FIFTH EDITION

MATLAB

An Introduction with Applications

AMOS GILAT

WILEY

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB

An Introduction
with Applications

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

MATLAB

An Introduction
with Applications

Fifth Edition

Amos Gilat

Department of Mechanical and Aerospace Engineering
The Ohio State University

WILEY

www.it-ebooks.info

http://www.it-ebooks.info/

Publisher: Don Fowley

Executive Editor: Dan Sayre
Editorial Assistant: Jessica Knecht
Cover Designer: Kenji Ngieng
Associate Production Manager: Joyce Poh

Cover Image: Amos Gilat.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of lmowledge and
understanding for more than 200 years, helping people around the world meet their needs
and fulfill their aspirations. Our company is built on a foundation of principles that include
responsibility to the communities we serve and where we live and work. In 2008, we
launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we

are addressing are carbon impact, paper specifications and procurement, ethical conduct
within our business and among our vendors, and community and charitable support. For
more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015, 2011 John Wiley & Sons, Inc. All rights reserved. No part of this
publication may be reproduced, stored in aretrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of

the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www
.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review
purposes only, for use in their courses during the next academic year. These copies are
licensed and may not be sold or transferred to a third party. Upon completion of the
review period, please return the evaluation copy to Wiley. Return instructions and a free
of charge return mailing label are available at www.wiley.com/go/returnlabel. If you
have chosen to adopt this textbook for use in your course, please accept this book as your
complimentary desk copy. Outside of the United States, please contact your local sales
representative.

ISBN 978-1-118-62986-4 (paper)

Printed in the United States of America
10987654321

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

MATLAB® is a very popular language for technical computing used by stu-
dents, engineers, and scientists in universities, research institutes, and industries
all over the world. The software is popular because it is powerful and easy to use.
For university freshmen in it can be thought of as the next tool to use after the
graphic calculator in high school.

This book was written following several years of teaching the software to
freshmen in an introductory engineering course. The objective was to write a book
that teaches the software in a friendly, non-intimidating fashion. Therefore, the
book is written in simple and direct language. In many places bullets, rather than
lengthy text, are used to list facts and details that are related to a specific topic.
The book includes numerous sample problems in mathematics, science, and engi-
neering that are similar to problems encountered by new users of MATLAB.

This fifth edition of the book is updated to MATLAB Release 2013b. In
addition, the end of chapter problems have been revised. In Chapters 1 through 8
close to 80% of the problems are new or different than in previous editions.

I would like to thank several of my colleagues at The Ohio State University.
Professor Richard Freuler for his comments, and Dr. Mike Parke for reviewing
sections of the book and suggested modifications. I also appreciate the involve-
ment and support of Professors Robert Gustafson, John Demel and Dr. John Mer-
rill from the Engineering Education Innovation Center at The Ohio State
University. Special thanks go to Professor Mike Lichtensteiger (OSU), and my
daughter Tal Gilat (Marquette University), who carefully reviewed the first edi-
tion of the book and provided valuable comments and criticisms. Professor Brian
Harper (OSU) has made a significant contribution to the new end of chapter prob-
lems in the present edition.

I would like to express my appreciation to all those who have reviewed ear-
lier editions of the text at its various stages of development, including Betty Barr,
University of Houston; Andrei G. Chakhovskoi, University of California, Davis;
Roger King, University of Toledo; Richard Kwor, University of Colorado at Colo-
rado Springs; Larry Lagerstrom, University of California, Davis; Yueh-Jaw Lin,
University of Akron; H. David Sheets, Canisius College; Geb Thomas, University
of Towa; Brian Vick, Virginia Polytechnic Institute and State University; Jay Weit-
zen, University of Massachusetts, Lowell; and Jane Patterson Fife, The Ohio State
University. In addition, I would like to acknowledge Daniel Sayre and Joyce Poh,
all from John Wiley & Sons, who supported the production of the Fifth edition.

www.it-ebooks.info

http://www.it-ebooks.info/

vi

Preface

I hope that the book will be useful and will help the users of MATLAB to
enjoy the software.

Amos Gilat

Columbus, Ohio
November, 2013
gilat.1 @osu.edu

To my parents Schoschana and Haim Gelbwacks

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Preface v
Introduction 1

Chapter 1 Starting with MATLAB 5

1.1 STARTING MATLAB, MATLAB WINDOWS 5§
1.2 'WORKING IN THE COMMAND WINDOW 9

1.3 ARITHMETIC OPERATIONS WITH SCALARS 11
1.3.1 Order of Precedence 11
1.3.2 Using MATLAB as a Calculator 12

1.4 DISPLAY FORMATS 12
1.5 ELEMENTARY MATH BUILT-IN FUNCTIONS 14

1.6 DEFINING SCALAR VARIABLES 16
1.6.1 The Assignment Operator 16
1.6.2 Rules About Variable Names 18
1.6.3 Predefined Variables and Keywords 19

1.7 USEFUL COMMANDS FOR MANAGING VARIABLES 19

1.8 ScrreT FILES 20
1.8.1 Notes About Script Files 20
1.8.2 Creating and Saving a Script File 21
1.8.3 Running (Executing) a Script File 22
1.8.4 Current Folder 22

1.9 EXAMPLES OF MATLAB APPLICATIONS 24
1.10 PROBLEMS 27

Chapter 2 Creating Arrays 35

2.1 CREATING A ONE-DIMENSIONAL ARRAY (VECTOR) 35

2.2 CREATING A TWO-DIMENSIONAL ARRAY (MATRIX) 39
2.2.1 The zeros, ones and, eye Commands 40

2.3 NOTES ABOUT VARIABLES IN MATLAB 41
2.4 THE TRANSPOSE OPERATOR 41

2.5 ARRAY ADDRESSING 42
2.5.1 Vector 42
2.5.2 Matrix 43

2.6 USING A COLON : IN ADDRESSING ARRAYS 44
2.7 ADDING ELEMENTS TO EXISTING VARIABLES 46
2.8 DELETING ELEMENTS 48

2.9 BUILT-IN FUNCTIONS FOR HANDLING ARRAYS 49
2.10 STRINGS AND STRINGS AS VARIABLES 53

2.11 PROBLEMS 55

Chapter 3 Mathematical Operations with Arrays 63

3.1 ADDITION AND SUBTRACTION 64
3.2 ARRAY MULTIPLICATION 65
3.3 ARRAYDIVISION 68

www.it-ebooks.info

http://www.it-ebooks.info/

viii

Contents

3.4 ELEMENT-BY-ELEMENT OPERATIONS 72

3.5 USING ARRAYS IN MATLAB BUILT-IN MATH FUNCTIONS 75
3.6 BUILT-IN FUNCTIONS FOR ANALYZING ARRAYS 75

3.7 GENERATION OF RANDOM NUMBERS 77

3.8 EXAMPLES OF MATLAB APPLICATIONS 80

3.9 PROBLEMS 86

Chapter 4 Using Script Files and Managing Data 95

4.1 THE MATLAB WORKSPACE AND THE WORKSPACE WINDOW 96
4.2 INPUT TO A SCRIPT FILE 97
43 OutpuT COMMANDS 100
43.1 The disp Command 101
4.3.2 The fprintf Command 103
44 THE save AND load COMMANDS 111
4.4.1 The save Command 111
4.4.2 The load Command 112
4.5 IMPORTING AND EXPORTING DATA 114
4.5.1 Commands for Importing and Exporting Data 114
4.5.2 Using the Import Wizard 116
4.6 EXAMPLES OF MATLAB APPLICATIONS 118

4.7 PROBLEMS 123

Chapter 5 Two-Dimensional Plots 133

5.1 THEplot COMMAND 134
5.1.1 Plot of Given Data 138
5.1.2 Plot of a Function 139

5.2 THE fplot COMMAND 140

5.3 PLOTTING MULTIPLE GRAPHS IN THE SAME PLOT 141
5.3.1 Usingthe plot Command 141
5.3.2 Usingthehold onandhold off Commands 142
5.3.3 Using the 1ine Command 143

5.4 FORMATTING A PLOT 144
5.4.1 Formatting a Plot Using Commands 144
5.4.2 Formatting a Plot Using the Plot Editor 148

5.5 PLOTS WITH LOGARITHMIC AXES 149

5.6 PLOTS WITH ERROR BARS 150

5.7 PLOTS WITH SPECIAL GRAPHICS 152

5.8 HISTOGRAMS 153

5.9 POLARPLOTS 156

5.10 PUTTING MULTIPLE PLOTS ON THE SAME PAGE 157
5.11 MULTIPLE FIGURE WINDOWS 157

5.12 PLOTTING USING THE PLOTS TOOLSTRIP 159

5.13 EXAMPLES OF MATLAB APPLICATIONS 160

5.14 PROBLEMS 165

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter 6 Programming in MATLAB 175

6.1 RELATIONAL AND LOGICAL OPERATORS 176

6.2 CONDITIONAL STATEMENTS 184
6.2.1 The if-end Structure 184
6.2.2 The if-else-end Structure 186
6.2.3 The if-elseif-else-end Structure 187

6.3 THE switch-case STATEMENT 189

6.4 Loorps 192
6.4.1 for-endLoops 192
6.4.2 while-end Loops 197

6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS 200
6.6 THE break AND continue COMMANDS 202

6.7 EXAMPLES OF MATLAB APPLICATIONS 203

6.8 PROBLEMS 211

Chapter 7 User-Defined Functions and Function Files 221

7.1 CREATING A FUNCTION FILE 222

7.2 STRUCTURE OF A FUNCTION FILE 223
7.2.1 Function Definition Line 224
7.2.2 Input and Output Arguments 224
7.2.3 The H1 Line and Help Text Lines 226
7.2.4 Function Body 226

7.3 LOCAL AND GLOBAL VARIABLES 226
7.4 SAVING A FUNCTION FILE 227
7.5 USING A USER-DEFINED FUNCTION 228
7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS 229
7.7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES 231
7.8 ANONYMOUS FUNCTIONS 231
7.9 FUNCTION FUNCTIONS 234
7.9.1 Using Function Handles for Passing a Function into a Function
Function 235
7.9.2 Using a Function Name for Passing a Function into a Function
Function 238
7.10 SUBFUNCTIONS 240
7.11 NESTED FUNCTIONS 242
7.12 EXAMPLES OF MATLAB APPLICATIONS 245
7.13 PROBLEMS 248

Chapter 8 Polynomials, Curve Fitting, and Interpolation 261

8.1 POLYNOMIALS 261
8.1.1 Value of a Polynomial 262
8.1.2 Roots of a Polynomial 263
8.1.3 Addition, Multiplication, and Division of Polynomials 264
8.1.4 Derivatives of Polynomials 266

8.2 CURVEFITTING 267
8.2.1 Curve Fitting with Polynomials; The polyfit Function 267
8.2.2 Curve Fitting with Functions Other than Polynomials 271

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

83
8.4
85
8.6

INTERPOLATION 274

THE BASIC FITTING INTERFACE 278
EXAMPLES OF MATLAB APPLICATIONS 281
PROBLEMS 286

Chapter 9 Applications in Numerical Analysis 295

9.1
9.2
93
9.4
9.5
9.6

SOLVING AN EQUATION WITH ONE VARIABLE 295
FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION 298
NUMERICAL INTEGRATION 300

ORDINARY DIFFERENTIAL EQUATIONS 303

EXAMPLES OF MATLAB APPLICATIONS 307

PROBLEMS 313

Chapter 10 Three-Dimensional Plots 323

10.1
10.2
10.3
10.4
10.5
10.6

LINE PLOTS 323

MESH AND SURFACE PLOTS 324

PLOTS WITH SPECIAL GRAPHICS 331

THE view COMMAND 333

EXAMPLES OF MATLAB APPLICATIONS 336
PROBLEMS 341

Chapter 11 Symbolic Math 347

11.1

SYMBOLIC OBJECTS AND SYMBOLIC EXPRESSIONS 348

11.1.1 Creating Symbolic Objects 348
11.1.2 Creating Symbolic Expressions 350
11.1.3 The findsym Command and the Default Symbolic

11.2

Variable 353
CHANGING THE FORM OF AN EXISTING SYMBOLIC EXPRESSION 354

11.2.1 Thecollect, expand,and factor Commands 354
11.2.2 The simplify and simple Commands 356
11.2.3 The pretty Command 357

11.3
11.4
11.5
11.6
11.7
11.8
11.9

SOLVING ALGEBRAIC EQUATIONS 358

DIFFERENTIATION 363

INTEGRATION 365

SOLVING AN ORDINARY DIFFERENTIAL EQUATION 366
PLOTTING SYMBOLIC EXPRESSIONS 369

NUMERICAL CALCULATIONS WITH SYMBOLIC EXPRESSIONS 372
EXAMPLES OF MATLAB APPLICATIONS 376

11.10 PROBLEMS 384
Appendix: Summary of Characters, Commands, and

Functions 393

Answers to Selected Problems www.wiley.com/college/gilat

Index

401

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

MATLAB is a powerful language for technical computing. The name MATLAB
stands for MATrix LABoratory, because its basic data element is a matrix (array).
MATLAB can be used for math computations, modeling and simulations, data
analysis and processing, visualization and graphics, and algorithm development.

MATLAB is widely used in universities and colleges in introductory and
advanced courses in mathematics, science, and especially engineering. In industry
the software is used in research, development, and design. The standard
MATLAB program has tools (functions) that can be used to solve common
problems. In addition, MATLAB has optional toolboxes that are collections of
specialized programs designed to solve specific types of problems. Examples
include toolboxes for signal processing, symbolic calculations, and control
systems.

Until recently, most of the users of MATLAB have been people with
previous knowledge of programming languages such as FORTRAN and C who
switched to MATLAB as the software became popular. Consequently, the
majority of the literature that has been written about MATLAB assumes that the
reader has knowledge of computer programming. Books about MATLAB often
address advanced topics or applications that are specialized to a particular field.
Today, however, MATLAB is being introduced to college students as the first (and
often the only) computer program they will learn. For these students there is a
need for a book that teaches MATLAB assuming no prior experience in computer
programming.

The Purpose of This Book

MATLAB: An Introduction with Applications is intended for students who are
using MATLAB for the first time and have little or no experience in computer
programming. It can be used as a textbook in freshmen engineering courses or in
workshops where MATLAB is being taught. The book can also serve as a
reference in more advanced science and engineering courses where MATLAB is
used as a tool for solving problems. It also can be used for self-study of MATLAB
by students and practicing engineers. In addition, the book can be a supplement or
a secondary book in courses where MATLAB is used but the instuctor does not
have the time to cover it extensively.

Topics Covered
MATLAB is a huge program, and therefore it is impossible to cover all of it in one
book. This book focuses primarily on the foundations of MATLAB. The

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

assumption is that once these foundations are well understood, the student will be
able to learn advanced topics easily by using the information in the Help menu.

The order in which the topics are presented in this book was chosen
carefully, based on several years of experience in teaching MATLAB in an
introductory engineering course. The topics are presented in an order that allows
the student to follow the book chapter after chapter. Every topic is presented
completely in one place and then used in the following chapters.

The first chapter describes the basic structure and features of MATLAB and
how to use the program for simple arithmetic operations with scalars as with a
calculator. Script files are introduced at the end of the chapter. They allow the
student to write, save, and execute simple MATLAB programs. The next two
chapters are devoted to the topic of arrays. MATLAB’s basic data element is an
array that does not require dimensioning. This concept, which makes MATLAB a
very powerful program, can be a little difficult to grasp for students who have only
limited lsmowledge of and experience with linear algebra and vector analysis. The
concept of arrays is introduced gradually and then explained in extensive detail.
Chapter 2 describes how to create arrays, and Chapter 3 covers mathematical
operations with arrays.

Following the basics, more advanced topics that are related to script files
and input and output of data are presented in Chapter 4. This is followed by
coverage of two-dimensional plotting in Chapter 5. Programming with MATLAB
is introduced in Chapter 6. This includes flow control with conditional statements
and loops. User-defined functions, anonymous functions, and function functions
are covered next in Chapter 7. The coverage of function files (user-defined
functions) is intentionally separated from the subject of script files. This has
proven to be easier to understand by students who are not familiar with similar
concepts from other computer programs.

The next three chapters cover more advanced topics. Chapter 8 describes
how MATLAB can be used for carrying out calculations with polynomials, and
how to use MATLAB for curve fitting and interpolation. Chapter 9 covers
applications of MATLAB in numerical analysis. It includes solving nonlinear
equations, finding minimum or a maximum of a function, numerical integration,
and solution of first-order ordinary differential equations. Chapter 10 describes
how to produce three-dimensional plots, an extension of the chapter on two-
dimensional plots. Chapter 11 covers in great detail how to use MATLAB in
symbolic operations.

The Framework of a Typical Chapter

In every chapter the topics are introduced gradually in an order that makes the
concepts easy to understand. The use of MATLAB is demonstrated extensively
within the text and by examples. Some of the longer examples in Chapters 1-3 are
titled as tutorials. Every use of MATLAB is printed with a different font and with
a gray background. Additional explanations appear in boxed text with a white
background. The idea is that the reader will execute these demonstrations and

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

tutorials in order to gain experience in using MATLAB. In addition, every chapter
includes formal sample problems that are examples of applications of MATLAB
for solving problems in math, science, and engineering. Each example includes a
problem statement and a detailed solution. Some sample problems are presented
in the middle of the chapter. All of the chapters (except Chapter 2) have a section
at the end with several sample problems of applications. It should be pointed out
that problems with MATLAB can be solved in many different ways. The solutions
of the sample problems are written such that they are easy to follow. This means
that in many cases the problem can be solved by writing a shorter, or sometimes
“arickier,” program. The students are encouraged to &y to write their own solu-
tions and compare the end results. At the end of each chapter there is a set of
homework problems. They include general problems from math and science and
problems from different disciplines of engineering.

Symbolie Calculations

MATLAB is essentially a software for numerical calculations. Symbolic math
operations, however, can be executed if the Symbolic Math toolbox is installed.
The Symbolic Math toolbox is included in the student version of the software and
can be added to the standard program.

Software and Hardware

The MATLAB program, like most other software, is continually being developed
and new versions are released frequently. This book covers MATLAB Version
8.2.0.701, Release 2013b. It should be emphasized, however, that the book covers
the basics of MATLAB, which do not change much from version to version. The
book covers the use of MATLAB on computers that use the Windows operating
system. Everything is essentially the same when MATLAB is used on other
machines. The user is referred to the documentation of MATLAB for details on
using MATLAB on other operating systems. It is assumed that the software is
installed on the computer, and the user has basic lnowledge of operating the
computer.

The Order of Topics in the Book

It is probably impossible to write a textbook where all the subjects are presented
in an order that is suitable for everyone. The order of topics in this book is such
that the fundamentals of MATLAB are covered first (arrays and array operations),
and, as mentioned before, every topic is covered completely in one location,
which makes the book easy to use as a reference. The order of the topics in this
fifth edition is the same as in the previous edition. Programming is introduced
before user-defined functions. This allows using programming in user-defined
functions. Also, applications of MATLAB in numerical analysis follow Chapter 8
which covers polynomials, curve fitting, and interpolation.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1
Starting with
MATLAB

This chapter begins by describing the characteristics and purpose of the different
windows in MATLAB. Next, the Command Window is introduced in detail. The
chapter shows how to use MATLAB for arithmetic operations with scalars in
much to the way that a calculator is used. This includes the use of elementary
math functions with scalars. The chapter then shows how to define scalar vari-
ables (the assigmnent operator) and how to use these variables in arithmetic calcu-
lations. The last section in the chapter introduces script files. It shows how to
write, save, and execute simple MATLAB programs.

1.1 STARTING MATLAB, MATLAB WINDOWS

It is assumed that the software is installed on the computer, and that the user can
start the program. Once the program starts, the MATLAB desktop window opens
with the default layout, Figure 1-1. The layout has a Toolstrip at the top, the Cur-
rent Folder Toolbar below it, and four windows underneath. At the top of the
Toolstrip there are three tabs: HOME, PLOTS, and APPS. Clicking on the tabs
changes the icons in the Toolstrip. Commonly, MATLAB is used with the HOME
tab selected. The associated icons are used for executing various commands, as
explained later in this chapter. The PLOTS tab can be used to create plots, as
explained in Chapter 5 (Section 5.12), and the APPS tab can be used for opening
additional applications and Toolboxes of MATLAB.

The default layout

The default layout (Figure 1-1) consists of the following four windows that are
displayed under the Toolstrip: the Command Window (larger window at the cen-
ter), the Current Folder Window (on the left) and the Workspace and Command
History windows (on the right). A list of several MATLAB windows and their
purposes is given in Table 1-1.

Four of the windows—the Command Window, the Figure Window, the Editor
Window, and the Help Window—are used extensively throughout the book and

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Starting with MATLAB

& MATIAR R2013b o @ -
B eSS BT - |
A Lot e (1] 7 New Variable Anayze Code ‘@ (% communty
Bl - (5] Find Files &1 | % G E @ rreterences W2 =

[} wpen Variable ~ 7 Run and Time s = Request Support
% &’ Layout |5 setpath Help —

New Mew ®@pen || compare Import Save &
- Add-Ons v

Seript ¥ Bata Workspace [ClearWorkspace v |7 Clear Commands v

ENVIRONMENT RESGURGES

® Workspace

Name Value

Figure 1-1: The default view of MATLAB desktop.

are briefly described on the following pages. More detailed descriptions are
included in the chapters where they are used. The Command History Window,
Current Folder Window, and the Workspace Window are described in Sections
1.2, 1.8.4, and 4.1, respectively.

Command Window: The Command Window is MATLAB’s main window and
opens when MATLARB is started. It is convenient to have the Command Window
as the only visible window. This can be done either by closing all the other win-
dows, or by selecting Command Window Only in the menu that opens when the
Layout icon on the Toolstrip is selected. To close a window, click on the pull-
down menu at the top right-hand side of the window and then select Close. Work-
ing in the Command Window is described in detail in Section 1.2.

Table 1-1: MATLAB windows

Window Purpose

Command Window Main window, enters variables, runs
programs.

Figure Window Contains output from graphic
commands.

Editor Window Creates and debugs script and

function files.

Help Window Provides help information.

Command History Window | Logs commands entered in the
Command Window.

www.it-ebooks.info

http://www.it-ebooks.info/

1.1 Starting MATLAB, MATLAB Windows

Table 1-1: MATLAB windows

Window Purpose

Workspace Window Provides information about the
variables that are stored.

Current Folder Window Shows the files in the current folder.

Figure Window: The Figure Window opens automatically when graphics com-
mands are executed, and contains graphs created by these commands. An example
of a Figure Window is shown in Figure 1-2. A more detailed description of this
window is given in Chapter 5.

Figure 1 I =& di-l1

Eile Edit View Insert Teels Desktep Window Help i
ODgde | RKOTDEL- |2 0EH | ad

Plet of the functien 3(::(1 ‘c-s(x}
T T T

40

Figure 1-2: Example of a Figure Window.

Editor Window: The Editor Window is used for writing and editing programs.
This window is opened by clicking on the New Script icon in the Tools#ip, or by
clicking on the New icon and then selecting Script from the menu that opens. An
example of an Editor Window is shown in Figure 1-3. More details on the Editor
Window are given in Section 1.8.2, where it is used for writing script files, and in
Chapter 7, where it is used to write function files.

Help Window: The Help Window contains help information. This window can
be opened from the Help icon in the Toolstrip of the Command Window or the
toolbar of any MATLAB window. The Help Window is interactive and can be
used to obtain information on any feature of MATLAB. Figure 1-4 shows an open
Help Window.

When MATLAB is started for the first time, the screen looks like that shown
in Figure 1-1. For most beginners it is probably more convenient to close all the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Starting with MATLAB

Editer - Unfitled3*

+*

- @ ['c] Fint Files

 [i5) compare

™
Q @ E Run Section ‘

New Save EDRIT| NAVIGATE Breakpoints ~ Run R,m:l and Run and @Aﬂvnnce
A L = ‘ ~ Y v Tme Adamce |
FILE BREAKPOINTS | RUN

“[Untitled3®_ x|

1 % Exarple of 2 script file. L
2 % This pregram caiculates the reets ef a guadratic equatien:

3 3 a*x"2 + ®*x +tc = 0

4 a=4; b=-9; c=-17.5;

5 PiS=sqrt (B Z-4*a*c);

& —b+dis) / (Z*a} -
o -b-dis)/ (2xa} -

| script [tn 7 Col 18
-
Figure 1-3: Example of an Editor Window.
€) Help - {’:' &l u
s f-@ | vatas x| + | HOAO -~
-

v

>
>
>
>
>
>
>
>

Contents

Bocumentalion Ceuter

e

Getting Started with MATLAS
Examples

Releaze Nales

Funckeons

Language Fundamentals
Malliematics

Craphics

Programming Secripie and Funchons
Dafa and Fe Management

GUI Buikding

Advanced Software Development

Deskiop Envirenmend

Search Documentation

@

MATLAB

Gelling Stailed Examples Release Nofes

» Language Fundamentals
Syntax, operatols, data types, array idexing and manipulafion

> Mathematics
Linzar algebra. basic
and othey

tatistics, diff and integrals, Fourier

n

> Graphics
Twio- and thres-dimensional plels, dala expleratien and visualizalien

technigues, images, printing, and graphics ebjecls

> Programming Scripts and Functions
Program fites, control flaw, editing, dedugging

> Data and File Management
Dala imporl and expmi, werkspace, files and felders

» GUI Building
Application develspment using GUIBE and callbache

> Advanced Software Development
> unil tesling;

®bjecl-criented pregramming; code per

Java® C/C++, NET and other languages

rogram Files/MATLAB/R2013b/help/matlab/release-notes.html

Figure 1-4: The Help Window.

www.it-ebooks.info

http://www.it-ebooks.info/

1.2 Working in the Command Window

windows except the Command Window. The closed windows can be reopened by
selecting them from the layout icon in the Toolstrip. The windows shown in Fig-
ure 1-1 can be displayed by clicking on the layout icon and selecting Default in
the menu that opens. The various windows in Figure 1-1 are docked to the desk-
top. A window can be undocked (become a separate, independent window) by
dragging it out. An independent window can be redocked by clicking on the pull-
down menu at the top right-hand side of the window and then selecting Dock.

1.2 WORKING IN THE COMMAND WINDOW

The Command Window is MATLAB’s main window and can be used for execut-
ing commands, opening other windows, running programs written by the user, and
managing the software. An example of the Command Window, with several sim-
ple commands that will be explained later in this chapter, is shown in Figure 1-5.

A .
4\ MATLAB R20136 [E=RE=n
3 AT s] 1] Lz, New Variable s Analyze Code - % Community
s O U [endFies e = e == @ preferences. o)
11 Open Variable ~ k> Run and Time =} Request Support
New New Open |- Compare Import Save Layout [SetPath Help —
Script = - . Data Workspace (%) Clear Workspace = |7 Clear Commands v+ ~ ChAdEOns v
FILE VARIABLE CODE ENVIRGNMENT RESOURGES N
T L b Cov Users b gilatl » Decuments » MATLAB -
S5 2% (443}
ans =
14
> a=5; .
»> b=3; To type a command the cursor is placed

>> a*b

/ next to the command prompt (>>).
foos> | -

Figure 1-5: The Command Window.

Notes for working in the Command Window:

¢ Totype a command, the cursor must be placed next to the command prompt (>>).

¢ Once a command is typed and the Enter key is pressed, the command is executed.
However, only the last command is executed. Everything executed previously
(that might be still displayed) is unchanged.

¢ Several commands can be typed in the same line. This is done by typing a comma
between the commands. When the Enter key is pressed, the commands are exe-
cuted in order from left to right.

¢ It is not possible to go back to a previous line that is displayed in the Command
Window, make a correction, and then re-execute the command.

www.it-ebooks.info

http://www.it-ebooks.info/

10

* A previously typed command can be recalled to the command prompt with the up-
arrow key (4). When the command is displayed at the command prompt, it can

be modified if needed and then executed. The down-arrow key (&) can be used to
move down the list of previously typed commands.

e If a command is too long to fit in one line, it can be continued to the next line by
typing three periods ... (called an ellipsis) and pressing the Enter key. The con-
tinuation of the command is then typed in the new line. The command can con-
tinue line after line up to a total of 4,096 characters.

The semicolon (;):

When a command is typed in the Command Window and the Enter key is
pressed, the command is executed. Any output that the command generates is dis-
played in the Command Window. If a semicolon (;) is typed at the end of a com-
mand, the output of the command is not displayed. Typing a semicolon is useful
when the result is obvious or lsmown, or when the output is very large.

If several commands are typed in the same line, the output from any of the
commands will not be displayed if a semicolon instead of a comma is typed
between the commands.

Typing %:
When the symbol % (percent) is typed at the beginning of a line, the line is desig-
nated as a comment. This means that when the Enter key is pressed the line is not
executed. The % character followed by text (comment) can also be typed after a
command (in the same line). This has no effect on the execution of the command.
Usually there is no need for comments in the Command Window. Comments,
however, are frequently used in a program to add descriptions or to explain the
program (see Chapters 4 and 6).

The clc command:

The clc command (type clc and press Enter) clears the Command Window.
After typing in the Command Window for a while, the display may become very
long. Once the clc command is executed, a clear window is displayed. The com-
mand does not change anything that was done before. For example, if some vari-
ables were defined previously (see Section 1.6), they still exist and can be used.
The up-arrow key can also be used to recall commands that were typed before.

The Command History Window:

The Command History Window lists the commands that have been entered in the
Command Window. This includes commands from previous sessions. A com-
mand in the Command History Window can be used again in the Command Win-
dow. By double-clicking on the command, the command is reentered in the
Command Window and executed. It is also possible to drag the command to the
Command Window, make changes if needed, and then execute it. The list in the
Command History Window can be cleared by selecting the lines to be deleted and

www.it-ebooks.info

Chanpter 1: Starting with MATLAB

http://www.it-ebooks.info/

1.3 Arithmetic Operations with Scalars 11

then right-clicking the mouse and selecting Delete Selection. The whole history
can be deleted by right-clicking the mouse and selecting choose Clear Command
History in the menu that opens.

1.3 ARITHMETIC OPERATIONS WITH SCALARS

In this chapter we discuss only arithmetic operations with scalars, which are num-
bers. As will be explained later in the chapter, numbers can be used in arithmetic
calculations directly (as with a calculator) or they can be assigned to variables,
which can subsequently be used in calculations. The symbols of arithmetic opera-
tions are:

Operation Symbol Example
Addition + 543
Subtraction - 5-3
Multiplication * 5*3

Right division / 5/3

Left division \ 5\3=3/5
Exponentiation A 5~ 3 (means 5° = 125)

It should be pointed out here that all the symbols except the left division are
the same as in most calculators. For scalars, the left division is the inverse of the
right division. The left division, however, is mostly used for operations with
arrays, which are discussed in Chapter 3.

1.3.1 Order of Precedence

MATLAB executes the calculations according to the order of precedence dis-
played below. This order is the same as used in most calculators.

Precedence Mathematical Operation

First Parentheses. For nested parentheses, the innermost
are executed first.

Second Exponentiation.

Third Multiplication, division (equal precedence).

Fourth Addition and subtraction.

In an expression that has several operations, higher-precedence operations are
executed before lower-precedence operations. If two or more operations have the
same precedence, the expression is executed from left to right. As illustrated in the
next section, parentheses can be used to change the order of calculations.

www.it-ebooks.info

http://www.it-ebooks.info/

12

1.3.2 Using MATLAB as a Calculator

The simplest way to use MATLAB is as a calculator. This is done in the Com-
mand Window by typing a mathematical expression and pressing the Enter key.
MATLAB calculates the expression and responds by displaying ans = followed
by the numerical result of the expression in the next line. This is demonstrated in
Tutorial 1-1.

Tutorial 1-1: Using MATLAB as a calculator.

>> 7+8/2 4—[Type and press Enter.]

ans 11 (8/2is executed first. |

>> (7+8)/2 4—[Type and press Enter.]

ans = (7+8 is executed first. |
7.5000

>> 4+5/3+2

ans = [5/3 is executed first. |
7.6667

>> 5%3/2

ans = [573 is executed first, /2 is executed next.]

62.5000

>> 277(1/3)+3270.2

1/3 is executed first, 27°(1/3) and 3270.2 are
ans = .
5 executed next, and + is executed last.
>> 2771/3+3270.2 2771 and 3270.2 are executed first, /3 is exe-
ans = cuted next, and + is executed last.
11

>> 0.7854-(0.7854) "3/ (1%2%3)+0.785"5/ (1*2*3%4%*5) _ .,

-(0.785) "7/ (1*2*3*%4*5%6*7) .
Type three periods ... (and press Enter) to
ans = continue the expression on the next line.
0.7071
5> [The last expression is the first four]
terms of the Taylor series for sin(®/4).

1.4 DISPLAY FORMATS

The user can control the format in which MATLAB displays output on the screen.
In Tutorial 1-1, the output format is fixed-point with four decimal digits (called
short), which is the default format for numerical values. The format can be

www.it-ebooks.info

Chapter 1: Starting with MATLAB

http://www.it-ebooks.info/

1.4 Display Formats

13

changed with the format command. Once the format command is entered, all
the output that follows is displayed in the specified format. Several of the avail-

able formats are listed and described in Table 1-2.

MATLAB has several other formats for displaying numbers. Details of these
formats can be obtained by typing help format in the Command Window. The
format in which numbers are displayed does not affect how MATLAB computes

and saves numbers.

Table 1-2: Display formats

Command Description Example
format short Fixed-point with 4 decimal |>> 290/7
digits for: e ©
0.001 < number < 1000 41.4286
Otherwise display format
short e.
format long Fixed-point with 15 decimal |>> 290/7
digits for: ansgs
0.001 < number < 100 41.428571428571431
Otherwise display format
longe.
format short e |Scientific notation with 4 >> 290/7
decimal digits. thd =
4.1429e+001
format longe Scientific notation with 15 |>> 290/7
decimal digits. ADSS
4.142857142857143e+001
format short g |Best of 5-digit fixed or >> 290/7
floating point. (e &
s 41.429
format longg Best of 15-digit fixed or >> 290/7
floating point. Lt T
41.4285714285714
format bank Two decimal digits. >> 290/7
ans =

41.43

format compact

Eliminates empty lines to allow more lines with
information displayed on the screen.

format loose

Adds empty lines (opposite of compact).

www.it-ebooks.info

http://www.it-ebooks.info/

14

1.5 ELEMENTARY MATH BUILT-IN FUNCTIONS

In addition to basic arithmetic operations, expressions in MATLAB can include
functions. MATLAB has a very large library of built-in functions. A function has
a name and an argument in parentheses. For example, the function that calculates
the square root of a number is sqrt (x) . Its name is sqgrt, and the argument is
x. When the function is used, the argument can be a number, a variable that has
been assigned a numerical value (explained in Section 1.6), or a computable
expression that can be made up of numbers and/or variables. Functions can also
be included in arguments, as well as in expressions. Tutorial 1-2 shows examples
of using the function sqrt (x) when MATLAB is used as a calculator with sca-
lars.

Tutorial 1-2: Using the sgrt built-in function.

>> sqrt(64) [Argument is a number.]

ans =
8

>> s8qrt(50+14*3)

[Argument is an expression.]

ans =
9.5917

>> 8qrt(54+9*sqrt (100))

[Argument includes a function.]

ans =
12

>> (15+600/4) /sqrt(121)

ans =
15

(Function is included in an expression.]

>>

Some commonly used elementary MATLAB mathematical built-in functions
are given in Tables 1-3 through 1-5. A complete list of functions organized by cat-
egory can be found in the Help Window.

Table 1-3: Elementary math functions

Chapter 1: Starting with MATLAB

Function

Description

Example

sgrt (x)

Square root.

>> sqrt(81)
ans =
9

nthroot (x,n)

Real nth root of a real number x.
(If x is negative » must be an

>> nthroot (80,5)
ans =

odd integer.) 2.4022
exp (x) Exponential (e*). >> exp(5)
ans =
148.4132

www.it-ebooks.info

http://www.it-ebooks.info/

1.5 Elementary Math Built-in Functions

15

Table 1-3: Elementary math functions (Continued)

Function Description Example
abs (x) Absolute value. >> abs (-24)
ans =
24
log (x) Natural logarithm. >> 1og(1000)
Base e logarithm (In). el
6.9078
log10(x) Base 10 logarithm. >> 1og10(1000)
ans =
3.0000

factorial (x)

The factorial function x!
(x must be a positive integer.)

>> factorial (5)
ans =
120

Table 1-4: Trigonometric math functions

Function Description Example
sin (x) Sine of angle x (x in radians). >> sin(pi/6)
i Sine of angle in degrees). Gy =
sind (x) glex (xi grees) 5 5000
cos (x) Cosine of angle x (x in radians). >> cosd (30)
d Cosine of angl in d 3 B &
cosd (x) osine of angle x (x in degrees) 5. 8660
tan (x) Tangent of angle x (x in radians). >> tan(pi/6)
tand (x) Tangent of angle x (x in degrees). Gy &
0.5774
cot (x) Cotangent of angle x (x in radians). | >> cotd(30)
cotd (x) Cotangent of angle x (x in degrees). | 3"® 17321

The inverse trigonometric functions are asin (x), acos (x), atan (x),
acot (x) for the angle in radians; and asind (x), acosd (x), atand (x),
acotd (x) for the angle in degrees. The hyperbolic trigonometric functions are
sinh(x), cosh(x), tanh(x), and coth (x) . Table 1-4 uses pi, which is
equal to 7t (see Section 1.6.3).

Table 1-5: Rounding functions

Function Description Example
round (x) Round to the nearest integer. >> round(17/5)
ans =
3
fix(x) Round toward zero. >> £ix(13/5)
ans =
2

www.it-ebooks.info

http://www.it-ebooks.info/

16

Table 1-5: Rounding functions (Continued)

Function Description Example
ceil (x) Round toward infinity. >> ceil(11/5)
ans =
3
floor (x) Round toward minus infinity. >> floor (-9/4)
ans =
-3
rem(x,y) Retumns the remainder after x is | >> rem(13,5)
divided by y. ans =3
sign (x) Signum funckion. Retumns 1 if >> sign(5)
x>0,-1ifx<0,and 0 if ans i
x = 0.

1.6 DEFINING SCALAR VARIABLES

A variable is a name made of a letter or a combination of several letters (and dig-
its) that is assigned a numerical value. Once a variable is assigned a numerical
value, it can be used in mathematical expressions, in functions, and in any MAT-
LAB statements and commands. A variable is actually a name of a memory loca-
tion. When a new variable is defined, MATLAB allocates an appropriate memory
space where the variable’s assignment is stored. When the variable is used the
stored data is used. If the variable is assigned a new value the content of the
memory location is replaced. (In Chapter 1 we consider only variables that are
assigned numerical values that are scalars. Assigning and addressing variables
that are arrays is discussed in Chapter 2.)

1.6.1 The Assignment Operator

In MATLAB the = sign is called the assignment operator. The assignment opera-
tor assigns a value to a variable.

Variable name = A numerical value, or a computable expression

¢ The left-hand side of the assignment operator can include only one variable name.
The right-hand side can be a number, or a computable expression that can include
numbers and/or variables that were previously assigned numerical values. When
the Enter key is pressed the numerical value of the right-hand side is assigned to
the variable, and MATLAB displays the variable and its assigned value in the next
two lines.

The following shows how the assignment operator works.

www.it-ebooks.info

Chapter 1: Starting with MATLAB

http://www.it-ebooks.info/

17

1.6 Defining Scalar Variables

>> x=15 [The number 15 is assigned to the variable x.]
X = [MATLAB displays the variable
s name and its assigned value.

>> x=3%x-12 : :
A new value is assigned to x. The

* = new value is 3 times the previous
33 ;
value of x minus 12.

>>

The last statement (x = 3x - 12) illustrates the difference between the assignment
operator and the equal sign. If in this statement the = sign meant equal, the value

of x would be 6 (solving the equation for x).
The use of previously defined variables to define a new variable is demon-

strated next.
>> a=12 | Assign12toa. |
a =
12
>> B=4 Assign 4 to B.
B =
4

Assign the value of the expres-
sion on the right-hand side to

C = .
18 the variable C.

>> C=(a-B)+40-a/B*10

e If a semicolon is typed at the end of the command, then when the Enter key is
pressed, MATLAB does not display the variable with its assigned value (the vari-
able still exists and is stored in memory).

» If a variable already exists, typing the variable’s name and pressing the Enter key
will display the variable and its value in the next two lines.

As an example, the last demonstration is repeated below using semicolons.

>> a=12; The variables a, B, and C are defined
>> B=4; but are not displayed, since a semicolon

>> C=(a-B)+40-a/B*10; is typed at the end of each statement.

C
;: The value of the variable C is displayed
18 by typing the name of the variable.

» Several assignments can be typed in the same line. The assignments must be sepa-
rated with a comma (spaces can be added after the comma). When the Enter key
is pressed, the assignments are executed from left to right and the variables and

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Starting with MATLAB

their assignments are displayed. A variable is not displayed if a semicolon is typed
instead of a comma. For example, the assignments of the variables a, B, and C
above can all be done in the same line.

>> a=12, B=4; C=(a-B)+40-a/B*10

a =

12 . . : :
The variable B is not displayed because a semi-

£ 18 colon is typed at the end of the assignment.

» A variable that already exists can be reassigned a new value. For example:

>> ABB=72; [A value of 72 is assigned to the variable ABB. |
>> ABB=9; [A new value of 9 is assigned to the variable ABB. |
>> ABB
ABB - \ The current value of the variable is dis-

9 played when the name of the variable is
o> typed and the Enter key is pressed.

* Once a variable is defined it can be used as an argument in functions. For exam-
ple:

>> x=0.75;

>> E=sin(x) “2+cos(x) "2
E =

1
>>

1.6.2 Rules About Variable Names

A variable can be named according to the following rules:
* Must begin with a letter.

e Can be up to 63 characters long.
» (Can contain letters, digits, and the underscore character.
e Cannot contain punctuation characters (e.g., period, comma, semicolon).

* MATLAB is case-sensitive: it distinguishes between uppercase and lowercase let-
ters. For example, AA, Aa, aA, and aa are the names of four different variables.

* No spaces are allowed between characters (use the underscore where a space is
desired).

* Avoid using the name of a built-in function for a variable (i.e., avoid using cos,
sin, exp, sqrt, etc.). Once a function name is used to for a variable name, the
function cannot be used.

www.it-ebooks.info

http://www.it-ebooks.info/

1.7 Useful Commands for Managing Variables

19

1.6.3 Predefined Variables and Keywords

There are 20 words, called keywords, that are reserved by MATLAB for various
purposes and cannot be used as variable names. These words are:

break case catch classdef continue else elseif
end for function global if otherwise parfor
persistent return spmd switch try while

When typed, these words appear in blue. An error message is displayed if the user
tries to use a keyword as a variable name. (The keywords can be displayed by typ-
ing the command iskeyword.)

A number of frequently used variables are already defined when MATLAB is
started. Some of the predefined variables are:

ans A variable that has the value of the last expression that was not assigned to a
specific variable (see Tutorial 1-1). If the user does not assign the value of
an expression to a variable, MATLAB automatically stores the result in
ans.

pi The number x.

eps The smallest difference between two numbers. Equal to 2°(—52), which is
approximately 2.2204e—016.

inf Used for infinity.

i Defined as ~~1, which is: 0 + 1.0000i.
j Same as i.

NaN Stands for Not-a-Number. Used when MATLAB cannot determine a valid
numeric value. Example: 0/0.

The predefined variables can be redefined to have any other value. The vari-
ables pi, eps, and inf, are usually not redefined since they are frequently used
in many applications. Other predefined variables, such as i and j, are sometime
redefined (commonly in association with loops) when complex numbers are not
involved in the application.

1.7 USEFUL COMMANDS FOR MANAGING VARIABLES

The following are commands that can be used to eliminate variables or to obtain
information about variables that have been created. When these commands are
typed in the Command Window and the Enter key is pressed, either they provide
information, or they perform a task as specified below.

Command Outcome

clear Removes all variables from the memory.

www.it-ebooks.info

http://www.it-ebooks.info/

20

Command Outcome

clear x y 2z Removes only variables x, y, and z from the
memory.

who Displays a list of the variables currently in the
memory.

whos Displays a list of the variables currently in the

memory and their sizes together with informa-
#on about their bytes and class (see Section 4.1).

1.8 SCRIPT FILES

So far all the commands were typed in the Command Window and were executed
when the Enter key was pressed. Although every MATLAB command can be
executed in this way, using the Command Window to execute a series of com-
mands—especially if they are related to each other (a program)—is not conve-
nient and may be difficult or even impossible. The commands in the Command
Window cannot be saved and executed again. In addition, the Command Window
is not interactive. This means that every time the Enter key is pressed only the
last command is executed, and everything executed before is unchanged. If a
change or a correction is needed in a command that was previously executed and
the result of this command is used in commands that follow, all the commands
have to be entered and executed again.

A different (better) way of executing commands with MATLAB is first to
create a file with a list of commands (program), save it, and then run (execute) the
file. When the file runs, the commands it contains are executed in the order that
they are listed. If needed, the commands in the file can be corrected or changed
and the file can be saved and run again. Files that are used for this purpose are
called script files.

IMPORTANT NOTE: This section covers only the minimum required in
order to run simple programs. This will allow the student to use script files
when practicing the material that is presented in this and the next two chap-
ters (instead of typing repeatedly in the Command Window). Script files are
considered again in Chapter 4, where many additional topics that are essen-
tial for understanding MATLAB and writing programs in script file are cov-
ered.

1.8.1 Notes About Script Files
e A script file is a sequence of MATLAB commands, also called a program.

e When a script file runs (is executed), MATLAB executes the commands in the
order they are written, just as if they were typed in the Command Window.

www.it-ebooks.info

Chanpter 1: Starting with MATLAB

http://www.it-ebooks.info/

1.8 Script Files

21

e When a script file has a command that generates an output (e.g., assignment of
a value to a variable without a semicolon at the end), the output is displayed in
the Command Window.

e Using a script file is convenient because it can be edited (corrected or other-
wise changed) and executed many times.

¢ Script files can be typed and edited in any text editor and then pasted into the
MATLAB editor.

e Script files are also called M-files because the extension .m is used when they are
saved.

1.8.2 Creating and Saving a Script File

In MATLARB script files are created and edited in the Editor/Debugger Window.
This window is opened from the Command Window by clicking on the New
Script icon in the Toolstrip, or by clicking New in the Toolstrip and then selecting
Script from the menu that open. An open Editor/Debugger Window is shown in
Figure 1-6.

4
Editer - Untitled o | B [t
EBITOR BAEHLBELSE @Mmm\domv@lm
'L~ [=] [glFindFikes T B] - s =] B =
of O & LL,J e L;L & @ (| @ [=] Run Section
1| Compare + Comment % o .
New Open Save = ;:o a8 % NAVISATE | Breakpoints Run Runand Runand Sl Advance
= i s (=4 Print = Indent I—il w2 | = - k4 Time Advance
FILE EDIT BREAKFPOINTS RUN
Untitled =
1 \ =

The commands in the script file are

- typed line by line. The lines are num-
Line . .

bered automatically. A new line
number

starts when the Enter key is pressed.

script Ln 1 Col 1

Figure 1-6: The Editor/Debugger Window.

The Editor/Debugger Window has a Toolstrip at the top and three tabs EDI-
TOR, PUBLISH, and VIEW above it. Clicking on the tabs changes the icons in
the Toolstrip. Commonly, MATLAB is used with the HOME tab selected. The
associated icons are used for execuding various commands, as explained later in
the Chapter. Once the window is open, the commands of the script file are typed
line by line. MATLAB automatically numbers a new line every time the Enter
key is pressed. The commands can also be typed in any text editor or word proces-
sor program and then copied and pasted in the Editor/Debugger Window. An
example of a short program typed in the Editor/Debugger Window is shown in
Figure 1-7. The first few lines in a script file are typically comments (which are

www.it-ebooks.info

http://www.it-ebooks.info/

22

Chapter 1: Starting with MATLAB

not executed, since the first character in the line is %) that describe the program
written in the script file.

-
" Editer - CAMATLAB Besk Sth Edition\Chapter 1'Chapl_Examp_Lm (=] B -
EMTOR a5 & E;@ugsmmmm“-@m
I = =] Find Files Insert |5 M~ < =] s =])
= m H [E & & 25 | L) [L@ | =] Run Section
il compare ~ Comment % i3 % oo Go Ta + " =
New Open Save oy o Breakpoints Run Runand Runand l__d}Aﬂuance
- - ~ = Print = Indent |=| o5 =o \4 Find ~ - - Time Advance
FILE EDIT NAVIGATE | EREAKPOINTS \ RLUN
Chapl_Examp 1.m = \
O

o % E f a script file.
i z e es the roots of a guadratic equation: 'I'Ile Run icon.
4

5 - a=4; b=9; c=17.5: -—| Define three
& = DIS = =grt(b"~2-4%a*c); Variables
7= xl= (-b+DIS)/(2%a) . Comments.
t - \

x2 = (-b-DIS)/ (2*%a)
[Calculating the two roots. |
Ln 8 Col 20

Figure 1-7: A program typed in the Editor/Debugger Window.

Before a script file can be executed it has to be saved. This is done by click-
ing Save in the Toolskip and selecting Save As... from the menu that opens. When
saved, MATLAB adds the extension .m to the name. The rules for naming a script
file follow the rules of naming a variable (must begin with a letter, can include
digits and underscore, no spaces, and up to 63 characters long). The names of
user-defined variables, predefined variables, and MATLAB commands or func-
tions should not be used as names of script files.

1.8.3 Running (Executing) a Script File

A script file can be executed either directly from the Editor Window by clicking
on the Run icon (see Figure 1-7) or by typing the file name in the Command Win-
dow and then pressing the Enter key. For a file to be executed, MATLAB needs
to know where the file is saved. The file will be executed if the folder where the
file is saved is the current folder of MATLAB or if the folder is listed in the search
path, as explained next.

1.8.4 Current Folder

The current folder is shown in the “Current Folder” field in the desktop toolbar of
the Command Window, as shown in Figure 1-8. If an attempt is made to execute a
script file by clicking on the Run icon (in the Editor Window) when the current
folder is not the folder where the script file is saved, then the prompt shown in
Figure 1-9 opens. The user can then change the current folder to the folder where
the script file is saved, or add it to the search path. Once two or more different cur-
rent folders are used in a session, it is possible to switch from one to another in the

www.it-ebooks.info

http://www.it-ebooks.info/

1.8 Script Files

23

4 MATLABR2013b = | B]
HOME 2 G 4 @ 2 @ BrswichWindows v @lSear:h Dacumentation JJB
B B o [Lz, New Variable & Analyze Code . (o (% Community
= Gf L [Srnaries \% B = = (@ Bretees W2
[F+ open Variable v & Run and Time = Request Suppat
New New Open |_L:J Compare [mpart Save Layout l::]J Set Path Help
Script ¥ - Data Workspace [Clear Workspace ¥ [Clear Commands - ~ CpAddOns v
FiLE VARIABLE CODE ENVIRGNMENT RESOURCES |
&« aE b G Users b gilatl » Documents b MATLAB -
fr vy
[The current folder is shown here.
Peady

Figure 1-8: The Current folder field in the Command Window.

- =
MATLAB Editor X

i) File CA..k 5th Edition\Chapter 1\Chapl_Examp_1.m is not found
- r) in the current folder er on the MATLAB path.

To run this file, you can either change the MATLAB current felder eor add its
folder te the MATLAB path.

| Change Folder |[Add to Path][Cancel][Help]

Figure 1-9: Changing the current directory.

Current Folder field in the Command Window. The current folder can also be
changed in the Current Folder Window, shown in Figure 1-10, which can be
opened from the Desktop menu. The Current Folder can be changed by choosing
the drive and folder where the file is saved.

4 MATIAB R20132 = | B |

HOME L L L) & S SwichWindows = ()] search Documentation .DB

=4 &4 i | 7] 7. New Variable & Al Cod == (o] 5 i
= Q_F' 1 [l Find Files & g o tewvana B S o E (G} Preferences () 103 Commnty

:1? Open Variable ~ éf Run and Time 3 Reguest Support

New New Open |L|Compare Impoit Save - Layout [l Set Path Help —

Scrigt ¥ > Pata Workspace |/ Clear Workspace ~ (7 Clear Commands - ~ 0 7AddOns
FILE VARIABLE CODE ENVIRONMENT RESOURCES

4 = 7 » C: b Users b gilatl » Documents b MATLAB =

fx v

Click here

Click here to | [to browse Click here

to change
the folder.

0 up one for a folder.
evel in the
file system.

Ready

Figure 1-10: The Current Folder Window.

www.it-ebooks.info

http://www.it-ebooks.info/

24

Chapter 1: Starting with MATLAB

An alternative simple way to change the current folder is to use the cd com-
mand in the Command Window. To change the current folder to a different drive,
type cd, space, and then the name of the directory followed by a colon : and press
the Enter key. For example, to change the current folder to drive E (e.g., the flash
drive) type cd E:. If the script file is saved in a folder within a drive, the path to
that folder has to be specified. This is done by typing the path as a string in the cd
command. For example, cd ('E:\Chapter 1') sets the path to the folder
Chapter 1 in drive F. The following example shows how the current folder is
changed to be drive E. Then the script file from Figure 1-7, which was saved in
drive E as ProgramExample.m, is executed by typing the name of the file and
pressing the Enter key.

>> cd('E:\Chapter 2_)4 The current directory is changed to drive E.]

>> Chapl Exampl The script file is executed by typing the
x1 = name of the file and pressing the Enter key.
3.5000 .
x2 = The output generated by the script file (the roots x1
-1.2500 and x2) is displayed in the Command Window.

1.9 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 1-1: Trigonometric identity

A trigonometric identity is given by:
cos2¥ = tanx + sinx
2 2tanx
Verify that the identity is correct by calculaking each side of the equation, substi-

] L
tuting x = 5
Solution

The problem is solved by typing the following commands in the Command Win-
dow.

>> x=pi/5; Define x.

>> LHS=cos (x/2) "2 [Calculate the left-hand side.]
LHS =

0.9045
>> RHS=(tan(x)+sin(x))/(2*tan(x)) [Calculate the right-hand side.]

RHS =
0.9045

www.it-ebooks.info

http://www.it-ebooks.info/

1.9 Examples of MATLAB Applications 25

Sample Problem 1-2: Geometry and trigonometry

At each point where two circles are in contact,

they are tangent to each other. Determine the {
distance between the centers C, and Cy.

The radii of the circles are: \

R, = 16mm, R, = 6.5mm, R; = 12mm, and »
R, = 9.5mm.

Solution

Four circles are placed as shown in the figure. @

The lines that connect the centers of the circles C
create four triangles. In two of the triangles, 2

AC,C,C; and AC,C5C,, the lengths of all the sides ‘ &,
are known. This information is used to calculate

the angles y; and v, in these triangles by using the

law of cosines. For example, y; is calculated from: A %

(C,G3)* = (C,C3)?+(C,C5)2 —2(CC)(C, Cy)cosy,
Next, the length of the side C,C, is calculated by
considering the triangle AC,C,C;,. This is done, again, by using the law of cosines
(the lengths C;C, and C;C, are known and the angle v, is the sum of the angles vy,
and v,).

The problem is solved by writing the following program in a script file:

3]

% Solution of Sample Problem 1-2

R1=16; R2=6.5; R3=12; R4=9.5; | Define the R’s. |
C1C2=R1+R2; C1C3=R1+R3; ClC4=R1+R4; [Calculatethe]
C2C3=R2+R3; C3C4=R3+R4; lengths of the sides.

Gamal=acos ((C1C2"2+C1C3"2-C2C3"2)/ (2*C1C2*C1C3));
Gama2=acos ((C1C3°2+C1C4°2-C3C4"2)/ (2*C1C3*C1C4));

Gama3=Gamal+Gama2; [Calculate 7y, ¥,, and ¥;.]

C2C4=sqrt (C1C2"2+C1C4"2-2*C1C2*C1lC4*cos (Gama3))
[Calculate the length of side C,C,.]

When the script file is executed, the following (the value of the variable C2C4) is
displayed in the Command Window:

c2C4 =
33.5051

www.it-ebooks.info

http://www.it-ebooks.info/

26

Chapter 1: Starting with MATLAB

Sample Problem 1-3: Heat transfer

An object with an initial temperature of T, that is placed at time ¢ = 0 inside a
chamber that has a constant temperature of 7, will experience a temperature
change according to the equation

T =T,+(T,-T,)e"
where T'is the temperature of the object at time ¢, and k is a constant. A soda can at
a temperature of 120°F (after being left in the car) is placed inside a refrigerator
where the temperature is 38°F. Determine, to the nearest degree, the temperature

of the can after three hours. Assume & = 0.45. First define all of the variables and
then calculate the temperature using one MATLAB command.

Solution

The problem is solved by typing the following commands in the Command Win-
dow.

>> Ts=38; TO0=120; k=0.45; t=3;

>> T=round (Ts+ (T0-Ts) *exp (-k*t))

T = 59 \[Round to the nearest integer.]

Sample Problem 1-4: Compounded interest

The balance B of a savings account after ¢ years when a principal P is invested at
an annual interest rate and the interest is compounded » times a year is given by:

_ I nt
B = P(l + nj (1)
If the interest is compounded yearly, the balance is given by:

B=Pl+r) (2

Suppose $5,000 is invested for 17 years in one account for which the interest is
compounded yearly. In addition, $5,000 is invested in a second account in which
the interest is compounded monthly. In both accounts the interest rate is 8.5%.
Use MATLAB to determine how long (in years and months) it would take for the
balance in the second account to be the same as the balance of the first account
after 17 years.

Solution

Follow these steps:
(a) Calculate B for $5,000 invested in a yearly compounded interest account after
17 years using Equation (2).

www.it-ebooks.info

http://www.it-ebooks.info/

1.10 Problems 27

(b) Calculate ¢ for the B calculated in part (a), from the monthly compounded
interest formula, Equation (1).
(c) Determine the number of years and months that correspond to z.

The problem is solved by writing the following program in a script file:

% Solution of Sample Problem 1-4
P=5000; r=0.085; ta=17; n=12;

B=P* (1+r) “ta [Step (a): Calculate B from Eq. (2).]
t=1log (B/P) / (n*log(l+r/n)) Step (b): Solve Eq. (1)
for ¢, and calculate t
years=£fix(t) [Step (¢): Determine the number of years.]
months=ceil ((t-years) *12) [Determine the number of months.]

When the script file is executed, the following (the values of the variables B, t,
years, and months) is displayed in the Command Window:

>> format short g

B =
20011
t = The values of the variables B, t,
16.374 years, and months are displayed
years = (since a semicolon was not typed at the
16 end of any of the commands that calcu-
late the values).
months =

1.10 PROBLEMS

The following problems can be solved by writing commands in the Command
Window, or by wriking a program in a script file and then executing the file.

1. Calculate:

22 +5.12 44 99
@ S0 63 ®) =+ __W
2. Calculate:
412 — 412522 3 In(500)
(a) o (b)) ¥132+ >

www.it-ebooks.info

http://www.it-ebooks.info/

28

Chapter 1: Starting with MATLAB

10.

Calculate:

(@ 148-632 ®) 45(2& _ 4_62) _1065¢-15
(J13 +5)? 9.3

Calculate:

@) %2 +%'522;f'135' 12.5° () (592-242)/3+ (

Calculate:

(a) cos(%t) + tan(17—51t) sin(15°) (b) sin280° - %

Define the variable x as x = 6.7, then evaluate:

(@) 0.01x5—1.4x3+80x+16.7 (®) P +er—51/x

Define the variable ¢ as ¢ = 3.2, then evaluate:

@ 56— 9.81§ () 14e1isin2ns)

Define the variables x and y as x = 5.1 and y = 4.2, then evaluate:

3 Tx — x+y [x+y
a —xy— — + Jx b xy)2 — +

Define the variables q, b, ¢, and d as:

[+
a=12,b=56, c = ‘Z—‘; ,and d = Qlcll)— , then evaluate:

d-c

a . d—c .. ., T _a+b

@ 2+9-C-@-p) (®) e2b+in(jc—d+2

A sphere has a radius of 24 cm. A rectangular

prism has sides of @, a/2, and a/4. i

(a) Determine a of a prism that has the same | _--~ =
volume as the sphere. a

(b) Determine a of a prism that has the same
surface area as the sphere.

www.it-ebooks.info

log 1012890) 2
203

http://www.it-ebooks.info/

1.10 Problems 29

11.

12.

13.

14.

15.

16.

The arc length of a segment of a parabola 4BC of an y
ellipse with semi-minor axes a and b is given B
approximately by:
2 /B2

LABC = % /b2+16a2+g_aln(4a+b+l6az) " a

(a) Determine L, if a = 11in. and b = 9in. d . €3
fe——— p —|

Two trigonometric identities are given by:
(@) sin5x = 5sinx—20sin’x + 16sin’x (b) sinZxcos2x = #

For each part, verify that the identity is correct by calculating the values of the

left and right sides of the equation, substituting x = % .

Two trigonometric identities are given by:

— 3
(@ tan3x = % (b) cos4x = 8(cos*x— cos?x) + 1
For each part, verify that the identity is correct by calculating the values of the

left and right sides of the equation, substituting x = 24°.

Define two variables: alpha=7/6, and beta = 3n/8. Using these variables, show
that the following trigonometric identity is correct by calculating the values of
the left and right sides of the equation.

sino. + sinp = 25111(%@) °°S(a_gﬁ)

Given: Ixsinaxdx = % _xcoTsax . Use MATLAB to calculate the follow-
a
3n

ing definite integral: ITx sin(0.6x)dx .
n
3

In the triangle shown @ = 53 in.,, y = 42°, and

b = 6 in. Define a, y, and b as variables, and

then:

(a) Calculate the length 5 by using the Law of
Cosines.
(Law of Cosines: ¢z = a2+ b%—2abcosy)

(b) Calculate the angles B and v (in degrees) using
the Law of Cosines.

(c) Check that the sum of the angles is 180°.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: Starting with MATLAB

17. In the triangle shown a = 5in.,, b = 7 in,, and y = 25°. ¢
Define a, b, and y as variables, and then:
(a) Calculate the length of ¢ by substituting the variables in
the Law of Cosines.
(Law of Cosines: ¢ = a2+ b%-2abcosy)
(b) Calculate the angles o and B (in degrees) using the Law 5
of Sines. B
(¢) Verify the Law of Tangents by substituting the results
from part (b) into the right and left sides of the equation.
tan3(o-B) A
Law of Tangents: 2— O f
5@+B)]

atb
18. In the ice cream cone shown, L = 4 in. and 6 = 35°.
The cone is filled with ice cream such that the portion
above the cone is a hemisphere. Determine the volume of
the ice cream.

© 4
o v r ooy
(Se%e %%

o
5]

19. For the triangle shown, a = 48 mm, b = 34 mm, and
v = 83°. Define a, b, and vy as variables, and then:
(a) Calculate ¢ by substituting the variables in the Law
of Cosines.
(Law of Cosines: ¢ = a2+ b?-2abcosy)
(b) Calculate the radius r of the circle circumscrib-
ing the triangle using the formula:
5o abc
4 fs(s—a)(s—b)(s—c)

where s = (a+b+c)/2.

20. The parametric equations of a line in space are:
x=xytat, y=y,+bt ,and z = zy+ct.The
distance d from a point 4 (x4, y,, z,,) to the line can
be calculated by:

d=dy, sin[acos[

(xA—xo)a+(yA—yO)b+(zA—zo)cJ N
dona?+ b2+ c? .

where d,y = J(x—%0)?+ (4 —yo)* +(z4—2)2 .
Determine the distance of the point 4 (2,-3,1)
from the line x = -4+06z, y=-2+05¢, and z = -3+0.7¢. First
define the variables x,, y,, z,, @, b, and ¢, then use the variable (and the
coordinates of point 4) to calculate the variable d,, and finally calculate d.

a3

www.it-ebooks.info

http://www.it-ebooks.info/

1.10 Problems 31

21.

22.

23.

24.

25.

26.

The circumference of an ellipse can be approxi-
mated by:

b
C = zn[3(a+b)—J(Ba+b)(a+3b)] /_\ .

Calculate the circumference of an ellipse with K

a =16 in.and » = 11in.

315 people have to be wransported using buses that have 37 seats. By typing
one line (command) in the Command Window, calculate how many seats will
remain empty if enough buses will be ordered to wansport all the people.
(Hint: use MATLAB built-in function ceil.)

739 apples are to be packed and shipped such that 54 are placed in a box. By
typing one line (command) in the Command Window, calculate how many
apples will remain unpacked if only full boxes can be shipped. (Hint: use
MATLAB built-in function £ix.)

Assign the number 316,501.673 to a variable, and then calculate the following
by typing one command:

(a) Round the number to the nearest hundredth.
(b) Round the number to the nearest thousand.

The voltage difference V,, between points a
and b in the Wheatstone bridge circuit is:

~ R\R;—R,R, -

Vo = (s Roter 7 £&

Calculate the voltage difference when ¥ = 14

volts, R, = 120.6 ohms, R, = 119.3 ohms,
Ry = 121.2ohms, and R, = 118.8 ohms.

The resonant frequency f (in Hz) for the circuit shown

is given by:
11 _ (@2
2rNLC
Calculate the resonant frequency when L = 0.15hen- (
rys, R = 14ohms, and C = 2.6 x 10~¢farads.

www.it-ebooks.info

http://www.it-ebooks.info/

32

Chapter 1: Starting with MATLAB

217.

28.

29.

30.

31.

The number of combinations C, , of taking r objects out of » objects is given
by:

n!
rl(n-r)!

nr

(@) Determine how many combinations are possible in a lottery game for
selecting 6 numbers that are drawn out of 49.

(b) Using the following formula, determine the probability of guessing two
out of the six drawn numbers.

CG= 2C43= 4
Cu.6
(Use the built-in function factorial.)

The formula for changing the base of a logarithm is:

log »N

log pe

(a) Use MATLAB’s function 1og (x) to calculate log,0.085.
() Use MATLAB’s function 10g10 (x) to calculate log 61500

log,N =

The equivalent resistance, R, , of four resis- °

eq ’
tors, R, R,, R;, and R,, that are connected

in parallel is given by: Req RSRS RSRy
1
R,= ————
1,1, 1.1 °

Calculate R,, if R; = 120Q, R, = 220Q, R, = 75Q,and R, = 130Q .

The voltage V. ¢ seconds after closing the switch in

the circuit shown is: o0—
C
Ve = Vo(l1 - e/ RO) Vo = Ve
Given V. = 36V, R = 2500 Q ,and C = 1600 pF, R
; . MW

calculate the current 8 seconds after the switch is
closed.

Radioactive decay of carbon-14 is used for estimating the age of organic
material. The decay is modeled with the exponential function f(r) = f(0)e*,
where ¢ is time, £{0) is the amount of material at ¢+ = 0, f(¢) is the amount of
material at time ¢, and k is a constant. Carbon-14 has a half-life of approxi-
mately 5,730 years. A sample taken from the ancient footprints of Acahual-
inca in Nicaragua shows that 77.45% of the initial (¢ = 0) carbon-14 is

www.it-ebooks.info

http://www.it-ebooks.info/

1.10 Problems

33

32.

33.

34.

35.

36.

present. Determine the estimated age of the footprint. Solve the problem by
writing a program in a script file. The program first determines the constant %,
then calculates ¢ for f(#) = 0.7745f(0), and finally rounds the answer to the
nearest year.

The greatest common divisor is the largest positive integer that divides the
numbers without a remainder. For example, the GCD of 8 and 12 is 4. Use the
MATLAB Help Window to find a MATLAB built-in function that determines
the greatest common divisor of two numbers. Then use the function to show
that the greatest common divisor of:

(@) 91 and 147 is 7.

(b) 555 and 962 is 37.

The Moment Magnitude Scale (MMS), denoted M, which measures the total
energy released by an earthquake, is given by:

2
My = glogwMo— 10.7

where M, is the magnitude of the seismic moment in dyne-cm (measure of
the energy released during an earthquake). Determine how many times more
energy was released from the largest earthquake in the world, in Chile
(My = 9.5), 1960, than the earthquake in Rat Island, Alaska (M} = 8.7), in
1965.

According to special relativity, a rod of length L moving at velocity v will
shorten by an amount &, given by:

8=L(1—H§)

where c is the speed of light (about 300 x 106 m/s). Calculate how much a rod
2 m long will contract when traveling at 5,000 m/s.

The value B of a principal P that is deposited in a saving account with a fixed
annual interest rate r after » years can be calculated by the formula:

B=P(1+£‘)

where m is the number of times that the interest is compounded annually.
Consider a $80,000 deposit for 5 years. Determine how much more money
will be earned if the interest is compounded daily instead of yearly.

Newton’s law of cooling gives the temperature 7(¢) of an object at time ¢ in
terms of Ty, its temperature at ¢t = 0, and T,, the temperature of the sur-
roundings.

www.it-ebooks.info

http://www.it-ebooks.info/

34

Chapter 1: Starting with MATLAB

37.

38.

39.

40.

T(f) = T, +(Ty—T,)e*
A police officer arrives at a crime scene in a hotel room at 9:18 PM, where he
finds a dead body. He immediately measures the body’s temperature and find
it to be 79.5° F. Exactly one hour later he measures the temperature again, and
find it to be 78.0°F. Determine the time of death, assuming that victim body
temperature was normal (98.6° F) prior to death, and that the room tempera-
ture was constant at 69° F.

The stress intensity factor K predicts the swess state

(stress intensity) near a crack tip. For a plate with a crack T T T T T
and loading shown in the figure, K is given by: P
1-2 4 0326(9)’ 2
X - ofma| 2 (b) Zh e
,1 _a
b
Determine K for the case where ¢ = 12000psi, # = 5in., l l l L l
and b = 4in.,and a = 1.5in. o

The spread of a computer virus through a computer network can be modeled
by:
N@) = 20e0-15¢
where N(¢) is the number of computers infected and ¢ time in minutes.
(a) Determine how long it takes for the number of infected computers to dou-
ble.
(b) Determine how long it takes for 1,000,000 computers to be infected.

Use the Help Window to find a display format that displays the output as a
ratio of integers. For example, the number 3.125 will be displayed as 25/8.
Change the display to this format and execute the following operations:

(@) 5/8+16/6 (b) 1/3-11/13 +2.72

Stirling’s approximation for large factorials is given by:

n!=m(§)”

Use the formula for calculating 20!. Compare the result with the true value
obtained with MATLAB’s built-in function factorial by calculating the

error (Error = (TrueVal— ApproxVal)/ TrueVal).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2
Creating Arrays

The array is a fundamental form that MATLAB uses to store and manipulate data.
An array is a list of numbers arranged in rows and/or columns. The simplest array
(one-dimensional) is a row or a column of numbers. A more complex array (two-
dimensional) is a collection of numbers arranged in rows and columns. One use of
arrays is to store information and data, as in a table. In science and engineering,
one-dimensional arrays frequently represent vectors, and two-dimensional arrays
often represent matrices. This chapter shows how to create and address arrays, and
Chapter 3 shows how to use arrays in mathematical operations. In addition to
arrays made of numbers, arrays in MATLAB can also be a list of characters,
which are called strings. Strings are discussed in Section 2.10.

2.1 CREATING A ONE-DIMENSIONAL ARRAY (VECTOR)

A one-dimensional array is a list of numbers arranged in a row or a column. One
example is the representation of the position of a point in space in a three-dimen-
sional Cartesian coordinate system. As shown in Figure 2-1, the position of point
A is defined by a list of the three numbers 2, 4, and 5, which are the coordinates of
the point.
The position of point 4 can be
expressed in terms of a position vector: z A4(2,4,5)
r, = 2i+4j +5k

where i, j, and k are unit vectors in the
direction of the x, y, and z axes, respec- 5
tively. The numbers 2, 4, and 5 can be

used to define a row or a column vector. x
Any list of numbers can be set up
as a vector. For example, Table 2-1 con- 4 3 %

tains population growth data that can be

used to create two lists of numbers---one Figure 2-1: Position of a point.

of the years and the other of the popula-

tion values. Each list can be entered as elements in a vector with the numbers
placed in a row or in a column.

www.it-ebooks.info

35

http://www.it-ebooks.info/

Chapter 2: Creating Arrays

Table 2-1: Population data
Year 1984 1986 1988 1990 1992 1994 1996

Population
(millions)

127 130 136 145 158 178 211

In MATLAB, a vector is created by assigning the elements of the vector to a
variable. This can be done in several ways depending on the source of the infor-
mation that is used for the elements of the vector. When a vector contains specific
numbers that are lmown (like the coordinates of point 4), the value of each ele-
ment is entered directly. Each element can also be a mathematical expression that
can include predefined variables, numbers, and functions. Often, the elements of a
row vector are a series of numbers with constant spacing. In such cases the vector
can be created with MATLAB commands. A vector can also be created as the
result of mathematical operations as explained in Chapter 3.

Creating a vector from a known list of numbers:

The vector is created by typing the elements (numbers) inside square brackets [].

[variable_name = [type vector elements]

Row vector: To create a row vector type the elements with a space or a comma
between the elements inside the square brackets.

Column vector: To create a column vector type the left square bracket [and then
enter the elements with a semicolon between them, or press the Enter key after
each element. Type the right square bracket] after the last element.

Tutorial 2-1 shows how the data from Table 2-1 and the coordinates of point
A are used to create row and column vectors.

Tutorial 2-1: Creating vectors from given data.

>> yr=[1984 1986 1988 1990 1992 1994 1996]

The list of years is assigned to a row vector named yr.]

yr =
1984 1986 1988 1990 1992 1994 1996

>> pop=[127; 130; 136; 145; 158; 178; 211]

The population data is assigned
pop = to a column vector named pop.
127

130
136
145
158

www.it-ebooks.info

http://www.it-ebooks.info/

2.1 Creating a One-Dimensional Array (Vector)

37

Tutorial 2-1: Creating vectors from given data. (Continued)

178
211
>> pntAH=[2, 4, 5] The coordinates of point 4
pOtAH = are assigned to a row vector
2 4 5 called pntAH.
>> pntAv=[2
4 The coordinates of point 4 are assigned
5] to a column vector called pntAV.
pntAv = (The Enter key is pressed after each
2 element is typed.)
4
5

>>

Creating a vector with constant spacing by specifying the first term, the spac-
ing, and the last term:

In a vector with constant spacing, the difference between the elements is the same.
For example, in the vector v=2 4 6 8 10, the spacing between the elements is
2. A vector in which the first term is m, the spacing is g, and the last term is 7 is
created by typing:

variable name = [m:q:n]¢\or { variable name = m:qg:n ’

(The brackets are optional.)

Some examples are:

>> x=[1:2:13] [First element 1, spacing 2, last element 13.]
X =

1 3 5 7 9 11 13
>> y=[1.5:0.1:2.1] [First element 1.5, spacing 0.1, last element 2.1.]
Y =

1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000

>> z=[-3:7] First element —3, last term 7.
If spacing is omitted, the default is 1.

-3 -2 -1 0 1 2 3 4 5 6

>> xa=[21:-3:6] [First element 21, spacing —3, last term 6.]

www.it-ebooks.info

http://www.it-ebooks.info/

38

Chapter 2: Creating Arrays

Xa =
21 18 15 12 9 6
>>

¢ If the numbers m, g, and n are such that the value of n cannot be obtained by
adding g’s to m, then (for positive n) the last element in the vector will be the
last number that does not exceed n.

¢ If only two numbers (the first and the last terms) are typed (the spacing is omit-
ted), then the default for the spacing is 1.

Creating a vector with linear (equal) spacing by specifying the first and last
terms, and the number of terms:

A vector with n elements that are linearly (equally) spaced in which the first ele-
ment is xi and the last element is xf can be created by typing the Linspace com-
mand (MATLAB determines the correct spacing):

[variable name =linspace (xi,xf,n)

First Last Number of
element element elements

When the number of elements is omitted, the default is 100. Some examples are:

>> va=linspace(0,8,6) [6 elements, first element 0, last element 8.]

va =
0 1.6000 3.2000 4.8000 6.4000 8.0000

>> vb=linspace(30,10,11) [11 elements, first element 30, last element 10.]

vb =
30 28 26 24 22 20 18 16 14 12 10

>> u=linspace(49.5,0.5) [First element 49.5, last element 0.5.]

When the number of elements is

u = omitted, the default is 100.
Columns 1 through 10

49.5000 49.0051 48.5101 48.0152 47.5202 47.0253
46.5303 46.0354 45.5404 45.0455
""""""" [100 elements are displayed.]
Columns 91 through 100
4.9545 4.4596 3.9646 3.4697 2.9747 2.4798
1.9848 1.4899 0.9949 0.5000
>>

www.it-ebooks.info

http://www.it-ebooks.info/

2.2 Creating a Two-Dimensional Array (Matrix) 39

2.2 CREATING A TWO-DIMENSIONAL ARRAY (MATRIX)

A two-dimensional array, also called a matrix, has numbers in rows and columns.
Matrices can be used to store information like the arrangement in a table. Matrices
play an important role in linear algebra and are used in science and engineering to
describe many physical quantities.

In a square matrix the number of rows and the number of columns is equal.
For example, the matrix

749
3 8 1 3Xx3 matrix
6 53

is square, with three rows and three columns. In general, the number of rows and
columns can be different. For example, the matrix:

31 26 14 18 5 30

3 51 20 11 43 65 4 x 6 matrix
28 6 15 61 34 22
14 58 6 36 93 7

has four rows and six columns. A m X n matrix has m rows and n columns, and m
by n is called the size of the matrix.

A matrix is created by assigning the elements of the matrix to a variable.
This is done by typing the elements, row by row, inside square brackets []. First
type the left bracket [then type the first row, separating the elements with spaces
or commas. To type the next row type a semicolon or press Enter. Type the right
bracket] at the end of the last row.

variable name=[lst row elements; 2nd row elements; 3rd
row elements; ... ; last rowelements] _

The elements that are entered can be numbers or mathematical expressions that
may include numbers, predefined variables, and functions. 4/l the rows must have
the same number of elements. If an element is zero, it has to be entered as such.
MATLAB displays an error message if an attempt is made to define an incomplete
matrix. Examples of matrices defined in different ways are shown in Tutorial 2-2.

Tutorial 2-2: Creating matrices.

>> a=[5 35 43; 4 76 81; 21 32 40]
a =

5 35 43 [A semicolon is typed before
4 76 81 anew line is entered.
21 32 40

>> b =[7 2 76 33 8 =w@——— .
1 98 6 25 6 The Enter key is pressed

5 54 68 9 0] before a new line is entered.

www.it-ebooks.info

http://www.it-ebooks.info/

40

Tutorial 2-2: Creating matrices. (Continued)

b =
7 2 76 33 8
1 98 6 25 6
5 54 68 9 0
>> cd=6; e=3; h=4; <@——{ Three variables are defined. |
>> Mat=[e, cd*h, cos(pi/3); h"2, sqrt(h*h/cd), 14]
Mat =
3.0000 24.0000 0.5000 E;,e;l:g:nalzetngmed
16.0000 1.6330 14.0000 eXpressions
>>

Rows of a matrix can also be entered as vectors using the notation for creat-
ing vectors with constant spacing, or the 1 inspace command. For example:

>> A=[1:2:11; 0:5:25; linspace(10,60,6); 67 2 43 68 4 13]

1 3 5 7 9 11
0 5 10 15 20 25
10 20 30 40 50 60
67 2 43 68 4 13

>>

In this example the first two rows were entered as vectors using the notation of
constant spacing, the third row was entered using the 1 inspace command, and
in the last row the elements were entered individually.

2.2.1 The zeros, ones and, eye Commands

The zeros (m,n), ones (m, n), and eye (n) commands can be used to create
matrices that have elements with special values. The zeros (m,n) and the
ones (m,n) commands create a matrix with m rows and n columns in which all
elements are the numbers 0 and 1, respectively. The eye (n) command creates a
square matrix with n rows and » columns in which the diagonal elements are equal
to 1 and the rest of the elements are 0. This matrix is called the identity matrix.
Examples are:

>> zr=zeros(3,4)

ZY =
0 0 0 0
0 0 0 0
0 0 0 0

>> ne=ones (4,3)

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.3 Notes About Variables in MATLAB

41

ne =
1 1 1
1 1 1
1 1 1
1 1 1
>> idn=eye(5)
idn =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
>>

Matrices can also be created as a result of mathematical operations with

vectors and matrices. This topic is covered in Chapter 3.

2.3 NOTES ABOUT VARIABLES IN MATLAB

All variables in MATLAB are arrays. A scalar is an array with one element, a
vector is an array with one row or one column of elements, and a matrix is an
array with elements in rows and columns.

The variable (scalar, vector, or matrix) is defined by the input when the vari-
able is assigned. There is no need to define the size of the array (single element
for a scalar, a row or a column of elements for a vector, or a two-dimensional
array of elements for a matrix) before the elements are assigned.

Once a variable exists—as a scalar, vector, or matrix—it can be changed to any
other size, or type, of variable. For example, a scalar can be changed to a vec-
tor or a matrix; a vector can be changed to a scalar, a vector of different length,
or a matrix; and a matrix can be changed to have a different size, or be reduced
to a vector or a scalar. These changes are made by adding or deleting elements.
This subject is covered in Sections 2.7 and 2.8.

2.4 THE TRANSPOSE OPERATOR

The transpose operator, when applied to a vector, switches a row (column) vector
to a column (row) vector. When applied to a matrix, it switches the rows (col-

um

ns) to columns (rows). The transpose operator is applied by typing a single

quote ' following the variable to be transposed. Examples are:

>>

>>

aa=[3 8 1] [Deﬁne arow vector aa.]
2 J 5 Define a column vector bb as
bb=aa' the transpose of vector aa.

www.it-ebooks.info

http://www.it-ebooks.info/

42

bb =
3
8 Define a matrix C
1 with 3 rows and 4
>> C=[2 55 14 8; 21 5 32 11; 41 64 9 1] columns.
C =
2 55 14 8
21 5 32 11
41 64 9 1
>> D=C'

Define a matrix D as the
= transpose of matrix C. (D has
2 e - 4 rows and 3 columns.)

55 5 64
14 32 9
8 11 1

>>

2.5 ARRAY ADDRESSING

Elements in an array (either vector or matrix) can be addressed individually or in
subgroups. This is useful when there is a need to redefine only some of the ele-
ments, when specific elements are to be used in calculations, or when a subgroup
of the elements is used to define a new variable.

2.5.1 Vector

The address of an element in a vector is its positon in the row (or column). For a
vector named ve, ve (k) refers to the element in position k. The first position is
1. For example, if the vector ve has nine elements:

ve=35 46 78 23 5 14 81 3 55
then
ve(4) = 23, ve(7) = 81, and ve(1) = 35.

A single vector element, v(k), can be used just as a variable. For example, it
is possible to change the value of only one element of a vector by assigning a new
value to a specific address. This is done by typing: v(k) = value. A single element
can also be used as a variable in a mathematical expression. Examples are:

>> VCT=[35 46 78 23 5 14 81 3 55] 4—[Deﬁneavector_]

VCT =
35 46 78 23 5 14 8l 3 55

>> VCT (4) 4—[Display the fourth element.]

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.5 Array Addressing

43

ans =

23 Assign a new value to
«— | the sixth element.
>> VCT(6) =273
vVeT = [The whole vector is displayed.]
35 46 78 23 5 273 81 3 55

>> VCT (2) +VCT (8)
ans = Use the vector elements in
49 mathematical expressions.

>> VCT (5) “VCT (8) +aqrt (VCT (7))

ans =
134
>>

2.5.2 Matrix

The address of an element in a matrix is its position, defined by the row number
and the column number where it is located. For a matrix assigned to a variable ma,
ma(k,p) refers to the element in row & and column p.

31165
For example, if the matrixis: ma = |4 7 102
139 0 8

then ma(1,1) = 3 and ma(2,3) = 10.

As with vectors, it is possible to change the value of just one element of a
matrix by assigning a new value to that element. Also, single elements can be used
like variables in mathematical expressions and functions. Some examples are:

>> MAT=[3 11 6 5; 4 7 10 2; 13 9 0 81 [Createa 3 X 4 matrix.
MAT =

3 11 6 5

4 7 10 2

13 9 0 8
>> MAT (3,1)=20 [Assignanewvalue to the (3,1) element.]
MAT =

3 11 6 5

4 7 10 2

20 9 0 8
>> MAT (2,4) -MAT(1,2) [Use elements in a mathematical expression.]
ansg =

-9

www.it-ebooks.info

http://www.it-ebooks.info/

44

Chapter 2: Creating Arrays

2.6 USING A COLON : IN ADDRESSING ARRAYS

A colon can be used to address a range of elements in a vector or a matrix.
For a vector:
va(:) Refers to all the elements of the vector va (either a row or a column vector).

va(m:n) Refers to elements m through n of the vector va.

Example:
>> v=[4 15 8 12 34 2 50 23 11] [A vector v is created.]
Vv =

4 15 8 12 34 2 50 23 11
>> u=v(3:7) A vector u is created from the ele-
u = ments 3 through 7 of vector v.

8 12 34 2 50
>>

For a matrix:
A(:,n) Refers to the elements in all the rows of column 7 of the matrix A.
A(n,) Refers to the elements in all the columns of row 7 of the matrix A.

A(:,m:n) Refers to the elements in all the rows between columns m and n of the
matrix 4.

A(m:n,?) Refers to the elements in all the columns between rows m and n of the
matrix 4.

A(m:np.q) Refers to the elements in rows m through n and columns p through
q of the matrix 4.

The use of the colon symbol in addressing elements of matrices is demon-
strated in Tutorial 2-3.

Tutorial 2-3: Using a colon in addressing arrays.

>> A=[1 357 911; 2 46 8 10 12; 3 6 9 12 15 18; 4 8 12 16

20 24; 5 10 15 20 25 30] \

Define a matrix A with
A 5 rows and 6 columns.
1 3 5 7 9 11
2 4 6 8 10 12
3 6 9 12 15 18 Define a column
: 12 i: :g ;: z: vector B from the
elements in all of the
>> B=A(:,3) -4—— rows of column 3 in
matrix A.

www.it-ebooks.info

http://www.it-ebooks.info/

2.6 Using a Colon : in Addressing Arrays

45

Tutorial 2-3: Using a colon in addressing arrays. (Continued)

B =
5
6
9
12
15 Define a row vector C from the
>> C=A(2,:) -¢———— clements in all of the columns of
C = row 2 in matrix A.
2 4 6 8 10 12
>> E=A(2:4,:) < | Define a matrix E from the ele-
ments in rows 2 through 4 and all
E = the columns in matrix A.
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
>> F=A(1:3,2:4) -— Create a matrix F from the elements
F = in rows 1 through 3 and columns 2
3 5 7 through 4 in matrix A.
4 6 8
6 9 12
>>

In Tutorial 2-3 new vectors and matrices are created from existing ones by
using a range of elements, or a range of rows and columns (using :). It is possible,
however, to select only specific elements, or specific rows and columns of exist-
ing variables to create new variables. This is done by typing the selected elements
or rows or columns inside brackets, as shown below:

>> v=4:3:34 [Create a vector v with 11 elements.]
VvV =
4 7 10 13 16 19 22 25 28 31 34

>> u=v([3, 5, 7:10]) Create a vector u from the 3rd, the Sth,
and the 7th through 10th elements of v.

10 16 22 25 28 31
>> A=[10:-1:4; onesa(1,7); 2:2:14; zeros(1,7)]

Create a 4 X 7 matrix A.

A =
10 9 8 7 6 5 4 »
1 1 1 1 1 1 1 Create a matrix B from
2 4 6 8 10 12 14 the 1st and 3rd rows,
(] (] (] (] (] (] (] and 1st, 3rd, and the 5th
>> B = A([1,3],11,3,5:71) <«— ;hm“gh 7th columns of

www.it-ebooks.info

http://www.it-ebooks.info/

46

Chapter 2: Creating Arrays

10 8 6 5 4
2 6 10 12 14

2.7 ADDING ELEMENTS TO EXISTING VARIABLES

A variable that exists as a vector, or a matrix, can be changed by adding elements
to it (remember that a scalar is a vector with one element). A vector (a matrix with
a single row or column) can be changed to have more elements, or it can be
changed to be a two-dimensional matrix. Rows and/or columns can also be added
to an existing matrix to obtain a matrix of different size. The addition of elements
can be done by simply assigning values to the additional elements, or by append-
ing existing variables.

Adding elements to a vector:

Elements can be added to an existing vector by assigning values to the new ele-
ments. For example, if a vector has 4 elements, the vector can be made longer by
assigning values to elements 5, 6, and so on. If a vector has »n elements and a new
value is assigned to an element with an address of »+2 or larger, MATLAB
assigns zeros to the elements that are between the last original element and the
new element. Examples:

>> DF=1:4 [Define vector DF with 4 elements.]
DF =

1 2 3 4
>> DF(5:10)=10:5:35 [Adding 6 elements starting with the Sth.]
DF =

1 2 3 4 10 15 20 25 30 35
>> AD=[5 7 2] (Define vector AD with 3 elements. |
AD =

5 7 2
>> AD(8)=4 [Assign a value to the 8th element. |
AD = MATLAB assigns zeros to

5 7 2 0 0 0 o0 4 the 4th through 7th elements.
>> AR(5)=24 (Assign a value to the 5th element of a new vector. |
AR =0 0 0 o 24 MATLAB assigns zeros to the
o 1st through 4th elements.

Elements can also be added to a vector by appending existing vectors. Two exam-
ples are:

>> RE=[3 8 1 24]; [Define vector RE with 4 elements.]

www.it-ebooks.info

http://www.it-ebooks.info/

2.7 Adding Elements to Existing Variables

47

>> GT=4:3:16; [Define vector GT with 5 elements.]
>> KNH=[RE GT]

Define a new vector KNH by

KNH = appending RE and GT.
3 8 1 24 4 7 10 13 16
>> KNV=[RE'; GT']
KNV = Create a new column vector KNV
: by appending RE’ and GT"’.
1
24
4
7
10
13
16

Adding elements to a matrix:

Rows and/or columns can be added to an existing matrix by assigning values to
the new rows or columns. This can be done by assigning new values, or by
appending existing variables. This must be done carefully since the size of the
added rows or columns must fit the existing matrix. Examples are:

>> E=[1 2 3 4; 5 6 7 8] | Define a 2 X 4 matrix E. |
E =
1 2 3 4
5 6 7 8
>> E(3,:)=[10:4:22] Add the vector 10 14 18 22
as the third row of E.
E =
1 2 3 4
5 6 7 8
10 14 18 22
>> K=eye(3) [Define a 3 X 3 matrix K.]
K =
1 0 0
0 1 0
0 0 1
Append matrix K to matrix E. The numbers
>> G=[E K] .
e of rows in E and K must be the same.
1 2 3 4 1 0 0
5 6 7 8 0 1 0
10 14 18 22 0 0 1

www.it-ebooks.info

http://www.it-ebooks.info/

48

Chapter 2: Creating Arrays

If a matrix has a size of m X n and a new value is assigned to an element
with an address beyond the size of the matrix, MATLAB increases the size of the
matrix to include the new element. Zeros are assigned to the other elements that
are added. Examples:

>> AW=[3 6 9; 8 5 11] | Define a 2 x 3 matrix. |
AW =
3 6 9
8 5 11
>> AW(4,5)=17 (Assign a value to the (4,5) element. |
AW =
e - . g g MATLAB changes the matrix size
8 5 11 0 0 .
0 0 0 0 0 to 4 x 5, and assigns zeros to the
0 0 0 0 17 new elements.
>> BG(3,4)=15 (Assign a value to the (3,4) element of a new matrix. |
BG = -
0 0 0 0 MATLAB creates a 3 X 4 matrix
0 0 0 0 and assigns zeros to all the ele-
0 0 0 15 ments except BG(3,4).
>>

2.8 DELETING ELEMENTS

An element, or a range of elements, of an existing variable can be deleted by re-
assigning nothing to these elements. This is done by using square brackets with
nothing typed in between them. By deleting elements, a vector can be made
shorter and a matrix can be made smaller. Examples are:

>> kt=[2 8 40 65 3 55 23 15 75 80] Define a vector

kt = with 10 elements.
2 8 40 65 3 55 23 15 75 80

>> kt(6)=I] <« Eliminate the 6th element. |

2 8 40 65 3 23 15 75 80 The vector now

kt =
has 9 elements. ’

>> kt(3:6)=I[] 4—[Eliminate elements 3 through 6.]

kt =
2 8 15 75 80 [The vector now has S elements.]
>> mtr=[5 78 4 24 9; 4 0 36 60 12; 56 13 5 89 3]

[Define a 3 X 5 matrix.]

www.it-ebooks.info

http://www.it-ebooks.info/

2.9 Built-in Functions for Handling Arrays

mtr =
5 78 4 24 9
4 0 36 60 12
56 13 5 89 3
>> mtr(:,2:4)=[] Eliminate all the rows of
mtr = columns 2 through 4.
5 9
4 12
56 3
>>

2.9 BUILT-IN FUNCTIONS FOR HANDLING ARRAYS

MATLAB has many built-in functions for managing and handling arrays. Some of
these are listed below:

Table 2-2: Built-in functions for handling arrays

Function Description Example
length(A) Retumns the number of elements | >> A=[5 9 2 4];
in the vector A. >> length(A)
ans =
4
size(A) Returns a row vector [m,n], | >> 2=[6 14 0 12; 5§ 19 6
where m and n are the size | 8 2
m X n of the array A. A=

6 1 4 0 12
5 18 6 8 2

>> size(A)

ans =
2 5
reshape (A, | Creates a m by n matrix from | >> A=[5 1 6; 8 0 2]
m,n) the elements of matrix A. The | A =
elements are taken column after 5 1 6
column. Matrix A must have m 8 0 2
times n elements. >> B = reshape(Aa,3,2)
B =

www.it-ebooks.info

http://www.it-ebooks.info/

S50

Table 2-2: Built-in functions for handling arrays (Continued)

Function Description Example
diag(v) When v is a vector, creates a | >> v=[7 4 2];
square matrix with the elements | >> A=diag(v)
of v in the diagonal. A=
7 0 0
0 4 0
0 0 2
diag(A) When A is a matrix, creates a | >> A=[1 2 3; 4 5 6; 7
vector from the diagonal ele- | 8 91
ments of A. A=
i 2 3
4 5 6
7 8 9
>> vec=diag(a)
vec =

Additional built-in functions for manipulation of arrays are described in the
Help Window. In this window, select “MATLAB,” then in the Contents “Func-
tions,” and then “By Category.”

Sample Problem 2-1: Create a matrix

Using the ones and zeros commands, create a 4 X 5 matrix in which the first two
rows are Os and the next two rows are 1s.

Solution
>> A(1l:2,:)=zeros(2,5) [First, create a 2 X 5 matrix with Os.]
A=
0 0 0 0 0
0 0 0 0 0
>> A(3:4,:)=ones(2,5) [Addrows3and4with1s.]
A =
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

A different solution to the problem is:

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.9 Built-in Functions for Handling Arrays

1

>> A=[zeros(2,5) ;ones(2,5)1]

A =

H B OO

H B OO

R Rroo

H P OO
H P OO

Create a 4 X 5 matrix
from two 2 X 5 matrices.

Sample Problem 2-2: Create a matrix

Create a 6 X 6 matrix in which the middle two rows and the middle two columns
are 1s and the rest of the entries are 0s.

AR=zeros (6,6)

(3:4,:)=0nes(2,6)

(:,3:4)=ones(6,2)

Solution

>>

AR =
0 0
0 0
0 0
0 0
0 0
0 0

>> AR

AR =
0 0
0 0
1 1
1 1
0 0
0 0

>> AR

AR =

OOk KOO

OO KHBRKH OO

O o0oooo

ok KOO

o

PR RRRR

oOoOoOkrHrKHEH OO Oo0Oo0obooo

PR RRRR

[First, create a 6 X 6 matrix with 0s.]

Oo0oo0obooo
Oo0oo0oooo

Reassign the number 1 to
the 3rd and 4th rows.

ook KH OO
oOoOoOkrH K OO

OoOoOkHrHr KOO
OO KrH KOO

Reassign the num-
ber 1 to the 3rd and
4th columns.

www.it-ebooks.info

http://www.it-ebooks.info/

52

Chapter 2: Creating Arrays

Sample Problem 2-3: Matrix manipulation

Given are a 5 X 6 matrix 4, a 3 X 6 matrix B, and a 9-element vector v.

258111417 5 10 15 20 25 30
36 9 121518 B = 130 35 40 45 50 55
4=14710131619 55 60 65 70 75 80
5811141720
6912 15 18 21 v = [99 98 97 96 95 94 93 92 9£

Create the three arrays in the Command Window, and then, by writing one com-
mand, replace the last four columns of the first and third rows of 4 with the first
four columns of the first two rows of B, the last four columns of the fourth row of
A with the elements 5 through 8 of v, and the last four columns of the fifth row of
A with columns 3 through 5 of the third row of B.

Solution

>> A=[2:3:17; 3:3:18; 4:3:19; 5:3:20; 6:3:21]

A=
2 5 8 11 14 17
3 6 9 12 15 18
4 7 10 13 16 19
5 8 11 14 17 20
6 9 12 15 18 21

>> B=[5:5:30; 30:5:55; 55:5:80]

B =

5 10 15 20 25 30
30 35 40 45 50 55
55 60 65 70 75 80
>> v=[99:-1:91]
VvV =
99 98 97 96 95 94 93 92 91
>> A([1 3 4 5],3:6)=[B([1 2],1:4); v(5:8); B(3,2:5)]
| 1 1 |

4 AN

7

4 X 4 matrix made of 4 x 4 matrix. The first two rows are columns 1
columns 3 through 6 through 4 of rows 1 and 2 of matrix B. The third
of rows 1, 3, 4, and 5. row consists of elements 5 through 8 of vector v.

The fourth row consists of columns 2 through 5
of row 3 of matrix B.

www.it-ebooks.info

http://www.it-ebooks.info/

2.10 Strings and Strings as Variables

53

A =
2 5 5 10 15 20
3 6 9 12 15 18
4 7 30 35 40 45
5 8 95 94 93 92
6 9 60 65 70 75

2.10 STRINGS AND STRINGS AS VARIABLES

¢ A string is an array of characters. It is created by typing the characters within
single quotes.

¢ Strings can include letters, digits, other symbols, and spaces.
¢ Examples of strings: 'ad ef’, '3%fr2', '{edcba:21!', 'MATLAB'.

* A string that contains a single quote is created by typing two single quotes
within the string.

¢ When a string is being typed in, the color of the text on the screen changes to
maroon when the first single quote is typed. When the single quote at the end
of the string is typed, the color of the string changes to purple.

Strings have several different uses in MATLAB. They are used in output
commands to display text messages (Chapter 4), in formatting commands of plots
(Chapter 5), and as input arguments of some functions (Chapter 7). More details
are given in these chapters when strings are used for these purposes.
¢ When strings are being used in formatting plots (labels to axes, title, and text

notes), characters within the string can be formatted to have a specified font,
size, position (uppercase, lowercase), color, etc. See Chapter 5 for details.

Strings can also be assigned to variables by simply typing the swing on the
right side of the assignment operator, as shown in the examples below:

>> a='FRty 8'

a =

FRty 8

>> B='My name is John Smith’
B =

My name is John Smith
>>

When a variable is defined as a string, the characters of the string are stored
in an array just as numbers are. Each character, including a space, is an element in
the array. This means that a one-line string is a row vector in which the number of
elements is equal to the number of characters. The elements of the vectors are

www.it-ebooks.info

http://www.it-ebooks.info/

54

addressed by position. For example, in the vector B that was defined above the 4th
element is the letter n, the 12th element is J, and so on.

>> B(4)
ans =

n

>> B(12)
ans =

)

As with a vector that contains numbers, it is also possible to change specific
elements by addressing them directly. For example, in the vector B above the
name John can be changed to Bill by:

>> B(12:15)='"Bill"’

Using a colon to assign new char-

B =
My name is Bill Smith acters to elements 12 through 15 in
- the vector B.

Strings can also be placed in a matrix. As with numbers, this is done by typ-
ing a semicolon ; (or pressing the Enter key) at the end of each row. Each row
must be typed as a string, which means that it must be enclosed in single quotes.
In addition, as with a numerical matrix, all rows must have the same number of
elements. This requirement can cause problems when the intention is to create
rows with specific wording. Rows can be made to have the same number of ele-
ments by adding spaces.

MATLAB has a built-in function named char that creates an array with
rows having the same number of characters from an input of rows not all of the
same length. MATLAB makes the length of all the rows equal to that of the lon-
gest row by adding spaces at the end of the short lines. In the char function, the
rows are entered as strings separated by a comma according to the following for-
mat:

variable name =char('string 1', 'string 2','string 3')]

For example:
>> Info=char ('Student Name:',6 'John Smith', 'Grade:', 'A+')

Info = \‘ A variable named Info is assigned four rows

Sl ML of strings, each with different length.
John Smith

Grade: The function char creates an array with four rows
A+ with the same length as the longest row by adding
>> empty spaces to the shorter lines.

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.11 Problems

55

A variable can be defined as either a number or a string made up of the
same digits. For example, as shown below, x is defined to be the number 536, and
y is defined to be a string made up of the digits 536.

>> x=536

X =
536

>> y='536"

Y=
536
>>

The two variables are not the same even though they appear identical on the
screen. Note that the characters 536 in the line below the x= are indented, while
the characters 536 in the line below the y= are not indented. The variable x can be
used in mathematical expressions, whereas the variable y cannot.

2.11 PROBLEMS

1. Create a row vector that has the following elements: 8, 10/4 , 12x 1.4, 51,
tan85°, .26 , and 0.15.

2. Create a row vector that has the following elements: ./15x 103, 142_562’
n35/043 , S8 159 and cos?*(r/20).
cos80°
3. Create a column vector that has the following elements: 25.5, ((1241?—114_5181)) 5

6!, 2.7%,0.0375, and n/5.

4. Create a column vector that has the following elements: 33—2 sin235°, 6.1,

D2
In292, 0.00552, In229, and 133.

5. Define the variables x = 0.85, y = 12.5, and then use them to create a col-
umn vector that has the following elements: y, y*, In(y/x), xxy ,and
xty.

6. Define the variables a = 3.5, b = —6.4, and then use them to create a row
vector that has the following elements: a, a2, a/b, a-b,and Ja .

www.it-ebooks.info

http://www.it-ebooks.info/

56

10.

11.

12.

13.

14.

15.

16.

17.

Create a row vector in which the first element is 1 and the last element is 43,
with an increment of 6 between the elements (1, 7, 13, ... , 43).

Create a row vector with 11 equally spaced elements in which the first ele-
ment is 96 and the last element is 2.

Create a column vector in which the first element is 26, the elements decrease
with increments of —3.6, and the last element is —10. (A column vector can be
created by the wranspose of a row vector.)

Create a column vector with 9 equally spaced elements in which the first ele-
ment is —34 and the last element is —7. (A column vector can be created by the
transpose of a row vector.)

Using the colon symbol, create a row vector (assign it to a variable named
Fives) with five elements that are all 5.

Using the 1inspace command, create a row vector (assign it to a variable
named Nines) with nine elements that are all 9.

Use a single command to create a row vector (assign it to a variable named a)
with 6 elements such that the last element is 4.7 and the rest of the elements
are 0s. Do not type the vector elements explicitly.

Use a single command to create a row vector (assign it to a variable named b)
with 8 elements such that the last three element are 3.8 and the rest of the ele-
ments are 0s. Do not type the vector elements explicitly.

Use a single command to create a row vector (assign it to a variable named b)
with 11 elements such that
b =

0 2 4 6 8 10 12 9 6 3 0
Do not type the vector explicitly.

Create two row vectors: a=2:3:17 and b=3 : 4 : 15. Then, by only using the
name of the vectors (a and b), create a row vector c that is made from the ele-
ments of a followed by the elements of b.

Create two column vectors: a=[2:3:17]’ and b=[3:4:15] . Then, by

only using the name of the vectors (a and b), create a column vector c that is
made from the elements of a followed by the elements of b.

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.11 Problems

57

18.

19.

20.

21.

22

23.

Create a vector (name it vtA) that has 10 elements of which the first is 8, the
increment is 7, and the last element is 71. Then, assign elements of vtA to a
new vector (call it vtB) such that vtB has 7 elements. The first 4 elements
are the first 4 elements of the vector vtA, and the last 3 are the last 3 elements
of the vector vtA. Do not type the elements of vtA vector explicitly.

Create a vector (name it vetC) that has 12 elements of which the first is 5, the
increment is 4 and the last element is 49. Then, by assigning elements of
vctC to new vectors, create the following two vectors:

(a) A vector (name it Codd) that contains all the elements with odd index of

vetC;ie,Codd = 5 13 21 ... 45.
(b) A vector (name it Ceven) that contains all the elements with even index
of vet;ie.,Ceven = 9 17 25 ... 49.

In both parts use vectors of odd and even numbers for the index of Codd and
Ceven, respectively. Do not type the elements of the vectors explicitly.

Create a vector (name it vctD) that has 9 elements of which the first is 0, the
increment is 3 and the last element is 27. Then create a vector (name it vct -
Dop) that consist of the elements of vctD in reverse order. Do it by assigning
elements of vctD to vetDop. (Do not type the elements of vctDop vector
explicitly.)

Create the following matrix by using vector notation for creating vectors with
constant spacing and/or the 1inspace command. Do not type individual
elements explicitly.

130 110 90 70 50 30 10
4 =11 28333 4.6667 6.5 8.3333 10.1667 12
12 22 32 42 52 62 72

Create the following matrix by using vector notation for creating vectors with
the 1inspace command. Do not type individual elements explicitly.

523
523
523
523

Create the following matrix by typing one command. Do not type individual

elements explicitly.
c=177777
7777717

www.it-ebooks.info

http://www.it-ebooks.info/

S8

24.

25.

26.

27.

28.

29.

Create the following matrix by typing one command. Do not type individual
elements explicitly.

00008
D=100007
00006

Create the following matrix by typing one command. Do not type individual
elements explicitly.

00000
E 00000
00543
00210

Create the following matrix by typing one command. Do not type individual
elements explicitly.

0000 O
F=/0011020
002 8 26
003 6 32

Create three row vectors:
a=[3-1511-42], b=[71-92131-2], ¢c=[24-78009
(a) Use the three vectors in a MATLAB command to create a 3 x 6 matrix in
which the rows are the vectors q, b, ¢, and c.

(b) Use the three vectors in a MATLAB command to create a 6 x 3 matrix in
which the columns are the vectors b, ¢, and a.

Create three row vectors:
a=[3-1511-42], b=[7-92131-2], c=[24-7809

(a) Use the three vectors in a MATLAB command to create a 3 x4 matrix
such that the first, second, and third rows consist of the last four elements
of the vectors a, b, and ¢, respectively.

(b) Use the three vectors in a MATLAB command to create a 3 x3 matrix
such that the first, second, and third columns consist of the first three ele-
ments of the vectors a, b, and c, respectively.

Create two row vectors:

a=[39-053615-084] , b=[12-086253-74
(a) Use the two vectors in a MATLAB command to create a 3 x4 matrix
such that the first row consists of elements 3 through 6 of vector a, the

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.11 Problems

59

30.

31.

32.

33.

second row consists of elements 4 through 7 of vector a, and the third row
consists of elements 2 through 5 of vector .

(b) Use the two vectors in a MATLAB command to create a 6x2 matrix
such that the first column consists of elements 2 through 7 of vector a,
and the second column consists of elements 1 through 3 and 5 through 7
of vector b.

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB. (Parts (), (¢), (d), and (e) use the vector that was
defined in part (a).)

(@) a=1:4:17 (b) b=[a(1:3)a]l] (¢) c=la;al’

d) d=[a’ a’]’ (e) e=I[la; a; a; a; al] a'l

The following vector is defined in MATLAB:

v=1[611-4581-02-7193]
By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(@) a=v(3:8) (b) b=v([1,3,2:7,4,6]) (c)c=v([9,1,5,4])"

The following vector is defined in MATLAB:

v=1[611-4581-02-71935
By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(@ a=[v([1:3 7:-1:5]));v([10,1,4:6,2])]
() b=[v([9,2:4,1])" v([5 3 10 2 7])' v([10:-2:4,10]) ']

Create the following matrix 4.

36 34 32 30 28 26
4= 124222018 16 14
1210 8 6 4 2
By writing one command and using the colon to address range of elements
(do not type individual elements explicitly), use the matrix 4 to:

(a) Create a six-element row vector named ha that contains the elements of
the second row of 4.

(b) Create a three-element column vector named hb that contains the ele-
ments of the sixth column of 4.

(c) Create a five-element row vector named hc that contains the first two ele-
ments of the third row of 4 and the last three element of the first row of 4.

www.it-ebooks.info

http://www.it-ebooks.info/

60

34.

35.

36.

Create the following vector A.
A=[12345678910111213 14 15 16 17 18]

Then using the MATLAB’s built-in reshape function create the following
matrix B from the vector 4:

1471013 16
B=1258111417
369121518
By writing one command and using the colon to address range of elements
(do not type individual elements explicitly), use the matrix B to:

(a) Create a nine-element column vector named Ba that contains the ele-
ments of the first, third, and fifth columns of B.

(b) Create a seven-clement row vector named Bb that contains elements 2
through 5 of the second row of B and the elements of the third column of B.

(c) Create a six-element row vector named Bc that contains elements 3
through 5 of the first row, and elements 2 through 4 of the third row of B.

Create the following vector C.

C=1[1522533544559.69.1868.1767.16.6 6.1]

Then use MATLAB’s built-in reshape function and the transpose operation
to create the following matrix D from the vector C:

1.5 2 25 3

35 4 45 5

9.6 9.1 8.6 8.1

7.6 7.1 6.6 6.1

By writing one command and using the colon to address a range of elements

(do not type individual elements explicitly), use the matrix D to:

(a) Create a eight-element column vector named Da that contains the ele-
ments of the first and third rows of D.

(b) Create an eight-element raw vector named Db that contains the elements
of the second and the fourth columns of D.

(c) Create a eight-element row vector named Dc that contains the first two
elements of the first row, the last three elements of the second column, and
the first three elements of the fourth row of D.

Create the following matrix E:

0 55 5 55
g = (010305070709
12 9 6 3 0 3
6 7 8 9 10 11

(a) Create a 2 X 3 matrix F from the second and third rows, and the third

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

2.11 Problems 61

through the fifth columns of matrix E.
(b) Create a 4 X 4 matrix G from all rows and the third through sixth columns
of matrix E.

37. Create the following matrix H:

12515175 2 22525275
H=|11 2 3 1 2 3 4
45 40 35 30 25 20 15

(a) Create a 2 X 5 matrix G such that its first row includes the first three ele-
ments and the last two elements of the first row of H, and the second row
of G includes the last five elements of the third row of H.

(b) Create a 4 X 3 matrix K such that the first, second, third, and fourth rows
are the second, third, fifth and seventh columns of matrix H.

38. The following matrix is defined in MATLAB:

1471013 16
M=12581114 17
369121518

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-

mands with MATLAB.
a) A=M([1,3],[1,5,6]) b) B=M(:, [4,4:6])
c) C=M([112]I:) d) D=M([213]I[2I3])

39. The following matrix is defined in MATLAB:

21018 29 41

412 20 32 44

6 14 23 35 47

8 16 26 38 50

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.

(@) A=[N(1,1:4)',N(2,2:5)"]

(b) B=[N(:,3)"' N(3,:)]

(c) C(3:4,5:6)=N(2:3,4:5)

40. By hand (pencil and paper) write what will be displayed if the following com-

mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.

www.it-ebooks.info

http://www.it-ebooks.info/

62

4].

42.

43.

44.

v=1l:2:23
M=reshape (v, 3, 4)
M(2,:)=[]
M(:,3)=[]

N=ones (size(M))

Using the zeros, ones, and eye commands, create the following arrays by
typing one command:

1111
1100 100011

(@ [} ® [} () o000
1100 010011 0000

Using the zeros, ones, and eye commands create the following arrays by
typing one command:

1111 01110

(@) 10110 ®) 1111 © 01110
01110 1000 00001
0100 00001

Use the eye, ones, and zeros commands to create the following arrays:

a=[10 p_(11] ~_]oo
01 11 00
Using the variables A, B, and C, write a command that creates the following
matrix D:

101100
011100
001110
001101

Create a 2 X 3 matrix 4 in which all the elements are 1. Then reassign 4 to
itself (several times) such that 4 will become:

1100
1100
4= 1100
0011
0011
0011

www.it-ebooks.info

Chapter 2: Creating Arrays

http://www.it-ebooks.info/

Chapter 3
Mathematical
Operations with Arrays

Once variables are created in MATLAB they can be used in a wide variety of
mathematical operations. In Chapter 1 the variables that were used in mathemati-
cal operations were all defined as scalars. This means that they were all 1 x 1
arrays (arrays with one row and one column that have only one element) and the
mathematical operations were done with single numbers. Arrays, however, can be
one-dimensional (arrays with one row, or with one column), two-dimensional
(arrays with multiple rows and columns), and even of higher dimensions. In these
cases the mathematical operations are more complex. MATLAB, as its name indi-
cates, is designed to carry out advanced array operations that have many applica-
tions in science and engineering. This chapter presents the basic, most common
mathematical operations that MATLAB performs using arrays.

Addition and subtraction are relatively simple operations and are covered
first, in Section 3.1. The other basic operations—multiplication, division, and
exponentiation--—can be done in MATLAB in two different ways. One way, which
uses the standard symbols (*, /, and *), follows the rules of linear algebra and is
presented in Sections 3.2 and 3.3. The second way, which is called element-by-
element operations, is covered in Section 3.4. These operations use the symbols
*, ./, and » (a period is typed in front of the standard operation symbol). In addi-
tion, in both types of calculations, MATLAB has left division operators (.\ or \),
which are also explained in Sections 3.3 and 3.4.

A Note to First-Time Users of MATLAB:

Although matrix operations are presented first and element-by-element operations
next, the order can be reversed since the two are independent of each other. It is
expected that almost every MATLAB user has some lnowledge of matrix opera-
tions and linear algebra, and thus will be able to follow the material covered in
Sections 3.2 and 3.3 without any difficulty. Some readers, however, might prefer
to read Section 3.4 first. MATLAB can be used with element-by-element opera-
tions in numerous applications that do not require linear algebra multiplication (or
division) operations.

www.it-ebooks.info

63

http://www.it-ebooks.info/

Chapter 3: Mathematical Operations with Arrays

3.1 ADDITION AND SUBTRACTION

The operations + (addition) and — (subtraction) can be used to add (subtract)

arrays of identical size (the same numbers of rows and columns) and to add (sub-

tract) a scalar to an array. When two arrays are involved the sum, or the difference,

of the arrays is obtained by adding, or subtracting, their corresponding elements.
In general, if 4 and B are two arrays (for example, 2 X 3 matrices),

4 = [A” Ay A13} and B = By, By, B13}
Ay Ay Ay By By By
then the matrix that is obtained by adding 4 and B is:
(Ay +Byy) (A + Byy) (413 + By3)
(A1 + Byy) (Ayy + Byy) (Ayz + By)

Examples are:

>> VectA=[8 5 4]; VectB=[10 2 7]; [Define two vectors.]

>> VectC=VectA+VectB Define a vector VectC that

VectC = is equal to VectA + VectB.
18 7 11

>> A=[5 -3 8; 9 2 10]

A =
5 -3 8

S 2 10 [Define two 2 x 3 matrices A and B.]
>> B=[10 7 4; -11 15 1]
B =
10 7 4
-11 15 1
>> A-B | Subtracting matrix B from matrix A.|
ans =
-5 -10 4
20 -13 9
>> C=A+B [Defme a matrix C that is equal to A + B.]
Cc =
15 4 12
-2 17 11
>> VectA+A [Trying to add arrays of different size.]
??? Error using ==> plus —
Matrix dimensions must agree. [An error message is displayed.]
>>

www.it-ebooks.info

http://www.it-ebooks.info/

3.2 Array Multiplication 65

When a scalar (number) is added to (or subtracted from) an array, the scalar is
added to (or subtracted from) all the elements of the array. Examples are:

>> VectA=[1 5 8 -10 2] [DeﬁneavectornamedVectA.]
VectA =

1 5 8 -10 2
>> VectA+4 4—[Add the scalar 4 to VectA.]
ans = .

s 9 12 -6 [4 is added to each element of VectA.]
>> A=[6 21 -15; 0 -4 8] [Deﬁnea2x3matrixA.]
A =

6 21 -15

0 -4 8
>> A-5 <« Subtract the scalar 5 from A. |
ans =

1 16 -20 _
-5 -9 3 [5 is subtracted from each element of A.]

3.2 ARRAY MULTIPLICATION

The multiplication operation * is executed by MATLAB according to the rules of
linear algebra. This means that if 4 and B are two matrices, the operation 4*B can
be carried out only if the number of columns in matrix 4 is equal to the number of
rows in matrix B. The result is a matrix that has the same number of rows as 4 and
the same number of columns as B. For example, if 4 is a 4 X 3 matrix and Bis a

3 X 2 matrix:
Ay Ay Ags B, By,
4= |41 4nA4n| 4nd B = B, B,,
A3l A32 A33 B.. B
Ay Ap 4,4 A9

then the matrix that is obtained with the operation 4*B has dimensions 4 x 2 with
the elements:

(411Byy + A13By + A13B3;) (A1 By +A1Byy + 413B3;)
(A31B11+ AypBy1 + Ay3B31) (A By + AypByy + Ay3B3))
(A31By1 + A3yBy + A33B3)) (A3 By, + A3Byy + A33B3,)
(A4Byy +AyBy + A3Bsy) (Ay By + AypBy + A3B3,)

A numerical example is:
143|[54 (1:5+4-1+3-2)(1-4+4-3+3-6) 15 34
261|(13] = (2-5+6-1+1-2)(2-4+6-3+1:-6)| = |18 32
528|(26 (5-5+2.-1+8-2)(5-4+2-3+8-6) 43 74

www.it-ebooks.info

http://www.it-ebooks.info/

66

The product of the multiplication of two square matrices (they must be of the
same size) is a square matrix of the same size. However, the multiplication of
matrices is not commutative. This means that if 4 and B are both n x n, then
A*B # B*A. Also, the power operation can be executed only with a square matrix
(since A*4 can be carried out only if the number of columns in the first matrix is
equal to the number of rows in the second matrix).

Two vectors can be multiplied only if they have the same number of elements,
and one is a row vector and the other is a column vector. The multiplication of a
row vector by a column vector gives a 1 X 1 matrix, which is a scalar. This is the
dot product of two vectors. (MATLAB also has a built-in function, dot (a,b),
that computes the dot product of two vectors.) When using the dot function, the
vectors a and b can each be a row vector or a column vector (see Table 3-1). The
multiplication of a column vector by a row vector, each with n elements, gives an
n X n matrix. Multiplication of array is demonstrated in Tutorial 3-1,

Tutorial 3-1: Multiplication of arrays.

>> A=[1 4 2; 57 3; 916; 4 2 8]

& B [Define a 4 X 3 matrix A.]
1 4 2
5 7 3
9 1 6
4 2 8
>> B=[6 1; 2 5; 7 3] [Define a 3 X 2 matrix B.]
B =
6 1
2 5
7 3
>> C=A*B Multiply matrix A by matrix B and assign
C = the result to variable C.
28 27
65 49
98 32
84 38 Trying t Itiply B by A
ing to mu s
5> DaB*A rying ply Yy

B*A, gives an error since
the number of columns in
B is 2 and the number of
rows in A is 4.

??? Error using ==> *
Inner matrix dimensions must agree.

>> F=[1 3; 5 7]

F =

1 3

2 g A/I Define two 2 X 2 matrices F and G. |
>> G=[4 2; 1 6]

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.2 Array Multiplication

Tutorial 3-1: Multiplication of arrays. (Continued)

G =
4 2
1 6
>> F*G Multiply F*G
ans =
7 20
27 52
>> G*F Multiply G*F]
ans = .
14 26 Note that the answer for G*F is not the
31 45 same as the answer for F*G.
>> AV=[2 5 1] [Define a three-element row vector AV.]
AV =
2 5 1
>> BV=[3; 1; 4] [Define a three-element column vector BV.]
BV =
3
1
4
>> AV*BV Multiply AV by BV. The answer is a scalar.
o = (Dot product of two vectors.)
15
2B AR Multiply BV by AV. The
ans = answer is a 3 X 3 matrix.
6 15 3
2 5 1
8 20 4
>>

When an array is multiplied by a number (actually a number is a 1 X 1 array),
each element in the array is multiplied by the number. For example:

>> A=[2 57 0; 10 1 3 4; 6 2 11 5] [Def'mea3x4matrixA_]

A=
2 5 7 0
10 1 3 4
6 2 11 5
>> b=3 [Assign the number 3 to the variable b.]
b =
3

www.it-ebooks.info

http://www.it-ebooks.info/

68

Chapter 3: Mathematical Operations with Arrays

>> b*A
ans =
6 15 21 0

30 3 9 12
18 6 33 15

>> C=A*5

C =
10 25 35 0
50 5 15 20
30 10 55 25

Multiply the matrix A by b. This can be
done by either typing b*A or A*b.

Multiply the matrix A by 5 and assign
the result to a new variable C. (Typ-
ing C = 5*A gives the same result.)

Linear algebra rules of array multiplication provide a convenient way for
writing a system of linear equations. For example, the system of three equations

with three unleowns

Apx;+Apx, +A;x; = B,
Ay + Apxy + Apxs = By
Az %y + Apx; + Ag3xy = By
can be written in a matrix form as
Ay Ay Ays| | % B,
Ay Ay Ayl X2 = |B,
Az Ayy Az [X3 B,
and in matrix notation as

Ay Ay Ay X1

AX =B where 4 = Ay Agy Agy| » X = xz,andB= B,|-

Az Ay As, X3

3.3 ARRAY DiIVISION

The division operation is also associated with the rules of linear algebra. This
operation is more complex, and only a brief explanation is given below. A full
explanation can be found in books on linear algebra.

The division operation can be explained with the help of the identity matrix

and the inverse operation.

Identity matrix:

The identity matrix is a square matrix in which the diagonal elements are 1s and
the rest of the elements are 0s. As was shown in Section 2.2.1, an identity matrix
can be created in MATLAB with the eye command. When the identity matrix
multiplies another matrix (or vector), that matrix (or vector) is unchanged (the

www.it-ebooks.info

http://www.it-ebooks.info/

3.3 Array Division

69

multiplication has to be done according to the rules of linear algebra). This is
equivalent to multiplying a scalar by 1. For example:

100 1008 8 629(|1100 629
|:471131j010=[1131§:| or 1010(|2(= (2| Or |183(|010] =183
001 001)|15 15 745/(001 745

If a matrix 4 is square, it can be multiplied by the identity matrix, I, from the left
or from the right:
Al =14 = A4

Inverse of a matrix:

The matrix B is the inverse of the matrix 4 if, when the two matrices are multi-
plied, the product is the identity matrix. Both matrices must be square, and the
multiplication order can be B4 or AB.

BA=A4B =1

Obviously B is the inverse of 4, and 4 is the inverse of B. For example:

21 4)|55-352 55-352/121 4 100
4182 -10=|2 -10/(418=]|010
2-13]|-3 2 1 -3 2 1j[2-13 001

The inverse of a matrix A is typically written as 4™'. In MATLAB the inverse of a

matrix can be obtained either by raising 4 to the power of -1, 4™", or with the
inv (A) function. Multiplying the matrices above with MATLAB is shown
below.

>> A=[2 1 4; 41 8; 2 -1 3] [Creating the matrix A. |
A=
2 1 4
4 1 8
2 -1 3
>> B=inv(a) Use the inv function to find the
B = inverse of A and assign it to B.
5.5000 -3.5000 2.0000
2.0000 -1.0000 0
-3.0000 2.0000 -1.0000
>> A*B [Mulsiplication of A and B gives the identity matrix.]
ans =
1 0 0
0 1 0
0 0 1

www.it-ebooks.info

http://www.it-ebooks.info/

70

>> A*A"-1 Use the power —1 to find the inverse of A.
ang = Multiplying it by A gives the identity matrix.
1 0 0
0 1 0
0 0 1

Not every matrix has an inverse. A matrix has an inverse only if it is square and its
determinant is not equal to zero.

Determinants:

A determinant is a function associated with square matrices. A short review on
determinants is given below. For a more detailed coverage refer to books on linear
algebra.

The determinant is a function that associates with each square matrix 4 a
number, called the determinant of the matrix. The determinant is typically denoted
by det(4) or |4|. The determinant is calculated according to specific rules. For a
second-order 2 x 2 matrix, the rule is:

an 4

4] = =6-9-5-3 =239

= allan—a12a2l, for example, ‘ g ;

aj axp

The determinant of a square matrix can be calculated with the det command (see
Table 3-1).

Array division:
MATLARB has two types of array division, right division and left division.
Left division, \ :

Left division is used to solve the mawix equation 4X = B. In this equation X and
B are column vectors. This equation can be solved by multiplying, on the left, both
sides by the inverse of 4:

A'Ax=4"'B
The left-hand side of this equation is X, since
Alax=Ix=Xx
So the solution of AX = B is:
X=4"'B
In MATLAB the last equation can be written by using the left division character:
X=A\B

It should be pointed out here that although the last two operations appear to give
the same result, the method by which MATLAB calculates X is different. In the

first, MATLAB calculates 4" and then uses it to multiply B. In the second (left
division), the solution X is obtained numerically using a method that is based on
Gauss elimination. The left division method is recommended for solving a set of

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.3 Array Division 71

linear equations, because the calculation of the inverse may be less accurate than
the Gauss elimination method when large matrices are involved.

Right division, / :

The right division is used to solve the matrix equation XC = D. In this equation X
and D are row vectors. This equation can be solved by multiplying, on the right,
both sides by the inverse of C:
x-cc'=p-c’
which gives
X=D-C"
In MATLAB the last equation can be written using the right division character:
X=D/IC

The following example demonstrates the use of the left and right division, and

the inv function to solve a set of linear equations.

Sample Problem 3-1: Solving three linear equations (array division)

Use matrix operations to solve the following system of linear equations.
4x—-2y+6z =8
2x+8y+2z = 4
6x+10y+3z =10

Solution

Using the rules of linear algebra demonstrated earlier, the above system of equa-
tions can be written in the matrix form AX = B or in the form XC = D:

426 [8 426
28 2|y =[4 or [xy7|2810]=[840]
6103/lz7 |o 623

Solutions for both forms are shown below:

>> A=[4 -2 6; 2 8 2; 6 10 3]; | Solving the form AX=B. |
>> B=[8; 4; 0];
>> X=A\B [Solving by using left division: X =A\B.]
X =

-1.8049

0.2927

2.6341
>> Xb=inv(A)*B [Solving by using the inverse of 4: X = A_IB.]
Xb =

-1.8049

0.2927

2.6341

www.it-ebooks.info

http://www.it-ebooks.info/

72

>> C=[4 2 6; -2 8 10; 6 2 3]; [SolvingtheformXC=D.]
>> D=[8 4 0];
>> Xe=D/C [Solving by using right division: X =D/C.]
Xc =

-1.8049 0.2927 2.6341
>> Xd=D¥inv (C) Solving by using the inverse of C: X = D-C~ 1.‘
Xd =

-1.8049 0.2927 2.6341

3.4 ELEMENT-BY-ELEMENT OPERATIONS

In Sections 3.2 and 3.3 it was shown that when the regular symbols for multiplica-
tion and division (* and /) are used with arrays, the mathematical operations fol-
low the rules of linear algebra. There are, however, many situations that require
element-by-element operations. These operations are carried out on each of the
elements of the array (or arrays). Addition and subtraction are by definition
already element-by-element operations, since when two arrays are added (or sub-
tracted) the operation is executed with the elements that are in the same position in
the arrays. Element-by-element operations can be done only with arrays of the
same size.

Element-by-element multiplication, division, or exponentiation of two vectors
or matrices is entered in MATLAB by typing a period in front of the arithmetic
operator.

Svyimbol |Description Symbol |Description
* Multiplication J Right division
. Exponentiation A Left Division

If two vectors a and b are a = [a) @; @3 a4 and b = [by b, b3 by, then
element-by-element multiplication, division, and exponentiation of the two vec-
tors gives:

a .* b = [albl a2b2 a3b3 a4b4]
a /b= [a,/b, ay/b, as/by ay/b)]

a b= [(a)® (ap)" (a)* (a)]

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.4 Element-by-Element Operations

If two matrices 4 and B are

Ay Ap Ay By, Bz Bys
A= |4, Ay, Ay| and B =B, B), B,
Ay A3y A3 B3y By, By

then element-by-element multiplication and division of the two matrices give:

Ay1Byy A3Byy; A3Bis Ay /By A/Byy A13/Bys
AXB= |A;B; ApBy AyBi AJB= | Ay /By Ayp/By Ay/By
A3 By ApBjy, AyBi, A3 /By A3y/Bj3; As3/Bys

Element-by-element exponentiation of matrix 4 gives:

(411)" (419)" (413)"
ASR=1(4)" ()" (dy)"
(43)" (435)" (433)"
Element-by-element multiplication, division, and exponentiation are dem-
onstrated in Tutorial 3-2.

Tutorial 3-2: Element-by-element operations.

P Lol 0 9 B Y Gl [Deﬁnea2x3 array A.]

A=
2 6 3
5 8 4
o Eoll odey & 2 [Defmea2x3arrayB.]
B =
1 4 10
3 2 7 —
- Element-by-element multiplica-
tion of array A by B.
ans =
2 24 30
15 16 28
=A./B . . -
>> C=A./ Element-by-element division
C =

of array A by B. The result is

2.0000 1.5000 0.3000 assigned to variable C.

1.6667 4.0000 0.5714

www.it-ebooks.info

http://www.it-ebooks.info/

74

Tutorial 3-2: Element-by-element operations. (Continued)

S e Element-by-element exponen-
tiation of array B. The result is
ans = an array in which each term is
1 64 1000 the corresponding term in B
27 8 343 raised to the power of 3.
>> A*B Trying to multiply A*B gives

an error, since A and B cannot

. be multiplied according to lin-
??? Error using ==> * ear algebra rules. (The number
Inner matrix dimensions must agree.| of columns in A is not equal to

the number of rows in B.)

Element-by-element calculations are very useful for calculating the value of a
function at many values of its argument. This is done by first defining a vector
that contains values of the independent variable, and then using this vector in ele-
ment-by-element computations to create a vector in which each element is the cor-
responding value of the function. One example is:

>> x=[1:8] Create a vector x with eight elements.]

X =
1 2 3 4 5 6 7 8

>> y=x."2-4%x

Vector x is used in element-
-3 -4 -3 0 5 12 21 32 by-element calculations of
- the elements of vector y.

In the example above y = x2—4x. Element-by-element operation is needed when
x is squared. Each element in the vector y is the value of y that is obtained when
the value of the corresponding element of the vector x is substituted in the equa-
tion. Another example is:

>> z=[1:2:11] [Create a vector z with six elements.]
Zz =
1 3 5 7 9 11

>> y=(z.73 + 5%*z)./(4*z.%2 - 10)

Vector z is used in element-
by-element calculations of
the elements of vector y.

Y =
-1.0000 1.6154 1.6667 2.0323 2.4650 2.9241
2 +5z2
In the last example y = = . Element-by-element operations are used in this
4z°-10

example three Wimes: to calculate z* and z*, and to divide the numerator by the
denominator.

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.5 Using Arrays in MATLAB Built-in Math Functions 75

3.5 USING ARRAYS IN MATLAB BUILT-IN MATH FUNCTIONS

The built-in functions in MATLAB are written such that when the argument
(input) is an array, the operation that is defined by the function is executed on each
element of the array. (One can think of the operation as element-by-element appli-
cation of the function.) The result (output) from such an operation is an array in
which each element is calculated by entering the corresponding element of the
argument (input) array into the function. For example, if a vector with seven ele-
ments is substituted in the function cos (x), the result is a vector with seven ele-
ments in which each element is the cosine of the corresponding element in x. This
is shown below.

>> x=[0:pi/6:pil

X =
0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

>>y=cos (x)

Y:
1.0000 0.8660 0.5000 0.0000 -0.5000 -0.8660 -1.0000
>>

An example in which the argument variable is a mawix is:

>> d=[1 4 9; 16 25 36; 49 64 81] [Creatinga3x3 array]
d =

1 4 9
16 25 36
49 64 8l

>> h=sqrt (d)
h =

1 2 3 his a 3 X3 array in which each
4 5 6 element is the square root of the
7 8 9 corresponding element in array d.

The feature of MATLAB in which arrays can be used as arguments in functions is
called vectorization.

3.6 BUILT-IN FUNCTIONS FOR ANALYZING ARRAYS

MATLAB has many built-in functions for analyzing arrays. Table 3-1 lists some
of these functions.

www.it-ebooks.info

http://www.it-ebooks.info/

76

Chapter 3: Mathematical Operations with Arrays

Table 3-1: Built-in array functions

Function Description Example
mean (4) If A is a vector, retums the >> A=[5 9 2 4];
mean value of the elements |>> mean (a)
of the vector. o
5
C=max (A) If A is a vector, C is the larg- |>> A=[5 9 2 4 11 6 11 1];

[d,n] =max (A)

estelementin A. IfAis a
matrix, C is a row vector
containing the largest ele-
ment of each column of A.

If A is a vector, d is the larg-
est element in A, and n is the
position of the element (the
first if several have the max
value).

>> C=max (A)
C =
11

>> [d,n]=max(A)
d =

11

5

min (A)

[d,n]=min (A)

The same as max (A7), but
for the smallest element.

The same as [d,n] =
max (A), but for the smallest
element.

>> A=[5 9 2 4];
>> min (4)
ans =

2

sum(A) If A is a vector, retums the >> A=[5 9 2 4];

sum of the elements of the [>> sum(a)

vector. ans =

20

sort (A) If A is a vector, arranges the |>> A=[5 9 2 4];

elements of the vector in >> sort (a)

ascending order. =

2 4 5 9

median (A) If A is a vector, retumns the >> A=[5 9 2 4];

median value of the elements
of the vector.

>> median(a)
ans =

4.5000

www.it-ebooks.info

http://www.it-ebooks.info/

3.7 Generation of Random Numbers

77

Table 3-1: Built-in array functions (Continued)

Function Description Example
std(A) If A is a vector, retuns the |>> A=[5 9 2 4];
standard deviation of the ele- | >> atd (a)
ments of the vector. e
2.9439
det (A) Returns the determinant of a |>> A=[2 4; 3 51;
square matrix A. >> det (a)
ans =
-2
dot (a,b) Calculates the scalar (dot) >> a=[1 2 3];

product of two vectors a and
b. The vectors can each be
row or column vectors.

>> b=[3 4 5];
>> dot (a,b)
ans =

26

cross(a,b)

Calculates the cross product
of two vectors a and b,
(axDb). The two vectors must
have each three elements.

>> a=[1 3 2];
>> b=[2 4 1];
>> cross(a,b)
ans =

-5 3 -2

inv (A)

Retumns the inverse of a
square matrix A.

>> A=[2-21;32-1; 2 -32];
>> inv(A)

ans =
0.2000 0.2000 0
-1.6000 0.4000 1.0000
-2.6000 0.4000 2.0000

3.7 GENERATION OF RANDOM NUMBERS

Simulations of many physical processes and engineering applications frequently
require using a number (or a set of numbers) with a random value. MATLAB has
three commands—rand, randn, and randi—that can be used to assign ran-
dom numbers to variables.

The rand command:

The rand command generates uniformly distributed random numbers with val-
ues between 0 and 1. The command can be used to assign these numbers to a sca-
lar, a vector, or a matrix, as shown in Table 3-2.

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-2: The rand command

Chapter 3: Mathematical Operations with Arrays

with random numbers
between 0 and 1.

Command Description Example
rand Generates a single random |>> rand

number betweenO0 and 1. |ans =

0.2311

rand(1,n) Generates an n-element >> a=rand(1,4)

row vector of random a =

numbers between 0 and 1. 0.6068 0.4860 0.8913 0.7621
rand (n) Generates an n X n matrix |>> b=rand(3)

b =

0.4565 0.4447 0.9218
0.0185 0.6154 0.7382
0.8214 0.7919 0.1763

rand (m,n)

Generates an m X n matrix
with random numbers
between 0 and 1.

>> c=rand(2,4)
C =
0.4057 0.9169
0.9355 0.4103

0.8936 0.3529
0.0579 0.8132

Generates a row vector >> randperm(8)
with n elements that are ans =
random permutation of 8 2 7 4 3 € 5 1

integers 1 through n.

randperm (n)

Sometimes there is a need for random numbers that are distributed in an inter-
val other than (0,1), or for numbers that are integers only. This can be done using
mathematical operations with the rand function. Random numbers that are dis-
tributed in a range (a,b) can be obtained by multiplying rand by (b- @) and add-
ing the product to a:

(b—a)*rand +a
For example, a vector of 10 elements with random values between —5 and 10 can
be created by (a=-5, b=10):
>> v=15*rand(1,10)-5

vV =
-1.8640 0.6973
6.9132 -4.1123

6.7499
4.0430

5.2127
-4.2460

1.9164 3.5174

The randi command:

The randi command generates uniformly distributed random integer. The com-
mand can be used to assign these numbers to a scalar, a vector, or a matrix, as
shown in Table 3-3.

www.it-ebooks.info

http://www.it-ebooks.info/

3.7 Generation of Random Numbers

79

Table 3-3: The randi command

Command Description Example
randi (imax) |Generates a single random |>> a=randi (15)
))) number between 1 and a =
g::)ax isaninte- |, - .
randi (imax, |Generates an n X n matrix |>> b=randi (15, 3)
n) with random integers b =
between 1 and imax. 4 8 11
14 3
1 15 8
randi (imax, |Generates an m X n matrix |>> c=randi (15,2,4)
m,n) with random integers c=
between 1 and imax. 1 1 8 13
1 2 2 13

The range of the random integers can be set to be between any two integers by
typing [imin imax] instead of imax. For example, a 3 X 4 matrix with ran-
dom integers between 50 and 90 is created by:

>> d=randi([50 90]1,3,4)

d =
57 82 71 75
66 52 67 61
84 66 76 67

The randn command:

The randn command generates normally distributed numbers with mean 0 and
standard deviation of 1. The command can be used to generate a single number, a
vector, or a matrix in the same way as the rand command. For example, a 3 x 4
matrix is created by:

>> d=randn(3,4)

d =
-0.4326 0.2877 1.1892 0.1746
-1.6656 -1.1465 -0.0376 -0.1867
0.1253 1.1909 0.3273 0.7258

The mean and standard deviation of the numbers can be changed by mathematical
operations to have any values. This is done by multiplying the number generated
by the randn function by the desired standard deviation, and adding the desired
mean. For example, a vector of six numbers with a mean of 50 and standard devi-

www.it-ebooks.info

http://www.it-ebooks.info/

80

Chapter 3: Mathematical Operations with Arrays

ation of 6 is generated by:

>> v=4*randn(l,6)+50
Vv =

42.7785 57.4344 47.5819 50.4134 52.2527 50.4544

Integers of normally distributed numbers can be obtained by using the round
function.

>> w=round(4*randn(1,6) +50)

W =
51 49 46 49 50 44

3.8 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 3-2: Equivalent force system (addition of vectors)

Three forces are applied to a bracket as y
shown. Determine the total (equivalent)

force applied to the bracket. F,=700N

. F,=500N
Solution
A force is a vector (a physical quantity] &

that has a magnitude and direction). In a
Cartesian coordinate system a two- 200
dimensional vector F can be written as: —

30°

F,=400N
F = F,i+F,j = Fcosbi+ Fsin8j= F(cos6i+ sin0j)

where F is the magnitude of the force and 6 is its angle relative to the x axis, F,
and F,, are the components of F in the directions of the x and y axes, respectively,
and i and j are unit vectors in these directions. If F, and F,, are known, then F and
0 can be determined by:

F.
F = JF:+F§ and tan9=i,i

The total (equivalent) force applied on the bracket is obtained by adding the forces
that are acting on the bracket. The MATLAB solution below follows three steps:

¢ Write each force as a vector with two elements, where the first element is the x
component of the vector and the second element is the y component.

¢ Determine the vector form of the equivalent force by adding the vectors.
¢ Determine the magnitude and direction of the equivalent force.

The problem is solved in the following script file.

www.it-ebooks.info

http://www.it-ebooks.info/

3.8 Examples of MATLAB Applications

81

% Sample Problem 3-2 solution (script file)
clear

F1M=400; F2M=500; F3M=700; Define variables with the
magnitude of each vector.

Thl=-20; Th2=30; Th3=143;
(Define variables with the angle of each vector. |
F1=F1M* [cosd (Thl) sind(Thl)]

F2=F2M* [cosd (Th2) sind(Th2)] 4—[Define the three vectors.]
F3=F3M* [cosd(Th3) sind(Th3)]
Ftot=F1+F2+F3 [Calculate the total force vector.]

FtotM=sqrt (Ftot (1) "2+Ftot (2) "2) -w«——
Th=atand (Ftot (2) /Ftot (1))

Calculate the magnitude of
the total force vector.

‘\[Calculate the angle of the total force vector.]

When the program is executed, the following is displayed in the Command Win-
dow:

Fl =

375.8770 -136.8081 [The components of F;. |
F2 =

433.0127 250.0000 [The components of F,. |
F3 =

-559.0449 421.2705 [The components of F;. |
Ftot =

249.8449 534.4625 [Thecomponentsofthetotalforce.]
FtotM =

589.9768 (The magnitude of the total force. |
Th ;4. 9453 [The direction of the total force in degrees.]

The equivalent force has a magnitude of 589.98 N, and is directed 64.95° (ccw)
relative to the x axis. In vector notation, the force is F = 249.84i + 534.46j N.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Mathematical Operations with Arrays

Sample Problem 3-3: Friction experiment (element-by-element
calculations)

The coefficient of friction, L, can be determined in F
an experiment by measuring the force F required to m

move a mass m. When F is measured and m is
known, the coefficient of friction can be calculated
by:

u=F/(mg) (g=9.81 m/s?). friction

Results from measuring F in six tests are given in the table below. Determine the
coefficient of friction in each test, and the average from all tests.

Test 1 2 3 4 5 6
Mass m (kg) 2 4 5 10 20 50
Force F (N) 12.5 235 30 61 117 294
Solution

A solution using MATLAB commands in the Command Window is shown below.

>> m=[2 4 5 10 20 50]; [Enter the values of m in a vector.]
>> F=[12.5 23.5 30 61 117 294]; [Enter the values of F in a vector. J
>> mu=F./(m*9.81) -

A value for mu is calculated for each test,
i e using element-by-element calculations.

0.6371 0.5989 0.6116 0.6218 0.5963 0.5994

>> mu_ave=mean (mu)

mu ave = is determined by using the function mean.

[The average of the elements in the vector mu]
 0.6109

www.it-ebooks.info

http://www.it-ebooks.info/

3.8 Examples of MATLAB Applications

83

Sample Problem 3-4: Electrical resistive network analysis (solving a

system of linear equations)

The electrical circuit shown consists of
resistors and voltage sources. Determine
the current in each resistor using the mesh
current method, which is based on Kirch-
hoff’s voltage law.

Vi=20V, ¥,=12V, ¥V; =40V
R, =18Q R, =10£) R; = 16Q
Ry =6Q R;=15Q R, = 8Q
R, =12Q Ry = 14Q

Solution

Kirchhoff’s voltage law states that the sum
of the voltage around a closed circuit is
zero. In the mesh current method a current
is first assigned for each mesh (iy, i,, @, is
in the figure). Then Kirchhoff’s voltage
law is applied for each mesh. This results

in a system of linear equations for the currents (in this case four equations). The
solution gives the values of the mesh currents. The current in a resistor that
belongs to two meshes is the sum of the currents in the corresponding meshes. It is
convenient to assume that all the currents are in the same direction (clockwise in
this case). In the equation for each mesh, the voltage source is positive if the cur-
rent flows to the — pole, and the voltage of a resistor is negative for current in the

direction of the mesh current.

Rs

AAAA

The equations for the four meshes in the current problem are:

Vi—=Ryiy = Ry(iy —i3) —Ry(i; —4y) = 0

—Rsiy— Ry(iy—1y) = Ry(iy —i3) =Ry (i3 —4y) = 0
—V, —Rg(i3—i4) —R4(iz —iy) —R3(i3—i;)) = 0
V3 — Rgiy—Rq(iy—iy) —Rg(iy—i3) = 0

The four equations can be rewritten in matrix form [4][x] = [B]:

—(R; t R, +Ry) R, R,
R, —(R,+* R4+ Rs+Ry) R,
R, R, —(R3 + R4+ Ry)
0 R, R

www.it-ebooks.info

0

R7

R6
~(Rg+R;+Ry)

http://www.it-ebooks.info/

84

The problem is solved in the following program, written in a script file:

V1=20; V2=12; V3=40;
R1=18; R2=10; R3=16; R4=6;
R5=15; R6=8; R7=12; R8=14;
A=[- (R1+R2+R3) R2 R3 0

R2 - (R2+R4+R5+R7) R4 R7 [CreatethematrixA,]
R3 R4 - (R3+R4+R6) R6

0 R7 R6 - (R6+R7+R8)]
>> B=[-V1; 0; Vv2; -v3] | Create the vector B. |
>> I=A\B [Solve for the currents by using left division.]

Define variables with the
values of the V’s and R’s.

When the script file is executed, the following is displayed in the Command Win-
dow:

A =
-44 10 16 0 .
10 -43 6 12 The numerical value
16 6 -30 8 of the matrix A.
0 12 8 -34
B =
-20 :
0 The numerical value
12 of the vector B.
-40
I = .
0.8411 <& |1 v
0.7206 <€—i>
0.6127 -——1|1;,
1.5750 - ||,
>>

The last column vector gives the current in each mesh. The currents in the resis-
tors R, Rs, and Ry are i) = 0.8411 A, i, = 0.7206 A, and i, = 1.5750 A, respec-

tively. The other resistors belong to two meshes and their current is the sum of the
currents in the meshes.
The current in resistor R, is i, —i, = 0.1205 A.

The current in resistor R, is i; —i; = 0.2284 A.
The current in resistor R, is i, —i; = 0.1079 A.
The current in resistor R¢ is i, —i; = 0.9623 A.
The current in resistor R, is i, —i, = 0.8544 A.

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.8 Examples of MATLAB Applications

85

Sample Problem 3-5: Motion of two particles

A train and a car are approaching a road crossing. At

time ¢ = 0 the train is 400 ft south of the crossing .

traveling north at a constant speed of 54 mi/h. Atthe .-4n¢

same time the car is 200 ft west of the crossing trav- —>

eling east at a speed of 28 mi/h and accelerating at 4 I,

ft/s2. Determine the positions of the train and the car,

the distance between them, and the speed of the train

relative to the car every second for the next 10 sec- il

onds. T\- =S4 mi/h
To show the results, create an 11 X 6 matrix in

which each row has the time in the first column and

the train position, car position, distance between the

train and the car, car speed, and the speed of the train relative to the car in the next

five columns, respectively.

Solution
The position of an object that moves along a straight line at a constant acceleration

is given by s = s, +v,t+ %at2 where s, and v, are the position and velocity at
t = 0, and q is the acceleration. Applying this equation to the train and the car

gives:

y=- 400 + vatraint (train)
x=-200+v,,,t+ %acart2 (car)

The distance between the car and the train is: d = /x2+32. The velocity of the
train is constant and in vector notation is given by v,,.., = V ... - The car is
accelerating and its velocity at time ¢ is given by v_,, = (v,,,, T a,,,2)i. The veloc-
ity of the train relative to the «car, v,., is given by

Vise = Virain™ Vear = _(vocar+acart)i+votrainj . The magnitude (Speed) of this
velocity is the length of the vector.

The problem is solved in the following program, written in a script file. First a
vector t with 11 elements for the time from 0 to 10 s is created, then the positions
of the train and the car, the distance between them, and the speed of the train rela-
tive to the car at each time element are calculated.

vOtrain=54*5280/3600; vOcar=28+%5280/3600; acar=4;
[Create variables for the initial velocities (in ft/s) and the acceleration.]

t=0:10; [Create the vector t. |
y=-400+vOtrain*t; Calculate the train and
x=-200+vOcar*t+0.5*acar*t.”2; car positions.

d=sqrt (x."2+y."2); (Calculate the distance between the train and car. |

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Mathematical Operations with Arrays

vcar=vOcar+acar*t; [Calculate the car’s velocity.]

speed_trainRcar=sqrt(vcar.”2+vOtrain”®2);
[Calculate the speed of the train relative to the car.]
table=[t' y' x' d' vcar' speed trainRcar']
 Create a table (see note below).]

Note: In the commands above, table is the name of the variable that is ama ix
containing the data to be displayed.

When the script file is executed, the following is displayed in the Command
Window:

table =
0 -400.0000 -200.0000 447.2136 41.0667 89.2139
1.0000 -320.8000 -156.9333 357.1284 45.0667 91.1243
2.0000 -241.6000 -109.8667 265.4077 49.0667 93.1675
3.0000 -162.4000 -58.8000 172.7171 53.0667 95.3347
4.0000 -83.2000 -3.7333 83.2837 57.0667 97.6178
5.0000 -4.0000 55.3333 55.4777 61.0667 100.0089
6.0000 75.2000 118.4000 140.2626 65.0667 102.5003
7.0000 154.4000 185.4667 241.3239 69.0667 105.0849
8.0000 233.6000 256.5333 346.9558 73.0667 107.7561
9.0000 312.8000 331.6000 455.8535 77.0667 110.5075
10.0000 392.0000 410.6667 567.7245 81.0667 113.3333
Time Train Car Car-train Car Train speed
(s) position position distance speed relative to the
(f) (f) (®) (fs) || car (fs)

In this problem the results (numbers) are displayed by MATLAB without any
text. Instructions on how to add text to output generated by MATLAB are pre-
sented in Chapter 4.

3.9 PROBLEMS

Note: Additional problems for practicing mathematical operations with arrays
are provided at the end of Chapter 4.

1. For the function y = x2- 0% +x , calculate the value of y for the following
values of x using element-by-element operations: -3,-2,-1,0,1,2,3.

(x+5)3

2. For the function y = 7 , calculate the value of y for the following val-

ues of x using element-by-element operations: 1,2,3,4,5,6.

www.it-ebooks.info

http://www.it-ebooks.info/

3.9 Problems

87

(x+7)*
(x+1)Jx

values of x using element-by-element operations: 1.5,2.5,3.5,4.5,5.5,6.6 .

For the function y = , calculate the value of y for the following

2sinx + cos2x
sinx
values of x using element-by-element operations: 20°, 30°, 40°, 50°, 60°, 70° .

For the function y = , calculate the value of y for the following

The radius, », of a sphere can be calculated from its surface area, s, by:

_ NS/

2
The volume, ¥ is given by:
47r3

V=3

Determine the volume of spheres with surface area of 50, 100, 150, 200, 250,

and 300 fi2. Display the results in a two-column table where the values of s
and 7 are displayed in the first and second columns, respectively.

The electric field intensity, E(z) , due to a ring z
of radius R at any point z along the axis of the s
ring is given by:

E(z) = A Rz

2_80(22 + R2)3/2

where A is the charge density,

g, = 8.85x 10712 is the electric constant, and

R is the radius of the ring. Consider the case X y

where A = 1.7x107 C/mand R = 6cm.

(a) Determine E(z) atz=0, 2,4, 6, 8, and 10 cm.

(b) Determine the distance z where E is maximum. Do it by creating a vector
z with elements ranging from 2 cm to 6 cm and spacing of 0.01 cm. Cal-

culate E for each value of z and then find the maximum E and associated z
with MATLAB?’s built-in function max.

The voltage V(¢) (in V) and the current i(z) i(9)
(in Amp) ¢ seconds after closing the switch in
the circuit shown are given by: i L
Vc(t) — VO(I _ e—t/‘to) (_)VO C T Vc(t)
v,
i() = E"e—‘/‘o

where 1, = RC is the time constant. Consider the case where V, = 24V,
R = 3800 Q and C = 4000 x 10-6 F. Determine the voltage and the current
during the first 20 s after the switch is closed. Create a vector with values of

www.it-ebooks.info

http://www.it-ebooks.info/

10.

11.

12.

times from 0 to 20 s with spacing of 2 s, and use it for calculating ¥V (¢) and
i(#) . Display the results in a three-column table where the values of time,

voltage and current are displayed in the first, second, and third columns,
respectively.

The length |ul (magnitude) of a vector u = xi+yj+zk is given by

lu| = Jx2+y2+2z2. Given the vector u = 23.5i—17j+ 6k, determine its

length in the following two ways:

(a) Define the vector in MATLAB, and then write a mathematical expression
that uses the components of the vector.

(b) Define the vector in MATLAB, then determine the length by writing one
command that uses element-by-element operation and MATLAB built-in
functions sum and sqrt.

A vector w; of length L in the direction of a vector u = xi +yj +zk can deter-
mined by w; = Lu, (multiplying a unit vector in the direction of u by L).
The unit vector u, in the direction of the vector u is given by

u, = Mtyjtzk By writing one MATLAB command, determine a vector
Jx2+y2+ 22

of length 18 in the direction of the vector u = 7i—4j - 11k.

The following two vectors are defined in MATLAB:

v =[15,8,-6] u = [3,-2,6]
By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(@) v./u B) u’' *v (c) u*v’

Two vectors are given:

u=>5i-6j+9k and v = 11i+7j-4k

Use MATLARB to calculate the dot product u - v of the vectors in three ways:

(a) Write an expression using element-by-element calculation and the MAT-
LAB built-in function sum.

(b) Define u as a row vector and v as a column vector, and then use matix

multiplication.
(¢) Use the MATLAB built-in function dot.

Define the vector v = [2 3 4 5 6]. Then use the vector in a mathematical
expression to create the following vectors:

(@) a=1[46 8 10 12] (3) b =1[8 27 64 125 216]

(©) ¢ = [22 33 44 55 66) (d d=1[1152 25 3]

www.it-ebooks.info

Chanpter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.9 Problems

89

13.

14.

15.

16.

17.

Define the vector v = [8 6 4 2] . Then use the vector in a mathematical
expression to create the following vectors:

@ a=[1111] (b)b=[é6lz4i22l2}
L i1r 11 - 1
(c)c—[ﬁﬁﬁﬁ} @d=[31 -1 3]

Define x and y as the vectors x = [1,2,3,4,5] and y = [2,4,6, 8, 10]. Then
use them in the following expressions to calculate z using element-by-element
calculations.

_ (x+y)? - 3
(@ z= T_yL (3) w = xIn(x2+y2)+ /G%)Z

Define r and s as scalars » = 1.6x 103 and s = 14.2, and, ¢, x, and y as vec-
tors ¢t=[1,2,3,4,5], x=[0,2,4,6,8], and y= [3,6,9,12,15]. Then use
these variables to calculate the following expressions using element-by-ele-
ment calculations for the vectors.

(@ G= xt+s—r2(yz—x)t ®) R = r(_;i;ﬁ—sz(y—O.sz)t

The area of a triangle ABC can be calculated by

[rypxryd/2, where r,, and r,. are vectors
connecting the vertices 4 and B and 4 and C,
respectively. Determine the area of the triangle
shown in the figure. Use the following steps in
a script file to calculate the area. First, define «
the vectors rp,, rop and ryc from lnowing
the coordinates of points 4, B, and C. Then
determine the vectors r,; and r,. from r,,, rop and r,. Finally, determine
the area by using MATLAB?’s built-in functions cross, sum. and sgrt.

C(-5,-2,11)

A(8,5,-4)

The volume of the parallelepiped shown can be
calculated by rgz- (rg, xr,c) . Use the follow-
ing steps in a script file to calculate the area.
Define the vectors r,,, r,c, and r,z; from
lnowing position of points 4, B, and C.
Determine the volume by using MATLAB’s
built-in functions dot and cross.

A(2,5,1)

www.it-ebooks.info

http://www.it-ebooks.info/

18.

19.

20

21.

Define the vectors:
u=>51-2j+4k, v=-21+7]+3k,and w = 81 +1j -3k
Use the vectors to verify the identity:
(a+v) - [(v+w)x(w+u)] =2u-(vXw)
Use MATI.AB’s built-in functions cross and dot, calculate the value of the
left and right sides of the identity.

The dot product can be used for determining the
angle between two vectors:
r,-r
0 = cos!(2 2|)

(|r1||rz
Use MATLAB’s built-in functions acosd,
sqrt, and dot to find the angle (in degrees)
between r, = 6i—3j+2k and
r, = 21+9j+ 10k,
Recall that |r| = Jr-r.

Use MATLAB to show that the angle inscribed

in a semi-circle is a right angle. Use the follow-

ing steps in a script file to calculate the angle.
Define a variable with the value of the x coordi-
nate of point 4. Determine the y coordinate of =y i
point 4 using the equation x2+y2 = R2. Define

vectors that correspond to the position of points 4, B, and C and use them for
determining position vectors r,; and r,.. Calculate the angle o in two ways.

First by using the equation & = cos™! (Lr‘:') , and then by using the equa-

|F.aal[r
. — ainif F4BX T4 : o
tion a = sin (|l'u||l‘.4 d . Both should give 90°.

The position as a function of time (x(£), y(£)) »
of a projectile fired with a speed of v, at an
angle o is given by

x(#) = vocoso.- ¢ y(t) = vysin -t-%gﬂ

where g = 9.81 m/s?. The polar coordinates of
the projectile at time ¢ are (r(#), 8(¢)) , where

) = Jx(1)2+y(t)2 and tan@(s) = % . Consider the case where

vo = 162m/s and o = 70°. Determine 7(¢) and 6(#) for £ =1,6,11, ..., 31s.

www.it-ebooks.info

http://www.it-ebooks.info/

3.9 Problems

91

22

23.

24.

Use MATLAB to show that the sum of the infinite series z %l converges to
n=0""

€2 . Do this by computing the sum for:

(@ n=5, b) n=10, (c) n=50

For each part create a vector » in which the first element is 0, the increment is
1 and the last term is 5, 10, or 50. Then use element-by-element calculations to

create a vector in which the elements are 37:‘ . Finally, use MATLAB?s built-in

function sum to sum the series. Compare the values to ¢2 (use format
long to display the numbers).

Use MATLAB to show that the sum of the infinite series Z @ con-
n=1

verges to In10. Do this by computing the sum for

(@ n=10, (b) n=50, (c) n= 100

For each part, create a vector » in which the first element is 1, the increment is

1 and the last term is 10, 50 or 100. Then use element-by-element calculations

to create a vector in which the elements are (8710)" Finally, use MAT-
n

LAB’s built-in function sum to sum the series. Compare the values to In10

(use format long to display the numbers).

According to Zeno’s paradox any object in mo%ion must arrive at the halfway
point before it can arrive at its destination. Once arriving at the halfway point,
the remaining distance is once again divided in half and so on to infinity.
Since it is impossible to complete this process, Zeno concluded all motion
must be an illusion. Letting the length be unity, Zeno’s paradox can be written

in terms of the infinite sum Z% = 1. To see how quickly this series con-
=1

verges to 1, compute the sum for:
(@ n=5, (b)) n=10, () n=40

For each part create a vector n in which the first element is 1, the increment is
1, and the last term is 5, 10, or 40. Then use element-by-element calculations to

create a vector in which the elements are % . Finally, use the MATLAB built-

in function sum to add the terms of the series. Compare the values obtained in
parts (a), (b), and (c) with the value of 1.

www.it-ebooks.info

http://www.it-ebooks.info/

92

25.

26.

27.

28.

Show that limM =4,
x>0 cosx—1

Do this by first creating a vector x that has the elements 1.0, 0.5, 0.1, 0.01,
0.001, and 0.0001. Then, create a new vector y in which each element is deter-
cos(2x)—1
cosx — 1
with the value 4 (use format long to display the numbers).

mined from the elements of x by . Compare the elements of y

. x13-1 _4
Show that xhl)nlxl/“__l = 3 .
Do this by first creating a vector x that has the elements 2.0, 1.5, 1.1, 1.01,

1.001, 1.00001, and 1.0000001. Then, create a new vector y in which each ele-
1/73 _

ment is determined from the elements of x by xlTi . Compare the elements
x —

of y with the value 4/3 (use format long to display the numbers).

The demand for water during a fire is often the most important factor in the
design of distribution storage tanks and pumps. For communities with popula-
tions less than 200,000, the demand Q (in gallons/min) can be calculated by:

0 = 1020./P(1-0.01./P)
where P is the population in thousands. Set up a vector for P that starts at 10
and increments by 10 up to 200. Use element-by-element computations to
determine the demand Q for each population in P.

The ideal gas equation states that P = 'iI;T , Where P is the pressure, V is the
volume, T is the temperature, R = 0.08206 (L asm)/(mol K) is the gas con-
stant, and » is the number of moles. Real gases, especially at high pressure,
deviate from this behavior. Their response can be modeled with the van der
Waals equation

_ nRT _n%a

- V-nb V2
where a and b are material constants. Consider 1 mole (» = 1) of nitrogen
gas at T = 300K. (For nitrogen gas a = 1.39 (L awm)/mol?, and b = 0.0391
L/mol.) Create a vector with values of Vs for 0.1 < V<1 L, using increments
of 0.02 L. Using this vector calculate P twice for each value of ¥, once using
the ideal gas equation and once with the van der Waals equation. Using the

Pyous—P
two sets of values for P, calculate the percent of error (%‘”""“100) for
waals

each value of V. Finally, by using MATLAB’s built-in function max, deter-
mine the maximum error and the corresponding volume.

www.it-ebooks.info

Chanpter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

3.9 Problems

93

29.

30.

31.

32.

33.

Create the following three matrices:
1 35 0-21 -34-1
4=12 24 B=151 -6 C=lo082
-2 06 27 -1 353
(a) Calculate 4+ B and B +4 to show that addition of matrices is commuta-
tive.

(b) Calculate 4+ (B+ C) and (4 + B) + C to show that addition of matrices is
associative.

(c) Calculate 3(4+C) and 34 +5C to show that, when matrices are multi-
plied by a scalar, the multiplication is distributive.

(d) Calculate 4*(B+ C) and 4*B+ 4*C to show that matrix multiplication is
distributive.

Use the matrices 4, B, and C from the previous problem to answer the follow-
ing:

(a) Does A*B = B*4 ? (b) Does A*(B*C) = (4*B)*C?
(c) Does (4*B)" = 4"*B"? (* means transpose) (d) Does (4 + B): = 4' + BY?

Create a 4 X 4 matrix A having random integer values between 1 and 10. Call
the matrix 4 and, using MATLAB, perform the following operations. For each
part explain the operation.

(@) A*A (b) A.*A (c) A\A

dAa./A (e) det (n) (e) inv (n)

The magic square is an arrangement of numbers in a square grid in such a way
that the sum of the numbers in each row, and in each column, and in each
diagonal is the same. MATLAB has a built-in function magic (n) that
returns an n X n magic square. In a script file create a (6 x 6) magic square,
and then test the properties of the resulting matrix by finding the sum of the
elements in each row, in each column and in both diagonals. In each case, use
MATLAB?’s built-in function sum. (Other functions that can be useful are
diagand f1liplr.)

Solve the following system of three linear equations:

—4x+3y+z = -182
S5x+6y—2z = —48.8
2x-5y+4.5z = 925

www.it-ebooks.info

http://www.it-ebooks.info/

94

34.

35.

36.

37.

Solve the following system of five linear equations:

25a-b+3c+1.5d-2e = 57.1
3a+4b—-2c+2.5d—e = 27.6
—4a+3b+c—6d+2e = -81.2
2a+3b+c—-25d+4e = -22.2

a+2b+5c-3d+4e = -12.2

A food company manufactures five types of 8 oz Trail mix packages using
different mixtures of peanuts, almonds, walnuts, raisins, and M&Ms. The
mixtures have the following compositions:

Peanuts (0z) | Almonds (0z) | Walnuts (0z) | Raisins (0z) | M&Ms (0z)
Mix 1 3 1 1 2 1
Mix 2 1 2 1 3 1
Mix 3 1 1 0 3 3
Mix 4 2 0 3 1 2
Mix 5 1 2 3 0 2

How many packages of each mix can be manufactured if 128 1b of peanuts,
118 Ib of almonds, 112 Ib of walnuts, 112 Ib of raisins, and 104 1b of M&Ms
are available? Write a system of linear equations and solve.

The electrical circuit shown consists of resis-
tors and voltage sources. Determine i, i,, i5 ,

and i, , using the mesh current method based

on Kirchhoff’s voltage law (see Sample
Problem 3-4).

The electrical circuit shown consists of
resistors and voltage sources. Determine

i}, iy, i3, i, and is, using the mesh current

method based on Kirchhoff’s voltage law
(see Sample Problem 3-4).

V, =40V, ¥, =30V, V, = 36V,

R, =16 R, = 20Q, R, = 10Q

AA
VYVY

-
Rw -4

R,=14Q R; =8Q R, =16 Q
R, =10Q Ry =15Q, Ry =6 Q,
Ry =4 Q.

www.it-ebooks.info

Chapter 3: Mathematical Operations with Arrays

http://www.it-ebooks.info/

Chapter 4
Using Script Files and
Managing Data

A script file (see Section 1.8) is a list of MATLAB commands, called a program,
that is saved in a file. When the script file is executed (run), MATLAB executes
the commands. Section 1.8 describes how to create, save, and run a simple script
file in which the commands are executed in the order in which they are listed, and
in which all the variables are defined within the script file. This chapter gives
more details about how to input data to a script file, how data is stored in MAT-
LAB, various ways to display and save data that is created in script files, and how
to exchange data between MATLAB and other applications. (How to write more
advanced programs in which commands are not necessarily executed in a simple
order is covered in Chapter 6.)

In general, variables can be defined (created) in several ways. As shown in
Chapter 2, variables can be defined implicitly by assigning values to a variable
name. Variables can also be assigned values by the output of a function. In addi-
tion, variables can be defined with data that is imported from files outside MAT-
LAB. Once defined (either in the Command Window or when a script file is
executed), the variables are stored in MATLAB’s Workspace.

Variables that reside in the workspace can be displayed in various ways,
saved, or exported to applications outside MATLAB. Similarly, data from files
outside MATLAB can be imported to the workspace and then used in MATLAB.

Section 4.1 explains how MATLAB stores data in the workspace and how
the user can see the data that is stored. Section 4.2 shows how variables that are
used in script files can be defined in the Command Window and/or in script files.
Section 4.3 shows how to output data that is generated when script files are exe-
cuted. Section 4.4 explains how the variables in the workspace can be saved and
then retrieved, and Section 4.5 shows how to import and export data from and to
applications outside MATLAB.

www.it-ebooks.info

95

http://www.it-ebooks.info/

96

Chapter 4: Using Script Files and Managing Data

4.1 THE MATLAB WORKSPACE AND THE WORKSPACE WINDOW

The MATLAB workspace consists of the set of variables (named arrays) that are
defined and stored during a MATLAB session. It includes variables that have
been defined in the Command Window and variables defined when script files are
executed. This means that the Command Window and script files share the same
memory zone within the computer. This implies that once a variable is in the
workspace, it is recognized and can be used, and it can be reassigned new values,
in both the Command Window and script files. As will be explained in Chapter 7
(Section 7.3), there is another type of file in MATLAB, called a function file,
where variables can also be defined. These variables, however, are normally not
shared with other parts of the program since they use a separate workspace.

Recall from Chapter 1 that the who command displays a list of the variables
currently in the workspace. The whos command displays a list of the variables
currently in the workspace and information about their size, bytes, and class. An
example is shown below.

>> 'Variables in memory’ [Typingastring.]
ans = - . .
Variables in memory [The swring is assigned to ans.]
>> a = 7;
>> E = 3; Creating the variables a,
>> d = [5, a+E, 4, E"2] E,d,and g.
d =

5 10 4 9
>> g = [a, a%2, 13; a*E, 1, a"E]
g =

7 49 13

21 1 343

The who command displays the vari-

ables currently in the workspace.

>> who
Your variables are: ‘

E a ans d g
>> whos
Name Size Bytes Class Attributes
E 1x1 8 double | Ihewhos command
a 1x1 8 double | displays the variables
ans 1x19 38 char currently in the work-
d 1x4 32 double space and informa-
g 2x3 48 double tion about their size
and other information.
>>

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Input to a Seript File

97

The vanables currently in memory can also be viewed in the Workspace Win-
dow. This window can be opened by selecting Workspace in the Desktop menu.
Figure 4-1 shows the Workspace Window that corresponds to the variables
defined above. The vanables that are displayed in the Workspace Window can

&\ Workspace X
File Edit View Graphics Debug Desktop Window Help ~
B | &g Stack: @ Select data te plat
IMame Value Min Max
He 3 3 3
H- 7 7 7
[ab] ans "Variamles in memery'
Hd [5.10,4,9] 4 10
Hoa [7.49,13;21,1,343) 1 343

€lgure 4-1: The Worlspace Window.

also be edited (changed). Double-clicking on a variable opens the Variable Editor
Window, where the content of the variable is displayed in a table. For example,
Figure 4-2 shows the Variable Editor Window that opeos when the variable g in

Figure 4-1 is doubleclicked.

ﬁ Yariable Editer - g

File Edit WView Graphics Debug Desktep Window Help
& Y % = Stack:
BE| g <2x3 deuble >
1 | 2 3 4 5

) I # 13
2 21 1 343
3
4
5

<

6

A X

7

[P Nevalid plets far: g(1.1) = | v

Tl

€lgure 4-2: The Variable Editor Window.

The elemeuts in the Variable Edisor Window can be edited. The vanables in the
Workspace Window can be deleted by selecting them, and then either pressing the
delete lsey on the keyboard or selecting delete from the edit menu. This has the
same effect as envering the cammand clear variable_name in the Com-

mand Window.

4.2 INPUT 70 A SCRIPT FILE

When a script file is executed, the variables that are used in the calculations within
the file must have assigned values. In other words, the variables must be in the
workspace. The assignment of a value to a variable can be done in three ways,

depending on where and how the variable is defined.

www.it-ebooks.info

http://www.it-ebooks.info/

98

Chapter 4: Using Script Files and Managing Data

1. The variable is defined and assigned a value in the script file.

In this case the assignment of a value to the variable is part of the script file. If the
user wants to run the file with a different variable value, the file must be edited
and the assignment of the variable changed. Then, after the file is saved, it can be
executed again.

The following is an example of such a case. The script file (saved as
Chapter4Example2) calculates the average points scored in three games.
% This script file calculates the average points scored in three games.
% The assigmment of the values of the points is part of the script file.
gamel=75;

game2=93; The variables are assigned
game3=68; values within the script file.

ave points=(gamel+game2+game3) /3

The display in the Command Window when the script file is executed is:

>> Chapter4Example2

[The script file is executed by typing the name of the ﬁle.]
ave points = = ; =
78.6667 The variable ave_points with its value
_— is displayed in the Command Window.

2. The variable is defined and assigned a value in the Command Window.

In this case the assignment of a value to the variable is done in the Command
Window. (Recall that the variable is recognized in the script file.) If the user wants
to run the script file with a different value for the variable, the new value is
assigned in the Command Window and the file is executed again.

For the previous example in which the script file has a program that calcu-
lates the average of points scored in three games, the script file (saved as
Chapter4Example3) is:

% This script file calculates the average points scored in three games.
% The assigment of the values of the points to the variables
% gamel, game2, and game3 is done in the Command Window.

ave points=(gamel+game2+game3) /3

The Command Window for running this file is:

>> gamel = 67; . . .

>> game2 = 90; ¢ The variables are assigned values in
the Command Window.

>> game3 = 81; L

www.it-ebooks.info

http://www.it-ebooks.info/

4.2 Input to a Script File

99

B 4—[The script file is executed.]

ave points = : ie di

;g’ 3233 < The output from the. script file is displayed

4 in the Command Window.

:: ::E:;' : ng New values are assigned to]
= game: =50} the variables.
>> Chapter4Example3 4—‘ The script file is executed again.]
ave_;;:mts - The output from the script file is displayed
>s in the Command Window.

3. The variable is defined in the script file, but a specific value is entered
in the Command Window when the script file is executed.

In this case the variable is defined in the script file, and when the file is executed,
the user is prompted to assign a value to the variable in the Command Window.
This is done by using the input command for creating the variable.

The form of the input command is:

variable name = input (‘string with a message that
is displayed in the Command Window’)

When the input command is executed as the script file runs, the string is dis-
played in the Command Window. The string is a message prompting the user to
enter a value that is assigned to the variable. The user types the value and presses
the Enter key. This assigns the value to the variable. As with any variable, the
variable and its assigned value will be displayed in the Command Window unless
a semicolon is typed at the very end of the input command. A script file that
uses the input command to enter the points scored in each game to the program
that calculates the average of the scores is shown below.

% This script file calculates the average of points scored in three games.
% The points fram each game are assigned to the variables by

% using the input cawand.

gamel=input ('Enter the points scored in the first game ');

game2=input ('Enter the points scored in the secand game ');

game3=input ('Enter the points scored in the third game ');

ave points=(gamel+game2+game3) /3

The following shows the Command Window when this script file (saved as

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 4: Using Script Files and Managing Data

Chapter4Example4) is executed.

>> Chapter4Example4 -

. . , The computer displays |
Enter the points scored in the first game 67

the message. Then the
Enter the points scored in the second game 91 | value of the score is

Enter the points scored in the third game 70 typed by the user and

the Enter key is

ave_points = pressed.
76 -
>>

In this example scalars are assigned to the variables. In general, however,
vectors and arrays can also be assigned. This is done by typing the array in the
same way that it is usually assigned to a variable (left bracket, then typing row by
row, and a right bracket).

The input command can also be used to assign a string to a variable. This
can be done in one of two ways. One way is to use the command in the same form
as shown above, and when the prompt message appears the sting is typed
between two single quotes in the same way that a string is assigned to a variable
without the input command. The second way is to use an option in the input
command that defines the characters that are entered as a string. The form of the
command is:

variable name = input (‘prompt message’,‘s’)

where the s’ inside the command defines the characters that will be entered as a
string. In this case when the prompt message appears, the text is typed in without
the single quotes, but it is assigned to the variable as a string. An example where
the input command is used with this option is included in Sample Problem 6-4.

4.3 OuTPUT COMMANDS

As discussed before, MATLAB automatically generates a display when some
commands are executed. For example, when a variable is assigned a value, or the
name of a previously assigned variable is typed and the Enter key is pressed,
MATLARB displays the variable and its value. This type of output is not displayed
if a semicolon is typed at the end of the command. In addition to this automatic
display, MATLAB has several commands that can be used to generate displays.
The displays can be messages that provide information, numerical data, and plots.
Two commands that are frequently used to generate output are disp and
fprintf. The disp command displays the output on the screen, while the
fprintf command can be used to display the output on the screen or to save the
output to a file. The commands can be used in the Command Window, in a script
file, and, as will be shown later, in a function file. When these commands are used

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Output Commands 101

in a script file, the display output that they generate is displayed in the Command
Window.

4.3.1 The disp Command

The disp command is used to display the elements of a variable without display-
ing the name of the variable, and to display text. The format of the disp com-
mand is:

[disp (name of a variable) or disp(‘text as string')]

¢ Every time the disp command is executed, the display it generates appears in
a new line. One example is:

>»>abc=1[5 9 1; 7 2 4]; [A 2 X3 array is assigned to variable abc.]
>> disp (abc) [The disp command is used to display the abc array.]
5 9 1

7 5 4 { The array is displayed without its name.]

disp('The lem ha solution. * , .
>> disp(s L) el) The disp command is used

The problem has no solution. to d1splayamessage.

>>

The next example shows the use of the di sp command in the script file that cal-
culates the average points scored in three games.

% This script file calculates the average points scored in three games.
% The points from each game are assigned to the variables by
% using the input command.

% The disp command is used to display the output.

gamel=input ('Enter the points scored in the first game ')
game2=input ('Enter the points scored in the secand game ');
game3=input ('Enter the points scored in the third game ');

ave points=(gamel+game2+game3) /3;

disp(' ') (Display empty line.)
disp('The average of points scored in a game is:') [W
disp(' ') (Display empty line. |
disp (ave_points) (Display the value of the variable ave points.]

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 4: Using Script Files and Managing Data

When this file (saved as Chapter4dExample5) is executed, the display in the
Command Window is:
>> Chapter4Example5
Enter the points scored in the first game 89
Enter the points scored in the second game 60
Enter the points scored in the third game 82

(An empty line is displayed. |

The average of points scored in a game is: [The text line is displayed.

[An empty line is displayed.]
77 (The value of the variable ave_points is displayed. |

¢ Only one variable can be displayed in a disp command. If elements of two
variables need to be displayed together, a new variable (that contains the ele-
ments to be displayed) must first be defined and then displayed.

In many situations it is nice to display output (numbers) in a table. This can
be done by first defining a variable that is an array with the numbers and then
using the disp command to display the array. Headings to the columns can also
be created with the di sp command. Since in the disp command the user cannot
control the format (the width of the columns and the distance between the col-
umns) of the display of the array, the position of the headings has to be aligned
with the columns by adding spaces. As an example, the script file below shows
how to display the population data from Chapter 2 in a table.

yr=[1984 1986 1988 1990 1992 1994 1996]; The population data is
pop=[127 130 136 145 158 178 211]; entered in two row vectors.

tableYP (:,1)=yr'; [yr is entered as the first column in the array tableYP.]

tableYP (:,2)=pop’ ;[pop is entered as the second column in the array tableYPJ

disp (" YEAR POPULATION') |(Display heading (first line).]
disp (' (MILLIONS)') [Display heading (second line).]
disp(' ') (Display an empty line.)
disp (tableYP) (Display the array tableYP.)

When this script file (saved as PopTable) is executed, the display in the Command
Window is:

>> PopTable

EEAR POPULATION [Headings are displayed.]
(MILLIONS)
(An empty line is displayed.]
1984 127

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Output Commands 103

1986 130
1988 136 (The tableYP array is displayed.)
1990 145
1992 158
1994 178
1996 211

Another example of displaying a table is shown in Sample Problem 4-3.
Tables can also be created and displayed with the fprintf command, which is
explained in the next section.

4.3.2 The fprintf Command

The fprintf command can be used to display output (text and data) on the
screen or to save it to a file. With this command (unlike with the di sp command)
the output can be formatted. For example, text and numerical values of variables
can be intermixed and displayed in the same line. In addition, the format of the
numbers can be controlled.

With many available options, the fprintf command can be long and
complicated. To avoid confusion, the command is presented gradually. First, this
section shows how to use the command to display text messages, then how to mix
numerical data and text, next how to format the display of numbers, and finally
how to save the output to a file.

Using the fprintf command to display text:

To display text, the fprint f command has the form:

[fprintf(‘text typed in as a string')]

For example:

fprintf (*The prablem, as entered, has no solution. Please check the
input data.')

If this line is part of a script file, then when the line is executed, the following is
displayed in the Command Window:

The prablem, as entered, has no solution. Please check the input data.

With the fprint f command it is possible to start a new line in the middle of the
string. This is done by inserting \n before the character that will start the new
line. For example, inserting \n after the first sentence in the previous example
gives:

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 4: Using Script Files and Managing Data

fprintf ('The problem, as entered, has no solution.\nPlease
check the input data.')

When this line executes, the display in the Command Window is:

The problem, as entered, has no solution.
Please check the input data.

The \n is called an escape character. It is used to control the display. Other escape
characters that can be inserted within the string are:

\b Backspace.

\t Horizontal tab.

When a program has more than one fprint f command, the display gener-
ated is continuous (the fprintf command does not automatically start a new
line). This is true even if there are other commands between the fprintf com-
mands. An example is the following script file:

fprintf ('The prablem, as entered, has no solution. Please check the
input data.')

x = 6; d = 19 + 5*%*x;

fprintf('Try to run the program later.')

y =d + x;

fprintf ('Use different input values.')

When this file is executed the display in the Command Window is:

The problem, as entered, has no solution. Please check the
input data.Try to run the program later.Use different input
values.

To start a new line with the fprint f command, \n must be typed at the start of
the string.

Using the fprintf command to display a mix of text and numerical data:
To display a mix of text and a number (value of a variable), the fprintf com-
mand has the form:

fprintf (*text as string %-5.2f additional text’,
/ \7_1 variable name)
/ S

The % sign marks the Formatting elements The name of the
spot where the number is (define the format of variable whose
inserted within the text. the number). value is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Output Commands 105

The formatting elements are:
—5.2f

Flag / \ \ .
(optional) Field width Conv.ers1on character
and precision (required)
(optional)
The flag, which is optional, can be one of the following three characters:
Character used Description
for flag
— (minus sign) Left-justifies the number within the field.
+ (plus sign) Prints a sign character (+ or —) in front of the number.
0 (zero) Adds zeros if the number is shorter than the field.

The field width and precision (5.2 in the previous example) are optional.
The first number (5 in the example) is the field width, which specifies the mini-
mum number of digits in the display. If the number to be displayed is shorter than
the field width, spaces or zeros are added in front of the number. The precision is
the second number (2 in the example). It specifies the number of digits to be dis-
played to the right of the decimal point.

The last element in the formatting elements, which is required, is the con-
version character, which specifies the notation in which the number is displayed.
Some of the common notations are:

e Exponential notation using lowercase e (e.g., 1.709098e+001).
E Exponential notation using uppercase E (e.g., 1.709098E+001).
f Fixed-point notation (e.g., 17.090980).

g The shorter of e or f notations.

G The shorter of E or f notations.

i Integer.

Information about additional notation is available in the help menu of MATLARB.
As an example, the fprint f command with a mix of text and a number is used
in the script file that calculates the average points scored in three games.

% This script file calculates the average points scored in three games.
% The values are assigned to the variables by using the input cammand.
% The fprintf cammand is used to display the output.

game (1) = input ('Enter the points scored in the first game ");

game (2) = imput ('Enter the points scored in the secand game ');

game (3) = imput('Enter the points scored in the third game);

ave points = mean (game) ;

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 4: Using Script Files and Managing Data

fprintf('An average of %f points was scored in the three games.', ave points)

Text % marks the Additional The name of the
position of text. variable whose

the number. value is displayed.

Notice that, besides using the fprint £ command, this file differs from the ones
shown earlier in the chapter in that the scores are stored in the first three elements
of a vector named game, and the average of the scores is calculated by using the
mean function. The Command Window where the script file above (saved as
Chapter4Example6) was run is shown below.

>> Chapter4Example6

Enter the points scored in the first game 75

Enter the points scored in the second game 60

Enter the points scored in the third game 81

An average of 72.000000 points was scored in the three games.

>2 \{ The display generated by the fprintf command

combines text and a number (value of a variable).

With the fprintf command it is possible to insert more than one number
(value of a variable) within the text. This is done by typing %g (or % followed by
any formatting elements) at the places in the text where the numbers are to be
inserted. Then, after the string argument of the command (following the comma),
the names of the variables are typed in the order in which they are inserted in the
text. In general the command looks like:

fprintf(‘..text...%g...%g...%f...",variablel,variable2,variable3)

An example is shown in the following script file:

% This program calculates the distance a projectile flies,

% given its initial velocity and the angle at which it is shot.

% the fprintf cammand is used to display a mix of text and numbers.

v=1584; % Initial velocity (km/h)
theta=30; % Angle (degrees)

vms=v*1000/3600; (Changing velocity units to m/s.]
t=vms*sind(30)/9.81; [Calculating the time to highest point.]
d=vms*cosd (30) *2*t/1000; (_ Calculating max distance.]

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Output Commands 107

fprintf ('A projectile shot at %3.2f degrees with a velocity
of %4.2f km/h will travel a distance of %g km.\n', theta,v,d)

When this script file (saved as Chapter4dExample?7) is executed, the display in the
Command Window is:
>> Chapter4Example?7

A projectile shot at 30.00 degrees with a velocity of
1584.00 km/h will travel a distance of 17.091 km.
>>

Additional remarks about the fprint f command:

¢ To place a single quotation mark in the displayed text, type two single quota-
tion marks in the string inside the command.

¢ The fprintf command is vectorized. This means that when a variable that is
a vector or a matrix is included in the command, the command repeats itself
until all the elements are displayed. If the variable is a matrix, the data is used
column by column.

For example, the script file below creates a 2 X 5 matrix T in which the first
row contains the numbers 1 through 5, and the second row shows the correspond-
ing square roots.

x=1:5; [Create a vector x.]
y=8qrt(x) ; (Create a vector y. |
T=[x; yl [Create 2 X 5 matrix T, first row is x, second row is y.]

fprintf ('If the number is: %i, its square root is: %£f\n',T)

[The fprint f command displays two numbers from T in every line.]

When this script file is executed, the display in the Command Window is:

T =
1.0000 2.0000 3.0000 4.0000 5.0000 [The 2%5 matrixT.]
1.0000 1.4142 1.7321 2.0000 2.2361

If the mmber is: 1, its square root is: 1.000000 The fprintf

If the mmber is: 2, its square root is: 1.414214 | command repeats

If the is: 3, it o b S SEFRSEL five times, using
mmber is: s 18 square root 18: . the numbers from

If the mmber is: 4, its square root is: 2.000000 the matrix T col-

If the mmber is: 5, its square root is: 2.236068 umn after column.

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 4: Using Script Files and Managing Data

Using the fprintf command to save output to a file:

In addition to displaying output in the Command Window, the fprintf com-
mand can be used for writing the output to a file when it is necessary to save the
output. The data that is saved can subsequently be displayed or used in MATLAB
and in other applications.

Writing output to a file requires three steps:

a) Opening a file using the fopen command.
b) Writing the output to the open file using the fprint f command.
¢) Closing the file using the fclose command.

Step a:

Before data can be written to a file, the file must be opened. This is done with the
fopen command, which creates a new file or opens an existing file. The fopen
command has the form:

fid=fopen(‘file name’, ‘permission’)

fid is a variable called the file identifier. A scalar value is assigned to £id when
fopen is executed. The file name is written (including its extension) within sin-
gle quotes as a string. The permission is a code (also written as a string) that tells
how the file is opened. Some of the more common permission codes are:

‘r’ Open file for reading (default).

‘w’ Open file for writing. If the file already exists, its content is deleted.
If the file does not exist, a new file is created.

‘a’ Same as ‘w’, except that if the file exists the written data is
appended to the end of the file.

‘r+’ Open (do not create) file for reading and writing.

‘w+’ Open file for reading and writing. If the file already exists, its con-
tent is deleted. If the file does not exist, a new file is created.

‘a+’ Same as ‘w+', except that if the file exists the written data is
appended to the end of the file.

If a permission code is not included in the command, the file opens with the
default code * r’. Additional permission codes are described in the help menu.

Step b:
Once the file is open, the fprint £ command can be used to write output to the
file. The fprint f command is used in exactly the same way as it is used to dis-

play output in the Command Window, except that the variable £id is inserted
inside the command. The fprint f command then has the form:

fprintf (fid, ‘text %-5.2f additional text’, vari
\ able name)

\ £id is added to the fprintf command.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3 Output Commands 109

Step c:

When the writing of data to the file is complete, the file is closed using the
fclose command. The £close command has the form:

[fclose(fid) J

Additional notes on using the fprintf command for saving output to a file:

¢ The created file is saved in the current directory.

¢ It is possible to use the fprintf command to write to several different files.
This is done by first opening the files, assigning a different £id to each (e.g.
fidi, £id2, £id3, etc.), and then using the £id of a specific file in the
fprintf command to write to that file.

An example of using fprintf commands for saving output to two files is
shown in the following script file. The program in the file generates two unit con-
version tables. One table converts velocity units from miles per hour to kilometers
per hour, and the other table converts force units from pounds to newtons. Each
conversion table is saved to a different text file (extension .txt).

% Script file in which fprintf is used to write output to files.
% Two canversion tables are created and saved to two different files.

% One canverts mi/h to km/h, the other canverts 1b to N.
clear all

Vmph=10:10:100; (Creating a vector of velocities in mi/h. |
Vimh=Vmph.*1.609; (Converting mph to km/h. |
TBL1=[Vmph; Vkmh]; (Creating a table (matrix) with two rows. |
F1b=200:200:2000; (Creating a vector of forces in Ib. |
FN=F1lb.*4.448; (Converting Ibto N.]
TBL2=[Flb; FN]; [Creating a table (matrix) with two rows.]

fidl=fopen ('VmphtoVim.txt','w'); (Open a txt file named VmphtoVkm.]
fid2=fopen ('FlbtoFN.txt', 'w') ; (Open a .txt file named FIbtoFN. |
fprintf (£idl, 'Velocity Canversion Table\n \n');

(Writing a title and an empty line to the file fidl.]

fprintf (£id1, ' mi/h vh \n');
(Writing two column headings to the file fid1)
fprintf (£id1, " %8.2f %8.2f\n',TBL1) ;

(Writing the data from the variable TBL1 to the file fidl)

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 4: Using Script Files and Managing Data

fprintf (fid2, 'Force Canversicn Table\n \n'); Writing the force con-
fprintf (fid2,' Pounds Newtons \n'); | version table (data in
fprintf(fid2,' %8.2f %8.2f\n',TBL2) ; variable TBL2) to the
fclose(£idl); file fid2.

fclose (£id2) ; (Closing the files fidl and fid2.)

When the script file above is executed two new .txt files, named
VmphtoVkm and FIbtoFN, are created and saved in the current directory. These
files can be opened with any application that can read .txt files. Figures 4-3 and 4-
4 show how the two files appear when they are opened with Microsoft Word.

W] VmphtoVkm. txt - Microsoft Word g@
! Fle Edit Wiew Insert Format Tools Table Window Help AdobePDF Acrobat Comments
NS T b B o @ e) A 0% o LiRead

-é E‘EEPIainT&xt + Courier New -0 .| B I g|___|'n4|§z = év:é
. BT S

LE--I---]---I*--!-‘-I

Velocity Converaion Tasle

wi/h /b
10.00 16.03
20.00 3z.18
30.00 48,27
40.00 64.3%
50.00 80.45
60.00 96.54 e
70.00 112,63 il
80.00 128.72 5
30.00 144.31 o
100.00 160.30 ¥
[Els o = Wil Bl
Page 1 Sec 1 11 At 17 ln 1 Col 1 English (U.5
Figure 4-3: The VmphtoVkm.txt file opened in Word.
] FlbtoF N, txt - Microsoft Word =15
i File Edit Wiew Insert Format Tools Table Window Help Adobe PDF Acrobat Comments
irgﬁnﬂil-j’l;ll'?\ill WREENE - Soe s 184 ’|‘$g_jj_@==-‘4}|ﬂ 100% x| HRead
-'E ;_;‘ﬁiPla\nText ~ Courier New @10 |B 7 U |§ = afi= = |A, i :
Eg---|---1---|---1---|---3‘--|-‘-4--‘|---5---|‘--5-‘-|ﬁ~:,‘;
Force Conwver3ion Takeie Ei
Pourds Newtons
2060.00 889.60
400.00 1779.20
600.00 2668.80
200.00 3558.40
1000.00 4548.00
1200.00 5337.60 =
1400.00 6227.20)
1600.00 7116.80 5
1800.00 8006.40
2000.00_ 8#896.00 i
Ela o =%l 5l
Page 1 Sec 1 11 At 17 Ln 1 Cel 1 English (U.S

Figure 4-4: The FlbtoFN.txt file opened in Word.

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 The save and 1oad Commands 111

4.4 THE save AND 1oad COMMANDS

The save and 1oad commands are most useful for saving and retrieving data for
use in MATLAB. The save command can be used for saving the variables that
are currently in the workspace, and the 1 oad command is used for retrieving vari-
ables that have been previously saved, to the workspace. The workspace can be
saved when MATLAB is used in one type of platform (e.g., PC), and retrieved for
use in MATLAB in another platform (e.g., Mac). The save and 1oad com-
mands can also be used for exchanging data with applications outside MATLAB.
Additional commands that can be used for this purpose are presented in Section
4.5.

4.4.1 The save Command

The save command is used for saving the variables (all or some of them) that are
stored in the workspace. The two simplest forms of the save command are:

[save file name] and [save(‘file_name')]

When either one of these commands is executed, all of the variables currently in
the workspace are saved in a file named file name.mat that is created in the
current directory. In mat files, which are written in a binary format, each variable
preserves its name, type, size, and value. These files cannot be read by other appli-
cations. The save command can also be used for saving only some of the vari-
ables that are in the workspace. For example, to save two variables named varl
and var2, the command is:

[save file name varl varz] or

[save(‘file name’, ‘varl’, ‘var2’)]

The save command can also be used for saving in ASCII format, which
can be read by applications outside MATLAB. Saving in ASCII format is done by
adding the argument -ascii in the command (for example, save file name
-ascii). In the ASCII format the variable’s name, type, and size are not pre-
served. The data is saved as characters separated by spaces but without the vari-
able names. For example, the following shows how two variables (a 1 X 4 vector
and a 2% 3 matrix) are defined in the Command Window and then saved in
ASCII format to a file named DatSavAsci:

>> V=[3 16 -4 7.3]; (Createa 1 x4 vector V.)
>> A=[6 -2.1 15.5; -6.1 8 11]; (Create a 2 X 3 matrix A.)
>> save -ascii DatSavAsci (Save variablestoafilenamed DatSavAsci.)

www.it-ebooks.info

http://www.it-ebooks.info/

112 Chapter 4: Using Script Files and Managing Data

Once saved, the file can be opened by any application that can read ASCII files.
For example, Figure 4-5 shows the data when the file is opened with Notepad.

& DatSavAsci - Notepad g@

File Edit Fermat View Help

| 6.0000000e+000 -2.1000000e+000 1.5500000e+00L -~
-6.1000000e+000 &.0000000e+000 1.1000000e+001
3.0000000e+000 1.6000000e=+001 -4.0000000e+000 7.3000000e+000

Ln1,Col 1

Figure 4-5: Data saved in ASCII format.

Note that the file does not include the names of the variables, just the numerical
values of the variables (first A and then V) are listed.

4.4.2 The 1oad Command

The 1oad command can be used for retrieving variables that were saved with the
save command back to the workspace, and for importing data that was created
with other applications and saved in ASCII format or in text (.txt) files. Variables
that were saved with the save command in .mat files can be retrieved with the
command:

{ load file name] or [load(‘file name’)]

When the command is executed, all the variables in the file (with the name, type,
size, and values as were saved) are added (loaded back) to the workspace. If the
workspace already has a variable with the same name as a variable that is
retrieved with the 1oad command, then the variable that is retrieved replaces the
existing variable. The 1oad command can also be used for retrieving only some
of the variables that are in the saved .mat file. For example, to retrieve two vari-
ables named varl and var2, the command is:

[load file name varl varz] or

[load(*file name’, ‘varl’, ‘var2’)]

The 1oad command can also be used to import data that is saved in ASCII
or text (.txt) to the workspace. This is possible, however, only if the data in the file
is in the form of a variable in MATLAB. Thus, the file can have one number (sca-
lar), a row or a column of numbers (vector), or rows with the same number of
numbers in each (matrix). For example, the data shown in Figure 4-5 cannot be
loaded with the 1oad command (even though it was saved in ASCII format with
the save command), because the number of elements is not the same in all rows.
(Recall that this file was created by saving two different variables.)

www.it-ebooks.info

http://www.it-ebooks.info/

4.4 The save and 1oad Commands 113

When data is loaded from an ASCII or text file into the workspace, it has to be
assigned to a variable name. Data in ASCII format can be loaded with either of the
following two forms of the 1 0oad command:

[load file name] or [VarName=load('file_name’)]

If the data is in a text file, the extension .txt has to be added to the file name. The
form of the 1oad command is then:

[load file_name.txt] or [VarName:load(‘file_name.txt')]

In the first form of the command the data is assigned to a variable that has the
name of the file. In the second form the data is assigned to a variable named
VarName.

For example, the data shown in Figure 4-6 (a 3 X2 matrix) is typed in
Notepad, and then saved as DataFromText . txt.

- & DataFromText.txt - Notepad g@

File Edit Format View Help ‘

56 -4.2
3 7.0
=I.p 198

Ln 1, Col 1

Figure 4-6: Data saved as .txt file.

Next, two forms of the 1oad command are used to import the data in the text
file to the Workspace of MATLAB. In the first command the data is assigned to a
variable named DET. In the second command the data is automatically assigned to
a variable named DataFromText, which is the name of the text file where the
data was saved.

>> DfT=load('DataFromText.txt') Load the file
DfT = DataFromText and
56.0000 -4.2000 assign the loaded data to the
3.0000 7.5000 variable Dft.

-1.6000 198.0000

>> load DataFromText.txt

Use the load command with
the file DataFromText.

>> DataFromText
DataFromText =
56.0000 -4.2000
3.0000 7.5000
-1.6000 198.0000

The data is assigned to a vari-
able named DataFromText.

Importing data to (or exporting from) other applications can also be done, with
MATLAB commands that are presented in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

114 Chapter 4: Using Script Files and Managing Data

4.5 IMPORTING AND EXPORTING DATA

MATLAB is often used for analyzing data that was recorded in experiments or
generated by other computer programs. This can be done by first importing the
data into MATLAB. Similarly, data that is produced by MATLAB sometimes
needs to be transferred to other computer applications. There are various types of
data (numerical, text, audio, graphics, and images). This section describes only
how to import and export numerical data, which is probably the most common
type of data that needs to be transferred by new users of MATLAB. For other
types of data transfer, look in the Help Window under File I/O.

Importing data can be done either by using commands or by using the
Import Wizard. Commands are useful when the format of the data being imported
is known. MATLAB has several commands that can be used for importing vari-
ous types of data. Importing commands can also be included in a script file such
that the data is imported when the script is executed. The Import Wizard is useful
when the format of the data (or the command that is applicable for importing the
data) is not known. The Import Wizard determines the format of the data and
automatically imports it.

4.5.1 Commands for Importing and Exporting Data

This section describes—in detail—how to transfer data into and out of Excel
spreadsheets. Microsoft Excel is commonly used for storing data, and Excel is
compatible with many data recording devices and computer applications. Many
people are also capable of importing and exporting various data formats into and
from Excel. MATLAB also has commands for transferring data directly to and
from formats such as csv and ASCII, as well as to the spreadsheet program Lotus
123. Details of these and many other commands can be found in the Help Window
under File I/O

Importing and exporting data into and from Excel:

Importing data from Excel is done with the x1sread command. When the com-
mand is executed, the data from the spreadsheet is assigned as an array to a vari-
able. The simplest form of the x1 sread command is:

[variable name=xlsread(‘filename’)

e ‘filename’ (typed as a string) is the name of the Excel file. The directory
of the Excel file must be either the current directory or listed in the search path.

e If the Excel file has more than one sheet, the data will be imported from the
first sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

4.5 Importing and Exporting Data 115

When an Excel file has several sheets, the x1sread command can be used to
import data from a specified sheet. The form of the command is then:

variable name=xlsread(‘'filename’, ‘sheet name’)

¢ The name of the sheet is typed as a string.

Another option is to import only a portion of the data that is in the spreadsheet.
This is done by typing an additional argument in the command:

[variable name = xlsread(‘filename’,‘sheet name’,‘range’)]

e The ‘range’ (typed as a string) is a rectangular region of the spreadsheet
defined by the addresses (in Excel notation) of the cells at opposite corners of
the region. For example, *C2:E5’ is a 4 X3 region of rows 2, 3, 4, and 5 and
columns C, D, and E.

Exporting data from MATLAB to an Excel spreadsheet is done by using the
x1lswrite command. The simplest form of the command is:

xlswrite('filename’,variable name)]

e ‘filename’ (typed as a string) is the name of the Excel file to which the
data is exported. The file must be in the current directory. If the file does not
exist, a new Excel file with the specified name will be created.

* variable_name is the name of the variable in MATLAB with the assigned
data that is being exported.

* The arguments ‘sheet name’ and ‘range’ can be added to the x1s-
write command to export to a specified sheet and to a specified range of
cells, respectively.

As an example, the data from the Excel spreadsheet shown in Figure 4-7 is
imported into MATLAB by using the x1sread command.

LK_E] Microsoft Excel - TestDatal.xls g@
i@ Fle Edt View Insert Fermat Teols Data Window Help Adobe PDF vy -8 X
i 100% '%H”a‘ 10 2B I U|IEE=]S % 2 B[O A ;61
FAv Mo | iy A | 4 I3 Y7 Reply with Changes... End R= g
sl RN |
M8 . f

A [y e o [2 e | | [[| ==t
Ed 1 2 % 1 K 0 8
| 16 6 -20 B 056 33 5
i 09 10 3 12 25 01 4
4| 55 g 1 0888 17 6 30 _
£ L] 1|
M 4 »)\ Sheetl / Shaet2 { sheet3 / <] 210

Ready

Figure 4-7: Excel spreadsheet with data.

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 4: Using Script Files and Managing Data

The spreadsheet is saved in a file named TestDatal in a disk in drive A.
After the Current Directory is changed to drive A, the data is imported into MAT-
LAB by assigning it to the variable DATA:

>> DATA = xlsread('TestDatal')
DATA =

11.0000 2.0000 34.0000 14.0000 -6.0000 0 8.0000
15.0000 6.0000 -20.0000 8.0000 0.5600 33.0000 5.0000

0.9000 10.0000 3.0000 12.0000 -25.0000 -0.1000 4.0000
55.0000 9.0000 1.0000 -0.5550 17.0000 6.0000 -30.0000

4.5.2 Using the Import Wizard

Using the Import Wizard is probably the easiest way to import data into MAT-
LAB since the user does not have to know, or to specify, the format of the data.
The Import Wizard is activated by selecting Import Data in the File menu of the
Command Window. (It can also be started by typing the command uiimport.)
The Import Wizard starts by displaying a file selection box that shows all the data
files recognized by the Wizard. The user then selects the file that contains the data
to be imported, and clicks Open. The Import Wizard opens the file and displays a
portion of the data in a preview box so that the user can verify that the data is the
correct choice. The Import Wizard tries to process the data, and if the wizard is
successful, it displays the variables it has created with a portion of the data. The
user clicks next and the wizard shows the Column Separator that was used. If the
variable has the correct data, the user can proceed with the wizard (click next);
otherwise the user can choose a different Column Separator. In the next window
the wizard shows the name and size of the variable to be created in MATLAB.
(When the data is all numerical, the variable in MATLAB has the same name as
the file from which the data was imported.) When the wizard ends (click finish),
the data is imported to MATLAB.

As an example, the Import Wizard is used to import numerical ASCII data
saved in a .txt file. The data saved with the file name TestData2 is shown in Figure

& TestData2.txt - Netepad B@
Fil= Edit Fermat Yiew Help

L) 33 22 153 4 -~
4 a9z 0 1 7.5

12 5 6.53 15 3

ln 1, Gel 1

Figure 4-8: Numerical ASCII data.

www.it-ebooks.info

http://www.it-ebooks.info/

4.5 Importing and Exporting Data

117

The display of the Import Wizard during the import process for the TestData2 file
is shown in Figures 4-9 and 4-10. Figure 4-10 shows that the name of the variable

in MATLAB is TestData2 and its size is 3 x 5.

F 1) Import Wizard

mE) =

Select Column Separator{s)

@iemma Oseace OSemicolen D Tab (O Other Nurrimer of text header lines: 0
Preview of C:\MATLAB Beok -4th ed Current|Chapter #\TestData2. txt
T
SN2 38 22 13 4 || TestataZ |
|2 32 bl al ") ‘[‘ 1 i | F S |
A5 5 6.53 15 3 X 5.1200 33| 22 13 4|
liZ] 4 93| [} 1 7.5000
|3 12 5 6.5300 15 3|
|

[[] Generate MATLAB code

Figure 4-9: Import Wizard, first display.

dl Import Wizard

mEx

Select variables #e impert using chedkmexes

(&) Creatr ¥ariables matching preview.

Variables in C:{MATL.AB Beck 4th ed Current\Chapher 4\Test®am?2. txt

| Impert Name Size Bytes Class

|
e TestData2 3x5 120 deuble |

<] NE

| |N® variable selected for preview.

| [[] Generate MATLAB cede -

Figure 4-10: Import Wizard, second display.

In the Command Window of MATLAB, the imported data can be displayed by

typing the name of the variable.

>> TestData2
TestData2 =

5.1200 33.0000 22.0000 13.0000
4.0000 92.0000 0 1.0000
12.0000 5.0000 6.5300 15.0000

www.it-ebooks.info

4.0000
7.5000
3.0000

http://www.it-ebooks.info/

118 Chapter 4: Using Script Files and Managing Data

4.6 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 4-1: Height and surface area of a silo

A cylindrical silo with radius r has a spher-
ical cap roof with radius R. The height of
the cylindrical portion is H. Write a pro-
gram in a script file that determines the
height H for given values of », R, and the
volume V. In addition, the program calcu-
lates the surface area of the silo. H

Use the program to calculate the height and
surface area of a silo with » =30 ft, R =45
ft, and a volume of 200,000 ft3. Assign val-
ues for r, R, and V in the Command Win-
dow.

Solution

The total volume of the silo is obtained by
adding the volume of the cylindrical part and the volume of the spherical cap. The
volume of the cylinder is given by

chl = 1tr2H

and the volume of the spherical cap is given
by:
v = %nh2(3R—h)

cap

where h = R—Rcos® = R(1 - cos0),
and 0 is calculated from sin@ = I—'; .

Using the equations above, the height, H, of
the cylindrical part can be expressed by

o= V—Veap

nr2

The surface area of the silo is obtained by
adding the surface areas of the cylindrical part and the spherical cap.

S =S, +8,, = 2nrH+2nRh

A program in a script file that solves the problem is presented below:

theta=asin(r/R); Calculating 6.
h=R* (1-cos (theta)) ; Calculating .

Vcap=pi*h”*2#* (3*R-h) /3; [Calculating the volume of the cap.]

www.it-ebooks.info

http://www.it-ebooks.info/

4.6 Examples of MATLAB Applications 119

H=(V-Vcap) / (pi*r*2); Calculating H.

S=2#pi* (r*H + R¥h); [Calculating the surface area S.]
fprintf ('The height H is: %f ft.', H)

fprintf ('\nThe surface area of the silo is: %f square ft.',S)

The Command Window where the script file, named silo, was executed is:

>> r=30; R=45; V=200000; [Assigningvaluestor,R, and V.]
>> silo [Running the script file named silo.}
The height H is: 64.727400 ft.

The surface area of the silo is: 15440.777753 square ft.

Sample Problem 4-2: Centroid of a composite area

Write a program in a script file that calcu- R 60
lates the coordinates of the centroid of a
composite area. (A composite area can
easily be divided into sections whose

centroids are known.) The user needs to “©
divide the area into sections and know the T 200
coordinates of the centroid (two num- 100 —| 150

bers) and the area of each section (one

number). When the script file is executed, HEE
it asks the user to enter the three numbers 20
as a Tow in a matrix. The user enters as | s0 | 40 30| 1
many rows as there are sections. A sec- 200

tion that represents a hole is taken to have Dimensions in mm

a negative area. For output, the program
displays the coordinates of the centroid of the composite area. Use the program to
calculate the centroid of the area shown in the figure.

Solution

The area is divided into six sections as shown in the following figure. The total
area is calculated by adding the three sections on the left and subtracting the three
sections on the right. The location and coordinates of the centroid of each section
are marked in the figure, as well as the area of each section.

2Ax

The coordinates X and Y of the centroid of the total area are given by X = >

and Y = Eﬁ; , where %, y, and 4 are the coordinates of the centroid and area of

each section, respectively.
A script file with a program for calculating the coordinates of the centroid
of a composite area is provided below.

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 4: Using Script Files and Managing Data

Yi Y4
(60 +132 290) (105, 145)
= 140* A=50*50
x = A =140%60/2 / / S
-80 80 200 7
(60 - =, 200 +5) (55 - 100) X (150, 95)
A=7*602/4 A=750%/2 A=40*150
X X x
(100, 100)
A =200*200 o
X

Units: coordinates mm, area mm?

% The program calculates the coordinates of the centroid
% of a composite area.
clear C xs ys As

C=input ('Enter a matrix in which each row has three ele-
ments.\nIn each row enter the x and y coordinates of the
centroid and the area of a section.\n');

x8=C(:,1)'; Creating a row vector for the x coordinate of
each section (first column of C).

ys=C(:,2)"'; Creating a row vector for the y coordinate of
each section (second column of C).
As=C(:,3)'; Creating a row vector for the area of each
section (third column of C).
A=sum(As) ; [Calculating the total area.]
x=sum (As. *x8) /A; Calculating the coordinates of the
y=sum(As.*ys) /A; centroid of the composite area.

fprintf ('The coordinates of the centroid are: (%£, %f)\n',x,y)

The script file was saved with the name Centroid. The following shows the Com-
mand Window where the script file was executed.

>> Centroid
Enter a matrix in which each row has three elements.

In each row enter the x and y coordinates of the centroid
and the area of a section.

www.it-ebooks.info

http://www.it-ebooks.info/

4.6 Examples of MATLAB Applications 121

[100 109 A .. ~ Entering the data for matrix C.
60-80/pi 200+80/pi pi*6072/4 Each row has three elements: the
60+140/3 220 140%60/2 %,y, and A of a section.

200/ (3*pi) 100 -pi*50°2/2
105 145 -50*50

150 95 -40%*150]

The coordinates of the centroid are: (85.387547 , 131.211809)

Sample Problem 4-3: Voltage divider
When several resistors are connected in an electrical circuit in series, the voltage
across each of them is given by the voltage divider rule:
R
v, = R—e';vs
where v, and R, are the voltage across resistor » and its resistance, respectively,
R, = IR, is the equivalent resistance, and v, is the source voltage. The power
dissipated in each resistor is given by:
Rn
= .2
P, R Zq Vs
The figure below shows a circuit with seven resistors connected in series.
Rl R2 R3

MWW

MWW

R7 R6 RS

Write a program in a script file that calculates the voltage across each resistor, and
the power dissipated in each resistor, in a circuit that has resistors connected in
series. When the script file is executed, it requests that the user first enter the
source voltage and then to enter the resistances of the resistors in a vector. The
program displays a table with the resistance listed in the first column, the voltage
across the resistor in the second column, and the power dissipated in the resistor in
the third column. Following the table, the program displays the current in the cir-
cuit and the total power.
Execute the file and enter the following data for v; and the R’s.

v, =24V, R, =20Q, R,=14Q, R,=12Q, R, =18Q, R, =8Q,
R =15Q, R, = 10Q.

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 4: Using Script Files and Managing Data

Solution

A script file that solves the problem is shown below.

% The program calculates the voltage across each resistor
% in a circuit that has resistors connected in series.
vs=input ('Please enter the source voltage '):;

Rn=input ('Enter the values of the resistors as elements in a
row vector\n');

Reg=sum (Rn) ; (Calculate the equivalent resistance.)
vn=Rn*vs/Req; (Apply the voltage divider rule.]
Pn=Rn*vs”2/Req™2; (Calculate the power in each resistor.)
i = vs/Req; (Calculate the current in the circuit. |
Ptotal = vs*i; (Calculate the total power in the circuit.
BEeils = EEGg wmt s g [Create a variable table with the]
disp(' ') vectors Rn, vn, and Pn as columns.
disp(' Resistance Voltage Power ') { Display headings for ’
disp(" (Ohms) (Volts) (Watts) ') the columns.

disp(' ') (Display an empty line. |
disp(Table) (Display the variable Table. |
disp(' ')

fprintf ('The current in the circuit is %f Amps.',i)

fprintf ('\nThe total power dissipated in the circuit is $%f
Watts.',Ptotal)

The Command Window where the script file was executed is:

>> VoltageDivider (Name of the script file. |

Please enter the source voltage 24 4—{ Voltage entered by the user]
Enter the value of the resistors as elements in a row vector

[20 14 12 18 8 15 10] 4—[Resistor values entered as avector.]

Resistance Voltage Power
(Ohms) (Volts) (Watts)
20.0000 4.9485 1.2244
14.0000 3.4639 0.8571
12.0000 2.9691 0.7346
18.0000 4.4536 1.1019
8.0000 1.9794 0.4897

www.it-ebooks.info

http://www.it-ebooks.info/

4.7 Problems

123

15.0000 3.7113 0.9183
10.0000 2.4742 0.6122

The current in the circuit is 0.247423 Amps.

The total power dissipated in the circuit is 5.938144 Watts.

4.7 PROBLEMS

Solve the following problems by first writing a program in a script file and then
executing the program.

1.

The Heat Index HI, calculated from the air temperature and relative humid-
ity, is the apparent temperature felt by the body. An equation used by the
National Weather Service for calculating the HI is given by:

HI = —42.379+2.04901523T +10.14333127R —0.22475541R — 6.83783 x 103 T2
—5.481717 x 10-2R2 + 1.22874 x 10-3T2R + 8.5282 x 10-*TR? — 1.99 x 10-6T2R?

where T is the temperature in degrees F and R is the relative humidity in inte-
ger percentage. Write a MATLAB program in a script file that calculates HI .
For input the program asks the user to enter values for T and R. For output the
program displays the message: “The Heat Index temperature is: XX,” where
XX is the value of the heat index rounded to the nearest integer. Execute the
program entering 7 = 90°F and R = 90 %.

The monthly saving P that has to be deposit in a saving account that pays an
annual interest rate of » in order to save a total amount of F in N years can be
calculated by the formula:

_ F(r/12)

C (1+r/12)12N
Calculate the monthly saving that has to be deposit in order to save $100,000
in 5,6,7, 8,9, and 10 years if the annual interest rate is 4.35%. Display the
results in a two-column table where the first column is the number of years
and the second column is the monthly deposit.

The growth of some bacteria populations can be described by

N = Nyett
where N is the number of individuals at time z, N, is the number at time ¢ = 0,
and % is a constant. Assuming the number of bacteria doubles every 40 min-
utes, determine the number of bacteria every two hours for 24 hours starting
from an initial single bacterium.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 4: Using Script Files and Managing Data

4. The volume ¥V and the surface area S of a torus-
shaped water tube are given by: '
1
= ‘-‘1t2(r1 +ry)(r,—r)? and S = n?(ri-r}) v
If r, = 0.7r,, determine ¥ and S for r, = 12, 16,
20, 24, and 28 in. Display the results in a four-col-

umn table where the first column is r,, the second
ry, the third ¥, and the fourth S.

5. Abeam with a length L is attached to the &
wall with a cable as shown. A load T
W = 5001b is attached to the beam. The
tension force, T, in the cable is given by: l

2 2
T = WLJhZ2+x z
hx
For a beam with L = 120in. and
kh = 50 in., calculate T for x = 10, 30,
L

50, 70, 90, and 110 in.

6. Write a MATLAB program in a script file that calculate the average, standard
deviation, and median of a list of grades as well as the number of grades on
the list. The program asks the user (input command) to enter the grades as
elements of a vector. The program then calculates the required quantities
using MATLAB?’s built-in functions 1ength, mean, std, and median.
The results are displayed in the Command Window in the following format:
“There are XX grades.” where XX is the numerical value.

“The average grade is XX.” where XX is the numerical value.

“The standard deviation is XX.” where XX is the numerical value.

“The median grade is XX.” where XX is the numerical value.

Execute the program and enter the following grades: 92, 74, 53, 61, 100, 42,
80, 66, 71, 78, 91, 85, 79, and 68.

7. A rocket flying straight up measures the angle 6 with
the horizon at different heights . Write a MATLAB
program in a script file that calculates the radius of the
earth R (assuming the earth is a perfect sphere) at each
data point and then determines the average of all the val-
ues.

hem)|| 4 | 8 | 12| 16 | 20 | 24 | 28 | 32 | 36 | 40
O(deg)|| 20 | 29 [35| 41| 45| 50| 54 | 57| 61 | 64

www.it-ebooks.info

http://www.it-ebooks.info/

4.7 Problems

125

8.

10.

11.

Decay of radioactive materials can be modeled by the equation 4 = Aye¥,
where 4 is the amount at time ¢, 4, is the amount at # = 0, and & is the decay
constant (k< 0). Iodine-132 is a radioisotope that is used in thyroid function
tests. Its half-life time is 13.3 hours. Calculate the relative amount of Iodine-
132 (A/4,) in a patient’s body 48 hours after receiving a dose. After deter-
mining the value of £, define a vector ¢ = 0,4, 8, ..., 48 and calculate the cor-
responding values of 4/4,.

The monthly payment, P, of a N years mortgage of an amount that with a
yearly interest rate of r is given by:

r r 12N
100 12(1 * 100- 12)

r 12N
(o)

where r is in % (e.g., 7.5% entered as 7.5). Write a MATLAB program in a
script file that calculates P. When the program is executed it asks the user to
enter the mortgage amount, the number of years, and the interest rate. The
output is displayed in the following format: “ The monthly payment of a XX
years XXXXXX.XX mortgage with interest rate of XX.XX percent is
$XXXX.XX”, where XXX stands for the corresponding quantities. Use the
program for determining the monthly payment of a $250,000 mortgage for 30
years and 4.5% yearly interest rate.

The balance of a loan, B, after » monthly payments is given by

r * P (r)"
= + - -
B A(l 1200) r/1200|: 1+ 500 1]

where 4 is the loan amount, P is the amount of a monthly payment, and is the
yearly interest rate entered in % (e.g., 7.5% entered as 7.5). Consider a 5-year,
$20,000 car loan with 6.5% yearly interest that has a monthly payment of
$391.32. Calculate the balance of the loan after every 6 months (i.e., at n =6,
12, 18, 24, ..., 54, 60). Each time, calculate the percent of the loan that is
already paid. Display the results in a three-column table, where the first col-
umn displays the month and the second and third columns display the corre-
sponding value of B and percentage of the loan that is already paid,
respectively.

Early explorers often estimated altitude by measuring the temperature of boil-
ing water. Use the following two equations to make a table that modern-day
hikers could use for the same purpose.

p = 29.921(1-6.8753 x 1054), T, = 49.1611np + 44.932
where p is atmospheric pressure in inches of mercury, 7, is boiling tempera-
ture in °F, and 4 is altitude in feet. The table should have two columns, the

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 4: Using Script Files and Managing Data

first altitude and the second boiling temperature. The altitude should range
between —500 ft and 10,000 ft at increments of 500 ft.

12. An isosceles triangle sign is designed to have a 2 in.
triangular printed area of 600 in.? (shaded area
with a base length of a and height of 4 in the fig-
ure). As shown in the figure, there is a 2 in. gap
between the sides of the triangles. Write a MAT-
LAB program that determine the dimensions a
and 4 such that the overall area of the sign will be
as small as possible. In the program define a vec- / 2in,
tor a with values ranging from 10 to 120 with \27114\ t
increments of 0.1. Use this vector for calculating
the corresponding values of 4 and the overall area of the sign. Then use MAT-
LAB’s built-in function min to find the dimensions of the smallest sign.

designed to have a rectangular picture placed
inside a rectangle with sides ¢ and . The mar-
gins between the rectangle and the picture are Picture
10 in. at the top and bottom and 4 in. at each "
side. Write a MATLAB program that deter- 7 /’

mines the dimensions a and 5 such that the
overall area of the picture will be as large as
possible. In the program define a vector a with N «1
values ranging from 5 to 100 with increments o,

of 0.25. Use this vector for calculating the corresponding values of » and the
overall area of the picture. Then use MATLAB’s built-in function max to find
the dimensions of the largest rectangle.

13. A round billboard with radius R = 55in. is ’.7 a ﬂ

10in

14. A student has a summer job as a B dy N
lifeguard at the beach. After spotting a ds T
swimmer in trouble, he tries to deduce § ¢/ g -Svmmer

3 e

the path by which he can reach the
swimmer in the shortest time. The
path of shortest distance (path A4) is
obviously not the best since it
maximizes the time spent swimming Lifeguard shoreline |) |
(he can run faster than he can swim). '
Path B minimizes the time spent swimming but is probably not the best, since
it is the longest (reasonable) path. Clearly the optimal path is somewhere in
between paths 4 and B.

Consider an intermediate path C and determine the time required to reach

www.it-ebooks.info

http://www.it-ebooks.info/

4.7 Problems

15.

16.

127

the swimmer in terms of the running speed v,,, = 3 m/s the swimming speed
V,vim = 1 m/s; the distances L = 48 m, d, = 30 m, and d, = 42 m; and the
lateral distance y at which the lifeguard enters the water. Create a vector y that
ranges between path 4 and path B (y = 20, 21, 22, ...,48m) and compute a
time ¢ for each y. Use MATLAB built-in function min to find the minimum
time t,,, and the entry point y for which it occurs. Determine the angles that
correspond to the calculated value of y and investigate whether your result sat-
isfies Snell’s law of refraction:

sind v, .
An airplane is flying at a height of & = 900 ft x

while waxching a target that is 70 ft tall

(H = 70 ft), as shown in the figure. The best

view of the target is when 6 is maximum.

Write a MATLAB program that detrmines | 5
the distance x at which @ is maximum. Define T H
a vector x with elements ranging from 50 to

1500 with spacing of 0.5. Use this vector 1o

calculate the corresponding values of 8. Then use MATLAB’s built-in fimnc-
tion max to find the value of x that corresponds 1o the largest value of 6.

The stress invensity factor X at a

crackinabeamexposedtopme”(* e b M
beading M is given by: o o
K = Co.Jna ¢

where o = %‘ . a is the crack leagth, b is the width, ¢ is the thickness, and C

is a parameter that depends on the geometry of the specimen and crack. For
the case of pure bending,
h;ﬂ[o-m’“o-izél_ smﬁ)z] where @ = a/b and B = (na)/2

Write a program in a script file that calculates the stress intensity factor X.
The program should read the values of M, b, ¢, and a from an ascii text file
using the 1oad command. The output should be in the form of a paragraph
combining text and numbers,— i.e., something like: “The stress intensity fac-
tor for a beam that is 0.25 m wide and 0.01 m thick with an edge crack of 0.05
m and an applied moment of 20 N-m is XX Pa-sqrt(m).” where XX stands for
the value of XK. Use the program to calculake X when A = 20 N-m,
b=025m, ¢t = 0.0] m,and a = 0.25 m.

C=

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 4: Using Script Files and Managing Data

17. The airplane shown is flying at a constant speed of
v = 50 m/s in a circular path of radius p = 2000 m
and is being tracked by a radar station positioned a
distance # = 500m below the bottom of the plane
path (point 4). The airplane is at point 4 at ¢t = 0,
and the angle o as a function of time is given (in

radians) by o = gt. Write a MATLAB program

that calculates 8 and r as functions of time. The
program should first determine the time at which o = 90°. Then construct a
vector ¢ having 15 elements over the interval 0 < z<ty., and calculate 6 and r
at each time. The program should print the values of p, 4, and v, followed by a
15 x 3 table where the first column is ¢, the second is the angle 0 in degrees,
and the third is the corresponding value of r.

18. The intrinsic electrical conductivity ¢ of a semiconductor can be approxi-
mated by:
E,
(c-5%)

where ¢ is measured in (Q-m)!, E, is the band gap energy, k is

O =c¢e

Boltzmann’s constant (8.62 x 10-5 ev/K), and T is temperature in kelvins. For
Germanium, C = 13.83 and E, = 0.67 ev. Write a program in a script file that
calculates the intrinsic electrical conductivity for Germanium for various tem-
peratures. The values of the temperature should be read from an xls spread-
sheet using the x1sread command. The output should be presented as a
table where the first column is the temperature and the second column is the
intrinsic electrical conductivity. Use the following values for temperature:
400, 435, 475, 500, 520, and 545 K.

19. The pressure drop Ap in Pa for a fluid f—

flowing in a pipe with a sudden increase in =
diameter is given by: S A S 1 > S

s - - o e

where p is the density of the fluid, v, the velocity of the flow, and 4 and D are
defined in the figure. Write a program in a script file that calculates the pres-
sure drop Ap. When the script file is executed it request the user to input the

density in kg/m>, the velocity in m/s, and values of the non-dimensional ratio
d/D as a vector. The program displays the inputted values of p and v fol-
lowed by a table with the values of d/D in the first column and the corre-

www.it-ebooks.info

http://www.it-ebooks.info/

4.7 Problems

129

20.

21.

sponding values of Ap in the second column.

Execute the program assuming flow of gasoline (p = 737 kg/m3) atv=5m/
s and the following ratios of diameters d/D = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2

The net heat exchange by radiation from plate 1
with radius b to plate 2 with radius « that are sep-
arated by a distance c is given by:
g = OnbF,_(T{-T3)

Where T, and T, are the absolute temperatures
of the plates, 6 = 5.669 x 10~ W/(m?-K*) is the
Stefan-Boltzmann constant, and F,_, is a shape
factor which, for the arrangement in the figure, is
given by:

Fi_, = %[z_a/zz_u(zm

Where X = a/c, Y =c/b,and Z = 1+ (1+X2)Y2. Write a script file that
calculates the heat exchange ¢. For input the program asks the user to enter
values for T, , T,, a, b, and c. For output the program prints a summary of the
geometry and temperatures and then print the value of g. Use the script to cal-
culate the results for 7, = 400K, T, = 600K, a=1m, b =2m, and
c=01,1,and 10 m.

Given the coordinates of three points (x;, ;) , (x5, ¥,), and (x3, ;) it is possi-
ble to find the coordinates of the center of the circle (C,, C,) that passes
through the three points by solving the following simultaneous equations:

) {(xl ~x) O —J’z):| H _[et+yh-a3+5p

(x3—x3) (12—23)| |G, (x3+y3) - (x3+»3)
Write a program in a script file that calculates the coordinates of the center
and the radius of a circle that passes through three given points. When exe-
cuted the program asks the user to enter the coordinates of the three points.
The program then calculates the center and radius and displays the results in
the following format: “The coordinates of the center are (xx.x, xx.x) and the
radius is xx.x.”, where xx.x stands for the calculated quantities rounded to the
nearest tenth. Execute the program entering the following three points:

(105,4), (2,8.6),and (—4,-7).

www.it-ebooks.info

http://www.it-ebooks.info/

130

Chapter 4: Using Script Files and Managi

22.

23.

24.

A truss is a structure made of members 1800 Ib
joined at their ends. For the truss) T TO—
shown in the figure, the forces in the
nine members are determined by solv- st @ 5 ?/@ &
ing the following system of nine equa- @ ®
tions: .
F,+ cos(48.81°)F, = 0 Len | e | s J1S00D

Fg+ cos(48.81°)Fs—F, = 0,
sin(48.81°)Fs+F; = 0 —cos(48.81°)F, +F, = 0

—sin(48.81°)F, + F, = 1800, —F,— cos(48.81°)F5 = 1200,

— F,— sin(48.81°)F, — sin(45°)F, = 0, sin(45°)F, = 1500,
—cos(45°)Fy—F3g = 0
Write the equations in matrix form and use MATLAB to determine the forces
in the members. A positive force means tensile force and a negative force
means compressive force. Display the results in a table where the first column
displays the member number and the second column displays the correspond-
ing force.

A tru§s '1s a stmctux:e made of mem- 000 N 3000 N
bers joined at their ends. For the f ®

truss shown in the figure, the forces
in the 13 members are determined |16m q s s & - g
by solving the following system of

13 equations. % ® @ D =
- = Y Y
Fy+0.7071F; = 0, -F,+F¢=0 | ONT - VI00N T2000N

F,—2000 = 0,
F,+0.6585 F5— 0.7071F, = 0

0.7071F, + F; + 0.7526 F5 + 2000 = 0, F,+0.6585F;—F, = 0

0.7526F3+Fy = 0, F|4,—0.6585Fs—Fg = 0, Fy+0.7526F5—1000 = 0
0.7071F),—F, = 0, 0.7071F,,+ F},+3000 = 0,
Fj,+0.7526F;—2000 = 0, F3+0.7071F,; = 0
Write the equations in matrix form and use MATLAB to determine the forces
in the members. A positive force means tensile force and a negative force
means compressive force. Display the results in a table where the first column
displays the member number and the second column displays the correspond-
ing force.

The graph of the function Ax) = ax® + bx* + cx +d passes through the points
(2.6, —68), (0.5, 5.7), (1.5, 4.9), and (3.5, 88). Determine the constants a, b, ¢,
and d. (Write a system of four equations with four unknowns, and use MAT-
LAB to solve the equations.)

www.it-ebooks.info

Data

http://www.it-ebooks.info/

4.7 Problems

131

25.

26.

27.

The surface of many airfoils can be y
described with an equation of the form | Thickness
tT X
_ o fc max
y=F 0.2[a0 x/c+a,(x/c)+ ¥ | - !

+a,(x/c)?+ay(x/c)?+ ay(x/c)*]
where ¢ is the maximum thiclness as a fraction of the chord length ¢ (e.g.,
tnax = ct). Giventhat ¢ = 1 mand ¢ = 0.2 m, the following values for y have
been measured for a particular airfoil:

x (m) 0.15 0.35 0.5 0.7 0.85
y(m) || 0.08909 | 0.09914 | 0.08823 | 0.06107 | 0.03421

Determine the constants ag, a,, a,, a5, and a,. (Write a system of five equa-
tions and five unknowns, and use MATLAB to solve the equations.)

During a golf match, a certain number of points are awarded for each eagle
and a different number for each birdie. No points are awarded for par, and a
certain number of points are deducted for each bogey and a different number
deducted for each double bogey (or worse). The newspaper report of an
important match neglected to mention what these point values were, but did
provide the following table of the results:

Golfer Eagles | Birdies | Pars | Bogeys | Doubles| Points
A 1 2 10 1 1 5
B 2 3 11 0 1 12
C 1 4 10 1 10 11
D 1 3 10 12 0 8

From the information in the table write four equations in terms of four
unknowns. Solve the equations for the unknown points awarded for eagles
and birdies and points deducted for bogeys and double bogeys.

The dissolution of copper sulfide in aqueous nitric acid is described by the
following chemical equation:

aCuS+bNO; +cH' — dCu’** +eS0,” +fNO+gH,0

where the coefficients a, b, c, d, e, f, and g are the numbers of the various mol-
ecule participating in the reaction and are unknown. The unknown coeffi-
cients are determined by balancing each atom on left and right and then
balancing the ionic charge. The resulting equations are:

a=d, a=e, b=f, 3b=4e+tf+g,c=2g, —-b+c=2d-2e

www.it-ebooks.info

http://www.it-ebooks.info/

132 Chapter 4: Using Script Files and Managing Data

There are seven unknowns and only six equations. A solution can still be
obtained, however, by taking advantage of the fact that all the coefficients
must be positive integers. Add a seventh equation by guessing a = 1 and
solve the system of equations. The solution is valid if all the coefficients are
positive integers. If this is not the case, take a = 2 and repeat the solution.
Continue the process until all the coefficients in the solution are positive inte-
gers.

28. The wind chill temperature, T, , is the air temperature felt on exposed skin
due to wind. In U.S. customary units it is calculated by:
Ty = 3574 +0.6215T — 35.75v0-16 + (0 4275 T v0.16

where T is the temperature in degrees F, and v is the wind speed in mi/h. Write
a MATLAB program in a script file that displays the following chart of wind
chill temperature for given air temperature and wind speed in the Command

Window:
Temperature (F)
40 30 20 10 0 -10 -20 -30 -40
Speed
(mi/h)
10 34 21 9 -4 -16 -28 -41 -53 -66
20 30 17 4 -9 -22 -35 -48 -61 -74
30 28 15 1 -12 -26 -39 -53 -67 -80
40 27 13 -1 -15 -29 -43 -57 =71 -84
50 26 12 -3 -17 -31 -45 -60 -74 -88
60 25 10 -4 -19 -33 -48 -62 -76 -91
29. The stress intensity factor K at a crack is given by (4]

K = Cora where o is the far-field swess, a is the crack f f 1 t f 1 1 f f
length, and C is a parameter that depends on the geometry
of the specimen and crack. For the case of the edge crack
shown in the figure, C is given by:

0.857 + 0.265% !
C= 0265(1—%)+—b

(1 2)3/2 b

Write a script file that will print out a table of values with IFERNRAR N
the rakio a/b in the first column and the corresponding o

parameter C in the second column. let a/b range between
0 and 0.95 with increments of 0.05.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
Two-Dimensional
Plots

Plots are a very useful tool for presenting information. This is true in any field, but
especially in science and engineering, where MATLAB is mostly used. MATLAB
has many commands that can be used for creating different types of plots. These
include standard plots with linear axes, plots with logarithmic and semi-logarith-
mic axes, bar and stairs plots, polar plots, three-dimensional contour surface and
mesh plots, and many more. The plots can be formatted to have a desired appear-
ance. The line type (solid, dashed, etc.), color, and thickness can be prescribed,
line markers and grid lines can be added, as can titles and text comments. Several
graphs can be created in the same plot, and several plots can be placed on the
same page. When a plot contains several graphs and/or data points, a legend can
be added to the plot as well.

This chapter describes how MATLAB can be used to create and format
many types of two-dimensional plots. Three-dimensional plots are addressed sep-
arately in Chapter 9. An example of a simple two-dimensional plot that was cre-
ated with MATLAB is shown in Figure 5-1. The figure contains two curves that
show the variation of light intensity with distance. One curve is constructed from
data points measured in an experiment, and the other curve shows the variation of
light as predicted by a theoretical model. The axes in the figure are both linear,
and different types of lines (one solid and one dashed) are used for the curves. The
theoretical curve is shown with a solid line, while the experimental points are con-
nected with a dashed line. Each data point is marked with a circular marker. The
dashed line that connects the experimental points is actually red when the plot is
displayed in the Figure Window. As shown, the plot in Figure 5-1 is formatted to
have a title, axis titles, a legend, markers, and a boxed text label.

www.it-ebooks.info

133

http://www.it-ebooks.info/

134

Chapter 5: Two-Dimensional Plots

(PLOT TITLE }\

Light Intensity as a Function of Distance
1200 . . : | ; ‘

= Theory
-©- Experiment
Y AXIS 1000 1
LABEL

800 -

600

INTENSITY (lux)

400+

200+

8 10 12 14 16 18 20 22 24
DISTANCE (cm)

X AXIS LABEL)

Figure 5-1: Example of a formatted two-dimensional plot.

5.1 THE plot COMMAND

The plot command is used to create two-dimensional plots. The simplest form
of the command is:

Vector

The arguments x and y are each a vector (one-dimensional array). The two vec-
tors must have the same number of elements. When the plot command is exe-
cuted, a figure is created in the Figure Window. If not already open, the Figure
Window opens automatically when the command is executed. The figure has a
single curve with the x values on the abscissa (horizontal axis) and the y values
on the ordinate (vertical axis). The curve is constructed of straight-line segments
that connect the points whose coordinates are defined by the elements of the vec-
tors x and y. Each of the vectors, of course, can have any name. The vector that is
typed first in the plot command is used for the horizontal axis, and the vector
that is typed second is used for the vertical axis. If only one vector is entered as an
input argument in the plot command (for example plot (y)) than the figure
will show a plot of the values of the elements of the vector (y(1), ¥(2), ¥(3), ...)
versus the element number (1,2, 3, ...).

The figure that is created has axes with a linear scale and default range. For
example, if a vector x has the elements 1, 2, 3, 5, 7, 7.5, 8, 10, and a vector y has

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 The plot Command 135

the elements 2, 6.5, 7,7, 5.5, 4, 6, 8, a simple plot of y versus x can be created by
typing the following in the Command Window:

>> x=[1.1 1.8 3.2 5.5 7 7.5 8 10];

>> y=[2 6.5 7 7 5.5 4 6 8];

>> plot(x,y)

Once the plot command is executed, the Figure Window opens and the plot is
displayed, as shown in Figure 5-2.

Figure 1 [= e &“
File Edit View Inset Teols Desktop Window Help al
Dads|k OU9EA- |2 |08 |mO

8 T T T

6r 4

4l i

2 1 | 1 1

0 2 4 6 8 10

Figure 5-2: The Figure Window with a simple plot.

The plot appears on the screen in blue, which is the default line color.

The plot command has additional, optional arguments that can be used to
specify the color and style of the line and the color and type of markers, if any are
desired. With these options the command has the form:

[plot(x,y,‘'line specifiers’, ‘PropertyName’, PropertyValue)
h

(Optional) Specifiers that (Optional) Properties with
Vector Vector gefine the type and color values that can be used to
of the line and markers. specify the line width, and a
marker’s size and edge, and
fill colors.

Line Specifiers:

Line specifiers are optional and can be used to define the style and color of the
line and the type of markers (if markers are desired). The line style specifiers are:

Line Style Specifier Line Style Specifier
solid (default) - dotted
dashed -- dash-dot -

www.it-ebooks.info

http://www.it-ebooks.info/

136

Chapter 5: Two-Dimensional Plots

The line color specifiers are:

Line Color Specifier Line Color Specifier
red r magenta m
green g yellow y
blue b black k
cyan c white w

The marker type specifiers are:

Marker Type Specifier Marker Type Specifier
plus sign square s
circle o diamond d
asterisk five-pointed star p
point six-pointed star h
cross triangle (pointed left) <
triangle (pointed up) ~ triangle (pointed right) >
triangle (pointed down) v

Notes about using the specifiers:

¢ The specifiers are typed inside the plot command as strings.

e Within the string the specifiers can be typed in any order.

e The specifiers are optional. This means that none, one, two, or all three types
can be included in a command.

Some examples:
plot (x,y)

plot (x,y,‘r’)
PlOt (XIYI ‘—‘Y')
plot (x,y, **’)

plot (x,y, ‘g:d’")

A Dblue solid line connects the points with no markers
(default).

A red solid line connects the points.

A yellow dashed line connects the points.

The points are marked with * (no line between the
points).

A green dotted line connects the points that are marked
with diamond markers.

Property Name and Property Value:

Properties are optional and can be used to specify the thiclaess of the line, the size
of the marker, and the colors of the marker’s edge line and fill. The Property
Name is typed as a string, followed by a comma and a value for the property, all
inside the plot command.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 The plot Command

137

Four properties and their possible values are:

Property name Description Poss1lzll:l£::perty
LinewWidth Specifies the width of the | A number in units of
(or linewidth) line. points (default 0.5).
MarkerSize Specifies the size of the | A number in units of
(ormarkersize) marker. points.
MarkerEdgeColor | Specifies the color of the | Color specifiers from
(or marker, or the color of the | the table above, typed
markeredgecolor) | edge line for filled mark- | as a string.

ers.
MarkerFaceColor | Specifies the color of the | Color specifiers from
(or filling for filled markers. | the table above, typed
markerfacecolor) as a string.

For example, the command

plot(x,y, '-mo’, ‘LineWidth’, 2, ‘markersize’, 12,
‘MarkerEdgeColor’, ‘g’, ‘markerfacecolor’, ‘y’)

creates a plot that connects the points with a magenta solid line and circles as
markers at the points. The line width is 2 points and the size of the circle markers

is 12 points. The markers have a green edge line and yellow filling.

A note about line specifiers and properties:

The three line specifiers, which indicate the style and color of the line, and the
type of the marker can also be assigned with a PropertyName argument fol-
lowed by a PropertyValue argument. The Property Names for the line speci-

fiers are:
Specifier Property Name Possible property values
Line style linestyle Line style specifier from the
(or LineStyle) table above, typed as a string.
Line color color (or Color) Color specifier from the table
above, typed as a string.
Marker marker (or Marker) Marker specifier from the
table above, typed as a string.

As with any command, the plot command can be typed in the Command
Window, or it can be included in a script file. It also can be used in a function file
(explained in Chapter 7). It should also be remembered that before the plot com-
mand can be executed, the vectors x and y must have assigned elements. This can

www.it-ebooks.info

http://www.it-ebooks.info/

138

Chapter S: Two-Dimensional Plots

be doae, as was explained in Chapter 2, by entering values directly, by using com-
mands, or as the result of mathematical operations. The next two subsections
show examples of creating simple plots.

5.1.1 Piot of Giver Data

In this case given data is used to crease vectors that are then used in the plot
command. The following table contains sales dasa of a company from 1988 %0

1994.
Year 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994
Sales 8 12 20 22 18 24 27
(millions)

To plot this data, the list of years is assigned to one vector (named yr’), and
the corresponding sales data is assigned %o a secoad vector (named sle). The
Command Window where the vectors are created and the plot command is used

is shown below:

>>
>> gle=|[8

>>

yr=[1988:1:1994] ;
12 20 22 18 24 27];
plot{yr,sle,'--r*','linewidth', 2, 'merkersize’,12)

>

Line Specifiers:
dashed red line and
asterisk marker.

Pioperty Name and Pigperty Value:
the line width is 2 points and the marker
siae is 12 points.

Once the plot command is executed, the Figure Window with the plot, as shown
in Figure 5-3, opens. The plot appears on the screen in red.

Figures - Figure 1 = [_;l_]v
File Edit WView Insert Toolz Bebug Beskbep Window Help A
NSda k| NAODEL-|2/0E| "BOIHESIO|
| *
25 *_o """ i
--—*s 1"’
oot *_—- s\~‘ ',/
L % ’
/’/’ *
15+ */’r’
1w -7
-
5T 1 1 1 1 1
1988 1989 1990 1991 1992 1993 1994

Figure 5-3: The Figure Window with a plot of the sales data.

www.it-ebooks.info

http://www.it-ebooks.info/

5.1 The plot Command 139

5.1.2 Plot of a Function

In many situations there is a need to plot a given function. This can be done in
MATLARB by using the plot or the £plot command. The use of the pl ot com-
mand is explained below. The fplot command is explained in detail in the next
section.

In order to plot a function y = f{x) with the plot command, the user needs
to first create a vector of values of x for the domain over which the function will
be plotted. Thea a vector y is created with the coarespoading values of f{x) by
using element-by-element calculations (see Chapter 3). Once the two vectors are
defined, they can be used in the plot cammand

As an example, the plot command is used to plot the fimction

y = 3.5 "*cos(6x) for 2<x<4. A program that plots this function is shown in
the following script file.

% A script file that creates a plot of

% tha function: 3.5.”%(-0.5*x) .%cos (6x)

xm[-2:0.01:4]; (Create vector x with the domain of the function. |

y=3.5.7(-0.5%x) . *cos (§*x) ; Create vector y with the function
value at each x.

plot (x,y) (Ploty as a function of x. |

Once the script file is execused, the plot is created in the Figure Window, as
shown in Figure 54. Since the plot is made up of segments of straight lines that
connect the points, to obtain an accurate plot of a function, the spacing between
the elements of the vector x must be appropriate. Smaller spacing is uaeeded for a

B Jr— Y
Figures - Figure 1 [-_|@
File Edit View Insert Tools Debug Desktop Window Help A A X

do|k|RNAUDE A 2|00 |0 BOE S0

Figure 54: The Figure Window with a plot of the function y = LY aud cos(6x) .

www.it-ebooks.info

http://www.it-ebooks.info/

140

Chapter S: Two-Dimensional Plots

function that changes rapidly. In the last example a small spacing of 0.01 pro-
duced the plot that is shown in Figure 54. However, if the same function in the
same domain is plotéed with rmach larger spacing —for example, 0.3—the plot that
is obsained, shown in Figure 5-5, gives a distocted picture of the function. Note

x=[-2:0.3:4]1;
y=3.5."(-0.5%x) . *cos (6%x) ;
plot (x.l’)

3 I I L 1 1
-2 -1] 1 2 3 4

Figure $-5: A plot of the fuaction y = 357 cos(6x) with large spacing.

also that in Figure 54 the plot is shown with the Figure Window, while in Figure
5-5 only the plot is shown. The plot can be copied from the Figure Window (in the
Edit menu, select Copy Figure) and then pasted into other applications.

5.2 THE fplot COMMAND

The fplot command plots a function with the form y = f{x) between specified
limits. The command has the form:

fplot (*function’,limits, *line specifiers’)}

The function to The domain of x and, Specifiers that define the
be plotied. optionally, the limits type and color of the line
of the y axis. and markers (optional).

‘function’: The function can be typed directly as a stning inside the com-
mand. For example, if the fiinction that is being plotéed is f{x) = 8x2 + 5cos(x), it
is typed as: '8*x”2+5*cos (x) ‘. The functions can include MATLAB built-in
functions and functions that are created by the user (covered in Chapter 6).

» The function to be plotted can be typed as a function of any letter. For example,
the function in the previous paragraph can be typed as *8*z”2+5*cos (z) ’
or ‘8*t*2+5%cog (t) .

www.it-ebooks.info

http://www.it-ebooks.info/

5.2 The fplot Command 141

¢ The function cannot include previously defined variables. For example, in the
function above it is not possible to assign 8 to a variable, and then use the vari-
able when the function is typed in the fplot command.

limits: The limits argument is a vector with two elements that specify the
domain of x [xmin,xmax], or a vector with four elements that specifies the
domain of x and the limits of the y-axis [xmin, xmax, ymin, ymax].

line specifiers: The line specifiers are the same as in the plot com-
mand. For example, a plot of the function y = x2+4sin(2x) -1 for -3<x<3 can
be created with the £plot command by typing:

>> fplot('x"2+4*sin(2*x)-1',[-3 3])

in the Command Window. The figure that is obtained in the Figure Window is
shown in Figure 5-6.

10

. 0 1 2 3

Figure 5-6: A plot of the function y = x2+4sin(2x)-1.

5.3 PLOTTING MULTIPLE GRAPHS IN THE SAME PLOT

In many situations, there is a need to make several graphs in the same plot. This is
shown, for example, in Figure 5-1 where two graphs are plotted in the same fig-
ure. There are three methods to plot multiple graphs in one figure. One is by using
the plot command, the second is by using the hold on and hold off com-
mands, and the third is by using the 1ine command.

5.3.1 Using the plot Command

Two or more graphs can be created in the same plot by typing pairs of vectors
inside the plot command. The command

plot (x,y,u,v,t,h)

creates three graphs—y vs. X, v vs. u, and h vs. t—all in the same plot. The vec-
tors of each pair must be of the same length. MATLAB automatically plots the
graphs in different colors so that they can be identified. It is also possible to add
line specifiers following each pair. For example the command

plot(x,y,'-b’,u,v,'--r',t,h, ‘g:")

www.it-ebooks.info

http://www.it-ebooks.info/

142

Chapter 5: Two-Dimensional Plots

plots y vs. x with a solid blue line, v vs.u with a dashed red line, and h vs. t with
a dotted green line.

Sample Problem 5-1: Plotting a function and its derivatives

Plot the function y = 3x3-26x+ 10, and its first and second derivatives, for
—2<x <4, all in the same plot.

Solution
The first derivative of the function is: ' = 9x2-26.

The second derivative of the function is: " = 18x.
A script file that creates a vector x and calculates the values of y, y’, and y” is:

x=[-2:0.01:4]; (Create vector x with the domain of the function. |
y=3*x."3-26*x+6; (Create vector y with the function value at each x.
yd=9*x."2-26; Create vector yd with values of the first derivative. |
ydd=18+*x; [Create vector ydd with values of the second derivative. |

plot(x,y,'-b',x,yd,"'--r',x,ydd, ':k")

[Create three graphs, y vs. x, yd vs. x, and ydd vs. X, in the same figure.]

The plot that is created is shown in Figure 5-7.

150

100-

50r

-59 -1 0 1 2 3 4

Figure 5-7: A plot of the function y = 3x® — 26x + 10 and its first and second
derivatives.

5.3.2 Using the hold on and hold off Commands

To plot several graphs using the hold on and hold off commands, one graph
is plotted first with the plot command. Then the hold on command is typed.
This keeps the Figure Window with the first plot open, including the axis proper-

www.it-ebooks.info

http://www.it-ebooks.info/

5.3 Plotting Multiple Graphs in the Same Plot 143

ties and formatting (see Section 5.4) if any was done. Additional graphs can be
added with plot commands that are typed next. Each plot command creates a
graph that is added to that figure. The hold off command stops this process. It
returns MATLAB to the default mode, in which the plot command erases the
previous plot and resets the axis properties.

As an example, a solution of Sample Problem 5-1 using the hold on and
hold off commands is shown in the following script file:

x=[-2:0.01:4];
y=3*%*x."3-26%x+6;
yd=9%x."2-26;

ydd=18*x;

plot(x,y,'-b') [The first graph is created.]
hold on

plot(x,yd,'--r'") [Two more graphs are added to the figure.]
plot(x,ydd, ':k"')

hold off

5.3.3 Using the 1ine Command

With the 1ine command additional graphs (lines) can be added to a plot that
already exists. The form of the line command is:

[line(x,y, ‘PropertyName’, PropertyValue)]

(Optional) Properties with values that can be
used to specify the line style, color, and width,
marker type, size, and edge and fill colors.

The format of the 1 ine command is almost the same as the plot command (see
Section 5.1). The 1ine command does not have the line specifiers, but the line
style, color, and marker can be specified with the Property Name and property
value features. The properties are optional, and if none are entered MATLAB uses
default properties and values. For example, the command:

line(x,y,‘'linestyle’,'--',‘color’, ‘r’, ‘marker’, ‘o’)
will add a dashed red line with circular markers to a plot that already exists.

The major difference between the plot and 1ine commands is that the
plot command starts a new plot every time it is executed, while the 1ine com-
mand adds lines to a plot that already exists. To make a plot that has several
graphs, a plot command is typed first and then line commands are typed for addi-
tional graphs. (If a line command is entered before a plot command, an error mes-
sage is displayed.)

www.it-ebooks.info

http://www.it-ebooks.info/

144

Chapter 5: Two-Dimensional Plots

The solution to Sample Problem 5-1, which is the plot in Figure 5-7, can be
obtained by using the plot and 1line commands as shown in the following
script file:

x=[-2:0.01:4];

y=3*x."3-26%x+6;

yd=9*x."2-26;

ydd=18*x;

plot(x,y,'LineStyle','-"', 'color','b')
line(x,yd, 'LineStyle','--"','color','r"')

line(x,ydd, 'linestyle',':', 'color', 'k")

5.4 FORMATTING A PLOT

The plot and fplot commands create bare plots. Usually, however, a figure
that contains a plot needs to be formatted to have a specific look and to display
information in addition to the graph itself. This can include specifying axis labels,
plot title, legend, grid, range of custom axis, and text labels.

Plots can be formatted by using MATLAB commands that follow the plot
or fplot command, or interactively by using the plot editor in the Figure Win-
dow. The first method is useful when a plot command is a part of a computer
program (script file). When the formatting commands are included in the pro-
gram, a formatted plot is created every time the program is executed. On the other
hand, formatting that is done in the Figure Window with the plot editor after a plot
has been created holds only for that specific plot, and will have to be repeated the
next time the plot is created.

5.4.1 Formatting a Plot Using Commands

The formatting commands are entered after the plot or the fplot command.
The various formatting commands are:

The x1abel and ylabel commands:

Labels can be placed next to the axes with the x1abel and ylabel command
which have the form:

xlabel (‘text as string’)
ylabel (‘*text as string’)

The title command:

A title can be added to the plot with the command:

[title(‘text as string’)]

www.it-ebooks.info

http://www.it-ebooks.info/

5.4 Formatting a Plot 145

The text is placed at the top of the figure as a title.
The text command:

A text label can be placed in the plot with the text or gtext commands:

text (x,y, ‘text as string’)
gtext (‘text as string’)

The text command places the text in the figure such that the first character is
positioned at the point with the coordinates x, y (according to the axes of the fig-
ure). The gtext command places the text at a position specified by the user.
When the command is executed, the Figure Window opens and the user specifies
the position with the mouse.

The 1egend command:

The 1egend command places a legend on the plot. The legend shows a sample of
the line type of each graph that is plotted, and places a label, specified by the user,
beside the line sample. The form of the command is:

legend (‘stringl’, ‘string2’, , pos)

The strings are the labels that are placed next to the line sample. Their order corre-
sponds to the order in which the graphs were created. The pos is an optional
number that specifies where in the figure the legend is to be placed. The options
are:

pos -1 Places the legend outside the axes boundaries on the right side.
pos = 0 Places the legend inside the axes boundaries in a location that inter-
feres the least with the graphs.

pos = 1 Places the legend at the upper-right corner of the plot (default).
pos = 2 Places the legend at the upper-left corner of the plot.

pos = 3 Places the legend at the lower-left corner of the plot.

pos = 4 Places the legend at the lower-right corner of the plot.

Formatting the text within the x1abel, ylabel, title, text

and legend commands:

The text in the string that is included in the command and is displayed when the
command is executed can be formatted. The formatting can be used to define the
font, size, position (superscript, subscript), style (italic, bold, etc.), and color of
the characters, the color of the background, and many other details of the display.
Some of the more common formatting possibilities are described below. A com-
plete explanation of all the formatting features can be found in the Help Window
under Text and Text Properties. The formatting can be done either by adding mod-
ifiers inside the string, or by adding to the command optional PropertyName
and PropertyValue arguments following the string.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 5: Two-Dimensional Plots

The modifiers are characters that are inserted within the string. Some of the
modifiers that can be added are:

Modifier Effect Modifier Effect
\bf bold font \fontname{fontname} | specified font
is used
\it italic style \fontsize{fontsize} | specified font
size is used
\rm normal font

These modifiers affect the text from the point at which they are inserted until the
end of the string. It is also possible to have the modifiers applied to only a section
of the string by typing the modifier and the text to be affected inside braces { }.

Subscript and superscript:

A single character can be displayed as a subscript or a superscript by typing _ (the
underscore character) or » in front of the character, respectively. Several consecu-
tive characters can be displayed as a subscript or a superscript by typing the char-
acters inside braces { } following the _ or the *.

Greek characters:

Greek characters can be included in the text by typing \name of the
letter within the string. To display a lowercase Greek letter, the name of the
letter should be typed in all lowercase English characters. To display a capital
Greek letter, the name of the letter should start with a capital letter. Some
examples are:

Characters Greek Characters Greek
in the string letter in the string letter
\alpha o \Phi D
\beta B \Delta A
\gamma Y \Gamma T
\theta 0 \Lambda A

\pi T \Omega Q
\sigma o \Sigma)

Formatting of the text that is displayed by the x1abel, ylabel, title,
and text commands can also be done by adding optional PropertyName and
PropertyValue arguments following the string inside the command. With this

www.it-ebooks.info

http://www.it-ebooks.info/

5.4 Formatting a Plot

147

option, the t ext command, for example, has the form:

text (x,y, ‘text as string’,PropertyName, PropertyValue)

In the other three commands the PropertyName and PropertyValue argu-
ments are added in the same way. The PropertyName is typed as a string, and
the PropertyValue is typed as a number if the property value is a number and
as a string if the property value is a word or a letter character. Some of the Prop-
erty Names and corresponding possible Property Values are:

Property name Description Possnl:,l:lg:: perty

Rotation Specifies the orientation | Scalar (degrees)

of the text. Default: 0
FontAngle Specifies italic or normal | normal,italic

style characters. Default: normal
FontName Specifies the font for the | Font name that is

text. available in the system.
FontSize Specifies the size of the | Scalar (points)

font. Default: 10
FontWeight Specifies the weight of | light,normal,

the characters. bold

Default: normal

Color Specifies the color of the | Color specifiers (see

text. Section 5.1).
Background- Specifies the background | Color specifiers (see
Color color (rectangular area). Section 5.1).
EdgeColor Specifies the color of the | Color specifiers (see

edge of a rectangular box | Section 5.1).

around the text. Default: none.
LineWidth Specifies the width of the | Scalar (points)

edge of a rectangular box | Default: 0.5

around the text.

The axis command:

When the plot (x,y) command is executed, MATLAB creates axes with limits
that are based on the minimum and maximum values of the elements of x and y.
The axis command can be used to change the range and the appearance of the
axes. In many situations, a graph looks better if the range of the axes extend
beyond the range of the data. The following are some of the possible forms of the
axis command:

www.it-ebooks.info

http://www.it-ebooks.info/

148

Chapter 5: Two-Dimensional Plots

axis([xmin,xmax,ymin, ymax]) Sets the limits of both the x and y
axes (xmin, xmax, ymin, and
ymax are numbers).

axis equal Sets the same scale for both axes.
axis square Sets the axes region to be square.
axis tight Sets the axis limits to the range of the data.

The grid command:

grid on Adds grid lines to the plot.

grid off Removes grid lines from the plot.
An example of formatting a plot by using commands is given in the following
script file that was used to generate the formatted plot in Figure 5-1.
x=[10:0.1:22];

y=95000./x."2;

xd=[10:2:22];

yd=[950 640 460 340 250 180 140];
plot(x,y,'-"','LineWidth’,1.0)

xlabel ('DISTANCE (cm) ') Formatting text inside the
title command.
ylabel (' INTENSITY (lux)') \

title('\fontnave{Arial}Light Intensity as a Function of Distance','FontSize’,14)
axis([8 24 0 1200])

text (14,700, ' Qugariamn between theary and experiment. ', 'édgetolar’, 'r', 'LingWidth',2)
hold on \ /

plot (xd,yd, 'ro--', 'linewidth',1.0, 'markersize',10) F0¥n““ﬁnthXI
. inside the text
legend('Theory’, 'Experiment’',0) command.

hold off

5.4.2 Formatting a Plot Using the Plot Editor

A plot can be formatted interactively in the Figure Window by clicking on the plot
and/or using the menus. Figure 5-8 shows the Figure Window with the plot of Fig-
ure 5-1. The Plot Editor can be used to introduce new formatting items or to mod-
ify formatting that was initially introduced with the formatting commands.

www.it-ebooks.info

http://www.it-ebooks.info/

5.5 Plots with Logarithmic Axes 149

Click the arrow button to start the plot edit mode. Then click
on an item. A window with formatting tool for the item opens.

Figure 1 |3@@

Use the Edit File Edit View ln.ser/‘[oolz Qesktpp Window Help "y N
andInsert | LA g w7 09e4- 3 0H =0

menus to add Light Intensity as a Function of Distance
formatting : : : : . : ,

objects, or to Iheary

. . - _-6'_ >4 nmen
edit existing 10 S
objects.
- BOO; .
Chan R § |C‘.0m|.]an'sun between theory and experiment.|
“hange posi- = oo} i
tion of a label, &
legend, or 2 aom| |
other objectby |-
clicking on the 20 B - ez, > 1
object and /
dragging. L1 % ™ 13 " i 8 2 2 24
DISTANGE (cm})

Figure 5-8: Formatting a plot using the Plot Editor.

5.5 PLOTS WITH LOGARITHMIC AXES

Many science and engineering applications require plots in which one or both
axes have a logarithmic (log) scale. Log scales provide means for presenting data
over a wide range of values. It also provides a tool for ideatifying characteristics
of data and possible forms of mathematical relationships that can be appropriate
for modeling the date (see Section 8.2.2).

MATLAB commands for making plots with log axes are:

gsemilogy (x,y) Plots y versus x with a log (base 10) scale for the y
axis and linear scale for the x axis.
semilogx (x,y) Plotsy versusx with a log (base 10) scale for the x
axis and lingar scale for the y axis.
loglog({x,y) Plots y versus x with a log (base 10) scale for both axes.

Line specifiers and Property Name and Property Value arguments can be added to
the commands (optional) just as in the plot command. As an example, Figure 5-

9 shows a plot of the function y = 27 ***!9 for 0.1 <x<60. The figure shows
four plots of the same function: one with linear axes, one with a log scale for the y
axis, one with a log scale for the x axis, and one with a log scale on both axes.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 5: Two-Dimensional Plots

+ x=linspace(0.1,60,1000) ;

1200 x=linspace (0.1,60,1000) ; m y=2.2(-0.2%*x+10) ;
om| |¥Y=2."(-0.2%x+10); 10 semi..logy.(x,y) '
plot (x,y)

.

Log

408

200

DD 10 20 30 40 50 B0 u 0 10 20 30 40 a0 &0
x=linspace(0.1,60,1000) ; x=linspace (0.1,60,1000) ;
y=2."(-0.2*x+10) ; y=2."(-0.2*x+10) ;

1200 semilogx (x,y) 1o’ loglog(x,y)

1008 3

Log

608

480

200 Log

a ‘ ‘
10" 1° 1’ 10t 10" 1° "' 10°

Figure 5-9: Plots of y = 2 02x+10) with linear, semilog, and log-log scales.

Notes for plots with logarithmic axes:

¢ The number zero cannot be plotted on a log scale (since a log of zero is not
defined).

¢ Negative numbers cannot be plotted on log scales (since a log of a negative
number is not defined).

5.6 PLOTS WITH ERROR BARS

Experimental data that is measured and then displayed in plots frequently contains
error and scatter. Even data that is generated by computational models includes
error or uncertainty that depends on the accuracy of the input parameters and the
assumptions in the mathematical models that are used. One method of plotting
data that displays the error, or uncertainty, is by using error bars. An error bar is
typically a short vertical line that is attached to a data point in a plot. It shows the
magnitude of the error that is associated with the value that is displayed by the
data point. For example, Figure 5-10 shows a plot with error bars for the experi-
mental data from Figure 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/

5.6 Plots with Error Bars 151

1000

900
800
700
800
500

INTENSITY (lux)

400
300
200

100

8 10 12 14 16 18 20 22 24
DISTANCE (cm)

Figure 5-10: A plot with error bars.

Plots with error bars can be done in MATLAB with the errorbar com-
mand. Two forms of the command, one for making plots with symmetric error
bars (with respect to the value of the data point) and the other for nonsymmetric
error bars at each point, are presented. When the error is symmetric, the error bar
extends the same length above and below the data point, and the command has the

form:
errorbar (x,y,e)
Vectors with horizontal and verti- Vector with the value of the
cal coordinates of each point. error at each point.

¢ The lengths of the three vectors x, y, and e must be the same.

¢ The length of the error bar is twice the value of e. At each point the error bar
extends fromy (i) -e (i) toy (i) +e (1).

The plot in Figure 5-10, which has symmetric error bars, was done by exe-
cuting the following code:
xd=[10:2:22];
yd=[950 640 460 340 250 180 140];
ydErr=[30 20 18 35 20 30 10]
errorbar (xd,yd,ydErr)

xlabel ('DISTANCE (cm) ')
ylabel (' INTENSITY (lux)')

The command for making a plot with error bars that are not symmetric is:

errorbar(x,vy,d,u)

Vectors with horizontal and ~~ Vector with the upper- ~ Vector with the lower-
vertical coordinates of each bound value of the bound value of the
point. error at each point. error at each point.

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 5: Two-Dimensional Plots

¢ The lengths of the four vectors x, y, d, and u must be the same.

¢ At each point the error bar extends from y (1) -d (1) toy (i) +u(i).

5.7 PLOTS WITH SPECIAL GRAPHICS

All the plots that have been presented so far in this chapter are line plots in which
the data points are connected by lines. In many situations plots with different
graphics or geometry can present data more effectively. MATLAB has many
options for creating a wide variety of plots. These include bar, stairs, stem, and pie
plots and many more. Following are some of the special graphics plots that can be
created with MATLAB. A complete list of the plotting functions that MATLAB
offers and information on how to use them can be found in the Help Window. In
this window first choose “Functions by Category,” then select “Graphics” and
then select “Basic Plots and Graphs™ or “Specialized Plotting.”

Bar (vertical and horizontal), stairs, and stem plots are presented in the fol-
lowing charts using the sales data from Section 5.1.1.

Vertical Bar o yr=[1988:1994];
Plot sle=[8 12 20 22 18 24 27];

) 3 bar (yr, sle, 'r') g‘he
Function : xlabel(Year') | inted.

% ylabel ('Sales (Mil-
bar (x,y) lions) ')
R ™

Horizontal Bar yr=[1988:1994];
Plot . sle=[8 12 20 22 18 24 27];

. _tom barh (yr,sle)
Functlc.)n % :: xlabel ('Sales (Millions)')
format: % 1550 ylabel ('Year')
barh (x,y) ::

O e

www.it-ebooks.info

http://www.it-ebooks.info/

5.8 Histograms

153

Stairs Plot - yr=[1988:1994];
. sle=[8 12 20 22 18 24 27];
f"unctlon - stairs(yr,sle)
ormat: S= —'—L
5
, 815
stairs(x,y) | #
10
‘I5QBB 1§!9 |9§) 19§1 19§2 19§3 1994
Year
Stem Plot 0 yr=1[1988:1994] ;
- sle=[8 12 20 22 18 24 27];
Function = stem(yr, sle)
Format &
S5
F
stem(x,y) iy
5
1“9* 1088 1880 1891 1892 1983 1894
Year

Pie charts are useful for visualizing the relative sizes of different but related
quantities. For example, the table below shows the grades that were assigned to a
class. The data is used to create the pie chart that follows.

Grade A B C E

Number of students 11 18 26 9 5
Pie—Plot Class Grades grd=[11 18 26 9 5];

7%
Ll pie(grd)
Functon title('Class Grades')
format:
. MATLAB draws the

pie(x) sections in different col-

ors. The letters (grades)
were added using the
Plot Editor.

5.8 HISTOGRAMS

Histograms are plots that show the distribution of data. The overall range of a
given set of data points is divided into subranges (bins), and the histogram shows
how many data points are in each bin. The histogram is a vertical bar plot in which
the width of each bar is equal to the range of the corresponding bin and the height

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 5: Two-Dimensional Plots

of the bar corresponds to the number of data points in the bin. Histograms are cre-
ated in MATLAB with the hist command. The simplest form of the command

1s:
hist (y)

y is a vector with the data points. MATLAB divides the range of the data
points into 10 equally spaced subranges (bins) and then plots the num-
ber of data points in each bin.

For example, the following data points are the daily maximum temperature
(in °F) in Washington, DC, during the month of April 2002: 58 73 73 53 50 48 56
73 73 66 69 63 74 82 84 91 93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from
the U.S. Nasional Oceanic and Asmospheric Administrasion). A histogram of this
data is obtained with the commands:

>> y=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 91 93 89
91 80 59 69 56 64 63 66 64 74 63 69];

>> hist (y)

The plot that is generated is shown in Figure 5-11 (the axis titles were added using
the Plot Editor). The smallest value in the data set is 48 and the largest is 93,
which means that the range is 45 and the width of each bin is 4.5. The range of the
first bin is from 48 to 52.5 and contains two points. The range of the second bin is
from 52.5 to 57 and contains three points, and so on. Two of the bins (75 to 79.5
and 84 to 88.5) do not contain any points.

7

6 T

Number of days
w &~ o

N

0
40 50 60 70 80 90 100

Temperature (F)

Figure 5-11: Histogram of temperature data.

Since the division of the data range into 10 equally spaced bins might not be
the division that is preferred by the user, the number of bins can be defined to be
different than 10. This can be done either by specifying the number of bins, or by
specifying the center point of each bin as shown in the following two forms of the

www.it-ebooks.info

http://www.it-ebooks.info/

5.8 Histograms 155

hist command:

[hist (y,nbins)J or hist (y,x)

nbins is a scalar that defines the number of bins. MATLAB divides the range
in equally spaced subranges.

b'e is a vector that specifies the location of the center of each bin (the dis-
tance between the centers does not have to be the same for all the bins).
The edges of the bins are at the middle point between the centers.

In the example above the user 14
might prefer to divide the temperature 12
range into three bins. This can be done 0

with the command:

Number of days

>> hist(y,3) 4

As shown in the top graph, the histo- i

gram that is generated has three equally e w ey © ° @
spaced bins.

The number and width of the bins 0
can also be specified by a vector x
whose elements define the centers of
the bins. For example, shown in the
lower graph is a histogram that displays
the temperature data from above in six
bins with an equal width of 10 degrees.
The elements of the vector x for this S T
plot are 45, 55, 65, 75, 85, and 95. The Temperature (F)
plot was obtained with the following commands:

Number of days

>> x=[45:10:95]

X =
45 55 65 75 85 95

>> hist(y,x)

The hist command can be used with options that provide numerical out-
put in addition to plotting a histogram. An output of the number of data points in
each bin can be obtained with one of the following commands:

[n:hist(y,nbins)] [n=hist(y,x)]

The output n is a vector. The number of elements in n is equal to the number of
bins, and the value of each element of n is the number of data points (frequency
count) in the corresponding bin. For example, the histogram in Figure 5-11 can

www.it-ebooks.info

http://www.it-ebooks.info/

156

Chapter 5: Two-Dimensional Plots

also be created with the following command:

>> n = hist(y)

= The vector n shows how many
2 3 2 7 3 6 0 3 0 4 | eclementsareineachbin.

The vector n shows that the first bin has two data points, the second bin has three

data points, and so on.
An additional, optional numerical output is the location of the bins. This
output can be obtained with one of the following commands:

{ [n xout]=hist (y)] [[n xout]=hist (y,nbins)]

xout is a vector in which the value of each element is the location of the center of
the corresponding bin. For example, for the histogram in Figure 5-11:

>> [n xoutl=hist (y)

n =
2 3 2 7 3 6 0 3 0 4

xout =
50.2500 54.7500 59.2500 63.7500 68.2500 72.7500
77.2500 81.7500 86.2500 90.7500

The vector xout shows that the center of the first bin is at 50.25, the center of the
second bin is at 54.75, and so on.

5.9 POLAR PLOTS

Polar coordinates, in which the position of a point in a Y
plane is defined by the angle © and the radius (distance) to

the point, are frequently used in the solution of science and r
engineering problems. The polar command is used to

plot functions in polar coordinates. The command has the

form:

[polar (theta,radius, ‘1line specifiers’)]

(Optional) Specifiers that
Vector Vector define the type and color of
the line and markers.

where theta and radius are vectors whose elements define the coordinates of
the points to be plotted. The polar command plots the points and draws the
polar grid. The line specifiers are the same as in the plot command. To plot a
function » = f{0) in a certain domain, a vector for values of 0 is created first, and

then a vector r with the corresponding values of £(6) is created using element-by-

www.it-ebooks.info

http://www.it-ebooks.info/

5.10 Putting Multiple Plots on the Same Page 157

element calculations. The two vectors are then used in the polar command.
For example, a plot of the function » = 3co0s?(0.50)+6 for 0<0<2xn is
shown below.

90 qp

t=linspace(0,2*pi, 200);
r=3*cos (0.5*t) . "2+t;
polar(t,r)

5.10 PUTTING MULTIPLE PLOTS ON THE SAME PAGE

Multiple plots can be created on the same page with the subplot command,
which has the form:

[subplot (m,n,p)]

The command divides the Figure Window
(and the page when printed) into m X n rectangu-
lar subplots. The subplots are arranged like ele- (3.2,1) (3.2.2)
ments in an m X n mawix where each element is a
subplot. The subplots are numbered from 1
through m - n. The upper left subplot is numbered
1, and the lower right subplot is numbered m - n.
The numbers increase from left to right within a
row, from the first row to the last. The command
subplot (m,n,p) makes the subplot p current.
This means that the next plot command (and any
formatting commands) will create a plot (with the corresponding format) in this
subplot. For example, the command subplot (3,2,1) creates six areas
arranged in three rows and two columns as shown, and makes the upper left sub-
plot current. An example of using the subplot command is shown in the solu-
tion of Sample Problem 5-2.

(3,23 (3.2,4)

(3.2,% (3.2,6)

5.11 MULTIPLE FIGURE WINDOWS

When plot or any other command that generates a plot is executed, the Figure
Window opens (if not already open) and displays the plot. MATLAB labels the
Figure Window as Figure 1 (see the top left corner of the Figure Window that is
displayed in Figure 5-4). If the Figure Window is already open when the plot or
any other command that generates a plot is executed, a new plot is displayed in the

www.it-ebooks.info

http://www.it-ebooks.info/

__Chapter 5: Two-Dimensional Plots

Figure Window (replacing the existing plot). Commands that format plos are
applied to the plot in the Figure Window that is opep.

It is possible, howcver, to open additional Figure Windows and have scveral
of them open (with plots) at the same time. This is done by typing the command
figqure. Every time the command figure is entered, MATLAB opens a new
Figure Window. If a command that creates a plot is entered after a figqure com-
mand, MATLAB generates and displays the new plot in the last Figure Window
that was opeued, which is called the active or current window. MATLAB labels
the new Figure Windows successively; Le., Figure 2, Figure 3, and so on. For
example, after the following three commands are ensered, the two Figure Win-
dows that are shown in Figure 5-12 are displayed.

>> fplot('xvcos(x)', [0,10]) (Plot displayed in Figure 1 window. |
>> figure (Figure 2 window opens.
>> fplot('exp(-0.2*x)*cos(x) ', [0,101) (Plotdisplayed in Figure 2 window.]
B Figure 1 ;ﬁl ‘Wrigure 2 mE %]
Hle Edt Mew [nsert Tools Deskiop Window Help | ‘Hle Edt View [nsert Tools Desktop Window LE?_;
NEdS M RROUBDRL-B| * [DSdS KK ONDLL- S| 7
10 T
5] 05 "\‘
0 "d__h"'--._-\,‘_ //. 1 B \\ ,"/’/_ -.\\\"“-—,__;
Loed Lpgh \ ~
5 1 05 g
10 - s s ; 5
g) 4 5 81 0 2 2 6 8 10

Figure 5-12: Two open Figure Windows.

The figure command can also have an input argument that is a number
(integer), of the form figure (n). The number corresponds to the number of the
corresponding Figure Window. Whea the command is executed, window number
n becomes the active Figure Window (if a Figure Window with this number does
not exist, a new window with this number opens). When cammands that create
new plotes are executed, the plows that they generate are displayed in the active Fig-
ure Window. In the same way, commands that format plows are applied to the plot
in the acive window. The figure (n) command provides means for having a
program in a script file that opeas and makes plots in a few defined Figure Win-
dows. (If several figure commands are used in a program instead, new Figure
Windows will open every time the script file is executed.)

Figure Windows can be closed with the close command. Several fanms of
the command are:
close closes the active Figure Window.
close (n) closes the nth Figure Wmdow.
close all closes all Figure Windows that are open.

www.it-ebooks.info

http://www.it-ebooks.info/

5.12 Plotting Using the Plots Toolstrip 159

5.12 PLOTTING USING THE PLOTS TOOLSTRIP

Plots can also be constructed interactively by using the PLOTS Toolstrip in the
Command Window. The PLOTS Toolstrip, as shown in Fig. 5-13, is displayed
when the PLOTS tab is selected. To make a two-dimensional plot, the vectors
with the data points that will be used for the plot have to be already assigned and
displayed in the Workspace Window (see Section 4.1). To make a plot, select a
variable in the Workspace Window and then, holding the CTRL key, select any
additional variables needed. Once a selection of variables has been made, the
Toolstrip shows icons with images of plot types that can be created with the
selected variables (e.g. line graph, scatter plot, bar graph, pie chart, etc.). Clicking
on an icon opens a Figure Window with the corresponding figure displayed. In
addition, the MATLAB command that created the plot is displayed in the Com-
mand Window. The user can then copy the command and paste it into a script file
such that in the future the same figure will be created when the script file is exe-
cuted. On the right side of the Toolstrip the user can choose to view different plot
types in the same Figure Window (Reuse Figure), or to view a new figure type in
a new Figure Window (New Figure), such that figure types can be compared side
by side.

Using the Plots Toolstrip is useful when the user wants to examine different
plot options for given data. For example, Figure 5-13 shows the default layout of
MATLAB with the PLOTS Toolstrip displayed. In the Command Window, the
sales data from Section 5.1.1 are assigned to two vectors yr and s1e. The vectors
are also displayed (and selected) in the Workspace Window. Icons with images of
various type of plots that can be created are displayed in the PLOTS Toolstrip at
the top. Additional types of plots can be displayed by clicking on the down-arrow
on the right.

. .
4\ MATLAB R2013b =] E e

Lol Bl G 4 D2 & S swichwindows > (3) I Search Dacumentation el B
Lo yr —
¢, /\\ /f\\ i A O Reuse Figure
i E \VAR Y VAR L i -

<, ~ Hew Figure
- sle plet Plat as mult... bar area pie hist scatter

SELECTION PLOTS: yrsle SPTIONS

&5 HEH » C: » Users b gilastl » Decuments b MATLAB - P
Current Felder [OM Cormmand Window () Werkspace ®
Narme >> yr=[1983:1:1224]; Narne Value
>> sle=[§ 12 20 22 18 24 27]: lijﬂg ['1)‘2(‘
>> mlet (yr,sle} oy [1988.1

>> bar(yr,sle)

S>>

+
Command History ®

yT=[1988:1:199
sie=[z 12 20
E"-plot (yr,sle)

“kar (yr, sle) =
Details ’\ < 1 b

Figure 5-13: Using the PLOTS Toolstrip.

www.it-ebooks.info

http://www.it-ebooks.info/

160

Chapter 5: Two-Dimensional Plots

Figure 1

[EE %

ru Figure 1

(= B [

FEile Edit Yiew [nset Tools

30

Desktop Window Help

NS Hde M AEODRBi-|2/0E

~

»

Eile Edit VYiew Inset Tools Desktop Window Help
Ocdds |k
30

~

LRROUBEA-S2|08 | m ”

25 25

20

1991 1992 19893

1988 1989 1990 1991 1992 1993 1994

5 L 1
1928 1989 1950 1994

Figure 5-14: Using the PLOTS Toolstrip.

As an example, two different figures, one with line plot and the other with
bar plot, were created using the two vectors yr and sle. The two figures are dis-
played in Figure 5-14 and the commands that created the plots are displayed in the
Command Window in Figure 5-13.

Additional notes:

e When selecting variables for the plot (in
the Workspace Window), the first to be
selected will be the independent variable lll!]t’;lls% Hye
(horizontal axis) and the second will be the ‘,L,],w,\,‘.[@; LS
dependent variable (vertical axis). After — T
the selection, the variables can be el Lol K
switched by clicking on the Switch icon.

4\ MATLAB R2013b

e If only one variable (vector) is selected for a figure, the values of the vector
elements will be plotted versus the number of the element.

5.13 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 5-2: Piston-crank mechanism

The piston-rod-crank mechanism is used in many engineering applications. In the
mechanism shown in the following figure, the crank is rotating at a constant speed
of 500 rpm.

www.it-ebooks.info

http://www.it-ebooks.info/

5.13 Examples of MATLAB Applications 161

Calculate and plot the position, velocity, and acceleration of the piston for one
revolution of the crank. Make the three plots on the same page. Set 6 = 0° when
t=0.

Solution

The crank is rotating with a constant angular velocity 6 . This means that if we set
0 = 0° when ¢ =0, then at time ¢ the angle 0 is given by 6 = 6z, and means that
® = 0 at all times.
The distances d; and & are
given by:
d, =rcos®@ and & = rsin®

With % known, the distance d, can be

calculated using the Pythagorean
Theorem:

dy = (c2—)12 = (c2—r2sin20)1/2

The position x of the piston is then given by:
x = d;+d,= rcos® + (c?—r2sin20)!/2
The derivative of x with respect to time gives the velocity of the piston:

r205in26

o —resin6—2(02Tsin29)”2

The second derivative of x with respect to time gives the acceleration of the pis-
ton:
47267 cos20(c2 — r2sin20) + (r205in26)>

4(c? - r?*sin?0)3/2

% = —r6%cosB —

In the equation above, 6 was taken to be zero.
A MATLAB program (script file) that calculates and plots the position,
velocity, and acceleration of the piston for one revolution of the crank is shown

below.

THDrpm=500; r=0.12; c=0.25; [Define §,r,and c. |
THD=THDrpm*2*pi/60; (Change the units of & from rpm to rad/s. |
tf=2%pi/THD; (Calculate the time for one revolution of the crank.)
t=1linspace(0,t£,200); [Create a vector for the time with 200 elements.]
TH=THD*t; (Calculate 8 for each t.
d2s=c”2-r"2*gin(TH) ."2; [Calculate d> squared for each 6.]
x=r*cos (TH) +sqrt (d2s) ; [Calculate x for each 8. |

xd=-r*THD*gin (TH) - (r*2*THD*sin (2*TH)) ./ (2*sqrt(d2s));

www.it-ebooks.info

http://www.it-ebooks.info/

162

Chapter 5: Two-Dimensional Plots

xdd=-r*THD"2*cos (TH) - (4*r"2*THD"2*cos (2*TH) . *d2s+
(r*2*gin (2*TH) *THED) ."2) ./ (4*d2s." (3/2));

subplot(3,1,1)

plot (t,x)

grid

xlabel ('Time (s8)°')
ylabel ('Position (m)')
subplot (3,1,2)
plot(t,xd)

grid

xlabel ('Time (s8)°')
ylabel ('Velocity (m/s)')
subplot(3,1,3)
plot(t,xdd)

grid

xlabel ('Time (8)°')
ylabel ('Acceleration (m/s"2)')

(Calculate % and for each 6. |

(Format the first plot. |

Plot x vs. ¢

[Format the second plot.]

Plot i vs. t.

(Format the third plot.|

When the script file uns it generates the th ee plots on the same page as
shown in Figu e 5-13. The fig re nicely shows that the velocity of the piston is
zero at the end points of the travel range where the piston changes the di ection of
the motion. The acceleration is maxim m (di ected to the left) when the piston is

at the right end.

0.4 T T T T T
- | | | | I |
E | | | |
For N |
8 | | | | |
o | | | | | |

0 1 L 1 1 1

0 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)

Velocity (m/s}
o

i i
I
|
- L 1 I
0 0.02 0.04 0.06

Time (s)
"7“7500 T T T T T
T | | | | | [
E | T T | |
£ o
E | | | | | |
i | | | | | |
2_500 L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12
Time (s)

Figure 5-15: Position, velocity, and acceleration of the piston vs. time.

www.it-ebooks.info

http://www.it-ebooks.info/

5.13 Examples of MATLAB Applications

163

Sample Problem 5-3: Electric Dipole

The electric field at a point due to a charge is a vector E
with magnitude E given by Coulomb’s law:

1 g

4meyr2

2

where €, = 8.8541878 x 10*12NCmz

constant, ¢ is the magnitude of the charge, and r is the
distance between the charge and the point. The direction
of E is along the line that connects the charge with the

is the permittivity

/
v,/
/s

@4

point. E points outward from g¢ if ¢ is positive, and toward ¢ if ¢ is negative. An
electric dipole is created when a positive charge and a negative charge of equal
magnitude are placed some distance apart. The electric field, E, at any point is
obtained by superposition of the electric field of each charge.

An electric dipole with
g = 12x10-9C is created, as shown in
the figure. Determine and plot the
magnitude of the electric field along S

the x axis from x=-5cm to
x =5cm.

90 . e 9
(-2 cm, -2 cm) - (2 cm, -2 cm)

Solution v
The electric field E at any point (x, 0) il 0 E+
along the x axis is obtained by adding E— x,)/l : X
the electric field vectors due to each of |
the charges. P E.

E=E+E, de - oq
The magnitude of the electric field is (-0.02, -0.02) (0.02, -0.02)
the length of the vector E.

The problem is solved by following these steps:
Step 1: Create a vector x for points along the x axis.

Step 2:
points on the x axis.

Calculate the distance (and distance squared) from each charge to the

Vivinus = '\/(002 - X)2 +0.022 rpl“s

Step 3:
X axis.

www.it-ebooks.info

= J(x+0.02x)2 + 0.022

Write unit vectors in the direction from each charge to the points on the

http://www.it-ebooks.info/

164 Chapter 5: Two-Dimensional Plots

1

minus

1 .
Epusuy = ——((x+0.02)i +0.02j)
rplus

Step 4: Calculate the magnitude of the vector E_ and E,. at each point by using
Coulomb’s law.

Einusuy = ((0.02 —x)i— 0.02j)

l a9 1 g
EminusMAG - 47C€0r2 EplusMAG - 475807'2
p

minus lus

Step 5: Create the vectors E_ and E, by multiplying the unit vectors by the
magnitudes.

Step 6: Create the vector E by adding the vectors E_and E...

Step 7: Calculate E, the magnitude (length) of E.

Step 8: Plot E as a funckion of x.

A program in a script file that solves the problem is:

q=128'9;

epsilon0=8.8541878e-12;

x=[-0.05:0.001:0.05] " ; (Create a column vector x. |

rminusS=(0.02-x)."2+0.02"2;

rminus=sqrt (rminuss) ; Step 2. Each variable
. . is a column vector.

rplusS=(x+0.02).72+0.0272;

rplus=sqrt (rpluss) ; Steps 3 & 4. Each vari-

EndrusUV=[((0. 02-x) . /rmdrms), (-0.02./minus)]; | ableis a two column
matrix. Each row is the
EplusUV= [((x+0.02) -/rplus) , (0.02. /rplus) 1; vector for the corre-

EminusMAG= (q/ (4*pi*epsilon0)) . /rminusS; sponding x.
EplusMAG= (q/ (4*pi*epsilon0)) . /rpluss;
Eminus=[EminusMAG. *EminusUV(:,1), EminusMAG.*EminusUV(:,2)];

Eplus=[EplusMAG. *EplusUV(:,1), EplusMAG.*EplusUV(:,2)];

E=Eminus+Eplus;
EMAG=sqrt (E(:,1) ."2+E(:,2)."2);

plot (x, EMAG, 'k', 'linewidth',1)

xlabel ('Position along the x-axis (m)','FontSize',12)
ylabel ('Magnitude of the electric field (N/C)','FontSize',12)
title ('ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE', 'FontSize',12)

When this script file is executed in the Command Window, the following figure is
created in the Figure Window:

www.it-ebooks.info

http://www.it-ebooks.info/

5.14 Problems

165

x10° ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE
3 T T T T T T T T T

Magnitude of the electric field (N/C)

05 . . A A A A A A A
-0,05 -004 -0.03 -0.02 -0.01 0 001 002 003 004 005
Position along the x—axis (m)

5.14 PROBLEMS

1.

_x2-3x+17

Plot the function f{x)
N2x+5

for -1<x<5.

Plot the function f(x) = (3cosx — sinx)e%2*r for 4<x<9.

. x2
Plot the function f (x) 2+ si 3 for SxXs4.

Plot the function f{x) = x3—2x2—10sin2x—e%9* and its derivative for
—2<x<4 in one figure. Plot the function with a solid line, and the derivative
with a dashed line. Add a legend and label the axes.

Make two separate plots of the function f{x) = —3x*+ 10x2-3, one plot for
—4<x<3 andone for -4<x<4.

Use the fplot command to plot the function
J(x) = (sin2x + cos?5x)e92* in the domain -6<x<6 .

Plot the function f{x) = sin?(x)cos(2x) and its derivative, both on the same
plot, for 0 <x<2mn . Plot the function with a solid line, and the derivative with
a dashed line. Add a legend and label the axes.

Make a plot of a circle with its center at (4.2,2.7) and radius of 7.5.
A parametric equation is given by
x = sin(¢)cos(z), y = 1.5co0s(?)

Plot the function for —n<z< = . Format the plot such that the both axes will
range from -2 to 2.

www.it-ebooks.info

http://www.it-ebooks.info/

166

Chapter 5: Two-Dimensional Plots

10.

11.

12.

13.

14.

15.

Two parametric equations are given by:

x = cos3(t) , y = sin?(¢)

u = sin(t) , v = cos(?)
In one figure, make plots of y versus x and v versus « for 0<z<2n . Format
the plot such that the both axes will range from -2 to 2.

x2—5x—-12

x2—-x-6
the function has a vertical asymptote at x = 3. Plot the function by creating
two vectors for the domain of x. The first vector (name it x1) includes ele-
ments from —1 to 2.9, and the second vector (name it x2) includes elements
from 3.1 to 7. For each x vector create a y vector (name them y1 and y2) with
the corresponding values of y according to the function. To plot the function
make two curves in the same plot (y1 vs. x1, and)2 vs. x2). Format the plot
such that the y-axis ranges from —20 to 20.

Plot the function f{x) = in the domain -1<x<7. Notice that

2 _) .
Plot the function f(x) = —x2 +33x 150 for —4 <x<9. Notice that the function
X=X —

has two vertical asymptotes. Plot the function by dividing the domain of x into
three parts: one from —4 to near the left asymptote, one between the two
asymptotes, and one from near the right asymptote to 9. Set the range of the y
axis from —20 to 20.

A parametric equation is given by:

3¢ 312
1+8° ¥ 145
(Note that the denominator approaches 0 when ¢ approaches —1.) Plot the func-
tion (the plot is called the Folium of Descartes) by plotting two curves in the
same plot—one for —-30<¢<-1.6 and the other for —-0.6 <t<40.

X =

An epicycloid is a curve (shown partly in the figure) y
obtained by tracing a point on a circle that rolls around
a fixed circle. The parametric equation of a cycloid is /

x = 13cos(t) —2cos(6.5¢t)
y = 13sin(¢) — 2sin(6.5¢)
—_— S
S

given by:

Plot the cycloid for 0<z¢<4x.

The shape of the pretzel shown is given by the e
following parametric equations: /’/;~ /;,\
x = (3.3-042)sin(¢) y = (2.5-0.3¢2)cos(z) r’ VW ‘]
where —4 <t<3 . Make a plot of the pretzel. & ¥ i@
S A L

www.it-ebooks.info

http://www.it-ebooks.info/

5.14 Problems

167

16. Make a polar plot of the function » = 2sin(36)sin® for 0<0<2n .

17.

18. The following data gives the approximate population of the world for selected

19.

20.

Plot an ellipse with major axes of ¢ = 10 and
b=4 andacenterat x = 2 and y = 3.

T
A R S S]

years from 1850 until 2000.
Year 1850 | 1910 | 1950 | 1980 | 2000 | 2010
Population (billions) | 1.3 1.75 3 44 6 6.8

The population, P, since 1900 can be modeled by the logistic function:

11.55

P = T 18.7¢ oo

where P is in billions and ¢ is years since 1850. Make a plot of population ver-
sus years. The figure should show the infornmation from the table above as
dasa points and the population modeled by the equation as a solid line. Set the
range of the hornzontal axis from 1800 to 2200. Add a legend, and label the

axes.

The force F (in N) acting between a particle with a
charge ¢ and a round disk with a cadius R and a
charge Q is given by the equation:

F= %ﬁf(“ﬁ)

where €, = 0.885 x 1012 C%/(Nm?) is the permittiv-
ity constant and z is the distance to the particle. Con-
gider the <case where Q=94x106C,

¢ =24x10°%C, and R = 0.1 m. Make a plot of F as a function of z for
0<2z<0.3 m. Use MATLAB’s built-in function max to find the maximum

value of F and the corresponding distance z.

The position as a function of time of a squirrel
cunning on a grass field is given in polar coordi-
nates by:

r(t) = 25+ 30[1 — g*(0079] m

o)

—4

3

1 1 1 1 =

o(t) = 2n(1 —e 029 b b
(a) Plot the trajectory (position) of the squirrel /

for 0$t<20s.

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 5: Two-Dimensional Plots

21. Consider the motion of the squirrel in the previous problem. The components

of the velocity vector of the squirrel are given by v, = ds and vy = rde The

dt dt’
speed of the squirrel is v = ,/v2+vj . Plot for the speed of the squirrel as a
function of time for 0<#<20 s.

22. The curvilinear motion of a particle is 120
defined by the following parametric equa- 100
tions:

80

x =52t-92 mand y = 125-5 m =N
>

The velocity of the particle is given by N

dx d
v = /v§+v§,wherevx=dt andvy=:£. 20
0
For 0<¢<5 s make one plot that shows the o 100

position of the particle (y versus x), and a
second plot (on the same page) of the velocity of the particle as a function of
time. In addition, by using MATLAB’s min function, determine the time at
which the velocity is the lowest, and the corresponding position of the parti-
cle. Using an asterisk marker, show the position of the particle in the first plot.
For time use a vector with spacing of 0.1 s.

23. The demand for water during a fire is often the most important factor in the
design of distribution storage tanks and pumps. For communities with popula-
tions less than 200,000, the demand Q (in gallons/min) can be calculated by:

0 = 1020./P(1-0.01./p)
where P is the population in thousands. Plot the water demand Q as a function
of the population P (in thousands) for 0 < P <200 . Label the axes and provide
a title for the plot.

24. The position x as a function of time of a particle that moves along a straight
line is given by:
x(t) = (-3+41)e 04 ft

The velocity v(?) of the particle is determined by the derivative of x(f) with
respect to ¢, and the acceleration a(?) is determined by the derivative of v(z)
with respect to ¢.

Derive the expressions for the velocity and acceleration of the particle,
and make plots of the position, velocity, and acceleration as functions of time
for 0<¢<20 s. Use the subplot command to make the three plots on the
same page with the plot of the position on the top, the velocity in the middle,
and the acceleration at the bottom. Label the axes appropriately with the cor-
rect units.

www.it-ebooks.info

http://www.it-ebooks.info/

5.14 Problems

169

25.

26.

27.

The area of the aortic valve, 4, in cm?, can be estimated by the equation
(Hakki Formula):
4 - 2
NPG

where Q is the cardiac output in L/min, and PG is the difference between the
left ventricular systolic pressure and the aortic systolic pressure (in mm Hg).
Make one plot with two curves of 4, versus PG, for 2<PG <60 mm Hg—
one curve for Q0 = 4 L/min and the other for 0 = 5 L/min. Label the axes and
use alegend.

A bandpass filter passes signals with frequen- ¢ L
cies that are within a certain range. In this filter o=}~ ¥ ——
the ratio of the magnitudes of the voltages is -
iven b Vi RS v
given by = o
rv =" = LTS " .
Vil J(-w’LC)?+(wRC)?

where o is the frequency of the input signal. Given R = 200 € L= 8 mH,
and C = 5uF, make two plots of RV as a function of o for 10 <w < 500000.
In the first plot use linear scale for both axis, and in the second plot use loga-
rithmic scale for the horizontal () axis, and linear scale for the vertical axis.
Which plot provides a better illustration of the filter?

A resistor, R = 4 Q, and an inductor, L = 1.3 H, are connected in a circuit to a
voltage source as shown in Figure (@) (an RL circuit). When the voltage

i(1) V (V)
12
o @
C 05 ' (s
(@) ®) &

source applies a rectangular voltage pulse with an amplitude of ¥=12V and a
duration of 0.5 s, as shown in Figure (b), the current i(¢) in the circuit as a
function of time is given by:

i) = 5(1-e

) for 0<¢<05 s
i(t) = e‘(R”/L£(e(°'5R’/ t_1) for 05<ts

Make a plot of the current as a function of time for 0<¢<2 s.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Chapter 5: Two-Dimensional Plots

28. In a typical tension test a dog bone r— Ly
shaped specimen is pulled in a —_| | — £
machine. During the test, the force F ~€—— i
L |

needed to pull the specimen and the
length L of a gauge section are measured. This data is used for plotting a
stress-strain diagram of the material. Two definitions, engineering and true,
exist for stress and strain. The engineering stress o, and strain €, are defined
by
L-L, -y
c, = N and g, = I, where L, and 4, are the initial gauge length and the
initial cross-sectional area of the specimen, respectively. The true stress o,
and strain ¢, are definedby o, = FL and g = mL
AOLO LO

The following are measurements of force and gauge length from a tension
test with an aluminum specimen. The specimen has a round cross section with
radius 6.4 mm (before the test). The initial gauge length is L, = 25 mm. Use
the data to calculate and generate the engineering and true stress-strain curves,
both on the same plot. Label the axes and use a legend to identify the curves.
Units: When the force is measured in newtons (N) and the area is calculated in
m2, the unit of the stress is pascals (Pa).

F(N) 0 13,031 |21,485| 31,963 | 34,727 | 37,119 | 37,960 | 39,550
L (mm)|| 25.4 |25.474|25.515|25.575|25.61525.693 |25.752|25.978
F (N) || 40,758 | 40,986 | 41076 | 41,255 | 41,481 | 41,564
L (mm)|| 26.419 | 26.502 | 26.600 | 26.728 | 27.130 | 27.441

29. According to special relativity, a rod of length L moving at velocity v will
shorten by an amount 8, given by:

5 =L(1—H§)

where ¢ is the speed of light (about 300 x 106 m/s). Consider a rod of 2 m
long, and make three plots of & as a function of v for 0 <v <300 x 106 m/s. In
the first plot use linear scale for both axes. In the second plot use logarithmic
scale for v and linear scale for 8, and in the third plot use logarithmic scale for
both v and &. Which of the plots is the most informative?

www.it-ebooks.info

http://www.it-ebooks.info/

5.14 Problems

171

30. The shape of a symmetrical four-digit NACA airfoil is described by the equa-

31.

32.

tion

y = +2[02969 J; 0.1260%—03516(%)" r02843(%)’ —0.1015(’;‘)‘}

where c is the cord length and ¢ is the max-
imum thickness as a fraction of the cord *2 o —
length (tc =maximum thickness). Sym- *' T~

metrical four-digit NACA airfoils are des- ° -
ignated NACA 00XX, where XX is 1000 '

(i.e., NACA 0012 has ¢ = 0.12). Plot the % 05 i 15
shape of a NACA 0020 airfoil with a cord
length of 1.5 m.

The ideal gas law relates the pressure P, volume ¥; and temperature T of an
ideal gas:
PV = aRT

where n is the number of moles and R = 8.3145 J/(K mol). Plo# of pressure
versus volume at constant semperature are called isotherms, Plot the isotherms
for one mole of an ideal gas for volume ranging from 1 to 10 m?, at tempera-
tures of T = 100, 200, 300, and 400K (four curves in one plot). Label the
axes and display a legend. The unite for pressure are Pa.

The vibrations of the body of a helicopter due
to the periodic force applied by the rotation of
the rotor can be modeled by a frictionless
spring-mass-damper system subjected to an F(gz

external periodic force. The position x(z) of

the mass is given by the equation: k

2f ®,—® ®,—
X0 = (2)sm(‘J

where F(t) = Fysinot, and f; = Fo/m, © is the frequency of the applied
force, and w, is the natural frequency of the helicopter. When the value of ®

is close to the value of w,, the vibration consiss of fast oscillation with
slowly changing amplitude called beat. Use Fo/m = 12N/kg, o, = 10rad/s,

and @ = 12rad/s to plot x() as a function of s for 0<£< 10s.

[] [#]

www.it-ebooks.info

http://www.it-ebooks.info/

172

Chapter 5: Two-Dimensional Plots

33,

34,

3s.

A railroad bumper is designed to slow
down a rapidly moving railroad car. After a
20,000 kg railroad car traveling at 20 m/s
engages the bumper, its displacement x (in

\4
——

=0 b

—=

meters) and velocity v (in m/s) as a func-
tion of time ¢ (in seconds) is given by:

x(8) = 4.219(e 158 - ¢632) and v(s) = 26.67¢ 632 —6,67e158¢
Plot the displacement and the velocity as a function of time for 0<r<4s.

Make two plots on one page.

Consider the diode circuit shown in the fig-
ure. The current i, and the voltage v, can be
determined from the solution of the following v
system of equations:

2%p Ve—V
ip = I(ef 1), ip= 2

The system can be solved numencally or

MWW

R

YD
'j \ 4
Diode

graphically. The graphical solution is found by plotfing i,, as a function of v,
from both equations. The solution is the intersection of the two curves. Make
the ploss and estimate the solution for the case where I, = 1012 A,

ve =15V, R = 1200 Q,and%'= 30mV.

When monochromatic light passes through a
narrow slit it produces on a screen a diffrackion
pattern consisting of bright and dark fringes.
The intensity of the bright fringes, 7, as a func-
tion of 6 can be calculated by
I= Imx(%')z, where a = "—fsine

where A is the light wave length and a is the
width of the slit. Plot the relative intensity
I/I,, as a function of © for —20°<6<20°.

max

Incident

light

Make one plot that contains three graphs for the cases a

a = A .Label the axes, and display a legend.

www.it-ebooks.info

= 10A, a = 5A,and

http://www.it-ebooks.info/

5.14 Problems

173

36.

37.

38.

A simply supported beam is subjected 4 B

to distributed loads w;, and w, as wy

shown. The bending moment as a W2

function of x is given by the following & l I I 1 x

equations: e =
2 p——

xZ
M(x) = RAx—wlT for 0<x<a

wa
M(x) = Rpx——-(2x-a) for a<x<(a+b)
Wz(L —x)2
2
where R, = [w,a(2L—a)+w,c?]/(2L) and Rz = [wyc(2L —a) +wya?]/(2L)
are the reactions at the supports. Make a plot of the bending moment Af as a

function of x (one plot that shows the moment for 0<x<L). Take L = 16 ft,
a=>b=6ft, w = 400I1b/ft,and w, = 200 Ib/ft.

M(x) = Rg(L-x)— for (a+b)<x<L

Biological oxygen demand (BOD) is a measure of the relative oxygen deple-
tion effect of a waste contaminant and is widely used to assess the amount of
pollution in a water source. The BOD in the effluent (L, in mg/L) of a rock
filter without recirculation is given by:
- Ly
L= 1 + (2:5D73)
Jo

where L, is influent BOD (mg/L), D is the depth of the filter (m), and Q is the
hydraulic flow rate (L/(m?-day)). Assuming Q = 300 L/(m?-day) plot the
effluent BOD as a function of the depth of the filter (100 <D <2000 m) for
L, = 5,10, and 20 mg/L. Make the three plots in one figure and estimate the
depth of filter required for each of these cases to obtain drinkable water. Label
the axes and display a legend.

The temperature dependence of the diffusion coefficient D (cmz/s) is given by
an Arrhenius type equation:
Eﬂ

D= Doe('R_T)
where D, (cm2/s) is pre-exponential constant, £, (J/mol) is activation energy
for diffusion, R = 8.31 (J/mol-K) is the gas constant, and T is temperature in
Kelvin. For diffusion of carbon into stainless steel D, = 6.18 cm?/s, and
E, = 187 KJ/mol. Make two plots of D versus T for 200 < < 800C. In the
first plot use linear scale for both axes and in the second plot use linear scale
for T and logarithmic scale for D. Which plot is more useful?

www.it-ebooks.info

http://www.it-ebooks.info/

174

Chapter 5: Two-Dimensional Plots

39.

40.

The resonant frequency f (in Hz) for the circuit
shown is given by:

f= 1 LCRIC_L
2ny RiC-L
Given L = 02H, C = 2x 10°® F, make the fol-
lowing plots:
(a) f versus R, for 500<R,<2000 Q, given
R, = 1500 Q.

() f versus R, for 500<R, <2000 Q, given
R, = 1500 Q.

Plot both plots on a single page (two plots in a column).

The Taylor series for cos(x) is:
e

2! 4! 6! 8! 10!
Plot the figure on the right, which
shows, for 2% < x <27, the graph of "~ s
the function cos(x) and graphs of the |
Taylor series expansion of cos(x) with

cos(x)

—sin(x)
—*—Two terms
— — Fourterms

two, four, and six terms. Label the
axes and display a legend.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
Programming in
MATLAB

A computer program is a sequence of computer commands. In a simple program
the commands are executed one after the other in the order they are typed. In this
book, for example, all the programs that have been presented so far in script files
are simple programs. Many situations, however, require more sophisticated pro-
grams in which commands are not necessarily executed in the order they are
typed, or different commands (or groups of commands) are executed when the
program runs with different input variables. For example, a computer program
that calculates the cost of mailing a package uses different mathematical expres-
sions to calculate the cost depending on the weight and size of the package, the
content (books are less expensive to mail), and the type of service (airmail,
ground, etc.). In other situations there might be a need to repeat a sequence of
commands several times within a program. For example, programs that solve
equations numerically repeat a sequence of calculations until the error in the
answer is smaller than some measure.

MATLAB provides several tools that can be used to control the flow of a
program. Conditional statements (Section 6.2) and the switch structure (Section
6.3) make it possible to skip commands or to execute specific groups of com-
mands in different situations. For loops and while loops (Section 6.4) make it
possible to repeat a sequence of commands several times.

It is obvious that changing the flow of a program requires some kind of
decision-making process within the program. The computer must decide whether
to execute the next command or to skip one or more commands and continue at a
different line in the program. The program makes these decisions by comparing
values of variables. This is done by using relational and logical operators, which
are explained in Section 6.1.

It should also be noted that user-defined functions (introduced in Chapter 7)
can be used in programming. A user-defined function can be used as a subpro-
gram. When the main program reaches the command line that has the user-defined
funckion, it provides input to the function and “waits” for the results. The user-

www.it-ebooks.info

175

http://www.it-ebooks.info/

176 Chabter 6: Programming in MATLAB

defined function carries out the calculations and transfers the results back to the
main program, which then continues to the next command.

6.1 RELATIONAL AND LOGICAL OPERATORS

A relational operator compares two numbers by determining whether a compari-
son statement (e.g., 5 < 8) is true or false. If the statement is true, it is assigned a
value of 1. If the statement is false, it is assigned a value of 0. A logical operator
examines true/false statements and produces a result that is true (1) or false (0)
according to the specific operator. For example, the logical AND operator gives 1
only if both statements are true. Relational and logical operators can be used in
mathematical expressions and, as will be shown in this chapter, are frequently
used in combination with other commands to make decisions that control the flow
of a computer program.

Relational operators:
Relational operators in MATLAB are:

Relational operator Description

< Less than

> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to

~ Not Equal to

Note that the “equal to” relational operator consists of two = signs (with no space
between them), since one = sign is the assignment operator. In other relational
operators that consist of two characters, there also is no space between the charac-
ters (<=, >=, ~=).

* Relational operators are used as arithmetic operators within a mathematical
expression. The result can be used in other mathematical operations, in
addressing arrays, and together with other MATLAB commands (e.g., if) to
control the flow of a program.

e When two numbers are compared, the result is 1 (logical true) if the compari-
son, according to the relational operator, is true, and 0 (logical false) if the
comparison is false.

e If two scalars are compared, the result is a scalar 1 or 0. If two arrays are com-
pared (only arrays of the same size can be compared), the comparison is done
element-by-element, and the result is a logical array of the same size with 1s
and Os according to the outcome of the comparison at each address.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 Relational and Logical Operators 177

¢ Ifascalar is compared with an array, the scalar is compared with every element
of the array, and the result is a logical array with 1s and Os according to the out-
come of the comparison of each element.

Some examples are:

>> 5>8 (Checks if § is larger than 8.)

ans = Since the comparison is false (5 is
0 not larger than 8) the answer is 0.

>> a=5<10 [Checks if 5 is smaller than 10, and assigns the answer to a. |

a = Since the comparison is true (5 is smaller
1 than 10) the number 1 is assigned to a.

Using relational operators
>> y=(6<10)+(7>8) + (5*3==60/4)

in math expression.

Equal to 1 since 5*3

Equal to 1 si
qual to 1 since is equal to 60/4.

6 is smaller than 10.

Equal to 0 since 7 is
not larger than 8.

Y=

2 Define vec-
>> b=[15 6 9 4 11 7 14]; c=[8 20 9 2 19 7 10]; tors b and c.

>> d=c>=b | Checks which c elements are larger than or equal to b elements. |
d =

0 1 1 0 1 1 0

[Assigns 1 where an element of c is larger than or equal to an element of b.]

>>b ==c (Checks which b elements are equal to ¢ elements. |
ans =

0 0 1 0 0 1 0
>> b~=c (Checks which b elements are not equal to c elements. |
ans =

1 1 0 1 1 0 1
>> f=b-c>0 Subtracts ¢ from b and then checks
£ = which elements are larger than zero.

1 0 0 1 0 0 1
>> A=[2 9 4; -352; 67 -1] | Definea 3x 3 mawix a. |
A=

2 9 4

-3 5 2

6 7 -1 Checks which elements in A are smaller than

>> B=Ac=2 or equal to 2. Assigns the results to mawrix B.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 6: Programming in MATLAB

B =
1 0 0
1 0 1
0 0 1

¢ The results of a relational operation with vectors, which are vectors with Os and
1s, are called logical vectors and can be used for addressing vectors. When a
logical vector is used for addressing another vector, it extracts from that vector
the elements in the positions where the logical vector has 1s. For example:

>>r = [8 12 9 4 23 19 10] (Define a vector r. |
Yr =

8 12 9 4 23 19 10
>> 8=r<=10 (Checks which r elements are smaller than or equal to 10. |
8 =

1 0 1 1 0 0 1

A logical vector s with 1s at positions where
elements of r are smaller than or equal to 10.

>> t=r(s) (Use s for addresses in vector r to create vector t. |
t = Vector t consists of elements of
8 9 4 10 r in positions where s has 1s.
>> w=r (r<=10) (The same procedure can be done in one step. |
W =
8 9 4 10

¢ Numerical vectors and arrays with the numbers Os and 1s are not the same as
logical vectors and arrays with Os and 1s. Numerical vectors and arrays can not
be used for addressing. Logical vectors and arrays, however, can be used in
arithmetic operations. The first time a logical vector or an array is used in arith-
metic operations it is changed to a numerical vector or array.

¢ Order of precedence: In a mathematical expression that includes relational and
arithmetic operations, the arithmetic operations (+, —, *, /, \) have precedence
over relational operations. The relational operators themselves have equal pre-
cedence and are evaluated from left to right. Parentheses can be used to alter
the order of precedence. Examples are:

>> 3+4<16/2 (+ and/ are executed first. |
ans = (The answer is 1 since 7 < 8 is true. |
1
>> 3+(4<16)/2 [4 <16 is executed first, and is equal to 1, since it is true. |
ans = (3.5 is obtained from 3 + 1/2.]
3.5000

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 Relational and Logical Operators 179

Logical operators:

Logical operators in MATLAB are:

Logical operator Name | Description
& AND Operates on two operands (A and B). If both
Example: A&B are true, the result is true (1); otherwise the
result is false (0).
| OR Operates on two operands (A and B). If
either one, or both, are true, the result is true
Example: AB (1); otherwise (both are false) the result is
false (0).
~ NOT Operates on one operand (A). Gives the
opposite of the operand; true (1) if the oper-
Example: ~A and is false, and false (0) if the operand is
true.

¢ Logical operators have numbers as operands. A nonzero number is true, and a
zero number is false.

e Logical operators (like relational operators) are used as arithmetic operators
within a mathematical expression. The result can be used in other mathemati-
cal operations, in addressing arrays, and together with other MATLAB com-
mands (e.g., 1 f) to control the flow of a program.

e Logical operators (like relational operators) can be used with scalars and
arrays.

¢ The logical operations AND and OR can have both operands as scalars, both as
arrays, or one as an array and one as a scalar. If both are scalars, the result is a
scalar 0 or 1. If both are arrays, they must be of the same size and the logical
operation is done element-by-element. The result is an array of the same size
with 1s and Os according to the outcome of the operation at each position. If
one operand is a scalar and the other is an array, the logical operation is done
between the scalar and each of the elements in the array and the outcome is an
array of the same size with 1s and 0s.

¢ The logical operation NOT has one operand. When it is used with a scalar, the
outcome is a scalar 0 or 1. When it is used with an array, the outcome is an
array of the same size with Os in positions where the array has nonzero num-
bers and 1s in positions where the array has Os.

Following are some examples:

>> 387

www.it-ebooks.info

http://www.it-ebooks.info/

180

Chapter 6: Programming in MATLAB

ans = (3 and 7 are both true (nonzero), so the outcome is 1.]
1

>> a=5|0 (5 OR 0 (assign to variable a).)

a = (1 is assigned to a since at least one number is true (nonzero). |
1

The outcome is 0 since 25 is true
(nonzero) and the opposite is false.

>> t=25%((12&0)+(~0)+(0|5)) (Using logical operators in a math expression. |
t =

50 [Define two vec- w
>> x=[9 3 0 11 0 151; y=[2 0 13 -11 0 4]1; tors x and y.
>> x&y The outcome is a vector with 1 in every position where
ans = both x and y are true (nonzero elements), and Os otherwise.
1 0 0 1 0 1
>> z=x|y The outcome is a vector with 1 in every position where either
z = or both x and y are true (nonzero elements), and Os otherwise.
1 1 1 1 0 1
The outcome is a vector with 0 in every position where
>> ~ (x+y) the vector x + y is true (nonzero elements), and 1 in
ans = every position where x + y is false (zero elements).
0 0 0 1 1 0

Order of precedence:

Arithmetic, relational, and logical operators can be combined in mathematical
expressions. When an expression has such a combination, the result depends on
the order in which the operations are carried out. The following is the order used
by MATLAB:

Precedence Operation

1 (highest) Parentheses (if nested parentheses exist, inner ones have
precedence)

2 Exponentiation

3 Logical NOT (~)

4 Multiplication, division

5 Addision, subtraction

6 Relational operators (>, <, >=, <=, ==, ~=)

7 Logical AND (&)

8 (lowest) Logical OR (|)

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 Relational and Logical Operators 181

If two or more operations have the same precedence, the expression is executed in
order from left to right.

It should be pointed out here that the order shown above is the one used
since MATLAB 6. Previous versions of MATLAB used a slightly different order
(& did not have precedence over |), so the user must be careful. Compatibility
problems between different versions of MATLAB can be avoided by using paren-
theses even when they are not required.

The following are examples of expressions that include arithmetic, rela-
tional, and logical operators:

>> x=-2; y=5; (Define variables x and y. |

>> -5<x<-1 This inequality is correct mathematically. The answer,

ans = however, is false since MATLAB executes from left to
0 right. -5 < x is true (=1) and then 1 <-1 is false (0).

>> -5<x & x<-1 The mathematically correct statement is obtained by

ans = using the logical operator &. The inequalities are exe-
1 cuted first. Since both are true (1), the answer is 1.

>> ~(y<7) . — .

ang = [y <7 is executed first, it is true (1), and ~1 is 0.]
0

>> ~y<?

~y is executed first, y is true (1) (since y

ans =1 is nonzero), ~1 is 0, and 0 < 7 is true (1).

>> ~((y>=8) | (x<-1)) y >= 8 (false), and x < —1 (true) are exe-

ans = cuted first. OR is executed next (true). ~
0 is executed last, and gives false (0).

>> ~(y>=8) | (x<-1) y >= 8 (false), and x < -1 (true) are executed

ans = first. NOT of (y >= 8) is executed next (true).
1 OR is executed last, and gives true (1).

Built-in logical functions:

MATLAB has built-in functions that are equivalent to the logical operators. These
functions are:

and (A,B) equivalent to A&B
or (A,B) equivalentto A|B
not (A) equivalent to ~A

www.it-ebooks.info

http://www.it-ebooks.info/

182 Chapter 6: Programming in MATLAB

In addition, MATLAB has other logical built-in functions, some of which are
described in the following table:

Function Description Example
xor (a,b) Exclusive or. Retumns true (1) if | >> xor(7,0)
one operand is true and the | ans =
other is false. 1

>> xor(7,-5)
ans =

0
all(a) Returns 1 (true) if all elements | >> A=[6 2 15 9 7 11];
in a vector A are true (nonzero). | >> all(a)
Returns 0 (false) if one or more | ang =
elements are false (zero).

If A is a matrix, treats columns t
of A as vectors, and returns a | >> B=6 21590 L7
vector with 1s and Os. =eRalliE)
ans =
0
any (A) Retumns 1 (true) if any element | >> A=[6 0 15 0 0 11];

in a vector A is true (nonzero). | >> any(a)
Returns O (false) if all elements | ong =
are false (zero). q

If A is a matrix, treats columns

of A as vectors, and returns a | >> B = 1000 000%;

vector with 1s and Os. >> any (B)
ans =
0
find (R) If A is a vector, retumns the indi- | >> A=[0 9 437 00 1
ces of the nonzero elements. 8l;
>> find(A)

find (A>4d) If A is a vector, returns the
address of the elements that are | 2»8 =

larger than d (any relational 2 3 4

operator can be used). 5 8 9

>> find (A>4)

ans =

2 5 9

www.it-ebooks.info

http://www.it-ebooks.info/

6.1 Relational and Logical Operators 183

The operations of the four logical operators, and, or, xor, and not can be
summarized in a truth table:

INPUT OUTPUT
A B AND OR XOR NOT NOT
A&B AB (AB) ~A ~B
false false false false false true true
false true false true true true false
true false false true true false true
true wrue true true false false false

Sample Problem 6-1: Analysis of temperature data

The following were the daily maximum temperatures (in °F) in Washington, DC,
during the month of April 2002: 58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 91
93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from the U.S. National Oceanic
and Asmospheric Administration). Use relational and logical operations to deter-
mine the following:

(@) The number of days the temperature was above 75°.

() The number of days the temperature was between 65° and 80°.

(c) The days of the month when the temperature was between 50° and 60°.
Solution

In the script file below the temperatures are entered in a vector. Relational and
logical expressions are then used to analyze the data.

T=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 ...
91 93 89 91 80 59 69 56 64 63 66 64 74 63 69];

Tabove75=T>=75; [A vector with 1s at addresses where T >=75. |
NdaysTabove75=sum(Tabove75) [Add all the 1s in the vector Tabove75. |
Tbhetween65and80= (T>=65) & (T<=80) ; A vector with 1s at addresses
where T >= 65 and T <= 80.
NdaysTbetween65and80=sum (Tbetween65ands80)
(Add all the 1s in the vector Tbetween65and8o. |
datesTbetween50and60=£ind ((T>=50) & (T<=60))

The function f ind returns the address of the ele-
ments in T that have values between 50 and 60.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Chapter 6: Programming in MATLAB

The script file (saved as Exp6_1) is executed in the Command Window:

>> Exp6_1
NdaysTabove75 = (For 7 days the temp was above 75. |
7
NdaysTbetween65and80 = | For 12 days the temp was between 65 and 80. |
12
datesTbetween50and60 = Dates of the month with
1 4 5 7 21 23 temp between 50 and 60.

6.2 CONDITIONAL STATEMENTS

A conditional statement is a command that allows MATLAB to make a decision
of whether to execute a group of commands that follow the conditional statement,
or to skip these commands. In a conditional statement, a conditional expression is
stated. If the expression is true, a group of commands that follow the statement are
executed. If the expression is false, the computer skips the group. The basic form
of a conditional statement is:

[if conditional expression consisting of relational and/or logical operators.]

Examples:
if a < b
if c >= 5
if a == b All the variables must
if a ~= 0 have assigned values.

if (d<h)&(x>7)
if (x~=13) | (y<0)

¢ Conditional statements can be a part of a program written in a script file or a
user-defined function (Chapter 7).

e As shown below, for every if statement there is an end statement.

The if statement is commonly used in three structures, if-end,
if-else-end, and if-elseif-else-end, which are described next.
6.2.1 The if-end Structure

The if -end conditional statement is shown schematically in Figure 6-1. The fig-
ure shows how the commands are typed in the program, and a flowchart that sym-
bolically shows the flow, or the sequence, in which the commands are executed.
As the program executes, it reaches the if statement. If the conditional expres-

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 Conditional Statements 185

Flowchart

........ A group of
"""" MATLAB commands.

...... MATLAB program.

» end

Y

Figure 6-1: The structure of the i f - end conditional statement.

sion in the if statement is wue (1), the program continues to execute the com-
mands that follow the i f statement all the way down to the end statement. If the
conditional expression is false (0), the program skips the group of commands
between the if and the end, and continues with the commands that follow the
end.

The words if and end appear on the screen in blue, and the commands
between the if statement and the end statement are automatically indented (they
don’t have to be), which makes the program easier to read. An example where the
if-end statement is used in a script file is shown in Sample Problem 6-2.

Sample Problem 6-2: Calculating worker’s pay

A worker is paid according to his hourly wage up to 40 hours, and 50% more for
overtime. Write a program in a script file that calculates the pay to a worker. The
program asks the user to enter the number of hours and the hourly wage. The pro-
gram then displays the pay.

Solution

The program in a script file is shown below. The program first calculates the pay
by multiplying the number of hours by the hourly wage. Then an if statement
checks whether the number of hours is greater than 40. If so, the next line is exe-
cuted and the extra pay for the hours above 40 is added. If not, the program skips
to the end.

t=input ('Please enter the number of hours worked ');
h=input ('Please enter the hourly wage in § ');

Pay=t*h;

if t>40

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 6: Programming in MATLAB

Pay=Pay+ (t-40) *0.5*h;
end
fprintf ('The worker''s pay is § %5.2f', Pay)

Application of the program (in the Command Window) for two cases is shown
below (the file was saved as Workerpay):

>> Workerpay

Please enter the number of hours worked 35
Please enter the hourly wage in § 8

The worker’s pay is §$ 280.00

>> Workerpay

Please enter the number of hours worked 50
Please enter the hourly wage in § 10

The worker’s pay is $ 550.00

6.2.2 The if -else-end Structure

The i f -el se-end structure provides a means for choosing one group of com-
mands, out of a possible two groups, for execution. The i f-else-end swuc-
ture is shown in Figure 6-2. The figure shows how the commands are typed in the
program, and includes a flowchart that illustrates the flow, or the sequence, in

Flowchart
MATLAB program.
if conditional expression
False / 1T N\ = ... - GO
"""" MATLAB commands.
True else B
Y Y Gmms
Commands Commands| .. Group 2 of
group 2 group 1 MATLAB commands.
end -
=" end ------
MATLAB program.
v e

Figure 6-2: The structure of the if -else-end conditional statement.

www.it-ebooks.info

http://www.it-ebooks.info/

6.2 Conditional Statements 187

which the commands are executed. The first line is an 1 f statement with a condi-
tional expression. If the conditional expression is true, the program executes
group 1 of commands between the if and the else statements and then skips to
the end. If the conditional expression is false, the program skips to the el se and
then executes group 2 of commands between the e L se and the end.

6.2.3 The if-elseif-else-end Structure

The if-elseif-else-end structure is shown in Figure 6-3. The figure
shows how the commands are typed in the program, and gives a flowchart that
illustrates the flow, or the sequence, in which the commands are executed. This
structure includes two conditional statements (if and elseif) that make it
possible to select one out of three groups of commands for execution. The first
line is an i f statement with a conditional expression. If the conditional expression
is true, the program executes group 1 of commands between the if and the

MATLAB program.
Flowchart ==

Group 1 of
MATLAB commands.

elseif conditional expression

Group 2 of
-------- MATLAB commands.

CommaIIdS Commands Group 3 Of
group 3 group 2 MATLAB commands.

MATLAB program.

Figure 6-3: The structure of the if-elseif-else-end conditional statement.

elseif statements and then skips to the end. If the conditional expression in the
if statement is false, the program skips to the elseif statement. If the condi-
tional expression in the elseif statement is true, the program executes group 2
of commands between the elseif and the else and then skips to the end. If
the conditional expression in the elseif statement is false, the program skips to
the el se and executes group 3 of commands between the el se and the end.

It should be pointed out here that several elseif statements and associ-

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 6: Programming in MATLAB

ated groups of commands can be added. In this way more conditions can be
included. Also, the e 1 se statement is optional. This means that in the case of sev-
eral elseif statements and no else statement, if any of the conditional state-
ments is true the associated commands are executed; otherwise nothing is
executed.

The following example uses the if -elseif-else-end structure ina
program.

Sample Problem 6-3: Water level in water tower

The tank in a water tower has the geometry diameter-46 m
shown in the figure (the lower part is a cylinder : '
and the upper part is an inverted frustum of a |4 ,, i 1] T
cone). Inside the tank there is a float that indi- I

cates the level of the water. Write a MATLAB | i |p

program that determines the volume of the 19m
water in the tank from the position (height /) of
the float. The program asks the user to enter a
value of 4 in m, and as output displays the vol-
ume of the water in m3.

iq—b
“diameter 25 m

Solution

For 0< 4 <19m the volume of the water is given by the volume of a cylinder with
height h: V = ©12.52h.

For 19 < 4 <33 m the volume of the water is given by adding the volume of a cyl-
inder with A = 19 m, and the volume of the water in the cone:

V= 11252 19 + %n(h C19)(12.52+12.5 - r, +72)

where r, = 125+ %(k -19).
The program is:

% The program calculates the volume of the water in the
water tower.

h=input ('Please enter the height of the float in meter ');
if h > 33
disp ('ERROR. The height cannot be larger than 33 m.')

elseif h < 0
disp ('ERROR. The height cannot be a negative number.')

elseif h <= 19
v = pi*l2.5"2+*h;

fprintf ('The volume of the water is %7.3f cubic meter.\n',v)

www.it-ebooks.info

http://www.it-ebooks.info/

6.3 The switch-case Statement 189

else

rh=12.5+10.5* (h-19) /14;
v=pi*12.5%2*19+pi* (h-19)*(12.5"2+12.5*rh+rh"2)/3;

fprintf ('The volume of the water is %7.3f cubic meter.\n',v)
end

The following is the display in the Command Window when the program is used
with three different values of water height.

Please enter the height of the float in meter 8
The volume of the water is 3926.991 cubic meter.

Please enter the height of the float in meter 25.7
The volume of the water is 14114.742 cubic meter.

Please enter the height of the float in meter 35
ERROR. The height cannot be larger than 33 m.

6.3 THE switch-case STATEMENT

The switch-case statement is another method that can be used to direct the
flow of a program. It provides a means for choosing one group of commands for
execution out of several possible groups. The structure of the statement is shown
in Figure 6-4.

¢ The first line is the switch command, which has the form:

[switch switch expression]

The switch expression can be a scalar or a string. Usually it is a variable that has

an assigned scalar or a string. It can also be, however, a mathematical expression

that includes pre-assigned variables and can be evaluated.

¢ Following the switch command are one or several case commands. Each
has a value (can be a scalar or a string) next to it (valuel, value2, etc.) and an
associated group of commands below it.

¢ After the last case command there is an optional otherwise command fol-
lowed by a group of commands.

¢ The last line must be an end statement.

How does the switch-case statement work?

The value of the switch expression in the switch command is compared with the
values that are next to each of the case statements. If a match is found, the group
of commands that follow the case statement with the match are executed. (Only
one group of commands—the one between the case that matches and either the

www.it-ebooks.info

http://www.it-ebooks.info/

190

MATLAB program.

switch switch expression
case valuel

] Group 1 of commands.

case value2

:I Group 2 of commands.

case value3

] Group 3 of commands.

otherwise

] Group 4 of commands.

MATLAB program.

Figure 6-4: The structure of a switch-case statement.

case, otherwise, or end statement that is next—is executed).

If there is more than one match, only the first matching case is executed.

If no match is found and the otherwise statement (which is optional) is
present, the group of commands between otherwise and end is executed.

If no match is found and the otherwise statement is not present, none of the
command groups is executed.

A case statement can have more than one value. This is done by typing the
values in the form: {valuel, value2, value3, ...}.(This form,
which is not covered in this book, is called a cell array.) The case is executed if
at least one of the values matches the value of switch expression.

A Note: In MATLAB only the first matching case is executed. After the group of
commands associated with the first matching case are executed, the program skips
to the end statement. This is different from the C language, where break state-
ments are required.

Sample Problem 6-4: Converting units of energy

Write a program in a script file that converts a quantity of energy (work) given in
units of either joule, ft-1b, cal, or €V to the equivalent quantity in different units
specified by the user. The program asks the user to enter the quantity of energy, its

www.it-ebooks.info

Chapter 6: Programming in MATLAB

http://www.it-ebooks.info/

6.3 The switch-case Statement 191

current units, and the desired new units. The output is the quantity of energy in the
new units.

The conversion factors are: 1J = 0.738 ft-1b = 0.239cal = 6.24 x 1018 ¢V.
Use the program to:
(@) Convert 150] to ft-Ib.
(b) Convert 2,800 caltoJ.
(c) Convert2.7 eV to cal.

Solution

The program includes two sets of switch-case statements and one if-
else-end statement. The first switch-case statement is used to convert the
input quantity from its initial units to units of joules. The second is used to
convert the quantity from joules to the specified new units. The if-else-end
statement is used to generate an error message if units are entered incorrectly.

Ein=input ('Enter the value of the energy (work) to be converted: ');
EinUnits=input ('Enter the current units (J, ft-1lb, cal, or eV): ','s');
EoutUnits=input ('Enter the new units (J, ft-1lb, cal, or eV): ','s');

error=0; (Assign 0 to variable error. |
switch EinUnits 4—[First switch statement. Switch expres-

case 'J! sion is a string with initial units.

}

EJ=Ein;

[Each of the four case statements has

case 'ft-1b' - — -
) a value (string) that corresponds to
EJ=Ein/0.738; one of the initial units, and a com-
case 'cal' - mand that converts Ein to units of J.
EJ=Ein/0.239; (Assign the value to EJ.)
case 'eV!' -
EJ=Ein/6.24el8;
otherwise - - - .
Assign 1 to error if no match is found. Possi-
error=1; epe e . .
4 ble only if initial units were typed incorrectly.
en

switch EoutUnits Second switch statement. Switch

case 'J' | expression is a string with new units.
Eout=EdJ;

case 'ft-1b'
Eout=EJ*0.738;

case 'cal'
Eout=EJ*0.239;

case 'eV'

Eout=EJ*6.24el8;

Each of the four case statements has
a value (string) that corresponds to
one of the new units, and a command
that converts EJ to the new units.
(Assign the value to Eout.)

%fffT

www.it-ebooks.info

http://www.it-ebooks.info/

192

Chapter 6: Programming in MATLAB

otherwise Assign 1 to error if no match is found. Pos-
error=1; sible only if new units were typed incorrectly.
end
if error | If-else-end statement. |
disp ('ERROR current or new units are typed incorrectly.')
else If error is true (nonzero),

display an error message.

fprintf('E = %g %s8',Eout, EoutUnits)

end [If error is false (zero), display converted energy.]

As an example, the script file (saved as EnergyConversion) is used next in the
Command Window to make the conversion in part (b) of the problem statement.

>> EnergyConversion

Enter the value of the energy (work) to be converted: 2800
Enter the current units (J, ft-1b, cal, or eV): cal
Enter the new units (J, f£t-1lb, cal, or eV): J

E = 11715.5 J

6.4 Loors

A loop is another method to alter the flow of a computer program. In a loop, the
execution of a command, or a group of commands, is repeated several times con-
secutively. Each round of execution is called a pass. In each pass at least one vari-
able, but usually more than one, or even all the variables that are defined within
the loop, are assigned new values. MATLAB has two kinds of loops. In for-end
loops (Section 6.4.1) the number of passes is specified when the loop starts. In
while-end loops (Section 6.4.2) the number of passes is not known ahead of
time, and the looping process continues until a specified condition is satisfied.
Both kinds of loops can be terminated at any time with the break command (see
Section 6.6).

6.4.1 for-end Loops

In for-end loops the execution of a command, or a group of commands, is

repeated a predetermined number of times. The form of a loop is shown in Figure

6-5.

¢ The loop index variable can have any variable name (usually i, j, k, m, and n
are used, but 1 and j should not be used if MATLAB is used with complex
numbers).

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Loops

193

Loopindex The value of k The increment in k
00p maex 1n the ﬁrst pass. after each pass.
variable.
for k _ The value of k
- m the last pass.
........ A group of
"""" MATLAB commands.
end

Figure 6-5: The structure of a for -end loop.

In the first pass k = £ and the computer executes the commands between the
for and end commands. Then, the program goes back to the for command
for the second pass. k obtains a new value equal to k = £ + s, and the com-
mands between the for and end commands are executed with the new value
of k. The process repeats itself until the last pass, where k = t. Then the pro-
gram does not go back to the for, but continues with the commands that fol-
low the end command. For example, if k = 1:2:9, there are five loops, and the
corresponding values of k are 1, 3, 5,7, and 9.

The increment s can be negative (i.e.; k = 25:-5:10 produces four passes with
k =25, 20, 15, 10).

If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 pro-
duces five passes withk =3, 4, 5, 6, 7).

If £ = t, the loop is executed once.
Iff >tands > 0,0rif £ < t and s < 0, the loop is not executed.

If the values of k, s, and t are such that k cannot be equal to t, then if s is
positive, the last pass is the one where k has the largest value that is smaller
than t (i.e., k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is
negative, the last pass is the one where k has the smallest value that is larger
than t.

In the for command k can also be assigned a specific value (typed as a vec-
tor). Example: for k=[7 9 -1 3 3 5].

The value of k should not be redefined within the loop.
Each for command in a program must have an end command.

The value of the loop index variable (k) is not displayed automatically. It is
possible to display the value in each pass (which is sometimes useful for
debugging) by typing k as one of the commands in the loop.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 6: Programming in MATLAB

¢ When the loop ends, the loop index variable (k) has the value that was last
assigned to it.

A simple example of a for-end loop (in a script file) is:

for k=1:3:10
x = k™2

end

When this program is executed, the loop is executed four simes. The value of k in
the four passes is k = 1, 4, 7, and 10, which means that the values that are assigned
to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semicolon is not
typed at the end of the second line, the value of x is displayed in the Command
Window at each pass. When the script file is executed, the display in the Com-
mand Window is:

>> X =
1
X =
16
X =
49
X =
100

Sample Problem 6-5: Sum of a series

(a) Use a for-end loop in a script file to calculate the sum of the first # terms of

n k
the series: Z %‘ . Execute the script file for n =4 and n = 20.
k=1

(b) The function sin(x) can be written as a Taylor series by:

o k 2k+1
. -1)'x
st Z:) 2k+ 1)

Write a user-defined function file that calculates sin(x) by using the Taylor series.
For the function name and arguments use y = Tsin (x, n). The input arguments
are the angle x in degrees and n the number of terms in the series. Use the func-
tion to calculate sin(150°) using three and seven terms.

Solution

(@) A script file that calculates the sum of the first n terms of the series is shown
below.
The summation is done with a loop. In each pass one term of the series is calcu-

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Loops 195

n=input ('Enter the number of terms ');

S=0; Settmg the sum to zero

In each pass one element of the

for k=1:n
for end series is calculated and is added
S=8+(-1) "k*k/2"k; m to the sum of the elements from
the previous passes.

end
fprintf ('The sum of the series is: %f',S)

lated (in the first pass the first term, in the second pass the second term, and so on)
and is added to the sum of the previous elements. The file is saved as Exp6_5a and
then executed twice in the Command Window:

>> Exp6 5a

Enter the number of terms 4

The sum of the series is: -0.125000
>> Exp7_ 5a

Enter the number of terms 20

The sum of the series is: -0.222216

(b) A user-defined funckion file that calculates sin(x) by adding » terms of a
Taylor series is shown below.

function y = Tsin(x,n)
% Tsin calculates the sin using Taylor formula.

% Input arguments:
% x The angle in degrees, n number of terms.

Xr=x*pi/180; (Converting the angle from degrees to radians.]
y=0;
for k=0:n-1

y=y+(-1) “k*xr” (2*k+1) /factorial (2*k+1) ;
end

The first element corresponds to £ = 0, which means that in order to add » terms of
the series, in the last loop £=n— 1. The function is used in the Command Window

to calculate sin(150°) using three and seven terms:

>> Tsin(150,3) [Calculating sin(150°) with three terms of Taylor series.]

ans =
0.6523

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 6: Programming in MATLAB

>> Tsin(150,7) [Calculating sin(150°) with seven terms of Taylor series.]
ans =
0.5000 [The exact value is 0.5.]

A note about for-end loops and element-by-element operations:

In some situations the same end result can be obtained by either using for-end
loops or using element-by-element operations. Sample Problem 6-5 illustrates
how the for-end loop works, but the problem can also be solved by using ele-
ment-by-element operations (see Problems 7 and 8 in Section 3.9). Element-by-
element operations with arrays are one of the superior features of MATLAB that
provide the means for computing in circumstances that otherwise require loops. In
general, element-by-element operations are faster than loops and are recom-
mended when either method can be used.

Sample Problem 6-6: Modify vector elements

A vector is given by V=[5, 17, -3, 8, 0, -7, 12, 15, 20, -6, 6, 4, -7, 16]. Write a
program as a script file that doubles the elements that are positive and are divisible

by 3 or 5, and, raises to the power of 3 the elements that are negative but greater
than —5.

Solution

The problem is solved by using a for-end loopthathasan if-elseif-end
conditional statement inside. The number of passes is equal to the number of ele-
ments in the vector. In each pass one element is checked by the conditional state-
ment. The element is changed if it satisfies the conditions in the problem
statement. A program in a script file that carries out the required operations is:

v=I[5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n=length (V) ; [Setting n to be equal to the number of elements in V.]
for k=1:n

for-end

if V(k)>0& (rem(V(k),3) ==0| rem(V(k),5) = = 0) /1oop.

Vi(k)=2*v(k); -

elseif V(k) < 0 & V(k) > -5
Vv (k) =V(k) “3;

if-
elseif-
end
= statement.

end

end
v

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Loops 197

The file is saved as Exp7 6 and then executed in the Command Window:

>> Exp7_6
V =

10 17 -27 8 0 -7 24 30 40 -6 12 4
-8 16

6.4.2 while-end Loops

while-end loops are used in situations when looping is needed but the number
of passes is not known in advance. In while-end loops the number of passes is
not specified when the looping process starts. Instead, the looping process contin-
ues until a stated condition is satisfied. The swructure of a while-end loop is
shown in Figure 6-6.

while conditional expression

A group of
MATLAB commands.

Figure 6-6: The structure of a while-end loop.

The first line is a while statement that includes a conditional expression.
When the program reaches this line the conditional expression is checked. If it is
false (0), MATLAB skips to the end statement and continues with the program. If
the conditional expression is true (1), MATLAB executes the group of commands
that follow between the while and end commands. Then MATLAB jumps back
to the while command and checks the conditional expression. This looping pro-
cess continues until the conditional expression is false.

For a while-end loop to execute properly:

e The conditional expression in the while command must include at least one
variable.

e The variables in the conditional expression must have assigned values when
MATLAB executes the while command for the first time.

e At least one of the variables in the conditional expression must be assigned a
new value in the commands that are between the while and the end. Other-
wise, once the looping starts it will never stop, since the conditional expression
will remain true.

An example of a simple while-end loop is shown in the following program. In

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 6: Programming in MATLAB

this program a variable x with an initial value of 1 is doubled in each pass as long
as its value is equal to or smaller than 15.

x=1 Initial value of x is 1.)
while x<=15 | The next command is executed only if x <= 15.

X=2+x | In each pass x doubles. |
end

When this program is executed the display in the Command Window is:

x = (Initial value of x.]
1

X =
2

x = | In each pass x doubles. |
4

X =
8

X = When x = 16, the conditional expression in the

16 while command is false and the looping stops.

Important note:

When writing a while-end loop, the programmer has to be sure that the variable
(or variables) that are in the conditional expression and are assigned new values
during the looping process will eventually be assigned values that make the condi-
tional expression in the while command false. Otherwise the looping will con-
tinue indefinitely (indefinite loop). In the example above if the conditional
expression is changed to x >= 0.5, the looping will continue indefinitely. Such a
situation can be avoided by counting the passes and stopping the looping if the
number of passes exceeds some large value. This can be done by adding the max-
imum number of passes to the conditional expression, or by using the break
command (Section 6.6).

Since no one is free from making mistakes, a situation of indefinite looping
can occur in spite of careful programming. If this happens, the user can stop the
execution of an indefinite loop by pressing the Ctrl + C or Ctrl + Break keys.

Sample Problem 6-7: Taylor series representation of a function

®_ .n
The function f{x) = e* can be represented in a Taylor series by e* = Z% .
n=0

Write a program in a script file that determines e* by using the Taylor series rep-
resentation. The program calculates e* by adding terms of the series and stopping

www.it-ebooks.info

http://www.it-ebooks.info/

6.4 Loops 199

when the absolute value of the term that was added last is smaller than 0.0001.
Use a while-end loop, but limit the number of passes to 30. If in the 30th pass
the value of the term that is added is not smaller than 0.0001, the program stops
and displays a message that more than 30 terms are needed.

Use the program to calculate 2, e*, and e21.

Solution

The first few terms of the Taylor series are:
e = 1+x+;—?+;—j+

A program that uses the series to calculate the function is shown next. The
program asks the user to enter the value of x. Then the first term, an, is assigned
the number 1, and an is assigned to the sum S. Then, from the second term on, the
program uses a while loop to calculate the nth term of the series and add it to the
sum. The program also counts the number of terms n. The conditional expression
in the while command is sue as long as the absolute value of the nth an term is
larger than 0.0001, and the number of passes n is smaller than 30. This means that
if the 30th term is not smaller than 0.0001, the looping stops.

x=input ('Enter x ');

n=1; an=1l; S=an;

while abs(an) >= 0.0001 & n <= 30 [Start of the while loop.
an=x"n/factorial (n) ; (Calculating the nth term. |
S=S+an; (Adding the nth term to the sum. |
n=n+l; [Counting the number of passes.]

end [End of the while loop.]

if n >= 30 (if-else-end loop. |

disp('More than 30 terms are needed')
else
fprintf ('exp (%$£f) = %£',x,S)
fprintf (' \nThe number of terms used is: %i',n)

end

The program uses an if -else-end statement to display the results. If the loop-
ing stopped because the 30th term is not smaller than 0.0001, it displays a mes-
sage indicating this. If the value of the function is calculated successfully, it
displays the value of the function and the number of terms used. When the pro-
gram executes, the number of passes depends on the value of x. The program
(saved as expox) is used to calculate 2, e, and e2!:

>> expox

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 6: Programming in MATLAB

Enter x 2 [Calculating exp(2).]
exp (2.000000) = 7.389046

The number of terms used is: 12 [12 terms used.]
>> expox

Enter x -4 [Calculating exp(—4).]
exp (-4.000000) = 0.018307

The number of terms used is: 18 [18 terms used.]
>> expox

Enter x 21 [Trying to calculate exp(21).]

More than 30 terms are needed

6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS

Loops and conditional statements can be nested within other loops or conditional
statements. This means that a loop and/or a conditional statement can start (and
end) within another loop or conditional statement. There is no limit to the number
of loops and conditional statements that can be nested. It must be remembered,
however, that each if, case, for, and while statement must have a corre-
sponding end statement. Figure 6-7 shows the swucture of a nested for-end

for k=1:n Every time k
for h=1:m — increases by 1, the
........ ted loop executes
A group of nes P
........ corgnr ma?l ds il)eozsted Loop m times. Overall, the
........) P group of commands
end SR are executed n Xm

end times.

Figure 6-7: Structure of nested loops.

loop within another for-end loop. In the loops shown in this figure, if, for
example, n =3 and m = 4, then first k = 1 and the nested loop executes four times
with h =1, 2, 3, 4. Next k = 2 and the nested loop executes again four times with
h=1, 2, 3, 4. Finally k = 3 and the nested loop executes again four times. Every
time a nested loop is typed, MATLAB automatically indents the new loop relative
to the outside loop. Nested loops and conditional statements are demonstrated in
the following sample problem.

www.it-ebooks.info

http://www.it-ebooks.info/

6.5 Nested Loops and Nested Conditional Statements 201

Sample Problem 6-8: Creating a matrix with a loop

Write a program in a script file that creates an 7 X m matrix with elements that
have the following values. The value of each element in the first row is the num-
ber of the column. The value of each element in the first column is the number of
the row. The rest of the elements each has a value equal to the sum of the element
above it and the element to the left. When executed, the program asks the user to
enter values for n and m.

Solution

The program, shown below, has two loops (one nested) and a nested if-
elseif-else-end swucture. The elements in the matrix are assigned values
row by row. The loop index variable of the first loop, k, is the address of the row,
and the loop index variable of the second loop, h, is the address of the column.

n=input ('Enter the number of rows ');

m=input ('Enter the number of columns ');

A=I[]; [Define an empty matrix A]
for k=1:n [Start of the first for-end loop.]
for h=1:m (Start of the second for -end loop.

if k==1 (Start of the conditional statement.]
A(k,h)=h; (Assign values to the elements of the first row. |

elgseif h==1

A(k,h)=k; [Assign values to the elements of the first column. |

else
A(k,h)=A(k,h-1) +A(k-1,h) ; | Assign values to other elements.]
end (end of the if statement. |
end (end of the nested for-end loop. |
end (end of the first for -end loop. |

A

The program is executed in the Command Window to create a 4 X 5 matrix.

>> Chap6_exp8
Enter the number of rows 4

Enter the number of columns 5

www.it-ebooks.info

http://www.it-ebooks.info/

202

Chapter 6: Programming in MATLAB

A =
1 2 3 4 5
2 4 7 11 16
3 7 14 25 41
4 11 25 50 91

6.6 THE break AND continue COMMANDS

The break command:

¢ When inside a loop (for or while), the break command terminates the
execution of the loop (the whole loop, not just the last pass). When the break
command appears in a loop, MATLAB jumps to the end command of the loop
and continues with the next command (it does not go back to the for com-
mand of that loop).

¢ If the break command is inside a nested loop, only the nested loop is termi-
nated.

¢ When a break command appears outside a loop in a script or function file, it
terminates the execution of the file.

¢ The break command is usually used within a condisional statement. In loops
it provides a method to terminate the looping process if some condition is met
—for example, if the number of loops exceeds a predetermined value, or an
error in some numerical procedure is smaller than a predetermined value.
When typed outside a loop, the break command provides a means to termi-
nate the execution of a file, such as when data #ransferred into a function file is
not consistent with what is expected.

The continue command:

¢ The continue command can be used inside a loop (for or while) to stop
the present pass and start the next pass in the looping process.

¢ The continue command is usually a part of a conditional statement. When
MATLAB reaches the cont inue command, it does not execute the remain-
ing commands in the loop, but skips to the end command of the loop and then
starts a new pass.

www.it-ebooks.info

http://www.it-ebooks.info/

6.7 Examples of MATLAB Applications 203

6.7 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 6-9: Withdrawing from a retirement account.

A person in retirement is depositing $300,000 in a saving account that pays 5%
interest per year. The person plans to withdraw money from the account once a
year. He starts by withdrawing $25,000 after the first year, and in future years he
increases the amount he withdraws according to the inflation rate. For example, if
the inflation rate is 3%, he withdraws $25,750 after the second year. Calculate the
number of years the money in the account will last assuming a constant yearly
inflation rate of 2%. Make a plot that shows the yearly withdrawals and the bal-
ance of the account over the years.

Solution

The problem is solved by using a loop (a while loop since the number of passes
is not lnown before the loop starts). In each pass the amount to be withdrawn and
the account balance are calculated The looping continues as long as the account
balance is larger than or equal to the amount to be withdrawn. The following is a
program in a script file that solves the problem. In the program, year is a vector
in which each element is a year number, W is a vector with the amount withdrawn
each year, and AB is a vector with the account balance each year.

rate=0.05; inf=0.02;

clear W AB year

year(1)=0; [First element is year 0.]
W(1)=0; (Initial withdrawal amount.]
AB(1)=300000; (Initial account balance.]
Wnext=25000; (The amount to be withdrawn after a year. |
ABnext=300000* (1 + rate); (The account balance after a year. |
n=2;

while ABnext >= Wnext [while checks if the next balance

year (n)=n-1; is larger than the next withdrawal.

W(n) =Wnext; (Amount withdrawn in year n— 1.
AB (n) =ABnext-W(n); | Accountbalance in year n—1 after withdrawal

ABnext=AB(n) * (1+rate) ; [The account balance after additional year.]
Wnext=W(n) * (1+inf) ;

The amount to be withdrawn
after an additional year.

n=n+1l;

end

fprintf ('The money will last for %f years',year(n-1))
bar (year, [AB' W'],2.0)

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 6: Programming in MATLAB

The program is executed in the following Command Window:

>> Chap6é_exp$
The money will last for 15 years.

The program also generates the following figure (axis labels and legend were
added to the plot by using the Plot Editor).

w1

I Acceunt value
[1 Ameunt withdrawn

Sample Problem 6-10: Creating a random list

Six singers— John, Mary, Tracy, Mike, Katie, and David--are pcrforming in a
competition. Write a MATLAB program that generates a list of a random order in
which the singers will pecform.

Solution

An integer (1 through 6) is assigned to each name (1 to John, 2 to Mary, 3 to
Teacy, 4 to Mike, S to Katie, and 6 to David). The program, shown below, first cre-
ates a list of the integers 1 through 6 in a random order. The integers are made the
elements of six-element vector. This is done by using MATLAB’s built-in func-
tion randi (see Section 3.7) for assigning integers to the elements of the vector.
To make sure that all the integers of the elements are different from each other, the
integers are assigned one by onc. Each integer that is suggested by the randi
finction is compared with all the integers that have been assigned to previous ele-
ments. If a match is found, the integer is not assigned, and randi is used for sug-
gesting a new inveger. Since each singer name is associated with an integer, once
the integer list is complete the switch-case statement is used to create the cor-
responding name list.

clear, clc

n=6;

www.it-ebooks.info

http://www.it-ebooks.info/

205

6.7 Examples of MATLAB Applications

L(1l)=randi(n);

for p=2:n
L(p)=randi(n);
r=0;
while r==0

r=1;

(Assign the first integer to L. (1) . |

[Assign the next integer to L (p) . |

| See explanation below. |

for k=1:p-1 | for loop compares the integer assigned to L (p) to the
integers that have been assigned to previous elements.

L(p) =randi(n) ;

If a match if found, a
new integer is
assigned to L (p) and
T is set to zero.

r=0;
break -—
end
end
end

end

The nested for loop is stopped. The pro-
gram goes back to the while loop. Since
r = 0, the nested loop inside the while
loop starts again and checks if the new
integer that is assigned to L (p) is equal to
an integer that is already in the vector L.

for i=1:n
switch L (i)
case 1
disp('John')
case 2
disp('Mary"')
case 3
disp('Tracy"')
case 4
disp('Mike')
case 5
disp('Katie')
case 6
disp('David')
end
end

The while loop checks that every new integer (element) that is to be added to the
vector L is not equal any of the integers in elements already in the vector L. If a
match is found, it keeps generating new integers until the new integer is different

< The switch-case state-

ment lists the names
according to the values of
the integers in the elements
of L.

from all the integers that are already in x.

When the program is executed, the following is displayed in the Command
Window. Obviously, a list in a different order will be displayed every time the pro-

gram is executed.

The performing order is:

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 6: Programming in MATLAB

Katie
Tracy
David
Mary
John
Mike

Sample Problem 6-11: Flight of a model rocket

The flight of a model rocket can be modeled as follows. H
During the first 0.15s the rocket is propelled upward by the

rocket engine with a force of 16 N. The rocket then flies up

while slowing down under the force of gravity. After it

reaches the apex, the rocket starts to fall back down. When :
its downward velocity reaches 20 m/s, a parachute opens I
(assumed to open instantly), and the rocket continues to “
drop at a constant speed of 20 m/s until it hits the ground. I
Write a program that calculates and plots the speed and alti- :

tude of the rocket as a function of time during the flight.
Solution

The rocket is assumed to be a particle that moves along a
straight line in the vertical plane. For motion with constant acceleration along a
straight line, the velocity and position as a function of time are given by:

1
v(t) = vo+at and s(z) = s0+vot+§at2

where v, and s, are the initial velocity and position, respectively. In the computer
program the flight of the rocket is divided into three segments. Each segment is
calculated in a while loop. In every pass the time increases by an increment.

Segment 1: The first 0.15s when the rocket engine is on. g
During this period, the rocket moves up with a constant l
acceleration. The acceleration is determined by drawing a

free body and a mass acceleration diagram (shown on the

right). From Newton’s second law, the sum of the forces

in the vertical direction is equal to the mass times the
acceleration (equilibrium equation): 7

ma

+$ XF = Fg—mg = ma
Solving the equation for the acceleration gives:
—mg

m

www.it-ebooks.info

http://www.it-ebooks.info/

6.7 Examples of MATLAB Applications 207

The velocity and height as a function of time are:
W) = O+at and h(f) = 0+0+%at2

where the initial velocity and initial position are both zero. In the computer pro-
gram this segment starts at ¢ = 0, and the looping continues as long as ¢<0.15 s.
The time, velocity, and height at the end of this segment are ¢,, v,, and 4,.
Segment 2: The motion from when the engine stops until the parachute opens. In
this segment the rocket moves with a constant deceleration g. The speed and
height of the rocket as functions of time are given by:

We) = vi-glt—) and h() = by +vy(e—) = 3g(—1)?

In this segment the looping continues until the velocity of the rocket is —20m/s
(negative since the rocket moves down). The time and height at the end of this
segment are ¢, and A, .

Segment 3: The motion from when the parachute opens until the rocket hits the
ground. In this segment the rocket moves with constant velocity (zero accelera-
tion). The height as a function of time is given by h(t) = h,—v,,,..(t—t,), Where
Vonute 18 the constant velocity after the parachute opens. In this segment the loop-
ing continues as long as the height is greater than zero.

A program in a script file that carries out the calculations is shown below.

m=0.05; g=9.81; tEngine=0.15; Force=16; vChute=-20; Dt=0.01;
clear t v h

n=1;

t(n)=0; v(n)=0; h(n)=0;

% Segment 1

al= (Force-m*g) /m;

while t(n) < tEngine & n < 50000 | The first while loop. |
n=n+l;
t(n)=t(n-1) +Dt;
v(n)=al*t(n);

h(n)=0.5*al*t(n)"2;

end

vl=v(n); hl=h(n); tl=t(n);

% Segment 2

while v(n) >= vChute & n < 50000 (The second whi le loop. |

n=n+l;
t(n)=t(n-1) +Dt;
v(n)=vl-g*(t(n)-tl);

www.it-ebooks.info

http://www.it-ebooks.info/

208 Chapter 6: Programming in MATLAB

h(n)=hl+vl*(t(n)-tl)-0.5*g*(t(n)-tl)"2;

end

v2=v(n); h2=h(n); t2=t(n);

% Segment 3

while h(n) > 0 & n < 50000 (The third whi le loop.]
n=n+l;

t(n)=t(n-1) +Dt;

v(n) =vChute;

h(n) =h2+vChute* (t (n) -t2) ;
end
subplot(1,2,1)
plot(t,h,t2,h2,'0")
subplot(1,2,2)
plot(t,v,t2,v2,'0")

The accuracy of the results depends on the magnitude of the time increment
Dt. An increment of 0.01 s appears to give good results. The conditional expres-
sion in the while commands also includes a condition for n (if n is larger than
50,000 the loop stops). This is done as a precaution to avoid an infinite loop in

case there is an error in an of the statements inside the loop. The plots generated
by the program are shown below (axis labels and text were added to the plots

using the Plot Editor).
120 . 50
Parachute
100¢ opens 40‘
8ol A 30
— [72)
E 6o} E 20‘
E 2 10
2 40} 8
T o 0
>
20+ 10 Parachute
opens
of 20
20 : ‘ ‘ 8 10 12 2 4 e 10 12
Time (s)

4 6
Time (s)

Note: The problem can be solved and programmed in different ways. The solu-
tion shown here is one op#ion. For example, instead of using while loops, the
times when the parachute opens and when the rocket hits the ground can be calcu-
lated first, and then f or-end loops can be used instead of the while loop. If the
times are determined first, it is possible also to use element-by-element calcula-
tions instead of loops.

www.it-ebooks.info

http://www.it-ebooks.info/

6.7 Examples of MATLAB Applications 209

Sample Problem 6-12: AC to DC converter

A half-wave diode rectifier is an elec- Diode
trical circuit that converts AC voltage I — —
to DC voltage. A rectifier circuit that ic i ix ‘
consists of an AC voltage source, a v;=vsin(cwr) ,\D C R Vi
diode, a capacitor, and a load (resis- T \
tor) is shown in the figure. The volt-

age of the source is v, = vgsin(w?),
where ® = 2xnf, in which fis the fre-
quency. The operation of the circuit is
illustrated in the lower diagram where
the dashed line shows the source volt-
age and the solid line shows the volt-
age across the resistor. In the first ‘ \ / \
cycle, the diode is on (conducting \ Arivison N
current) from ¢ = 0 until ¢ = z,. At S

this time the diode tums off and the

power to the resistor is supplied by the discharging capacitor. At ¢ = ¢5 the diode
turns on again and continues to conduct current until ¢ = ¢,,. The cycle continues
as long as the voltage source is on. In this simplified analysis of this circuit, the
diode is assumed to be ideal and the capacitor is assumed to have no charge ini-
tially (at ¢ = 0). When the diode is on, the resistor’s voltage and current are given
by:

. ~(t-1,))/(RC
Vg = vosm((ot)e(¢=LRa

Voltage

vp = vgsin(wt) and i, = v,sin(wt)/R
The current in the capacitor is:
ic = 0Cyycos(mt)
When the diode is off, the voltage across the resistor is given by:

. ~(t-1))/(RC
Vg = vosm(th)e(U=t (RE)

The times when the diode switches off (¢,, ¢, and so on) are calculated from the
condition i = —i,. The diode switches on again when the voltage of the source
reaches the voltage across the resistor (time ¢, in the figure).

Write a MATLAB program that plots the voltage across the resistor v, and
the voltage of the source v, as a function of time for 0 <7< 70 ms. The resistance
of the load is 1,800 €, the voltage source v, = 12 V,and f = 60 Hz. To examine

the effect of capacitor size on the voltage across the load, execute the program
twice, once with C = 45 PF and once with C = 10 pF.

www.it-ebooks.info

http://www.it-ebooks.info/

210

Chapter 6: Programming in MATLAB

Solution

A program that solves the problem is presented below. The program has two
parts—one that calculates the voltage v; when the diode is on, and the other when
the diode is off. The switch command is used for switching between the two
parts. The calculations start with the diode on (the variable state='on’), and
when iz —i-<0 the value of state is changed to ‘off’, and the program
switches to the commands that calculate vy for this state. These calculations con-
tinue until v, > vz, when the program switches back to the equations that are valid

when the diode is on.

V0=12; C=45e-6; R=1800; £=60;
Tf£=70e-3; w=2*pi*f;

clear t VR Vs

t=0:0.05e-3:Tf;

n=length(t) ;

state='on' [Assign ‘on’ to the variable state. |
for i=1:n

Vs (i) =VO*sin(w*t (i)); [Calculate the voltage of the source at time . |
switch state

VR(i)=Vs(i);
iR=Vs (i) /R;

iC=w*C*VO*cos (w*t (i)) ;

sumI=iR+iC;

if sumI <= 0 (Check if i,—i<0. |
state='off '; (If true, assign ‘off’ to state.]
tA=t(i); (Assigna valueto ¢#,.|

end

VR (i)=V0*sin (w*tA) *exp (- (t (i) -tA)/(R*C));

if Vs (i) >= VR(d) | Check if v, > vy |
state='on';

If true, assign
end ‘on’ to the
variable state.
end

end
plot(t,Vs,':"',t,VR, 'k',"'linewidth',1)
xlabel('Time (s)'); ylabel('Voltage (V)')

www.it-ebooks.info

http://www.it-ebooks.info/

6.8 Problems

211

The two plots generated by the program are shown below. One plot shows the
result with C = 45 pF and the other with C = 10 pF. It can be observed that with
a larger capacitor the DC voltage is smoother (smaller ripple in the wave).

C = 45 UF

Voltage (V)

0.01 0.02 0.0 0.06 0.07

C = 10 pF

Voltage (V}

- ;
0 0.01 0.02 0.03 0.04 0.0 0.06 0.07
Time (s)

6.8 PROBLEMS

1.

Evaluate the following expressions without using MATLAB. Check the
answers with MATLAB.

(@) 12-4<5x%3 (b) y=8/4>6x3-42>-3

(©) y=-3<(B-12)+2x(5>18/6-4)2 (d) (~5+~0) x 6==3+3 x~0

Given: a = -2, b = 3, ¢ = 5. Evaluate the following expressions without
using MATLAB. Check the answers with MATLAB.

(@ y=a-b>a-c<b b)) y=-4<a<0

(c) y=a-c<=b>a+c (d) y =3 x (cta~=alb-b)==(a+c)~=b

Given: v=[4 -1 231 2 50]andu=[5 -1 0 3 =3 2 1 5]. Evaluate the
following expressions without using MATLAB. Check the answers with
MATLAB.

(@ ~~u b) v==~u

(c) u==abs(v) (@) v>=u+v

www.it-ebooks.info

http://www.it-ebooks.info/

212 Chabter 6: Programming in MATLAB

4. Use the vectors v and u from Problem 3. Use relational operators to create a
vector w that is made up of the elements of u that are smaller than or equal to
the elements of v.

5. Evaluate the following expressions without using MATLAB. Check the

answers with MATLAB.
(a) —3&3 (b) ~5<4&~0>-3
(c) —2&2>3|8/3 (d) —3<-1<~0| 5<4<3

6. Use loops to create a 3 X 5 matrix in which the value of each element is its
row number to the power of its column number divided by the sum of its row
number and column number. For example, the value of element (2,3) is

23/(2+3) = 1.6.

7. A symmetric (5x5) Pascal matrix is displayed on the [, 1111

right. Write a MATLAB program that creates an n xn sym-

. . 123 45
metric Pascal matrix. Use the program to create 4 x4 and
. 13 6 1015
7 x 7 Pascal matrices.
14102035
1515 35 70

8. The average monthly precipitation (in.) for Boston and
Seattle during 2012 are given in the vectors below (data
from the U.S. National Oceanic and Atmospheric Administration).

BOS =[2.67 1.00 1.21 3.09 3.43 4.71 3.88 3.08 4.10 2.62 1.01 5.93]

SEA =[6.83 3.63 7.20 2.68 2.05 2.96 1.04 0.00 0.03 6.71 8.28 6.85]

where the elements in the vectors are in the order of the months (January, Feb-

ruary, etc.) Write a program in a script file to answer the following:

(a) Calculate the total precipitation for the year and monthly average precipi-
tation in each city.

(b) How many months was the precipitation above the average in each city?

(¢) How many months, and on which months, was the precipitation in Boston
lower than the precipitation in Seattle?

9. Write a program in a script file that finds the smallest even integer that is
divisible by 13 and by 16 whose square root is greater than 120. Use a loop in
the program. The loop should start from 1 and stop when the number is found.
The program prints the message “The required number is:” and then prints the
number.

10. Fibonacci numbers are the numbers in a sequence in which the first two ele-
ments are 0 and 1, and the value of each subsequent element is the sum of the
previous two elements:

0,1,1,2,3,5,8,13, ...
Write a MATLAB program in a script file that determines and displays the
first 20 Fibonacci numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

6.8 Problems

213

11.

12.

13.

14.

15.

The reciprocal Fibonacci constant y is defined by the infinite sum:
ool

YA,
where F, are the Fibonacci numbers 1, 1,2, 3, 5, 8, 13, Each element in
this sequence of numbers is the sum of the previous two. Start by setting the
first two elements equal to 1, then F, = F,_;+F,_, . Write a MATLAB pro-
gram in a script file that calculates y for a given n. Execute the program for
n = 10,50, and 100.

Write a program in a script file that determines the real roots of a quadratic
equation ax?+bx +c¢ = 0. Name the file quadroots. When the file runs, it
asks the user to enter the values of the constants aq, b, and c¢. To calculate the
roots of the equation the program calculates the discriminant D, given by:

D = b2_4ac

If D > 0, the program displays message “The equation has two roots,” and the
roots are displayed in the next line.

If D = 0, the program displays message “The equation has one root,” and the
root is displayed in the next line.

If D <0, the program displays message “The equation has no real roots.”

Run the script file in the Command Window three times to obtain solutions to
the following three equations:

(@) 3x2+6x+3 =0 B) -3x2+4x-6=0 (¢) —-3x2+7x+5=0

The value of ® can be estimated by:

HEH

Write a program (using a loop) that determines the expression. Run the pro-
gram with » = 100, n = 10000, and » = 1000000. Compare the result with pi.
(Use format long.)

The value of © can be estimated from the expression:

2 _ 2 2+«/§_,\/2+A/2+«/§'m

n 2 2 2

Write a MATLAB program in a script file that determine = for any number of
terms. The program asks the user to enter the number of terms, and then cal-
culates the corresponding value of = . Execute the program with 5, 10, and 40
terms. Compare the result with pi. (Use format long.)

Write a program that generates a vector with 20 random elements between
—10 and 10 and then finds the sum of the positive elements.

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chabter 6: Programming in MATLAB

16. Write a program that (@) generates a vector with 20 random integer elements
with integers between —10 and 10, (b) replaces all the negative integers with
random integers between —10 and 10, (c) repeats (b) until all the elements are
positive. The program should also count how many times (b) is repeated
before all the elements are positive. When done, the program displays the vec-
tor and a statement that states how many iterations were needed for generating
the vector.

17. Write a program that asks the user to input a vector of integers of arbitrary
length. The program then counts the number of elements, the number of posi-
tive elements, and the number of negative elements divisible by 3. The pro-
gram displays the vector that was entered and the results in sentence form, i.e.
"The vector has XX elements. XX elements are positive and XX elements are
negative divisible by 3", where XX stands for the corresponding number of
elements. Execute the program and when the program ask the user to input a
vector type randi ([-20 20],1,16). This creates a 16-element vector
with random integers between —20 and 20.

18. A vectoris givenbyx=1[4.5 5 -16.12 21.8 10.1 10 —-16.11 5 14 -3 3 2].
Using conditional statements and loops, write a program that rearranges the
elements of x in order from the smallest to the largest. Do not use MATLAB’s
built-in function sort.

19. The Pythagorean theorem states that a?+ 52 = ¢2. Write a MATLAB pro-
gram in a script file that finds all the combinations of triples a, b, and c that
are positive integers all smaller or equal to 50 that satisfy the Pythagorean the-
orem. Display the results in a three-column table in which every row corre-
sponds to one triple. The first three rows of the table are:

3 435
512 13
6 810

20. A twin primes is a pair of prime numbers such that the difference between them is
2 (for example, 17 and 19). Write a computer program that finds all the twin
primes between 10 and 500. The program displays the results in a two-column
matrix in which each row is a twin prime. Do not use MATLAB’s built-in function
isprime.

21. Anisolated prime is a prime number p such that neither p —2 nor p + 2 is prime.
For example, 47 is an isolated prime since 45 and 49 are both not primes. Write a
computer program that finds all the isolated primes between 50 and 100. Do not
use MATLAB?’s built-in function isprime.

www.it-ebooks.info

http://www.it-ebooks.info/

6.8 Problems

215

22.

23.

24.

25.

A list of 30 exam scores is: 31, 70, 92, 5, 47, 88, 81, 73, 51, 76, 80, 90, 55, 23,
43,98, 36, 87,22, 61, 19, 69, 26, 82, 89, 99, 71, 59, 49, 64

Write a computer program that determines how many grades are between 0
and 19, between 20 and 39, between 40 and 59, between 60 and 79, and
between 80 and 100. The results are displayed in the following form:

Grades between 0 and 19 2 students

Grades between 20 and 39 4 students

Grades between 40 and 59 6 students

and so on. (Hint: use the command fprintf to display the results.)

The Taylor series expansion for cos (x) is:

x* D"
cos(x) = 1—— - ‘ . Z(Zn)'

where x is in radians. Write a MATLAB program that determines cos(x) using
the Taylor series expansion. The program asks the user to type a value for an
angle in degrees. Then the program uses a loop for adding the terms of the
Taylor series. If a,, is the nth term in the series, then the sum S, of the » terms
is S, =S,_,+a,. In each pass calculate the esWmated error E given by

n—1

Sp—S,_

E = . Stop adding terms when E < 0.000001. The program displays

n-1

the value of cos(x). Use the program for calculating:
(@) cos(35°) (b) sin(125°)
Compare the values with those obtained by using a calculator.

Write a MATLAB program in a script file that finds a positive integer » such
that the sum of all the integers 1+ 2 +3 +... +» is a number between 100 and
1000 whose three digits are identical. As output, the program displays the
integer » and the corresponding sum.

The following are formulas for calculating the training heart rate (THR) for
men and women:

For men (Karvonen formula): THR = [(220 - AGE) — RHR] X INTEN + RHR
For women: THR = [(206—-0.88x AGE)— RHR] X INTEN + RHR

where AGE is the person’s age, RHR the resting heart rate, and INTEN the fit-
ness level (0.55 for low, 0.65 for medium, and 0.8 for high fitness). Write a
program in a script file that determines the THR. The program asks users to
enter their gender (male or female), age (number), resting heart rate (number),
and fitness level (low, medium, or high). The program then displays the train-
ing heart rate. Use the program for determining the training heart rate for the
following two individuals:

(a) A 21-year-old male, resting heart rate of 62, and low fitness level.

(b) A 19-year-old female, resting heart rate of 67, and high fitness level.

www.it-ebooks.info

http://www.it-ebooks.info/

216

Chapter 6: Programming in MATLAB

26. Body Mass Index (BM]) is a measure of obesity. In standard units, it is calcu-

27.

lated by the formula
w
BMI = 703 }72

where W is weight in pounds, and H is height in inches. The obesity classifica-
tion is:

BMI Classification
Below 18.5 Underweight
18.5 to 24.9 Normal

251t029.9 Overweight
30 and above Obese

Write a program in a script file that calculates the BMI of a person. The pro-
gram asks the person to enter his or her weight (Ib) and height (in.). The pro-
gram displays the result in a sentence that reads: “Your BMI value is XXX,
which classifies you as SSSS,” where XXX is the BMI value rounded to the
nearest tenth, and SSSS is the corresponding classification. Use the program
for determining the obesity of the following two individuals:

(a) A person 6 ft 2 in. tall with a weight of 180 Ib.

(b) A person 5 ft 1 in. tall with a weight of 150 Ib.

Write a program in a script file that calculates the cost of shipping a package
according to the following price schedule:
Weight
Typeof fg 951 [0.551b More than 5 Ib

service

Ground $0.70+ |$1.18 + $0.42 for every |$4.96 + $0.72 for every
(5-7 days) |$0.06/0z |additional 0.5 Ib (or additional Ib (or frac-
fraction). tion).

Express $2.40+ |$4.40 + $1.20 for every |$15.20+ $1.80 for every
(3-4 days) |$0.25/0z |additional 0.5 Ib (or additional Ib (or frac-
fraction). tion).

Overnight |$12.20+ |$18.60+ $4.80 forevery | $61.80 + $6.40 for every
(Oneday) |$0.80/0z |additional 0.5 Ib (or additional Ib (or frac-
fraction). tion).

The program asks the user to enter the type of service (Ground, Express, or
Overnight) and the weight of the package (two numbers. First for number of
pounds and second for number of ounces.) The program then displays the cost
for the shipment. Run the program three times for the following cases:

(@) Ground21b 70z. (b) Express01lb70z. (c) Overnight51b 10 oz.

www.it-ebooks.info

http://www.it-ebooks.info/

6.8 Problems

217

28.

29.

30.

Write a program that determines the change given back to a customer in a
self-service checkout machine of a supermarket for purchases of up to $50.
The program generates a random number between 0.01 and 50.00 and dis-
plays the number as the amount to be paid. The program then asks the user to
enter payment, which can be one $1 bill, one $5 bill, one $10 bill, one $20
bill, or one $50 bill. If the payment is less than the amount to be paid, an error
message is displayed. If the payment is sufficient, the program calculates the
change and lists the bills and/or the coins that make up the change, which has
to be composed of the least number each of bills and coins. For example, if
the amount to be paid is $2.33 and a $10 bill is entered as payment, then the
change is one $5 bill, two $1 bills, two quarters, one dime, one nickel, and two
pennies. Execute the program three times.

The concentration of a drug in the body C, can be modeled by the equation:
_Dg K, kgt kgt

ATy
where Dg; is the dosage administered (mg), ¥, is the volume of distribution
(L), k, is the absorption rate constant (h™'), k, is the elimination rate con-
stant (h™!), and ¢ is the time (h) since the drug was administered. For a certain
drug, the following quantities are given: D; = 150mg, ¥V, = 50L,
k,=16h"',and k, = 047"
(a) A single dose is administered at ¢ = 0. Calculate and plot C, versus ¢ for
10 hours.
(b) A first dose is administered at ¢ = 0, and subsequently four more doses
are administered at intervals of 4 hours (i.e., at ¢ = 4, 8, 12, 16). Calculate and
plot C, versus ¢ for 24 hours.

One numerical method for calculating the cubic root of a number, 3/P is in itera-
tions. The process starts by choosing a value x, as a first estimate of the solution.
Using this value, a second, more accurate value x, can be calculated with
x, = (P/x}+2x,)/3 , which is then used for calculating a third, still more accu-
rate value x,, and so on. The general equation for calculating the value of x;_ ,
from the value of x; is x;.; = (P/x?+2x,)/3 . Write a MATLAB program that

calculates the cubic root of a number. In the program use x, = P for the first esti-
mate of the solution. Then, by using the general equation in a loop, calculate new,
more accurate values. Stop the looping when the estimated relative error E defined
Xi+1 X

by E = is smaller than 0.00001. Use the program to calculate:

X;

(@) 3100 (b 3/53701 (c) 31935

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 6: Programming in MATLAR

31. Write a program in a script file that converts a measure of pressure given in
units of either Pa, psi, atm, or torr to the equivalent quantity in different
units specified by the user. The program ashs the user to enter the amount of
pressure, its current units, and the desired new units. The output is the spec-
ification of pressure in the new units. Use the program to:

(a) Convert 70 psi to Pa. (6) Convert 120 torr to atm.
(¢©) Convert 8000 Pa to psi.

32. In a one<dimeunsional random walk, the position x of a walleec is computed

by:

x; = xj+s
where s is a random number. Write a program that calculates the number of
steps required for the walker %o reach a boundary x = +B. Use MATLAB’s
built-in function randn (1,1) %o calculate s. Run the program 100 times
(by using a loop) and calculate the average number of steps when B = 10.

33. The Sierpinski triangle can be implemented in MATLAB by plotting points
iteratively according to one of the following three rules that are selected
randamly with equal probability.

Rule 1: Xpe1 = 0.5%,, .. = 05y,

Rule 2: Xpo1 = 05x,+025, y,., = 05y,+(s3)/4

Rule 3: Xp+1 = 0.5x,+0.5, y,+1 = 0.5y,

Write a program in a script file that calculates the x and y vectars and then
plots y versus x as individual points (use plot (x,y, **’)). Start with
x; = 0 and y; = 0. Run the program four times with 10, 100, 1,000, and
10,000 iterations.

34. Cam is a mechanical device that transforms rotary
motion into linear motion. The shape of the disc is
designed to produce a specified displacement pro-
file. A displacement profile is a plot of the dis-

()
placemeat of the follower as a function of the
angle of rotation of the cam. The motion of a cer- LA

tain cam is given by the following equations:
y = 6[20-05sin8]/n for 0<€<m/2
y=6 for n/2<6<2%/3

y = 6—3[1-0.5003(3(0-2’-‘)] for 2n/3<0<4n/3
y =3 for 4n/3<6<3n/2

_ 2
y = 3—1.5(%) for 3n/2<0<7n/4

2
= 0.75—0.75(1-%;:#1) for Tm/4<0<2x

www.it-ebooks.info

http://www.it-ebooks.info/

6.8 Problems

219

35.

36.

Write a MATLAB program that plots the displacement profile for one revolu-
tion. First create a 100 element vector for 6, then by using a loop and condi-
tional statements calculate the value of y for the corresponding values of 6.
Once y and 0 are known, ploty vs. 0.

The overall grade in a course is determined from the grades of 6 quizzes, 3
midterms, and a final exam, using the following scheme:

Quizzes: Quizzes are graded on a scale from 0 to 10. The grade of the lowest
quiz is dropped and the average of the 5 quizzes with the higher grades consti-
tutes 30% of the course grade.

Midterms and final exam: Midterms and final exams are graded on a scale
from 0 to 100. If the average of the midterm scores is higher than the score on
the final exam, the average of the midterms constitutes 50% of the course
grade and the grade of the final exam constitutes 20% of the course grade. If
the final grade is higher than the average of the midterms, the average of the
midterms constitutes 20% of the course grade and the grade of the final exam
constitutes 50% of the course grade.

Write a computer program in a script file that determines the course
grade for a student. The program first asks the user to enter the six quiz grades
(in a vector), the three midterm grades (in a vector), and the grade of the final.
Then the program calculates a numerical course grade (a number between 0
and 100). Finally, the program assigns a letter grade according to the follow-
ing key: 4 for Grade>90, B for 80 < Grade <90, C for 70 < Grade<80, D
for 60 < Grade < 70, and E for a grade lower than 60. Execute the program for
the following cases:

(a) Quiz grades: 6, 10, 6, 8, 7, 8. Midterm grades: 82, 95, 89. Final exam: 81.
(b) Quiz grades: 9, 5, 8, 8, 7, 6. Midterm grades: 78, 82, 75. Final exam: 81.

The handicap differential (HCD) for a round of golf is calculated from the for-
mula:
_ (Score— Course Rating)
HCD = Course Slope
The course rating and the slope are measures of how difficult a particular
course is. A golfers handicap is calculated from a certain number N of their
best (lowest) handicap scores according to the following table.

x 113

Rounds played N # Rounds played N
5-6 1 15-16 6

7-8 2 17 7

9-10 3 18 8
11-12 4 19 9
13-14 5 20 10

www.it-ebooks.info

http://www.it-ebooks.info/

220

Chapter 6: Programming in MATLAB

For example, if 13 rounds have been played, only the best five handicaps are
used. A handicap cannot be computed for fewer than five rounds. If more than
20 rounds have been played, only the 20 most recent results are used.

Once the lowest N handicap differentials have been identified, they are
averaged and then rounded down to the nearest tenth. The result is the
player’s handicap. Write a program in a script file that calculates a person’s
handicap. The program asks the user to enter the golfers record in a three col-
umns matrix where the first column is the course rating, the second is the
course slope, and the third is the player’s score. Each row corresponds to one
round. The program displays the person’s handicap. Execute the program for
players with the following records.

(@)

Rating Slope Score
71.6 122 85
72.8 118 87
69.7 103 83
70.3 115 81
70.9 116 79
72.3 117 91
71.6 122 89
70.3 115 83
72.8 118 92
709 109 80
73.1 132 94
68.2 115 78
74.2 135 103
71.9 121 84

®)

Rating Slope Score
72.2 119 71
71.6 122 73
74.0 139 78
68.2 125 69
70.2 130 74
69.6 109 69
66.6 111 74

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7
User-Defined Functions
and Function Files

A simple function in mathematics, f(x), associates a unique number to each
value of x. The function can be expressed in the form y = f(x), where f(x) is usu-
ally a mathematical expression in terms of x. A value of y (output) is obtained
when a value of x (input) is substituted in the expression. Many functions are pro-
grammed inside MATLAB as built-in functions, and can be used in mathematical
expressions simply by typing their name with an argument (see Section 1.5);
examples are sin (x), cos (x), sqrt (x), and exp (x). Frequently, in computer
programs, there is a need to calculate the value of functions that are not built in.
When a function expression is simple and needs to be calculated only once, it can
be typed as part of the program. However, when a function needs to be evaluated
many times for different values of arguments, it is convenient to create a “user-
defined” function. Once a user-defined function is created (saved) it can be used
just like the built-in functions.

A user-defined function is a MATLAB program that is created by the user,
saved as a function file, and then used like a built-in function. The function can be
a simple single mathematical expression or a complicated and involved series of
calculations. In many cases it is actually a subprogram within a computer pro-
gram. The main feature of a function file is that it has an input and an output. This
means that the calculations in the function file are carried out using the input data,
and the results of the calculations are wransferred out of the function file by the
output. The input and the output can be one or several variables, and each can be a
scalar, a vector, or an array of any size. Schematically, a function file can be illus-
trated by:

Input data Function Output data
> File >

www.it-ebooks.info

221

http://www.it-ebooks.info/

222 Chapter 7: User-Defined Functions and Function Files

A very simple example of a user-defined function is a function that calcu-
lates the maximum height that a ball reaches when thrown upward with a certain

. . . . o vd
velocity. For a velocity vy, the maximum height 4, is given by &, = 2—; ,
where g is the gravitational acceleration. In function form this can be written as

2
Bpax(Vo) = ;—; In this case the input to the function is the velocity (a number),

and the output is the maximum height (a number). For example, in SI units (g =
9.81 m/s?) if the input is 15 m/s, the output is 11.47 m.

15 m/s — 1147m

In addition to being used as math functions, user-defined functions can be
used as subprograms in large programs. In this way large computer programs can
be made up of smaller “building blocks” that can be tested independently. Func-
tion files are similar to subroutines in Basic and Fortran, procedures in Pascal, and
functions in C.

The fundamentals of user-defined functions are explained in Sections 7.1
through 7.7. In addition to user-defined functions that are saved in separate func-
tion files and called for use in a computer program, MATLAB provides an option
to define and use a user-defined math function within a computer program (not in
a separate file). This can be done by using anonymous function, which is pre-
sented in Section 7.8. There are built-in and user-defined functions that have to be
supplied with other functions when they are called. These functions, which in
MATLAB are called function functions, are introduced in Section 7.9. The last
two sections cover subfunctions and nested functions. Both are methods for incor-
porating two or more user-defined functions in a single function file.

7.1 CREATING A FUNCTION FILE

Function files are created and edited, like script files, in the Editor/Debugger Win-
dow. This window is opened from the Command Window. In the Toolstrip select
New, then select Function. Once the Editor/Debugger Window opens, it looks
like that shown in Figure 7-1. The editor contains several pre-typed lines that out-
line the structure of a function file. The first line is the function definition line,
which is followed by comments the describe the function. Next comes the pro-
gram (the empty lines 4 and 5 in Figure 7-1), and the last line is an end statement,
which is optional. The structure of a function file is described in detail in the next
section.

Note: The Editor/Debugger Window can also be opened (as was described
in Chapter 1) by clicking on the New Script icon in the Toolstrip, or by clicking
New in the Toolstrip and then selecting Script from the menu that open. The win-

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Structure of a Function File

223

Editer - Untitied® =) E |

= I

G o [@ | @A s R B g &

% % 4 leTov

|1zl Compare w Comment

New Open Save Breakpoints Run Runand =L Advance Run and
i

- - ~ =i Print > Indent [-| = | Find = - ~ Advance
FILE =0T NAVIGATE | BREAKPOINTS RUN
| Untitled* [+
I Ekunccicn [Vo.ltpu\:__args 1 = Unvitled!{ inmur azgs) =

JFUNTITLED Summary ef this functien gees here
3 Betailed explanatien gees here

The first line in a function file must
be the function definition line.

end

N

Untitled Ln 1 Cel 1

Figure 7-1: The Editor/Debugger Window.

dow that opens is empty, without any pre-typed lines. In general, the Editor/
Debugger Window can be used for writing a script file or a function file.
7.2 STRUCTURE OF A FUNCTION FILE

The stucture of a typical complete function file is shown in Figure 7-2. This par-
ticular function calculates the monthly payment and the total payment of a loan.

The inputs to the function are the amount of the loan, the annual interest rate, and

the duration of the loan (number of years). The output from the function is the
monthly payment and the total payment.

“
Editer - CAMATLAR Beek Sth Edition\ChapterAloan.m [|

e Y« e OER

EI_‘I:‘ ™ % [Fing Files Insett 5 fe [l v <o D @ T Lﬂ)»)

-l compare - cComment 9% g % GoTo w
New Open Sava :”5 & L =~ Breakpoints Run Runsnd (Sl Agvance Runand
- - =L 4 Indent || 5 |5 \{ Find = - v Advance Time:
FILE EDIT NAVIGATE | BREAKPOINTS RUN

| loan.m +

functien [mpay,tpav] = lean(ameunt,rate,years) 3
-l|3lean calculates menthiy and tetal payment of ieam. Flmction defin_ition line.]

1

2

3 i1Input argurents:

4 iameunt=iean ameunt in $.

& irate=annuzl interest rate in percent. .

5 | tusaremmuieer o years. The H1 line.
7

g

i0utput argueents:

inpay=menthliy payment, tpay=tetal payment.
s : Help text.

= fermat bank

Bl = ratem=rate~0.01/12;

124 = a=liraten; un 1

13 — B=(a” {years*12} -1} /ratern; F ction bOdy

14 - Rpay=aneunt*2” (years 12}/ (a2*s) m){ am
23 tpay=Tnpay~ years~lz; (co pUter p Ogr)'

Assignment of values to output arguments.]

Ioan Ln 15 Col 20

Figure 7-2: Structure of a typical function file.

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 7: User-Defined Functions and Function Files

The various parts of the function file are described in detail in the following sec-
tions.
7.2.1 Function Definition Line

The first executable line in a function file must be the function definition line.
Otherwise the file is considered a script file. The function definition line:

¢ Defines the file as a function file
¢ Defines the name of the function
¢ Defines the number and order of the input and output arguments

The form of the function definition line is:

[function [output arguments] = function name (input arguments)]
A 1N

N\ \

The word “function” A list of output Thenameof A list of input
must be the first word, arguments typed the function. arguments typed
and must be typed in inside brackets. inside parentheses.
lowercase letters.

The word “function,” typed in lowercase letters, must be the first word in
the function definition line. On the screen the word function appears in blue. The
function name is typed following the equal sign. The name can be made up of let-
ters, digits, and the underscore character (the name cannot include a space). The
rules for the name are the same as the rules for naming variables described in Sec-
tion 1.6.2. It is good practice to avoid names of built-in functions and names of
variables already defined by the user or predefined by MATLAB.

7.2.2 Input and Output Arguments

The input and output arguments are used to wansfer data into and out of the func-
tion. The input arguments are listed inside parentheses following the function
name. Usually, there is at least one input argument, although it is possible to have
a function that has no input arguments. If there are more than one, the input argu-
ments are separated with commas. The computer code that performs the calcula-
tions within the function file is written in terms of the input arguments and
assumes that the arguments have assigned numerical values. This means that the
mathematical expressions in the function file must be written according to the
dimensions of the arguments, since the arguments can be scalars, vectors, or
arrays. In the example shown in Figure 7-2 there are three input arguments
(amount, rate,years), and in the mathematical expressions they are
assumed to be scalars. The actual values of the input arguments are assigned when
the function is used (called). Similarly, if the input arguments are vectors or

www.it-ebooks.info

http://www.it-ebooks.info/

7.2 Structure of a Function File 225

arrays, the mathematical expressions in the function body must be written to fol-
low linear algebra or element-by-element calculations.

The output arguments, which are listed inside brackets on the left side of the
assignment operator in the function definition line, transfer the output from the
function file. Function files can have zero, one, or several output arguments. If
there are more than one, the output arguments are separated with commas. If there
is only one output argument, it can be typed without brackets. For the function
file to work, the output arguments must be assigned values in the computer
program that is in the function body. In the example in Figure 7-2 there are two
output arguments, mpay and tpay. When a function does not have an output
argument, the assignment operator in the function definition line can be omitted.
A function without an output argument can, for example, generate a plot or write
data to a file.

It is also possible to transfer strings into a function file. This is done by typ-
ing the string as part of the input variables (text enclosed in single quotes). Strings
can be used to transfer names of other functions into the function file.

Usually, all the input to, and the output from, a function file transferred
through the input and output arguments. In addition, however, all the input and
output features of script files are valid and can be used in function files. This
means that any variable that is assigned a value in the code of the function file will
be displayed on the screen unless a semicolon is typed at the end of the command.
In addition, the input command can be used to input data interactively, and the
disp, fprintf, and plot commands can be used to display information on the
screen, save to a file, or plot figures just as in a script file. The following are
examples of function definition lines with different combinations of input and out-
put arguments.

Function definition line Comments

function [mpay,tpay] = loan(amount,rate,years) Three input arguments, two

output arguments.

function [A] = RectArea(a,b) Two input arguments, one out-
put argument.

function A = RectArea(a,b) Same as above; one output
argument can be typed without
the brackets.

function [V, S] = SphereVolArea(r) One input variable, two output
variables.

function trajectory(v,h,g) Three input arguments, no out-
put arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 7: User-Defined Functions and Function Files

7.2.3 The H1 Line and Help Text Lines

The H1 line and help text lines are comment lines (lines that begin with the per-
cent, %, sign) following the function definition line. They are optional but are fre-
quently used to provide information about the function. The H1 line is the first
comment line and usually contains the name and a short definition of the function.
When a user types (in the Command Window) lookfor a_word, MATLAB
searches for a_word in the H1 lines of all the functions, and if a match is found,
the H1 line that contains the match is displayed.

The help text lines are comment lines that follow the H1 line. These lines
contain an explanation of the function and any instructions related to the input and
output arguments. The comment lines that are typed between the function defini-
tion line and the first non-comment line (the H1 line and the help text) are
displayed when the user types help function name in the Command Win-
dow. This is wrue for MATLAB built-in functions as well as the user-defined func-
tions. For example, for the function 1oan in Figure 7-2, if help loan is typed
in the Command Window (make sure the current directory or the search path
includes the directory where the file is saved), the display on the screen is:

>> help loan

loan calculates monthly and total payment of loan.
Input arguments:

amount=loan amount in §.

rate=annual interest rate in percent.
years=number of years.

Output arguments:

mpay=monthly payment, tpay=total payment.

A function file can include additional comment lines in the function body. These
lines are ignored by the help command.

7.2.4 Function Body

The function body contains the computer program (code) that actually performs
the computations. The code can use all MATLAB programming features. This
includes calculations, assignments, any built-in or user-defined functions, flow
control (conditional statements and loops) as explained in Chapter 6, comments,
blank lines, and interactive input and output.

7.3 LoCAL AND GLOBAL VARIABLES

All the variables in a function file are local (the input and output arguments and
any variables that are assigned values within the function file). This means that
the variables are defined and recognized only inside the function file. When a

www.it-ebooks.info

http://www.it-ebooks.info/

7.4 Saving a Function File 227

function file is executed, MATLAB uses an area of memory that is separate from
the workspace (the memory space of the Command Window and the script files).
In a function file the input variables are assigned values each time the function is
called. These variables are then used in the calculations within the function file.
When the function file finishes its execution, the values of the output arguments
are transferred to the variables that were used when the function was called. All
this means that a function file can have variables with the same names as variables
in the Command Window or in script files. The function file does not recognize
variables with the same names as have been assigned values outside the function.
The assignment of values to these variables in the function file will not change
their assignment elsewhere.

Each function file has its own local variables, which are not shared with
other functions or with the workspace of the Command Window and the script
files. It is possible, however, to make a variable common (recognized) in several
different function files, and perhaps in the workspace too. This is done by declar-
ing the variable global with the global command, which has the form:

global variable name]

Several variables can be declared global by listing them, separated with spaces, in
the global command. For example:

global GRAVITY CONST FrictionCoefficient

¢ The variable has to be declared global in every function file that the user wants
it to be recognized in. The variable is then common only to these files.

e The global command must appear before the variable is used. It is recom-
mended to enter the global command at the top of the file.

¢ The global command has to be entered in the Command Window, or in a
script file, for the variable to be recognized in the workspace.

e The variable can be assigned, or reassigned, a value in any of the locations in
which it is declared common.

¢ The use of long descriptive names (or all capital letters) is recommended for
global variables in order to distinguish them from regular variables.

7.4 SAVING A FUNCTION FILE

A function file must be saved before it can be used. This is done, as with a script
file, by choosing Save as . .. from the File menu, selecting a location (many stu-
dents save to a flash drive), and entering the file name. It is highly recommended
that the file be saved with a name that is identical to the function name in the func-
tion definition line. In this way the function is called (used) by using the function
name. (If a function file is saved with a different name, the name it is saved under
must be used when the function is called.) Function files are saved with the exten-

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 7: User-Defined Functions and Function Files

sion .m. Examples:

Function definition line File name

function [mpay,tpay] = loan(amount,rate,years) loan.m

function [A] = RectArea(a,b) RectArea.m
function [V, S] = SphereVolArea(r) SphereVolArea.m
function trajectory(v,h,g) trajectory.m

7.5 USING A USER-DEFINED FUNCTION

A user-defined function is used in the same way as a built-in function. The func-
tion can be called from the Command Window, from a script file, or from another
function. To use the function file, the folder where it is saved must either be in the
current folder or be in the search path (see Sections 1.8.3 and 1.8.4).

A function can be used by assigning its output to a variable (or variables), as
a part of a mathematical expression, as an argument in another function, or just by
typing its name in the Command Window or in a script file. In all cases the user
must lnow exactly what the input and output arguments are. An input argument
can be a number, a computable expression, or a variable that has an assigned
value. The arguments are assigned according to their position in the input and out-
put argument lists in the function definition line.

Two of the ways that a function can be used are illustrated below with the
user-defined 1oan function in Figure 7-2, which calculates the monthly and total
payments (two output arguments) of a loan. The input arguments are the loan
amount, annual interest rate, and the length (number of years) of the loan. In the
first illustration the 1oan function is used with numbers as input arguments:

>> [month totall=loan(25000,7.5,4)

First argument is loan amount, second is
interest rate, and third is number of years.

month =
600.72

total =
28834.47

In the second illustration the 1oan function is used with two pre-assigned
variables and a number as the input arguments:

>> a=70000; b=6.5; [Deﬁnevariablesaandb.]

>> [x yl=loan(a,b,30) Use a, b, and the number 30 for input
arguments and x (monthly pay) and y
(total pay) for output arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

7.6 Examples of Simple User-Defined Functions 229

440.06

158423.02

7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS

Sample Problem 7-1: User-defined function for a math function

4 f
Write a function file (name it chp7one) for the function f(x) = x(%xl-;f The
X
input to the function is x and the output is f{x). Write the function such that x can
be a vector. Use the function to calculate:
(@) flx) forx=6.
(b) fix) forx=1,3,5,7,9, and 11.

Solution
The function file for the function f(x) is:

function y=chp7one (x) [Function definition line.]
y=(x."4.*sqrt (3*x+5)) ./ (x."2+1) ."2; [Assignment to output argument.]

Note that the mathematical expression in the function file is written for element-
by-element calculations. In this way if x is a vector, y will also be a vector. The
function is saved and then the search path is modified to include the directory
where the file was saved. As shown below, the function is used in the Command
Window.

(a) Calculating the function for x = 6 can be done by typing chp7one (6) in
the Command Window, or by assigning the value of the function to a new vari-
able:

>> chp7one (6)

ans =
4.5401

>> F=chp7one(6)

F =
4.5401

(b) To calculate the function for several values of x, a vector with the values of x
is created and then used for the argument of the function.

>> x=1:2:11

X =

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 7: User-Defined Functions and Function Files

>> chp7one (x)
ans =

0.7071 3.0307 4.1347 4.8971 5.5197 6.0638
Another way is to type the vector x directly in the argument of the function.

>> H=chp7one([1:2:11])

H =
0.7071 3.0307 4.1347 4.8971 5.5197 6.0638

Sample Problem 7-2: Converting temperature units

Write a user-defined function (name it Ft oC) that converts temperature in degrees
F to temperature in degrees C. Use the function to solve the following problem.

The change in the length of an object, AL , due to a change in the temperature, AT,
is given by: AL = o.LAT, where a is the coefficient of thermal expansion. Deter-
mine the change in the area of a rectangular (4.5 m by 2.25 m) aluminum

(a = 23-10-% 1/°C) plate if the temperature changes from 40°F to 92°F.
Solution

A user-defined function that converts degrees F to degrees C is:

function C=FtoC (F) [Function definition line.]
%FtoC converts degrees F to degrees C
C=5%(F-32)./9; [Assignment to output argument.]

A script file (named Chapter7Example2) that calculates the change of the area of
the plate due to the temperature is:
al=4.5; bl=2.25; Tl=40; T2=92; alpha=23e-6;

deltaT=FtoC(T2)-FtoC(T1); |Using the FtoC function to calculate the
temperature difference in degrees C.

a2=al+alpha*al*deltaT; [Calculating the new length.]
b2=bl+alpha*bl*deltaT; [Calculating the new width.]
AreaChange=a2*b2-al*bl; [Calculating the change in the area.]

fprintf ('The change in the area is %6.5f meters
square.',AreaChange)

Executing the script file in the Command Window gives the solution:

>> Chapter7Example2
The change in the area is 0.01346 meters square.

www.it-ebooks.info

http://www.it-ebooks.info/

7.7 _Comparison between Script Files and Function Files 231

7.7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES

Students who are studying MATLAB for the first time sometimes have difficulty
understanding exactly the differences between script and function files, since for
many of the problems that they are asked to solve using MATLAB, either type of
file can be used. The similarities and differences between script and function files
are summarized below.

¢ Both script and function files are saved with the extension .m (that is why they
are sometimes called M-files).

¢ The first executable line in a function file is (must be) the function definition
line.

¢ The variables in a function file are local. The variables in a script file are rec-
ognized in the Command Window.

¢ Script files can use variables that have been defined in the workspace.
¢ Script files contain a sequence of MATLAB commands (statements).

¢ Function files can accept data through input arguments and can return data
through output arguments.

¢ When a function file is saved, the name of the file should be the same as the
name of the function.

¢ A user-defined function is used in the same way as a built-in function. It can be
used (called) in the Command Window, in a script file, or in another function.

7.8 ANONYMOUS FUNCTIONS

User-defined functions written in function files can be used for simple mathemati-
cal functions, for large and complicated math functions that require extensive pro-
gramming, and as subprograms in large computer programs. In cases when the
value of a relatively simple mathematical expression has to be calculated many
times within a program, MATLAB provides the option of using anonymous func-
tions. An anonymous function is a user-defined function that is defined and writ-
ten within the computer code (not in a separate function file) and is then used in
the code. Anonymous functions can be defined in any part of MATLAB (in the
Command Window, in script files, and inside regular user-defined functions).

An anonymous function is a simple (one-line) user-defined function that is
defined without creating a separate function file (m-file). Anonymous functions
can be constructed in the Command Window, within a script file, or inside a regu-
lar user-defined function.

www.it-ebooks.info

http://www.it-ebooks.info/

232 Chapter 7: User-Defined Functions and Function Files

An anonymous function is created by typing the following command:

name = @ (arglist) expr

The name of the anony- The @ A list of input argu- Mathematical
mous function. symbol. ments (independent expression.
variables).

A simple example is cube = @ (x) x*3, which calculates the cube of the input

argument.

e The command creates the anonymous function and assigns a handle for the
function to the variable name on the left-hand side of the = sign. (Function
handles provide means for using the function and passing it to other functions;
see Section 7.9.1.)

¢ The expr consists of a single valid mathematical MATLAB expression.

e The mathematical expression can have one or several independent variables.
The independent variable(s) is (are) entered in the (arglist). Multiple
independent variables are separated with commas. An example of an anony-
mous function that has two independent variables is: circle = @ (x,Vy)
16*x™2+9*y”*2

¢ The mathematical expression can include any built-in or user-defined func-
tions.

e The expression must be written according to the dimensions of the arguments
(element-by-element or linear algebra calculations).

e The expression can include variables that are already defined when the anony-
mous function is defined. For example, if three variables a, b, and c are
defined (have assigned numerical values), then they can be used in the expres-
sion of the anonymous function parabola = @ (x) a*x*2+b*x+c.

Important note: MATLAB captures the values of the predefined variables
when the anonymous function is defined. This means that if new values are subse-
quently assigned to the predefined variables, the anonymous function is not
changed. The anonymous function has to be redefined in order for the new values
of the predefined variables to be used in the expression.

Using an anonymous function:

¢ Once an anonymous function is defined, it can be used by typing its name and
a value for the argument (or arguments) in parentheses (see examples that fol-
low).

www.it-ebooks.info

http://www.it-ebooks.info/

7.8 Anonymous Functions 233

¢ Anonymous functions can also be used as arguments in other functions (see
Section 7.9.1).

Example of an anonymous function with one independent variable:

2

The function f(x) = A/J% can be defined (in the Command Window) as an

anonymous function for x as a scalar by:

>> FA = @ (x) exp(x"2)/sqrt(x*2+5)

FA =
@(x) exp (x"2) /sqrt (x"2+5)

If a semicolon is not typed at the end, MATLAB responds by displaying the func-
tion. The function can then be used for different values of x, as shown below.
>> FA(2)

ans =
18.1994

>> z = FA(3)
ZzZ =

2.1656e+003

If x is expected to be an array, with the function calculated for each element, then
the function must be modified for element-by-element calculations.

>> FA = @ (x) exp(x.”2)./sqrt(x.”2+5)

FA =

@(x)exp(x."2)./8qrt (x.%2+5)
>> FA([1 0.5 2]) [Usingavector as input argument.]
ans =

1.1097 0.5604 18.1994

Example of an anonymous function with several independent variables:

The function f(x,y) = 2x2—4xy+y? can be defined as an anonymous function
by:
>> HA = @ (x,y) 2*x"2 - 4*x*y + y"2
HA =
@(x,y)2*x"2-4%*x*y+y”~2

Then the anonymous function can be used for different values of x and y. For
example, typing HA (2, 3) gives:

Another example of using an anonymous function with several arguments is
shown in Sample Problem 6-3.

www.it-ebooks.info

http://www.it-ebooks.info/

234 Chapter 7: User-Defined Functions and Function Files

>> HA(2,3)
ans =
=7

Sample Problem 7-3: Distance between points in polar coordinates

Write an anonymous function that calculates the
distance between two points in a plane when the
position of the points is given in polar coordinates.
Use the anonymous function to calculate the dis- rs d

tance between point 4 (2, 7/6) and point B (5, 31/4).

Solution 6 T A(rs 9,
The distance between two points in polar coordi- 9,

nates can be calculated by using the Law of

Cosines:

B(rB 993)

d = [r2+r}—2r,rzcos(8,—6;)

The formula for the distance is entered as an anonymous function with four input
arguments (r4, 8, rg, 05) . Then the function is used for calculating the distance

between points A and B.

>> d= @ (rA, thetA,rB, thetB) sqrt(rA“2+rB"2-2*rA*rB*cos (thetB-thetA))

List of input arguments.]

d =
@(rA, thetA,rB, thetB)sqrt (rA"2+rB"2-2*rA*rB*cos (thetB-

theta))

>> DistAtoB = d(2,pi/6,5,3*pi/4)

DistAtoB =

5.8461 [The arguments are typed in the order defined in the function.]

7.9 FUNCTION FUNCTIONS

There are many situations where a function (Function 4) works on (uses) another
function (Function B). This means that when Function A4 is executed, it has to be
provided with Function B. A function that accepts another function is called in
MATLAB a function function. For example, MATLAB has a built-in function
called £zero (Function A) that finds the zero of a math function f{x) (Function
B) — i.e., the value of x where f(x) = 0. The program in the function fzero is
written such that it can find the zero of any f(x). When fzero is called, the spe-
cific function to be solved is passed into £ zero, which finds the zero of the f(x).
(The function f zero is described in detail in Chapter 9.)

www.it-ebooks.info

http://www.it-ebooks.info/

7.9 Function Functions 235

A function function, which accepts another function (imported function),
includes in its input arguments a name that represents the imported function. The
imported function name is used for the operations in the program (code) of the
function function. When the function function is used (called), the specific func-
tion that is imported is listed in its input argument. In this way different functions
can be imported (passed) into the function function. There are two methods for
listing the name of an imported function in the argument list of a function func-
tion. One is by using a function handle (Section 7.9.1), and the other is by typing
the name of the function that is being passed in as a sting expression (Section
7.9.2). The method that is used affects the way that the operations in the function
function are written (this is explained in more detail in the next two sections).
Using function handles is easier and more efficient, and should be the preferred
method.

7.9.1 Using Function Handles for Passing a Function into a Function
Function

Function handles are used for passing (importing) user-defined functions, built-in
functions, and anonymous functions into function functions that can accept them.
This section first explains what a function handle is, then shows how to write a
user-defined function function that accepts function handles, and finally shows
how to use function handles for passing functions into function functions.

Function handle:

A function handle is a MATLAB value that is associated with a function. It is a
MATLAB data type and can be passed as an argument into another function. Once
passed, the function handle provides means for calling (using) the function it is
associated with. Function handles can be used with any kind of MATLAB func-
tion. This includes built-in functions, user-defined functions (written in function
files), and anonymous functions.
¢ For built-in and user-defined functions, a function handle is created by typing
the symbol @ in front of the function name. For example, @cos is the function
handle of the built-in function cos, and @FtocC is the function handle of the
user-defined function FtoC that was created in Sample Problem 7-2.

e The function handle can also be assigned to a variable name. For example,
cosHandle=@cos assigns the handle @cos to cosHandle. Then the name
cosHandle can be used for passing the handle.

¢ As anonymous functions (see Section 7.8.1), their name is already a function
handle.

Writing a function function that accepts a function handle as an input argument:

As already mentioned, the input arguments of a function function (which accepts
another function) includes a name (dummy function name) that represents the

www.it-ebooks.info

http://www.it-ebooks.info/

236

Chapter 7: User-Defined Functions and Function Files

imported function. This dummy function (including a list of input arguments

enclosed in parentheses) is used for the operations of the program inside the func-

tion function.

¢ The function that is actually being imported must be in a form consistent with
the way that the dummy function is being used in the program. This means that
both must have the same number and type of input and output arguments.

The following is an example of a user-defined function function, named
funplot, that makes a plot of a function (any function f{x) that is imported into
it) between the points x = @ and x = b. The input arguments are (Fun,a,b),
where Fun is a dummy name that represents the imported function, and a and b
are the end points of the domain. The function funplot also has a numerical
output xyout, which is a 3 x 2 matrix with the values of x and f(x) at the three
points x = a, x = (a+b)/2, and x = b. Note that in the program, the dummy
function Fun has one input argument (x) and one output argument y, which are
both vectors.

A name for the function that is passed in.]

function xyout=funplot (Fun,a,b)

funplot makes a plot of the function Fun which is passed in
when funplot is called in the domain [a, bl.

Input arguments are:
Fun: Function handle of the function to be plotted.

b: The last point of the domain.

Output argument is:
xyout: The values of x and y at x=a, x=(a+b)/2, and x=b

%
%
%
%
% a: The first point of the domain.
%
%
%
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

y=Fun (x) ; [Using the imported function to calculate fx) at 100 points.]
xyout (1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;
xyout (1,2)=y(1);

xyout (2,2)=Fun((a+b)/2); -—— Using the imported function to
xyout (3,2) =y (100) ; calculate f{x) at the midpoint.

plot (x,y)
xlabel('x'), ylabel('y')

As an example, the function f(x) = e 017xx3-2x2+0.8x—3 over the
domain [0.5, 4] is passed into the user-defined function funplot. This is done in
two ways: first by writing a user-defined function for f{x), and then by writing
f(x) as an anonymous function.

www.it-ebooks.info

http://www.it-ebooks.info/

7.9 Function Functions 237

Passing a user-defined function into a function function:

First, a user-defined function is written for f(x). The function, named Fdemo,
calculates f{x) for a given value of x and is written using element-by-element
operations.

function y=Fdemo (x)
y=exp (-0.17%x) .*x."3-2*x."2+0.8*x-3;

Next, the function Fdemo is passed into the user-defined function function
funplot, which is called in the Command Window. Note that a handle of the
user-defined function Fdemo is entered (the handle is @Fdemo) for the input
argument Fun in the user-defined function funplot.

>> ydemo=funplot (@Fdemo,0.5,4)
ydemo = Enter a handle of the user-defined
0.5000 -2.9852 function Fdemo.

2.2500 -3.5548
4.0000 0.6235

In addition to the display of the numerical output, when the command is
executed, the plot shown in Figure 7-3 is displayed in the Figure Window.

Figure 7-3: A plot of the function f(x) = e 017*x3 —2x2+0.8x-3.

Passing an anonymous function into a function function:

To use an anonymous function, the function f{x) = e017%x3 —2x2+0.8x—3 first
has to be written as an anonymous function, and then passed into the user-defined
function funplot. The following shows how both of these steps are done in the
Command Window. Note that the name of the anonymous function
FdemoAnony is entered without the @ sign for the input argument Fun in the
user-defined function funplot (since the name is already the handle of the
anonymous function).

www.it-ebooks.info

http://www.it-ebooks.info/

238 Chapter 7: User-Defined Functions and Function Files

>> FdemoAnony=@(x) exp(-0.17*%*x).*x.”3-2%x."2+0.8%x-3

FdemoAnony = Create an anonymous
@(x) exp(-0.17%x).*x."3-2%x."2+0.8%*x-3 | fynction for fx).

>> ydemo=funplot (FdemoAnony,0.5,4)

ydemo = Enter the name of the anonymous
0.5000 -2.9852 function (FdemoAnony).
2.2500 -3.5548
4.0000 0.6235

In addition to the display of the numerical output in the Command Window, the
plot shown in Figure 7-3 is displayed in the Figure Window.

7.9.2 Using a Function Name for Passing a Function into a Function
Function

A second method for passing a function into a function function is by typing the
name of the function that is being imported as a string in the input argument of the
function function. The method that was used before the introduction of function
handles can be used for importing user-defined functions. As mentioned, function
handles are easier to use and more efficient and should be the preferred method.
Importing user-defined functions by using their name is covered in the present
edition of the book for the benefit of readers who need to understand programs
written before MATLAB 7. New programs should use function handles.

When a user-defined function is imported by using its name, the value of
the imported function inside the function function has to be calculated with the
feval command. This is different from the case where a function handle is used,
which means that there is a difference in the way that the code in the function
function is written that depends on how the imported function is passed in.

The feval command:

The feval (short for “function evaluate”) command evaluates the value of a
function for a given value (or values) of the function’s argument (or arguments).
The format of the command is:

[variable = feval(‘function name’, argument value)]

The value that is determined by feval can be assigned to a variable, or if the
command is typed without an assignment, MATLAB displays ans = and the
value of the function.

* The function name is typed as string.
¢ The function can be a built-in or a user-defined function.

e If there is more than one input argument, the arguments are separated with
commas.

www.it-ebooks.info

http://www.it-ebooks.info/

7.9 Function Functions 239

¢ If there is more than one output argument, the variables on the left-hand side of
the assignment operator are typed inside brackets and separated with commas.

Two examples using the feval command with built-in functions follow.

>> feval('sqgrt',64)
ans =

8
>> x=feval('sin',pi/6)

X =
0.5000

The following shows the use of the feval command with the user-defined
function 1oan that was created earlier in the chapter (Figure 7-2). This function
has three input arguments and two output arguments.

(A $50,000 loan, 3.9% interest, 10 years.
>> [M,T]=feval('loan',50000,3.9,10)

502.22 [Monthly payment.]

60266.47 [Total payment.]

Writing a function function that accepts a function by typing its name as an
input argument:

As already mentioned, when a user-defined function is imported by using its
name, the value of the function inside the function function has to be calculated
with the feval command. This is demonstrated in the following user-defined
function function that is called funplotS. The function is the same as the func-
tion funplot from Section 7.9.1, except that the command feval is used for
the calculations with the imported function.

A name for the function that is passed in.]

function xyout=funplotS(Fun,a,b)

% funplotS makes a plot of the function Fun which is passed in
% when funplotS is called in the domain [a, b].

% Input arguments are:
% Fun: The function to be plotted. Its name is entered as
string expression.

% a: The first point of the domain.
% b: The last point of the domain.

www.it-ebooks.info

http://www.it-ebooks.info/

240 Chapter 7: User-Defined Functions and Function Files

% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);
y=feval (Fun,x) ; [Using the imported function to calculate f{x) at 100 points.]
xyout (1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout (1,2)=y(1);

xyout (2,2) =feval (Fun, (a+b) /2) ;-€—— Using the imported function to
xyout (3,2)=y(100); calculate f{x) at the midpoint.

plot (x,y)
xlabel ('x'), ylabel('y’)

Passing a user-defined function into another function by using a string expression:

The following demonstrates how to pass a user-defined function into a function
function by typing the name of the imported function as a string in the input argu-
ment. The function f(x) = e017%x3 _2x2+ 0.8x—3 from Section 7.9.1, created as
a user-defined funcéion named Fdemo, is passed into the user-defined function
funplotsS. Note that the name Fdemo is typed in a string for the input argument
Fun in the user-defined funckion funplots.

>> ydemoS=funplotS('Fdemo’,0.5,4)

ydemoS = The name of the imported
0.5000 -2.9852 function is typed as a string.
2.2500 -3.5548
4.0000 0.6235

In addition to the display of the numerical output in the Command Window, the
plot shown in Figure 7-3 is displayed in the Figure Window.

7.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The functions are
typed one after the other. Each function begins with a function definition line. The
first function is called the primary function and the rest of the functions are called
subfunctions. The subfunctions can be typed in any order. The name of the func-
tion file that is saved should correspond to the name of the primary function. Each
of the functions in the file can call any of the other functions in the file. Outside
functions, or programs (script files), can call only the primary function. Each of
the functions in the file has its own workspace, which means that in each the vari-
ables are local. In other words, the primary function and the subfunctions cannot
access each other’s variables (unless variables are declared to be global).

www.it-ebooks.info

http://www.it-ebooks.info/

7.10 Subfunctions 241

Subfunctions can help in writing user-defined functions in an organized
manner. The program in the primary function can be divided into smaller tasks,
each of which is carried out in a subfunction. This is demonstrated in Sample
Problem 7-4.

Sample Problem 7-4: Average and standard deviation

Write a user-defined function that calculates the average and the standard devia-
tion of a list of numbers. Use the function to calculate the average and the stan-
dard deviation of the following list of grades:

80 75 91 60 79 89 65 80 95 50 81

Solution

(mean) of a given set of » numbers x,, x,, ..., x,, is given by:

Xape = (X1 txy+ ... +x,)/n
The standard deviation is given by:
]2 (xi - xave)2

i=1
n—1

A user-defined function, named stat, is written for solving the problem. To
demonstrate the use of subfunctions, the function file includes stat as a primary
function, and two subfunctions called AVG and StandDiv. The function AVG
calculates x,,,, and the function StandDiv calculates 6. The subfunctions are
called by the primary function.The following listing is saved as one function file
called stat.

The average x

ave

Q
Il

function [me SD] = stat(v) [The primary function.]

n=length(v);
me=AVG(v,n) ;
SD=StandDiv (v, me,n) ;

function av=AVG (x,num) Subfunction.

av=sum(x) /num;

function Sdiv=StandDiv (x,xAve,num) Subfunction.
xdif=x-xAve;

xdif2=xdif."2;

Sdiv= sqrt(sum(xdif2)/(num-1));

The user-defined function stat is then used in the Command Window for calcu-
lating the average and the standard deviation of the grades:

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 7: User-Defined Functions and Function Files

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];
>> [AveGrade StanDeviation] = stat (Grades)

AveGrade =
76.8182

StanDeviation =
13.6661

7.11 NESTED FUNCTIONS

A nested function is a user-defined function that is written inside another user-
defined function. The portion of the code that corresponds to the nested function
starts with a function definition line and ends with an end statement. An end
statement must also be entered at the end of the function that contains the nested
function. (Normally, a user-defined function does not require a terminating end
statement. However, an end statement is required if the function contains one or
more nested functions.) Nested functions can also contain nested functions. Obvi-
ously, having many levels of nested functions can be confusing. This section con-
siders only two levels of nested functions.

One nested function:

The format of a user-defined function A (called the primary function) that contains
one nested function B is:

function y=A(al,a2)

¢ Note the end statements at the ends of functions B and A.

e The nested function B can access the workspace of the primary function A, and
the primary function A can access the workspace of the function B. This means
that a variable defined in the primary function A can be read and redefined in
nested function B and vice versa.

¢ Function A can call function B, and function B can call function A.

Two (or more) nested functions at the same level:

The format of a user-defined function A (called the primary function) that contains
two nested functions B and C at the same level is:

www.it-ebooks.info

http://www.it-ebooks.info/

7.11 Nested Functions 243

function y=A(al,a2)

¢ The three functions can access the workspace of each other.
¢ The three functions can call each other.

As an example, the following user-defined function (named statNest),
with two nested functions at the same level, solves Sample Problem 7-4. Note that
the nested funckions are using variables (n and me) that are defined in the primary
function.

function [me SD]=statNest (v) [The primary function. |

n=length(v) ;
me=AVG (V) ;

function av=AVG(x) (Nested function. |

av=sum(x) /n;

end

function Sdiv=StandDiv (x) (Nested function. |
xdif=x-me;

xdif2=xdif."2;

Sdiv= sqrt (sum(xdif2)/(n-1));

end

SD=StandDiv (v) ;

end

Using the user-defined function statNest in the Command Window for calcu-
lating the average of the grade data gives:

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];
>> [AveGrade StanDeviation] = statNest (Grades)

www.it-ebooks.info

http://www.it-ebooks.info/

244

Chapter 7: User-Defined Functions and Function Files

AveGrade =
76.8182

StanDeviation =
13.6661

Two levels of nested functions:

Two levels of nested functions are created when nested functions are written
inside nested functions. The following shows an example for the format of a user-
defined function with four nested functions in two levels.

function y=A(al,a2) (Primary function A.)
function z=B(bl,b2) (B is nested function in A.)
function w=C(cl1,c2) (C is nested function in B.)
end
end
function u=D(d1,d2) (D is nested function in A.)
function h=E(el,e2) (E is nested function in D.)
end
end
end

The following rules apply to nested functions:

¢ A nested function can be called from a level above it. (In the preceding exam-
ple, function A can call B or D, but not C or E.)

¢ A nested function can be called from a nested function at the same level within
the primary function. (In the preceding example, function B can call D, and D
can call B.)

¢ A nested function can be called from a nested function at any lower level.

e A variable defined in the primary function is recognized and can be redefined
by a function that is nested at any level within the primary function.

¢ A variable defined in a nested function is recognized and can be redefined by
any of the functions that contain the nested function.

www.it-ebooks.info

http://www.it-ebooks.info/

7.12 Examples of MATLAB Applications 245

7.12 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 7-5: Exponential growth and decay

A model for exponential growth or decay of a quantity is given by
A(D) = Ayett
where A(¢) and 4, are the quantity at time ¢ and time 0, respectively, and & is a
constant unique to the specific application.
Write a user-defined function that uses this model to predict the quantity
A(¢) at time ¢ from knowledge of 4, and A(¢,) at some other time ¢,. For function
name and arguments, use At = expGD (A0 ,At1, t1, t), where the output argu-
ment At corresponds to A(¢), and for input arguments, use A0, At1,t1l,t, cor-
responding to A4,, A(¢,), t,, and ¢, respectively.
Use the function file in the Command Window for the following two cases:
(@) The population of Mexico was 67 million in the year 1980 and 79 million in
1986. Estimate the population in 2000.
(b) The half-life of a radioactive material is 5.8 years. How much of a 7-gram
sample will be left after 30 years?

Solution

To use the exponential growth model, the value of the constant £ has to be deter-
mined first by solving for k in terms of 4,, A(¢;), and ¢,:

1, A()
4

Once & is known, the model can be used to estimate the population at any time.
The user-defined function that solves the problem is:

k=

function At=expGD(A0,Atl,tl,t) (Function definition line.|
expGD calculates exponential growth and decay

Input arguments are:

A0: Quantity at time zero.
Atl: Quantity at time tl.
tl: The time tl.

t: time t.

o d° 0P o P P o°

Output argument is:
% At: Quantity at time t.
k=log (At1/A0) /t1; (Determination of &.]

At=A0*exp (k*t) ; Determination of A(%).
(Assignment of value to output variable.)

www.it-ebooks.info

http://www.it-ebooks.info/

246

Chapter 7: User-Defined Functions and Function Files

Once the function is saved, it is used in the Command Window to solve the two
cases. For case a) 4, = 67, A(¢;) = 79, t; = 6,and ¢t = 20:

>> expGD(67,79,6,20)
ans =

116.03 [Estimation of the population in the year 2000.]

For case b) 4, = 7, A(¢,) = 3.5 (since ¢, corresponds to the half-life, which is
the time required for the material to decay to half of its initial quantity), ¢, = 5.8,
and ¢ = 30.

>> expGD(7,3.5,5.8,30)
ans =

0.19 [The amount of material after 30 years.]

Sample Problem 7-6: Motion of a projectile

Create a function file that calculates the tra-
jectory of a projectile. The inputs to the

y
function are the initial velocity and the angle " —— T~
at which the projectile is fired. The outputs g —Ihm. N
from the function are the maximum height b =
and distance. In addition, the function gener- - e ————

ates a plot of the trajectory. Use the function

to calculate the trajectory of a projectile that is fired at a velocity of 230 m/s at an

angle of 39°.

Solution

The motion of a projectile can be analyzed by considering the horizontal and ver-
tical components. The initial velocity v, can be resolved into horizontal and verti-
cal components

Vor = Voc0s(8) and vy, = v,sin(0)

b3 y

In the vertical direction the velocity and position of the projectile are given by:

v, = vy, —gt and y = voyt—%gt2
The time it takes the projectile to reach the highest point (v, = 0) and the corre-
sponding height are given by:
vé
2g
The total flying time is twice the time it takes the projectile to reach the highest
point, ¢, = 2t,,.... In the horizontal direction the velocity is constant, and the
position of the projectile is given by:

Yo
thmax = _gZ and hmax =

X = Vo, t

www.it-ebooks.info

http://www.it-ebooks.info/

7.12 Examples of MATLAB Applications 247

In MATLAB notation the function name and arguments are entered as
[hmax,dmax] = trajectory (v0, theta). The function file is:

function [hmax,dmax]=trajectory(vo0,theta) [Function definition line,]

% trajectory calculates the max height and distance of a
projectile, and makes a plot of the trajectory.

% Input arguments are:

v0: initial velocity in (m/s).
theta: angle in degrees.
Output arguments are:

hmax: maximum height in (m).

dmax: maximum distance in (m).

0 0P P P o of

The function creates also a plot of the trajectory.
g=9.81;

v0x=v0*cos (theta*pi/180);

vO0y=vO0*sin (theta*pi/180);

thmax=v0y/g;

hmax=v0y~2/ (2*g) ;

ttot=2*thmax;

dmax=v0Ox*ttot;

% Creating a trajectory plot

tplot=1linspace (0, ttot,200) ; (Creating a time vector with 200 elements|

x=v0x*tplot; Calculating the x and y coordi-
y=vOy*tplot-0.5*g*tplot."2; nates of the projectile at each time.
plot(x,y) \[Note the element-by-element multiplication. |

xlabel ('DISTANCE (m)"')
ylabel ('HEIGHT (m)')
title('PROJECTILE''S TRAJECTORY')

After the function is saved, it is used in the Command Window for a projec-
tile that is fired at a velocity of 230 m/s and an angle of 39°.

>> [h d]l=trajectory(230,39)

h =
1.0678e+003

d =
5.2746e+003

www.it-ebooks.info

http://www.it-ebooks.info/

248 Chapter 7: User-Defined Functions and Function Files

In addition, the following figure is created in the Figure Window:

PROJECTILE'S TRAJECTORY
1200 T T

1000 |-

@
o
o

HEIGHT (m)
@
=1
=]

400 |

200

0 1000 2000 3000 4000 5000 6000
DISTANCE (m)

7.13 PROBLEMS

1. Write a user-defined MATLAB function for the following math function:
y(x) = (-0.2x3 +7x2)e03x
The input to the function is x and the output is y. Write the function such that x
can be a vector (use element-by-element operations).
(a) Use the function to calculate y(—1.5) and y(5).
(b) Use the function to make a plot of the function y(x) for -2<x<6.

2. Write a user-defined MATLAB functon for the following math function:
#(0) = 4cos(4sinB)

The input to the function is 0 (in radians) and the output is ». Write the func-
tion such that 0 can be a vector.

(a) Use the function to calculate »(n/6) and n(5m/6).

(b) Use the function to plot (polar plot) »(0) for 0<0<2x.

3. The fuel consumption of an airplane is measured in gal/mi (gallon per mile) or
in L/km (liter per kilometers). Write a MATLAB user-defined function that
converts fuel efficiency consumption from gal/mi to L/km. For the function
name and arguments, use Lkm=LkmToGalm(gmi). The input argument
gmi is the consumption in gal/mi, and the output argument Lkm is the con-
sumption in L/lan. Use the function in the Command Window to:

(a) Determine the fuel consumption in L/km of a Boeing 747 whose fuel con-
sumption is about 5 gal/mi.

(b) Determine the fuel consumption in L/lan of the Concorde whose fuel con-
sumption is about 5.8 gal/mi.

www.it-ebooks.info

http://www.it-ebooks.info/

7.13 Problems 249

4. Tables of materials properties list density, in units of kg/m>, when the interna-

tional system of units (SI) is used and list specific weight, in units of 1b/in3,
when the U.S. customary system of units are used. Write a user-defined MAT-
LAB function that converts density to specific weight. For the function name
and arguments, use [sw] = DenToSw (den). The input argument den is the

density of a material in kg/m>, and the output argument sw is the specific
weight in Ib/in3. Use the function in the Command Window to:

(@) Determine the specific weight of steel whose density is 7860 kg/m3
(6) Determine the specific weight of titanium whose density is 4730 kg/m>

5. Write a user-defined MATLAB function that converts speed given in units of
knots (one knot is one nautical mile per hour) to speed in units of feet per sec-
ond. For the function name and arguments, use fps = ktsTOfps (kts).
The input argument kt s is the speed in knots, and the output argument £ps is
the speed in ft/s. Use the function to convert 400 kts to units of ft/s.

6. The body surface area (BS4) in m? of a person (used for determining dosage
of medications) can be calculated by the formula (Du Bois formula):

BSA = 0.007184 W% H*7
in which w is the mass in kg and H is the height in cm.

Write a MATLAB user-defined function that calculates the body surface
area. For the function name and arguments, use BSA = BodySurA (w,h).
The input arguments w and h are the mass and height, respectively. The output
argument BSA is the BSA value. Use the function to calculate the body surface
area of:

(@) A 95 kg, 1.87 m person.
() A 61 kg, 1.58 m person.

7. The fuel tank shown in the figure in shaped as a frustum
of cone with » = 20 in.,,and H = 2r.

Write a user-defined function (for the function
name and arguments, use V = Volfuel (y)) that
gives the volume of fuel in the tank (in gallons) as a
function of the height y (measured from the bottom).
Use the function to make a plot of the volume as a func-
tion of h for 0< A< 40 in.

www.it-ebooks.info

http://www.it-ebooks.info/

250 Chapter 7: User-Defined Functions and Function Files

8. The surface area S of a ring in shape of a torus with an

inner radius » and a diameter d is given by:
S = n22r+d)d

The ring is to be plated with a thin layer of coating. The
weight of the coating W can be calculated approxi-
mately as W = ySt, where v is the specific weight of d
the coating material and ¢ is its thiclness. Write an
anonymous function that calculates the weight of the coating. The function
should have four input arguments, r, d, ¢, and y. Use the anonymous function
to calculate the weight of a gold coating (y = 0.696 1b/in.?) of a ring with
r=035in., d = 0.12in., and ¢ = 0.002 in.

9. The windchill temperature Ty, is the perceived air temperature felt by the

body on exposed skin due to the flow of air. For temperatures below 50°F and
wind speed higher than 3 mph, it is calculated by:

Tye = G+ G T, + GV + T, V™
where T, is the air temperature in degrees F, V is the wind speed in mph,
C,=13574 , C, =0.6215, C; =-3575, and C, = 0.4275. Write a user-
defined function for calculating T, for given T, and V. For the function
name and arguments, use Twc=WindChill (T, V). The input arguments are
T the air temperature in °F and V the wind speed in mph, respectively. The
output argument is Twc, the windchill temperature in °F (rounded to the near-
est integer). Use the function to determine the windchill temperature for the
following conditions:
(@ T =35°F, ¥ =26 mph.
() T =10 °F, ¥ = 50 mph.

10. Write a user-defined function that calculates grade point average (GPA) on a
scale of 0 to 4, where 4 =4, A—-=37, B+=33, B=3, B—-=27,
C+=23,C=2,C-=17,D+=13 D= 1,and E = 0. For the function
name and arguments, use av = GPA (g, h). The input argument g is a vector
whose elements are the numerical values of the grades. The input argument h
is a vector with the corresponding credit hours. The output argument av is the
calculated GPA. Use the function to calculate the GPA for a student with the
following record:

Grade A— B B+ C E A D+ A
Credit Hours | 4 3 3 2 3 4 3 3

www.it-ebooks.info

http://www.it-ebooks.info/

7.13 Problems

251

11.

12.

13.

14.

The factorial n! of a positive number (integer) is defined by
nl=n-(n-1)-(n-2)-...-3-2-1, where 0! = 1. Write a user-defined
function that calculates the factorial n! of a number. For function name and
arguments, use y=fact (x), where the input argument x is the number
whose factorial is to be calculated and the output argument vy is the value x!.
The function displays an error message if a negative or non-integer number is
entered when the function is called. Do not use MATLAB built-in function
factorial. Use fact with the following numbers:

@ 9" B 85! (00 (a -5

Write a user-defined MATLAB function that deter- %

mines the angle that forms by the intersection of two !

lines. For the function name and arguments, use

th=anglines (A, B, C). The input arguments to c
the function are vectors with the coordinates of the

points 4, B, and C, as shown in the figure, which can X B

be two- or three-dimensional. The output th is the

angle in degrees. Use the function anglines for determining the angle for
the following cases:

(a) A(-5,-1, 6), B(2.5,1.5,-3.5), C(-2.3, 8, 1)

(b) A(-5.5,0), B(3.5,-6.5), C(0, 7)

Write a user-defined MATLAB function that determines the unit vector in the
direction of the line that connects two points (4 and B) in space. For the func-
tion name and arguments, use n = unitvec (A, B). The input to the function
are two vectors A and B, each with the Cartesian coordinates of the corre-
sponding point. The output is a vector with the components of the unit vector
in the direction from 4 to B. If points 4 and B have two coordinates each (they
are in the x y plane), then n is a two-element vector. If points 4 and B have
three coordinate each (general points in space), then n is a three-element vec-
tor. Use the function to determine the following unit vectors:

(a) In the direction from point (1.2, 3.5) to point (12, 15)

(b) In the direction from point (—10, -4, 2.5) to point (-13, 6, -5)

Write a user-defined MATLAB function that determines the cross product of
two vectors. For the function name and arguments, use w=crosspro(u,v).
The input arguments to the function are the two vectors, which can be two- or
three-dimensional. The output w is the result (a vector). Use the function
crosspro for determining the cross product of:

(a) Vectors a = 3i+11j and b = 14i-7.3j

(b) Vectors ¢ = —6i+14.2j+3k and d = 6.3i—8j— 5.6k

www.it-ebooks.info

http://www.it-ebooks.info/

252 Chapter 7: User-Defined Functions and Function Files

15. The area of a triangle ABC can be calculated by:
A= %IAB X AC|

where 4B is the vector from point 4 to point B and AC is the vector from point
A to point C. Write a user-defined MATLAB function that determines the area
of a triangle given its vertices’ coordinates. For the function name and argu-
ments, use [Area] = TriArea (A, B, C). The input arguments A, B, and C,
are vectors, each with the coordinates of the corresponding vertex. Write the code
of TriArea such that it has two subfunctions---one that determines the vec-
tors AB and AC and another that executes the cross product. (If available, use
the user-defined functions from Problem 14). The function should work for a
triangle in the x-y plane (each vertex is defined by two coordinates) or for a
triangle in space (each vertex is defined by three coordinates). Use the func-
tion to determine the areas of triangles with the following vertices:

(@ 4=(1,2),B =(10,3), C = (6,11)

(b) 4 =(-15,-42,-3),B = (-5.1,63,2), C = (12.1,0,-0.5)

16. Write a user-defined MATLAB function that determines the circumference of
a triangle when the coordinates of the vertices are given. For the function
name and arguments, use [cr] = cirtriangle (A, B, C). The input argu-
ments A, B, C are vectors with the coordinates of the vertices, and the output
variable cr is the circumference. The function should work for a triangle in
the x-y plane (each vertex is defined by two coordinates) or for a triangle in
space (each vertex is defined by three coordinates). Write the code of cir-
triangle such that it has a subfunction or an anonymous function for cal-
culating the distance between two points. Use the function to determine the
circumference of triangles with the following vertices:

(@ 4 =(1,2), B = (10,3), C = (6,11)
(b) 4 = (-1.5,-42,-3), B = (-5.1,63,2), C = (12.1,0,-0.5)

17. Write a user-defined function that plots a circle given the coordinates of the
center and a point on the circle. For the function name and arguments, use
circlePC(c,p). The input argument c is a two-element vector with the x
and y coordinates of the center and the input argument p is a two-element
vector with the x and y coordinates of the a point on the circle. This function
has no output arguments. Use the function to plot the following two circles
(both in the same figure):

(a) Center at x = 7.2, y = -2.9, pointon thecircleat x = -1.8, y = 0.5
(b) Center at x = -0.9, y = -3.3, point on thecircleat x = 0, y = 10

www.it-ebooks.info

http://www.it-ebooks.info/

7.13 Problems

253

18.

19.

20.

21.

22

Write a user-defined MATLAB function that converts integers written in deci-
mal form to binary form. Name the function b=Bina (d), where the input
argument d is the integer to be converted and the output argument b is a vec-
tor with 1s and Os that represents the number in binary form. The largest num-
ber that could be converted with the function should be a binary number with
16 1s. If a larger number is entered as d, the function should display an error
message. Use the function to convert the following numbers:

(@) 100 (b) 1002 (c) 52,601 (¢) 200,090

Write a user-defined function that plots a triangle and the circle that circum-
scribes the triangle, given the coordinates of its vertices. For the function
name and arguments, use TriCirc (A, B, C). The input arguments are vec-
tors with the x and y coordinates of the vertices, respectively. This function
has no output arguments. Use the function with the points (1.5, 3), (9, 10.5),
and (6,—3.8).

Write a user-defined function that plots an ellipse i
with axes that are parallel to the x and y axes,
given the coordinates of its center and the length) % }
of the axes. For the function name and argu- ;Fc

ments, use ellipseplot (xc,yc,a,b). The ¥ .

input arguments xc and yc are the coordinates T XC

of the center, and a and b are half the lengths of the horizontal and vertical
axes (see figure), respectively. This function has no output arguments. Use the
function to plot the following ellipses:

(@ xc=35,yc=20,a=85,b=3

b)) xc=-5,yc=15,a=4, b=28

X

In polar coordinates a two-dimensional vector is y 4
given by its radius and angle (r, 8) . Write a user-
defined MATLAB function that adds two vectors
that are given in polar coordinates. For the func-
tion name and arguments, use

[r th]= AddVecPol (rl,thl,r2,th2), A‘ 0
where the input arguments are (r,,0,) and
(72, 0,), and the output arguments are the radius and angle of the result. Use
the function to carry out the following additions:

@ r = (523°),r, = (12,40°) (b) r, = (6,80°), r, = (15,125°)

0,

X

Write a user-defined function that finds all the prime numbers between two
numbers m and ». Name the function pr=prime (m,n), where the input
arguments m and n are positive integers and the output argument pr is a vec-
tor with the prime numbers. If m > n is entered when the function is called,

www.it-ebooks.info

http://www.it-ebooks.info/

254 Chapter 7: User-Defined Functions and Function Files

the error message “The value of » must be larger than the value of m.” is dis-
played. If a negative number or a number that is not an integer is entered when
the function is called, the error message “The input argument must be a posi-
tive integer.” is displayed. Do not use MATLAB’s built-in functions primes
and isprime. Use the function with:

(@) prime(12,80) (b) prime (21,63.5)

(¢) prime (100,200) (d) prime(90,50)

23. The geometric mean GM of a set of » positive numbers x,, x,, ..., x,, is defined

by:
GM = (x;-xy-...-x,)'/"

Write a user-defined function that calculates the geometric mean of a set of
numbers. For function name and arguments use GM=Geomean (x), where
the input argument x is a vector of numbers (any length) and the output argu-
ment GM is their geometric mean. The geometric mean is useful for calculat-
ing the average of rates. The following table gives the inflation rates in the
United States from 1978 to 1987 (inflation of 7.6% means 1.076). Use the
user-defined function Geomean to calculate the average inflation for the ten-
year period.

Year 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987
Inflation rate { 1.076 {1.113 {1.135{1.103 {1.062 | 1.032 | 1.043 | 1.036 | 1.019 | 1.036

24. Write a user-defined function that determines the polar %
coordinates of a point from the Cartesian coordinates in a
two-dimensional plane. For the function name and argu-)
ments, use [th rad]=CartToPolar (x,y). The input an)
arguments are the x and y coordinates of the point, and the
output arguments are the angle 0 and the radial distance to (1) av)
the point. The angle 0 is in degrees and is measured relative
to the positive x axis, such that it is a positive number in quadrants I and II, and a
negative number in quadrant III and I'V. Use the function to determine the polar
coordinates of points (14, 9), (—11, -20), (15, 4), and (13.5, -23.5).

25. Write a user-defined function that determines the mode of a set of data (the
value in the set that occurs most often). For the function name and arguments,
use m=most frqg (x). The input to the function is a vector x of any length
with values, and the output m is a two-element vector in which the first ele-
ment is the value in x that occurs most often, and the second element is the
mode. If there are two, or more, values for the mode the output is the message:
“There are more than one value for the mode.” Do not use the MATLAB
built-in function mode. Test the function three times. For input create a 20-
element vector using the following command: x=randi (10,1, 20).

www.it-ebooks.info

http://www.it-ebooks.info/

7.13 Problems

255

26.

Write a user-defined function that sorts the elements of a vector from the
largest to the smallest. For the function name and arguments, use
y=downsort (x). The input to the function is a vector x of any length, and
the output y is a vector in which the elements of x are arranged in a
descending order. Do not use the MATLAB built-in functions sort, max, or
min. Test your function on a vector with 14 numbers (integers) randomly
distributed between —30 and 30. Use the MATLAB randi function to
generate the initial vector.

27. Write a user-defined function that sorts the elements of a matrix. For the func-

tion name and arguments, use B = matrixsort (A), where A is any size
(m x n) matrix and B is a matrix of the same size with the elements of A rear-
ranged in descending order row after row with the (1,1) element the largest
and the (m,n) element the smallest. If available, use the user-defined function
downsort from Problem 26 as a subfunction within matrixsort.

Test your function on a 4 X 7 matrix with elements (integers) randomly
distributed between —30 and 30. Use MATLAB’s randi function to generate
the initial matrix.

28. Write a user-defined function that finds the largest element of a matrix. For the

29.

function name and arguments, use [Em, rc] = matrixmax (A), where A is
any size mawix. The output argument Em is the value of the largest element,
and rc is a two-element vector with the address of the largest element (row
and column numbers). If there are two, or more, elements that have the maxi-
mum value, the output argument rc is a two-column matrix where the rows
list the addresses of the elements. Test the function three times. For input cre-
ate a 4x6 mawix using the following command: x=randi ([-20
100],4,6)

Write a user-defined MATLAB function that calculates the determinant of a
3 x3 mawrix by using the formula:

A22 A23 AZl A23 A21 A22
32 A33 A31 A33 A3l A32
For the function name and arguments, use d3 = det3by3 (A), where the
input argument A is the matrix and the output argument d3 is the value of the
determinant. Write the code of det3by3 such that it has a subfunction that
calculates the 2 x2 determinant. Use det3by3 for calculating the determi-
nants of:

det = Ay, —Ap, +4p

132 257 1
@ |654 ® | 5 326
789 4 2 -1

www.it-ebooks.info

http://www.it-ebooks.info/

256 Chapter 7: User-Defined Functions and Function Files

30. A two-dimensional state of stress at a point in a loaded
material in the direction defined by the x-y coordinate T
system is defined by three components of stress o —

xx? y
,,,and 1,,. The stresses at the point in the direction | _1_0;""

vy
defined by the x’- y* coordinate system are calculated
by the stress transformation equations:

_ oxx+oyy+oxx—c /

O = = 3 220520 +1,,5in20

G, —O,, .
T,y = —”—Z-Z-Zsm26+1:xycos29

xy
O'y,y, = Gxx + ny — ox'x'

where 0 is the angle shown in the figure. Write a user-
defined MATLAB function that determines the
stresses ©,.,-, O, and T, given the stresses ¢
and the angle 6. For the function name and arguments, use

xx?

ny ’ Tx}’ ’

[Stran] =StressTrans (S, th). The input argument S is a vector with

the values of the three stress components o,,, o,,, and t,,, and the input

argument th is a scalar with the value of 8. The output argument Stranisa

vector with the values of the three stress components o, 6./, and T, .
Use the function to determine the stresses transformation for the follow-

ing cases:

(@ o,, = 160 MPa, o,, = 40 MPa, and 1,, = 60 MPa, 6 = 20°

() o, = -18ksi, 6,, = 10ksi, and t,, = -8ksi, 8 = 65°.

31. The dew point temperature T, and the relative humidity RH can be calculated
(approximately) from the dry-bulb T and wet-bulb T, temperatures by

(http://www.wikipedia.org):
_ TG, e A1)
e, 6.112exp(T_'_243.5 e, = 6.112exp T, + 2435
e = e,— pua(T—T,)0.00066(1+0.00115T,)

_ e _ 243.5In(e/6.112)
RE = 1000 Ta = 767 n(e/6.112)
where the temperatures are in degrees Celsius, RH is in %, and p,,, is the
barometric pressure in units of millibars.

Write a user-defined MATLAB function that calculates the dew point
temperature and relative humidity for given dry-bulb and wet-bulb tempera-
tures in degrees Fahrenheit (° F) and barometric pressure in inches of mercury
(inHg). For the function name and arguments, use [Td,RH] = Dewp-
tRhum (T, Tw, BP), where the input arguments T, Tw, BP are dry-bulb and
wet-bulb temperatures in °F and BP is the barometric pressure in inHg,
respectively. The output arguments Td, RH are the dew point temperature in

www.it-ebooks.info

http://www.it-ebooks.info/

7.13 Problems

257

32.

33.

°F and the relative humidity in %. The values of the output arguments should
be rounded to the nearest tenth. Use anonymous function or subfunctions
inside DewptRhum to convert units.

Use the user-defined function DewptRhum for calculating the dew point
temperature and relative humidity for the following cases:
(@ T =178 °F, T, = 66°F, p,, = 29.09 inHg

(b) T =97 °F, T, = 88 °F, p,,, = 30.12 mbar

In a lottery the player has to select several numbers out of a list. Write a user-

defined function that generates a list of » integers that are uniformly

diswributed between the numbers a and 5. All the selected numbers on the list

must be different. For function name and arguments, use

x=lotto(a, b, n) where the input argument are the numbers a and b, and »,

respectively. The output argument x is a vector with the selected numbers.

(a) Use the function to generate a list of seven numbers from the numbers 1

through 59.

(b) Use the function to generate a list of eight numbers from the numbers 50
through 65.

(¢) Use the function to generate a list of nine numbers from the numbers —25
through —2.

The Taylor’s series expansion for cosx about x = 0 is given by:
_ x2 x* x6 D" x2n
cosx = 1_5-’_4_!_5 Z(Zn)'

where x is in radians. Write a user-defined functlon that determines cosx
using Taylor’s series expansion. For function name and arguments, use
y=cosTay (x), where the input argument x is the angle in degrees and the
output argument y is the value for cosx . Inside the user-defined function, use
a loop for adding the terms of the Taylor’s series. If a, is the th term in the
series, then the sum S, of the ntermsis S, = S,_, +a, . In each pass, calcu-

Sn—Sn—l

late the estimated error E given by E = . Stop adding terms when

n-1
E <0.000001. Since cos(0) = cos(0+360n) write the user-defined function
such that if the angle is larger than 360°, or smaller than —360° ,then the tay-
lor series will be calculated using the smallest number of terms (using a value
for x that is closest to 0).

Use cosTay for calculating:
(@) cos67° (b) cos200° (¢) cos-80°.
(d) cos794° (e) cos20000° .(f) cos—738°
Compare the values calculated using cosTay with the values obtained by
using MATLAB’s built-in cosd function.

www.it-ebooks.info

http://www.it-ebooks.info/

258

34. Write a user-defined function that determines the

35.

36.

coordinate y, of the centroid of the U-shaped T
cross-sectional area shown in the figure. For the
function name and arguments, use yc = cen- k
troidU(w,h,t,d), where the input argu- |
ments w, h, t, and d, are the dimensions shown
in the figure and the output argument yc is the ¢ s
coordinate y,.

Use the function to determine y, for an area with w = 10in., 2 = 7 in,,
d=175in,and ¢t = 0.51in.

The area moment of inertia I, of a rectangle about the b

axis x, passing through its centroid is I, = ébh3. The
{

moment of inertia about an axis x that is parallel to x, is B
givenby I, = I, + Adi , where 4 is the area of the rectan- 4
gle, and 4, is the distance between the two axes. ———'—x

[1 i

Write a MATLAB user-defined function that \ w |
determines the area moment of inertia I, of a ;

“U” beam about the axis that passes through its
centroid (see drawing). For the function name
and arguments use Ixc=IxcT-
Beam(w, h, t, d), where the input arguments w,
h, t, and 4 are the dimensions shown in the fig-
ure and the output argument Ixc is I, . For find-

ing the coordinate y, of the of the centroid, use the user-defined function
centroidU from Problem 34 as a subfunction inside IxcUBeam.
(The moment of inertia of a composite area is obtained by dividing the area
into parts and adding the moments of inertia of the parts.)

Use the function to determine the moment of inertia of a “U” beam
w = 12in., h = 8in,, d = 2 in,,and ¢ = 0.75 in.

In a low-pass RL filter (a filter that passes sig- L
nals with low frequencies), the ratio of the o— ryyyp— =
magnitudes of the voltages is given by:

v, _ 1 Vi R§ Vo

0
2
fl +(m_L)
R = =]

where @ is the frequency of the input signal.
Write a user-defined MATLAB function that calculates the magnitude

RV =

V;

www.it-ebooks.info

Chapter 7: User-Defined Functions and Function Files

http://www.it-ebooks.info/

7.13 Problems

259

37.

38.

ratio. For the function name and arguments, use RV = LRFilt (R, L, w). The
input arguments are R, the size of the resistor in Q (ohms); L, the size of the
capacitor in H (Henry); and w, the frequency of the input signal in rad/s. Write
the function such that w can be a vector.

Write a program in a script file that uses the LRFilt function to generate

a plot of RV as a function of ® for 10<®< 10° rad/s. The plot has a loga-
rithmic scale on the horizontal axis (). When the script file is executed, it
asks the user to enter the values of R and L. Label the axes of the plot.

Run the script file with R = 600 Q, and L = 0.14 pF.

A circuit that filters out a certain frequency L
is shown in the figure. In this filter, the — 0000 —
ratio of the magnitudes of the voltages is ° C, =
given by: |
Vi R Vo
Ry = Yo = |IR(1 — @2LC)|
Vii JR-R2LC?+(wLl)? < s

where @ is the frequency of the input signal.

Write a user-defined MATLAB function that calculates the magnitude
ratio. For the function name and arguments, use RV=filt-
freqg(R,C,L,w). The input arguments are R the size of the resistor in
(ohms); C, the size of the capacitor in F (farads); L, the inductance of the coil
in H (henrys); and w, the frequency of the input signal in rad/s. Write the func-
tion such that w can be a vector.

Write a program in a script file that uses the £iltfreq function to gen-

erate a plot with two graphs of RV as a function of @ for 10<®<10* radss.
In one graph C = 160 pF, L = 45 mH, and R = 200 £, and in the second
graph C and L are the same and R = 50 The plot has a logarithmic scale on
the horizontal axis (). Label the axes and display a legend.

The first derivative % of a function f{(x) ata point x = x, can be approx-

imated with the two-point central difference formula:

dfix) _ f(xg+ B) —flxy—h)

dx 2h

where 4 is a small number relative to x, . Write a user-defined function func-
tion (see Section 7.9) that calculates the derivative of a math function f{x) by
using the two-point central difference formula. For the user-defined function
name, use df dx=Funder (Fun, x0), where Fun is a name for the function
that is passed into Funder, and x0 is the point where the derivative is calcu-
lated. Use % = x,/100 in the two-point central difference formula. Use the
user-defined function Funder to calculate the following:

(a) The derivative of f{x) = x3¢2* at x, = 0.6

www.it-ebooks.info

http://www.it-ebooks.info/

260 Chapter 7: User-Defined Functions and Function Files

(b) The derivative of f(x) = g at x, = 2.5
In both cases compare the answer obtained from Funder with the analytical

solution (use format long).

39. The new coordinates (X,, ¥,) of a point in the x-y plane that is rotated about

the z axis at an angle 0 (positive is clockwise) are given by

X, = X,cos0— Y;sin0

Y, = X;sin0 + Y,cos0
where (X, Y,) are the coordinates of the point before the rotation. Write a
user-defined function that calculates (X,, ¥,) given (X,, Y¥,) and 6. For func-
tion name and arguments, use [xr,yr]=rotation(x,y,q), where the
input arguments are the initial coordinates and the rotation angle in degrees
and the output arguments are the new coordinates.
(a) Use rotation to determine the new coordinates of a point originally at
(6.5,2.1) that is rotated about the z-axis by 25°.

(b) Consider the function y = (x—7)2+1.5 for 5<x<9. Write a program in
a script file that makes a plot of the function. Then use rotation to rotate
all the points that make up the first plot and make a plot of the rotated func-
tion. Make both plots in the same figure and set the range of both axes at 0 to
10.

40. In lottery the player has to guess correctly » numbers that are drawn out of »n
numbers. The probability, P, of guessing m numbers out of the » numbers can
be calculated by the expression:

C .C
P= r,m>=(n—r),(r—m)
C

n,r

! . .
where C, , = y'(xx——y)' . Write a user-defined MATLAB function that calcu-
lates P. For the function name and arguments, use P = ProbLot-
tery (m, r,n). The input arguments are m the number of correct guesses; r,
the number of numbers that need to be guessed; and n, the number of numbers

available. Use a subfunction inside ProbLottery for calculating C, , .

(a) Use ProbLottery for calculating the probability of correctly selecting
3 of 6 the numbers that are drawn out of 49 numbers in a lottery game.

(b) Consider a lottery game in which 6 numbers are drawn out of 49 numbers.
Write a program in a script file that displays a table with seven raws and
two columns. The first column has the numbers 0, 1, 2, 3, 4, 5, and 6,
which are the number of numbers guessed correctly. The second column
show the corresponding probability of making the guess.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8
Polynomials,

Curve Fitting, and
Interpolation

Polynomials are mathematical expressions that are frequently used for problem
solving and modeling in science and engineering. In many cases an equation that
is written in the process of solving a problem is a polynomial, and the solution of
the problem is the zero of the polynomial. MATLAB has a wide selection of func-
tions that are specifically designed for handling polynomials. How to use polyno-
mials in MATLAB is described in Section 8.1.

Curve fitting is a process of finding a function that can be used to model
data. The function does not necessarily pass through any of the points, but models
the data with the smallest possible error. There are no limitations to the type of the
equations that can be used for curve fitting. Often, however, polynomial, exponen-
tial, and power functions are used. In MATLAB curve fitting can be done by writ-
ing a program or by interactively analyzing data that is displayed in the Figure
Window. Section 8.2 describes how to use MATLAB programming for curve fit-
ting with polynomials and other functions. Section 8.4 describes the basic fitting
interface that is used for interactive curve fitting and interpolation.

Interpolation is the process of estimating values between data points. The
simplest kind of interpolation is done by drawing a straight line between the
points. In a more sophisticated interpolation, data from additional points is used.
How to interpolate with MATLAB is discussed in Sections 8.3 and 8.4.

8.1 POLYNOMIALS
Polynomials are functions that have the form:
f(x) =ax"+a, x"1+.. +ax+a,

The coefficients a,, a ..,a,, ay are real numbers, and » which is a nonnegative

n—1 *

www.it-ebooks.info

261

http://www.it-ebooks.info/

262 Chanter 8: Polynomials, Curve Fitting, and Interpolation

integer, is the degree, or order, of the polynomial.
Examples of polynomials are:

flx) = 5x5+6x2+7x+3 polynomial of degree 5.

flx) = 2x2-4x+10 polynomial of degree 2.

flx) = 11x-5 polynomial of degree 1.

A constant (e.g., f(x) = 6) is a polynomial of degree 0.

In MATLAB, polynomials are represented by a row vector in which the ele-
ments are the coefficients a,,a,_;, ..., a;, a, . The first element is the coefficient
of the x with the highest power. The vector has to include all the coefficients,
including the ones that are equal to 0. For example:

Polynomial MATIAB representation
8x+5 p=1[8 5]

2x2—4x+10 d=[2 4 10]

6x2—150, MATLAB form: 6x2+0x— 150 h=[6 0 -150]

5x5+ 6x2—7x, MATLAB form: c=[5006 -7 0]

Sx35+0x*+0x3+6x2—7x+0

8.1.1 Value of a Polynomial

The value of a polynomial at a point x can be calculated with the function
polyval that has the form:

[polyval (p, x)

x is a number, or a variable that
p is a vector with the coef- has an assigned value, or a com-
ficients of the polynomial. putable expression.

x can also be a vector or a matrix. In such a case the polynomial is calculated for
each element (element-by-element), and the answer is a vector, or a matrix, with
the corresponding values of the polynomial.

Sample Problem 8-1: Calculating polynomials with MATLAB

For the polynomial f(x) = x°—12.1x*+40.59x3 — 17.015x2—-71.95x + 35.88 :

(@) Calculate £(9).
(b) Plot the polynomial for —-1.5<x<6.7.

Solution

The problem is solved in the Command Window.
(@) The coefficients of the polynomials are assigned to vector p. The function

www.it-ebooks.info

http://www.it-ebooks.info/

263

8.1 Polynomials

polyval is then used to calculate the value at x = 9.

>> p = [1 -12.1 40.59 -17.015 -71.95 35.88];
>> polyval (p,9)

ans =
7.2611e+003

(b)) To plot the polynomial, a vector x is first defined with elements ranging
from —1.5 to 6.7. Then a vector y is created with the values of the polynomial for
every element of x. Finally, a plot of y vs. x is made.

>> x=-1.5:0.1:6.7;
>> y=polyval (p,x) ; Ca}lculanng the value of the polyno-
mial for each element of the vector x.

>> plot(x,y)

The plot created by MATLARB is presented below (axis labels were added with the
Plot Editor).

=100+

150+

8.1.2 Roots of a Polynomial

The roots of a polynomial are the values of the argument for which the value of
the polynomial is equal to zero. For example, the roots of the polynomial
flx) = x2-2x-3 are the values of x for which x2-2x-3 = 0, which are
=-1andx=3.
MATLAB has a function, called roots, that determines the root, or roots,
of a polynomial. The form of the func#ion is:

[r = roots(p)

r is a column vector with p is a row vector with the coef-
the roots of the polynomial. ficients of the polynomial.

For example, the roots of the polynomial in Sample Problem 8-1 can be deter-
mined by:

www.it-ebooks.info

http://www.it-ebooks.info/

264 Chapter 8: Polynomials, Curve Fitting, and Interpolation

>> p= 1 -12.1 40.59 -17.015 -71.95 35.88];

>> r=roots (p)

r =
6.5000 When the roots are known, the polynomial can
4.0000 actually be written as:
2.3000 Sx) = (x+1.2)(x-0.5)(x—2.3)(x—4)(x - 6.5)
-1.2000
0.5000

The roots command is very useful for finding the roots of a quadratic equation.
For example, to find the roots of f{x) = 4x2+ 10x -8 , type:

>> roots([4 10 -8])

ans =
-3.1375
0.6375

When the roots of a polynomial are known, the poly command can be used
for determining the coefficients of the polynomial. The form of the poly com-

mand is:

p = poly(r)
p is a row vector with the r is a vector (row or column)
coefficients of the polynomial. with the roots of the polynomial.

For example, the coefficients of the polynomial in Sample Problem 8-1 can be
obtained from the roots of the polynomial (see above) by:

>> r=[6.5 4 2.3 -1.2 0.5];
>> p=poly(r)

p=
1.0000 -12.1000 40.5900 -17.0150 -71.9500 35.8800

8.1.3 Addition, Multiplication, and Division of Polynomials
Addition:
Two polynomials can be added (or subtracted) by adding (sub#racting) the vectors
of the coefficients. If the polynomials are not of the same order (which means that
the vectors of the coefficients are not of the same length), the shorter vector has to
be modified to be of the same length as the longer vector by adding zeros (called
padding) in front. For example, the polynomials

fi1(x) = 3x6+15x5—-10x3 —3x2+15x—-40 and f,(x) = 3x3-2x-6 can be
added by:

www.it-ebooks.info

http://www.it-ebooks.info/

8.1 Polynomials 265

>> pl=[3 15 0 -10 -3 15 -40];
>> p2=[3 0 -2 -6]; Three Os are added in front
of p2, since the order of pl

>> p=pl+[0 0 0 p2] -, .
is 6 and the order of p2 is 3.
P =
3 15 0 -7 -3 13 -46
Multiplication:

Two polynomials can be multiplied using the MATLAB built-in function conv,
which has the form:

[¢ = convia,b)]

4 i

c is a vector of the coefﬁcientsT T a and b are the vectors of the
of the polynomial that is the coefficients of the polynomials
product of the multiplication. that are being multiplied.

e The two polynomials do not have to be of the same order.

e Multiplication of three or more polynomials is done by using the conv func-
tion repeatedly.

For example, multiplication of the polynomials f;(x) and f,(x) above gives:

>> pm=conv (pl,p2)
pm =
9 45 -6 -78 -99 65 -54 -12 -10 240

which means that the answer is:
9x9 + 45x8 — 6x7 — 78x6 — 99x5 + 65x* — 54x3 — 12x2 — 10x + 240
Division:
A polynomial can be divided by another polynomial with the MATLAB built-in
function deconv, which has the form:

[q,r] = deconv(u,v)
g is a vector with the coefficients u is a vector with the coefficients of
of the quotient polynomial. the numerator polynomial.
r is a vector with the coefficients v is a vector with the coefficients of
of the remainder polynomial. the denominator polynomial.

For example, dividing 2x3 +9x2+7x—6 by x+3 is done by:

>> u=[2 9 7 -6];
>> v=[1 3];

www.it-ebooks.info

http://www.it-ebooks.info/

266 Chapter 8: Polynomials, Curve Fitting, and Interpolation

>> [a bl=deconv(u,Vv)

2 3 -2 [The answer is: 2x2+3x—2.]

0 0 0 0 [Remainder is zero.]

An example of division that gives a remainder is 2x6— 13x5+ 75x3 +2x2— 60
divided by x2-5:

>> w=[2 -13 0 75 2 0 -60];

>> z=[1 0 -5];

>> [g hl=deconv(w, z)

g =

2 -13 10 10 52 [The quotient is: 2x*— 13x3 + 10x2 + 10x + 52]
h =

0 0 0 0 0 50 200 The remainder is: 50x + 200]
The answer is: 2x4—13x3+ 10x2 + 10x + 52 + %) .

8.1.4 Derivatives of Polynomials

The built-in function polyder can be used to calculate the derivative of a single
polynomial, a product of two polynomials, or a quotient of two polynomials, as
shown in the following three commands.

k = polyder (p) Derivative of a single polynomial. p is a vector with
the coefficients of the polynomial. k is a vector with
the coefficients of the polynomial that is the derivative.

k =polyder(a,b) Derivative of a product of two polynomials. a and b
are vectors with the coefficients of the polynomials that
are multiplied. k is a vector with the coefficients of the
polynomial that is the derivative of the product.

[n d] = polyder (u,v) Derivative of a quotient of two polynomials. u and v
are vectors with the coefficients of the numerator and
denominator polynomials. n and d are vectors with the
coefficients of the numerator and denominator polyno-
mials in the quotient that is the derivative.

The only difference between the last two commands is the number of output argu-
ments. With two output arguments MATLAB calculates the derivative of the quo-
tient of two polynomials. With one output argument, the derivative is of the
product.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Curve Fitting 267

For example, if f,(x) = 3x2—-2x+4,and f,(x) = x2+ 5, the derivatives of

—2x+4

2
3x2—2x+4, (3x2—2x +4)(x2+5), and %

) can be determined by:
x*+5

>> fl= 3 -2 4];
>> £2=[1 0 5];

>> k=polyder (£1)

[Creating the vectors of coefficients of f; and f;. |

k = [The derivative of f] is: 6x—2.]
6 -2

>> d=polyder (£f1l,£2)

4 = | The derivative of fi*f; is: 12x3— 6x2+38x— 10. |

12 -6 38 -10

>> [n dl=polyder (f1l,£2)

n = A 3x2-2x+4 . 2x2+22x-10
2 22 -10 The derivative of 245 A TI0e27 25"

1 0 10 0 25

8.2 CURVE FITTING

Curve fitting, also called regression analysis, is a process of fitting a function to a
set of data points. The function can then be used as a mathematical model of the
data. Since there are many types of functions (linear, polynomial, power, expo-
nential, etc.), curve fitting can be a complicated process. Many times one has
some idea of the type of function that might fit the given data and will need only
to determine the coefficients of the function. In other situations, where nothing is
known about the data, it is possible to make different types of plots that provide
information about possible forms of functions that might fit the data well. This
section describes some of the basic techniques for curve fitting and the tools that
MATLARB has for this purpose.

8.2.1 Curve Fitting with Polynomials; The polyfit Function

Polynomials can be used to fit data points in two ways. In one the polynomial
passes through all the data points, and in the other the polynomial does not neces-
sarily pass through any of the points but overall gives a good approximation of the
data. The two options are described below.

Polynomials that pass through all the points:

When n points (x;, y;) are given, it is possible to write a polynomial of degree n—1
that passes through all the points. For example, if two points are given it is possi-
ble to write a linear equation in the form of y = mx + b that passes through the
points. With three points, the equation has the form of y = ax2+bx+c. With n

www.it-ebooks.info

http://www.it-ebooks.info/

268 Chapter 8: Polynomials, Curve Fitting, and Interpolation

points the polynomial has the form a4, ;x*-!'+a,_,x"-2+...+a;x+a,. The

coefficients of the polynomial are determined by substituting each point in the
polynomial and then solving the 7 equations for the coefficients. As will be shown
later in this section, polynomials of high degree might give a large error if they are
used to estimate values between data points.

Polynomials that do not necessarily pass through any of the points:

When r points are given, it is possible to write a polynomial of degree less than
n—1 that does not necessarily pass through any of the points but that overall
approximates the data. The most common method of finding the best fit to data
points is the method of least squares. In this method, the coefficients of the poly-
nomial are determined by minimizing the sum of the squares of the residuals at all
the data points. The residual at each point is defined as the difference between the
value of the polynomial and the value of the data. For example, consider the case
of finding the equation of a straight line that best fits four data points as shown in
Figure 8-1. The points are (x,,y;), (x,.0,), (x3,9;), and (x,,»,) , and the polyno-

Ay
(X45 o)
) Rt~
Sy fx) = apx + gy
Ry R3
.f(xZ) (x39 Yy 3)
Sx) R,
(X1, y1))i

Figure 8-1: Least squares fitting of first-degree polynomial to four points.

mial of the first degree can be written as f(x) = a,x + a,. The residual, R;, at each
point is the difference between the value of the function at x; and y;,

R; = fix;)—y; . An equation for the sum of the squares of the residuals R; of all
the points is given by:

R = [fx) ="+ [fx2) = o] + [f(x3) = y3 1" + [fx) -y
or, after substituting the equation of the polynomial at each point, by:
R = [ayx; + ag—y 1+ (a0, + ag—y,1* + [ay23 + ag—ys I + [ayx4 + ag—y, 1’
At this stage R is a function of a, and a,. The minimum of R can be determined
by taking the partial derivative of R with respect to a; and a, (two equations) and
equating them to zero:
dR d dR

871=0an a—ao=0

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Curve Fitting 269

This results in a system of two equations with two unknowns, a, and a,. The
solution of these equations gives the values of the coefficients of the polynomial
that best fits the data. The same procedure can be followed with more points and
higher-order polynomials. More details on the least squares method can be found
in books on numerical analysis.

Curve fitting with polynomials is done in MATLAB with the polyfit
function, which uses the least squares method. The basic form of the polyfit
function is:

[p = polyfit(x,y,n)

4

p is the vector of the coeffi- x is a vector with the horizontal coordinates
cients of the polynomial of the data points (independent variable).
that fits the data. y is a vector with the vertical coordinates of
the data points (dependent variable).
n is the degree of the polynomial.

For the same set of m points, the polyfit function can be used to fit poly-
nomials of any order up to m — 1. If n = 1 the polynomial is a straight line, if n =2
the polynomial is a parabola, and so on. The polynomial passes through all the
points if » = m—1 (the order of the polynomial is one less than the number of
points). It should be pointed out here that a polynomial that passes through all the
points, or polynomials with higher order, do not necessarily give a better fit over-
all. High-order polynomials can deviate significantly between the data points.

Figure 8-2 shows how polynomials of different degrees fit the same set of
data points. A set of seven points is given by (0.9, 0.9), (1.5, 1.5), (3, 2.5), (4, 5.1),

7 i T " 7

6 - 6

5 o ° b 5
o

4 e - 4

0 2 4 6 8 10 0 2 4 6 8 10

Figure 8-2: Fitting data with polynomials of different order.

www.it-ebooks.info

http://www.it-ebooks.info/

270 Chapter 8: Polynomials, Curve Fitting, and Interpolation

0 2 4 6 8 10 0 2 4 6 8 10
X x
7 10
6
8,
5

N
I
=)}

0 L L L L 0 L L 1
10 0 2 4 6
X X

o
N
»
-]
-]
o |

10
Figure 8-2: Fitting data with polynomials of different order. (Continued)

(6, 4.5), (8,4.9), and (9.5, 6.3). The points are fitted using the polyfit function
with polynomials of degrees 1 through 6. Each plot in Figure 8-2 shows the same
data points, marked with circles, and a curve-fitted line that corresponds to a poly-
nomial of the specified degree. It can be seen that the polynomial withn=1is a
straight line, and that with n = 2 is a slightly curved line. As the degree of the
polynomial increases, the line develops more bends such that it passes closer to
more points. When n = 6, which is one less than the number of points, the line
passes through all the points. However, between some of the points, the line devi-
ates significantly from the wend of the data.

The script file used to generate one of the plots in Figure 8-2 (the polyno-
mial with # = 3) is shown below. Note that in order to plot the polynomial (the
line), a new vector xp with small spacing is created. This vector is then used with

x=[0.9 1.5 3 4 6 8 9.5]; Create vectors x and y with the
y=[0.9 1.5 2.5 5.1 4.5 4.9 6.3]; coordinates of the data points.

p=polyfit (x,y,3) [Create a vector p using the polyfit function.]
xp=0.9:0.1:9.5; [Create a vector xp to be used for plotting the polynomial.]
yp=polyval (p,xp) [Create a vector yp with values of the polynomial at each xp.]
plot(x,y,'o',xp,yp) [A plot of the seven points and the polynomial.]
xlabel('x'); ylabel('y')

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Curve Fitting 271

the function polyval to create a vector yp with the value of the polynomial for
each element of xp.

When the script file is executed, the following vector p is displayed in the
Command Window.

P =
0.0220 -0.4005 2.6138 -1.4158

This means that the polynomial of the third degree in Figure 8-2 has the form
0.022x3 — 0.4005x2 + 2.6138x — 1.4148 .

8.2.2 Curve Fitting with Functions Other than Polynomials

Many situations in science and engineering require fitting functions that are not
polynomials to given data. Theoretically, any function can be used to model data
within some range. For a particular data set, however, some functions provide a
better fit than others. In addition, determining the best-fitting coefficients can be
more difficult for some functions than for others. This section covers curve fitting
with power, exponential, logarithmic, and reciprocal functions, which are com-
monly used. The forms of these functions are:

y = bx™ (power function)

y = bem™ or y = b10™ (exponential function)

y = mIn(x)+b or y = mlog(x)+b (logarithmic function)
_ 1 . .

Y= % (reciprocal function)

All of these functions can easily be fitted to given data with the polyfit func-
tion. This is done by rewriting the functions in a form that can be fitted with a lin-
ear polynomial (» = 1), which is
y=mx+b

The logarithmic function is already in this form, and the power, exponential, and
reciprocal equations can be rewritten as:

In(y) = mIn(x)+ Inb (power function)

In(y) = mx+In(b) or log(y) = mx+log(b) (exponential function)

i = mx+b (reciprocal function)

These equations describe a linear relationship between In(y) and In(x) for the
power function, between In(y) and x for the exponential function, between y and
In(x) or log(x) for the logarithmic function, and between 1/y and x for the recip-
rocal function. This means that the polyfit (x,y, 1) function can be used to
determine the best-fit constants m and b for best fit if, instead of x and vy, the

www.it-ebooks.info

http://www.it-ebooks.info/

272 Chanter 8: Polynomials, Curve Fitting, and Interpolation

following arguments are used.

Function polyfit function form
power y = bxm p=polyfit (log(x),log(y),1)
exponential y = be™* or p=polyfit(x,log(y),1) or

y = b10™ p=polyfit (x,loglo(y),1)

logarithmic y = mIn(x)+» or p=polyfit(log(x),y,1) or
y = mlog(x)+b p=polyfit (log10(x),y,1)

1

p=polyfit(x,1./y,1)
mx+b

reciprocal y =

The result of the polyfit function is assigned to p, which is a two-element vec-
tor. The first element, p (1), is the constant m, and the second element, p (2),isb
for the logarithmic and reciprocal functions, In(b) or log(d) for the exponential

function, and In(b) for the power function (b = ¢*® or b = 10°® for the

exponential function, and & = ¢”® for the power function).

For given data it is possible to estimate, to some extent, which of the func-
tions has the potential for providing a good fit. This is done by plotting the data
using different combinations of linear and logarithmic axes. If the data points in
one of the plots appear to fit a swaight line, the corresponding function can pro-
vide a good fit according to the list below.

X axis Y axis Function
linear linear linear y = mx+b

logarithmic logarithmic power y = bx™

linear logarithmic exponential y = be™* or y = b10™
logarithmic linear logarithmic y = min(x)+b or y = mlog(x)+b
linear linear reciprocal y = L

(plot 1/7) mx +b

Other considerations in choosing a function:

¢ Exponential functions cannot pass through the origin.

¢ Exponential functions can fit only data with all positive y’s or all negative y’s.
¢ Logarithmic functions cannot model x = 0 or negative values of x.

¢ For the power function y = 0 when x = 0.

¢ The reciprocal equation cannot model y = 0.

www.it-ebooks.info

http://www.it-ebooks.info/

8.2 Curve Fitting

273

The following example illustrates the process of fitting a function to a set of data
points.

Sample Problem 8-2: Fitting an equation to data points

The following data points are given. Determine a function w = f(¢) (¢is the inde-
pendent variable, w is the dependent variable) with a form discussed in this sec-
tion that best fits the data.

t 0.0 0.5 1.0 1.5 20 25 3.0 35 4.0 4.5 5.0
w 6.00 [483 | 3.70 | 3.15 | 241 [1.83 | 1.49 | 1.21 | 096 | 0.73 | 0.64
Solution
The data is first plotted with linear scales
on both axes. The figure indicates that a s
linear function will not give the best fit 4 o
since the points do not appear to line up 4 o
along a straight line. From the other possi- | °
ble functions, the logarithmic function is | ° o 4
excluded since for the first point ¢ = 0, o 1 , ! , ° ¢

and the power function is excluded since at t
t =0, w#0. To check if the other two

funckions (exponential and reciprocal) might give a better fit, two additional plots,
shown below, are made. The plot on the left has a log scale on the vertical axis and
linear horizontal axis. In the plot on the right, both axes have linear scales, and the
quantity 1/w is plotted on the vertical axis.

10 2

© o

D

[e]
o ©

o

o

1

2

3

4

5

t t

In the left figure, the data points appear to line up along a straight line. This indi-
cates that an exponential function of the form y = be™* can give a good fit to the
data. A program in a script file that determines the constants b and m, and that
plots the data points and the function is given below.

t=0:0.5:5; [Create vectors t and w with the coordinates of the data points. |
w=[6 4.83 3.7 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64]:

p=polyfit (t,log(w),1) ;[Use the polyfit function with t and 1og (w)]

www.it-ebooks.info

http://www.it-ebooks.info/

274 Chapter 8: Polynomials, Curve Fitting, and Interpolation

m=p (1)
b=exp (p (2)) (Determine the coefficient b.]

tm=0:0.1:5; (Create a vector tm to be used for plotting the polynomial |
wm=b*exp (m*tm) ; [Calculate the function value at each element of tm. |
plot(t,w,'o', tm,wm) [Plot the data points and the function. |

When the program is executed, the values of the constants m and b are displayed
in the Command Window.
m =
-0.4580
b =
5.9889

The plot generated by the program, which shows the data points and the function
(with axis labels added with the Plot Editor) is

It should be pointed out here that in addition to the power, exponential, log-
arithmic, and reciprocal functions that are discussed in this section, many other
functions can be written in a form suitable for curve fitting with the polyfit

2
(ax” +a;x+ag)

function. One example where a function of the form y = ¢ is fitted to
data points using the polyfit function with a third-order polynomial is
described in Sample Problem 8-7.

8.3 INTERPOLATION

Interpolation is the estimation of values between data points. MATLAB has inter-
polation functions that are based on polynomials, which are described in this sec-
tion, and on Fourier transformation, which is outside the scope of this book. In
one-dimensional interpolation, each point has one independent variable (x) and
one dependent variable (y). In two-dimensional interpolation, each point has two
independent variables (x and y) and one dependent variable (z).

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Interpolation 275

One-dimensional interpolation:

If only two data points exist, the points can be connected with a straight line and a
linear equation (polynomial of first order) can be used to estimate values between
the points. As was discussed in the previous section, if three (or four) data points
exist, a second- (or a third-) order polynomial that passes through the points can
be determined and then be used to estimate values between the points. As the
number of points increases, a higher-order polynomial is required for the polyno-
mial to pass through all the points. Such a polynomial, however, will not necessar-
ily give a good approximation of the values between the points. This is illustrated
in Figure 8-2 with n=6.

A more accurate interpolation can be obtained if instead of considering all
the points in the data set (by using one polynomial that passes through all the
points), only a few data points in the neighborhood where the interpolation is
needed are considered. In this method, called spline interpolation, many low-order
polynomials are used, where each is valid only in a small domain of the data set.

The simplest method of spline interpola-
tion is called linear spline interpolation. In this YV
method, shown on the right, every two adjacent
points are connected with a straight line (a poly-
nomial of first degree). The equation of a
straight line that passes through two adjacent
points (x;, ;) and (x;+1, y;+1) and that can be used)
to calculate the value of y for any x between the : .
points is given by:

s oo — Vo % 1 AR, . R,
=yl+l y1x+y1 i+1 " Yi+ 1%
Xi+1—%; Xiv1—%

In a linear interpolation, the line between two data points has a constant
slope, and there is a change in the slope at every point. A smoother interpolation
curve can be obtained by using quadratic or cubic polynomials. In these methods,
called quadratic splines and cubic splines, a second-, or third-order polynomial is
used to interpolate between every two points. The coefficients of the polynomial
are determined by using data from points that are adjacent to the two data points.
The theoretical background for the determination of the constants of the polyno-
mials is beyond the scope of this book and can be found in books on numerical
analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

276

Chapter 8: Polynomials, Curve Fitting, and Interpolation

One-dimensional interpolation in MATLAB is done with the interpl (the
last character is the numeral one) function, which has the form:

/yi = interpl (XIY, Xi, ‘method’)
yi is the /

interpolated x is a vector with the horizontal coordinates of Method of

value. the input data points (independent variable). interpola-
y is a vector with the vertical coordinates of tion, typed as
the input data points (dependent variable). a swing

x1 is the horizontal coordinate of the interpo- (optional).
lation point (independent variable).

¢ The vector x must be monotonic (with elements in ascending or descending
order).

e xi can be a scalar (interpolation of one point) or a vector (interpolation of
many points). yi is a scalar or a vector with the corresponding interpolated
values.

¢ MATLAB can do the interpolation using one of several methods that can be
specified. These methods include:

‘nearest’ returns the value of the data point that is nearest to the
interpolated point.

‘linear’ uses linear spline interpolation.

‘spline’ uses cubic spline interpolation.

‘pchip’ uses piecewise cubic Hermite interpolation, also called
‘cubic’

e When the ‘nearest’ and the *linear’ methods are used, the value(s) of
x1 must be within the domain of x. If the *spline’ orthe ‘pchip’ meth-
ods are used, xi can have values outside the domain of x and the function
interpl performs extrapolation.

e The ‘spline’ method can give large errors if the input data points are
nonuniform such that some points are much closer together than others.

¢ Specification of the method is optional. If no method is specified, the default is
‘linear’.

Sample Problem 8-3: Interpolation

The following data points, which are points of the function f(x) = 1.5 cos(2x),
are given. Use linear, spline, and pchip interpolation methods to calculate the
value of y between the points. Make a figure for each of the interpolation methods.
In the figure show the points, a plot of the function, and a curve that corresponds

www.it-ebooks.info

http://www.it-ebooks.info/

8.3 Interpolation 277

to the interpolation method.

x 0 1 2 3 4 5
y 1.0 —0.6242 | —-1.4707 3.2406 -0.7366 | —6.3717
Solution

The following is a program written in a script file that solves the problem:

x=0:1.0:5; (Create vectors x and y with coordinates of the data points.]
y=[1.0 -0.6242 -1.4707 3.2406 -0.7366 -6.3717]:

xi=0:0.1:5; (Create vector x1i with points for interpolation. |

yilin=interpl (x,y,xi,'linear'); [Calculate y points from linear intetpolation.]
yispl=interpl (x,y,xi, 'spline'); [Calculate y points from spline inteIpolationJ
yipch=interpl (x,y,xi, 'pchip') ; [Calculate y points from pchip interpolation.]
yfun=1.5."xi.*cos (2*xi) ; (Calculate y points from the function|
subplot(1,3,1)

plot(x,y,'o',xi,yfun,xi,yilin,"'--");
subplot(1,3,2)
plot(x,y,'o"',xi,yfun,xi,yispl,"'--"');
subplot(1,3,3)
plot(x,y,'o',xi,yfun,xi,yipch,"'--");

The three figures generated by the program are shown below (axes labels were
added with the Plot Editor). The data points are marked with circles, the interpola-
tion curves are plotted with dashed lines, and the function is shown with a solid
line. The left figure shows the linear interpolation, the middle is the spline, and the
figure on the right shows the pchip interpolation.

www.it-ebooks.info

http://www.it-ebooks.info/

278

8.4 THE BASIC FITTING INTERFACE

Chapter 8: Polynomials, Curve Fitting, and Interpolation

The basic fitting interface is a tool that can be used to perform curve fitting and
interpolation interactively. By using the interface the user can:
¢ Curve-fit the data points with polynomials of various degrees up to 10, and

with spline and Hermite interpolation methods.

¢ Plot the various fits on the same graph so that they can be compared.

* Plot the residuals of the various polynomial fits and compare the norms of the

residuals.

¢ Calculate the values of specific points with the various fits.

¢ Add the equations of the polynomials to the plot.

To activate the basic fiting inter- (e)
face, the user first has to make a plot of |/ et Y= e [Tedk] oty wimiew b :
id @ k(% Edit Plot -

the data points. Then the interface is
activated by selecting Basic Fitting in
the Tools menu, as shown on the right.
This opens the Basic Fitting Window,
shown in Figure 8-3. When the window
first opens, only one panel (the Plot fits
panel) is visible. The window can be

jf —

ZvomIn
Zoom @ut

Fan

Robme 3

Wata Cuisar

Brish

Link

Renel Vieww a
Options

Pin te Aues

Snap 16 Layout Gud

View Layout Grid

Seaart Align ardl Giswibuie
Abyn Distidiate Toul ...

b Adign 4

extended to show a second panel (the

Numerical results panel) by clicking e

on the —> button. One click adds the B ’f,:'jf‘r":m, e —
first section of the panel, and a second

click makes the window look as shown in Figure 8-3. The window can be reduced
back by clicking on the <— button. The first two items in the Basic Fitting Win-
dow are related to the selection of the data points:

Lata SLafistic:

Select data: Used to select a specific set of data points for curve fitting in a fig-
ure that has more than one set of data points. Only one set of data points can be
curve-fitted at a time, but multiple fits can be performed simultaneously on the
same set.

Center and scale x data: When this box is checked, the data is centered at zero
mean and scaled to unit standard deviation. This might be needed in order to
improve the accuracy of numerical computation.

The next four items are in the Plot fits panel and are related to the display of the
fit.

Check to display fits on figure: The user selects the fits to be displayed in the
figure. The selections include interpolation with spline interpolant (interpolation
method) that uses the spline function, interpolation with Hermite interpolant
that uses the pchip function, and polynomials of various degrees that use the

www.it-ebooks.info

http://www.it-ebooks.info/

8.4 The Basic Fitting Interface

279

4\ Basic Fitting - 1 ==
3
Selectdata: | data 1 »
[Center and scale x data
Plet fits Numerical results
Check to display fits on figure
[¥] spline interpolant Fit: | cubic w |
O s.hape-preserwng interpelant Coeffidents and nerm of residuals Find y = fx)
linear ¥ = Pl*X~3 + P2*x"Z + Enter value(s) or a valid MATLAB
[[] quadratic itk + pd expressien such as x, 1:2:10 er
‘ cubic [10 15]
[7] 4th degree palynemial
Coefficie 3 1.5 Evaluate
[] 5th degree pelynemial \'CE"‘lCl“mjs i o
[] &th degree pelynemial »l = -0.350343 . 00
[] 7th degree pelynemial RZ ='5a2813 1,5 |-0.843 |
[] 8th degree pelynemial »3 = -4,8857
[[] 9th degree pelynemial p4 = 1.0796
[] 10th degree pelynemial
Shew equatiens Norm &€ residuels =
2.3742
Significantdigite: n 3 =
Plot residuals
Save to werkspace. ..
Bar plot w
Subplot v
5 Save to werkspace...
Show nerm ef residuals l:]
e] K=

Figure 8-3: The Basic Fitting Window.

polyfit function. Several fits can be selected and displayed simultaneously.

Show equations: When this box is checked, the equations of the polynomials
that were selected for the fit are displayed in the figure. The equations are dis-
played with the number of significant digits selected in the adjacent sign menu.

Plot residuals: When this box is checked, a plot that shows the residual at each
data point is created (residuals are defined in Section 8.2.1). Choices in the
menus include a bar plot, a scatter plot, and a line plot that can be displayed as a
subplot in the same Figure Window that has the plot of the data points or as a
separate plot in a different Figure Window.

Show norm of residuals: When this box is checked, the norm of the residuals is
displayed in the plot of the residuals. The norm of the residual is a measure of
the quality of the fit. A smaller norm corresponds to a better fit.

The next three items are in the Numerical results panel. They provide the numer-
ical information for one fit, independently of the fits that are displayed:

Fit: The user selects the fit to be examined numerically. The fit is shown on the
plot only if it is selected in the Plot fit panel.

Coefficients and norm of residuals: Displays the numerical results for the
polynomial fit that is selected in the Fit menu. It includes the coefficients of the
polynomial and the norm of the residuals. The results can be saved by clicking
on the Save to workspace button.

www.it-ebooks.info

http://www.it-ebooks.info/

280

Chapter 8: Polynomisls, Curve Fitting, and Interpolation

Find y = f{x):

Provides a means for obtaining interpolased (or extrapolased)

numerical values for specified values of the independent variable. Enter the
value of the independent vanable in the box, and click on the Evaluate button.
When the Plot evaluated results box is checked, the point is displayed on the

plot.

As an example, the basic fitting interface is used for fitting the data points
from Sample Problem 8-3. The Basic Fitting Window is the one shown in Figure

uFigure 1

mEx)

File Edit View Insert Teels

Desktep Windew Help

NS K|XRAODRA(2|0E D

= data 1 i
a4l spline
— linsar Cutiic spline interpdlant
&L | —— cunic y=-093%x+15
¢ v=10 y=-051%x>+82%2 5% + 1.1

B8 1 1 1 1 1 1 1 1]

o 0.5 5 | 15 2 25 3 3.5 4 45 5

residuals

T T T
Spline: narm af residuals = 0

Linear: narm af residuals = 6.0013
Cubic: narm of residuals = 2.5742

-]
P
o
w
&
<)}
=
rs
m
3]

Figure 84: A Figure Window modified by the Basic Fitting Interface.

8-3, and the coaresponding Figure Window is shown in Figure 8-4. The Figure
Window includes a plot of the points, one interpolation fit (spline), two polyno-
mial fits (linear and cubic), a display of the equations of the polynomial fits, and a
mark of the point x = 1.5 that is entered in the Find y = Kx) box of the Basic Fitting
Window. The Figure Window also includes a plot of the residuals of the polyno-
mial fits and a display of theirnorm.

www.it-ebooks.info

http://www.it-ebooks.info/

8.5 Examples of MATLAB Applications 281

8.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 8-4: Determining wall thickness of a box

The outside dimensions of a rectangular
box (bottom and four sides, no top), made
of aluminum, are 24 by 12 by 4 inches. The
wall thickness of the bottom and the sides
is x. Derive an expression that relates the
weight of the box and the wall thickness x.
Determine the thickness x for a box that
weighs 15 Ib. The specific weight of alumi-
num is 0.101 Ib/in.3.

Solution
The volume of the aluminum Vy; is calculated from the weight # of the box by:
4
Al v

where 7 is the specific weight. The volume of the aluminum based on the dimen-
sions of the box is given by
V= 24-12-4—(24-2x)(12 -2x)(4-x)
where the inside volume of the box is subtracted from the outside volume. This
equation can be rewritten as
(24-2x)(12-2x)(4—x) + V;— (24-12-4) = 0
which is a third-degree polynomial. A root of this polynomial is the required

thickness x. A program in a script file that determines the polynomial and solves
for the roots is:

W=15; gamma=0.101; (Assign W and gamma. |
VAlum=W/gamma ; [Calculate the volume of the alumjnum.]
a=[-2 24]; [Assign the polynomial 24 —2x to a.]
b=[-2 12]; [Assign the polynomial 12 —2x to b.]
c=[-1 4]; (Assign the polynomial 4 —x to c.|
Vin=conv (c, conv(a,b)); (Multiply the three polynomials above. |
polyeg=[0 0 0 (VAlum-24*12%4)]+Vin (Add 7,,—24*12*4 to Vin.]
x=roots (polyeq) [Determine the roots of the polynomial.]

Note in the second-to-last line that in order to add the quantity V,,,— (24 - 12 - 4) to
the polynomial Vin it has to be written as a polynomial of the same order as Vin
(Vin is a polynomial of third order). When the program (saved as
Chap8SamPro4) is executed, the coefficients of the polynomial and the value of x
are displayed:

www.it-ebooks.info

http://www.it-ebooks.info/

282 Chapter 8: Polynomials, Curve Fitting, and Interpolation

>> Chap8SamPro4

polyeq = The polynomial is:
-4.0000 88.0000 -576.0000 148.5149 _ 4x3 + 88x2 — 576x + 148.515 |

X =
10.8656 + 4.48311i
10.8656 - 4.4831i
0.2687

The polynomial has one real root, x = 0.2687 in.,
which is the thiclaness of the aluminum wall.

Sample Problem 8-5: Floating height of a buoy

An aluminum thin-walled sphere is used as a |
marker buoy. The sphere has a radius of 60 cm
and a wall thicleness of 12 mm. The density of
aluminum is p,, = 2690 kg/m3. The buoy is
placed in the ocean, where the density of the
water is 1030 kg/m3. Determine the height &
between the top of the buoy and the surface of
the water.

Solution

According to Archimedes’s law, the buoyancy force applied to an object that is
placed in a fluid is equal to the weight of the fluid that is displaced by the object.
Accordingly, the aluminum sphere will be at a depth such that the weight of the
sphere is equal to the weight of the fluid displaced by the part of the sphere that is
submerged.

The weight of the sphere is given by
4
3
where V,; is the volume of the aluminum; », and »; are the outside and inside
radii of the sphere, respectively; and g is the gravitational acceleration.

The weight of the water that is displaced by the spherical portion that is sub-
merged is given by:

Weor = PaiVai€ = Pazm(ri-rd)g

1 2
thr = pwtrthrg = pwtrgn(zro -h) (ro +h)g

Setting the two weights equal to each other gives the following equation:

K = 3r h+4r - 4%

wtr

(rZ—r?) =0

The last equation is a third-degree polynomial for 4. The root of the polynomial is
the answer.

A solution with MATLAB is obtained by writing the polynomials and using
the roots function to determine the value of 4. This is done in the following
script file:

www.it-ebooks.info

http://www.it-ebooks.info/

8.5 Examples of MATLAB Applications 283

rout=0.60; rin=0.588; [Assign the radii to variables.]

rhoalum=2690; rhowtr=1030; [Assign the densities to variables.

al0=4*rout”3-4*rhoalum*(rout”3-rin”"3) /rhowtr; [Assign the coefficient ap.

p = [1 -3*rout 0 a0l; [Assign the coefficient vector of the polynomial.|
h = roots (p) Calculate the roots of the polynomial. |

When the script file is executed in the Command Window, as shown below, the
answer is three roots, since the polynomial is of the third degree. The only answer
that is physically possible is the second, where & = 0.9029 m.

>> Chap8SamPro5

h =
1.4542 The polynomial has three roots. The only one that is
0.9029 physically possible for the problem is 0.9029 m.

-0.5570

Sample Problem 8-6: Determining the size of a capacitor

An electrical capacitor has an unknown B
capacitance. In order to determine its capaci-
tance, the capacitor is connected to the cir- %
cuit shown. The switch is first connected to "o |
B and the capacitor is charged. Then, the T g ¥
switch is connected to 4 and the capacitor —|_
discharges through the resistor. As the capac-
itor is discharging, the voltage across the capacitor is measured for 10 s in inter-
vals of 1 s. The recorded measurements are given in the table below. Plot the
voltage as a function of time and determine the capacitance of the capacitor by fit-
ting an exponential curve to the data points.

R=2000 Q

o

ts) | 1 2 3 4 5 6 7 8 9 10
vev) | 94 [731 [515 [355|281 | 204 [126 | 097 | 074 | 0.58

Solution

When a capacitor discharges through a resistor, the voltage of the capacitor as a
function of time is given by

V = Ve @0

where V,, is the initial voltage, R the resistance of the resistor, and C the capaci-
tance of the capacitor. As was explained in Section 8.2.2 the exponential function
can be written as a linear equation for In(¥) and ¢ in the form:

-1

(V) = 2=

t+1n(Vy)

www.it-ebooks.info

http://www.it-ebooks.info/

284 Chapter 8: Polynomials, Curve Fitting, and Interpolation

This equation, which has the form y = mx+ b , can be fitted to the data points by
using the polyfit (x,y,1) function with ¢ as the independent variable x and
In(¥) as the dependent variable y. The coefficients m and » determined by the

polyfit function are then used to determine C and ¥, by:
—t b
= E; and m)= e

The following program written in a script file determines the best-fit exponential
function to the data points, determines C and ¥, and plots the points and the fit-

ted function.

R=2000;
t=1:10; [Assign the data points to vectors t and v.]
v=[9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58];
p=polyfit (t,log(v),1); [Use the polyfit function with t and log (v))
C=-1/(R*p (1)) (Calculate C from p (1), which is m in the equation.]
VO=exp (p (2)) (Calculate VO from p (2) , which is b in the equation. |
tplot=0:0.1:10; [Create vector tplot of time for plotting the flmct1on]

vplot=V0*exp (-tplot./(R*C)); [Create vector vplot for plotting the ﬁmctlon.]
plot(t,v,'o',tplot,vplot)

When the script file is executed (saved as Chap8SamPro6) the values of C and
V, are displayed in the Command Window as shown below:

>> Chap8SamProé6

C = [The capacitance of the capacitor is 1,600 QLF.]
0.0016

Vo =
13.2796

The program creates also the following plot (axis labels were added to the plot
using the Plot Editor):

14

12+
10+

V (V)

8
6
4
2

%

www.it-ebooks.info

http://www.it-ebooks.info/

8.5 Examples of MATLAB Applications 285

Sample Problem 8-7: Temperature dependence of viscosity

Viscosity, 1, is a property of gases and fluids that characterizes their resistance to
flow. For most materials, viscosity is highly sensitive to temperature. Below is a
table that gives the viscosity of SAE 10W oil at different temperatures (data from
B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics,
4th ed., John Wiley and Sons, 2002). Determine an equation that can be fitted to

the data.
T (°C) —20 0 20 40 60 80 100 120
K (N s/m?) 4 0.38 | 0.095 | 0.032 | 0.015 | 0.0078 | 0.0045 | 0.0032
(x107%)

Solution

-

To determine what type of equation
might provide a good fit to the data, pu o
is plotted as a function of T (absolute
temperature) with a linear scale for T
and a logarithmic scale for p. The
plot, shown on the right, indicates

-
o

-
OD

Viscosity (N*slmz)
31;
o

[e]
that the data points do not appear to 2 o
: . . - 10 o
line up along a straight line. This o 4
means that a simple exponential 0° ‘ ‘
function of the form y = bemr, 250 300 350 400

R . . . Temperature (K)
which models a straight line with

these axes, will not provide the best fit. Since the points in the figure appear to lie
along a curved line, a function that can possibly have a good fit to the data is:
In(w) = a,7>+a,T+a,

This function can be fitted to the data by using MATLAB’s polyfit (x,y,2)
function (second-degree polynomial), where the independent variable is T and the

dependent variable is In(u). The equation above can be solved for p to give the vis-
cosity as a function of temperature:

(a2T2+a1T+a0) ay a,T a2T2
e =e e e

u =
The following program determines the best fit to the function and creates a plot
that displays the data points and the function.

T=[-20:20:120] ;

mu=[4 0.38 0.095 0.032 0.015 0.0078 0.0045 0.0032] ;
TK=T+273;

p=polyfit (TK, log (mu), 2)

Tplot=273+[-20:120] ;

www.it-ebooks.info

http://www.it-ebooks.info/

286

Chapter 8: Polynomials, Curve Fitting, and Interpolation

muplot = exp(p(l) *Tplot.”2 + p(2)*Tplot + p(3));
semilogy (TK,mu, 'o', Tplot,muplot)

When the program executes (saved as Chap8SamPro7), the coefficients that are

determined by the polyfit function are displayed in the Command Window
(shown below) as three elements of the vector p.

>> Chap8SamPro?7
p =
0.0003 -0.2685 47.1673
With these coefficients the viscosity of the oil as a function of temperature is:
_ (0.000372-0.2685T+47.1673) _ 47.1673 (-0.2685)T 0.0003 T2
L=e =e e e

The plot that is generated shows that the equasion correlates well to the data points
(axis labels were added with the Plot Editor).

10"

—_
o
[~
T

Viscosity (N*s/mz)
=]

250 300 350 400
Temperature (K)

8.6 PROBLEMS

1. Plot the polynomial y = 0.1x5-0.2x*—x3+5x2-41.5x+235 in the domain

—6 <x <6 . First create a vector for x, next use the polyval function to cal-
culate y, and then use the plot funckon.

2. Plot the polynomial y = 0.008x*-1.8x2—54x+54 in the domain

-14<x<16 . First create a vector for x, next use the polyval function to
calculate y, and then use the plot function.

Use MATLARB to carry out the following multiplication of two polynomials:
(—x3+5x—1)(x*+2x3-16x+5)

www.it-ebooks.info

http://www.it-ebooks.info/

8.6 Problems

287

4.

10.

11.

Use MATLAB to carry out the following multiplication of polynomials:
x(x—=1.7)(x+0.5)(x—0.7)(x+1.5)

Plot the polynomial for -1.6<x<1.8.

Divide the polynomial —10x6—20x5+9x4+ 10x3 +8x2+11x-3

polynomial 2x2+4x 1.

by the

Divide the polynomial
—0.24x7 + 1.6x6 + 1.5x5 — 741x*— 1.8x3 - 4x2-75.2x-91 by the polynomial
—08x3+5x+6.5 .

The product of two consecutive integers is 6,972. Using MATLAB’s built-in
function for operations with polynomials, determine the two integers.

The product of three integers with spacing of 5 between them (e.g., 9, 14, 19)
is 10,098. Using MATLAB’s built-in function for operations with polynomi-
als, determine the three integers.

A rectangular steel container has the outside

dimensions shown in the figure The thickness il A
of the bottom and top walls is ¢, and the thick- b o

mfl P23
ness of side walls is ¢/2. Determine ¢ if the | |-~ Aaom

weight of the container is 12,212 1b. The spe-
cific weight of steel is 0.284 1b/in3.

An aluminum fuel tank has a cylindrical middle
section and a semi-spherical ends. The outside
diameter is 10 in., and the length of the cylindrical
section is 24 in. The wall-thickness of the cylindri-
cal section is ¢, and the wall-thickness of the semi-
spherical ends is 1.5¢. Determine ¢ if the tank
weight is 42.27 Ib. The specific weight of alumi-
num is 0.101 Ib/in3.

A 20 ft-long rod is cut into 12 pieces, which are welded

together to form the frame of a rectangular box. The

length of the box’s base is 15 in. longer than its width.

(a) Create a polynomial expression for the volume ¥ in
terms of x.

(b) Make a plot of ¥ versus x.

(c) Determine the x that maximizes the volume and
determine that volume.

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 8: Polynomials, Curve Fitting, and Interpolation

12. A rectangular piece of cardboard, 40 in. longby < 40in.
22 in. wide, is used for making a rectangular ‘ [T

box (open top) by cutting out squares of x by x | |
from the corners and folding up the sides. .| | 22 in.
(a) Create a polynomial expression for the vol- *‘Lx ***** Jf | i
ume ¥ in terms of x.
(b) Make a plot of ¥ versus x.
(c) Determine x if the volume of the box is g
1,000 in.3. e L
(d) Determine the value of x that corresponds
to the box with the largest possible volume, and determine that volume.

13. Write a user-defined function that adds or subtracts two polynomials of any
order. Name the function p=polyadd (pl,p2, operation). The first
two input arguments pl and p2 are the vectors of the coefficients of the two
polynomials. (If the two polynomials are not of the same order, the function
adds the necessary zero elements to the shorter vector.) The third input argu-
ment operation is a string that can be either *add’ or ‘sub’, for adding
or subtracting the polynomials, respectively, and the output argument is the
resulting polynomial.

Use the function to add and subtract the following polynomials:

fi(x) = 2x6—3x4-9x3+11x2-8x+4 and f,(x) = 5x3+7x-10

14. Write a user-defined function that multiplies two polynomials. Name the
function p=polymult (pl,p2). The two input arguments pl and p2 are
vectors of the coefficients of the two polynomials. The output argument p is
the resulting polynomial.

Use the function to multiply the following polynomials:
fi(x) = 2x6-3x4-9x3+11x2-8x+4 and f,(x) = 5x3+7x-10
Check the answer with MATLAB’s built-in function conv.

15. Write a user-defined function that calculates the maximum (or minimum) of a
quadratic equation of the form:

f(x) = ax2+bx+c

Name the function [x,y,w] = maxormin(a,b, c). The input arguments are
the coefficients a, b, and c. The output arguments are x, the coordinate of the
maximum (or minimum); y, the maximum (or minimum) value; and w, which
is equal to 1 if y is a maximum and equal to 2 if y is a minimum.

Use the function to determine the maximum or minimum of the following
functions:

(@ flx) =3x2-7x+14) f(x) = —5x2-11x+15

www.it-ebooks.info

http://www.it-ebooks.info/

8.6 Problems

289

16.

17.

18.

A cone with base radius r and vertex in contact

with the surface of a sphere is constructed inside a

sphere, as shown in the figure. The radius of the

sphereis R = 9 in.

(a) Create a polynomial expression for the volume
¥ of the cone in terms of 4.

(b) Make aplot of ¥ versus 2 for 9<h<-9.

(c) Using the roots command determine # if the
volume of the cone is 500 in.3.

sible volume, and determine that volume.

Consider the parabola y = 1.5(x—3)2+1 and the

point P(3,5.5).

(a) Create a polynomial expression for the distance
d from point P to an arbitrary point Q on the
parabola.

(b) Make a plot of d versus x for 3<x<6 .

(¢) Determine the coordinates of Qif d = 28 .

(d) Determine the coordinates of Q that correspond
to the smallest d, and calculate the correspond-
ing value of d.

The following data is given:

Ny
&

(d) Determine the value of % that corresponds to the cone with the largest pos-

Y4

6,

2

x 2 5 6 8 9

13

15

7 8 10 11 12

14

15

(a) Use linear least-squares regression to determine the coefficients m and b in the

function y = mx+b that best fits the data.

(b) Make a plot that shows the function and the data points.

19. The boiling temperature of water T, at various altitudes 4 is given in the fol-
lowing table. Determine a linear equation in the form T, = mh+b that best

fits the data. Use the equation for calculating the boiling temperature at
5,000 m. Make a plot of the points and the equation.

h (m) 0 600 1500 2300

3000

6100

7900

T(°C) 100 98.8 95.1 92.2

90

81.2

75.6

www.it-ebooks.info

http://www.it-ebooks.info/

290 Chanter 8: Polynomials, Curve Fitting, and Interpolation

20. The U.S. population in selected years between 1815 and 1965 is listed in the
table below. Determine a quadratic equation in the foorm P = a,2+a,t+aq,,
where ¢ is the number of years after 1800 and P is the population in millions,
that best fits the data. Use the equation to estimate the population in 1915
(the population was 98.8 millions). Make a plot of the population versus
the year that shows the data points and the equation.

Year 1815 1845 1875 1905 1935 1965
Population 8.3 19.7 444 832 127.1 190.9
(millions)

21. The number of bacteria N, measured at different times ¢ is given in the fol-
lowing table. Determine an exponential function in the form N, = Ne® that
best fits the data. Use the equation to estimate the number of bacteria after
4.5 hr. Make a plot of the points and the equation.

t (hr) 1 2 3 4 5 6
Np 2,000 4,500 7,500 | 15,000 | 31,000 | 64,000

22. Growth data of a sunflower plant is given in the following table:

Week 1 3 5 7 9 11 13

Height (cm) | 2o 51 127 | 202 | 227 | 248 | 252

The data can be modeled with a function in the form H = C/(1+ Ae5%)
(logistic equation), where H is the height, C is a maximum value for H, 4
and B are constants, and ¢ is the number of weeks. By using the method
described in Section 8.2.2, and assuming that C = 254 cm, determine the
constants 4 and B such that the function best fit the data. Use the function to
estimate the height in week 6. In one figure, plot the function and the data
points.

23. Use the growth data from Problem 22 for the following:
(a) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the height in week 6.
(b) Fit the data with linear and spline interpolations and use each interpola-
tion to estimate the height in week 6.

In each part make a plot of the data points (circle markers) and the fitted curve
or the interpolated curves. Note that part (5) has two interpolation curves.

www.it-ebooks.info

http://www.it-ebooks.info/

8.6 Problems

291

24.

25.

26.

The following points are given:

1 2.2 3.7 6.4 9 11.5 | 142 | 17.8 | 20.5 | 23.2

y 12 9 6.6 55 7.2 9.2 9.6 85 6.5 2.2

(a) Fit the data with a first-order polynomial. Make a plot of the points and
the polynomial.

(b) Fit the data with a second-order polynomial. Make a plot of the points and
the polynomial.

(c) Fit the data with a third-order polynomial. Make a plot of the points and
the polynomial.

(d) Fit the data with an fifth-order polynomial. Make a plot of the points and
the polynomial.

The standard air density, D (average of measurements made), at different
heights, A, from sea level up to a height of 33 lam is given below.

7 (kam) 0 3 6 9 12 15
D(kgm’) | 12 0.91 0.66 0.47 0.31 0.19

h (kam) 18 21 24 27 30 33
Dkgm? | 012 | 0075 | 0046 | 0029 | 0018 | 0011

(@) Make the following four plots of the data points (density as a function of
height): (1) both axes with linear scale; (2) » with log axis, D with linear
axis; (3) » with linear axis, D with log axis; (4) both log axes. According
to the plots choose a function (linear, power, exponential, or logarithmic)
that best fits the data points and determine the coefficients of the function.

(b) Plot the function and the points using linear axes.

Write a user-defined function that fits data points to a power function of the
form y = bx™ . Name the function [b, m] = powerfit (x,y), where the
input arguments x and y are vectors with the coordinates of the data points,
and the output arguments b and m are the constants of the fitted exponential
equation. Use powerfit to fit the data below. Make a plot that shows the
data points and the function.

x 0.5 24 32 4.9 6.5 7.8
¥y 0.8 9.3 379 68.2 155 198

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chanter 8: Polynomials, Curve Fitting, and Interpolation

27. Viscosity is a property of gases and fluids that characterizes their resistance to
flow. For most materials viscosity is highly sensitive to temperature. For
gases, the variation of viscosity with temperature is frequently modeled by an

equation of the form

CT3/2

T+S

where p is the viscosity, T is the absolute temperature, and C and S are empiri-
cal constants. Below is a table that gives the viscosity of air at different tem-
peratures (data from B.R. Munson, D.F. Young, and T.H. Okiishi,
Fundamentals of Fluid Mechanics, 4th ed., John Wiley and Sons, 2002).

u:

T (°C) | —20 0 40 100 | 200 | 300 | 400 | 500 | 1,000

u(NS’ISHZ) 1.63 | 171 | 1.87 | 2.17 | 2.53 | 298 | 332 | 3.64 | 5.04
(x107)

Determine the constants C and S by curve-fithing the equation to the data
points. Make a plot of viscosity versus temperature (in ° C). In the plot show
the data points with markers and the curve-fitted equation with a solid line.

The curve fitting can be done by rewriting the equation in the form

T3/2 S

C

1
m CT+
and using a first-order polynomial.

28. Measurements of the fuel efficiency of a car Fy at various speeds v are shown
in the table.

v (mi/h) 5 15 25 35 45 55 65 75
Fr(mpg) | 11 22 28 | 295 | 30 30 27 23

(a) Curve-fit the data with a second-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.

(b) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.

(c) Fit the data with linear and spline interpolations. Estimate the fuel effi-
ciency at 60 mi/h with linear and spline interpolations. Make a plot that shows
the data points and curves made of interpolated points.

www.it-ebooks.info

http://www.it-ebooks.info/

8.6 Problems

293

29.

30.

31.

The relationship between two variables P and ¢ is known to be:
= It
T b+t
The following data points are given
t 1 3 4 7 8 10

P 2.1 4.6 5.4 6.1 6.4 6.6

Determine the constants m and b by curve-fitting the equation to the data
points. Make a plot of P versus ¢. In the plot show the data points with markers
and the curve-fitted equation with a solid line. (The curve fitting can be done
by writing the reciprocal of the equation and using a first-order polynomial.)

When rubber is stretched, its elongation is initially proportional to the applied
force, but as it reaches about twice its original length, the force required to
stretch the rubber increases rapidly. The force, as a function of elongation,
that was required to stretch a rubber specimen that was initially 3 in. long is
displayed in the following table.

(a) Curve-fit the data with a forth-order polynomial. Make a plot of the data
points and the polynomial. Use the polynomial to estimate the force when the
rubber specimen was 11.5 in. long.

(b) Fit the data with spline interpolation (use MATLAB’s built-in function
interpl). Make a plot that shows the data points and a curve made by inter-
polation. Use interpolation to estimate the force when the rubber specimen
was 11.5 in. long.

Force (Ib) 0 0.6 0.9 1.16 | 1.18 | 1.19 | 1.24 | 148

Elongation (in.) 0 1.2 24 3.6 4.8 6.0 7.2 8.4

Force (Ib) 192 | 312 | 414 | 534 | 622 | 712 | 7.86 | 8.42

Elongation (in.) | 9.6 10.8 | 12.0 | 132 | 144 | 156 | 16.8 18

The yield strength, oy, of many metals depends on the size of the grains. For
these metals, the relationship between the yield stress and the average grain
diameter d can be modeled by the Hall-Petch equation:

)
0, = Og+kd
The following are results from measurements of average grain diameter
and yield stress.

d (mm) 0.005 | 0.009 | 0.016 | 0.025 | 0.040 | 0.062 | 0.085 | 0.110

oy (MPa) | 205 150 135 97 89 80 70 67

(a) Using curve fitting, determine the constants 6, and & in the Hall-Petch

equation for this material. Using the constants determine with the equa-
tion the yield stress of material with a grain size of 0.05 mm. Make a plot

www.it-ebooks.info

http://www.it-ebooks.info/

294 Chanter 8: Polynomials, Curve Fitting, and Interpolation

that shows the data points with circle markers and the curve derived from
the Hall-Petch equation with a solid line.

(b) Use linear interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and the linear interpolation with a solid line.

(c) Use cubic interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and cubic interpolation with a solid line.

32. The transmission of light through a transparent solid can be described by the
equation:
I; = Ij(1-R)2eBL
where I, is the transmitted intensity, I, is the intensity of the incident beam,
B is the absorption coefficient, L is the length of the transparent solid, and R is
the fraction of light which is reflected at the interface. If the light is normal to

_ 2
the interface and the beams are transmitted through air, R = (: — D where

n is the index of refraction for the transparent solid. Experiments measuring
the intensity of light transmitted through specimens of a transparent solid of
various lengths are given in the following table. The intensity of the incident

beam is 5 watts/m?2.

L (cm) 0.5 1.2 1.7 2.2 45 6.0
I (wattsim?) | 42 4.0 38 3.6 2.9 25

Use this data and curve fitting to determine the absorption coefficient and
index of refraction of the solid.

33. The ideal gas equation relates the volume, pressure, temperature, and the
quantity of a gas by:
where ¥ is the volume in liters, P is the pressure in atm, 7 is the temperature in
kelvins, n is the number of moles, and R is the gas constant.
An experiment is conducted for determining the value of the gas constant
R. In the experiment, 0.05 mol of gas is compressed to different volumes by
applying pressure to the gas. At each volume, the pressure and temperature of
the gas are recorded. Using the data given below, determine R by plotting ¥
versus 7/P and fitting the data points with a linear equation.

Vv (L) 075 | 065 | 055 | 0.45 | 035
T (°C) 25 37 45 56 65

P (atm) 1.63 196 | 237 | 3.00 | 3.96

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9
Applications in
Numerical Analysis

Numerical methods are commonly used for solving mathematical problems that
are formulated in science and engineering where it is difficult or impossible to
obtain exact solutions. MATLAB has a large library of functions for numerically
solving a wide variety of mathematical problems. This chapter explains a number
of the most frequently used of these functions. It should be pointed out here that
the purpose of this book is to show users how to use MATLAB. Some general
information on the numerical methods is given, but the details, which can be
found in books on numerical analysis, are not included.

The following topics are presented in this chapter: solving an equation with
one unknown, finding a minimum or a maximum of a function, numerical integra-
tion, and solving a first-order ordinary differential equation.

9.1 SOLVING AN EQUATION WITH ONE VARIABLE

An equation with one variable can be written in the form f{x) = 0. A solution to
the equation (also called a root) is a numerical value of x that satisfies the equa-
tion. Graphically, a solution is a point where the function f{x) crosses or touches
the x axis. An exact solution is a value of x for which the value of the function is
exactly zero. If such a value does not exist or is difficult to determine, a numerical
solution can be determined by finding an x that is very close to the solution. This
is done by the iterative process, where in each iteration the computer determines a
value of x that is closer to the solution. The iterations stop when the difference in x
between two iterations is smaller than some measure. In general, a function can
have zero, one, several, or an infinite number of solutions.

www.it-ebooks.info

295

http://www.it-ebooks.info/

296

Chapter 9: Applications in Numerical Analysis

In MATLAB a zero of a function can be determined with the command
(built-in function) £ zero with the form:

X = fzero (function, x0)

Solution The function to A value of x close to where
be solved. the function crosses the axis.

The built-in function fzero is a MATLAB function function (see Section 7.9),
which means that it accepts another function (the function to be solved) as an
input argument.

Additional details on the arguments of fzero:

¢ x is the solution, which is a scalar.

e function is the function to be solved. It can be entered in several different

ways:

1. The simplest way is to enter the mathematical expression as a string.

2. The function is created as a user-defined function in a function file and
then the function handle is entered (see Section 7.9.1).

3. The function is created as an anonymous function (see Section 7.8.1)
and then the name of the anonymous function (which is the name of the
handle) is entered (see Section 7.9.1).

(As explained in Section 7.9.2, it is also possible to pass a user-defined func-
tion and an inline function into a function function by using its name. How-
ever, function handles are more efficient and easier to use, and should be the
preferred method.)

¢ The function has to be written in a standard form. For example, if the function

to be solved is xe ™ = 0.2, it has to be written as f{x) = xe” —0.2 = 0. If this
function is entered into the fzero command as a string, it is typed as:
‘x*exp(-x)-0.2".

e When a function is entered as an expression (sting), it cannot include pre-
defined variables. For example, if the function to be entered is

flx) = xe"-02, it is not possible to define b=0.2 and then enter
‘x*exp (-x)-b’.

¢ x0 can be a scalar or a two-element vector. If it is entered as a scalar, it has to

be a value of x near the point where the function crosses (or touches) the x axis.
If x0 is entered as a vector, the two elements have to be points on opposite
sides of the solution. If f{x) crosses the x axis, then f{x0(1)) has a different
sign than f{x0(2)). When a function has more than one solution, each solution
can be determined separately by using the f zero function and entering values
for x0 that are near each of the solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

9.1 Solving an Equation with One Variable 297

¢ A good way to find approximately where a function has a solution is to make a
plot of the function. In many applications in science and engineering the
domain of the solution can be estimated. Often when a function has more than
one solution only one of the solutions will have a physical meaning.

Sample Problem 9-1: Solving a nonlinear equation

Determine the solution of the equation xe™ = 0.2.

Solution

The equation is first written in the form of a o2

function: f(x) = xe *—0.2. A plot of the func- ,
tion, shown on the right, shows that the func-
tion has one solution between 0 and 1 and
another solution between 2 and 3. The plot is .
obtained by typing

> 0

0.2+
0

>> fplot('x*exp(-x)-0.2',[0 8])

in the Command Window. The solutions of the function are found by using the
fzero command twice. First the equation is entered as a string expression, and a
value of x0 between 0 and 1 (%0 =0.7) is used. Second, the equation to be solved
is written as an anonymous function, which is then used in £zero with %0
between 2 and 3 (x0 = 2.8). This is shown below:

>> xl=fzero('x*exp(-x)-0.2',0.7) The function is entered as a
x1 = string expression.

0.2592 The first solution is 0.2592.
>> F=@(x)x*exp(-x)-0.2 _ _
F = Creating an anonymous function. |

@(x)x*exp(-x)-0.2

>> fzero(F,2.8) [Using the name of the anonymous function in £zero. |
ans =

2.5426 [The second solution is 2.5426.]

Additional comments:

¢ The fzero command finds zeros of a function only where the function
crosses the x axis. The command does not find a zero at points where the func-
tion touches but does not cross the x axis.

¢ If a solution cannot be determined, NaN is assigned to x.

www.it-ebooks.info

http://www.it-ebooks.info/

298 Chapter 9: Applications in Numerical Analysis

e The fzero command has additional options (see the Help Window). Two of
the more important options are:
[x fval]=fzero(function, x0) assigns the value of the function at x to
the variable fval.
x=fzero(function, x0, optimset (‘display’, ‘iter’)) displays the
output of each iteration during the process of finding the solution.

e When the function can be written in the form of a polynomial, the solution, or
the roots, can be found with the root s command, as explained in Chapter 8
(Section 8.1.2).

e The fzero command can also be used to find the value of x where the function
has a specific value. This is done by translating the function up or down. For
example, in the function of Sample Problem 9-1 the first value of x where the
function is equal to 0.1 can be determined by solving the equation

xe *—0.3 = 0. This is shown below:

>> x=fzero('x*exp(-x)-0.3',0.5)

X =
0.4894

9.2 FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION

In many applications there is a need to determine the local minimum or maximum
of a function of the form y = f{x) . In calculus the value of x that corresponds to a
local minimum or maximum is determined by finding the zero of the derivative of
the function. The value of y is determined by substituting the x into the function.
In MATLAB the value of x where a one-variable function f(x) within the interval
x; £x<x, has a minimum can be determined with the fminbnd command which

has the form:
X = fminbnd (function, x1,x2) }
The value of x where the The function. The interval of x.

function has a minimum.

¢ The function can be entered as a string expression, or as a function handle, in
the same way as with the f zero command. See Section 9.1 for details.

¢ The value of the function at the minimum can be added to the output by using
the option
[x fval] =fminbnd (function, x1,x2)

where the value of the function at x is assigned to the variable fval.

e Within a given interval, the minimum of a function can either be at one of the
end points of the interval or at a point within the interval where the slope of the

www.it-ebooks.info

http://www.it-ebooks.info/

9.2 Finding a Minimum or a Maximum of a Function 299

function is zero (local minimum). When the fminbnd command is executed,
MATLAB looks for a local minimum. If a local minimum is found, its value is
compared to the value of the function at the end points of the interval. MAT-
LAB returns the point with the actual minimum value for the interval.

For example, consider the function *
f(x) = x3-12x2+40.25x - 36.5, which is plot-
ted in the interval 0 <x <8 in the figure on the
right. It can be observed that there is a local # .,
minimum between 5 and 6, and that the abso-
lute minimum is at x = 0. Using the fminbnd =
command with the interval 3<x<8 to findthe * + 2 s & 7 8
location of the local minimum and the value of
the function at this point gives:

>> [x fval]l=fminbnd ('x*3-12*x"2+40.25*x-36.5"',3,8)

X =
5.6073 The local minimum is at x = 5.6073. The

value of the function at this point is —11.8043.

fval =
-11.8043

Notice that the fminbnd command gives the local minimum. If the interval is
changed to 0<x <8, fminbnd gives:

>> [x fval]l=fminbnd('x*3-12*x"2+40.25*x-36.5"',0,8)

X =

The minimum is at x = 0. The value

fval = of the function at this point is —36.5.

-36.5000

For this interval the fminbnd command gives the absolute minimum which is at

the end point x = 0.

¢ The fminbnd command can also be used to find the maximum of a function.
This is done by multiplying the function by —1 and finding the minimum. For
example, the maximum of the function f(x) = xe " —0.2 (from Sample Prob-
lem 9-1) in the interval 0 < x < 8 can be determined by finding the minimum of
the function f(x) = —xe ~ + 0.2 as shown below:

>> [x fvall=fminbnd('-x*exp(-x)+0.2',0,8)

* = The maximum is at x = 1.0. The value of

the function at this point is 0.1679.

1.0000
fval =
-0.1679

www.it-ebooks.info

http://www.it-ebooks.info/

300 Chapter 9: Applications in Numerical Analysis

9.3 NUMERICAL INTEGRATION

Integration is a common mathematical operation in science and engineering. Cal-
culating area and volume, velocity from acceleration, and work from force and
displacement are just a few examples where integrals are used. Integration of sim-
ple functions can be done analytically, but more involved functions are frequently
difficult or impossible to integrate analytically. In calculus courses the integrand
(the quantity to be integrated) is usually a function. In applications of science and
engineering the integrand can be a function or a set of data points. For example,
data points from discrete measurements of flow velocity can be used to calculate
volume.

It is assumed in the presentation below that the reader has knowledge of
integrals and integration. A definite integral of a function f{x) from a to b has the
form:

b
g = [fo 71)

The function f(x) is called the integrand, and the
numbers a and b are the limits of integration.
Graphically, the value of the integral ¢ is the area q

between the graph of the function, the x axis, and X
the limits ¢ and b (the shaded area in the figure). a b g
When a definite integral is calculated analytically

f(x) is always a function. When the integral is calculated numerically f(x) can be
a function or a set of points. In numerical integration the total area is obtained by
dividing the area into small sections, calculating the area of each section, and add-
ing them up. Various numerical methods have been developed for this purpose.
The difference between the methods is in the way that the area is divided into sec-
tions and the method by which the area of each section is calculated. Books on
numerical analysis include details of the numerical techniques.

The following discussion describes how to use the three MATLAB built-in
integration functions quad, quadl, and trapz. The quad and quadl com-
mands are used for integration when f{(x) is a function, and trapz is used when
f(x) is given by data points.

The quad command:

The form of the quad command, which uses the adaptive Simpson method of
integration, is:

q = quad (function,a,b)]

The value of the integral. ~ The function to The integration limits.
be integrated.

www.it-ebooks.info

http://www.it-ebooks.info/

9.3 Numerical Integration 301

¢ The function can be entered as a string expression or as a function handle, in
the same way as with the fzero command. See Section 9.1 for details. The
first two methods are demonstrated in Sample Problem 9-2.

e The function f(x) must be written for an argument x that is a vector (use
element-by-element operations) such that it calculates the value of the function
for each element of x.

¢ The user has to make sure that the function does not have a vertical asymptote
between a and 4.

¢ quad calculates the integral with an absolute error that is smaller than 1.0e-6.
This number can be changed by adding an optional tol argument to the com-
mand:
q=quad(‘function’,a,b, tol)
tol is a number that defines the maximum error. With larger tol the integral
is calculated less accurately but faster.

The quadl command:

The form of the quadl (the last letter is a lowercase L) command is exactly the
same as that of the quad command:

g = quadl (function,a,b)]

The value of the integral. ~ The function to The integration limits.
be integrated.

All of the comments that are listed for the quad command are valid for the
quadl command. The difference between the two commands is the numerical
method used for calculating the integration. The quadl command uses the adap-
tive Lobatto method, which can be more efficient for high accuracies and smooth
integrals.

Sample Problem 9-2: Numerical integration of a function

Use numerical integration to calculate the following integral:

8 08
J' (xe ™ +0.2)dx
0

www.it-ebooks.info

http://www.it-ebooks.info/

302 Chapter 9: Applications in Numerical Analysis

Solution

For illustration, a plot of the function for the o5
interval 0<x<8 is shown on the right. The 05
solution uses the quad command and shows o4
how to enter the function in the command in -3
two ways. In the first, it is entered directly by 92
typing the expression as an argument. In the o1
second, an anonymous function is created and ¢, : = 5
its name is subsequently entered in the com-
mand.

The use of the quad command in the Command Window, with the function
to be integrated typed in as a string, is shown below. Note that the function is
typed with element-by-element operations.

s

>> quad('x.*exp(-x.70.8)+0.2',0,8)

ans =
3.1604

The second method is to first create a user-defined function that calculates
the function to be integrated. The function file (named y=Chap9Sam2 (x)) is:

function y=Chap9Sam2 (x)

y=x.*exp(-x.70.8)+0.2;
Note again that the function is written with element-by-element operations such
that the argument x can be a vector. The integration is then done in the Command
Window by typing the handle @Chap9Sam2 for the argument function in the
quad command as shown below:

>> g=quad (@Chap9Sam2,0, 8)

q =
3.1604

The trapz command:

The trapz command can be used for integrating a function that is given as data
points. It uses the numerical trapezoidal method of integration. The form of the
command is

[q = trapz(x,y)]

where x and y are vectors with the x and y coordinates of the points, respectively.
The two vectors must be of the same length.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Ordinary Differential Equations 303

9.4 ORDINARY DIFFERENTIAL EQUATIONS

Differential equations play a crucial role in science and engineering since they are
in the foundation of virtually every physical phenomenon that is involved in engi-
neering applications. Only a limited number of differential equations can be
solved analytically. Numerical methods, on the other hand, can result in an
approximate solution to almost any equation. Obtaining a numerical solution
might not be simple task however. This is because a numerical method that can
solve any equation does not exist. Instead, there are many methods that are suit-
able for solving different types of equations. MATLAB has a large library of tools
that can be used for solving differential equations. To fully utilize the power of
MATLAB, however, requires that the user have knowledge of differential equa-
tions and the various numerical methods that can be used for solving them.

This section describes in detail how to use MATLAB to solve a first-order
ordinary differential equation. The possible numerical methods that can be used
for solving such an equation are described in general terms, but are not explained
from a mathematical point of view. This section provides information for solving
simple, “nonproblematic” first-order equations. This solution provides the basis
for solving higher-order equations and systems of equations.

An ordinary differential equation (ODE) is an equation that contains an
independent variable, a dependent variable, and derivatives of the dependent vari-
able. The equations that are considered here are of first order with the form

dy _
dx _f(x’y)

where x and y are the independent and dependent variables, respectively. A solu-
tion is a function y = f{x) that satisfies the equation. In general, many functions
can satisfy a given ODE, and more information is required for determining the
solution of a specific problem. The additional information is the value of the func-
tion (the dependent variable) at some value of the independent variable.

Steps for solving a single first-order ODE:

For the remainder of this section the independent variable is taken as ¢ (time). This
is done because in many applications time is the independent variable, and also to
be consistent with the information in the Help menu of MATLAB.

Step 1: Write the problem in a standard form.

Write the equation in the form:
% =flt,y) for t,<t<t, with y =y, att=t,.

As shown above, three pieces of information are needed for solving a first order
ODE: An equation that gives an expression for the derivative of y with respect to ¢z,
the interval of the independent variable, and the initial value of y. The solution is
the value of y as a function of z between ¢, and ¢,.

www.it-ebooks.info

http://www.it-ebooks.info/

304 Chapter 9: Applications in Numerical Analysis

An example of a problem to solve is:

3 _
‘(—% = %Z for 1<¢<3 with y =42 atr=1.
Step 2: Create a user-defined function (in a function file) or an anonymous
function.

The ODE to be solved has to be written as a user-defined function (in a function
file) or as an anonymous function. Both calculate ‘% for given values of 7 and y.
For the example problem above, the user-defined function (which is saved as a
separate file) is:

function dydt=ODEexpl (t,y)
dydt=(t"3-2*y) /t;

When an anonymous function is used, it can be defined in the Command Window,
or be within a script file. For the example problem here the anonymous function
(named odel) is:

>> odel=@(t,y) (t"3-2*y) /t
odel =
@(t,y) (£*3-2*y) /t

Step 3: Select a method of solution.

Select the numerical method that you would like MATLAB to use in the solution.
Many numerical methods have been developed to solve first-order ODEs, and
several of the methods are available as built-in functions in MATLAB. In a typical
numerical method, the time interval is divided into small time steps. The solution
starts at the linown point y,, and then by using one of the integration methods the
value of y is calculated at each time step. Table 9-1 lists seven ODE solver com-
mands, which are MATLAB built-in functions that can be used for solving a first-
order ODE. A short description of each solver is included in the table.

Table 9-1: MATLAB ODE Solvers

ODE Solver Name Description

ode45 For nonstiff problems, one-step solver, best to apply
as a first wy for most problems. Based on explicit
Runge-Kutta method.

ode23 For nonstiff problems, one-step solver. Based on
explicit Runge-Kutta method. Often quicker but less
accurate than ode45.

odell3s For nonstiff problems, multistep solver.

www.it-ebooks.info

http://www.it-ebooks.info/

9.4 Ordinary Differential Equations 305

Table 9-1: MATLAB ODE Solvers (Continued)

ODE Solver Name Description

odelss For stiff problems, multistep solver. Use if ode45
failed. Uses a variable order method.

ode23s For stiff problems, one-step solver. Can solve some
problems that ode15s cannot.

ode23t For moderately stiff problems.

ode23tb For stiff problems. Often more efficient than
odelbs.

In general, the solvers can be divided into two groups according to their
ability to solve stiff problems and according to whether they use on-step or multi-
step methods. Stiff problems are ones that include fast and slowly changing com-
ponents and require small time steps in their solution. One-step solvers use
information from one point to obtain a solution at the next point. Multistep solvers
use information from several previous points to find the solution at the next point.
The details of the different methods are beyond the scope of this book.

It is impossible to know ahead of time which solver is the most appropriate
for a specific problem. A suggestion is to first try ode45, which gives good
results for many problems. If a solution is not obtained because the problem is
stiff, trying the solver ode15s is suggested.

Step 4: Solve the ODE.

The form of the command that is used to solve an initial value ODE problem is the
same for all the solvers and for all the equations that are solved. The form is:

[t,y] = solver name (ODEfun, tspan,y0)

Additional information:

solver name Is the name of the solver (numerical method) that is used (e.g.
ode45 or ode23s)

ODEfun The function from Step 2 that calculates % for given values of

t and y. If it was written as a user-defined function, the function
handle is entered. If it was written as an anonymous function,
the name of the anonymous function is entered. (See the exam-
ple that follows.)

tspan A vector that specifies the interval of the solution. The vector
must have at least two elements but can have more. If the vector
has only two elements, the elements must be [t0 t£], which
are the initial and final points of the solution interval. The

www.it-ebooks.info

http://www.it-ebooks.info/

306

Chapter 9: Applications in Numerical Analysis

vector t span can have, however, additional points between the
first and last points. The number of elements in tspan affects
the output from the command. See [t,y] below.

yo0 The initial value of y (the value of y at the first point of the
interval).
[t,y] The output, which is the solution of the ODE. t and y are col-

umn vectors. The first and the last points are the beginning and
end points of the interval. The spacing and number of points in
between depends on the input vector tspan. If tspan has two
elements (the beginning and end points), the vectors t and y
contain the solution at every integration step calculated by the
solver. If tspan has more than two points (additional points
between the first and the last), the vectors t and y contain the
solution only at these points. The number of points in tspan
does not affect the time steps used for the solution by the pro-
gram.

For example, consider the solution to the problem stated in Step 1:

3 _
‘:’%:%Z for 1<1<3 with y =42 atz =1,

If the ODE function is written as a user-defined function (see Step 2), then the
solution with MATLAB?’s built-in function ode45 is obtained by:

>> [t yl=ode45 (@0DEexpl, [1:0.5:3],4.2)

t = \ \[The initial value. |

1.0000
1.5000 [The vector tspan.]
2.0000
2.5000
3.0000

[The handle of the user-defined function ODEexpl.]

4.2000
2.4528
2.6000
3.7650
5.8444

The solution is obtained with the solver ode45. The name of the user-defined
function from Step 2 is ODEexpl. The solution starts at 1 = 1 and ends at ¢ = 3
with increments of 0.5 (according to the vector tspan). To show the solution, the
problem is solved again below using t span with smaller spacing, and the solution

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Examples of MATLAB Applications 307

is plotted with the plot command.

>> [t yl=o0de45 (@0DEexpl, [1:0.01:3],4.2);
>> plot(t,y)
>> xlabel('t'), ylabel('y’')

8

55-
50
45-
> 40
35-
3k
251

1 . .
1 15 2 25 3
t

If the ODE function is written as an anonymous function called odel (see Step
2), then the solution (same as shown above) is obtained by typing:
[t y]l=ode45(odel, [1:0.5:3],4.2).

9.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 9-3: The gas equation
The ideal gas equation relates the volume (¥ in L), temperature (T in K), pressure
(P in atm), and the amount of gas (number of moles ») by:

_ nRT

Vv
where R = 0.08206 (L atm)/(mol K) is the gas constant.

The van der Waals equation gives the relationship between these quantities
for a real gas by

(P+ ’%")(V— nb) = nRT

where a and b are constants that are specific for each gas.
Use the fzero function to calculate the volume of 2 mol CO, at temperature of

50° C, and pressure of 6 atm. For CO,, a = 3.59 (L? atm)/mol?, and b = 0.0427 L/
mol.

Solution

The solution written in a script file is shown below.

global P Tn a b R

www.it-ebooks.info

http://www.it-ebooks.info/

308 Chapter 9: Applications in Numerical Analysis

R=0.08206;
P=6; T=323.2; n=2; a=3.59; b=0.047;

Vest=n*R*T/P; [Calculating an estimated value for V.]
V=fzero(6Waals,Vest) Function handle @waals is used to pass the
user-defined function waals into fzero.

The program first calculates an estimated value of the volume using the ideal gas
equation. This value is then used in the fzero command for the estimate of the
solution. The van der Waals equation is written as a user-defined function named
Waals, which is shown below:

function fofx=Waals (x)
global P T n a b R

fofx=(P+n"2*a/x"2) * (x-n*b) -n*R*T;

In order for the script and function files to work correctly, the variables P, T, n, a,
b, and R are declared global. When the script file (saved as Chap9SamPro3) is
executed in the Command Window, the value of 7 is displayed, as shown next:

>> Chap9SamPro3

VvV =

8.6613 [The volume of the gas is 8.6613 L.]

Sample Problem 9-4: Maximum viewing angle

To get the best view of a movie, a person has to

sit at a distance x from the screen such that the ‘
viewing angle 6 is maximum. Determine the
distance x for which 8 is maximum for the con-
figuration shown in the figure.

36 m

IS m

Solution

The problem is solved by writing a function

for the angle' 0 in terms of X, and. then finding Jxi+412 36
the x for which the angle is maximum. In the

triangle that includes 6, one side is given (the

height of the screen), and the other two sides P

can be written in terms of x, as shown in the

figure. One way in which 8 can be written in terms of x is by using the Law of
Cosines:

) = (x2+52) + (x2+41%) - 362

2.x2+ 52, Jx2 + 412

cos(0

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Examples of MATLAB Applications

309

The angle 6 is expected to be between 0 and
7/2. Since cos(0) = 1 and the cosine is

decreasing with increasing 6, the maximum s

angle corresponds to the smallest cos(6). A
plot of cos(8) as a function of x shows that the
function has a minimum between 10 and 20.
The commands for the plot are:

>>fplot (' ((x"2+5%2)+(x"2+41%2) -36"2) / (2*sqrt (x"2+ 5°2)*sqrt (x"2+
41%2))',[0 25])

1

0.95|

0.9

0.85]

@ 08|
8

0.75|

07

o

>> xlabel('x'); ylabel('cos(\theta)')

The minimum can be determined with the fminbnd command:

>>[x anglecos]=fminbnd (' ((x"2+5%2)+(x"2+41"2)-36"2)/

(2*sqrt (x"2+5%2) *sqrt (x"2+41°2))',10,20)

The minimum is at x = 14.3178 m.
At this point cos(0) = 0.6225.

X =
14.3178
anglecos =
0.6225

>> angle=anglecos*180/pi

angle =

[In degrees the angle is 35.6674°]

35.6674

Sample Problem 9-5: Water flow in a river

To estimate the amount of water that flows in
a river during a year, a section of the river is
made to have a rectangular cross section as
shown. In the beginning of every month
(starting at January 1st) the height 4 of the
water and the speed v of the water flow are
measured. The first day of measurement is
taken as 1, and the last day—which is Janu-

“‘--~‘-
///,/"

T/

ary 1st of the next year—is day 366. The following data was measured:

Day 1 32 | 60 |91 |121 |152 |182 |213 (244 |274 |305 |335 |366
h (m) 20 |21 |23 |24 |30 (29 (27 (26 |25 |23 |22 |21 |20
v(mss) |20 (22 |25 |27 5 47 |41 |38 |37 |28 |25 [23 |20

Use the data to calculate the flow rate, and then integrate the flow rate to obtain an

estimate of the total amount of water that flows in the river during a year.

www.it-ebooks.info

http://www.it-ebooks.info/

310 Chapter 9: Applications in Numerical Analysis

Solution

The flow rate, Q (volume of water per second), at each data point is obtained by
multiplying the water speed by the width and height of the cross-sectional area of
the water that flows in the channel:

0 = vwh (m’/s)

The total amount of water that flows is estimated by the integral:
2
v = (60-60-24) Qat
4

The flow rate is given in cubic meters per second, which means that time must
have units of seconds. Since the data is given in terms of days, the integral is mul-
tiplied by (60 - 60 - 24) s/day.

The following is a program written in a script file that first calculates Q and
then carries out the integration using the trapz command. The program also
generates a plot of the flow rate versus time.

w=8;

d=[1 32 60 91 121 152 182 213 244 274 305 335 366];
h=[2 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0];
speed=[2 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2];
Q=speed.*w.*h;

Vol=60*60*24*trapz (4,Q);

fprintf ('The estimated amount of water that flows in the
river in a year is %g cubic meters.',Vol)

plot (4,Q)
xlabel ('Day'), ylabel('Flow Rate (m*3/s)')

When the file (saved as Chap9SamPro5) is executed in the Command Window,
the estimated amount of water is displayed and the plot is generated. Both are
shown below:.

>> Chap9SamPro5

The estimated amount of water that flows in the river in a
year is 2.03095e+009 cubic meters.

www.it-ebooks.info

http://www.it-ebooks.info/

9.5 Examples of MATLAB Applications 311

N
=]

Flow Rate (mals)
o o o o o o

o
(=]

IS

=]
/

/

w
=]
o+

50 100 150 200 250 300 350 400
Day

Sample Problem 9-6: Car crash into a safety bumper

A safety bumper is placed at the end of a v

racetrack to stop out-of-control cars. The —_— }—x>
bumper is designed such that the force that P:E
the bumper applies to the car is a function E
of the velocity v and the displacement x of
the front edge of the bumper according to the equation:

F = Kv3(x+1)°

where K =30 (s kg)/m’ is a constant.

A car with a mass m of 1,500 kg hits the bumper at a speed of 90 km/h.
Determine and plot the velocity of the car as a function of its position for 0 <x <3
m.

Solution

The deceleration of the car once it hits the bumper can be calculated from New-
ton’s second law of motion,

ma = -Kv3(x+1)°
which can be solved for the acceleration a as a function of v and x:
_Kv3 3
a4 = Kv3i(x+1)
m

The velocity as a function of x can be calculated by substituting the acceleration in
the equation
vdv = adx

which gives

dv _ —Kv(x+1)°

dx m
The last equation is a first-order ODE that needs to be solved for the interval
0 < x <3 with the initial condition v = 90 km/h at x = 0.

A numerical solution of the differential equation with MATLAB is shown in

www.it-ebooks.info

http://www.it-ebooks.info/

312 Chapter 9: Applications in Numerical Analysis

the following program, which is written in a script file:

global k m

k=30; m=1500; v0=90;

xspan=[0:0.2:3]; [A vector that specifies the interval of the solution. |
vOmps=v0*1000/3600; [Changing the units of v, to m/s.]
[x v]=ode45 (@bumper,xspan,v0mps) [Solving the ODE.]
plot(x,Vv)

xlabel('x (m)'); ylabel('velocity (m/s)')

Note that the function handle @bumper is used for passing the user-defined func-
tionbumper into ode45. The listing of the user-defined function with the differ-
ential equation, named bumper, is:

function dvdx=bumper (x,Vv)
global k m
dvdx=- (k*v*2* (x+1) *3) /m;

When the script file executes (saved as Chap9SamPro6) the vectors x and v are
displayed in the Command Window (actually, they are displayed on the screen
one after the other, but to save room they are displayed below next to each other).

>> Chap9SamPro6

x = v =
0 25.0000
0.2000 22.0420
0.4000 18.4478
0.6000 14.7561
0.8000 11.4302
1.0000 8.6954
1.2000 6.5733
1.4000 4.9793
1.6000 3.7960
1.8000 2.9220
2.0000 2.2737
2.2000 1.7886
2.4000 1.4226
2.6000 1.1435
2.8000 0.9283

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Problems

313

3.00090 0.7507

The plot generated by the program of the velocity as a function of distance is:

25

waloolty {m/a}
]

x(m)

9.6 PROBLENS

L

Determine the solution of the equation e%3*—x? = -4 .
Detenmine the solntion of the equation 2 cosz— 0.543 = 1.

Determine the two roots of the equation x® — 5x25 + @09+ 4(x+1) = -2 .
Determine the positive roots of the equation x2 — 5x8in(3x)+3 = 0.

A box of mass m = 25 kg is being pulled by a rope. F
The force that is required to move the box is given
by: 9
m
T CosB+ jLsin®

where p = 0.55 is the friction coefficient and g = 9.81 m/s2. Determine the
angle 6, if the pulling force is 150 N.

A scale is made of two springs, as
shown in the figure. The springs b x

are nonlinear such that the force x a
they apply is given by ==
Fg = Kju+K,u*, where the K%
are constends and u = L— L, is the

clongation of the spring (L = Ja® +(b+x)* and Ly= Ja*+b° are the cur-
rent and initial lengths of the springs, respectively). Initially, the springs are

www.it-ebooks.info

http://www.it-ebooks.info/

314 Chapter 9: Applications in Numerical Analysis

not stretched. When an object is attached to the ring, the springs stretch and
the ring is displaced downward a distance x. The weight of the object can be
expressed in terms of the distance x by:

(btx)

L
For the given scale a = 022m, b = 0.08m, and the springs’ constants are
K, = 1600N/m and K, = 100000N/m>. Plot W as a function of x for

0<x<0.25. Determine the distance x when a 400 N object is attached to the
scale.

W = 2F

7. An estimate of the minimum velocity required for a round flat stone to skip
when it hits the water is given by (Lyderic Bocquet, “The Physics of Stone
Skipping,” Am. J. Phys., vol. 71, no. 2, February 2003)

16Mg
®Cp,,d?

8 Mtan?
nd3Cp,,sin6

where M and d are the stone mass and diameter, p,, is the water density, C is a

coefficient, 0 is the tilt angle of the stone, B is the incidence angle, and
g = 9.81 m/s?. Determine d if ¥ = 0.8 m/s. (Assume that @ = 0.1kg, C = 1,
p, = 1000kg/m3,and p = 6 = 10°.)

8. The diode in the circuit shown is forward Vo

biased. The current I flowing through the L, N
diode is given by: 1

9vp D

kT

I=1Ig|e" -1 —t
s (J vs C o R §

where v, is the voltage drop across the
diode, T is the temperature in kelvins,

Ig = 102 A is the saturation current,
g = 16x 107" coulombs is the elementary charge value, and

k = 1.38x 1072 joule/K is Boltzmann’s constant. The current I flowing
through the circuit (the same as the current in the diode) is given also by:
_Vs—Vp
==z
Determine v, if vg =2V, T = 297K, and R = 1000 Q (Substitute I from
one equation into the other equation and solve the resulting nonlinear equa-

tion.)

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Problems 315

9.

10.

11.

12.

13.

14.

Determine the minimum and the maximum of the function

_ 3(x=025)
T3 = 135082032

A paper cup shaped as a frustum of a cone with
R, = 2R, is designed to have a volume of 250 cm’.
Determine R, R,, and A such that the least amount of
paper will be used for making the cup.

The volume and the surface area of the paper cup are
given by:

—

V= %nh(kf+ R:+RR,)
_ f 7, .2 2, 2
S = TR+ Ry))(Ry—Ry)" + B+ (R + Ry)

Consider again the block that is being pulled in Problem 5. Determine the
angle 0 at which the force that is requires to pull the box is the smallest. What
is the magnitude of this force?

Determine the dimensions (radius » and height 4)
and the volume of the cylinder with the largest vol-
ume that can be made inside of a sphere with a
radius R of 14 in.

Consider the ellipse x2 +l2 = 1. Determine
PSe 192752 T

the sides a and b of the rectangle with the larg-
est area that can be enclosed by the ellipse.

Planck’s radiation law gives the spectral radiancy R as a function of the wave
length A and temperature T (in kelvins):

2nc2h 1

R =
25 /(AT

-34

where ¢ = 3.0x 108 m/s is the speed of light, 2 = 6.63x 10" J s is Planck’s

constant, and £ = 1.38 x 1072 J/K is the Boltzmann’s constant.

Plot R as a function of A for 02x10°<A<6.0x10°m at T = 1500 K,
and determine the wavelength that gives the maximum R at this temperature.

www.it-ebooks.info

http://www.it-ebooks.info/

316

Chapter 9: Applications in Numerical Analysis

15. A 108 in.—long beam AB is attached to the ”
wall with a pin at point 4 and to a 68 in.—

long cable CD. A load W = 2501b is Le
attached to the beam at point B. The ten- p .
sion in the cable T is given by Ij >]

ro PLLc I Eﬂ

djiz-& L |
where L and L are the lengths of the beam and the cable, respectively, and d
is the distance from point 4 to point D, where the cable is attached. Make a

plot of T versus d. Determine the distance d where the tension in the cable is
the smallest.

16. Use MATLAB to calculate the following integral:

100,543 9 cos1.2x
@ jz W ®) jo(o.5+ —(x+2)2) dx

17. Use MATLAB to calculate the following integrals:

@ js"—‘dx ® [ooseore ar

3
1 X 0

18. The speed of a race car during the first seven seconds of a race is given by:

t(s) 0 1 2 3 4 5 6 7
v(mi/h)| 0 14 39 69 95 114 | 129 | 139

Determine the distance the car traveled duning the first six seconds.

19. The shape of the centroid line of the Gate-
way Arch in St. Louis can be modeled
approximately with the equation:

fix) = 693.9—68.38 cosh(-Q%) for

—299.25 <x<299.25 ft.
By using the equation:

b
L= [40P ax

determine the length of the arch.

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Problems

317

20.

21.

22.

23.

The flow rate Q (volume of fluid per sec-
ond) in a round pipe can be calculated R
by: -—

0= I()r 2nvrdr

For turbulent flow the velocity profile

1/n
can be estimated by: v = vmax(l - 1%) . Determine Q for R = 0.251in.,

n =T,V = 80in./s.

The electric field E due to a charged circular disk
at a point at a distance z along the axis of the disk ¢
is given by

R
E= A%ZJ (22 +r2) > 2r)dr P
0% 0 I
where o is the charge density, ¢, is the
permittivity constant, €, = 8.85x 10> C¥(N m?),
and R is the radius of the disk. Determine the electric field at a point located 5
cm from a disk with a radius of 6 cm, charged with ¢ = 300 pC/m?2.

The length of a curve given by a parametric
equation x(z), y(¢) is given by:

j:J[x'(t)]2+ 'O di

The cardioid curve shown in the figure is given
by:

x = 2bcost—bcos2t ,and y = 2bsint— bsin2t
with 0<z<2z . Plot the cardioid with b = 5
and determine the length of a the curve.

The variation of gravitational acceleration g with altitude y is given by

__R
g = (R+y)2g0

where R = 6371 km is the radius of the earth, and g, = 9.81 m/s? is the gravi-
tational acceleration at sea level. The change in the gravitational potential
energy, AU, of an object that is raised from the earth is given by:

h
AU = I mgdy
0

Determine the change in the potential energy of a satellite with a mass of 500
kg that is raised from the surface of the earth to a height of 800 km.

www.it-ebooks.info

http://www.it-ebooks.info/

318 Chapter 9: Applications in Nnmerical Analysis

24. A cross section of a river with
measurements of i depth at
intervals of 40 ft is shown in the
figure. Use numerical integra-
tion %0 estimate the cross-sec-
tional area of the river.

25. An approximate map of the swate of
Texas is shown in the figure. For 400
determining the area of the state, the
map is divided into two parts (one 200

[ou] Y 4

above and one below the x axis). R
Determine the area of the state by ' X
numerdically integrating the two areas. 00:-1-500 [mi]
For each part make a list of the coor- UK »

dinate y of the border as a function of) ralh

Xx. Start with x = 0 and use incre- 1
ments of 50 mi, such that the last
point is x = 750. Compare the result
with the actual area of Ohio, which is 261,797 square miles.

1

26. A cross-sectional area has the geometry of
half an ellipse, as shown in the figure to ¥
the right. The coordinate % of the centroid |

of the area can be calculated by: Fe
M e

X = -—z x

*= 3 i => <
where 4 is the area given by A = %nab, e 'l/a
and My. is t.he moment of the area about _’/‘4//» \F N
the y axis, given by: d #

M=de,4=2bj'“x 1-% & i
vy~)X o)

Determine x when ¢ = 40 mm and 5 = 15 mm.

27. The orbit of Pluto is elliptical in shape, with e
a=59065x10%km and b=5708x10km. 7 L1 TN
The perimeter of an ellipse can be calculated by ;(j a \

. i
x/2 I '
P-= 4an J1_Fsi?0 do \ /’
N\
\\\ ,,/

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Problems 319

28.

29.

30.

31.

32.

33.

2
where &k = . Determine the distance Pluto travels in one orbit. Calcu-

NJaZl—b
a

late the average speed at which Pluto travels (in km/h) if one orbit takes about
248 years.

The Fresnel integrals are:

S(x) = J':sin(ﬂ)dt and C(x) = J‘:cos(z 2)dr

Calculate S(x) and C(x) for 0 <x <4 (use spacing of 0.05). In one figure plot
two graphs--——one of S(x) versus x and the other of C(x) versus x. In a second
figure plot S(x) versus C(x).

Use a MATLAB built-in function to numerically solve:

dy 2x .
= — <x< =
i 3y for 1<x<5 with p(1) =2

In one figure plot the numerical solution as a solid line and the exact solution
as discrete points.
Exact solution: y = 3/x2+7.

Use a MATLAB built-in function to numerically solve:
dy _ 2x+1

<x< i =
a2 for 0<x<8 with »(0) =2

In one figure plot the numerical solution as a solid line and the exact solution
as discrete points.

Exact solution: y = J2x2+2x+16-2.

Use a MATLAB built-in function to numerically solve:

% = 80e-16/cos(41)— 0.4y for 0<t<4 with y(0) =0

Plot the solution.

Use a MATLAB built-in function to numerically solve:

dy 2 X :
= _x2+ <x< =
I x 2 for 1<x<5 with y(1) =1

Plot the solution.

The growth of a fish is often modeled by the von Bertalanffy growth model:
dw 2

/3
— =aw T —-bw
dt

where w is the weight and a and b are constants. Solve the equation for w for

www.it-ebooks.info

http://www.it-ebooks.info/

320 Chapter 9: Applications in Numerical Analysis

thecase a = § lbm, b=2 day_l, and w(0) = 0.51b. Make sure that the
selected time span is just long enough so that the maximum weight is
approached. What is the maximum weight for this case? Make a plot of w as a
function of time.

34. A water tank shaped as an ellipsoid (¢ = 1.5 m, z
b = 40m, ¢ = 3m) has a circular hole at the bot-
tom, as shown. According to Torricelli’s law, the
speed v of the water that is discharging from the
hole is given by

v = A2gh
where A is the height of the water and g=9.81m/
s2. The rate at which the height, 4, of the water in
the tank changes as the water flows out through A
the hole is given by

dy _ J2gy r?

a ac[— 1+ (h;_zc)zi|

l r=0.025m
v

where 7, is the radius of the hole.

Solve the differential equation for y. The initial height of the water is
h = 5.9 m. Solve the problem for different times and find an estimate for the
time when 2 = 0.1 m. Make a plot of y as a function of time.

35. The sudden outbreak of an insect population can be modeled by the equation

an - RN(l-]l’)-Ngszz

C

The first term relates to the well-lmmown logistic population growth model
where N is the number of insects, R is an intrinsic growth rate, and C is the
carrying capacity of the local environment. The second term represents the
effects of bird predation. Its effect becomes significant when the population
reaches a critical size N,. r is the maximum value that the second term can
reach at large values of N.

Solve the differential equation for 0 <z<50days and two growth rates,
R = 0.55 and R = 0.58 day!, and with N(0) = 10000 . The other parameters

are C = 10°, N, = 104, r = 10* day. Make one plot comparing the two
solutions and discuss why this model is called an “outbreak” model.

www.it-ebooks.info

http://www.it-ebooks.info/

9.6 Problems

321

36.

37.

38.

An airplane uses a parachute and
other means of braking as it slows
down on the runway after land-
ing. Its acceleration is given by

a =-00035v"-3 m/s®. Since

_dv
dt’

velocity is given by:

a the rate of change of the

D 0003573
dt

Consider an airplane with a velocity of 300 km/h that opens its parachute and

starts decelerating at 1 =0 s.

(a) By solving the differential equation, determine and plot the velocity as a
function of time from ¢ = 0 s until the airplane stops.

(b) Use numerical integration to determine the distance x the airplane travels
as a function of time. Make a plot of x versus time.

The population growth of species with limited capacity can be modeled by the
equation:

dN _
- = kNN~ N)

where N is the population size, N,, is the limiting number for the population,
and k is a constant. Consider the case where N,, = 5000, k£ = 0.000095 1/yr,

and N(0) = 100. Determine N for 0<7<20 . Make a plot of N as a function
of 1.

An RL circuit includes a voltage IV\N\I

source v, aresistor R = 1.8 Q and an R

inductor L = 0.4H, as shown in the C_) L g v, ()
figure. The differential equation that

describes the response of the circuit is

LdlL 0 _vs

- =+
Rdr "R
where i, is the current in the inductor. Initially i, = 0, and then at ¢ = 0 the

voltage source is changed. Determine the response of the circuit for the fol-
lowing three cases:

(@) v, = 10sin(30mz) V for 120.

() v, = 10e~"/%%sin(30ms) V for £>0.
Each case corresponds to a different differential equation. The solution is the
current in the inductor as a function of time. Solve each case for 0<¢<0.4s.

www.it-ebooks.info

http://www.it-ebooks.info/

322 Chapter 9: Applications in Numerical Analysis

For each case plot v, and i; versus time (make two separate plots on the same
page).

39. Tumor growth can be modeled with the equation

- o1-(3)]

where A(t) is the area of the tumor and o, &, and v are constants. Solve the
equation for 0<¢<30 days, given o =08, k=60, v =025 and
A(0) = 1 mm?. Make a plot of 4 as a function of time.

40. The velocity of an object that falls freely due to the earth gravity can be mod-
eled by the equation:
dv _ _ 2
m mg+ kv
where m is the mass of the object, g = 9.81 m/s?, is and k is a constant. Solve
the equation for v for the case m = 5kg, k = 0.05kg/m, 0<¢<15s and

v(0) = 0 m/s. Make a plot of v as a function of time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10
Three-Dimensional
Plots

Three-dimensional (3-D) plots can be a useful way to present data that consists of
more than two variables. MATLAB provides various options for displaying three-
dimensional data. They include line and wire, surface, mesh plots, and many oth-
ers. The plots can also be formatted to have a specific appearance and special
effects. Many of the three-dimensional plotting features are described in this chap-
ter. Additional information can be found in the Help Window under Plotting and
Data Visualization.

In many ways this chapter is a continuation of Chapter 5, where two-dimen-
sional plots were introduced. The 3-D plots are presented in a separate chapter
because not all MATLAB users use them. In addition, new users of MATLAB will
probably find it easier to practice 2-D plotting first and learn the material in Chap-
ters 6—9 before attempting 3-D plotting. It is assumed throughout the rest of this
chapter that the reader is familiar with 2-D plotting.

10.1 LINE PLOTS

A three-dimensional line plot is a line that is obtained by connecting points in
three-dimensional space. A basic 3-D plot ‘is created with the plot3 command,
which is very similar to the plot command and has the form:

plot3(x,y,z, ‘line specifiers’, ‘PropertyName’, property value)
A\ Y b

X,Y,and z are (Optional) Specifiers that (Optional) Properties with val-
vectors of the define the type and color of ues that can be used to specify
coordinates of the line and markers. the line width, and marker’s
the points. size and edge and fill colors.

www.it-ebooks.info

323

http://www.it-ebooks.info/

324

Chapter 10: Three-Dimensional Plots

¢ The three vectors with the coordinates of the data points must have the same
number of elements.

* The line specifiers, properties, and property values are the same as in 2-D plots
(see Section 5.1).

For example, if the coordinates x, y, and z are given as a function of the parameter
tby

x = Jtsin(2f)

y = JJtcos(2t)

z = 0.5¢
a plot of the points for 0 <¢<6n can be produced by the following script file:

t=0:0.1:6%pi;

x=8grt(t) .*sin(2*t) ;
y=8qrt(t) .*cos (2*t) ;

z=0.5*t;
plot3(x,y,z,'k','linewidth’,1)

grid on

xlabel('x'); ylabel('y'):; zlabel('z')

The plot shown in Figure 10-1 is created when the script is executed.

Figure 10-1: A plot of the function x = Jtsin(28), y = Jteos(21), z = 0.5¢
for 0<t<é6m.

10.2 MESH AND SURFACE PLOTS

Mesh and surface plots are three-dimensional plots used for plotting functions of
the form z = f(x,y) where x and y are the independent variables and z is the
dependent variable. It means that within a given domain the value of z can be cal-
culated for any combination of x and y. Mesh and surface plots are created in three

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Mesh and Surface Plots 325

steps. The first step is to create a grid in the x y plane that covers the domain of the
function. The second step is to calculate the value of z at each point of the grid.
The third step is to create the plot. The three steps are explained next.

Creating a grid in the x y plane (Cartesian coordinates):

The grid is a set of points in the x y plane in the domain of the function. The den-
sity of the grid (number of points used to define the domain) is defined by the
user. Figure 10-2 shows a grid in the domain —-1<x<3 and 1<y<4. In this grid

yn

L4 O@ 1,4 2,4 3,4)

(-1,13) (0,B) (1,3) (2,3) (3,3)

(-1,2) (0,p) (1,2) (2.2) (3,2)

Figure 10-2: A grid in the x y plane for the domain -1 <x<3 and 1 <y <4 with
spacing of 1.

the distance between the points is one unit. The points of the grid can be defined
by two matrices, X and Y. Matrix X has the x coordinates of all the points, and
matrix Y has the y coordinates of all the points:

10123 44444
|-10123] 4 y[33333
10123 22222
10123 11111

The X matrix is made of identical rows since in each row of the grid the points

have the same x coordinate. In the same way the Y matrix is made of identical col-

umns since in each column of the grid the y coordinate of the points is the same.
MATLAB has a built-in function, called meshgrid, that can be used for

www.it-ebooks.info

http://www.it-ebooks.info/

326 Chapter 10: Three-Dimensional Plots

creating the X and ¥ matrices. The form of the meshgrid function is:

[X,Y] =meshgrid(x,y)

X is the matrix of the x coordi- x is a vector that divides the domain of x.
nates of the grid points. y is a vector that divides the domain ofy.
Y is the matrix of the y coordi-

nates of the grid points.

In the vectors x and y the first and last elements are the respective boundaries of
the domain. The density of the grid is determined by the number of elements in
the vectors. For example, the mesh matrices X and Y that correspond to the grid in
Figure 10-2 can be created with the meshgrid command by:

>> x=-1:3;

>> y=1:4;

>> [X,Y]=meshgrid(x,y)

X =
-1 0 1 2 3
-1 0 1 2 3
-1 0 1 2 3
-1 0 1 2 3

Y =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

Once the grid matrices exist, they can be used for calculating the value of z at each
grid point.
Calculating the value of z at each point of the grid:

The value of z at each point is calculated by using element-by-element calcula-
tions in the same way it is used with vectors. When the independent variables x
and y are matrices (they must be of the same size), the calculated dependent vari-
able is also a matrix of the same size. The value of z at each address is calculated
from the corresponding values of x and y. For example, if z is given by

_ X

T x4 2
the value of z at each point of the grid above is calculated by:

>5> Z2 = X.*Y."2./(X.72 + Y."2)

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Mesh and Surface Plots 327

Z =
-0.5000 0 0.5000 0.4000 0.3000
-0.8000 0 0.8000 1.0000 0.9231
-0.9000 0 0.9000 1.3846 1.5000
-0.9412 0 0.9412 1.6000 1.9200

Once the three matrices have been created, they can be used to plot mesh or sur-
face plots.

Making mesh and surface plots:

A mesh or surface plot is created with the mesh or surf command, which has
the form:

mesh(X,Y, Z) surf (X,Y,Z)

where X and Y are matrices with the coordinates of the grid and Z is a matrix with
the value of z at the grid points. The mesh plot is made of lines that connect the
points. In the surface plot, areas within the mesh lines are colored.

As an example, the following script file contains a complete program that
creates the grid and then makes a mesh (or surface) plot of the function

2
z= x—2x+Ly2 over the domain —-1<x<3 and 1 <y<4.

x=-1:0.1:3;

y=1:0.1:4;

[X,Y] =meshgrid(x,y):
Z=X.*Y."2./(X."2+Y.72);

mesh (X, Y, Z) [Type surf (X, Y, Z) for surface plot. |
xlabel('x'); ylabel('y'):; zlabel('z')

Note that in the program above the vectors x and y have a much smaller spacing
than the spacing earlier in the section. The smaller spacing creates a denser grid.
The figures created by the program are:

Mesh plot - Surface plot

www.it-ebooks.info

http://www.it-ebooks.info/

328 Chapter 10: Three-Dimensional Plots

Additional comments on the mesh command:

« The plots that are created have colors that vary according to the magnitude of z.
The variation in color adds to the three-dimensional visualization of the plots.
The color can be changed to be a constant either by using the Plot Editor in the
Figure Window (select the edit arrow, click on the figure to open the Property
Editor Window, then change the color in the Mesh Properties list), or by using
the colormap (C) command. In this command C is a three-element vector in
which the first, second, and third elements specify the intensity of Red, Green,
and Blue (RGB) colors, respectively. Each element can be a number between 0
(minimum intensity) and 1 (maximum intensity). Some typical colors are:

C=[000] black C=[100] red C=[010] green
C=[001] blue C=[110] yellow C=[101] magenta
C=[0.50.50.5] gray

¢ When the mesh command executes, the grid is on by default. The grid can be
turned off with the grid off command.

* A box can be drawn around the plot with the box on command.

¢ The mesh and surf commands can also be used with the form mesh (Z) and
surf (Z). In this case the values of Z are plotted as a function of their
addresses in the matrix. The row number is on the x axis and the column num-
ber is on the y axis.

There are several additional plotting commands that are similar to the mesh
and surf commands that create plots with different features. Table 10-1 shows
a summary of the mesh and surface plotting commands. All the examples in the

table are plots of the function z = 1.87"° ¥+ sin(x)cos (0.5y) over the domain
-3<x<3 and -3<y<3.

Table 10-1: Mesh and surface plots

Plot type Example of plot Program

Mesh Plot x=-3:0.25:3;
y=-3:0.25:3;
[X,¥Y] = meshgrid(x,y):;

Z2=1.8."(-1.5*sqrt (X."2+
Y.”2)).*cos (0.5*Y) .*gin (X);

mesh (X,Y, 2)
xlabel ('x') ; ylabel('y"')
zlabel ('z")

Function format:
mesh (X,Y,2)

www.it-ebooks.info

http://www.it-ebooks.info/

10.2 Mesh and Surface Plots

329

Table 10-1: Mesh and surface plots (Continued)

Plot type

Example of plot

Program

Surface Plot

Function format:
surf (X,Y,2)

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y);

Zz=1.8."(-1.5*sqrt (X." 2+
Y.”2)).*cos (0.5*Y) .*gin(X);

surf (X,Y,2)
Xxlabel ('x'); ylabel('y')
zlabel('z’')

Mesh Curtain
Plot (draws a

curtain around
the mesh)

Function format:
meshz (X,Y, Z)

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y);

Z=1.8."(-1.5*sqrt (X."2+
Y.*2)).*cos (0.5*Y) .*sin(X);

meshz (X,Y,Z)
xlabel('x'); ylabel('y')
zlabel ('z')

Mesh and Con-
tour Plot (draws
a contour plot
beneath the
mesh)

Function format:
meshc (X, Y, 2)

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y);

Z=1.8."(-1.5*sqrt (X."2+
Y.”2)).*cos (0.5*Y) .*gin(X);

meshc (X, Y, 2)
Xlabel('x'); ylabel('y')
zlabel ('z')

Surface and Con-
tour Plot (draws
a contour plot
beneath the sur-
face)

Function format:
surfc(X,Y, Z)

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y);

Z=1.8."(-1.5*%sqrt (X."2+
Y.*2)).*cos (0.5*Y) .*sin(X);

surfc (X,Y,2)
xlabel('x'); ylabel('y')
zlabel('z"')

www.it-ebooks.info

http://www.it-ebooks.info/

330

Chapter 10: Three-Dimensional Plots

Table 10-1: Mesh and surface plots (Continued)

Plot type Example of plot Program
x=-3:0.25:3;
y=-3:0.25:3;

* [X,Y] =meshgrid (x,y) ;
* Z=1.8.%(-1.5*sqrt (X."2+
N ¥.”2)) .*cos (0.5*Y) .*sin (X);
. surfl (X,Y,z)
041
+ xlabel ('x') ; ylabel('y')
zlabel ('z"')
Waterfall Plot x=-3:0.25:3;
(draws a mesh in P :P | y=-3:0.25:3;
one direction ok : : i Ao | [X,¥] = meshgrid(x,y):
only) R | |2=1.8.%(-1.5%sqrt (xX. 2+
_ " e =m0 [¥.%2)).%cos (0.5%Y) ein(X);
Function format: | -2 H‘H’HH”” fi " |waterfall (X,Y,2)
water- ok~ WW ! [WSy —
fall(X,Y,2) S o g -
Pl zlabel ('z"')
4 4
3-D Contour Plot x=-3:0.25:3;
R y=-3:0.25:3;
7 . | I 1
Function format: | o« | o E s [X,Y] =meshgrid (x,y) ;
contour3 (X, 02 i LSS T |zal.8. A (-1.5%sqrt (X. A2+
Y,Z,n) S ! T 1¥.%2)) *cos (0.5%Y) .*sin (X) ;
) =g P 11 |contour3(X,Y,2,15)
n is the number| -o4l-" . . s
x'); ylabel ('y’)
of contour levels . e
(optional) - . zlabel (*x*)
2-D Contour Plot x=-3:0.25:3;
(draws projec- y=-3:0.25:3;
tions of contour 4 [X,Y]=meshgrid(x,y):
levels on the x y y — s %=1.8." (-1.5%sqrt (X. 2+
plane) 1 iz ¥.”2)) .*cos (0.5+Y) .*sin (X);
Funztlon format: | .., 118 contour (X,Y,%,15)
contour -
(X,Y,Z,n)) xlabel ('x'); ylabel('y"')
1 1 1 2 = = 0 0
n is the number zlabel (*z*)
of contour levels 5 2 4 012

(optional)

www.it-ebooks.info

http://www.it-ebooks.info/

10.3 Plots with Special Graphics

331

10.3 PLOTS WITH SPECIAL GRAPHICS

MATLAB has additional functions for creating various types of special three-
dimensional plots. A complete list can be found in the Help Window under Plot-
ting and Data Visualization. Several of these 3-D plots are presented in Table 10-
2. The examples in the table do not show all the options available with each

Table 10-2: Specialized 3-D plots

t=1linspace(0,pi,20);
r=1+s8in(t);
[X,Y,2] =cylinder(r);
surf (X,Y,2)

axis square

3-D Bar Plot

Function format:
bar3 (Y)

Each elementin Y
is one bar. Col-
umns are grouped
together.

S N A O @

bar3 (Y)

www.it-ebooks.info

http://www.it-ebooks.info/

332 Chapter 10: Three-Dimensional Plots

Table 10-2: Specialized 3-D plots (Continued)

Plot type Example of plot Program
3-D Stem Plot t=0:0.2:10;
(draws sequen- x=t;
tial points with y=sin (t) ;
markers and ver- Set 21kl

tical lines from
stem3 (x,y,z,"'£fill")

the x y plane)
grid on

Function format: xlabel ('x');

stem3 (X,Y, 2Z) ylabel ('y"')
zlabel('z"')

3-D Scatter Plot t=0:0.4:10;
x=t;

Function format: ymain(t) ;

scatter3 (X, z=t.*1.5;

Y, Z)
scatter3(x,y,z'filled')
grid on
colormap ([0.1 0.1 0.1])
xlabel ('x') ;
ylabel ('y"')
zlabel('z"')

3-D Pie Plot X=[5 9 14 20];
explode=[0 0 1 0];

Function format: pie3 (X, explode)

pie3 (X,

explode) explode is a vector

(same length as X) of
0’s and 1’s. 1 offsets
the slice from the cen-
ter.

plot type. More details on each type of plot can be obtained in the Help
Window, or by typing help command name in the Command Window.

Polar coordinates grid in the x y plane:

_A 3-D plot of a function in which the value of z is given in polar coordinates (for
example z = r0) can be done by following these steps:

e Create a grid of values of 6 and r with the meshgrid function.

www.it-ebooks.info

http://www.it-ebooks.info/

10.4 The view Command

333

¢ Calculate the value of z at each point of the grid.

¢ Convert the polar coordinates grid to a grid in Cartesian coordinates. This can
be done with MATLAB’s built-in function pol2cart (see example below).

¢ Make a 3-D plot using the values of z and the Cartesian coordinates.

For example, the following script creates a plot of the function z = r0 over the
domain 0<0<360° and 0<r<2.
[th,r] =meshgrid((0:5:360) *pi/180,0:.1:2);
Z=r.*th;
[X,¥] = pol2cart(th,r);
mesh (X, Y, 2) | Type surf (X, Y,) for surface plot. |

The figures created by the program are:

15 15
1 ! |
10 ' | 10 I
N ! N j
5 ! 5 :
] 1
gk ; 2 i
2 - 2
y 0 0, i W 0,
2 .2 2 -2

10.4 THE view COMMAND

The view command controls the direction from which the plot is viewed. This is
done by specifying a direction in terms of azimuth and elevation angles, as seen in
Figure 10-3, or by defining a point in space from which the plot is viewed. To set
the viewing angle of the plot, the view command has the form:

{ view(az,el) or view([az,el])}

e az is the azimuth, which is an angle (in degrees) in the x y plane measured
relative to the negative y axis direction and defined as positive in the
counterclockwise direction.

¢ el is the angle of elevation (in degrees) from the x y plane. A positive value
corresponds to opening an angle in the direction of the z axis.

¢ The default view angles are az =—-37.5°, and el = 30°.

www.it-ebooks.info

http://www.it-ebooks.info/

334 Chapter 10: Three-Dimensional Plots

Figure 10-3: Azimuth and elevation angles.

As an example, the surface plot from Table 10-1 is plotted again in Figure 10-4,
with viewing angles az = 20° and el = 35°.

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y) ;

Z=1.8."(-1.5*sqrt (X."2+
¥.%2)) .*cos (0.5*Y) .*gin (X) ;

surf (X,Y,2)
view(20,35)

/x2+ yl

Figure 10-4: A surface plot of the function z = 187 sin (x) cos(0.5y) with

viewing angles of az =20° and el =35°.

* With the choice of appropriate azimuth and elevation angles, the view com-
mand can be used to plot projections of 3-D plots on various planes according

to the following table:
Projection plane az value el value
x y (top view) 0 90
x z (side view) 0 0
y z (side view) 90

An example of a top view is shown next. Figure 10-5 shows the top view of the
function that is plotted in Figure 10-1. Examples of projections onto the x z and y z
planes are shown next, in Figures 10-6 and 10-7, respectively. The figures show
mesh plot projections of the function plotted in Table 10-1.

www.it-ebooks.info

http://www.it-ebooks.info/

10.4 The view Command 335

t=0:0.1:6*pi;
x=sqrt (t) .*sin(2*t) ;

=

y=8qrt (t) .*cos (2*t) ;

z=0.5*t;

plot3 (x,y.z,'k’','linewidth', 1)
view(0,90)

grid on

xlabel ('x'); ylabel('y')
zlabel('z')

A T ST NN e St

4]
B
w
N
-
<t B4 L
N
w
B
(8]

Figure 10-5: A top view plot of the function x = Jtsin(21), y = Jteos(21),
z =05t for 0<t<6m.

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y) ;

2=1.8."(-1.5*sqrt (X."2+
¥.%2)) .*cos(0.5*Y) .*sin(X) ;

mesh (X, Y, 2)

view(0,0)

Figure 10-6: Projections onto the x z plane of the function

z= 18718y 2sin(x)cos(0.5y).

x=-3:0.25:3;
y=-3:0.25:3;
[X,Y] =meshgrid(x,y) ;

2=1.8."(-1.5*sqrt (X."2+
¥.%2)) .*cos (0.5*Y) .*gin(X) ;

surf (X,Y,2)
view(90,0)

Figure 10-7: Projections onto the y-z plane of the function

—1.5/x2+y?
z =18 """

sin(x) cos(0.5y).

www.it-ebooks.info

http://www.it-ebooks.info/

336 Chapter 10: Three-Dimensional Plots

¢ The view command can also set a default view:

view(2) sets the default to the top view, which is a projection onto the
x-y plane with az=0°, and e/ =90°.
view(3) sets the default to the standard 3-D view with az = -37.5° and
el =30°.
¢ The viewing direction can also be set by selecting a point in space from which
the plot is viewed. In this case the view command has the form
view([x,y,z]), where x, y, and z are the coordinates of the point. The direc-
tion is determined by the direction from the specified point to the origin of the
coordinate system and is independent of the distance. This means that the view
is the same with point [6, 6, 6] as with point [10, 10, 10]. Top view can be set
up with [0, 0, 1]. A side view of the x z plane from the negative y direction can
be set with [0, —1, 0], and so on.

10.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 10-1: 3-D projectile trajectory

A projectile is fired with an initial velocity of

250 m/s at an angle of 6 = 65° relative to the z
ground. The projectile is aimed directly north. e
Because of a strong wind blowing to the west,

the projectile also moves in this direction at a ¥
constant speed of 30 m/s. Determine and plot (North)
the trajectory of the projectile until it hits the

ground. For comparison, plot also (in the same figure) the trajectory that the pro-
jectile would have had if there was no wind.

(East)
3000 m

Solution

As shown in the figure, the coordinate system is set up such that the x and y axes
point in the east and north directions, respectively. Then the motion of the projec-
tile can be analyzed by considering the vertical direction z and the two horizontal
components x and y. Since the projectile is fired directly north, the initial velocity
vy can be resolved into a horizontal y component and a vertical z component:

Voy = vocos(8) and v, = vgsin(0)

In addition, due to the wind the projectile has a constant velocity in the negative x
direction, v, = =30 m/s.

The initial position of the projectile (xo, yg, 2o) is at point (3000, 0, 0). In the verti-
cal direction the velocity and position of the projectile are given by:

www.it-ebooks.info

http://www.it-ebooks.info/

10.5 Examples of MATLAB Applications 337

1
v, = vy,—gt and z = zO+v02t—§gt2

The time it takes the projectile to reach the highest point (v, = 0) is t;,,,, = A

The total flying time is twice this time, ¢,,, = 21,,,,.. In the horizontal direction
the velocity is constant (both in the x and y directions), and the position of the pro-

jectile is given by:
x =xygtvt and y = yo+ vyt

The following MATLAB program written in a script file solves the problem by

following the equations above.

v0=250; g=9.81; theta=65;

x0=3000; vx=-30;

v0z=v0*sin (theta*pi/180);

vO0y=vO0*cos (theta*pi/180) ;

t=2*v0z/g;

tplot=linspace(0,t,100); [Creating a time vector with 100 elements.]

z=v0z*tplot-0.5*g*tplot.”2;

Calculating the x, y, and z coordinates

=vO0y*tplot; . .
YRS of the projectile at each time.

x=x0+vx*tplot;

xnowind (1:length (y))=x0; (Constant x coordinate when no wind. |
plot3(x,y,z,'k-',xnowind,y,z, 'k--") (Two 3-D line plots.]
grid on

axis ([0 6000 0 6000 0 2500])
xlabel('x (m)'); ylabel('y (m)'); zlabel('z (m)')

The figure generated by the program is shown below.

4000 6000
y (m) 2000

2000 x (m)

www.it-ebooks.info

http://www.it-ebooks.info/

338

Chapter 10: Three-Dimensional Plots

Sample Problem 10-2: Electric potential of two point charges

The electric potential ¥ around a charged particle is given by

where €, = 8.8541878 x 1012 is the permittivity constant, g is the magni-

N m?
tude of the charge in coulombs, and r is the distance from the particle in meters.
The electric field of two or more particles is calculated by using superposition.
For example, the electric potential at a point due to two particles is given by
y- (.9
dngg\r; 1,
where q,, g,, r;, and r, are the charges of the particles and the distance from the

point to the corresponding particle, respectively.
Two particles with a charge of

g; = 2%x1071° C and ¢, = 3x1071° C are (),25“?
positioned in the x y plane at points (0.25, 0, ’\ 0.25 m
0) and (-0.25, 0, 0), respectively, as shown.

Calculate and plot the electric potential due
to the two particles at points in the x y plane
that are located in the domain 0.2 <x<0.2
and —0.2<y<0.2 (the units in the x y plane
are meters). Make the plot such that the x y
plane is the plane of the points, and the z axis is the magnitude of the electric
potential.

Solution

The problem is solved by following these steps:

(@) A grid is created in the x y plane with the domain -0.2<x<0.2 and
—02<y<02.

(b) The distance from each grid point to each of the charges is calculated.

(¢) The electric potential at each point is calculated.

(d) The electric potential is plotted.

The following is a program in a script file that solves the problem.

eps0=8.85e-12; gl=2e-10; g2=3e-10;

k=1/(4*pi*eps0);

x=-0.2:0.01:0.2;

y=-0.2:0.01:0.2;

[X,Y] =meshgrid(x,y) ; (Creating a grid in the x y plane.)

www.it-ebooks.info

http://www.it-ebooks.info/

10.5 Examples of MATLAB Anbbplications 339

rl=sqrt ((X+0.25) .”2+¥.”2); | Calculating the distance r, for each grid point.}
r2=sqrt ((X-0.25) .7 2+Y."2) ; [Calculating the distance r, for each grid point_]
V=k*(ql./rl+q2./r2); [Calculating the electric potential ¥ at each grid point]
mesh (X,Y,V)

xlabel('x (m)'); ylabel('y (m)'); zlabel('V (V)')

The plot generated when the program runs is:

|
I
T
1
I
I
1
+
I
|
I

0.2

Sample Problem 10-3: Heat conduction in a square plate

Three sides of a rectangular plate (a=5m, =4 m) yi

are kept at a temperature of 0°C and one side is T=80°C

kept at a temperature 7, = 80 °C, as shown in the b

figure. Determine and plot the temperature distri- 7- T=0

bution 7(x, y) in the plate. x
T=0 a }

Solution

The temperature distribution, 7(x, y) in the plate can be determined by solving the
two-dimensional heat equation. For the given boundary conditions 7(x, y) can be
expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineer-
ing Mathematics, John Wiley and Sons, 1993):

Teny) - 403 sinf (20— 1) snh| 2 -)72

n=1

(2n—1) sinh[(2n— 1)"7”}

A program in a script file that solves the problem is listed below. The program fol-
lows these steps:

www.it-ebooks.info

http://www.it-ebooks.info/

340 Chapter 10: Three-Dimensional Plots

(a) Create an X, Y grid in the domain 0<x<a and 0<y<b. The length of the
plate, a, is divided into 20 segments, and the width of the plate, b, is divided
into 16 segments.

(b) Calculate the temperature at each point of the mesh. The calculations are done
point by point using a double loop. At each point the temperature is deter-
mined by adding & terms of the Fourier series.

(c) Make a surface plot of T.

a=5; b=4; na=20; nb=16; k=5; T0=80;
clear T
x=linspace(0,a,na);

y=linspace(0,b,nb) ;

[X,¥] =meshgrid(x,y) ; (Creating a grid in the x y plane. |
for i=1:mb (First loop, i, is the index of the grid’s row. |
for j=1:na (Second loop, j, is the index of the grid’s column.|
T(i,3)=0;
for n=1:k Third loop, n, is the nth term of the Fourier
ns=2*n-1; series, k is the number of terms.

T(i,j)=T(i,j)+sin(ns*pi*X(i,j)/a).*sinh(ns*pi*Y(i,j)/
a)/(sinh(ns*pi*b/a) *ns) ;

end
T(i,j) = T(i,j)*4*T0/pi;
end
end
mesh (X, Y, T)
xlabel('x (m)'); ylabel('y (m)'); zlabel('T (“oC)')

The program was executed twice, first using five terms (k = 5) in the Fourier series
to calculate the temperature at each point, and then with £ = 50. The mesh plots
created in each execution are shown in the figures below. The temperature should
be uniformly 80°C at y = 4 m. Note the effect of the number of terms (k) on the
accuracy aty =4 m.

www.it-ebooks.info

http://www.it-ebooks.info/

10.6 Problems 341

T (YC)

10.6 PROBLEMS

1. The position of a moving particle as a function of time is given by:

_ [¢=15)] - [ﬂ :| — 041572
x [=+ 1sin30) o+ 1|cos(08) z= 041

Plot the position of the particle for 0<z<30.

2. An elliptical staircase that decreases can be
modeled by the parametric equations s

. ht
X = rcos(t = rsim(¢ zZ = — Ea0i
(0 y=rsin@) z=_T en

ab
Jibcos(H2+ [asin ()]
b are the semimajor and semiminor axes of
the ellipse, # is the staircase height, and » is the number of revolutions that the
staircase makes. Make a 3-D plot of the staircase with @ = 20 m, b = 10m,
A = 18m, and » = 3 . (Create a vector ¢ for the domain 0 to 2nn, and use the
plot3 command.)

where r = a and 1

Ox(m)
-10 -20

3. The ladder of a fire truck can be ele-
vated (increase of angle ¢), rotated
about the z axis (increase of angle 0),
and extended (increase of r). Initially
the ladder rests on the truck (¢ = 0,
0 = 0, and » = 8 m). Then the ladder
is moved to a new position by raising
the ladder at a rate of 5 deg/s, rotating
at a rate of 8 deg/s, and extending the ladder at a rate of 0.6 m/s. Determine
and plot the position of the tip of the ladder for 10 seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

342 Chapter 10: Three-Dimensional Plots

2
4. Make a 3-D surface plot of the function z = % —2sin(1.5x) in the domain
—-3<x<3 and -3<y<3.

5. Make a 3-D surface plot of the function z = 0.5x2+0.5y2 in the domain
—2<x<2and -2<y<2.

6. Make a 3-D mesh plot of the function z = =Cale0) , Where R = Jx2+y?

202R
in the domain -5<x<5 and -5<y<5.

7. Make a 3-D surface plot of the function z = cos(x)cos(~/x2 +y2)e 024 in the
domain 2x<x<2m and -n<y<m.

8. Make a plot of the ice cream cone shown in the fig-
ure. The cone is 8 in. tall with a 4 in. diameter base.
The ice cream at the top is a 4 in. diameter hemi-
sphere.

A parametric equation for the cone is:
x =rcos®, y=rsin@, z = 4r
with 0<6<2n and 0<r<2
A parametric equation for a sphere is:
x = rcosOsindg , y = rsinBsind , z = rcosd
with 0<0<2n and 0<¢<=n

9. The van der Waals equation gives a relationship between the pressure p (atm),
volume ¥, (L), and temperature 7 (K) for a real gas:
nRT nla

Py

where n is the number of moles, R = 0.08206 (L atm)/(mol K) is the gas con-

stant, and a (L2 atm/mol?), and » (L/mol) are material constants.

Consider 1.5 moles of nitrogen (a = 1.39L2 atm/mol?, b = 0.03913 L/
mol). Make a 3-D plot that shows the variation of pressure (dependent vari-
able, z axis) with volume (independent variable, x axis) and temperature (inde-
pendent variable, y axis). The domains for the volume and temperature are
03<V<12Land 273<T<473K.

10. Molecules of a gas in a container are moving around at different speeds. Max-
well’s speed distribution law gives the probability distribution P(v) as a func-
tion of temperature and speed:

3/2 2
M) v2e(—Mv)/(2RT)

Pwv) = 4n(2_1tRT

www.it-ebooks.info

http://www.it-ebooks.info/

10.6 Problems 343

11.

12.

13.

where M is the molar mass of the gas in kg/mol, R = 8.31J/(mol K), is the gas
constant, T is the temperature in kelvins, and v is the molecule’s speed in m/s.
Make a 3-D plot of P(v) as a function of v and 7 for 0 <v< 1000 m/s and

70 < T< 320 K for oxygen (molar mass 0.032 kg/mol).

Plank’s distribution law gives the blackbody
emissive power (amount of radiation energy
emitted) as a function of temperature and
wave length:

E =

G (w

C 2
ls[ek_;— 1i| wr
where C, = 3.742 x 108 Wum*/m?, C, = 1.439x 104 pmK, T'is the tempera-

ture in degrees K, and A is the wave length in pm. Make a 3-D plot (shown in
the figure) of E as a function of A (01<A<10pm) and T for

100 < T<2000K. Use a logarithmic scale for A . This can be done with the
command: set (gca, 'xscale', 'log').

The flow O (m%/s) in a rectangular channel is given by the Manning’s equa-
tion:
kdw(wd *3
Q= T(w +2 Js

where d is the depth of water (m), w is the width of the channel (m), S is the
slope of the channel (m/m), » is the roughness coefficient of the channel
walls, and k is a conversion constant (equal to 1 when the units above are
used). Make a 3-D plot of Q (z axis) as a function of w (x axis) for 0 < w< 8m,
and a function of d (y-axis) for 0<d<4 m. Assume » = 0.05 and
S = 0.001 m/m.

An RLC circuit with an alternating R

voltage source is shown. The source AN

voltage Vg is given by v.=v,sin(0)

v, = v,sin(w,), where o, = 2nf;, @) ==1G
in which f; is the driving frequency. L

The amplitude of the current, , in this —F T —

circuit is given by:

Vm

B+ (0, - 1/(0,0))*
where R and C are the resistance of the resistor and capacitance of the

I

www.it-ebooks.info

http://www.it-ebooks.info/

344

Chapter 10: Three-Dimensional Plots

14.

15.

16.

capacitor, respectively. For the circuit in the figure C = 15x10°F,

L =240x10"H, and v, = 24V.

a) Make a 3-D plot of I (z axis) as a function of w, (x axis) for
60 <f< 110 Hz, and as a function of R (y axis) for 1I0<R<40 Q

b) Make a plot that is a projection on the x z plane. Estimate from this plot
the natural frequency of the circuit (the frequency at which 7 is maxi-

mum). Compare the estimate with the calculated value of 1/(2n./LC).

A defect in a crystal lattice where a row of atoms is missing is called an edge
dislocation. The stress field around an edge dislocation is given by:

2 2
—Gb y(35° +°) y

Oax = 2n(l-v) 2, 2.2
(x"+y")
Edge
o = —Gb y& -5 dislocation
o 2n(l1-v) (x2+y2)2 . -

T = Gb x(x*-y) Plot domain
o 2n(l-v) (x2+y2)2
where G is the shear modulus, b is the

Burgers vector, and v is Poisson’s ratio. Plot the stress components (each in a
separate figure) due to an edge dislocation in aluminum, for which

G = 27.7x10° Pa, b = 0.286x 10°m, and v = 0.334. Plot the stresses in the

domain —5x10°<x<5x10°m and -5x10°<y<-1x10"m. Plot the
coordinates x and y in the horizontal plane, and the stresses in the vertical
direction.

The current 7 flowing through a semiconductor
diode is given by I Vo

v — N
I=Is(ekT—1j ¥

D

where I, = 102 A is the saturation current,

g = 1.6x10™" C is the elementary charge value, & = 1.38x 1072 J/K is
Boltzmann’s constant, v, is the voltage drop across the diode, and T is the
temperature in kelvins. Make a 3-D plot of 7 (z axis) versus v, (x axis) for
0<v,<0.4, and versus T (y axis) for 290 < T<320K.

The equation for the streamlines for uniform flow over a cylinder is
- y__Y
y(x,y) =y P

where v is the stream function. For example, if y = 0, then y = 0. Since the

www.it-ebooks.info

http://www.it-ebooks.info/

10.6 Problems 345

17.

18.

19.

equation is satisfied for all x, the x axis is the zero (w = 0) streamline.
Observe that the collection of points where x2+y2 = 1 is also a streamline.
Thus, the stream function above is for a cylinder of radius 1. Make a 2-D con-
tour plot of the streamlines around a cylinder with 1 in. radius. Set up the
domain for x and y to range between -3 and 3. Use 100 for the number of con-
tour levels. Add to the figure a plot of a circle with a radius of 1. Note that
MATLARB also plots streamlines inside the cylinder. This is a mathematical
artifact.

The deflection w of a clamped circular membrane of radius r, subjected to
pressure P is given by (small deformation theory)

Pr} r \272
wir) = m[l‘(:)]
E
12(1 —v2)
elastic modulus, thicleness, and Poisson’s ratio of the membrane, respectively.
Consider a membrane with P = 15psi, r;, = 15in, E = 18X% 10°psi,
t = 0.081n., and v = 0.3. Make a surface plot of the membrane.

where r is the radial coordinate, and K = , Where E, t, and v are the

The Verhulst model, given in the following equation, describes the growth of
a population that is limited by various factors such as overcrowding and lack
of resources:

N,

1+ (& - 1) e”

N, 0
where N(¢) is the number of individuals in the population, N, is the initial
population size, N,, is the maximum population size possible due to the vari-
ous limiting factors, and 7 is a rate constant. Make a surface plot of N(¢) ver-
sus tand N, assuming » = 0.1s7!, and N, = 10. Let ¢ vary between 0 and 100
and N, between 100 and 1,000.

N(@) =

The geometry of a ship hull (Wigley
hull) can be modeled by the equation

B 2x\2 %
y=51-F) -]
where x, y, and z are the length, width,
and height, respectively. Use MAT-
LAB to make a 3-D figure of the hull
as shown. Use B=12, L =4, -2

T=05,2<x<2,and -0.5<z<0.

www.it-ebooks.info

http://www.it-ebooks.info/

346

Chapter 10: Three-Dimensional Plots

20. The stresses fields near a crack tip of a
linear elastic isotropic material for mode I
loading are given by:

O, = —J%cos(g) |:1 = sin(g) sm(?)}
o, = Iz(;rcos(g) |:1 + sin(g) sin(?)]

- Eo{ (Yool
Txy = 2anOS 2 s 5 [Me])

8¢
o

For K, = 300ksiJ/in plot the stresses (each in a separate figure) in the domain

0<6<90° and 0.02<r<0.2in. Plot the coordinates x and y in the horizontal
plane, and the stresses in the vertical direction.

21. A ball thrown up falls back to the floor and
bounces many times. For a ball thrown up
in the direction shown in the figure, the
position of the ball as a function of time is
given by:

X=vt y=wt z= vzt—%gt2

The velocities in the x and y directions are
constants throughout the motion and are
given by v, = y;sin(B)cos(a) and
v, = vysin(8)sin(a) . In the vertical z direc-
tion the initial velocity is v, = v,cos(8),
and when the ball impacts the floor its
rebound velocity is 0.8 of the vertical
velocity at the start of the previous bounce.
The time between bounces is given by

t, = (2v,)/g, where v, is the vertical com-
ponent of the velocity at the start of the

100 > 4 ““100
50 x (m)

o 5
y (m) i

bounce. Make a 3-D plot (shown in the figure) that shows the trajectory of the
ball during the first five bounces. Take v, = 20m/s, 8 = 30°, a = 25°, and

g = 9.81 m/s%.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11
Symbolic Math

All of the mathematical operations done with MATLAB in the first 10 chapters
were numerical. The operations were carried out by writing numerical expressions
that could contain numbers and variables with preassigned numerical values.
When a numerical expression is executed by MATLAB, the outcome is also
numerical (a single number or an array with numbers). The number, or numbers,
are either exact or a floating point—approximated value. For example, typing 1/4
gives 0.2500—an exact value, and typing 1/3 gives 0.3333—an approximated
value.

Many applications in math, science, and engineering require symbolic oper-
ations, which are mathematical operations with expressions that contain symbolic
variables (variables that don’t have specific numerical values when the operation
is executed). The result of such operations is also a mathematical expression in
terms of the symbolic variables. One simple example involves solving an alge-
braic equation that contains several variables and solving for one variable in terms
of the others. If g, b, and x are symbolic variables, and ax— b = 0, x can be solved
in terms of a and b to give x = b/a. Other examples of symbolic operations are
analytical differentiation or integration of mathematical expressions. For instance,
the derivative of 2# + 5z — 8 with respect to ¢ is 6£2 + 5.

MATLARB has the capability of carrying out many types of symbolic opera-
tions. The numerical part of the symbolic operation is carried out by MATLAB
exactly, with no approximation of numerical values. For example, the result of

adding i and ;—c is %x and not 0.5833x.

Symbolic operations can be performed by MATLAB once the Symbolic
Math Toolbox is installed. The Symbolic Math Toolbox is a collection of MAT-
LAB functions that are used for execution of symbolic operations. The commands
and functions for the symbolic operations have the same style and syntax as those
for the numerical operations. The symbolic operations themselves are executed
primarily by MuPad®, which is mathematical software designed for this purpose.
The MuPad software is embedded within MATLAB and is automatically activated
when a symbolic MATLAB function is executed. MuPad can also be used as sep-
arate independent software. That software uses the MuPAD language, which has a

www.it-ebooks.info

347

http://www.it-ebooks.info/

348 Chapter 11: Symbolic Math

completely different structure and commands than MATLAB. The Symbolic Math
Toolbox is included in the student version of MATLAB. In the standard version,
the toolbox is purchased separately. To check if the Symbolic Math Toolbox is
installed on a computer, the user can type the command ver in the Command
Window. In response, MATLAB displays information about the version that is
used as well as a list of the toolboxes that are installed.

The starting point for symbolic operations is symbolic objects. Symbolic
objects are made of variables and numbers that, when used in mathematical
expressions, tell MATLAB to execute the expression symbolically. Typically, the
user first defines (creates) the symbolic variables (objects) that are needed, and
then uses them to create symbolic expressions that are subsequently used in sym-
bolic operations. If needed, symbolic expressions can be used in numerical opera-
tions

The first section in this chapter describes how to define symbolic objects
and how to use them to create symbolic expressions. The second section shows
how to change the form of existing expressions. Once a symbolic expression has
been created, it can be used in mathematical operations. MATLAB has a large
selection of functions for this purpose. The next four sections (11.3—11.6) describe
how to use MATLAB to solve algebraic equations, to carry out differentiation and
integration, and to solve differential equations. Section 11.7 covers plotting sym-
bolic expressions. How to use symbolic expressions in subsequent numerical cal-
culations is explained in the following section.

11.1 SYMBOLIC OBJECTS AND SYMBOLIC EXPRESSIONS

A symbolic object can be a variable (without a preassigned numerical value), a
number, or an expression made of symbolic variables and numbers. A symbolic
expression is a mathematical expression containing one or more symbolic objects.
When typed, a symbolic expression may look like a standard numerical expres-
sion. However, because the expression contains symbolic objects, it is executed
by MATLAB symbolically.

11.1.1 Creating Symbolic Objects

Symbolic objects can be variables or numbers. They can be created with the sym
and/or syms commands. A single symbolic object can be created with the sym
command:

object name =sym(‘'string’)

where the string, which is the symbolic object, is assigned to a name. The sting
can be:

¢ A single letter or a combination of several letters (no spaces). Examples: *a’,
vy ! , \ yad r

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 Symbolic Objects and Symbolic Expressions 349

* A combination of letters and digits starting with a letter and with no spaces
Examples: ‘xh12’,'r2d2’.

¢ A number. Examples: ‘15, 4",

In the first two cases (where the string is a single letter, a combination of several
letters, or a combination of letters and digits), the symbolic object is a symbolic
variable. In this case it is convenient (but not necessary) to give the object the
same name as the string. For example, a, bb, and x, can be defined as symbolic
variables as follows:

>> a=sym('a’') | Create a symbolic object a and assign it to a. |
a =

a - N .

>> bbesym('bb") Th.e d1§play gf a symbolic

b object is not indented.

bb
>> x=sym('x"); The symbolic variable x is created but not displayed,
>> since a semicolon is typed at the end of the command.

The name of the symbolic object can be different from the name of the variable.
For example:

>> g=sym('gamma')

g =
gamma

The symbolic object is gamma, and
the name of the object is g.

As mentioned, symbolic objects can also be numbers. The numbers don’t
have to be typed as strings. For example, the sym command is used next to create
symbolic objects from the numbers 5 and 7 and assign them to the variables ¢ and
d, respectively.

>> c=sym(5) [Create a symbolic object from the number 5 and assign it to c.]

C =

5 -—
The display of a symbolic
=B Rl object is not indented.

d M’
7

As shown, when a symbolic object is created and a semicolon is not typed at the
end of the command, MATLAB displays the name of the object and the object
itself in the next two lines. The display of symbolic objects starts at the beginning

of the line and is not indented as is the display of numerical variables. The differ-
ence is illustrated below, where a numerical variable is created.

www.it-ebooks.info

http://www.it-ebooks.info/

350

Chapter 11: Symbolic Math

>> e=13 (13 is assigned to e (numerical variable))
G = The display of the value of a
13 -— numerical variable is indented.

Several symbolic variables can be created in one command by using the
syms command, which has the form:

[syms variable name variable_name variable_name]

The command creates symbolic objects that have the same names as the symbolic
variables. For example, the variables y, z, and d can all be created as symbolic
variables in one command by typing:

>> syms y z 4

>> Yy The variables created by the syms command are
Yy = not displayed automatically. Typing the name of
Yy the variable shows that the variable was created.

When the syms command is executed, the variables it creates are not displayed
automatically—even if a semicolon is not typed at the end of the command.

11.1.2 Creating Symbolic Expressions

Symbolic expressions are mathematical expressions written in terms of symbolic
variables. Once symbolic variables are created, they can be used for creating sym-
bolic expressions. The symbolic expression is a symbolic object (the display is not
indented). The form for creating a symbolic expression is:

[Expression_name =Mathematical expression]

A few examples are:

>> syms a bcxy [Define a, b, ¢, %, and y as symbolic variables.]
FP EEEAXSLEbEXS 2 Create the symbolic expression
£ = ax?+bx+c and assignitto f.
a*x"2 + b*x + ¢

A & JL The display of the symbolic expression is not mdented.]

When a symbolic expression, which includes mathematical operations that can be
executed (addikion, subtraction, multiplication, and division), is entered, MAT-
LAB executes the operations as the expression is created. For example:

x
= +=+4.=—
3 = 6.5x 3 43 1.5

>> g=2%*a/3+4%*a/7-6.5*x+x/3+4*5/3-1.5 2a 4a 5
is entered.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 Symbolic Objects and Symbolic Expressions 351

g =
(26*a) /21 - (37*x)/6 + 31/6 26a 37x , 31

16 +g s displayed.

Notice that all the calculations are carried out exactly, with no numerical approxi-

mation. In the last example, 23—a and 4—7a were added by MATLAB to give g5a

21’
and -6.5x +;—c was added to 3%6 The operations with the terms that contain only
numbers in the symbolic expression are carried out exactly. In the last example,
4. g + 1.5 is replaced by %1

The difference between exact and approximate calculations is demonstwrated
in the following example, where the same mathematical operations are carried

out—once with symbolic variables and once with numerical variables.

>> a=sym(3); b=sym(5); | Define a and b as symbolic 3 and 5, respectively.|

>> e=b/a+sqrt(2) | Create an expression that includes a and b. |

e= An exact value of e is displayed as a symbolic

27(1/2) + 5/3 object (the display is not indented).

>> c=3; d=5; | Define c and d as numerical 3 and 5, respectively.

>> f=d/c+sqrt(2) | Create an expression that includes c and 4. |

£ = An approximated value of £ is displayed
3.0805 as a number (the display is indented).

An expression that is created can include both symbolic objects and numer-
ical variables. However, if an expression includes a symbolic object (or several),
all the mathematical operations will be carried out exactly. For example, if ¢ is

replaced by a in the last expression, the result is exact, as it was in the first exam-
ple.

>> g=d/a+sqrt(2)

g'=
2%(1/2) + 5/3

Additional facts about symbolic expressions and symbolic objects:

¢ Symbolic expressions can include numerical variables that have been obtained
from the execution of numerical expressions. When these variables are inserted
in symbolic expressions their exact value is used, even if the variable was dis-
played before with an approximated value. For example:

>> h=10/3 | his defined to be 10/3 (a numerical variable). |

www.it-ebooks.info

http://www.it-ebooks.info/

352 Chapter 11: Symbolic Math

h =

3.3333 | Anapproximated value of h (numerical variable) is displayed. |

>> k=sym(5); m=sym(7); | Define k and m as symbolic 5 and 7, respectively.|

>> p=k/m+h | h, k, and m are used in an expression. |
p = The exact value of h is used in the determination of p.
85/21 An exact value of p (symbolic object) is displayed.

¢ The double (S) command can be used to convert a symbolic expression
(object) S that is written in an exact form to numerical form. (The name “dou-
ble” comes from the fact that the command returns a double-precision floating-
point number representing the value of S.) Two examples are shown. In the
first, the p from the last example is converted into numerical form. In the sec-
ond, a symbolic object is created and then converted into numerical form.

>> pN=double (p) | p is converted to numerical form (assigned to pN). |
pN =

4.0476
>> y=sym(10) *cos (5*pi/6) | Create a symbolic expression y. |
}.,5:3 A(1/2) [Exact value of y is displayed. |

N=double p ; :
>> yi=dou (¥) y is converted to numerical form (assigned to yN).]

yN =
-8.6603

¢ A symbolic object that is created can also be a symbolic expression written in
terms of variables that were not first created as symbolic objects. For example,
the quadratic expression ax?+bx+c¢ can be created as a symbolic object
named £ by using the sym command:

>> f=sym('a*x"2+b*x+c!')

f =
a*x"2 + b*x +c

It is important to understand that in this case, the variables a, b, ¢, and x included
in the object do not exist individually as independent symbolic objects (the whole
expression is one object). This means that it is impossible to perform symbolic
math operations associated with the individual variables in the object. For exam-
ple, it will not be possible to differentiate £ with respect to x. This is different
from the way in which the quadratic expression was created in the first example in
this section, where the individual variables are first created as symbolic objects
and then used in the quadratic expression.

www.it-ebooks.info

http://www.it-ebooks.info/

11.1 Symbolic Objects and Symbolic Expressions 353

« Existing symbolic expressions can be used to create new symbolic expressions.
This is done by simply using the name of the existing expression in the new
expression. For example:

>> syms x y (Define x and y as symbolic variables. |
>> SA=x+y, SB=x-y [Create two symbolic expressions SA and SB.]
SA = _

. S4 =x+y

SB =

x-y SB=x-y

>> F=SA"2/SB"3+x"2 [Create a new symbolic expression F using SA and SB.]
o (x+y)?

(x4y) “2/ (x-y) “3+x2 F = (S42)/(SB%) +x2 = (x—_# + a2

11.1.3 The findsym Command and the Default Symbolic Variable

The findsym command can be used to find which symbolic variables are
present in an exisding symbolic expression. The format of the command is:

[findsym(s)] or [findsym(s,n)]

The findsym(S) command displays the names of all the symbolic variables
(separated by commas) that are in the expression S in alphabetical order. The
findsym (S, n) command displays n symbolic variables that are in expression
S in the default order. For one-letter symbolic variables, the default order starts
with x, and followed by letters, according to their closeness to x. If there are two
letters equally close to x, the letter that is after x in alphabetical order is first (y
before w, and z before v). The default symbolic variable in a symbolic expression
is the first variable in the default order. The default symbolic variable in an
expression S can be identified by typing findsym (S, 1) . Examples:

>> syms x hwydt [Define x, h, w, vy, 4, and t as symbolic variables.]

>> S=h*x*2+d*y"2+t*w”2 [Create a symbolic expression S.]
s =

t*w”2 + h*x"2 + d*y”"2

>> findsym(S) | Use the findsym(S) command.|
ans = [The symbolic variables are displayed in alphabetical order.]
d, h, t, w, x, vy

>> findsym(s,5) (Use the findsym (S, n) command (n = 5).|
ans =

X,yW,t,h [Five symbolic variables are displayed in the default order.]

www.it-ebooks.info

http://www.it-ebooks.info/

354

Chapter 11: Symbolic Math

>> findsym(s,1) | Use the findsym (S, n) command with n = 1]

ans =
X

| The default symbolic variable is displayed.

11.2 CHANGING THE FORM OF AN EXISTING SYMBOLIC EXPRESSION

Symbolic expressions are either created by the user or by MATLAB as the result
of symbolic operations. The expressions created by MATLAB might not be in the
simplest form or in a form that the user prefers. The form of an existing symbolic
expression can be changed by collecting terms with the same power, by expanding
products, by factoring out common multipliers, by using mathematical and trigo-
nometric identities, and by many other operations. The following subsections
describe several of the commands that can be used to change the form of an exist-
ing symbolic expression.

11.2.1 The collect, expand, and factor Commands

The collect, expand, and factor commands can be used to perform the
mathematical operations that are implied by their names.

The collect command:

The collect command collects the terms in the expression that have the vari-
able with the same power. In the new expression, the terms will be ordered in
decreasing order of power. The command has the forms

collect (S) [collect (S, variable_name)]

where S is the expression. The collect (S) form works best when an expres-
sion has only one symbolic variable. If an expression has more than one variable,
MATLAB will collect the terms of one variable first, then those of a second vari-
able, and so on. The order of the variables is determined by MATLAB. The user
can specify the first variable by using the collect (S, variable name)
form of the command. Examples:

>> syms X y [Define x and y as symbolic variables.]
;:s: (x"2+x-exp (x)) * (x+3) Create the symbolic expression

(x + 3)%(x - exp(x) + x°2) (x +3)(x—e*+x2)and assign it to S.
>> F = collect(S) [Use the collect command.]
F = . MATLARB returns the expression:

x"3+4%x" 2+ (3-exp (x)) *x-3*exp (x) X3 +4x2+ (3 ——e¥)x—3e* .

>> T=(2*x"2+y"2) * (x+y"2+3)
T -
(2*x"2+y"2) * (y"2+x+3)

Create the symbolic expression T
(2x2+y?)(p*+x+3).

www.it-ebooks.info

http://www.it-ebooks.info/

355

11.2 Changing the Form of an Existing Symbolic Expression

>> G=collect (T) [Use the collect (T) command.]

[MATLARB returns the expression 2x3 + (2y2 + 6)x2 + y2x + y2(y2 + 3) .]

G =
2%x" 3+ (2%y"2+6) *x"2+y " 2*x+y " 2% (y"2+3)

>> H=collect (T,Y) [Use the collect (T, y) command.]

Y et e MATLARB retumns the expression
Y 4+ (2*x"2+x+3) *y 2+2%x72% (x+3) Y (202 +x+ 32+ 252 (x + 3).

Note that when collect (T)is used, the reformatted expression is written in
order of decreasing powers of x, but when collect (T, y) is used, the reformat-
ted expression is written in order of decreasing powers of y.

The expand command:

The expand command expands expressions in two ways. It carries out products
of terms that include summation (used with at least one of the terms), and it uses
trigonometric identities and exponential and logarithmic laws to expand corre-
sponding terms that include summation. The form of the command is:

expand (S)

where S is the symbolic expression. Two examples are:

>> syms a x y (Define a, x, and y as symbolic variables. |
;>_s= sl ey O] Create the symbolic expression
- (a-x) * (x+4) * (x+5) —(a—x)(x+4)(x+5) and assign it to S.

>> T=expand (S) [Use the expand command.]

T = MATLARB retums the expression
20*x-20*a-9*a*x-a*x"2+9*x"2+x"3 | 20x—20a—9ax—ax2+9x2+x3.

>> expand(sin(x-y)) [Use the expand command to expand sin(x—y).|
ans = (MATLARB uses trig identity for the expansion|

cos (y) *sin(x) -cos (x) *sin (y)

The factor command:

The factor command changes an expression that is a polynomial to a product of
polynomials of a lower degree. The form of the command is:

factor (S)

where S is the symbolic expression. An example is:

>> syms x | Define x as a symbolic variable. |

www.it-ebooks.info

http://www.it-ebooks.info/

356

Chapter 11: Symbolic Math

>> S=x"3+4*x"2-11*x-30

. Cgeate the symbolic expregsiop
N e x3+4x2—11x-30 and assign it to S.
>> factor (S) [Use the factor command.]
ans = MATLARB returns the expression
(x+5) * (x-3) * (x+2) x+5)x-3)(x+2).

11.2.2 The simplify and simple Commands

The simplify and simple commands are both general tools for simplifying
the form of an expression. The simplify command uses built-in simplification
rules to generate a simpler form of the expression than the original. The simple
command is programmed to generate a form of the expression with the least num-
ber of characters. Although there is no guarantee that the form with the least num-
ber of characters is the simplest, in actuality this is often the case.

The simplify command:

The simplify command uses mathematical operations (addition,
multiplication, rules of fractions, powers, logarithms, etc.) and functional and
trigonometric identities to generate a simpler form of the expression. The format
of the simplify command is:

[simplify(S)]

where either S is the name of the or an expression to be simplified
existing expression to be simplified, can be typed in for S.

Two examples are:

>> syms X y [Define x and y as symbolic variables.]

>> 8=(x"2+5*x+6) / (x+2) Create the symbolic expression

8 = (x2+5x+6)/(x+2),and assign it to S.

(x"2+5%*x+6) / (x+2)

>> SA = simplify(s) [Use the simplify command to simplify S.]

SA = MATLARB simplifies the expres-

x+3 sionto x+ 3.

>> simplify ((x+y)/(1/x+1/y)) ST 1.1
Simplify (x+y)/ (x + y)'

ans =

MATLARB simplifies the expression to xy).]

X*y

www.it-ebooks.info

http://www.it-ebooks.info/

11.2 Changing the Form of an Existing Symbolic Expression 357

The simple command:

The simple command finds the form of the expression with the fewest number
of characters. In many cases this form is also the simplest. When the command is
executed, MATLAB creates several forms of the expression by applying the
collect, expand, factor, and simplify commands, and other simplifica-
tion functions that are not covered here. Then MATLAB retumns the expression
with the shortest form. The simple command has the following three forms:

[F=simple(S)] simple(S) [[F how] = simple(s)]
The shortest All the simplification trails ~ The shortest form of S is
form of S is are displayed. The shortest assigned to F. The name
assigned to F. is assigned to ans. (string) of the simplification

method is assigned to how.

The difference between the forms is in the output. The use of two of the forms is

shown next.

>> syms x | Define x as a symbolic variable. |

>> S=(x"3-4%*x"2+16*x)/(x"3+64) Create the symbolic expression

S = x3—4x2+ 16x ..
—————= and assign itto S.

(x"3-4%*x"2+16%x) / (x"3+64) x3+ 64 &

>> F = simple(S) [Use the F = simple (S) command to simplify S.]

F = i T :

x/ (x+4) [The simplest form of S, x/(x+4), is assigned to F.]

>> [G how] = simple(S) [Usethe [Ghow] = simple (S) command.]

G = : : s

x/ (x+4) [The simplest form of S, x/(x +4), is assigned to G.]

how = The word “simplify” is assigned to G, which means that the

simplify shortest form was obtained using the simplify command.

The use of the simple (S) form of the command is not demonstrated because the
display of the output is lengthy. MATLAB displays 10 different tries and assigns
the shortest form to ans. The reader should try to execute the command and
examine the output display.

11.2.3 The pretty Command

The pretty command displays a symbolic expression in a format resembling
the mathematical format in which expressions are generally typed. The command

has the form

www.it-ebooks.info

http://www.it-ebooks.info/

358

Chapter 11: Symbolic Math

Example:

>> syms a b ¢ x (Define a, b, c, and x as symbolic variables. |

>> S=sqrt(a*x”2 + b*x + c)

s =
(a*x"2+b*x+c) "~ (1/2)

>> pretty(S)
2

1/2

(ax +bx + ¢c)

11.3 SOLVING ALGEBRAIC EQUATIONS

Create the symbolic expression

AJax?+bx +c, and assign it to S.

The pretty command displays
the expression in a math format.

A single algebraic equation can be solved for one variable, and a system of equa-
tions can be solved for several variables with the solve function.

Solving a single equation:

An algebraic equation can have one or several symbolic variables. If the equation
has one variable, the solution is numerical. If the equation has several symbolic
variables, a solution can be obtained for any of the variables in terms of the others.
The solution is obtained by using the solve command, which has the form

[h=solve(eq)] or [h=solve(eq,var)]

The argument eq can be the name of a previously created symbolic expression,
or an expression that is typed in. When a previously created symbolic expres-
sion S is entered for eq, or when an expression that does not contain the = sign
is typed in for eq, MATLAB solves the equation eq = 0.

An equation of the form f{x) = g(x) can be solved by typing the equation
(including the = sign) as a string for eq.

If the equation to be solved has more than one variable, the solve (eq) com-
mand solves for the default symbolic variable (see Section 11.1.3). A solution
for any of the variables can be obtained with the solve (eq, var) command
by typing the variable name for var.

If the user types solve (eq) , the solution is assigned to the variable ans.

If the equation has more than one solution, the output h is a symbolic column
vector with a solution at each element. The elements of the vector are symbolic
objects. When an array of symbolic objects is displayed, each row is enclosed
with square brackets (see the following examples).

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 Solving Algebraic Equations 359

The following examples illustrate the use of the solve command.

>> syms a b x y z | Define a, b, %, y, and z as symbolic variables.

>> h=solve (exp(2*z) -5) ([Jse the solve command to solve e*—5 = 0

1;-103 (5) /2 [The solution is assigned to h.]

;:S:xAZ %26 Create the symbolic expression

X 2-%-6 x2—x—6,and assignitto S.

>> k=solve(S) [Use the solve (S) command to solve x2—x—6 = 0.]

k_: The equation has two solutions. They are assigned to
3 k, which is a column vector with symbolic objects.

Use the solve command to

1 1 i =2"'
>> solve('cos(2*y)+3*sin(y)=2") solve cos(2y) + 3sin(y) = 2.

ans = (The equation is typed as a string
pi/2 in the command.)
pi/6
(5*pi) /6 | The solution is assigned to ans. |
>> T= a*x"2+5*b*x+20

Create the symbolic expression

T= ax?+ 5bx + 20, and assign it to T.
a*x 2+5*b*x+20
>> solve (T) (Use the solve (S) command to solve T = 0.]
ans = The equation 7 = 0
- (5*b+5” (1/2) * (5*b"2-16*a) " (1/2)) /(2*a) | is solved for the vari-
- (5*%b-5" (1/2) * (5*b"2-16*a) * (1/2)) / (2*a) able x, which is the
default variable.

>> M = solve(T,a) [Usethesolve(eq,var)command tosolve T = 0.]

M=
- (5*b*x+20) /x"2 [The equation T = 0 is solved for the variable a.]

e It is also possible to use the solve command by typing the equation to be
solved as a string, without having the variables in the equation first created as
symbolic objects. However, if the solution contains variables (when the equa-
tion has more than one variable), the variables do not exist as independent
symbolic objects. For example:

The expression

>> ts=solve('4*t*h"24+20*%t-5%g') 4th? + 20— 5g 1s typed in
the solve command.

The variables ¢, £, and g were not created as symbolic variables
ts = before the expression was typed in the solve command.

(5*g) / (4*h"2+20)

[MATLAB solves the equation 4742 +20:—5g = 0 for . |

www.it-ebooks.info

http://www.it-ebooks.info/

360 Chapter 11: Symbolic Math

The equation can also be solved for a different variable. For example, a solu-
tion for g is obtained by:

>> gs=solve('4*t*h"2+20*t-5%g','g")

gs =
(4*t*h”2) /5 + 4*t

Solving a system of equations:

The solve command can also be used for solving a system of equations. If the
number of equations and the number of variables are the same, the solution is
numerical. If the number of variables is greater than the number of equations, the
solution is symbolic for the desired variables in terms of the other variables. A
system of equations (depending on the type of equations) can have one or several
solutions. If the system has one solution, each of the variables for which the sys-
tem is solved has one numerical value (or expression). If the system has more than
one solution, each of the variables can have several values.
The format of the solve command for solving a system of » equations is:

[output =solve (eql,eq2,.... ,eqn)]

or

[output =solve(eql,eq2,...,eqn,varl,var2,...,varn)]

¢ The arguments eql,eq2, ...,eqgn are the equations to be solved. Each
argument can be a name of a previously created symbolic expression, or an
expression that is typed in as a string. When a previously created symbolic
expression S is entered, the equation is S = 0. When a string that does not con-
tain the = sign is typed in, the equation is expression = 0. An equation that
contains the = sign must be typed as a string.

¢ In the first format, if the number of equations 7 is equal to the number of vari-
ables in the equations, MATLAB gives a numerical solution for all the vari-
ables. If the number of variables is greater than the number of equations n,
MATLAB gives a solution for » variables in terms of the rest of the variables.
The variables for which solutions are obtained are chosen by MATLAB
according to the default order (Section 11.1.3).

¢ When the number of variables is greater than the number of equations », the
user can select the variables for which the system is solved. This is done by
using the second format of the solve command and entering the names of the
variables varl,var2, ..., varn.

The output from the solve command, which is the solution of the sys-
tem, can have two different forms. One is a cell array and the other is a structure.
A cell array is an array in which each of the elements can be an array. A structure

www.it-ebooks.info

http://www.it-ebooks.info/

11.3 Solving Algebraic Equations 361

is an array in which the elements (called fields) are addressed by textual field des-
ignators. The fields of a structure can be arrays of different sizes and types. Cell
arrays and structures are not presented in detail in this book, but a short explana-
tion is given below so that the reader will be able to use them with the solve
command.

When a cell array is used in the output of the solve command, the com-
mand has the following form (in the case of a system of three equations):

[varA, varB, varC] = solve (eql,eqg2,eq3)

¢ Once the command is executed, the solution is assigned to the variables vara,
varB, and varC, and the variables are displayed with their assigned solution.
Each of the variables will have one or several values (in a column vector)
depending on whether the system of equations has one or several solutions.

¢ The user can select any names for vara, varB, and varC. MATLAB assigns
the solution for the variables in the equations in alphabetical order. For exam-
ple, if the variables for which the equations are solved are x, u, and ¢, the solu-
tion for ¢ is assigned to varaA, the solution for « is assigned to varB, and the
solution for x is assigned to varcC.

The following examples show how the solve command is used for the
case where a cell array is used in the output:

>> syms x y t (Define x, y, and t as symbolic variables.|
>> S=10*x+12*y+16*t; (Assign to S the expression 10x + 12y + 16¢. |
>> [xt ytl=solve(S, '5*x-y=13*t') (jsethe solve command to solve
xt = the system: 10x + 12y + 16t = 0
2%t S5x—y = 13t

yt =

_3%t \ [Output in a cell array with two cells named xt and yt.|

| The solutions for x and y are assigned to xt and yt, respectively. |

In the example above, notice that the system of two equations is solved by MAT-
LAB for x and y in terms of ¢, since x and y are the first two variables in the default
order. The system, however, can be solved for different variables. As an example,
the system is solved next for y and ¢ in terms of x (using the second form of the
solve command:

>> [tx yx]=solve(S,'5*x-y=13*t',y,t)

The variables for which the system
is solved (y and ¢) are entered.

:;/;2 B The solutions for the variables for which the system is
yx = solved are assigned in alphabetical order. The first cell has
- (3*x) /2 the solution for ¢, and the second cell has the solution for y.

www.it-ebooks.info

http://www.it-ebooks.info/

362 Chapter 11: Symbolic Math

When a structure is used in the output of the solve command, the command has
the form (in the case of a system of three equations)

AN = solve (eql, eq2, eq3)
¢ AN is the name of the structure.

* Once the command is executed the solution is assigned to AN. MATLAB dis-
plays the name of the structure and the names of the fields of the structure,
which are the names of the variables for which the equations are solved. The
size and the type of each field is displayed next to the field name. The content
of each field, which is the solution for the variable, is not displayed.

¢ To display the content of a field (the solution for the variable), the user has to
type the address of the field. The form for typing the address is:
structure name.field name (see example below).

As an illustration the system of equations solved in the last example is solved
again using a structure for the output.

>> syms x y t Use the solve command to solve the
>> S=10*x+12*%y+16*t; / system: 10x + 12y +16¢ = 0

>> AN=golve (S, '5*x-y=13*t"') Sx—y = 13t

AN = MATLARB displays the name of the structure AN and the

x: [1x1 sym] | names ofits fields x and y (size and type), which are the
y: [1x1 sym] | names of the variables for which the equations are solved.

=SRANEX (Type the address of the field x. |
:::) [The content of the field (the solution for x) is displayed.]
>> AN.y (Type the address of the field y. |
?g:; [The content of the field (the solution for y) is displayed.]

Sample Problem 11-1 shows the solution of a system of equations that has two
solutions.

Sample Problem 11-1: Intersection of a circle and a line

The equation of a circle in the x y plane with radius R and its center at point (2, 4)
is given by (x—2)2+ (y—4)2 = R2. The equation of a line in the plane is given by
y=1

line intersects the circle.

+ 1. Determine the coordinates of the points (as a function of R) where the

Solution

The solution is obtained by solving the system of the two equations for x and y in
terms of R. To show the difference in the output between using cell array and

www.it-ebooks.info

http://www.it-ebooks.info/

11.4 Differentiation

363

structure output forms of the solve command, the system is solved twice. The
first solution has the output in a cell array:

>> syms x y R

(The two equations are typed in the solve command.)

>> [xc,ycl=solve(' (x-2) "2+ (y-4)"2=R"2"', 'y=x/2+1")
‘g{ Output in a cell array. |

Output in a cell array
with two cells named xc
and yc. Each cell con-

XC =
((4*R*2)/5 - 64/25)"(1/2) + 14/5
14/5 - ((4*R"2)/5 - 64/25)"(1/2)

yc = . . .
((4*R*2) /5 - 64/25)~(1/2)/2 + 12/5 tains two solutions in a
12/5 - ((4*R*2)/5 - 64/25)~(1/2)/2 symbolic column vector.

The second solution has the output in a structure:
>> COORD=solve (' (x-2) "2+ (y-4) "2=R"2','y = x/2+1')
[Output in a structure. |

Output in a structure named COORD that has two
fields, x and y. Each field is a 2 by 1 symbolic vector.

COORD =
x: [2x1 sym]
y: [2x1 sym]
>> COORD.x (Type the address of the field x. |
ans =
((4*R"2) /5 - 64/25)"(1/2) + 14/5
14/5 - ((4*R"2)/5 - 64/25)"(1/2)
>> COORD.y (Type the address of the field y. |
ans = ,
((4*R*2) /5 - 64/25)~(1/2)/2 + 12/5 Thegontentof.the.ﬁeld(the
12/5 - ((4*R*2)/5 - 64/25)"(1/2)/2 solution for y) is displayed.

The content of the field (the
solution for x) is displayed.

11.4 DIFFERENTIATION

Symbolic differentiation can be carried out by using the diff command. The
form of the command is:

or (aiff(s,var) |

¢ Either S can be the name of a previously created symbolic expression, or an
expression can be typed in for S.

¢ Inthe diff (S) command, if the expression contains one symbolic variable,
the differentiation is carried out with respect to that variable. If the expression

www.it-ebooks.info

http://www.it-ebooks.info/

364 Chapter 11: Symbolic Math

contains more than one variable, the differentiation is carried out with respect
to the default symbolic variable (Section 11.1.3).

¢ Inthe diff (S, var) command (which is used for differentiation of expres-
sions with several symbolic variables) the differentiation is carried out with
respect to the variable var.

¢ The second or higher (nth) derivative can be determined with the diff (S, n)
or diff (S,var,n) command, where n is a positive number. » = 2 for the
second derivative, n = 3 for the third, and so on.

Some examples are:

>> syms x y t (Define x, v, and t as symbolic variables. |
>> S=exp(x"4); [Assign to S the expression e**.]
>> diff(s) (Use the diff (S) command to differentiate S.|
ans = i .

4*x"3*exp (x*4) | The answer 4x%¢** is displayed. |

>> diff ((1l-4*x)"3) [Use the di £ £ (S) command to differentiate (1—4x)3.]

ans =
-12%(1-4*x)"2

[The answer —12(1 —4x)?2 is displayed.]

>> R=5*%y”2%cos (3*t); | Assign to R the expression 5y2cos(3t). |
>> diff (R) (Use the diff (R) command to differentiate R. |
ans = MATLARB differentiates R with respect to y (default
10*y*cos (3*t) symbolic variable); the answer 10ycos(3¢) is displayed.
>> diff (R, t) (Use the diff (R, t) command to differentiate R w.r.t. ¢
?;_1: *;Az *8in (3*t) [The answer —15y2sin(3¢) is displayed.]

>> diff(s,2) [Usediff (S, 2)command to obwin the second derivative of S. |
e 2 Th 12x2e** + 16x6¢**
12*x"2*exp (x"4) +16*x" 6*exp (x"4) The answer 12x%e* + 16x%
is displayed.

¢ Itis also possible to use the di f £ command by typing the expression to be dif-
ferentiated as a swing directly in the command without having the variables in
the expression first created as symbolic objects. However, the variables in the
differentiated expression do not exist as independent symbolic objects.

www.it-ebooks.info

http://www.it-ebooks.info/

11.5 Integration 365

11.5 INTEGRATION

Symbolic integration can be carried out by using the int command. The com-
mand can be used for determining indefinite integrals (antiderivatives) and defi-
nite integrals. For indefinite integration the form of the command is:

int (S) or [int (S, var)]

¢ Either S can be the name of a previously created symbolic expression, or an
expression can be typed in for S.

¢ In the int (S) command, if the expression contains one symbolic variable,
the integration is carried out with respect to that variable. If the expression con-
tains more than one variable, the integration is carried out with respect to the
default symbolic variable (Section 11.1.3).

¢ Inthe int (S, var) command, which is used for integration of expressions
with several symbolic variables, the integration is carried out with respect to
the variable var.

Some examples are:

>> syms x y t [Define x, y, and t as symbolic variables.]
>> S=2*cos(x)-6*x; | Assign to S the expression 2cos(x) - 6x. |
>> int(S) (Use the int (S) command to integrate S.]
ans = . R .

2%gin (x) -3%x*2 [The answer 2sin(x) —3x2 is displayed.]
>> int(x*sin(x)) [Use the int (S) command to integrate xsin(x).]
ansg =

sin (x) -x*cos (x) [The answer sin(x) —xcos(x) is displayed.]

>>R=5*y"2*%cos (4*t) ; [Assign to R the expression 5y>cos(41). |
>> int (R) (Use the int (R) command to integrate R.]
ans = MATLAB integrates R with respect to y (default sym-
(5*y“3*cos (4*t)) /3 |bolic variable); the answer Sy3cos(4¢)/3 is displayed.
>> int(R,t) (Use the int (R, t) command to integrate R w.r.t. .)
ans =

(5*y*2%sin (4*t)) /4 [The answer 5y?sin(4¢)/4 is displayed.]

For definite integration the form of the command is:

[int (S,a,b)] or [int(S,var,a,b)]

* a and b are the limits of integration. The limits can be numbers or symbolic
variables.

www.it-ebooks.info

http://www.it-ebooks.info/

366 Chapter 11: Symbolic Math

T
For example, determination of the definite integral J (siny — 5y2)dy with MAT-
0

LAB is:

>> syms Yy
>> int(sin(y)-5*y”~2,0,pi)

ans =
2 - (5*pi”~3)/3

¢ [t is possible also to use the int command by typing the expression to be inte-
grated as a string without having the variables in the expression first created as
symbolic objects. However, the variables in the integrated expression do not
exist as independent symbolic objects.

¢ Integration can sometimes be a difficult task. A closed-form answer may not
exist, or if it exists, MATLAB might not be able to find it. When that happens
MATLAB returns int (S) and the message Explicit integral
could not be found.

11.6 SOLVING AN ORDINARY DIFFERENTIAL EQUATION

An ordinary differential equation (ODE) can be solved symbolically with the
dsolve command. The command can be used to solve a single equation or a sys-
tem of equations. Only single equations are addressed here. Chapter 10 discusses
using MATLAB to solve first-order ODEs numerically. The reader’s familiarity
with the subject of differential equations is assumed. The purpose of this section is
to show how to use MATLAB for solving such equations.

A first-order ODE is an equation that contains the derivative of the depen-
dent variable. If ¢ is the independent variable and y is the dependent variable, the
equation can be written in the form

dy _
2 [t y)

A second-order ODE contains the second derivative of the dependent variable (it
can also contain the first derivative). Its general form is:

&y _ (dy)

dr? e dt
A solution is a function y = f{(¢) that satisfies the equation. The solution can be
general or particular. A general solution contains constants. In a particular solu-
tion the constants are determined to have specific numerical values such that the
solution satisfies specific initial or boundary conditions.

The command dsolve can be used for obtaining a general solution or,

when the initial or boundary conditions are specified, for obtaining a particular
solution.

www.it-ebooks.info

http://www.it-ebooks.info/

11.6 Solving an Ordinary Differential Equation

367

General solution:

For obtaining a general solution, the dsolve command has the form:

[dsolve(‘eq')] or [dsolve(‘eq’, ‘var')]

e eq is the equation to be solved. It has to be typed as a string (even if the vari-
ables are symbolic objects).

¢ The variables in the equation don’t have to first be created as symbolic objects.
(If they have not been created, then, in the solution the variables will not be
symbolic objects.)

e Any letter (lowercase or uppercase), except D can be used for the dependent
variable.

¢ In the dsolve(‘'eq’) command the independent variable is assumed by
MATLAB to be t (default).

¢ In the dsolve(‘eq’, ‘var’) command the user defines the independent
variable by typing it for var (as a string).

¢ In specifying the equation the letter D denotes differentiation. If y is the depen-

dent variable and ¢ is the independent variable, Dy stands for ‘—‘% For example,

the equation %+3y = 100 is typedin as'Dy + 3*y = 100".

e A second derivative is typed as D2, third derivative as D3, and so on. For
example, the equation % + 3‘% + 5y = sin(¢) is typed in as: ‘D2y + 3*Dy +
5*y =sin(t)’.

e The variables in the ODE equation that is typed in the dsolve command do
not have to be previously created symbolic variables.

¢ In the solution MATLAB uses C1, C2, C3, and so on, for the constants of inte-
gration.

For example, a general solution of the first-order ODE % = 4t+2y is obtained
by:

>> dsolve('Dy=4*t+2*y!')

ans =

= C.e—2i—1 isdi
Clvexp(2+t) - 2%t - 1 The answer y = C,e?*—2¢-1 is displayed.

A general solution of the second-order ODE % + 2“11—’; +x = 0 is obtained by:

>> dsolve ('D2x+2*Dx+x=0")

www.it-ebooks.info

http://www.it-ebooks.info/

368 Chapter 11: Symbolic Math

ans =

C1/exp () + (C2*t) /exp (t) The answer x = C e+ C,te™ is displayed.]

The following examples illustrate the solution of differential equations that con-
tain symbolic variables in addition to the independent and dependent variables.

>> dsolve('Ds=a*x"2') <& The independent variable is ¢ (default).

MATLARB solves the equation ds _ ax?,
ans = dt

a*t*x"2 + C1 [The solution s = ax?¢+ C, is displayed.]
>> dsolve('Ds=a*x"2', 'x') <& The independent variable is defined to be x.
MATLAB solves the equation j—; = ax2,

ans =

(a*x"3)/3 + c1 The solution s = %ax3 +C, is displayed.

>> dsolve('Ds=a*x"2','a') <&—| Theindependent variable is defined to be a.
MATLAB solves the equation ds _ ax?,

ansg = da

(a®"2*x”2)/2 + C2

The solution s = %azxz + C, is displayed.

Particular solution:

A particular solution of an ODE can be obtained if boundary (or initial) conditions
are specified. A first-order equation requires one condition, a second-order equa-
tion requires two conditions, and so on. For obtaining a particular solution, the
dsolve command has the form

First-order ODE: [dsolve(‘'eq’, ‘condl’, ‘var’)]

Higher-order ODE: | dsolve(‘'eq’, ‘condl’,‘cond2’,....,‘var’)]

¢ For solving equations of higher order, additional boundary conditions have to
be entered in the command. If the number of conditions is less than the order of
the equation, MATLAB returns a solution that includes constants of integration
(Cc1, c2, €3, and so on).

¢ The boundary conditions are typed in as strings in the following:

Math form MATLAB form
y(a) = 4 ‘y (a)=A’
Y(a) =4 ‘Dy (a)=A’
y7(a) = 4 ‘D2y(a)=A’

www.it-ebooks.info

http://www.it-ebooks.info/

11.7 Plotting Symbolic Expressions 369

¢ The argument ‘var’ is optional and is used to define the independent variable
in the equation. If none is entered, the default is z.

For example, the first-order ODE ‘—‘%+4y = 60, with the initial condition
¥(0) = 5 is solved with MATLAB by:

>> dsolve ('Dy+4*y=60"','y(0)=5")

ans =
15 - 10/exp(4*t)

The answer y = 15— (10/e*) is displayed.

The second-order ODE &y _ 2‘1"Z +2y =0, y00) =1, dy = 0, can be solved
de dt dt|,— ¢
with MATLAB by:

>> dsolve ('D2y-2*Dy+2*y=0','y(0)=1','Dy(0)=0"')

ans = [The answer y = e‘cos(f)—e'sin(¢) is displayecl]
exp (t) *cos (t) -exp (t) *sin(t)

>> factor (ans) [The answer can be simplified with the factor command.]

ans = The simplified answer y = e!(cos(¢) — sin())
exp (t) * (cos(t) -sin(t)) is displayed.

Additional examples of solving differential equations are shown in Sample Prob-
lem 11-5.

If MATLAB cannot find a solution, it returms an empty symbolic object and
the message Warning: explicit solution could not be found.

11.7 PLOTTING SYMBOLIC EXPRESSIONS

In many cases, there is a need to plot a symbolic expression. This can easily be
done with the ezplot command. For a symbolic expression S that contains one
variable var, MATLAB considers the expression to be a function S(var), and the
command creates a plot of S(var) versus var. For a symbolic expression that con-
tains two symbolic variables varl and var2, MATLAB considers the expres-
sion to be a function in the form S(varl,var2) = 0, and the command creates a
plot of one variable versus the other.

To plot a symbolic expression S that contains one or two variables, the
ezplot command is:

Domain of independent variable.

—k Domain of dependent variable.
or [ezplot (S, [min, max]
or [ezplot (S, [xmin,xmax, ymin, ymax])]

www.it-ebooks.info

http://www.it-ebooks.info/

370 Chanpter 11: Symbolic Math

¢ S is the symbolic expression to be plotted. It can be the name of a previously
created symbolic expression, or an expression can be typed in for S.

¢ Itis also possible to type the expression to be plotted as a string without having
the variables in the expression first created as symbolic objects.

e If S has one symbolic variable, a plot of S(var) versus (var) is created, with
the values of var (the independent variable) on the abscissa (horizontal axis),
and the values of S(var) on the ordinate (vertical axis).

e If the symbolic expression S has two symbolic variables, varl and var2, the
expression is assumed to be a function with the form S(varl,var2) = 0. MAT-
LAB creates a plot of one variable versus the other variable. The variable that
is first in alphabetic order is taken to be the independent variable. For example,
if the variables in § are x and y, then x is the independent variable and is plotted
on the abscissa and y is the dependent variable plotted on the ordinate. If the
variables in § are u and v, then u is the independent variable and v is the depen-
dent variable.

e Inthe ezplot (S) command, if S has one variable (S(var)), the plot is over
the domain —2% < var < 21 (default domain) and the range is selected by MAT-
LAB. If S has two variables (S(var1,var2)), the plot is over -2 < varl <2=m
and 2w <var2<2m.

¢ In the ezplot (S, [min, max]) command the domain for the independent
variable is defined by min and max:—min < var <max—and the range is
selected by MATLAB.

¢ Intheezplot (S, [xmin,xmax,ymin,ymax]) command the domain for
the independent variable is defined by xmin and xmax, and the domain of the
dependent variable is defined by ymin and ymax.

The ezplot command can also be used to plot a function that is given in a
parametric form. In this case two symbolic expressions, S1 and S2, are involved,
where each expression is written in terms of the same symbolic variable (indepen-

dent parameter). For example, for a plot of y versus x where x = x(¢) and
y = y(2), the form of the ezplot command is:

Domain of independent parameter.
[ezplot (81,82)]

or [ezplot (S1,82, [min, max])]

¢ S1 and S2 are symbolic expressions containing the same single symbolic vari-
able, which is the independent parameter. S1 and S2 can be the names of pre-
viously created symbolic expressions, or expressions can be typed in.

www.it-ebooks.info

http://www.it-ebooks.info/

11.7 Plotting Symbolic Expressions

371

¢ The command creates a plot of S2(var) versus S1(var). The symbolic expres-
sion that is typed first in the command (S1 in the definition above) is used for
the horizontal axis, and the expression that is typed second (S2 in the defini-

tion above) is used for the vertical axis.

¢ Inthe ezplot (S1,S2) command the domain of the independent variable is

0 < var < 27t (default domain).

¢ Inthe ezplot (S1,S2, [min, max]) command the domain for the indepen-

dent variable is defined by min and max: min < var < max.

Additional comments:

Once a plot is created, it can be formatted in the same way as plots created with
the plot or £plot format. This can be done in two ways: by using commands or
by using the Plot Editor (see Section 5.4). When the plot is created, the expression
that is plotted is displayed automatically at the top of the plot. MATLAB has addi-
tional plot functions for plotting two-dimensional polar plots and for plotting
three-dimensional plots. For more information, the reader is referred to the Help

menu of the Symbolic Math Toolbox.

Several examples of using the ezplot command are shown in Table 11-1.

Table 11-1: Plots with the ezplot command

Command

Plot

>> syms x
>> S=(3*x+2)/ (4*x-1)
S =

(3*x+2) / (4*x-1)

>> ezplot(S)

(3 x+2)/(4 x-1)

6 4 2 0 2
X

>> syms x y

>> ezplot(S)

>> S=4*x"2-18%x+4*y"24+12%y-11

4*%x"2-18%x+4*y"2+12%y-11

4218 x+4 y*+12y-11=0

www.it-ebooks.info

http://www.it-ebooks.info/

372

Chapter 11: Symbolic Math

Table 11-1: Plots with the ezplot command (Continued)

Command Plot

>> syms t x=cos(2t),y =sin(4 t)
>> x=cos (2*t)

X =

0.5-
cos(2*t)
>> y=s8in(4*t) - oF
y =
sin (4*t) -0.5f

>> ezplot(x,y)

4 05 0 05 1

X

11.8 NUMERICAL CALCULATIONS WITH SYMBOLIC EXPRESSIONS

Once a symbolic expression is created by the user or by the output from any of
MATLAB?’s symbolic operations, there may be a need to substitute numbers for
the symbolic variables and calculate the numerical value of the expression. This
can be done by using the subs command. The subs command has several forms
and can be used in different ways. The following describes several forms that are
easy to use and are suitable for most applications. In one form, the variable (or
variables) for which a numerical value is substituted and the numerical value itself
are typed inside the subs command. In another form, each variable is assigned a
numerical value in a separate command and then the variable is substituted in the
expression.

The subs command in which the variable and its value are typed inside the
command is shown first. Two cases are presented—one for substituting a numeri-
cal value (or values) for one symbolic variable, and the other for substituting
numerical values for two or more symbolic variables.

Substituting a numerical value for one symbolic variable:

A numerical value (or values) can be substituted for one symbolic variable when a
symbolic expression has one or more symbolic variables. In this case the subs
command has the form:

[R = subs (S, var, number)]

The name of the The variable for The numerical value
symbolic expression. which a numerical (or values) assigned
value is substituted. to var.

e number can be one number (a scalar), or an array with many elements (a vec-
tor or a matrix).

www.it-ebooks.info

http://www.it-ebooks.info/

11.8 Numerical Calculations with Symbolic Expressions 373

¢ The value of S is calculated for each value of number and the result is
assigned to R, which will have the same size as number (scalar, vector, or
matrix).

¢ If S has one variable, the output R is numerical. If S has several variables and a
numerical value is substituted for only one of them, the output R is a symbolic
expression.

An example with an expression that includes one symbolic variable is:

>> syms x | Define x as a symbolic variable. |
>> S=0.8*x"3+4*exp (0.5%x) Assign to S the expression
S = 0.8x3 + 4£(05%)

4%*exp(x/2) + (4*x"3)/5

>> SD=diff(S) (Use the diff (S) command to differentiate S.)
SD =

/2 2 1 1
2%exp (x/2) + (12%x°2) /5) [The answer 22+ 12x2/5 is assigned to SD.]

>> subs (SD, x, 2) [Use the subs command to substitute x = 2 in SD.]

ans = _ i
15.0366 (The value of SD is displayed. |

>> SDU=subs (SD, x, [2:0.5:4]) |Usethe subs command to substitute
x=[2,25,3,3.5, 4] (vector) in SD.

SDU =
15.0366 21.9807 30.5634 40.9092 53.1781

[The values of SD (assigned to SDU) for each value of x are displayed in a vector.]

In the last example, notice that when the numerical value of the symbolic expres-
sion is calculated, the answer is numerical (the display is indented). An example
of substituting numerical values for one symbolic variable in an expression that
has several symbolic variables is:

>> syms agtyv (Define a, g, t, and v as symbolic variables|

>> ¥Y=v"2+%exp(a*t) /g

¥ Create the symbolic expression

vAz *exp (a*t) /g vze(at)/g and aSSigl’l it tO Y.

>> subs (Y, t,2) (Use the subs command to substitute ¢ = 2 in SD. |

ans = s .

v*2*exp (2*a) /g [The answer v2e(2a)/g is d1sp1ayed.]

>> Yt=subs(Y,t, [2:4]) Use the subs command to substitute
t=12,3, 4] (vector) in Y.

www.it-ebooks.info

http://www.it-ebooks.info/

374

Chapter 11: Symbolic Math

Yt =
[v'2*exp(2*a) /g, v 2*exp(3*a)/g, v 2*exp (4*a) /gl

[The answer is a vector with elements of symbolic expressions for each value of t.]

Substituting a numerical value for two or more symbolic variables:

A numerical value (or values) can be substituted for two or more symbolic vari-
ables when a symbolic expression has several symbolic variables. In this case the
subs command has the following form (it is shown for two variables, but it can
be used in the same form for more):

[R = subs (S, {varl‘,varz }, {numberl, number2})]

The name of the / The variables for The numetrical value
symbolic expression. which numerical val- (or values) assigned to
ues are substituted. varl and var2.

e The variables varl and var2 are the variables in the expression S for which
the numerical values are substituted. The variables are typed as a cell array
(inside curly braces { }). A cell array is an array of cells where each cell can
be an array of numbers or text.

¢ The numbers numberl, number?2 substituted for the variables are also typed
as a cell array (inside curly braces { }). The numbers can be scalars, vectors,
or matrices. The first cell in the numbers cell array (number1) is substituted
for the variable that is in the first cell of the variable cell array (var1l), and so
on.

¢ If all the numbers that are substituted for variables are scalars, the outcome will
be one number or one expression (if some of the variables are still symbolic).

e If, for at least one variable, the substituted numbers are an array, the mathemat-
ical operations are executed element-by-element and the outcome is an array of
numbers or expressions. It should be emphasized that the calculations are per-
formed element-by-element even though the expression S is not typed in the
element-by-element notation. This also means that all the arrays substituted for
different variables must be of the same size.

e It is possible to substitute arrays (of the same size) for some of the variables
and scalars for other variables. In this case, in order to carry out element-by-
element operations, MATLAB expands the scalars (array of 1s times the sca-
lar) to produce an array result.

The substitution of numerical values for two or more variables is demonstrated in
the next examples.

www.it-ebooks.info

http://www.it-ebooks.info/

11.8 Numerical Calculations with Symbolic Expressions 375

>> syms a b c e x (Define a, b, ¢, e, and x as symbolic variables. |

>> S=za*x“e+b*x+c ; -
Create the symbolic expression

5 = axe+ bx + ¢ and assigned it to S.
a*x”“e+b*x+c

>> subs (S,{a,b,c,e,x},{5,4, '201213})

Cell array. Cell array.
ans =

37 (The value of S is displayed. |

Substitute in S scalars for all
the symbolic variables.

Substitute in S scalars for the
symbolic variables a, b, and c.

>> T=subs(S,{a,b,c},{6,5,7})

T =
5*x+ 6*x"e+7 [The result is an expression with the variables x and e.]

>> R=subs(S,{b,c,e},{[2 4 61,9,[1 3 51}) [Substitute in S a scalar for c,

and vectors forb and e.

Theresultis a vector of

symbolic expressions.

>> W=subs(S,{a,b,c,e,x},{[4 2 0],[2 4 6],[2 2 2],[1 3 51,[3 2 11})
(Substitute in S vectors for all the variables.]

R =
[2*x+a*x+9, a*x"3+4*x+9, a*x"5+6%*x+9]

W =

20 26 8 (The result is a vector of numerical values. |

A second method for substituting numerical values for symbolic variables
in a symbolic expression is to first assign numerical values to the variables and
then use the subs command. In this method, once the symbolic expression exists
(at which point the variables in the expression are symbolic) the variables are
assigned numerical values. Then the subs command is used in the form:

[R = gubs (S)J\ The name of the
symbolic expression.

Once the symbolic variables are redefined as numerical variables they can no
longer be used as symbolic. The method is demonstrated in the following exam-
ples.

>> syms Acmxy [Deﬁne A, ¢, m, X, and y as symbolic variables]

=A%* * * : .
BB EELEE e e S Create the symbolic expression

5 = Acos(mx)+cy and assign itto S.
c*y+A*cos (m*x)

>> A=10; m=0.5; c=3; [Assign numerical values to variables A, m, and c.]

>> subs(S) (Use the subs command with the expression S.]
ans = The numerical values of variables
3*y + 1l0*cos(x/2) A, m, and c are substituted in S.

www.it-ebooks.info

http://www.it-ebooks.info/

376

Chapter 11: Symbolic Math

>> x=linspace(0,2*pi,4); [Assign numerical values (vector) to variable x. |

>> T = subs(S) (Use the subs command with the expression S.|
T = The numerical values of variables A,
[3*y+10, 3*y+5, 3*y-5, 3*y-10] m, c, and x are substituted. The result

is a vector of symbolic expressions.

11.9 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 11-2: Firing angle of a projectile

A projectile is fired at a speed

ofp21J0 m/s and an anglI; 0. g vO:zlorﬂ/S//"—‘\\\

The projectile’s intended tar- - . o~

get is 2,600 m away and 350 0 350 m X
m above the firing point. - -
(a) Derive the equation that e 2600m

has to be solved in order
to determine the angle 0 such that the projectile will hit the target.

() Use MATLAB to solve the equation derived in part (a).

(c) For the angle determined in part (b), use the ezplot command to make a
plot of the projectile’s trajectory.

Solution

(a) The motion of the projectile can be analyzed by considering the horizontal
and vertical components. The initial velocity v, can be resolved into horizontal
and vertical components:

Vo

= vocos(0) and vy, = v,sin(0)

x b7

In the horizontal direction the velocity is constant, and the position of the projec-
tile as a function of time is given by:

X = Vol
Substituting x = 2600 m for the horizontal distance that the projectile travels to
reach the target and 210cos(8) for vo,, and solving for ¢ gives:

_ __2600
210cos(0)

In the vertical direction the position of the projectile is given by:
1
y = vo,i—5gt?

Substituting y = 350 m for the vertical coordinate of the target, 210sin(0) for
Vox, € = 9.81, and ¢ gives:

www.it-ebooks.info

http://www.it-ebooks.info/

11.9 Examples of MATLAB Applications 377

2
350 = 2105in(9)2—102§%— % . 1(ﬂ

s(0) 210cos(0
or:
— cos? 2
350 = 26004/1—cos?(8) _ 19_81(2600
cos(0) 2 210cos (0
The solution of this equation gives the angle 8 at which the projectile has to be
fired.

(b) A solution of the equation derived in part (@) obtained by using the solve
command (in the Command Window) is:

>> syms th

Angle = solve('2600*sqrt (1 - cos(th)”"2)/cos(th) - 0.5%9.81*(2600/
(210*cos (th)))“2 = 350')

Angle =

1.245354497237416168313813580656 MATLARB displays four

0.45925280703207121277786452037279 solutions. The two posi-

-0.45925280703207121277786452037279 tive ones are relevant to
the problem.

-1.245354497237416168313813580656

>> Anglel = Angle(1)*180/pi | Converting the solution in the first ele-
ment of Angle from radians to degrees.

MATLARB displays the answer as
a symbolic object in terms of 7.

Anglel =
224.16380950273491029648644451808 /pi

>> Anglel=double (Anglel)

Use the double command to obtain
numerical values for Anglel.

Anglel =
71.3536

>> Angle2=Angle(2)*180/pi

Converting the solution in the second ele-
ment of Angle from radians to degrees.

MATLARB displays the answer as|
a symbolic object in terms of 7.

Angle2 =
82.665505265772818300015613667102/pi

>> Angle2=double (Angle2)

Use the double command to obtain |

Angle2 = numerical values for Angle2.

26.3132

(¢) The solution from part (b) shows that there are two possible angles and thus
two trajectories. In order to make a plot of a trajectory, the x and y coordinates of
the projectile are written in terms of ¢ (parametric form):

x = vycos(0): and y = vosin(e)t—%gt2

2600
210cos(8) °
These equations can be used in the ezplot command to make the plots shown in

The domain forzis t = 0to ¢ =

www.it-ebooks.info

http://www.it-ebooks.info/

378

Chapter 11: Symbolic Math

the following program written in a script file.

xmax=2600; v0=210; g=9.81;
thetal=1.24535; theta2=.45925;
tl=xmax/ (vO*cos (thetal));

Assign the two solutions from
part (b) to thetal and theta2.

t2=xmax/ (vO*cos (theta2));

syms t

X1l=vO*cos (thetal) *t;

X2=vO0*cos (theta2) *t;
Yl=vO+*sin (thetal) *t-0.5*g*t"2;
Y2=vO*sin (theta2) *t-0.5*g*t"2;

ezplot (X1,Y1, [0,t1]) (Plot one trajectory.
hold on

ezplot (X2,Y2, [0,t2]) (Plot a second trajectory. |
hold off

When this program is executed, the following plot is generated in the Figure Win-
dow:

x=6623137634930013/35184372088832 t, y = 3275240998958541/35184372088832 -981/200 #
2000 ' ' ' 1

1800 -
1600 -
1400 -
1200 -

> 1000+
800 -
600 -
400 -
200 -

0

0 500 1000 1500 2000 2506
X

Sample Problem 11-3: Bending resistance of a beam

The bending resistance of a rectangular beam of
width b and height 4 is proportional to the beam’s |

moment of inertia 7, defined by I = ébh% A rectan- I N I
R

gular beam is cut out of a cylindrical log of radius R. |
Determine b and % (as a function of R) such that the
beam will have maximum 1.

—— 3~ — P

www.it-ebooks.info

http://www.it-ebooks.info/

11.9 Examples of MATLAB Applications 379

Solution

The problem is solved by following these steps:
1. Write an equation that relates R, 4, and b.

2. Derive an expression for 7 in terms of A.

3. Take the derivative of 7 with respect to 4.

4. Set the derivative equal to zero and solve for .
5. Determine the corresponding b.

The first step is carried out by looking at the triangle in the figure. The relation-
ship between R, &k, and b is given by the Pythagorean theorem as
b m)?

2
(5) o (5) = R2. Solving this equation for b gives b = J4R?—h2.

The rest of the steps are done using MATLAB:

>> syms b h R

>> b=sqrt (4*R"2-h"2); (Create a symbolic expression for b. |
>> I=b*h"3/12 (Step 2: Create a symbolic expression for /. |
=

(MATLAB substitutes b in I. |

Step 3: Use the diff (R) command
to differentiate I with respect to A.

(h"3* (4*R*2-h"2) " (1/2)) /12
>> ID=diff(I,h)

ID =
(h"2*(4*R"2-h"2) " (1/2))/4-h"4/(12% (4*R"2-h"2) " (1/2))

[The derivative of I is displayed.]

>> hs=solve (ID,h)

Step 4: Use the solve command to solve the ’

hs = equation ID = 0 for h. Assign the answer to s.
0
3% (1/2) *R MATLARB displays three solutions. The positive
-3%(1/2) *R non zero solution /3R is relevant to the problem.

Step 5: Use the subs command to determine b by

= ,hs (2 o : . .
22 1L (0,10 () substituting the solution for 4 in the expression for b.

bs = The answer for 4 is displayed. (The answer
(R"2)"(1/2) is R, but MATLAB displays (R?)1/2.)

www.it-ebooks.info

http://www.it-ebooks.info/

380 Chapter 11: Symbolic Math

Sample Problem 11-4: Fuel level in a tank

The horizontal cylindrical tank shown is
used to store fuel. The tank has a diameter
of 6 m and is 8 m long. The amount of fuel
in the tank can be estimated by looking at
the level of the fuel through a narrow verti-
cal glass window at the front of the tank. A
scale that is marked next to the window
shows the levels of the fuel corresponding to
40, 60, 80, 120, and 160 thousand liters.
Determine the vertical positions (measured
from the ground) of the lines of the scale.

Solution

The relationship between the level of the fuel and its volume can be written in the
form of a definite integral. Once the integration is carried out, an equation is
obtained for the volume in terms of the fuel’s height. The height corresponding to
a specific volume can then be determined from solving the equation for the height.

The volume of the fuel ¥ can be determined
by multiplying the area of the cross section of
the fuel 4 (the shaded area) by the length of
the tank L. The cross-sectional area can be
calculated by integration. 1

h
V=AL=LJ'wdy v
0

The width w of the top surface of the fuel can
be written as a function of y. From the trian-
gle in the figure on the right, the variables y,
w, and R are related by:

2
s)2 = R2
(2) Ry =R
Solving this equation for w gives:
w = 2JR2—(R—-y)?

The volume of the fuel at height 2 can now be calculated by substituting w in the
integral in the equation for the volume and carrying out the integration. The result
is an equation that gives the volume ¥ as a function of 4. The value of % for a given
V is obtained by solving the equation for 4. In the present problem values of /# have
to be determined for volumes of 40, 60, 80, 120, and 160 thousand liters. The
solution is given in the following MATLAB program (script file):

www.it-ebooks.info

http://www.it-ebooks.info/

11.9 Examples of MATLAB Applications 381

R=3; L=8;

syms wy h

w=2*gqrt (R"2- (R-y) “2) (Create a symbolic expression for w.

S = L*w (Create the expression that will be integrated. |

V = int(S,y,0,h) Use the int command to integrate S from 0

to A. The result gives ¥ as a function of 4.

Vscale=[40:40:200] (Create a vector with the values of ¥ in the scale. |

for i=1:5 (Each pass in the loop solves 4 for one value of 7.
Veq=V-Vscale(i); [Create the equation for 4 that has to be solved.]
h_ans (i) =solve (Veq) ; (Use the solve command to solve for 4. |

end h ans is a vector (symbolic with numbers) with the values

of 7 that correspond to the values of ¥ in the vector Vscale.

h scale=double(h_ans)
cal values for the elements of vector h_ans.

Use the double command to obtain numeri- ’

When the script file is executed, the outcomes from commands that don’t have a
semicolon at the end are displayed. The display in the Command Window is:

; " (:_ =(y_ 3)2)~(1/2) (The symbolic expression for w is displayed. |
S =
16% (9- (y-3) *2) ~ (1/2) (S is the expression that will be integrated.]
v =

36*pi+72*asin(h/3-1) +8*(9- (h-3)"2) " (1/2) * (h-3)

(The result from the integration; ¥ as a function of .|

Vscale =
40 80 120 160 200

h scale =
1.3972 2.3042 3.1439 3.9957 4.9608

(The positions of the lines in the scale are displayed)

(The values of 7 in the scale are displayed. |

Units: The unit for length in the solution is meters, which correspond to m3 for the
volume (1 m3 =1,000 L).

www.it-ebooks.info

http://www.it-ebooks.info/

382 Chapter 11: Symbolic Math

Sample Problem 11-5: Amount of medication in the body

The amount M of medication present in the body depends on the rate at which the
medication is consumed by the body and on the rate at which the medication
enters the body, where the rate at which the medication is consumed is propor-
tional to the amount present in the body. A differential equation for M is

aM
— +
yr kM +p
where k is the proportionality constant and p is the rate at which the medication is

injected into the body.

(a) Determine k if the half-life of the medication is 3 hours.

(b) A patient is admitted to a hospital and the medication is given at a rate of 50
mg per hour. (Initially there is no medication in the patient’s body.) Derive an
expression for M as a function of time.

(c) Plot M as a function of time for the first 24 hours.

Solution

(a) The proportonality constant can be determined from considering the case in
which the medication is consumed by the body and no new medication is given. In
this case the differential equation is:

M _
= kM

The equation can be solved with the initial condition M = M, at ¢ = 0:

>> syms M MO k t

>> Mt=dsolve('DM=-k*M', 'M(0)=M0") Use the dsolve command
Mt = to solve dligs —kM.
MO0/exp (k*t) dt

The solution gives M as a function of time:
M,
M) =

L
2

and the constant k is determined

A half-life of 3 hours means that at : = 3 hours M(z) = M0 . Substituting this

information in the solution gives 0.5 = —,
e

from solving this equation:

ks=solve('0.5=1/exp (k*3) ')

ks =
.23104906018664843647241070715273

Use the solve command to
solve 0.5 = 3k,

www.it-ebooks.info

http://www.it-ebooks.info/

11.9 Examples of MATLAB Applications 383

(b) For this part the differential equation for M is:

dM
— = —_kM+
7 kM +p

The constant % is known from part (a), and p = 50 mg/h is given. The initial con-
dition is that in the beginning there is no medication in the patient’s body, or
M = 0 at ¢t = 0. The solution of this equation with MATLAB is:

>> syms p
>> Mtb=dsolve ('DM=-k*M+p', 'M(0)=0") Use the dsolve command
Mtb = to solve ddil = —kM+p.
(p-p/exp (k*t)) /k) t

(c) A plot of Mtb as a function of time for 0 <:<24 can be done by using the
ezplot command:

>> pgiven=50;

>> Mtt=subs (Mtb, {p,k}, {pgiven,ks}) Substitute numerical
values for p and £.

Mtt =
216.404-216.404/exp(0.231049*t)

>> ezplot (Mtt, [0,24])

In the actual display of the last expression that was generated by MATLAB (Mtt
=...) the numbers have many more decimal digits than shown above. The num-
bers were shortened so that they will fit on the page.

The plot that is generated is:

216.40425613334451110398870215028-216.40425613334451110398870215028 exp(-.23104906018664843647241070715273 t)
T

T T T

AMOUNT OF MEDICATION (mg)

0 L | | i =
0 5 10 15 20

TIME (h)

www.it-ebooks.info

http://www.it-ebooks.info/

384 Chapter 11: Symbolic Math

11.10 PROBLEMS

1. Define x as a symbolic variable and create the two symbolic expressions

S;= x2(x—6) +4(3x—-2) and S,= (x+2)2-8x

Use symbolic operations to determine the simplest form of each of following
expressions:

@ S-S, () (c) §+85,

(d) Use the subs command to evaluate the numerical value of the result
from part (¢) for x = 5.

2. Define y as a symbolic variable and create the two symbolic expressions
S, = x(x2+6x+12)+8 and S, = (x—3)2+10x-5

Use symbolic operations to determine the simplest form of each of following
expressions:

@ 5,5, ®) 3— © S+,

(d) Use the subs command to evaluate the numerical value of the result
from part (¢) for x = 3.

3. Define x and y as symbolic variables and create the two symbolic expressions
S=x+xp2+y*and T = Jx—?
Use symbolic operations to determine the simplest form of S- T. Use the

subs command to evaluate the numerical value of the result for x = 9 and
y=2.

4. Define x as a symbolic variable.
(a) Derive the equation of the polynomial that has the roots x = -2,
x=-05, x=2,and x = 4.5.
(b) Determine the roots of the polynomial
J(x) = x6—6.5x5—58x*+ 167.5x3 + 728x2 — 890x — 1400
by using the fact or command.

5. Use the commands from Section 11.2 to show that:
(a) sin(4x) = 4sinxcosx — 8sin3xcosx

(b) cosxcosy = %[cos(x—y)+ cos(x+y)]

www.it-ebooks.info

http://www.it-ebooks.info/

11.10 Problems 385

6. Use the commands from Section 11.2 to show that:
3tanx — tan3x

1-3tan2x
sin(x +y+2z) = sinxcosycosz + cosxsinycosz

(@) tan(3x) =

®

+ cosxcosysinz — sinxsinysinz

7. The folium of Descartes is the graph Ry*3xy=0
shown in the figure. In parametric form
its equation is given by:

_ 3t

1+2

for t#-1

. _ 3z
Ty
(a) Use MATLAB to show that the

equation of the folium of Descartes

can also be written as:

x3+y3 = 3xy

(b) Make a plot of the folium for the domain shown in the figure by using the
ezplot command.

8. A water tower has the geometry shown in the figure
(the lower part is a cylinder with radius R and height 4,
and the upper part is a half sphere with radius R).
Determine the radius R if A = 10m and the volume is
1,050 m3. (Write an equation for the volume in terms
of the radius and the height. Solve the equation for the
radius, and use the double command to obtain a
numerical value.

9. The relation between the tension T and the steady shortening velocity v in a
muscle is given by the Hill equation:
(T+a)(v+b) = (Ty+a)b

where a and b are positive constants and 7|, is the isometric tension, i.e., the

tension in the muscle when v = 0. The maximum shortening velocity occurs

when T = 0.

(a) Using symbolic operations, create the Hill equation as a symbolic expres-
sion. Then use subs to substitute T = 0, and finally solve for v to show
that v,,,, = (bTy)/a.

() Use v,,,, from part (a) to eliminate the constant b from the Hill equation,

a(T,—-T)

and show that y = Voo
To(T+a) ™o

www.it-ebooks.info

http://www.it-ebooks.info/

386 Chapter 11: Symbolic Math

10. Consider the two ellipses in the x y plane given by the equations
(=12 ¥ _ (x+2)? (v—5? _
e g lad e =
(a) Use the ezplot command to plot the two ellipses in the same figure.
(b) Determine the coordinates of the points where the ellipses intersect.

11. A 120 in.—long beam AB is attached to the

wall with a pin at point 4 and to a 66 in.— .
long cable CD. A load W =200Ib is -
attached to the beam at point B. The tension W&
in the cable T and the x and y components of
the force at 4 (F,, and F,,) can be calcu- 4 __ L L
rm -
d

5
lated from the equations:
w
FAx - 1 =0
L, !
¢ \
P ?
Ay Lc - -
12— g2

N g =
TLchLO

where L and L are the lengths of the beam and the cable, respectively, and d is

the distance from point 4 to point D where the cable is attached.

(@) Use MATLARB to solve the equations for the forces 7, F,,, and F,, in
terms of d, L, L., and . Determine F, given by F, = ,JF},+F3,.

() Use the subs command to substitute W = 200 1b, L = 120 in., and
L, = 66 in. into the expressions derived in part (a). This will give the
forces as a function of the distance d.

(c) Use the ezplot command to plot the forces T and F, (both in the same
figure as functions of d, for d starting at 20 and ending at 70 in.

(d) Determine the distance d where the tension in the cable is the smallest.
Determine the value of this force.

12. A box of mass m is being pulled by a rope —_—
as shown. The force F in the rope as a func-
tion of x can be calculated from the equa- .
tions: h

© m
x
- +uN =
%2+ h? : 0
—mg+N+F h =0

X2+ h?

where N and p are the normal force and friction coefficient between the box

www.it-ebooks.info

http://www.it-ebooks.info/

11.10_Problems

387

13.

14.

and surface, respectively. Consider the case where m = 18kg, £ = 10m,

p = 0.55,and g = 9.81 m/s2.

(a) Use MATLAB to derive an expression for F, in terms of x, 4, m, g, and p .

(b) Use the subs command to substitute m = 18kg, » = 10m, p = 0.55,
and g = 9.81 m/s? into the expressions that were derived in part (@). This
will give the force as a function of the distance x.

(¢) Use the ezplot command to plot the force F as a function of x, for x
starting at 5 and ending at 30 m.

(d) Determine the distance x where the force that is required to pull the box is
the smallest, and determine the magnitude of that force.

The mechanical power output P in a contracting muscle is given by:

vaO(l — =)
P=Ty= — ma’
k+
vmax
where T is the muscle tension, v is the shortening velocity (max of v,), T, is
the isometric tension (i.e., tension at zero velocity), and k is a non-dimen-
sional constant that ranges between 0.15 and 0.25 for most muscles. The equa-
tion can be written in non-dimensional form:
_ ku(l—u)
 k+u
where p = (Tv)/(TyVpay), and u = v/v,,,,. Consider the case k£ = 025.
(a) Plotp versus u for 0<u<1.
(b) Use differentiation to find the value of # where p is maximum.

(¢) Find the maximum value of p.

The equation of a circle is x2+y2 = R2,
where R is the radius of the circle. Write a
program in a script file that first derives the
equation (symbolically) of the tangent line to
the circle at the point (x4, y,) on the upper >
part of the circle (i.e., for —-R<xy<R and

20

10

0<y,)- Then for specific values of R, x,, and -10

¥, the program makes a plot, like the one

shown on the right, of the circle and the tan- B o o 1 2
gent line. Execute the program with R = 10

and x, = 7.

www.it-ebooks.info

http://www.it-ebooks.info/

388

Chapter 11: Symbolic Math

15.

16.

17.

18.

A tracking radar antenna is locked on y

-
an airplane flying at a constant altitude é

of 5 km, and a constant speed of 540 e

km/h. The airplane travels along a

path that passes exactly above the //ie x
radar station. The radar starts the /&/ >

tracking when the airplane is 100 km

away.

(a) Derive an expression for the angle 6 of the radar antenna as a function of
time.

(b) Derive an expression for the angular velocity of the antenna, ‘% ,as a
function of time.

(c) Make two plots on the same page, one of 6 versus time and the other of

% versus time, where the angle is in degrees and the time is in minutes

for 0 <¢<20 min.

Evaluate the following indefinite integrals:

(@ I= I b I= Ixzcosxdx

«/l—x2

Define x as a symbolic variable and create the symbolic expression

_ _cos’x
1 + sinZx
. . . T cos?x
Plot S in the domain 0 <x <7 and calculate the integral 7 = | ————
ol + sin?x
The parametric equations of an ellipsoid are: z

X = a cosusinv, y = b sinusinv, z = ¢ cosv
where 0<u<2m and —-t1<v<0
Show that the differential volume element of the ellip-
soid shown is given by:

dV = —mabcsin®vdy
Use MATLAB to evaluate the integral of d¥ from —=n to
0 symbolically and show that the volume of the ellipsoid

is V= gnabc.

www.it-ebooks.info

http://www.it-ebooks.info/

11.10 Problems 389

19.

20.

21.

22.

23.

The one-dimensional diffusion equation is given by:
du _
ot dx?
Show that the following are solutions to the diffusion equation.
1 (—x2)
= — So—— + .
(@ u=4 7 expl 7~ B, where 4 and B are constants

(b) u=Aexp(—ox)cos(ax —2ma2t+B)+C, where 4, B, C, and o are constants.

A ceramic tile has the design shown in the y T

figure. The shaded area is painted red and

the rest of the tile is white. The border line i
between the red and the white areas follows T

the equation

y = —kx2+ 12kx

Determine & such that the areas of the white
and the red colors will be the same.

Show that the location of the centroid y, of y

the half-circle area shown is given by dA
4R Zal NG

= . The coordinate y, can be calculated

5 I —

fjo
T WCT\ x

For the half-circle area shown in the previous problem, show that the moment

of inertia about the x axis, I, , is given by I, = ;—anR“ . The moment of inertia

I, can be calculated by:

Ix=_[y2 dA
A

The rms value of an AC voltage is defined by

1¢” ,
Vyms = /TI V2(£)dt
0

where T is the period of the waveform.

= ¥ and is inde-

rms A/§

(a) A voltage is given by v(¢) = Vcos(w?) . Show that v

www.it-ebooks.info

http://www.it-ebooks.info/

390

Chapter 11: Symbolic Math

24.

25.

26.

pendent of ®. (The relationship between the period T and the radian fre-
. 2n
quency ®is T = N J)

(b) A voltage is given by v(¢) = 2.5c0s(350¢) +3 V. Determine v,,,, .

The spread of an infection from a single individual to a population of N unin-

fected persons can be described by the equation
% = —Rx(N+1-x) with initial condition x(0) = N

where x is the number of uninfected individuals and R is a positive rate con-
stant. Solve this differential equation symbolically for x(¢). Also, determine
symbolically the time ¢ at which the infection rate dx/dt is maximum.

The Maxwell-Boltzmann probability density function f{v) is given by

- JE) ool

where m (kg) is the mass of each molecule, v (m/s) is the speed, T (K) is the
temperature, and k& = 1.38x 1023 J/K is Boltzmann’s constant. The most

probable speed v, corresponds to the maximum value of f(v) and can be

determined from % = 0. Create a symbolic expression for f(v), differen-

tiate it with respect to v and show that v, = 2kT Calculate v, for oxygen
m

molecules (m = 53x1026kg) at T = 300K (k = 1.38 x 102 J/K). Make a
plot of f(v) versus v for 0 <v <2500 m/s for oxygen molecules

is still closed can be modeled by assuming

The velocity of a skydiver whose parachute
cv
that the air resistance is proportional to the

velocity. From Newton’s second law of =S . .:/\
motion the relationship between the mass m O O
of the skydiver and his velocity v is given

by (down is positive) mg ma

mg—cv = md—v
dt
where c is a drag constant and g is the gravitational constant (g = 9.81 m/s?).
(a) Solve the equation for v in terms of m, g, c, and ¢, assuming that the initial
velocity of the skydiver is zero.
(b) It is observed that 4 s after a 90 kg skydiver jumps out of an airplane, his
velocity is 28 m/s. Determine the constant c.
(c) Make a plot of the skydiver velocity as a function of time for 0<z<30s.

www.it-ebooks.info

http://www.it-ebooks.info/

11.10 Problems 391

27. A resistor R (R = 04Q) and an

inductor L (L = 0.08H) are con- L> L

nected as shown. Initially, the switch _T_
is connected to point 4 and there is no B A

current in the circuit. At ¢ = 0 the _L R Vr
switch is moved from 4 to B, so that Vs

the resistor and the inductor are con- T l

nected to vy (vg = 6 V), and current
starts flowing in the circuit. The switch remains connected to B until the volt-
age on the resistor reaches 5 V. At that time (z;,) the switch is moved back to
A.

The current i in the circuit can be calculated from solving the differential
equations:

iR+L3—§ = vg during the time from ¢z = 0 and until the time when the

switch is moved back to 4.

iR+ Lj—i = 0 from the time when the switch is moved back to 4 and on.

The voltage across the resistor, vy, at any time is given by v; = iR.

(a) Derive an expression for the current i in terms of R, L, vy, and ¢ for
0<t<ty, by solving the first differential equation.

(b) Substitute the values of R, L, and v in the solution for i, and determine
the time ¢, when the voltage across the resistor reaches 5 V.

(c) Derive an expression for the current i in terms of R, L, and ¢, for z5, <t by
solving the second differential equation.

(d) Make two plots (on the same page), one for v; versus ¢ for 0<¢<t;, and
the other for v, versus ¢ for 5, <t<2tp,.

28. Determine the general solution of the differential equation

dy _ x*-2y
dx 2x

Show that the solution is correct. (Derive the first derivative of the solution,
and then substitute back into the equation.)

29. Determine the solution of the following differential equation that satisfies the
given initial conditions. Plot the solution for 0<¢<7.

JZ d =
—0.08% 106t = =9 4y =
2 008, 0.6t =0, y(0) , = 3

x=0

www.it-ebooks.info

http://www.it-ebooks.info/

392 Chapter 11: Symbolic Math

30. The current, i, in a series RLC circuit R
when the switch is closed at = 0 can _t'_O
be determined from the solution of the V=10V B
2nd-order ODE C:) C
d%i | di 1. L T
—+R=H+ = =
TR AN AT

where R, L, and C are the resistance of the resistor, the inductance of the

inductor, and the capacitance of the capacitor, respectively.

(a) Solve the equation for i in terms of L, R, C, and ¢, assuming that at t = 0
i=0anddi/dt=38.

(b) Use the subs command to substitute L =3 H, R =10Q, and
C = 80 uF into the expression that were derived in part (). Make a plot
ofiversus t for 0<¢<1 s. (Underdamped response.)

(c) Use the subs command to substitute L =3 H, R =200 Q, and
C = 1200 pF into the expression that were derived in part (a). Make a
plot of i versus ¢ for 0<¢<2 s. (Overdamped response.)

(d) Use the subs command to substitute L =3 H, R =201 Q, and
C = 300uF into the expression that were derived in part (). Make a plot
of i versus ¢t for 0<¢<2 s. (Critically damped response.)

31. Damped free vibrations can be X
modeled by a block of mass m that >
is attached to a spring and a dash- k &
pot as shown. From Newton’s sec- I:'_/\/\/\/\’_ m 4I|:|
ond law of motion, the @) @)

displacement x of the mass as a
function of time can be determined by solving the differential equation
m% + ci% +kx =0

where & is the spring constant and ¢ is the damping coefficient of the dashpot.
If the mass is displaced from its equilibrium position and then released, it will
start oscillating back and forth. The nature of the oscillations depends on the
size of the mass and the values of & and c.

For the system shown in the figure, m = 10kg and £ = 28 N/m. At time
¢t = 0 the mass is displaced to x = 0.18 m and then released from rest. Derive
expressions for the displacement x and the velocity v of the mass, as a function
of time. Consider the following two cases:
(@) ¢ =3 (Ns)ym.
(®) ¢ = 50(N s)/m.

For each case, plot the position x and the velocity v versus time (two plots on
one page). For case (a) take 0<¢<20 s, and for case (b) take 0<r<10s.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix:
Summary of Characters,
Commands, and Functions

The following tables list MATLAB’s characters, commands, and functions that

are covered in the book. The items are grouped by subjects.

Characters and arithmetic operators

Character Description Page
+ Addition. 11, 64
- Subtraction. 11, 64
* Scalar and array multiplication. 11, 65
X Element-by-element multiplication of arrays. 72
/ Right division. 11,71
\ Left division. 11,70
J Element-by-element right division. 72
A Element-by-element left division. 72
" Exponentiation. 1
A Element-by-element exponentiation. 72
Colon; creates vectors with equally spaced elements, 37,44
represents range of elements in arrays.
= Assignment operator. 16
O Parentheses; sets precedence, encloses input arguments 11, 42, 44,
in functions and subscripts of arrays. 224
[] Brackets; forms arrays. encloses output arguments in 37, 38, 39,
functions. 224
R Comma; separates array subscripts and function argu- 9,17, 42-
ments, separates commands in the same line. 45, 224
; Semicolon; suppresses display, ends row in array. 10, 39
' Single quote; matrix transpose, creates string. 41, 53-55
Ellipsis; continuation of line. 10
% Percent; denotes a comment, specifies output format. 10
Relational and logical operators
Character Description Page
< Less than. 176
> Greater than. 176
<= Less than or equal. 176

www.it-ebooks.info

393

http://www.it-ebooks.info/

394

Relational and logical operators (Continued)

Summarv of Characters, C

ommands, and Functions

Character Description Page
>= Greater than or equal. 176
== Equal. 176
~= Not equal. 176
& Logical AND. 179
| Logical OR. 179
~ Logical NOT. 179
Managing commands
Command Description Page
cd Changes current directory. 24
clc Clears the Command Window. 10
clear Removes all variables from the memory. 19
clear x y z Removes variables x, y, and z from the memory. 19
close Closes the active Figure Window. 158
fclose Closes a file. 109
figure Opens a Figure Window. 158
fopen Opens a file. 108
global Declares global variables. 227
help Displays help for MATLAB functions. 226
iskeyword Displays keywords. 19
lookfor Search for specified word in all help entries. 226
who Displays variables currently in the memory. 20, 96
whos Displays information on variables in the memory. 20, 96
Predefined variables
Variable Description Page
ans Value of last expression. 19
eps The smallest difference between two numbers. 19
i Ja 19
inf Infinity. 19
j Same as i. 19
NaN Not a number. 19
pi The number 7. 19
Display formats in the Command Window
Command Description Page
format bank Two decimal digits. 13
format compact Eliminates empty lines. 13
format long Fixed-point format with 14 decimal digits. 13
format long e Scientific notation with 15 decimal digits. 13

www.it-ebooks.info

http://www.it-ebooks.info/

Summary of Characters, Commands, and Functions

395

Display formats in the Command Window (Continued)

Command Description Page
format long g Best of 15-digit fixed or floating point. 13
format loose Adds empty lines. 13
format short Fixed-point format with 4 decimal digits. 13
format short e Scientific notation with 4 decimal digits. 13
format short g Bestof 5-digit fixed or floating point. 13
Elementary math functions
Function Description Page
abs Absolute value. 15
exp Exponential. 14
factorial The factorial function. 15
log Natural logarithm. 15
loglo Base 10 logarithm. 15
nthroot Real nth root or a real number. 14
sqgrt Square root. 14
Trigonometric math functions
Function Description Page Function Description Page
acos Inverse cosine. 15 cos Cosine. 15
acot Inverse cotangent. 15 cot Cotangent. 15
asin Inverse sine. 15 sin Sine. 15
atan Inverse tangent. 15 tan Tangent. 15
Hyperbolic math functions
Function Description Page Function Description Page
cosh Hyperbolic cosine. 15 sinh Hyperbolic sine. 15
coth Hyperbolic cotangent. 15 tanh Hyperbolic tangent. 15
Rounding
Function Description Page
ceil Round towards infinity. 16
fix Round towards zero. 15
floor Round towards minus infinity. 16
rem Returns the remainder after x is divided by y. 16
round Round to the nearest integer. 15
sign Signum function. 16

www.it-ebooks.info

http://www.it-ebooks.info/

396

Creating arrays

Summarv of Characters, C

ommands, and Functions

Function Description Page
diag Creates a diagonal matrix from a vector. Creates a vector 50
from the diagonal of a matrix.
eye Creates a unit matrix. 40, 68
linspace Creates equally spaced vector. 38
ones Creates an array with ones. 40
rand Creates an array with random numbers. 71,78
randi Creates an array with random integers. 78
randn Creates an array with normally distributed numbers. 79
randperm Creates vector with permutation of integers. 78
zeros Creates an array with zeros. 40
Handling arrays
Function Description Page
length Number of elements in the vector. 49
reshape Rearrange a matrix. 49
size Size of an array. 49
Array functions
Function Description Page
cross Calculates cross product of two vectors. 77
det Calculates determinant. 70, 77
dot Calculates scalar product of two vectors. 66, 77
inv Calculates the inverse of a square matrix. 69, 77
max Returns maximum value. 76
mean Calculates mean value. 76
median Calculates median value. 76
min Returns minimum value. 76
sort Arranges elements in ascending order. 76
std Calculates standard deviation. 77
sum Calculates sum of elements. 76
Input and output
Command Description Page
disp Displays output. 101
fprintf Displays or saves output. 103-110
input Prompts for user input. 99
load Retrieves variables to the workspace. 112
save Saves the variables in the workspace. 111
uiimport Starts the Import Wizard 116
x1lsread Imports data from Excel 114

www.it-ebooks.info

http://www.it-ebooks.info/

Summary of Characters, Commands, and Functions

397

Input and output
Command Description Page
xlswrite Exports data to Excel 115

Two-dimensional plotting
Command Description Page
bar Creates a vertical bar plot. 152
barh Creates a horizontal bar plot. 152
errorbar Creates a plot with error bars. 151
fplot Plots a function. 140
hist Creates a histogram. 154-156
hold off Ends hold on. 142
hold on Keeps current graph open. 142
line Adds curves to existing plot. 143
loglog Creates a plot with log scale on both axes. 149
pie Creates a pie plot. 153
plot Creates a plot. 134
polar Creates a polar plot. 156
semilogx Creates a plot with log scale on the x axis. 149
semilogy Creates a plot with log scale on the y axis. 149
stairs Creates a stairs plot. 153
stem Creates a stem plot. 153

Three-dimensional plotting
Command Description Page
bar3 Creates a vertical 3-D bar plot. 331
contour Creates a 2-D contour plot. 330
contours3 Creates a 3-D contour plot. 330
cylinder Plots a cylinder. 331
mesh Creates a mesh plot. 327, 328
meshc Creates a mesh and a contour plot. 329
meshgrid Creates a grid for a 3-D plot. 325
meshz Creates a mesh plot with a curtain. 329
pie3 Creates a pie plot. 332
plot3 Creates a plot. 323
pol2cart Convert the polar coordinates grid to a grid in Cartesian 333

coordinates.

scatter3 Creates a scatter plot. 332
sphere Plots a sphere. 331
stem3 Creates a stem plot 332
surf Creates a surface plot. 327,329
surfc Creates a surface and a contour plot. 329

www.it-ebooks.info

http://www.it-ebooks.info/

398 Summarv of Characters, Commands, and Functions

Three-dimensional plotting (Continued)

Command Description Page
surfl Creates a surface plot with lighting. 330
waterfall Creates a mesh plot with a waterfall effect. 330
Formatting plots
Command Description Page
axis Sets limits to axes. 147
colormap Sets color. 328
grid Adds grid to a plot. 148, 328
gtext Adds text to a plot. 145
legend Adds legend to a plot. 145
subplot Creates multiple plots on one page. 157
text Adds text to a plot. 145
title Adds title to a plot. 144
view Controls the viewing direction of a 3-D plot. 333
xlabel Adds label to x axis. 144
ylabel Adds label to y axis. 144
Math funckions (create, evaluate, solve)
Command Description Page
feval Evaluates the value of a math function. 238
fminbnd Determines the minimum of a function. 298
fzero Solves an equation with one variable. 296
Numerical integration
Function Description Page
quad Integrates a function. 300
quadl Integrates a function. 301
trapz Integrates a function. 302
Ordinary differential equation solvers
Command Description Page
odell3 Solves a first order ODE. 304
odelss Solves a first order ODE. 305
ode23 Solves a first order ODE. 304
ode23s Solves a first order ODE. 305
ode23t Solves a first order ODE. 305
ode23tb Solves a first order ODE. 305
ode45 Solves a first order ODE. 304

www.it-ebooks.info

http://www.it-ebooks.info/

Summary of Characters, Commands, and Functions

399

Logical Functions

Function Description Page
all Determines if all array elements are nonzero. 182
and Logical AND. 181
any Determines if any array elements are nonzero. 182
find Finds indices of certain elements of a vector. 182
not Logical NOT. 181
or Logical OR. 181
xor Logical exclusive OR. 182
Flow control commands
Command Description Page
break Terminates execution of a loop. 202
case Conditionally execute commands. 189
continue Terminates a pass in a loop. 202
else Conditionally execute commands. 186
elseif Conditionally execute commands. 187
end Terminates conditional statements and loops. 184, 189,
193, 197
for Repeats execution of a group of commands. 193
if Conditionally execute commands. 184
otherwise Conditionally execute commands. 189
switch Switches among several cases based on expression. 189
while Repeats execution of a group of commands. 197
Polynomial functions
Function Description Page
conv Multiplies polynomials. 265
deconv Divides polynomials. 265
poly Determines coefficients of a polynomial. 264
polyder Determines the derivative of a polynomial. 266
polyval Calculates the value of a polynomial. 262
roots Determines the roots of a polynomial. 263
Curve fitting and interpolation
Function Description Page
interpl One-dimensional interpolation. 267
polyfit Curve fit polynomial to set of points. 269
Symbolic Math
Function Description Page
collect Collects terms in an expression. 354

www.it-ebooks.info

http://www.it-ebooks.info/

400 Summarv of Characters, Commands, and Functions

Symbolic Math (Continued)

Function Description Page
diff Differentiates an equation. 363
double Converts number from symbolic form to numerical form 352
dsolve Solves an ordinary differential equation. 367
expand Expands an expression. 355
ezplot Plots an expression. 369
factor Factors to product of lower order polynomials. 355
findsym Displays the symbolic variables in an expression. 353
int integrates an expression. 365
pretty Displays expression in math format. 357
simple Finds a form of an expression with fewest characters. 357
simplify Simplifies an expression. 356
solve Solves a single equation, or a system of equations. 358
subs Substitutes numbers in an expression. 372
sym Creates symbolic object. 348
syms Creates symbolic object. 350

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

abs, 15, 395

acos, 15, 395

acot, 15, 395

all, 182,399

and, 181, 399

anonymous function, 231

ans, 19, 394

any, 182,399

arithmetic operations with scalars, 11

array
addition, subtraction, 64
addressing, matrix, 43
addressing, vector, 42
creating, 35
division, 68
element-by-element

tions, 72

multiplication, 65
one-dimensional (vector), 35
two-dimensional (matrix), 39

Array Editor Window, 97

arrow key, 10

asin, 15, 395

assignment operator, 16

atan, 15, 395

axis, 147, 398

B

BackgroundColor, 147

bar, 152, 397

bar3, 331, 397

barh, 152,397

break, 202, 399

C

case, 189, 399

cd, 24, 394

ceil, 16,395

clc, 10, 394

clear, 19, 394

opera-

close, 158, 394

collect, 354, 399

colon symbol, 44

Color, 137, 147

colormap, 328, 398

Command History Window, 6, 10

Command Window, 6, 9

comment, 10

conditional statement
if-else-end, 186
if-elseif-else-end, 187
if-end, 184

continue, 202, 399

contour, 330, 397

contour3, 330, 397

conv, 265, 399

cos, 15,395

cosh, 15, 395

cot, 15,395

coth, 15, 395

cross, 77,396

Current Directory Window, 23

current directory, 22

curve fitting
exponential function, 271
logarithmic function, 271
power function, 271
reciprocal function, 271

curve fitting interface, 278

curve fitting, 261, 267

cylinder, 331, 397

D

deconv, 265, 399

det, 70, 77, 396

determinant, 70

diag, 50, 396

diff, 363, 400

differential equation, 303, 366

differentiation, symbolic, 363

www.it-ebooks.info

401

http://www.it-ebooks.info/

402

disp, 101, 396

display formats, 12

dot, 66, 77, 396

double, 352, 400
dsolve, 367,400

E

EdgeColor, 147

Editor Window, 7
Editor/Debugger Window, 21
element-by-element operations, 72
ellipsis, 10

else, 186, 399

elseif, 187,399

end, 184, 189, 193, 197, 399
eps, 19, 394

equation, solving, 295, 348, 358
equations, set of linear, 71
error bars, 150

errorbar, 151, 397
escape character, 104

exp, 14, 395

expand, 355, 400
exporting data, 114

eye, 40, 68, 396

ezplot, 369, 400

F

factor, 355, 400
factorial, 15, 395
fclose, 109, 394

feval, 238, 398

fid (file identifier), 108
Figure Window, 7

Figure Windows (multiple), 157
figure, 158, 394

find, 182,399

findsym, 353, 400

fix, 15,395

floor, 16, 395

fminbnd, 298, 398
FontAngle, 147
FontName, 147
FontSize, 147
FontWeight, 147

fopen, 108, 394
for, 193, 399
format, 13, 394
formatting text, 145, 146
fplot, 140, 397
fprintf, 103-110, 396
function
anonymous, 231
function functions, 234
function handle, 235
nested functions, 242
subfunctions, 240
user-defined, 221
function file
creating, 222
function definition line, 224,
225
H1 line, 226
help text lines, 226
input/output arguments, 224
saving, 227
structure, 223
using, 228
function, built-in, 14
fzero, 296, 398
G
global variables, 227
global, 227, 394
Greek characters, 146
grid, 148, 328, 398
gtext, 145, 398
H
handle (function), 235
Help Window, 7
help, 226
help, 226, 394
hist, 154-156, 397
histograms, 153—156
hold off, 142,397
hold on, 142, 397
| |
i, 19,394

www.it-ebooks.info

http://www.it-ebooks.info/

403

identity matrix, 68 nested, 200

if, 184,399 while, 197

Import Wizard, 116 M

importing a function, 237 marker, 137

importing data, 114 markeredgecolor, 137
indefinite loop, 198 markerfacecolor, 137
inf, 19,394 markersize, 137

input a swing, 100 matrix

input, 99, 396 adding elements, 47
int, 365, 400

deleting elements, 48
determinant, 70
identity, 68

integration, numerical, 300
integration, symbolic, 365
interpi, 276, 399

interpolation iI}VCI‘SC, &
cubic spline, 276 s1§§ 03?929
i max, 76,
o
. St median, 76, 396
interpolation, 274 mesh, 327, 328, 397

inv, 69, 77, 396
inverse, matrix, 69
iskeyword, 19, 394

meshc, 329, 397
meshgrid, 325, 397
meshz, 329, 397

J
, M-file, 21, 231
i’ 19, 394 min, 76, 396

modifiers, text, 146

least squares, 268 multiple Figure Windows, 157
left division, 70 N
legend, 145, 398 NaN. 19. 394

l?ngt]f& ;953?6 nested functions, 242
line, 143, nested loops, 200
linestyle, 137 not, 181, 399
LineWidth, 147 nthroot, 14, 395
linewidth, 137 number format, 105

linspace, 38,396 p
loag, 112, 396
log, 15,395 ode113, 304, 398

dels5s, 305, 398
log1o, 15, 395 ° , U0,
logical array, 176 ggzzi g ?gg,s ?29538
logical operator, 179 odez3t. 305, 398

logical vectors, 178
’ de23tb, 305, 398
loglog, 149, 397 odeds, 304, 398

lookfor, 226,394 ones, 40, 396

loop
for-end, 192 or, 181, 399

www.it-ebooks.info

http://www.it-ebooks.info/

404

order of precedence, 11, 178, 180
otherwise, 189, 399
output commands, 100
output to a file, 108
P
passing a function, 237
percent symbol, 10
pi, 19, 394
pie, 153,397
pie3, 332,397
plot
axis label, 144
axis range, 147
bar plot (3-D), 331
bar plot, 152
color specifiers, 136
contour plot (2-D), 330
contour plot (3-D), 330
cylinder, 331
error bars, 150
formatting, 144148
grid for 3-D plot, 325
grid, 148
histograms, 153-156
legend, 145
line (3-D), 323
line specifiers, 135, 137
logarithmic axes, 149
marker specifiers, 136
mesh (3-D), 327

mesh and contour plot (3-D),

329
mesh curtain plot (3-D), 329
mesh plot (3-D), 328

multiple graphs in a plot, 141—

144

multiple plots on a page, 157,

159
pie charts, 153
pie plot (3-D), 332
Plot Editor, 148

plot viewing direction (3-D),

333
polar grid, 332
polar plot, 156
properties, 136
scatter plot (3-D), 332
special graphics, 152
specifiers, 136
stair plot, 152
stem plot (3-D), 332
stem plot, 152
surface plot (3-D), 327, 329

surface with lighting plot (3-D),

330
symbolic expression, 369
text, 145
three-dimensional, 323
title, 144
waterfall plot (3-D), 330
plot, 134, 397
plot3, 323,397
Plots Toolstrip, 159
plotting a function, 139-141
pol2cart, 333, 397
polar plot, 156
polar, 156, 397
poly, 264, 399
polyder, 266, 399
polyfit, 269, 399
polynomial
addition, 264
derivative, 266
division, 265
MATLARB representation, 261
multiplication, 265
roots, 263
value of, 262
polyval, 262, 399
pretty, 357, 400
property name, 137, 146
property value, 137, 146

www.it-ebooks.info

http://www.it-ebooks.info/

405

Q
quad, 300, 398
quadl, 301, 398
R
rand, 77, 78, 396
randi, 78, 79, 396
randn, 79, 396
random numbers, 77
randperm, 78, 396
relational operator, 176
rem, 16, 395
reshape, 49, 396
right division, 71
roots, 263, 399
Rotation, 147
round, 15, 395
S
save, 111, 396
saving the workspace, 111
scatter3, 332, 397
script file
creating, 21, 222
input to, 97-100
output from, 100-110
running, 22
saving, 22
script file, 20
semicolon, 10, 17
semilogx, 149, 397
semilogy, 149, 397
sign, 16, 395
simple, 357,400
simplify, 356, 400
sin, 15,395
sinh, 15, 395
size, 49, 396
solve, 358, 400
sort, 76, 396
sphere, 331, 397
sqrt, 14, 395
stairs, 153, 397
std, 77, 396
stem, 153, 397

stem3, 332, 397
stopping indefinite loop, 198
string, input, 100
strings, 5355
subfunctions, 240
subplot, 157, 398
subs, 372, 400
subscript, 146
sum, 76, 396
superscript, 146
surf, 327, 329, 397
surfc, 329, 397
surfl, 330, 398
switch, 189, 399
switch-case statement, 189
sym, 348, 400
symbolic math
default variable, 353
differential equation solution,
367
differentiation, 363
equation solving, 358
expression, 350
integration, 365
numerical calculations with,
372
object, 348
plotting expression, 369
variable, 349, 350
syms, 350, 400
T
table, display, 86, 102
tan, 15, 395
tanh, 15, 395
text modifiers, 146
text, 145, 398
title, 144, 398
Toolstrip, 5, 159
transpose operator, 41
trapz, 302, 398
truth table, 183

www.it-ebooks.info

http://www.it-ebooks.info/

406

U
uiimport, 116, 396
\%
variable
defining, matrix, 39-41
defining, scalar, 16
defining, vector, 36-38
global, 227
local, 226
name, 18
predefined, 19
vector
adding elements, 46
constant spacing, 37, 38
creating, 36
deleting elements, 48
vectorization, 75
view, 333, 398
W
waterfall, 330, 398
while, 197, 399
who, 20, 96, 394
whos, 20, 96, 394
Workspace Window, 97
workspace, 96
X
xlabel, 144, 398
xlsread, 114, 396
xlswrite, 115,397
xor, 182, 399
Y
ylabel, 144, 398
Z
zeros, 40, 396

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Preface
	Contents
	Introduction
	Chapter 1 Starting with MATLAB
	1.1 STARTING MATLAB, MATLAB WINDOWS
	1.2 WORKING IN THE COMMAND WINDOW
	1.3 ARITHMETIC OPERATIONS WITH SCALARS
	1.4 DISPLAY FORMATS
	1.5 ELEMENTARY MATH BUILT-IN FUNCTIONS
	1.6 DEFINING SCALAR VARIABLES
	1. 7 USEFUL COMMANDS FOR MANAGING VARIABLES
	1.8 SCRIPT FILES
	1.9 EXAMPLES OF MATLAB APPLICATIONS
	1.10 PROBLEMS

	Chapter 2 Creating Arrays
	2.1 CREATING A ONE-DIMENSIONAL ARRAY {VECTOR)
	2.2 CREATING A TwO-DIMENSIONAL ARRAY (MATRIX)
	2.3 NOTES ABOUT VARIABLES IN MATLAB
	2.4 THE TRANSPOSE OPERATOR
	2.5 ARRAY ADDRESSING
	2.6 USING A COLON : IN ADDRESSING ARRAYS
	2. 7 ADDING ELEMENTS TO EXISTING VARIABLES
	2.8 DELETING ELEMENTS
	2.9 BUILT-IN FUNCTIONS FOR HANDLING ARRAYS
	2.10 STRINGS AND STRINGS AS VARIABLES
	2.11 PROBLEMS

	Chapter3 Mathematical Operations with Arrays
	3.1 ADDITION AND SUBTRACTION
	3.2 ARRAY MULTIPLICATION
	3.3 ARRAY DIVISION
	3.4 ELEMENT-BY-ELEMENT OPERATIONS
	3.5 USING ARRAYS IN MATLAB BUILT-IN MATH FUNCTIONS
	3.6 BUILT-IN FUNCTIONS FOR ANAL¥ZING ARRAYS
	3. 7 GENERATION OF RANDOM NUMBERS
	3.8 EXAMPLES OF MATLAB APPLICATIONS
	3.9 PROBLEMS

	Chapter 4 Using Script Files and Managing Data
	4.1 THE MATLAB WORKSPACE AND THE WORKSPACE WINDOW
	4.2 INPUT TO A SCRIPT FILE
	4.3 OUTPUT COMMANDS
	4.4 THE save AND load COMMANDS
	4.5 IMPORTING AND EXPORTING DATA
	4.6 EXAMPLES OF MATLAB APPLICATIONS
	4. 7 PROBLEMS

	Chapter 5 Two-Dimensional Plots
	5.1 THEplot COMMAND
	5.2 THE fplot COMMAND
	5.3 PLOTTING MULTIPLE GRAPHS IN THE SAME PLOT
	5.4 FORMATTING A PLOT
	5.5 PLOTS WITH LOGAJUTHMIC AxEs
	5.6 PLOTS WITH ERROR BARS
	5. 7 PLOTS WITH SPECIAL GRAPHICS
	5.8 HISTOGRAMS
	5.9 POLAR PLOTS
	5.10 PUTTING MULTIPLE PLOTS ON THE SAME PAGE
	5.11 MULTIPLE FIGURE WINDOWS
	5.12 PLOTTING USING THE PLOTS TOOLSTRIP
	5.13 EXAMPLES OF MATLAB APPliCATIONS
	5.14 PROBLEMS

	Chapter 6 Programming in MATLAB
	6.1 RELATIONAL AND LOGICAL OPERATORS
	6.2 CONDITIONAL STATEMENTS
	6.3 THE switch-case STATEMENT
	6.4 LOOPS
	6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS
	6.6 THE break AND continue COMMANDS
	6. 7 EXAMPLES OF MATLAB APPLICATIONS
	6.8 PROBLEMS

	Chapter7 User-Defined Function and Function Files
	7.1 CREATING A FUNCTION FILE
	7.2 STRUCTURE OF A FUNCTION FILE
	7.3 LOCAL AND GLOBAL VARIABLES
	7.4 SAVING A FUNCTION FILE
	7.5 USING A USER-DEFINED FUNCTION
	7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS
	7. 7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES
	7.8 ANONYMOUS FUNCTIONS
	7.9 FUNCTION FUNCTIONS
	7.10 SUBFUNCTIONS
	7.11 NESTED FUNCTIONS
	7.12 EXAMPLES OF MATLAB APPLICATIONS
	7.13 PROBLEMS

	Chapter 8 Polynomials ,Curve Fitting, andInterpolation
	8.1 POLYNOMIALS
	8.2 CURVE FITTING
	8.3 INTERPOLATION
	8.4 THE BASIC FITTING INTERFACE
	8.5 EXAMPLES OF MATLAB APPLICATIONS
	8.6 PROBLEMS

	Chapter 9 Applications in Numerical Analysis
	9.1 SOLVING AN EQUATION WITH ONE VARIABLE
	9.2 FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION
	9.3 NUMERICAL INTEGRATION
	9.4 ORDINARY DIFFERENTIAL EQUATIONS
	9.5 EXAMPLES OF MATLAB APPLICATIONS
	9.6 PROBLEMS

	Chapter 10 Three-DimensionalPlots
	10.1 LINE PLOTS
	10.2 MESH AND SURFACE PLOTS
	10.3 PLOTS WITH SPECIAL GRAPHICS
	10.4 THE view COMMAND
	10.5 EXAMPLES OF MATLAB APPLICATIONS
	10.6 PROBLEMS

	Chapter 11 Symbolic Math
	11.1 SYMBOLIC OBJECTS AND SYMBOLIC EXPRESSIONS
	11.2 CHANGING THE FORM OF AN EXISTING SYMBOLIC EXPRESSION
	11.3 SOLVING ALGEBRAIC EQUATIONS
	11.4 DIFFERENTIATION
	11.5 INTEGRATION
	11.6 SOLVING AN ORDINARY DIFFERENTIAL EQUATION
	11.7 PLOTTING SYMBOLIC EXPRESSIONS
	11.8 NUMERICAL CALCULATIONS WITH SYMBOLIC EXPRESSIONS
	11.9 EXAMPLES OF MATLAB APPLICATIONS
	11.10 PROBLEMS

	Appendix: Summary of Characters, Commands, and Functions
	Index

