _R1, etc. This is used to avoid overcomplicating expressions.

readlib(freeze): thaw(var) replaces the variable var by the expression that was 
previously assigned to it by freeze.

alias(name=expression) or macro(name=expression) assigns to the alias name 
the given expression. The aim is to work more easily with long expressions and 
subexpressions.

alias(name1=expr1,...,namen=exprn) or macro(name1=expr1,...,namen=exprn) 
assigns all the aliases to the specified expressions.

alias(name=name) or macro(name=name) removes the alias for name.

assign({var1=expr1,...,varn=exprn}) or assign([var1=expr1,...,varn=exprn]) 
assigns the specified expressions to the given variables. This is usually used for long 
expressions or complicated subexpressions to facilitate further work.

assign(variable=expression) or assign(variable,expression) assigns the given 
expression to the aforementioned variable.

unassign('var1',...,'varn') removes the assignments for the given variables.

op(expression) displays the first level of elements, parts, or operands of the 
expression.

op(i,expression) returns the ith element (part or operat or) of the expression 
according to the first level of operations.

op(i..j,expression) returns the ith through to the jth elements of the expression.

nops(expression) returns the number of elements (parts or operators) of the 
expression according to the first level of operations.

nops(op(i expression)) returns the number of elements of the ith element of the 
expression.

subsop(i=expresion2,expression1) replaces the ith element of expression1 according 
to the first level of operations with expression2.

op(0,expression) returns the type of the expression.

op(-i, expression) returns the ith element of the expression starting from the end 
according to the first level of operations.

applyop(function,expr) applies the function or specified command to the nth element 
of the expression according to the first level of operations.
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select(function,expression) applies the Boolean function or command to each 
term of the expression (sum or product) and selects the terms for which the Boolean 
function or command returns true.

remove(function,expression) applies the Boolean function or command to all of the 
terms of the expression of sums or products and removes those for which the given 
Boolean function or command is true.

map(function,expr) applies the function to each operand of expr.

map2(function,arg,expr) applies the function with specified first argument to each 
operator of the expression expr.

add(expression,variable=a..b) sums the sequence obtained by evaluating the 
expression for the variable ranging over a, a+1,..., b-1, b.

mul(expression,variable=a..b) returns the product of the sequence obtained by 
evaluating the expression for the variable ranging over the values a, a+1,..., b-1, b.

seq(expression,variable=a..b) creates the sequence of expressions obtained by 
evaluating the specified expression for the variable over the values a, a+1,..., b-1, b.

numboccur(expr,subexpr) determines how many times the subexpression specified 
occurs in the given expression.

readlib(optimize): optimize (expression) optimizes the representation of the 
algebraic expression using common subexpressions.

readlib(optimize): optimize(expression, name=expression) optimizes the specified 
equation whose right-hand side is an algebraic expression.

readlib(optimize): optimize(expression,[name1=expr1,...,namen=exprn]) 
optimizes the specified equations whose right-hand sides are algebraic expressions.

shake(expression) creates a range of floating-point numbers that approximates the 
value of the expression.

shake(expression,n) creates a range of floating-point numbers that approximates the 
value of the expression with an accuracy given by n.

subs(exprold=exprnew,expression) replaces exprold with exprnew in the specified 
expression.

subs(expold1=expn1,expold2=expn2,..., expoldn=expnn, expression) replaces the 
specified old expressions in the given expression by the new expressions, sequentially.

subs({expold1=expn1,expold2=expn2,...,expoldn=expnn},expression) or subs 
([expold1=expn1,expold2=expn2,...,expoldn=expnn],expression) replaces the old 
expressions with the new expression, simultaneously.

subsop(n1=expr1,...,nk=exprk,expr) replaces the elements n1, n2,..., nk of the 
expression by expressions expr1,..., exprk respectively (according to the first level of 
operations), simultaneously.

readlib(trigsubs): trigsubs(identity,expression) applies the given trigonometric 
identity to the specified expression.
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algsubs(exprold=exprnew,expr) substitutes exprnew in place of exprant in the given 
expression.

algsubs(exprold=exprnew,expression,exact) substitutes exprnew in place of exprant 
in the given expression only if the exact division of monomials is possible.

asubs(exprold=exprnew,expression) substitutes exprnew in place of exprold in the 
given expression in terms of sums.

asubs(exprold=exprnew,expression,always) substitutes exprnew in place of exprold in 
the given expression in all its addends.

LHS(equation) returns the left-hand side of the equation.

LHS(inequality) returns the left-hand side of the inequality.

LHS(range) returns the left side of an expression of type range.

RHS(equation) returns the right-hand side of the equation.

RHS(inequality) returns the right-hand side of the inequality.

RHS(range) returns the right side of an expression of type range.

readlib(isolate): isolate (equation, expression) isolates the specified expression 
in the given equation.

readlib(isolate): isolate (expr1, expr2) isolates the subexpression expr2  in the 
equation expr1 = 0.

readlib(isolate): isolate (equation, expression, n) isolates the specified 
expression in the given equation by running at least n transformations or passes.

setattribute(expression,attri1,...,attrin) assigns the attributes attri1,..., attrin for 
the specified expression. Only strings, lists, sets, floating-point values, and unevaluated 
function calls can have attributes.

setattribute(expression) removes all attributes previously assigned to the specified 
expression.

attributes(expression) returns all the attributes previously assigned to the specified 
expression.

Here are some examples:
 
>> pretty(sym(maple('indets(x*y + z/x)')))

                                   {y, z, x}

>> pretty(sym(maple('e:= x^(1/2) + exp(x^2) + f(9):')))
>> pretty(sym(maple('indets(e),  indets(e,function)')))

                           1/2      2          2
                      {x, x, exp (x)}, {exp (x), x (9)}
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>> pretty(sym(maple('f:= (a+b^3+c)^(4/3)')))
>> pretty(sym(maple('has( f, a ),  has( f, b^3 ),  has( f, b^2 ),  has( f, a+b^3+c )')))

                       true, true, false, true

>> pretty(sym(maple('f:= Int(g(t),t=a..b)')))
>> pretty(sym(maple('has(f,a),   has(f,g),   has(f,t)')))

true, true, true

>> pretty(sym(maple('e:= sin(x)+exp(y)+1')))
>> pretty (sym (maple (' hasfun(e,exp), hasfun(e,cos), hasfun(e,exp,y), hasfun(e,exp,x),  
   hasfun(e,exp,[x,y]), hasfun(e,{sin,cos},x)')))

                 true, false, true, false, true, true

>> pretty(sym(maple(' f:= x^(1/2)*y ')))
 
>> pretty(sym(maple('hastype(f,`*`), hastype(f, `+`), hastype(f, name^fraction),     
   hastype(f,integer^fraction), hastype(f,radical ), hastype( f,function )')))

                true, false, true, false, true, false

>> pretty(sym(maple('readlib(freeze): z:= freeze(x+y)')))
>> pretty(sym(maple(' thaw(z) ')))

                                x + y

>> pretty(sym(maple('w:= f(g(a,b),h(c,d))')))
>> pretty(sym(maple('op(1,op(2,w)), op([2,1],w), op([-1,-1],w)')))

 c, c, d

>> pretty(sym(maple('Int(sin(sqrt(x)),x=0..t)')))
 

sin( )x dx
t

0ò
 
>> pretty(sym(maple('subsop( [1,1]=u, " ), subsop( 1=2*u*op(1,"), [2,1]=u, " ),  
   applyop( sqrt, [2,2,2], " )')))
 

sin( ) , sin( ) , sin( )u dx u u du u u dx
t tt

0 00
2 2ò òò
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>> pretty (sym (maple ('readlib (isolate): isolate (4 * x * sin (x) = 3, sin (x)),  
   isolate(x^2-3*x-5,x^2)')))

                                                 2
                        sin (x) = 3/4 x, x = 3 x + 5

>> pretty(sym(maple(' f:= 2*exp(a*x)*sin(x)*ln(y) ')))
>> pretty(sym(maple('select(has, f, x),   remove(has, f, x)')))

                           exp (w x) sin (x), 2 ln (y)

>> pretty(sym(maple('attributes(a), setattribute(a,blue), attributes(a)')))

                               a, blue

>> pretty(sym(maple('setattribute(a,yellow,green)')))

                                  A

>> pretty(sym(maple('attributes(a)')))

                            yellow, green 

EXERCISE 2-23

Perform the substitution sin (x)2= 1-cos (x)2 in the following expression: sin (x)3 - cos (x) sin (x)2 + cos (x)2 sin (x) + 
cos (x)3. Also substitute PV/T = R in the expression P2 V/T2 - PR.
 
>> pretty (sym (maple ('f: = sin (x) ^ 3-cos (x) * sin (x) ^ 2 + cos (x) ^ 2 * sin (x) +  
   cos (x) ^ 3')))
>> pretty (sym (maple ('algsubs (sin (x) ^ 2 = 1 - cos (x) ^ 2, f)')))

                                              3
                     sin (x) - cos (x) + 2 cos (x)

>> pretty(sym(maple('algsubs( P*V/T=R, P^2*V/T^2-P*R) ')))

                                     R P
                              -P R + ---
                                      T
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2 ■ Algebraic Expressions and Operations: Factoring Algebraic Fractions

72

EXERCISE 2-24

Perform the replacement defined by x2+ 3 = k in the expressions (x2 + 3 x + 3)3+ x and ((x2 + 3x + 3)3 + x) / (x2 +2)2.
 
>> pretty(sym(maple('readlib(asubs):')))
>> pretty(sym(maple('asubs( x^2 + 3 =k, (x^2 + 3*x + 3 ) ^ 3 + x )')))

                                          3
                            (3 x + k)  + x

>> pretty(sym(maple('asubs( x^2 + 3 =k, (x^2 + 3*x + 3 ) ^ 3 + x ,always)')))

                                   3    2
                     (3 x + k)  + x - x  - 3 + k

>> pretty(sym(maple('asubs( x^2 + 3 =k, ((x^2 + 3*x + 3 ) ^ 3 + x)/(x^2 +2)^2)')))

                                          3
                            (3 x + k)  + x
                            --------------
                                      2
                              (-1 + k)
 

EXERCISE 2-25

Change the variable x = r1/3 in the expression 3xln(x3) and also change the variable sin (x) = y in the expression 
sin(x) / (1-sin (x))1/2.
 
>> pretty(sym(maple('subs(x=r^(1/3), 3*x*log(x^3))')))

                                    1/3
                                 3 r    log(r)

>> pretty (sym (maple ('subs (y= sin (x), sin (x) / (1 - sin (x)) ^(1/2))')))

                                      y
                                  ----------
                                         1/2
                                  (1 - y)
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Chapter 3

Polynomial Divisibility, Interpolation, 
and Algebraic Extensions

3-1. Commands for Handling Polynomial Expressions 
This chapter is about working with polynomials and algebraic extensions. We will study the MATLAB commands 
that enable you to perform polynomial operations, working with roots, Galois extensions, Gröbner bases, polynomial 
interpolation, and operations modulo an integer. We will also present the commands that Maple implements to the 
same effect.

MATLAB enables agile work with polynomials, providing several commands for handling polynomial algebraic 
expressions. These expressions can also be treated as general algebraic expressions, but MATLAB offers particular 
tools for polynomial algebraic expressions, including case-specific commands. Let’s take a look at some of these 
commands:

conv(a,b) returns the vector whose entries are the coefficients of the polynomial 
defined as the product of the polynomials whose coefficients are given by the  
vectors a and b.

[q,r] = deconv(a,b) gives the vector q of coefficients of the polynomial defined as the 
quotient of polynomials whose coefficients are given by the vectors a and b, and the 
vector r of coefficients of the remainder polynomial.

poly2sym(a) returns the polynomial whose coefficients are those specified by the 
vector a.

sym2poly(poly) returns the vector of coefficients of the specified polynomial (the 
reverse of the previous operation).

roots(a) gives the roots of the polynomial whose coefficients are given by the vector a.

poly(v) gives the polynomial whose roots are the components of the vector v.

poly(A) gives the characteristic polynomial of the matrix A.

polyder(a) gives the vector whose coefficients are those of the first derivative of the 
polynomial defined by a.

polyder(a,b) gives the vector whose coefficients are those of the first derivative of the 
product of polynomials defined by a and b.
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[q,d] = polyder(a,b) returns the numerator q and denominator d of the derivative 
of the polynomial quotient a/b (here all arguments are vectors of coefficients of 
polynomials).

polyval(p,S) evaluates the polynomial p at S.

polyvalm(p,S) evaluates the polynomial p at a matrix S.

[r,p,k] = residue(a,b) gives the column vectors r, p and k such that:  
b(s)/a(s)=r1/(s-p1)+r2/(s-p2)+...+rn/(s-pn) +k(s).

[a,b] = residue(r, p, k) performs the reverse of the previous operation.

Now let’s look at some examples of the above defined commands:
Let’s decompose the fraction (-x ^ 2 + 2 x + 1) /(x^2-1) into the sum of its simple fractions:

 
>> [r,p,k]=residue([-1,2,1],[1,0,-1])

r =
 
    1.0000
    1.0000
 
p =
 
   -1.0000
    1.0000
 
k =
 
    -1

 
So the decomposition will be:

 
(-x ^ 2 + 2 x + 1) /(x^2-1) = 1 /(-1+x) + 1 / (x + 1) - 1
 

The same result can be obtained in the following way:
 
>> pretty(sym(maple('convert((-x^2+2*x+1)/(x^2-1),parfrac,x)')))

                                      1      1
                              -1 + ----- + -----
                                   x - 1   x + 1
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Next we will evaluate the polynomial x ^ 4-6 * x ^ 3-x ^ 2 + 10 * x-11 at the point x = 5 and at the unit matrix of 
order 4.
 
>> polyval([1,-6,-1,10,-11],5)

ans =
 
  -111

>> polyvalm([1,-6,-1,10,-11],ones(4))

ans =
 
   -37 - 26 - 26 - 26
   -26 - 37 - 26 - 26
   -26 – 26 - 37 - 26
   -26 - 26 – 26 - 37

 
Now let’s find the roots of the polynomial x ^ 3-x:

 
>> roots([1,0,-1,0])

ans =
 
         0
   -1.0000
    1.0000

 
Now we solve the equation -x ^ 5 + 2 * x ^ 4 + x ^ 3 + x ^ 2 = 0:

 
>> roots([-1,2,1,1,0,0])

ans =
        0
        0
   2.5468
  -0.2734 + 0.5638i
  -0.2734 - 0.5638i
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Exercise 3-1

Consider the polynomials with coefficients a = [2 - 4, 5, 8, 0, 0, 1] and b = [- 7, 15, 0, 12, 0]. Calculate the 
coefficients of the product and the quotient of polynomials defined by a and b, and also calculate the 
coefficients of the derivatives of the product and quotient of the polynomials defined by a and b.
 
>> a=[2,-4,5,8,0,0,1]; b=[-7,15,0,12,0];
>> conv(a,b)

ans =
 
   -14    58   -95    43    72    60    89    15     0    12     0

>> [q,r]=deconv(a,b)

q =
 
   -0.2857   -0.0408   -0.8017
r =
 
    0         0         0   23.4548    0.4898    9.6210    1.0000

>> polyder(a)

ans =
 
    12   -20    20    24     0     0

>> polyder(a,b)

ans =
 
  -140-522 - 760 301 432 300 356 45 0 12

>> [q, d] = polyder(a, b)

q =
 
   -28 118 -120 251 -192 180 220 -45 0 -12
 
d =
 
    49 -210 225 -168 360 0 144 0 0

 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ Polynomial Divisibility, Interpolation, and Algebraic Extensions

77

In the previous calculations, we could instead have transformed the coefficient vectors into the equivalent 
polynomials with the command poly2sym, obtaining the results in polynomial form. The product polynomial is:
 
>> pretty(poly2sym(conv(a,b)))

        10      9       8      7     6      5      4      3
   -14 x + 58 x  - 95 x + 43 x + 72 x + 60 x + 89 x + 15 x + 12 x

 

The quotient polynomial is:
 
>> pretty(poly2sym(q))

                                   2           275
                            -2/7 x - 2/49 x -  ---
                                               343

 

The first derivative of the polynomial defined by a is:
 
>> pretty(poly2sym(polyder(a)))

                             5      4      3       2
                         12 x - 20 x + 20 x + 24 x

 

The first derivative of the product of polynomials defined by a and b is:
 
>> pretty(poly2sym(polyder(a,b)))

        9       8       7       6       5       4       3      2
  -140 x + 522 x - 760 x + 301 x + 432 x + 300 x + 356 x + 45 x + 12

 

The first derivative of the polynomial quotient a/b will be q/d where q and d are as follows:
 
>> [q,d]=polyder(a,b);
>> pretty(poly2sym(q))

       9        8       7       6       5       4       3       2
  -28 x + 118 x - 120 x + 251 x - 192 x + 180 x  + 220 x - 45 x - 12

>> pretty(poly2sym(d))

                  8        7       6       5       4       2
              49 x - 210 x + 225 x - 168 x + 360 x + 144 x
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Exercise 3-2

Find the characteristic polynomial of the matrix whose rows are the vectors [2,-4,5,8], [0,0,0,1], 
[-7,15,0,12] and [0,-1,-1,0]. Also find the roots of this polynomial and verify that the matrix satisfies the 
characteristic polynomial equation.
 
>> A=[2,-4,5,8;0,0,0,1;-7,15,0,12;0,-1,-1,0]

A =
     2    -4     5     8
     0     0     0     1
    -7    15     0    12
     0    -1    -1     0

>> p=poly(A)

p =
 
    1.0000   -2.0000   48.0000  -67.0000   33.0000

>> pretty(poly2sym(p))

                          4      3       2
                         x  - 2 x  + 48 x  - 67 x + 33

 

To find the roots of the characteristic polynomial we do the following:
 
>> roots(p)

ans =
 
   0.2836 + 6.8115i
   0.2836 - 6.8115i
   0.7164 + 0.4435i
   0.7164 - 0.4435i
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To verify that the matrix A satisfies the characteristic polynomial, we evaluate the characteristic polynomial at the 
matrix A and observe that it (almost) returns the null matrix.
 
>> polyvalm(p,A)

ans =
 
  1.0E-012 *
 
    0.4619 - 0.9663   0.0426 - 0.9095
    0.0016 - 0.0071   0.0142   0.0142
    0.1181 - 0.0568   0.6466   0.7390
   -0.0995   0.2132 - 0.0140   0.1634

 

Exercise 3-3

Expand the following polynomial expressions:

a)  (5x 3 y 2 z - 4xy 2 z 3) 3

b)  (x + y) (x 4 + x 2 y 2 + y 4) (x - y)
   
>> syms x y z
>> pretty(expand(simple(5*x^3*y^2*z-4*x*y^2*z^3)^3))

                9  6  3        7  6  5        5  6  7       3  6  9
           125 x  y  z  - 300 x  y  z  + 240 x  y  z  - 64 x  y  z

>> pretty(expand((x+y)*(x^4+x^2*y^2+y^4)*(x-y)))

                                      6    6
                                    x  - y

 

Here we see that the first polynomial presents difficulties when we try to expand it using only the command 
expand; we need to use the simple command first.
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Exercise 3-4

Factorize the following polynomial expressions as much as possible.

a) 4x 2 + y 2t 2 + z 4 − 4xyt + 4xz 2 − 2ytz 2

b) x 4 − x 2y 2 + 2xy 2 + x 2 − 2x 3 − y 2

c) amx + amy − bmx − bmy + bnx − anx − any + bny
 
>> syms x y z t a b m n
>> pretty(factor(4*x^2+y^2*t^2+z^4-4*x*y*t+4*x*z^2-2*y*t*z^2))

                                              2  2
                               (2 x - y t + z  )

>> pretty(factor(x^4- x^2*y^2+2*x*y^2+x^2-2*x^3-y^2))

                                    2
                            (x - 1)  (x - y) (x + y)

>> pretty(factor(a*m*x+a*m*y-b*m*x-b*m*y+b*n*x-a*n*x-a*n*y+b*n*y))

                          - (x + y) (n - m) (- b + a)

 
In general, in polynomial expressions, the command expand performs operations and simplifies the result, and the 
command factor factorizes as much as possible.

3-2. Extracting Parts of a Polynomial
The following commands enable MATLAB to extract various parts of a polynomial (after prior use of the maple 
command):

coeff(polynomial,var,n) extracts the coefficient of the polynomial in var 
corresponding to the monomial of power n. Before applying coeff, be sure it is suitable 
to do so, by first applying collect to group the terms in the variable.

coeff(polynomial,expression) extracts the coefficient corresponding to the specified 
expression in the given polynomial.

coeffs(polynomial,variable) extracts the sequence of all the coefficients of the 
polynomial in the given variable.

coeffs(polynomial) extracts the sequence of all the coefficients of all the variables of 
the specified multivariable polynomial.
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coeffs(polynomial,{var1,...,varn}) or coeffs(polynomial,[var1,...,varn]) extracts 
the sequence of coefficients of the given multivariate polynomials corresponding to the 
specified set of variables.

coeffs(poly,var,name) finds the sequence of polynomial coefficients corresponding to 
the variable var and assigns to it the specified name.

sign(poly) returns the sign of the leading coefficient of the given multivariate 
polynomial. If the polynomial is positive, returns 1, and if it is negative, returns - 1.

sign(poly,var) gives the sign of the leading coefficient of the polynomial in the 
variable var.

sign(poly,[var1,...,varn]) gives the sign of the leading coefficient of the polynomial 
in the variables var1,..., varn.

lcoeff(polynomial) finds the leading coefficient of the multivariate polynomial with 
respect to all variables appearing in the polynomial.

lcoeff(polynomial,variable) finds the leading coefficient of the polynomial with 
respect to the given variable.

lcoeff(polynomial,{var1,...,varn}) or lcoeff(polynomial,[var1,...,varn]) finds 
the leading coefficient of the polynomial for the given variable set.

tcoeff(polynomial) finds the trailing coefficient of the polynomial for all its variables.

tcoeff(polynomial,variable) finds the trailing coefficient of the polynomial output in 
the given variable.

tcoeff(polynomial,{var1,...,varn}) or tcoeff(polynomial,[var1,...,varn]) finds 
the trailing coefficient of the polynomial for the given variables.

ldegree(polynomial,var) determines the lowest degree of the polynomial in the given 
variable.

ldegree(polynomial) determines the lowest degree of the polynomial with respect to 
all of its variables.

ldegree(polynomial,{var1,...,varn}) or ldegrace(polynomial, [var1,...,varn]) 
determines the lowest degree of the polynomial with respect to the given set of 
variables.

degree(polynomial,variable) determines the highest degree of the polynomial in the 
given variable.

degree(polynomial) determines the highest degree of the polynomial with respect to 
all of its variables.

degree(polynomial,{var1,...,varn}) or dgree(polynomial,[var1,...,varn])  
determines the highest degree of the polynomial for the given variables.
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Here are some examples:
 
>> pretty (sym (maple('p:= 2*x^2 + 3*y^3-5:'))))
>> pretty(sym(maple('coeff(p,x,2), coeff(p,x^2), coeff(p,x,0) ')))
                                      3
                            2, 2, 3 y - 5
>> pretty (sym (maple ('q: = 3 * a * (x + 1) ^ 2 + sin (a) * x ^ 2 * y - y ^ 2 * x + x - a:')))
>> pretty(sym(maple('coeff(q,x)')))

                                    2
                             6 a - y + 1

>> pretty(sym(maple('q := collect(q,x)')))

                                 2          2
          q: = (sin (a) y + 3a) x + (6 a - y + 1) x + 2a

>> pretty(sym(maple('coeff(q,x)')))

                                    2
                             6 a - y + 1

>> pretty(sym(maple('s := 3*v^2*w^3*x^4+1')))

                                 2 3 4
                         s: = 3 v w x + 1

>> pretty(sym(maple('lcoeff(s), tcoeff(s), lcoeff(s, [v,w], t), t')))

                                        4  2 3
                               3, 1, 3 x, v w

>> maple('degree(2/x^2+5+7*x^3,x), ldegree(2/x^2+5+7*x^3,x),degree(x*sin(x),x)')

                             3, - 2, FAIL

>> maple('degree(x*sin(x),sin(x)), degree((x+1)/(x+2),x),degree(x*y^3+x^2,[x,y]) ')

                              1, FAIL, 2
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>> pretty(sym(maple('degree(x*y^3+x^2,{x,y}), ldegree(x*y^3+x^2,[x,y]) ')))

                                 4, 4

>> pretty(sym(maple('expr := 3*x^2*y^4 - 2*x*y^5 + x')))
>> pretty(sym(maple('indets(expr), sign(expr), sign(expr, [x,y]), sign(expr, [y,x]),     
   sign(expr, [y,x], a), a')))

{x, y}, 1, 1, - 1, - 1, x * y ^ 5

3-3. Factorization of Polynomials
This section presents the commands that implement various polynomial factorizations (following prior use of the 
maple command).

factor(polynomial) factorizes a multivariate polynomial over the ring determined by 
its coefficients (integer, real, rational, and so on).

factor(polynomial,radical) factorizes the polynomial over the algebraic extension 
Q(radical).

factor(polynomial,RootOf) factorizes the polynomial over the algebraic extension 
Q(RootOf).

factor(polynomial,[radical1,...,radicaln]) factorizes the polynomial over the 
algebraic extension Q(radical1,...,radicaln).

factor(polynomial,[RootOf1,..,RootOfn]) factorizes the polynomial over the 
algebraic extension Q(RootOf1,...,RootOfn).

factor([polynomial1,..., polynomialn] or factor({polynomial1,...,polynomial
n})) factorizes the specified polynomials.

factors(polynomial) returns a list with the multivariate polynomial factors and their 
multiplicities.

factors(polynomial,radical) returns a list with the multivariate polynomial factors 
and their multiplicities in the algebraic extension Q(radical).

factors(polynomial,RootOf) returns a list with the multivariate polynomial factors 
and their multiplicities in the algebraic extension Q(RootOf).

factors(polynomial,[rad1,...,radn]) or factors(polynomial,{rad1,...,radn}) 
returns a list with the multivariate polynomial factors and their multiplicities in the 
algebraic extension Q(radical1,...,radicaln).

factors(poly,[RootOf1,...,RootOfn]) or factors(poly,{RootOf1,...,RootOfn}) 
returns a list with the multivariate polynomial factors and their multiplicities in the 
algebraic extension Q(RootOf1,...,RootOfn).

Factor(polynomial) performs the inert factorization of the polynomial.

factor(n) returns a row vector of prime factors of the positive integer n.
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ifactor(n,option) gives the entire factorization of n according to the given option. 
Possible option values are sqfof (which uses the square free factorization method), 
pollard (which uses the Pollard method), lenstra (which uses the Lenstra method) 
and easy (which calculates only the easy factorizations).

Factor(polynomial) modn performs the inert factorization of the polynomial modulo n.

grading(Factor(polynomial,expr),option) factorizes the polynomial in the algebraic 
extension defined by expr according to the method given in the option (lenstra, 
trager, or linear).

Factors(polynomial) returns inert form factors and their multiplicities for the given 
polynomial.

Factors(polynomial) modn gives the factors and their multiplicities for polynomial 
modulo n.

grading(Factors(polynomial,expression),option) gives the list of factors and 
multiplicities of the polynomial in the given algebraic extension defined by the 
expression according to the specified option (lenstra, trager, or linear).

Afactor(polynomial) performs the inert absolute factorization of the polynomial.

Afactors(polynomial) returns the list of factors of the inert absolute factorization of 
the polynomial.

Berlekamp(poly,variable) returns the inert form of the Berlekamp factorization of 
varying degrees for the polynomial poly with respect to the given variable.

Berlekamp(poly,var) modn as above, but working modulo n.

Berlekamp(variable,radical,polynomial) returns the inert form of the Berlekamp 
factorization of varying degrees for the polynomial over the algebraic extension 
defined by radical.

DistDeg(polynomial,var) returns the inert form of the factorization of varying degrees 
of the polynomial given with respect to the variable var.

DistDeg(poly,var) mod n gives the factorization of varying degrees of the given 
polynomial with respect to the variable var modulo n.

readlib(split):split(polynomial,variable) performs the complete factorization 
of the polynomial with respect to the variable given over the ring determined by its 
coefficients.

readlib(splits):splits(polynomial,variable) returns the factors and their 
multiplicities for the complete factorization of the polynomial with respect to the given 
variable.

sqrfree(polynomial) returns the square-free factors and their multiplicities of a 
polynomial with rational coefficients.

sqrfree(polynomial,variable) returns the square-free factors and their multiplicities 
of a polynomial with rational coefficients in the specified variable.

Sqrfree(polynomial) returns the inert square-free factors and their multiplicities of a 
polynomial with rational coefficients.

Sqrfree(polynomial) modn returns the inert square-free factors and their multiplicities 
of a polynomial with rational coefficients modulo n.
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with(lattice): mipolys(n,p) gives the number of irreducible univariate monic 
polynomials of degree n over Z (modp).

with(lattice): mipolys(n,p,m) gives the number of irreducible univariate monic 
polynomials of degree n over the Galois field defined by pm.

irreduc(polynomial) determines whether the multivariate polynomial is irreducible 
over the ring defined by its coefficients.

irreduc(polynomial,radical) determines whether the multivariate polynomial is 
irreducible over the algebraic extension Q(radical).

irreduc(polynomial,{rad1,...,radn}) or irreduc(polynomial,[rad1,...,radn]) 
determines whether the multivariate polynomial is irreducible over the extension 
Q(radical1,...,radicaln).

Irreduc(polynomial) represents the inert form of irreduc.

Irreduc(polynomial) mod n determines whether the multivariate polynomial is 
irreducible over the ring defined by its coefficients modulo n.

Here are some examples:
 
>> pretty(sym(maple('factor(x^3+5)')))

                                 3
                                x  + 5

>> pretty(sym(maple('factor(x^3+5.0)')))

                              2
         (x + 1.709975947). (x - 1.709975947 x + 2.924017740).

>> pretty(sym(maple('factor(a^3+a^2+a+1) ')))
                                     2
                           (a + 1) (a + 1)
>> pretty(sym(maple('factor(a^3+a^2+a+1,complex) ')))
                    (a + 1.) (a + 1.) I) (a - 1. I)
>> pretty(sym(maple('readlib(factors):factors(a^10-2*a^5+1) ')))

                                3   4   2
             [1, [[a - 1, 2], [a + a + a + a + 1, 2]]]

>> pretty(sym(maple('readlib(factors):factors(a^10-2*a^5+1,real) ')))

       2
[1, [[a + 1.618033989 a + 1.000000000, 2], [a - 1., 2],]]
                  2
 [[[a.6180339888 a + 1.000000000, 2]]]
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>> pretty(sym(maple('Factors(a^10-2*a^5+1) mod 7')))

                                4    3    2
             [1, [[a + 6, 2], [a  + a  + a  + a + 1, 2]]]

>> pretty(sym(maple('Factor(a^10-2*a^5+1) mod 7')))

                          2   4    3    2         2
                   (a + 6)  (a  + a  + a  + a + 1)

>> pretty(sym(maple('Factor(a^10-2*a^5+1)')))

                                10      5
                        Factor(a   - 2 a  + 1)

>> pretty(sym(maple('evala(")')))

                     4    3    2         2        2
                   (a  + a  + a  + a + 1)  (a - 1)

>> pretty(sym(maple('readlib(split): split(x^2+x+1,x)')))

                    2                              2
      (x - RootOf(_Z  + _Z + 1)) (x + 1 + RootOf(_Z  + _Z + 1))

>> pretty(sym(maple('readlib(splits): splits(x^2+x+1,x)')))

                   2                                  2
[1,[[x - RootOf(_Z  + _Z + 1), 1], [x + 1 + RootOf(_Z  + _Z + 1), 1] ]]

>> pretty(sym(maple(' f := x^3*y-x^3-x^2*y^2+x^2*y')))
>> pretty(sym(maple('sqrfree(f,x) ')))

                    [y - 1, [[-y + x, 1], [x, 2]]]

>> pretty(sym(maple('sqrfree(f,y)')))

                      2                2
                   [-x , [[-x y + x + y  - y, 1]]]
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>> pretty(sym(maple('sqrfree(f,[x,y])')))

                [1, [[y - 1, 1], [-y + x, 1], [x, 2]]]

>> pretty(sym(maple('Sqrfree(4*x^2+4*x+1) mod 7')))

                          [4, [[x + 4, 2]]]

>> pretty(sym(maple('irreduc( x^3+5 )')))

                                 true

>> pretty(sym(maple('irreduc( x^3+5, 5^(1/3))')))

                                false

>> pretty(sym(maple('Irreduc(2*x^2+6*x+6) mod 7,Factor(2*x^2+6*x+6) mod 7')))

                       false,    2*(x+6)*(x+4)

>> pretty(sym(maple('Irreduc(x^4+x+1) mod 2,   Factor(x^4+x+1) mod 2')))

                          true,   x^4+x+1

 
As we have already seen many examples and exercises relating to factorization of univariate and multivariate 

polynomials, we shall present only a pair of exercises.

Exercise 3-5

Factorize the polynomial a4 - 9/4 in the following cases:

(a) over the field defined by its coefficients

(b) over the real field

(c) over the complex field

(d) over the algebraic extension Q(÷2,÷3)

(e) over the algebraic extension Q(÷2,÷3, i)

(f) over the algebraic extension Q(RootOf(Z^2+3/2)).
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>> pretty(sym(maple('factor(a^4-9/4)')))

                              2          2
                      1/4 (2 a  - 3) (2 a  + 3)

>> pretty(sym(maple('factor(a^4-9/4,real)')))

                                                   2
            (a + 1.224744871) (a - 1.224744871) (a  + 1.499999999)

>> pretty(sym(maple('factor(a^4-9/4,complex)')))

(a + 1.224744871)(a + 1.224744871 I)(a-1.224744871 I)(a-1.224744871)

>> pretty(sym(maple('factor(a^4-9/4,{(3)^(1/2),2^(1/2)})')))

                       2              1/2  1/2           1/2  1/2
             - 1/8 (2 a  + 3) (2 a + 3    2   ) (-2 a + 3    2   )

>> pretty(sym(maple('factor(a^4-9/4,{(3)^(1/2),2^(1/2),I})')))

                1/2  1/2            1/2  1/2          1/2  1/2
1/16 (-2 a + I 3    2   ) (2 a + I 3    2   ) (2 a + 3    2   )
 
             1/2  1/2
    (-2 a + 3    2   )

>> pretty(sym(maple('factor(a^4-9/4,RootOf(Z^2+3/2))')))

            2                      2                       2
    1/2 (2 a  - 3) (a + RootOf(2 _Z  + 3)) (a - RootOf(2 _Z  + 3))
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Exercise 3-6

Determine whether the polynomial x9 + 1 is irreducible in the following cases:

(a) over the field defined by its coefficients

(b) over the algebraic extension Q(÷3 i).

Perform its factorization where possible.
 
>> pretty(sym(maple('irreduc(x^9+1)')))

                                false

>> pretty(sym(maple('factor(x^9+1)')))

                            2            6    3
                  (x + 1) (x  - x + 1) (x  - x  + 1)

>> pretty(sym(maple('irreduc(x^9+1,(-3)^(1/2))')))

                                false

>> pretty(sym(maple('factor(x^9+1,(-3)^(1/2))')))

          3          1/2      3          1/2                 1/2
1/16 (-2 x  + 1 + I 3   ) (2 x  - 1 + I 3   ) (-2 x + 1 + I 3   )
 
                  1/2
    (2 x - 1 + I 3   ) (x + 1)

 

3-4. Roots of Polynomials
The following group of MATLAB commands, all of which require the prior use of the maple command, may be used to 
work with roots of polynomials:

roots(polynomial) gives univariate polynomial roots by offering a list of lists with the 
roots and their multiplicities. The calculation is performed over the ring defined by the 
coefficients.

roots(polynomial,radical) finds the roots of the univariate polynomial over the 
algebraic extension Q(radical)or Q(RootOf).

roots(polynomial,[rad1,...,radn]) or roots(polynomial,{rad1,...,radn}) finds the 
roots of a univariate polynomial over Q(rad1,...,radn) or Q(RootOf1,...,RoofOfn).
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Roots(poly) returns the inert form of the roots of the polynomial poly.

Roots(poly) modn gives the roots of the polynomial poly modulo n.

reallib(realroot): realroot(polynomial) finds intervals in which the real roots of a 
univariate polynomial with integer coefficients are contained.

reallib(realroot): realroot(polynomial,n) finds intervals with a maximum width 
of n in which the real roots of a univariate polynomial with integer coefficients are 
contained.

reallib(proot): proot(poly,n) calculates the nth root of the given polynomial with 
rational coefficients.

reallib(psqrt): psqrt(poly) computes the square root of the given polynomial with 
rational coefficients.

with(numtheory): cyclotomic(n,variable) returns the n-th cyclotomic polynomial in 
the given variable.

readlib(sturm): sturmseq(polynomial,variable) gives a list of polynomials 
representing the Sturm sequence for the given polynomial.

readlib(sturm): sturm(expression,variable,a,b) returns the number of real roots of 
the polynomial in the interval (a, b] using the Sturm sequence.

readlib(lattice): minpoly(r,n) returns a polynomial of degree less than or equal to n 
with small integer coefficients, such that r is one of its roots.

readlib(lattice): minpoly(r,n,e) returns a polynomial of degree less than or equal 
to n with small integer coefficients, such that r is one of its approximate roots with an 
accuracy given by e.

Here are some examples. First, we find the roots and their multiplicities over the field defined by the coefficients 
of the given polynomials:
 
>> pretty(sym(maple('roots(2*x^3+11*x^2+12*x-9)')))

                         [[-3, 2], [1/2, 1]]

>> pretty(sym(maple('roots(x^3+(-6-b-a)*x^2+(6*a+5+5*b+a*b)*x-5*a-5*a*b,x)')))

                               [[5, 1]]

 
Next, we find modular integer roots and their multiplicities.

 
>> pretty(sym(maple('Roots(x^3-x) mod 6')))

           [[0, 1], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1]]
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>> pretty(sym(maple('Roots(x^3-1) mod 2')))

                               [[1, 1]]

>> pretty(sym(maple('alias(a=RootOf(x^2+x+1))'))) ;
>> pretty(sym(maple('Roots(x^3-1,a) mod 2')))

                         [[a + 1, 1], [1, 1], [a, 1]]

 
Next we solve a third-degree polynomial with integer coefficients that has 1.2324 as an approximate root:

 
>> pretty(sym(maple('readlib(lattice) : minpoly(1.234,3)')))
                                       2       3
                     109. 61 _X + 5 _X - 22 _X
 

Next we generate a Sturm sequence for a given polynomial in order to find the number of roots of the polynomial 
in the specified ranges:
 
>> pretty(sym(maple('readlib(sturm): sturmseq(expand((x-1)*(x-2)*(x-3)),x)')))

                  3      2              2
                [x  - 6 x  + 11 x - 6, x  - 4 x + 11/3, x - 2, 1]

>> pretty(sym(maple('sturm(",x,3/2,4)')))

                                  2

>> pretty(sym(maple('sturm("",x,1,2)')))

                                  1

 
Next we calculate the square and cubic roots of the given polynomials:

 
>> pretty(sym(maple('readlib(psqrt): psqrt(x^2+2*x*y+y^2)')))

                                x + y

>> pretty(sym(maple('readlib(proot): proot(x^3+3*x^2+3*x+1,3)')))

                                x + 1
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Exercise 3-7

Find the roots and their multiplicities of the polynomial x4 - 4 in the following cases:

(a) over the field defined by its coefficients

(b) over the algebraic extension Q(÷2)

(c) over the algebraic extension Q(÷2, i)

(d) over the algebraic extension Q(RootOf(x2- 2))

(e) over the algebraic extension Q(RootOf(x2- 2),RootOf(x2+ 2))
 
>> pretty(sym(maple('roots(x^4-4)')))

>> pretty(sym(maple('roots(x^4-4,x)')))
>> pretty(sym(maple('roots(x^4-4,sqrt(2))')))

                               1/2         1/2
                            [[2   , 1], [-2   , 1]]

>> pretty(sym(maple('roots(x^4-4, {sqrt(2),I})')))

                   1/2           1/2        1/2         1/2
              [[I 2   , 1], [-I 2   , 1], [2   , 1], [-2   , 1]]

>> pretty(sym(maple('alias(a = RootOf(x^2-2))'))) ;
>> pretty(sym(maple('alias(b = RootOf(x^2+2))'))) ;
>> pretty(sym(maple('roots((x^4-4), x, a)')))

                               [[a, 1], [-a, 1]]

>> pretty(sym(maple('roots(x^4-4, {a, b})')))

                      [[b, 1], [-b, 1], [, 1], [-a, 1]]
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Exercise 3-8

Find the intervals in which the real roots of the polynomial x8 + 5 x7 - 4 x6 - 20 x5 + 4 x4 + 20 x3 are 
located, with the following specifications:

(a) intervals with default width

(b) intervals with a width of one unit

(c) intervals with a half-unit width

(d) intervals with a width of one thousandth of a unit
 
>> pretty(sym(maple('readlib(realroot)')));
>> pretty(sym(maple('realroot(x^8+5*x^7-4*x^6-20*x^5+4*x^4+20*x^3)')))

                 [[0, 0], [0, 8], [- 4, 0], [- 8, - 4]]

 

We deduce that zero is a root.
 
>> pretty(sym(maple('realroot(x^8+5*x^7-4*x^6-20*x^5+4*x^4+20*x^3,1)')))

                 [[0, 0], [1, 2], [- 1, - 2] [- 5, - 5]]

 

We deduce that -5 is another root.
 
>> pretty(sym(maple('realroot(x^8+5*x^7-4*x^6-20*x^5+4*x^4+20*x^3,1/2)')))

               [[0, 0], [1, 3/2], [-3/2, -1], [-5, -5]]

>> pretty(sym(maple('realroot(x^8+5*x^7-4*x^6-20*x^5+4*x^4+20*x^3,1/1000)')))

                      181  1449    -1449  -181
            [[0, 0], [---, ----], [-----, ----], [-5, -5]]
                      128  1024    1024   128
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3-5. Grouping and Ordering Terms
This section presents commands that allow you to group terms into univariate and multivariate polynomials, as well 
as to manage them according to certain criteria. The syntax of these commands is as follows (after using the maple 
command):

collect(polynomial,variable) organizes the multivariate polynomial, taking the 
specified variable as the main variable and gathering terms with respect to the same.

collect(polynomial,[var1,...,varn]) or collect(polynomial,{var1,...,varn}) 
gathers terms in the polynomial with respect to the specified variables.

sort(polynomial) sorts the univariate polynomial in decreasing order of powers.

sort(polynomial) or sort(polynomial, tedeg) sorts the polynomial according to the 
degree of its monomial multivariate components (in descending order).

sort(polynomial, plex) sorts the multivariate polynomial in lexicographical order.

sort(poly,[var1,...,varn],option) or sort(poly,{var1,...,varn},option) sorts the 
polynomial with respect to the specified variable according to the given option (plex or 
tedeg).

Here are some examples:
 
>> pretty(sym(maple('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x,[x,y],recursive)')))
                            2
                 (1 - a) y x  + ((1 + a) y + 1 + a) x

>> pretty(sym(maple('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x,[y,x],recursive)')))

                          2
                ((1 - a) x  + (1 + a) x) y + (1 + a) x

>> pretty(sym(maple('collect(x*y+a*x*y+y*x^2-a*y*x^2+x+a*x,[x,y], distributed)')))

                                                     2
                (1 + a) x + (1 + a) x y + (1 - a) y x

>> pretty(sym(maple('collect(x^3*y+x^2*y^3+x+3,y)')))

                          3      2  3
                         x  y + x  y  + x + 3

>> pretty(sym(maple('sort(",y)')))

                          2  3    3
                         x  y  + x  y + x + 3
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>> pretty(sym(maple('sort(y^3+y^2*x^2+x^3,[x,y])')))

                            2  2    3    3
                           x  y  + x  + y

>> pretty(sym(maple('sort(y^3+y^2*x^2+x^3,[x,y],plex)')))

                            3    2  2    3
                           x  + x  y  + y

>> pretty(sym(maple('sort(y^3+y^2*x^2+x^3,[x,y],tdeg)')))

                            2  2    3    3
                           x  y  + x  + y

3-6. Handling of Polynomials
This section presents a group of commands that allow you to perform certain manipulations on univariate and 
multivariate polynomials, such as conversions, compositions, working with their operands, and so on. The syntax of 
these commands (following prior use of the maple command) is presented below:

compoly(poly,variable) determines the possible composition of the polynomial in the 
specified variable. The result is a list whose first element is the polynomial basis polyb, 
and whose second element is the polynomial equation eqnc such that sub(eqnc,polyb) 
= poly.

compoly(poly,{var1,...,varn}) determines the possible composition of the 
polynomial in the variables var1,...,varn.

compoly(polynomial) determines the composition of the multivariate polynomial in all 
its indeterminates.

indets(polynomial) determines all the indeterminates of the given polynomial.

readlib(student): completesquare(polynomial) transforms quadratic expressions to 
completed square form.

readlib(numaprox): hornerform(polynomial,variable) converts the polynomial in the 
given variable into Horner form.

convert(poly,horner,var) converts the polynomial in the variable var to Horner form.

convert(polynomial,horner,{var1,...,varn}) converts the polynomial in the given 
variables to Horner form without specifying the order.

convert(polynomial,horner,[var1,...,varn]) converts the polynomial in the given 
variables into Horner form in the order specified.

convert(polynomial,horner) converts the polynomial in all its variables to  
Horner form.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ Polynomial Divisibility, Interpolation, and Algebraic Extensions

96

convert(poly,mathorner,var)converts the polynomial in the given variable into matrix 
Horner form.

convert(poly,sqrfree,var) converts the polynomial in the given variable into a 
square-free polynomial by factoring it into its square-free factors.

content(polynomial,variable) determines the greatest common divisor of the 
coefficients of the polynomial in the given variable.

content(polynomial,[var1,...,varn]) or content(polynomial,{var1,...,varn}) 
determines the greatest common divisor of the coefficients of the polynomial with 
respect to the specified variables.

content(polynomial) determines the greatest common divisor of the coefficients of the 
polynomial with respect to all of its variables.

Content(polynomial,variable) determines the greatest common divisor of the 
coefficients of the polynomial in the given variable in inert form.

Content(poly,var) mod n determines the greatest common divisor of the coefficients 
of the polynomial in the given variable modulo n.

primpart(polynomial) determines a rational value such that dividing the polynomial 
by this value yields a primitive polynomial over the integers. If the primitive 
polynomial is already over the integers, this command is equivalent to content.

with(combinat): fibonacci(n,variable) gives the nth Fibonacci polynomial in the 
given variable.

with(combinat): euler(n, var) gives the nth Euler polynomial in the variable var.

with(linalg): hermite(M,var) determines the Hermite normal  form of the matrix M of 
univariate polynomials in the given variable.

with(linalg): hermite(M,var) mod n determines the Hermite normal  form of the 
matrix M of univariate polynomials in the given variable modulo n.

with(linalg): smith(M,var) determines the Smith normal form of the matrix M of 
univariate polynomials in the given variable.

with(linalg): smith(M,var) mod n determines the Smith normal form of the matrix M 
of univariate polynomials in the given variable modulo n.

readlib(bernstein): bernstein(n,var->exprvar,variable1) finds the degree n 
Bernstein polynomial in variable1 that approximates the functional operator var - > 
exprvar in the interval [0,1].

op(polynomial) returns a string with all the operands (monomials) of the polynomial. 
Any operand can be substituted using subsop.

op(n,rationalfunction) gives the first operand (numerator) and the second operand 
(the inverse of the denominator) of the rational function given as a ratio of two 
polynomials.
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Here are some examples:
 
>> pretty(sym(maple('compoly( x^2+2*x*y-7*x+y^2-7*y+16 )')))

                                   2
                       16 - 7 y + y , y = y + x

>> pretty(sym(maple('compoly( x^4+4*x^3*y^3+6*x^2*y^6+4*x*y^9+y^12+x+y^3-1, {x,y})')))

                           2      3    4               3
             -1 - 3 y + 6 y  - 4 y  + y , y = x + 1 + y

>> pretty(sym(maple('indets( x*y + z/x )')))

                              {z, y, x}

>> pretty(sym(maple('e:=x^(1/2)+exp(x^2)+ f(9): indets(e), indets(e,function)')))

                            2    1/2                  2
                      {exp(x ), x   , x}, {f(9), exp(x )}

>> pretty(sym(maple('convert(x^2+3*x+4,horner,x)')))

                            4 + (3 + x) x

>> pretty(sym(maple('poly := y^2*x^2 + 2*y^2*x + 2*y*x^2 + 4*y*x + x^2 + 2*x: ')))
>> pretty(sym(maple('convert(poly,horner,x)')))

                    2               2
                (2 y  + 4 y + 2 + (y  + 2 y + 1) x) x

>> pretty(sym(maple('convert(poly,mathorner,x)')))

                       2               2
                    2 y  + 4 y + 2 + (y  + 2 y + 1) x &* x

>> pretty(sym(maple('convert(poly,horner,[x,y])')))

               (2 + (4 + 2 y) y + (1 + (2 + y) y) x) x
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>> pretty(sym(maple('convert(x^2+4*x+4,sqrfree,x)')))

                                     2
                               (x + 2)

>> pretty(sym(maple('content(3*x*y+6*y^2,x ), content(3*x*y+6*y^2,[x,y])')))

                                3 y, 3

>> pretty(sym(maple('icontent(3*x*y+6*y^2)')))

                                   3

>> pretty(sym(maple('op(y^2*x^2 + 2*y^2*x + 2*y*x^2 + 4*y*x + x^2 + 2*x)')))

                      2  2     2         2          2
                     y  x , 2 y  x, 2 y x , 4 y x, x , 2 x

 

Exercise 3-9

Transform into square-free form with respect to the variable x the polynomial y2x3+ 2y2x2+ y2x+2yx3+ 
4yx2+ 2yx. Also transform the same polynomial into square-free form with respect to the variable y. 
Finally, find the greatest common divisor of the coefficients of the polynomial with respect to all variables, 
with respect to the variable x only, and with respect to the variable y only.
 
>> pretty (sym (maple('poly:= y^2*x^3+2*y^2*x^2+y^2*x+2*y*x^3+4*y*x^2+2*y*x:'))))
>> pretty(sym(maple('convert(poly,sqrfree,x) ')))

                          2                 2
                        (y  + 2 y) x (x + 1)

>> pretty(sym(maple('convert(poly,sqrfree,y)')))

                                3      2    2
                          (x + x  + 2 x ) (y  + 2 y)

>> pretty(sym(maple('content(poly)')))

                                       1
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>> pretty(sym(maple('content(poly,x)')))

                                          2
                                   2 y + y

>> pretty(sym(maple('content(poly,y)')))

                                  3      2
                                 x  + 2 x  + x

 

Exercise 3-10

Transform the second degree polynomial 9 x2 + 24 x + 16 into completed square form. Transform   
x2 - 2xa + a2 + y2 - 2yb + b2 = 23 into completed square form with respect to the variable x. Transform the 
same expression into completed square form simultaneously with respect to both variables x and y, and 
with respect to the variable a.
 
>> pretty(sym(maple('with(student):completesquare(9*x^2 + 24*x + 16)')))

                                        2
                             9 (x + 4/3)

>> pretty(sym(maple('with(student):completesquare(x^2 - 2*x*a + a^2 +
   y ^ 2-2 * y * b + b ^ 2 = 23, x)')))

                             2    2            2
                      (x - a)  + y  - 2 y b + b  = 23

>> pretty(sym(maple('with(student):completesquare(x^2 - 2*x*a + a^2 +            
   y^2-2*y*b + b^2 = 23, [x,y])')))

                              2          2
                       (y - b)  + (x - a)  = 23

>> pretty(sym(maple('with(student):completesquare(x^2 - 2*x*a + a^2 +            
   y^2-2*y*b + b^2 = 23, a)')))

                               2    2            2
                        (a - x)  + y  - 2 y b + b  = 23
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Exercise 3-11

Find the 10th Fibonacci and Euler polynomials in the variable x. Also find the degree 5 Bernstein 
polynomial in the variable x that approximates the functional operator yÆsin(y) in the interval [0,1].
 
>> pretty(sym(maple('with(combinat):fibonacci(10,x)')))

                         9      7       5       3
                        x  + 8 x  + 21 x  + 20 x  + 5 x

>> pretty(sym(maple('with(combinat):euler(10,x)')))

                  10      9       7        5        3
                 x   - 5 x  + 30 x  - 126 x  + 255 x  - 155 x

>> pretty(sym(maple('readlib(bernstein):bernstein(5,y->sin(y),x)')))

           2       3       4      5
(5 x - 20 x  + 30 x  - 20 x  + 5 x ) sin(1/5)
 
         2       3       4       5
  + (10 x  - 30 x  + 30 x  - 10 x ) sin(2/5)
 
        3       4       5                 4      5             5
 + (10 x  - 20 x  + 10 x ) sin(3/5) + (5 x  - 5 x ) sin(4/5) +x  sin(1)

 

Exercise 3-12

Given the following polynomial matrix:

M
x x

x x
=

- +
- +

æ

è
ç

ö

ø
÷

1 1

1 12 2

Find its Hermite normal form in the variable x.

Find its Smith normal form in the variable x.

Find its Hermite normal form in the variable y.

Find its Smith normal form in the variable y.
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>> maple('p:=x-1;q:=x+1;r:=x^2-1;s:=x^2+1');
>> maple('M:=[[p,q],[r,s]]') ;
>> pretty(sym(maple('with(linalg):hermite(M,x)')))

                                 [x - 1    1]
                                 [          ]
                                 [  0      x]

>> pretty(sym(maple('with(linalg):smith(M,x)')))

                                 [1      0   ]
                                 [           ]
                                 [      2    ]
                                 [0    x  - x]

>> pretty(sym(maple('with(linalg):hermite(M,y),smith(M,y)')))

                              [1    0]  [1    0]
                              [      ], [      ]
                              [0    1]  [0    1]

 

3-7. Divisibility and Operations with Polynomials
MATLAB provides various tools for the analysis of divisibility. It can also perform a wide variety of operations on 
polynomials. We summarize below the commands it provides for these tasks (each of which requires the prior use of 
the maple command):

discrim(polynomial,variable) returns the discriminant of the polynomial with 
respect to the specified variable.

Discrim(polynomial,variable) returns the inert discriminant of the polynomial with 
respect to the specified variable.

Discrim(polynomial,variable) modn returns the inert discriminant of the polynomial 
with respect to the specified variable modulo n.

resultant(poly1,poly2,var) returns the resultant of the given polynomials with 
respect to the specified variable.

Resultant(poly1,poly2,var) returns the inert resultant of the given polynomials with 
respect to the specified variable.

Resultant(poly1,poly2,variable) mod n returns the inert resultant of the given 
polynomials with respect to the specified variable modulo n.

divide(poly1,poly2,name) determines whether poly1 is divisible by poly2, and if so 
assigns the specified name to the ratio.
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Divide(poly1,poly2,name) determines whether poly1 is divisible by poly2, and if so 
assigns the specified name to the inert ratio.

Divide(polynomial1,polynomial2,name) mod n determines whether polynomial1 is 
divisible by polynomial2 modulo n, and if so, assigns the specified name to the inert 
ratio.

quo(poly1,poly2,var) returns the quotient polynomial of the ratio poly1/poly2 with 
respect to the variable var.

quo(poly1,poly2,var,name) returns the quotient polynomial of the ratio poly1/poly2 
with respect to the variable var and gives the remainder the name name.

Quo(poly1,poly2,var) returns the inert quotient polynomial of the ratio poly1/poly2 
with respect to the variable var.

Quo(poly1,poly2,var) mod n returns the quotient polynomial of the ratio poly1/poly2 
modulo n with respect to the variable var.

rem(poly1,poly2,variable) returns the remainder of the division of two polynomials 
in the given variable.

rem(poly1,poly2,var,name) returns the remainder of the division of the two 
polynomials and gives the quotient polynomial the name name.

Rem(poly1,poly2,variable) returns the inert remainder of the division of two 
polynomials with respect to the given variable.

rem(poly1,poly2,var) mod n returns the remainder of the division of two polynomials 
with respect to the given variable modulo n.

readlib(fixdiv): fixdiv(poly,var) computes the fixed divisor of the given 
polynomial, i.e. the largest integer that divides poly(n) for all integers n.

gcd(poly1,poly2) returns the greatest common divisor of two polynomials with 
rational coefficients.

gcd(poly1,poly2,name1,name2) returns the greatest common divisor of two 
polynomials with rational coefficients and assigns name1 to poly1/gcd(poly1,poly2) 
and name2 to poly2/gcd(poly1,poly2).

gcdex(poly1,poly2,var,name1,name2) returns the greatest common divisor of 
two polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and  name2 to poly2/gcd(poly1,poly2) using the extended Euclidean 
algorithm.

gcdex(poly1,poly2,poly3,var,name1,name2) returns the greatest common divisor 
of two polynomials in var with rational coefficients and assigns to name1 and name2 
expressions such as poly3 = name1 * poly1 + name2 * poly2.

Gcd(poly1,poly2) returns the inert form of the greatest common divisor of two 
polynomials with rational coefficients.

Gcd(poly1,poly2) mod n returns the greatest common divisor modulo n of polynomials 
with rational coefficients.
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Gcdex(poly1,poly2,var,name1,name2) returns the inert form of the greatest common 
divisor of the polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and  name2 to poly2/gcd(poly1,poly2) using the extended Euclidean 
algorithm.

Gcdex(poly1,poly2,var,name1,name2) mod n returns the greatest common divisor 
modulo n of polynomials in var with rational coefficients and assigns name1 to poly1/
gcd(poly1,poly2) and name2 poly2/gcd(poly1,poly2) using the extended Euclidean 
algorithm.

lcm(poly1,...,polyn) returns the least common multiple of the specified polynomials.

ispoly(expression,n,variable) determines whether the expression is a polynomial of 
degree n in the specified variable. n can be replaced by 'linear', 'quadratic', 'cubic' 
or 'quartic' for n = 1, 2, 3, 4, respectively.

ispoly(expression,n,name0,...,namen) determines whether the expression is a 
polynomial of degree n in the specified variable and assigns the coefficient of degree i 
to namei for i = 1... n.

norm(polynomial,n,variable) calculates the nth norm of the polynomial, whose value 
is S (abs (c))n, where c = coeffs(polynomial,variable)1/n.

norm(polynomial,n) calculates the nth norm of the polynomial with respect to 
indets(polynomial).

norm (poly,infinity,variable) computes the infinity norm of the polynomial in the 
given variable (the coefficient of the polynomial with greatest absolute value).

maxnorm(polynomial) calculates the infinity norm of the fully expanded polynomial.

readlib(maxorder): maxorder(RootOfexpression) returns a basis for the  field 
extension determined by the RootOf expression.

readlib (maxorder): maxorder({RootOfexpression1,..., RootOfexpressionn}) 
returns a basis for the field extension determined by the given set of RootOf 
expressions.

minpoly(algebraicnum,n) computes a polynomial of degree n or less with small integer 
coefficients; the given algebraic number is one of its roots.

readlib(lattice): minpoly(algebraicnum,n,expression) computes a polynomial of 
degree n or less with small integer coefficients such that the given algebraic number is 
one of its roots, up to an accuracy given by expression.

Nextprime(polynomial,var) the inert command that finds the irreducible polynomial 
in the variable var, which is the next highest with respect to the given polynomial.

Nextprime(poly,var,ext) the inert command that finds the irreducible polynomial in 
the variable var, over the algebraic extension defined by expr, which is the next highest 
with respect to the given polynomial.

Nextprime(poly,var) mod n the inert command that finds the irreducible polynomial 
in the variable var, modulo n, which is the next highest with respect to the given 
polynomial.

Prevprime(polynomial,var) the inert command that finds the irreducible polynomial 
in the variable var which is the next lowest with respect to the given polynomial.
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Prevprime(poly,var,ext) the inert command that finds the irreducible polynomial in 
the variable var which is the next lowest with respect to the given polynomial over the 
algebraic extension defined by expr.

Prevprime(poly,var) mod n the inert command that finds the irreducible polynomial, 
modulo n, in the variable var which is the next lowest with respect to the given 
polynomial over the algebraic extension defined by expr.

modpol(expr,poly,var,p) evaluates the rational expression expr over Q in the variable 
var with respect to the quotient space Zp[var]/poly(var), where p is prime and poly is 
a polynomial in var over Q.

Power(polynomial,n) returns the nth inert power of the polynomial.

Power(polynomial,n) mod m returns the nth inert power of the polynomial modulo m.

Powmod(poly1,n,poly2,var) gives the inert remainder Rem((poly1)n, poly2) with 
respect to var.

Powmod(poly1,n,poly2,var) mod n gives the inert remainder ((poly1)n, poly2)with 
respect to var modulo n.

prem(poly1,poly2,var) returns the pseudo-remainder of the quotient of polynomials 
poly1/poly2 with respect to the variable var.

prem(poly1,poly2,var,namen,nameq) returns the value rem that satisfies the condition 
namen * poly1 = poly2 * nameq + rem.

Prem(poly1, poly2,var) gives the inert pseudo-remainder of the quotient of 
polynomials poly1/poly2 with respect to the variable var.

Prem(poly1,poly2,var) mod n gives the pseudo-remainder modulo n of the quotient of 
polynomials poly1/poly2 with respect to the variable var.

sprem(poly1,poly2,var) returns the sparse pseudo-remainder of the quotient of 
polynomials poly1/poly2 with respect to the variable var.

sprem(poly1,poly2,var,namen,nameq) returns the value sprem that fulfills the condition 
namen* poly1 = poly2 * nameq + sprem.

Sprem(poly1,poly2,var) gives the inert sparse pseudo-remainder of the quotient of  
polynomials poly1/poly2 with respect to the variable var.

Sprem(poly1,poly2,var) mod n gives the inert sparse pseudo-remainder of the 
quotient, modulo n, of  polynomials poly1/poly2 with respect to the variable var.

chrem([poly1,...,polyn],[m1,...,mn]) finds the polynomial p such that p mod mj = 
polyj j = 1... n.

primpart(polynomial,variable) gives the primitive part of the polynomial in the given 
variable. The primitive part is the polynomial divided by the greatest common divisor 
of its coefficients.

primpart(polynomial) gives the primitive part of the polynomial with respect to all of 
its variables.

primpart(polynomial,{var1,...,varn}) or primpart(polynomial,[var1,...,varn]) 
gives the primitive part of the polynomial with respect to the specified variables.
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Primpart(polynomial,variable) gives the primitive part of the polynomial in the 
variable given in inert form.

Primpart(polynomial,variable) mod n gives the primitive part of the polynomial in 
the given variable in inert form, modulo n.

Primitive(polynomial) determines whether the univariate polynomial is primitive.

Primitive(polynomial) mod n determines whether the univariate polynomial is 
primitive modulo n.

Primfield({expr1,...,exprn}) gives the inert form of the algebraic extension given by 
the RootOf expressions expr1,...,exprn.

Primfield({expr1,...,expren}) mod n gives the inert form, modulo n, of the algebraic 
extension given by the RootOf expressions expr1,...,exprn.

Primfield(expr1,expr2) gives the primitive element of the extension defined by the 
first set of RootOf expressions over the extension defined by the second set of RootOf 
expressions.

randpoly(variable) creates a univariate random polynomial of degree 6 in the 
specified variable.

randpoly({variable1,...,variablen}) or randpoly([variable1,...,variablen]) 
creates a multivariate random polynomial in the variables specified.

randpoly(variable,coeffs=rand(a..b)) creates a polynomial whose coefficients are 
random numbers between a and b.

randpoly(variable,expons=rand(n)) creates a polynomial whose exponents are 
random numbers between 0 and n-1.

randpoly(variable,terms=n) creates a random polynomial of n terms.

randpoly(variable,dense) creates a dense random polynomial.

randpoly(variable,degree=n) creates a dense random polynomial of degree n. In case 
of conflict, degree takes precedence over terms.

Randpoly(n,variable) creates an inert random polynomial of degree n in the given variable.

Randpoly(n,variable) mod m creates an inert random polynomial of degree n in the 
given variable, modulo m.

Randprime(n,variable) creates an inert random irreducible and monic polynomial of 
degree n.

Randprime(n,variable) mod p creates an irreducible and monic random polynomial of 
degree n modulo p (prime).

Randprime(n,variable,expr) creates a random irreducible monic polynomial of 
degree n over the algebraic extension defined by expr.

readlib(ratrecon): ratrecon(poly1,poly2,variable,n1,n2,name1,name2) assigns 
name1 and name2 such that name1/name2 = poly1 mod poly2. If the allocation can be 
made, the command returns true, and if it can’t, it returns false. The limits of the 
assigned values are such that degree(name1)£ n1 and degree(name2) £ n2.

readlib(iratrecon): iratrecon(m1,m2,n1,n2,name1,name2) assigns name1 and name2 
such that name1/name2 = m1 mod m2 with abs(name1)<n1, abs(name2)<n2.
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Ratrecon(poly1,poly2,variable,n1,n2,name1,name2) assigns in inert form name1 and 
name2 such that name1/name2 = poly1 mod poly2.

Ratrecon(poly1,poly2,variable,n1,n2,name1,name2) mod n assigns, modulo n, name1 
and name2 such that name1/name2 = poly1 mod poly2.

readlib(recipoly):recipoly(polynomial,variable) determines whether the 
polynomial is self-reciprocal.

readlib(recipoly): recipoly(poly,var,name) assigns the specified name to the 
polynomial p of degree degree(poly,var)/2 that meets the condition   
var ^ (degree(poly,var)/2) * p(var+1/var) = poly.

readlib(translate): translate(polynomial,variable,number) translates the 
polynomial into the polynomial in the new variable given by variable+number.

ztrans(expr,var1,var2) finds the z-transform of expr(var1) with respect to var2.

readlib(ztrans): invztrans(expression,var1,var2) returns the inverse z-transform 
of the expression given in the old variable var1, with the result being an expression 
based on the new variable var2.

Eval(poly,var=exp) evaluates in inert form the polynomial with the given variable 
replaced by expr.

Eval(poly,var=exp) mod n evaluates the polynomial with the given variable replaced 
by expr modulo n.

Eval(polynomial,{varible1=expr1,...,variablen=exprn}) evaluates in inert form the 
polynomial with the given variables replaced by expr1,...,exprn.

grading(Fnc(expr1,...,exprn)) evaluates the inert command or function Fnc, whose 
parameters are the given expressions, over the minimal algebraic closure of the field 
defined by their coefficients. This applies to inert commands such as Factor, Factors, 
Afactor, Afactors, Norm, Content, Gcd, Gcdex, Prem, Primfield, Quo, Rem, Resultant, 
Sprem, Sqrfree, independence, and so on.

readlib(evalgf):evalgf(Fnc(expr1,...,exprn),n) evaluates the inert command 
or function Fnc, whose parameters are the specified expressions, over the minimal 
algebraic extension of the finite field Zn.

Here are some examples. First, we find the discriminant of the polynomial ax2+ bx:
 
>> pretty(sym(maple('p := a*x^2 + b*x + c: discrim(p,x)')))

                                     2
                             -4 c + b

Now we calculate the resultant of several polynomials:

>> pretty(sym(maple('resultant(a*x+b,c*x+d,x),   resultant((x+a)^5,(x+b)^5,x)')))

                                              25
                        -c b + d a,   (-a + b)
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>> pretty(sym(maple('Resultant(2*x+1, 3*x+4, x) mod 7')))

                                  5

>> pretty(sym(maple('r := x + RootOf(_Z^2-2): s := RootOf(_Z^2-2)*x + 1:          
   evala(Resultant(r,s,x))')))

                                  -1

 
Next we check divisibility among polynomials, and in the positive case, find the ratios:

 
>> pretty(sym(maple('divide(x^3-y^3, x-y, q),q')))

                                  2          2
                         true,   x  + x y + y

>> pretty(sym(maple('Divide(x^3+x^2+2*x+3,x+2,q) mod 5,q')))

                                 2
                          true, x  + 4 x + 4

 
Next we find quotients and remainders of division between polynomials:

 

>> pretty(sym(maple('rem(x^3+x+1, x^2+x+1, x, q), q')))
                             x + 2, x - 1
 
>> pretty(sym(maple('quo(x^3+x+1, x^2+x+1, x) ')))
                                x - 1

>> pretty(sym(maple('a := x^4+5*x^3+6: b := x^2+2*x+7: r := Rem(a,b,x,q) mod 13, q')))
>> maple r

ans =
 
5*x+6, x^2+3*x
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Exercise 3-13

Find the greatest common divisor and least common multiple of the polynomials x2- y2 and x3- y3, and 
also the polynomials x+2 and x+3 modulo 7. Find the greatest common divisor for each of the sets of 
polynomials {x3- 1, x2 - 1} and {x2+ x + 1, x2- x + 1}, identifying the elements of Euclid’s algorithm. Also 
find the greatest common divisor modulo 11 of the polynomials x2 + 3 x + 2 and x2+ 4 x + 3, identifying 
the elements of Euclid’s algorithm.
 
>> pretty(sym(maple('gcd(x^2-y^2,x^3-y^3),lcm(x^2-y^2,x^3-y^3)')))

                                  4      3      3    4
                         -y + x, x  - x y  + y x  - y

>> pretty(sym(maple('gcd(x+2,x+3) mod 7, lcm(x+2,x+3) mod 7')))

                                    2
                                1, x  + 5 x + 6

>> pretty(sym(maple('gcdex(x^3-1,x^2-1,x,s,t),s,t')))

                             x - 1,   1,   -x

>> pretty(sym(maple('gcdex(x^2+x+1,x^2-x+1,x,u,v),u,v')))

                          1, 1/2 - 1/2 x, 1/2 + 1/2 x

>> pretty(sym(maple('Gcd(x^2+3*x+2,x^2+4*x+3,f,g) mod 11, f, g')))

                         1 + x,    x + 2,    x + 3
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Exercise 3-14

Find the 1, 2 and infinity norms of the polynomial x-3y. Also find the third and fourth powers of the 
polynomial x + 1 modulo 2.
 
>> pretty(sym(maple('norm(x-3*y,1),norm(x-3*y,2),norm(x-3*y,infinity)')))

                                     1/2
                              4,   10   ,   3

>> pretty(sym(maple('Power(x+1,3) mod 2, Power(x+1,4) mod 2')))

                        3    2           4
                       x  + x  + x + 1, x  + 1

 

Exercise 3-15

Find the polynomials r, m and q in the variable x such that

m(x4+ 1) = q(cx4+1) + r.

There are two solutions to the problem; one via the pseudo-remainder between the polynomial x4+ 1 and cx2+ 1, 
and the other via the sparse pseudo-remainder between those polynomials.
 
>> pretty(sym(maple('a := x^4+1: b := c*x^2+1: r := prem(a,b,x,m,q)')))
>> pretty(sym(maple('r,m,q')))

                          2        3   2  2
                      c (c  + 1), c , x  c  - c

>> maple('restart') ;
>> pretty(sym(maple('a := x^4+1: b := c*x^2+1: r := sprem(a,b,x,m,q)')))
>> pretty(sym(maple('r,m,q')))

                          2       2     2
                         c  + 1, c , c x  - 1
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Exercise 3-16

Find the primitive part of the polynomial 4xy + 6y2 and x/a-1/2 in the variable x. Also find the primitive 
part of the polynomial x (y+4) + y2 + 4 in the variable x modulo 5.
 
>> maple ('restart')
>> pretty(sym(maple('primpart(-4*x*y + 6*y^2, x), primpart(x/a - 1/2,x)')))

                                              3, - 2 x, 2 x - a

>> pretty(sym(maple('Primpart(x * (y+4) + y ^ 2 + 4 x) mod 5')))

     x + y + 1

 

Exercise 3-17

Perform the following tasks concerning random polynomials:

Create a random polynomial in x of 6 terms.

Create a random 20 term polynomial in the variables x and y.

Create a random polynomial in x, cos(x) and sin(x).

Create a polynomial with random coefficients between 1 and 100.

Create a polynomial with random exponents between -5 and 5.
 
>> pretty(sym(maple('randpoly(x)')))

                   5       4       3       2
              -85 x  - 55 x  - 37 x  - 35 x  + 97 x + 50

>> pretty(sym(maple('randpoly([x, y], terms = 20)')))

                                2         5      4       3       2
56 + 49 x + 63 y + 57 x y - 59 x  y + 45 x  - 8 x  - 93 x  + 92 x
 
           3         2       3         2  2         3      4
     + 43 y  - 62 x y  + 77 x  y + 66 x  y  + 54 x y  - 5 x  y
 
           3  2       2  3         4       4       5
     + 99 x  y  - 61 x  y  - 50 x y  - 12 y  - 18 y
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>> pretty(sym(maple('randpoly([x, sin(x), cos(x)])')))

                                                      2
-47 x - 61 x cos(x) + 41 x sin(x) cos(x) - 58 x cos(x)
 
                       3            3       2
     - 90 sin(x) cos(x)  + 53 sin(x)  cos(x)

>> pretty(sym(maple('randpoly(x,coeffs=rand(1..100))')))

                  5       4       3       2
              82 x  + 71 x  + 98 x  + 64 x  + 77 x + 39

>> pretty(sym(maple('randpoly(z,expons = rand(-5..5))')))

                      82     23         5
                     ---- + ---- + 104 z  + 88 z
                       5     z
                      Z

 

Exercise 3-18

Change the variable x of the polynomial x2 to the variable x + 1. Make the change of variable x = r1/3 in the 
expression 3xln(x3) and also the change of variable sin(x) = y in the expression sin(x) / (1-sin(x))1/2.

The first change of variable is a simple translation of a polynomial variable, so it will be done via the command 
translate, but the other two changes involve general algebraic expressions, so we will use the command subs as 
described in the previous chapter.
 
>> pretty(sym(maple('readlib(translate):translate(x^2,x,1)')))

                                            2
                                 1 + 2 x + x

>> pretty(sym(maple('subs(x=r^(1/3), 3*x*log(x^3))')))

                                    1/3
                                 3 r    log(r)
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>> pretty (sym (maple ('subs (y = sin (x),sin (x) / (1 - sin (x)) ^(1/2))')))

                                      y
                                  ----------
                                         1/2
                                  (1 - y)

 

Exercise 3-19

Find the reciprocal polynomial of the polynomial x4 + x3 + x + 1. Also calculate the resultant of the 
polynomial and its reciprocal.
 
>> pretty(sym(maple('readlib(recipoly):recipoly(x^4+x^3+x+1,x,'p'),p')))

                                            2
                          true,   -2 + x + x

>> pretty(sym(maple('resultant(x^4+x^3+x+1,x^2+x-2,x)')))

                                      28

 

3-8. Interpolation and Polynomial Fitting
MATLAB provides several commands for polynomial interpolation and fitting that we will study next:

polyfit(x,y,n) gives the vector of coefficients of the polynomial p(x) of degree n in x 
which best fits the data (xi,yi) in the least-squares sense (p(xi) = yi).

Yi = interp1(X,Y,Xi,'method') gives the vector Yi such that (Xi,Yi) is the total set 
of points found by interpolation between the given points (X, Y). The option method 
can take the values linear, spline, or cubic, depending on whether the interpolation 
is linear (the default option), staggered, or cubic (for xi uniformly separated). One-
dimensional interpolation.

Zi = interp2(X,Y,Z,Xi,Yi,'method') gives the vector Zi such that (Xi,Yi,Zi) is the 
total set of points found by interpolation between the given points (X,Y,Z). The option 
method can take the value linear or cubic, depending on whether the interpolation 
is linear (the default) or cubic (for xi uniformly separated). Two-dimensional 
interpolation.
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Zi = griddata(X,Y,Z,Xi,Yi) gives the vector Zi that determines the interpolation 
points (Xi,Yi, Zi) between the given points (X, Y, Z). A method of inverse distance is 
used to interpolate.

Y = interpft(X,n) gives the vector Y containing the values of the periodic function X 
sampled at n equally spaced points. The original vector x is transformed to the domain 
of Fourier transform frequencies using the Fast Fourier transform (FFT) algorithm. It 
satisfies  n³length(X).

maple('interp([exprx1,...,exprxn+1],[expry1,...,expryn+1],var)') returns 
a polynomial in the specified variable of degree at least n that represents the 
interpolated polynomial for points from [exprx1,expry1] to [exprxn+1,expryn+1]. The 
coordinates of the points must all be different.

maple('Interp([exprx1,...,exprxn+1], [expry1,...,expryn+1], variable)') 
returns in inert mode a polynomial in the specified variable of degree at least n 
that represents the interpolated polynomial for points from [exprx1, expry1] to 
[exprxn+1,expryn+1]. The coordinates of the points must all be different.

maple('Interp([exprx1,...,exprxn+1], [expry1,...,expryn+1], variable) mod 
m') returns a polynomial modulo m in the specified variable of degree at least n 
that represents the interpolated polynomial for points from [exprx1, expry1] to 
[exprxn+1,expryn+1]. The coordinates of the points must all be different.

maple('readlib(thiele): thiele([exprx1,...,exprxn],[expry1,...,expryn],variable)') 
finds an expression in the given variable that represents the entire function resulting in Thiele 
interpolation points (exprxi,expryi) i = 1... n.

Exercise 3-20

Calculate the interpolated degree 2 polynomial passing through the points (- 1,4), (0,2) and (1,6) which is 
the best fit in the least-squares sense.
 
>> x=[-1,0,1];y=[4,2,6];p=poly2sym(polyfit(x,y,2))

p =
 
3 * x ^ 2 + x + 2
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Exercise 3-21

Represent 200 points of cubic interpolation between the points (x,y) given by the values that the 
exponential function e ^ x takes at 20 equally spaced x values between 0 and 2. Also represent the 
difference between the function e ^ x and its approximation by interpolation. Use cubic interpolation.

First, we define the 20 given points (x, y), for x values equally spaced between 0 and 2:
 
>> x = 0:0.1:2;
>> y = exp(x);
 
Now we find 200 points (xi, yi) using cubic interpolation, equally spaced between 0 and 2, and plot them on a 
graph, together with the 20 initial points (x, y) (indicated by asterisks). See Figure 3-1:
 
>> xi = 0:0.01:2;
>> yi = interp1(x,y,xi,'cubic');
>> plot(x,y,'*',xi,yi)
 

Figure 3-1.  

We now graphically represent the difference between the exact function y = e ^ x and the function obtained by 
the above interpolation. In the case of zero error, the graph would be a horizontal line coinciding with the x axis. 
See Figure 3-2.
 
>> zi=(exp(xi));
>> di=yi-zi;
>> plot(xi,di)
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Exercise 3-22

Find 25 interpolation points of the parametric function X = cos(t), Y = sin(t), Z = tan(t) for values of t 
between 0 and p/6, based on the set of points defined for values of t = ip/6 with 0 £ i £ 6.

First, we define the 25 given points (x, y, z), equally spaced between 0 and p / 6.
 
>> t = 0: pi/150: pi/6;
>> x = cos (t); y = sin (t); z = tan (t);
 

Now we find the 25 points of interpolation (xi, yi, zi), for values of the parameter t equally spaced  
between 0 and p /6.
 
>> xi = cos (t); yi = sin (t);
>> zi = griddata(x,y,z,xi,yi);
>> points = [xi, yi, zi']

Figure 3-2.  

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3 ■ Polynomial Divisibility, Interpolation, and Algebraic Extensions

116

points =
 
    1.0000 0      0.0000
    0.9998 0.0209 0.0161
    0.9991 0.0419 0.0367
    0.9980 0.0628 0.0598
    0.9965 0.0837 0.0836
    0.9945 0.1045 0.1057
    0.9921 0.1253 0.1269
    0.9893 0.1461 0.1480
    0.9860 0.1668 0.1692
    0.9823 0.1874 0.1907
    0.9781 0.2079 0.2124
    0.9736 0.2284 0.2344
    0.9686 0.2487 0.2567
    0.9632 0.2689 0.2792
    0.9573 0.2890 0.3019
    0.9511 0.3090 0.3249
    0.9444 0.3289 0.3483
    0.9373 0.3486 0.3719
    0.9298 0.3681 0.3959
    0.9219 0.3875 0.4203
    0.9135 0.4067 0.4452
    0.9048 0.4258 0.4706
    0.8957 0.4446 0.4969
    0.8862 0.4633 0.5236
    0.8763 0.4818 0.5505
    0.8660 0.5000 0.5774

 

Exercise 3-23

Find 30 interpolation points (xi, yi) for the periodic function y = sin(x) for values of x that are equally 
spaced, interpolating them between values of (x, y) given by y = sin(x) for 20 x values evenly spaced in 
the interval (0,2p), and using the interpolation method based on the fast Fourier transform (FFT).

First, we define the 20 x values equally spaced between 0 and 2p:
 
>> x =(0:pi/10:2*pi);
 

Now we find the 30 interpolation points (x, y).
 
>> y = interpft(sin(x), 30);
>> points = [y', (asin(y))']
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points =
 
   0.0000 0.0000
   0.1878 0.1890
   0.4499 0.4667
   0.6070 0.6522
   0.7614 0.8654
   0.9042 1.1295
   0.9618 1.2935
   0.9963 1.4848
   0.9913 1.4388
   0.9106 1.1448
   0.8090 0.9425
   0.6678 0.7312
   0.4744 0.4943
   0.2813 0.2852
   0.0672 0.0673
  -0.1640 - 0.1647
  -0.3636 - 0.3722
  -0.5597 - 0.5940
  -0.7367 - 0.8282
  -0.8538 - 1.0233
  -0.9511 - 1.2566
  -1.0035 - 1.5708 - 0. 0837i
  -0.9818 - 1.3799
  -0.9446 - 1.2365
  -0.8526 - 1.0210
  -0.6902 - 0.7617
  -0.5484 - 0.5805
  -0.3478 - 0.3553
  -0.0807 - 0.0808
   0.0086   0.0086

 

Exercise 3-24

Find the degree 3 polynomial that best fits the set of points (i, i2) for 1£ i £ 7, in the least-squares sense. 
Find the value of the polynomial at x = 10 and graphically represent the fitted curve.
 
>> x=(1:7);y=[1,4,9,16,25,36,49];p=poly2sym(polyfit(x,y,2))

p =
 
4503599627370495/4503599627370496 * x ^ 2 +
310800181380337/79228162514264337593543950336 * x- 
3598276744230861/316912650057057350374175801344
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Now we calculate the numerical value of the polynomial p at x = 10.
 
>> numeric(subs(p,10))

ans =
 
   100

 

We can also approximate the coefficients of the polynomial p to 5 digits.
 
>> vpa(p,5)

ans =
 
1.00000 * x ^ 2 + 3 9228e-15 * x-1. 1354e-14

 

Figure 3-3 shows the graph of the fitted curve.
 
>> ezplot(p,[-5,5])

Figure 3-3.  
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Exercise 3-25

Find the interpolated degree 2 polynomial passing through the points (-1,4), (0,2) and (1,6). Find the 
interpolated polynomial modulo 3 and, finally, perform Thiele interpolation for this case.
 
>> interp([-1,0,1],[4,2,6],x);

                                2
                             3 x  + x + 2

>> Interp([-1,0,1],[4,2,6],x) mod 3;

                                x + 2

>> readlib(thiele):thiele([-1,0,1],[4,2,6],x);

                                  x + 1
                          4 + -------------
                              - 1/2 + 3/2 x

 

3-9. Galois Extensions
The Maple program has commands which enable you to work with the Galois theory of finite fields and their 
extensions. The syntax of these commands is as follows:

maple('galois(polynomial)') returns the Galois group of the given rational univariate 
irreducible polynomial of degree less than or equal to 8. It returns a list of three 
expressions: the first is the name of the Galois group and includes a plus sign (+) 
as the first character if the group is even and (-) if it is odd; the second is an integer 
representing the order of the group, and the third is a set of strings representing the 
group generators.

maple('readlib(GF):GF(p,n,polynomial)') returns a module of procedures and 
constants for working in the finite Galois field with pn elements defined by the field 
extension GF(p)[x]/polynomial. The polynomial is irreducible of degree n modulo p 
(prime p). Once this has been done one can make use of the operator T to implement 
various operations in the Galois field.
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T[input] and T[output] convert between an integer in the range 1.. pn and its 
corresponding polynomial in the Galois field. Alternatively T[ConvertIn] and 
T[ConvertOut] convert an element of the Galois field to a Maple sum of products. 
T['+'], T['-'], T['*'], T['^'], T['inverse'] and T['/'] execute the specified 
operations in the Galois field. T[random] returns a random element of the Galois 
field. T[0] and T[1] represent the additive and multiplicative inverse, respectively. 
T[trace], T[norm] and T[order] compute the trace, norm and order for elements of 
the Galois field. T[PrimitiveElement] returns a primitive element of the Galois field. 
T[isPrimitiveElement] determines whether an element is primitive. T[extension] 
returns the polynomial extension used for the Galois field.

Exercise 3-26

Find the Galois group for each of the univariate polynomials x4 + x + 1, t5 - 5t + 12, x5 + 2 and  
x7 + 4x5 - 3x2 + 5.

First, we check if the polynomials are irreducible; if so, we will calculate the Galois groups.
 
>> pretty(sym(maple('irreduc(x^4+x+1),irreduc(t^5-5*t+12),irreduc(x^5+2),       
   irreduc(x^7+4*x^5- 3*x^2+5)')))

                        true, true, true, true

>> pretty(sym(maple('galois(x^4+x+1)')))

                      S4, 24, {(1 2 3 4), (1 2)}

>> pretty(sym(maple('galois(t^5-5*t+12)')))

                  +D5, 10, {(1 2 3 4 5), (2 5)(3 4)}

>> pretty(sym(maple('galois(x^5+2)')))

                  F20, 20, {(1 2 3 4 5), (2 3 5 4)}

>> pretty(sym(maple('galois(x^7+4*x^5-3*x^2+5)')))

                  S7, 5040, {(1 2 3 4 5 6 7), (1 2)}
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Exercise 3-27

Consider the polynomial q = a4 + a + 1. Verify that it is irreducible over the integers and over the 
integers modulo 2. Consider the finite Galois field GF(24) and the Galois extension GF(2)[x]/(q). Perform 
the operations 3 + 4, 3 * 4 and 34 in this field. Convert the integer 12Œ[0,24- 1] to the corresponding 
element in the finite Galois field GF(24), and then do the reverse conversion. Convert the polynomial a to a 
Maple sum of products ‘a’ in the finite Galois field GF(24). Calculate a2 and a4 and check if a is a primitive 
element in GF(24). Find the corresponding value of x =a8 in the interval [0,24- 1] and its polynomial form in 
the Galois extension.
 
>> pretty(sym(maple('irreduc(alpha^4+alpha+1)')))

                                 true

>> pretty(sym(maple('Irreduc(alpha^4+alpha+1) mod 2')))

                                 true

>> pretty(sym(maple('readlib(GF):')))
>> pretty(sym(maple('G16 := GF(2,4,alpha^4+alpha+1):')))
>> pretty(sym(maple('G16[`+`](3,4),   G16[`*`](3,4),   G16[`^`](3,4)')))

                               5,   4,   3

>> pretty(sym(maple('G16[input](12)')))

                            1000100000000

>> pretty(sym(maple('G16[output](")')))

                                  12

>> pretty(sym(maple('a := G16[ConvertIn](alpha)')))
>> pretty(sym(maple('a')))

                                10000

>> pretty(sym(maple('G16[`*`](a,a),   G16[`^`](a,4)')))

                           100000000,  10001
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>> pretty(sym(maple('G16[isPrimitiveElement](a)')))

                                 true

>> pretty(sym(maple('x := G16[`^`](a,8)')))
>> pretty(sym(maple('x')))

                             100000001

>> pretty(sym(maple('G16[output](x)')))

                                  5

>> pretty(sym(maple('G16[ConvertOut](x)')))

                                   2
                              Alpha + 1

 

Exercise 3-28

Consider the polynomial q = b5 + 7b4 + b2 + b+1. Check that it is irreducible over the integers and over 
the integers modulo three. Consider the finite Galois field GF(35) and the Galois extension GF(3)[x]/(q). 
Calculate the product (b5+ 1)(b3+ b2+ 1) in the Galois extension and calculate its inverse.

First, we check that the polynomial is irreducible over the integers and over the integers modulo 3.
 
>> pretty(sym(maple('irreduc(b^5+7*b^4+b^2+b+1),irreduc(b^5+7*b^4+ b^2+b+1) mod 3')))

                                 true, true

 

Then we transform the given polynomial to its corresponding value in the Galois field GF(35) and find the stated 
product in this field.
 
>> pretty(sym(maple('readlib(GF):')))
>> pretty(sym(maple('G243 := GF(3,5,b^5+7*b^4+b^2+b+1):')))
>> pretty(sym(maple('a1:=G243[ConvertIn](b^5+1)')))
>> pretty(sym(maple('a1')))

                                 20000000200020000
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>> pretty(sym(maple('a2:=G243[ConvertIn](b^3+b^2+1)')))
>> pretty(sym(maple('a2')))

                                 1000100000001

>> pretty(sym(maple('prod1:=G243[`*`](a1,a2)')))
>> pretty(sym(maple('prod1')))

                                 20000000100000001

 

Finally, we convert the value to its corresponding value in the extension GF(3)[x]/(q).
 
>> pretty(sym(maple('prod2:=G243[ConvertOut](prod1)')))
>> pretty(sym(maple('prod2')))

                                   4    2
                                2 b  + b  + 1

 

To find the inverse of the product, we first convert it to the corresponding element in the Galois field GF(35).  
After finding the inverse we find the corresponding element in the extension GF(3)[x]/(q).
 
>> pretty(sym(maple('inv1:=G243[inverse](prod1)')))
>> pretty(sym(maple('inv1')))

                         20000000200010001

>> pretty(sym(maple('G243[`*`](prod1,inv1)')))

                                  1

>> pretty(sym(maple('inv2:=G243[ConvertOut](inv1)')))
>> pretty(sym(maple('inv2')))

                                   4      2
                                2 b  + 2 b  + b + 1
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3-10. Gröbner Bases
Gröbner bases are used in the solution and analysis of solutions of systems of polynomial equations. The related 
MATLAB commands are as follows:

maple('with(groebner)') loads into memory the MATLAB package that contains 
commands for working with Gröbner bases.

maple('finduni(variable,[polynomial1,...,polynomin],[var1,...,varn])') finds 
the univariate polynomial in the given variable of least degree in the ideal generated by 
the specified set of polynomials for the given variables.

maple('finduni(variable,[variable],[poly1,...,polym])') constructs the Gröbner 
basis for the given polynomials in all of their variables.

maple('finite([polynomial1,...,polynomialm],[variable1,...,variablen])') 
determines whether the specified set of polynomials has a finite number of solutions 
for the set of specified variables. If the answer is True, one can apply the command 
finduni.

maple('finite([poly1,..,polyn])') determines whether the specified set of 
polynomials has a finite number of solutions with regard to all its variables.

maple('solvable([poly1,...,polym],[var1,...,varn])') determines whether the 
given system of polynomials is solvable (algebraically consistent) with respect to the 
given set of variables.

maple('solvable([poly1,...,polym])') determines whether the given system of 
polynomials is solvable with respect to all of its variables.

maple('solvable([poly1,...,polym,],[var1,...,varn],tdeg)') determines whether 
the given system of polynomials is solvable with respect to the set of variables using 
total degree.

maple('gsolve([poly1,..., polym])') or maple('gsolve({poly1,...,polym})')) 
gives a reduced Gröbner basis for the given set of polynomials with respect to all of 
the variables. Returns a list of lists where each list is a small subsystem of polynomials 
identical to the original system roots. It can be applied to each reduced basis solve. 
Essentially, gsolve prepares the algebraic system for solution.

maple('gsolve([poly1,...,polym],{polyr1,...,polyrn})') prevents the roots of the 
second set of polynomials from being considered in the computation of Gröbner bases.

maple('gsolve([poly1,...,polyn],[var1,...,varn],{polyr1,...,polyrn})') 
specifies that the presentation of the specified variables will be used in the 
computation of Gröbner bases.

maple('gbasis([poly1,...,polym],[var1,...,varn])') returns a minimal reduced 
Gröbner basis for the specified polynomials in the given variables. The result is a list of 
polynomials.

maple('gbasis([poly1,...,polym],[var1,...,varn],plex)') gives a Gröbner basis in 
which the polynomial terms are sorted lexicographically.

maple('gbasis([poly1,...,polym],[var1,...,varn],tdeg)') gives a Gröbner basis in 
which the polynomial terms are arranged by total degree.
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maple('normalf(polynomial,[poly1,...,polym],[var1,...,varn])') gives the full 
reduced form of the given polynomial with respect to the Gröbner basis represented by 
the given polynomials in the specified variables. You can use the plex option to sort the 
results into lexicographic order.

maple('leadmon(polynomial,[var1,...,varn])') returns the leading monomial of 
the given polynomial with respect to the specified variables. It produces a list of two 
elements. The first element is the coefficient of the monomial and the second is the 
rest of the monomial. You can use the Plex option to sort the results into lexicographic 
order.

maple('spoly(poly1,poly2,[var1,...,varn])') returns the s-polynomial of poly1 and 
poly2 with respect to the given variables.

Exercise 3-29

Consider the following system of three polynomials: x2 - 2xz + 5, xy2 + yz3, 3y2 - 8z3.  Test whether the 
system is solvable with respect to its three variables and has a finite number of solutions. Find a Gröbner 
basis for such a system and from that try to solve it. Also find a minimal reduced Gröbner basis in 
lexicographical order and total order.

First, we try to solve the system directly, but we find that this is not possible; only an approximate solution can be 
found.
 
>> pretty(sym(maple('solve({x^2-2*x*z+5=0,x*y^2+y*z^3=0,3*y^2-8*z^3=0})')))

              2
{x = RootOf(_Z + 5), y = 0, z = 0}, {}
                2          5        4
    x = - 3/4 %1 - 9/20% 1 + 12/5% 1,
 
              2        2      3
    y = 2/5 %1 (- 16% 1 + 3% 1 + 5), z = 2 %1}
 
                  3          5       6
%1: = RootOf(30 _Z + 25-48 _Z + 9 _Z)

>> pretty(sym(maple('allvalues({x^22*x*z+5=0,x*y^2+y*z^3=0,3*y^28*z^3=0})')))

           2                     2    3         2    3
        { x – 2 z x + 5 = 0, x y + y z = 0, 3 y - 8 z = 0}
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Now we confirm that the system is solvable with a finite number of solutions.
 
>> pretty(sym(maple('with(grobner):F:=[x^2-2*x*z+5,x*y^2+y*z^3,3*y^2-8*z^3]: ')))
>> pretty(sym(maple('solvable(F);  finite(F)')))

                               true, true

 

Then we find a Gröbner basis for the system with the command gsolve, and subsequently try to solve it with the 
command solve.
 
>> pretty(sym(maple('gsolve(F)')))

         2                  5       4       2
[[y, z, x  + 5], [80 y - 3 z  + 32 z  - 40 z ,
 
         4              5        2       3              5      6
    -96 z  + 640 x + 9 z  + 120 z , 240 z  + 1600 - 96 z  + 9 z ]]

 

A solution of the system could be obtained with solve in the following way:
 
>> pretty(sym(maple('solve({y=0, z=0, x^2 + 5=0})')))

                               2
                 {x = RootOf(_Z + 5), y = 0, z = 0}

>> pretty(sym(maple('allvalues(")')))

                      1/2                          1/2
       {y = 0, x = I 5   , z = 0}, {y = 0, x = -I 5   , z = 0}

 

The rest of the solutions can be found as follows:
 
>> pretty(sym(maple('solve({80*y-3*z^5+32*z^4-40*z^2=0, 96 * z ^ 4 + 640 * x + 9 * z ^ 5 +  
   120 * z ^ 2 = 0, 240 * z ^ 3 + 1600-96 * z ^ 5 + 9 * z ^ 6 = 0}) ')))

           2        2       3
{y = 2/5 %1  (-16 %1  + 3 %1  + 5), z = 2 %1,
 
                 2        2       3
    x = - 3/20 %1  (-16 %1  + 3 %1  + 5)}
 
                  3             5       6
%1 := RootOf(30 _Z  + 25 - 48 _Z  + 9 _Z )
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>> pretty(sym(maple('allvalues(")')))

{x = -.9186354143 + 1.100517108 I, y = 2.449694438 - 2.934712287 I,
 
    z = -1.576863306 - .7885511972 I},
 
   {x = -.9186354143 - 1.100517108 I, y = 2.449694438 + 2.934712287 I,
 
    z = -1.576863306 + .7885511972 I},
 
   {x = .2580043290 + 1.169756595 I, y = -.6880115440 - 3.119350920 I,
 
    z = .5785194088 - 1.453171854 I},
 
   {x = .2580043290 - 1.169756595 I, y = -.6880115440 + 3.119350920 I,
 
    z = .5785194088 + 1.453171854 I},
 
    {x = 2.058161202, y = -5.488429872, z = 2.243757078},
 
    {z = 10.41959738, x = 20.59643412, y = -54.92382432}

 

Then we find a minimal reduced Gröbner basis, first in lexicographical order and then in order of total degree.
 
>> pretty(sym(maple('gbasis(F,[y,x,z],plex)')))

    2      3        3      8       7       5   2
[3 y  - 8 z , 80 y z  - 3 z  + 32 z  - 40 z , x  - 2 x z + 5,
 
         7      8        5        3
    -96 z  + 9 z  + 120 z  + 640 z  x,
 
         6         3       8      9
    240 z  + 1600 z  - 96 z  + 9 z ]

>> pretty(sym(maple('gbasis(F,[x,y,z],tdeg) ')))

  2                  2      3       2      3     4         3        2
[x  - 2 x z + 5, -3 y  + 8 z , 8 x y  + 3 y , 9 y  + 48 z y  + 320 y  ]
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3-11. The mod Operator: Modular Operations with Polynomials 
The operator mod evaluates an expression modulo m for a non-zero natural number m. MATLAB uses two 
representations for an integer modulo m. The positive  mod m representation is an integer between 0 and m-1. The 
symmetric mod m representation is an integer between -floor((abs(m)-1)/2) and floor(abs(m)/2). The first 
operand of the mod operator generally tends to be an expression that will be evaluated by MATLAB over the ring of 
integers modulo n. For polynomials, MATLAB reduces the coefficients modulo m. When the first operand is a power, 
MATLAB uses the inert representation of the power, for example, i & ^ j mod m is calculated as ij mod m. Among the 
commands that use the mod operator with polynomials are, in addition to those we’ve already seen, the following (all 
require the prior use of the maple command):

'mod'(expr,m) is equivalent to expr mod m (expr can be a polynomial).

modp1(Fnc(expr1,...,exprn),m) (m is a positive integer) uses efficient arithmetic 
methods to calculate the inert command or function Fnc modulo m. The n given 
expressions are univariate polynomials expressed in modp1 format. To express any 
standard polynomial in the form modp1 modulo m it is necessary to use the command 
modp1(convertIn). Here  modp1 refers to univariate polynomials with the operator mod 
in its positive representation.

modp1(Add(polyp11,...,polyp1n),m) adds polynomials in the form modp1.

modp1(Coeff(polyp1,n),m) returns the coefficient of  xn of the polynomial,  in the form 
modp1.

modp1(Degree(polyp1),m) returns the degree of the polynomial, in the form modp1.

modp1(Det(M),m) returns the determinant of the matrix M whose elements are 
polynomials, in the form modp1.

modp1(Gausselimin(M),m) applies Gauss elimination to the matrix M whose elements 
are polynomials, in the form modp1.

modp1(Gaussjord(M),m) returns the reduced Gauss-Jordan form for the matrix M whose 
elements are polynomials, in the form modp1.

modp1(Lcoeff(polyp1),m) returns the leading coefficient of the polynomial polyp1 in 
the form modp1.

modp1(Lcm(polyp1,polyp2),m) finds the least common multiple of the polynomials 
polyp1 and polyp2, in the form modp1.

modp1(Subtract(polyp1,polyp2),m) finds the difference polyp1-polyp2 of the given 
polynomials , in the form modp1.

modp1(Multiply(polyp1,poly2),m) finds the product polyp1*polyp2 of the polynomials 
in the form modp1.

modp1(Ldegree(polyp1),m) returns the smallest degree of the polynomial polyp1 in 
modp1 form.

modp1(Power(polyp1,n),m) returns the n th power of the polynomial polyp1 in the 
form modp1. With modp1 you can also use inert commands such as Tcoeff, Chrem, Diff, 
divided, Embedded, Eval, Factors, Gcd, Gcdex, Interp, Irreduc, Powmod, Prem, Quo, Rem, 
spot, Root, Smith, Sgrfr, Vnormal, and so on.
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modp1(ConvertIn(polynomial,variable),m) converts the given univariate polynomial 
with integer coefficients in the given variable to the format modp1 modulo m. This 
operation takes precedence over any of the operating commands modp1. Any 
polynomial that is an argument of any operational function modp1 should be previously 
transformed with modp1(ConvertIn).

modp1(ConvertOut(polynomial1,variable),m) converts the specified polynomial in the 
form modp1 to standard format.

modp1(ConvertOut(poly1),m) gives the list of coefficients of the polynomial converted 
to standard format.

modp1(Constant(expr),m) represents the constant expression as a polynomial modulo 
m in the format modp1.

modp1(One(),m) represents the polynomial 1 modulo m in modp1 format.

modp1(Zero(),m) represents the polynomial 0 modulo m in modp1 format.

modp1(Randpoly(n),m) creates a random polynomial modulo m of degree n in modp1 
format.

modp2(Fnc(expr1,..,exprn),m) (positive whole m) uses efficient arithmetic methods to 
calculate the inert command or function Fnc modulo m. The n expressions specified as 
arguments of the command Fnc are bivariate polynomials expressed in modp2 format 
modulo m. The term modp2 indicates bivariate polynomials with the operator mod in 
its finite representation. To express any standard polynomial in the form modp2 it is 
necessary to use the command modp2(ConvertIn). Such a transformation must be done 
prior to the application of Fnc to any polynomial.

modp2(Add(polyp21,...,polyp2n),m) adds polynomials in the form modp2.

modp2(Degree(polyp2,i),m) returns the degree of the specified bivariate polynomial 
modulo m in format modp2 and with reference to its ith variable.

modp2(Diff(polyp2,i),m) returns the derivative of the bivariate polynomial modulo m 
specified in the format modp2 and with reference to its i th variable.

modp2(FielMultiply(polyp2,k),m) returns the product of the scalar k and the specified 
polynomial in the format modp2.

modp2(Lcm(polyp21,polyp22),m) finds the least common multiple of polynomials in the 
form modp2.

modp2(Multiply(polyp21,polyp22),m) returns the product of the polynomials in the 
form modp2.

modp2(Power(polyp2,n),m) returns the nth power of the polynomial in the form modp2.

modp2(TotalDegree(polyp2),m) returns the total degree of the polynomial modulo m in 
the format modp2 in both variables. The inert commands can also be used with modp2, 
including Coeff, Content, divided, Eval, Factors, Gcd, Prim, Primport, RingMultiply, 
Sqrfree, Unit, Var-Swap, and so on.

modp2(ConvertIn(polynomial,var1,var2),m) converts the given polynomial with 
integer coefficients in the variables var1, var2 into standard polynomial format modp2 
modulo m. This conversion must be applied to any polynomial that will be an argument 
of any modp2command.
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modp2(ConvertOut(polyp2,var1,var2),m) converts the polynomial modulo m in format 
modp2 to its standard format.

modp2(ConvertOut(polyp2),m) returns the list of coefficients of the polynomial into its 
standard format.

modp2(Constant(expr),m) represents the constant expression as a bivariate polynomial 
modp2 modulo m.

modp2(One(),m) gives 1 modulo the polynomial m in format modp2.

modp2(Zero(),m) gives  the  polynomial  0  modulo  m  in  modp2 format.

modp2(Rootpoly(r,s),m) creates a random bivariate polynomial in the format modp2 
modulo m of degree r and s for its respective variables.

Here are some examples:
 
>> pretty(sym(maple('p:= 11: a:= x^4-1')))
>> pretty(sym(maple('a := modp1(ConvertIn(a,x),p)')))
>> pretty(sym(maple('a')))

              a := 1000000000000000000000000000000000010

>> pretty(sym(maple('modp1(ConvertOut(a,x),p),modp1(ConvertOut(a),p)')))

                        4
                      x  + 10, [10, 0, 0, 0, 1]

>> pretty(sym(maple('b:=modp1(Randpoly(3),p):c:=modp1(Rem(a,b),p):
   d:=modp1(Roots(a),p)')))
>> pretty(sym(maple('b,c,d')))

 7000400010008, 400050001, [[1, 1], [10, 1]]

>> pretty(sym(maple('modp1(Factors(a),p)')))

  [1, [[1000000001, 1], [1000000010, 1], [1000000000000000001, 1]]]

>> pretty(sym(maple('a:=x^4*y^2-1:b := modp2(ConvertIn(a,x,y),p)')))
>> pretty(sym(maple('b')))

[10 0 0 0 100000000]
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Exercise 3-30

Consider the matrix M = [[a, b, c], [d, e, f], [g, h, k]] whose elements are, respectively, the following 
univariate modp1 modulo 5 polynomials: [[1, x + 1, x - 1], [2, x2 + 1, x2 - 1], [x, (x + 1)2,(x - 1)2]]. Find the 
following:

- The sum, product, and least common multiple of a and b modp1 modulo 5.

- The fourth power of the polynomial k modp1 modulo 5.

- M2, the determinant of M, the inverse of M and the Jordan diagonal form of M.

We begin by transforming the given format polynomials modp1 modulo 5.
 
>> maple('a:=modp1(ConvertIn(1,x),5):b:=modp1(ConvertIn(x+1,x),5):
c:=modp1(ConvertIn(x-1,x),5):d:=modp1(ConvertIn(2,x),5):
e:=modp1(ConvertIn(x^2+1,x),5):f:=modp1(ConvertIn(x^2-1,x),5):
g:=modp1(ConvertIn(x,x),5):h:=modp1(ConvertIn(x^2+2*x+1,x),5):
k:=modp1(ConvertIn(x^2-2*x+1,x),5):')
 

Then we perform the operations requested on the variables a and b.
 
>> pretty(sym(maple('modp1(Add(a,b),5)')))

10002

>> pretty(sym(maple('modp1(Multiply(a,b),5)')))

10001

>> pretty(sym(maple('modp1(Lcm(a,b),5)')))

10001

>> pretty(sym(maple('modp1(Power(k,4),5)')))

100020003000400000004000300020001

 

Now we define the matrix M and carry out the specified matrix operations.
 
>> maple('M: = matrix([[a,b,c],[d,e,f],[g,h,k]])')

M := matrix([[1, 10001, 10004], [2, 100000001, 100000004], [10000, 100020001, 100030001]])
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>> pretty(sym(maple('multiply(M,M)')))

           [    100060003        2000700110006        2000800180012]
           [                                                       ]
           [1000200040004    20002000700100007    20003001000140016]
           [                                                       ]
           [1000500060002    20007001100080002    20008001700180005]

>> pretty(sym(maple('det(M)')))

                                -1999599949997

>> pretty(sym(maple('inverse(M)')))

               [-999699949997     -200050003        299970000  ]
               [-------------    -------------    -------------]
               [1999599949997    1999599949997    1999599949997]
               [                                               ]
               [-999799979998        9999           99979996   ]
               [-------------    -------------    -------------]
               [1999599949997    1999599949997    1999599949997]
               [                                               ]
               [999799969998         10001          -99979999  ]
               [-------------    -------------    -------------]
               [1999599949997    1999599949997    1999599949997]

>> pretty(sym((maple('evalf(jordan(M))'))))

         [                                    9                     ]
         [.20002500462526246741730553617573 10  ,        0 ,       0]
         [                                                          ]
         [                                                 -24      ]
         [0 , 5000.3739380021880602966411765771 - .86603 10    i , 0]
         [                                                          ]
         [                                                     -24  ]
         [0 ,  0 ,  -1.9992004696053658328169045771 + .86603 10    i]
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Chapter 4

Symbolic Matrix Algebra

4-1. Vectors and Matrices
In the preceding chapter’s coverage of vector and matrix variables, we saw how to define vectors and matrices in 
MATLAB. At the same time, we defined simple operations with vector and matrix variables. This chapter will expand 
the concepts of matrix algebra, introducing commands that allow you to work with matrices.

Consider the matrix:

A = ( ) =A

a a a a

a a a a

a a a aij

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

...
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ç
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÷
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÷
÷
÷
÷

= ¼ = 22 3, , , .¼ n

You can enter this in MATLAB in any of the following ways:
 
A=[a11,a12,...,a1n ; a21,a22,...,a2n ; ... ; am1,am2,...,amn]
 
A=[a11 a12 ... a1n ; a21 a22 ... a2n ; ... ; am1 am2 ... amn]
 
A=maple('array([[a11,..,a1n],[a21,..,a2n],..,[am1,..,amn]])')
 
A=maple('matrix(m,n,[a11,..,a1n,a21,..,a2n,..,am1,..,amn])')
 
A=maple('matrix([[a11,..,a1n],[a21,..,a2n],..,[am1,..,amn]])')
 

At the same time, consider the vector

V =(v1,v2,...,vn)
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This is a particular case of a matrix, consisting of a single row (i.e. it is a matrix of dimension 1×n). One can define 
it in any of the following ways in MATLAB:
 
V = [v1, v2,..., vn]
 
V = [v1 v2... vn]
 
V = maple('vector([v1, v2,..., vn])')
 
V = maple('vector(n,[v1, v2,..., vn])')
 
V=maple('array([v1, v2, ..., vn])')

4-2. Operations with Symbolic Matrices
MATLAB supports most matrix algebra operations (sum, difference, product, scalar multiplication). Some operations 
can always be applied while others depend on meeting certain dimensionality criteria.

The following MATLAB commands allow operations with matrices.

A + B gives the sum of matrices A and B.

A - B gives the difference between the matrices A and B (A minus B).

c * M gives the product of the scalar c and the matrix M.

A * B gives the product of the matrices A and B (A B).

A ^ p gives the matrix A raised to the power of the scalar p.

p ^ A gives p raised to the matrix A.

expm(A) gives eA calculated via eigenvalues.

expm1(A) gives eA calculated via Pade approximants.

expm2(A) gives eA calculated via Taylor series.

expm3(A) gives eA calculated via the condition number of the matrix of eigenvectors.

logm(A) gives the Napierian logarithm of matrix A.

sqrtm(A) gives the square root of the square matrix A.

funm(A,'function') applies the function to the square matrix A.

transpose(A) or  A' gives the transpose of the matrix A.

inv(A) gives the inverse of the square matrix A (i.e. the matrix A- 1).

det(A) gives the determinant of the square matrix A.

rank(A) gives the rank of the matrix A.

trace(A) gives the sum of the elements of the diagonal of A.

Svd(A) gives the vector V of singular values of A. The singular values of A are the square 
roots of the eigenvalues of the symmetric matrix A' A.

[U,S,V] = Svd(A) gives the diagonal matrix S of singular values of A (ordered in 
decreasing magnitude), and the matrices U and V such that = U * S * V'.
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cond(A) gives the condition number of the matrix A (the ratio between the largest and 
the smallest singular values of A).

rcond(A) gives the reciprocal of the condition number of the matrix A .

norm(A) gives the norm of A (the greatest singular value of the matrix A).

norm(A,1) gives the 1-norm of A (the maximum column sum of A, where the column 
sum is the sum of the absolute values of the entries in a column).

norm(A,inf) gives the infinity norm of A (the maximum row sum of A, where the row 
sum is the sum of the absolute values of the entries in a row).

norm(A,'fro') gives the Frobenius norm of A, defined by sqrt(sum(diag(A'A))).

Z = null(A) gives an orthonormal basis of the kernel of A (so that Z'Z = I). The 
number of columns of Z is the nullity of A.

Q = orth(A) gives an orthonormal basis of the range of A (so that Q'Q = I). The columns 
of Q generate the same space as the columns of A, and the number of columns in Q is 
the rank of A.

subspace(A,B) gives the angle between the subspaces specified by the columns of A and B.

rref(A) produces the row reduced echelon form of A. The number of non-zero rows of 
rref(A) is the rank of the matrix A. 

Exercise 4-1
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calculate AB - BA , A2 + B2 + C2, ABC, sqrt(A)+ sqrt(B) - sqrt(C), eA (eB + eC) and find the rank, inverse, 
trace, determinant, condition number and singular values of A, B and C.
 
>> A = [1 1 0;0 1 1;0 0 1]; B = [i 1-i 2+i;0 -1 3-i;0 0 -i];
   C = [1 1 1; 0 sqrt(2)*i -sqrt(2)*i;1 -1 -1];
>> M1 = A*B-B*A

M1 =
 
        0            -1.0000 - 1.0000i   2.0000
        0                  0             1.0000 - 1.0000i
        0                  0                  0

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

136

>> M2 = A^2+B^2+C^2

M2 =
 
   2.0000             2.0000 + 3.4142i   3.0000 - 5.4142i
        0 - 1.4142i   0.0000 + 1.4142i   0.0000 - 0.5858i
        0             2.0000 - 1.4142i   2.0000 + 1.4142i

>> M3 = A*B*C

M3 =
 
   5.0000 + 1.0000i  -3.5858 + 1.0000i  -6.4142 + 1.0000i
   3.0000 - 2.0000i  -3.0000 + 0.5858i  -3.0000 + 3.4142i
        0 - 1.0000i        0 + 1.0000i        0 + 1.0000i

>> M4 = sqrtm(A)+sqrtm(B)-sqrtm(C)

M4 =
 
   0.6356 + 0.8361i  -0.3250 - 0.8204i   3.0734 + 1.2896i
   0.1582 - 0.1521i   0.0896 + 0.5702i   3.3029 - 1.8025i
  -0.3740 - 0.2654i   0.7472 + 0.3370i   1.2255 + 0.1048i

>> M5 = expm(A)*(expm(B)+expm(C))

M5 =
 
  14.1906 - 0.0822i   5.4400 + 4.2724i  17.9169 - 9.5842i
   4.5854 - 1.4972i   0.6830 + 2.1575i   8.5597 - 7.6573i
   3.5528 + 0.3560i   0.1008 - 0.7488i   3.2433 - 1.8406i

>> ranks = [rank(A) rank(B) rank(C)]

ranks =
 
     3     3     3

>> singularvalues = [Svd(A),Svd(B),Svd(C)]

singularvalues =
 
    1.8019    4.2130    2.0000
    1.2470    1.4917    2.0000
    0.4450    0.1591    1.4142
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>> traces = [trace(A) trace(B) trace(C)]

traces =
 
   3.0000        -1.0000         0 + 1.4142i

>> inv(A)

ans =
 
     1    -1     1
     0     1    -1
     0     0     1

>> inv(B)

ans =
 
        0 - 1.0000i  -1.0000 - 1.0000i  -4.0000 + 3.0000i
        0            -1.0000             1.0000 + 3.0000i
        0                  0                  0 + 1.0000i

>> inv(C)

ans =
 
   0.5000                  0             0.5000
   0.2500                  0 - 0.3536i  -0.2500
   0.2500                  0 + 0.3536i  -0.2500

>> determinants = [det(A) det(B) det(C)]

determinants =
 
   1.0000            -1.0000                  0 - 5.6569i

>> conditions = [cond(A) cond(B) cond(C)]

conditions =
 
    4.0489   26.4765    1.4142
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4-3. Other Symbolic Matrix Operations
MATLAB also provides the following commands that allow operations with symbolic matrices. (The maple command 
is required to define symbolic matrices):

A = sym('[f1;f2;...;fm]') defines the symbolic m × n matrix with rows f1 to fm, 
where fi = ai1, ai2,..., ain.

symadd(A,B) gives the sum of matrices A and B (A plus B).

symsub(A,B) gives the difference of the matrices A and B (A minus B).

symmul(A,B) gives the product of matrices A and B (A B).

sympow(A,p) gives A raised to the power of the scalar p.

transpose(A) gives the transpose of the matrix A (A').

inv(A) gives the inverse of square matrix A (A-1).

det(A) gives the determinant of the square matrix A.

rank(A) gives the rank of the matrix A.

Svd(A) or singvals(A) gives the vector of singular values of A. The singular values of A 
are the square roots of the eigenvalues of the symmetric matrix A ' A.

[U,S,V] = singvals(A) or [U,S,V] = Svd(A) returns the orthogonal matrices U and V 
and the diagonal matrix S with singular values of A on the diagonal, such that A= USV'.

symop(A,'operation1',B,'operation2',C,...) performs the specified operations 
between the given symbolic matrices and in the order given. This command allows you 
to mix all kinds of operations between symbolic matrices.

maple('evalm(expr(A,B,C,..))') evaluates the expression in the matrices A, B, C,... 
This expression has to be formed by the basic operators addition (+), subtraction (-), 
product (& *) and power (^). Within evalm the zero matrix is denoted by 0, the identity 
matrix is denoted by & * () and the inverse matrix is denoted by A ^(-1). In addition,  
A ^ 0 is always 1.

maple('matadd(A,B)') adds the matrices or vectors A and B (A+B).

maple('matadd(A,B,k,r)') calculates k * A + r * B.

maple(scalarmul(A,k)) calculates k * A (scalar multiple).

maple('multiply(A,B,C,...)')or maple('A&*B&*C&*...') computes the product of the 
given matrices in the order specified.

maple(exponential(A,t)) calculates e At via Taylor series. It can be stated as  
e At = I + At + 1/2!A2t2+ . . . .

maple('exponential(A)') calculates e Ax where x is the first variable found within the 
matrix A.

maple('transpose(A)') gives the transpose of the matrix or vector A (A' ).

maple('htranspose(A)') gives the hermitian transpose of the matrix or vector A.  
Its (i, j)th element is defined as the conjugate of the (j, i)th element of A.
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maple('inverse(A)') or maple(evalm(A^(-1))) finds the inverse of the square matrix A  
(i.e. A- 1).

maple('adjoint(A)') or maple('adj(A)') finds the adjoint of the square matrix A 
(adjoint(A) = inverse(A) * det(A)).

maple('minor(A,i,j)') returns the determinant of the matrix obtained by deleting the 
i-th row and j-th column of the matrix A.

maple('det(A)') returns the determinant of the square matrix A.

maple(det(A,sparse)) returns the determinant of a sparse square matrix A, calculated 
by an efficient method of minor expansion.

maple('Det(A)') returns the inert determinant of the square matrix A.

maple(Det(A) mod n) returns the determinant of A modulo n.

maple('permanent(A)') calculates the permanent of the matrix A (similar to the 
calculation of the determinant of A but such that there are no alternating signs in the 
terms of the sum).

maple('rank(A)') returns the rank of the matrix A.

maple('trace(A)') returns the sum of the elements of the diagonal of A.

maple('Svd(A)') or maple('(singularvals(A)') gives the vector of singular values of A. 
The singular values of A are the square roots of the eigenvalues of the symmetric  
matrix A' A.

norm(A) or norm(A,2) returns the standard norm of A defined as the maximum of the 
singular values of A.

norm(A,inf) or maple('norm(A)') gives the infinity norm of A defined as the maximum 
of the row sums of A (where a row sum is the sum of the absolute values of the entries of 
the row).

norm(A,1) gives 1-norm of A defined by the maximum of the column sums of A (where a 
column sum is the sum of the absolute values of the entries of the column).

norm(A,fro) gives the Frobenius norm of A defined as sqrt(sum(diag(A'*A))).

maple('norm(A,option)') gives the norm of A according to the given option. Possible 
values for option are 1, 2, infinity and frobenius. The 1-norm is the maximum of the 
column sums of A. The 2-norm is the square root of the largest eigenvalue of AA'. The 
infinity norm  is the maximum of the row sums of A. The Frobenius norm is the square 
root of the sum of the squares of the elements of A.

normest(A) estimates the 2-norm of A.

cond(A) or maple('cond(A)') gives the condition number of the matrix A (the product 
of the infinity norm of A and the infinity norm of A-1, or the ratio between the largest 
and the smallest singular values of A).

cond(A,P) gives norm(X,P) * norm(inv(X),P) where P is set to 1, 2, infinity or fro 
according to the type of norm one wants to use.

maple('cond(A,option)') returns the condition number of A according to the given 
option. Possible values for option are 1, 2, infinity and frobenius. The options 
determine the norm used in the calculation of the condition number.
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[C,V] = condest(A) gives C and V such that the condition norm(A*V,1) = norm(A, 1) * 
norm(V,1)/c is met.

maple('orthog(A)') determines whether A is an orthogonal matrix (i.e. if A- 1 = A' ).

maple('diag(A1,A2,...,An)') or maple ('BlockDiagonal(A1,A2,...,An)') builds the 
diagonal matrix whose diagonal elements are the subarrays (or elements) A1, A2,..., An.

maple('blockmatrix(m,n,B11,...,B1m,...,Bn1,...,Bnm)') constructs an m × n matrix 
with the blocks given, taken in consecutive order.

maple('diag(V,n)') creates a square matrix of dimension n with diagonal elements 
given by the vector V.

maple('submatrix(A,i..k,j...h)') extracts from A the subarray formed by rows i to k, 
and by columns j to h.

maple('subvector(A,i,j1..j2)') extracts from the matrix A the subvector determined 
by the ith  row between columns j1 and j2, both inclusive.

maple('subvector(A,i1..i2,j)') extracts from the matrix A the subvector determined 
by the jth column between rows i1 and i2, both inclusive.

maple('row(A,i)') extracts row i from A.

maple('row(A,i..k)') extracts from A the rows from i to k.

maple('column(A,j)') extracts column j from A.

maple('column(A,j..h)') extracts from  A the columns from j to h.

maple('addcol(A,j1,j2,expr)')creates a new array, replacing column j2 of A by expr 
* colummnj1 + columnj2.

maple('addrow(A,i1,i2,expr)') creates a new array, replacing row i2 of A by expr * 
rowi1 + rowi2.

maple('mulcol(A,j,expr)') creates a new matrix by multiplying column j of A by the 
expression expr.

maple('mulrow(A,i,expr)') creates a new matrix by multiplying row i of A by the 
expression expr.

maple('swapcol(A,j1,j2)') exchanges columns j1 and j2 of A.

maple('swaprow(A,i1,i2)') exchanges rows i1 and i2 of A.

maple('stack(A,B)') creates a new array by placing A over B (A and B have the same 
number of columns).

maple('augment(A,B)') or maple('concat(A,B)') creates a new array by placing the 
array A to the left of B (A and B have the same number of rows).

maple('extend(A,m,n)') creates a new array by adding m rows and n columns to A 
matrix, leaving unassigned new elements.

maple('extend(A,m,n,expr)') creates a new array by adding m rows and n columns to 
the matrix A, filling the new elements with expr.

maple('copyinto(A,B,i,j)') updates B by copying elements of A into B starting at 
element B(i,j).
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maple('pivot(A,i,j)') pivots the matrix A on its element A
ij

 .

maple('pivot(A,i,j,ia...ib)') pivots the matrix A on its element A
ij

  but only modifies 
the rows between ia and ib.

maple('(rowdim(A)') gives the number of rows in A.

maple('coldim(A)') gives the number of columns in A.

maple('(vectdim(V)') gives the dimension of the vector V.

maple('delrows(A,i..k)') deletes rows i to k from A.

maple('delcols(A,j...h)') deletes columns i to k from A .

maple('equal(A,B)') determines whether the matrices or vectors A and B are equal.

maple('issimilar(A,B)') determines whether the matrices or vectors A and B are similar. 
A and B are similar if there exists an M such that A = evalm(inverse(M) & * B & * M).

maple('issimilar(A,B,name)') assigns name to the matrix such that A = 
evalm(inverse(name) & * B & * name).

maple('iszero(A)') determines whether the matrix A is the zero matrix.

null(A) or maple('kernel(A)') or maple('nullspace(A)') gives a set of vectors that 
span the kernel of the linear transformation defined by the matrix A.

expm(A) finds eA according to Padé’s algorithm.

expm1(A) finds eA according to Golub’s algorithm.

expm2(A) finds eA via Taylor series.

expm3(A) finds eA via eigenvalues and eigenvectors.

diag(V,k) builds a diagonal square matrix of order n + |k| with the n elements of the 
vector V in the kth diagonal. If k = 0, the diagonal is the main diagonal, if k > 0, the 
diagonal is k places above the main diagonal, and if k < 0, the diagonal is k places 
below the main diagonal. We have diag(V,0) = diag(V).

triu(A,k) constructs an upper triangular matrix with elements of A that are above 
the kth diagonal. If k = 0, the diagonal is the main diagonal, if k > 0, the diagonal is k 
places above the main diagonal, and if k < 0, the diagonal is k places below the main 
diagonal. We have triu(A,0) = triu(A).

tril(A,k) builds a lower triangular matrix with elements of A that are below the 
kth diagonal. If k = 0, the diagonal is the main diagonal, if k > 0, the diagonal is k 
places above the main diagonal, and if k < 0, the diagonal is k places below the main 
diagonal.. We have, tril(A,0) = tril(A).

rref(A) or rrefmovie(A) produces the row reduced echelon form of the matrix A.

colspace(A) gives a basis for the vector space generated by the columns of the matrix A.

Q = orth(A) gives an orthonormal basis for the range of A, that is, Q'Q = I and the 
columns of Q generate the same space as the columns of A, where the number of 
columns in Q is equal to the rank of A .
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maple('randmatrix(m,n)') generates a random matrix of order (m × n). The 
elements are by default between –99 and 99, but this range can be changed via the 
command rand(a..b) which yields a random number between a and b. The command 
readlib(randomize): randomize(n) is used to set the generating seed for the value 
randomize(n) (by default a seed generated by the system clock is used).

maple('randmatrix(m,n,option)') generates a random matrix of order (m × n) 
according to the specified option. The options can be symmetric, antisymmetric, 
diagonal, unimodular and sparse, depending on whether the random matrix to be 
generated is symmetric, antisymmetric, diagonal, unimodular, or sparse, respectively.

maple('randvector(n)') generates a random vector of length n.

maple('(entermatrix(A)') enables an interface to input values of a matrix, separating 
elements by commas. You first need to specify the dimension of the array with the 
command A = matrix(m,n).

maple('array(1.. m,1... n,[(1,1)=a11,...,(m,n)=amn],option)') specifies the 
array of dimension (m × n) according to the option specified. The options can be 
symmetric, antisymmetric, diagonal, identity and sparse, depending on the type of 
array you want to define.

maple('matrix(m,n,f)') defines a matrix of dimension m × n whose elements are 
those specified by the function f(i,j) i = 1... m, j = 1... n.

maple('vector(n,f)') defines the vector of dimension n whose elements are those 
specified by the function f(i) i = 1... n.

maple('array(identity,1..n,1..n) ') defines the  n × n identity matrix.

Some examples follow. First, let’s consider three alternative ways of defining the same symbolic matrix (let’s not 
forget the maple command, which is always needed to define symbolic matrices and vectors):
 
>> A = sym('[1,2,3;4,5,6;7,8,9]')

A =
  
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

>> A = sym(maple('array([[1,2,3],[4,5,6],[7,8,9]])'))

A =

[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
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>> A = sym(maple('matrix([[1,2,3],[4,5,6],[7,8,9]])'))

A =
  
[1, 2, 3]
[4, 5, 6]
[7, 8, 9]

>> A = sym(maple('matrix(3,3,[1,2,3,4,5,6,7,8,9])'))

A =
 
[1, 2, 3]
[4, 5, 6]
[7, 8, 9] 

Next we define a symbolic matrix by using a function that defines its elements, in particular A
i, j

 = 1 / (i+j).
 
>> A = sym(maple('matrix(3,3,(i,j)->1/(i+j))'))

A =
  
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6] 

Now let’s define the third-order identity matrix in two different ways:
 
>> A = sym(maple('array(1..3,1..3,identity)'))

A =
  
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

>> A = sym(maple('matrix(3,3,(i,j)->if i=j then 1 else 0 fi)'))

A =
  
[1, 0, 0]
[0, 1, 0]
[0, 0, 1] 
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Next we define sparse, symmetric and antisymmetric matrices:
 
>> sym(maple('array(1..3,1..3,[(1,1)=1,(1,2)=2,(1,3)=3,(2,2)=4,(2,3)=6,(3,3)=5], symmetric)'))

ans =
  
[1, 2, 3]
[2, 4, 6]
[3, 6, 5]

>> sym(maple('array(1..3,1..3,[(1,1)=1,(1,2)=2,(1,3)=3,(2,2)=4,(2,3)=6,(3,3)=5], sparse)'))

ans =
  
[1, 2, 3]
[0, 4, 6]
[0, 0, 5]

>> sym(maple('array(1..3,1..3,[(1,2)=2,(1,3)=3,(2,3)=4], antisymmetric)'))

ans =
  
[ 0,  2,  3]
[-2,  0,  4]
[-3, -4,  0]

>> sym(maple('array(1..5,1..7,[(2,3)=4,(5,5)=12], sparse)'))

ans =
  
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 4, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 12, 0, 0] 

Next we define in different ways the symbolic vector whose components are the first six integers.
 
>> pretty(sym('[1,2,3,4,5,6]'))

 [1, 2, 3, 4, 5, 6]

>> pretty(sym(maple('vector([1,2,3,4,5,6])')))

                          [1, 2, 3, 4, 5, 6]
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>> pretty(sym(maple('vector(6,[1,2,3,4,5,6])')))

                          [1, 2, 3, 4, 5, 6]

>> pretty(sym(maple('array([1,2,3,4,5,6])')))

                          [1, 2, 3, 4, 5, 6]

>> pretty(sym(maple('vector(6,i->i)')))

                          [1, 2, 3, 4, 5, 6] 

Exercise 4-2

Consider the following symbolic matrix:

A = -
- + -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

a b c

c a c b

b b c a c

3 3

3 3 3 3

Calculate A',A-1, determinant(A), trace(A), condition(A), range(A), standard norm(A), adjoint(A), A2 and the 
complementary minor determined by the element (2,2).

We start by defining the symbolic form of our matrix as follows:
 
>> A = sym('[a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c]')

A =
 
[   a,       b,    c]
[ 3*c,   a-3*c,    b]
[ 3*b,-3*b+3*c,a-3*c] 

Alternatively, the same symbolic matrix can be defined by previously declaring all of its variables as symbolic,  
as follows:
 
>> syms a b c
>> A = sym([a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c])

A =
  
[        a,        b,        c]
[      3*c,    a-3*c,        b]
[      3*b, -3*b+3*c,    a-3*c]
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>> transpose(A)

ans =
 
[a,   3*c,      3*b]
[b, a-3*c, -3*b+3*c]
[c,     b,    a-3*c]

>> pretty(inv(A))

    2              2      2                        2          2            2
 [ a  - 6 a c + 9 c  + 3 b  - 3 b c       a b - 3 c        - b  + a c - 3 c ]
 [ -------------------------------     - -----------     - -----------------]
 [                %1                          %1                   %1       ]
 [                                                                          ]
 [              2            2        2                                 2   ]
 [           - b  + a c - 3 c        a  - 3 a c - 3 b c        a b - 3 c    ]
 [       - 3 -----------------       ------------------      - ----------   ]
 [                   %1                      %1                    %1       ]
 [                                                                          ]
 [                       2                           2     2                ]
 [              a b - 3 c               a b - a c + b     a  - 3 a c - 3 b c]
 [         - 3 ----------            3 ---------------    ------------------]
 [                  %1                        %1                  %1        ]
  
        3        2      2          2                3      3        2
%1 :=  a  - 6 c a  + 9 c  a + 3 a b  - 9 a b c + 9 c  + 3 b  + 9 b c

>> pretty(det (A))

          3        2      2          2                3      3        2
         a  - 6 c a  + 9 c  a + 3 a b  - 9 a b c + 9 c  + 3 b  + 9 b c

>> pretty(trace (A))

                                   3 a - 6 c

>> rank(A)

ans =
 
     3

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

147

>> pretty(sympow(A,2))

               2                             2           2      2
             [a  + 6 b c, 2 a b - 6 b c + 3 c , 2 a c + b  - 3 c ]
  
             2      2           2              2      2                     2
 [6 a c - 9 c  + 3 b , 6 b c + a  - 6 a c + 9 c  - 3 b , 2 a b - 6 b c + 3 c ]
  
                             2     2                                2
        [6 a b - 18 b c + 9 c , 3 b  - 6 a b + 18 b c + 6 a c - 18 c ,
  
                     2              2      2
            6 b c + a  - 6 a c + 9 c  - 3 b ] 

To calculate the condition number, the norm, the adjoint and the complementary minor symbolic matrix it is 
convenient to use Maple, in which case it is necessary to define the matrix A with a maple command before 
issuing any other commands. See:
 
>> maple('A:=matrix(3,3,[a,b,c,3*c,a-3*c,b,3*b,-3*b+3*c,a-3*c])');
>> pretty(sym(maple('cond(A)')))

max(| a | + | b | + | c |, 3 | c | + | a - 3 c | + | b |,
 
    3 | b | + | -3 b + 3 c | + | a - 3 c |) max(
 
      |   2            2 |   |  2                 |   |          2 |
      | -b  + a c - 3 c  |   | a  - 3 a c - 3 b c |   | b a - 3 c  |
    3 | ---------------- | + | ------------------ | + | ---------- |,
      |        %1        |   |         %1         |   |     %1     |
 
    |  2              2      2         |   |          2 |
    | a  - 6 a c + 9 c  + 3 b  - 3 b c |   | b a - 3 c  |
    | -------------------------------- | + | ---------- |
    |                %1                |   |     %1     |
 
       |   2            2 |
       | -b  + a c - 3 c  |
     + | ---------------- |,
       |        %1        |
 
      |          2 |     |              2 |   |  2                 |
      | b a - 3 c  |     | b a - a c + b  |   | a  - 3 a c - 3 b c |
    3 | ---------- | + 3 | -------------- | + | ------------------ |)
      |     %1     |     |       %1       |   |         %1         |
 
       3      2          2        2                3      3        2
%1 := a  - 6 a  c + 9 a c  + 3 a b  - 9 a b c + 9 c  + 3 b  + 9 b c 
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We now calculate the 1-norm, the infinity norm, and the Frobenius norm.
 
>> pretty(sym(maple('N1:=norm(A,1):N3:=norm(A,infinity):N4:=norm(A,frobenius)')))
>> pretty(sym(maple('N1'))),pretty(sym(maple('N3'))),pretty(sym(maple('N4')))

max(| a | + 3 | c | + 3 | b |, | b | + | a - 3 c | + | -3 b + 3 c |,
 
    | c | + | b | + | a - 3 c |)
  
max(| a | + | b | + | c |, 3 | c | + | a - 3 c | + | b |,
 
    3 | b | + | -3 b + 3 c | + | a - 3 c |)
  
          2           2           2                2                 2 1/2
    (| a |  + 11 | b |  + 10 | c |  + 2 | a - 3 c |  + | -3 b + 3 c | )

>> pretty(sym(maple('adjoint(A)')))

      [ 2              2      2                     2    2            2]
      [a  - 6 a c + 9 c  + 3 b  - 3 b c , -b a + 3 c  , b  - a c + 3 c ]
      [                                                                ]
      [            2      2         2                                 2]
      [-3 a c + 9 c  + 3 b  ,      a  - 3 a c - 3 b c ,     -b a + 3 c ]
      [                                                                ]
      [   2                                  2        2                ]
      [9 c  - 3 b a ,     3 b a - 3 a c + 3 b  ,     a  - 3 a c - 3 b c]

>> pretty(sym(maple('minor(A,2,2)')))

                               [ a        c   ]
                               [              ]
                               [3 b    a - 3 c]
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Exercise 4-3

Consider the following matrix:

M =

1 3 1 4 1 5

1 4 1 5 1 6

1 5 1 6 1 7

/ / /

/ / /

/ / /

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Find its transpose, its inverse, its determinant, its rank, its trace, its singular values, its condition number, 
its norm and M3, considered as a symbolic matrix.
 
>> M = sym('[1/3,1/4,1/5; 1/4,1/5,1/6; 1/5,1/6,1/7]')

M =
 
[1/3,1/4,1/5]
[1/4,1/5,1/6]
[1/5,1/6,1/7]

>> transposed = transpose(M)

transposed =
 
[1/3, 1/4, 1/5]
[1/4, 1/5, 1/6]
[1/5, 1/6, 1/7]

>> inversematrix = inv(M)

inversematrix =
 
[ 300,  -900,   630]
[-900,  2880, -2100]
[ 630, -2100,  1575]

>> determinant=det(M)

determinant =

1/378000

>> matrixrank=rank(M)

matrixrank =
 
3
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>> matrixtrace = trace(M)

matrixtrace =
 
71/105

>> numeric(Svd(M))

ans =
 
   0.6571
   0.0002 - 0.0000i
   0.0189 + 0.0000i

>> matrixnorm = maple('norm([[1/3,1/4,1/5],[1/4,1/5,1/6],[1/5,1/6,1/7]])')

matrixnorm =
 
47/60

>> sympow(M,3)

ans =
 
[10603/75600, 1227/11200, 26477/294000]
[1227/11200, 10783/126000, 74461/1058400]
[26477/294000, 74461/1058400, 8927/154350]

Now we find norms and condition numbers of the numeric matrix M:

>> [norm(numeric(M)),norm(numeric(M),1),cond(numeric(M),inf), cond(numeric(M),'fro'), 
   normest(numeric(M))]

ans =
 
  1. 0e + 003 *
 
0.7 0.0008 4.6060 3.0900 0.0007 0.8

>> [cond(numeric(M),1),cond(numeric(M),2),cond(numeric(M),'fro'), condest(numeric(M))]

ans =
 
  1. 0e + 003 *
 
    4.6060 3.0886 3.0900 4.6060
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Exercise 4-4

Given the following matrices A and B:

A =
é

ë
ê

ù

û
ú

cosh( ) sinh( )

sinh( ) cosh( )

sinh( ) cosh( )

cosh(

a a

a a
B

a a

a
=

)) sinh( )a

é

ë
ê

ù

û
ú

Calculate M1 = A2 + B2, M2 = A2 - B2, An, Bn, eA, eB.

Find the inverse, determinants, singular values, traces, norms, condition numbers, and adjoints of the 
matrices A and B.

Are the matrices A and B orthogonal?
 
>> A = sym('[cosh(a),sinh(a);sinh(a),cosh(a)]');
>> B = sym('[sinh(a),cosh(a);cosh(a),sinh(a)]');
>> M1 = symadd(sympow(A,2),sympow(B,2))

M1 =
 
[2*cosh(a)^2+2*sinh(a)^2,       4*cosh(a)*sinh(a)]
[      4*cosh(a)*sinh(a), 2*cosh(a)^2+2*sinh(a)^2] 

This symbolic result can be simplified as much as possible using the simple command:
 
>> S1 = simple(M1)

S1 =
 
[2*cosh(2*a), 2*sinh(2*a)]
[2*sinh(2*a), 2*cosh(2*a)]

>> M2 = symsub(sympow(A,2),sympow(B,2))

M2 =
 
[0, 0]
[0, 0] 

To calculate An and Bn, we find their successive powers to try to find the pattern:
 
>> [simple(sympow(A,2)),simple(sympow(A,3)),simple(sympow(A,4))]

ans =
 
[cosh(2*a), sinh(2*a)][cosh(3*a), sinh(3*a)][cosh(4*a), sinh(4*a)]
[sinh(2*a), cosh(2*a)][sinh(3*a), cosh(3*a)][sinh(4*a), cosh(4*a)]
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>> [simple(sympow(B,2)),simple(sympow(B,3)),simple(sympow(B,4))]

ans =
 
[cosh(2*a), sinh(2*a)]   [sinh(3*a), cosh(3*a)]   [cosh(4*a), sinh(4*a)]
[sinh(2*a), cosh(2*a)]   [cosh(3*a), sinh(3*a)]   [sinh(4*a), cosh(4*a)] 

The pattern is now evident, so we write:

A = B =n n cosh( ) sinh( )

sinh( ) cosh( )

na na

a a2 2

é

ë
ê

ù

û
ú

 
>> matrixinverse = [simple(inv(A)),simple(inv(B))]

matrixinverse =
 
[sinh(a) cosh(a)]      [-sinh(a) cosh(a)]
[-sinh(a) cosh(a)]      [sinh(a) cosh(a)]

>> determinants = [simple(det(A)),simple(det(B))]

determinants =

1 - 1

>> singularvalues = [simple(singvals(A)),simple(singvals(B))]

singularvalues =
 
[exp(-Re(a))], [exp(Re(a))]
[exp(Re(a))], [exp(-Re(a))]

>> traceA = simple(trace(A))

traceA =
  
2 * cosh (a)

>> traceB = simple(trace(B))

traceB =
  
2 * sin(a)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

153

Now let’s calculate the exponentials eA and eB:

>> maple ('A: = matrix([[cosh(a),sinh(a)],[sin(a),cosh(a)]])');
expA = simple(sym(maple('exponential(A)')))

expA =
  
[(- exp (exp (a)) - exp (a) * cosh (a) * exp (1/exp (a)) + exp (a) * cosh (a) * exp (exp (a)) 
+ exp (a) ^ 2 * exp (1/exp (a))) / (-1 + exp (a) ^ 2), sinh (a) * exp (a) * (-exp (1/exp (a)) 
+ exp (exp (a))) / (-1 + exp (a) ^ 2)]
[sin (a) * exp (a) * (-exp (1/exp (a)) + exp (exp (a))) / (-1 + exp (a) ^ 2),  
(-exp (exp (a))-exp (a) * cosh (a) * exp (1/exp (a)) + exp (a) * cosh (a) * exp (exp (a)) +  
exp (a) ^ 2 * exp (1/exp (a))) / (-1 + exp (a) ^ 2)]

>> maple('B:=matrix([[sinh(a),cosh(a)],[cosh(a),sinh(a)]])') ;
>> expB = simple(sym(maple('exponential(B)')))

expB =

[(exp(exp(a))-exp(a)*sinh(a)*exp(-1/exp(a))+exp(a)*sinh(a)*exp(exp(a))+exp(a)^2* 
exp(-1/exp(a)))/(exp(a)^2+1), -cosh(a)*exp(a)*(exp(-1/exp(a))-exp(exp(a)))/(exp(a)^2+1)]
[-cosh(a)*exp(a)*(exp(-1/exp(a))-exp(exp(a)))/(exp(a)^2+1), (exp(exp(a))-exp(a)*sinh(a)* 
exp(-1/exp(a))+exp(a)*sinh(a)*exp(exp(a))+exp(a)^2*exp(-1/exp(a)))/(exp(a)^2+1)] 

As for the calculation of exponentials, in order to find traces, norms and adjoints you must use matrices defined 
with the maple command, since these calculations are made via maple commands that require the input array 
again to be set with a maple command.
 
>> conditions = simple(sym(maple('cond(A)')))

conditions =
  
abs (cosh (a)) ^ 2 + 2 * abs (sin (a) * cosh (a)) + abs (sin (a)) ^ 2

>> conditionB = simple (sym (maple ('cond (B)')))

conditionB =

abs (cosh (a)) ^ 2 + 2 * abs (sin (a) * cosh (a)) + abs (sin (a)) ^ 2

>> normA = simple(sym(maple('norm(A)')))

normA =
  
abs(cosh(a))+abs(sinh(a))
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>> normB = simple(sym(maple('norm(B)')))

normB =
  
abs(cosh(a))+abs(sinh(a))

>> adjointA = simple(sym(maple('adjoint(A)')))

adjointA =
  
[  cosh(a), -sinh(a)]
[ -sinh(a),  cosh(a)]

>> adjointB = simple(sym(maple('adjoint(B)')))

adjointaB =
  
[  sinh(a), -cosh(a)]
[ -cosh(a),  sinh(a)]

>> pretty(sym(maple('orthog(A)')))

                                     false

>> pretty(sym(maple('orthog(B)')))

                                     false 

Neither of the two arrays turn out to be orthogonal.
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Exercise 4-5

Define a square matrix A of dimension 5, whose elements are given by A(i,j) = i3 - j2. Extract a subarray of 
the matrix A formed by the elements of rows 2 to 4 and columns 3 to 4. Delete rows 2 to 4 of the matrix A, 
as well as column 5. Exchange the first and last rows of the matrix A. Exchange the first and last columns 
of the matrix A. Insert a column to the right of the matrix A. Insert a column to the left of the matrix A. Add 
two rows at the top of thematrix A. Perform the same operation on the bottom of the matrix.

First, we generate the matrix A as follows:
 
>> A = sym(maple('matrix(5,5,(i,j)-> i^3-j^2)'))

A =
  
[   0,  -3,  -8, -15, -24]
[   7,   4,  -1,  -8, -17]
[  26,  23,  18,  11,   2]
[  63,  60,  55,  48,  39]
[ 124, 121, 116, 109, 100]

>> maple('A:=matrix(5,5,(i,j)-> i^3-j^2)');
>> sym(maple('submatrix(A,2..4,3..4)'))

ans =
  
[ -1, -8]
[ 18, 11]
[ 55, 48]

>> sym(maple('delrows(A,2..4)'))

ans =
  
[   0,  -3,  -8, -15, -24]
[ 124, 121, 116, 109, 100]

>> sym(maple('delcols(A,5..5)'))

ans =
  
[   0,  -3,  -8, -15]
[   7,   4,  -1,  -8]
[  26,  23,  18,  11]
[  63,  60,  55,  48]
[ 124, 121, 116, 109]
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>> pretty(sym(maple('swapcol(A,1,5),swaprow(A,1,5)')))

     [-24     -3     -8    -15      0]  [124    121    116    109    100]
     [                               ]  [                               ]
     [-17      4     -1     -8      7]  [  7      4     -1     -8    -17]
     [                               ]  [                               ]
     [  2     23     18     11     26], [ 26     23     18     11      2]
     [                               ]  [                               ]
     [ 39     60     55     48     63]  [ 63     60     55     48     39]
     [                               ]  [                               ]
     [100    121    116    109    124]  [  0     -3     -8    -15    -24]

>> maple('B:=array([1,1,1,1,1])');
>> pretty(sym(maple('augment(A,B),augment(B,A);')))

[  0     -3     -8    -15    -24    1]  [1      0     -3     -8    -15    -24]
[                                    ]  [                                    ]
[  7      4     -1     -8    -17    1]  [1      7      4     -1     -8    -17]
[                                    ]  [                                    ]
[ 26     23     18     11      2    1], [1     26     23     18     11      2]
[                                    ]  [                                    ]
[ 63     60     55     48     39    1]  [1     63     60     55     48     39]
[                                    ]  [                                    ]
[124    121    116    109    100    1]  [1    124    121    116    109    100]

>> maple('C:=array([[1,1,1,1,1],[1,1,1,1,1]])');
>> pretty(sym(maple('stack(C,A),stack(A,C)')))

     [  1      1      1      1      1]  [  0     -3     -8    -15    -24]
     [                               ]  [                               ]
     [  1      1      1      1      1]  [  7      4     -1     -8    -17]
     [                               ]  [                               ]
     [  0     -3     -8    -15    -24]  [ 26     23     18     11      2]
     [                               ]  [                               ]
     [  7      4     -1     -8    -17], [ 63     60     55     48     39]
     [                               ]  [                               ]
     [ 26     23     18     11      2]  [124    121    116    109    100]
     [                               ]  [                               ]
     [ 63     60     55     48     39]  [  1      1      1      1      1]
     [                               ]  [                               ]
     [124    121    116    109    100]  [  1      1      1      1      1]
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

157

4-4. Eigenvalues and Eigenvectors: Diagonalization
MATLAB provides the following commands that allow you to work with eigenvalues and eigenvectors of a square 
matrix:

eig(A) calculates the eigenvalues of the square matrix A.

[V,D] = eig(A) calculates the diagonal matrix D of eigenvalues of A and a matrix V 
whose columns are the corresponding eigenvectors, such that A * V = V * D.

eig(A,B) gives a vector that contains the generalized eigenvalues of the square 
matrices A and B. The generalized eigenvalues of A and B are the roots of the 
polynomial in l, det (l * B - A).

[V,D] = eig(A,B) calculates the diagonal matrix D of generalized eigenvalues of  A and 
B, and an array V whose columns are the corresponding eigenvectors, such that  
A * V = B * V * D.

[AA,BB,Q,Z,V] = qz(A,B) calculates the upper triangular matrices AA and BB and the 
matrices Q and Z such that Q * A * Z = AA and Q * B * Z = BB, and gives the matrix V of 
generalized eigenvectors of A and B. The generalized eigenvalues are the elements of 
the diagonals of AA and BB, such that A * V * diag(BB) = B * V * diag(AA).

[T,B] = balance(A) returns a similarity transformation T and a matrix B such that  
B = T\A * T has eigenvalues approximately equal to those of A. The matrix B is called 
the balanced matrix of the matrix A.

balance(A) calculates the balanced matrix B of the matrix A. Its use is essentially to 
approximate the eigenvalues of A when they are difficult to estimate. We have  
eig(A) = eig(balance(A)).

[V,D] = cdf2rdf(V,D) converts a complex diagonal form to a real block diagonal form. 
Each complex eigenvalue in the diagonal of the input D becomes a 2 x 2 subarray in the 
transformed matrix D.

[U,T] = schur(A) gives a matrix T and a unitary matrix U such that A = U * T * U' and 
U'* U = eye(U). If A is complex, T is an upper triangular matrix with the eigenvalues of 
A on its diagonal. If A  is real, the matrix T has the eigenvalues of A on its diagonal, and 
complex eigenvalues will correspond to 2 x 2 diagonal blocks on the diagonal of T. The 
command schur(A) returns the matrix T only.

[U,T] = rsf2csf(U,T) converts a real Schur form to a complex Schur form.

[H,p] = hess(A) returns the unitary matrix P and Hessenberg matrix H such that  
A = P * H * P' and P'* P = eye(size(P)).

hess(A) returns the Hessenberg matrix H of  A.

poly(A) returns the characteristic polynomial of the matrix A.

poly(V) returns a vector whose components are the coefficients of the polynomial 
whose roots are the elements of the vector V.

vander(C) returns a Vandermonde matrix such that its j-th column is A(:,j) = C ^ (n-j). 
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Exercise 4-6

Consider the following matrix:

M i i

i i

=
-

- - -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 1 3

1 1 2

1 2

Compute its eigenvalues and its eigenvectors, the balanced matrix with its eigenvalues, and its 
characteristic polynomial.
 
>> M = [1,-1,3;-1,i,-1-2i;i,1,i-2];
>> [V,D] = eig(M)

V =
 
   0.9129             0.1826 + 0.5477i  -0.1826 + 0.3651i
  -0.2739 - 0.0913i   0.5477 - 0.1826i   0.3651 - 0.7303i
  -0.0913 + 0.2739i  -0.1826 - 0.5477i   0.1826 - 0.3651i
 
D =
 
   1.0000 + 1. 0000i 0 0
        0 - 2.0000 + 1.0 0000i
        0                  0                  0 

We see that the eigenvalues of M are 1 + i, -2 + i and 0, and the eigenvectors are the columns of the matrix V. 
We now calculate the balanced matrix and will see that its eigenvalues coincide with those of M:
 
>> balance(M)

ans =
 
   1.0000            -1.0000             1.5000
  -1.0000             0 + 1.0000i       -0.5000 - 1.0000i
   0 + 2.0000i        2.0000            -2.0000 + 1.0000i

>> eig(balance(M))

ans =
 
 1.0000 + 1.0000i
-2.0000 + 1.0000i
      0 
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We now calculate the characteristic polynomial of M:
 
>> p = poly(M)

p =
 
   1.0000             1.0000 - 2.0000i  -3.0000 - 1.0000i        0

>> vpa(poly2sym(p))

ans =
 
x^3+x^2-2.*i*x^2-3.*x-1.*i*x 

We see that the characteristic polynomial is x3 + x2 -2ix2 - 3x - ix.

For working specifically with eigenvalues and eigenvectors of symbolic matrices, MATLAB provides the following 
commands, among others: 

eigensys(A) or eig(A) returns the eigenvalues of the matrix A.

[V,E] = eigensys(A) or [V,E] = eig(A) returns the vector E containing the eigenvalues of A, 
and the matrix V, which contains its eigenvectors.

poly(A) returns the coefficients of the characteristic polynomial of A (in l) whose value is 
det(l*I - A).

jordan(A) returns the Jordan canonical form J of the numerical or symbolic matrix A. J has the 
eigenvalues of A on its diagonal.

[V,J] = jordan(A) returns the similarity transform V  and the Jordan canonical form J of the 
matrix A. The columns of  V  are the eigenvectors of A, so that V-1 *A*V = J.

Svd(A) gives the singular values of the matrix A.

[U,S,V] = Svd(X) gives the diagonal matrix S and the unitary matrices U and V such 
that X = U * S * V'.

maple('eigenvals(A)') returns the eigenvalues of the matrix A (the roots of the polynomial 
det(l &* I - A)).

maple('eigenvals(A,name)') assigns to the variable name the eigenvalues of A.

maple('eigenvals(A,C)') returns the generalized eigenvalues of A and C, which are the roots 
of the polynomial det(l &* C - A), whose variable is l.

maple('Eigenvals(A)' returns the eigenvalues of the matrix A in inert mode (evaluated with 
evalf).

maple(Eigenvals(A,name)) assigns to the variable name the eigenvalues of the matrix A in 
inert mode.

maple(Eigenvals(A,C)) returns the generalized eigenvalues of A and C in inert mode.

maple(eigenvals(A,'implicit')) returns the eigenvalues of A in the form of RootOf 
expressions for algebraic extensions.
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maple('eigenvals(A,'radical')') returns the eigenvalues of A in exact radical form.

maple('eigenvects(A)') returns the eigenvectors of the matrix A.

maple('eigenvects(A,'implicit')') returns the eigenvectors of A in the form of RootOf 
expressions for algebraic extensions.

maple('eigenvects(A,'radical')') returns the eigenvectors of A in exact radical form.

maple('charmat(A,lambda)') returns the characteristic matrix of A as a function of lambda, 
whose value is M = lambda * I - A.

maple('charpoly(A,expr)') returns the characteristic polynomial of A according to 
expr, whose value is det(expr * I - A).

maple('minpoly(A,x)') returns the minimal polynomial of A in the variable x. The minimal 
polynomial of A is the polynomial p(x) of least degree such that p(A) = 0.

maple('jordan(A)') returns the canonical Jordan form J of the matrix A. J has the eigenvalues 
of A on its diagonal.

maple('jordan(A,'P')') returns the matrix P whose columns are the eigenvectors of A and the 
canonical Jordan form J of the matrix A, such that evalm(P-1 & * A & * P) = J.

maple('JordanBlock(expr,n)') creates the Jordan block matrix with the elements of the 
main diagonal given by expr.

maple('Svd(A)') returns an array of the singular values of A.

maple('Svd(A,V,left)') returns an array with singular values of A and the array V with the 
singular values to the left.

maple('Svd(A,V,right)') returns an array with singular values of A and the array V with the 
singular values to the right.

condeig(A) returns a vector with the condition numbers for the eigenvalues of the matrix A.

[V,D,s] = condeig(A)equals [V,D] = eig(A) and s = condeig(A).

maple(Svd(A,U,V)) gives the square matrices U and V such that evalm(transpose(U) & * 
V) = D, where D is a matrix whose diagonal entries are the singular values of A. If A is square, all 
arrays are square and of the same size. If A is of dimension (n, p), then U is (n, n), V is (p, p) 
and D is (n, p).

definite(A,option) determines whether the matrix A is positive definite, positive  
semi-definite, negative definite, or negative semi-definite for the respective values of the option 
given by positive_def, positive_semidef, negative_def or negative_semidef. 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

161

Exercise 4-7

Given the matrix

A = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 0 0

0

0

cos( ) sin( )

sin( ) cos( )

a a
a a

calculate its eigenvalues, its characteristic polynomial, its Jordan canonical form, its minimal polynomial, 
its characteristic matrix and its singular values.

We start by defining the matrix A as a symbolic matrix:
 
>> A = sym ('[1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]')

A =
 
[ 1,     0,      0]
[ 0,cos(a),-sin(a)]
[ 0,sin(a), cos(a)]

>> eigensys(A)

ans =
 
[                             1]
[cos(a) + 1/2 * (- 4 * sin(a) ^ 2) ^(1/2)]
[cos(a) - 1/2 * (- 4 * sin(a) ^ 2) ^(1/2)]

>> pretty(simple(poly(A)))

                    3      2               2
                   x - 2 x cos (a) + x - x + 2 x cos (a) - 1

>> jordan(A)

ans =
 
[1, 0,                                         0]
[0, cos(a) + 1/2 * (- 4 * sin(a) ^ 2) ^ (1/2), 0]
[0, 0, cos(a) - 1/2 * (- 4 * sin(a) ^ 2) ^(1/2)]
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>> simple(Svd(A))

ans =
  
[                                                              1]
[1/2 * (4 * cos(a-comp(a)) + 2 * (- 2 + 2 * cos(2 * a-2 * conj(a))) ^(1/2)) ^(1/2)]
[1/2 * (4 * cos(a-comp(a)) - 2 * (- 2 + 2 * cos(2 * a-2 * conj(a))) ^(1/2)) ^(1/2)]

>> pretty(simple(sym(maple('minpoly(matrix [[1, 0, 0], [0, cos(a), - sin(a)],  
[0, sin(a), cos(a)]]), x)'))))

                                            2           2    3
                  -1 + 2 x cos (a) + x - 2 x cos (a) - x + x

>> pretty(simple(sym(maple('charmat(matrix([[1, 0, 0], [0, cos(a), -sin(a)],  
[0, sin(a), cos(a)]]), x)'))))

                      [x - 1        0             0     ]
                      [                                 ]
                      [0       x - cos(a)         sin(a)]
                      [                                 ]
                      [0         - sin(a) x     - cos(a)]
 

Exercise 4-8

Consider the symbolic fifth-order square matrix whose (i,j)th element is defined by Aij = 1 /(i+j-1/2). 
Compute its eigenvalues, eigenvectors, characteristic polynomial, minimum polynomial, characteristic 
matrix, and singular values. Also find the vector of the condition numbers of the eigenvalues and analyze 
whether the matrix is positive definite, negative definite, positive semi-definite or negative semi-definite.

MATLAB enables you to define this type of symbolic matrix in the general form:
 
>> A = sym(maple('matrix(5,5,(i,j)-> 1/(i+j-1/2))'))

A =
 
[2/3, 2/5, 2/7, 2/9, 2/11]
[2/5, 2/7, 2/9, 2/11, 2/13]
[2/7, 2/9, 2/11, 2/13, 2/15]
[2/9, 2/11, 2/13, 2/15, 2/17]
[2/11, 2/13, 2/15, 2/17, 2/19]
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>> [V,E] = eig(A)

V =
  
[-.1612e-1, -.6740e-2,  .3578,  2.482,  -288.7]
[    .2084,     .1400, -2.513, -15.01,   2298.]
[   -.7456,    -.6391,  3.482,  20.13,  -3755.]
[        1,         1,      1,      1,       1]
[   -.4499,    -.5011, -2.476, -8.914,   1903.]
 
E =
  
[  2/55*.4005e-4,              0,              0,              0,              0]
[              0, 2/55* .3991e-2,              0,              0,              0]
[              0,              0,    2/55* .1629,              0,              0]
[              0,              0,              0,    2/55* 3.420,              0]
[              0,              0,              0,              0,    2/55* 34.16] 

As we know, the eigenvectors are the columns of the matrix V, and the eigenvalues are the elements of the 
diagonal of the matrix E.
 
>> pretty(simple(poly(A)))

 5   10042  4   362807509088   3    268537284608    2
x  - ----- x  + ------------- x  - --------------- x
     7315      2228304933855       285965799844725
 
          22809860374528               34359738368
     + --------------------- x - ------------------------
       169975437532179654375     177624332221127738821875 

We can approximate this output as follows:
 
>> pretty(simple(vpa(poly(A))))

       5          4          3             2           -6             -12
      x  - 1.373 x  + .1628 x  - .0009391 x  + .1342 10   x - .1934 10 
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The singular values are calculated in the following way:
 
>> pretty(simple(Svd (A)))

                                 [        -5]
                                 [.1456 10  ]
                                 [          ]
                                 [.0001451  ]
                                 [          ]
                                 [.005923   ]
                                 [          ]
                                 [.1244     ]
                                 [          ]
                                 [1.242     ] 

The minimal polynomial and the characteristic matrix are calculated in the following way:
 
>> pretty(simple(sym(maple('minpoly(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)'))))

        34359738368             22809860374528          268537284608    2
- ------------------------ + --------------------- x - --------------- x
  177624332221127738821875   169975437532179654375     285965799844725
 
       362807509088   3   10042  4    5
     + ------------- x  - ----- x  + x
       2228304933855      7315

>> pretty(simple(sym(vpa(maple('minpoly(matrix(5,5,(i,j)->1/(i+j-1/2)),x)')))))

              -12           -6               2          3          4    5
     -.1934 10    + .1342 10   x - .0009391 x  + .1628 x  - 1.373 x  + x
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>> pretty(simple(sym(maple('charmat(matrix(5,5,(i,j)-> 1/(i+j-1/2)),x)'))))

           [                                                 -2   ]
           [x - 2/3     -2/5        -2/7        -2/9         --   ]
           [                                                 11   ]
           [                                                      ]
           [                                     -2          -2   ]
           [ -2/5      x - 2/7      -2/9         --          --   ]
           [                                     11          13   ]
           [                                                      ]
           [                                     -2          -2   ]
           [ -2/7       -2/9      x - 2/11       --          --   ]
           [                                     13          15   ]
           [                                                      ]
           [             -2          -2                      -2   ]
           [ -2/9        --          --       x - 2/15       --   ]
           [             11          13                      17   ]
           [                                                      ]
           [  -2         -2          -2          -2               ]
           [  --         --          --          --       x - 2/19]
           [  11         13          15          17               ] 

The vector of condition numbers of the eigenvalues is calculated as follows:
 
>> condeig(numeric(A))

ans =
 
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000 
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In a more complete way, can calculate the matrix V whose columns are the eigenvectors of A, the diagonal matrix 
D whose diagonal elements are the eigenvalues of A, and the vector S of condition numbers of the eigenvalues of 
A, by using the command:
 
>> [V,D,s] = condeig(numeric(A))

V =

    0.0102    0.0697    0.2756   -0.6523    0.7026
   -0.1430   -0.4815   -0.7052    0.1593    0.4744
    0.5396    0.6251   -0.2064    0.3790    0.3629
   -0.7526    0.2922    0.2523    0.4442    0.2954
    0.3490   -0.5359    0.5661    0.4563    0.2496
 
D =

    0.0000         0         0         0         0
         0    0.0001         0         0         0
         0         0    0.0059         0         0
         0         0         0    0.1244         0
         0         0         0         0    1.2423

s =

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000 

The matrix A is positive definite according to the command definite:
 
>> maple('definite(matrix(5,5,(i,j)-> 1/(i+j-1/2)),positive_def)')

ans =
 
true
 

4-5. Matrix Decomposition
MATLAB provides commands that allow you to decompose matrices as a product of special matrices in a number of 
different ways.

We have already seen how the command [U,S,V] = Svd(A)  returns a diagonal matrix S of singular values of A 
(ordered in decreasing order of magnitude), and orthogonal matrices U and V such that = U * S * V'.

We have also seen that you can get the Jordan decomposition of a square matrix A via the command  
[V,J] = jordan(A), which returns the canonical Jordan form J of A with the eigenvalues of A on its diagonal, and 
where the columns of V are the eigenvectors of A, so that V-1 * A * V = J.
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On the other hand, we have also seen that you can obtain the Schur decomposition of a square matrix A via 
the command [U,T] = schur(A), which returns an array T and an orthogonal matrix U such that A = U * T * U' 
and U'* U = eye(U). If A is complex, T is an upper triangular matrix with the eigenvalues of A on its diagonal. If A is 
real, the matrix T has real eigenvalues of A on its diagonal, and the corresponding complex eigenvalues correspond 
to diagonal 2 x 2 block submatrices of T. At the same time, we have also seen that a Hessenberg decomposition of 
a matrix A can be achieved through the command [H, P] = hess(A), which gives the orthogonal matrix P and 
Hessenberg matrix H, such that A= P * H * P' and P'* P = eye (size (P)).

In addition, MATLAB has other commands that also perform the decompositon of numerical (and sometimes 
symbolic) matrices. They include the following:

[L,U] = lu(A) decomposes the matrix A into the product A = L * U  
(the LU decomposition of A), where U is an upper triangular matrix and L a lower 
pseudotriangular matrix (triangulizable via a permutation).

[L,U,P] = lu(A) returns a lower triangular matrix L, an upper triangular matrix U, and 
a permutation matrix P such that P * A = L * U.

R = chol(A) returns the upper triangular matrix R such that R'* R = A (the Cholesky 
decomposition), if A is positive definite. If A is not positive definite, it returns an error.

[Q,R] = qr(A) returns the upper triangular matrix R of the same dimension as A, and 
the orthogonal matrix Q such that A = Q * R (the QR decomposition of the matrix A). 
This decomposition can be applied to non-square matrices.

[Q,R,E] = qr(A) returns the upper triangular matrix R of the same dimension as A, 
where E is a permutation matrix and Q an orthogonal matrix such that A * E = Q * R.

X = pinv(A) returns the matrix X (the Moore-Penrose pseudoinverse of A), of the same 
dimension as A' such that A * X * A = A and X * A * X = X, where A * X and X * A 
are hermitian.

In addition, the following commands allow the decomposition of both numeric and symbolic matrices. All of 
them must be preceded by the maple command.

LUdecomp(A,P='p',L='l',U='u',U1='u1',R='r') decomposes the matrix A into 
the product A = evalm(P&*L&*U) (the LU decomposition of A), where U is an upper 
triangular matrix and L a lower pseudotriangular matrix (that is, triangulizable via a 
permutation). In addition, U= evalm(U1&*R) with U upper triangular and R a reduced 
echelon form of A, so that A = evalm(P&*L&*U1*R).

cholesky(A) returns the lower triangular matrix R such that A= evalm(R&*R')  
(the Cholesky decomposition of A), provided A is positive definite.

QRdecomp(A,Q='q') returns the upper triangular matrix R of the same dimension as A, 
and the orthonormal matrix Q such that A = evalm(Q&*R) (the QR decomposition of A).

companion(poly,var) gives the matrix C associated with the given monic polynomial in 
the specified variable. If poly = a0 + a1x +... +anxn, then:

C(i,n)=-coeff(poly,var,i-1) i=1...n, C(i,i-1)=1 i=2...n,

C (i,j) = 0 for the rest of the elements in the array.

Frobenius(A) or ratform(A) returns the canonical Frobenius form F of the matrix A. F 
is a block diagonal matrix (F = diag(C1,C2,...,Cn)), where the blocks are associated 
with polynomials p1, p2,..., pk so that pi  divides pi-1 for i = 2... k.
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Frobenius(A,'P') returns the transformation matrix P and the canonical Frobenius 
form F of the matrix A, such that evalm(P-1 & * A & * P) = F.

smith(A,var) gives the diagonal matrix S corresponding to the Smith normal form of 
the square matrix A of polynomials in the variable var.

smith(A,var,U,V) gives the diagonal matrix S corresponding to the Smith normal form 
of the square matrix A of polynomials in the variable var. It also gives the matrices U 
and V such that S = evalm(U&*A&*V).

ismith(A,var) gives the diagonal matrix S corresponding to the integer Smith normal 
form of the square matrix A of polynomials in the variable var.

ismith(A,var,U,V) gives the diagonal matrix S corresponding to the integer Smith 
normal form of the square matrix A of polynomials in the variable var. It also gives the 
matrices U and V such that S = evalm(U&*A&*V).

hermite(A,var) computes the Hermite normal form of the square matrix A of 
polynomials in the variable var over the rational numbers.

hermite(A,var,U) computes the Hermite normal form of the square matrix A of 
polynomials in the variable var over the rational numbers. It also gives the matrix U 
such that H = evalm(U&*A).

ihermite(A,var) computes the Hermite normal form of the square matrix A of 
polynomials in the variable var over the integers.

ihermite(A,var,U) computes the Hermite normal form of the square matrix A of 
polynomials in the variable var over the integers. It gives also the matrix U such that  
H= evalm(U&*A).

gaussjord(A) gives an upper triangular matrix corresponding to the reduced row 
echelon form of the matrix A. This is used to facilitate the resolution of systems of linear 
equations whose coefficient matrix is the matrix A.

gaussjord(A,j) gives the row reduced echelon form of the matrix A terminating the 
elimination at column j.

gaussjord(A,r,d) gives the row reduced echelon form of the matrix A and 
assigns to the variable r the rank of A and the to the variable d the determinant of 
submatrix(A,1..r,1..r). This subarray is used for solving systems of linear equations 
whose coefficient matrix is A.

gausselim(A) performs Gaussian elimination on the matrix A. This is used to facilitate 
the solution of systems of linear equations whose coefficient matrix is the matrix A.

gausselim(A,j) performs Gaussian elimination on the matrix A terminating the 
elimination at the j-th column.

gausselim(A,r,d) performs Gaussian elimination on the matrix A and assigns  
to the variable r the rank of A, and to the variable d the determinant of  
submatrix(A, 1..r,1..r). This subarray is used for solving systems of linear equations 
whose coefficient matrix is A.
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backsub(A) gives the vector x such that A * x = V, where A is an upper triangular 
matrix which is usually obtained with gaussjord(A) or gausselim(A), and where the 
vector V vector is the last column of the matrix A.

backsub(A,V) gives the vector x such that A * x = V, where A is an upper triangular 
matrix which is usually obtained with gaussjord(A) or gausselim(A).

backsub(A,V,t) gives the vector x such that A * x = V, where A is an upper triangular 
matrix which is usually obtained with gaussjord(A) or gausselim(A) and where the 
parameter t is used for a possible family of parametric system solutions.

forwardsub(A,V) gives the vector x such that A * x = V, where A is a lower row reduced 
matrix, which is usually obtained via the LU decomposition.

forwardsub(A,V,t) gives the vector x such that A * x = V, where A is a lower row 
reduced matrix, which is usually obtained via the LU decomposition, and where the 
parameter t is used for a possible family of parametric system solutions.

forwardsub(A) gives the vector x such that A * x = V, where A is a lower row reduced 
matrix, which is usually obtained via the LU decomposition, and where the vector V is 
the last column of A.

forwardsub(A,B) gives the matrix X such that A * X = B, where A is a lower row reduced 
matrix, which is usually obtained via the LU decomposition, and B is a matrix with the 
correct dimension and rank .

geneqns(A,[x1,...,xn]) generates linear equations equated to zero, in the variables 
given, corresponding to the coefficients of the matrix A.

geneqns(A,[x1,...,xn],V) generates linear equations equated to the elements of the 
vector V, in the variables given, corresponding to the coefficients of the matrix A.

genmatrix([equation1,...,equationm],[x1,...,xn]) generates the matrix 
corresponding to the given linear equations with respect to the specified variables.

genmatrix([equation1,...,equationm],[x1,...,xn],flag) generates the matrix 
corresponding to the given linear equations with respect to the specified variables, 
using the last column of the matrix as the right-hand sides of the equations.

genmatrix([equation1,...,equationm],[x1,..,xn],name) generates the matrix 
corresponding to the given linear equations with respect to the specified variables, and 
assigns to name the vector defining the right-hand sides of the equations. 
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Exercise 4-9

Consider the 3 × 3 matrix A whose rows are the vectors (1,5,-2), (-7,3,1) and (2,2,-2). Perform the Schur, 
LU, QR, Cholesky, Hessenberg and singular value decompositions of A. Verify that the results are correct. 
Also find the pseudoinverse of A.

First, we find the Schur decomposition, checking that the result is correct:
 
>> A = [1,5,-2;-7,3,1;2,2,-2];
>> [U,T] = schur(A)

U =
 
   -0.0530   -0.8892   -0.4544
   -0.9910   -0.0093    0.1337
    0.1231   -0.4573    0.8807
 
T =
 
    2.4475   -5.7952   -4.6361
    5.7628    0.3689    2.4332
         0         0   -0.8163 

Now, we check that U * T * U' = A and that U * U' = eye(3):
 
>> [U * T * U', U * U']

ans =
 
    1.0000 5.0000 - 2.0000 1.0000 0.0000 0.0000
   -7.0000 3,0000   1.0000 0.0000 1.0000 0.0000
    2.0000 2.0000 - 2.0000 0.0000 0.0000 1.0000 

Now we find the LU, QR, Cholesky, Hessenberg and singular value decompositions, checking the results for  
each case:
 
>> [L,U,P] = lu(A)

L =
 
    1.0000         0         0
   -0.1429    1.0000         0
   -0.2857    0.5263    1.0000
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U =
 
   -7.0000    3.0000    1.0000
         0    5.4286   -1.8571
         0         0   -0.7368
P =
 
     0     1     0
     1     0     0
     0     0     1

>> [P * A, L * U]

    -7     3     1    -7     3     1
     5     1    -2     1     5    -2              we have that  P * A = L * U
     2     2    -2     2     2    -2

>> [Q, R, E] = qr(A)

Q =
 
   -0.1361   -0.8785   -0.4579
    0.9526   -0.2430    0.1831
   -0.2722   -0.4112    0.8700
 
R =
 
   -7.3485    1.6330    1.7691
         0   -5.9442    2.3366
         0         0   -0.6410
 
E =
 
     1     0     0
     0     1     0
     0     0     1

>> [A * E, Q * R]

ans =
 
    1.0000 5.0000 - 2.0000   1.0000 5.0000 - 2.0000
   -7.0000 3,0000   1.0000 - 7.0000 3,0000   1.0000
    2.0000 2.0000 - 2.0000   2.0000 2.0000 - 2.0000 
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Then, A * E = Q * R.
 
>> R = chol(A)

??? Error using ==> chol
Matrix must be positive definite. 

This returns an error message because the matrix is not positive definite.
 
>> [P,H] = hess(A)

P =
 
    1.0000         0         0
         0   -0.9615    0.2747
         0    0.2747    0.9615
 
H =
 
    1.0000   -5.3571   -0.5494
    7.2801    1.8302   -2.0943
         0   -3.0943   -0.8302

>> [P*H*P', P'*P]

ans =
 
    1.0000 5.0000 - 2.0000 1.0000 0      0
   -7.0000 3.0000   1.0000 0      1.0000 0
    2.0000 2.0000 - 2.0000 0      0      1.0000 

Then we solve for PHP' = A and P'P = I.
 
>> [U,S,V] = svd(A)

U =
   -0.1034 - 0.8623   0.4957
   -0.9808   0.0056 - 0.1949
    0.1653 - 0.5064 - 0.8463
 
S =
 
    7.8306 0       0
    0      6.2735  0
    0      0       0.5700
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V =
 
    0.9058 - 0.3051 0.2940
   -0.3996 - 0.8460 0.3530
   -0.1411   0.4372 0.8882

>> U * S * V'

ans =
 
    1.0000 5.0000 - 2.0000
   -7.0000 3.0000   1.0000              we see that  USV'= A
    2.0000 2.0000 - 2.0000 

Now, we calculate the pseudoinverse of A:
 
>> X = pinv(A)

X =
 
    0.2857 - 0.2143 - 0.3929
    0.4286 - 0.0714 - 0.4643
    0.7143 - 0.2857 - 1.3571

>> [A * X * A, X * A * X]

ans =
 
    1.0000 5.0000 - 2.0000 0.2857 - 0.2143 - 0.3929
   -7.0000 3,0000   1.0000 0.4286 - 0.0714 - 0.4643
    2.0000 2.0000 - 2.0000 0.7143 - 0.2857 - 1.3571 

Thus, it follows that AXA = A, XAX = X.
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Exercise 4-10

Consider the fifth-order square matrix whose (i,j)th element is defined by Aij = 1 /(i+j-1/2). Calculate 
its Jordan canonical form (verifying the result). Also find its LU, QR, Frobenius, Smith and Hermite 
decompositions, calculating the matrices involved and verifying that the results are correct.
 
>> A = sym(maple('matrix(5,5,(i,j)-> i+j-1/2)'))

A =
  
[  3/2,  5/2,  7/2,  9/2, 11/2]
[  5/2,  7/2,  9/2, 11/2, 13/2]
[  7/2,  9/2, 11/2, 13/2, 15/2]
[  9/2, 11/2, 13/2, 15/2, 17/2]
[ 11/2, 13/2, 15/2, 17/2, 19/2]

>> [V,J] = Jordan(A);
>> pretty(sym(V))

         [                 1/2                   1/2          22   19]
         [8/9 ,  - 9/170 17    + 3/10 ,  9/170 17    + 3/10 , -- , --]
         [                                                    45   45]
         [                                                           ]
         [-71             1/2                 1/2          -7        ]
         [--- ,  - 2/85 17    + 1/5 ,  2/85 17    + 1/5 ,  -- ,  -2/9]
         [90                                               18        ]
         [                                                           ]
         [-67           1/2                    1/2          -49   -14]
         [--- , 1/170 17    + 1/10 , - 1/170 17    + 1/10 , --- , ---]
         [90                                                90    45 ]
         [                                                           ]
         [                  1/2               1/2                    ]
         [3/10 ,     3/85 17    ,    - 3/85 17    ,    3/10 ,    -2/5]
         [                                                           ]
         [31     11    1/2              11    1/2            13    23]
         [-- ,   --- 17    - 1/10 ,   - --- 17    - 1/10 ,   -- ,  --]
         [90     170                    170                  90    45]
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>> pretty(sym(J))

            [0            0                    0            0    0]
            [                                                     ]
            [                   1/2                               ]
            [0    55/4 + 15/4 17               0            0    0]
            [                                                     ]
            [                                        1/2          ]
            [0            0            55/4 - 15/4 17       0    0]
            [                                                     ]
            [0            0                    0            0    0]
            [                                                     ]
            [0            0                    0            0    0]

>> pretty(simple(sym(symmul(symmul(V,J),inv(V)))))

                    [3/2     5/2     7/2     9/2     11/2]
                    [                                    ]
                    [5/2     7/2     9/2     11/2    13/2]
                    [                                    ]
                    [7/2     9/2     11/2    13/2    15/2]
                    [                                    ]
                    [9/2     11/2    13/2    15/2    17/2]
                    [                                    ]
                    [11/2    13/2    15/2    17/2    19/2] 

We have calculated the transformation matrix V and the diagonal matrix J. We have also verfied that V * J * V-1= A. 
Now we will calculate the LU decomposition of A and the matrices involved, checking the result. Because it is a 
symbolic matrix, we will use the maple command.
 
>> maple('A:=matrix(5,5,(i,j)-> i+j-1/2)');
>> pretty(sym(maple('LUdecomp(A,P=p,L=l,U=u,U1=u1,R=r)')))

                     [3/2    5/2     7/2     9/2    11/2]
                     [                                  ]
                     [ 0     -2/3    -4/3    -2     -8/3]
                     [                                  ]
                     [ 0      0       0       0      0  ]
                     [                                  ]
                     [ 0      0       0       0      0  ]
                     [                                  ]
                     [ 0      0       0       0      0  ]
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>> pretty(sym(maple('print(p,l)')))

              [1    0    0    0    0]  [ 1      0    0    0    0]
              [                     ]  [                        ]
              [0    1    0    0    0]  [5/3     1    0    0    0]
              [                     ]  [                        ]
              [0    0    1    0    0], [7/3     2    1    0    0]
              [                     ]  [                        ]
              [0    0    0    1    0]  [ 3      3    0    1    0]
              [                     ]  [                        ]
              [0    0    0    0    1]  [11/3    4    0    0    1]

>> pretty(sym(maple('print(u1,r)')))

           [3/2    5/2     0    0    0]  [1    0    -1    -2    -3]
           [                          ]  [                        ]
           [ 0     -2/3    0    0    0]  [0    1     2     3     4]
           [                          ]  [                        ]
           [ 0      0      1    0    0], [0    0     0     0     0]
           [                          ]  [                        ]
           [ 0      0      0    1    0]  [0    0     0     0     0]
           [                          ]  [                        ]
           [ 0      0      0    0    1]  [0    0     0     0     0]

>> pretty(sym(maple('evalm(p&*l&*u1&*r),evalm(p&*l&*u)')))

[3/2     5/2     7/2     9/2     11/2]  [3/2     5/2     7/2     9/2    11/2]
[                                    ]  [                                   ]
[5/2     7/2     9/2     11/2    13/2]  [5/2     7/2     9/2     11/2   13/2]
[                                    ]  [                                   ]
[7/2     9/2     11/2    13/2    15/2], [7/2     9/2     11/2    13/2   15/2]
[                                    ]  [                                   ]
[9/2     11/2    13/2    15/2    17/2]  [9/2     11/2    13/2    15/2   17/2]
[                                    ]  [                                   ]
[11/2    13/2    15/2    17/2    19/2]  [11/2    13/2    15/2    17/2   19/2] 
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We see that p * l * u1 * r = A and that p * l * u = A. We now calculate the QR decomposition of A and the matrices 
involved, checking the result.
 
>> pretty(sym(maple('print(R)')))

        [       1/2   71     1/2   85     1/2   33    1/2   113    1/2]
        [1/2 285    , --- 285    , --- 285    , -- 285    , --- 285   ]
        [             114          114          38          114       ]
        [                                                             ]
        [             1/2            1/2            1/2            1/2]
        [0 ,  2/57 570    ,  4/57 570    ,  2/19 570    ,  8/57 570   ]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]
        [                                                             ]
        [0 ,            0 ,            0 ,            0 ,            0]

>> pretty(sym(maple('print(q)')))

    [        1/2              1/2           1/2                            ]
    [1/95 285    ,    3/95 570    ,   1/5 10     ,         0    ,        0 ]
 
    [        1/2       11     1/2           1/2             1/2            ]
    [1/57 285    ,     --- 570    , - 1/5 10     ,   1/10 30    ,        0 ]
    [                  570                                                 ]
 
    [         1/2             1/2            1/2            1/2        1/2 ]
    [7/285 285   ,   2/285 570    , - 1/10 10    , - 2/15 30    ,  1/6 6   ]
 
    [        1/2              1/2                        1/2          1/2  ]
    [3/95 285    , - 1/190 570    ,         0    , - 1/30 30    ,- 1/3 6   ]
 
    [11     1/2               1/2            1/2          1/2           1/2]
    [--- 285     , - 1/57  570    ,   1/10 10    , 1/15 30      ,  1/6 6   ]
    [285                                                                   ]

>> pretty(sym(maple('evalm(q&*R)')))

                    [3/2     5/2     7/2     9/2     11/2]
                    [                                    ]
                    [5/2     7/2     9/2     11/2    13/2]
                    [                                    ]
                    [7/2     9/2     11/2    13/2    15/2]
                    [                                    ]
                    [9/2     11/2    13/2    15/2    17/2]
                    [                                    ]
                    [11/2    13/2    15/2    17/2    19/2] 
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We see that q * R = A. Next we will calculate the Smith decomposition of the matrix A and the matrices involved, 
checking the result.
 
>> pretty(sym(maple('smith(A,X,U,V)')))

                            [1    0    0    0    0]
                            [                     ]
                            [0    1    0    0    0]
                            [                     ]
                            [0    0    0    0    0]
                            [                     ]
                            [0    0    0    0    0]
                            [                     ]
                            [0    0    0    0    0]

>> pretty(sym(maple('print(U,V)')))

                                          [     -13                  ]
         [ 0    0     0     0      2/11]  [1    ---     1     2     3]
         [                             ]  [     11                   ]
         [ 0    0     0    11/2    -9/2]  [                          ]
         [                             ]  [0     1     -2    -3    -4]
         [-1    2    -1     0       0  ], [                          ]
         [                             ]  [0     0      1     0     0]
         [ 0    1    -2     1       0  ]  [                          ]
         [                             ]  [0     0      0     1     0]
         [ 0    0     1     -2      1  ]  [                          ]
                                          [0     0      0     0     1]

>> pretty(sym(maple('evalm(U&*A&*V)')))

                            [1    0    0    0    0]
                            [                     ]
                            [0    1    0    0    0]
                            [                     ]
                            [0    0    0    0    0]
                            [                     ]
                            [0    0    0    0    0]
                            [                     ]
                            [0    0    0    0    0] 

We see that U * A * V = Smith matrix. Next we will calculate the Hermite decomposition of A and the 
matrices involved, verifying the result.
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>> pretty(sym(maple('H:=hermite(A,x,V); V:=evalm(V)')))
>> pretty(sym(maple('print(H,V)')))

           [1    0    -1    -2    -3]  [-7/2    5/2     0    0    0]
           [                        ]  [                           ]
           [0    1     2     3     4]  [5/2     -3/2    0    0    0]
           [                        ]  [                           ]
           [0    0     0     0     0], [ 2       -4     2    0    0]
           [                        ]  [                           ]
           [0    0     0     0     0]  [ 4       -6     0    2    0]
           [                        ]  [                           ]
           [0    0     0     0     0]  [ 6       -8     0    0    2]

>> pretty(sym(maple('evalm(V&*A)')))

                          [1    0    -1    -2    -3]
                          [                        ]
                          [0    1     2     3     4]
                          [                        ]
                          [0    0     0     0     0]
                          [                        ]
                          [0    0     0     0     0]
                          [                        ]
                          [0    0     0     0     0] 

Thus we see that V * A = H. Finally, we will calculate the Frobenius decomposition of A, checking the result.
 
>> pretty(sym(maple('F:=frobenius(A,P); P:=evalm(P)')))
>> pretty(sym(maple('print(F,P)')))

                                  [ 67                       22      19 ]
                                  [ --     3/2     285/4     --      -- ]
                                  [ 45                       45      45 ]
                                  [                                     ]
      [0    0     0      0    0]  [ -7                       -7         ]
      [                        ]  [ --     5/2     355/4     --     -2/9]
      [1    0     50     0    0]  [ 18                       18         ]
      [                        ]  [                                     ]
      [0    1    55/2    0    0], [-49                      -49     -14 ]
      [                        ]  [---     7/2     425/4    ---     --- ]
      [0    0     0      0    0]  [90                       90      45  ]
      [                        ]  [                                     ]
      [0    0     0      0    0]  [3/10    9/2     495/4    3/10    -2/5]
                                  [                                     ]
                                  [ 13                       13      23 ]
                                  [ --     11/2    565/4     --      -- ]
                                  [ 90                       90      45 ]
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>> pretty(sym(maple('evalm(P^(-1)&*A&*P)')))

                          [0    0     0      0    0]
                          [                        ]
                          [1    0     50     0    0]
                          [                        ]
                          [0    1    55/2    0    0]
                          [                        ]
                          [0    0     0      0    0]
                          [                        ]
                          [0    0     0      0    0] 

Thus we see that P- 1* A * P = F.

Exercise 4-11

Consider the 3 x 3 matrix A whose rows are the vectors (1,5,-2),  (-7,3,1) and (2,2,-2). Let V be the vector 
of ones and solve the system L * x = V based on the LU decomposition. Solve the system G * x = V by 
performing Gaussian elimination on A. Solve the system J * x = V by transforming A into its Jordan 
canonical form. Represent the matrix system in the form of equations, and perform the Hermite and Smith 
decompositions for the integer matrix A.

First, we define the matrix A and vector V using maple commands as follows:
 
>> maple ('A: = matrix(3,3,[1,5,-2,-7,3,1,2,2,-2]);) V: = array([1,1,1])');
 
Then we find an LU decomposition, solving the system A * x = V using the command backsub.
 
>> pretty(sym(maple('L:=LUdecomp(A)')))
>> pretty(sym(maple('backsub(L,V)')))

                             [253    -233    -19]
                             [---    ----    ---]
                             [532    532     14 ] 

Thus we have solved the system L * x = V, which can be expressed in the form of equations using the command 
geneqns as follows:
 
>> pretty(sym(maple('geneqns(L,[x1,x2,x3],V)')))

                                                        14
            {x1 + 5 x2 - 2 x3 = 1, 38 x2 - 13 x3 = 1, - -- x3 = 1}
                                                        19 
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Now, we solve the system G * x = V, transforming A via Gaussian elimination to G.
 
>> pretty(sym(maple('G:=gausselim(A)')))
>> pretty(sym(maple('backsub(G,V)')))

                              [79    -11        ]
                              [--    ---    -2/7]
                              [56    56         ] 

The system of equations is found by:
 
>> pretty(sym(maple('geneqns(G,[x1,x2,x3],V)')))

            {x 1 + 5 x 2 - 2 x 3 = 1, 8 x 2 + 2 x 3 = 1, - 7/2 x 3 = 1} 

Now, we need to solve the system J * x = V, transforming A to its canonical Jordan form and then using the 
command forwardsub.
 
>> pretty(sym(maple('J:=gaussjord(A)')))
>> pretty(sym(maple('forwardsub(J,V)')))

                                 [1 1 1] 

Finally, we find the Smith and Hermite decompositions of A.
 
>> pretty(sym(maple('ihermite(A,x)')))

                                [1    1     6]
                                [            ]
                                [0    2     3]
                                [            ]
                                [0    0    14]

>> pretty(sym(maple('ismith(A)')))

                                [1    0     0]
                                [            ]
                                [0    1     0]
                                [            ]
                                [0    0    28]
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4-6. Similar Matrices and Diagonalization
Two matrices, A and B, of dimensions (M × N) are equivalent if there exist invertible U and V such that A = UBV.  
The MATLAB command [U, S, V] = svd (A) calculates a diagonal matrix S, which is equivalent to A.

Two square matrices A and B of order n are said to be congruent if there is an invertible matrix P such that  
A = PBPt.

The MATLAB command [U, T] = schur(A) calculates an array T which is congruent with A. Congruence implies 
equivalence, and two congruent matrices must always have the same rank.

Two square matrices of order n, A and B, are similar if there is an invertible matrix P, called the transformation 
matrix, such that A = PBP-1.

Two similar matrices are equivalent.
A matrix A is diagonalizable if it is similar to a diagonal matrix D, that is, if there is an invertible matrix P such that 

A = PDP- 1.
The process of calculating the diagonal matrix D and the matrix P is known as diagonalization.
Given a real square matrix A, if all the eigenvalues of A are real and distinct, then A is diagonalizable. The 

diagonal matrix D will have the eigenvalues of A as its diagonal elements.
The matrix P consists of columns that are the eigenvectors of A corresponding to the eigenvalues appearing on 

the diagonal of D.
If an n×n matrix A has eigenvalues r with multiplicity greater than 1, then A is diagonalizable if, and only if, the 

kernel of the matrix A - r * I
n
 has dimension equal to the degree of multiplicity of the eigenvalue r.

The MATLAB command [V,J] = jordan(A) diagonalizes the matrix A, returning the transformation matrix V 
and the diagonal matrix J.

Exercise 4-12

Diagonalize the symmetric matrix whose rows are the vectors:

(3, - 1, 0), (- 1, 2 - 1), (0, - 1, 3)

Find the transformation matrix V and the diagonal matrix J, check the result, and verify that the 
eigenvalues of the initial matrix are the elements of the diagonal of J.

We calculate the diagonal matrix J of A, which will have the eigenvalues of A on its diagonal, and the 
transformation matrix V. To do this, we use the command [V,J] = jordan(A):
 
 >> A = [3, 0, - 1, - 1, 2, - 1; 0 - 1, 3]

A =
 
     3 -1  0
    -1 -2 -1
     0 -3 -1
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>> [V,J] = jordan(A)

V =
 
[1/6, 1/2, 1/3]
[1/3, 0,  -1/3]
[1/6,-1/2, 1/3]
 
J =
 
[1, 0, 0]
[0, 3, 0]
[0, 0, 4] 

We now show that the diagonal matrix J has the eigenvalues of A on its diagonal:
 
>> eigensys(A)

ans =
 
[1]
[3]
[4] 

The matrices A and J are similar, because we have V-1 * A * V = J :
 
>> symmul(symmul(inv(V),A),V)

ans =

[1, 0, 0]
[0, 3, 0]
[0, 0, 4]

 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4 ■ Symbolic Matrix Algebra

184

Exercise 4-13

Find a diagonal matrix similar to each of the following matrices:

A B=
-

-
-
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-
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0

0

0

0 1

1 0

r q
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a a
,

sin( )

cos( )

sin( ) cos( ) 00
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ê
ê
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û
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ú
ú

=
-é

ë
ê

ù

û
ú,

cos( ) sin( )

sin( ) cos( )
.C

a a
a a

Find the transformation matrices and verify the results. Find the characteristic polynomial and the 
minimal polynomial for each of the three matrices.
 
>> A = sym('[0,-r,q;r,0,-p;-q,p,0]');
>> [V,J] = jordan(A)

V =
 
[1 /(q^2+r^2+p^2) * p ^ 1/2, 2, 1/2 /(q^2+r^2+p^2) *(q^2+r^2) /(q^2+r^2+p^2) *(q^2+r^2)]
[1 /(q^2+r^2+p^2) * q * p, 1/2 * i * (i * *(q^2+r^2+p^2) ^(1/2) p * q+r * p ^ 2 + r *  
q ^ 2 + r ^ 3) /(q^2+r^2+p^2) ^(3/2), 1/2 * i * (i * *(q^2+r^2+p^2) ^(1/2) p * q-r *  
p ^ 2-r * q ^ 2-r ^ 3) /(q^2+r^2+p^2) ^(3/2)]
[1 /(q^2+r^2+p^2) * r * p, 1/2 * i * (i * p *(q^2+r^2+p^2) ^(1/2) * r-p ^ 2 * q-q ^ 3-q * r ^ 2) 
/(q^2+r^2+p^2) ^(3/2), 1/2 * i * (i * p *(q^2+r^2+p^2) ^(1/2) * r + p ^ 2 * q + q ^ 3 +  
q * r ^ 2) /(q^2+r^2+p^2) ^(3/2)]
 
J =
 
[0,                                 0,                                    0]
[0,            -(-q^2-r^2-p^2) ^(1/2),                                    0]
[0,                                 0,          (-q ^ 2-r ^ 2 p ^ 2) ^(1/2)] 

Thus we have found the diagonal matrix J, similar to the matrix A, and the transformation matrix V. Now, we 
analyze the matrix B:
 
>> B = sym ('[0, 1, -sin(a); - 1, 0, cos (a); -sin(a), cos(a), 0]')
>> J = simple(jordan(B))

J =
 
[0, 0, 0]
[0, 0, 0]
[0, 0, 0] 
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We see that the matrix B has a single eigenvalue zero and its multiplicity is 3. In addition, the kernel of  
B - 0 * eye(3) = B has dimension less than three, as the determinant of B is zero. In particular, it has dimension 
one (as we see by calculating a basis with the command nullspace(B)). As the multiplicity and the dimension of 
the kernel differ, we conclude that the matrix B is not diagonalizable:
 
>> null(B)

ans =
 
[cos(a)]
[sin(a)]
[     1] 

We have calculated a basis of the kernel of B, which is formed by a single vector. It follows that the dimension of 
the kernel of B is 1:
 
>> det (B)

ans =
 
0 

We now analyze the matrix C :
 
>> C = sym ('[cos(a) – sin(a); sin(a), cos(a)]');
>> [V,J] = jordan(C)

V =
 
[1/2, 1/2]
[(-1/2*4^(1/2)/abs(sin(a))/(-1-signum(-sin(a)^2)-i+i*signum(-sin(a)^2))*sin(a),  
1/2*4^(1/2)/abs(sin(a))/(-1-signum(-sin(a)^2)-i+i*signum(-sin(a)^2))*sin(a)]
 
J =
 
[cos(a) + 1/2 * (- 4 * sin(a) ^ 2) ^ (1/2), 0]
[0, cos(a) - 1/2 * (- 4 * sin(a) ^ 2) ^(1/2)] 

We can try to simplify the Jordan matrix J.
 
>> simple(J)

ans =
 
[exp(i*a),          0]
[0,        1/exp(i*a)] 
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We already have the diagonal matrix J similar to the matrix C and the transformation matrix V. We now calculate 
the characteristic and minimal polynomials of the three matrices:
 
>> pretty(poly(A))

                              3      2    2      2
                            x  + x p  + r  x + q  x

>> pretty(sym(maple('minpoly(array([[0,-r,q],[r,0,-p],[-q,p,0]]),x)')))

                               2    2    2        3
                             (r  + q  + p  ) x + x

>> pretty(simple(sym(poly(B))))

                                         3
                                       x

>> pretty(simple(sym(maple('minpoly(array([[0,1,-sin(a)],[-1,0,cos(a)],   
[-sin(a),cos(a),0]]), x)')))

                                         3
                                       x

>> pretty(simple(sym(poly(C))))

                                2
                              x  - 2 x cos(a) + 1

>> pretty(simple(sym(maple('minpoly(array([[cos(a),-sin(a)],[sin(a),cos(a)]]),x)'))))

                                2
                              x - 2 x cos (a) + 1
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4-7. Sparse Matrices
A matrix is called sparse if it has sufficiently many zero elements that one can take advantage of. Sparse matrix 
algorithms do not store null elements in memory, so when working on matrix processing with sparse matrices one 
gains time and efficiency. There are specialized commands that can be used to deal with sparse matrices.  
Some ofthese commands are listed below.

S = sparse(i,j,s,m,n,nzmax), i = vector, j = vector, s = vector. Creates a 
sparse matrix S of dimension m×n with space for nzmax non-zero elements given by s. 
The vector i contains the i-input components of the non-null elements and the vector 
j contains the corresponding j-input components.

S=sparse(i,j,s,m,n) creates the sparse matrix S  using nzmax=length(s).

S = sparse(i,j,s) creates a sparse matrix S with m = max (i) and n = max (j).

S = sparse(A) converts the matrix A into sparse form.

A = full(S) converts the sparse matrix S into full matrix form A.

S = spconvert(D) converts an external ASCII file read with name D into a  
sparse matrix S.

(i,j) = find(A) returns the row and column indices of the non-zero entries of the 
matrix A.

B = spdiags(A,d) builds a sparse matrix by extracting the diagonal elements of A 
specified by the vector d.

S = speye(m,n) creates the sparse m×n matrix with ones on the main diagonal.

S = speye(n) creates the sparse square identity matrix of order n.

R = sprandn(S) generates a random sparse matrix with non-zero values normally 
distributed in (0,1) with the same structure as the sparse matrix S.

R = sprandsym(S) generates a sparse random symmetric matrix with non-zero entries 
normally distributed in (0,1) whose lower diagonal triangle has the same structure as S.

r = sprank(S) gives the structural rank of the sparse matrix S.

n = nnz(S) gives the number of non-zero elements in the sparse matrix S.

k = nzmax(S) returns the amount of storage occupied by the non-zero elements in the 
sparse matrix S. If S is a full matrix then nzmax(S) = prod(size(S)).

s=spalloc(m,n,nzmax) creates space in memory for a sparse matrix of dimension m×n.

R = spones(S) replaces the zero entries of the sparse matrix S with ones.

n = condest(S) computes a lower bound for the 1-norm condition number of a square 
matrix S.

m = normest(S) returns an estimate of the 2-norm of the matrix S.

issparse(A) returns 1 if the matrix A is sparse, and 0 otherwise.
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Here are some examples:
 
>> sparse([1,1,2,2,3,4],[4,2,3,1,2,3],[-7,12,25,1,-6,8],4,4,10)

ans =
 
   (2,1)        1
   (1,2)       12
   (3,2)       -6
   (2,3)       25
   (4,3)        8
   (1,4)       -7 

Now, we convert this sparse matrix into complete form:
 
>> full(ans)

ans =
 
     0    12     0    -7
     1     0    25     0
     0    -6     0     0
     0     0     8     0 

Next, we define a sparse matrix whose full form is a diagonal matrix:
 
sparse(1:5,1:5,-6)

ans =
 
   (1,1)       -6
   (2,2)       -6
   (3,3)       -6
   (4,4)       -6
   (5,5)       -6

>> full(ans)

ans =
 
    -6     0     0     0     0
     0    -6     0     0     0
     0     0    -6     0     0
     0     0     0    -6     0
     0     0     0     0    -6
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4-8. Special Numeric and Symbolic Matrices
MATLAB provides commands to define certain special types of matrices. These include the following:

H = hadamard(n) returns the Hadamard matrix of order n, a matrix with values 1 or - 1 
such that H' * H = n * eye(n).

Hankel(V) returns the square Hankel matrix whose first column is the vector V and 
whose elements are zero below the first anti-diagonal. The matrix hankel(C,R) has first 
column vector C and last row vector R.

Hilb(n) returns the Hilbert matrix of order n, a matrix whose ij-th element is  1 /(i+j-1).

invhilb(n) returns the inverse of the Hilbert matrix of order n.

magic(n) returns a magic square of order n. Its elements are integers from 1 to n2 with 
equal sums of rows and columns.

pascal(n) returns the Pascal matrix of order n (symmetric, positive definite with 
integer entries taken from Pascal’s triangle).

Rosser returns the Rosser matrix, an 8 × 8 matrix with a double eigenvalue, three 
nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue 
and a small non-zero eigenvalue.

toeplitz(C,R) returns a Toeplitz matrix (not symmetric, with the vector C in the first 
column and R as the first row vector).

vander(C) returns a Vandermonde matrix A whose penultimate column is the vector C. 
In addition,  A(:,j) = C^(n-j).

wilkinson(n) returns the Wilkinson matrix of order n (symmetric tridiagonal with 
pairs of eigenvalues close but not the same).

compan(P) returns the corresponding companion matrix whose first row is  
-P(2:n)/P(1), where  P  is a vector of polynomial coefficients.

maple('hadamard(n)') returns the Hadamard matrix of order n, a matrix with values 1 
or - 1 such that H'* H = n * eye(n).

maple('hilbert(n)') returns the Hilbert matrix of order n, a matrix whose ij-th 
element is 1 /(i+j-1).

maple('hilbert(n,exp)') returns the matrix of order n with ij-th entry equal to  
1 /(i+j-exp).

maple('bezout(poly1,poly2,x)') constructs the Bézout matrix of the given 
polynomials in x, with dimension max(m,n), where m = degree(poly1) and  
n = degree(poly2). The determinant of this matrix is the resultant of the two 
polynomials (resultant(poly1,poly2,x)).

maple('sylvester(p1,p2,x)') constructs the Sylvester matrix of the given polynomials 
in x, with dimension n+m, where m = degree(p1) and n =degree(p2). The determinant 
of this matrix is the resultant of the two polynomials.
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maple('fibonacci(n)') returns the n th Fibonacci matrix F(n) whose size is the sum of 
the dimensions of F(n-1) and F(n-2).

maple('toeplitz([ex1,...,exn])') returns the symmetric Toeplitz matrix whose 
elements are the specified expressions.

maple('vandermonde([expr1,..., exprn])') returns the Vandermonde matrix whose 
(i,j)th element is exprij-1.

maple('wronskian(V,x)') returns the Wronskian matrix of the vector V =(f1,...,fn) 
with respect to the variable x. The ij-th element is diff(fj, x$(i-1)).

maple('jacobian([expr1,...,exprm],[x1,..., xn])') returns the m×n Jacobian matrix 
with ij-th element diff(expri,xj).

maple('hessian(exp,[x1,...,xn])') returns the m×n Hessian matrix with ij-th element 
diff(exp,xi,xj). 

Exercise 4-14

Find the eigenvalues of the Wilkinson matrix of order 8, a magic square of order 8 and the Rosser matrix.
 
>> [eig(wilkinson(8)), eig(rosser), eig(magic(8))]

ans =
 
  1.0e+003 *
 
   0.0042             1.0000             0.2600
   0.0043             1.0000             0.0518
   0.0028             1.0200            -0.0518
   0.0026             1.0200             0.0000
   0.0017             1.0199             0.0000 + 0.0000i
   0.0011             0.0001             0.0000 - 0.0000i
   0.0002             0.0000             0.0000 + 0.0000i
  -0.0010            -1.0200             0.0000 - 0.0000i 

Observe that the Wilkinson matrix has pairs of eigenvalues which are close, but not equal. The Rosser matrix has 
a double eigenvalue, three nearly equal eigenvalues, dominant eigenvalues of the opposite sign, a zero eigenvalue 
and a small non-zero eigenvalue.
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Exercise 4-15

Find the Smith and Hermite forms of the inverse of the Hilbert matrix of order 2 in the variable x. Also find 
the corresponding transformation matrices.
 
>> maple('with(linalg):H:= inverse(hilbert(2,x))');
>> pretty(simple(sym(maple('H'))))

          [            2                                           ]
          [   -(-3 + x)  (-2 + x)        (-3 + x) (-2 + x) (-4 + x)]
          [                                                        ]
          [                                          2             ]
          [(-3 + x) (-2 + x) (-4 + x)       -(-3 + x)  (-4 + x)    ]

>> maple ('B: = smith(H,x,U,V);)U: = eval (U); V: = eval (V)');
>> pretty(simple(sym(maple('B'))))

                     [-3 + x               0            ]
                     [                                  ]
                     [                     2            ]
                     [  0       (-2 + x) (x  - 7 x + 12)]

>> pretty(simple(sym(maple('U'))))

                    [       -1                  -1        ]
                    [                                     ]
                    [               2                    2]
                    [10 - 13/2 x + x     - 13/2 x + 9 + x ]

>> pretty(simple(sym(maple('V'))))

                             [- 7/2 + x    -4 + x]
                             [                   ]
                             [- 3/2 + x    -2 + x]
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>> maple('HM:=hermite(H,x,Q);Q:=evalm(Q)');
>> pretty(simple(sym(maple('HM'))))

                        [ 2                           ]
                        [x  - 5 x + 6          0      ]
                        [                             ]
                        [                 2           ]
                        [     0          x  - 7 x + 12]

>> pretty(simple(sym(maple('Q'))))

                              [-x + 3    -x + 2]
                              [                ]
                              [-x + 4    -x + 3]
 

Exercise 4-16

Confirm that the functions x, x2 and x3 are linearly independent.
 
>> maple('v:=[x,x^2,x^3]:w:=wronskian(v,x)');
>> pretty(simple(sym(maple('w'))))

                              [      2       3 ]
                              [x    x       x  ]
                              [                ]
                              [               2]
                              [1    2 x    3 x ]
                              [                ]
                              [0     2     6 x ]

>> pretty(simple(sym(maple('det(w)'))))

                                        3
                                     2 x 

Since the determinant of the Wronskian is non-zero, the functions are linearly independent.
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Exercise 4-17

Find the Jacobian matrix and the Jacobian determinant of the transformation:

x = eu sin (v), y = eu cos (v).
 
>> pretty(sym(maple('jacobian(vector([exp(u) * sin(v), exp(u) * cos(v)]), [u,v])')))

                       [exp(u) sin(v)    exp(u) cos(v) ]
                       [                               ]
                       [exp(u) cos(v)    -exp(u) sin(v)]

>> pretty(simple(sym(maple('det(")'))))

                                          2
                                   -exp(u)
 

Exercise 4-18

Find the Bézout and Sylvester matrices B and T for the functions p = a + bx + cx2 and q = d + ex + fx2. 
Verify that the determinants of B and T coincide with the resultant of p and q.
 
>> maple('p:=a+b*x+c*x^2:q:= d+e*x+f*x^2:B:=bezout(p, q, x);T:=sylvester(p, q, x)')
>> pretty(sym(maple('B')))

                           [d c - a f    d b - a e]
                           [                      ]
                           [e c - b f    d c - a f]

>> pretty(sym(maple('T')))

                              [c    b    a    0]
                              [                ]
                              [0    c    b    a]
                              [                ]
                              [f    e    d    0]
                              [                ]
                              [0    f    e    d]
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>> pretty(sym(maple('det(B)'))),pretty(sym(maple('det(T)'))),  
pretty(sym(maple('resultant(p,q,x)')))

         2  2                2  2                2        2
        d  c  - 2 d c a f + a  f  - d b e c + d b  f + a e  c - a e b f
  
         2  2                2  2                2        2
        d  c  - 2 d c a f + a  f  - d b e c + d b  f + a e  c - a e b f
  
         2  2                2  2                2        2
        d  c  - 2 d c a f + a  f  - d b e c + d b  f + a e  c - a e b f
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Chapter 5

Equations and Systems

MATLAB offers certain commands that allow you to solve equations and systems. Among them are the following:

solve('equation','x') solves the equation in the variable x.

syms x; solve(equ(x),x) solves the equation equ(x)in the variable x.

solve('eq1,eq2,...,eqn','x1,x2,...,xn') solves n simultaneous equations 
eq1,. . .,eqn (in the variables x1,. . ., xn).

syms x1 x2 ... xn; solve(eq1,eq2,...,eqn,x1,x2,...,xn) solves n simultaneous 
equations eq1,...,eqn (in the variables x1,..., xn).

X = linsolve(A,B) solves A * X = B for a square matrix A, where B and X are matrices.

x = nnls(A,b) solves A * x = b in the least-squares sense, where x is a vector (x³0).

x = lscov(A,b,V) gives  the vector x that minimizes (A * x-b)'* inv(V) *(A*x-b).

roots(V) gives the roots of the polynomial whose coefficients are the components of 
the vector V.

X = A\B solves the system A * X = B.

X = a/b solves the system X * A = B.

5-1. Special Commands
In addition, equations and systems can be solved using the following commands (all of them must be preceded by the 
maple command):

solve(equation,variable) solves the given equation in the specified variable.

solve(expression,variable) solves the equation expression = 0 in the given variable.

solve({expr1,..,exprn},{var1,..,varn}) solves the system given by the specified 
equations in the given variables.

solve(equation) solves the equation for all of its variables.

solve(expr1,...,exprn) solves the specified system of equations for all possible variables.

solve(inequality,variable) solves the inequality for the specified variable.

solve(s,var) solves the set of equations s for the specified variable.
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LHS(equation) returns the left-hand side of the equation.

LHS(inequality) returns the left-hand side of the inequality.

RHS(equation) returns the right-hand side of the equation.

RHS(inequality) returns the right-hand side of the inequality.

readlib(isolate): isolate(equation,expression) isolates the specified expression in 
the given equation.

readlib(isolate): isolate(expr1,expr2) isolates the subexpression expr2 in the 
equation expr1 = 0.

reablib(isolate): isolate(equation,expression,n) isolates the specified expression 
in the given equation by running at least n transformations or steps in the calculations.

testeq(expr1=expr2) or testeq(expr1,expr2) tests whether the expressions are 
equivalent. The purpose may be to eliminate redundant equations in a system.

eliminate(setequ,setvar) eliminates the given set of variables in the specified set of 
equations.

isolve(equation) returns the set of integer solutions of the given equation for all of its 
variables.

isolve(expression) returns the set of integer solutions of the equation expression = 0 
for all of its variables.

isolve({equ1,..,equn}) gives the set of integer solutions of the specified system of 
equations for all variables.

isolve(equation,variable) returns the integer solutions of the specified equation in 
the given variable.

isolve({equ1,...,equn},{var1,...,varn}) finds the integer solutions of the specified 
system in the given variables.

isolve(equation,{var1,...,varn}) finds the set of integer solutions of the given 
equation for the specified variables.

fsolve(equation,variable) solves the equation for the given variable, by Newton’s 
method.

fsolve(expression,variable) solves the equation expression = 0 for the given 
variable, by Newton’s method.

fsolve({equ1,...,equn},{var1,...,varn}) solves the system of equations for the 
variables given, by numerical methods (the number of equations is equal to the 
number of unknowns).

fsolve(expr) or fsolve({equ1,...,equn}) solves the equation expr = 0 or the system 
of equations in the given variables by numerical methods.

fsolve(equation,var,a..b) solves the equation in the variable var by numerical 
methods, obtaining solutions in the interval [a,b].

fsolve({equ1,...,equn},{var1,...,varn},{var1=a1..B1,..., varn=an...BN}) finds 
real solutions of the system in the given variables that are in the specified intervals (by 
numerical methods).
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fsolve(equation,variable,complex) finds all the complex solutions of the given 
equation.

fsolve(equation,variable,'maxsols'=m) finds only the m least solutions of the 
equation.

fsolve(equation,variable,'fulldigits') ensures an optimum value of digits for 
computing the largest number of possible solutions of the given equation in the 
specified variable.

msolve(equation,m) solves the equation modulo m in all its variables.

msolve(expression,m) solves the equation expression = 0 modulo m in all its variables.

msolve({equ1,...,equn},m) solves the given system modulo m in all its variables.

msolve(equation,variable,m) or msolve(equation,{var1,...,varn},m) solves the 
equation modulo m in the variable or variables specified.

msolve({equ1,...,equn},{var1,...,varn},m) solves the given system modulo m in the 
specified variables.

RootOf(Equation,variable) represents the roots of the given equation in the variable 
given in the form of RootOf expressions. The solution of certain transcendental 
equations and systems are usually given in terms of RootOf expressions.

RootOf(expression,variable) presents the solutions of the equation expression = 0 in 
terms of RootOf expressions.

RootOf(equation) presents in the form of RootOf expressions the solutions of the given 
univariate equation.

allvalues(expr) gives all the possible values of the specified RootOf expression. This 
command uses solve to calculate the exact roots of the expression, and if this is not 
possible, uses fsolve to calculate the approximate roots.

allvalues(expr,d) ensures that identical RootOfs in the expression are only evaluated 
once, thus avoiding redundant calculations and increasing efficiency.

convert(ineq,equality) converts the given inequality to an equality by replacing the 
signs < or < = by =.

convert(equ,lessequal) converts the given equation or strict inequality into a  
non-strict inequality, by replacing < or = with < =.

convert(equ,lessthan) converts the equation or non-strict inequality into the 
corresponding strict inequality, replacing the symbols = or < = with the symbol <.

with(student):equate(list1,list2) creates a set of equations of the form  
(list1[1] = list2[1],...,list1[n] = list2[n]).

equate(list) creates set of equations of the form {list[1] = 0,..., list[n] = 0}.

equate(array1,array2) converts the two arrays to a set of equations.

equate(Table1,Table2) converts the two tables to a set of equations.

equate(expr1,expr2) converts the two expressions to the equation expr1 = expr2.
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Here are some examples. First, we solve an equation in exact and approximate form and check one of the 
solutions.
 
>> pretty(sym(maple('eq := x^4-5*x^2+6*x=2: solve(eq,x)')))

      1/2        1/2
-1 + 3   , -1 - 3   , 1, 1

>> pretty(sym(maple('sols := [solve(eq,x)] : evalf(sols,10)')))

[.732050808    -2.732050808    1.    1.]

>> pretty(simple(sym(maple('subs(x=sols[1],eq )'))))

2 = 2

 
The previous equation also can be solved as follows:

 
>> solve('x^4-5*x^2+6*x=2')

ans =
  
[- 1 + 3 ^(1/2)]
[^(1/2) - 1-3]
[          1]
[          1]

 
Another way to solve the same equation would be as follows:

 
>> syms x
>> solve(x^4-5*x^2+6*x-2)

ans =
  
[- 1 + 3 ^(1/2)]
[^(1/2) - 1-3]
[          1]
[          1]
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Next we solve a system and check its solutions.
 
>> maple('eqns:= {u+v+w=1, 3*u+v=3, u-2*v-w=0}:sols:= solve(eqns)')

ans =
sols := {w = -2/5, v = 3/5, u = 4/5}

>> maple('subs(sols,eqns)')

ans =
{1 = 1, 0 = 0, 3 = 3}

 
The previous system can also be solved in the following way:

 
>> syms u v w
>> [u,v,w] = solve(u+v+w-1, 3*u+v-3, u-2*v-w, u, v, w)

u =
  
4/5
 
v =
  
3/5
  
w =
  
-2/5

 
The same system can also be solved in another way:

 
>> [u,v,w] = solve('u+v+w=1', '3*u+v=3', 'u-2*v-w=0', 'u','v','w')

u =
  
4/5
  
 v =
  
3/5
  
 w =
  
-2/5
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Finally, we can solve the system in the following way:
 
>> [u,v,w] = solve('u+v+w=1, 3*u+v=3, u-2*v-w=0', 'u,v,w')

u =
  
4/5
  
 v =
  
3/5
  
 w =
  
-2/5

 
Next we solve some systems, subject to certain conditions.

 
>> pretty(sym(maple('solve({x^2*y^2=0, x-y=1})')))

   {x = 0, y = - 1}, {x = 0, y = - 1}, {x = 1, y = 0}, {x = 1, y = 0}

>> pretty(sym(maple('solve({x^2*y^2=0, x-y=1, x<>0})')))

                    {x = 1, y = 0}, {x = 1, y = 0}

>> pretty(sym(maple('solve({x^2*y^2-b, x^2-y^2-a},{x,y})')))
>> pretty(sym(maple('solve({x^2*y^2-b, x^2-y^2-a},{x,y})')))

{y = 1/2 %4, x = 1/2 %3}, {y = 1/2 %4, x = - 1/2 %3},
 
    {y = - 1/2 %4, x = 1/2 %3}, {y = - 1/2 %4, x = - 1/2 %3},
 
    {y = 1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = 1/2 %1},
 
    {y = - 1/2 %1, x = 1/2 %2}, {x = - 1/2 %2, y = - 1/2 %1}
 
                  2       1/2 1/2
%1 := (-2 a - 2 (a  + 4 b)   )
 
                 2       1/2 1/2
%2 := (2 a - 2 (a  + 4 b)   )
 
                 2       1/2 1/2
%3 := (2 a + 2 (a  + 4 b)   )
 
                  2       1/2 1/2
%4 := (-2 a + 2 (a  + 4 b)   )
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Next we find the integer solutions of an equation:
 
>> pretty(sym(maple('isolve(3*x-4*y=7)')))

                    {y = 2 + 3 _N1, x = 5 + 4 _N1}

 
Now we solve system and an equation approximately.

 
>> maple('f: = sin(x + y) - exp(x) * y = 0: ' g: = x ^ 2 - y = 2:');
>> pretty(sym(maple('fsolve({f,g},{x,y},{x=-1..1,y=-2..0})')))

                 {y = -1.552838698, x = -.6687012050}

>> maple('f:=10-(ln(v+(v^2-1)^(1/2))-ln(3+(3^2-1)^(1/2)))');
>> pretty(sym(maple('fsolve(f,v)')))

                             64189.82535

>> pretty(sym(maple('fsolve(f,v,1..infinity)')))

                            64189.82535

 
In the two following equations, instead of solving for x, we solve for sin(x) in the first and x2 in the second.

 
>> pretty(sym(maple('readlib(isolate):isolate(4*x*sin(x)=3,sin(x))')))

                           sin(x) = 3/4 x

>> pretty(sym(maple('isolate(x^2-3*x-5,x^2)')))

                              2
                             x = 3 x + 5

 
Now we test whether two expressions are not equal but probabilistically equivalent.

 
>> maple('a: = (sin(x) ^ 2 - cos(x) * tan(x)) * (sin(x) ^ 2 + cos(x) * tan(x)) ^ 2:)
          b: = 1/4 * sin(2*x) ^ 2 - 1/2 * sin(2*x) * cos(x) - 2 * cos(x) ^ 2
               (+ 1/2 * sin(2*x) * cos(x) ^ 3 + 3 * cos(x) ^ 4 - cos(x) ^ 6:');
>> pretty(sym(maple('evalb(a = b)')))

                               false
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>> pretty(sym(maple('evalb(expand(a) = expand(b))')))

                                false

>> pretty(sym(maple('testeq(a = b)')))

                                true

 
In the following example, we eliminate a variable from a system:

 
>> pretty(sym(maple('readlib(eliminate):eliminate({x^2+y^2-1,x^3-y^2*x+x*y-3},x)')))

              3             6      4      5      3      2
 [{x = - ------------}, {4 y  - 7 y  - 4 y  + 6 y  + 4 y  - 2 y + 8}]
            2
         2 y  - y – 1

Exercise 5-1

Find solutions to the following equations:

sin(x) cos(x) = 0, sin(x) = acos(x), ax ^ 2 + bx + c = 0 and sin(x) + cos(x) = sqrt(3) / 2
 
>> solve('sin(x) * cos(x) = 0')

ans =
  
[       0]
[1/2 * pi]
[-1/2 * pi]

>> solve('sin(x) = a * cos(x)','x')

ans =
 
atan (a)

>> solve('a*x^2+b*x+c=0','x')

ans =
 
[1/2/a * (-b + (b ^ 2-4 * a * c) ^(1/2))]
[1/2/a * (-b-(b^2-4*a*c) ^(1/2))]
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>> solve('sin(x)+cos(x)=sqrt(3)/2')

ans =
 
[1/2 * 3 ^(1/2)]
[1/2 * 3 ^(1/2)]

Exercise 5-2

Find at least two solutions for each of the following trigonometric and exponential equations:

x sin (x) = 1/2 and 2x ^ 3 = 4 (23 x)

Initially, we use the fsolve command:
 
>> maple ('fsolve(x * sin(x) = 1/2)')

ans =
-.74084095509549062101093540994313

>> maple('fsolve(2^(x^3)=4*2^(3*x))')

ans =
2.0000000000000000000000000000000

 
For both equations we get a single solution. For more solutions, we can plot a graphical representation of the 
functions (see Figure 5-1) to determine the approximate intervals where possible solutions fall:
 
>> fplot('[x * sin (x) - 1/2.0]', [0, 4 * pi])
 

Figure 5-1.  
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We can see that there is a solution between 0 and 2, another between 2 and 4, another between 4 and 8, and so 
on. We can calculate three of them as follows:
 
>> (('s1=maple('fsolve(x*sin(x)=1/2,x,0..2)')

s1 =
.7408409550954906

>> s2=maple('fsolve(x*sin(x)=1/2,x,2..4)')

s2 =
2.972585490382360

>> s3=maple('fsolve(x*sin(x)=1/2,x,4..8)')

S3 =
6.361859813361645

 
We repeat the process for the second equation, starting with the plotted graph (see Figure 5-2):
 
>> subplot(2,1,1)
>> fplot('[2^(x^3),4*2^(3*x)]',[-3,1,-1/4,3/2])
>> subplot(2,1,2)
>> fplot('[2^(x^3),4*2^(3*x)]',[1,3,100,400])
 

Figure 5-2.  
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Two areas where there are intersections for different values of the variables x and y have been represented on the 
same graph. There are possible solutions between –4 and 0, and between 0 and 3. We try to find these solutions:
 
>> maple('fsolve(2 ^(x^3) = 4 * 2 ^(3*x), x, -4.. 0)')

ans =
 

-1.00000000000

>> maple('fsolve(2^(x^3)=4*2^(3*x),x,0..3)')

ans =
 

2.00000000000

 
We see that x =-1 and x = 2 are exact solutions of the equation.

Exercise 5-3

Solve each of the two following logarithmic and surd equations:

x3/2 log(x) = x log(x3/2), sqrt[1-x]+sqrt[1+x] = a
 
>> maple('fsolve(x^(3/2)*log(x)=x*log(x)^(3/2))')

ans =
 
1.

 
We first generate the corresponding graphs (see Figure 5-3) to determine the intervals in which possible solutions 
are found. This reveals that x = 1 is the only real solution.
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>> fplot('[x^(3/2) * log(x), x * log(x^(3/2))]', [0,3,-1,6])
 

Now, let's solve the surd equation:
 
>> pretty(sym(solve('sqrt(1-x)+sqrt(1+x)=a','x')))

                                        2     1/2
                            [- 1/2 a (-a  + 4)   ]
                            [                    ]
                            [          2     1/2 ]
                            [ 1/2 a (-a  + 4)    ]

 

Exercise 5-4

Solve the following two equations:

x5 + 16 x4+ 7 x3+ 17 x2+ 11 x + 5 = 0 and x4 - 1 = 0

In addition, solve the first equation modulo 19 and the second modulo 5.
 
>> s1=solve('x^5 +16*x^4+7*x^3+17*x^2+11*x+5=0')

[                    -15.61870451719182]
[-.3867059805744952-.3977796861292117*i]
[-.3867059805744952+.3977796861292117*i]
[ .1960582391704047-1.000858165543796*i]
[ .1960582391704047+1.000858165543796*i]

Figure 5-3.  
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>> s2=solve('x^4-1=0')

s2 =
 
[1]
[-1]
[i]
[-i]

 
Now, we solve the first equation modulo 19:
 
>> maple('msolve(x^5 +16*x^4+7*x^3+17*x^2+11*x+5=0,19)')

ans =
 
{x = 1}, {x = 18}, {x = 3,} {x = 7}, {x = 12}

 
Next, we solve the second equation modulus 5:
 
>> maple('msolve(x^4-1=0,5)')

ans =
 
{x = 1}, {x = 2}, {x = 3}, {x = 4}

 
Because we have two polynomial equations, there is also the option of solving the two equations with the roots 
command, as shown here:
 
>> roots([5,11,17,7,16,5])

ans =
 
  -1.2183 + 1.3164i
  -1.2183 - 1.3164i
   0.2827 + 0.9302i
   0.2827 - 0.9302i
  -0.3289

>> roots([-1,0,0,0,1])
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ans =
 
  -1.0000
   0.0000 + 1.0000i
   0.0000 - 1.0000i
   1.0000

Exercise 5-5

Solve the following system of two equations:

cos(x/12) /exp(x 2/16) = y

-5/4 + y = sin(x3/2)
 
>> [x,y] = solve('cos(x/12)/exp(x^2/16) = y','- 5/4 + y = sin(x^(3/2))')

x =
 
2.412335896593778
 
y =
 
.6810946557469383

Exercise 5-6

Find the intersection of the hyperbolas of equations x2 - y2= r2 and a2x2- b2y2= a2b2 with the parabola  
z2 = 2px.
 
>> [x,y,z] = solve('a^2*x^2-b^2*y^2=a^2*b^2','x^2-y^2=r^2','z^2=2*p*x', 'x,y,z')

x =
 
[1/2*RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)^2/p]
[1/2*RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)^2/p]
 
y =
 
[1/2*(RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)^4-4*r^2*p^2)^(1/2)/p]
[-1/2*(RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)^4-4*r^2*p^2)^(1/2)/p]
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z =
 
[RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)]

   [RootOf((a^2-b^2)*_Z^4+4*b^2*r^2*p^2-4*a^2*b^2*p^2)]

 
Now, we simplify the RootOf expressions in the above solutions:
 
>> [simple(allvalues(x)), simple(allvalues(y)), simple(allvalues(z))]

ans =
 
[b*(-r^2+a^2) ^(1/2) /(a^2-b^2) ^(1/2) b]  [a *(b^2-r^2) ^(1/2) /(a^2-b^2) ^(1/2)]   
[2 ^(1/2) * b ^(1/2) * p ^(1/2) *(-r^2+a^2) ^(1/4) /(a^2-b^2) ^(1/4)]
[b*(-r^2+a^2) ^(1/2) /(a^2-b^2) ^(1/2) b]  [a *(b^2-r^2) ^(1/2) /(a^2-b^2) ^(1/2)]   
[- 2 ^(1/2) * b ^(1/2) * p ^(1/2) *(-r^2+a^2) ^(1/4) /(a^2-b^2) ^(1/4)]
[-b *(-r^2+a^2) ^(1/2) /(a^2-b^2) ^(1/2)]  [a *(b^2-r^2) ^(1/2) /(a^2-b^2) ^(1/2)]   
[i * 2 ^(1/2) * b ^(1/2) * p ^(1/2) *(-r^2+a^2) ^(1/4) /(a^2-b^2) ^(1/4)]
[-b*(-r^2+a^2)^(1/2)/(a^2-b^2)^(1/2)]  [ a*(b^2-r^2)^(1/2)/(a^2-b^2)^(1/2)]  
[-i*2^(1/2)*b^(1/2)*p^(1/2)*(-r^2+a^2)^(1/4)/(a^2-b^2)^(1/4)]
[ b*(-r^2+a^2)^(1/2)/(a^2-b^2)^(1/2)]  [-a*(b^2-r^2)^(1/2)/(a^2-b^2)^(1/2)]   
[2^(1/2)*b^(1/2)*p^(1/2)*(-r^2+a^2)^(1/4)/(a^2-b^2)^(1/4)]
[b*(-r^2+a^2)^(1/2)/(a^2-b^2)^(1/2)]  [-a*(b^2-r^2)^(1/2)/(a^2-b^2)^(1/2)]   
[-2^(1/2)*b^(1/2)*p^(1/2)*(-r^2+a^2)^(1/4)/(a^2-b^2)^(1/4)]
[-b*(-r^2+a^2)^(1/2)/(a^2-b^2)^(1/2)]  [-a*(b^2-r^2)^(1/2)/(a^2-b^2)^(1/2)]   
[i*2^(1/2)*b^(1/2)*p^(1/2)*(-r^2+a^2)^(1/4)/(a^2-b^2)^(1/4)]

   [-b*(-r^2+a^2)^(1/2)/(a^2-b^2)^(1/2)]  [-a*(b^2-r^2)^(1/2)/(a^2-b^2)^(1/2)]    
   [-i*2^(1/2)*b^(1/2)*p^(1/2)*(-r^2+a^2)^(1/4)/(a^2-b^2)^(1/4)]

Each line of this output (a set of three values) is a solution of the system, that is, a point of intersection of the 
three curves.

Exercise 5-7

Solve the inequality x2 + x > 5.
 
>> maple('solve(x^2+x>5,x)')

ans =
 

RealRange(-inf,Open(-1/2-1/2*21^(1/2))),RealRange(Open(-1/2+1/2*21^(1/2)),inf)
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Chapter 6

Series, Continuity, Derivatives, 
Integrals and Differential Equations

6-1. Predefined Symbolic Functions
MATLAB provides a group of predefined special symbolic functions, whose syntax is presented in the following table:

cosint(x) Cosine integral, Ci x x
t

t
dt

x

( ) = + ( ) + ( ) -
= ¼òg gln

cos
.

0

1
0 57

sinint(x) Sine integral, 
( )

.Si x
t

t
dt

x

( ) = ò
0

sin

hypergeom(n,d,z) Generalized hypergeometric function.

lambertw(x) Solves the equation l (x)el(x) = x.

Zeta(x) Riemann zeta function, defined as Z x
k xk

( ) = =

¥å 1
1

.

Zeta (n,x) nth derivative of zeta (x).

As a first example, we find the sum of the series 
1

41 kk=

¥å . , whose value will be Z(4).
 
>> zeta(4)

ans =
 
    1.0823

 
Then to solve the integral 

0

2

ò
sin( )t

t
dt  we use the sine integral function:

 
>> sinint(2)

ans =
    1.6054
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6-2. Functions for Mathematical Analysis: Limits, Continuity  
and Series
MATLAB’s symbolic mathematics module enables you to explore mathematical analysis with ease. You can calculate 
limits, obtain derivatives, find the sum of series, expand functions as Taylor series, calculate integrals, and work with 
equations.

When calculating limits and working with numerical series, the same functions are used to calculate limits 
of sequences, limits of functions, and limits of sequences of functions, and of course, to analyze the continuity of 
functions and convergence of numerical series and power series. The analysis for single and multiple variables is 
similar. This group of functions includes the following.

limit(sequence,inf) Calculates the limit of the sequence, indicated by its general term, as n tends to 
infinity

limit(function,x,a) Calculates the limit of the function of the variable x, indicated by its analytical 
expression, as the variable x tends towards the value a.

limit(function,a) Calculates the limit of the function of the variable x, indicated by its analytical 
expression, as the variable x tends toward the value a.

limit(function,x,a,'right') Calculates the limit of the function of the variable x, indicated by its analytical 
expression, as the variable x tends toward the value from the right.

limit(function,x,a,'left') Calculates the limit of the function of the variable x, indicated by its analytical 
expression, as the variable x tends toward the value from the left.

symsum(S,v,a,b) Sums the series S with respect to the variable v varying from a to b.

symsum(S,v) Sums the series S with respect to the variable v varying from 0 to v-1.

r = symsum(S) Sums the series S with respect to its symbolic variable k (as determined by findsym) 
from 0 up to k-1.

symsum(S,a,b) Sums the series S with respect to its symbolic variable k (determined by findsym), 
varying between a and b.

As a first example we calculate the limits of the following sequences:

lim , lim , lim
n n n

n

n

n n

n n

n
®¥ ®¥ ®¥

- +
- +

æ
è
ç

ö
ø
÷

+ +
- +

+3 2

7 3

1 7 3

5 8 4

1

2

4 2 3

3

ææ
è
ç

ö
ø
÷

+ +
®¥

4

5 2

1 1n

n

n

nn
n, lim

We have:
 
>> syms n
>> limit(((2*n-3)/(3*n-7))^4,inf)

ans =
  
16/81
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>> limit((3*n^3+7*n^2+1)/(4*n^3-8*n+5),n,inf)

ans =
 
3/4

>> limit(((n+1)/2) * ((n^4+1)/n^5),inf)

ans =
  
1/2

>> limit(((n+1)/n^2)^(1/n),inf)

ans =
  
1

 
Next we calculate the limits of the following functions:

lim , lim , lim , lim
sin[(

x x x

x

x

x

x

x x

x
x

ax
® ® ® ®

- +
- +

- +
- + +

+
1 2 0 0

1

1

2

3 1 4
1

)) ]2

2x

We have:
 
>> syms x a
>> limit((x-1)/(x^(1/2)-1),x,1)

ans =
  
2

 >> limit((x-(x+2)^(1/2))/((4*x+1)^(1/2)-3),2)

ans =
  
9/8  

>> limit((1+x)^(1/x))  

ans =
  
exp (1)
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>> limit(sin(a*x)^2/x^2,x,0)

ans =
  
a^2

 
In the following example, we calculate the limit function of the sequence of functions defined by g

n
(x) = (x2+nx) /n  

with xŒR.
 
>> limit((x^2+n*x)/n,n,inf)

ans =
  
x

 
We have obtained the limit function, which is the diagonal of the first and third quadrants. We illustrate this 

graphically (Figure 6-1) as follows:
 
>> fplot('[(x^2+x),(x^2+2*x)/2,(x^2+3*x)/3,(x^2+4*x)/4,
(x^2+5*x)/5,(x^2+5*x)/5,(x^2+6*x)/6,(x^2+7*x)/7,(x^2+8*x)/8,
(x^2+9*x)/9]',[-2,2,-2,2])
 

Figure 6-1.  
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The following example checks the continuity in R-{0} of the function f(x) = sin(x) /x . This will verify  
that lim .x a f x f a® ( ) = ( )
 
>> syms x a
>> limit(sin(x)/x, x, a)

ans =
  
sin(a)/a

 
We then confirm that the function f x ex( ) =  is not continuous at the point x = 0, because the lateral limits do 

not match (one is zero and the other infinite).
 
>> syms x
>> limit((exp(1/x)),x,0,'right')

ans =
  
inf
  
>> limit((exp(1/x)),x,0, 'left')
  
ans =
  
0

 

In the following example we test whether the numerical series å =
¥
n n

n
1 2

 is convergent by applying the ratio  

test lim
( )

( )n

a n

a n®¥

+
<

æ

è
ç

ö

ø
÷

1
1  and, if so, we calculate its sum.

 
>> syms n
>> f = n/2^n

f =
  
n/(2^n)

>> limit(subs(f,n,n+1)/f, n, inf)

ans =
  
1/2
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We can see that the limit is less than 1, so we conclude that the series converges. We calculate the sum in the 
following way:
 
>> symsum(f,n,1,inf)

ans =
  
2

6-3. Derivatives, Integrals and Differential Equations
MATLAB provides the following functions for mathematical analysis, a group that includes commands relating to 
derivatives, integrals, and differential equations. We will begin with the functions related to differentiation.

diff('f','x') Returns the derivative of the function f with respect to x.

syms x, diff(f,x) Returns the derivative of the function f with respect to x.

diff('f', 'x', n) Returns the nth derivative of f with respect to x.

syms x, diff(f,x,n) Returns the nth derivative of f with respect to x.

r = taylor(f,n,v) Returns the MacLaurin series up to order n-1 of the

function f in the variable v.

r = taylor(f) Returns the MacLaurin series up to order 5 of the function 
f in the default variable.

r = taylor(f,n,v,a) Returns the Taylor series up to order n-1 of the function f 
in the variable v in a neighbourhood of the point a.

R = jacobian(w,v) Returns the Jacobian matrix of w with respect to v.

The following are the integration-related functions:

syms x, int(f(x),x) or int('f(x)', 'x') Computes the indefinite integral f(x)dxò .

int(int('f(x,y)', 'x'), 'y') Calculates the double integral f(x, y)dxdyòò
syms x y, int(int(f(x,y),x),y) Calculates the double integral f(x, y)dxdyòò .

int(int(int(... int('f(x,y...z)', 'x'), 'y'),..., 'z') Calculates   f(x, y, ,z) dxdy dzòòò .

syms x y z,

int(int(int(... int(f(x, y,...,z), x), y)..., z)

Calculates   f(x, y, ,z) dxdy dzòòò .

syms x a b, int(f(x),x,a,b) Calculates the definite integral f(x)dx
a

b

ò .

int('f(x)', 'x', 'a', 'b') Calculates the definite integral f(x)dx
a

b

ò .

int(int('f(x,y)', 'x', 'a', 'b'), 'y', 'c', 'd') Computes the integral f(x, y)dxdy
c

d

a

b

òò
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syms x y a b c d,

int (int (f(x,y), x, a, b), y, c, d)

Calculates f(x, y)dxdy
c

d

a

b

òò .

int(int(int(...int('f(x,y,...,z)', 'x', 'a', 'b'), 'y', 
' it, ' from),...), 'z', 'e', 'f')

Finds   f(x, y, ,z) dxdy dz
c

d

a

b

e

f

òòò

Syms x y z a b c d e f,

int (int (int (... int(f(x,y,...,z), x, a, b), y, c, 
d),...), z, e, f)

Finds   f(x, y, ,z) dxdy dz
c

d

a

b

e

f

òòò

The following table summarizes the functions related to differential equations:

dsolve('e', 'v') Solves the differential equation where v is the independent 
variable (if you don't specify 'v', the independent variable 
is assumed by default to be x). It returns only explicit 
solutions.

dsolve('e', 'c', 'v') Solves the differential equation subject to the specified 
initial condition c.

dsolve('e','c1','c2',...,'cn','v') Solves the differential equation e subject to the specified 
initial conditions ci.

dsolve('e','c1,c2,...,cn','v') Solves the differential equation subject to the specified 
initial conditions.

dsolve('e1', 'e2',..., 'en',)

('c1', 'c2',..., 'cn', 'v')

Solves the given system of differential equations (explicitly) 
subject to the specified initial conditions.

dsolve('e1, e2,..., en',)

('c1, c2,..., cn', 'v')

Solves the given system of differential equations subject to 
the specified initial conditions.

As a first example, we calculate the derivative of the function log(sin(2x)).
 
>> pretty(diff('log(sin(2*x))','x'))

                           cos(2 x)
                       2  ---------
                           sin(2 x)

 
We can then find the fully simplified derivative:

 
>> pretty(simple(diff('log(sin(2*x))','x')))

                            2
                         --------
                         tan (2 x)
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In the following example, we calculate the first four derivatives of the function f(x) = 1/x.
 
>> f='1/x';
 [diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]

ans =
  
[-1/x ^ 2, 2/x ^ 3, - 6/x ^ 4, 24/x ^ 5, - 120/x ^ 6]

 
Next, given the function f(x,y) = sin(xy) +cos(xy2), we calculate the following:

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶ ¶

f

x

f

y

f

x

f

y

f

x y

f

y x

f

x y
, , , , , ,

2

2

2

2

2 2 4

2 2

 
>> syms x y
>> f = sin(x*y) + cos(x*y^2)

f =
  
sin(x*y) + cos(x*y^2)

>> diff(f,x)

ans =
  
cos(x*y) *-sin(x*y^2) * y ^ 2

>> diff(f,y)

ans =
  
cos(x*y) * x-2 * sin(x*y^2) * x * y

>> diff(diff(f,x),x)

ans =
  
-sin(x*y) * y ^ 2-cos(x*y^2) * y ^ 4
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>> diff (diff(f,y), y)

ans =
  
-sin(x*y) * x ^ 2-4 * cos(x*y^2) * x ^ 2 * y ^ 2-2 * sin(x*y^2) * x

>> diff(diff(f,x),y)

ans =
  
-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y^2) * x * y ^ 3-2 * sin(x*y^2) * y

>> diff(diff(f,y),x)

ans =
  
-sin(x*y) * x * y + cos(x*y)-2 * cos(x*y^2) * x * y ^ 3-2 * sin(x*y^2) * y

>> diff(diff(diff(diff(f,x),x),y,y))

ans =
  
sin(x*y) * y ^ 3 * x-3 * cos(x*y) * y ^ 2 + 2 * cos(x*y^2) * y ^ 7 * x + 6 * sin(x*y^2) * y ^ 5

 
Next we find the Taylor series up to order 10 of the function 1 /(2-x) in a neighborhood of the point x = 1

 
>> syms x
>> f=1/(2-x)

f =
  
1/(2-x)

>> pretty(taylor(f,11,x,1))

             2          3          4          5          6          7
  x + (x - 1)  + (x - 1)  + (x - 1)  + (x - 1)  + (x - 1)  + (x - 1)
 
                  8          9          10
         + (x - 1)  + (x - 1)  + (x - 1)
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The following example computes the integral 
1

12x
dx

-
ó

õ
ô
ô .

 
>> int('1/(x^2-1)','x')

ans =
  
-atanh (x)

 
The following example finds the integral aLn bx dx( ) ,1-ò where a and b are parameters.

 
>> syms x a b, pretty(simple(int(a*log(1+b*x),x)))

              a (log(1 + b x) - 1) (1 + b x)
              ------------------------------
                            b

 
The following example computes the double integral aLn bx dxdb( ) ,1-òò  where a is a parameter.

 
>> syms x a b, pretty(simple(int(int(a*log(1+b*x),x),b)))

a (-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b - 1 - 2 b x - log(b))

 
The following example computes the triple integral aLn bx dxdbda( )1-òòò .

 
>> syms x a b, pretty(simple(int(int(int(a*log(1+b*x),x),b),a)))

    2
1/2a(-dilog(1 + b x) + log(1 + b x) + log(1 + b x) x b - 1 - 2 b x - log(b))

 
Next we calculate aLn bx dx( )1

0

1
-ò

 
>> syms x a b, pretty(simple(int(a * log(1+b*x), x, 0, 1)))

                        a log(1 + b)
                        ------------ - a + a log(1 + b)
                             b
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The following example computes 
2

3

0

1
1òò -aLn bx dxdb( )

 
>> syms x a b, pretty(simple(int(int(a*log(1+b*x),x,0,1),b,2,3)))

              (- 2 + 8 log(2) - dilog(4) - 3 log(3) + dilog(3)) a

 
The following example solves the first-order, first-degree differential equation y'(t) = ay(t) with a = parameter.

 
>> pretty(dsolve('Dy = a*y'))

                            C1 exp (a t)

 
The family of solutions turns out to be y(t) = c

1
eat.

Next we solve the above differential equation with the initial condition y(0) = b.
 
>> pretty(dsolve('Dy = a*y', 'y(0) = b'))

                            b exp (a t)

 
Now we solve the second-degree, first-order differential equation y'2(s) + y2(s) = 1 with the initial  

condition y(0) = 0.
 
>> y = dsolve ('(Dy) ^ 2 + y ^ 2 = 1', 'y(0) = 0', 's')

y =
  
[-sin(s)]
[sin(s)]

 
Now we solve the differential equation of second order and first degree y"(t) = -a2y'(t) with the initial conditions 

y(0) = 1 and y'(p/a) = 0.
 
>> pretty(dsolve('D2y = - a ^ 2 * y', 'y(0) = 1, Dy(pi/a) = 0'))

                            cos(a t)

 
Therefore, the solution is the function y(t) = cos(at).
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The following example solves the system: x'(t) = y(t), y'(t) = -x(t).
 
>> [x, y] = dsolve('Dx = y', 'Dy =-x')

x =
  
cos (t) * C1 + sin (t) * C2
  
  
y =
  
-sin (t) * C1 + cos (t) * C2

 
We then calculate the solution of the previous system of differential equations subject to the initial conditions 

x(0) = 0 and y(0) = 1.
 
>> [x, y] = dsolve('Dx = y, Dy = - x', 'x(0) = 0, y(0) = 1')

x =
  
sin(t)
  
  
y =
  
cos(t)

 

EXERCISE 6-1

Consider the following symbolic matrix A:

a b c

c a c b

b b c a c

3 3

3 3 3 3

-
- + -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Calculate A', A-1, determinant(A), trace(A), rank(A) and A2.

We start by defining the symbolic form of our problem matrix as follows:
 
>> A=sym('[a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c]')

A =
[   a,       b,    c]
[ 3*c,   a-3*c,    b]
[ 3*b,-3*b+3*c,a-3*c]
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Alternatively, the same symbolic matrix can be defined by previously declaring all variables as symbolic, as 
follows:
 
>> syms a b c
>> A=sym([a,b,c; 3*c,a-3*c,b; 3*b,-3*b+3*c,a-3*c])

A =
[        a,        b,        c]
[      3*c,    a-3*c,        b]
[      3*b, -3*b+3*c,    a-3*c]

>> transpose(A)

ans =
 
[a, 3 * c, * 3B]
[b, a-3*c, -3*b+3*c]
[c,     b,    a-3*c]

>> pretty(inv(A))

    2              2      2                        2          2            2
 [ a  - 6 a c + 9 c  + 3 b  - 3 b c       a b - 3 c        - b  + a c - 3 c ]
 [ -------------------------------     - -----------     - -----------------]
 [                %1                          %1                   %1       ]
 [                                                                          ]
 [              2            2        2                                 2   ]
 [           - b  + a c - 3 c        a  - 3 a c - 3 b c        a b - 3 c    ]
 [       - 3 -----------------       ------------------      - ----------   ]
 [                   %1                      %1                    %1       ]
 [                                                                          ]
 [                       2                           2     2                ]
 [              a b - 3 c               a b - a c + b     a  - 3 a c - 3 b c]
 [         - 3 ----------            3 ---------------    ------------------]
 [                  %1                        %1                  %1        ]
 
 
  
        3        2      2          2                3      3        2
%1 :=  a  - 6 c a  + 9 c  a + 3 a b  - 9 a b c + 9 c  + 3 b  + 9 b c

>> pretty(det(A))

          3        2      2          2                3      3        2
         a  - 6 c a  + 9 c  a + 3 a b  - 9 a b c + 9 c  + 3 b  + 9 b c
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>> pretty(trace(A))

                                   3 a - 6 c

>> rank(A)

ans =
 
     3

>> A^2

ans =
  
[               a^2+6*b*c,            a*b+b*(a-3*c)+c*(-3*b+3*c),          a*c+b^2+c*(a-3*c)]
[ 3*a*c+3*c*(a-3*c)+3*b^2,           3*b*c+(a-3*c)^2+b*(-3*b+3*c),           3*c^2+2*b*(a-3*c)]
[ 3*a*b+3*c*(-3*b+3*c)+3*b*(a-3*c),     3*b^2+2*(-3*b+3*c)*(a-3*c),   3*b*c+(a-3*c)^2+b*(-3*b+3*c)]

 

EXERCISE 6-2

Find the intersection of the hyperbolas with equations x2- y2= 1 and  a2x2- b2y2= 16 with the parabola z2 = 2 x.

We can solve the system formed by the three equations as follows:
 
>> [x, y, z] = solve('a^2*x^2-b^2*y^2=16','x^2-y^2=1','z^2=2*x','x,y,z')

x =
  
[  1/2*(((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[  1/2*(((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[ 1/2*(-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[ 1/2*(-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[  1/2*(((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[  1/2*(((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[ 1/2*(-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[ 1/2*(-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
 
y =
  
[  1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[ -1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[  1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[ -1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
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[  1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[ -1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[  1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[ -1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
  

z =
  
[  ((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[  ((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[ -((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[ -((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[  ((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[  ((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[ -((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[ -((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]

 

EXERCISE 6-3

Solve the following integrals:

-
ò ò

( ) -
3

3

0

51

3

2 1sin( )
,

cosht

t
dt

x

x
dx

For the first integral the integrand is an even function, so the integral will be double the integral of the function 
between the limits 0 and 3. Then, we make the change of variable 2t = v, and arrive at the integral:

-
ò ò ò= =
3

3

0

3

0

61

3

2
2

1

3

2 2

3

sin sin sin( ) ( ) ( )t

t
dt

t

t
dt

v

v
dv

whose solution is given by MATLAB as follows:
 
>> (2/3) * (sinint(6))

ans =
 
    0.9498

 

To calculate the second integral we have in mind the following:

Ci x x
t

t
dt

x

x
dx Ci

x

( ) = + ( ) + ( ) -
Þ

( )-
= ( ) - +ò òg gln

cos cos
( )

0 0

51 1
5 5ln
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which can be calculated in MATLAB as follows:
 
>> cosint(5) - 0.577215664 - log(5)
 

ans =
 
   -2.3767 

EXERCISE 6-4

Given the function h defined by h(x,y) = (cos(x2-y2), sin(x2-y2)), calculate h(1,2), h(-Pi,Pi) and h(cos(a2), cos(1-a2)).

We create a two-dimensional vector function as follows:
 
>> syms x y a.
>> h = [cos(x^2-y^2), sin(x^2-y^2)]

h =
  
[cos(x^2-y^2), sin(x^2-y^2)]

 

Now we calculate the requested values:
 
>> subs(h,{x,y},{1,2})

ans =
 
   -0.9900-0.1411

>> subs(h,{x,y},{-pi,pi})

ans =
 
     1 0

>> subs(h, {x,y}, {cos(a^2), cos(1-a^2)})

ans =
  
[cos(cos(a^2) ^ 2-cos(-1+a^2) ^ 2), sin(cos(a^2) ^ 2-cos(-1+a^2) ^ 2)]
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EXERCISE 6-5

Given the function f defined by

f(x,y) = 3 (1-x)2 e -(y + 1) ^ 2-x ^ 2 -10(x/5-x 3-y/5) e -x ^ 2 - y ^ 2-1/3e -(x + 1) ^ 2 - y ^ 2

find f(0,0) and represent the function graphically.

In this case, since it is necessary to represent the function, we define it via the M-file shown in Figure 6-2.

Figure 6-2.  

Now, we calculate the value of f at (0,0):
 
>> func2 (0,0)

ans =
 
    0.9810

 

To graph the function, use the command meshgrid to draw the graph on screen (in a neighborhood of the origin), 
and the command surf to generate the surface graph:
 
>> [x,y] = meshgrid(-0.5:.05:0.5,-0.5:.05:0.5);
>> z = func2(x,y);
>> surf(x,y,z)
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The result is the graph shown in Figure 6-3.

Figure 6-3.  

EXERCISE 6-6

Given functions f(x) = sin(cos(x1/2) and g(x) = sqrt(tan(x2)), calculate the composite of f and g and the composite of 
g and f. Also calculate the inverse of the functions f and g.
 
>> syms x, f = (cos(x^(1/2)));
>> g=sqrt(tan(x^2));
>> simple(compose(f,g))

ans =
  
sin(cos(tan(x^2)^(1/4)))

>> simple(compose(g,f))

ans =
  
tan(sin(cos(x^(1/2)))^2)^(1/2)
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>> F = finverse(f)

F =
  
acos(asin(x))^2

>> G = finverse(g)

G =
  
atan(x^2)^(1/2)

 

EXERCISE 6-7

Given the function defined as

f x
e

if x and f x if x
x

( ) =
+

¹ ( ) = =
1

1
0 1 0

study its continuity on the real line.

Except at the point x = 0, the continuity is clear. To analyze the function at the point x = 0 we calculate the lateral 
limits as x → 0 :
 
>> syms x
limit(1/(1+exp(1/x)),x,0,'right')

ans =
  
0

>> limit(1/(1+exp(1/x)),x,0,'left')

ans =
  
1
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The limit of the function as x → 0 does not exist, because the lateral limits are different. But because the lateral 
limits are both finite, the discontinuity at x = 0 is a finite jump. We can illustrate this result with the plot shown in 
Figure 6-4.
 
>> fplot('1/(1+exp(1/x))',[-5,5])

 

EXERCISE 6-8

Calculate the continuity of the function f: R2 ® R defined by:

f x y
x y

x y
if x y and if,

( )

( )
, , , .( ) = -

- +
( ) ¹ ( ) ( ) =1

1
1 0 1 0 0

2 2

2 2

The only problem is at (1,0). To confirm that the function is continuous at this point, we need to check that

lim , .
( , ) ( , )x y

f x y
®

( ) =
1 0

0  

Figure 6-4.  
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>> syms x y m a r
>> limit(limit(y ^ 2 *(x-1) ^ 2 / (y ^ 2 +(x-1) ^ 2), x, 0), y, 0)

ans =
 
0

>> limit(limit(y ^ 2 *(x-1) ^ 2 / (y ^ 2 + (x-1) ^ 2), y, 0), x, 0)

ans =
 
0

>> limit((m*x)^2*(x-1)^2/((m*x)^2+(x-1)^2),x,0)

ans =
 
0

>> limit ((m*x) *(x-1)^2/((m*x) +(x-1)^2),x,0)

ans =
 
0

 

It turns out that the iterated and directional limits (as calculated along a straight line y = mx) coincide, which 
leads us to believe in the existence of the limit and that its value is zero. To corroborate this, we can calculate the 
limit in polar coordinates:
 
>> limit(limit((r ^ 2 * sin(a) ^ 2) * (r * cos(a) - 1) ^ 2 / ((r ^ 2 * sin(a) ^ 2) + (r * 
cos(a) - 1) ^ 2), r, 1), a, 0)
  

ans =
 
0
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We find that the limit is zero at the point (1,0), which ensures the continuity of the function. Figure 6-5 shows the 
surface, and in particular the continuity and the tendency toward 0 in a neighborhood of the point (1,0).
 
>> [x, y] = meshgrid(0:0.05:2,-2:0.05:2);
z=y.^2.*(x-1).^2./(y.^2+(x-1).^2);
mesh(x,y,z), view ([- 23, 30])

 Figure 6-5.  
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EXERCISE 6-9

Find the sum of the following series:

n
n

n
n

n

n n

n

p
p parameter

=

¥

=

¥

å å+
+

=
2 1

3 2

7 1( )
, , .

Before attempting to find the sums we first need to show that the sums are indeed convergent. We apply the ratio 
test for the first series:
 
>> syms n
>> f=(3+2*n)/((1-n)*n*7^n);
>> pretty(f)

                             3 + 2 n
                           ------------
                                      n
                           (1 - n) n 7

>> limit(subs(f,n,n+1)/f,n,inf)

ans =
  
1/7

 

As the limit is less than 1, the series is convergent. We will calculate its sum. MATLAB tries to return the result, 
which can be complicated. Often, the result returned depends on certain special functions defined by the 
program. Here’s an example:
 
>> S1 = symsum(f,n,2,inf)

S1 =
  
-6 * log(6/7)-22/21 + 13/343 * hypergeom([2, 2],[3],1/7)

 

Now we apply the ratio test to the second series:
 
>> syms n p
>> g=n/p^n;
>> pretty(g)

                                   n
                                 ----
                                   n
                                  p
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>> limit(subs(g,n,n+1)/g,n,inf)

ans =
  
1/p

 

Thus, if p > 1, the series converges; if p < 1, the series diverges; and if p = 1, we get the series of general term n, 
which diverges. When p is greater than 1, we find the sum of the series:
 
>> S2=symsum(g,n,2,inf)

S2 =
  
2/p^2*(1/2/(-1+p)^3*p^4*(-1/p+1)-1/2*p)

>> pretty(simple(S2))

                               -1 + 2 p
                              -----------
                                        2
                              p (- 1 + p)

 

EXERCISE 6-10

Find the MacLaurin series up to order 13 of the function sinh(x). Also find the Taylor series up to order 6 of the 
function 1/(1+x) in a neighborhood of the point x = 1.
 
>> pretty(taylor(sinh(x),13))

                3          5           7             9               11
       x + 1/6 x  + 1/120 x  + 1/5040 x  + 1/362880 x  + 1/39916800 x

>> pretty(taylor(1/(1+x),6,1))

                           2               3               4               5
  3/4 - 1/4 x + 1/8 (x - 1)  - 1/16 (x - 1)  + 1/32 (x - 1)  - 1/64 (x - 1)
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EXERCISE 6-11

Conduct a full study of the function

f x
x

x
( ) =

-

3

2 1

calculating the asymptotes, maximum, minimum, inflection points, intervals of growth and decrease, and intervals 
of concavity and convexity.
 
>>  f='x ^ 3 /(x^2-1)'

f =
 
x^3 /(x^2-1)

>> syms x, limit (x^3 /(x^2-1), x, inf)

ans =
  
NaN

 

We can see that there are no horizontal asymptotes. To see if there are any vertical asymptotes, let’s look at the 
values of x that make y infinite:
 
>> solve('x^2-1')

ans =
 
[1]
[-1]

 

The vertical asymptotes are the straight lines x = 1 and x = –1. Now let's see if there are any oblique asymptotes:
 
>> limit(x^3/(x^2-1)/x,x,inf)

ans =
 
1
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>> limit(x^3/(x^2-1)-x,x,inf)

ans =
 
0

 

The straight line y = x is an oblique asymptote. Now, the maximum and minimum, inflection points and intervals 
of concavity and growth will be analyzed:
 
>> solve(diff(f))

ans =
 
[         0]
[         0]
[3 ^(1/2)  ]
[^(1/2) - 3]

 

The first derivative vanishes at the points with x-coordinates x = 0, x =√3 and x = –√3. These include maximum 
and minimum candidates. To test whether they are maxima or minima, we find the value of the second derivative 
at those points:
 
>> [numeric(subs(diff(f,2),0)),numeric(subs(diff(f,2),sqrt(3))),
   numeric(subs(diff(f,2),-sqrt(3)))]

ans =
 
         0 2.5981 - 2.5981

 

Therefore, at the point with abscissa x= –√3 there is a maximum and at the point with abscissa x = √3 there is a 
minimum. At x = 0 we know nothing:
 
>> [numeric(subs(f, sqrt(3))), numeric(subs(f, -sqrt(3)))]

ans =
 
    2.5981 - 2.5981

 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6 ■ Series, Continuity, Derivatives, Integrals and Differential Equations

237

Therefore, the highest point is (- 3 ,-2.5981) and the minimum point is ( 3, 2.5981 ).

We will now analyze the points of inflection:
 
>> solve(diff(f,2))

ans =
 
[            0]
[ i*3^(1/2)   ]
[-i * 3 ^(1/2)]

 

The only possible turning point occurs at x = 0, and because f(0) = 0, this possible turning point is (0,0):
 
>> subs(diff(f,3), 0)

ans =
 
-6

 

As the third derivative at x = 0 is non-zero, the origin really is a turning point:
 
>> pretty(simple(diff(f)))

                              2   2
                            x  (x  - 3)
                            ------------
                                2   2
                             (x - 1)

 

The curve is increasing when y' > 0, that is, in the intervals  (-•,-÷3) and (÷3,•).

The curve is decreasing when y' < 0, that is, in the intervals

(-Ö3,-1),  (-1,0),  (0,1) and (1, Ö3).
 
>> pretty(simple(diff(f,2)))

                                   2
                              x (x + 3)
                           2 ------------
                                  2   3
                               (x - 1)
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The curve is concave when y"> 0, that is, in the intervals (-1,0) and (1, •).

The curve is convex when y"< 0, that is, in the intervals (0,1) and (-• ,-1).

The curve has horizontal tangents at the three points at which the first derivative is zero. The equations of the 
horizontal tangents are y = 0, y = 2.5981 and y = -2.5981.

The curve has vertical tangents at the points that make the first derivative infinite. These include x = 1 and x =-1. 
Therefore, the vertical tangents coincide with the two vertical asymptotes.

We can then represent the curve along with its asymptotes as shown in Figure 6-6.
 
>> fplot('[x^3/(x^2-1),x]',[-5,5,-5,5])
 

Figure 6-6.  

We can also represent the curve, its asymptotes, and their horizontal and vertical tangents in the same graph  
(see Figure 6-7).
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>> fplot('[x^3/(x^2-1),x,2.5981,-2.5981]',[-5,5,-5,5])

 

EXERCISE 6-12

Given the vector function (u(x,y), v(x,y)), where:

u x y
x y

x
v x y x y, , , sin ( )( ) = + ( ) = ( ) +

4 4

cos

find the conditions under which there is an inverse vector function (x(u,v), y(u,v)) with x = x(u,v) and y = y(u,v) and 
find the derivative and the Jacobian of the inverse transformation. Find its value at the point (p/4,-p/4).

The conditions that must be met are the hypotheses of the inverse function theorem. The functions are 
differentiable with a continuous derivative, except perhaps at x= 0. Now let's consider the Jacobian of the direct 
transformation ∂(u(x,y), v(x,y)) /∂(x,y):
 
>> syms x y
>> J = simple((jacobian ([(x^4+y^4)/x, sin(x) + cos(y)], [x, y])))

J =
[3 * x^2 - 1/x^2 * y^4, 4 * y^3/x]
[cos(x),-sin(y)]

Figure 6-7.  
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>> pretty(det(J))

                                4           4     3
                     3 sin (y) x - sin (y) y + 4 y cos (x) x
                   - ---------------------------------------
                                        2
                                       x

 

Therefore, at the points where this expression is non-zero, it can be solved for x and y in terms of u and v. In 
addition, it must also meet the requirement that x ¹ 0.

We next calculate the derivative of the inverse function. Its value is the inverse of the initial Jacobian matrix, and 
the determinant of the Jacobian is the reciprocal of the determinant of the Jacobian of the initial function:
 
>> I=simple(inv(J));
>> pretty(simple(det(I)))
  

                                        2
                                       x
                   - ---------------------------------------
                                4           4     3
                     3 sin (y) x - sin (y) y + 4 y cos (x) x

 

Next we are going to find the value of this function at the point (p/4,-p/4):
 
>> numeric(subs(subs(determ(I),pi/4,'x'),-pi/4,'y'))

ans =
 
   0.38210611216717

>> numeric(subs(subs(symdiv(1,determ(J)),pi/4,'x'),-pi/4,'y'))

ans =
   0.38210611216717

 

These results corroborate that the determinant of the Jacobian of the inverse function is the reciprocal of the 
determinant of the Jacobian of the original function.
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EXERCISE 6-13

Given the function f x y e x y, ( )( ) = - +  and the transformation u = u(x,y) = x + y, v = v(x,y) = x, find f(u,v).

We calculate the inverse transformation and its Jacobian to apply the change of variables theorem:
 
>> syms x y u v
>> [x, y] = solve('u=x+y,v=x','x','y')

x =
  
v
  
y =
  
u-v

>> jacobian([v,u-v],[u,v])

ans =
  
[0, 1]
[1, - 1]

>> f = exp(x-y);
>> pretty(simple(subs(f,{x,y},{v,u-v}) * abs(det(jacobian([v, u-v], [u, v])))

                                 exp(2 v-u)

 

The requested function is f(u,v) = e2v-u.
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EXERCISE 6-14

Solve the following integrals:

ò ò ò+ -

-
+

dx

x x x

x

x
dx x x dx

3 2

2
8 3 1 4

3 1

9 4
3 5, , ( ) /

 
>> syms x
>> pretty(simple(int(x^(-3)*(x^2+3*x-1)^(-1/2),x)))

        2           1/2         2           1/2
      (x + 3 x - 1)          (x + 3 x - 1)
  1/2 ----------------- + 9/4 -----------------
              2                       x
             x
 
                             -2 + 3 x
         + 31/8 tie 1/2 (-)
                           2           1/2
                         (x  + 3 x - 1)

>> pretty(simple(int(x^(-1)*(9-4*x^2)^(1/2), x)))

                            2 1/2                 3
                    (9 - 4 x )    - 3 atanh(-------------)
                                                    2 1/2
                                            (9 - 4 x )

>> pretty(simple(int(x^8*(3+5*x^3)^(1/4),x)))

                                3        6         9          3 1/4
            4/73125 (288 - 120 x + 125 x + 1875 x) (3 + 5 x)
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EXERCISE 6-15

Consider the curve given in polar coordinates by r = 3-3cos(a). Calculate the length of the arc corresponding to 
one complete revolution (0£a£2p).
 
>> r='3-3*cos(a)';
>> diff(r,'a')
  

ans =
  
3 * sin (a)

>> R = simple(int('((3-3 * cos(a))^2 + (3 * sin(a))^2)^(1/2)','a', '0','2 * pi'))

R =
  
24

 

EXERCISE 6-16

Calculate the value of the following integral

-

-

ò
1 96

1 96 22

2.

. /e
dx

x

p

which represents the area under the normal curve between the specified limits.
 
>> numeric(int('exp(-x^2/2)/(2*pi)^(1/2)','x',-1.96,1.96))

ans =
   0.95000420970356
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EXERCISE 6-17

Find the intersection of the paraboloid ax2 + y2 = z and the cylinder z = a2 - y2 and calculate the volume enclosed 
by the intersection. Also find the volume of the intersection of the cylinder z = x2 and 4 - y2 = z.

The first volume is calculated by means of the integral:
 
>> pretty(simple(int(int(int('1','z','a*x^2+y^2',
   'a^2-y^2'),'y',0,'sqrt((a^2-a*x^2)/2)'),'x',0,'sqrt(a)')))

       /
       |                 2       2        2 1/2
  1/24 |    lim       3 a  x (2 a  - 2 a x )
       |       1/2
       \x -> (a   )-
 
                                1/2  1/2                              \
              7/2  1/2         2    a    x           2      2 1/2     |
         + 3 a    2    atan(-------------- ) +  x (2a – 2ax  )        |
                                2        2 1/2                        |
                            (2 a  - 2 a x )                           /

 

To calculate the second volume we graph the requested intersection, as shown in Figure 6-8, with the aim of 
clarifying the limits of integration, using the following syntax:
 
>> [x, y] = meshgrid(-2:.1:2);
z = x ^ 2;
mesh(x,y,z)
hold on;
z = 4 - y. ^ 2;
mesh (x, y, z)
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Figure 6-8.  

Now we can calculate the volume requested via the following integral:
 
>> pretty(simple(int(int(int('1','z','x^2','4-y^2'),
   'y',0,'sqrt(4-x^2)'),'x',0,2)))

                                     2 pi
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EXERCISE 6-18

Solve the following differential equation:

 

dy

dx

xy

y x
=

-2 2

>> pretty(simple(dsolve('Dy =(x*y)/(y^2-x^2)')))
 

                                             t + C1
                                    exp (-2)--------
                                                x
                   -1/2 lambertw(- ------------------) x - t - C1
                                           2
                                          x
               exp(-----------------------------------------------)
                                        x

 

EXERCISE 6-19

Solve the following equations:

9 6 46 6 37 0y y y y y’’’’ ’’’ ’’ ’- + - + =

3 2 5 0y y y’’ ’+ - =

2 2 5 0 0 0 0 1 2y y y y y’’ ’ ’, , / .+ + = ( ) = ( ) =
 
>> pretty(simple(dsolve('9*D4y-6*D3y+46*D2y-6*Dy+37*y=0')))

C1 sin(t) + cos(t) C2 + C3 exp(1/3 t)sin(2t) + C4 exp(1/3 t)cos(2t)

>> pretty(dsolve('3*D2y+2*Dy-5*y=0'))

                          exp(t) C1 + C2 exp(-5/3 t)

>> pretty(dsolve('2 * D2y + 5 * Dy + 5 * y = 0', 'y (0) = 0 Dy (0) = 1/2 '))

                          1/2                        1/2
                   2/15 15 exp(-5/4 t) sin(1/4 15 t)
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EXERCISE 6-20

With the initial conditions x(0) = 1 and y(0) = 2, solve the following system of equations:

x y e t’ ’- = -

y x y t’ ( )+ + =5 2 3sin

 
>> [x,y] = dsolve('Dx-Dy = exp(-t), Dy+5 * x + 2 * y = sin(3 + t)','x(0) = 1, y(0) = 2')

x =
  
(-7/50 * sin(3) + 1/50 * cos(3) + 7/6) * exp(-7*t) + 7/50 * sin(3+t)-1/50 * cos(3+t)-1/6 * 
exp(-t)
  
  
y =
  
(-7/50 * sin(3) + 1/50 * cos(3) + 7/6) * exp(-7*t) + 5/6 * exp(-t) + 7/50 * sin(3+t)-1/50 * 
cos(3 + t)
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