
MATLAB® Compiler™

User’s Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Compiler™ User’s Guide

© COPYRIGHT 1995–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)
March 2010 Online only Revised for Version 4.13 (Release 2010a)
September 2010 Online only Revised for Version 4.14 (Release 2010b)
April 2011 Online only Revised for Version 4.15 (Release 2011a)
September 2011 Online only Revised for Version 4.16 (Release 2011b)
March 2012 Online only Revised for Version 4.17 (Release 2012a)
September 2012 Online only Revised for Version 4.18 (Release 2012b)
March 2013 Online only Revised for Version 4.18.1 (Release 2013a)
September 2013 Online only Revised for Version 5.0 (Release 2013b)
March 2014 Online only Revised for Version 5.1 (Release R2014a)

Contents

Getting Started

1
MATLAB Compiler Product Description 1-2
Key Features . 1-2

Appropriate Tasks for MATLAB Compiler and Builder
Products . 1-3

MATLAB Application Deployment Products 1-5

Roles in Deploying as a Standalone Application 1-7

Roles in Deploying in a C/C++ Shared Library 1-8

Roles in Deploying to MATLAB Production Server . . . 1-10

Create and Install a Standalone Application from
MATLAB Code . 1-12
Create a Standalone Application in MATLAB 1-12
Install a MATLAB Generated Standalone Application . . . 1-16

Create a C/C++ Shared Library from MATLAB Code . . 1-21

Integrate a C/C++ Shared Library into an
Application . 1-26

Create a Deployable Archive for MATLAB Production
Server . 1-32

For More Information . 1-37

v

Installation and Configuration

2
Install an ANSI C or C++ Compiler 2-2
Supported ANSI C and C++ Windows Compilers 2-2
Supported ANSI C and C++ UNIX Compilers 2-2
Common Installation Issues and Parameters 2-3

Configuring Your Options File with mbuild 2-5
What Is mbuild? . 2-5
Locating and Customizing the Options File 2-5

Solving Installation Problems . 2-8

Deploying Standalone Applications

3
Compile a Standalone Application with the Standalone
Compiler App . 3-2

Customize the Application’s Run Time Behavior 3-8

Compile a Standalone Application from the Command
Line . 3-9
Execute Compiler Projects with deploytool 3-9
Compile a Standalone Application with mcc 3-9

Working with Standalone Applications and
Arguments . 3-11
Overview . 3-11
Passing File Names, Numbers or Letters, Matrices, and
MATLAB Variables . 3-11

Running Standalone Applications that Use Arguments . . . 3-12

Compile and Deploy Standalone Applications with the
Parallel Computing Toolbox . 3-15

vi Contents

Standalone Applications with a Profile Passed at
Run-Time . 3-15

Standalone Applications with an Embedded Profile 3-16

Run a Mac OS X Application . 3-18
Overview . 3-18
Installing the Macintosh Application Launcher Preference
Pane . 3-18

Configuring the Installation Area . 3-18
Launching the Application . 3-21

Deploying C/C++ Shared Libraries

4
Compile a C/C++ Shared Library with the Library
Compiler App . 4-2

Compile a C/C++ Shared Library from the Command
Line . 4-7
Execute Compiler Projects with deploytool 4-7
Compile a Shared Library with mcc 4-7

What Are Wrapper Files? . 4-9
C Library Wrapper . 4-9
C++ Library Wrapper . 4-9

Compiling Deployable Archives for MATLAB
Production Server

5
State-Dependent Functions . 5-2
Does My MATLAB Function Carry State? 5-2
Defensive Coding Practices . 5-2
Techniques for Preserving State . 5-3

vii

Unsupported MATLAB Data Types for Client and
Server Marshaling . 5-5

Compile a Deployable Archive with the Production
Server Compiler App . 5-6

Compile a Deployable Archive from the Command
Line . 5-12
Execute Compiler Projects with deploytool 5-12
Compile a Deployable Archive with mcc 5-12

Customizing a Compiler Project

6
Customize the Installer . 6-2
Change the Application Icon . 6-2
Add Application Information . 6-3
Change the Splash Screen . 6-4
Change the Installation Path . 6-4
Change the Logo . 6-5
Edit the Installation Notes . 6-5

Manage Required Files in a Compiler Project 6-6
Dependency Analysis . 6-6
Using the Compiler Apps . 6-6
Using mcc . 6-7

Specify Files to Install with the Application 6-8

Manage Support Packages . 6-9

viii Contents

MATLAB Code Deployment

7
Application Deployment Products and the Compiler
Apps . 7-2
What Is the Difference Between the Compiler Apps and the
mcc Command Line? . 7-2

How Does MATLAB Compiler Software Build My
Application? . 7-2

Dependency Analysis Function . 7-5
MEX-Files, DLLs, or Shared Libraries 7-6
Component Technology File (CTF Archive) 7-6

Write Deployable MATLAB Code . 7-10
Compiled Applications Do Not Process MATLAB Files at
Runtime . 7-10

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files . 7-11

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths 7-12

Gradually Refactor Applications That Depend on
Noncompilable Functions . 7-12

Do Not Create or Use Nonconstant Static State
Variables . 7-12

Get Proper Licenses for Toolbox Functionality You Want to
Deploy . 7-13

How the Deployment Products Process MATLAB
Function Signatures . 7-14
MATLAB Function Signature . 7-14
MATLAB Programming Basics . 7-14

Load MATLAB Libraries using loadlibrary 7-16
Restrictions on Using MATLAB Function loadlibrary with
MATLAB Compiler . 7-17

Use MATLAB Data Files (MAT Files) in Compiled
Applications . 7-18
Explicitly Including MAT files Using the %#function
Pragma . 7-18

Load and Save Functions . 7-18

ix

MATLAB Objects . 7-21

C and C++ Standalone Executable and Shared
Library Creation

8
Input and Output Files . 8-2
Standalone Executable . 8-2
C Shared Library . 8-3
C++ Shared Library . 8-5
Macintosh 64 (Maci64) . 8-7

Dependency Analysis Function and User Interaction
with the Compilation Path . 8-8
addpath and rmpath in MATLAB . 8-8
Passing -I <directory> on the Command Line 8-8
Passing -N and -p <directory> on the Command Line 8-8

Deployment Process

9
Overview . 9-2
Watch a Video . 9-2

Deploying to Developers . 9-3
Procedure . 9-3
What Software Does a Developer Need? 9-3
Ensuring Memory for Deployed Applications 9-5

Deploying to End Users . 9-6
Steps by the Developer to Deploy to End Users 9-6
What Software Does the End User Need? 9-9
Using Relative Paths with Project Files 9-12
Porting Generated Code to a Different Platform 9-12

x Contents

Extracting a CTF Archive Without Executing the
Component . 9-12

Ensuring Memory for Deployed Applications 9-13

Working with the MCR . 9-14
About the MATLAB Compiler Runtime (MCR) 9-14
The MCR Installer . 9-15
Installing the MCR Non-Interactively 9-23
Uninstalling the MCR . 9-26
MCR Startup Options . 9-28
Using the MCR User Data Interface 9-32
Displaying MCR Initialization Start-Up and Completion
Messages For Users . 9-34

Deploy Applications Created Using Parallel Computing
Toolbox . 9-37
Compile and Deploy a Shared Library with the Parallel
Computing Toolbox . 9-37

Deploying a Standalone Application on a Network
Drive (Windows Only) . 9-38

MATLAB Compiler Deployment Messages 9-40

Using MATLAB Compiler Generated DLLs in Windows
Services . 9-41

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding . 9-42
What Is MATLAB Memory Shielding and When Should You
Use It? . 9-42

Requirements for Using MATLAB Memory Shielding 9-43
Invoking MATLAB Memory Shielding for Your Deployed
Application . 9-43

xi

Distributing Code to an End User

10
Share MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 10-2
Distributing MATLAB Code Using the MATLAB Compiler
Runtime (MCR) . 10-2

Compiler Commands

11
Command Overview . 11-2
Compiler Options . 11-2
Combining Options . 11-2
Conflicting Options on the Command Line 11-3
Using File Extensions . 11-3
Interfacing MATLAB Code to C/C++ Code 11-4

Simplify Compilation Using Macros 11-5
Macro Options . 11-5
Working With Macro Options . 11-5

Invoke MATLAB Build Options . 11-8
Specifying Full Path Names to Build MATLAB Code 11-8
Using Bundle Files to Build MATLAB Code 11-9

MCR Component Cache and CTF Archive
Embedding . 11-11
Overriding Default Behavior . 11-12
For More Information . 11-13

Explicitly Including a File for Compilation Using the
%#function Pragma . 11-14
Using feval . 11-14
Using %#function . 11-14

Use the mxArray API to Work with MATLAB Types . . . 11-16

xii Contents

Script Files . 11-17
Converting Script MATLAB Files to Function MATLAB
Files . 11-17

Including Script Files in Deployed Applications 11-18

Compiler Tips . 11-20
Calling a Function from the Command Line 11-20
Using winopen in a Deployed Application 11-21
Using MAT-Files in Deployed Applications 11-21
Compiling a GUI That Contains an ActiveX Control 11-21
Debugging MATLAB Compiler Generated Executables . . . 11-22
Deploying Applications That Call the Java Native
Libraries . 11-22

Locating .fig Files in Deployed Applications 11-22
Terminating Figures by Force In a Standalone
Application . 11-23

Passing Arguments to and from a Standalone
Application . 11-23

Using Graphical Applications in Shared Library Targets . . 11-25
Using the VER Function in a Compiled MATLAB
Application . 11-25

Standalone Applications

12
Introduction . 12-2

Deploying Standalone Applications 12-3
Compiling the Application . 12-3
Testing the Application . 12-3
Deploying the Application . 12-4
Running the Application . 12-6

xiii

Libraries

13
Introduction . 13-2

Addressing mwArrays Above the 2 GB Limit 13-3

Integrate C Shared Libraries . 13-4
C Shared Library Wrapper . 13-4
C Shared Library Example . 13-4
Calling a Shared Library . 13-12
Using C Shared Libraries On a Mac OS X System 13-17

Integrate C++ Shared Libraries . 13-18
C++ Shared Library Wrapper . 13-18
C++ Shared Library Example . 13-18

Call MATLAB Compiler API Functions (mcl*) from
C/C++ Code . 13-23
Functions in the Shared Library . 13-23
Type of Application . 13-23
Structure of Programs That Call Shared Libraries 13-25
Library Initialization and Termination Functions 13-26
Print and Error Handling Functions 13-27
Functions Generated from MATLAB Files 13-29
Retrieving MCR State Information While Using Shared
Libraries . 13-34

About Memory Management and Cleanup 13-35
Overview . 13-35
Passing mxArrays to Shared Libraries 13-35

Troubleshooting

14
Introduction . 14-2

xiv Contents

Common Issues . 14-4

Failure Points and Possible Solutions 14-5
How to Use this Section . 14-5
Does the Failure Occur During Compilation? 14-5
Does the Failure Occur When Testing Your Application? . . 14-9
Does the Failure Occur When Deploying the Application to
End Users? . 14-13

Troubleshooting mbuild . 14-16

MATLAB Compiler . 14-18

Deployed Applications . 14-22

Limitations and Restrictions

15
MATLAB Compiler Limitations . 15-2
Compiling MATLAB and Toolboxes 15-2
Fixing Callback Problems: Missing Functions 15-3
Finding Missing Functions in a MATLAB File 15-5
Suppressing Warnings on the UNIX System 15-5
Cannot Use Graphics with the -nojvm Option 15-6
Cannot Create the Output File . 15-6
No MATLAB File Help for Compiled Functions 15-6
No MCR Versioning on Mac OS X . 15-7
Older Neural Networks Not Deployable with MATLAB
Compiler . 15-7

Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode . 15-7

Compiling a Function with WHICH Does Not Search
Current Working Directory . 15-8

Restrictions on Using C++ SETDATA to Dynamically
Resize an MWArray . 15-8

Licensing Terms and Restrictions on Compiled
Applications . 15-9

xv

MATLAB Functions That Cannot Be Compiled 15-10

Reference Information

16
MCR Path Settings for Development and Testing 16-2
Overview . 16-2
Path for Java Development on All Platforms 16-2
Path Modifications Required for Accessibility 16-2
Windows Settings for Development and Testing 16-3
Linux Settings for Development and Testing 16-3
Mac Settings for Development and Testing 16-3

MCR Path Settings for Run-time Deployment 16-4
General Path Guidelines . 16-4
Path for Java Applications on All Platforms 16-4
Windows Path for Run-Time Deployment 16-4
Linux Paths for Run-Time Deployment 16-5
Mac Paths for Run-Time Deployment 16-5

MATLAB Compiler Licensing . 16-6
Using MATLAB Compiler Licenses for Development 16-6

Deployment Product Terms . 16-8

Functions — Alphabetical List

17

MATLAB Compiler Quick Reference

A
Common Uses of MATLAB Compiler A-2

xvi Contents

Create a Standalone Application . A-2
Create a Library . A-2

mcc Command Arguments Listed Alphabetically A-4

mcc Command Line Arguments Grouped by Task A-8

Using MATLAB Compiler on Mac or Linux

B
Overview . B-2

Installing MATLAB Compiler on Mac or Linux B-3
Installing MATLAB Compiler . B-3
Custom Configuring Your Options File B-3
Install Apple Xcode from DVD on Maci64 B-3

Writing Applications for Mac or Linux B-4
Objective-C/C++ Applications for Apple’s Cocoa API B-4
Where’s the Example Code? . B-4
Preparing Your Apple Xcode Development Environment . . B-4
Build and Run the Sierpinski Application B-5
Running the Sierpinski Application B-7

Building Your Application on Mac or Linux B-10
Compiling Your Application with the Compiler Apps B-10
Compiling Your Application with the Command Line B-10

Testing Your Application on Mac or Linux B-11

Set MCR Paths on Mac or Linux with Scripts B-12
Solving Problems Related to Setting MCR Paths on Mac or
Linux . B-12

xvii

Error and Warning Messages

C
About Error and Warning Messages C-2

Compile-Time Errors . C-3

Warning Messages . C-7

Dependency Analysis Errors . C-10
MCR/Dispatcher Errors . C-10
XML Parser Errors . C-10

C++ Utility Library Reference

D
Data Conversion Restrictions for the C++ MWArray
API . D-2

Primitive Types . D-3

C++ Utility Classes . D-4

xviii Contents

1

Getting Started

• “MATLAB® Compiler™ Product Description” on page 1-2

• “Appropriate Tasks for MATLAB® Compiler™ and Builder Products” on
page 1-3

• “MATLAB Application Deployment Products ” on page 1-5

• “Roles in Deploying as a Standalone Application” on page 1-7

• “Roles in Deploying in a C/C++ Shared Library” on page 1-8

• “Roles in Deploying to MATLAB® Production Server™” on page 1-10

• “Create and Install a Standalone Application from MATLAB Code” on page
1-12

• “Create a C/C++ Shared Library from MATLAB Code” on page 1-21

• “Integrate a C/C++ Shared Library into an Application” on page 1-26

• “Create a Deployable Archive for MATLAB® Production Server™” on page
1-32

• “For More Information” on page 1-37

1 Getting Started

MATLAB Compiler Product Description
Build standalone applications and software components from
MATLAB® programs

MATLAB Compiler™ lets you share MATLAB programs as standalone
applications or shared libraries for integration with common programming
languages. Applications and libraries created with MATLAB Compiler use the
MATLAB Compiler Runtime (MCR), which enables royalty-free deployment
to users who do not have MATLAB. You can package the MATLAB Compiler
Runtime with the application or have your users download it during
installation

Learn more about MATLAB Compiler support for MATLAB and toolboxes.

Key Features

• Packaging of your MATLAB programs as standalone applications or shared
libraries

• Royalty-free distribution of applications to users who do not have MATLAB

• Integration of MATLAB programs into Java®, Microsoft® .NET, and
Excel®applications using MATLAB builder products

• Large-scale deployment of MATLAB programs using MATLAB Production
Server™

• Encryption of MATLAB code to protect your intellectual property

1-2

http://www.mathworks.com/products/compiler/compiler_support.html

Appropriate Tasks for MATLAB® Compiler™ and Builder Products

Appropriate Tasks for MATLAB Compiler and Builder
Products

MATLAB Compiler compiles MATLAB code into standalone applications,
libraries that can be integrated into other applications, or into deployable
archives for use with MATLAB Production Server. By default, MATLAB
Compiler can generate standalone applications, C/C++ shared libraries, and
deployable archives for use with MATLAB Production Server. Additional
builders are available for Java, .NET, and Microsoft® Excel®.

While MATLAB Compiler lets you run your MATLAB application outside the
MATLAB environment, it is not appropriate for all external tasks you may
want to perform. Some tasks require either the MATLAB Coder™ product
or MATLAB external interfaces. Use the following table to determine if
MATLAB Compiler and builder products are appropriate to your needs.

MATLAB Compiler Task Matrix

Task

MATLAB
Compiler

and
Builders

MATLAB
Coder

MATLAB
External

Interfaces

PackageMATLAB applications
for deployment to users who do
not have MATLAB

■

PackageMATLAB applications
for deployment to MATLAB
Production Server

■

Build non-MATLAB
applications that include
MATLAB functions

■

Generate readable, efficient,
and embeddable C code from
MATLAB code

■

1-3

1 Getting Started

MATLAB Compiler Task Matrix (Continued)

Task

MATLAB
Compiler

and
Builders

MATLAB
Coder

MATLAB
External

Interfaces

Generate MEX functions
from MATLAB code for rapid
prototyping and verification
of generated C code within
MATLAB

■

Integrate MATLAB code into
Simulink®

■

Speed up fixed-point MATLAB
code

■

Generate hardware description
language (HDL) from
MATLAB code

■

Integrate custom C code into
MATLAB with MEX files

■

Call MATLAB from C and
Fortran programs

■

For information on MATLAB Coder see “MATLAB Coder”.

For information on MATLAB external interfaces see “External Code
Integration”.

1-4

MATLAB® Application Deployment Products

MATLAB Application Deployment Products
The following table and figure summarizes the target applications supported
by each product.

MATLAB Suite of Application Deployment Products

Product Target Standalone
Applications

Function
Libraries

Graphical
Apps

Web Apps WebFigures

MATLAB
Compiler

Standalone
applications
and C and
C++ shared
libraries

Yes Yes Yes No No

MATLAB
Builder™
NE

C# .NET
components
Visual
Basic COM
components

No Yes Yes Yes Yes

MATLAB
Builder JA

Java
components

No Yes Yes Yes Yes

MATLAB
Builder EX

Microsoft
Excel
add-ins

No Yes Yes No No

1-5

1 Getting Started

MATLAB® Application Deployment Products

As this figure illustrates, each of the builder products uses the MATLAB
Compiler core code to create deployable components.

1-6

Roles in Deploying as a Standalone Application

Roles in Deploying as a Standalone Application
Deploying MATLAB functionality as a standalone application is a multistep
process that may involve one or more team members. Each step requires that
you perform a specific role, as shown in Standalone Application Deployment
Roles on page 1-7.

Standalone Application Deployment Roles

Role Knowledge Base Responsibilities

MATLAB programmer
• MATLAB expert

• No IT experience

• Develop functions and
implements them in
MATLAB.

• Create a standalone
applications that can
be used without being
integrated into any 3rd
party applications.

IT professional
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems
using the generated
applications meet the
required specifications.

• Install any required
software on target
machines.

• Install the generated
applications on target
machines.

1-7

1 Getting Started

Roles in Deploying in a C/C++ Shared Library
Deploying MATLAB functionality through C/C++ applications is a multistep
process that may involve one or more team members. Each step requires that
you perform a specific role, as shown in Shared Library Deployment Roles
on page 1-8.

Shared Library Deployment Roles

Role Knowledge Base Responsibilities

MATLAB programmer
• MATLAB expert

• Little to no C/C++
knowledge

• No IT experience

• Develop functions and
implements them in
MATLAB.

• Create shared libraries that
are delivered to a C/C++
developer for integration
into custom applications.

C/C++ developer
• Little to no MATLAB
experience

• Some knowledge of IT
systems

• C/C++ expert

• Develop C/C++ applications
using MATLAB generated
shared libraries.

• Test C/C++ applications.

• Package C/C++ applications
for distribution.

IT professional
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems using
MATLAB application have
the required specifications.

• Install any required
software on target
machines.

1-8

Roles in Deploying in a C/C++ Shared Library

Shared Library Deployment Roles (Continued)

Role Knowledge Base Responsibilities

• Install MATLAB
applications on target
machines.

1-9

1 Getting Started

Roles in Deploying to MATLAB Production Server
Deploying MATLAB functionality using MATLAB Production Server is a
multistep process that might involve one or more team members. Each step
requires fulfilling specific roles, as shown in MATLAB® Production Server™
Deployment Roles on page 1-10 .

MATLAB Production Server Deployment Roles

Role Knowledge Base Responsibilities

MATLAB programmer
• MATLAB expert

• Little to no software
development experience

• Little to no IT experience

• Develop functions and
implements them in
MATLAB.

• Create deployable archives
that run in MATLAB
Production Server
instances.

Application developer
• Little to no MATLAB
experience

• Some knowledge of IT
systems

• Familiarity with developing
applications using a
client/server architecture

• Develop applications
using one of the MATLAB
Production Server client
APIs.

• Test applications.

• Package applications for
distribution.

1-10

Roles in Deploying to MATLAB® Production Server™

MATLAB Production Server Deployment Roles (Continued)

Role Knowledge Base Responsibilities

Server administrator
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems
running MATLAB
Production Server
instances have the required
specifications.

• Install MATLAB Production
Server instances.

• Tune MATLAB Production
Server instances.

• Install compiled MATLAB
applications into MATLAB
Production Server
instances.

• Monitor MATLAB
Production Server
instances.

Application installer
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems using
MATLAB Production Server
client applications meet the
required specifications.

• Install any required
software on target
machines.

• Install MATLAB Production
Server client applications
on target machines.

1-11

1 Getting Started

Create and Install a Standalone Application from MATLAB
Code

In this section...

“Create a Standalone Application in MATLAB” on page 1-12

“Install a MATLAB Generated Standalone Application” on page 1-16

Create a Standalone Application in MATLAB
This example shows how to generate a standalone application from MATLAB.
You package a pre-written function that prints a magic square to a computer’s
command console. The MATLAB Compiler produces an installer that installs
the standalone application and all of the required dependencies on a target
system. The target system does not require a licensed copy of MATLAB.

1 In MATLAB, examine the MATLAB code that you want deployed as a
standalone application.

a Open magicsquare.m.

function magicsquare(n)

if ischar(n)
n=str2num(n);

end
disp(magic(n))

b At the MATLAB command prompt, enter magicsquare(5).

The output appears as follows:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

2 Open the Application Compiler.

a On the toolstrip select the Apps tab.

1-12

Create and Install a Standalone Application from MATLAB® Code

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Application Compiler to open the MATLAB Compiler project
window.

3 Specify the main file of the MATLAB application you want to deploy.

a In the Main File section of the toolstrip, click the plus button.

1-13

1 Getting Started

Note If theMain File section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

b In the file explorer that opens, locate and select the magicsquare.m file.

magicsquare.m is located in matlabroot\extern\examples\compiler.

c Click Open to select the file and close the file explorer.

magicsquare.m is added to the list of main files and the plus button will
be replaced by a minus button.

4 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

This option creates an application installer that automatically downloadsthe
MATLAB Compiler Runtime (MCR) and installs it along with the deployed
MATLAB application.

5 Explore the main body of theMATLAB Compiler project window.

The project window is divided into the following areas:

• Application Information — Editable information about the deployed
application. This information is used by the generated installer to populate
the installed application’s metadata. See “Customize the Installer” on page
6-2.

• Additional Installer Options — The default installation path for the
generated installer. See “Customize the Installer” on page 6-2.

• Files required for your application — Additional files required by
the generated application. These files will be included in the generated
application installer. See “Manage Required Files in a Compiler Project”
on page 6-6.

1-14

Create and Install a Standalone Application from MATLAB® Code

• Files installed with your application — Files that are installed with
your application. These files include:

- Generated readme.txt

- Generated executable for the target platform

See “Specify Files to Install with the Application” on page 6-8

• Additional Runtime Settings — Platform specific options for controlling
the generated executable. See “Customize the Application’s Run Time
Behavior” on page 3-8.

6 Click Package.

The Package window opens while the application is being generated.

7 Select the Open output folder when process completes check box.

When the deployment process is complete a file explorer opens and displays
the generated output.

It should contain:

• for_redistribution— A folder containing the installer to distribute the
application

• for_testing— A folder containing the raw files generated by the compiler

1-15

1 Getting Started

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the application

• PackagingLog.txt— A log file generated by the compiler.

8 Click Close on the Package window.

Install a MATLAB Generated Standalone Application
This example shows how to install the standalone application you created in
“Create a Standalone Application in MATLAB” on page 1-12.

1 Locate the MyAppInstaller_web executable in the for_redistribution
folder created by the MATLAB Compiler.

Note The file extension varies depend on which platform the installer was
generated.

2 Double click the installer to run it.

1-16

Create and Install a Standalone Application from MATLAB® Code

Note Any information entered in the MATLAB Compiler project window’s
Application Information appears on the this window.

3 If you connect to the internet using a proxy server, enter the server’s settings.

a Click Connection Settings.

b Enter the proxy server settings in the provided window.

c Click OK.

4 Click Next to advance to the Installation Options page.

1-17

1 Getting Started

Note On Linux® and Mac OS X you will not have the option of adding a
desktop shortcut.

5 Click Next to advance to the Required Software page.

If asked about creating the destination folder, click Yes.

1-18

Create and Install a Standalone Application from MATLAB® Code

Note If you already have the correct version of the MATLAB Compiler
Runtime (MCR) installed on the system, this page will have a message
indicating that you do not have to install the MCR.

If you receive this message, skip to step 10 on page 1-19.

6 Click Next to advance to the License Agreement page.

If asked about creating the destination folder, click Yes.

7 Read the license agreement.

8 Check Yes to accept the license.

9 Click Next to advance to the Confirmation page.

10 Click Install.

The installer installs the MATLAB generated application. If needed, it also
downloads and installs the MCR.

11 Click Finish.

12 Run your standalone application.

a Open a terminal window.

b Navigate to the folder into which you installed the application.

If you accepted the default settings it will be located in one of the following
location:

Windows® C:\Program Files\magicsquare

Mac OS X /Applications/magicsquare

Linux /usr/magicsquare

c Run the application using the one of the following commands:

1-19

1 Getting Started

Windows application\magicsquare 5

Mac OS X

Linux ./magicsquare 5

A 5-by-5 magic square is displayed in the console:

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

1-20

Create a C/C++ Shared Library from MATLAB® Code

Create a C/C++ Shared Library from MATLAB Code
This example shows how to create a C/C++ shared library using a MATLAB
function. You can then hand the generated shared library off to the C/C++
developer who is responsible for integrating it into an application.

To create a C++ shared library:

1 In MATLAB, examine the MATLAB code that you want to deploy as a shared
library.

a Open addmatrix.m.

function a = addmatrix(a1, a2)

a = a1 + a2;

b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:

ans =

3

2 Open the Library Compiler.

a On the toolstrip, select the Apps tab.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Library Compiler to open theMATLAB Compiler project window.

1-21

1 Getting Started

3 In the Application Type section of the toolstrip, select C++ Shared Library
from the list.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

4 Specify the MATLAB functions you want to deploy.

1-22

Create a C/C++ Shared Library from MATLAB® Code

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compiler.

c Click Open to select the file and close the file explorer.

addmatrix.m is added to the list of files and a minus button appears
under the plus button.

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB Compiler Runtime (MCR) and installs it along with the deployed
shared library.

6 Explore the main body of theMATLAB Compiler project window.

The project window is divided into the following areas:

• Application Information — Editable information about the deployed
application. This information is used by the generated installer to populate
the installed application’s metadata. See “Customize the Installer” on page
6-2.

• Additional Installer Options — The default installation path for the
generated installer. See “Customize the Installer” on page 6-2.

• Files required for your application — Additional files required by
the generated application. These files will be included in the generated

1-23

1 Getting Started

application installer. See “Manage Required Files in a Compiler Project”
on page 6-6.

• Files installed with your application — Files that are installed with
your application. These files include:

- readme.txt

- .h file

- .dll file

- .lib file

See “Specify Files to Install with the Application” on page 6-8.

7 Click Package.

The Package window opens while the library is being generated.

8 Select the Open output folder when process completes check box.

When the deployment process is complete, a file explorer opens and displays
the generated output.

It should contain:

1-24

Create a C/C++ Shared Library from MATLAB® Code

• for_redistribution— A folder containing the installer to distribute the
library

• for_testing— A folder containing the raw files generated by the compiler

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the library

• PackagingLog.txt— A log file generated by the compiler.

9 Click Close on the Package window.

10 Verify the contents of the generated output:

• for_redistribution— A folder containing the installer to distribute the
standalone application

• for_testing— A folder containing the raw files generated by the compiler

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the application

• PackagingLog.txt— A log file generated by the compiler.

To follow up on this example:

• Try creating a shared library that consists of more than one function.

• Try “Integrate a C/C++ Shared Library into an Application” on page 1-26

1-25

1 Getting Started

Integrate a C/C++ Shared Library into an Application
This example shows how to call a C++ shared library built with MATLAB
Compiler from a C++ application.

To create a C++ application that calls a MATLAB generated shared library:

1 Install the MATLAB Compiler Runtime (MCR) and shared library files in one
of the following ways.

• Running the installer generated by MATLAB. It is located in the
for_redistribution folder of the deployment project.

Doing so automatically installs the MCR from the Web and places the
shared library folders onto your computer.

• Manually installing the MCR and the generated shared libraries onto you
development system.

You can download the MCR installer from
http://www.mathworks.com/products/compiler/mcr. The generated shared
libraries and support files are located in the MATLAB deployment project’s
for_testing folder.

2 In the folder containing the generated shared libraries, create a new file
called addmatrix.cpp.

3 Using a text editor, open addmatrix.cpp.

4 Place the following as the first line in the file.

#include "addmatrix.h"

Inserting this statement includes the generated header file for the MATLAB
shared library.

5 Add the following main() function.

int main()
{

mclmcrInitialize();
return mclRunMain((mclMainFcnType)run_main,0,NULL);

1-26

http://www.mathworks.com/products/compiler/mcr

Integrate a C/C++ Shared Library into an Application

}

The main() function does the following:

• mclmcrInitialize() initializes the MCR so that it is ready to load the
MATLAB code required to execute the deployed function.

• mclRunMain() creates a new thread and runs the MATLAB generated
code in it.

6 Add a run_main() function to the application.

int run_main(int argc, char **argv)
{
}

7 Add the following code to the top of the run_main() function.

if (!mclInitializeApplication(NULL,0))
{

std::cerr << "could not initialize the application properly"
<< std::endl;

return -1;
}

The mclInitializeApplication() function sets up the application state for
the MCR instance created in the application.

8 Add the following code below the code initializing the application.

if(!addmatrixInitialize())
{

std::cerr << "could not initialize the library properly"
<< std::endl;

return -1;
}

The addmatrixInitialize() function loads the required MATLAB code into
the MCR.

9 Add a try/catch block after the block for addmatrixInitialize().

1-27

1 Getting Started

10 In the try section of the try/catch block, add the following code.

// Create input data
double data[] = {1,2,3,4,5,6,7,8,9};
mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);
mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
in1.SetData(data, 9);
in2.SetData(data, 9);

// Create output array
mwArray out;

The code creates three instances of the mwArray class, in1, in2, and out. in1
and in2 passed as input parameters to the addmatirx() function generated
by MATLAB. out is the value returned from the addmatirx() function.
mwArray is a special class used by MATLAB generated code to facilitate the
use of complex arrays.

11 After the code that initializes the parameters, add the following code to call
the addmatirx() function and display the results.

addmatrix(1, out, in1, in2);

std::cout << "The value of added matrix is:" << std::endl;
std::cout << out << std::endl;

12 Add the following catch section to the try/catch block.

catch (const mwException& e)
{

std::cerr << e.what() << std::endl;
return -2;

}
catch (...)

{
std::cerr << "Unexpected error thrown" << std::endl;
return -3;

}

The first catch clause catches the MATLAB generated mwException. This
exception is thrown by the MATLAB code running in the MCR.

1-28

Integrate a C/C++ Shared Library into an Application

The second catch clause catches any other exceptions that may be thrown.

13 Add the following after the try/catch block to terminate the MCR and clean up
any resources it was using.

addmatrixTerminate();
mclTerminateApplication();
return 0;

addmatrixTerminiate() releases the resources used by the generated
MATLAB code.

mclTerminateApplication() releases all state and resources used by the
MCR for the application.

14 Save the C++ file.

The completed C++ file should resemble the following.

#include "addmatrix.h"

int run_main(int argc, char **argv)
{

if (!mclInitializeApplication(NULL,0))
{

std::cerr << "could not initialize the application properly"
<< std::endl;

return -1;
}

if(!addmatrixInitialize())
{

std::cerr << "could not initialize the library properly"
<< std::endl;

return -1;
}

try
{

// Create input data
double data[] = {1,2,3,4,5,6,7,8,9};
mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);

1-29

1 Getting Started

mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
in1.SetData(data, 9);
in2.SetData(data, 9);

// Create output array
mwArray out;

// Call the library function
addmatrix(1, out, in1, in2);

std::cout << "The value of added matrix is:" << std::endl;
std::cout << out << std::endl;

}
catch (const mwException& e)

{
std::cerr << e.what() << std::endl;
return -2;

}
catch (...)

{
std::cerr << "Unexpected error thrown" << std::endl;
return -3;

}

addmatrixTerminate();
mclTerminateApplication();
return 0;

}

int main()
{

mclmcrInitialize();
return mclRunMain((mclMainFcnType)run_main,0,NULL);

}

15 Use the system’s command line to navigate to the folder where you installed
the C++ shared library.

16 Use mbuild to compile and link the application.

1-30

Integrate a C/C++ Shared Library into an Application

mbuild addmatrix.cpp addmatrix.lib

17 From the system’s command prompt, run the application.

addmatrix
The value of added matrix is:

2 8 14
4 10 16
6 12 18

To follow up on this example:

• Try installing the new application on a different computer.

• Try building an installer for the application.

• Try integrating a shared library that consists of more than one function.

1-31

1 Getting Started

Create a Deployable Archive for MATLAB Production
Server

This example shows how to create a deployable archive for MATLAB
Production Server using a MATLAB function. You can then hand the
generated archive to a system administrator who will deploy it into MATLAB
Production Server.

To create a deployable archive:

1 In MATLAB, examine the MATLAB code that you want to deploy.

a Open addmatrix.m.

function a = addmatrix(a1, a2)

a = a1 + a2;

b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:

ans =

3

2 Open the Production Server Compiler.

a On the toolstrip, select the Apps tab.

b Click the arrow on the far right of the tab to open the apps gallery.

c Click Production Server Compiler.

1-32

Create a Deployable Archive for MATLAB® Production Server™

3 In the Application Type section of the toolstrip, select Deployable Archive
from the list.

1-33

1 Getting Started

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow .

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b Using the file explorer, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compiler.

c Click Open to select the file and close the file explorer.

addmatrix.m is added to the field. A minus button will appear below
the plus button.

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note If the Packaging Options section of the toolstrip is collapsed you can
expand it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB Compiler Runtime (MCR) and installs it.

6 Explore the main body of the project window.

The project window is divided into the following areas:

• Application Information — Editable information about the deployed
archive. This information is used by the generated installer to populate the
installed application’s metadata. See “Customize the Installer”.

1-34

Create a Deployable Archive for MATLAB® Production Server™

• Additional Installer Options — The default installation path for the
generated installer. See “Customize the Installer”.

• Files required for your application — Additional files required by the
archive. These files will be included in the generated archive. See “Manage
Required Files in a Compiler Project”.

• Files installed with your application — Files that are installed with
your archive. These files include:

- readme.txt

- .ctf file

See “Specify Files to Install with the Application”.

7 Click Package.

The Package window opens while the library is being generated.

8 Select the Open output folder when process completes check box.

When the deployment process is complete, a file explorer opens and displays
the generated output.

9 Verify the contents of the generated output:

1-35

1 Getting Started

• for_redistribution — A folder containing the installer to redistribute
the archive to the system administrator responsible for the MATLAB
Production Server

• for_testing— A folder containing the raw files generated by the compiler

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the archive

• PackagingLog.txt— A log file generated by the compiler.

10 Click Close on the Package window.

To lean more about MATLAB Production Server see “MATLAB Production
Server”

1-36

For More Information

For More Information

About This Look Here

Detailed information on
standalone applications

“Deploying Standalone Applications” on page 12-3

Creating libraries “Integrate C Shared Libraries” on page 13-4
“Integrate C++ Shared Libraries” on page 13-18

Using the mcc command “mcc Command Line Arguments Grouped by
Task” on page A-8

Troubleshooting “Common Issues” on page 14-4
“Failure Points and Possible Solutions” on page
14-5
“Troubleshooting mbuild” on page 14-16
“MATLAB® Compiler™” on page 14-18
“Deployed Applications” on page 14-22

1-37

1 Getting Started

1-38

2

Installation and
Configuration

• “Install an ANSI C or C++ Compiler” on page 2-2

• “Configuring Your Options File with mbuild” on page 2-5

• “Solving Installation Problems” on page 2-8

2 Installation and Configuration

Install an ANSI C or C++ Compiler
Install supported ANSI® C or C++ compiler on your system. Certain output
targets require particular compilers.

To install your ANSI C or C++ compiler, follow vendor instructions that
accompany your C or C++ compiler.

Note If you encounter problems relating to the installation or use of your
ANSI C or C++ compiler, consult your C or C++ compiler vendor.

Supported ANSI C and C++ Windows Compilers
Use one of the following C/C++ compilers that create Windows dynamically
linked libraries (DLLs) or Windows applications:

• Microsoft Visual C++® (MSVC).

- The only compiler that supports the building of COM objects and Excel
plug-ins is Microsoft Visual C++.

- The only compiler that supports the building of .NET objects is Microsoft
Visual C# Compiler for the Microsoft .NET Framework.

• Microsoft Windows SDK 7.1

See the MATLAB Builder NE Release Notes for a list of supported .NET
Framework versions.

Note For an up-to-date list of all the compilers supported by MATLAB
and MATLAB Compiler, see the MathWorks Technical Support notes at
http://www.mathworks.com/support/compilers/current_release/

Supported ANSI C and C++ UNIX Compilers
MATLAB Compiler software supports the native system compilers on:

• Linux

2-2

http://www.mathworks.com/support/compilers/current_release/

Install an ANSI® C or C++ Compiler

• Linux x86-64

• Mac OS X

MATLAB Compiler software supports gcc and g++.

Common Installation Issues and Parameters
When you install your C or C++ compiler, you sometimes encounter requests
for additional parameters. The following tables provide information about
common issues occurring on Windows and UNIX® systems where you
sometimes need additional input or consideration.

Windows Operating System

Issue Comment

Installation options (Recommended) Full installation.

Installing debugger files For the purposes of MATLAB
Compiler, it is not necessary to
install debugger (DBG) files.

Microsoft Foundation Classes (MFC) Not needed.

16-bit DLLs Not needed.

ActiveX® Not needed.

Running from the command line Make sure that you select all
relevant options for running your
compiler from the command line.

Updating the registry If your installer gives you the option
of updating the registry, perform
this update.

Installing Microsoft Visual C++
Version 6.0

To change the install location of the
compiler, change the location of the
Common folder. Do not change the
location of the VC98 folder from its
default setting.

2-3

2 Installation and Configuration

UNIX Operating System

Issue Comment

Determine which C or C++ compiler
is available on your system.

See your system administrator.

Determine the path to your C or C++
compiler.

See your system administrator.

Installing on Maci64 Install X Code from installation
DVD.

2-4

Configuring Your Options File with mbuild

Configuring Your Options File with mbuild

In this section...

“What Is mbuild?” on page 2-5

“Locating and Customizing the Options File” on page 2-5

What Is mbuild?
Running the mbuild configuration script creates an option file that:

• Sets the default compiler and linker settings for each supported compiler.

• Allows you to changes compilers or compiler settings.

• Builds (compiles) your application.

Note The following mbuild examples apply only to the 32-bit version of
MATLAB.

About mbuild and Linking
Static linking is not an option for applications generated by MATLAB
Compiler. Compiled applications all must link against MCLMCRRT. This shared
library explicitly dynamically loads other shared libraries. You cannot change
this behavior on any platform.

Locating and Customizing the Options File

• “Locating the Options File” on page 2-5

• “Changing the Options File” on page 2-6

Locating the Options File

Windows Operating System. To locate your options file on Windows,
mbuild searches the following locations:

2-5

2 Installation and Configuration

• Current folder

• The user profile folder

mbuild uses the first occurrence of the options file it finds. If it finds no
options file, mbuild searches your machine for a supported C compiler and
uses the factory default options file for that compiler. If mbuild finds multiple
compilers, it prompts you to select one.

The Windows user profile folder contains user-specific information
such as desktop appearance, recently used files, and Start menu
items. The mbuild utility stores its options files, compopts.bat,
in a subfolder of your user profile folder, named Application
Data\MathWorks\MATLAB\current_release.

Under Windows with user profiles enabled, your user profile folder is
%windir%\Profiles\username. However, with user profiles disabled, your
user profile folder is %windir%. You can determine if user profiles are
enabled by using the Passwords control panel.

UNIX Operating System. To locate your options file on UNIX, mbuild
searches the following locations:

• Current folder

• $HOME/.matlab/current_release

• matlabroot/bin

mbuild uses the first occurrence of the options file it finds. If mbuild finds no
options file, an errors message appears.

Changing the Options File
Although it is common to use one options file for all of your MATLAB Compiler
related work, you can change your options file at anytime. The setup option
resets your default compiler to use the new compiler every time. To reset your
C or C++ compiler for future sessions, enter:

mbuild -setup

2-6

Configuring Your Options File with mbuild

Modifying the Options File on Windows. You can use the -setup option
to change your options file settings on Windows. The -setup option copies the
appropriate options file to your user profile folder.

To modify your options file on Windows:

1 Enter mbuild -setup to make a copy of the appropriate options file in
your local area.

2 Edit your copy of the options file in your user profile folder to correspond
to your specific needs, and save the modified file.

After completing this process, mbuild uses the new options file every time
with your modified settings.

Modifying the Options File on UNIX. You can use the setup option to
change your options file settings on UNIX. For example, to change the current
linker settings, use the setup option.

The setup option creates a user-specific matlab folder in your home folder
and copies the appropriate options file to the folder.

Do not confuse these user-specific matlab folders with the system matlab
folder.

To modify your options file on the UNIX:

1 Use mbuild -setup to make a copy of the appropriate options file in your
local area.

2 Edit your copy of the options file to correspond to your specific needs, and
save the modified file.

2-7

2 Installation and Configuration

Solving Installation Problems
You can contact MathWorks:

• Via the Web at www.mathworks.com. On the MathWorks home page,
click My Account to access your MathWorks Account, and follow the
instructions.

• Via email at service@mathworks.com.

2-8

http://www.mathworks.com

3

Deploying Standalone
Applications

• “Compile a Standalone Application with the Standalone Compiler App”
on page 3-2

• “Customize the Application’s Run Time Behavior” on page 3-8

• “Compile a Standalone Application from the Command Line” on page 3-9

• “Working with Standalone Applications and Arguments” on page 3-11

• “Compile and Deploy Standalone Applications with the Parallel Computing
Toolbox” on page 3-15

• “Run a Mac OS X Application” on page 3-18

3 Deploying Standalone Applications

Compile a Standalone Application with the Standalone
Compiler App

To compile MATLAB code into a standalone application:

1 Open the Application Compiler.

a On the toolstrip select the Apps tab.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Application Compiler to open the MATLAB Compiler project
window.

3-2

Compile a Standalone Application with the Standalone Compiler App

Note To open an existing project, select it from the MATLAB Current
Folder panel.

Note You can also launch the standalone compiler using the
applicationCompiler function.

3-3

3 Deploying Standalone Applications

2 Specify the main file of the MATLAB application you want to deploy.

a In the Main File section of the toolstrip, click the plus button.

Note If theMain File section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

b In the file explorer that opens, locate and select the MATLAB file.

c Click Open to select the file and close the file explorer.

The selected file’s name is added to the list of main files and the plus
button will be replaced by a minus button. The file name is used as the
default application name.

3 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the application.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

You can select one or both of the following options:

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

Note Selecting both options creates two installers.

Regardless of what options are selected the generated installer scans
the target system to determine if there is an existing installation of the
appropriate MCR. If there is not, the installer installs the MCR.

4 Specify the name of any generated installers.

3-4

Compile a Standalone Application with the Standalone Compiler App

5 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

Note On Windows, the splash screen will be displayed when the compiled
application starts in addition to when the installer runs.

• Application icon

• Application version

• Name and contact information of the application’s author

• Brief summary of the application’s purpose

• Detailed description of the application

You can also change the default location into which the application is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information see “Customize the Installer” on page 6-2.

6 In the Files required for your application to run section of the compiler,
verify that all of the files required to run the MATLAB application are listed.

Note These files are compiled into the generated binaries along with the
main file.

In general the built-in dependency checker automatically populates this
section with the appropriate files. However, you can manually add any files it
missed.

3-5

3 Deploying Standalone Applications

For more information see “Manage Required Files in a Compiler Project”
on page 6-6.

7 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

Note These files are placed in the applications folder of the installed
application.

This section automatically lists:

• Generated executable

• (Linux) Shell script for launching the application

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on
page 6-8.

8 In the Additional Runtime Settings section of the compiler, specify some of
the advanced runtime behaviors for the application.

These behaviors include:

• (Windows) if a command window is required to run the application

• if the application generates a log file

For more information see “Customize the Application’s Run Time Behavior”
on page 3-8.

9 Click Settings to customize the flags passed to the compiler and the folders
where the generated files are written.

10 Click Package to compile the MATLAB code and generate the installers.

3-6

Compile a Standalone Application with the Standalone Compiler App

11 Verify the contents of the generated output:

• for_redistribution— A folder containing the installer to distribute the
standalone application

• for_testing— A folder containing the raw files generated by the compiler

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the application

• PackagingLog.txt— A log file generated by the compiler

3-7

3 Deploying Standalone Applications

Customize the Application’s Run Time Behavior
In Additional Runtime Settings, you can change the following run-time
behaviors for the compiled application:

• On Windows if a command window is opened when you double-click the
application from the file explorer

Note If the application generates output to the console or requires
command line input, you must unselect this option.

• If the application generates a MATLAB log file

By default, all of these behaviors are set to false. When you double-click a
compiled application in the Windows file explorer, the application’s window
opens without a command prompt and will not generate a log file.

3-8

Compile a Standalone Application from the Command Line

Compile a Standalone Application from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 5-12

“Compile a Standalone Application with mcc” on page 3-9

You can compile standalone applications from both the MATLAB command
line and the system terminal command line:

• deploytool invokes the compiler app to execute a presaved compiler project

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Standalone Application with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the application. It, however, cannot package the
results in an installer.

To invoke the compiler to generate an application use either the -m or the-e
flag with mcc. Both compile a MATLAB function and generate a standalone
executable. The -m flag creates a standard executable that can be run from
a command line. The-e flag is a Windows-specific option that generates an
executable that does not open a command prompt when double-clicked from
the Windows file explorer.

3-9

3 Deploying Standalone Applications

The following mcc options can be used for compiling standalone applications.

Option Description

-W main -T link:exe Generate a standard executable.
Equivalent to using -m.

-W WinMain -T link:exe Generate an executable that does
not open a command prompt when
double-clicked from the Windows file
explorer. Equivalent to using -e.

-a filePath Add any files on the path to the
generated binaries.

-d outFolder Specify the folder where the results
of compilation are written.

-o fileName Specify the name of the generated
executable file.

3-10

Working with Standalone Applications and Arguments

Working with Standalone Applications and Arguments

In this section...

“Overview” on page 3-11

“Passing File Names, Numbers or Letters, Matrices, and MATLAB
Variables” on page 3-11

“Running Standalone Applications that Use Arguments” on page 3-12

Overview
You usually create a standalone to simply run the application without passing
or retrieving any arguments to or from it.

However, arguments can be passed to standalone applications created using
MATLAB Compiler in the same way that input arguments are passed to
any console-based application.

The following are example commands used to execute an application called
filename from a DOS or Linux command prompt with different types of input
arguments.

Passing File Names, Numbers or Letters, Matrices,
and MATLAB Variables

To Pass.... Use This Syntax.... Notes

A file named helpfile filename helpfile

Numbers or letters filename 1 2 3 a b
c

Do not use commas
or other separators
between the numbers
and letters you pass.

3-11

3 Deploying Standalone Applications

To Pass.... Use This Syntax.... Notes

Matrices as input filename "[1 2 3]"
"[4 5 6]"

Place double quotes
around input
arguments to denote a
blank space.

MATLAB variables
for k=1:10
cmd = ['filename ',num2str(k)];
system(cmd);
end

To pass a MATLAB
variable to a program
as input, you must first
convert it to a string.

Running Standalone Applications that Use Arguments
You call a standalone application that uses arguments from MATLAB with
any of the following commands:

• SYSTEM

• DOS

• UNIX

• !

To pass the contents of a MATLAB variable to the program as an input, the
variable must first be converted to a string. For example:

Using SYSTEM, DOS, or UNIX
Specify the entire command to run the application as a string (including input
arguments). For example, passing the numbers and letters 1 2 3 a b c
could be executed using the SYSTEM command, as follows:

system('filename 1 2 3 a b c')

Using the ! (bang) Operator
You can also use the ! (bang) operator, from within MATLAB, as follows:

!filename 1 2 3 a b c

3-12

Working with Standalone Applications and Arguments

When you use the ! (bang) operator, the remainder of the input line is
interpreted as the SYSTEM command, so it is not possible to use MATLAB
variables.

Using a Windows System
To run a standalone application by double clicking on it, you create a batch
file that calls the standalone application with the specified input arguments.
For example:

rem This is main.bat file which calls
rem filename.exe with input parameters

filename "[1 2 3]" "[4 5 6]"
@echo off
pause

The last two lines of code in main.bat are added so that the window displaying
your output stays open until you press a key.

Once you save this file, you run your code with the arguments specified above
by double clicking on the icon for main.bat.

Using a MATLAB File You Plan to Deploy
When running MATLAB files that use arguments that you also plan to deploy
with MATLAB Compiler, keep the following in mind:

• The input arguments you pass to your executable from a system prompt
will be received as string input. Thus, if you expect the data in a different
format (for example, double), you must first convert the string input to the
required format in your MATLAB code. For example, you can use STR2NUM
to convert the string input to numerical data.

• You cannot return values from your standalone application to the user. The
only way to return values from compiled code is to either display it on the
screen or store it in a file.

In order to have data displayed back to the screen, do one of the following:

3-13

3 Deploying Standalone Applications

- Unsuppress the commands that yield your return data. Do not use
semicolons to unsuppress.

- Use the DISP command to display the variable value, then redirect the
outputs to other applications using redirects (the > operator) or pipes
(||) on non-Windows systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB
File. Here are two ways to use a MATLAB file to take input arguments and
display data to the screen:

Method 1

function [x,y]=foo(z);

if ischar(z)
z=str2num(z);
else
z=z;
end
x=2*z % Omit the semicolon after calculation to display the value on the sc
y=z^2;
disp(y) %Use DISP command to display the value of a variable explicitly

Method 2

function [x,y]=foo(z);

if isdeployed
z=str2num(z);
end
x=2*z % Omit the semicolon after calculation to display the value on the sc
y=z^2;
disp(y) % Use DISP command to display the value of a variable explicitly

3-14

Compile and Deploy Standalone Applications with the Parallel Computing Toolbox™

Compile and Deploy Standalone Applications with the
Parallel Computing Toolbox

In this section...

“Standalone Applications with a Profile Passed at Run-Time” on page 3-15

“Standalone Applications with an Embedded Profile” on page 3-16

Standalone Applications with a Profile Passed at
Run-Time
When using the Parallel Computing Toolbox™, you can pass the cluster
profile to the compiled application at runtime. The steps to do so are similar
to using a standard compiled application. There are only a few extra steps:

1 Write Parallel Computing Toolbox code.

2 Use the Cluster Profile Manager’s Export button to export the desired
profiles.

The Cluster Profile Manager can be opened by clicking Parallel > Manage
Cluster Profiles.

3 Compile the application.

Note If you are using the GPU feature of Parallel Computing Toolbox, you
need to manually add the PTX and CU files.

4 Write a shell script that calls the application using the -mcruserdata
ParallelProfile:profile flag.

myApp -mcruserdata ParallelProfile:C:\work9b\pctdeploytool\myprofile.settin

profile should be specified as the full path name for the cluster profile file.

3-15

3 Deploying Standalone Applications

Note As of R2012a, Parallel Configurations and MAT files have been
replaced with Parallel Profiles. For more information, see the release notes
for the Deployment products and Parallel Computing Toolbox.

To use existing MAT files and ensure backward compatibility with this
change, issue a command such as the following, in the above example:

pct_Compiled.exe 200 -mcruserdata

ParallelProfile:C:\work9b\pctdeploytool\pct_Compiled\distrib\myconfig.mat

If you continue to use MAT files, remember to specify the full path to the
MAT file.

5 Distribute the following files to people wishing to run the application:

• the generated installer

• the cluster profile

• the script that starts the application using the cluster profile

Note Users of the application must have access to the cluster specified in
the profile.

Standalone Applications with an Embedded Profile
When using the Parallel Computing Toolbox, you can include the cluster
profile with the compiled application. The steps to do so are similar to using a
standard compiled application. There are only a few extra steps:

1 Write Parallel Computing Toolbox code.

2 Write a second MATLAB function that uses setmcruserdata to load the
cluster profile and pass it to the MCR.

function run_parallel_funct
setmcruserdata('ParallelProfile', 'profile');
a = parallel_funct

3-16

Compile and Deploy Standalone Applications with the Parallel Computing Toolbox™

end

3 Use the Cluster Profile Manager’s Export button to export the desired
profile.

The name used to save the cluster profile should match the profile value
used in setmcruserdata.

The Cluster Profile Manager can be opened by clicking Parallel > Manage
Cluster Profiles.

4 Compile the application.

a Use the run_parallel_funct as the main file for the application.

b Include the cluster profile in the Files required for your application
field of the compiler app.

c Include the .m file for parallel_funct in the Files required for your
application field of the compiler app.

Note If you are using the GPU feature of Parallel Computing Toolbox, you
need to manually add the PTX and CU files.

5 Distribute the generated installer to anyone interested in using the
application.

Note Users of the application must have access to the cluster specified in
the profile.

3-17

3 Deploying Standalone Applications

Run a Mac OS X Application

In this section...

“Overview” on page 3-18

“Installing the Macintosh Application Launcher Preference Pane” on page
3-18

“Configuring the Installation Area” on page 3-18

“Launching the Application” on page 3-21

Overview
Macintosh graphical applications, launched through the Mac OS X finder
utility, require additional configuration if MATLAB software or the MCR
were not installed in default locations.

Installing the Macintosh Application Launcher
Preference Pane
Install the Macintosh Application Launcher preference pane, which gives you
the ability to specify your installation area.

1 In the Mac OS X Finder, navigate to
install_area/toolbox/compiler/maci64.

2 Double-click on MW_App_Launch.prefPane.

Note The Macintosh Application Launcher manages only user preference
settings. If you copy the preferences defined in the launcher to the Macintosh
System Preferences area, the preferences are still manipulated in the User
Preferences area.

Configuring the Installation Area
Once the preference pane is installed, you configure the installation area.

3-18

Run a Mac OS X Application

1 Launch the preference pane by clicking on the apple logo in the upper left
corner of the desktop.

2 Click on System Preferences. The MW_App_Launch preference pane
appears in the Other area.

3 Click Add Install Area to define an installation area on your system.

4 Define the default installation path by browsing to it.

5 Click Open.

3-19

3 Deploying Standalone Applications

Modifying Your Installation Area
Occasionally, you remove an installation area, define additional areas or
change the order of installation area precedence.

You can use the following options in MathWorks® Application Launcher to
modify your installation area:

• Add Install Area — Defines the path on your system where your
applications install by default.

• Remove Install Area— Removes a previously defined installation area.

3-20

Run a Mac OS X Application

• Move Up— After selecting an installation area, click this button to move
the defined path up the list. Binaries defined in installation areas at the
top of the list have precedence over all succeeding entries.

• Move Down — After selecting an installation area, click this button to
move the defined path down the list. Binaries defined in installation areas
at the top of the list have precedence over all succeeding entries.

• Apply— Saves changes and exits MathWorks Application Launcher.

• Revert — Exits MathWorks Application Launcher without saving any
changes.

Launching the Application
When you create a Macintosh application, a Macintosh bundle is created.
If the application does not require standard input and output, launch the
application by clicking on the bundle in the Mac OS X Finder utility.

The location of the bundle is determined by whether you use mcc or
applicationCompiler to build the application:

• If you use applicationCompiler, the application bundle is placed in the
compiled application’s for_redistribution folder.

• If you use mcc, the application bundle is placed in the current working
directory or in the output directory as specified by the mcc “-o Specify
Output Name” on page 17-29 switch.

3-21

3 Deploying Standalone Applications

3-22

4

Deploying C/C++ Shared
Libraries

• “Compile a C/C++ Shared Library with the Library Compiler App” on
page 4-2

• “Compile a C/C++ Shared Library from the Command Line” on page 4-7

• “What Are Wrapper Files?” on page 4-9

4 Deploying C/C++ Shared Libraries

Compile a C/C++ Shared Library with the Library Compiler
App

To compile MATLAB code into a shared library:

1 Open the Library Compiler.

a On the toolstrip select the Apps tab.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Library Compiler to open theMATLAB Compiler project window.

4-2

Compile a C/C++ Shared Library with the Library Compiler App

Note To open an existing project, select it from the MATLAB Current
Folder panel.

Note You can also launch the library compiler using the libraryCompiler
function.

4-3

4 Deploying C/C++ Shared Libraries

2 In the Application Type section of the toolstrip, select either C Shared
Library or C++ Shared Library.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

3 Specify the MATLAB files you want deployed in the shared library.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select one or more MATLAB files.

c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button
appears below the plus button. The name of the first file listed is used as
the default application name.

4 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the shared library.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

You can select one or both of the following options:

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

4-4

Compile a C/C++ Shared Library with the Library Compiler App

Note Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate
MCR. If there is not, the installer installs the MCR.

5 Specify the name of any generated installers.

6 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

• Installer icon

• Library version

• Name and contact information of the library’s author

• Brief summary of the library’s purpose

• Detailed description of the library

You can also change the default location into which the library is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information see “Customize the Installer” on page 6-2.

7 In the Files required for your application to run section of the compiler,
verify that all of the files required by the deployed MATLAB functions are
listed.

Note These files are compiled into the generated binaries along with the
exported files.

4-5

4 Deploying C/C++ Shared Libraries

In general the built-in dependency checker will automatically populate this
section with the appropriate files. However, if needed you can manually add
any files it missed.

For more information see “Manage Required Files in a Compiler Project”
on page 6-6.

8 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

Note These files are placed in the applications folder of the installed
application.

This section automatically lists:

• Generated shared library

• Header file

• Dynamically linked library

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on
page 6-8.

9 Click the Settings button to customize the flags passed to the compiler and
the folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any
installers.

4-6

Compile a C/C++ Shared Library from the Command Line

Compile a C/C++ Shared Library from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 5-12

“Compile a Shared Library with mcc” on page 4-7

You can compile shared libraries from both the MATLAB command line and
the system terminal command line:

• deploytool invokes the compiler app to execute presaved compiler projects

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Shared Library with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the shared library. It, however, cannot package the
results in an installer.

To invoke the compiler to generate a library use the -l flag with mcc. The
-l flag creates a C shared library that you can integrate into applications
developed in C or C++.

For compiling shared libraries, you can also use the following options.

4-7

4 Deploying C/C++ Shared Libraries

Compiler Shared Library Options

Option Description

-W lib:name -T link:lib Generate a C shared library.
Equivalent to using -l.

-W cpplib:name -T link:lib Generate a C++ shared library.

-a filePath Add the file, or files, on the path to
the generated binary.

-d outFolder Specify the folder into which the
results of compilation are written.

4-8

What Are Wrapper Files?

What Are Wrapper Files?

In this section...

“C Library Wrapper” on page 4-9

“C++ Library Wrapper” on page 4-9

Wrapper files encapsulate, or wrap, the MATLAB files in your application
with an interface that enables the MATLAB files to operate in a given target
environment.

To provide the required interface, the wrapper does the following:

• Performs wrapper-specific initialization and termination

• Provides the dispatching of function calls to the MCR

C Library Wrapper
The -l option, or its equivalent -W lib:libname, produces a C library
wrapper file. This option produces a shared library from an arbitrary set of
MATLAB files. The generated header file contains a C function declaration
for each of the compiled MATLAB functions. The export list contains the set
of symbols that are exported from a C shared library.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

C++ Library Wrapper
The -W cpplib:libname option produces the C++ library wrapper file. This
option allows the inclusion of an arbitrary set of MATLAB files into a library.
The generated header file contains all of the entry points for all of the
compiled MATLAB functions.

Note You must generate a library wrapper file when calling any MATLAB
Compiler generated code from a larger application.

4-9

4 Deploying C/C++ Shared Libraries

4-10

5

Compiling Deployable
Archives for MATLAB
Production Server

• “State-Dependent Functions” on page 5-2

• “Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 5-5

• “Compile a Deployable Archive with the Production Server Compiler App”
on page 5-6

• “Compile a Deployable Archive from the Command Line” on page 5-12

5 Compiling Deployable Archives for MATLAB® Production Server™

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data
value in a program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited
to:

• Modifying or relying on the MATLAB path and the Java class path

• Accessing MATLAB state that is inherently persistent or global. Some
example of this include:

- Random number seeds

- Handle Graphics® root objects that retain data

- MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.

• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a
MATLAB object in any way, it loads into MATLAB.

• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your
function to properly execute, you must take additional steps (listed in this
section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and
safeguard against that state’s corruption if needed. Assume that your state
may be changed and code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application
If you are using a random number seed, for example, reset it in your deployed
application program to ensure the integrity of your original MATLAB function.

5-2

State-Dependent Functions

Validate Global or Persistent Variable Values
If you must use global or persistent variables, always validate their value in
your deployed application and reset if needed.

Ensure Access to Data Caches
If your function relies on cached transaction replies, for instance, ensure
your deployed system and application has access to that cache outside of
the MATLAB environment.

Use Simple Data Types When Possible
Simple data types are usually not tied to a specific application and means of
storing state. Your options for choosing an appropriate state-preserving tool
increase as your data types become less complicated and specific.

Avoid Using MATLAB Callback Functions
Avoid using MATLAB callbacks, such as timer. Callback functions have
the ability to interrupt and override the current state of the MATLAB
Production Server worker and may yield unpredictable results in multiuser
environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the
type of data you need to save.

• Databases provide the most versatile and scalable means for retaining
stateful data. The database acts as a generic repository and can generally
work with any application in an enterprise development environment.
It does not impose requirements or restrictions on the data structure or
layout. Another related technique is to use comma-delimited files, in
applications such as Microsoft Excel.

• Data that is specific to a third-party programming language, such as Java
and C#, can be retained using a number of techniques. Consult the online
documentation for the appropriate third-party vendor for best practices
on preserving state.

5-3

5 Compiling Deployable Archives for MATLAB® Production Server™

Caution Using MATLAB LOAD and SAVE functions is often used to preserve
state in MATLAB applications and workspaces. While this may be successful
in some circumstances, it is highly recommended that the data be validated
and reset if needed, if not stored in a generic repository such as a database.

5-4

Unsupported MATLAB Data Types for Client and Server Marshaling

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

5-5

5 Compiling Deployable Archives for MATLAB® Production Server™

Compile a Deployable Archive with the Production Server
Compiler App

To compile MATLAB code into a deployable archive:

1 Open the Production Server Compiler.

a On the toolstrip select the Apps tab on the toolstrip.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Production Server Compiler.

5-6

Compile a Deployable Archive with the Production Server Compiler App

Note To open an existing project, select it from the MATLAB Current
Folder panel.

5-7

5 Compiling Deployable Archives for MATLAB® Production Server™

Note You can also launch the compiler using the
productionServerCompiler function.

2 In the Application Type section of the toolstrip, selectDeployable Archive.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

3 Specify the MATLAB files you want deployed in the package.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select one or more the MATLAB
files.

c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button
appears below the plus button. The name of the first file listed is used as
the default application name.

4 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the archive.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

You can select one or both of the following options:

5-8

Compile a Deployable Archive with the Production Server Compiler App

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

Note Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate
MCR. If there is not, the installer installs the MCR.

5 Specify the name of any generated installers.

6 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

• Installer icon

• Version

• Name and contact information of the archive’s author

• Brief summary of the archive’s purpose

• Detailed description of the archive

You can also change the default location into which the archive is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information see “Customize the Installer” on page 6-2.

5-9

5 Compiling Deployable Archives for MATLAB® Production Server™

7 In the Files required for your application to run section of the compiler,
verify that all of the files required by the deployed MATLAB functions are
listed.

Note These files are compiled into the generated binaries along with the
exported files.

The built-in dependency checker will automatically populate this section with
the appropriate files. However, if needed you can manually add any files it
missed.

For more information see “Manage Required Files in a Compiler Project”
on page 6-6.

8 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

Note These files are placed in the applications folder of the installation.

This section automatically lists:

• Generated deployable archive

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on
page 6-8.

9 Click the Settings button to customize the flags passed to the compiler and
the folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any
installers.

5-10

Compile a Deployable Archive with the Production Server Compiler App

11 Verify that the generated output contains:

• for_redistribution— A folder containing the installer to distribute the
archive

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the archive

• PackagingLog.txt— A log file generated by the compiler

5-11

5 Compiling Deployable Archives for MATLAB® Production Server™

Compile a Deployable Archive from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 5-12

“Compile a Deployable Archive with mcc” on page 5-12

You can compile deployable archives from both the MATLAB command line
and the system terminal command line:

• deploytool invokes the compiler app to execute a pre-saved compiler
project

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Deployable Archive with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the deployable archive. It, however, cannot package
the results in an installer.

To invoke the compiler to generate a deployable arcive use the -W
CTF:component_name flag with mcc. The -W CTF:component_name flag
creates a deployable archive called component_name.ctf.

For compiling deployable archives, you can also use the following options.

5-12

Compile a Deployable Archive from the Command Line

Compiler Java Options

Option Description

-a filePath Add any files on the path to the
generated binary.

-d outFolder Specify the folder into which the
results of compilation are written.

class{className:mfilename...} Specify that an additional class is
generated that includes methods for
the listed MATLAB files.

5-13

5 Compiling Deployable Archives for MATLAB® Production Server™

5-14

6

Customizing a Compiler
Project

• “Customize the Installer” on page 6-2

• “Manage Required Files in a Compiler Project” on page 6-6

• “Specify Files to Install with the Application” on page 6-8

• “Manage Support Packages” on page 6-9

6 Customizing a Compiler Project

Customize the Installer

In this section...

“Change the Application Icon” on page 6-2

“Add Application Information” on page 6-3

“Change the Splash Screen” on page 6-4

“Change the Installation Path” on page 6-4

“Change the Logo” on page 6-5

“Edit the Installation Notes” on page 6-5

Change the Application Icon
The application icon is used for the generated installer. For standalone
applications, it is also the application’s icon.

You can change the default icon in Application Information. To set a
custom icon:

1 Click the graphic to the left of the Application name field.

A window previewing the icon opens.

6-2

Customize the Installer

2 Click Select icon.

3 Using the file explorer, locate the graphic file to use as the application icon.

4 Select the graphic file.

5 Click OK to return to the icon preview.

6 Select Use mask to fill any blank spaces around the icon with white.

7 Select Use border to add a border around the icon.

8 Click Save and Use to return to the main compiler window.

Add Application Information
The Application Information section of the compiler app allows you to
provide these values:

• Name

Determines the name of the installed MATLAB components. For example,
if the name is foo, the installed executable would be foo.exe, the Windows
start menu entry would be foo. The folder created for the application
would be InstallRoot/foo.

The default value is the name of the first function listed in the Main
File(s) field of the compiler.

• Version

The default value is 1.0.

• Author name

• Support e-mail address

• Company name

Determines the full installation path for the installed MATLAB
components. For example, if the company name is bar, the full installation
path would be InstallRoot/bar/ApplicationName.

• Summary

• Description

6-3

6 Customizing a Compiler Project

This information is all optional and, unless otherwise stated, is only used for
display purposes. It appears on the first page of the installer. On Windows
systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

Change the Splash Screen
The installer’s splash screen displays after the installer is started. It is
displayed, along with a status bar, while the installer initializes.

You can change the default image by clicking the Select custom splash
screen link in Application Information. When the file explorer opens,
locate and select a new image.

Note You can drag and drop a custom image onto the default splash screen.

Change the Installation Path
Default Installation Paths on page 6-4 lists the default path the installer will
use when installing the compiled binaries onto a target system.

Default Installation Paths

Windows C:\Program
Files\companyName\appName

Mac OS X /Applications/companyName/appName

Linux /usr/companyName/appName

You can change the default installation path by editing the Default
installation folder field under Additional Installer Options.

The Default installation folder field has two parts:

• root folder — A drop down list that offers options for where the install
folder is installed. Custom Installation Roots on page 6-5 lists the optional
root folders for each platform.

6-4

Customize the Installer

Custom Installation Roots

Windows C:\Users\userName\AppData

Linux /usr/local

• install folder — A text field specifying the path appended to the root folder.

Change the Logo
The logo displays after the installer is started. It is displayed on the right
side of the installer.

You change the default image by clicking the Select custom logo link in
Additional Installer Options. When the file explorer opens, locate and
select a new image.

Note You can drag and drop a custom image onto the default logo.

Edit the Installation Notes
Installation notes are displayed once the installer has successfully installed
the packaged files on the target system. They can provide useful information
concerning any additional set up that is required to use the installed binaries
or simply provide instructions for how to run the application.

The field for editing the installation notes is in Additional Installer
Options.

6-5

6 Customizing a Compiler Project

Manage Required Files in a Compiler Project

In this section...

“Dependency Analysis” on page 6-6

“Using the Compiler Apps” on page 6-6

“Using mcc” on page 6-7

Dependency Analysis
The compiler uses a dependency analysis function to automatically determine
what additional MATLAB files are required for the application to compile and
run. These files are automatically compiled into the generated binary. The
compiler does not generate any wrapper code allowing direct access to the
functions defined by the required files.

Using the Compiler Apps
If you are using one of the compiler apps, the required files discovered by
the dependency analysis function are listed in the Files required by your
application to run field.

To add files:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK.

To remove files:

1 Select the desired file.

2 Press the Delete key.

Caution Removing files from the list of required files may cause your
application to not compile or to not run properly when deployed.

6-6

Manage Required Files in a Compiler Project

Using mcc
If you are using mcc to compile your MATLAB code, the compiler does not
display a list of required files before running. Instead, it compiles all of the
required files that are discovered by the dependency analysis function and
adds them to the generated binary file.

You can add files to the list by passing one, or more, -a arguments to mcc.
The -a arguments add the specified files to the list of files to be added into the
generated binary. For example, -a hello.m adds the file hello.m to the list
of required files and -a ./foo adds all of the files in foo, and its subfolders,
to the list of required files.

6-7

6 Customizing a Compiler Project

Specify Files to Install with the Application
The compiler apps package files to install along with the ones it generates. By
default the installer includes a readme file with instructions on installing the
MATLAB Compiler Runtine(MCR) and configuring it.

These files are listed in the Files installed with your application section
of the app.

to add files to the list:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK to close the file explorer.

To remove files from the list:

1 Select the desired file.

2 Press the Delete key.

Caution Removing the binary targets from the list results in an installer
that does not install the intended functionality.

When installed on a target computer, the files listed in the Files installed
with your application are placed in the application folder.

6-8

Manage Support Packages

Manage Support Packages
Many MATLAB toolboxes use support packages to interact with hardware
or to provide additional processing capabilities. If your MATLAB code uses
a toolbox with an installed support package, MATLAB Compiler displays a
Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code
requires. The list is determined using these criteria:

• the support package is installed

• your code has a direct dependency on the support package

• your code is dependent on the base product of the support package

6-9

6 Customizing a Compiler Project

• your code is dependent on at least one of the files listed as a dependency
in the mcc.xml file of the support package, and the base product of the
support package is MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that MATLAB Compiler
cannot package. In this case, the compiler adds the information to the
installation notes. You can edit installation notes in the Additional Installer
Options section of the app. To remove the installation note text, deselect the
support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you
deselect the support package.

6-10

7

MATLAB Code Deployment

• “Application Deployment Products and the Compiler Apps” on page 7-2

• “Write Deployable MATLAB Code” on page 7-10

• “How the Deployment Products Process MATLAB Function Signatures”
on page 7-14

• “Load MATLAB Libraries using loadlibrary” on page 7-16

• “Use MATLAB Data Files (MAT Files) in Compiled Applications” on page
7-18

7 MATLAB® Code Deployment

Application Deployment Products and the Compiler Apps

In this section...

“What Is the Difference Between the Compiler Apps and the mcc Command
Line?” on page 7-2

“How Does MATLAB® Compiler™ Software Build My Application?” on
page 7-2

“Dependency Analysis Function” on page 7-5

“MEX-Files, DLLs, or Shared Libraries” on page 7-6

“Component Technology File (CTF Archive)” on page 7-6

What Is the Difference Between the Compiler Apps
and the mcc Command Line?
When you use one of the compiler apps, you perform any function you would
invoke using the MATLAB Compiler mcc command-line interface. The
compiler apps’ interactive menus and dialogs build mcc commands that are
customized to your specification. As such, your MATLAB code is processed
the same way as if you were compiling it using mcc.

Compiler app advantages include:

• You perform related deployment tasks with a single intuitive interface.

• You maintain related information in a convenient project file.

• Your project state persists between sessions.

• You load previously stored compiler projects from a prepopulated menu.

• Package applications for distribution.

How Does MATLAB Compiler Software Build My
Application?
To build an application, MATLAB Compiler software performs these tasks:

1 Parses command-line arguments and classifies by type the files you provide.

7-2

Application Deployment Products and the Compiler Apps

2 Analyzes files for dependencies using a dependency analysis function.
Dependencies affect deployability and originate from functions called by
the file. Deployability is affected by:

• File type — MATLAB, Java, MEX, and so on.

• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis,
see “Dependency Analysis Function” on page 7-5.

7-3

7 MATLAB® Code Deployment

7-4

Application Deployment Products and the Compiler Apps

4 Creates a CTF archive from the input files and their dependencies. For
more details about CTF archives see “Component Technology File (CTF
Archive)” on page 7-6.

5 Generates target-specific wrapper code. For example, a C main function
requires a very different wrapper than the wrapper for a Java interface
class.

6 Generates target-specific binary package. For library targets such as C++
shared libraries, Java packages, or .NET assemblies, the compiler will
invoke the required third-party compiler.

Dependency Analysis Function
MATLAB Compiler uses a dependency analysis function to determine the
list of necessary files to include in the generated package. Sometimes, this
process generates a large list of files, particularly when MATLAB object
classes exist in the compilation and the dependency analyzer cannot resolve
overloaded methods at compile time. Dependency analysis also processes
include/exclude files on each pass.

Tip To improve compile time performance and lessen application size, prune
the path with the mcc command’s -N and -p flags. You can also specify Files
required for your application in the compiler app.

The dependency analyzer searches for executable content such as:

• MATLAB files

• P-files

Note If the MATLAB file corresponding to the p-file is not available, the
dependency analysis will not be able to determine the p-file’s dependencies.

• Java classes and .jar files

• .fig files

7-5

7 MATLAB® Code Deployment

• MEX-files

The dependency analyzer does not search for data files of any kind. You must
manually include data files in the search.

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that
the dependency analyzer can find them. Doing so allows you to avoid many
common compilation problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared
libraries to determine their dependencies, explicitly include all executable
files these files require. To do so, use either the mcc -a option or the Files
required for your application to run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB
function called by a MEX-file, DLL, or shared library, then manually
include that function. To do so, use either the mcc -a option or the Files
required for your application to run field in the compiler app.

• Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all
functions called from your application that you cannot deploy.

Component Technology File (CTF Archive)
Each application or shared library you produce using MATLAB Compiler
has an embedded Component Technology File (CTF) archive. The archive
contains all the MATLAB based content (MATLAB files, MEX-files, and so
on) associated with the component. All MATLAB files in the CTF archive are
encrypted using the Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the CTF archive as a separate file, the files remain
encrypted. For more information on how to extract the CTF archive refer to
the references in the following table.

7-6

Application Deployment Products and the Compiler Apps

Information on CTF Archive Embedding/Extraction and Component
Cache

Product Refer to

MATLAB Compiler “MCR Component Cache and CTF
Archive Embedding” on page 11-11

MATLAB Builder NE “MCR Component Cache and CTF
Archive Embedding”

MATLAB Builder JA “CTF Archive Embedding and
Extraction”

MATLAB Builder EX Using MCR Component Cache and
CTF Archive Embedding

7-7

7 MATLAB® Code Deployment

7-8

Application Deployment Products and the Compiler Apps

Additional Details
Multiple CTF archives, such as those generated with COM, .NET, or Excel
components, can coexist in the same user application. You cannot, however,
mix and match the MATLAB files they contain. You cannot combine
encrypted and compressed MATLAB files from multiple CTF archives into
another CTF archive and distribute them.

All the MATLAB files from a given CTF archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same
CTF archive, do not execute. If you want to generate another application
with a different mix of MATLAB files, recompile these MATLAB files into a
new CTF archive.

MATLAB Compiler deletes the CTF archive and generated binary following
a failed compilation, but only if these files did not exist before compilation
initiates. Run help mcc -K for more information.

Caution Release Engineers and Software Configuration Managers:
Do not use build procedures or processes that strip shared libraries on CTF
archives. If you do, you can possibly strip the CTF archive from the binary,
resulting in run-time errors for the driver application.

7-9

7 MATLAB® Code Deployment

Write Deployable MATLAB Code

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on
page 7-10

“Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files” on page 7-11

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 7-12

“Gradually Refactor Applications That Depend on Noncompilable
Functions” on page 7-12

“Do Not Create or Use Nonconstant Static State Variables” on page 7-12

“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on
page 7-13

Compiled Applications Do Not Process MATLAB Files
at Runtime
MATLAB Compiler secures your code against unauthorized changes.
Deployable MATLAB files are suspended or frozen at the time MATLAB
Compiler encrypts them—they do not change from that point onward. This
does not mean that you cannot deploy a flexible application—it means that
you must design your application with flexibility in mind. If you want the end
user to be able to choose between two different methods, for example, both
methods must be available in the built component.

The MCR only works on MATLAB code that was encrypted when the
component was built. Any function or process that dynamically generates
new MATLAB code will not work against the MCR.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product,
generate MATLAB code dynamically. Because the MCR only executes
encrypted MATLAB files, and the Neural Network Toolbox generates
unencrypted MATLAB files, some functions in the Neural Network Toolbox
cannot be deployed.

7-10

Write Deployable MATLAB® Code

Similarly, functions that need to examine the contents of a MATLAB function
file cannot be deployed. HELP, for example, is dynamic and not available in
deployed mode. You can use LOADLIBRARY in deployed mode if you provide
it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and
attempting to deploy it, perform the following tasks:

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the
generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function
handles.

If you require the ability to create MATLAB code for dynamic run time
processing, your end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control
the Execution of MATLAB Files
In general, good programming practices advise against redirecting a program
search path dynamically within the code. Many developers are prone to this
behavior since it mimics the actions they usually perform on the command
line. However, this can lead to problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are
fixed and cannot change. Therefore, any attempts to change these paths
(using the cd command or the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use
ismcc and isdeployed. See “Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths” on page 7-12 for details.

7-11

7 MATLAB® Code Deployment

Use ismcc and isdeployed Functions To Execute
Deployment-Specific Code Paths
The isdeployed function allows you to specify which portion of your MATLAB
code is deployable, and which is not. Such specification minimizes your
compilation errors and helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your
startup.m. Using ismcc and isdeployed, you specify when and what is
compiled and executed.

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing
non-compilable or non-deployable functions that use ismcc and isdeployed.
Your eventual goal is “graceful degradation” of non-deployable code. In
other words, the code must present the end user with as few obstacles to
deployment as possible until it is practically eliminated.

Partition your code into design-time and run time code sections:

• Design-time code is code that is currently evolving. Almost all code goes
through a phase of perpetual rewriting, debugging, and optimization. In
some toolboxes, such as the Neural Network Toolbox product, the code goes
through a period of self-training as it reacts to various data permutations
and patterns. Such code is almost never designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a
finished state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be
deployed or for code that calls undeployable code.

Do Not Create or Use Nonconstant Static State
Variables
Avoid using the following:

• Global variables in MATLAB code

7-12

Write Deployable MATLAB® Code

• Static variables in MEX-files

• Static variables in Java code

The state of these variables is persistent and shared with everything in the
process.

When deploying applications, using persistent variables can cause problems
because the MCR process runs in a single thread. You cannot load more than
one of these non-constant, static variables into the same process. In addition,
these static variables do not work well in multithreaded applications.

When programming with the builder components, you should be aware that
an instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

If you must use static variables, bind them to instances. For example,
defining instance variables in a Java class is preferable to defining the
variable as static.

Note This guideline does not apply to MATLAB Builder EX. When
programming with Microsoft Excel, you can assign global variables to large
matrices that persist between calls.

Get Proper Licenses for Toolbox Functionality You
Want to Deploy
You must have a valid MathWorks license for toolboxes you use to create
deployable components.

If you do not have a valid license for your toolbox, you cannot create a
deployable component with it.

7-13

7 MATLAB® Code Deployment

How the Deployment Products Process MATLAB Function
Signatures

In this section...

“MATLAB Function Signature” on page 7-14

“MATLAB Programming Basics” on page 7-14

MATLAB Function Signature
MATLAB supports multiple signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

All arguments represent a specific MATLAB type.

When the compiler or builder product processes your MATLAB code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments.

In addition to these methods, the builder creates another method that defines
the return values of the MATLAB function as an input argument. This
method simulates the feval external API interface in MATLAB.

MATLAB Programming Basics

Creating a Deployable MATLAB Function
Virtually any calculation that you can create in MATLAB can be deployed, if
it resides in a function. For example:

7-14

How the Deployment Products Process MATLAB® Function Signatures

>> 1 + 1

cannot be deployed.

However, the following calculation:

function result = addSomeNumbers()
result = 1+1;

end

can be deployed because the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an
input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

7-15

7 MATLAB® Code Deployment

Load MATLAB Libraries using loadlibrary

Note It is important to understand the difference between the following:

• MATLAB loadlibrary function — Loads shared library into MATLAB.

• Operating system loadlibrary function — Loads specified Windows
or UNIX operating system module into the address space of the calling
process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB
file prototypes as described below to load your library in a compiled
application. Loading libraries using H-file headers is not supported in
compiled applications. This behavior occurs when loadlibrary is compiled
with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following at the MATLAB
command prompt:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

where mylibrarymfile is the name of a MATLAB file you would like to use
when loading this library. This step only needs to be performed once to
generate a MATLAB file for the library.

In the code that is to be compiled, you can now call loadlibrary with the
following syntax:

loadlibrary(library, @mylibrarymfile, 'alias', alias)

It is only required to add the prototype .m file and .dll file to the CTF archive
of the deployed application. There is no need for .h files and C/C++ compilers
to be installed on the deployment machine if the prototype file is used.

Once the prototype file is generated, add the file to the CTF archive of the
application being compiled. You can do this with the -a option (if using the

7-16

Load MATLAB Libraries using loadlibrary

mcc command) or by dragging it under Other/Additional Files (as a helper
file) if using the Deployment Tool.

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB
files will automatically be included in the CTF file as part of the compilation
process. For MATLAB Compiler versions 4.0 (R14) and later, include your
library MATLAB file in the compilation with the -a option with mcc.

Restrictions on Using MATLAB Function loadlibrary
with MATLAB Compiler
Note the following limitations in regards to using loadlibrary with MATLAB
Compiler. For complete documentation and up to date restrictions on
loadlibrary, please reference the MATLAB documentation.

• You can not use loadlibrary inside of MATLAB to load a shared library
built with MATLAB Compiler.

• With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you cannot
compile calls to loadlibrary because of general restrictions and limitations
of the product.

7-17

7 MATLAB® Code Deployment

Use MATLAB Data Files (MAT Files) in Compiled Applications

In this section...

“Explicitly Including MAT files Using the %#function Pragma” on page 7-18

“Load and Save Functions” on page 7-18

“MATLAB Objects” on page 7-21

Explicitly Including MAT files Using the %#function
Pragma
MATLAB Compiler excludes MAT files from “Dependency Analysis Function”
on page 7-5 by default.

If you want MATLAB Compiler to explicitly inspect data within a MAT file,
you need to specify the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Neural Network Toolbox,
you need to use the %#function pragma within your GUI code to include a
dependency on the gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful
to code LOAD and SAVE functions to manipulate the data and store it for later
processing.

• Use isdeployed to determine if your code is running in or out of the
MATLAB workspace.

• Specify the data file by either using WHICH (to locate its full path name)
define it relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted
when written to the CTF archive.

For more information about CTF archives, see “Component Technology File
(CTF Archive)” on page 7-6.

See the ctfroot reference page for more information about ctfroot.

7-18

Use MATLAB Data Files (MAT Files) in Compiled Applications

Use the following example as a template for manipulating your MATLAB
data inside, and outside, of MATLAB.

Using Load/Save Functions to Process MATLAB Data for
Deployed Applications
The following example specifies three MATLAB data files:

• user_data.mat

• userdata\extra_data.mat

• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.

2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
'.\userdata\extra_data.mat' -a
'..\externdata\extern_data.mat'

ex_loadsave.m.

function ex_loadsave

% This example shows how to work with the

% "load/save" functions on data files in

% deployed mode. There are three source data files

% in this example.

% user_data.mat

% userdata\extra_data.mat

% ..\externdata\extern_data.mat

%

% Compile this example with the mcc command:

% mcc -m ex_loadsave.m -a 'user_data.mat' -a

% '.\userdata\extra_data.mat'

% -a '..\externdata\extern_data.mat'

% All the folders under the current main MATLAB file directory will

% be included as

% relative path to ctfroot; All other folders will have the

% folder

% structure included in the ctf archive file from root of the

7-19

7 MATLAB® Code Deployment

% disk drive.

%

% If a data file is outside of the main MATLAB file path,

% the absolute path will be

% included in ctf and extracted under ctfroot. For example:

% Data file

% "c:\$matlabroot\examples\externdata\extern_data.mat"

% will be added into ctf and extracted to

% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

%

% All mat/data files are unchanged after mcc runs. There is

% no excryption on these user included data files. They are

% included in the ctf archive.

%

% The target data file is:

% .\output\saved_data.mat

% When writing the file to local disk, do not save any files

% under ctfroot since it may be refreshed and deleted

% when the application isnext started.

%==== load data file =============================

if isdeployed

% In deployed mode, all file under CTFRoot in the path are loaded

% by full path name or relative to $ctfroot.

% LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));

% LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));

LOADFILENAME1=which(fullfile('user_data.mat'));

LOADFILENAME2=which(fullfile('extra_data.mat'));

% For external data file, full path will be added into ctf;

% you don't need specify the full path to find the file.

LOADFILENAME3=which(fullfile('extern_data.mat'));

else

%running the code in MATLAB

LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','user_data.mat');

LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',

'Data_Handling','userdata','extra_data.mat');

LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',

'externdata','extern_data.mat');

end

7-20

Use MATLAB Data Files (MAT Files) in Compiled Applications

% Load the data file from current working directory

disp(['Load A from : ',LOADFILENAME1]);

load(LOADFILENAME1,'data1');

disp('A= ');

disp(data1);

% Load the data file from sub directory

disp(['Load B from : ',LOADFILENAME2]);

load(LOADFILENAME2,'data2');

disp('B= ');

disp(data2);

% Load extern data outside of current working directory

disp(['Load extern data from : ',LOADFILENAME3]);

load(LOADFILENAME3);

disp('ext_data= ');

disp(ext_data);

%==== multiple the data matrix by 2 ==============

result = data1*data2;

disp('A * B = ');

disp(result);

%==== save the new data to a new file ===========

SAVEPATH=strcat(pwd,filesep,'output');

if (~isdir(SAVEPATH))

mkdir(SAVEPATH);

end

SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

disp(['Save the A * B result to : ',SAVEFILENAME]);

save(SAVEFILENAME, 'result');

MATLAB Objects
When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

7-21

7 MATLAB® Code Deployment

Using the %#function pragma in this manner forces the dependency analysis
to load needed class definitions, enabling the MCR to successfully load the
object.

7-22

8

C and C++ Standalone
Executable and Shared
Library Creation

• “Input and Output Files” on page 8-2

• “Dependency Analysis Function and User Interaction with the Compilation
Path” on page 8-8

8 C and C++ Standalone Executable and Shared Library Creation

Input and Output Files

In this section...

“Standalone Executable” on page 8-2

“C Shared Library” on page 8-3

“C++ Shared Library” on page 8-5

“Macintosh 64 (Maci64)” on page 8-7

Standalone Executable
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a standalone called foo.

mcc -m foo.m bar.m

File Description

foo The main file of the application. This file reads and
executes the content stored in the embedded CTF
archive. On Windows, this file is foo.exe.

run_component.sh mcc generates run_<component>.sh file on UNIX
(including Mac) systems for standalone applications. It
temporarily sets up the environment variables needed
at runtime and executes the application. On Windows,
mcc doesn’t generate this run script file, because the
environment variables have already been set up by the
installer. In this case, you just run your standalone
.exe file.

8-2

Input and Output Files

C Shared Library
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a C shared library called libfoo.

mcc -W lib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.c The library wrapper C source file containing
the exported functions of the library
representing the C interface to the two
MATLAB functions (foo.m and bar.m) as well
as library initialization code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C source file containing data needed by the
MCR to initialize and use the library. This
data includes path information, encryption
keys, and other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the
library.

libfoo The shared library binary file. On Windows,
this file is libfoo.dll.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

8-3

8 C and C++ Standalone Executable and Shared Library Creation

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports, usually a dynamic-link library (.dll).
The import library is used to resolve references
to those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from
the import library to build the lookup table for
using identifiers that are not included in the
.dll. When an application or .dll is linked, an
import library may be generated, which will
be used for all future .dlls that depend on the
symbols in the application or .dll.

8-4

Input and Output Files

C++ Shared Library
In this example, MATLAB Compiler takes the MATLAB files foo.m and
bar.m as input and generates a C++ shared library called libfoo.

mcc -W cpplib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.cpp The library wrapper C++ source file containing
the exported functions of the library representing
the C++ interface to the two MATLAB functions
(foo.m and bar.m) as well as library initialization
code.

libfoo.h The library wrapper header file. This file is
included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c C++ source file containing data needed by the
MCR to initialize and use the library. This data
includes path information, encryption keys, and
other initialization for the MCR.

libfoo.exports The exports file used by mbuild to link the library.

libfoo The shared library binary file. On Windows, this
file is libfoo.dll.

Note UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

8-5

8 C and C++ Standalone Executable and Shared Library Creation

File Description

libname.exp Exports file used by the linker. The linker uses
the export file to build a program that contains
exports (usually a dynamic-link library (.dll).
The import library is used to resolve references to
those exports in other programs.

libname.lib Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dll is
loaded. The linker uses the information from the
import library to build the lookup table for using
identifiers that are not included in the .dll. When
an application or .dll is linked, an import library
may be generated, which will need to be used for
all future .dlls that depend on the symbols in the
application or .dll.

8-6

Input and Output Files

Macintosh 64 (Maci64)
For 64-bit Macintosh, a Macintosh application bundle is created.

File Description

foo.app The bundle created for executable foo.
Execution of the bundle occurs through
foo.app/Contents/MacOS/foo.

foo Application

run_component.sh The generated shell script which executes the
application through the bundle.

8-7

8 C and C++ Standalone Executable and Shared Library Creation

Dependency Analysis Function and User Interaction with
the Compilation Path

addpath and rmpath in MATLAB
If you run MATLAB Compiler from the MATLAB prompt, you can use the
addpath and rmpath commands to modify the MATLAB path before doing a
compilation. There are two disadvantages:

• The path is modified for the current MATLAB session only.

• If MATLAB Compiler is run outside of MATLAB, this doesn’t work unless a
savepath is done in MATLAB.

Note The path is also modified for any interactive work you are doing in
the MATLAB environment as well.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to
use for the current compilation. This feature is useful when you are compiling
files that are in folders currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed
manipulation of the path. This feature acts like a “filter” applied to the
MATLAB path for a given compilation. The first option is -N. Passing -N on
the mcc command line effectively clears the path of all folders except the
following core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler\deploy

• matlabroot\toolbox\compiler

8-8

Dependency Analysis Function and User Interaction with the Compilation Path

It also retains all subfolders of the above list that appear on the MATLAB
path at compile time. Including -N on the command line allows you to
replace folders from the original path, while retaining the relative ordering
of the included folders. All subfolders of the included folders that appear
on the original path are also included. In addition, the -N option retains
all folders that the user has included on the path that are not under
matlabroot\toolbox.

Use the -p option to add a folder to the compilation path in an order-sensitive
context, i.e., the same order in which they are found on your MATLAB path.
The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an
absolute path, it is assumed to be under the current working folder. The rules
for how these folders are included are

• If a folder is included with -p that is on the original MATLAB path, the
folder and all its subfolders that appear on the original path are added to
the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path,
that folder is not included in the compilation. (You can use -I to add it.)

• If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the folder
is added to the head of the path, as it normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

8-9

8 C and C++ Standalone Executable and Shared Library Creation

8-10

9

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers
and to end users.

• “Overview” on page 9-2

• “Deploying to Developers” on page 9-3

• “Deploying to End Users” on page 9-6

• “Working with the MCR” on page 9-14

• “Deploy Applications Created Using Parallel Computing Toolbox” on page
9-37

• “Deploying a Standalone Application on a Network Drive (Windows Only)”
on page 9-38

• “MATLAB® Compiler™ Deployment Messages” on page 9-40

• “Using MATLAB® Compiler™ Generated DLLs in Windows Services” on
page 9-41

• “Reserving Memory for Deployed Applications with MATLAB Memory
Shielding” on page 9-42

9 Deployment Process

Overview
After you create a library, a component, or an application, the next step is
typically to deploy it to others to use on their machines, independent of the
MATLAB environment. These users can be developers who want to use the
library or component to develop an application, or end users who want to
run a standalone application.

• “Deploying to Developers” on page 9-3

• “Deploying to End Users” on page 9-6

Note When you deploy, you provide the wrappers for the compiled MATLAB
code and the software needed to support the wrappers, including the MCR.
The MCR is version specific, so you must ensure that developers as well as
users have the proper version of the MCR installed on their machines.

Watch a Video
Watch a video about deploying applications using MATLAB Compiler.

9-2

Deploying to Developers

Deploying to Developers

In this section...

“Procedure” on page 9-3

“What Software Does a Developer Need?” on page 9-3

“Ensuring Memory for Deployed Applications” on page 9-5

Procedure

Note If you are programming on the same machine where you created the
component, you can skip the steps described here.

1 Create a package that contains the software necessary to support the compiled
MATLAB code. It is frequently helpful to install the MCR on development
machines, for testing purposes. See “What Software Does a Developer Need?”
on page 9-3

2 Write instructions for how to use the package.

a If your package was created with the compiler app, developers can just run
the installer generated by the compiler.

b All developers must set path environment variables properly. See “MCR
Path Settings for Development and Testing” on page 16-2.

3 Distribute the package and instructions.

What Software Does a Developer Need?
The software that you provide to a developer who wants to use compiled
MATLAB code depends on which of the following kinds of software the
developer will be using:

• “Standalone Application” on page 9-4

• “C or C++ Shared Library” on page 9-4

9-3

9 Deployment Process

Standalone Application
To distribute a standalone application created with MATLAB Compiler to a
development machine, create a package that includes the following files.

Software Module Description

MCR Installer
(Windows)

The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application. This file is included with
MATLAB Compiler. Run mcrinstaller function
to obtain name of executable.

MCR Installer (Linux) The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application on UNIX machines (other
than Mac). This file is included with MATLAB
Compiler. Run mcrinstaller function to obtain
name of binary.

MCR Installer (Mac) Run mcrinstaller function to obtain name of
binary.

application_name.exe
(Windows)

application_name
(UNIX)

application_name.app
(Maci64)

Application created by MATLAB Compiler.
Maci64 must include the bundle directory
hierarchy.

C or C++ Shared Library
To distribute a shared library created with MATLAB Compiler to a
development machine, create a package that includes the following files.

9-4

Deploying to Developers

Software Module Description

MCR Installer
(Windows)

MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond
to the end user’s platform. Run mcrinstaller
function to obtain name of executable.

MCR Installer (Mac) The MCR Installer is a self-extracting executable
that installs the necessary components to develop
your application on Mac machines. This file
is included with MATLAB Compiler. Run
mcrinstaller function to obtain name of binary.

MCR Installer (Linux) Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform. Run
mcrinstaller function to obtain name of binary.

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

libmatrix.h Library header file

libmatrix.lib Application library file needed to create the driver
application for the shared library.

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 9-42
for more information.

9-5

9 Deployment Process

Deploying to End Users

In this section...

“Steps by the Developer to Deploy to End Users” on page 9-6

“What Software Does the End User Need?” on page 9-9

“Using Relative Paths with Project Files” on page 9-12

“Porting Generated Code to a Different Platform” on page 9-12

“Extracting a CTF Archive Without Executing the Component” on page 9-12

“Ensuring Memory for Deployed Applications” on page 9-13

Steps by the Developer to Deploy to End Users
For an end user to run an application or use a library that contains compiled
MATLAB code, there are two sets of tasks. Some tasks are for the developer
who developed the application or library, and some tasks are for the end user.

1 Create a package that contains the software needed at run time. See “What
Software Does a Developer Need?” on page 9-3 for more details.

9-6

Deploying to End Users

Note The package for end users must include the .ctf file, which includes
all the files in your preferences folder. Be aware of the following with regards
to preferences:

• MATLAB preferences set at compile time are inherited by the compiled
application. Therefore, include no files in your preferences folder that you
do not want exposed to end users.

• Preferences set by a compiled application do not affect the MATLAB
preferences, and preferences set in MATLAB do not affect a compiled
application until that application is recompiled. MATLAB does not save
your preferences folder until you exit MATLAB. Therefore, if you change
your MATLAB preferences, stop and restart MATLAB before attempting to
recompile using your new preferences.

.

The preferences folder is as follows:

• $HOME/.matlab/current_release on UNIX

• system root\profiles\user\application data\mathworks\
matlab\current_release on Windows

The folder will be stored in the CTF archive in a folder with a generated
name, such as:

mwapplication_mcr\myapplication_7CBEDC3E1DB3D462C18914C13CBFA649.

2 Write instructions for the end user. See “Steps by the End User” on page 9-7.

3 Distribute the package to your end user, along with the instructions.

Steps by the End User

1 Open the package containing the software needed at run time.

2 Run MCRInstaller once on the target machine, that is, the machine where
you want to run the application or library. The MCRInstaller opens a

9-7

9 Deployment Process

command window and begins preparation for the installation. See “Using
the MCR Installer GUI” on page 9-8.

3 If you are deploying a Java application to end users, they must set the class
path on the target machine.

Note for Windows® Applications You must have administrative privileges
to install the MCR on a target machine since it modifies both the system
registry and the system path.

Running the MCRInstaller after the MCR has been set up on the target
machine requires only user-level privileges.

Using the MCR Installer GUI

1 When the MCR Installer wizard appears, click Next to begin the installation.
Click Next to continue.

2 In the Select Installation Folder dialog box, specify where you want to install
the MCR and whether you want to install the MCR for just yourself or others.
Click Next to continue.

Note The Install MATLAB Compiler Runtime for yourself, or for
anyone who uses this computer option is not implemented for this release.
The current default is Everyone.

3 Confirm your selections by clicking Next.

The installation begins. The process takes some time due to the quantity of
files that are installed.

The MCR Installer automatically:

• Copies the necessary files to the target folder you specified.

• Registers the components as needed.

9-8

Deploying to End Users

• Updates the system path to point to the MCR binary folder, which is
<target_directory>\<version>\runtime\win32|win64.

4 When the installation completes, click Close on the Installation Completed
dialog box to exit.

What Software Does the End User Need?
The software required by end users depends on which of the following kinds
of software is to be run by the user:

• “Standalone Compiled Application That Accesses Shared Library” on page
9-9

• “.NET Application” on page 9-10

• “COM Application” on page 9-10

• “Java Application” on page 9-11

• “Microsoft® Excel® Add-in” on page 9-11

Standalone Compiled Application That Accesses Shared Library
To distribute a shared library created with MATLAB Compiler to end users,
create a package that includes the following files.

Component Description

MCR Installer
(Windows)

Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform.

matrixdriver.exe
(Windows)

matrixdriver
(UNIX)

Application

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

9-9

9 Deployment Process

Component Description

• Linux, Linux x86-64 — .so

• Mac OS X — .dylib

.NET Application
To distribute a .NET application that uses components created with MATLAB
Builder NE, create a package that includes the following files.

Software Module Description

componentName.xml Documentation files

componentName.pdb
(if Debug option is
selected)

Program Database File, which contains debugging
information

componentName.dll Component assembly file

MCR Installer MCR Installer (if not already installed on the
target machine). Run mcrinstaller function to
obtain name of executable.

application.exe Application

COM Application
To distribute a COM application that uses components created with MATLAB
Builder NE or MATLAB Builder EX, create a package that includes the
following files.

Software Module Description

componentname.ctf Component Technology File (ctf) archive.
This is a platform-dependent file that must
correspond to the end user’s platform.

componentname
_version.dll

Component that contains compiled MATLAB
code

_install.bat Script run by the self-extracting executable

9-10

Deploying to End Users

Software Module Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.

The MCR Installer installs MATLAB
Compiler Runtime (MCR), which users of
your component need to install on the target
machine once per release. Run mcrinstaller
function to obtain name of executable.

application.exe Application

Java Application
To distribute a Java application created with MATLAB Builder JA, create
a componentname.jar file. To deploy the application on computers without
MATLAB, you must include the MCR when creating your Java component.

Microsoft Excel Add-in
To distribute an Excel add-in created with MATLAB Builder EX, create a
package that includes the following files.

Software Module Description

componentname
_version.dll

Component that contains compiled MATLAB
code

_install.bat Script run by the self-extracting executable

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.
Run mcrinstaller function to obtain name
of executable.

*.xla Any Excel add-in files found in
projectdirectory\distrib

9-11

9 Deployment Process

Using Relative Paths with Project Files
Project files now support the use of relative paths as of R2007b of MATLAB
Compiler, enabling you to share a single project file for convenient deployment
over the network. Simply share your project folder and use relative paths to
define your project location to your distributed computers.

Porting Generated Code to a Different Platform
You can distribute an application generated by MATLAB Compiler to any
target machine that has the same operating system as the machine on
which the application was compiled. For example, if you want to deploy an
application to a Windows machine, you must use the Windows version of
MATLAB Compiler to build the application on a Windows machine.

Note Since binary formats are different on each platform, the components
generated by MATLAB Compiler cannot be moved from platform to platform
as is.

To deploy an application to a machine with an operating system different from
the machine used to develop the application, you must rebuild the application
on the desired targeted platform. For example, if you want to deploy a
previous application developed on a Windows machine to a Linux machine,
you must use MATLAB Compiler on a Linux machine and completely rebuild
the application. You must have a valid MATLAB Compiler license on both
platforms to do this.

Extracting a CTF Archive Without Executing the
Component
CTF archives contain content (MATLAB files and MEX-files) that need to be
extracted from the archive before they can be executed. In order to extract
the archive you must override the default CTF embedding option (see “MCR
Component Cache and CTF Archive Embedding” on page 11-11). To do this,
ensure that you compile your component with the “-C Do Not Embed CTF
Archive by Default” on page 17-27 option.

9-12

Deploying to End Users

The CTF archive automatically expands the first time you run a MATLAB
Compiler-based component (a MATLAB Compiler based standalone
application or an application that calls a MATLAB Compiler-based shared
library, COM, or .NET component).

To expand an archive without running the application, you can use
the extractCTF (.exe on Windows) standalone utility provided in the
matlabroot\toolbox\compiler\arch folder, where arch is your system
architecture, Windows = win32|win64, Linux = glnx86, x86-64 = glnxa64,
and Mac OS X = mac. This utility takes the CTF archive as input and expands
it into the folder in which it resides. For example, this command expands
hello.ctf into the folder where it resides:

extractCTF hello.ctf

The archive expands into a folder called hello_mcr. In general, the name of
the folder containing the expanded archive is <componentname>_mcr, where
componentname is the name of the CTF archive without the extension.

Note To run extractCTF from any folder, you must add
matlabroot\toolbox\compiler\arch to your PATH environment variable.
Run extractCTF.exe from a system prompt. If you run it from MATLAB,
be sure to use the bang (!) operator.

Ensuring Memory for Deployed Applications
If you are having trouble obtaining memory for your deployed application,
use MATLAB Memory Shielding for deployed applications to ensure a
maximum amount of contiguous allocated memory. See “Reserving Memory
for Deployed Applications with MATLAB Memory Shielding” on page 9-42
for more information.

9-13

9 Deployment Process

Working with the MCR

In this section...

“About the MATLAB® Compiler™ Runtime (MCR)” on page 9-14

“The MCR Installer” on page 9-15

“Installing the MCR Non-Interactively” on page 9-23

“Uninstalling the MCR” on page 9-26

“MCR Startup Options” on page 9-28

“Using the MCR User Data Interface” on page 9-32

“Displaying MCR Initialization Start-Up and Completion Messages For
Users” on page 9-34

About the MATLAB Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is a standalone set of shared libraries
that enables the execution of MATLAB files on computers without an installed
version of MATLAB. Applications that use components built with MATLAB
Compiler require access to an appropriate version of the MCR to run.

End-users of compiled components without access to MATLAB must install
the MATLAB Compiler Runtime (MCR) on their computers or know the
location of a network-installed MCR. The installers generated by the compiler
app include the MCR installer. If you compiled your component using mcc,
you should direct your end-users to download the MCR installer from the Web
at http://www.mathworks.com/products/compiler/mcr.

See “The MCR Installer” on page 9-15 for more information.

How is the MCR Different from MATLAB?
This MCR differs from MATLAB in several important ways:

• In the MCR, MATLAB files are securely encrypted for portability and
integrity.

• MATLAB has a desktop graphical interface. The MCR has all the MATLAB
functionality without the graphical interface.

9-14

http://www.mathworks.com/products/compiler/mcr

Working with the MCR

• The MCR is version-specific. You must run your applications with the
version of the MCR associated with the version of MATLAB Compiler
with which it was created. For example, if you compiled an application
using version 4.10 (R2009a) of MATLAB Compiler, users who do not have
MATLAB installed must have version 7.10 of the MCR installed. Use
mcrversion to return the version number of the MCR.

• The MATLAB and Java paths in an MCR instance are fixed and cannot be
changed. To change them, you must first customize them within MATLAB.

Performance Considerations and the MCR
MATLAB Compiler was designed to work with a large range of applications
that use the MATLAB programming language. Because of this, run-time
libraries are large.

Since the MCR technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application
takes approximately the same amount of time as starting MATLAB. The
amount of resources consumed by the MCR is necessary in order to retain the
power and functionality of a full version of MATLAB.

The MCR makes use of thread locking so that only one thread is allowed to
access the MCR at a time. As a result, calls into the MCR are threadsafe for
MATLAB Compiler generated libraries, COM objects, and .NET objects. On
the other hand, this can impact performance.

The MCR Installer
Download the MCR from the Web at
http://www.mathworks.com/products/compiler/mcr.

Installing the MCR
To install the MCR, users of your component must run the MCR Installer.

Note When packaging compiled components for distribution, MATLAB
Compiler can include the Web-based or the local MCR installer in the
distribution package.

9-15

http://www.mathworks.com/products/compiler/mcr

9 Deployment Process

To install the MCR:

1 Start the MCR Installer.

Computer Steps

Windows Double-click the compiled component package
self-extracting archive file, typically named
my_program_pkg.exe, where my_program is the name
of the compiled component. This extracts the MCR
Installer from the archive, along with all the files
that make up the MCR. Once all the files have been
extracted, the MCR Installer starts automatically.

Linux

Mac

Extract the contents of the compiled component
package, which is a Zip file on Linux systems, typically
named, my_program_pkg.zip, where my_program is
the name of the compiled component. Use the unzip
command to extract the files from the package.

unzip MCRInstaller.zip

Run the MCR Installer script, from the directory where
you unzipped the package file, by entering:

./install

For example, if you unzipped the package and MCR
Installer in \home\USER, you run the ./install from
\home\USER.

Note On Mac systems, you may need to enter an
administrator username and password after you run
./install.

2 When the MCR Installer starts, it displays the following dialog box. Read
the information and then click Next to proceed with the installation.

9-16

Working with the MCR

�������	
��

3 Specify the folder in which you want to install the MCR in the Folder
Selection dialog box.

Note On Windows systems, you can have multiple versions of the MCR
on your computer but only one installation for any particular version. If
you already have an existing installation, the MCR Installer does not
display the Folder Selection dialog box because you can only overwrite
the existing installation in the same folder.

9-17

9 Deployment Process

�	����������������������	��

�������	
��

4 Confirm your choices and click Next.

The MCR Installer starts copying files into the installation folder.

9-18

Working with the MCR

�������������������	��

��������������

5 On Linux and Macintosh systems, after copying files to your disk, the
MCR Installer displays the Product Configuration Notes dialog box.
This dialog box contains information necessary for setting your path
environment variables. Copy the path information from this dialog box
and then click Next.

9-19

9 Deployment Process

�������	
��

6 Click Finish to exit the MCR Installer.

9-20

Working with the MCR

�������������

MCR Installer Readme File. A readme.txt file is included with the MCR
Installer. This file, visible when the MCR Installer is expanded, provides
more detailed information about the installer and the switches that can be
used with it.

Installing the MCR and MATLAB on the Same Machine
You do not need to install the MCR on your machine if your machine has
both MATLAB and MATLAB Compiler installed. The version of MATLAB
should be the same as the version of MATLAB that was used to create the
deployed component.

You can, however, install the MCR for debugging purposes. See “Modifying
the Path” on page 9-22.

Caution If the target machine has a MATLAB installation, the <mcr_root>
folders must be first on the path to run the deployed application. To run
MATLAB, the matlabroot folders must be first on the path.

9-21

9 Deployment Process

Modifying the Path. If you install the MCR on a machine that already has
MATLAB on it, you must adjust the library path according to your needs.

• Windows

To run deployed components against the MCR install,
mcr_root\ver\runtime\win32|win64 must appear on your
system path before matlabroot\runtime\win32|win64.

If mcr_root\ver\runtime\arch appears first on the compiled application
path, the application uses the files in the MCR install area.

If matlabroot\runtime\arch appears first on the compiled application
path, the application uses the files in the MATLAB Compiler installation
area.

• UNIX

To run deployed components against the MCR install, on Linux, Linux
x86-64, or the <mcr_root>/runtime/<arch> folder must appear on your
LD_LIBRARY_PATH before matlabroot/runtime/<arch>. See “MCR Path
Settings for Run-time Deployment” on page 16-4 for the platform-specific
commands.

To run deployed components on Mac OS X, the <mcr_root>/runtime
folder must appear on your DYLD_LIBRARY_PATH before
matlabroot/runtime/<arch>.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch>
must appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin
folder.

Note For detailed information about setting MCR paths on UNIX variants
such as Mac and Linux, see Appendix B, “Using MATLAB® Compiler™ on
Mac or Linux” for complete deployment and troubleshooting information.

Installing Multiple MCRs on One Machine
MCRInstaller supports the installation of multiple versions of the MCR on a
target machine. This allows applications compiled with different versions of
the MCR to execute side by side on the same machine.

9-22

Working with the MCR

If you do not want multiple MCR versions on the target machine, you can
remove the unwanted ones. On Windows, run Add or Remove Programs
from the Control Panel to remove any of the previous versions. On UNIX, you
manually delete the unwanted MCR. You can remove unwanted versions
before or after installation of a more recent version of the MCR, as versions
can be installed or removed in any order.

Note for Mac OS X Users Installing multiple versions of the MCR on the
same machine is not supported on Mac OS X. When you receive a new version
of MATLAB, you must recompile and redeploy all of your applications and
components. Also, when you install a new MCR onto a target machine, you
must delete the old version of the MCR and install the new one. You can only
have one version of the MCR on the target machine.

Deploying a Recompiled Application. Always run your compiled
applications with the version of the MCR that corresponds to the MATLAB
version with which your application was built. If you upgrade your
MATLAB Compiler software on your development machine and distribute
the recompiled application to your users, you should also distribute the
corresponding version of the MCR. Users should upgrade their MCR to the
new version. If users need to maintain multiple versions of the MCR on their
systems, refer to “Installing Multiple MCRs on One Machine” on page 9-22
for more information.

Installing the MCR Non-Interactively
To install the MCR without having to interact with the installer dialog boxes,
use one of the MCR installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any
dialog boxes

• automated—the installer displays the dialog boxes but does not wait for
user interaction

When run in silent or automated mode, the MCR installer uses default values
for installation options. You can override these defaults by using MCR
installer command-line options or an installer control file.

9-23

9 Deployment Process

Note When running in silent or automated mode, the installer overwrites
the default installation location.

Running the Installer in Silent Mode
To install the MCR in silent mode:

1 Extract the contents of the MCR installer file to a temporary folder, called
$temp in this documentation.

Note On Windows systems, manually extract the contents of the installer
file.

2 Run the MCR installer, specifying the -mode option and -argreeToLicense
yes on the command line.

Note On most platforms, the installer is located at the root of the folder into
which the archive was extracted. On Windows 64, the installer is located in
the archives bin folder.

Platform Command

Windows setup -mode silent
-argreeToLicense yes

Linux ./install -mode silent
-argreeToLicense yes

Mac OS X ./install -mode silent
-argreeToLicense yes

Note If you do not include the -argreeToLicense yes the installer will
not install the MCR.

9-24

Working with the MCR

3 View a log of the installation.

On Windows systems, the MCR installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in
the location defined by your TEMP environment variable.

On Linux and Mac systems, the MCR installer displays the log information at
the command prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation
When run in one of the non-interactive modes, the installer will use the
default values unless told to do otherwise. Like the MATLAB installer, the
MCR installer accepts a number of command line options that modify the
default installation properties.

Option Description

-destinationFolder Specifies where the MCR will be
installed.

-outputFile Specifies where the installation log
file is written.

-automatedModeTimeout Specifies how long, in milliseconds,
that the dialog boxes are displayed
when run in automatic mode.

-inputFile Specifies an installer control file
with the values for all of the above
options.

Note The MCR installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available
for a full MATLAB installation. Only the options listed in this section are
valid for the MCR installer.

9-25

9 Deployment Process

Uninstalling the MCR
The method you use to uninstall the MCR from your computer varies
depending on the type of computer.

You can remove unwanted versions before or after installation of a more recent
version of the MCR, as versions can be installed or removed in any order.

Windows

1 Start the uninstaller. From the Windows Start menu, search for the Add
or Remove Programs control panel, and double-click MATLAB Compiler
Runtime in the list. You can also launch the MCR Uninstaller from the
mcr_root\uninstall\bin\arch folder, where mcr_root is your MCR
installation folder and arch is an architecture-specific folder, such as win64.

2 Select the MATLAB Compiler Runtime from the list of products in the
Uninstall Products dialog box and click Next.

����������������

9-26

Working with the MCR

3 After the MCR uninstaller removes the files from your disk, it displays
the Uninstallation Complete dialog box. Click Finish to exit the MCR
uninstaller.

�������������

Linux

1 Exit the application.

2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB
installation folder.

Mac

• Exit the application.

9-27

9 Deployment Process

• Navigate to your MCR installation folder. For example, the installation
folder might be named MATLAB_Compiler_Runtime.app in your
Applications folder.

where mcr_root represents the name of your top-level MATLAB
installation folder.

• Drag your MCR installation folder to the trash, and then select Empty
Trash from the Finder menu.

MCR Startup Options

Setting MCR Options
Set MCR options, such as -nojvm, -nodisplay, or -logfile by performing
either of the following tasks.

• Using the Additional Runtime Settings area of the compiler apps.

• Using the mcc command, specify the -R switch.

Using a Compiler App. In the Additional Runtime Settings area of the
compiler apps, you can set the following options.

Note Not all options are available for all compilation targets.

Setting MCR Startup Options Using the Deployment Tool GUI

MCR Startup Option This option... Set the options by...

-nojvm Disables the Java
Virtual Machine, which
is enabled by default.

Select the No JVM
checkbox.

9-28

Working with the MCR

Setting MCR Startup Options Using the Deployment Tool GUI
(Continued)

MCR Startup Option This option... Set the options by...

This can help improve
MCR performance.

-nodisplay On Linux, launches the
MCR without display
functionality.

In the Settings box,
enter -R -nodisplay.

-logfile Writes information
about MCR startup to a
logfile.

Select the Create log
file checkbox. Enter
the path to the logfile,
including the logfile
name, in the Log File
box.

Setting MCR Startup Options Using the mcc Command Line. When
you use the command line, specify the -R switch to invoke the MCR startup
options you want to use.

Following are examples of using mcc -R to invoke -nojvm, -nodisplay, and
-logfile when building a C standalone (designated by the -m switch).

Setting -nojvm

mcc -m -R -nojvm -v foo.m

Setting -nodisplay (Linux Only)

mcc -m -R -nodisplay -v foo.m

Setting -logfile

mcc -e -R '-logfile,bar.txt' -v foo.m

Setting -nojvm, -nodisplay, and -logfile With One Command

mcc -m -R '-logfile,bar.txt,-nojvm,-nodisplay' -v foo.m

9-29

9 Deployment Process

Retrieving MCR Startup Options (Shared Libraries Only)
Use these functions to return data about MCR state when working with
shared libraries (this does not apply to standalone applications).

Function and Signature When to Use Return Value

bool
mclIsMCRInitialized()

Use mclIsMCRInitialized()
to determine whether or not
the MCR has been properly
initialized.

Boolean (true or false).
Returns true if MCR is already
initialized, else returns false.

bool mclIsJVMEnabled() Use mclIsJVMEnabled() to
determine if the MCR was
launched with an instance of a
Java Virtual Machine (JVM).

Boolean (true or false).
Returns true if MCR is
launched with a JVM instance,
else returns false.

9-30

Working with the MCR

Function and Signature When to Use Return Value

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log
file used by the MCR

Character string representing
log file name used by MCR

bool mclIsNoDisplaySet() Use mclIsNoDisplaySet()
to determine if -nodisplay
option is enabled.

Boolean (true or false).
Returns true if -nodisplay is
enabled, else returns false.

Note false is always
returned on Windows systems
since the -nodisplay option
is not supported on Windows
systems.

Caution When running on
Mac, if -nodisplay is used as
one of the options included in
mclInitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain.

Note All of these attributes have properties of write-once, read-only.

Retrieving Information About MCR Startup Options.

const char* options[4];
options[0] = "-logfile";
options[1] = "logfile.txt";
options[2] = "-nojvm";
options[3] = "-nodisplay";

9-31

9 Deployment Process

if(!mclInitializeApplication(options,4))
{

fprintf(stderr,
"Could not initialize the application.\n");

return -1;
}
printf("MCR initialized : %d\n", mclIsMCRInitialized());
printf("JVM initialized : %d\n", mclIsJVMEnabled());
printf("Logfile name : %s\n", mclGetLogFileName());
printf("nodisplay set : %d\n", mclIsNoDisplaySet());
fflush(stdout);

Using the MCR User Data Interface
The MCR User Data Interface lets you easily access MCR data. It allows
keys and values to be passed between an MCR instance, the MATLAB code
running on the MCR, and the host application that created the MCR. Through
calls to the MCR User Data Interface API, you access MCR data by creating
a per-MCR-instance associative array of mxArrays, consisting of a mapping
from string keys to mxArray values. Reasons for doing this include, but are
not limited to the following:

• You need to supply run-time profile information to a client running an
application created with the Parallel Computing Toolbox. You supply and
change profile information on a per-execution basis. For example, two
instances of the same application may run simultaneously with different
profiles. See “Deploy Applications Created Using Parallel Computing
Toolbox” on page 9-37 for more information.

• You want to set up a global workspace, a global variable or variables that
MATLAB and your client can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application
MATLAB code

• Four external C functions callable from within deployed application
wrapper code

9-32

Working with the MCR

Note The MATLAB functions are available to other modules since they
are native to MATLAB. These built-in functions are implemented in the
MCLMCR module, which lives in the standalone folder.

For implementations using .NET components, Java components, or COM
components with Excel, see the MATLAB Builder NE, MATLAB Builder JA,
and MATLAB Builder EX documentation, respectively.

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from
deployed MATLAB applications. They are loaded by default only in
applications created with the MATLAB Compiler or builder products. See
“Using the MCR User Data Interface” on page 9-32 for more information.

Tip getmcruserdata and setmcruserdata will produce an Unknown
function error when called in MATLAB if the MCLMCR module cannot
be located. This can be avoided by calling isdeployed before calling
getmcruserdata and setmcruserdata. For more information about the
isdeployed function, see the isdeployed reference page.

Setting MCR Data for Standalone Executables
MCR data can be set for a standalone executable with the -mcruserdata
command line argument.

The following example demonstrates how to set MCR user data for use with a
Parallel Computing Toolbox profile:

parallelapp.exe -mcruserdata
ParallelProfile:config.settings

The argument following -mcruserdata is interpreted as a key/value MCR
user data pair, where the colon separates the key from the value. The
standalone executable accesses this data by using getmcruserdata.

9-33

9 Deployment Process

Note A compiled application should set mcruserdata ParallelProfile
before calling any Parallel Computing Toolbox code. Once this code has been
called, setting ParallelProfile to point to a different file has no effect.

Setting and Retrieving MCR Data for Shared Libraries
As mentioned in “Using the MCR User Data Interface” on page 9-32, there
are many possible scenarios for working with MCR Data. The most general
scenario involves setting the MCR with specific data for later retrieval, as
follows:

1 In your code, Include the MCR header file and the library header generated
by MATLAB Compiler.

2 Properly initialize your application using mclInitializeApplication.

3 After creating your input data, write or “set” it to the MCR with
setmcruserdata .

4 After calling functions or performing other processing, retrieve the new
MCR data with getmcruserdata.

5 Free up storage memory in work areas by disposing of unneeded arrays
with mxDestroyArray.

6 Shut down your application properly with mclTerminateApplication.

Displaying MCR Initialization Start-Up and
Completion Messages For Users
You can display a console message for end users that informs them when
MCR initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB Compiler
Runtime version x.xx)

9-34

Working with the MCR

• Customize the start-up or completion message with text of your choice.
The default start-up message will also display prior to displaying your
customized start-up message.

Some examples of different ways to invoke this option follow:

This command: Displays:

mcc -R -startmsg Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx

mcc -R -startmsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for start-up

mcc -R -completemsg,'user
customized message'

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and user
customized message for completion

mcc -R -startmsg,'user
customized message' -R
-completemsg,'user customized
message"

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and completion by
specifying -R before each option

mcc -R -startmsg,'user
customized
message',-completemsg,'user
customized message’

Default start-up message
Initializing MATLAB Compiler
Runtime version x.xx and
user customized message for
both start-up and completion by
specifying -R only once

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB Command Window, place the comma
inside the single quote. For example:

9-35

9 Deployment Process

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'

• If your initialization message has a space in it, call mcc from the system
console or use !mcc from MATLAB.

9-36

Deploy Applications Created Using Parallel Computing Toolbox™

Deploy Applications Created Using Parallel Computing
Toolbox

For information about using the MCR User Data Interface see “Improving
Data Access Using the MCR User Data Interface” in the MATLAB Builder
JA, MATLAB Builder NE, and MATLAB Builder EX User’s Guides.

Compile and Deploy a Shared Library with the
Parallel Computing Toolbox
The process of deploying a C or C++ shared library with the Parallel
Computing Toolbox is similar to deploying a standalone application.

1 Compile the shared library using the Deployment Tool.

2 Set the file in the C or C++ driver code using the setmcruserdata function.
See the setmcruserdata function reference page for an example.

Note Standalone executables and shared libraries generated from MATLAB
Compiler for parallel applications can now launch up to twelve local workers
without MATLAB Distributed Computing Server™.

9-37

9 Deployment Process

Deploying a Standalone Application on a Network Drive
(Windows Only)

You can deploy a compiled standalone application to a network drive so that it
can be accessed by all network users without having them install the MCR on
their individual machines.

Note There is no need to perform these steps on a Linux system.

There is no requirement for vcredist on Linux, and the component
registration is in support of MATLAB Builder EX and MATLAB COM
Builder, which both run on Windows only.

Distributing to a Linux network file system is exactly the same as distributing
to a local file system. You only need to set up the LD_LIBRARY_PATH or use
scripts which points to the MCR installation.

1 On any Windows machine, run mcrinstaller function to obtain name of
the MCR Installer executable.

2 Copy the entire MCR folder (the folder where MCR is installed) onto a
network drive.

3 Copy the compiled application into a separate folder in the network
drive and add the path <mcr_root>\<ver>\runtime\<arch> to all client
machines. All network users can then execute the application.

4 Run vcredist_x86.exe on for 32-bit clients; run vcredist_x64.exe for
64-bit clients.

5 If you are using MATLAB Builder EX, register mwcomutil.dll and
mwcommgr.dll on every client machine.

If you are using MATLAB Builder NE (to create COM objects), register
mwcomutil.dll on every client machine.

To register the DLLs, at the DOS prompt enter

9-38

Deploying a Standalone Application on a Network Drive (Windows® Only)

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

Note These libraries are automatically registered on the machine on
which the installer was run.

9-39

9 Deployment Process

MATLAB Compiler Deployment Messages
To enable display of MATLAB Compiler deployment messages, see the
MATLAB Desktop Tools and Environment documentation.

9-40

Using MATLAB® Compiler™ Generated DLLs in Windows® Services

Using MATLAB Compiler Generated DLLs in Windows
Services

If you have a Windows service that is built using DLL files generated by
MATLAB Compiler, do the following to ensure stable performance:

1 Create a file named java.opts.

2 Add the following line to the file:

-Xrs

3 Save the file to: MCRROOT\version\runtime\win32|win64, where MCRROOT
is the installation folder of the MATLAB Compiler Runtime and version is
the MCR version (for example, v74 for MATLAB Compiler 4.4 (R2006a)).

Caution Failure to create the java.opts file using these steps may result in
unpredictable results such as premature termination of Windows services.

9-41

9 Deployment Process

Reserving Memory for Deployed Applications with
MATLAB Memory Shielding

In this section...

“What Is MATLAB Memory Shielding and When Should You Use It?” on
page 9-42

“Requirements for Using MATLAB Memory Shielding” on page 9-43

“Invoking MATLAB Memory Shielding for Your Deployed Application”
on page 9-43

What Is MATLAB Memory Shielding and When
Should You Use It?
Occasionally you encounter problems ensuring that you have the memory
needed to run deployed applications. These problems often occur when:

• Your data set is large

• You are trying to compensate for the memory limitations inherent in a
32-bit Windows system

• The computer available to you has limited resources

• Network resources are restrictive

Use MATLAB Memory Shielding to ensure that you obtain the maximum
amount of contiguous memory to run your deployed application successfully.

MATLAB Memory Shielding provides the specified level of protection of the
address space used by MATLAB. When you use this feature, it reserves
the largest contiguous block of memory available for your application after
startup.

Memory shielding works by ensuring that resources, such as DLLs, load into
locations that will not fragment the address space of the system. The feature
provides the specified amount of contiguous address space you specify, up to
the maximum available on the system.

9-42

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

For example, on a 32-bit Windows system, MATLAB defaults to memory
shielding for virtual addresses 0x50000000-0x70000000. At the point where
your application runs, the shield lowers, allowing allocation of that virtual
address space.

Note This topic describes how to invoke the shielding function for deployed
applications, not the MATLAB workspace. To learn more about invoking
memory shielding for MATLAB workspaces, see the discussion of the start-up
option matlab shieldOption in the MATLAB Function Reference Guide.

Requirements for Using MATLAB Memory Shielding
Before using MATLAB Memory Shielding for your deployed applications,
verify that you meet the following requirements:

• Your deployed application is failing because it cannot find the proper
amount of memory and not for another unrelated reason. As a best practice,
let the operating system attempt to satisfy runtime memory requests, if
possible. See “What Is MATLAB Memory Shielding and When Should
You Use It?” on page 9-42 for examples of cases where you can benefit by
using MATLAB Memory Shielding

• Your application runs on a Windows 32-bit system. While MATLAB
Memory Shielding runs on 64-bit Windows systems without failing, it has
no effect on your application.

• You are running with a standalone application or Windows executable.
MATLAB Memory Shielding does not work with shared libraries, .NET
components or Java components.

• You have run the MCR Installer on your system to get the MATLAB
Compiler Runtime (MCR). The memory shielding feature is installed with
the MCR.

Invoking MATLAB Memory Shielding for Your
Deployed Application
Invoke memory shielding by using either the command-line syntax or the
GUI. Each approach has appropriate uses based on your specific memory
reservation needs.

9-43

9 Deployment Process

Using the Command Line
Use the command line if you want to invoke memory shielding only with the
various shield_level values (not specific address ranges).

The base command-line syntax is:

MemShieldStarter [-help] [-gui]
[-shield shield_level]
fully-qualified_app_path

[user-defined_app_arguments]

1 Run your application using the default level of memory shielding. Use
the command:

MemShieldStarter fully-qualified_app_path
[user-defined_app_arguments]

2 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause start-up problems. Therefore, start with a
lower level of protection and be conservative when raising the level of
protection.

• Use only memory shielding levels that guarantee a successful execution
of your application. See the table MemShieldStarter Options on page
9-45 for more details on which shield options to choose.

• Contact your system administrator for further advice on successfully
running your application.

3 If your application fails to start, disable memory shielding:

a To disable memory shielding after you have enabled it, run the following
command:

MemShieldStarter -shield none
fully-qualified_app_path

[user-defined_app_arguments]

9-44

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

b Contact your system administrator for further advice on successfully
running your application.

MemShieldStarter Options

Option Description

-help Invokes help for MemShieldStarter

-gui Starts the Windows graphical interface for
MemShieldStarter.exe. See “Using the GUI”
on page 9-46 for more details.

-shield shield_level See “Shield Level Options” on page 9-45.

fully-qualified_application_path The fully qualified path to your user application

user-defined_application_arguments Arguments passed to your user application.
MemShieldStarter.exe only passes user
arguments. It does not alter them.

Shield Level Options. shield_level options are as follows:

• none— This value completely disables memory shielding. Use this value
if your application fails to start successfully with the default (-shield
minimum) option.

• minimum— The option defaults to this setting. Minimum shielding protects
the range 0x50000000 to 0x70000000 during startup until just before
processing matlabrc. This value ensures at least approximately 500 MB
of contiguous memory available up to this point.

When experimenting with a shielding level. start with minimum. To use the
default, do not specify a shield option upon startup. If your application fails
to start successfully using minimum, use -shield none. If your application
starts successfully with the default value for shield_level, try using the
-shield medium option to guarantee more memory.

• medium — This value protects the same range as minimum, 0x50000000
to 0x70000000, but protects the range until just after startup processes
matlabrc. It ensures that there is at least approximately 500 MB of

9-45

9 Deployment Process

contiguous memory up to this point. If MATLAB fails to start successfully
with the -shield medium option, use the default option (-shield
minimum). If MATLAB starts successfully with the -shield medium option
and you want to try to ensure an even larger contiguous block after startup,
try using the -shield maximum option.

• maximum — This value protects the maximum range, which can be up
to approximately 1.5 GB, until just after startup processes matlabrc.
The default memory shielding range for maximum covers 0x10000000 to
0x78000000. If MATLAB fails to start successfully with the -shield
maximum option, use the -shield medium option.

Note The shielding range may vary in various locales. Contact your
system administrator for further details.

Using the GUI
Use the graphical interface to invoke memory shielding for specific address
ranges as well as with specific shield_level values.

1 To start the GUI, run the following at the system command prompt:

MemShieldStarter -gui

The Memory Shielding Starter dialog box opens:

9-46

Reserving Memory for Deployed Applications with MATLAB® Memory Shielding

2 Enter the appropriate values as described in MemShieldStarter Options on
page 9-45. Use the default Memory shielding level minimum.

You can specify a specific address range in the Memory address range
fields. Specifying a range override the default 0x50000000 through
0x70000000 address range values required for the shield_level minimum,
for example.

3 Click Run.

4 If your application runs successfully, try the next highest shield level to
guarantee more contiguous memory, if needed.

• A higher level of protection does not always provide a larger size block
and can occasionally cause startup problems. Therefore, start with a
lower level of protection and use only what is necessary to guarantee a
successful execution of your application.

• See the table MemShieldStarter Options on page 9-45 for more details
on appropriate shield options for various situations.

9-47

9 Deployment Process

9-48

10

Distributing Code to an End
User

10 Distributing Code to an End User

Share MATLAB Code Using the MATLAB Compiler Runtime
(MCR)

Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)
On target computers without MATLAB, install the MCR, if it is not already
present on the deployment machine.

Install MATLAB Compiler Runtime (MCR)
The MATLAB Compiler Runtime (MCR) is an execution engine made up of
the same shared libraries MATLAB uses to enable execution of MATLAB files
on systems without an installed version of MATLAB.

The MATLAB Compiler Runtime (MCR) is now available for downloading
from the Web to simplify the distribution of your applications or components
created with the MATLAB Compiler. Download the MCR from the MATLAB
Compiler Runtime product page.

The MCR installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the folder from which the installer is
run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

MCR Prerequisites

1 Since installing the MCR requires write access to the system registry,
ensure you have administrator privileges to run the MCR Installer.

2 The version of the MCR that runs your application on the target computer
must be compatible with the version of MATLAB Compiler that built the
component.

10-2

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

Share MATLAB Code Using the MATLAB Compiler Runtime (MCR)

3 Do not install the MCR in MATLAB installation directories.

4 The MCR installer requires approximately 2 GB of disk space.

Add the MCR Installer to the Installer
This example shows how to include the MCR in the generated installer, using
one of the compiler apps. The generated installer contains all files needed
to run the standalone application or shared library built with MATLAB
Compiler and properly lays they out on a target system.

1 On the Packaging Options section of the compiler interface, select one or
both of the following options:

• Runtime downloaded from web — This option builds an installer
that invokes the MCR installer from the MathWorks Web site.

• Runtime included in package — The option includes the MCR
installer into the generated installer.

2 Click Package.

3 Distribute the installer as needed.

Install the MCR
This example shows how to install the MATLAB Compiler Runtime (MCR)
on a system.

If you are given an installer containing the compiled artifacts, then the MCR
is installed along with the application or shared library. If you are given
just the raw binary files, download the MCR installer from the Web and run
the installer.

10-3

10 Distributing Code to an End User

Note If you are running on a platform other than Windows, set the system
paths on the target machine. Setting the paths enables your application to
find the MCR.

Windows paths are set automatically. On Linux and Mac, you can use the
run script to set paths. See Appendix B, “Using MATLAB® Compiler™ on
Mac or Linux” for detailed information on performing all deployment tasks
specifically with UNIX variants such as Linux and Mac.

10-4

11

Compiler Commands

This chapter describes mcc, which is the command that invokes MATLAB
Compiler.

• “Command Overview” on page 11-2

• “Simplify Compilation Using Macros” on page 11-5

• “Invoke MATLAB Build Options” on page 11-8

• “MCR Component Cache and CTF Archive Embedding” on page 11-11

• “Explicitly Including a File for Compilation Using the %#function Pragma”
on page 11-14

• “Use the mxArray API to Work with MATLAB Types” on page 11-16

• “Script Files” on page 11-17

• “Compiler Tips” on page 11-20

11 Compiler Commands

Command Overview

In this section...

“Compiler Options” on page 11-2

“Combining Options” on page 11-2

“Conflicting Options on the Command Line” on page 11-3

“Using File Extensions” on page 11-3

“Interfacing MATLAB Code to C/C++ Code” on page 11-4

Compiler Options
mcc is the MATLAB command that invokes MATLAB Compiler. You can issue
the mcc command either from the MATLAB command prompt (MATLAB
mode) or the DOS or UNIX command line (standalone mode).

You may specify one or more MATLAB Compiler option flags to mcc. Most
option flags have a one-letter name. You can list options separately on the
command line, for example,

mcc -m -v myfun

Macros are MathWorks supplied MATLAB Compiler options that simplify
the more common compilation tasks. Instead of manually grouping several
options together to perform a particular type of compilation, you can use a
simple macro option. You can always use individual options to customize the
compilation process to satisfy your particular needs. For more information on
macros, see “Simplify Compilation Using Macros” on page 11-5.

Combining Options
You can group options that do not take arguments by preceding the list of
option flags with a single dash (-), for example:

mcc -mv myfun

Options that take arguments cannot be combined unless you place the option
with its arguments last in the list. For example, these formats are valid:

11-2

Command Overview

mcc -v -W main -T link:exe myfun % Options listed separately
mcc -vW main -T link:exe myfun % Options combined

This format is not valid:

mcc -Wv main -T link:exe myfun

In cases where you have more than one option that takes arguments, you can
only include one of those options in a combined list and that option must be
last. You can place multiple combined lists on the mcc command line.

If you include any C or C++ file names on the mcc command line, the files are
passed directly to mbuild, along with any MATLAB Compiler generated C
or C++ files.

Conflicting Options on the Command Line
If you use conflicting options, MATLAB Compiler resolves them from left to
right, with the rightmost option taking precedence. For example, using the
equivalencies in “Macro Options” on page 11-5,

mcc -m -W none test.m

is equivalent to:

mcc -W main -T link:exe -W none test.m

In this example, there are two conflicting -W options. After working from
left to right, MATLAB Compiler determines that the rightmost option takes
precedence, namely, -W none, and the product does not generate a wrapper.

Caution Macros and regular options may both affect the same settings and
may therefore override each other depending on their order in the command
line.

Using File Extensions
The valid, recommended file extension for a file submitted to MATLAB
Compiler is .m. Always specify the complete file name, including the .m

11-3

11 Compiler Commands

extension, when compiling with mcc or you may encounter unpredictable
results.

Note P-files (.p) have precedence over MATLAB files, therefore if both
P-files and MATLAB files reside in a folder, and a file name is specified
without an extension, the P-file will be selected.

Interfacing MATLAB Code to C/C++ Code
To designate code to be compiled with C or C++, rewrite the C or C++ function
as a MEX-file and call it from your application.

You can control whether the MEX-file or a MATLAB stub gets called by using
the isdeployed function.

Code Proper Return Types From C and C++ Methods
To avoid potential problems, ensure all C methods you write (and reference
from within MATLAB code) return a bool return type indicating the status.
C++ methods should return nothing (void).

11-4

Simplify Compilation Using Macros

Simplify Compilation Using Macros

In this section...

“Macro Options” on page 11-5

“Working With Macro Options” on page 11-5

Macro Options
MATLAB Compiler, through its exhaustive set of options, gives you access
to the tools you need to do your job. If you want a simplified approach to
compilation, you can use one simple option, i.e., macro, that allows you to
quickly accomplish basic compilation tasks. Macros let you group several
options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish
a standard compilation and the multioption alternative.

Macro
Option Bundle File Creates

Option Equivalence
Function Wrapper
| Output Stage
| |

-l macro_option_l Library -W lib -T link:lib

-m macro_option_m Standalone application -W main -T link:exe

Working With Macro Options
The -m option tells MATLAB Compiler to produce a standalone application.
The -m macro is equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information
that they provide to MATLAB Compiler.

11-5

11 Compiler Commands

-m Macro

Option Function

-W main Produce a wrapper file suitable for a standalone
application.

-T link:exe Create an executable link as the output.

Changing Macro Options
You can change the meaning of a macro option by editing the corresponding
macro_option bundle file in matlabroot\toolbox\compiler\bundles. For
example, to change the -m macro, edit the file macro_option_m in the bundles
folder.

Note This changes the meaning of -m for all users of this MATLAB
installation.

Specifying Default Macro Options
As the MCCSTARTUP functionality has been replaced by bundle file technology,
the macro_default file that resides in toolbox\compiler\bundles can be
used to specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

mcc foo.m

to execute as though it were:

mcc -mv foo.m

Similarly, adding -v to the macro_default file causes the command:

mcc -W 'lib:libfoo' -T link:lib foo.m

to behave as though the command were:

11-6

Simplify Compilation Using Macros

mcc -v -W 'lib:libfoo' -T link:lib foo.m

11-7

11 Compiler Commands

Invoke MATLAB Build Options

In this section...

“Specifying Full Path Names to Build MATLAB Code” on page 11-8

“Using Bundle Files to Build MATLAB Code” on page 11-9

Specifying Full Path Names to Build MATLAB Code
If you specify a full path name to a MATLAB file on the mcc command line,
MATLAB Compiler

1 Breaks the full name into the corresponding path name and file names
(<path> and <file>).

2 Replaces the full path name in the argument list with “-I <path> <file>”.

Specifying Full Paths Names
For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -I /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion.
For example, suppose you have two different MATLAB files that are both
named myfile.m and they reside in /home/user/dir1 and /home/user/dir2.
The command

mcc -m -I /home/user/dir1 /home/user/dir2/myfile.m

would be equivalent to

mcc -m -I /home/user/dir1 -I /home/user/dir2 myfile.m

MATLAB Compiler finds the myfile.m in dir1 and compiles it instead of the
one in dir2 because of the behavior of the -I option. If you are concerned that

11-8

Invoke MATLAB Build Options

this might be happening, you can specify the -v option and then see which
MATLAB file MATLAB Compiler parses. The -v option prints the full path
name to the MATLAB file during the dependency analysis phase.

Note MATLAB Compiler produces a warning (specified_file_mismatch) if
a file with a full path name is included on the command line and MATLAB
Compiler finds it somewhere else.

Using Bundle Files to Build MATLAB Code
Bundle files provide a convenient way to group sets of MATLAB Compiler
options and recall them as needed. The syntax of the bundle file option is:

-B <filename>[:<a1>,<a2>,...,<an>]

When used on the mcc command line, the bundle option -B replaces the entire
string with the contents of the specified file. The file should contain only mcc
command-line options and corresponding arguments and/or other file names.
The file may contain other -B options.

A bundle file can include replacement parameters for MATLAB Compiler
options that accept names and version numbers. For example, there is a
bundle file for C shared libraries, csharedlib, that consists of:

-W lib:%1% -T link:lib

To invoke MATLAB Compiler to produce a C shared library using this bundle,
you can use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle file will be replaced with the corresponding
option specified to the bundle file. Use %% to include a % character. It is an
error to pass too many or too few options to the bundle file.

11-9

11 Compiler Commands

Note You can use the -B option with a replacement expression as is at the
DOS or UNIX prompt. To use -B with a replacement expression at the
MATLAB prompt, you must enclose the expression that follows the -B in
single quotes when there is more than one parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because libtimefun is the only
parameter being passed. If the example had two or more parameters, then
the quotes would be necessary as in

>>mcc -B 'cexcel:component,class,1.0' ...
weekday data tic calendar toc

Bundle Files Available with MATLAB Compiler
See the following table for a list of bundle files available with MATLAB
Compiler.

Bundle File Creates Contents

cpplib C++ Library -W cpplib:<shared_library_name> -T link:lib

csharedlib C Shared Library -W lib:<shared_library_name> -T link:lib

Note Additional bundle files are available when you have a license for
products layered on MATLAB Compiler. For example, if you have a license
for MATLAB Builder NE , you can use the mcc command with bundle files
that create COM objects and .NET objects.

11-10

MCR Component Cache and CTF Archive Embedding

MCR Component Cache and CTF Archive Embedding

In this section...

“Overriding Default Behavior” on page 11-12

“For More Information” on page 11-13

CTF data is automatically embedded directly in the C/C++, main and Winmain,
shared libraries and standalones by default. It is also extracted by default
to a temporary folder.

Automatic embedding enables usage of MCR Component Cache features
through environment variables.

These variables allow you to specify the following:

• Define the default location where you want the CTF archive to be
automatically extracted

• Add diagnostic error printing options that can be used when automatically
extracting the CTF, for troubleshooting purposes

• Tuning the MCR component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of
where you want the CTF
archive to be extracted, this
variable overrides the default
per-user component cache
location.

Does not apply

MCR_CACHE_VERBOSE When set to any value, this
variable prints logging details
about the component cache
for diagnostic reasons. This
can be very helpful if problems

Logging details are turned off
by default (for example, when
this variable has no value).

11-11

11 Compiler Commands

Environment Variable Purpose Notes

are encountered during CTF
archive extraction.

MCR_CACHE_SIZE When set, this variable
overrides the default
component cache size.

The initial limit for this
variable is 32M (megabytes).
This may, however, be changed
after you have set the variable
the first time. Edit the file
.max_size, which resides in
the file designated by running
the mcrcachedir command,
with the desired cache size
limit.

You can override this automatic embedding and extraction behavior by
compiling with the -C option. See “Overriding Default Behavior” on page
11-12 for more information.

Caution If you run mcc specifying conflicting wrapper and target types, the
CTF will not be embedded into the generated component. For example, if
you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the CTF embedded in it, as if you had
specified a -C option to the command line.

Overriding Default Behavior
To extract the CTF archive in a manner prior to R2008a, alongside the
compiled shared library or executable, compile using the option “-C Do Not
Embed CTF Archive by Default” on page 17-27.

You can also implement this override by checking the appropriate Option in
the Deployment Tool.

11-12

MCR Component Cache and CTF Archive Embedding

You might want to use this option to troubleshoot problems with the CTF
archive, for example, as the log and diagnostic messages are much more
visible.

For More Information
For more information about the CTF archive, see “Component Technology File
(CTF Archive)” on page 7-6.

11-13

11 Compiler Commands

Explicitly Including a File for Compilation Using the
%#function Pragma

In this section...

“Using feval” on page 11-14

“Using %#function” on page 11-14

Using feval
In standalone mode, the pragma

%#function <function_name-list>

informs MATLAB Compiler that the specified function(s) should be included
in the compilation, whether or not the MATLAB Compiler dependency
analysis detects it. Without this pragma, the MATLAB Compiler dependency
analysis will not be able to locate and compile all MATLAB files used in your
application. This pragma adds the top-level function as well as all the local
functions in the file to the compilation.

You cannot use the %#function pragma to refer to functions that are not
available in MATLAB code.

Using %#function
A good coding technique involves using %#function in your code wherever
you use feval statements. This example shows how to use this technique
to help MATLAB Compiler find the appropriate files during compile time,
eliminating the need to include all the files on the command line.

function ret = mywindow(data,filterName)
%MYWINDOW Applies the window specified on the data.
%

% Get the length of the data.
N= length(data);

% List all the possible windows.

11-14

Explicitly Including a File for Compilation Using the %#function Pragma

% Note the list of functions in the following function pragma is
% on a single line of code.
%#function bartlett, barthannwin, blackman, blackmanharris,
bohmanwin, chebwin, flattopwin, gausswin, hamming, hann, kaiser,
nuttallwin, parzenwin, rectwin, tukeywin, triang

window = feval(filterName,N);
% Apply the window to the data.
ret = data.*window;

11-15

11 Compiler Commands

Use the mxArray API to Work with MATLAB Types
For full documentation on the mxArray API, see the MATLAB C and Fortran
API Reference documentation.

For a complete description of data types used with mxArray, see MATLAB
External Interfaces documentation.

For general information on data handling, see MATLAB External Interfaces
documentation.

11-16

Script Files

Script Files

In this section...

“Converting Script MATLAB Files to Function MATLAB Files” on page
11-17

“Including Script Files in Deployed Applications” on page 11-18

Converting Script MATLAB Files to Function MATLAB
Files
MATLAB provides two ways to package sequences of MATLAB commands:

• Function MATLAB files

• Script MATLAB files

Some things to remember about script and function MATLAB files:

• Variables used inside function MATLAB files are local to that function; you
cannot access these variables from the MATLAB interpreter’s workspace
unless they are passed back by the function. By contrast, variables used
inside script MATLAB files are shared with the caller’s workspace; you can
access these variables from the MATLAB interpreter command line.

• Variables that are declared as persistent in a MEX-file may not retain their
values through multiple calls from MATLAB.

MATLAB Compiler can compile script MATLAB files or can compile function
MATLAB files that call scripts. You can either specify an script MATLAB file
explicitly on the mcc command line, or you can specify function MATLAB files
that include scripts.

Converting a script into a function is usually fairly simple. To convert a script
to a function, simply add a function line at the top of the MATLAB file.

Running this script MATLAB file from a MATLAB session creates variables m
and t in your MATLAB workspace browser.

11-17

11 Compiler Commands

If desired, convert this script MATLAB file into a function MATLAB file by
simply adding a function header line.

function houdini(sz)
m = magic(sz); % Assign magic square to m.
t = m .^ 3; % Cube each element of m.
disp(t) % Display the value of t.

MATLAB Compiler can now compile houdini.m. However, because this
makes houdini a function, running the function no longer creates variables
m and t in the MATLAB workspace browser. If it is important to have m
and t accessible from the MATLAB workspace browser, you can change the
beginning of the function to

function [m,t] = houdini(sz)

The function now returns the values of m and t to its caller.

Including Script Files in Deployed Applications
Compiled applications consist of two layers of MATLAB files. The top layer is
the interface layer and consists of those functions that are directly accessible
from C or C++.

In standalone applications, the interface layer consists of only the main
MATLAB file. In libraries, the interface layer consists of the MATLAB files
specified on the mcc command line.

The second layer of MATLAB files in compiled applications includes those
MATLAB files that are called by the functions in the top layer. You can
include scripts in the second layer, but not in the top layer.

For example, you can produce an application from the houdini.m script
MATLAB file by writing a new MATLAB function that calls the script, rather
than converting the script into a function.

function houdini_fcn
houdini;

11-18

Script Files

To produce the houdini_fcn , which will call the houdini.m script MATLAB
file, use

mcc -m houdini_fcn

11-19

11 Compiler Commands

Compiler Tips

In this section...

“Calling a Function from the Command Line” on page 11-20

“Using winopen in a Deployed Application” on page 11-21

“Using MAT-Files in Deployed Applications” on page 11-21

“Compiling a GUI That Contains an ActiveX Control” on page 11-21

“Debugging MATLAB® Compiler™ Generated Executables” on page 11-22

“Deploying Applications That Call the Java Native Libraries” on page 11-22

“Locating .fig Files in Deployed Applications” on page 11-22

“Terminating Figures by Force In a Standalone Application” on page 11-23

“Passing Arguments to and from a Standalone Application” on page 11-23

“Using Graphical Applications in Shared Library Targets” on page 11-25

“Using the VER Function in a Compiled MATLAB Application” on page
11-25

Calling a Function from the Command Line
You can make a MATLAB function into a standalone that is directly callable
from the system command line. All the arguments passed to the MATLAB
function from the system command line are strings. Two techniques to work
with these functions are:

• Modify the original MATLAB function to test each argument and convert
the strings to numbers.

• Write a wrapper MATLAB function that does this test and then calls the
original MATLAB function.

For example:

function x=foo(a, b)
if (ischar(a)), a = str2num(a), end;
if (ischar(b)), b = str2num(b), end;

11-20

Compiler Tips

% The rest of your MATLAB code here...

You only do this if your function expects numeric input. If your function
expects strings, there is nothing to do because that’s the default from the
command line.

Using winopen in a Deployed Application
winopen is a function that depends closely on a computer’s underlying file
system. You need to specify a path to the file you want to open, either
absolute or relative.

When using winopen in deployed mode:

1 Verify that the file being passed to the command exists on the MATLAB
path.

2 Use the which command to return an absolute path to the file.

3 Pass the path to winopen.

Using MAT-Files in Deployed Applications
To use a MAT-file in a deployed application, use the MATLAB Compiler -a
option to include the file in the CTF archive. For more information on the -a
option, see “-a Add to Archive” on page 17-25.

Compiling a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX components, GUIDE creates a
file in the current folder for each such component. The file name consists of
the name of the GUI followed by an underscore (_) and activexn, where n
is a sequence number. For example, if the GUI is named ActiveXcontrol
then the file name would be ActiveXcontrol_activex1. The file name does
not have an extension.

If you use MATLAB Compiler mcc command to compile a GUIDE-created
GUI that contains an ActiveX component, you must use the -a option to add
the ActiveX control files that GUIDE saved in the current folder to the CTF
archive. Your command should be similar to

11-21

11 Compiler Commands

mcc -m mygui -a mygui_activex1

where mygui_activex1 is the name of the file. If you have more than one
such file, use a separate -a option for each file.

Debugging MATLAB Compiler Generated Executables
As of MATLAB Compiler 4, it is no longer possible to debug your entire
program using a C/C++ debugger; most of the application is MATLAB code,
which can only be debugged in MATLAB. Instead, run your code in MATLAB
and verify that it produces the desired results. Then you can compile it. The
compiled code will produce the same results.

Deploying Applications That Call the Java Native
Libraries
If your application interacts with Java, you need to specify the search path for
native method libraries by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from
matlabroot/toolbox/local/librarypath.txt.

2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MCR library archive
files are installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library
that your application’s Java code needs to load.

Locating .fig Files in Deployed Applications
MATLAB Compiler locates .fig files automatically when there is a MATLAB
file with the same name as the .fig file in the same folder. If the .fig file
does not follow this rule, it must be added with the -a option.

11-22

Compiler Tips

Terminating Figures by Force In a Standalone
Application
The purpose of mclWaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated MATLAB code are
displayed. mclWaitForFiguresToDie takes no arguments. Your application
can call mclWaitForFiguresToDie any time during execution. Typically you
use mclWaitForFiguresToDie when:

• There are one or more figures you want to remain open.

• The function that displays the graphics requires user input before
continuing.

• The function that calls the figures was called from main() in a console
program.

When mclWaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Both MATLAB Builder NE and MATLAB Builder JA use
mclWaitForFiguresToDie through the use of wrapper methods. See “Blocking
Execution of a Console Application That Creates Figures” in the MATLAB
Builder NE User’s Guide and “Blocking Execution of a Console Application
that Creates Figures” in the MATLAB Builder JA User’s Guide for more
details and code fragment examples.

Caution Use caution when calling the mclWaitForFiguresToDie function.
Calling this function from an interactive program like Excel can hang the
application. This function should be called only from console-based programs.

Passing Arguments to and from a Standalone
Application
To pass input arguments to a MATLAB Compiler generated standalone
application, you pass them just as you would to any console-based application.
For example, to pass a file called helpfile to the compiled function called
filename, use

filename helpfile

11-23

11 Compiler Commands

To pass numbers or letters (e.g., 1, 2, and 3), use

filename 1 2 3

Do not separate the arguments with commas.

To pass matrices as input, use

filename "[1 2 3]" "[4 5 6]"

You have to use the double quotes around the input arguments if there is
a space in it. The calling syntax is similar to the dos command. For more
information, see the MATLAB dos command.

The things you should keep in mind for your MATLAB file before you compile
are:

• The input arguments you pass to your application from a system prompt
are considered as string input. If, in your MATLAB code before compilation,
you are expecting the data in different format, say double, you will need to
convert the string input to the required format. For example, you can use
str2num to convert the string input to numerical data. You can determine
at run time whether or not to do this by using the isdeployed function. If
your MATLAB file expects numeric inputs in MATLAB, the code can check
whether it is being run as a standalone application. For example:

function myfun (n1, n2)
if (isdeployed)
n1 = str2num(n1);
n2 = str2num(n2);

end

• You cannot return back values from your standalone application to the user.
The only way to return values from compiled code is to either display it on
the screen or store it in a file. To display your data on the screen, you either
need to unsuppress (do not use semicolons) the commands whose results
yield data you want to return to the screen or, use the disp command to
display the value. You can then redirect these outputs to other applications
using output redirection (> operator) or pipes (only on UNIX systems).

11-24

Compiler Tips

Passing Arguments to a Double-Clickable Application
On Windows, if you want to run the standalone application by double-clicking
it, you can create a batch file that calls this standalone application with the
specified input arguments. Here is an example of the batch file:

rem main.bat file that calls sub.exe with input parameters
sub "[1 2 3]" "[4 5 6]"
@echo off
pause

The last two lines of code keep your output on the screen until you press a
key. If you save this file as main.bat, you can run your code with the specified
arguments by double-clicking the main.bat icon.

Using Graphical Applications in Shared Library
Targets
When deploying a GUI as a shared library to a C/C++ application, use
mclWaitForFiguresToDie to display the GUI until it is explicitly terminated.

Using the VER Function in a Compiled MATLAB
Application
When you use the VER function in a compiled MATLAB application, it will
perform with the same functionality as if you had called it from MATLAB.
However, be aware that when using VER in a compiled MATLAB application,
only version information for toolboxes which the compiled application uses
will be displayed.

11-25

11 Compiler Commands

11-26

12

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build
standalone applications. You can distribute standalone applications to users
who do not have MATLAB software on their systems.

• “Introduction” on page 12-2

• “Deploying Standalone Applications” on page 12-3

12 Standalone Applications

Introduction
Suppose you want to create an application that calculates the rank of a
large magic square. One way to create this application is to code the whole
application in C or C++; however, this would require writing your own magic
square, rank, and singular value routines. An easier way to create this
application is to write it as one or more MATLAB files, taking advantage of
the power of MATLAB and its tools.

You can create MATLAB applications that take advantage of the
mathematical functions of MATLAB, yet do not require that end users own
MATLAB. Standalone applications are a convenient way to package the power
of MATLAB and to distribute a customized application to your users.

The source code for standalone applications consists either entirely of
MATLAB files or some combination of MATLAB files and MEX-files.

MATLAB Compiler takes your MATLAB files and generates a standalone
executable that allows your MATLAB application to be invoked from outside
of interactive MATLAB.

You can call MEX-files from MATLAB Compiler generated standalone
applications. The MEX-files will then be loaded and called by the standalone
code.

12-2

Deploying Standalone Applications

Deploying Standalone Applications

In this section...

“Compiling the Application” on page 12-3

“Testing the Application” on page 12-3

“Deploying the Application” on page 12-4

“Running the Application” on page 12-6

Compiling the Application
This example takes a MATLAB file, magicsquare.m, and creates a standalone
application, magicsquare.

1 Copy the file magicsquare.m from

matlabroot\extern\examples\compiler

to your work folder.

2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone
application. The -v option (verbose) displays the compilation steps
throughout the process and helps identify other useful information such
as which third-party compiler is used and what environment variables
are referenced.

This command creates the standalone application called magicsquare and
additional files. The Windows platform appends the .exe extension to
the name. See the table in “Standalone Executable” on page 8-2 for the
complete list of files created.

Testing the Application
These steps test your standalone application on your development machine.

12-3

12 Standalone Applications

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 Update your path as described in “MCR Path Settings for Run-time
Deployment” on page 16-4

2 Run the standalone application from the system prompt (shell prompt on
UNIX or DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to
any target machine that has the same operating system as the machine on
which the application was compiled.

For example, if you want to deploy an application to a Windows machine, you
must use MATLAB Compiler to build the application on a Windows machine.
If you want to deploy the same application to a UNIX machine, you must use
MATLAB Compiler on the same UNIX platform and completely rebuild the
application. To deploy an application to multiple platforms requires MATLAB
and MATLAB Compiler licenses on all the desired platforms.

12-4

Deploying Standalone Applications

Windows
Gather and package the following files and distribute them to the deployment
machine.

Component Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that must
correspond to the end user’s platform. Run
the mcrinstaller command to obtain name of
executable.

magicsquare Application; magicsquare.exe for Windows

UNIX
Distribute and package your standalone application on UNIX by packaging
the following files and distributing them to the deployment machine.

Component Description

MCR Installer MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to
the end user’s platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

Maci64
Distribute and package your standalone application on 64-bit Macintosh by
copying, tarring, or zipping as described in the following table.

12-5

12 Standalone Applications

Component Description

MCR Installer MATLAB Compiler Runtime library archive;
platform-dependent file that must correspond to
the end user’s platform. Run the mcrinstaller
command to obtain name of the binary.

magicsquare Application

magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo

• Distribute by tarring:

tar -cvf myapp.tar myapp.app
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ..\myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run
the application on their machines.

Preparing Your Machines
Install the MCR by running the mcrinstaller command to obtain name of
the executable or binary. For more information on running the MCR Installer
utility and modifying your system paths, see “Distributing MATLAB Code
Using the MATLAB Compiler Runtime (MCR)” on page 10-2.

12-6

Deploying Standalone Applications

Executing the Application
Run the magicsquare standalone application from the system prompt and
provide a number representing the size of the desired magic square, for
example, 4.

magicsquare 4

The results are displayed as:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as
string input and you need to consider that in your application. For more
information, see “Passing Arguments to and from a Standalone Application”
on page 11-23.

Note Before executing your MATLAB Compiler generated executable, set
the LD_PRELOAD environment variable to \lib\libgcc_s.so.1.

Executing the Application on 64-Bit Macintosh (Maci64). For 64-bit
Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

12-7

12 Standalone Applications

12-8

13

Libraries

This chapter describes how to use MATLAB Compiler to create libraries.

• “Introduction” on page 13-2

• “Addressing mwArrays Above the 2 GB Limit” on page 13-3

• “Integrate C Shared Libraries” on page 13-4

• “Integrate C++ Shared Libraries” on page 13-18

• “Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code” on
page 13-23

• “About Memory Management and Cleanup” on page 13-35

13 Libraries

Introduction
You can use MATLAB Compiler to create C or C++ shared libraries (DLLs on
Microsoft Windows) from your MATLAB algorithms. You can then write C
or C++ programs that can call the MATLAB functions in the shared library,
much like calling the functions from the MATLAB command line.

13-2

Addressing mwArrays Above the 2 GB Limit

Addressing mwArrays Above the 2 GB Limit
In R2007b, you had to define MX_COMPAT_32_OFF in the mbuild step to address
MWArrays above the 2 GB limit on 64-bit architectures. If you did not define
MX_COMPAT_32_OFF, the compile time variable MX_COMPAT_32 was defined for
you, limiting you to using smaller arrays on all architectures.

In R2008a, the default definition of MX_COMPAT_32 was removed, and large
array support is now the default for both C and C++ code. This default
may, in some cases, cause compiler warnings and errors. You can define
MX_COMPAT_32 in your mbuild step to return to the previously default
behavior.

Code compiled with MX_COMPAT_32 is not 64-bit aware. In addition,
MX_COMPAT_32 controls the behavior of some type definitions. For instance,
when MX_COMPAT_32 is defined, mwSize and mwIndex are defined to ints.
When MX_COMPAT_32 is not defined, mwSize and mwIndex are defined to
size_t. This can lead to compiler warnings and errors with respect to signed
and unsigned mismatches.

In R2008b, all support for MX_COMPAT_32 was removed.

See Appendix D, “C++ Utility Library Reference”, for detailed changes to
mwArray classes and method signatures.

13-3

13 Libraries

Integrate C Shared Libraries

In this section...

“C Shared Library Wrapper” on page 13-4

“C Shared Library Example” on page 13-4

“Calling a Shared Library” on page 13-12

“Using C Shared Libraries On a Mac OS X System” on page 13-17

C Shared Library Wrapper
The C library wrapper option allows you to create a shared library from
an arbitrary set of MATLAB files on both Microsoft Windows and UNIX
operating systems. MATLAB Compiler generates a wrapper file, a header file,
and an export list. The header file contains all of the entry points for all of the
compiled MATLAB functions. The export list contains the set of symbols that
are exported from a C shared library.

Note Even if you are not producing a shared library, you must use -W lib
or -W cpplib when including any MATLAB Compiler generated code into
a larger application.

C Shared Library Example
This example takes several MATLAB files and creates a C shared library. It
also includes a standalone driver application to call the shared library.

Building the Shared Library

1 Copy the following files from matlabroot\extern\examples\compiler to
your work directory:

matlabroot\extern\examples\compiler\addmatrix.m
matlabroot\extern\examples\compiler\multiplymatrix.m
matlabroot\extern\examples\compiler\eigmatrix.m
matlabroot\extern\examples\compiler\matrixdriver.c

13-4

Integrate C Shared Libraries

Note matrixdriver.c contains the standalone application’s main function.

2 To create the shared library, enter the following command on a single line:

mcc -B csharedlib:libmatrix addmatrix.m multiplymatrix.m
eigmatrix.m -v

The -B csharedlib option is a bundle option that expands into

-W lib:<libname> -T link:lib

The -W lib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it libname. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later on.

Writing a Driver Application for a Shared Library

Note You must call mclInitializeApplication once at the beginning of
your driver application, before calling any other MathWorks functions (for
example, before accessing an MWArray). See “Calling a Shared Library” on
page 13-12 for complete details on using a MATLAB Compiler generated
library in your application.

You can use your operating system’s loadlibrary (the Windows loadlibrary
function, for example) to call a MATLAB Compiler shared library function
as long as you first call the initialization and termination functions
mclInitializeApplication() and mclTerminateApplication().

All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

13-5

13 Libraries

Caution Avoid issuing cd commands from the driver application prior to
calling mclInitializeApplication. Failure to do so can cause a failure in
MCR initialization.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

Note If your driver application displays MATLAB figure windows, you
should include a call to mclWaitForFiguresToDie(NULL) before calling
the Terminate functions and mclTerminateApplication in the following
two steps.

5 Call, once for each library, <lib>Terminate, to destroy the associated MCR.

Caution <lib>Terminate will bring down enough of the MCR address
space that the same library (or any other library) cannot be initialized.
Issuing a <lib>Initialize call after a <lib>Terminate call causes
unpredictable results. Instead, use the following structure:

...code...
mclInitializeApplication();
lib1Initialize();
lib2Initialize();

lib1Terminate();
lib2Terminate();
mclTerminateApplication();
...code...

13-6

Integrate C Shared Libraries

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

This example uses matrixdriver.c as the driver application.

How the mclmcrrt Proxy Layer Handles Loading of Libraries. All
application and software components generated by MATLAB Compiler and
the associated builder products need to link against only one MathWorks
library, mclmcrrt. This library provides a proxy API for all the public
functions in MATLAB libraries used for matrix operations, MAT-file access,
utility and memory management, and application runtime. The mclmcrrt
library lies between deployed components and these other version-dependent
libraries, providing the following functionality:

• Ensures that multiple versions of the MATLAB Compiler Runtime can
coexist

• Provides a layer of indirection

• Ensures applications are thread-safe

• Loads the dependent (re-exported) libraries dynamically

The relationship between mclmcrrt and other MATLAB libraries is shown in
the following figure.

13-7

13 Libraries

The MCLMCRRT Proxy Layer

In the figure, solid arrows designate static linking and dotted arrows
designate dynamic linking. The figure illustrates how the mclmcrrt library
layer sits above the mclmcr and mcr libraries. The mclmcr library contains
the run-time functionality of the deployed components. The mcr module
ensures each deployed component runs in its own context at runtime. The
mclmcrrt proxy layer, in addition to loading the mclmcr, also dynamically
loads the MX and MAT modules, primarily for mxArray manipulation. For more
information, see the MathWorks Support database and search for information
on the MSVC shared library.

Caution Deployed applications must only link to the mclmcrrt proxy
layer library (mclmcrrt.lib on Windows, mclmcrrt.so on Linux, and
mclmcrrt.dylib on Macintosh). Do not link to the other libraries shown in
the figure, such as mclmcr, libmx, and so on.

13-8

http://www.mathworks.com/support/solutions/

Integrate C Shared Libraries

Compiling the Driver Application
To compile the driver code, matrixdriver.c, you use your C/C++ compiler.
Execute the following mbuild command that corresponds to your development
platform. This command uses your C/C++ compiler to compile the code.

mbuild matrixdriver.c libmatrix.lib (Windows)
mbuild matrixdriver.c -L. -lmatrix -I. (UNIX)

Note This command assumes that the shared library and the corresponding
header file created from step 2 are in the current working directory.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

On Windows, if this is not the case, specify the full path to libmatrix.lib,
and use a -I option to specify the directory containing the header file.

This generates a standalone application, matrixdriver.exe, on Windows,
and matrixdriver, on UNIX.

Difference in the Exported Function Signature. The interface to the mlf
functions generated by MATLAB Compiler from your MATLAB file routines
has changed from earlier versions of the product. The generic signature of
the exported mlf functions is

• MATLAB functions with no return values

bool MW_CALL_CONV mlf<function-name>
(<list_of_input_variables>);

• MATLAB functions with at least one return value

bool MW_CALL_CONV
mlf<function-name>(int number_of_return_values,

<list_of_pointers_to_return_variables>,
<list_of_input_variables>);

13-9

13 Libraries

Refer to the header file generated for your library for the exact signature of
the exported function. For example, in the library created in the previous
section, the signature of the exported addmatrix function is

void mlfAddmatrix(int nlhs,mxArray **a,mxArray *a1,mxArray *a2);

Testing the Driver Application
These steps test your standalone driver application and shared library on
your development machine.

Note Testing your application on your development machine is an important
step to help ensure that your application is compilable. To verify that your
application compiled properly, you must test all functionality that is available
with the application. If you receive an error message similar to Undefined
function or Attempt to execute script script_name as a function, it
is likely that the application will not run properly on deployment machines.
Most likely, your CTF archive is missing some necessary functions. Use -a to
add the missing functions to the archive and recompile your code.

1 To run the standalone application, add the directory containing the shared
library that was created in step 2 in “Building the Shared Library” on page
13-4 to your dynamic library path.

2 Update the path for your platform by following the instructions in “MCR
Path Settings for Development and Testing” on page 16-2.

3 Run the driver application from the prompt (DOS prompt on Windows,
shell prompt on UNIX) by typing the application name.

matrixdriver.exe (On Windows)
matrixdriver (On UNIX)
matrixdriver.app/Contents/MacOS/matrixdriver (On Maci64)

The results are displayed as

The value of added matrix is:
2.00 8.00 14.00
4.00 10.00 16.00

13-10

Integrate C Shared Libraries

6.00 12.00 18.00

The value of the multiplied matrix is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the first matrix are:
16.12 -1.12 -0.00

Deploying Standalone Applications That Call MATLAB Compiler
Based Shared Libraries
Gather and package the following files and distribute them to the deployment
machine.

Component Description

MCR Installer Self-extracting MATLAB Compiler Runtime
library utility; platform-dependent file that
must correspond to the end user’s platform.
Run the mcrinstaller command to obtain
name of executable.

matrixdriver Application; matrixdriver.exe for Windows

matrixdriver.app for Mac OS X (bundle
directory structure must be deployed)

libmatrix Shared library; extension varies by platform.
Extensions are:

• Windows — .dll

• Linux, Linux x86-64 — .so

• Mac OS X — .dylib

13-11

13 Libraries

Note You can distribute a MATLAB Compiler generated standalone
application to any target machine that has the same operating system as the
machine on which the application was compiled. If you want to deploy the
same application to a different platform, you must use MATLAB Compiler on
the different platform and completely rebuild the application.

Deploying Shared Libraries to Be Used with Other Projects
To distribute the shared library for use with an external application, you need
to distribute the following.

Component Description

MCR Installer (Windows) Self-extracting MATLAB Compiler
Runtime library utility; platform-dependent file
that must correspond to the end user’s platform.
Run the mcrinstaller command to obtain name
of executable.

libmatrix Shared library; extension varies by platform, for
example, DLL on Windows

libmatrix.h Library header file

Calling a Shared Library
At runtime, there is an MCR instance associated with each individual
shared library. Consequently, if an application links against two MATLAB
Compiler generated shared libraries, there will be two MCR instances created
at runtime.

You can control the behavior of each MCR instance by using MCR options.
The two classes of MCR options are global and local. Global MCR options are
identical for each MCR instance in an application. Local MCR options may
differ for MCR instances.

To use a shared library, you must use these functions:

• mclInitializeApplication

13-12

Integrate C Shared Libraries

• mclTerminateApplication

Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication
mclInitializeApplication allows you to set the global MCR options. They
apply equally to all MCR instances. You must set these options before
creating your first MCR instance.

These functions are necessary because some MCR options such as whether
or not to start Java, whether or not to use the MATLAB JIT feature, and so
on, are set when the first MCR instance starts and cannot be changed by
subsequent instances of the MCR.

Caution You must call mclInitializeApplication once at the beginning
of your driver application. You must make this call before calling any other
MathWorks functions. This also applies to shared libraries. Avoid calling
mclInitializeApplication multiple times in an application as it will cause
the application to hang.

After you call mclTerminateApplication, you may not call
mclInitializeApplication again. No MathWorks functions may be called
after mclTerminateApplication.

Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MCR
initialization.

The function signatures are

bool mclInitializeApplication(const char **options, int count);
bool mclTerminateApplication(void);

mclInitializeApplication. Takes an array of strings (options) that you set
(the same options that can be provided to mcc via the -R option) and a count
of the number of options (the length of the option array). Returns true for
success and false for failure.

13-13

13 Libraries

mclTerminateApplication. Takes no arguments and can only be called
after all MCR instances have been destroyed. Returns true for success and
false for failure.

The following code example is from matrixdriver.c:

int main(){

mxArray *in1, *in2; /* Define input parameters */
mxArray *out = NULL;/* and output parameters to pass to

the library functions */

double data[] = {1,2,3,4,5,6,7,8,9};

/* Call library initialization routine and make sure that
the library was initialized properly */

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){

fprintf(stderr,"could not initialize the library
properly\n");

return -1;
}

/* Create the input data */
in1 = mxCreateDoubleMatrix(3,3,mxREAL);
in2 = mxCreateDoubleMatrix(3,3,mxREAL);
memcpy(mxGetPr(in1), data, 9*sizeof(double));
memcpy(mxGetPr(in2), data, 9*sizeof(double));

/* Call the library function */
mlfAddmatrix(1, &out, in1, in2);
/* Display the return value of the library function */
printf("The value of added matrix is:\n");
display(out);
/* Destroy return value since this variable will be reused

in next function call. Since we are going to reuse the
variable, we have to set it to NULL. Refer to MATLAB
Compiler documentation for more information on this. */

mxDestroyArray(out); out=0;
mlfMultiplymatrix(1, &out, in1, in2);

13-14

Integrate C Shared Libraries

printf("The value of the multiplied matrix is:\n");
display(out);
mxDestroyArray(out); out=0;
mlfEigmatrix(1, &out, in1);
printf("The Eigen value of the first matrix is:\n");
display(out);
mxDestroyArray(out); out=0;

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return 0;

}

Caution mclInitializeApplication can only be called once per
application. Calling it a second time generates an error, and will cause the
function to return false. This function must be called before calling any C
MEX function or MAT-file API function.

Using a Shared Library
To use a MATLAB Compiler generated shared library in your application,
you must perform the following steps:

1 Include the generated header file for each library in your application. Each
MATLAB Compiler generated shared library has an associated header file
named libname.h, where libname is the library’s name that was passed in
on the command line when the library was compiled.

2 Initialize the MATLAB libraries by calling the mclInitializeApplication
API function. You must call this function once per application, and it must
be called before calling any other MATLAB API functions, such as C-MEX
functions or C MAT-file functions. mclInitializeApplication must be
called before calling any functions in a MATLAB Compiler generated

13-15

13 Libraries

shared library. You may optionally pass in application-level options to this
function. mclInitializeApplication returns a Boolean status code. A
return value of true indicates successful initialization, and false indicates
failure.

3 For each MATLAB Compiler generated shared library that you include in
your application, call the library’s initialization function. This function
performs several library-local initializations, such as unpacking the CTF
archive, and starting an MCR instance with the necessary information to
execute the code in that archive. The library initialization function will be
named libnameInitialize(), where libname is the library’s name that
was passed in on the command line when the library was compiled. This
function returns a Boolean status code. A return value of true indicates
successful initialization, and false indicates failure.

Note On Windows, if you want to have your shared library call a
MATLAB shared library (as generated by MATLAB Compiler), the
MATLAB library initialization function (e.g., <libname>Initialize,
<libname>Terminate, mclInitialize, mclTerminate) cannot be called
from your shared library during the DllMain(DLL_ATTACH_PROCESS) call.
This applies whether the intermediate shared library is implicitly or
explicitly loaded. You must place the call somewhere after DllMain().

4 Call the exported functions of each library as needed. Use the C MEX API
to process input and output arguments for these functions.

5 When your application no longer needs a given library, call the library’s
termination function. This function frees the resources associated with
its MCR instance. The library termination function will be named
<libname>Terminate(), where <libname> is the library’s name that was
passed in on the command line when the library was compiled. Once a
library has been terminated, that library’s exported functions should not
be called again in the application.

6 When your application no longer needs to call any MATLAB Compiler
generated libraries, call the mclTerminateApplication API function. This
function frees application-level resources used by the MCR. Once you call

13-16

Integrate C Shared Libraries

this function, no further calls can be made to MATLAB Compiler generated
libraries in the application.

Restrictions When using MATLAB Function loadlibrary
You can not use the MATLAB function loadlibrary inside of MATLAB to
load a C shared library built with MATLAB Compiler.

For more information about using loadlibrary, see “Load MATLAB Libraries
using loadlibrary” on page 7-16.

Using C Shared Libraries On a Mac OS X System
For information on using C shared libraries on a Macintosh system, see
“Using C/C++ Shared Libraries on a Mac OS X System” on page 13-21.

13-17

13 Libraries

Integrate C++ Shared Libraries

In this section...

“C++ Shared Library Wrapper” on page 13-18

“C++ Shared Library Example” on page 13-18

C++ Shared Library Wrapper
The C++ library wrapper option allows you to create a shared library from
an arbitrary set of MATLAB files. MATLAB Compiler generates a wrapper
file and a header file. The header file contains all of the entry points for all
of the compiled MATLAB functions.

C++ Shared Library Example
This example rewrites the previous C shared library example using C++. The
procedure for creating a C++ shared library from MATLAB files is identical
to the procedure for creating a C shared library, except you use the cpplib
wrapper. Enter the following command on a single line:

mcc -W cpplib:libmatrixp -T link:lib addmatrix.m multiplymatrix.m eigmatrix.m -v

The -W cpplib:<libname> option tells MATLAB Compiler to generate a
function wrapper for a shared library and call it <libname>. The -T link:lib
option specifies the target output as a shared library. Note the directory
where the product puts the shared library because you will need it later.

Writing the Driver Application

Note Due to name mangling in C++, you must compile your driver application
with the same version of your third-party compiler that you use to compile
your C++ shared library.

In the C++ version of the matrixdriver application matrixdriver.cpp,
arrays are represented by objects of the class mwArray. Every mwArray class
object contains a pointer to a MATLAB array structure. For this reason, the
attributes of an mwArray object are a superset of the attributes of a MATLAB

13-18

Integrate C++ Shared Libraries

array. Every MATLAB array contains information about the size and shape
of the array (i.e., the number of rows, columns, and pages) and either one or
two arrays of data. The first array stores the real part of the array data and
the second array stores the imaginary part. For arrays with no imaginary
part, the second array is not present. The data in the array is arranged in
column-major, rather than row-major, order.

Caution Avoid issuing cd commands from the driver application prior to
calling mclInitializeApplication. Failure to do so can cause a failure
in MCR initialization.

Caution to Mac users: when running the matrixdriver example, invoke
mclInitializeApplication prior to mclRunMain.

For information about how the compiler uses a proxy layer for the libraries
that an application must link, see “How the mclmcrrt Proxy Layer Handles
Loading of Libraries” on page 13-7.

Compiling the Driver Application
To compile the matrixdriver.cpp driver code, you use your C++ compiler.
By executing the following mbuild command that corresponds to your
development platform, you will use your C++ compiler to compile the code.

mbuild matrixdriver.cpp libmatrixp.lib (Windows)
mbuild matrixdriver.cpp -L. -lmatrixp -I. (UNIX)

13-19

13 Libraries

Note This command assumes that the shared library and the corresponding
header file are in the current working directory.

On Windows, if this is not the case, specify the full path to libmatrixp.lib,
and use a -I option to specify the directory containing the header file.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I
options with the name of the directory that contains these files, respectively.

Incorporating a C++ Shared Library into an Application
To incorporate a C++ shared library into your application, you will, in general,
follow the steps in “Using a Shared Library” on page 13-15. There are two
main differences to note when using a C++ shared library:

• Interface functions use the mwArray type to pass arguments, rather than
the mxArray type used with C shared libraries.

• C++ exceptions are used to report errors to the caller. Therefore, all calls
must be wrapped in a try-catch block.

Exported Function Signature
The C++ shared library target generates two sets of interfaces for each
MATLAB function. The first set of exported interfaces is identical to the
mlx signatures that are generated in C shared libraries. The second set
of interfaces is the C++ function interfaces. The generic signature of the
exported C++ functions is as follows:

MATLAB Functions with No Return Values.

bool MW_CALL_CONV <function-name>(<mwArray_lists>);

MATLAB Functions with at Least One Return Value.

bool MW_CALL_CONV <function-name>(int <number_of_return_values>,
<mxArray_pointers>, <mwArray_lists>);

13-20

Integrate C++ Shared Libraries

In this case, mwArray_lists represents a comma-separated list of type const
mwArray& and mxArray_pointers represents a comma-separated list of
pointers of type mwArray&. For example, in the libmatrix library, the C++
interfaces to the addmatrix MATLAB function is generated as:

void addmatrix(int nargout, mwArray& a , const mwArray& a1,
const mwArray& a2);

Error Handling
C++ interface functions handle errors during execution by throwing a C++
exception. Use the mwException class for this purpose. Your application can
catch mwExceptions and query the what() method to get the error message.
To correctly handle errors when calling the C++ interface functions, wrap
each call inside a try-catch block.

try
{

...
(call function)
...

}
catch (const mwException& e)
{

...
(handle error)
...

}

The matrixdriver.cpp application illustrates the typical way to handle
errors when calling the C++ interface functions.

Using C/C++ Shared Libraries on a Mac OS X System
To use a MATLAB Compiler generated library on a Mac OS X system, a
separate thread needs to be created.

The initialization of the shared library and subsequent calls to that library’s
functions is performed by this thread. The function mclRunMain, provided by
MATLAB Compiler, takes care of the thread creation process.

13-21

13 Libraries

The main thread of the application is the thread that calls your driver
program’s main() function. The body of your main() function should call
the mclRunMain function, passing to it the address of another function. This
function should contain the library initialization routines and necessary calls
to the shared library generated by MATLAB Compiler.

The matrixdriver.c example illustrates this procedure. This example
rewrites the C shared library example from this chapter for use on Mac OS
X. Follow the same procedure as in “C Shared Library Example” on page
13-4 to build and run this application.

The Mac version of the matrixdriver application differs from the version
on other platforms. The run_main() function performs the basic tasks of
initialization, calling the library’s functions, and termination. Compare this
function with the matrixdriver main() function on other platforms, listed in
the earlier example.

Working with C++ Shared Libraries and Sparse Arrays
The MATLAB Compiler API includes static factory methods for working with
sparse arrays.

For a complete list of the methods, see “C++ Utility Classes” on page D-4.

13-22

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Call MATLAB Compiler API Functions (mcl*) from C/C++
Code

In this section...

“Functions in the Shared Library” on page 13-23

“Type of Application” on page 13-23

“Structure of Programs That Call Shared Libraries” on page 13-25

“Library Initialization and Termination Functions” on page 13-26

“Print and Error Handling Functions” on page 13-27

“Functions Generated from MATLAB Files” on page 13-29

“Retrieving MCR State Information While Using Shared Libraries” on
page 13-34

Functions in the Shared Library
A shared library generated by MATLAB Compiler contains at least seven
functions. There are three generated functions to manage library initialization
and termination, one each for printed output and error messages, and two
generated functions for each MATLAB file compiled into the library.

To generate the functions described in this section, first copy
sierpinski.m, main_for_lib.c, main_for_lib.h, and triangle.c from
matlabroot\extern\examples\compiler into your directory, and then
execute the appropriate MATLAB Compiler command.

Type of Application

For a C Application on Windows

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c libtriangle.lib

13-23

13 Libraries

For a C Application on UNIX

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c -L. -ltriangle -I.

For a C++ Application on Windows

mcc -W cpplib:libtrianglep -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c libtrianglep.lib

For a C++ Application on UNIX

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c -L. -ltriangle -I.

These commands create a main program named triangle, and a shared
library named libtriangle. The library exports a single function that uses
a simple iterative algorithm (contained in sierpinski.m) to generate the
fractal known as Sierpinski’s Triangle. The main program in triangle.c
or triangle.cpp can optionally take a single numeric argument, which, if
present, specifies the number of points used to generate the fractal. For
example, triangle 8000 generates a diagram with 8,000 points.

13-24

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

In this example, MATLAB Compiler places all of the generated functions into
the generated file libtriangle.c or libtriangle.cpp.

Structure of Programs That Call Shared Libraries
All programs that call MATLAB Compiler generated shared libraries have
roughly the same structure:

1 Declare variables and process/validate input arguments.

2 Call mclInitializeApplication, and test for success. This function sets
up the global MCR state and enables the construction of MCR instances.

3 Call, once for each library, <libraryname>Initialize, to create the MCR
instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main
body of the program.)

13-25

13 Libraries

5 Call, once for each library, <libraryname>Terminate, to destroy the
associated MCR.

6 Call mclTerminateApplication to free resources associated with the
global MCR state.

7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this
example, triangle.c.

Library Initialization and Termination Functions
The library initialization and termination functions create and destroy,
respectively, the MCR instance required by the shared library. You must call
the initialization function before you invoke any of the other functions in the
shared library, and you should call the termination function after you are
finished making calls into the shared library (or you risk leaking memory).

There are two forms of the initialization function and one type of termination
function. The simpler of the two initialization functions takes no arguments;
most likely this is the version your application will call. In this example, this
form of the initialization function is called libtriangleInitialize.

bool libtriangleInitialize(void)

This function creates an MCR instance using the default print and error
handlers, and other information generated during the compilation process.

However, if you want more control over how printed output and error
messages are handled, you may call the second form of the function, which
takes two arguments.

bool libtriangleInitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler

)

By calling this function, you can provide your own versions of the print
and error handling routines called by the MCR. Each of these routines has
the same signature (for complete details, see “Print and Error Handling

13-26

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Functions” on page 13-27). By overriding the defaults, you can control how
output is displayed and, for example, whether or not it goes into a log file.

Note Before calling either form of the library initialization routine, you must
first call mclInitializeApplication to set up the global MCR state. See
“Calling a Shared Library” on page 13-12 for more information.

On Microsoft Windows platforms, MATLAB Compiler generates an additional
initialization function, the standard Microsoft DLL initialization function
DllMain.

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
void *pv)

The generated DllMain performs a very important service; it locates the
directory in which the shared library is stored on disk. This information is
used to find the CTF archive, without which the application will not run.
If you modify the generated DllMain (not recommended), make sure you
preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling
mclTerminateApplication.

Print and Error Handling Functions
By default, MATLAB Compiler generated applications and shared libraries
send printed output to standard output and error messages to standard error.
MATLAB Compiler generates a default print handler and a default error
handler that implement this policy. If you’d like to change this behavior,
you must write your own error and print handlers and pass them in to the
appropriate generated initialization function.

You may replace either, both, or neither of these two functions. The MCR
sends all regular output through the print handler and all error output

13-27

13 Libraries

through the error handler. Therefore, if you redefine either of these functions,
the MCR will use your version of the function for all the output that falls into
class for which it invokes that handler.

The default print handler takes the following form.

static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard
output, and returns the number of characters printed. If you override or
replace this function, your version must also take a string and return the
number of characters “handled.” The MCR calls the print handler when an
executing MATLAB file makes a request for printed output, e.g., via the
MATLAB function disp. The print handler does not terminate the output
with a carriage return or line feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different.
It sends the output to the standard error output stream, but if the string does
not end with carriage return, the error handler adds one. If you replace the
default error handler with one of your own, you should perform this check as
well, or some of the error messages printed by the MCR will not be properly
formatted.

Caution The error handler, despite its name, does not handle the actual
errors, but rather the message produced after the errors have been caught
and handled inside the MCR. You cannot use this function to modify the error
handling behavior of the MCR -- use the try and catch statements in your
MATLAB files if you want to control how a MATLAB Compiler generated
application responds to an error condition.

13-28

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Note If you provide alternate C++ implementations of either
mclDefaultPrintHandler or mclDefaultErrorHandler, then functions must
be declared extern "C". For example:

extern "C" int myPrintHandler(const char *s);

Functions Generated from MATLAB Files
For each MATLAB file specified on the MATLAB Compiler command line, the
product generates two functions, the mlx function and the mlf function. Each
of these generated functions performs the same action (calls your MATLAB
file function). The two functions have different names and present different
interfaces. The name of each function is based on the name of the first
function in the MATLAB file (sierpinski, in this example); each function
begins with a different three-letter prefix.

Note For C shared libraries, MATLAB Compiler generates the mlx and
mlf functions as described in this section. For C++ shared libraries, the
product generates the mlx function the same way it does for the C shared
library. However, the product generates a modified mlf function with these
differences:

• The mlf before the function name is dropped to keep compatibility with R13.

• The arguments to the function are mwArray instead of mxArray.

mlx Interface Function
The function that begins with the prefix mlx takes the same type and number
of arguments as a MATLAB MEX-function. (See the External Interfaces
documentation for more details on MEX-functions.) The first argument, nlhs,
is the number of output arguments, and the second argument, plhs, is a
pointer to an array that the function will fill with the requested number of
return values. (The “lhs” in these argument names is short for “left-hand
side” -- the output variables in a MATLAB expression are those on the

13-29

13 Libraries

left-hand side of the assignment operator.) The third and fourth parameters
are the number of inputs and an array containing the input variables.

void mlxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[])

mlf Interface Function
The second of the generated functions begins with the prefix mlf. This
function expects its input and output arguments to be passed in as individual
variables rather than packed into arrays. If the function is capable of
producing one or more outputs, the first argument is the number of outputs
requested by the caller.

void mlfSierpinski(int nargout, mxArray** x, mxArray** y,
mxArray* iterations, mxArray* draw)

In both cases, the generated functions allocate memory for their return
values. If you do not delete this memory (via mxDestroyArray) when you are
done with the output variables, your program will leak memory.

Your program may call whichever of these functions is more convenient, as
they both invoke your MATLAB file function in an identical fashion. Most
programs will likely call the mlf form of the function to avoid managing the
extra arrays required by the mlx form. The example program in triangle.c
calls mlfSierpinski.

mlfSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, x and y, and provides
two inputs, iterations and draw.

If the output variables you pass in to an mlf function are not NULL, the mlf
function will attempt to free them using mxDestroyArray. This means that
you can reuse output variables in consecutive calls to mlf functions without
worrying about memory leaks. It also implies that you must pass either NULL
or a valid MATLAB array for all output variables or your program will fail
because the memory manager cannot distinguish between a non-initialized
(invalid) array pointer and a valid array. It will try to free a pointer that is
not NULL -- freeing an invalid pointer usually causes a segmentation fault
or similar fatal error.

13-30

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Using varargin and varargout in a MATLAB Function Interface
If your MATLAB function interface uses varargin or varargout, you must
pass them as cell arrays. For example, if you have N varargins, you need
to create one cell array of size 1-by-N. Similarly, varargouts are returned
back as one cell array. The length of the varargout is equal to the number
of return values specified in the function call minus the number of actual
variables passed. As in the MATLAB software, the cell array representing
varagout has to be the last return variable (the variable preceding the first
input variable) and the cell array representing varargins has to be the last
formal parameter to the function call.

For information on creating cell arrays, refer to the C MEX function interface
in the External Interfaces documentation.

For example, consider this MATLAB file interface:

[a,b,varargout] = myfun(x,y,z,varargin)

The corresponding C interface for this is

void mlfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
mxArray **varargout, mxArray *x, mxArray *y,
mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars
- 2), where 2 represents the two variables, a and b, being returned. Both
varargin and varargout are single row, multiple column cell arrays.

13-31

13 Libraries

Caution The C++ shared library interface does not support varargin with
zero (0) input arguments. Calling your program using an empty mwArray
results in the compiled library receiving an empty array with nargin =
1. The C shared library interface allows you to call mlfFOO(NULL) (the
compiled MATLAB code interprets this as nargin=0). However, calling
FOO((mwArray)NULL) with the C++ shared library interface causes the
compiled MATLAB code to see an empty array as the first input and
interprets nargin=1.

For example, compile some MATLAB code as a C++ shared library using
varargin as the MATLAB function’s list of input arguments. Have the
MATLAB code display the variable nargin. Call the library with function
FOO() and it won’t compile, producing this error message:

... 'FOO' : function does not take 0 arguments

Call the library as:

mwArray junk;
FOO(junk);

or

FOO((mwArray)NULL);

At runtime, nargin=1. In MATLAB, FOO() is nargin=0 and FOO([]) is
nargin=1.

C++ Interfaces for MATLAB Functions Using varargin and varargout.
The C++ mlx interface for MATLAB functions does not change even if the
functions use varargin or varargout. However, the C++ function interface
(the second set of functions) changes if the MATLAB function is using
varargin or varargout.

For examples, view the generated code for various MATLAB function
signatures that use varargin or varargout.

13-32

Call MATLAB® Compiler™ API Functions (mcl*) from C/C++ Code

Note For simplicity, only the relevant part of the generated C++ function
signature is shown in the following examples.

function varargout = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

No input no output:
void foo()

Only inputs:
void foo(const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& varargout)

Most generic form that has both inputs and outputs:
void foo(int nargout, mwArray& varargout,

const mwArray& varargin)

function varargout = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

Most generic form that has outputs and all the inputs
void foo(int nargout, mwArray& varargout, const

mwArray& i1, const
mwArray& i2, const
mwArray& varargin)

Only inputs:
void foo(const mwArray& i1,

const mwArray& i2, const mwArray& varargin)

13-33

13 Libraries

function [o1, o2, varargout] = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are
generated:

Most generic form that has all the outputs and inputs
void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout,
const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout)

function [o1, o2, varargout] = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded function is
generated:

Most generic form that has all the outputs and
all the inputs

void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout,
const mwArray& i1, const mwArray& i2,

const mwArray& varargin)

Retrieving MCR State Information While Using
Shared Libraries
When using shared libraries (note this does not apply to standalone
applications), you may call functions to retrieve specific information from
MCR state. For details, see “MCR Startup Options” on page 9-28.

13-34

About Memory Management and Cleanup

About Memory Management and Cleanup

In this section...

“Overview” on page 13-35

“Passing mxArrays to Shared Libraries” on page 13-35

Overview
Generated C++ code provides consistent garbage collection via the object
destructors and the MCR’s internal memory manager optimizes to avoid
heap fragmentation.

If memory constraints are still present on your system, try preallocating
arrays in MATLAB. This will reduce the number of calls to the memory
manager, and the degree to which the heap fragments.

Passing mxArrays to Shared Libraries
When an mxArray is created in an application which uses the MCR, it is
created in the managed memory space of the MCR.

Therefore, it is very important that you never create mxArrays (or call any
other MathWorks function) before calling mclInitializeApplication.

It is safe to call mxDestroyArray when you no longer need a particular
mxArray in your code, even when the input has been assigned to a persistent
or global variable in MATLAB. MATLAB uses reference counting to ensure
that when mxDestroyArray is called, if another reference to the underlying
data still exists, the memory will not be freed. Even if the underlying memory
is not freed, the mxArray passed to mxDestroyArray will no longer be valid.

For more information about mclInitializeApplication and
mclTerminateApplication, see “Calling a Shared Library” on page 13-12.

For more information about mxArray, see “Use the mxArray API to Work
with MATLAB Types” on page 11-16.

13-35

13 Libraries

13-36

14

Troubleshooting

• “Introduction” on page 14-2

• “Common Issues” on page 14-4

• “Failure Points and Possible Solutions” on page 14-5

• “Troubleshooting mbuild” on page 14-16

• “MATLAB® Compiler™” on page 14-18

• “Deployed Applications” on page 14-22

14 Troubleshooting

Introduction
MATLAB Compiler software converts your MATLAB programs into
self-contained applications and software components and enables you to
share them with end users who do not have MATLAB installed. MATLAB
Compiler takes MATLAB applications (MATLAB files, MEX-files, and other
MATLAB executable code) as input and generates redistributable standalone
applications or shared libraries. The resulting applications and components
are platform specific.

Another use of MATLAB Compiler is to build C or C++ shared libraries
(DLLs on Windows) from a set of MATLAB files. You can then write C or
C++ programs that can call the functions in these libraries. The typical
workflow for building a shared library is to compile your MATLAB code on a
development machine, write a C/C++ driver application, build an executable
from the driver code, test the resulting executable on that machine, and deploy
the executable and MCR to a test or customer machine without MATLAB.

Compiling a shared library is very similar to compiling an executable. The
command line differs as shown:

mcc -B csharedlib:hellolib hello.m

or

mcc -B cpplib:hellolib hello.m

Once you have compiled a shared library, the next step is to create a driver
application that initializes and terminates the shared library as well as
invokes method calls. This driver application can be compiled and linked with
your shared library with the mbuild command. For example:

mbuild helloapp.c hellolib.lib

or

mbuild helloapp.cpp hellolib.lib

The only header file that needs to be included in your driver application is
the one generated by your mcc command (hellolib.h in the above example).
See “Integrate C Shared Libraries” on page 13-4 and “Integrate C++ Shared

14-2

Introduction

Libraries” on page 13-18 for examples of how to correctly access a shared
library.

14-3

14 Troubleshooting

Common Issues
Some of the most common issues encountered when using MATLAB Compiler
generated standalone executables or shared libraries are:

• Compilation fails with an error message. This can indicate a failure
during any one of the internal steps involved in producing the final output.

• Compilation succeeds but the application does not execute because
required DLLs are not found. All shared libraries required for your
standalone executable or shared library are contained in the MATLAB
Compiler Runtime (MCR). Installing the MCR is required for any of the
deployment targets.

• Compilation succeeds, and the resultant file starts to execute but
then produces errors and/or generates a crash dump.

• The compiled program executes on the machine where it was
compiled but not on other machines.

• The compiled program executes on some machines and not others.

If any of these issues apply to you, search “Failure Points and Possible
Solutions” on page 14-5 for common solutions.

14-4

Failure Points and Possible Solutions

Failure Points and Possible Solutions

In this section...

“How to Use this Section” on page 14-5

“Does the Failure Occur During Compilation?” on page 14-5

“Does the Failure Occur When Testing Your Application?” on page 14-9

“Does the Failure Occur When Deploying the Application to End Users?” on
page 14-13

How to Use this Section
Use the following list of questions to diagnose some of the more common
issues associated with using MATLAB Compiler software.

Does the Failure Occur During Compilation?
You typically compile your MATLAB code on a development machine, test
the resulting executable on that machine, and deploy the executable and
MATLAB Compiler Runtime (MCR) to a test or customer machine without
MATLAB. The compilation process performs dependency analysis on your
MATLAB code, creates an encrypted archive of your code and required
toolbox code, generates wrapper code, and compiles the wrapper code into an
executable. If your application fails to build an executable, the following
questions may help you isolate the problem.

Is your selected compiler supported by MATLAB Compiler?

See the current list of supported compilers at
http://www.mathworks.com/support/compilers/current_release/.

Are error messages produced at compile time?

See error messages in “MATLAB® Compiler™” on page 14-18.

14-5

http://www.mathworks.com/support/compilers/current_release/

14 Troubleshooting

Did you compile with the verbose flag?

Compilation can fail in MATLAB because of errors encountered by the system
compiler when the generated wrapper code is compiled into an executable.
Additional errors and warnings are printed when you use the verbose flag
as such:

mcc -mv myApplication.m

In this example, -m tells MATLAB Compiler to create a standalone application
and -v tells MATLAB Compiler and other processors to display messages
about the process.

Are you compiling within or outside of MATLAB?

mcc can be invoked from the operating system command line or from the
MATLAB prompt. When you run mcc inside the MATLAB environment,
MATLAB will modify environment variables in its environment as necessary
so mcc will run. Issues with PATH, LD_LIBRARY_PATH, or other environment
variables seen at the operating system command line are often not seen at the
MATLAB prompt. The environment that MATLAB uses for mcc can be listed
at the MATLAB prompt. For example:

>>!set

lists the environment on Windows platforms.

>>!printenv

lists the environment on UNIX platforms. Using this path allows you to use
mcc from the operating system command line.

Does a simple read/write application such as “Hello World” compile
successfully?

Sometimes applications won’t compile because of MEX-file issues, other
toolboxes, or other dependencies. Compiling a helloworld application can
determine if MATLAB Compiler is correctly set up to produce any executable.
For example, try compiling:

function helloworld

14-6

Failure Points and Possible Solutions

disp('hello world')

with:

>>mcc -mv helloworld.m

Have you tried to compile any of the examples in MATLAB Compiler
help?

The source code for all examples is provided with MATLAB Compiler and is
located in matlabroot\extern\examples\compiler, where matlabroot is
the root folder of your MATLAB installation.

Did the MATLAB code compile successfully before this failure?

The three most common reasons for MATLAB code to stop compiling are:

• A change in the selection of the system compiler — It is possible to
inadvertently change the system compiler for versions of MATLAB that
store preferences in a common folder. For example, MATLAB 7.0.1
(R14SP1) and MATLAB 7.0.4 (R14SP2) store their preferences in the same
folder. Changing the system compiler in R14SP1 will also change the
system compiler in R14SP2.

• An upgrade to MATLAB that didn’t include an upgrade to MATLAB
Compiler — The versions of MATLAB Compiler and MATLAB must be the
same in order to work together. It is possible to see conflicts in installations
where the MATLAB installation is local and the MATLAB Compiler
installation is on a network or vice versa.

Are you receiving errors when trying to compile a standalone
executable?

If you are not receiving error messages to help you debug your standalone
application, write an application to display the warnings or error messages to
the console.

Are you receiving errors when trying to compile a shared library?

Errors at compile time can indicate issues with either mcc or mbuild. For
troubleshooting mcc issues, see the previous section on compile time issues. It

14-7

14 Troubleshooting

is recommended that your driver application be compiled and linked using
mbuild. mbuild can be executed with the -v switch to provide additional
information on the compilation process. If you receive errors at this stage,
ensure that you are using the correct header files and/or libraries produced by
mcc, in your C or C++ driver. For example:

mcc -B csharedlib:hellolib hello.m

produces hellolib.h, which is required to be included in your C/C++
driver, and hellolib.lib or hellolib.so, which is required on the mbuild
command line.

Is your MATLAB object failing to load?

If your MATLAB object fails to load, it is typically a result of the MCR not
finding required class definitions.

When working with MATLAB objects, remember to include the following
statement in your MAT file:

%#function class_constructor

Using the %#function pragma in this manner forces dependency analyzer to
load needed class definitions, enabling the MCR to successfully load the object.

If you are compiling a driver application, are you using mbuild?

MathWorks recommends and supports using mbuild to compile your
driver application. mbuild is designed and tested to correctly build driver
applications. It will ensure that all MATLAB header files are found by the
C/C++ compiler, and that all necessary libraries are specified and found by
the linker.

Are you trying to compile your driver application using Microsoft
Visual Studio or another IDE?

If using an IDE, in addition to linking to the generated export library,
you need to include an additional dependency to mclmcrrt.lib.
This library is provided for all supported third-party compilers in
matlabroot\extern\lib\vendor-name.

14-8

Failure Points and Possible Solutions

Are you importing the correct versions of import libraries?

If you have multiple versions of MATLAB installed on your machine, it is
possible that an older or incompatible version of the library is referenced.
Ensure that the only MATLAB library that you are linking to is mclmcrrt.lib
and that it is referenced from the appropriate vendor folder. Do not reference
libraries as libmx or libut. In addition, verify that your library path
references the version of MATLAB that your shared library was built with.

Are you able to compile the matrixdriver example?

Typically, if you cannot compile the examples in the documentation, it
indicates an issue with the installation of MATLAB or your system compiler.
See “Integrate C Shared Libraries” on page 13-4 and “Integrate C++ Shared
Libraries” on page 13-18 for these examples.

Do you get the MATLAB:I18n:InconsistentLocale Warning?

The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

Does the Failure Occur When Testing Your
Application?
After you have successfully compiled your application, the next step is to test
it on a development machine and deploy it on a target machine. Typically the
target machine does not have a MATLAB installation and requires that the
MATLAB Compiler Runtime (MCR) be installed. A distribution includes all
of the files that are required by your application to run, which include the
executable, CTF archive and the MCR.

14-9

14 Troubleshooting

See “Deploying to Developers” on page 9-3 and “Deploying to End Users”
on page 9-6 for information on distribution contents for specific application
types and platforms.

Test the application on the development machine by running the application
against the MCR shipped with MATLAB Compiler. This will verify that
library dependencies are correct, that the CTF archive can be extracted
and that all MATLAB code, MEX—files and support files required by the
application have been included in the archive. If you encounter errors testing
your application, the questions in the column to the right may help you isolate
the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application’s execution by
issuing !application-name at the MATLAB prompt. If your application
executes within MATLAB but not from outside, this can indicate an issue
with the system PATH variable.

Does the application begin execution and result in MATLAB or other
errors?

Ensure that you included all necessary files when compiling your application
(see the readme.txt file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically
included by MATLAB Compiler; however, functions that are not explicitly
called, for example through EVAL, need to be included at compilation using
the -a switch of the mcc command. Also, any support files like .mat, .txt,
or .html files need to be added to the archive with the -a switch. There is a
limitation on the functionality of MATLAB and associated toolboxes that can
be compiled. Check the documentation to see that the functions used in your
application’s MATLAB files are valid. Check the file mccExcludedFiles.log
on the development machine. This file lists all functions called from your
application that cannot be compiled.

14-10

Failure Points and Possible Solutions

Does the application emit a warning like "MATLAB file may be
corrupt"?

See the listing for this error message in “MATLAB® Compiler™” on page
14-18 for possible solutions.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an
environment where multiple versions of MATLAB are installed. Some older
versions of MATLAB may not be fully compatible with this architecture.

On Windows, ensure that the matlabroot\runtime\win32|win64 of
the version of MATLAB in which you are compiling appears ahead of
matlabroot\runtime\win32|win64 of other versions of MATLAB installed on
the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH
on Linux) match. Do this by comparing the outputs of !printenv at the
MATLAB prompt and printenv at the shell prompt. Using this path allows
you to use mcc from the operating system command line.

If you are testing a standalone executable or shared library and
driver application, did you install the MCR?

All shared libraries required for your standalone executable or shared library
are contained in the MATLAB Compiler Runtime (MCR). Installing the MCR
is required for any of the deployment targets.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the
MCR. It is also possible that the MCR is installed correctly, but that the
PATH,LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 9-14.

14-11

14 Troubleshooting

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The run-time system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

Are you receiving errors when trying to run the shared library
application?

Calling MATLAB Compiler generated shared libraries requires correct
initialization and termination in addition to library calls themselves. For
information on calling shared libraries, see “Call MATLAB® Compiler™ API
Functions (mcl*) from C/C++ Code” on page 13-23.

Some key points to consider to avoid errors at run time:

• Ensure that the calls to mclinitializeApplication and
libnameInitialize are successful. The first function enables construction
of MCR instances. The second creates the MCR instance required by the
library named libname. If these calls are not successful, your application
will not execute.

• Do not use any mw- or mx-functions before calling
mclinitializeApplication. This includes static and global variables that
are initialized at program start. Referencing mw- or mx-functions before
initialization results in undefined behavior.

• Do not re-initialize (call mclinitializeApplication) after terminating
it with mclTerminateApplication. The mclinitializeApplication
andlibnameInitialize functions should be called only once.

• Ensure that you do not have any library calls after
mclTerminateApplication.

• Ensure that you are using the correct syntax to call the library and its
functions.

Does your system’s graphics card support the graphics application?

In situations where the existing hardware graphics card does not support the
graphics application, you should use software OpenGL. OpenGL libraries are

14-12

Failure Points and Possible Solutions

visible for an application by appending matlab/sys/opengl/lib/arch to
the LD_LIBRARY_PATH. For example:

setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, the MCR first looks on the system
library path. If OpenGL is not found there, it will use the LD_LIBRARY_PATH
environment variable to locate the libraries. If you are getting failures due
to the OpenGL libraries not being found, you can append the location of
the OpenGL libraries to the LD_LIBRARY_PATH environment variable. For
example:

setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

Does the Failure Occur When Deploying the
Application to End Users?
After the application is working on the test machine, failures can be isolated
in end-user deployment. The end users of your application need to install the
MATLAB Compiler Runtime (MCR) on their machines. The MCR includes a
set of shared libraries that provides support for all features of MATLAB. If
your application fails during end-user deployment, the following questions in
the column to the right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy
to end users, after running successfully in a test environment. For a detailed
list of guidelines for writing MATLAB code that can be consumed by end
users, see “Write Deployable MATLAB Code” on page 7-10

Is the MCR installed?

All shared libraries required for your standalone executable or shared library
are contained in the MCR. Installing the MCR is required for any of the
deployment targets. See“Working with the MCR” on page 9-14 for complete
information.

14-13

14 Troubleshooting

If running on UNIX or Mac, did you update the dynamic library path
after installing the MCR?

For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 9-14.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or
mclmcrrt7x.so are generally caused by incorrect installation of the MCR.
It is also possible that the MCR is installed correctly, but that the PATH,
LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are set incorrectly.
For information on installing the MCR on a deployment machine, refer to
“Working with the MCR” on page 9-14.

Caution Do not solve these problems by moving libraries or other files
within the MCR folder structure. The run-time system is designed to
accommodate different MCR versions operating on the same machine. The
folder structure is an important part of this feature.

Do you have write access to the directory the application is installed
in?

The first operation attempted by a compiled application is extraction of the
CTF archive. If the archive is not extracted, the application cannot access the
compiled MATLAB code and the application fails. If the application has write
access to the installation folder, a subfolder named application-name_mcr is
created the first time the application is run. After this subfolder is created,
the application no longer needs write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable
needs to be redeployed, since it also contains the embedded CTF file.
The CTF file is keyed to a specific compilation session. Every time an
application is recompiled, a new, matched CTF file is created. As above,
write access is required to expand the new CTF file. Deleting the existing

14-14

Failure Points and Possible Solutions

application-name_mcr folder and running the new executable will verify
that the application can expand the new CTF file.

14-15

14 Troubleshooting

Troubleshooting mbuild
This section identifies some of the more common problems that might occur
when configuring mbuild to create standalone applications.

Options File Not Writable. When you run mbuild -setup, mbuild makes a
copy of the appropriate options file and writes some information to it. If the
options file is not writable, you are asked if you want to overwrite the existing
options file. If you choose to do so, the existing options file is copied to a new
location and a new options file is created.

Directory or File Not Writeable. If a destination folder or file is not
writable, ensure that the permissions are properly set. In certain cases, make
sure that the file is not in use.

mbuild Generates Errors. If you run mbuild filename and get errors, it
may be because you are not using the proper options file. Run mbuild -setup
to ensure proper compiler and linker settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such
as unrecognized command or file not found, make sure the command-line
tools are installed and the path and other environment variables are set
correctly in the options file. For Microsoft Visual Studio®, for example, make
sure to run vcvars32.bat (MSVC 6.x and earlier) or vsvars32.bat (MSVC
8.x and later).

mbuild Not a Recognized Command. If mbuild is not recognized, verify
that matlabroot\bin is in your path. On UNIX, it may be necessary to
rehash.

mbuild Works from the Shell But Not from MATLAB (UNIX). If the
command

mcc -m hello

works from the UNIX command prompt but not from the MATLAB prompt,
you may have a problem with your .cshrc file. When MATLAB launches a
new C shell to perform compilations, it executes the .cshrc script. If this
script causes unexpected changes to the PATH environment variable, an error

14-16

Troubleshooting mbuild

may occur. You can test this before starting MATLAB by performing the
following:

setenv SHELL /bin/sh

If this works correctly, then you should check your .cshrc file for problems
setting the PATH environment variable.

Cannot Locate Your Compiler (Windows). If mbuild has difficulty
locating your installed compilers, it is useful to know how it finds compilers.
mbuild automatically detects your installed compilers by first searching for
locations specified in the following environment variables:

• MSVCDIR for Microsoft Visual C++, Version 6.0 or 8.0

Next, mbuild searches the Windows registry for compiler entries.

Internal Error when Using mbuild -setup (Windows). Some antivirus
software packages may conflict with the mbuild -setup process. If you get an
error message during mbuild -setup of the following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun
mbuild -setup. After you have successfully run the setup option, you can
re-enable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses
your difficulty with mbuild, contact Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

14-17

http://www.mathworks.com/contact_TS.html

14 Troubleshooting

MATLAB Compiler
Typically, problems that occur when building standalone applications involve
mbuild. However, it is possible that you may run into some difficulty with
MATLAB Compiler. A good source for additional troubleshooting information
for the product is the MATLAB Compiler Product Support page at the
MathWorks Web site.

libmwlapack: load error: stgsy2_. This error occurs when a customer
has both the R13 and the R14 version of MATLAB or MCR/MGL specified
in the folder path and the R14 version fails to load because of a lapack
incompatibility.

Licensing Problem. If you do not have a valid license for MATLAB Compiler
, you will get an error message similar to the following when you try to access
MATLAB Compiler:

Error: Could not check out a Compiler License:
No such feature exists.

If you have a licensing problem, contact MathWorks. A list of contacts at
MathWorks is provided at the beginning of this document.

loadlibrary usage (MATLAB loadlibrary command). The following
are common error messages encountered when attempting to compile the
MATLAB loadlibrary function or run an application that uses the MATLAB
loadlibrary function with MATLAB Compiler:

• Output argument ’notfound’ was not assigned during call to ’loadlibrary’.

•

Warning: Function call testloadlibcompile
invokes inexact match
d:\work\testLoadLibCompile_mcr\
testLoadLibCompile\testLoadLibCompile.m.

??? Error using ==> loadlibrary
Call to Perl failed. Possible error processing header file.
Output of Perl command:
Error using ==> perl

14-18

http://www.mathworks.com/support/product/product.html?product=CO

MATLAB® Compiler™

All input arguments must be valid strings.

Error in ==> testLoadLibCompile at 4

•

MATLAB:loadlibrary:cannotgeneratemfile
There was an error running the loader mfile.
Use the mfilename option
to produce a file that you can debug and fix.
Please report this
error to the MathWorks so we can improve this
function.
??? Error using ==> feval
Undefined function or variable 'GHlinkTest_proto'.

Error in ==> loadtest at 6

For information about how to properly invoke the MATLAB loadlibrary
function with MATLAB Compiler, see “Load MATLAB Libraries using
loadlibrary” on page 7-16 in the Deploying MATLAB Code section in your
product user’s guide.

MATLAB Compiler Does Not Generate the Application. If you experience
other problems with MATLAB Compiler, contact Technical Support at
MathWorks at http://www.mathworks.com/contact_TS.html.

"MATLAB file may be corrupt" Message Appears. If you receive the
message

This MATLAB file does not have proper version information and
may be corrupt. Please delete the extraction directory and
rerun the application.

when you run your standalone application that was generated by MATLAB
Compiler, you should check the following:

• Do you have a startup.m file that calls addpath? If so, this will cause
run-time errors. As a workaround, use isdeployed to have the addpath
command execute only from MATLAB. For example, use a construct such
as:

14-19

http://www.mathworks.com/contact_TS.html

14 Troubleshooting

if ~isdeployed
addpath(path);

end

• Verify that the .ctf archive file self extracted and that you have write
permission to the folder.

• Verify that none of the files in the <application name>_mcr folder have
been modified or removed. Modifying this folder is not supported, and
if you have modified it, you should delete it and redeploy or restart the
application.

• If none of the above possible causes apply, then the error is likely caused
by a corruption. Delete the <application name>_mcr folder and run the
application.

Missing Functions in Callbacks. If your application includes a call to a
function in a callback string or in a string passed as an argument to the feval
function or an ODE solver, and this is the only place in your MATLAB file this
function is called, MATLAB Compiler will not compile the function. MATLAB
Compiler does not look in these text strings for the names of functions to
compile. See “Fixing Callback Problems: Missing Functions” on page 15-3
for more information.

"MCRInstance not available" Message Appears. If you receive the
message MCRInstance not available when you try to run a standalone
application that was generated with MATLAB Compiler, it can be that the
MCR is not located properly on your path or the CTF file is not in the proper
folder (if you extracted it from your binary).
The UNIX verification process is the same, except you use the appropriate
UNIX path information.

To verify that the MCR is properly located on your path, from a development
Windows machine, confirm that matlabroot\runtime\win32|win64, where
matlabroot is your root MATLAB folder, appears on your system path ahead
of any other MATLAB installations.

From a Windows target machine, verify that
<mcr_root>\<ver>\runtime\win32|win64, where <mcr_root> is your root
MCR folder, appears on your system path. To verify that the CTF file that
MATLAB Compiler generated in the build process resides in the same folder

14-20

MATLAB® Compiler™

as your program’s file, look at the folder containing the program’s file and
make sure the corresponding .ctf file is also there.

No Info.plist file in application bundle or no... . On 64-bit Macintosh,
indicates the application is not being executed through the bundle.

14-21

14 Troubleshooting

Deployed Applications
Failed to decrypt file. The MATLAB file
"<ctf_root>\toolbox\compiler\deploy\matlabrc.m" cannot be
executed. The application is trying to use a CTF archive that does not
belong to it. Applications and CTF archives are tied together at compilation
time by a unique cryptographic key, which is recorded in both the application
and the CTF archive. The keys must match at run time. If they don’t match,
you will get this error.

To work around this, delete the *_mcr folder corresponding to the CTF archive
and then rerun the application. If the same failure occurs, you will likely
need to recompile the application using MATLAB Compiler and copy both the
application binary and the CTF archive into the installation folder.

This application has requested the run time to terminate in an
unusual way. This indicates a segmentation fault or other fatal error. There
are too many possible causes for this message to list them all.

To try to resolve this problem, run the application in the debugger and try to
get a stack trace or locate the line on which the error occurs. Fix the offending
code, or, if the error occurs in a MathWorks library or generated code, contact
MathWorks technical support.

Checking access to X display <IP-address>:0.0 . . .
If no response hit ^C and fix host or access control to host.
Otherwise, checkout any error messages that follow and fix . . .
Successful. This message can be ignored.

14-22

Deployed Applications

??? Error: File: /home/username/<MATLAB file_name>
Line: 1651 Column: 8
Arguments to IMPORT must either end with ".*"
or else specify a fully qualified class name:
"<class_name>" fails this test. The import statement is referencing a
Java class (<class_name>) that MATLAB Compiler (if the error occurs at
compile time) or the MCR (if the error occurs at run time) cannot find.

To work around this, ensure that the JAR file that contains
the Java class is stored in a folder that is on the Java class
path. (See matlabroot/toolbox/local/classpath.txt for
the class path.) If the error occurs at run time, the classpath
is stored in matlabroot/toolbox/local/classpath.txt
when running on the development machine. It is stored in
<mcr_root>/toolbox/local/classpath.txt when running on a target
machine.

Warning: Unable to find Java library:
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client\jvm.dll
Warning: Disabling Java support. This warning indicates that a
compiled application can not find the Java virtual machine, and therefore, the
compiled application cannot run any Java code. This will affect your ability to
display graphics.

To resolve this, ensure that jvm.dll is in the
matlabroot\sys\java\jre\win32|win64\jre<version>\bin\client folder
and that this folder is on your system path.

Warning: matlabroot\toolbox\local\pathdef.m not found.
Toolbox Path Cache is not being used. Type ’help toolbox_path_cache’
for more info. The pathdef.m file defines the MATLAB startup path.
MATLAB Compiler does not include this file in the generated CTF archive
because the MCR path is a subset of the full MATLAB path.
This message can be ignored.

Undefined function or variable ’matlabrc’. When MATLAB or the MCR
starts, they attempt to execute the MATLAB file matlabrc.m. This message
means that this file cannot be found.

14-23

14 Troubleshooting

To work around this, try each of these suggestions in this order:

• Ensure that your application runs in MATLAB (uncompiled) without this
error.

• Ensure that MATLAB starts up without this error.

• Verify that the generated CTF archive contains a file called matlabrc.m.

• Verify that the generated code (in the *_mcc_component_data.c* file) adds
the CTF archive folder containing matlabrc.m to the MCR path.

• Delete the *_mcr folder and rerun the application.

• Recompile the application.

This MATLAB file does not have proper version information and may
be corrupt. Please delete the extraction directory and rerun the
application. The MATLAB file <MATLAB file> cannot be executed.
MATLAB:err_parse_cannot_run_m_file. This message is an indication
that the MCR has found nonencrypted MATLAB files on its path and has
attempted to execute them. This error is often caused by the use of addpath,
either explicitly in your application, or implicitly in a startup.m file. If you
use addpath in a compiled application, you must ensure that the added folders
contain only data files. (They cannot contain MATLAB files, or you’ll get this
error.)

To work around this, protect your calls to addpath with the isdeployed
function.

This application has failed to start because mclmcrrt7x.dll was
not found. Re-installing the application may fix this problem.
mclmcrrt7x.dll contains the public interface to the MCR. This library must
be present on all machines that run applications generated by MATLAB
Compiler. Typically, this means that either the MCR is not installed on this
machine, or that the PATH does not contain the folder where this DLL is
located.

To work around this, install the MCR or modify the path appropriately. The
path must contain <mcr_root>\<version>\runtime\<arch>, for example:
c:\mcr\v73\runtime\win32|win64.

14-24

Deployed Applications

Linker cannot find library and fails to create standalone application
(win32 and win64). If you try building your standalone application without
mbuild, you must link to the following dynamic library:

mclmcrrt.lib

This library is found in one of the following locations, depending on your
architecture:

matlabroot\extern\lib\win32\arch
matlabroot\extern\lib\win64\arch

where arch is microsoft or watcom.

Version ’GCC_4.2.0’ not found. When running on Linux platforms, users
may report that a run time error occurs that states that the GCC_4.2.0 library
is not found by applications built with MATLAB Compiler.

To resolve this error, do the following:

1 Navigate to matlabroot/sys/os/glnx86.

2 Rename the following files with a prefix of old_:

• libgcc_s.so.1

• libstdc++.so.6.0.8

• libgfortran.so.1.0.0

For example, rename libgcc_s.so.1 to old_libgcc_s.so.1. you must
rename all three of the above files. Alternately, you can create a subfolder
named old and move the files there.

Error: library mclmcrrt76.dll not found. This error can occur for the
following reasons:

• The machine on which you are trying to run the application an different,
incompatible version of the MCR installed on it than the one the application
was originally built with.

• You are not running a version of MATLAB Compiler compatible with the
MCR version the application was built with.

14-25

14 Troubleshooting

To solve this problem, on the deployment machine, install the version of
MATLAB you used to build the application.

Invalid .NET Framework.\n Either the specified framework was not
found or is not currently supported. This error occurs when the .NET
Framework version your application is specifying (represented by n) is not
supported by the current version of MATLAB Compiler. See the MATLAB
Builder NE Release Notes for a list of supported .NET Framework versions.

MATLAB:I18n:InconsistentLocale. The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems.
This may affect your ability to display certain characters. For information
about changing the locale settings, see your operating system Help.

System.AccessViolationException: Attempted to read or write
protected memory. The message:

System.ArgumentException: Generate Queries
threw General Exception:

System.AccessViolationException: Attempted to
read or write protected memory.

This is often an indication that other memory is corrupt.

indicates a library initialization error caused by a Microsoft Visual Studio
project linked against a MCLMCRRT7XX.DLL placed outside matlabroot.

14-26

15

Limitations and
Restrictions

• “MATLAB® Compiler™ Limitations” on page 15-2

• “Licensing Terms and Restrictions on Compiled Applications” on page 15-9

• “MATLAB Functions That Cannot Be Compiled” on page 15-10

15 Limitations and Restrictions

MATLAB Compiler Limitations

In this section...

“Compiling MATLAB and Toolboxes” on page 15-2

“Fixing Callback Problems: Missing Functions” on page 15-3

“Finding Missing Functions in a MATLAB File” on page 15-5

“Suppressing Warnings on the UNIX System” on page 15-5

“Cannot Use Graphics with the -nojvm Option” on page 15-6

“Cannot Create the Output File” on page 15-6

“No MATLAB File Help for Compiled Functions” on page 15-6

“No MCR Versioning on Mac OS X” on page 15-7

“Older Neural Networks Not Deployable with MATLAB® Compiler™” on
page 15-7

“Restrictions on Calling PRINTDLG with Multiple Arguments in Compiled
Mode” on page 15-7

“Compiling a Function with WHICH Does Not Search Current Working
Directory” on page 15-8

“Restrictions on Using C++ SETDATA to Dynamically Resize an MWArray”
on page 15-8

Compiling MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all
toolboxes based on MATLAB. However, some limited MATLAB and toolbox
functionality is not licensed for compilation.

• Most of the prebuilt graphical user interfaces included in MATLAB and its
companion toolboxes will not compile.

• Functionality that cannot be called directly from the command line will
not compile.

• Some toolboxes, such as Symbolic Math Toolbox™, will not compile.

15-2

MATLAB® Compiler™ Limitations

Compiled applications can only run on operating systems that run MATLAB.
Also, since the MCR is approximately the same size as MATLAB, applications
built with MATLAB Compiler need specific storage memory and RAM to
operate. For the most up-to-date information about system requirements, go
to the MathWorks Web site.

To see a full list of MATLAB Compiler limitations, visit
http://www.mathworks.com/products/compiler/compiler_support.html.

Note See “MATLAB Functions That Cannot Be Compiled” on page 15-10 for
a list of functions that cannot be compiled.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it compiles the
MATLAB file(s) you specify on the command line and, in addition, it compiles
any other MATLAB files that your MATLAB file(s) calls. MATLAB Compiler
uses a dependency analysis, which determines all the functions on which the
supplied MATLAB files, MEX-files, and P-files depend.

Note If the MATLAB file associated with a p-file is unavailable, the
dependency analysis will not be able to discover the p-file’s dependencies.

The dependency analysis may not locate a function if the only place the
function is called in your MATLAB file is a call to the function either:

• In a callback string

• In a string passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer
in .mat files that get loaded by compiled applications. Use the mcc -a
argument or the %#function pragma to identify .mat file classes or
functions that should be supported by the load command.

15-3

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/products/compiler/compiler_support.html

15 Limitations and Restrictions

MATLAB Compiler does not look in these text strings for the names of
functions to compile.

Symptom
Your application runs, but an interactive user interface element, such as
a push button, does not work. The compiled application issues this error
message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function

change_colormap from FEVAL in stand-alone mode.

Workaround
There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as strings

• Specifying callbacks with function handles

• Using the -a option

Specifying Callbacks as Strings. Create a list of all the functions that are
specified only in callback strings and pass these functions using separate
%#function pragma statements. This overrides the product’s dependency
analysis and instructs it to explicitly include the functions listed in the
%#function pragmas.

For example, the call to the change_colormap function in the sample
application, my_test, illustrates this problem. To make sure MATLAB
Compiler processes the change_colormap MATLAB file, list the function
name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...

15-4

MATLAB® Compiler™ Limitations

'Style', 'pushbutton',...
'Position',[10 10 133 25],...
'String', 'Make Black & White',...
'CallBack','change_colormap');

Specifying Callbacks with Function Handles. To specify the callbacks
with function handles, use the same code as in the example above and replace
the last line with

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB
Programming Fundamentals documentation.

Using the -a Option. Instead of using the %#function pragma, you can
specify the name of the missing MATLAB file on the MATLAB Compiler
command line using the -a option.

Finding Missing Functions in a MATLAB File
To find functions in your application that may need to be listed in a
%#function pragma, search your MATLAB file source code for text strings
specified as callback strings or as arguments to the feval, fminbnd,
fminsearch, funm, and fzero functions or any ODE solvers.

To find text strings used as callback strings, search for the characters
“Callback” or “fcn” in your MATLAB file. This will find all the Callback
properties defined by Handle Graphics objects, such as uicontrol and
uimenu. In addition, this will find the properties of figures and axes that end
in Fcn, such as CloseRequestFcn, that also support callbacks.

Suppressing Warnings on the UNIX System
Several warnings may appear when you run a standalone application on the
UNIX system. This section describes how to suppress these warnings.

To suppress the libjvm.so warning, make sure you set the dynamic library
path properly for your platform. See “MCR Path Settings for Run-time
Deployment” on page 16-4.

15-5

15 Limitations and Restrictions

You can also use the MATLAB Compiler option -R -nojvm to set your
application’s nojvm run-time option, if the application is capable of running
without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you
will get a run-time error.

Cannot Create the Output File
If you receive the error

Can't create the output file filename

there are several possible causes to consider:

• Lack of write permission for the folder where MATLAB Compiler is
attempting to write the file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting
to write the file (most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is
possible that a process is running and is blocking MATLAB Compiler from
overwriting it with a new version.

No MATLAB File Help for Compiled Functions
If you create a MATLAB file with self-documenting online help by entering
text on one or more contiguous comment lines beginning with the second line
of the file and then compile it, the results of the command

help filename

will be unintelligible.

Note Due to performance reasons, MATLAB file comments are stripped
out before MCR encryption.

15-6

MATLAB® Compiler™ Limitations

No MCR Versioning on Mac OS X
The feature that allows you to install multiple versions of the MCR on the
same machine is currently not supported on Mac OS X. When you receive
a new version of MATLAB , you must recompile and redeploy all of your
applications and components. Also, when you install a new MCR onto a target
machine, you must delete the old version of the MCR and install the new one.
You can only have one version of the MCR on the target machine.

Older Neural Networks Not Deployable with
MATLAB Compiler
Loading networks saved from older Neural Network Toolbox versions
requires some initialization routines that are not deployable. Therefore, these
networks cannot be deployed without first being updated.

For example, deploying with Neural Network Toolbox Version 5.0.1 (2006b)
and MATLAB Compiler Version 4.5 (R2006b) yields the following errors at
run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
function "initwb".

Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple
Arguments in Compiled Mode
In compiled mode, only one argument can be present in a call to the MATLAB
printdlg function (for example, printdlg(gcf)).

You will not receive an error when making at call to printdlg with multiple
arguments. However, when an application containing the multiple-argument
call is compiled, the compile will fail with the following error message:

Error using = => printdlg at 11

15-7

15 Limitations and Restrictions

PRINTDLG requires exactly one argument

Compiling a Function with WHICH Does Not Search
Current Working Directory
Using which, as in this example:

function pathtest
which myFile.mat
open('myFile.mat')

does not cause the current working folder to be searched in deployed
applications. In addition, it may cause unpredictable behavior of the open
function.

Use one of the following solutions as alternatives to using which:

• Use the pwd function to explicitly point to the file in the current folder, as
follows:

open([pwd 'myFile.mat'])

• Rather than using the general open function, use load or other specialized
functions for your particular file type, as load explicitly checks for the file
in the current folder. For example:

load myFile.mat

• Include your file in the Files required for your application to run area
of the compiler app or the -a flag using mcc.

Restrictions on Using C++ SETDATA to Dynamically
Resize an MWArray
You cannot use the C++ SETDATA function to dynamically resize MWArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SETDATA to increase the size of the array to a length of five
elements.

15-8

Licensing Terms and Restrictions on Compiled Applications

Licensing Terms and Restrictions on Compiled Applications
Applications you build with a trial MATLAB Compiler license are valid for
thirty (30) days only.

Applications you build with a purchased license of MATLAB Compiler have
no expiration date.

15-9

15 Limitations and Restrictions

MATLAB Functions That Cannot Be Compiled

Note Due to the number of active and ever-changing list of MathWorks
products and functions, this is not a complete list of functions that can not be
compiled. If you have a question as to whether a specific MathWorks product’s
function is able to be compiled or not, the definitive source is that product’s
documentation, not the MATLAB Compiler documentation.

Some functions are not supported in standalone mode; that is, you cannot
compile them with MATLAB Compiler. These functions are in the following
categories:

• Functions that print or report MATLAB code from a function, for example,
the MATLAB help function or debug functions, will not work.

• Simulink® functions, in general, will not work.

• Functions that require a command line, for example, the MATLAB lookfor
function, will not work.

• clc, home, and savepath will not do anything in deployed mode.

• Tools that allow run-time manipulation of figures

Returned values from standalone applications will be 0 for successful
completion or a nonzero value otherwise.

In addition, there are functions and programs that have been identified as
nondeployable due to licensing restrictions.

mccExcludedFiles.log lists all the functions and files excluded by mcc if
they can not be compiled. It is created after each attempted build if there are
functions or files that cannot be compiled.

List of Unsupported Functions and Programs

add_block

add_line

15-10

MATLAB® Functions That Cannot Be Compiled

List of Unsupported Functions and Programs (Continued)

applescript

checkcode

close_system

colormapeditor

commandwindow

Control System Toolbox™ prescale GUI

createClassFromWsdl

dbclear

dbcont

dbdown

dbquit

dbstack

dbstatus

dbstep

dbstop

dbtype

dbup

delete_block

delete_line

doc

echo

edit

fields

figure_palette

get_param

help

home

15-11

15 Limitations and Restrictions

List of Unsupported Functions and Programs (Continued)

inmem

keyboard

linkdata

linmod

mislocked

mlock

more

munlock

new_system

open_system

pack

pcode

plotbrowser

plotedit

plottools

profile

profsave

propedit

propertyeditor

publish

rehash

restoredefaultpath

run

segment

set_param

sim

15-12

MATLAB® Functions That Cannot Be Compiled

List of Unsupported Functions and Programs (Continued)

simget

simset

sldebug

type

15-13

15 Limitations and Restrictions

15-14

16

Reference Information

• “MCR Path Settings for Development and Testing” on page 16-2

• “MCR Path Settings for Run-time Deployment” on page 16-4

• “MATLAB® Compiler™ Licensing” on page 16-6

• “Deployment Product Terms” on page 16-8

16 Reference Information

MCR Path Settings for Development and Testing

In this section...

“Overview” on page 16-2

“Path for Java Development on All Platforms ” on page 16-2

“Path Modifications Required for Accessibility” on page 16-2

“Windows Settings for Development and Testing” on page 16-3

“Linux Settings for Development and Testing” on page 16-3

“Mac Settings for Development and Testing” on page 16-3

Overview
The following information is for developers developing applications that use
libraries or components that contain compiled MATLAB code. These settings
are required on the machine where you are developing your application.

Note For matlabroot, substitute the MATLAB root folder on your system.
Type matlabroot to see this folder name.

Path for Java Development on All Platforms
There are additional requirements when programming in the Java
programming language.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®,
you must add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

16-2

MCR Path Settings for Development and Testing

Windows Settings for Development and Testing
When programming with components that are generated with MATLAB
Compiler, add the following folder to your system PATH environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line.

Linux (64-bit)

setenv LD_LIBRARY_PATH

matlabroot/runtime/glnxa64:

matlabroot/bin/glnxa64:

matlabroot/sys/os/glnxa64:

Mac Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but
you must enter each setenv command on one line.

Mac

setenv DYLD_LIBRARY_PATH

matlabroot/runtime/maci64:

matlabroot/bin/maci64:

matlabroot/sys/os/maci64:

16-3

16 Reference Information

MCR Path Settings for Run-time Deployment

In this section...

“General Path Guidelines” on page 16-4

“Path for Java Applications on All Platforms” on page 16-4

“Windows Path for Run-Time Deployment” on page 16-4

“Linux Paths for Run-Time Deployment” on page 16-5

“Mac Paths for Run-Time Deployment” on page 16-5

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to
placing specific folders on the path:

• Always avoid including bin or arch on the path. Failure to do so may
inhibit ability to run multiple MCR instances.

• Ideally, set the environment in a separate shell script to avoid run-time
errors caused by path-related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled MATLAB code, you
must instruct them to set the path so that the system can find the MCR.

Note When you deploy a Java application to end users, they must set the
class path on the target machine.

The system needs to find .jar files containing the MATLAB libraries. To tell
the system how to locate the .jar files it needs, specify a classpath either in
the javac command or in your system environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

mcr_root\version\runtime\win32|win64

16-4

MCR Path Settings for Run-time Deployment

where mcr_root refers to the complete path where the MCR library archive
files are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install
the MCR.

Note If you are running the MCR Installer on a shared folder, be aware that
other users of the share may need to alter their system configuration.

Linux Paths for Run-Time Deployment
Use these setenv commands to set your MCR run-time paths.

setenv LD_LIBRARY_PATH

mcr_root/version/runtime/glnxa64:

mcr_root/version/bin/glnxa64:

mcr_root/version/sys/os/glnxa64:

Mac Paths for Run-Time Deployment
Use these setenv commands to set your MCR run-time paths.

setenv DYLD_LIBRARY_PATH

mcr_root/version/runtime/maci64:

mcr_root/version/bin/maci64:

mcr_root/version/sys/os/maci64:

mcr_root/sys/java/jar/maci64/jre/lib/server

16-5

16 Reference Information

MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt
(MATLAB mode) or the DOS/UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This means that when the
MATLAB Compiler license is checked out, a timer is started. When that timer
reaches 30 minutes, the license key is returned to the license pool. The license
key will not be returned until that 30 minutes is up, regardless of whether
mcc has exited or not.

Each time a compiler command is issued, the timer is reset.

Running MATLAB Compiler in MATLAB Mode
When you run MATLAB Compiler from “inside” of the MATLAB environment,
that is, you run mcc from the MATLAB command prompt, you hold the
MATLAB Compiler license as long as MATLAB remains open. To give up the
MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode
If you run MATLAB Compiler from a DOS or UNIX prompt, you are running
from “outside” of MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB
Compiler is running

• Gives the user a dedicated 30-minute time allotment during which the user
has complete ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute
time period as the sole owner of the MATLAB Compiler license. Anytime
during the 30-minute segment, if the same user requests MATLAB Compiler ,
the user gets a new 30-minute allotment. When the 30-minute interval has
elapsed, if a different user requests MATLAB Compiler , the new user gets
the next 30-minute interval.

16-6

MATLAB® Compiler™ Licensing

When a user requests MATLAB Compiler and a license is not available, the
user receives the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are
available, the user gets the license and no message is displayed. The best
way to guarantee that all MATLAB Compiler users have constant access to
MATLAB Compiler is to have an adequate supply of licenses for your users.

16-7

16 Reference Information

Deployment Product Terms
A

Add-in— A Microsoft Excel add-in is an executable piece of code that can be
actively integrated into a Microsoft Excel application. Add-ins are front-ends
for COM components, usually written in some form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and
interfaces that is used to develop software applications. Typically an API is
used to provide access to specific functionality. See MWArray.

Application — An end user-system into which a deployed functions or
solution is ultimately integrated. Typically, the end goal for the Deployment
customer is integration of a deployed MATLAB function into a larger
enterprise environment application. The deployment products prepare
the MATLAB function for integration by wrapping MATLAB code with
enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly— An executable bundle of code, especially in .NET. For example,
after building a deployable .NET component with MATLAB Builder NE,
the .NET developer integrates the resulting .NET assembly into a larger
enterprise C# application. See Executable.

B

Binary — See Executable.

Boxed Types— Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other
object-oriented languages, that is a prototype for an object in an object-oriented
language. It is analogous to a derived type in a procedural language. A class
is a set of objects which share a common structure and behavior. Classes
relate in a class hierarchy. One class is a specialization (a subclass) of another

16-8

Deployment Product Terms

(one of its superclasses) or comprises other classes. Some classes use other
classes in a client-server relationship. Abstract classes have no members, and
concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile a component
involves generating a binary that wraps around MATLAB code, enabling it to
execute in various computing environments. For example, when MATLAB
code builds with MATLAB Builder JA, a Java wrapper provides Java code
that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code
behind a Microsoft Excel add-in. In MATLAB Builder NE, an executable
component, to be integrated with Microsoft COM applications.

Component — In MATLAB, a generic term used to describe the wrappered
MATLAB code produced by MATLAB Compiler. You can plug these
self-contained bundles of code you plug into various computing environments.
The wrapper enables the compatibility between the computing environment
and your code.

Console application — Any application that is executed from a system
command prompt window.

CTF archive (Component Technology File)— The Component Technology File
(CTF) archive is embedded by default in each generated binary by MATLAB
Compiler. It houses the deployable package. All MATLAB-based content in
the CTF archive uses the Advanced Encryption Standard (AES) cryptosystem.
See “Additional Details” on page 7-9 in the MATLAB Compiler documentation.

D

Data Marshaling — Data conversion, usually from one type to another.
Unless a MATLAB deployment customer is using type-safe interfaces, data
marshaling—as from mathematical data types to MathWorks data types such
as represented by the MWArray API—must be performed manually, often
at great cost.

Deploy— The act of integrating a component into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

16-9

16 Reference Information

DLL — Dynamic link library. Microsoft’s implementation of the shared
library concept for Windows. Using DLLs is much preferred over the previous
technology of static (or non-dynamic) libraries, which had to be manually
linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable— An executable bundle of code, made up of binary bits (zeros and
ones) and sometimes called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see
Structs.

Fields and Properties— In the context of .NET, Fields are specialized classes
used to hold data. Properties allow users to access class variables as if they
were accessing member fields directly, while actually implementing that
access through a class method.

H

Helper files — Files that support the main file or the file that calls all
supporting functions. Add resources that depend upon the function that
calls the supporting function to the Shared Resources and Helper Files
section of the Deployment Tool GUI. Other examples of supporting files or
resources include:

• Functions called using eval (or variants of eval)

• Functions not on the MATLAB path

• Code you want to remain private

• Code from other programs that you want to compile and link into the
main file

I

16-10

Deployment Product Terms

Integration — Combining a deployed component’s functionality with
functionality that currently exists in an enterprise application. For example,
a customer creates a mathematical model to forecast trends in certain
commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance)
the deployed financial model must be integrated with existing C# applications,
run in the .NET enterprise environment. Integration is usually performed by
an IT developer, rather than a MATLAB Programmer, in larger environments.

Instance— For the definition of this term in context of MATLAB Production
Server software, see MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java ARchive)
aggregates many files into one. Software developers use JARs to distribute
Java applications or libraries, in the form of classes and associated metadata
and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java
interface built into MATLAB software.

JDK — The Java Development Kit is a free Oracle® product which provides
the environment required for programming in Java. The JDK™ is available
for various platforms, but most notably Oracle Solaris™ and Microsoft
Windows. To build components with MATLAB Builder JA, download the JDK
that corresponds to the latest version of Java supported by MATLAB.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development
Kit (JDK) required to run Java programs. It comprises the Java Virtual
Machine, the Java platform core classes, and supporting files. It does not
include the compiler, debugger, or other tools present in the JDK. The JRE™
is the smallest set of executables and files that constitute the standard Java
platform.

M

16-11

16 Reference Information

Magic Square— A square array of integers arranged so that their sum is the
same when added vertically, horizontally, or diagonally.

MATLAB Production Server Client — In the MATLAB Production Server
software, clients are applications written in a language supported by
MATLAB Production Server that call deployed functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB
Production Server containing at least one server and one client. Each
configuration of the software usually contains a unique set of values in the
server configuration file, main_config.

MATLAB Production Server Server Instance — A logical server configuration
created using the mps-new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment
of MATLAB programs within your production systems, enabling you to
incorporate numerical analytics in enterprise applications. When you use this
software, Web, database, and enterprise applications connect to MATLAB
programs running on MATLAB Production Server via a lightweight client
library, isolating the MATLAB programs from your production system.
MATLAB Production Server software consists of one or more servers and
clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler command that compiles and links C and
C++ source files into standalone applications or shared libraries. For more
information, see the mbuild function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the
command-line equivalent of using the compiler apps.

MCR — The MATLAB Compiler Runtime is an execution engine made
up of the same shared libraries. MATLAB uses these libraries to enable
the execution of MATLAB files on systems without an installed version of
MATLAB. To deploy a component, you package the MCR along with it. Before
you use the MCR on a system without MATLAB, run the MCR Installer.

16-12

Deployment Product Terms

MCR Installer — An installation program run to install the MATLAB
Compiler Runtime on a development machine that does not have an installed
version of MATLAB. Find out more about the MCR Installer by reading
“Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)”
on page 10-2.

MCR Singleton — See Shared MCR Instance.

MCR Workers — A MATLAB Compiler Runtime session. Using MATLAB
Production Server software, you have the option of specifying more than one
MCR session, using the --num-workers options in the server configurations
file.

Method Attribute — In the context of .NET, a mechanism used to specify
declarative information to a .NET class. For example, in the context of client
programming with MATLAB Production Server software, you specify method
attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB
representations of standard mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface
(API) for exchanging data between your application and MATLAB. Using
MWArray, you marshal data from traditional mathematical types to a form
that can be processed and understood by MATLAB data type mxArray. There
are different implementations of the MWArray proxy for each application
programming language.

P

Package — The act of bundling the deployed component, along with the
MCR and other files, into an installer that can be distributed to others. The
compiler apps place the installer in the for_redistribution subfolder. In
addition to the installer, the compiler apps generate a number of lose artifacts
that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool— A pool of threads, in the context of server management using MATLAB
Production Server software. Servers created with the software do not allocate

16-13

16 Reference Information

a unique thread to each client connection. Rather, when data is available on
a connection, the required processing is scheduled on a pool, or group, of
available threads. The server configuration file option --num-threads sets
the size of that pool (the number of available request-processing threads)
in the master server process.

Process Identification File (PID File)— A file that documents informational
and error messages relating to a running server instance of MATLAB
Production Server software.

Program— A bundle of code that is executed to achieve a purpose. Programs
usually are written to automate repetitive operations through computer
processing. Enterprise system applications usually consist of hundreds or
even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and
Properties.

Proxy — A software design pattern typically using a class, which functions
as an interface to something else. For example, MWArray is a proxy for
programmers who need to access the underlying type mxArray.

S

Server Instance— See MATLAB Production Server Server Instance.

Shared Library— Groups of files that reside in one space on disk or memory
for fast loading into Windows applications. Dynamic-link libraries (DLLs) are
Microsoft’s implementation of the shared library concept in for Microsoft
Windows.

Shared MCR Instance — When using MATLAB Builder NE or MATLAB
Builder JA, you can create a shared MCR instance, also known as a singleton.
For builder NE, this only applies to COM components. When you invoke
MATLAB Compiler with the -S option through the builders (using either mcc
or the Deployment Tool), a single MCR instance is created for each COM
or Java component in an application. You reuse this instance by sharing it
among all subsequent class instances within the component. Such sharing
results in more efficient memory usage and eliminates the MCR startup cost
in each subsequent class instantiation. All class instances share a single

16-14

Deployment Product Terms

MATLAB workspace and share global variables in the MATLAB files used
to build the component. MATLAB Builder NE and MATLAB Builder EX
are designed to create singletons by default for .NET assemblies and COM
components, respectively. For more information, see “Sharing an MCR
Instance in COM or Java Applications”.

Standalone application — Programs that can be executed on their own and
encapsulate a self contained set of MATLAB functionality.

State— The present condition of a the MATLAB, or MCR, runtime. MATLAB
functions often carry state in the form of variable values. The MATLAB
Workspace itself also maintains information about global variables and path
settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that
use such functions.

Structs— MATLAB Structures. Structs are MATLAB arrays with elements
that you access using textual field designators. Fields are data containers
that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments
(IDEs) such as Microsoft Visual Studio.

T

Thread — A portion of a program that can run independently of and
concurrently with other portions of the program. See pool for additional
information on managing the number of processing threads available to a
server instance.

Type-safe interface — An API that minimizes explicit type conversions by
hiding the MWArray type from the calling application. Using “Generate and
Implement Type-Safe Interfaces”, for example, .NET Developers work directly
with familiar native data types. You can avoid performing tedious MWArray
data marshaling by using type-safe interfaces.

W

Web Application Archive (WAR)—In computing, a Web Application Archive is
a JAR file used to distribute a collection of JavaServer pages, servlets, Java

16-15

16 Reference Information

classes, XML files, tag libraries, and static Web pages (HTML and related
files) that together constitute a Web application.

Webfigure— A MathWorks representation of a MATLAB figure, rendered on
the Web. Using the WebFigures feature, you display MATLAB figures on a
Web site for graphical manipulation by end users. This enables them to use
their graphical applications from anywhere on the Web, without the need to
download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF)— The Windows Communication
Foundation™ is an application programming interface in the .NET
Framework for building connected, service-oriented, Web-centric applications.
WCF is designed in accordance with service oriented architecture principles
to support distributed computing where services are consumed by client
applications.

16-16

17

Functions — Alphabetical
List

%#function
applicationCompiler
productionServerCompiler
ctfroot
deployprint
deploytool
figToImStream
getmcruserdata
<library>Initialize[WithHandlers]
isdeployed
ismcc
libraryCompiler
mbuild
mcc
mclGetLastErrorMessage
mclGetLogFileName
mclInitializeApplication
mclIsJVMEnabled
mclIsMCRInitialized
mclIsNoDisplaySet
mclmcrInitialize
mclRunMain
mclTerminateApplication
mclWaitForFiguresToDie
mcrinstaller
mcrversion

17 Functions — Alphabetical List

setmcruserdata
<library>Terminate

17-2

%#function

Purpose Pragma to help MATLAB Compiler locate functions called through
feval, eval, or Handle Graphics callback

Syntax %#function function1 [function2 ... functionN]

%#function object_constructor

Description The %#function pragma informs MATLAB Compiler that the specified
function(s) will be called through an feval, eval, or Handle Graphics
callback.

Use the %#function pragma in standalone applications to inform
MATLAB Compiler that the specified function(s) should be included
in the compilation, whether or not MATLAB Compiler’s dependency
analysis detects the function(s). It is also possible to include objects by
specifying the object constructor.

Without this pragma, the product’s dependency analysis will not be able
to locate and compile all MATLAB files used in your application. This
pragma adds the top-level function as well as all the local functions in
the file to the compilation.

Examples Example 1

function foo
%#function bar

feval('bar');

end %function foo

By implementing this example, MATLAB Compiler is notified that
function bar will be included in the compilation and is called through
feval.

Example 2

function foo
%#function bar foobar

feval('bar');

17-3

%#function

feval('foobar');

end %function foo

In this example, multiple functions (bar and foobar) are included in
the compilation and are called through feval.

17-4

applicationCompiler

Purpose Build and package functions into standalone applications

Syntax applicationCompiler [-win32] [[[-build] | [-project]]project_name]

Description applicationCompiler opens the MATLAB standalone compiler for the
creation of a new compiler project

applicationCompiler project_name opens the MATLAB standalone
compiler app with the project preloaded.

applicationCompiler -build project_name runs the MATLAB
standalone compiler to build the specified project. The installer is not
generated.

applicationCompiler -package project_name runs the MATLAB
standalone compiler to build and package the specified project. The
installer is generated.

applicationCompiler -win32 instructs the compiler to build a 32-bit
application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

See Also deploytool | mcc

17-5

productionServerCompiler

Purpose Build and package functions for use with MATLAB Production Server

Syntax productionServerCompiler [-win32] [[[-build] |
[-project]]project_name]

Description productionServerCompiler opens the MATLAB compiler for the
creation of a new compiler project

productionServerCompiler project_name opens the MATLAB
compiler with the project preloaded.

productionServerCompiler -build project_name runs the MATLAB
compiler to build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the
MATLAB compiler to build and package the specified project. The
installer is generated.

productionServerCompiler -win32 instructs the compiler to build a
32-bit application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

17-6

ctfroot

Purpose Location of files related to deployed application (CTF archive)

Syntax ctfroot

Description root = ctfroot returns a string that is the name of the folder where
the CTF file for the deployed application is expanded.

This function differs from matlabroot, which returns the path to where
core MATLAB functions and libraries are located. matlabroot returns
the root directory of the MCR when run against an installed MCR.

To determine the location of various toolbox folders in deployed mode,
use the toolboxdir function.

Examples appRoot = ctfroot; will return the location of your deployed
application files in this form: application_name_mcr.

Use this function to access any file that the user would have included in
their project (excluding the ones in the packaging folder).

How To • “Component Technology File (CTF Archive)” on page 7-6

17-7

deployprint

Purpose Use to print to a printer when working with deployed Windows
applications

Syntax deployprint

Description In cases where the print command would normally be issued when
running MATLAB software, use deployprint when working with
deployed applications.

deployprint is available on all platforms, however it is only required
on Windows.

deployprint supports all of the input arguments supported by print
except for the following.

Argument Description

-d Used to specify the type of the output (for
example. .JPG, .BMP, etc.). deployprint only
produces .BMP files.

Note To print to a file, use the print function.

-noui Used to suppress printing of user interface
controls. Similar to use in MATLAB print
function.

-setup The -setup option is not supported.

-s windowtitle MATLAB Compiler does not support Simulink.

deployprint supports a subset of the figure properties supported by
print. The following are supported:

• PaperPosition

• PaperSize

• PaperUnits

17-8

deployprint

• Orientation

• PrintHeader

Note deployprint requires write access to the file system in order to
write temporary files.

Examples The following is a simple example of how to print a figure in your
application, regardless of whether the application has been deployed
or not:

figure;
plot(1:10);
if isdeployed
deployprint;

else
print(gcf);

end

See Also isdeployed

17-9

deploytool

Purpose Compile and package functions for external deployment

Syntax deploytool [-win32] [[[-build] | [-project]]project_name]

Description deploytool opens the MATLAB Compiler app.

deploytool project_name opens the MATLAB Compiler app with
the project preloaded.

deploytool -build project_name runs the MATLAB Compiler to
build the specified project. The installer is not generated.

deploytool -package project_name runs the MATLAB Compiler to
build and package the specified project. The installer is generated.

deploytool -win32 instructs the compiler to build a 32-bit application
on a 64-bit system when the following are true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

17-10

figToImStream

Purpose Stream out figure as byte array encoded in format specified, creating
signed byte array in .png format

Syntax output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)

Description The output type = figToImStream ('fighandle', figure_handle,
'imageFormat', image_format, 'outputType', output_type)
command also accepts user-defined variables for any of the input
arguments, passed as a comma-separated list

The size and position of the printed output depends on the figure’s
PaperPosition[mode] properties.

Options figToImStream('figHandle', Figure_Handle, ...) allows you to
specify the figure output to be used. The Default is the current image

figToImStream('imageFormat', [png|jpg|bmp|gif]) allows you to
specify the converted image format. Default value is png.

figToImStream('outputType', [int8!uint8]) allows you to specify
an output byte data type. uint8 (unsigned byte) is used primarily for
.NET primitive byte. Default value is uint8.

Examples Convert the current figure to a signed png byte array:

surf(peaks)
bytes = figToImStream

Convert a specific figure to an unsigned bmp byte array:

f = figure;
surf(peaks);
bytes = figToImStream('figHandle', f, ...

'imageFormat', 'bmp', ...
'outputType', 'uint8');

17-11

getmcruserdata

Purpose Retrieve MATLAB array value associated with given string key

Syntax function_value = getmcruserdata(key)

Description The function_value = getmcruserdata(key) command is part of the
MCR User Data interface API. It returns an empty matrix if no such
key exists. For information about this function, as well as complete
examples of usage, see “Using the MCR User Data Interface” on page
9-32.

Examples function_value =
getmcruserdata('ParallelProfile');

See Also setmcruserdata

17-12

<library>Initialize[WithHandlers]

Purpose Initialize MCR instance associated with library

Syntax bool libraryInitialize(void)
bool libraryInitializeWithHandlers(

mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler)

Description Each generated library has its own MCR instance. These two functions,
libraryInitialize and libraryInitializeWithHandlers initialize
the MCR instance associated with library. Users must call one of these
functions after calling mclInitializeApplication and before calling
any of the compiled functions exported by the library. Each returns
a boolean indicating whether or not initialization was successful. If
they return false, calling any further compiled functions will result
in unpredictable behavior. libraryInitializeWithHandlers allows
users to specify how to handle error messages and printed text. The
functions passed to libraryInitializeWithHandlers will be installed
in the MCR instance and called whenever error text or regular text
is to be output.

Examples if (!libmatrixInitialize())
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -2;

}

See Also <library>Terminate

How To • “Library Initialization and Termination Functions” on page 13-26

17-13

isdeployed

Purpose Determine whether code is running in deployed or MATLAB mode

Syntax x = isdeployed

Description x = isdeployed returns true (1) when the function is running in
deployed mode and false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the
application with MATLAB Compiler, the function will return true when
the application is run in deployed mode. If you run the application
containing this function in a MATLAB session, the function will return
false.

17-14

ismcc

Purpose Test if code is running during compilation process (using mcc)

Syntax x = ismcc

Description x = ismcc returns true when the function is being executed by mcc
dependency checker and false otherwise.

When this function is executed by the compilation process started by
mcc, it will return true. This function will return false when executed
within MATLAB as well as in deployed mode. To test for deployed mode
execution, use isdeployed. This function should be used to guard
code in matlabrc, or hgrc (or any function called within them, for
example startup.m in the example on this page), from being executed
by MATLAB Compiler (mcc) or any of the Builder products.

In a typical example, a user has ADDPATH calls in their MATLAB
code. These can be guarded from executing using ismcc during the
compilation process and isdeployed for the deployed application or
component as shown in the example on this page.

Examples `% startup.m
if ~(ismcc || isdeployed)

addpath(fullfile(matlabroot,'work'));
end

See Also isdeployed | mcc

17-15

libraryCompiler

Purpose Build and package functions for use in external applications

Syntax libraryCompiler [-win32] [[[-build] | [-project]]project_name]

Description libraryCompiler opens the MATLAB shared library compiler for the
creation of a new compiler project

libraryCompiler project_name opens the MATLAB shared library
compiler app with the project preloaded.

libraryCompiler -build project_name runs the MATLAB shared
library compiler to build the specified project. The installer is not
generated.

libraryCompiler -package project_name runs the MATLAB shared
library compiler to build and package the specified project. The installer
is generated.

libraryCompiler -win32 instructs the compiler to build a 32-bit
application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

17-16

mbuild

Purpose Compile and link source files against MATLAB generated shared
libraries

Syntax mbuild [option1 ... optionN] sourcefile1 [... sourcefileN]
[objectfile1 ... objectfileN] [libraryfile1 ...

libraryfileN]

Description mbuild compiles and links customer written C or C++ code against
MATLAB generated shared libraries.

Some of these options (-f, -g, and -v) are available on the mcc command
line and are passed along to mbuild. Others can be passed along using
the -M option to mcc. For details on the -M option, see the mcc reference
page.

Supported
Source File
Types

Supported types of source files are:

• .c

• .cpp

Source files that are not one of the supported types are passed to the
linker.

Options This table lists the set of mbuild options. If no platform is listed, the
option is available on both UNIX and Windows.

Option Description

@<rspfile> (Windows only) Include the contents of the text
file <rspfile> as command line arguments to
mbuild.

-<arch> Build an output file for architecture -<arch>.
To determine the value for -<arch>, type
computer ('arch') at the MATLAB Command
Prompt on the target machine. Note: Valid
values for -<arch> depend on the architecture
of the build platform.

17-17

mbuild

Option Description

-c Compile only. Creates an object file only.

-D<name> Define a symbol name to the C preprocessor.
Equivalent to a #define <name> directive in
the source.

-D<name>=<value> Define a symbol name and value to the C
preprocessor. Equivalent to a #define <name>
<value> directive in the source.

-f <optionsfile> Specify location and name of options file to
use. Overrides the mbuild default options file
search mechanism.

-g Create an executable containing additional
symbolic information for use in debugging.
This option disables the mbuild default
behavior of optimizing built object code (see
the -O option).

-h[elp] Print help for mbuild.

-I<pathname> Add <pathname> to the list of folders to search
for #include files.

-l<name> Link with object library. On Windows
systems, <name> expands to <name>.lib or
lib<name>.lib and on UNIX systems, to
lib<name>.so or lib<name>.dylib. Do not
add a space after this switch.

Note When linking with a library, it is
essential that you first specify the path (with
-I<pathname>, for example).

17-18

mbuild

Option Description

-L<folder> Add <folder> to the list of folders to search
for libraries specified with the -l option. On
UNIX systems, you must also set the run-time
library path, as explained in “Building Your
Application on Mac or Linux ” on page B-10.
Do not add a space after this switch.

-n No execute mode. Print out any commands
that mbuild would otherwise have executed,
but do not actually execute any of them.

-O Optimize the object code. Optimization is
enabled by default and by including this option
on the command line. If the -g option appears
without the -O option, optimization is disabled.

-outdir <dirname> Place all output files in folder <dirname>.

-output
<resultname>

Create an executable named <resultname>.
An appropriate executable extension is
automatically appended. Overrides the mbuild
default executable naming mechanism.

-setup Interactively specify the compiler options file
to use as the default for future invocations of
mbuild by placing it in the user profile folder
(returned by the prefdir command). When
this option is specified, no other command line
input is accepted.

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the
-D option.)

17-19

mbuild

Option Description

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command line arguments
are considered. Prints each compile step and
final link step fully evaluated.

<name>=<value> Supplement or override an options file variable
for variable <name>. This option is processed
after the options file is processed and all
command line arguments are considered. You
may need to use the shell’s quoting syntax to
protect characters such as spaces that have
a meaning in the shell syntax. On Windows
double quotes are used (e.g., COMPFLAGS="opt1
opt2"), and on UNIX single quotes are used
(e.g., CFLAGS='opt1 opt2').

It is common to use this option to supplement
a variable already defined. To do this, refer
to the variable by prepending a $ (e.g.,
COMPFLAGS="$COMPFLAGS opt2" on Windows
or CFLAGS='$CFLAGS opt2' on UNIX shell).

Examples To change the default C/C++ compiler for use with MATLAB Compiler,
use

mbuild -setup

To compile and link an external C program foo.c against libfoo, use

mbuild foo.c -L. -lfoo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both foo.c and the library generated above are in the
current working folder.

17-20

mcc

Purpose Compile MATLAB functions for deployment

Syntax mcc {-e} | {-m} [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder]
[-f filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename

mcc -l [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -c [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -W cpplib:component_name -T link:lib [-a filename]… [-B
filename[:arg]…] [-C] [-d outFolder] [-f filename] [-g] [-I directory]…
[-K] [-M string] [-N] [-o filename] [-p path]… [-R option] [-S] [-v] [-w
option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W dotnet:component_name,[className], [framework_version],
security, remote_type -T link:lib [-a filename]… [-B filename[:arg]…]
[-C] [-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N]
[-p path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename… [class{className:[mfilename]…}]…

mcc -W excel:component_name,[className], [version] -T link:lib [-a
filename]… [-b] [-B filename[:arg]…] [-C] [-d outFolder] [-f filename]
[-I directory]… [-K] [-M string] [-N] [-p path]… [-R option] [-u] [-v]
[-w option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W 'java:packageName,[className]' [-a filename]… [-b]
[-B filename[:arg]…] [-C] [-d outFolder] [-f filename] [-I
directory]… [-K] [-M string] [-N] [-p path]… [-R option]
[-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem] filename…
[class{className:[mfilename]…}]…

17-21

mcc

mcc -W CTF:component_name [-a filename]… [-b] [-B filename[:arg]…]
[-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N] [-p
path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem]
filename… [class{className:[mfilename]…}]…

mcc -?

Description mcc -m mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e mfilename compiles the function into a standalone application
that does not open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -l mfilename... compiles the listed functions into a C shared
library and generates C wrapper code for integration with other
applications.

This is equivalent to -W lib:libname -T link:lib.

mcc -c mfilename... generates C wrapper code for the listed
functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:component_name -T link:lib mfilename...
compiles the listed functions into a C++ shared library and generates
C++ wrapper code for integration with other applications.

mcc -W
dotnet:component_name,className,framework_version,security,
remote_type -T link:lib mfilename... creates a .NET
component from the specified files.

17-22

mcc

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the .NET class to be created.

• framework_version— Specifies the version of the Microsoft .NET
Framework you want to use to compile the component. Specify either:

- 0.0— Use the latest supported version on the target machine.

- version_major.version_minor — Use a specific version of the
framework.

Features are often version-specific. Consult the documentation
for the feature you are implementing to get the Microsoft .NET
Framework version requirements.

• security — Specifies whether the component to be created is a
private assembly or a shared assembly.

- To create a private assembly, specify Private.

- To create a shared assembly, specify the full path to the encryption
key file used to sign the assembly.

• remote_type— Specifies the remoting type of the component. Values
are remote and local.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W excel:component_name,className, version -T link:lib
mfilename... creates a Microsoft Excel component from the specified
files.

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

17-23

mcc

• className — Specifies the name of the class to be created. If you
do not specify the class name, mcc uses the component_name as the
default.

• version — Specifies the version of the component specified as
major.minor.

- major— Specifies the major version number. If you do not specify
a version number, mcc uses the latest version.

- minor— Specifies the minor version number. If you do not specify
a version number, mcc uses the latest version.

mcc -W 'java:packageName,className' mfilename... creates a
Java package from the specified files.

• packageName — Specifies the name of the Java package
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the class to be created. If you do
not specify the class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W CTF:component_name instructs the compiler to create a
deployable CTF archive that is deployable in a MATLAB Production
Server instance.

mcc -? displays help.

Tip You can issue the mcc command either from the MATLAB
command prompt or the DOS or UNIX command line.

17-24

mcc

Options -a Add to Archive

Add a file to the CTF archive using

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added
to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation causes
a path entry to be added to the deployed application’s run-time path

17-25

mcc

so that they appear on the path when the deployed application or
component executes.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
is created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

Caution

If you use the -a flag to include a file that is not on the MATLAB path,
the folder containing the file is added to the MATLAB dependency
analysis path. As a result, other files from that folder might be included
in the compiled application.

Note Currently, * is the only supported wildcard.

Note If the -a flag is used to include custom Java classes, standalone
applications work without any need to change the classpath as long
as the Java class is not a member of a package. The same applies for
JAR files. However, if the class being added is a member of a package,
the MATLAB code needs to make an appropriate call to javaaddpath to
update the classpath with the parent folder of the package.

17-26

mcc

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder EX.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command-line
options and corresponding arguments and/or other file names. The file
might contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See “Using Bundle Files to Build MATLAB Code” on page
11-9 for a list of the bundle files included with MATLAB Compiler.

-C Do Not Embed CTF Archive by Default

Override automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default.

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

17-27

mcc

to specify filename as the options file when calling mbuild. This
option lets you use different ANSI compilers for different invocations of
MATLAB Compiler. This option is a direct pass-through to mbuild.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
lets you backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not let you debug your MATLAB
files with a C/C++ debugger.

-G Debug Only

Same as -g.

-I Add Folder to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for
MATLAB files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

-K Preserve Partial Output Files

Direct mcc to not delete output files if the compilation ends prematurely,
due to error.

The default behavior of mcc is to dispose of any partial output if the
command fails to execute successfully.

-M Direct Pass Through

Define compile-time options. Use

-M string

17-28

mcc

to pass string directly to mbuild. This provides a useful mechanism for
defining compile-time options, e.g., -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler\deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line lets
you replace folders from the original path, while retaining the relative
ordering of the included folders. All subfolders of the included folders
that appear on the original path are also included. In addition, the -N
option retains all folders that you included on the path that are not
under matlabroot\toolbox.

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

17-29

mcc

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders
(and subfolders) under matlabroot\toolbox to the compilation
MATLAB path in an order sensitive way. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder. The
rules for how these folders are included follow.

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

-R Run-Time

Provides MCR run-time options. The syntax is as follows:

-R option

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

17-30

mcc

Option Description

-startmsg Customizable user message displayed at MCR
initialization time.

-completemsg Customizable user message displayed when MCR
initialization is complete.

Note Not all -R options are available for all mcc targets.

Caution

When running on Mac OS X, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MCR Context

The standard behavior for the MCR is that every instance of a
class gets its own runtime context. This runtime context includes a
global MATLAB workspace for variables such as the path and a base
workspace for each function in the class. If multiple instances of a class
are created, each instance gets an independent context. This ensures
that changes made to the global, or base, workspace in one instance of
the class does not effect other instances of the same class.

In a singleton MCR, all instances of a class share the runtime context.
If multiple instances of a class are created, the use the runtime context
created by the first instance. This saves start up time and some
resources. However, any changes made to the global workspace or the
base workspace by one instance impacts all of the class instances. For
example, if instance1 creates a global variable A in a singleton MCR,
the instance2 will be able to use variable A.

17-31

mcc

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values
are as follow.

Target Description

compile:exe Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
standalone application.

compile:lib Generate a C/C++ wrapper file
plus compile C/C++ files to object
form suitable for linking into a
shared library/DLL.

link:exe Same as compile:exe plus links
object files into a standalone
application.

link:lib Same as compile:lib plus
links object files into a shared
library/DLL.

-u Register COM Component for the Current User

Register COM component for the current user only on the development
machine. The argument applies only for generic COM component and
Microsoft Excel add-in targets only.

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

17-32

mcc

The -v option passes the -v option to mbuild and displays information
about mbuild.

-w Warning Messages

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list Generate a table that maps <string> to
warning message for use with enable,
disable, and error. “Warning Messages”
on page C-7, lists the same information.

-w enable Enable complete warnings.

-w
disable[:<string>]

Disable specific warnings associated with
<string>. “Warning Messages” on page
C-7, lists the <string> values. Omit the
optional <string> to apply the disable
action to all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. “Warning Messages” on page
C-7, lists the <string> values. Omit the
optional <string> to apply the enable
action to all warnings.

-w error[:<string>] Treat specific warnings associated with
<string> as an error. Omit the optional
<string> to apply the error action to all
warnings.

17-33

mcc

Syntax Description

-w off[:<string>]
[<filename>]

Turn warnings off for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned off when generated by specific
<filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified
using isdeployed) in your startup.m, you write:

if isdeployed
warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed
warning on

end

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are true:

• You have a 32-bit installation of MATLAB.

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

17-34

mcc

• You are running from a Windows command line.

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

17-35

mclGetLastErrorMessage

Purpose Last error message from unsuccessful function call

Syntax const char* mclGetLastErrorMessage()

Description This function returns a function error message (usually in the form
of false or -1).

Example char *args[] = { "-nodisplay" };
if(!mclInitializeApplication(args, 1))
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

See Also mclInitializeApplication | mclTerminateApplication |
<library>Initialize[WithHandlers] | <library>Terminate

17-36

mclGetLogFileName

Purpose Retrieve name of log file used by MCR

Syntax const char* mclGetLogFileName()

Description Use mclGetLogFileName() to retrieve the name of the log file used by
the MCR. Returns a character string representing log file name used
by MCR. For more information, see “MCR Startup Options” on page
9-28 in the User’s Guide.

Examples printf("Logfile name : %s\n",mclGetLogFileName());

17-37

mclInitializeApplication

Purpose Set up application state shared by all (future) MCR instances created in
current process

Syntax bool
mclInitializeApplication(const char **options, int count)

Description MATLAB Compiler-generated standalone executables contain
auto-generated code to call this function; users of shared libraries must
call this function manually. Call only once per process. The function
takes an array of strings (possibly of zero length) and a count containing
the size of the string array. The string array may contain the following
MATLAB command line switches, which have the same meaning as
they do when used in MATLAB. :

• -appendlogfile

• -Automation

• -beginfile

• -debug

• -defer

• -display

• -Embedding

• -endfile

• -fork

• -java

• -jdb

• -logfile

• -minimize

• -MLAutomation

• -noaccel

• -nodisplay

17-38

mclInitializeApplication

• -noFigureWindows

• -nojit

• -nojvm

• -noshelldde

• -nosplash

• -r

• -Regserver

• -shelldde

• -singleCompThread

• -student

• -Unregserver

• -useJavaFigures

• -mwvisual

• -xrm

Caution

mclInitializeApplication must be called once only per process.
Calling mclInitializeApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Caution

When running on Mac, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

17-39

mclInitializeApplication

Examples To start all MCRs in a given process with the -nodisplay option, for
example, use the following code:

const char *args[] = { "-nodisplay" };
if (! mclInitializeApplication(args, 1))
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

See Also mclTerminateApplication

How To • “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on page
13-13

17-40

mclIsJVMEnabled

Purpose Determine if MCR was launched with instance of Java Virtual Machine
(JVM)

Syntax bool mclIsJVMEnabled()

Description Use mclIsJVMEnabled() to determine if the MCR was launched
with an instance of a Java Virtual Machine (JVM). Returns true if
MCR is launched with a JVM instance, else returns false. For more
information, see “MCR Startup Options” on page 9-28 in the User’s
Guide.

Examples printf("JVM initialized : %d\n", mclIsJVMEnabled());

17-41

mclIsMCRInitialized

Purpose Determine if MCR has been properly initialized

Syntax bool mclIsMCRInitialized()

Description Use mclIsMCRInitialized() to determine whether or not the MCR has
been properly initialized. Returns

• true if MCR is already initialized

• false if the MCR is not initialized

For more information, see “MCR Startup Options” on page 9-28.

Note This method can only be called once the MCR’s proxy library
has been initiated.

Examples printf("MCR initialized : %d\n", mclIsMCRInitialized());

17-42

mclIsNoDisplaySet

Purpose Determine if -nodisplay mode is enabled

Syntax bool mclIsNoDisplaySet()

Description Use mclIsNoDisplaySet() to determine if -nodisplaymode is enabled.
Returns true if -nodisplay is enabled, else returns false. For more
information, see “MCR Startup Options” on page 9-28 in the User’s
Guide.

Note Always returns false on Windows systems since the -nodisplay
option is not supported on Windows systems.

Examples printf("nodisplay set : %d\n",mclIsNoDisplaySet());

17-43

mclmcrInitialize

Purpose Initializes the MCR proxy library

Syntax mclmcrInitialize();

Description mclmcrInitialize is called before any other MATLAB APIs. It initializes
the library used to create the MCR proxy used by all other MATLAB
generated APIs.

See Also mclInitializeApplication

17-44

mclRunMain

Purpose Mechanism for creating identical wrapper code across all compiler
platform environments

Syntax typedef int (*mclMainFcnType)(int, const char **);

int mclRunMain(mclMainFcnType run_main,
int argc,
const char **argv)

run_main

Name of function to execute after MCR set-up code.

argc

Number of arguments being passed to run_main function. Usually,
argc is received by application at its main function.

argv

Pointer to an array of character pointers. Usually, argv is received by
application at its main function.

Description As you need to provide wrapper code when creating an application
which uses a C or C++ shared library created by MATLAB Compiler,
mclRunMain enables you with a mechanism for creating identical
wrapper code across all MATLAB Compiler platform environments.

mclRunMain is especially helpful in Macintosh OS X environments
where a run loop must be created for correct MCR operation.

When an OS X run loop is started, if mclInitializeApplication
specifies the -nojvm or -nodisplay option, creating a run loop is
a straight-forward process. Otherwise, you must create a Cocoa
framework. The Cocoa frameworks consist of libraries, APIs, and
Runtimes that form the development layer for all of Mac OS X.

Generally, the function pointed to by run_main returns with a pointer
(return value) to the code that invoked it. When using Cocoa on the

17-45

mclRunMain

Macintosh, however, when the function pointed to by run_main returns,
the MCR calls exit before the return value can be received by the
application, due to the inability of the underlying code to get control
when Cocoa is shut down.

Caution

You should not use mclRunMain if your application brings up its own
full graphical environment.

Note In non-Macintosh environments, mclRunMain acts as a wrapper
and doesn’t perform any significant processing.

Examples Call using this basic structure:

int returncode = 0;
mclInitializeApplication(NULL,0);
returncode = mclRunMain((mclmainFcn)

my_main_function,0,NULL);

See Also mclInitializeApplication

17-46

mclTerminateApplication

Purpose Close down all MCR-internal application state

Syntax bool mclTerminateApplication(void)

Description Call this function once at the end of your program to close down all
MCR-internal application state. Call only once per process. After
you have called this function, you cannot call any further MATLAB
Compiler-generated functions or any functions in any MATLAB library.

Caution

mclTerminateApplication must be called once only per process.
Calling mclTerminateApplication more than once may cause your
application to exhibit unpredictable or undesirable behavior.

Caution

mclTerminateApplication will close any visible or invisible figures
before exiting. If you have visible figures that you would like to wait
for, use mclWaitForFiguresToDie.

Examples At the start of your program, call mclInitializeApplication to ensure
your library was properly initialized:

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

At your program’s exit point, call mclTerminateApplication to
properly shut the application down:

17-47

mclTerminateApplication

mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return 0;

See Also mclInitializeApplication

How To • “Initializing and Terminating Your Application with
mclInitializeApplication and mclTerminateApplication” on page
13-13

17-48

mclWaitForFiguresToDie

Purpose Enable deployed applications to process Handle Graphics events,
enabling figure windows to remain displayed

Syntax void mclWaitForFiguresToDie(HMCRINSTANCE instReserved)

Description Calling void mclWaitForFiguresToDie enables the deployed
application to process Handle Graphics events.

NULL is the only parameter accepted for the MCR instance
(HMCRINSTANCE instReserved).

This function can only be called after libraryInitialize has been
called and before libraryTerminate has been called.

mclWaitForFiguresToDie blocks all open figures. This function runs
until no visible figures remain. At that point, it displays a warning if
there are invisible figures present. This function returns only when the
last figure window is manually closed — therefore, this function should
be called after the library launches at least one figure window. This
function may be called multiple times.

If this function is not called, any figure windows initially displayed by
the application briefly appear, and then the application exits.

Note mclWaitForFiguresToDie will block the calling program only for
MATLAB figures. It will not block any Java GUIs, ActiveX controls,
and other non-MATLAB GUIs unless they are embedded in a MATLAB
figure window.

Examples int run_main(int argc, const char** argv)
{

int some_variable = 0;
if (argc > 1)

test_to_run = atoi(argv[1]);

/* Initialize application */

17-49

mclWaitForFiguresToDie

if(!mclInitializeApplication(NULL,0))
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}

if (test_to_run == 1 || test_to_run == 0)
{
/* Initialize ax1ks library */
if (!libax1ksInitialize())
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}
}

if (test_to_run == 2 || test_to_run == 0)
{
/* Initialize simple library */
if (!libsimpleInitialize())
{

fprintf(stderr,
An error occurred while
initializing: \n %s ,

mclGetLastErrorMessage());
return -1;

}
}

/* your code here

17-50

mclWaitForFiguresToDie

/* your code here
/* your code here
/* your code here
/*
/* Block on open figures */
mclWaitForFiguresToDie(NULL);

/* Terminate libraries */
if (test_to_run == 1 || test_to_run == 0)
libax1ksTerminate();

if (test_to_run == 2 || test_to_run == 0)
libsimpleTerminate();

/* Terminate application */
mclTerminateApplication();

return(0);
}

How To • “Terminating Figures by Force In a Standalone Application” on page
11-23

17-51

mcrinstaller

Purpose Display version and location information for MCR installer
corresponding to current platform

Syntax [INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST]
= mcrinstaller;

Description Displays information about available MCR installers using the
format: [INSTALLER_PATH, MAJOR, MINOR, PLATFORM, LIST] =
mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current
platform.

• MAJOR is the major version number of the installer.

• MINOR is the minor version number of the installer.

• PLATFORM is the name of the current platform (returned by
COMPUTER(arch)).

• LIST is a cell array of strings containing the full paths to MCR
installers for other platforms. This list is non-empty only in a
multi-platform MATLAB installation.

Note You must distribute the MATLAB Compiler Runtime library
to your end users to enable them to run applications developed with
MATLAB Compiler. Prebuilt MCR installers for all licensed platforms
ship with MATLAB Compiler.

See “Working with the MCR” on page 9-14 for more information about
the MCR installer.

Examples Find MCR Installer Locations

Display locations of MCR Installers for platform. This example shows
output for a win64 system.

17-52

mcrinstaller

mcrinstaller

The WIN64 MCR Installer, version 7.16, is:
X:\jobx\clusterc\current\matlab\toolbox\compiler\

deploy\win64\MCRInstaller.exe

MCR installers for other platforms are located in:
X:\jobx\clusterc\current\matlab\toolbox\compiler\

deploy\win64
win64 is the value of COMPUTER(win64) on

the target machine.

For more information, read your local MCR Installer help.
Or see the online documentation at MathWorks' web site. (Page

may load slowly.)

ans =

X:\jobx\clusterc\current\matlab\toolbox\compiler\
deploy\win64\MCRInstaller.exe

17-53

mcrversion

Purpose Determine version of installed MATLAB Compiler Runtime (MCR)

Syntax [major, minor] = mcrversion;

Description The MCR version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable:
[major, minor] = mcrversion; Major and minor are returned as
integers.

If the version number ever increases to three or more digits, call
mcrversion with more outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples mcrversion
ans =

7

17-54

setmcruserdata

Purpose Associate MATLAB data value with string key

Syntax function setmcruserdata(key, value)

Description The function setmcruserdata(key, value) command is part of the
MCR User Data interface API. For information about this function, as
well as complete examples of usage, see “Using the MCR User Data
Interface” on page 9-32.

Examples In C++:

mxArray *key = mxCreateString("ParallelProfile");
mxArray *value = mxCreateString("\usr\userdir\config.settings");
if (!setmcruserdata(key, value))
{

fprintf(stderr,
Could not set MCR user data: \n %s ,

mclGetLastErrorMessage());
return -1;

}

In C:

mxArray *key = mxCreateString("ParallelProfile");
mxArray *value = mxCreateString("\usr\userdir\config.settings");
if (!mlfSetmcruserdata(key, value))
{

fprintf(stderr,
Could not set MCR user data: \n %s ,

mclGetLastErrorMessage());
return -1;

}

See Also getmcruserdata

17-55

<library>Terminate

Purpose Free all resources allocated by MCR instance associated with library

Syntax void libraryTerminate(void)

Description This function should be called after you finish calling the
functions in this MATLAB Compiler-generated library, but before
mclTerminateApplication is called.

Examples Call libmatrixInitialize to initialize libmatrix library properly
near the start of your program:

/* Call the library intialization routine and ensure the
* library was initialized properly. */
if (!libmatrixInitialize())
{

fprintf(stderr,
An error occurred while initializing: \n %s ,

mclGetLastErrorMessage());
return -2;

}
else

...

Near the end of your program (but before calling
mclTerminateApplication) free resources allocated by the
MCR instance associated with library libmatrix:

/* Call the library termination routine */
libmatrixTerminate();
/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
}

See Also <library>Initialize[WithHandlers]

How To • “Library Initialization and Termination Functions” on page 13-26

17-56

A

MATLAB Compiler Quick
Reference

• “Common Uses of MATLAB® Compiler™ ” on page A-2

• “mcc Command Arguments Listed Alphabetically” on page A-4

• “mcc Command Line Arguments Grouped by Task” on page A-8

A MATLAB® Compiler™ Quick Reference

Common Uses of MATLAB Compiler

In this section...

“Create a Standalone Application” on page A-2

“Create a Library” on page A-2

Create a Standalone Application

Example 1
To create a standalone application from mymfile.m, use

mcc -m mymfile

Example 2
To create a standalone application from mymfile.m, look for mymfile.m in the
folder /files/source, and put the resulting C files and in /files/target,
use

mcc -m -I /files/source -d /files/target mymfile

Example 3
To create a standalone application mymfile1 from mymfile1.m and
mymfile2.m using a single mcc call, use

mcc -m mymfile1 mymfile2

Create a Library

Example 1
To create a C shared library from foo.m, use

mcc -l foo.m

A-2

Common Uses of MATLAB® Compiler™

Example 2
To create a C shared library called library_one from foo1.m and foo2.m, use

mcc -W lib:library_one -T link:lib foo1 foo2

Note You can add the -g option to any of these for debugging purposes.

A-3

A MATLAB® Compiler™ Quick Reference

mcc Command Arguments Listed Alphabetically
Bold entries in the Comment column indicate default values.

Option Description Comment

-a filename Add filename to the CTF
archive.

None

-b Generate Excel compatible
formula function.

Requires MATLAB Builder EX

-B
filename[:arg[,arg]]

Replace -B filename on the
mcc command line with the
contents of filename.

The file should contain only mcc
command-line options. These are
MathWorks included options files:

• -B csharedlib:foo — C shared
library

• -B cpplib:foo— C++ library

-c Generate C wrapper code. Equivalent to
-T codegen

-C Directs mcc to not embed
the CTF archive in C/C++
and main/Winmain shared
libraries and standalone
binaries by default.

See “MCR Component Cache and CTF
Archive Embedding” on page 11-11 for
more information.

-d directory Place output in specified
folder.

None

A-4

mcc Command Arguments Listed Alphabetically

Option Description Comment

-e Suppresses appearance of
the MS-DOS Command
Window when generating a
standalone application.

Use -e in place of the -m option.
Available for Windows only. Use
with -R option to generate error
logging. Equivalent to -W WinMain -T
link:exe

The standalone app compiler suppresses
the MS-DOS command window by
default. To unsuppress it, unselect Do
not require Windows Command
Shell (console) for execution in the
app’s Additional Runtime Settings
area.

-f filename Use the specified options
file, filename, when calling
mbuild.

mbuild -setup is recommended.

-g Generate debugging
information.

None

-G Same as -g None

-I directory Add folder to search path for
MATLAB files.

MATLAB path is automatically
included when running from MATLAB,
but not when running from aDOS/UNIX
shell.

-K Directs mcc to not delete
output files if the compilation
ends prematurely, due to
error.

mcc’s default behavior is to dispose of
any partial output if the command fails
to execute successfully.

-l Macro to create a function
library.

Equivalent to
-W lib -T link:lib

-m Macro to generate a
standalone application.

Equivalent to
-W main -T link:exe

-M string Pass string to mbuild. Use to define compile-time options.

A-5

A MATLAB® Compiler™ Quick Reference

Option Description Comment

-N Clear the path of all but
a minimal, required set of
folders.

None

-o outputfile Specify name of final output
file.

Adds appropriate extension

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

-R option Specify run-time options for
MCR.

option =
-nojvm
-nodisplay
-logfile filename
-startmsg
-completemsg filename

-S Create Singleton MCR. For COM components only. Requires
MATLAB Builder NE or MATLAB
Builder EX.

-u Registers COM component
for current user only on
development machine

Valid only for generic COM components
and Microsoft Excel add-ins (requiring
MATLAB Builder EX)

-T Specify the output target
phase and type.

Default is codegen.

-v Verbose; display compilation
steps.

None

-w option Display warning messages. option = list
level
level:string
where level = disable

enable
error
error

[off:string | on:string]

A-6

mcc Command Arguments Listed Alphabetically

Option Description Comment

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,clname,version

-Y licensefile Use licensefile when
checking out a MATLAB
Compiler license.

None

-? Display help message. None

A-7

A MATLAB® Compiler™ Quick Reference

mcc Command Line Arguments Grouped by Task
Bold entries in the Comment column indicate default values.

COM Components

Option Description Comment

-u Registers COM
component for
current user only on
development machine

Valid only for generic
COM components and
Microsoft Excel add-ins
(requiring MATLAB
Builder EX)

A-8

mcc Command Line Arguments Grouped by Task

CTF Archive

Option Description Comment

-a filename Add filename to the
CTF archive.

None

-C Directs mcc to not
embed the CTF
archive in C/C++
and main/Winmain
shared libraries and
standalone binaries by
default.

See “MCR Component
Cache and CTF
Archive Embedding”
on page 11-11 for more
information.

A-9

A MATLAB® Compiler™ Quick Reference

Debugging

Option Description Comment

-g Generate debugging
information.

None

-G Same as -g None

-K Directs mcc to not
delete output files if
the compilation ends
prematurely, due to
error.

mcc’s default behavior
is to dispose of any
partial output if the
command fails to
execute successfully.

-v Verbose; display
compilation steps.

None

-W type Control the generation
of function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,

clname,version

-? Display help message. None

A-10

mcc Command Line Arguments Grouped by Task

Dependency Function Processing

Option Description Comment

-a filename Add filename to the
CTF archive.

None

A-11

A MATLAB® Compiler™ Quick Reference

Licenses

Option Description Comment

-Y licensefile Use licensefile
when checking out a
MATLAB Compiler
license.

None

A-12

mcc Command Line Arguments Grouped by Task

MATLAB Builder EX

Option Description Comment

-b Generate Excel
compatible formula
function.

Requires MATLAB
Builder EX

-u Registers COM
component for
current user only on
development machine

Valid only for generic
COM components and
Microsoft Excel add-ins
(requiring MATLAB
Builder EX)

A-13

A MATLAB® Compiler™ Quick Reference

MATLAB Path

Option Description Comment

-I directory Add folder to search
path for MATLAB files.

MATLAB path is
automatically included
when running from
MATLAB, but not
when running from a
DOS/UNIX shell.

-N Clear the path of all but
a minimal, required set
of folders.

None

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

A-14

mcc Command Line Arguments Grouped by Task

mbuild

Option Description Comment

-f filename Use the specified
options file, filename,
when calling mbuild.

mbuild -setup is
recommended.

-M string Pass string to mbuild. Use to define
compile-time options.

A-15

A MATLAB® Compiler™ Quick Reference

MATLAB Compiler Runtime (MCR)

Option Description Comment

-R option Specify run-time
options for MCR.

option =
-nojvm
-nodisplay
-logfile

filename
-startmsg
-completemsg

filename

-S Create Singleton MCR. Requires MATLAB
Builder NE

A-16

mcc Command Line Arguments Grouped by Task

Override Default Inputs

Option Description Comment

-B
filename[:arg[,arg]]

Replace -B filename
on the mcc command
line with the contents
of filename (bundle).

The file should contain
only mcc command-line
options. These are
MathWorks included
options files:

• -B csharedlib:foo
— C shared library

• -B cpplib:foo —
C++ library

A-17

A MATLAB® Compiler™ Quick Reference

Override Default Outputs

Option Description Comment

-d directory Place output in
specified folder.

None

-o outputfile Specify name of final
output file.

Adds appropriate
extension

-e Suppresses appearance
of the MS-DOS
Command Window
when generating a
standalone application.

Use -e in place of the
-m option. Available
for Windows only.
Use with -R option
to generate error
logging. Equivalent
to -W WinMain -T
link:exe

The standalone app
compiler suppresses
the MS-DOS command
window by default. To
unsuppress it, unselect
Do not require
Windows Command
Shell (console) for
execution in the app’s
Additional Runtime
Settings area.

A-18

mcc Command Line Arguments Grouped by Task

Wrappers and Libraries

Option Description Comment

-c Generate C wrapper
code.

Equivalent to
-T codegen

-l Macro to create a
function library.

Equivalent to
-W lib -T link:lib

-m Macro to generate a
standalone application.

Equivalent to
-W main -T link:exe

-W type Control the generation
of function wrappers.

type = main
cpplib:<string>
lib:<string>

none
com:compname,

clname,version

A-19

A MATLAB® Compiler™ Quick Reference

A-20

B

Using MATLAB Compiler
on Mac or Linux

• “Overview” on page B-2

• “Installing MATLAB® Compiler™ on Mac or Linux” on page B-3

• “Writing Applications for Mac or Linux” on page B-4

• “Building Your Application on Mac or Linux ” on page B-10

• “Testing Your Application on Mac or Linux” on page B-11

• “Set MCR Paths on Mac or Linux with Scripts” on page B-12

B Using MATLAB® Compiler™ on Mac or Linux®

Overview
If you use MATLAB Compiler on Linux or Macintosh systems, use this
appendix as a quick reference to common tasks.

B-2

Installing MATLAB® Compiler™ on Mac or Linux®

Installing MATLAB Compiler on Mac or Linux

In this section...

“Installing MATLAB® Compiler™” on page B-3

“Custom Configuring Your Options File” on page B-3

“Install Apple Xcode from DVD on Maci64” on page B-3

Installing MATLAB Compiler
See “Supported ANSI C and C++ UNIX Compilers” on page 2-2 for general
installation instructions and information about supported compilers.

Custom Configuring Your Options File
To modify the current linker settings, or disable a particular set of warnings,
locate your options file for your “UNIX Operating System” on page 2-6, and
view instructions for “Changing the Options File” on page 2-6.

Install Apple Xcode from DVD on Maci64
When installing on 64-bit Macintosh systems, install the Apple Xcode from
the installation DVD.

B-3

B Using MATLAB® Compiler™ on Mac or Linux®

Writing Applications for Mac or Linux

In this section...

“Objective-C/C++ Applications for Apple’s Cocoa API” on page B-4

“Where’s the Example Code?” on page B-4

“Preparing Your Apple Xcode Development Environment” on page B-4

“Build and Run the Sierpinski Application” on page B-5

“Running the Sierpinski Application” on page B-7

Objective-C/C++ Applications for Apple’s Cocoa API
Apple Xcode, implemented in the Objective-C language, is used to develop
applications using the Cocoa framework, the native object-oriented API for
the Mac OS X operating system.

This article details how to deploy a graphical MATLAB application with
Objective C and Cocoa, and then deploy it using MATLAB Compiler.

Where’s the Example Code?
You can find example Apple Xcode, header, and project files in
matlabroot/extern/examples/compiler/xcode.

Preparing Your Apple Xcode Development
Environment
To run this example, you should have prior experience with the Apple Xcode
development environment and the Cocoa framework.

The example in this article is ready to build and run. However, before you
build and run your own applications, you must do the following (as has been
done in our example code):

1 Build the shared library with MATLAB Compiler using either the
Deployment Tool or mcc.

B-4

Writing Applications for Mac or Linux®

2 Compile application code against the component’s header file and link the
application against the component library and libmwmclmcrrt. See “Set
MCR Paths on Mac or Linux with Scripts” on page B-12 and “Solving
Problems Related to Setting MCR Paths on Mac or Linux” on page B-12 for
information about and MCR paths and libmwmclmcrrt.

3 In your Apple Xcode project:

• Specify mcc in the project target (Build Component Library in the
example code).

• Specify target settings in HEADER_SEARCH_PATHS.

– Specify directories containing the component header.

– Specify the path matlabroot/extern/include.

– Define MWINSTALL_ROOT, which establishes the install route using
a relative path.

• Set LIBRARY_SEARCH_PATHS to any directories containing the component’s
shared library, as well as to the path matlabroot/runtime/maci64.

Build and Run the Sierpinski Application
In this example, you deploy the graphical Sierpinski function (sierpinski.m,
located at matlabroot/extern/examples/compiler).

function [x, y] = sierpinski(iterations, draw)
% SIERPINSKI Calculate (optionally draw) the points
% in Sierpinski's triangle

% Copyright 2004 The MathWorks, Inc.

% Three points defining a nice wide triangle
points = [0.5 0.9 ; 0.1 0.1 ; 0.9 0.1];

% Select an initial point
current = rand(1, 2);

% Create a figure window
if (draw == true)

f = figure;
hold on;

B-5

B Using MATLAB® Compiler™ on Mac or Linux®

end

% Pre-allocate space for the results, to improve performance
x = zeros(1,iterations);
y = zeros(1,iterations);

% Iterate
for i = 1:iterations

% Select point at random
index = floor(rand * 3) + 1;

% Calculate midpoint between current point and random point
current(1) = (current(1) + points(index, 1)) / 2;
current(2) = (current(2) + points(index, 2)) / 2;

% Plot that point
if draw, line(current(1),current(2));, end

x(i) = current(1);
y(i) = current(2);

end

if (draw)
drawnow;

end

1 Using the Mac Finder, locate the Apple Xcode project
(matlabroot/extern/examples/compiler/xcode). Copy files to
a working directory to run this example, if needed.

2 Open sierpinski.xcodeproj. The development environment starts.

3 In the Groups and Files pane, select Targets.

4 Click Build and Run. The make file runs that launches MATLAB
Compiler (mcc).

B-6

Writing Applications for Mac or Linux®

Running the Sierpinski Application
Run the Sierpinski application from the build output directory. The
following GUI appears:

MATLAB Sierpinski Function Implemented in the Mac Cocoa Environment

1 In the Iterations field, enter an integer such as 10000:

B-7

B Using MATLAB® Compiler™ on Mac or Linux®

2 Click Draw Triangle. The following figure appears:

B-8

Writing Applications for Mac or Linux®

B-9

B Using MATLAB® Compiler™ on Mac or Linux®

Building Your Application on Mac or Linux

In this section...

“Compiling Your Application with the Compiler Apps” on page B-10

“Compiling Your Application with the Command Line” on page B-10

Compiling Your Application with the Compiler Apps
When running a graphical interface from your Mac or Linux desktop, use
“Create and Install a Standalone Application from MATLAB Code” on page
1-12 as a template for building a standalone application with the Application
Compiler. Use “Create a C/C++ Shared Library from MATLAB Code” on page
1-21 for creating a shared library with the Library Compiler.

Compiling Your Application with the Command Line
For compiling your application at the command line, there are separate
Macintosh and non-Macintosh instructions for Mac or Linux platforms.

On Non-Mac i64 Platforms
Use the section “Input and Output Files” on page 8-2 for lists of files produced
and supplied to mcc when building a “Standalone Executable” on page 8-2, “C
Shared Library” on page 8-3, or “C++ Shared Library” on page 8-5.

On Maci64
Use the section “Input and Output Files” on page 8-2 for lists of files produced
and supplied to mcc when building a “Macintosh 64 (Maci64)” on page 8-7
application.

B-10

Testing Your Application on Mac or Linux®

Testing Your Application on Mac or Linux
On Windows, deployed applications automatically modify the system PATH
variable.

On Mac OS X or Linux, deployed applications do not modify the system PATH
variable. You must perform this step manually.

B-11

B Using MATLAB® Compiler™ on Mac or Linux®

Set MCR Paths on Mac or Linux with Scripts
When you build applications, associated shell scripts (run_application.sh)
are automatically generated in the same folder as your binary. By running
these scripts, you can conveniently set the path to your MCR location.

Solving Problems Related to Setting MCR Paths on
Mac or Linux
Use the following to solve common problems and issues:

I tried running SETENV on Mac and the command failed

If the setenv command fails with a message similar to setenv: command
not found or setenv: not found, you are not using a C Shell command
interpreter (such as csh or tcsh).

Set the environment variables using the export command using the format
export my_variable=my_value.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH = mcr_root/v711/runtime/maci64:mcr_root/
...

My Mac application fails with “Library not loaded” or “Image not
found” even though my EVs are set

If you set your environment variables, you may still receive the following
message when you run your application:

imac-joe-user:~ joeuser$ /Users/joeuser/Documents/MATLAB/Dip/Dip ; exit;
dyld: Library not loaded: @loader_path/libmwmclmcrrt.7.11.dylib
Referenced from: /Users/joeuser/Documents/MATLAB/Dip/Dip
Reason: image not found
Trace/BPT trap
logout

You may have set your environment variables initially, but they were not set
up as persistent variables. Do the following:

B-12

Set MCR Paths on Mac or Linux® with Scripts

1 In your home directory, open a file such as .bashrc or .profile file in
your log-in shell.

2 In either of these types of log-in shell files, add commands to set
your environment variables so that they persist. For example, to set
DYLD_LIBRARY_PATH in this manner, you enter the following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=/Users/joeuser/Desktop/mcr/v711/runtime/maci64:
/Users/joeuser/Desktop/mcr/v711/sys/os/maci64:/Users/joeuser/Desktop/
mcr//v711/bin/maci64
export DYLD_LIBRARY_PATH

?

Note The DYLD_LIBRARY_PATH= statement is one statement that must
be entered as a single line. The statement is shown on different lines, in
this example, for readability only.

B-13

B Using MATLAB® Compiler™ on Mac or Linux®

B-14

C

Error and Warning
Messages

• “About Error and Warning Messages” on page C-2

• “Compile-Time Errors” on page C-3

• “Warning Messages” on page C-7

• “Dependency Analysis Errors” on page C-10

C Error and Warning Messages

About Error and Warning Messages
This appendix lists and describes error messages and warnings generated
by MATLAB Compiler. Compile-time messages are generated during the
compile or link phase. It is useful to note that most of these compile-time
error messages should not occur if the MATLAB software can successfully
execute the corresponding MATLAB file.

Use this reference to:

• Confirm that an error has been reported

• Determine possible causes for an error

• Determine possible ways to correct an error

When using MATLAB Compiler, if you receive an internal error message,
record the specific message and report it to Technical Support at
http://www.mathworks.com/contact_TS.html.

C-2

http://www.mathworks.com/contact_TS.html

Compile-Time Errors

Compile-Time Errors
Error: An error occurred while shelling out to mex/mbuild (error
code = errorno). Unable to build (specify the -v option for more
information). MATLAB Compiler reports this error if mbuild or mex
generates an error.

Error: An error occurred writing to file "filename": reason. The file
can not be written. The reason is provided by the operating system. For
example, you may not have sufficient disk space available to write the file.

Error: Cannot write file "filename" because MCC has already created
a file with that name, or a file with that name was specified as a
command line argument. MATLAB Compiler has been instructed to
generate two files with the same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional MATLAB
Compiler licenses are available for your workgroup.

Error: Initializing preferences required to run the application. The
.ctf file and the corresponding target (standalone application or shared
library) created using MATLAB Compiler do not match. Ensure that the .ctf
file and the target file are created as output from the same mcc command.
Verify the time stamp of these files to ensure they were created at the same
time. Never combine the .ctf file and the target application created during
execution of different mcc commands.

Error: File: "filename" not found. A specified file can not be found on the
path. Verify that the file exists and that the path includes the file’s location.
You can use the -I option to add a folder to the search path.

Error: File: "filename" is a script MATLAB file and cannot be compiled
with the current Compiler. MATLAB Compiler cannot compile script
MATLAB files. To learn how to convert script MATLAB files to function
MATLAB files, see “Converting Script MATLAB Files to Function MATLAB
Files” on page 11-17.

C-3

C Error and Warning Messages

Error: File: filename Line: # Column: # A variable cannot be made
storageclass1 after being used as a storageclass2. You cannot change
a variable’s storage class (global/local/persistent). Even though MATLAB
allows this type of change in scope, MATLAB Compiler does not.

Error: Found illegal whitespace character in command line option:
"string". The strings on the left and right side of the space should
be separate arguments to MCC. For example:

mcc('-m', '-v', 'hello')% Correct
mcc('-m -v', 'hello') % Incorrect

Error: Improper usage of option -optionname. Type "mcc -?" for
usage information. You have incorrectly used a MATLAB Compiler
option. For more information about MATLAB Compiler options, see “mcc
Command Arguments Listed Alphabetically” on page A-4, or type mcc -? at
the command prompt.

Error: libraryname library not found. MATLAB has been installed
incorrectly.

Error: No source files were specified (-? for help). You must provide
MATLAB Compiler with the name of the source file(s) to compile.

Error: "optionname" is not a valid -option option argument. You must
use an argument that corresponds to the option. For example:

mcc -W main ... % Correct
mcc -W mex ... % Incorrect

Error: Out of memory. Typically, this message occurs because MATLAB
Compiler requests a larger segment of memory from the operating system
than is currently available. Adding additional memory to your system can
alleviate this problem.

Error: Previous warning treated as error. When you use the -w error
option, this error appears immediately after a warning message.

C-4

Compile-Time Errors

Error: The argument after the -option option must contain a colon.
The format for this argument requires a colon. For more information, see
“mcc Command Arguments Listed Alphabetically” on page A-4, or type mcc
-? at the command prompt.

Error: The environment variable MATLAB must be set to the MATLAB
root directory. On UNIX, the MATLAB and LM_LICENSE_FILE variables must
be set. The mcc shell script does this automatically when it is called the first
time.

Error: The license manager failed to initialize (error code is
errornumber). You do not have a valid MATLAB Compiler license or no
additional MATLAB Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -?
for help). The specified option is not available.

Error: The specified file "filename" cannot be read. There is a problem
with your specified file. For example, the file is not readable because there
is no read permission.

Error: The -optionname option requires an argument (e.g.
"proper_example_usage"). You have incorrectly used a MATLAB
Compiler option. For more information about MATLAB Compiler options, see
“mcc Command Arguments Listed Alphabetically” on page A-4, or type mcc
-? at the command prompt.

Error: -x is no longer supported. MATLAB Compiler no longer generates
MEX-files because there is no longer any performance advantage to doing so.
The MATLAB JIT Accelerator makes compilation for speed obsolete.

Error: Unable to open file "filename":<string>. There is a problem with
your specified file. For example, there is no write permission to the output
folder, or the disk is full.

Error: Unable to set license linger interval (error code is
errornumber). A license manager failure has occurred. Contact Technical
Support with the full text of the error message.

C-5

http://www.mathworks.com/support/
http://www.mathworks.com/support/

C Error and Warning Messages

Error: Unknown warning enable/disable string: warningstring. -w
enable:, -w disable:, and -w error: require you to use one of the warning
string identifiers listed in “Warning Messages” on page C-7.

Error: Unrecognized option: -option. The option is not a valid option.
See “mcc Command Arguments Listed Alphabetically” on page A-4, for a
complete list of valid options for MATLAB Compiler, or type mcc -? at the
command prompt.

C-6

Warning Messages

Warning Messages
This section lists the warning messages that MATLAB Compiler can generate.
Using the -w option for mcc, you can control which messages are displayed.
Each warning message contains a description and the warning message
identifier string (in parentheses) that you can enable or disable with the -w
option. For example, to produce an error message if you are using a trial
MATLAB Compiler license to create your standalone application, you can use:

mcc -w error:trial_license -mvg hello

To enable all warnings except those generated by the save command, use:

mcc -w enable -w disable:trial_license ...

To display a list of all the warning message identifier strings, use:

mcc -w list -m mfilename

For additional information about the -w option, see “mcc Command
Arguments Listed Alphabetically” on page A-4.

Warning: File: filename Line: # Column: # The #function pragma
expects a list of function names. (pragma_function_missing_names) This
pragma informs MATLAB Compiler that the specified function(s) provided
in the list of function names will be called through an feval call. This will
automatically compile the selected functions.

Warning: MATLAB file "filename" was specified on the command line
with full path of "pathname", but was found on the search path
in directory "directoryname" first. (specified_file_mismatch) MATLAB
Compiler detected an inconsistency between the location of the MATLAB file
as given on the command line and in the search path. MATLAB Compiler
uses the location in the search path. This warning occurs when you specify a
full path name on the mcc command line and a file with the same base name
(file name) is found earlier on the search path. This warning is issued in the
following example if the file afile.m exists in both dir1 and dir2:

mcc -m -I /dir1 /dir2/afile.m

C-7

C Error and Warning Messages

Warning: The file filename was repeated on MATLAB Compiler
command line. (repeated_file) This warning occurs when the same file name
appears more than once on the compiler command line. For example:

mcc -m sample.m sample.m % Will generate the warning

Warning: The name of a shared library should begin with the letters
"lib". "libraryname" doesn’t. (missing_lib_sentinel) This warning is
generated if the name of the specified library does not begin with the letters
“lib”. This warning is specific to UNIX and does not occur on the Windows
operating system. For example:

mcc -t -W lib:liba -T link:lib a0 a1 % No warning
mcc -t -W lib:a -T link:lib a0 a1 % Will generate a warning

Warning: All warnings are disabled. (all_warnings) This warning
displays all warnings generated by MATLAB Compiler. This warning is
disabled.

Warning: A line has num1 characters, violating the maximum page
width (num2). (max_page_width_violation) This warning is generated if
there are lines that exceed the maximum page width, num2. This warning
is disabled.

Warning: The option -optionname is ignored in modename mode
(specify -? for help). (switch_ignored) This warning is generated if an
option is specified on the mcc command line that is not meaningful in the
specified mode. This warning is enabled.

Warning: Unrecognized Compiler pragma "pragmaname".
(unrecognized_pragma) This warning is generated if you use an unrecognized
pragma. This warning is enabled.

Warning: "functionname1" is a MEX- or P-file being referenced
from "functionname2". (mex_or_p_file) This warning is generated if
functionname2 calls functionname1, which is a MEX- or P-file. This warning
is enabled.

C-8

Warning Messages

Note A link error is produced if a call to this function is made from standalone
code.

Trial Compiler license. The generated application will expire 30 days
from today, on date. (trial_license) This warning displays the date that the
deployed application will expire. This warning is enabled.

C-9

C Error and Warning Messages

Dependency Analysis Errors

In this section...

“MCR/Dispatcher Errors” on page C-10

“XML Parser Errors” on page C-10

MCR/Dispatcher Errors
These errors originate directly from the MCR/Dispatcher. If one of
these error occurs, report it to Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

XML Parser Errors
These errors appear as

depfun Error: XML error: <message>

Where <message> is a message returned by the XML parser. If
this error occurs, report it to Technical Support at MathWorks at
http://www.mathworks.com/contact_TS.html.

C-10

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

D

C++ Utility Library
Reference

D C++ Utility Library Reference

Data Conversion Restrictions for the C++ MWArray API
Currently, returning a Java object to your application, from a compiled
MATLAB function, is unsupported.

D-2

Primitive Types

Primitive Types
The mwArray API supports all primitive types that can be stored in a MATLAB
array. This table lists all the types.

Type Description mxClassID

mxChar Character type mxCHAR_CLASS

mxLogical Logical or Boolean type mxLOGICAL_CLASS

mxDouble Double-precision
floating-point type

mxDOUBLE_CLASS

mxSingle Single-precision
floating-point type

mxSINGLE_CLASS

mxInt8 1-byte signed integer mxINT8_CLASS

mxUint8 1-byte unsigned integer mxUINT8_CLASS

mxInt16 2-byte singed integer mxINT16_CLASS

mxUint16 2-byte unsigned integer mxUINT16_CLASS

mxInt32 4-byte signed integer mxINT32_CLASS

mxUint32 4-byte unsigned integer mxUINT32_CLASS

mxInt64 8-byte signed integer mxINT64_CLASS

mxUint64 8-byte unsigned integer mxUINT64_CLASS

D-3

D C++ Utility Library Reference

C++ Utility Classes

D-4

mwString

Purpose String class used by the mwArray API to pass string data as output
from certain methods

Description The mwString class is a simple string class used by the mwArray API to
pass string data as output from certain methods.

Required
Headers

• mclcppclass.h

• mclmcrrt.h

Tip MATLAB Compiler automatically includes these header files in the
header file generated for your MATLAB functions.

Constructors mwString()
Description
Create an empty string.

mwString(char* str)
Description
Create a new string and initialize the string’s data with the supplied
char buffer.

Arguments
char* str Null terminated character buffer

mwString(mwString& str)
Description
Create a new string and initialize the string’s data with the contents of
the supplied string.

Arguments
mwString& str Initialized mwString instance

Methods int Length() const
Description
Return the number of characters in string.

D-5

mwString

Example
mwString str("This is a string");
int len = str.Length();

Operators operator const char* () const
Description
Return a pointer to internal buffer of string.

Example
mwString str("This is a string");
const char* pstr = (const char*)str;

mwString& operator=(const mwString& str)
Description
Copy the contents of one string into a new string.

Arguments
mwString& str Initialized mwString instance to

copy

Example
mwString str("This is a string");
mwString new_str = str;

mwString& operator=(const char* str)
Description
Copy the contents of a null terminated character buffer into a new
string.

Arguments
char* str Null terminated character buffer

to copy

Example
const char* pstr = "This is a string";
mwString str = pstr;

D-6

mwString

bool operator==(const mwString& str) const
Description
Test two mwString instances for equality. If the characters in the string
are the same, the instances are equal.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str == str2);

bool operator!=(const mwString& str) const
Description
Test two mwString instances for inequality. If the characters in the
string are not the same, the instances are inequal.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str != str2);

bool operator<(const mwString& str) const
Description
Compare two strings and return true if the first string is
lexicographically less than the second string.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str < str2);

D-7

mwString

bool operator<=(const mwString& str) const
Description
Compare two strings and return true if the first string is
lexicographically less than or equal to the second string.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str <= str2);

bool operator>(const mwString& str) const
Description
Compare two strings and return true if the first string is
lexicographically greater than the second string.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str > str2);

bool operator>=(const mwString& str) const
Description
Compare two strings and return true if the first string is
lexicographically greater than or equal to the second string.

Arguments
mwString& str Initialized mwString instance

Example
mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str >= str2);

D-8

mwString

friend std::ostream& operator<<(std::ostream& os, const
mwString& str)
Description
Copy contents of input string to specified ostream.

Arguments
std::ostream& os Initialized ostream instance to

copy sting into

mwString& str Initialized mwString instance to
copy

Example
#include <ostream>
mwString str("This is a string");
std::cout << str << std::endl;

D-9

mwException

Purpose Exception type used by the mwArray API and the C++ interface functions

Description The mwException class is the basic exception type used by the mwArray
API and the C++ interface functions. All errors created during calls to
the mwArray API and to MATLAB Compiler generated C++ interface
functions are thrown as mwExceptions.

Required
Headers

• mclcppclass.h

• mclmcrrt.h

Tip MATLAB Compiler automatically includes these header files in the
header file generated for your MATLAB functions.

Constructors mwException()
Description
Construct new mwException with default error message.

mwException(char* msg)
Description
Create an mwException with a specified error message.

Arguments
char* msg Null terminated character buffer

to use as the error message

mwException(mwException& e)
Description
Create a copy of an mwException.

Arguments
mwException& e Initialized mwException instance

to copy

D-10

mwException

mwException(std::exception& e)
Description
Create new mwException from existing std::exception.

Arguments
std::exception& e std::exception to copy

Methods char* what() const throw()
Description
Return the error message contained in this exception.

Example
try
{

...
}
catch (const std::exception& e)
{

std::cout << e.what() << std::endl;
}

void print_stack_trace()
Description
Print the stack trace to std::cerr.

Operators mwException& operator=(const mwException& e)
Description
Copy the contents of one exception into a new exception.

Arguments
mwException& e An initialized mwException

instance to copy

Example
try
{

...

D-11

mwException

}
catch (const mwException& e)
{

mwException e2 = e;
throw e2;

}

mwException& operator=(const std::exception& e)
Description
Copy the contents of one exception into a new exception.

Arguments
std::exception& e std::exception to copy

Example
try
{

...
}
catch (const std::exception& e)
{

mwException e2 = e;
throw e2;

}

D-12

mwArray

Purpose Class used to pass input/output arguments to MATLAB Compiler
generated C++ interface functions

Description Use the mwArray class to pass input/output arguments to MATLAB
Compiler generated C++ interface functions. This class consists of a
thin wrapper around a MATLAB array. As explained in further detail
in the MATLAB documentation, all data in MATLAB is represented
by matrices (in other words, even a simple data structure should
be declared as a 1-by-1 matrix). The mwArray class provides the
necessary constructors, methods, and operators for array creation and
initialization, as well as simple indexing.

Note Arithmetic operators, such as addition and subtraction, are no
longer supported as of Release 14.

Required
Headers

• mclcppclass.h

• mclmcrrt.h

Tip MATLAB Compiler automatically includes these header files in the
header file generated for your MATLAB functions.

Constructors mwArray()
Description
Construct empty array of type mxDOUBLE_CLASS.

mwArray(mxClassID mxID)
Description
Construct empty array of specified type.

D-13

mwArray

Arguments
mxClassID mxID Valid mxClassID specifying the

type of array to construct. See the
“Work with mxArrays” for more
information on mxClassID.

mwArray(mwSize num_rows, mwSize num_cols, mxClassID
mxID, mxComplexity cmplx = mxREAL)
Description
Create a 2–D matrix of the specified type and complexity. For numeric
types, the matrix can be either real or complex. For numeric types,
pass mxCOMPLEX for the last argument to create a complex matrix. All
elements are initialized to zero. For cell matrices, all elements are
initialized to empty cells.

Arguments
mwSize num_rows Number of rows in the array

mwSize num_cols Number of columns in the array

mxClassID mxID Valid mxClassID specifying the
type of array to construct. See the
“Work with mxArrays” for more
information on mxClassID.

mxComplexity cmplx Complexity of the array to create.
Valid values are mxREAL and
mxCOMPLEX. The default value is
mxREAL.

mwArray(mwSize num_dims, const mwSize* dims,
mxClassID mxID, mxComplexity cmplx = mxREAL)
Description
Create an n-dimensional array of the specified type and complexity. For
numeric types, the array can be either real or complex. For numeric
types, pass mxCOMPLEX for the last argument to create a complex matrix.
All elements are initialized to zero. For cell arrays, all elements are
initialized to empty cells.

D-14

mwArray

Arguments
mwSize num_dims Number of dimensions in the

array

const mwSize* dims Dimensions of the array

mxClassID mxID Valid mxClassID specifying the
type of array to construct. See the
“Work with mxArrays” for more
information on mxClassID.

mxComplexity cmplx Complexity of the array to create.
Valid values are mxREAL and
mxCOMPLEX. The default value is
mxREAL.

mwArray(const char* str)
Description
Create a 1-by-n array of type mxCHAR_CLASS, with n = strlen(str),
and initialize the array’s data with the characters in the supplied string.

Arguments
const char* str Null-terminated character buffer

used to initialize the array

mwArray(mwSize num_strings, const char** str)
Description
Create a matrix of type mxCHAR_CLASS, and initialize the array’s data
with the characters in the supplied strings. The created array has
dimensions m-by-max, where max is the length of the longest string
in str.

Arguments
mwSize num_strings Number of strings in the input

array

const char** str Array of null-terminated strings

D-15

mwArray

mwArray(mwSize num_rows, mwSize num_cols, int
num_fields, const char** fieldnames)
Description
Create a matrix of type mxSTRUCT_CLASS, with the specified field names.
All elements are initialized with empty cells.

Arguments
mwSize num_rows Number of rows in the array

mwSize num_cols Number of columns in the array

int num_fields Number of fields in the struct
matrix.

const char** fieldnames Array of null-terminated strings
representing the field names

mwArray(mwSize num_dims, const mwSize* dims, int
num_fields, const char** fieldnames)
Description
Create an n-dimensional array of type mxSTRUCT_CLASS, with the
specified field names. All elements are initialized with empty cells.

Arguments
mwSize num_dims Number of dimensions in the

array

const mwSize* dims Dimensions of the array

int num_fields Number of fields in the struct
matrix.

const char** fieldnames Array of null-terminated strings
representing the field names

mwArray(const mwArray& arr)
Description
Create a deep copy of an existing array.

D-16

mwArray

Arguments
mwArray& arr mwArray to copy

mwArray(<type> re)
Description
Create a real scalar array.

The scalar array is created with the type of the input argument.

Arguments
<type> re Scalar value to initialize the

array. <type> can be any of the
following:

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

• mxUint64

• mxLogical

mwArray(<type> re, <type> im)
Description
Create a complex scalar array.

The scalar array is created with the type of the input argument.

D-17

mwArray

Arguments
<type> re Scalar value to initialize the real

part of the array

<type> im Scalar value to initialize the
imaginary part of the array

<type> can be any of the following:

• mxDouble

• mxSingle

• mxInt8

• mxUint8

• mxInt16

• mxUint16

• mxInt32

• mxUint32

• mxInt64

• mxUint64

• mxLogical

Methods mwArray Clone() const
Description
Create a new array representing deep copy of array.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

mwArray SharedCopy() const
Description
Create a shared copy of an existing array. The new array and the
original array both point to the same data.

D-18

mwArray

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

mwArray Serialize() const
Description
Serialize an array into bytes. A 1-by-n numeric matrix of type
mxUINT8_CLASS is returned containing the serialized data. The data
can be deserialized back into the original representation by calling
mwArray::Deserialize().

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Serialize();

mxClassID ClassID() const
Description
Determine the type of the array. See the “Work with mxArrays” for
more information on mxClassID.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();

int ElementSize() const
Description
Determine the size, in bytes, of an element of array type.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();

size_t ElementSize() const
Description
Determine the size, in bytes, of an element of array type.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();

D-19

mwArray

mwSize NumberOfElements() const
Description
Determine the total size of the array.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();

mwSize NumberOfNonZeros() const
Description
Determine the size of the of the array’s data. If the underlying array is
not sparse, this returns the same value as NumberOfElements().

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfNonZeros();

mwSize MaximumNonZeros() const
Description
Determine the allocated size of the of the array’s data. If the
underlying array is not sparse, this returns the same value as
NumberOfElements().

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();

mwSize NumberOfDimensions() const
Description
Determine the dimensionality of the array.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();

int NumberOfFields() const
Description
Determine the number of fields in a struct array. If the underlying
array is not of type struct, zero is returned.

D-20

mwArray

Example
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields();

mwString GetFieldName(int index)
Description
Determine the name of a given field in a struct array. If the underlying
array is not of type struct, an exception is thrown.

Arguments
int index Index of the field to name.

Indexing starts at zero.

Example
const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
mwString tempname = a.GetFieldName(1);
const char* name = (const char*)tempname;

mwArray GetDimensions() const
Description
Determine the size of each dimension in the array. The size of the
returned array is 1-by-NumberOfDimensions().

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

bool IsEmpty() const
Description
Determine if an array is empty.

Example
mwArray a;
bool b = a.IsEmpty();

D-21

mwArray

bool IsSparse() const
Description
Determine if an array is sparse.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsSparse();

bool IsNumeric() const
Description
Determine if an array is numeric.

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsNumeric();

bool IsComplex() const
Description
Determine if an array is complex.

Example
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.IsComplex();

bool Equals(const mwArray& arr) const
Description
Returns true if the input array is byte-wise equal to this array. This
method makes a byte-wise comparison of the underlying arrays.
Therefore, arrays of the same type should be compared. Arrays of
different types will not in general be equal, even if they are initialized
with the same data.

Arguments
mwArray& arr Array to compare to array.

Example
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;

D-22

mwArray

b = 1.0;
bool c = a.Equals(b);

int CompareTo(const mwArray& arr) const
Description
Compares this array with the specified array for order. This method
makes a byte-wise comparison of the underlying arrays. Therefore,
arrays of the same type should be compared. Arrays of different types
will, in general, not be ordered equivalently, even if they are initialized
with the same data.

Arguments
mwArray& arr Array to compare to array.

Example
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
int n = a.CompareTo(b);

int HashCode() const
Description
Constructs a unique hash value form the underlying bytes in the array.
Therefore, arrays of different types will have different hash codes, even
if they are initialized with the same data.

Example
mwArray a(1, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

mwString ToString() const
Description
Returns a string representation of the underlying array. The string
returned is the same string that is returned by typing a variable’s name
at the MATLAB command prompt.

Example
mwArray a(1, 1, mxDOUBLE_CLASS, mxCOMPLEX);

D-23

mwArray

a.Real() = 1.0;
a.Imag() = 2.0;
printf("%s\n", (const char*)(a.ToString()));

mwArray RowIndex() const
Description
Returns an array of type mxINT32_CLASS representing the row indices
(first dimension) of this array. For sparse arrays, the indices are
returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the row indices
of all of the elements are returned.

Example
#include <stdio.h>
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.RowIndex();

mwArray ColumnIndex() const
Description
Returns an array of type mxINT32_CLASS representing the column
indices (second dimension) of this array. For sparse arrays, the indices
are returned for just the non-zero elements and the size of the array
returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size
of the array returned is 1-by-NumberOfElements(), and the column
indices of all of the elements are returned.

Example
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.ColumnIndex();

void MakeComplex()
Description
Convert a numeric array that has been previously allocated as real
to complex. If the underlying array is of a nonnumeric type, an
mwException is thrown.

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};

D-24

mwArray

double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.MakeComplex();
a.Imag().SetData(idata, 4);

mwArray Get(mwSize num_indices, ...)
Description
Fetches a single element at a specified index. The index is passed by
first passing the number of indices followed by a comma-separated list
of 1-based indices. The valid number of indices that can be passed in is
either 1 (single subscript indexing), in which case the element at the
specified 1-based offset is returned, accessing data in column-wise order,
or NumberOfDimensions() (multiple subscript indexing), in which
case, the index list is used to access the specified element. The valid
range for indices is 1 <= index <= NumberOfElements(), for single
subscript indexing. For multiple subscript indexing, the ith index has
the valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An
mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

Arguments
mwSize num_indices Number of indices passed in

... Comma-separated list of input
indices. Number of items must
equal num_indices but should
not exceed 32.

Example
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1,1);
x = a.Get(2, 1, 2);
x = a.Get(2, 2, 2);

D-25

mwArray

mwArray Get(const char* name, mwSize num_indices, ...)
Description
Fetches a single element at a specified field name and index. This
method may only be called on an array that is of type mxSTRUCT_CLASS.
An mwException is thrown if the underlying array is not a struct array.
The field name passed must be a valid field name in the struct array.
The index is passed by first passing the number of indices followed
by a comma-separated list of 1-based indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

Arguments
char* name Null-terminated character buffer

containing the name of the field

mwSize num_indices Number of indices passed in

... Comma-separated list of input
indices. Number of items must
equal num_indices but should
not exceed 32.

Example
const char* fields[] = {"a", "b", "c"};

mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, 1);
mwArray b = a.Get("b", 2, 1, 1);

D-26

mwArray

mwArray Get(mwSize num_indices, const mwIndex* index)
Description
Fetches a single element at a specified index. The index is passed by
first passing the number of indices, followed by an array of 1-based
indices. The valid number of indices that can be passed in is either 1
(single subscript indexing), in which case the element at the specified
1-based offset is returned, accessing data in column-wise order, or
NumberOfDimensions() (multiple subscript indexing), in which case,
the index list is used to access the specified element. The valid range
for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the
valid range: 1 <= index[i] <= GetDimensions().Get(1, i). An
mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

Arguments
mwSize num_indices Size of index array

mwIndex* index Array of at least size num_indices
containing the indices

Example
double data[4] = {1.0, 2.0, 3.0, 4.0};
int index[2] = {1, 1};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1, index);
x = a.Get(2, index);
index[0] = 2;
index[1] = 2;
x = a.Get(2, index);

mwArray Get(const char* name, mwSize num_indices, const
mwIndex* index)
Description
Fetches a single element at a specified field name and index. This
method may only be called on an array that is of type mxSTRUCT_CLASS.

D-27

mwArray

An mwException is thrown if the underlying array is not a struct array.
The field name passed must be a valid field name in the struct array.
The index is passed by first passing the number of indices followed by an
array of 1-based indices. The valid number of indices that can be passed
in is either 1 (single subscript indexing), in which case the element at
the specified 1-based offset is returned, accessing data in column-wise
order, or NumberOfDimensions() (multiple subscript indexing), in
which case, the index list is used to access the specified element. The
valid range for indices is 1 <= index <= NumberOfElements(), for
single subscript indexing. For multiple subscript indexing, the ith index
has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

Arguments
char* name Null-terminated character buffer

containing the name of the field

mwSize num_indices Number of indices passed in

mwIndex* index Array of at least size num_indices
containing the indices

Example
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, index);
mwArray b = a.Get("b", 2, index);

mwArray Real()
Description
Accesses the real part of a complex array. The returned mwArray is
considered real and has the same dimensionality and type as the
original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where

D-28

mwArray

N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB function Realcan be applied to an array of Complex
numbers. It extracts the corresponding part of the Complex number.
For example, REAL(3,5i) == 3.

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);

mwArray Imag()
Description
Accesses the imaginary part of a complex array. The returned mwArray
is considered real and has the same dimensionality and type as the
original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors
(pairs). For example, if the number is 3+5i, then the pair is (3,5i). An
array of Complex numbers is therefore two dimensional (N X 2), where
N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i
would be represented as (2,4i) (7,3i) (8,6i). Complex numbers
have two components, real and imaginary.

The MATLAB function Imag can be applied to an array of Complex
numbers. It extracts the corresponding part of the Complex number.
For example, IMAG(3+5i) == 5. Imag returns 5 in this case and not 5i.
Imag returns the magnitude of the imaginary part of the number as
a real number.

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Imag().SetData(idata, 4);

D-29

mwArray

void Set(const mwArray& arr)
Description
Assign shared copy of input array to currently referenced cell for arrays
of type mxCELL_CLASS and mxSTRUCT_CLASS.

Arguments
mwArray& arr mwArray to assign to currently

referenced cell

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a);
c.Get(1,2).Set(b);

void GetData(<numeric-type>* buffer, mwSize len) const
Description
Copies the array’s data into supplied numeric buffer.

The data is copied in column-major order. If the underlying array is not
of the same type as the input buffer, the data is converted to this type as
it is copied. If a conversion cannot be made, an mwException is thrown.

Arguments
<numeric-type>* buffer Buffer to receive copy. Valid

types for <numeric-type> are:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

D-30

mwArray

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

void GetLogicalData(mxLogical* buffer, mwSize len) const
Description
Copies the array’s data into supplied mxLogical buffer.

The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

Arguments
mxLogical* buffer Buffer to receive copy

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

D-31

mwArray

void GetCharData(mxChar* buffer, mwSize len) const
Description
Copies the array’s data into supplied mxChar buffer.

The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

Arguments
mxChar** buffer Buffer to receive copy

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

void SetData(<numeric-type>* buffer, mwSize len) const
Description
Copies the data from supplied numeric buffer into the array.

The data is copied in column-major order. If the underlying array is not
of the same type as the input buffer, the data is converted to this type as
it is copied. If a conversion cannot be made, an mwException is thrown.

D-32

mwArray

Arguments
<numeric-type>* buffer Buffer containing data to copy.

Valid types for <numeric-type>
are:

• mxDOUBLE_CLASS

• mxSINGLE_CLASS

• mxINT8_CLASS

• mxUINT8_CLASS

• mxINT16_CLASS

• mxUINT16_CLASS

• mxINT32_CLASS

• mxUINT32_CLASS

• mxINT64_CLASS

• mxUINT64_CLASS

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

void SetLogicalData(mxLogical* buffer, mwSize len) const
Description
Copies the data from the supplied mxLogical buffer into the array.

D-33

mwArray

The data is copied in column-major order. If the underlying array is not
of type mxLOGICAL_CLASS, the data is converted to this type as it is
copied. If a conversion cannot be made, an mwException is thrown.

Arguments
mxLogical* buffer Buffer containing data to copy

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

void SetCharData(mxChar* buffer, mwSize len) const
Description
Copies the data from the supplied mxChar buffer into the array.

The data is copied in column-major order. If the underlying array is not
of type mxCHAR_CLASS, the data is converted to this type as it is copied.
If a conversion cannot be made, an mwException is thrown.

Arguments
mxChar** buffer Buffer containing data to copy

mwSize len Maximum length of buffer. A
maximum of len elements will be
copied.

Example
mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

D-34

mwArray

static mwArray Deserialize(const mwArray& arr)
Description
Deserializes an array that has been serialized with
mwArray::Serialize(). The input array must be of type
mxUINT8_CLASS and contain the data from a serialized array. If the
input data does not represent a serialized mwArray, the behavior of
this method is undefined.

Arguments
mwArray& arr mwArray that has been obtained

by calling mwArray::Serialize

Example
double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(1,4,mxDOUBLE_CLASS);
a.SetData(rdata, 4);
mwArray b = a.Serialize();
a = mwArray::Deserialize(b);

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxDouble*
rData, mwSize num_rows, mwSize num_cols, mwSize
nzmax)
Description
Creates real sparse matrix of type double with specified number of
rows and columns.

The lengths of input row, column index, and data arrays must all be the
same or equal to 1. In the case where any of these arrays are equal to 1,
the value is repeated throughout the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows or num_cols respectively, an exception is
thrown.

D-35

mwArray

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxDouble* rData Data associated with non-zero
row and column indices

mwSize num_rows Number of rows in matrix

mwSize num_cols Number of columns in matrix

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

Example
This example constructs a sparse 4 X 4 tridiagonal matrix:

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

The following code, when run:

double rdata[] =
{2.0, -1.0, -1.0, 2.0, -1.0,
-1.0, 2.0, -1.0, -1.0, 2.0};

mwIndex row_tridiag[] =
{1, 2, 1, 2, 3,
2, 3, 4, 3, 4 };

D-36

mwArray

mwIndex col_tridiag[] =
{1, 1, 2, 2, 2,

3, 3, 3, 4, 4 };

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
10, rdata, 4, 4, 10);

std::cout << mysparse << std::endl;

will display the following output to the screen:

(1,1) 2
(2,1) -1
(1,2) -1
(2,2) 2
(3,2) -1
(2,3) -1
(3,3) 2
(4,3) -1
(3,4) -1
(4,4) 2

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxDouble*
rdata, mwSize nzmax)
Description
Creates real sparse matrix of type double with number of rows and
columns inferred from input data.

The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

D-37

mwArray

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows =
max{rowindex}, num_cols = max{colindex}.

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxDouble* rData Data associated with non-zero
row and column indices

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

Example
In this example, we construct a sparse 4 X 4 identity matrix. The value
of 1.0 is copied to each non-zero element defined by row and column
index arrays:

double one = 1.0;
mwIndex row_diag[] = {1, 2, 3, 4};
mwIndex col_diag[] = {1, 2, 3, 4};

mwArray mysparse =
mwArray::NewSparse(4, row_diag,

4, col_diag,
1, &one,
0);

std::cout << mysparse << std::endl;

D-38

mwArray

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxDouble*
rdata, const mxDouble* idata, mwSize num_rows, mwSize
num_cols, mwSize nzmax)
Description
Creates complex sparse matrix of type double with specified number of
rows and columns.

The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows, num_cols, respectively, then an exception
is thrown.

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxDouble* rData Real part of data associated with
non-zero row and column indices

D-39

mwArray

mxDouble* iData Imaginary part of data associated
with non-zero row and column
indices

mwSize num_rows Number of rows in matrix

mwSize num_cols Number of columns in matrix

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

Example
This example constructs a complex tridiagonal matrix:

double rdata[] =
{2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0};

double idata[] =
{20.0, -10.0, -10.0, 20.0, -10.0, -10.0, 20.0, -10.0,

-10.0, 20.0};
mwIndex row_tridiag[] =

{1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
mwIndex col_tridiag[] =

{1, 1, 2, 2, 2, 3, 3, 3, 4, 4};

mwArray mysparse = mwArray::NewSparse(10, row_tridiag,
10, col_tridiag,
10, rdata,
idata, 4, 4, 10);

std::cout << mysparse << std::endl;

It displays the following output to the screen:

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i

D-40

mwArray

(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxDouble*
rdata, const mxDouble* idata, mwSize nzmax)
Description
Creates complex sparse matrix of type double with number of rows and
columns inferred from input data.

The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows =
max{rowindex}, num_cols = max{colindex}.

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxDouble* rData Real part of data associated with
non-zero row and column indices

D-41

mwArray

mxDouble* iData Imaginary part of data associated
with non-zero row and column
indices

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

Example
This example constructs a complex matrix by inferring dimensions and
storage allocation from the input data.

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
10, rdata, idata,
0);

std::cout << mysparse << std::endl;

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i
(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

D-42

mwArray

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxLogical*
rdata, mwSize num_rows, mwSize num_cols, mwSize
nzmax)
Description
Creates logical sparse matrix with specified number of rows and
columns.

The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated throughout the construction of the matrix.

If any element of the rowindex or colindex array is greater than the
specified values in num_rows, num_cols, respectively, then an exception
is thrown.

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxLogical* rData Data associated with non-zero
row and column indices

mwSize num_rows Number of rows in matrix

mwSize num_cols Number of columns in matrix

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

D-43

mwArray

Example
This example creates a sparse logical 4 X 4 tridiagonal matrix, assigning
true to each non-zero value:

mxLogical one = true;
mwIndex row_tridiag[] =

{1, 2, 1, 2, 3,
2, 3, 4, 3, 4};

mwIndex col_tridiag[] =
{1, 1, 2, 2, 2,
3, 3, 3, 4, 4};

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
1, &one,
4, 4, 10);

std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1
(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

D-44

mwArray

static mwArray NewSparse(mwSize rowindex_size,
const mwIndex* rowindex, mwSize colindex_size, const
mwIndex* colindex, mwSize data_size, const mxLogical*
rdata, mwSize nzmax)
Description
Creates logical sparse matrix with number of rows and columns inferred
from input data.

The lengths of input row and column index and data arrays must all be
the same or equal to 1. In the case where any of these arrays are equal
to 1, the value is repeated through out the construction of the matrix.

The number of rows and columns in the created matrix are calculated
form the input rowindex and colindex arrays as num_rows = max
{rowindex}, num_cols = max {colindex}.

Arguments
mwSize rowindex_size Size of rowindex array

mwIndex* rowindex Array of row indices of non-zero
elements

mwSize colindex_size Size of colindex array

mwIndex* colindex Array of column indices of
non-zero elements

mwSize data_size Size of data array

mxLogical* rData Data associated with non-zero
row and column indices

mwSize nzmax Reserved storage for
sparse matrix. If nzmax
is zero, storage will be
set to max{rowindex_size,
colindex_size, data_size}.

D-45

mwArray

Example
This example uses the data from the first example, but allows the
number of rows, number of columns, and allocated storage to be
calculated from the input data:

mwArray mysparse =
mwArray::NewSparse(10, row_tridiag,

10, col_tridiag,
1, &one,
0);

std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1
(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

static mwArray NewSparse (mwSize num_rows, mwSize
num_cols, mwSize nzmax, mxClassID mxID, mxComplexity
cmplx = mxREAL)
Description
Creates an empty sparse matrix. All elements in an empty sparse
matrix are initially zero, and the amount of allocated storage for
non-zero elements is specified by nzmax.

Arguments
mwSize num_rows Number of rows in matrix

mwSize num_cols Number of columns in matrix

mwSize nzmax Reserved storage for sparse
matrix

D-46

mwArray

mxClassID mxID Type of data to store in matrix.
Currently, sparse matrices
of type double precision and
logical are supported. Pass
mxDOUBLE_CLASS to create a
double precision sparse matrix.
Pass mxLOGICAL_CLASS to create
a logical sparse matrix.

mxComplexity cmplx Complexity of matrix. Pass
mxCOMPLEX to create a complex
sparse matrix and mxREAL to
create a real sparse matrix. This
argument may be omitted, in
which case the default complexity
is real

Example
This example constructs a real 3 X 3 empty sparse matrix of type
double with reserved storage for 4 non-zero elements:

mwArray mysparse = mwArray::NewSparse
(3, 3, 4, mxDOUBLE_CLASS);

std::cout << mysparse << std::endl;

All zero sparse: 3-by-3

static double GetNaN()
Description
Get value of NaN (Not-a-Number).

Call mwArray::GetNaN to return the value of NaN for your system. NaN
is the IEEE arithmetic representation for Not-a-Number. Certain
mathematical operations return NaN as a result, for example:

• 0.0/0.0

• Inf-Inf

D-47

mwArray

The value of NaN is built in to the system; you cannot modify it.

Example
double x = mwArray::GetNaN();

static double GetEps()
Description
Returns the value of the MATLAB eps variable. This variable is
the distance from 1.0 to the next largest floating-point number.
Consequently, it is a measure of floating-point accuracy. The MATLAB
pinv and rank functions use eps as a default tolerance.

Example
double x = mwArray::GetEps();

static double GetInf()
Description
Returns the value of the MATLAB internal Inf variable. Inf is a
permanent variable representing IEEE arithmetic positive infinity. The
value of Inf is built into the system; you cannot modify it.

Operations that return Inf include

• Division by 0. For example, 5/0 returns Inf.

• Operations resulting in overflow. For example, exp(10000) returns
Inf because the result is too large to be represented on your machine.

Example
double x = mwArray::GetInf();

static bool IsFinite(double x)
Description
Determine whether or not a value is finite. A number is finite if it is
greater than -Inf and less than Inf.

Arguments
doulbe x Value to test for finiteness

D-48

mwArray

Example
bool x = mwArray::IsFinite(1.0);

static bool IsInf(double x)
Description
Determines whether or not a value is equal to infinity or minus infinity.
MATLAB stores the value of infinity in a permanent variable named
Inf, which represents IEEE arithmetic positive infinity. The value of
the variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.

• Operations resulting in overflow. For example, exp(10000) returns
infinity because the result is too large to be represented on your
machine. If the value equals NaN (Not-a-Number), then mxIsInf
returns false. In other words, NaN is not equal to infinity.

Arguments
doulbe x Value to test for infiniteness

Example
bool x = mwArray::IsInf(1.0);

static bool IsNaN(double x)
Description
Determines whether or not the value is NaN. NaN is the IEEE arithmetic
representation for Not-a-Number. NaN is obtained as a result of
mathematically undefined operations such as

• 0.0/0.0

• Inf-Inf

The system understands a family of bit patterns as representing NaN. In
other words, NaN is not a single value, rather it is a family of numbers

D-49

mwArray

that the MATLAB software (and other IEEE-compliant applications)
use to represent an error condition or missing data.

Arguments
doulbe x Value to test for NaN

Example
bool x = mwArray::IsNaN(1.0);

Operators mwArray operator()(mwIndex i1, mwIndex i2, mwIndex
i3, ...,)
Description
Fetches a single element at a specified index. The index is passed
as a comma-separated list of 1-based indices. This operator is
overloaded to support 1 through 32 indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned,
accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing.
For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is
thrown if an invalid number of indices is passed in or if any index is
out of bounds.

Arguments
mwIndex i1, mwIndex i2,
mwIndex i3, ...,

Comma-separated list of input
indices

Example
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a(1,1);
x = a(1,2);
x = a(2,2);

D-50

mwArray

mwArray operator()(const char* name, mwIndex i1,
mwIndex i2, mwIndex i3, ...,)
Description
Fetches a single element at a specified field name and index. This
method may only be called on an array that is of type mxSTRUCT_CLASS.
An mwException is thrown if the underlying array is not a struct array.
The field name passed must be a valid field name in the struct array.
The index is passed by first passing the number of indices, followed
by an array of 1-based indices. This operator is overloaded to support
1 through 32 indices. The valid number of indices that can be passed
in is either 1 (single subscript indexing), in which case the element at
the specified 1-based offset is returned, accessing data in column-wise
order, or NumberOfDimensions() (multiple subscript indexing), in
which case, the index list is used to access the specified element. The
valid range for indices is 1 <= index <= NumberOfElements(), for
single subscript indexing. For multiple subscript indexing, the ith index
has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in
or if any index is out of bounds.

Arguments
char* name Null terminated string containing

the field name to get

mwIndex i1, mwIndex i2,
mwIndex i3, ...,

Comma-separated list of input
indices

Example
const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a("a", 1, 1);
mwArray b = a("b", 1, 1);

mwArray& operator=(const <type>& x)
Description
Sets a single scalar value. This operator is overloaded for all numeric
and logical types.

D-51

mwArray

Arguments
const <type>& x Value to assign

Example
mwArray a(2, 2, mxDOUBLE_CLASS);
a(1,1) = 1.0;
a(1,2) = 2.0;
a(2,1) = 3.0;
a(2,2) = 4.0;

operator <type>() const
Description
Fetches a single scalar value. This operator is overloaded for all
numeric and logical types.

Example
double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = (double)a(1,1);
x = (double)a(1,2);
x = (double)a(2,1);
x = (double)a(2,2);

D-52

	toc
	Getting Started
	MATLAB Compiler Product Description
	Key Features

	Appropriate Tasks for MATLAB Compiler and Builder Products
	MATLAB Application Deployment Products
	Roles in Deploying as a Standalone Application
	Roles in Deploying in a C/C++ Shared Library
	Roles in Deploying to MATLAB Production Server
	Create and Install a Standalone Application from MATLAB Code
	Create a Standalone Application in MATLAB
	Install a MATLAB Generated Standalone Application

	Create a C/C++ Shared Library from MATLAB Code
	Integrate a C/C++ Shared Library into an Application
	Create a Deployable Archive for MATLAB Production Server
	For More Information

	Installation and Configuration
	Install an ANSI C or C++ Compiler
	Supported ANSI C and C++ Windows Compilers
	Supported ANSI C and C++ UNIX Compilers
	Common Installation Issues and Parameters

	Configuring Your Options File with mbuild
	What Is mbuild?
	About mbuild and Linking

	Locating and Customizing the Options File
	Locating the Options File
	Changing the Options File

	Solving Installation Problems

	Deploying Standalone Applications
	Compile a Standalone Application with the Standalone Compiler Ap
	Customize the Application’s Run Time Behavior
	Compile a Standalone Application from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Standalone Application with mcc

	Working with Standalone Applications and Arguments
	Overview
	Passing File Names, Numbers or Letters, Matrices, and MATLAB Var
	Running Standalone Applications that Use Arguments
	Using SYSTEM, DOS, or UNIX
	Using the ! (bang) Operator
	Using a Windows System
	Using a MATLAB File You Plan to Deploy
	Method 1
	Method 2

	Compile and Deploy Standalone Applications with the Parallel Com
	Standalone Applications with a Profile Passed at Run-Time
	Standalone Applications with an Embedded Profile

	Run a Mac OS X Application
	Overview
	Installing the Macintosh Application Launcher Preference Pane
	Configuring the Installation Area
	Modifying Your Installation Area

	Launching the Application

	Deploying C/C++ Shared Libraries
	Compile a C/C++ Shared Library with the Library Compiler App
	Compile a C/C++ Shared Library from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Shared Library with mcc

	What Are Wrapper Files?
	C Library Wrapper
	C++ Library Wrapper

	Compiling Deployable Archives for MATLAB Production Server
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Reset System-Generated Values in the Deployed Application
	Validate Global or Persistent Variable Values
	Ensure Access to Data Caches
	Use Simple Data Types When Possible
	Avoid Using MATLAB Callback Functions

	Techniques for Preserving State

	Unsupported MATLAB Data Types for Client and Server Marshaling
	Compile a Deployable Archive with the Production Server Compiler
	Compile a Deployable Archive from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Deployable Archive with mcc

	Customizing a Compiler Project
	Customize the Installer
	Change the Application Icon
	Add Application Information
	Change the Splash Screen
	Change the Installation Path
	Change the Logo
	Edit the Installation Notes

	Manage Required Files in a Compiler Project
	Dependency Analysis
	Using the Compiler Apps
	Using mcc

	Specify Files to Install with the Application
	Manage Support Packages

	MATLAB Code Deployment
	Application Deployment Products and the Compiler Apps
	What Is the Difference Between the Compiler Apps and the mcc Com
	How Does MATLAB Compiler Software Build My Application?
	Dependency Analysis Function
	MEX-Files, DLLs, or Shared Libraries
	Component Technology File (CTF Archive)
	Additional Details

	Write Deployable MATLAB Code
	Compiled Applications Do Not Process MATLAB Files at Runtime
	Do Not Rely on Changing Directory or Path to Control the Executi
	Use ismcc and isdeployed Functions To Execute Deployment-Specifi
	Gradually Refactor Applications That Depend on Noncompilable Fun
	Do Not Create or Use Nonconstant Static State Variables
	Get Proper Licenses for Toolbox Functionality You Want to Deploy

	How the Deployment Products Process MATLAB Function Signatures
	MATLAB Function Signature
	MATLAB Programming Basics
	Creating a Deployable MATLAB Function
	Taking Inputs into a Function

	Load MATLAB Libraries using loadlibrary
	Restrictions on Using MATLAB Function loadlibrary with MATLAB Co

	Use MATLAB Data Files (MAT Files) in Compiled Applications
	Explicitly Including MAT files Using the %#function Pragma
	Load and Save Functions
	Using Load/Save Functions to Process MATLAB Data for Deployed Ap

	MATLAB Objects

	C and C++ Standalone Executable and Shared Library Creation
	Input and Output Files
	Standalone Executable
	C Shared Library
	C++ Shared Library
	Macintosh 64 (Maci64)

	Dependency Analysis Function and User Interaction with the Compi
	addpath and rmpath in MATLAB
	Passing -I <directory> on the Command Line
	Passing -N and -p <directory> on the Command Line

	Deployment Process
	Overview
	Watch a Video

	Deploying to Developers
	Procedure
	What Software Does a Developer Need?
	Standalone Application
	C or C++ Shared Library

	Ensuring Memory for Deployed Applications

	Deploying to End Users
	Steps by the Developer to Deploy to End Users
	Steps by the End User
	Using the MCR Installer GUI
	What Software Does the End User Need?
	Standalone Compiled Application That Accesses Shared Library
	.NET Application
	COM Application
	Java Application
	Microsoft Excel Add-in

	Using Relative Paths with Project Files
	Porting Generated Code to a Different Platform
	Extracting a CTF Archive Without Executing the Component
	Ensuring Memory for Deployed Applications

	Working with the MCR
	About the MATLAB Compiler Runtime (MCR)
	How is the MCR Different from MATLAB?
	Performance Considerations and the MCR

	The MCR Installer
	Installing the MCR
	Installing the MCR and MATLAB on the Same Machine
	Installing Multiple MCRs on One Machine

	Installing the MCR Non-Interactively
	Running the Installer in Silent Mode
	Customizing a Non-Interactive Installation

	Uninstalling the MCR
	Windows
	Linux
	Mac

	MCR Startup Options
	Setting MCR Options
	Setting -nojvm
	Setting -nodisplay (Linux Only)
	Setting -logfile
	Setting -nojvm, -nodisplay, and -logfile With One Command

	Retrieving MCR Startup Options (Shared Libraries Only)

	Using the MCR User Data Interface
	MATLAB Functions
	Setting MCR Data for Standalone Executables
	Setting and Retrieving MCR Data for Shared Libraries

	Displaying MCR Initialization Start-Up and Completion Messages F
	Best Practices

	Deploy Applications Created Using Parallel Computing Toolbox
	Compile and Deploy a Shared Library with the Parallel Computing

	Deploying a Standalone Application on a Network Drive (Windows O
	MATLAB Compiler Deployment Messages
	Using MATLAB Compiler Generated DLLs in Windows Services
	Reserving Memory for Deployed Applications with MATLAB Memory Sh
	What Is MATLAB Memory Shielding and When Should You Use It?
	Requirements for Using MATLAB Memory Shielding
	Invoking MATLAB Memory Shielding for Your Deployed Application
	Using the Command Line
	Using the GUI

	Distributing Code to an End User
	Share MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	Distributing MATLAB Code Using the MATLAB Compiler Runtime (MCR)
	Install MATLAB Compiler Runtime (MCR)
	MCR Prerequisites
	Add the MCR Installer to the Installer
	Install the MCR

	Compiler Commands
	Command Overview
	Compiler Options
	Combining Options
	Conflicting Options on the Command Line
	Using File Extensions
	Interfacing MATLAB Code to C/C++ Code
	Code Proper Return Types From C and C++ Methods

	Simplify Compilation Using Macros
	Macro Options
	Working With Macro Options
	Changing Macro Options
	Specifying Default Macro Options

	Invoke MATLAB Build Options
	Specifying Full Path Names to Build MATLAB Code
	Specifying Full Paths Names

	Using Bundle Files to Build MATLAB Code
	Bundle Files Available with MATLAB Compiler

	MCR Component Cache and CTF Archive Embedding
	Overriding Default Behavior
	For More Information

	Explicitly Including a File for Compilation Using the %#function
	Using feval
	Using %#function

	Use the mxArray API to Work with MATLAB Types
	Script Files
	Converting Script MATLAB Files to Function MATLAB Files
	Including Script Files in Deployed Applications

	Compiler Tips
	Calling a Function from the Command Line
	Using winopen in a Deployed Application
	Using MAT-Files in Deployed Applications
	Compiling a GUI That Contains an ActiveX Control
	Debugging MATLAB Compiler Generated Executables
	Deploying Applications That Call the Java Native Libraries
	Locating .fig Files in Deployed Applications
	Terminating Figures by Force In a Standalone Application
	Passing Arguments to and from a Standalone Application
	Passing Arguments to a Double-Clickable Application

	Using Graphical Applications in Shared Library Targets
	Using the VER Function in a Compiled MATLAB Application

	Standalone Applications
	Introduction
	Deploying Standalone Applications
	Compiling the Application
	Testing the Application
	Deploying the Application
	Windows
	UNIX
	Maci64

	Running the Application
	Preparing Your Machines
	Executing the Application

	Libraries
	Introduction
	Addressing mwArrays Above the 2 GB Limit
	Integrate C Shared Libraries
	C Shared Library Wrapper
	C Shared Library Example
	Building the Shared Library
	Writing a Driver Application for a Shared Library
	Compiling the Driver Application
	Testing the Driver Application
	Deploying Standalone Applications That Call MATLAB Compiler Base
	Deploying Shared Libraries to Be Used with Other Projects

	Calling a Shared Library
	Initializing and Terminating Your Application with mclInitialize
	Using a Shared Library
	Restrictions When using MATLAB Function loadlibrary

	Using C Shared Libraries On a Mac OS X System

	Integrate C++ Shared Libraries
	C++ Shared Library Wrapper
	C++ Shared Library Example
	Writing the Driver Application
	Compiling the Driver Application
	Incorporating a C++ Shared Library into an Application
	Exported Function Signature
	Error Handling
	Using C/C++ Shared Libraries on a Mac OS X System
	Working with C++ Shared Libraries and Sparse Arrays

	Call MATLAB Compiler API Functions (mcl*) from C/C++ Code
	Functions in the Shared Library
	Type of Application
	For a C Application on Windows
	For a C Application on UNIX
	For a C++ Application on Windows
	For a C++ Application on UNIX

	Structure of Programs That Call Shared Libraries
	Library Initialization and Termination Functions
	Print and Error Handling Functions
	Functions Generated from MATLAB Files
	mlx Interface Function
	mlf Interface Function
	Using varargin and varargout in a MATLAB Function Interface
	 function varargout = foo(varargin)
	function varargout = foo(i1, i2, varargin)
	 function [o1, o2, varargout] = foo(varargin)
	function [o1, o2, varargout] = foo(i1, i2, varargin)

	Retrieving MCR State Information While Using Shared Libraries

	About Memory Management and Cleanup
	Overview
	Passing mxArrays to Shared Libraries

	Troubleshooting
	Introduction
	Common Issues
	Failure Points and Possible Solutions
	How to Use this Section
	Does the Failure Occur During Compilation?
	Is your selected compiler supported by MATLAB Compiler?
	Are error messages produced at compile time?
	Did you compile with the verbose flag?
	Are you compiling within or outside of MATLAB?
	Does a simple read/write application such as “Hello World” compi
	Have you tried to compile any of the examples in MATLAB Compiler
	Did the MATLAB code compile successfully before this failure?
	Are you receiving errors when trying to compile a standalone exe
	Are you receiving errors when trying to compile a shared library
	Is your MATLAB object failing to load?
	If you are compiling a driver application, are you using mbuild?
	Are you trying to compile your driver application using Microsof
	Are you importing the correct versions of import libraries?
	Are you able to compile the matrixdriver example?
	Do you get the MATLAB:I18n:InconsistentLocale Warning?
	Does the Failure Occur When Testing Your Application?
	Are you able to execute the application from MATLAB?
	Does the application begin execution and result in MATLAB or oth
	Does the application emit a warning like "MATLAB file may be cor
	Do you have multiple MATLAB versions installed?
	If you are testing a standalone executable or shared library and
	Do you receive an error message about a missing DLL?
	Are you receiving errors when trying to run the shared library a
	Does your system’s graphics card support the graphics applicatio
	Is OpenGL properly installed on your system?
	Does the Failure Occur When Deploying the Application to End Use
	Is the MCR installed?
	If running on UNIX or Mac, did you update the dynamic library pa
	Do you receive an error message about a missing DLL?
	Do you have write access to the directory the application is ins
	Are you executing a newer version of your application?

	Troubleshooting mbuild
	MATLAB Compiler
	Deployed Applications

	Limitations and Restrictions
	MATLAB Compiler Limitations
	Compiling MATLAB and Toolboxes
	Fixing Callback Problems: Missing Functions
	Symptom
	Workaround

	Finding Missing Functions in a MATLAB File
	Suppressing Warnings on the UNIX System
	Cannot Use Graphics with the -nojvm Option
	Cannot Create the Output File
	No MATLAB File Help for Compiled Functions
	No MCR Versioning on Mac OS X
	Older Neural Networks Not Deployable with MATLAB Compiler
	Restrictions on Calling PRINTDLG with Multiple Arguments in Comp
	Compiling a Function with WHICH Does Not Search Current Working
	Restrictions on Using C++ SETDATA to Dynamically Resize an MWArr

	Licensing Terms and Restrictions on Compiled Applications
	MATLAB Functions That Cannot Be Compiled

	Reference Information
	MCR Path Settings for Development and Testing
	Overview
	Path for Java Development on All Platforms
	Path Modifications Required for Accessibility
	Windows Settings for Development and Testing
	Linux Settings for Development and Testing
	Mac Settings for Development and Testing

	MCR Path Settings for Run-time Deployment
	General Path Guidelines
	Path for Java Applications on All Platforms
	Windows Path for Run-Time Deployment
	Linux Paths for Run-Time Deployment
	Mac Paths for Run-Time Deployment

	MATLAB Compiler Licensing
	Using MATLAB Compiler Licenses for Development
	Running MATLAB Compiler in MATLAB Mode
	Running MATLAB Compiler in Standalone Mode

	Deployment Product Terms

	Functions — Alphabetical List
	MATLAB Compiler Quick Reference
	Common Uses of MATLAB Compiler
	Create a Standalone Application
	Example 1
	Example 2
	Example 3

	Create a Library
	Example 1
	Example 2

	mcc Command Arguments Listed Alphabetically
	mcc Command Line Arguments Grouped by Task

	Using MATLAB Compiler on Mac or Linux
	Overview
	Installing MATLAB Compiler on Mac or Linux
	Installing MATLAB Compiler
	Custom Configuring Your Options File
	Install Apple Xcode from DVD on Maci64

	Writing Applications for Mac or Linux
	Objective-C/C++ Applications for Apple’s Cocoa API
	Where’s the Example Code?
	Preparing Your Apple Xcode Development Environment
	Build and Run the Sierpinski Application
	Running the Sierpinski Application

	Building Your Application on Mac or Linux
	Compiling Your Application with the Compiler Apps
	Compiling Your Application with the Command Line
	On Non-Mac i64 Platforms
	On Maci64

	Testing Your Application on Mac or Linux
	Set MCR Paths on Mac or Linux with Scripts
	Solving Problems Related to Setting MCR Paths on Mac or Linux
	I tried running SETENV on Mac and the command failed
	My Mac application fails with “Library not loaded” or “Image not

	Error and Warning Messages
	About Error and Warning Messages
	Compile-Time Errors
	Warning Messages
	Dependency Analysis Errors
	MCR/Dispatcher Errors
	XML Parser Errors

	C++ Utility Library Reference
	Data Conversion Restrictions for the C++ MWArray API
	Primitive Types
	C++ Utility Classes

	tables
	MATLAB Compiler Task Matrix
	MATLAB Suite of Application Deployment Products
	Standalone Application Deployment Roles
	Shared Library Deployment Roles
	MATLAB Production Server Deployment Roles
	Windows Operating System
	UNIX Operating System
	Compiler Shared Library Options
	Compiler Java Options
	Default Installation Paths
	Custom Installation Roots
	Information on CTF Archive Embedding/Extraction and Component Ca
	Setting MCR Startup Options Using the Deployment Tool GUI
	MemShieldStarter Options
	-m Macro
	List of Unsupported Functions and Programs
	COM Components
	CTF Archive
	Debugging
	Dependency Function Processing
	Licenses
	MATLAB Builder EX
	MATLAB Path
	mbuild
	MATLAB Compiler Runtime (MCR)
	Override Default Inputs
	Override Default Outputs
	Wrappers and Libraries

