MATLAB® Production Server™
Getting Started

R2014b

MATLAB

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB"® Production Server™ Getting Started Guide
© COPYRIGHT 2012-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

September 2012 Online only New for Version 1.0 (Release R2012b)
March 2013 Online only Revised for Version 1.0.1 (Release R2013a)
October 2013 Online only Revised for Version 1.1 (Release R2013b)
March 2014 Online only Revised for Version 1.2 (Release R2014a)

October 2014 Online only Revised for Version 2.0 (Release R2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

1

2|

3

Overview

MATLAB Production Server Product Description 1-2
Key Features i, 1-2
Roles in Deploying to MATLAB Production Server 1-3
MATLAB Production Server Workflow 1-5
Installation

Prerequisites & Compatibility 2-2
Windows File System Concerns 2-2
Architecture Compatibility 2-2
Install MATLAB Production Server 2-3
Download and Install the MATLAB Runtime 2-4
Disable Windows Interactive Error Reporting 2-5
Set Up

Create a Server 3-2
Prerequisites e 3-2
Procedure 3-2

iii

iv

Contents

Start a Server Instance 3-4

4

Prerequisites e 3-4
Procedure 3-4
Verify Server Status 3-5
Procedure 3-5
Verify Status of a Server 3-6
Licensing
Manage Licenses for MATLAB Production Server 4-2
Specify or Verify License Server Options in Server
Configuration File 4-2
Verify Status of License Server using mps-status 4-3
Forcing a License Checkout Using mps-license-reset 4-3

Deploying an Application

3|

Create a Deployable Archive for MATLAB Production

Server 5-2
Start a MATLAB Production Server Instance 5-6
OVEIVIEW . ot vt e e e e e 5-6
Install MATLAB Production Server 5-6
Install MATLAB Runtime 5-7
Configure the Server Instance 5-7
Create a Server Instance 5-7
Start the Server 5-8
Share a Deployable Archive on the Server Instance 5-9

Create a Java Application That Calls a Deployed Function 5-10

Create a C# .NET Application That Calls a Deployed
Function 5-14

Create a C++ Application That Calls a Deployed Function . 5-18

Create a Python Application That Calls a Deployed
Function 5-24

Overview

+ “MATLAB Production Server Product Description” on page 1-2
* “Roles in Deploying to MATLAB Production Server” on page 1-3
+ “MATLAB Production Server Workflow” on page 1-5

] Overview

MATLAB Production Server Product Description

Run MATLAB analytics as a part of web, database, and enterprise applications

MATLAB Production Server lets you run MATLAB programs within your production
systems, enabling you to incorporate custom analytics in enterprise applications. Web,
database, desktop, and enterprise applications request MATLAB analytics running on
MATLAB Production Server via a lightweight client library. A server-based deployment
ensures that users access the latest version of your analytics automatically, with client
connections that can be protected with SSL encryption.

You use MATLAB Compiler™ to package programs and deploy them directly to
MATLAB Production Server without recoding or creating custom infrastructure.
MATLAB Production Server runs on multiprocessor and multicore servers, providing
low-latency processing of concurrent work requests. You can deploy the product on
additional server nodes to scale capacity and provide redundancy.

Key Features

* Production deployment of MATLAB programs without recoding or creating custom
infrastructure

* Scalable performance and management of MATLAB analytics and run times

+ Lightweight client library for secure access to analytics by enterprise applications

Centralized analytic service accessible from .NET, Java®, C/C++, and Python
environments

Microsoft” Excel® add-ins for calling remote analytics using MATLAB Builder™ EX

+ Isolation of MATLAB processes from other system elements

1-2

Roles in Deploying o MATLAB Production Server

Roles in Deploying to MATLAB Production Server

Deploying MATLAB functionality using MATLAB Production Server is a multistep
process that might involve one or more team members. Each step requires fulfilling
specific roles, as shown in MATLAB Production Server Deployment Roles .

MATLAB Production Server Deployment Roles

Role

Knowledge Base

Responsibilities

MATLAB programmer

MATLAB expert

Little to no software
development experience

Lattle to no IT experience

Develop functions and
implements them in
MATLAB.

Create deployable archives
that run in MATLAB
Production Server instances.

Application developer

Little to no MATLAB

experience

Some knowledge of IT
systems

Familiarity with developing
applications using a client/
server architecture

Develop applications
using one of the MATLAB
Production Server client
APIs.

Test applications.

Package applications for
distribution.

Server administrator

Little to no MATLAB
experience

Moderate IT experience

Familiarity with IT systems

Ensure that systems running
MATLAB Production Server
instances have the required
specifications.

Install MATLAB Production
Server instances.

Tune MATLAB Production
Server instances.

Install compiled MATLAB
applications into MATLAB
Production Server instances.

Monitor MATLAB Production
Server instances.

1-3

] Overview

Role

Knowledge Base

Responsibilities

Application installer

+ Little to no MATLAB
experience

* Moderate IT experience

+ Familiarity with IT systems

* Ensure that systems using
MATLAB Production Server
client applications meet the
required specifications.

+ Install any required software
on target machines.

+ Install MATLAB Production
Server client applications on
target machines.

MATLAB Production Server Workflow

MATLAB Production Server Workflow

The following figure illustrates the basic workflow to deploy MATLAB code using
MATLAB Production Server.

1-5

] Overview

1-6

MATLAB

myfun_deployed.ctf

MATLAB
Production
Server

/auto_deploy/

myfun_deployed.ctf*

1

1

I

1
)
)

Java or C# Java or C# Java or C#
Application Application Application
o0 0
myfun() myfun() myfun()

Deploying MATLAB code using MATLAB Production Server is a four-phase process:

1 Create deployable archives.

MATLAB Production Server Workflow

MATLAB users write MATLAB functions and compile them into deployable archives
using MATLAB Compiler.
Deploying the archives to an instance of the MATLAB Production Server.

Server administrators take the deployable archives and deploy them into one or
more instances of the MATLAB Production Server. In addition to adding the archive
to a server's deployment folder, the server administrator might need to:
+ Install a server instance.
+ Set up licenses for a server instance.

Configure a server instance.

+ Install a MATLAB runtime into a server instance.
Write client applications that use deployed MATLAB code via the server.

Application developers use MATLAB Production Server client APIs to write
applications that use MATLAB code. MATLAB Production Server client APIs are
available for:

+ Java

- CH#
Install client applications on end-user computers.

Application installers distribute the client applications to the end-users.

1-7

1-8

Installation

* “Prerequisites & Compatibility” on page 2-2
+ “Install MATLAB Production Server” on page 2-3
+ “Download and Install the MATLAB Runtime” on page 2-4

* “Disable Windows Interactive Error Reporting” on page 2-5

2

Installation

Prerequisites & Compatibility

2-2

In this section...

“Windows File System Concerns” on page 2-2

“Architecture Compatibility” on page 2-2

Windows File System Concerns

If you plan to install on Windows, ensure that the system on which you install MATLAB
Production Server does not depend on access to files located on a network drive. For
stable results in a production environment, servers created with MATLAB Production
Server should always have local access to the deployable archives that they host.

Architecture Compatibility

Consider if the computers running MATLAB, as well as server instances of MATLAB
Production Server that host your code, are 32-bit or 64-bit.

Your operating system and bit architectures must be compatible (or ideally, the same)
across machines running MATLAB Production Server and your deployed components.

For additional compatibility considerations, see the MATLAB documentation.

Note: You can install a 32-bit image of MATLAB Production Server on a 64-bit version of
Windows®.

If you do so, you will receive a message prompting you to run set MPS_ARCH=win32.

Install MATLAB Production Server

Install MATLAB Production Server

1 Insert the installation DVD into your computer. If the MathWorks® Installer does
not automatically start, run setup.exe.

2 Follow the instructions in the Installation Wizard. For help completing the wizard,
see the MATLAB Installation Guide. As you run the installation wizard, note the
following:

+ If you do not already have the License Manager installed, you must install it.

If you install the product using the internet, you will be taken to the Licensing
Center to complete the licensing process.

2-3

2

Installation

Download and Install the MATLAB Runtime

2-4

The MATLAB runtime is a standalone set of shared libraries that enables the execution
of compiled MATLAB applications or components on computers that do not have
MATLAB installed. MATLAB Production Server requires an MATLAB runtime instance
to execute the deployed MATLAB applications it hosts.

Note: Download and install the required version of the MATLAB runtime from the Web
at http://www.mathworks.com/products/compiler/mcr.

In order to host a deployable archive created with the Server Archive Compiler, you
install a version of the MATLAB runtime that is compatible with the version of MATLAB
you used to create your archive.

For more information about the MATLAB compiler , including alternate methods of
installing it, see “Distributing MATLAB Code Using the MATLAB Runtime”.

http://www.mathworks.com/products/compiler/mcr

Disable Windows Interactive Error Reporting

Disable Windows Interactive Error Reporting

If the system on which you are running MATLAB Production Server is not monitored
frequently, you may want to disable Windows Interactive Error Reporting, using the
DontShowUl Windows Error Reporting (WER) setting, to avoid processing disruptions.

See WER Settings for Windows Development at http://msdn.microsoft.com/en-
us/library/windows/
desktop/bb513638(v=vs.85) .aspx for complete information.

2-5

http://msdn.microsoft.com/en-us/library/windows/desktop/bb513638(v=vs.85).aspx

2-6

Set Up

+ “Create a Server” on page 3-2
+ “Start a Server Instance” on page 3-4

+ “Verify Server Status” on page 3-5

3 Set Up

Create a Server

3-2

In this section...

“Prerequisites” on page 3-2

“Procedure” on page 3-2

Prerequisites

Before creating a server, ensure you have:

+ “Installed MATLAB Production Server software”.

* Added the script folder to your system PATH environment variable. Doing so enables
you to run server commands such as mps-new from any folder on your system.

Note: You can run server commands from the script folder. The script folder

is located at $MPS_INSTALL\script, where $MPS_INSTALL is the location
where MATLAB Production Server is installed. For example, on Windows, the
default location is: C:\Program Files\MATLAB\MATLAB Production Server
\ver\script. ver is the version of MATLAB Production Server.

Procedure

Before you can deploy your MATLAB code with MATLAB Production Server, you need to
create a server to host your deployable archive.

A server instance is considered to be one unique configuration of the MATLAB
Production Server product. Each configuration has its own parameter settings file
(main_config) as well as its own set of diagnostic files.

To create a server configuration or instance, do the following:

1 From the system command prompt, navigate to where you want to create your server
instance.
2 Enter the mps-new command from the system prompt:

mps-new [path/]1server_name [-V]
where:

Create a Server

path is the path to the server instance and configuration you want to create
for use with the MATLAB Production Server product. When specifying a path,
ensure the path ends with the server_name.

If you are creating a server instance in the current folder, you do not need to
specify a full path. Only specify the server name.

server_name — is the name of the server instance and configuration you want
to create.

-V — enables verbose output, giving you information and status about each folder
created in the server configuration.

Upon successful completion of the command, MATLAB Production Server creates a
new server instance.

3 Set Up

Start a Server Instance

3-4

In this section...

“Prerequisites” on page 3-4

“Procedure” on page 3-4

Prerequisites

Before attempting to start a server, verify that you have:

+ “Installed the MATLAB runtime”
+ Created a server instance

+ Specified the MATLAB runtime for the server instance to use

Procedure
To start a server instance, complete the following steps:

1 Open a system command prompt.

2 Enter the mps-start command:
mps-start [-C path/]server_name [-T]
where:

-C path/ — Path to the server instance you want to create. path should end
with the server name.
+ server_name — Name of the server instance you want to start or stop.

+ —F— Forces command to succeed, regardless or whether the server is already
started or stopped.

Upon successful completion of the command, the server instance is active.

Note: If needed, use the mps-status command to verify the server is running.

Verify Server Status

Verify Server Status

In this section...

“Procedure” on page 3-5

“Verify Status of a Server” on page 3-6

Procedure

To verify the status of a server instance, complete the following steps:

Open a system command prompt.

2 Enter the following command:

mps-status [-C path/]server_name

where:

+ -C path/ — Path to the server instance and configuration you want to create.
path should end with the server name.

server_name — Name of the server instance and configuration you want to start

or stop.

Upon successful completion of the command, the server status displays.

License Server Status Information

In addition to the status of the server, mps-status also displays the status of the license
server associated with the server you are verifying.

Possible statuses and their meanings follow:

This License Server Status Message...

Means...

License checked out

The server is operating with a valid license.
The server is communicating with the License

Manager, and the proper number of license keys

are checked out..

3 Set Up

This License Server Status Message...

Means...

WARNING: lost connection

to license server -

request processing

will be disabled

at time unless connection to license serve

The server has lost communication with the
License Manager, but the server is still fully
operational and will remain operational until
the specified time.

At time, if connectivity to the license server has
not been restored, request processing will be
disabled until licensing is reestablished.

ERROR: lost connection
to license server - request processing dis

The server has lost communication with the
License Manager for a period of time exceeding
the grace period.

Request processing has been suspended, but
the server actively attempts to reestablish
communication with the License Manager
until it succeeds, at which time normal request
processing resumes.

Verify Status of a Server

This example shows how to verify the status of the server instance you started in the

previous example.

In this example, you verify the status of prod_server_1, from a location other than the
server instance folder (C:\tmp\prod_server_1).

Open a system command prompt.

To verify prod_server_1 is running, enter this command:

mps-status -C \tmp\prod_server_1

If prod_server_1 is running, the following status is displayed:

\tmp\prod_server_1 STARTED
license checked out

This output confirms prod_server_1 is running and the server is operating with a valid

license.

For more information on the STOPPED status, see mps-stop and mps-restart.

Verify Server Status

For more information about license status messages, see “License Server Status
Information” on page 3-5.

3-7

3-8

Licensing

4

Licensing

Manage Licenses for MATLAB Production Server

4-2

Complete instructions for installing License Manager can be found in the MATLAB
Installation Guide.

In addition to following instructions in the License Center to obtain and activate your
license, do the following in order to set up and manage licensing for MATLAB Production
Server:

Specify or Verify License Server Options in Server Configuration File

Specify or verify values for License Server options in the server configuration file
(main_config). You create a server by using the mps-new command.

Edit the configuration file for the server. Open the file server_name/config/
main_config and specify or verify parameter values for the following options. See the
comments in the server configuration file for complete instructions and default values.

+ license — Configuration option to specify the license servers and/or the
license files. You can specify multiple license servers including port numbers
(port_number@license_server_name), as well as license files, with one entry in
main_config. List where you want the product to search, in order of precedence,
using semi-colons (;) as separators on Windows or colons (:) as separators on Linux.

For example, on a Linux system, you specify this value for Iicense:

--license 27000@hostA:/opt/license/license.dat:27001@hostB: ./license.dat
The system searches these resources in this order:
27000@hostA: (hostA configured on port 27000)
/opt/license/license.dat (local license data file)
27001@hostB: (hostB configured on port 27001)
4 _/license.dat (local license data file)

+ license-grace-period — The maximum length of time MATLAB Production
Server responds to HT'TP requests, after license server heartbeat has been lost. See

W N -

FLEXIm® documentation for more on heartbeats and related license terminology.

+ license-poll-interval — The interval of time that must pass, after license
server heartbeat has been lost and MATLAB Production Server stops responding to
HTTP requests, before license server is polled, to verify and checkout a valid license.

Manage Licenses for MATLAB Production Server

Polling occurs at the interval specified by Iicense-poll-interval until license has
been successfully checked-out. See FLEXIm documentation for more on heartbeats
and related license terminology.

Verify Status of License Server using mps-status

When you enter an mps-status command, the status of the server and the associated
license is returned.

For detailed descriptions of these status messages, see “License Server Status
Information”.

Forcing a License Checkout Using mps-license-reset

Use the mps-license-reset command to force MATLAB Production Server to checkout
a license. You can use this command at any time, providing you do not want to wait for
MATLAB Production Server to verify and checkout a license at an interval established
by a server configuration option such as license-grace-period or license-poll-
interval.

4-3

4-4

Deploying an Application

“Create a Deployable Archive for MATLAB Production Server” on page 5-2
“Start a MATLAB Production Server Instance” on page 5-6

“Share a Deployable Archive on the Server Instance” on page 5-9

“Create a Java Application That Calls a Deployed Function” on page 5-10
“Create a C# .NET Application That Calls a Deployed Function” on page 5-14
“Create a C++ Application That Calls a Deployed Function” on page 5-18
“Create a Python Application That Calls a Deployed Function” on page 5-24

5 Deploying an Application
ploying PP

Create a Deployable Archive for MATLAB Production Server

5-2

This example shows how to create a deployable archive for MATLAB Production Server
using a MATLAB function. You can then hand the generated archive to a system
administrator who will deploy it into MATLAB Production Server.

To create a deployable archive:
1 In MATLAB, examine the MATLAB code that you want to deploy.
a Open addmatrix.m.
function a = addmatrix(al, a2)

a = al + az2;
b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:
ans =

3
2 Open the Production Server Compiler.

a On the toolstrip, select the Apps tab.
b Click the arrow on the far right of the tab to open the apps gallery.
¢ Click Production Server Compiler.

Create a Deployable Archive for MATLAB Production Server

4\ MATLAB Compiler - Untithed Lprj o | B [|

Archive Information

Campaonent Name

Files required for your archive to run

Files installed with your application

] et #] readme.tst

¥ Additional Runtime Settings

3 Inthe Application Type section of the toolstrip, select Deployable Archive from
the list.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow .
4 Specify the MATLAB functions you want to deploy.

a Inthe Exported Functions section of the toolstrip, click the plus button.

5-3

5 Deploying an Application

5-4

Note: If the Exported Functions section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

Using the file explorer, locate and select the addmatrix.m file.

addmatrix.mis located in matlabroot\extern\examples\compiler.
Click Open to select the file and close the file explorer.

addmatrix.m is added to the field. A minus button will appear below the plus
button.

In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note: If the Packaging Options section of the toolstrip is collapsed you can expand
it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB runtime and installs it.
Explore the main body of the project window.

The project window is divided into the following areas:

Application Information — Editable information about the deployed archive.
This information is used by the generated installer to populate the installed
application's metadata. See “Customize the Installer”.

Additional Installer Options — The default installation path for the generated
installer. See “Customize the Installer”.

Files required for your application — Additional files required by the
archive. These files will be included in the generated archive. See “Manage
Required Files in a Compiler Project”.

Files installed with your application — Files that are installed with your
archive. These files include:

* readme.txt
- _ctffile

See “Specify Files to Install with the Application”.

Create a Deployable Archive for MATLAB Production Server

7 Click Package.

The Package window opens while the library is being generated.

(4\ Package ﬁw

“r
L=
“r

101

011 = | d

Creating Binaries...

[] Open output folder when process completes

ty -

8 Select the Open output folder when process completes check box.

When the deployment process is complete, a file explorer opens and displays the
generated output.
9 Verify the contents of the generated output:

for_redistribution — A folder containing the installer to redistribute the
archive to the system administrator responsible for the MATLAB Production
Server

+ for_testing — A folder containing the raw files generated by the compiler

+ PackaginglLog.txt — A log file generated by the compiler.
10 Click Close on the Package window.

To lean more about MATLAB Production Server see “MATLAB Production Server”

5-5

5 Deploying an Application

Start a MATLAB Production Server Instance

5-6

In this section...

“Overview” on page 5-6

“Install MATLAB Production Server” on page 5-6
“Install MATLAB Runtime” on page 5-7
“Configure the Server Instance” on page 5-7
“Create a Server Instance” on page 5-7

“Start the Server” on page 5-8

Overview

This example shows how to install, configure, and start an instance of MATLAB
Production Server.

To start a MATLAB Production Server instance:

Install MATLAB Production Server.
Install MATLAB runtime.

Create a server instance.

Configure the server instance.

Start the server instance.

ObhWN—

Install MATLAB Production Server

To install MATLAB Production Server:

1 Run the installer.

2 Select License Manager for installation in the product list.

3 When asked where to install MATLAB Production Server, enter the name of an
empty folder.

You need the path to the installation to complete the tutorial.
4 Add the $MPS _INSTALL\script folder to your system PATH environment variable.

$MPS_INSTALL represents your MATLAB Production Server installation folder.

Start a MATLAB Production Server Instance

Install MATLAB Runtime

If it 1s not already installed on your system, you must install the MATLAB runtime.
MATLAB Production Server requires the MATLAB runtime.

To install a MATLAB runtime:

1 Download the MATLAB runtime installer from http://www.mathworks.com/products/
compiler/mcr.
2 Run the MATLAB runtime installer.

Configure the Server Instance

After you create a new server instance, you must configure it. The MATLAB Production
Server configuration file, main_config, includes many parameters you can use to tune
server performance. At a minimum, you must use the file to specify the location of the
MATLAB runtime you want to use with the server instance

To configure the server instance’s default MATLAB runtime:

1 From the system command line, run mps-setup.
2 Follow the directions to specify which MATLAB runtime the server instances uses.

For more information about configuration options, see “Edit the Configuration File”.

Create a Server Instance

To create the server instance:

1 Move to the folder where you want to create your server.
2 Run the mps-new command.

C:\tmp>mps-new prod_server_1 -v
3 Verify the output.

prod_server_1/.mps_version.. .ok
prod_server_1/config/main_config. ..ok
prod_server_1/auto_deploy/.. .ok
prod_server_1/log/. ..ok
prod_server_1/pid/...ok
prod_server_1/old_logs/. ..ok
prod_server_1/.mps_socket/.. .ok

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

5 Deploying an Application

prod_server_1/endpoint/.. .ok

For more information on these folders, see “Server Diagnostic Tools”.

Start the Server

To start the server:
1 Run the mps-start command.

mps-start -C C:\tmp\prod_server_1
2 Verify the server instance has started using the mps-status command.

mps-status -C C:\tmp\prod_server_1

"C:\tmp\prod_server_1" STARTED
license checked out

Share a Deployable Archive on the Server Instance

Share a Deployable Archive on the Server Instance

To make your deployable archive available using MATLAB Production Server, you must
copy the deployable archive into the auto_deploy folder in your server instance. You
can add a deployable archive into the auto_deploy folder of a running server — the
server monitors this folder dynamically and processes the deployable archives that are
added to the auto_deploy folder.

To share the deployable archive created in “Create a Deployable Archive for MATLAB

Production Server” on page 5-2, copy the deployable archive from the deployment
project’s For_redistribution folder into the server’s auto_deploy folder.

5-9

5 Deploying an Application

Create a Java Application That Calls a Deployed Function

5-10

This example shows how to write a MATLAB Production Server client using the Java
client API. In your Java code, you will:

Define a Java interface that represents the MATLAB function.
Instantiate a proxy object to communicate with the server.

Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1
2
3

Create a new file called addmatrix_client. java.
Using a text editor, open addmatrix_client. java.
Add the following import statements to the file:

import java.net.URL;

import java.io.lOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client_MATLABException;

Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(al, a2)
a =al + a2;
looks like this:

interface MATLABAddMatrix {
double[]1[] addmatrix(double[][]1 al, double[][] a2)
throws MATLABException, I0Exception;

}
When creating the interface, note the following:

You can give the interface any valid Java name.

You must give the method defined by this interface the same name as the
deployed MATLAB function.

* The Java method must support the same inputs and outputs supported by the
MATLAB function, in both type and number. For more information about data

Create a Java Application That Calls a Deployed Function

type conversions and how to handle more complex MATLAB function signatures,
see “Java Client Programming”.

The Java method must handle MATLAB exceptions and I/O exceptions.
Add the following class definition:

public class MPSClientExample

{
}

This class now has a single main method that calls the generated class.
Add the main() method to the application.

public static void main(String[] args)
{

Add the following code to the top of the main() method:

double[1[1 al={{1,2.3}.{3.2,1}}:
double[1[1 a2={{4.5.6}.,{6,5,4}}:

These statements initialize the variables used by the application.
Instantiate a client object using the MWHttpCl ient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the server
instance.
Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the deployable archive and the name of your interface
class as arguments:

MATLABAddMatrix m = client._createProxy(new URL("http://localhost:9910/addmatrix’),
MATLABAddMatrix.class);

The URL value (""http://1ocalhost:9910/addmatrix") used to create the proxy
contains three parts:

* the server address (localhost).
the port number (9910).

* the archive name (addmatirx)

5-11

5 Deploying an Application

For more information about the createProxy method, see the Javadoc included
in the $MPS_INSTALL/client folder, where $MPS_INSTALL is the name of your
MATLAB Production Server installation folder.

10 Call the deployed MATLAB function in your Java application by calling the public
method of the interface.

double[][] result = m.addmatrix(al,a2?);
11 Call the client object’s close() method to free system resources.

client_close();
12 Save the Java file.

The completed Java file should resemble the following:

import java.net._URL;

import java.io.lOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client_.MWHttpClient;
import com.mathworks.mps.client_MATLABException;

interface MATLABAddMatrix
double[][] addmatrix(double[][]1 al, double[][] a2)
throws MATLABException, I0Exception;
}
public class MPSClientExample {
public static void main(String[] args){

double[1[1 al={{1,2,3},{3,2,1}};
double[1[1 a2={{4,5,6},{6,5,4}};

MWClient client = new MWHttpClient();

try{
MATLABAddMatrix m = client.createProxy(new URL(*"http://localhost:9910/addmatrix"),
MATLABAddMatrix.class);
double[][] result = m.addmatrix(al,a2);

// Print the magic square
printResult(result);
}catch(MATLABException ex){
// This exception represents errors in MATLAB
System.out._printin(ex);
}catch(10Exception ex){
// This exception represents network issues.
System.out._printin(ex);
Ffinally{

client.close();

5-12

Create a Java Application That Calls a Deployed Function

13

14

}

private static void printResult(double[][] result){
for(double[] row : result){
for(double element : row){
System.out.print(element + " ');
}
System.out._printin();

3
3

Compile the Java application, using the javac command or use the build capability
of your Java IDE.

For example, enter the following (on one line):

H:\Work>javac -classpath "MPS_INSTALL_ROOT\client\java\mps_client_jar"™ addmatrix_client.java
Run the application using the Java command or your IDE.

For example, enter the following (on one line):

H:\Work>java -classpath .;"MPS_INSTALL_ROOT\client\java\mps_client.jar™ MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

5-13

5 Deploying an Application

Create a C# .NET Application That Calls a Deployed Function

5-14

This example shows how to call a deployed MATLAB function from a C# application
using MATLAB Production Server.

In your C# code, you must:

Create a Microsoft Visual Studio® Project.

+ Create a Reference to the Client Run-Time Library.
* Design the .NET interface in C#.

* Write, build, and run the C# application.

This task is typically performed by .NET application programmer. This part of the
tutorial assumes you have Microsoft Visual Studio and .NET installed on your computer.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.
2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to use.
For example, if you want to create a C# Console Application, select Windows
in the Visual C# branch of the Project Type pane, and select the C# Console
Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).
5 Click OK. Your Magic source shell is created, typically named Program.cs, by
default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server client run-
time library. In Microsoft Visual Studio, perform the following steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on the right
side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.

3 Inthe Add Reference dialog box, select the Browse tab. Browse to the MATLAB
Production Server client runtime, installed at $MPS_INSTALL\client\dotnet.
Select MathWorks .MATLAB.ProductionServer._Client.dll.

Create a C# .NET Application That Calls a Deployed Function

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Design the .NET Interface in C#

In this example, you invoke mymagic.m, hosted by the server, from a .NET client,
through a .NET interface.

To match the MATLAB function mymagic.m, design an interface named Magic.

For example, the interface for the mymagic function:

function m = mymagic(in)
m = magic(in);

might look like this:

public interface Magic

{
double[,]1 mymagic(int inl);
}

Note the following:
+ The .NET interface has the same number of inputs and outputs as the MATLAB
function.

* You are deploying one MATLAB function, therefore you define one
corresponding .NET method in your C# code.

+ Both MATLAB function and .NET interface process the same types: input type int
and the output type two-dimensional double.

* You specify the name of your deployable archive (magic, which resides
in your auto_deploy folder) in your URL, when you call CreateProxy
(""http://1localhost:9910/magic").

Write, Build, and Run the .NET Application
Create a C# interface named Magic in Microsoft Visual Studio by doing the following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created earlier.
2 InProgram.cs tab, paste in the code below.

5-15

5 Deploying an Application

Note: The URL value (""http://localhost:9910/mymagic_deployed") used to
create the proxy contains three parts:

* the server address (localhost).

* the port number (9910).
* the archive name (mymagic_deployed)

using System;
using System.Net;
using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic

{

public class MagicClass

{
public interface Magic

double[,] mymagic(int inl);
3

public static void Main(string[] args)

MWClient client = new MWHttpClient();
try
{
Magic me = client.CreateProxy<Magic>
(new Uri("http://localhost:9910/mymagic_deployed™));
double[,] resultl = me.mymagic(4);
print(resultl);

}
catch (MATLABException ex)

{
Console.WriteLine(""{0} MATLAB exception caught.", ex);
Console.WriteLine(ex.StackTrace);

catch (WebException ex)
{

Console.WriteLine(""{0} Web exception caught.", ex);
Console.WriteLine(ex.StackTrace);

(W]

finally

~

client.Dispose();

Console.ReadLine();

5-16

Create a C# .NET Application That Calls a Deployed Function

public static void print(double[,] x)
{

int rank = x.Rank;
int [] dims = new int[rank];

for (int i = 0; i1 < rank; i++)

dims[i] = x.GetLength(i);
}

for (int j = 0; j < dims[0]; j++)
{
for (int k = 0; k < dims[1]; k++)
{
Console.Write(x[j,k]1);
if (k < (dims[1] - 1))
{
Console.Write(",™);
3
3
Console.WriteLine();
3
H
3
3

Build the application. Click Build > Build Solution.

Run the application. Click Debug > Start Without Debugging. The program
returns the following console output:

16,2,3,13
5,11,10,8
9,7,6,12

4,14,15,1

5-17

5 Deploying an Application

Create a C++ Application That Calls a Deployed Function

5-18

This example shows how to write a MATLAB Production Server client using the C
client API. The client application calls the addmatrix function you compiled in “Create
a Deployable Archive for MATLAB Production Server” and deployed in “Share a
Deployable Archive on the Server Instance”.

Create a C++ MATLAB Production Server client application:

1 Create a new file called addmatrix_client.cpp.
2 Using a text editor, open addmatrix_client.cpp.
3 Add the following include statements to the file:

#include <iostream>
#include <mps/client._h>

Note: The header files for the MATLAB Production Server C client API are located
in the $MPS INSTALL/client/c/include/mpsfolder where $MPS INSTALL is the
root folder which MATLAB Production Server is installed.

4 Add the main() method to the application.

int main (void)
{
}

5 Initialize the client runtime.

mpsClientRuntime* mpsruntime = mpslnitialize();
6 Create the client configuration.

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);
7 Create the client context.

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);
8 Create the MATLAB data to input to the function.

double al[2][3] = {{1.,2,3}.{3,2,1}};
double a2[2][3] = {{4.,5.,6}.{6,5,4}};

int numin=2;
const mpsArray** inVal = new const mpsArray* [numln];

Create a C++ Application That Calls a Deployed Function

10

11

inval[0]
inval[1]

= mpsCreateDoubleMatrix(2,3,mpsREAL);
= mpsCreateDoubleMatrix(2,3,mpsREAL);
double* datal
double* data2

= static_cast<double>(mpsGetData(inval[0]));
= static_cast<double>(mpsGetData(inval[1]));
for(int i=0; i<2; i++)
{
for(int j=0; j<3; j++)
{
mpsindex subs[]1 = { &, J };
mpslndex id = mpsCalcSingleSubscript(inval[0], 2, subs);
datal[id] al[illil;
dataz[id] az2[illl;
}

b
Create the MATLAB data to hold the output.

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];
Call the deployed MATLAB function.

You must specify the following as arguments:

client context
URL of the function

* Number of expected outputs

* Pointer to the mpsArray holding the outputs
Number of inputs

Pointer to the mpsArray holding the inputs

mpsStatus status = mpsruntime->feval (context,http://localhost:9910/addmatrix/addme

For more information about the feval function, see the reference material included
in the $MPS_INSTALL/client folder, where $MPS_INSTALL is the name of your
MATLAB Production Server installation folder.

Verify that the function call was successful using an i f statement.

if (status==MPS_O0OK)
{
}

5-19

5 Deploying an Application

12 Inside the if statement, add code to process the output.
double* out = mpsGetPr(outvVal[0]);

for (int i=0; i<2; i++)
{
for (int j=0; j<3; j++)
{
mpsindex subs[] = {i, j};
mpsIndex id = mpsCalcSingleSubscript(outval[0], 2, subs);
std::cout << out[id] << "\t";
}
std::cout << std::endl;

}

13 Add an else clause to the if statement to process any errors.

else

{
mpsErrorinfo error;
mpsruntime->getLastErrorinfo(context, &error);
std::cout << "Error: " << error.message << std::endl;
switch(error.type)

case MPS_HTTP_ERROR_INFO:

std::cout << "HTTP: " << error.details._http.responseCode << ": " << error.det
case MPS_MATLAB_ERROR_INFO:
std::cout << "MATLAB: " << error.details.matlab.identifier << std::endl;

std::cout << error.details.matlab.message << std::endl;
case MPS_GENERIC_ERROR_INFO:
std::cout << "Generic: " << error.details.general._genericErrorMsg << std::enc

}

mpsruntime->destroylLastErrorinfo(&error;);

¥
14 Free the memory used by the inputs.

for (int i=0; i<numln; i++)
mpsDestroyArray(inval[i]);
delete[] inval;
15 Free the memory used by the outputs.

for (int i=0; i<numOut; i++)

mpsDestroyArray(outvVal[i]);
delete[] outval;

5-20

Create a C++ Application That Calls a Deployed Function

16 Free the memory used by the client runtime.

mpsruntime->destroyConfig(config);
mpsruntime->destroyContext(context);
mpsTerminate();

17 Save the file.

The completed program should resemble the following:

#include <iostream>
#include <mps/client.h>

int main (void)
{

mpsClientRuntime* mpsruntime = mpslnitialize();

mpsClientConfig* config;
mpsStatus status = mpsruntime->createConfig(&config);

mpsClientContext* context;
status = mpsruntime->createContext(&context, config);

double al[2][3

1 1,2,3}.{3,2,1}};
double a2[2][3]

4,5,6},{6,5,4}};

int numin=2;

const mpsArray** invVal = new const mpsArray* [numin];
inval[0] = mpsCreateDoubleMatrix(2,3,mpsREAL);

inval[1] = mpsCreateDoubleMatrix(2,3,mpsREAL);

double* datal = static_cast<double>(mpsGetData(inval[0])):
double* data2 = static_cast<double>(mpsGetData(inval[1])):
for(int i=0; i<2; i++)

for(int j=0; j<3; j++)
{
mpsindex subs[] = { i, j };
mpsindex id = mpsCalcSingleSubscript(inval[0], 2, subs);
datal[id] = ai[il[il;
data2[id] = a2[i1L[i];

3
¥

int numOut = 1;
mpsArray **outVal = new mpsArray* [numOut];

status = mpsruntime->feval (context,"http://localhost:9910/addmatrix/addmatrix’, numOut, outVal, numln, invVal);

if (status==MPS_OK)

{
double* out = mpsGetPr(outval[0]);

for (int i=0; i<2; i++)

for (int j=0; j<3; j++)

{
mpsindex subs[] = {i, j};
mpsindex id = mpsCalcSingleSubscript(outvVal[0], 2, subs);
std::cout << out[id] << "\t";

}

5-21

5 Deploying an Application

std::cout << std::endl;
3
3

else

{
mpsErrorinfo error;
mpsruntime->getLastErrorinfo(context, &error);
std::cout << "Error: " << error.message << std::endl;

switch(error.type)

{
case MPS_HTTP_ERROR_INFO:

std::cout << "HTTP: " << error.details_http.responseCode << ": " << error.details.http.responseMessage << std:
case MPS_MATLAB_ERROR_INFO:
std::cout << "MATLAB: " << error.details.matlab.identifier << std::endl;

std::cout << error.details.matlab.message << std::endl;
case MPS_GENERIC_ERROR_INFO:

std::cout << "Generic: " << error.details.general.genericErrorMsg << std::endl;
3

mpsruntime->destroylLastErrorinfo(&error);

3

for (int i=0; i<numln; i++)
mpsDestroyArray(inval[i]);

delete[] inval;

for (int i=0; i<numOut; i++)
mpsDestroyArray(outVal[i]);

delete[] outval;

mpsruntime->destroyConfig(config);

mpsruntime->destroyContext(context);
mpsTerminate();

H
18 Compile the application.

To compile your client code, the compiler needs access to client.h. This is stored in
$MPSROOT/client/c/include/mps/.

To link your application, the linker needs access to the following files stored in
$MPSROOT/client/c/:

5-22

Create a C++ Application That Calls a Deployed Function

Files required for linking

Windows

UNIX®/Linux

Mac OS X

$arch\lib
\mpsclient.lib

$arch/lib/
libprotobuf.so

$arch/lib/
libprotobuf.dylib

$arch/lib/libcurl.so

$arch/lib/
libcurl.dylib

$arch/lib/
libmwmpsclient.so

$arch/lib/
libmwmpsclient.dylib

$arch/lib/
libmwcppllcompat.so

19 Run the application.

To run your application, add the following files stored in $MPSROOT/client/c/ to

the application’s path:

Files required for running

Windows UNIX/Linux Mac OS X
$arch\lib $arch/lib/ $arch/lib/
\mpsclient.dll libprotobuf.so libprotobuf.dylib
$arch\lib $arch/lib/libcurl._so |$arch/lib/
\libprotobuf.dll libcurl._dylib
$arch\lib $arch/lib/ $arch/lib/
\libcurl._dll lLibmwmpsclient.so lLibmwmpsclient.dylib
$arch/lib/
libmwcppllcompat.so

The client invokes addmatrix function on the server instance and returns the
following matrix at the console:

5.0 7.0 9.0
9.0 7.0 5.0

5-23

5 Deploying an Application

Create a Python Application That Calls a Deployed Function

5-24

This example shows how to write a MATLAB Production Server client using the

Python® client API. The client application calls the addmatrix function you compiled in
“Create a Deployable Archive for MATLAB Production Server” and deployed in “Share a
Deployable Archive on the Server Instance”.

Create a Python MATLAB Production Server client application:

1 Copy the contents of the MPS_INSTALL\clients\python folder to your
development environment.

2 Open a command line,

3 Change directories into the folder where you copied the MATLAB Production Server
Python client.

4 Run the following command.

python install_mps.py
5 Start the Python command line interpreter.
6 Enter the following import statements at the Python command prompt.

import matlab
from production_server import client

7 Open the connection to the MATLAB Production Server instance and initialize the
client runtime.

client_obj = client_.MWHttpClient("http://localhost:9910")
8 Create the MATLAB data to input to the function.

= matlab.double([[1,2,3]1.[3.2,11D

al
a2 = matlab.double([[4,5,6]1.[6.5.411)
9 Call the deployed MATLAB function.

You must know the following:

* Name of the deployed archive

+ Name of the function
client_obj.addmatrix.addmatrix(al,a2)

matlab.double([[5.0,7.0,9.0],[9-0,7.0,5.011)

Create a Python Application That Calls a Deployed Function

10

The syntax for invoking a function is
client.archiveName.functionName(argi1, arg2, ..,
[nargout=numOutArgs]).

Close the client connection.

client_obj.close()

5-25

5-26

	Безымянный

