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Joreword

I'm grateful that Roland has taken the time to write this foundational book, and I
can’t think of anyone more capable of pulling it off. Roland is an unusually clear and
deep thinker; he coauthored the Reactive Manifesto, has been the technical lead for
the Akka project for several years, has coauthored and taught the very popular Cour-
sera course on Reactive programming and design, and is the best technical writer I
have met.

Clearly, I'm very excited about this book. It outlines what Reactive architec-
ture/design is all about, and does an excellent job explaining it from first principles in
a practical context. Additionally, it is a catalog of patterns that explains the bigger pic-
ture, how to think about system design, and how it is all connected—much like what
Martin Fowler’s Patterns of Enterprise Application Architecture did 15 years ago.

During my professional life, I have seen the immense benefits of resilient, loosely
coupled, message-driven systems firsthand, especially when compared with more-
traditional approaches that propose to hide the nature of distributed systems. In 2013,
I had the idea of formalizing the experiences and lessons learned: the Reactive Mani-
festo was born. It started out as a set of rough notes that I remember presenting to the
company at one of Typesafe’s (now Lightbend) internal technical meetups. Coinci-
dentally, this meetup was collocated with the Scala Days New York conference, where
Roland, Martin Odersky, and Erik Meijer shot their bad, and unintentionally quite
funny, promotion video of their Coursera course on Reactive programming. The story
around the Reactive principles resonated with the other engineers and was published
in July of 2013. Since then, the Manifesto has been receiving a lot of great feedback
from the community. It was rewritten and vastly improved by Roland, Martin Thomp-
son, Dave Farley, and myself, leading up to version 2.0 published in September 2014.

Xv



xvi FOREWORD

By the end of 2016, it had been signed by more than 17,000 people. During this time,
we have seen Reactive progress from a virtually unacknowledged technique used only
by fringe projects within a select few corporations to a part of the overall platform
strategy of numerous big players in many different fields, including middleware,
financial services, retail, social media, betting/gaming, and so on.

The Reactive Manifesto defines “Reactive Systems” as a set of architectural design
principles that are geared toward meeting the demands that systems face—today and
tomorrow. These principles are most definitely not new; they can be traced back to
the *70s and ’80s and the seminal work by Jim Gray and Pat Helland on the Tandem
System, as well as Joe Armstrong and Robert Virding on Erlang. However, these pio-
neers were ahead of their time, and it was not until the past five years that the technol-
ogy industry was forced to rethink current best practices for enterprise system
development and learned to apply the hard-won knowledge of the Reactive principles
to today’s world of multicore architectures, Cloud Computing, and the Internet of
Things.

By now, the Reactive principles have had a big impact on the industry, and as with
many successful ideas, they get overloaded and reinterpreted. This is not a bad thing;
ideas need to evolve to stay relevant. However, this can also cause confusion and lead
to dilution of the original intent. One example is the unfortunate emerging miscon-
ception that Reactive is nothing but programming in an asynchronous and nonblock-
ing style using callbacks or stream-oriented combinators—techniques that are aptly
classified as Reactive Programming. Concentrating on this aspect alone means miss-
ing out on many of the benefits of the Reactive principles. It is the contribution of this
book to take a much larger perspective—a systems view—moving the focus from how
individual components function in isolation to the design of collaborative, resilient,
and elastic systems: Reactive systems.

This future classic belongs on the shelf of every professional programmer, right
next to GoF' and Domain-Driven Design.? Enjoy the ride—I certainly did!

JONAS BONER
CTO AND FOUNDER OF LIGHTBEND
CREATOR OF AKKA

' Design Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson, and Vlissides (Addison-
Wesley, 1995).
2 Domain-Driven Design by Eric Evans (Addison-Wesley, 2004).



preface

Even before I had officially joined the Akka team, Mike Stephens from Manning tried
to convince me to write a book on Akka. I was tempted to say yes, but in the context of
an impending change of jobs and countries, my wife brought me to my senses: such a
project would be too much to handle. The idea of writing a book stuck in my head,
though. Three years later—after the Reactive Manifesto had been published—Martin
Odersky, Erik Meijer, and I taught the course Principles of Reactive Programming on
the Coursera platform, reaching more than 120,000 students in two iterations. The
idea for that course had been born at a Typesafe engineering meeting where I sug-
gested to Martin that we should nurture the blossoming movement of Reactive pro-
gramming by demonstrating how to use these tools effectively while avoiding the
pitfalls—my own experience answering questions on the Akka mailing list had given
me a good idea of the topics people commonly struggled with.

Avideo course is a wonderful way of reaching a large number of students, interact-
ing with them on the discussion forums, and in general improving the lives of others.
Unfortunately, the discussion of the subject is necessarily limited in its depth and
breadth by the format: only so much can be shown in seven weekly lectures. Therefore,
I still longed for formalizing and passing on my knowledge about Reactive systems by
writing a book. It would have been straightforward to write about Akka, but I felt that
if Iwrote a book, its scope should be wider than that. I love working on Akka—it has lit-
erally changed the course of my life—but Akka is merely a tool for expressing distrib-
uted and highly reliable systems, and it is not the only tool needed in this regard.

Thus began the journey toward the work you are holding in your hands right now.
It was a daunting task, and I knew that I would need help. Luckily, Jamie was just

xvii
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PREFACE

about to finish Effective Akka® and was immediately on board. Neither of us had the
luxury of writing during daytime; consequently, the book started out slow and kept
lagging behind the plan. Instead of having three chapters ready to enter the early
access program during the first iteration of the course Principles of Reactive Program-
ming, we could only announce it several months later. It is astonishing how much
detail one finds missing when starting out from the viewpoint that the contents are
basically already known and just need to be transferred into the computer. Over time,
Jamie got even busier with his day job, until he had to stop contributing entirely.
Later, Brian joined the project as Manning’s technical development editor, and it
soon became clear that he could not only make very good suggestions but also imple-
ment them. We made it official by signing him up as a coauthor, and then Brian
helped me push the manuscript over the finish line.

This book contains not only advice on when and how to use the tools of Reactive
programming, but also the reasoning behind the advice, so that you may adapt it to
different requirements and new applications. I hope that it will inspire you to learn
more and to explore the wonderful world of Reactive systems.

ROLAND KUHN

* Effective Akka by Jamie Allen (O’Reillly Media, 2013).
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about this book

This book is intended to be a comprehensive guide to understanding and designing
Reactive systems. Therefore, it includes not only an annotated version of the Reactive
Manifesto, but also the reasoning that led to its inception. The main part of the book
is a selection of design patterns that implement many facets of Reactive system design,
with pointers toward deeper literature resources for further study. While the pre-
sented patterns form a cohesive whole, the list is not exhaustive—it cannot be—but
the included background knowledge will enable the reader to identify, distill, and
curate new patterns as the need arises.

Whom this book is for

This book was written for everyone who may want to implement Reactive systems:

= It covers the architecture of such systems as well as the philosophy behind it,
giving architects an overview of the characteristics of Reactive applications and
their components and discussing the applicability of the patterns.

= Practitioners will benefit from a detailed discussion of the scenario solved by
each pattern, the steps to take in applying it—illustrated with complete source
code—as well as a guide to transfer and adapt the pattern to different cases.

= Learners wishing to deepen their knowledge, for example, after viewing the
course material of Principles of Reactive Programming, will be delighted to
read about the thought processes behind the Reactive principles and to follow
the literature references for further study.

This book does not require prior knowledge of Reactive systems; it builds upon famil-
iarity with software development in general and refers to some experience with the
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ABOUT THIS BOOK

difficulties arising from distributed systems. For some parts, a basic understanding of
functional programming is helpful (in the sense of programming with immutable val-
ues and pure functions), but category theory does not feature in this book.

How to read this book

The contents of this book are arranged such that it lends itself well to being read as a
story, cover to cover, developing from an introductory example and an overview of the
Reactive Manifesto and the Reactive toolbox, continuing with the philosophy behind
Reactive principles, and culminating in the description of patterns covering the differ-
ent aspects of designing a Reactive system. This journey covers a lot of ground and the
text contains references to additional background information. Reading it in one go
will leave you with an intuition of the scope of the book and what information is found
where, but it will typically only be the entry point for further study; you will return for
the extraction of deeper insights while applying the acquired knowledge in projects of
your own.

If you are already familiar with the challenges of Reactive systems, you may skip the
first chapter, and you will likely skim chapter 3 on the tools of the trade because you
have already worked with most of those. The impatient will be tempted to start reading
the patterns in part 3, but it is recommended to take a look at part 2 first: the pattern
descriptions frequently refer to the explanations and background knowledge of this
more theoretical part that form the basis on which the patterns have been developed.

It is expected that you will return to the more philosophical chapters—especially
chapters 8 and 9—after having gained more experience with the design and imple-
mentation of Reactive systems; don’t worry if these discussions do not immediately
become fully transparent upon first reading.

Conventions

Due to the overloading of the English term “future” for a programming concept that
deviates significantly from the original meaning, all uses of the word referring to the
programming concept appear capitalized as Future, even when not appearing in
code font.

The situation is slightly different for the term “actor,” which in plain English refers
to a person on stage as well as a participant in an action or process. This term appears
capitalized only when referring specifically to the Actor model, or when the name of
the Actor trait appears in code font.

Source code for the examples

All source code for the examples used in this book are available for download on
GitHub here: https://github.com/ReactiveDesignPatterns/CodeSamples/.

GitHub also offers facilities for raising issues with the samples or discussing them;
please make use of them. You are also welcome to open pull requests with improve-
ments; this way, all future readers will benefit from your thoughtfulness and experience.
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Most of the samples are written in Java or Scala and use sbt for the build definition;
please refer to www.scala-sbt.org/ for detailed documentation. A Java development kit
supporting Java 8 will be required to build and run the samples.

Other online resources

An overview of the presented patterns as well as further material is available at
www.reactivedesignpatterns.org/. In addition, purchase of Reactive Design Patterns
includes free access to a private web forum run by Manning Publications where you
can make comments about the book, ask technical questions, and receive help from
the lead author and from other users. To access the forum and subscribe to it, point
your web browser to www.manning.com/books/reactive-design-patterns. This page
provides information on how to get on the forum once you are registered, what kind
of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the AO forum remains voluntary (and unpaid). We
suggest you try asking them some challenging questions lest their interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s website as long as the book is in print.
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Part 1

Introduction

H ave you ever wondered how high-profile web applications are imple-
mented? Social networks and huge retail sites must have some secret ingredient
that makes them work quickly and reliably, but what is it? In this book, you will
learn about the design principles and patterns behind such systems that never
fail and are capable of serving the needs of billions of people. Although the sys-
tems you build may not have such ambitious requirements, the primary qualities
are common:

= You want your application to work reliably, even though parts (hardware
or software) may fail.

= You want it to keep working when you have more users to support, and
you want to be able to add or remove resources to adapt its capacity to
changing demand (capacity planning is hard to get right without a crystal
ball).

In chapter 1, we will sketch the development of an application that exhibits
these qualities and more. We will illustrate the challenges you will encounter and
present solutions based on a concrete example—a hypothetical implementation
of the Gmail service—but we will do so in a technology-agnostic fashion.

This use case sets the stage for the detailed discussion of the Reactive Mani-
festo that follows in chapter 2. The manifesto is written in a concise, high-level
form in order to concentrate on its essence: the combination of individually use-
ful program characteristics into a cohesive whole that is larger than the sum of
its parts. We will show this by breaking the high-level traits into smaller pieces
and explaining how everything fits back together.



PART 1 Introduction

We will complete this part of the book in chapter 3 with a whirlwind tour through
the tools of the trade: functional programming, Futures and Promises, Communicat-
ing Sequential Processes (CSP), Observers and Observables (Reactive Extensions),
and the Actor model.



Why Reactive?

We start from the desire to build a system that is responsive to users. This means the
system should respond to user input in a timely fashion under all circumstances.
Because any single computer can fail at any time, we need to distribute such a sys-
tem over multiple computers. Adding this fundamental requirement for distribu-
tion makes us recognize the need for new architecture patterns (or to rediscover
old ones). In the past, we developed methods that allowed us to retain the illusion
of single-threaded local processing while having it magically executed on multiple
cores or network nodes, but the gap between that illusion and reality is becoming
prohibitively large.1 The solution is to make the distributed, concurrent nature of
our applications explicit in the programming model, using it to our advantage.

This book will teach you how to write systems that stay responsive in the face of
partial outages, program failure, changing loads, and even bugs in the code. You
will see that this requires adjustments to the way you think about and design your
applications. Here are the four tenets of the Reactive Manifesto,? which defines a
common vocabulary and lays out the basic challenges that a modern computer sys-
tem needs to meet:

= It must react to its users (responsive).
= It must react to failure and stay available (resilient).
= It must react to variable load conditions (elastic).

= It must react to inputs (message-driven).

! For example, Java EE services allow us to transparently call remote services that are wired in automatically,
possibly even including distributed database transactions. The possibility of network failure or remote ser-
vice overload, and so on, is completely hidden, abstracted away, and consequently out of reach for devel-
opers to meaningfully take into account.

2 http://reactivemanifesto.org



1.1

CHAPTER 1 Why Reactive?

Value Responsive Maintainable Extensible

Means Elastic Resilient

Form Message-driven Figure 1.1 The structure
of Reactive values

In addition, creating a system with these properties in mind will guide you toward bet-
ter modularization, both of the runtime deployment and of the code itself. Therefore,
we add two more attributes to the list of benefits: maintainability and extensibility.
Another way to structure the attributes is shown in figure 1.1.

In the following chapters, you will learn about the reasoning of the Reactive Mani-
festo in detail, and you will get to know several tools of the trade and the philosophy
behind their design, enabling you to effectively use these tools to implement reactive
designs. The design patterns that emerge from these tools are presented in the third
part of the book. To set the stage for diving into the manifesto, we will first explore the
challenges of creating a Reactive application, using the example of a well-known email
service: we will imagine a reimplementation of Gmail.

The anatomy of a Reactive application

The first task when starting such a project is to sketch an architecture for the deploy-
ment and draft the list of software artifacts that need to be developed. This may not be
the final architecture, but you need to chart the problem space and explore poten-
tially difficult aspects. We will start the Gmail example by enumerating the different
high-level features of the application:

= The application must offer a view of the mailboxes to the user and display their
contents.

= To this end, the system must store all emails and keep them available.

= It must allow the user to compose and send email.

= To make this more comfortable, the system should offer a list of contacts and
allow the user to manage them.

= A good search function for locating emails is required.

The real Gmail application has more features, but this list will suffice for our pur-
poses. Some of these features are more intertwined than the others: for example, dis-
playing emails and composing them are both part of the user interface and share (or
compete for) the same screen space, whereas the implementation of email storage is
only distantly related to these two. The implementation of the search function will
need to be closer to the storage than the front-end presentation.
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Figure 1.2 Partially decomposed module hierarchy of the hypothetical Gmail implementation

These considerations guide the hierarchical decomposition of Gmail’s overall func-
tionality into smaller and smaller pieces. More precisely, you can apply the Simple Com-
ponent pattern as described in chapter 12, making sure you clearly delimit and
segregate the different responsibilities of the entire application. The Error Kernel pat-
tern and the Let-It-Crash pattern complement this process, ensuring that the applica-
tion’s architecture is well suited to reliable failure handling—not only in case of
machine or network outages, but also for rare failure conditions in the source code
that are handled incorrectly (a.k.a. bugs).

The result of this process will be a hierarchy of components that need to be devel-
oped and deployed. An example is shown in figure 1.2. Each component may be com-
plex in terms of its function, such as the implementation of search algorithms; or it
may be complex in its deployment and orchestration, such as providing email storage
for billions of users. But it will always be simple to describe in terms of its responsibility.

Coping with load

The resources necessary to store all those emails will be enormous: hundreds of mil-
lions of users with gigabytes of emails each will need exabytes® of storage capacity. This
magnitude of persistent storage will need to be provided by many distributed

* One exabyte is 1 billion gigabytes (using decimal SI prefixes; using binary SI prefixes, one EB is roughly 1.07
billion GB).
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machines. No single storage device offers so much space, and it would be unwise to
store everything in one location. Distribution makes the dataset resilient against local
perils like natural disasters; but, more important, it also allows the data to be accessed
efficiently from a larger region. For a worldwide user base, the data should be globally
distributed as well. It would be preferable to have the emails of a Japanese user stored
in or close to Japan (assuming that is where the user logs in from most of the time).

This insight leads us to the Sharding pattern described in chapter 17: you can split
up the overall dataset into many small pieces—or shards—that you then distribute.
Because the number of shards is much smaller than the number of users, it is practical
to make the location of each shard known throughout the system. In order to find a
user’s mailbox, you only need to identify the shard it belongs to. You can do that by
equipping every user with an ID that expresses geographical affinity (for example,
using the first few digits to denote the country of residence), which is then mathemat-
ically partitioned into the correct number of shards (for example, shard 0 contains
IDs 0-999,999; shard 1 contains IDs 1,000,000-1,999,999; and so on).

The key here is that the dataset naturally consists of many independent pieces that
can easily be separated from each other. Operations on one mailbox never affect
another mailbox directly, so the shards also do not need to communicate among
themselves. Each serves only one particular part of the solution.

Another area in which the Gmail application will need a lot of resources is in the
display of folders and emails to the user. It would be impossible to provide this func-
tionality in a centralized fashion, not only for reasons of latency (even at the speed of
light, it takes noticeable time to send information around the globe) but also due to
the sheer number of interactions that millions of users perform every second. Here,
you will also split the work among many machines, starting with the users’ computers:
most of the graphical presentation is rendered within the browser, shifting the work-
load very close to where it is needed and in effect sharding it for each user.

The web browser will need to get the raw information from a server, ideally one
that is close by to minimize network round-trip time. The task of connecting a user
with their mailbox and routing requests and responses accordingly is one that can also
easily be sharded. In this case, the browser’s network address directly provides all
needed characteristics, including an approximate geographic location.

One noteworthy aspect is that in all the aforementioned cases, resources can be
added by making the shards smaller, distributing the load over more machines. The
maximum number is given by the number of users or used network addresses, which
will be more than enough to provide sufficient resources. This scheme will need
adjustment only when serving a single user requires more computing power than a
single machine can provide, at which point a user’s dataset or computing problem
needs to be broken down into smaller pieces.

This means that by splitting a system into distributable parts, you gain the ability
to scale the service capacity, using a larger number of shards to serve more users. As
long as the shards are independent from each other, the system is in theory infinitely
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scalable. In practice, the orchestration and operation of a worldwide deployment
with millions of nodes requires substantial effort and must of course be worth it.

Coping with failures

Sharding datasets or computational resources solves the problem of providing suffi-
cient resources for the nominal case, when everything is running smoothly and net-
works are operational. In order to cope with failures, you need the ability to keep
running when things go wrong:

= A machine may fail temporarily (for example, due to overheating or kernel
panic) or permanently (electrical or mechanical failure, fire, flood, and so on).

= Network components may fail, both within a computing center as well as out-
side on the internet—including the case that intercontinental overseas cables
go down, resulting in a split of the internet into disconnected regions.

= Human operators or automated maintenance scripts may accidentally destroy
parts of the data.

The only solution to this problem is to replicate the system—its data or functional-
ity—in more than one location. The geographical placement of the replicas needs to
match the scope of the system; a global email service should serve each customer from
multiple countries, for example.

Replication is a more difficult and diverse topic than sharding because intuitively
you mean to have the same data in multiple places—but keeping the replicas synchro-
nized to match this expectation comes at a high cost. Should writing to the nearest
location fail or be delayed if a more distant replica is momentarily unavailable?
Should it be impossible to see the old data on a distant replica after the nearest one
has already signaled completion of the operation? Or should such inconsistency just
be unlikely or very short-lived? These questions will be answered differently between
projects or even for different modules of one particular system. Therefore, you are
presented with a spectrum of solutions that allows you to make trade-offs between
operational complexity, performance, availability, and consistency.

We will discuss several approaches covering a wide range of characteristics in chap-
ter 13. The basic choices are as follows:

= Active—passive replication—Replicas agree on which one of them can accept
updates. Fail-over to a different replica requires consensus among the remain-
ing ones when the active replica no longer responds.

= Consensus-based multiple-master replication—Each update is agreed on by suffi-
ciently many replicas to achieve consistent behavior across all of them, at the
cost of availability and latency.

= Optimistic replication with conflict detection and resolution—Multiple active replicas
disseminate updates and roll back transactions during conflict or discard con-
flicting updates that were performed during a network partition.
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= Conflict-free replicated data types—This approach prescribes merge strategies such
that conflicts cannot arise by definition, at the cost of providing only eventual
consistency and requiring special care when creating the data model.

In the Gmail example, several services should provide consistency to the user: if a user
successfully moves an email to a different folder, they expect it to stay in that folder
regardless of which client they use to access their mailboxes. The same goes for
changes to a contact’s telephone number or the user's profile. For these data, you
could use active—passive replication to keep things simple by making the failure
response actions coarse-grained—that is, on a per-replica scope. Or you could use
optimistic replication under the assumption that a single user will not concurrently
make conflicting changes to the same data item—but keep in mind that this is a fair
assumption only for human users.

Consensus-based replication is needed within the system as an implementation
detail of sharding by user ID, because the relocation of a shard must be recorded accu-
rately and consistently for all clients. It would lead to user-visible distortions like an
email disappearing and then reappearing if a client were to flip-flop between decom-
missioned and live replicas.

Making the system responsive

The previous two sections introduced reasons for distributing the system across sev-
eral machines, computing centers, or possibly even continents, matching the scope
and reliability requirements of the application. The foremost purpose of this exercise
is to build an email service for end users, though, and for them the only metric that
counts is whether the service does what they need when they need it. In other words,
the application must respond quickly to any request a user makes.

The easiest way to achieve this is, of course, to write an application that runs locally
and that has all emails stored on the local machine as well: going across the network
to fetch an answer will always take longer and be less reliable than having the answer
close by. There is, thus, a tension between the need to distribute and the need to stay
responsive. All distribution must be justified, as in the Gmail example.

Where distribution is necessary, you encounter new challenges in the quest for
responsiveness. The most annoying behavior of many distributed applications today is
that their user interaction grinds to a halt when network connectivity is poor. Interest-
ingly, it seems much simpler to deal with the complete absence of a connection than
with a trickling flow of data. One pattern that is helpful in this context is the Circuit
Breaker pattern discussed in detail in chapter 12. With this tool, you can monitor the
availability and performance of a service that you are calling on for some function so
that when the quality falls below a threshold (either too many failures or too long a
response latency), the circuit breaker trips, forcing a switch to a mode where that ser-
vice is not used. The unavailability of parts of the system needs to be considered from
the beginning; the Circuit Breaker pattern addresses this concern.
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Another threat to responsiveness arises when a service that the application
depends on becomes momentarily overloaded. A backlog of requests will accumulate,
and while these are processed, response latencies will be much longer than normal.
This situation can be avoided by employing flow control, as described in chapter 16. In
the Gmail example, there are several points at which circuit breakers and flow control
are needed:

= Between the front end that runs on the users’ devices and the web servers that
provide access to back-end functionality
= Between the web servers and back-end services

The reason for the first point has already been mentioned: the desire to keep the user-
visible part of the application responsive under all conditions, even if sometimes the
only thing it can do is signal that the server is down and that the request will be com-
pleted at a later time. Depending on how much functionality can or should practically
be duplicated in the front end for this offline mode, some areas of the user interface
may need to be deactivated.

The reason for the second point is that the front end would otherwise need to
have different circuit breakers for different kinds of requests to the web server, each
circuit breaker corresponding to the specific subset of back-end services needed by
one kind of request. Switching the entire application to offline mode when only a
small part of the back-end services are unavailable would be an unhelpful over-
response. Tracking this in the front end would couple its implementation to the pre-
cise structure of the back end, requiring the front-end code to be changed whenever
the service composition of the back end was altered. The web-server layer should hide
these details and provide its clients with responses as quickly as possible under all cir-
cumstances.

Take, for example, the back-end service that provides the information shown on
the contact card that pops up when hovering the pointer over an email sender’s
name. This is a nonessential function, considering the overall function of Gmalil, so
the web server may return a temporary failure code for such requests while that back-
end service is unavailable. The front end does not need to track this state; it can
merely refrain from showing the pop-up card and retry the request when interaction
with the user triggers it again.

This reasoning applies not only at the web server layer. In a large application that
consists of hundreds or thousands of back-end services, it is imperative to confine the
treatment of failure and unavailability in this fashion; otherwise, the system would be
unreasonable in the sense that its behavior could no longer be understood by
humans. Just as functionality is modularized, the treatment of failure conditions must
be encapsulated in comprehensible scopes as well.
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Avoiding the ball of mud

The Gmail application at this point consists of a front-end part that runs on the user’s
device, back-end services that provide storage and functionality, and web servers that
act as entry points into the back end. The latter serve an important purpose beyond
the responsiveness discussed in the previous section: they decouple the front end
from the back end architecturally. Having this clearly defined ingress point for client
requests makes it simpler to reason about the interplay between the part of the appli-
cation that runs on the users’ devices and the part that runs on servers in the cloud.

The back end so far consists of a multitude of services whose partitioning and rela-
tionships resulted from the application of the Simple Component pattern. By itself,
this pattern does not provide the checks and balances that keep the architecture from
devolving into a large mess where every service talks with almost every other service.
Such a system would be hard to manage even with perfect individual failure handling,
circuit breakers, and flow control; it certainly would not be possible for a human to
understand it in its entirety and confidently make changes to it. This scenario has
informally been called the big ball of mud.

With the problem lying in the unrestrained interaction between arbitrary back-end
services, the solution is to focus on the communication paths within the entire appli-
cation and to specifically design them. This is called message flow and is discussed in
detail in chapter 15.

The service decomposition shown in figure 1.2 is too coarse-grained to serve as an
example for a “ball of mud,” but an illustration for the principle of message-flow
design would be that the service that handles email composition probably should not
talk directly to the contact pop-up service: if composing an email entails showing the
contact card of someone mentioned in the email, then instead of making the back
end responsible for that, the front end should ask for the pop-up, just as it does when
the user hovers the mouse pointer over an email header. In this way, the number of
possible message-flow paths is reduced by one, making the overall interaction model
of back-end services a little simpler.

Another benefit of carefully considering message flow lies in facilitating testing
and making it easier to ensure coverage of all interaction scenarios. With a compre-
hensive message-flow design, it is obvious which other services a component interacts
with and what is expected from the component in terms of throughput and latency.
This can be turned around and used as a canary in the coal mine: whenever it is diffi-
cult to assess which scenarios should be tested for a given component, that is a sign
that the system is in danger of becoming a big ball of mud.

Integrating nonreactive components

The final important aspect of creating an application according to Reactive principles
is that it will, in most cases, be necessary to integrate with existing systems or infra-
structure that does not provide the needed characteristics. Examples are device driv-
ers that lack encapsulation (for example, by terminating the entire process in case of
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failure), APIs that execute their effects synchronously and thereby block the caller
from reacting to other inputs or timeouts in the meantime, systems with unbounded
input queues that do not respect bounded response latency, and so on.

Most of these issues are dealt with using the resource-management patterns discussed
in chapter 14. The basic principle is to retrofit the needed encapsulation and asyn-
chronous boundaries by interacting with the resource within a dedicated Reactive
component, using extra threads, processes, or machines as necessary. This allows
these resources to be integrated seamlessly into the architecture.

When interfacing with a system that does not provide bounded response latency, it
is necessary to retrofit the ability to signal momentary overload situations. This can to
some degree be achieved by employing circuit breakers, but in addition you must con-
sider what the response to overload should be. The flow-control patterns described in
chapter 16 help in this case as well.

An example in the context of the Gmail application is a hypothetical integration
with an external utility, such as a shared shopping list. Within the Gmail front end,
the user can add items to the shopping list by extracting the needed information
semiautomatically from emails. This function would be supported in the back end by
a service that encapsulates the external utility’s API. Assuming that the interaction
with the shopping list requires the use of a native library that is prone to crash and
bring down the process it is running in, it is desirable to dedicate a process to this
task alone. This encapsulated form of the external API is then integrated via the oper-
ating system'’s interprocess communication (IPC) facilities, such as pipes, sockets, and
shared memory.

Assuming further that the shopping list’s implementation employs a practically
unbounded input queue, you need to consider what should happen when latencies
increase. For example, if it takes minutes for an item to show up on the shopping list,
users will be confused and perhaps frustrated. A solution to this problem would be to
monitor the shopping list and observe the latency from the Gmail back-end service
that manages this interaction. When the currently measured latency exceeds the
acceptable threshold, the service will either respond to requests with a rejection and a
temporary failure code, or perform the operation and include a warning notice in the
response. The front-end application can then notify the user of either outcome: in
one case it suggests retrying later, and in the other it informs them about the delay.

Summary

In this chapter, we explored the Reactive landscape in the context of the principles
laid out in the Reactive Manifesto and surveyed the main challenges facing you when
building applications in this style. For a more detailed example of designing a Reac-
tive application, please refer to appendix B. The next chapter takes a deep dive into
the manifesto itself, providing a detailed discussion of the points that are condensed
into a compressed form in appendix C.
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A walk-through of
the Reactive Manifesto

This chapter introduces the manifesto in detail: where the original text is as short
as possible and rather dense, we unfold it and discuss it in great depth. For more
background information on the theory behind the manifesto, please refer to part 2
of the book.

Reacting to users

So far, this book has used the word wuser informally and mostly in the sense of
humans who interact with a computer. You interact only with your web browser in
order to read and write emails, but many computers are needed in the background
to perform these tasks. Each of these computers offers a certain set of services, and
the consumer or user of these services will in most cases be another computer that
is acting on behalf of a human, either directly or indirectly.

The first layer of services is provided by the front-end server and consumed by
the web browser. The browser makes requests and expects responses—predomi-
nantly using HTTP, but also via WebSockets. The resources that are requested can
pertain to emails, contacts, chats, searching, and many more (plus the definition of
the styles and layout of the website). One such request might be related to the
images of people you correspond with: when you hover over an email address, a
pop-up window appears that contains details about that person, including a photo-
graph or an avatar image. In order to render that image, the web browser makes a
request to the front-end server. Figure 2.1 shows how this might be implemented
using a traditional servlets approach.

12
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Figure 2.1 The front-end server for images first checks an in-memory cache, then attempts to
retrieve the image from storage, and finally returns a fallback image if neither is successful.

The user action of hovering the mouse pointer over an email address sets in motion a
flurry of requests via the web browser, the front-end server, and the internal image ser-
vice down to the storage system, followed by their respective responses traveling in the
opposite direction until the image is properly rendered on the screen. Along this
chain are multiple relationships from user to service, and all of them need to meet the
basic challenges outlined in the introduction; most important is the requirement to
respond quickly to each request.

When designing the overall implementation of a feature like the image service, you
need to think about services and their users’ requirements not only on the outside but
also on the inside. This is the first part of what it means to build reactive applications.
Once the system has been decomposed in this way, you need to turn your focus to mak-
ing these services as responsive as necessary to satisfy their users at all levels.

To understand why Reactive systems are better than the traditional alternatives, it
is useful to examine a traditional implementation of an image service. Even though it
has a cache, a connection pool, and even a fallback image for when things go wrong,
it can fail badly when the system is stressed. Understanding how and why it fails
requires looking beyond the single-thread illusion. Once you understand the failures,
you will see that even within the confines of a traditional framework, you can improve
the image service with a simplified version of the Managed Queue pattern that is cov-
ered in chapter 16.

Understanding the traditional approach

We will start with a naive implementation to retrieve an image from a database. The
application has a controller that first checks a cache to see whether the image has
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been retrieved recently. If the controller finds the image in the cache, it returns the
image right away. If not, it tries to retrieve the image from the database. If it finds the
image there, the image is added to the cache and also returned to the original
requester. If the image is not found, a static fallback image is returned, to avoid pre-
senting the user with an error. This pattern should be familiar to you. This simplistic
controller might contain code like the following.

Listing 2.1 Excerpt from a simple controller for an image service

public interface Images ({
Image get (String Key) ;
void add(String key, Image image) ;

}

public Images cache; <—— Assumed thread-safe

ublic Images database;
P d Wraps a database

Image result = cache.get (key); connection pool
if (result != null) {
return result; <+ Image is found in the cache
} else {
result = database.get (key) ; Image is found in the
if (result != null) { database, added to the cache,
cache.add (key, result); <FJ and returned to the client

return result;
} else {
return fallback;

}

Image is not retrieved
from the database

}

At the next level of detail, the application may be built on a framework that has some
ability to handle concurrency, such as Java servlets. When a new request is received,
the application framework assigns it to a request thread. That thread is then responsi-
ble for carrying the request through to a response. The more request threads are con-
figured, the more simultaneous requests the system is expected to handle.

On a cache hit, the request thread can provide a response immediately. On a
cache miss, the internal implementation of Images needs to obtain a connection from
the pool. The database query itself may be performed on the request thread, or the
connection pool may use a separate thread pool. Either way, the request thread is
obliged to wait for the database query to complete or time out before it can fulfill the
request.

When you are tuning the performance of a system such as this, one of the key
parameters is the ratio of request threads to connection-pool entries. There is not
much point in making the connection pool larger than the request-thread pool. If it is
the same size and all the request threads are waiting on database queries, the system
may find itself temporarily with little to do other than wait for the database to
respond. That would be unfortunate if the next several requests could have been
served from the cache; instead of being handled immediately, they will have to wait for
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an unrelated database query to complete so that a request thread will become avail-
able. On the other hand, setting the connection pool too small will make it a bottle-
neck; this risks the system being limited by request threads stuck waiting for a
connection.

The best answer for a given load is somewhere between the extremes. The next
section looks at finding a balance.

Analyzing latency with a shared resource

The simplistic implementation can be analyzed first by examining one extreme con-
sisting of an infinite number of request threads sharing a fixed number of database
connections. Assume each database query takes a consistent time Wto complete, and
for now ignore the cache. We will revisit the effect of the cache in section 2.3.1, when
we introduce Amdahl’s Law. You want to know how many database connections L will
be used for a given load, which is represented as A. A formula called Little’s Law gives
the answer:

L=AxW

Little’s Law is valid for the long-term averages of the three quantities independent of
the actual timing with which requests arrive or the order in which they are processed.
If the database takes on average 30 ms to respond, and the system is receiving 500
requests per second, you can apply Little’s Law:

L = 500 requests/second x 0.03 seconds/request
L=15

The average number of connections being used will be 15, so you will need at least
that many connections to keep up with the load.

If there are requests waiting to be serviced, they must have some place to wait. Typ-
ically, they wait in a queue data structure somewhere. As each request is completed,
the next request is taken from the queue for processing. Referring to figure 2.2, you
may notice that there is no explicit queue. If this were coded using traditional syn-
chronous Java servlets, the queue would consist of an internal collection of request
threads waiting for their turn with the database connection. On average, there would
be 15 such threads waiting. That is not good, because, whereas a queue is a light-
weight data structure, the request threads in the queue are relatively expensive
resources. Worse, 15 is just the average: the peaks are much higher. In reality, the
thread pool will not be infinite. If there are too many requests, they will spill back into
the TCP buffer and eventually back to the browser, resulting in unhelpful errors rather
than the desired fallback image.

The first thing you might do is increase the number of entries in the database con-
nection pool. As long as the database can continue to handle the resulting load, this
will help the average case. The important thing to note is that you are still working with
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Figure 2.2 Using standard listener threads and a connection pool results in the listeners
acting as queue entries, with overflow into the system TCP buffers.

average times. Real-world events can lead to failure modes that are far worse. For exam-
ple, if the database stops responding at all for several minutes, 500 requests per second
will overwhelm an otherwise sufficient thread pool. You need to protect the system.

Limiting maximum latency with a queue

The initial implementation blocked and waited for a database connection to become
available; it returned null only if the requested image was not found in the database.
A simple change will add some protection: if a database connection is not available,
return null right away. This will free the request thread to return the fallback image
rather than stalling and consuming a large amount of resources.

This approach couples two separate decisions into one: the number of database
queries that can be accepted simultaneously is equal to the size of the connection
pool. That may not be the result you want: it means the system will either return right
away if no connection is available or return in 30 ms if one is available. Suppose you
are willing to wait a bit longer in exchange for a much better rate of success. At this
point, you can introduce an explicit queue, as shown in figure 2.3. Now, instead of
returning right away if no connection is available, new requests are added to the
queue. They are turned away only if the queue itself is full.

The addition provides much better control over system behavior. For example, a
queue with a maximum length of only 3 entries will respond in no more than a total
of 120 ms, including 90 ms progressing through the queue and another 30 ms for the
database query. The size of the queue provides an upper bound that you can control.
Depending on the rate of requests, the average response may be lower, perhaps less
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Figure 2.3 Adding an explicit queue to manage access to the database connection pool
allows you to manage the maximum system latency separately from the listener thread pool
size and the connection pool size.

than 100 ms. If the cache that was ignored in the analysis is now considered, the aver-
age drops still further. With a 50% cache-hit rate, the image server could offer an
average response time of less than 50 ms.

Given what you know about how that 50 ms average is achieved, you also would
know not to set a timeout less than 120 ms. If that time was not acceptable, the simpler
solution would be to use a smaller queue. A developer who knows only that the aver-
age is less than 50 ms might assume it is a Gaussian distribution and be tempted to set
a timeout value at perhaps 80 or 100 ms. Indeed, the assumptions that went into this
analysis are vulnerable to the same error, because the assumption that the database
provides a consistent 30 ms response time would be questionable in a real-world imple-
mentation. Real databases have caches of their own.

Setting a timeout has the effect of choosing a boundary at which the system will
be considered to have failed. Either the system succeeded or it failed. When viewed
from that perspective, the average response time is less important than the maxi-
mum response time. Because systems typically respond more slowly when under
heavy load, a timeout based on the average will result in a higher percentage of fail-
ures under load and will also waste resources when they are needed most. Choosing
timeouts will be revisited in section 2.4 and again in chapter 11. For now, the import-
ant realization is that the average response time often has little bearing on choosing
the maximum limits.
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Exploiting parallelism

The simplest case of a user—service relationship is invoking a method or function:
val result = f(42)

The user provides the argument “42” and hands over control of the CPU to the func-
tion £, which might calculate the 42nd Fibonacci number or the factorial of 42. What-
ever the function does, you expect it to return some result value when it is finished.
This means that invoking the function is the same as making a request, and the func-
tion returning a value is analogous to it replying with a response. What makes this
example so simple is that most programming languages include syntax like this, which
allows direct usage of the response under the assumption that the function does
indeed reply. If that were not to happen, the rest of the program would not be exe-
cuted, because it could not continue without the response. The underlying execution
model is that the evaluation of the function occurs synchronously, on the same
thread, and this ties the caller and the callee together so tightly that failures affect
both in the same way.

Sequential execution of functions is well supported by all popular programming
languages out of the box, as illustrated in figure 2.4 and shown in this example using
Java syntax:

ReplyA a = computeA() ;
ReplyB b = computeB() ;
ReplyC ¢ = computeC() ;
Result r = aggregate(a, b, c);

The sequential model is easy to understand. It was adequate for early computers that
had only one processing core, but it necessitates waiting for all the results to be com-
puted by the same resource while other resources remain idle.

Reducing Iatency via parallelization

In many cases, there is one possibility for latency reduction that immediately presents
itself. If, for the completion of a request, several other services must be involved, then
the overall result will be obtained more quickly if the other services can perform their

Figure 2.4 A task consisting of three subtasks that are executed sequentially:
the total response latency is given by the sum of the three individual latencies.



Exploiting parallelism 19

functions in parallel, as shown in figure 2.5. This requires that no dependency exists
such that, for example, task B needs the output of task A as one of its inputs, which
frequently is the case. Take as an example the Gmail app in its entirety, which is com-
posed of many different but independent parts. Or the contact information pop-up
window for a given email address may contain textual information about that person
as well as their image, and these can clearly be obtained in parallel.

When performing subtasks A, B, and C sequentially, as shown in figure 2.4, the
overall latency depends on the sum of the three individual latencies. With parallel
execution, overall latency equals the latency of whichever of the subtasks takes lon-
gest. In the implementation of a real social network, the number of subtasks can easily
exceed 100, rendering sequential execution entirely impractical.

Parallel execution usually requires some extra thought and library support. For
one thing, the service being called must not return the response directly from the
method call that initiated the request, because in that case the caller would be unable
to do anything while task A was running, including sending a request to perform task
B in the meantime. The way to get around this restriction is to return a Future of the
result instead of the value itself:

7

Future<ReplyA> a = taskA()
Future<ReplyB> b = taskB()
Future<ReplyC> c = taskC()
Result r = aggregate(a.get

7

(), b.get(), c.get());

A Future is a placeholder for a value that may eventually become available; as soon as
it does, the value can be accessed via the Future object. If the methods invoking
subtasks A, B, and C are changed in this fashion, then the overall task just needs to

call them to get back one Future each. Futures are discussed in greater detail in the
next chapter.

Figure 2.5 A task consisting of three subtasks that are executed in
parallel: the total response latency is given by the maximum of the three
individual latencies.
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The previous code snippet uses a type called Future that is defined in the Java stan-
dard library (in the package java.util.concurrent). The only method it defines for
accessing the value is the blocking get () method. Blocking here means the calling
thread is suspended and cannot do anything else until the value has become available.
We can picture the use of this kind of Future like so (written from the perspective of
the thread handling the overall task):

When my boss gives me the task to assemble the overview file of a certain client,
I will dispatch three runners: one to the client archives to fetch the address,
photograph, and contract status; one to the library to fetch all articles the client
has written; and one to the post office to collect all new messages for this client.
This is a vast improvement over having to perform these tasks myself, but now I
need to wait idly at my desk until the runners return, so that I can collate
everything they bring into an envelope and hand that back to my boss.

It would be much nicer if I could leave a note telling the runners to place their
findings in the envelope and telling the last one to come back to dispatch
another runner to hand it to my boss without involving me. That way I could
handle many more requests and would not feel useless most of the time.

Improving parallelism with composable Futures

What the developer should do is describe how the values should be composed to form
the final result and let the system find the most efficient way to compute the values.
This is possible with composable Futures, which are part of many programming lan-
guages and libraries, including newer versions of Java (CompletableFuture is intro-
duced in JDK 8). Using this approach, the architecture turns completely from
synchronous and blocking to asynchronous and nonblocking; the underlying machin-
ery needs to become task-oriented in order to support this. The result is far more
expressive than the relatively primitive precursor, the callback. The previous example
transforms into the following, using Scala syntax:1

val fa: Future[ReplyA]l = taskA()

val fb: Future[ReplyB] = taskB()

val fc: Future[ReplyCl = taskC()
]

val fr: Future[Result] = for (a <- fa; b <- fb; ¢ <- fc)

yield aggregate(a, b, <)
Initiating a subtask as well as its completion are just events that are raised by one part
of the program and reacted to in another part: for example, by registering an action
to be taken with the value supplied by a completed Future. In this fashion, the latency
of the method call for the overall task does not even include the latencies for subtasks
A, B, and C, as shown in figure 2.6. The system is free to handle other requests while

! This would also be possible with the Java 8 CompletionStage using the andThen combinator, but due to
the lack of for-comprehensions, the code would grow in size relative to the synchronous version. The Scala
expression on the last line transforms to corresponding calls to flatMap, which are equivalent to
CompletionStage’s andThen.
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Task B Result

Figure 2.6 A task consisting of three subtasks that are executed as Futures:
the total response latency is given by the maximum of the three individual
latencies, and the initiating thread does not need to wait for the responses.

those are being processed, eventually reacting to their completion and sending the
overall response back to the original user.

An added benefit is that additional events like task timeouts can be added without
much hassle, because the entire infrastructure is already there. It is entirely reason-
able to perform task A, couple the resulting Future with one that holds a
TimeoutException after 100 ms, and use the combined result in the processing that
follows. Then, either of the two events—completion of A or the timeout—triggers the
actions that were attached to the completion of the combined Future.

THE NEED FOR ASYNCHRONOUS RESULT COMPOSITION You may be wondering
why this second part—asynchronous result composition—is necessary. Would
it not be enough to reduce response latency by exploiting parallel execution?
The context of this discussion is achieving bounded latency in a system of
nested user—service relationships, where each layer is a user of the service
beneath it. Because parallel execution of the subtasks A, B, and C depends on
their initiating methods returning Futures instead of strict results, this must
also apply to the overall task. That task is very likely part of a service that is
consumed by a user at a higher level, and the same reasoning applies on that
higher level as well. For this reason, it is imperative that parallel execution be
paired with asynchronous and task-oriented result aggregation.

Composable Futures cannot be fully integrated into the image server example dis-
cussed earlier using the traditional servlet model. The reason is that the request
thread encapsulates all the details necessary to return a response to the browser.
There is no mechanism to make that information available to a future result. This is
addressed in Servlet 3 with the introduction of AsyncContext.

Paying for the serial illusion

Traditionally, ways of modeling interactions between components—Ilike sending to
and receiving from the network—are expressed as blocking APT calls:
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final Socket socket =
socket .getOutputStream.write (requestMessageBytes) ;
final int bytesRead = socket.getInputStream().read(responseBuffer) ;

Each of these blocking calls interacts with the network equipment, generating mes-
sages and reacting to messages under the hood, but this fact is completely hidden in
order to construct a synchronous facade on top of the underlying message-driven sys-
tem. The thread executing these commands will suspend its execution if not enough
space is available in the output buffer (for the first line) or if the response is not imme-
diately available (on the second line). Consequently, this thread cannot do any other
work in the meantime: every activity of this type that is ongoing in parallel needs its
own thread, even if many of those are doing nothing but waiting for events to occur.

If the number of threads is not much larger than the number of CPU cores in the
system, then this does not pose a problem. But given that these threads are mostly
idle, you want to run many more of them. Assuming that it takes a few microseconds
to prepare the requestMessageBytes and a few more microseconds to process the
responseBuffer, whereas the time for traversing the network and processing the
request on the other end is measured in milliseconds, it is clear that each thread
spends more than 99% of its time in a waiting state.

In order to fully utilize the processing power of the available CPUs, this means run-
ning hundreds if not thousands of threads, even on commodity hardware. At this
point, you should note that threads are managed by the operating system kernel for
efficiency reasons.? Because the kernel can decide to switch out threads on a CPU core
at any point in time (for example, when a hardware interrupt happens or the time
slice for the current thread is used up), a lot of CPU state must be saved and later
restored so that the running application does not notice that something else was using
the CPU in the meantime. This is called a context switch and costs thousands of
cycles® every time it occurs. The other drawback of using large numbers of threads is
that the scheduler—the part of the kernel that decides which thread to run on which
CPU core at any given time—will have a hard time finding out which threads are run-
nable and which are waiting and then selecting one such that each thread gets its fair
share of the CPU.

The takeaway of the previous paragraph is that using synchronous, blocking APIs
that hide the underlying message-driven structure wastes CPU resources. If messages
were made explicit in the API such that instead of suspending a thread, you would just
suspend the computation—freeing up the thread to do something else—then this
overhead would be reduced substantially. The following example shows (remote) mes-
saging between Akka Actors from Java 8:

2 Multiplexing several logical user-level threads on a single OS thread is called a many-to-one model or green

threads. Early JVM implementations used this model, but it was abandoned quickly (http://docs.oracle
.com/cd/E19455-01/806-3461/6jck06gqh/index.html).

3 Although CPUs have gotten faster, their larger internal state has negated the advances made in pure execu-
tion speed such that a context switch has taken roughly 1 ps without much improvement for two decades.
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Sends a message to the actor
CompletionStage<Response> future = reference, using a CompletionStage
ask (actorRef, request, timeout) as the destination for the response

.thenApply (Response.class: :cast) ; Maps the response to its expected

type, failing upon mismatch

Registers further processing to be done
once a response is received and mapped
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Here, the sending of a request returns a handle to the possible future reply—a com-
posable Future, as discussed in chapter 3—to which a callback is attached that runs
when the response has been received. Both actions complete immediately, letting the
thread do other things after having initiated the exchange.

The limits of parallel execution

Loose coupling between components—by design as well as at runtime—includes
another benefit: more efficient execution. Although hardware used to increase capac-
ity primarily by increasing the computing power of a single sequential execution core,
physical limits* began impeding progress on this front around 2006. Modern proces-
sors now expand capacity by adding ever more cores, instead. In order to benefit from
this kind of growth, you must distribute computation even within a single machine.
When using a traditional approach with shared state concurrency based on mutual
exclusion by way of locks, the cost of coordination between CPU cores becomes very
significant.

Amdahl’s Law

The example in section 2.1 includes an image cache. The most likely implementation
would be a map shared among the request threads running on multiple cores in the
same JVM. Coordinating access to a shared resource means executing those portions
of the code that depend on the integrity of the map in some synchronized fashion.
The map will not work properly if it is being changed at the same time it is being read.
Operations on the map need to happen in a serialized fashion in some order that is
globally agreed on by all parts of the application; this is also called sequential consistency.
There is an obvious drawback to such an approach: portions that require synchroniza-
tion cannot be executed in parallel. They run effectively single-threaded. Even if they
execute on different threads, only one can be active at any given point in time. The
effect this has on the possible reduction in runtime that is achievable by paralleliza-
tion is captured by Amdahl’s Law, shown in figure 2.7.

(1) 1 N Figure 2.7 Amdahl’s Law specifies the
S(n) = T(N) = I—a = T+a(N=1) maximum increase in speed that can be achieved
o+ T by adding additional threads.

* The finite speed of light as well as power dissipation make further increases in clock frequency impractical.
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Figure 2.8 The increase in speed of a program using multiple processors in parallel
computing is limited by the sequential fraction of the program. For example, if 95%
of the program can be parallelized, the theoretical maximum speedup using parallel
computing will be 20 times, no matter how many processors are used.

Here, N is the number of available threads, o is the fraction of the program that is
serialized, and T(N) is the time the algorithm needs when executed with N threads.
This formula is plotted in figure 2.8 for different values of o across a range of available
threads—they translate into the number of CPU cores on a real system. You will notice
that even if only 5% of the program runs inside these synchronized sections, and the
other 95% is parallelizable, the maximum achievable gain in execution time is a factor
of 20; getting close to that theoretical limit would mean employing the ridiculous
number of about 1,000 CPU cores.

Universal Scalability Law

Amdahl’s Law also does not take into account the overhead incurred for coordinating
and synchronizing the different execution threads. A more realistic formula is pro-
vided by the Universal Scalability Law,’ shown in figure 2.9.

Figure 2.9 The Universal Scalability Law provides the
S(n) — N maximum increase in speed that can be achieved by
l+o(N-1)+BN(N-1) adding additional threads, with an additional factor to
account for coordination.

® N.J. Gunther, “A Simple Capacity Model of Massively Parallel Transaction Systems,” 2003, www.perfdynamics
.com/Papers/njgCMGI3.pdf. See also “Neil J. Gunther: Universal Law of Computational Scalability,” Wikipe-
dia, https://en.wikipedia.org/wiki/Neil_J._Gunther#Universal_Law_of_Computational_Scalability.
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Figure 2.10 At some point, the increase in speed from adding more resources is
eaten up by the cost of maintaining coherency within the system. The precise point
depends on the parallel program fraction and the time spent on coherency.

The Universal Scalability Law adds another parameter describing the fraction of time
spent ensuring that the data throughout the system is consistent. This factor is called
the coherency of the system, and it combines all the delays associated with coordinating
between threads to ensure consistent access to shared data structures. This new term
dominates the picture when you have a large number of cores, taking away the
throughput benefits and making it unattractive to add more resources beyond a cer-
tain point. This is illustrated in figure 2.10 for rather low assumptions on the coher-
ency parameter; distributed systems will spend considerably more than a small
percentage of their time on coordination.

The conclusion is that synchronization fundamentally limits the scalability of your
application. The more you can do without synchronization, the better you can distrib-
ute your computation across CPU cores—or even network nodes. The optimum would
be to share nothing—meaning no synchronization would be necessary—in which case
scalability would be perfect. In figure 2.9, o and B would be zero, simplifying the
entire equation to

S(n) =n

In plain words, this means that using ntimes as many computing resources, you
achieve n times the performance. If you build your system on fully isolated compart-
ments that are executed independently, then this will be the only theoretical limit,
assuming you can split the task into at least » compartments. In practice, you need to
exchange requests and responses, which requires some form of synchronization as
well, but the cost of that is very low. On commodity hardware, it is possible to
exchange several hundred million messages per second between CPU cores.
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Reacting to failure

The previous sections concern designing a service implementation such that every
request is met with a response within a given time. This is important because otherwise
the user cannot determine whether the request has been received and processed. But
even with flawless execution of this design, unexpected things will happen eventually:

= Software will fail. There will always be that exception you forgot to handle (or

that was not documented by the library you are using); or you may get synchro-
nization only a tiny bit wrong, causing a deadlock to occur; or the condition you
formulated for breaking a loop may not cope with a weird edge case. You can
always trust the users of your code to figure out ways to eventually find all these
failure conditions and more.

Hardware will fail. Everyone who has operated computing hardware knows that
power supplies are notoriously unreliable; that hard disks tend to turn into
expensive door stops, either during the initial burn-in phase or after a few
years; and that dying fans lead to the silent death of all kinds of components by
overheating them. In any case, your invaluable production server will, accord-
ing to Murphy’s Law, fail exactly when you most need it.

Humans will fail. When you task maintenance personnel with replacing a failed
hard disk in RAID5, a study6 finds that there is a 10% chance that they will
replace the wrong one, leading to the loss of all data. An anecdote from
Roland’s days as a network administrator is that cleaning personnel unplugged
the power of the main server for the workgroup—both redundant cords at the
same time—in order to connect the vacuum cleaner. None of these things
should happen, but it is human nature that you will have a bad day from time to
time.

Timeout is failure. The reason for a timeout may not be related to the internal
behavior of the system. For example, network congestion can delay messages
between components of your system even when all the components are func-
tioning normally. The source of delay may be some other system that shares the
network. From the perspective of handling an individual request, it does not
matter whether the cause is permanent or transient. The fact is that the one
request has taken too long and therefore has failed.

The question therefore is not ¢fa failure occurs but only when or how often. The user of
a service does not care how an internal failure happened or what exactly went wrong,
because the only response the user will get is that no normal response is received.
Connections may time out or be rejected, or the response may consist of an opaque
internal error code. In any case, the user will have to carry on without the response,
which for humans probably means using a different service: if you try to book a flight

5 Aaron B. Brown (IBM Research), “Oops! Coping with Human Error,” ACM Queue 2, no. 8 (Dec. 6, 2004),
http://queue.acm.org/detail.cfm?id=1036497.



Reacting to failure 27

and the booking site stops responding, then you will take your business elsewhere and
probably not come back anytime soon (or, in a different business, like online banking,
users will overwhelm the support hotline).

A high-quality service is one that performs its function very reliably, preferably
without any downtime at all. Because failure of computer systems is not an abstract
possibility but is in fact certain, the question arises: how can you hope to construct a
reliable service? The Reactive Manifesto chooses the term resilience instead of reliability
precisely to capture this apparent contradiction.

What does resilience mean?
Merriam-Webster defines resilience as follows:

= The ability of a substance or object to spring back into shape
= The capacity to recover quickly from difficulties

The key notion here is to aim at fault tolerance instead of fault avoidance, because
avoidance will not be fully successful. It is of course good to plan for as many failure
scenarios as you can, to tailor programmatic responses such that normal operations
can be resumed as quickly as possible—ideally without the user noticing anything.
The same must also apply to those failure cases that were not foreseen and explicitly
accommodated in the design, knowing that these will happen as well.

But resilience goes one step further than fault tolerance: a resilient system not only
withstands a failure but also recovers its original shape and feature set. As an example,
consider a satellite that is placed in orbit. In order to reduce the risk of losing the mis-
sion, every critical function is implemented at least twice, be it hardware or software.
For the case that one component fails, there are procedures that switch to the backup
component. Exercising such a fail-over keeps the satellite functioning, but from then
on the affected component will not tolerate additional faults because there was only
one backup. This means the satellite subsystems are fault tolerant but not resilient.

There is only one generic way to protect your system from failing as a whole when
a part fails: distribute and compartmentalize. The former can informally be translated as
“don’t put all your eggs in one basket,” and the latter adds “protect your baskets from
one another.” When it comes to handling a failure, it is important to delegate, so that
the failed compartment itself is not responsible for its own recovery.

Distribution can take several forms. The one you probably think of first involves
replicating an important database across several servers such that, in the event of a
hardware failure, the data are safe because copies are readily available. If you are
really concerned about those data, then you may go as far as placing the replicas in
different buildings in order not to lose all of them in the case of fire—or to keep them
independently operable when one of them suffers a complete power outage. For the
really paranoid, those buildings would need to be supplied by different power grids,
better yet in different countries or on separate continents.
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Compartmentalization and bulkheading

The further apart the replicas are kept, the smaller the probability of a single fault
affecting all of them. This applies to all kinds of failures, whether software, hardware,
or human: reusing one computing resource, operations team, set of operational pro-
cedures, and so on creates a coupling by which multiple replicas can be affected syn-
chronously or similarly. The idea behind this is to isolate the distributed parts or, to
use a metaphor from ship building, to use bulkheading.

Figure 2.11 shows the schematic design of a large cargo ship whose hold is sepa-
rated by bulkheads into many compartments. When the hull is breached for some rea-
son, only those compartments that are directly affected will fill up with water; the
others will remain properly sealed, keeping the ship afloat.

Y S -

Figure 2.11 The term bulkheading comes from ship building and means the vessel is
segmented into fully isolated compartments.

One of the first examples of this building principle was the Titanic, which featured 15
bulkheads between bow and stern and was therefore considered unsinkable.” That par-
ticular ship did in fact sink, so what went wrong? In order to not inconvenience passen-
gers (in particular the higher classes) and to save money, the bulkheads extended only
a few feet above the water line, and the compartments were not sealable at the top.
When five compartments near the bow were breached during the collision with the ice-
berg, the bow dipped deeper into the water, allowing the water to flow over the top of
the bulkheads into more and more compartments until the ship sank.

This example—although certainly one of the most terrible incidents in marine his-
tory—perfectly demonstrates that bulkheading can be done wrong in such a way that
it becomes useless. If the compartments are not truly isolated from each other, failure
can cascade among them to bring down the entire system. One example from distrib-
uted computing designs is managing fault tolerance at the level of entire application
servers, where one failure can lead to the failure of other servers by overloading or
stalling them.

Modern ships employ full compartmentalization where the bulkheads extend
from keel to deck and can be sealed on all sides, including the top. This does not
make the ships unsinkable, but in order to obtain a catastrophic outcome, the ship
needs to be mismanaged severely and run with full speed against a rock.® That meta-
phor translates in full to computer systems.

7 “There is no danger that Titanic will sink. The boat is unsinkable and nothing but inconvenience will be suf-
fered by the passengers.” —Phillip Franklin, White Star Line vice president, 1912.
8 See, for example, the Costa Concordia disaster: https://en.wikipedia.org/wiki/Costa_Concordia_disaster.
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Using circuit breakers

No amount of planning and optimization will guarantee that the services you imple-
ment or depend on abide by their latency bounds. We will talk more about the nature
of the things that can go wrong when discussing resilience, but even without knowing
the source of the failure, there are some useful techniques for dealing with services
that violate their bounds.

When users are momentarily overwhelming a service, then its response latency will
rise, and eventually it will start failing. Users will receive their responses with more
delay, which in turn will increase their own latency until they get close to their own
limits. In the image server example in section 2.1.2, you saw how adding an explicit
queue protected the client by rejecting requests that would take more than the accept-
able response time to service. This is useful when there is a short spike in demand for
the service. If the image database were to fail completely for several minutes, the
behavior would not be ideal. The queue would fill with a backlog of requests that,
after a short time, would be useless to process. A first step would be to cull the old
queue entries, but the queue would refill immediately with still more queries that
would take too long to process.

In order to stop this effect from propagating across the entire chain of user—service
relationships, users need to shield themselves from the overwhelmed service during
such time periods. The way to do this is well known in electrical engineering: install a
circuit breaker, as shown in figure 2.12.

The idea here is simple: when involving another service, monitor the time it takes
for the response to come back. If the time is consistently greater than the allowed
threshold this user has factored into its own latency budget for this particular service

Circuit breaker

Request

Service

Open Closed

Half open

Periodic sample

Fail fast

Figure 2.12 A circuit breaker in electrical engineering protects a circuit from being
destroyed by a current that is too high. The software equivalent does the same thing for
a service that would otherwise be overwhelmed by too many requests.
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call, then the circuit breaker trips; from then on, requests will take a different route of
processing that either fails fast or gives degraded service, just as in the case of over-
flowing the bounded queue in front of the service. The same should also happen if
the service replies with failures repeatedly, because then it is not worth the effort to
send requests.

This not only benefits the user by insulating it from the faulty service but also has the
effect of reducing the load on the struggling service, giving it some time to recover and
empty its queues. It would also be possible to monitor such occurrences and reinforce
the resources for the overwhelmed service in response to the increased load.

When the service has had some time to recuperate, the circuit breaker should snap
back into a half-closed state in which some requests are sent in order to test whether
the service is back in shape. If not, then the circuit breaker can trip again immedi-
ately; otherwise, it closes automatically and resumes normal operations. The Circuit
Breaker pattern is discussed in detail in chapter 12.

Supervision

In section 2.2, a simple function call returned a result synchronously:
val result = f(42)

In the context of a larger program, an invocation of f might be wrapped in an excep-
tion handler for reasonable error conditions, such as invalid input leading to a divide-
by-zero error. Implementation details can result in exceptions that are not related to
the input values. For example, a recursive implementation might lead to a stack over-
flow, or a distributed implementation might lead to networking errors. There is little
the user of the service can do in those cases:

try {
f(1)

} catch { Reasonable
case ex: java.lang.ArithmeticException => Int.MaxValue <— response

case ex: java.lang.StackOverflowError => ???

»
case ex: java.net.ConnectException => ??? Now what?

Responses—including validation errors—are communicated back to the user of a ser-
vice, whereas failures must be handled by the one who operates the service. The term
that describes this relationship in a computer system is supervision. The supervisor is
responsible for keeping the service alive and running.

Figure 2.13 depicts these two different flows of information. The service internally
handles everything it knows how to handle; it performs validation and processes
requests, but any exceptions it cannot handle are escalated to the supervisor. While
the service is in a broken state, it cannot process incoming requests. Imagine, for
example, a service that depends on a working database connection. When the connec-
tion breaks, the database driver will throw an exception. If you tried to handle this
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TFailure

Figure 2.13 Supervision means that normal
requests and responses (including negative ones
Request such as validation errors) flow separately from
failures: while the former are exchanged between
the user and the service, the latter travel from the
service to its supervisor.

Response

case directly within the service by attempting to establish a new connection, then that
logic would be mixed with all the normal business logic of this service. But, worse, this
service would need to think about the big picture as well. How many reconnection
attempts make sense? How long should it wait between attempts?

Handing those decisions off to a dedicated supervisor allows the separation of
concerns—business logic versus specialized fault handling—and factoring them out
into an external entity also enables the implementation of an overarching strategy for
several supervised services. The supervisor could, for example, monitor how fre-
quently failures occur on the primary database back-end system and fail over to a sec-
ondary database replica when appropriate. In order to do that, the supervisor must
have the power to start, stop, and restart the services it supervises: it is responsible for
their lifecycle.

The first system that directly supported this concept was Erlang/OTP, implement-
ing the Actor model (discussed in chapter 3). Patterns related to supervision are
described in chapter 12.

Losing strong consistency

One of the most famous theoretical results on distributed systems is Eric Brewer’s CAP
theorem,” which states that any networked shared-data system can have at most two of
three desirable properties:

= Consistency (C) equivalent to having a single up-to-date copy of the data
= High availability (A) of that data (for updates)
= Tolerance to network partitions (P)

This means that during a network partition, at least one of consistency and availability
must be sacrificed. If modifications continue during a partition, then inconsistencies
can occur. The only way to avoid that would be to not accept modifications and
thereby be unavailable.

As an example, consider two users editing a shared text document using a service
like Google Docs. Hopefully, the document is stored in at least two different locations

¢ S. Gilbert and N. Lynch, “Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant
Web Services,” ACM SIGACT News 33, no. 2 (2002), 51-59, http://dl.acm.org/ citation.cfm?id=564601.
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in order to survive a hardware failure of one of them, and both users randomly con-
nect to some replica to make their changes. Normally, the changes will propagate
between them, and each user will see the other’s edits; but if the network link between
the replicas breaks down while everything else keeps working, both users will continue
editing and see their own changes but not the changes made by the other. If both
replace the same word with different improvements, then the result will be that the
document is in an inconsistent state that needs to be repaired when the network link
starts working again. The alternative would be to detect the network failure and forbid
further changes until it is working again—leading to two unhappy users who not only
will be unable to make conflicting changes but also will also be prevented from work-
ing on completely unrelated parts of the document.

Traditional data stores are relational databases that provide a very high level of
consistency guarantees, and customers of database vendors are accustomed to that
mode of operation—not least because a lot of effort and research has gone into mak-
ing databases efficient in spite of having to provide ACID' transaction semantics. For
this reason, distributed systems have so far concentrated critical components in a way
that provides strong consistency.

In the example of two users editing a shared document, a corresponding strongly
consistent solution would mean that every change—every keypress—would need to be
confirmed by the central server before being displayed locally, because otherwise one
user’s screen could show a state that was inconsistent with what the other user saw.
This obviously does not work, because it would be irritating to have such high latency
while typing text—we are used to characters appearing instantly. This solution would
also be costly to scale up to millions of users, considering the high-availability setups
with log replication and the license fees for the big iron database.

Compelling as this use case may be, Reactive systems present a challenging archi-
tecture change: the principles of resilience, scalability, and responsiveness need to be
applied to all parts of the system in order to obtain the desired benefits, eliminating
the strong transactional guarantees on which traditional systems were built. Eventu-
ally, this change will have to occur, though—if not for the benefits outlined in the pre-
vious sections, then for physical reasons. The notion of ACID transactions aims at
defining a global order of transactions such that no observer can detect inconsisten-
cies. Taking a step back from the abstractions of programming into the physical world,
Einstein’s theory of relativity has the astonishing property that some events cannot be
ordered with respect to each other: if even a ray of light cannot travel from the loca-
tion of the first event to the location of the second before that event happens, then
the observed order of the two events depends on how fast an observer moves relative
to those locations.

Although we do not yet need to worry about computers traveling near the speed of
light with respect to each other, we do need to worry about the speed of light between

10" Atomicity, consistency, isolation, durability.
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even computers that are stationary. Events that cannot be connected by a ray of light
as just described cannot have a causal order between them. Limiting the interactions
between systems to proceed, at most, at the speed of light would be a solution to avoid
ambiguities, but this is becoming a painful restriction already in today’s processor
designs: agreeing on the current clock tick on both ends of a silicon chip is one of the
limiting factors when trying to increase the clock frequency.

ACID 2.0

Systems with an inherently distributed design are built on a different set of principles.
One such set is called BASE:

= Basically available
= Soft state (state needs to be actively maintained instead of persisting by default)
= Eventually consistent

The last point means that modifications to the data need time to travel between dis-
tributed replicas, and during this time it is possible for external observers to see data
that are inconsistent. The qualification “eventually” means the time window during
which inconsistency can be observed after a change is bounded; when the system does
not receive modifications any longer and enters a quiescent state, it will eventually
become fully consistent again.

In the example of editing a shared document, this means although you see your
own changes immediately, you might see the other’s changes with some delay; and if
conflicting changes are made, then the intermediate states seen by both users may be
different. But once the incoming streams of changes end, both views will eventually
settle into the same state for both users.

In a note!! written 12 years after the CAP conjecture, Eric Brewer remarks thus:

This [see above] expression of CAP served its purpose, which was to open the
minds of designers to a wider range of systems and tradeoffs; indeed, in the
past decade, a vast range of new systems has emerged, as well as much debate
on the relative merits of consistency and availability. The “2 of 3” formulation
was always misleading because it tended to oversimplify the tensions among
properties. Now such nuances matter. CAP prohibits only a tiny part of the
design space: perfect availability and consistency in the presence of partitions,
which are rare.

In the argument involving Einstein’s theory of relativity, the time window during
which events cannot be ordered is very short—the speed of light is rather fast for
everyday observations. In the same spirit, the inconsistency observed in eventually
consistent systems is also short-lived; the delay between changes being made by one
user and being visible to others is on the order of tens or maybe hundreds of millisec-
onds, which is good enough for collaborative document editing.

I Eric Brewer, “CAP Twelve Years Later: How the ‘Rules’ Have Changed,” InfoQ, May 30, 2012, https://www
.infoq.com/articles/ cap-twelve-years-later-how-the-rules-have-changed.
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BASE has served as an important step in evolving our understanding of which prop-
erties are useful and which are unattainable, but as a definitive term it is too imprecise.
Another proposal brought forward by Pat Helland at React Conf 2014 is ACID 2.0:

= Associative

= Commutative
= Idempotent

= Distributed

The last point just completes the familiar acronym, but the first three describe under-
lying mathematical principles that allow operations to be performed in a form that is
eventually consistent by definition: if every action is represented such that it can be
applied in batches (associative) and in any order (commutative) and such that apply-
ing it multiple times is not harmful (idempotent), then the end result does not depend
on which replica accepts the change and in which order the updates are disseminated
across the network—even resending is fine if reception is not yet acknowledged.

Other authors, such as Peter Bailis and Martin Kleppmann, are pushing the enve-
lope of how far we can extend consistency guarantees without running into the forbid-
den spot of the CAP theorem: with the help of tracking the causality relationship
between different updates, it seems possible to get very close to ACID semantics while
minimizing the sacrifice in terms of availability. It will be interesting to see where this
field of research will be in 10 years.

Accepting updates

Only during a network partition is it problematic to accept modifications on both dis-
connected sides, although even for this case solutions are emerging in the form of
conflictfree replicated data types (CRDTs). These have the property of merging
cleanly when the partition ends, regardless of the modifications that were done on
either side.

Google Docs employs a similar technique called operational transformation.'® In the
scenario in which replicas of a document get out of sync due to a network partition,
local changes are still accepted and stored as operations. When the network connec-
tion is back in working condition, the different chains of operations are merged by
bringing them into a linearized sequence. This is done by rebasing one chain on top
of the other so that instead of operating on the last synchronized state, the one chain
is transformed to operate on the state that results from applying the other chain
before it. This resolves conflicting changes in a deterministic way, leading to a consis-
tent document for both users after the partition has healed.

Data types with these nice properties come with certain restrictions in terms of
which operations they can support. There will naturally be problems that cannot be

'2 David Wang, Alex Mah, and Soren Lassen, “Google Wave Operational Transformation,” July 2010,
http://mng.bz/Bryb.
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stated using them, in which case you have no choice but to concentrate these data in
one location only and forgo distribution. But our intuition is that necessity will drive
the reduction of these issues by researching alternative models for the respective
problem domain, forming a compromise between the need to provide responsive ser-
vices that are always available and the business-level desire for strong consistency. One
example from the real world is automated teller machines (ATMs): bank accounts are
the traditional example of strong transactional reasoning, but the mechanical imple-
mentation of dispensing cash to account owners has been eventually consistent for a
long time.

When you go to an ATM to withdraw cash, you would be annoyed with your bank if
the ATM did not work, especially if you needed the money to buy that anniversary
present for your spouse. Network problems do occur frequently, and if the ATM
rejected customers during such periods, that would lead to lots of unhappy custom-
ers—we know that bad stories spread a lot easier than stories that say “It just worked as
it was supposed to.” The solution is to still offer service to the customer even if certain
features like overdraft protection cannot work at the time. You might, for example,
get less cash than you wanted while the machine cannot verify that your account has
sufficient funds, but you would still get some bills instead of a dire “Out of Service”
error. For the bank, this means your account may be overdrawn, but chances are that
most people who want to withdraw money have enough to cover the transaction. And
if the account has turned into a mini loan, there are established means to fix that:
society provides a judicial system to enforce those parts of the contract that the
machine could not, and in addition the bank charges fees and earns interest as long as
the account holder owes it money.

This example highlights that computer systems do not have to solve all the issues
around a business process in all cases, especially when the cost of doing so would be
prohibitive. It can also be seen as a system that falls back to an approximate solution
until its nominal functionality can be restored.

The need for Reactive design patterns

Many of the discussed solutions and most of the underlying problems are not new.
Decoupling the design of different components of a program has been the goal of
computer science research since its inception, and it has been part of the common lit-
erature since the famous 1994 Design Patterns book.'® As computers became more and
more ubiquitous in our daily lives, programming moved accordingly into the focus of
society and changed from an art practiced by academics and later by young “fanatics”
in their basements to a widely applied craft. The growth in sheer size of computer sys-
tems deployed over the past two decades led to the formalization of designs building
on top of the established best practices and widening the scope of what we consider

% Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Professional
(1994).
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charted territory. In 2003, Enterprise Integration Patterns'* covered message passing
between networked components, defining communication and message-handling pat-
terns—for example, implemented by the Apache Camel project. The next step was
called service-oriented architecture (SOA).

While reading this chapter, you will have recognized elements of earlier stages,
such as the focus on message passing and services. The question naturally arises, what
does this book add that has not already been described sufficiently elsewhere? Espe-
cially interesting is a comparison to the definition of SOA in Arnon Rotem-Gal-Oz’s
SOA Patterns (Manning, 2012):

DEFINITION: Service-oriented architecture (SOA) is an architectural style
for building systems based on interactions of loosely coupled, coarse-grained,
and autonomous components called services. Each service exposes processes
and behavior through contracts, which are composed of messages at
discoverable addresses called endpoints. A service’s behavior is governed by
policies that are external to the service itself. The contracts and messages are
used by external components called service consumers.

This definition focuses on the high-level architecture of an application, which is made
explicit by demanding that the service structure be coarse-grained. The reason for this
is that SOA approaches the topic from the perspective of business requirements and
abstract software design, which without doubt is very useful. But as we have argued,
technical reasons push the coarseness of services down to finer levels and demand
that abstractions like synchronous blocking network communication be replaced by
explicitly modeling the message-driven nature of the underlying system.

Managing complexity
Lifting the level of abstraction has proven to be the most effective measure for increas-
ing the productivity of programmers. Exposing more of the underlying details seems
like a step backward on this count, because abstraction is usually meant to hide com-
plications from view. This consideration neglects the fact that there are two kinds of
complexity:

= Essential complexity is the kind that is inherent in the problem domain.

= Incidental complexity is the kind that is introduced solely by the solution.

Coming back to the example of using a traditional database with transactions as the
backing store for a shared document editor, the ACID solution tries to hide the essential
complexity present in the domain of networked computer systems, introducing inci-
dental complexity by requiring the developer to try to work around the performance
and scalability issues that arise.

4 Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional (2003).
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A proper solution exposes all the essential complexity of the problem domain,
making it accessible to be tackled as is appropriate for the concrete use case, and
avoids burdening the user with incidental complexity that results from a mismatch
between the chosen abstraction and the underlying mechanics.

This means that as your understanding of the problem domain evolves—for exam-
ple, recognizing the need for distribution of computation at much finer granularity
than before—you need to keep reevaluating the existing abstractions in view of
whether they capture the essential complexity and how much incidental complexity
they add. The result will be an adaptation of solutions, sometimes representing a shift
in which properties you want to abstract over and which you want to expose. Reactive
service design is one such shift, which makes some patterns like synchronous, strongly
consistent service coupling obsolete. The corresponding loss in level of abstraction is
countered by defining new abstractions and patterns for solutions, akin to restacking
the building blocks on top of a realigned foundation.

The new foundation is message orientation, and in order to compose large-scale
applications on top of it, you need suitable tools to work with. The patterns discussed
in the third part of this book are a combination of well-worn, comfortable instruments
like the Circuit Breaker pattern as well as emerging patterns learned from wider usage
of the Actor model. But a pattern consists of more than a description of a prototypical
solution; more important, it is characterized by the problem it tries to solve. The main
contribution of this book is therefore to discuss Reactive design patterns in light of
the four tenets of the Reactive Manifesto.

Bringing programming models closer to the real world

Our final remark on the consequences of Reactive programming takes up the strands
that shone through in several places already. You have seen that the desire to create
self-contained pieces of software that deliver service to their users reliably and quickly
led to a design that builds on encapsulated, independently executed units of compu-
tation. The compartments between the bulkheads form private spaces for services that
communicate only using messages in a high-level messaging language.

These design constraints are familiar from the physical world and from our society:
humans also collaborate on larger tasks, perform individual tasks autonomously, com-
municate via high-level language, and so on. This allows us to visualize abstract soft-
ware concepts using well-known, customary images. We can tackle the architecture of
an application by asking, “How would you do it given a group of people?” Software
development is an extremely young discipline compared to the organization of labor
between humans over the past millennia, and by using the knowledge we have built
up, we have an easier time breaking down systems in ways that are compatible with the
nature of distributed, autonomous implementation.
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Of course, we should stay away from abuses of anthropomorphism: we are slowly
eliminating terminology like “master/slave” in recognition that not everybody takes
the technical context into account when interpreting them.'” But even responsible
use offers plentiful opportunities for spicing up possibly dull work a little: for exam-
ple, by calling a component responsible for writing logs to disk a Scribe. Implement-
ing that class will have the feel of creating a little robot that will do certain things you
tell it to and with which you can play a bit—others call that activity writing tests and
make a sour face while saying so. With Reactive programming, you can turn this
around and realize: it’s fun!

Summary

This chapter laid the foundation for the rest of the book, introducing the tenets of the
Reactive Manifesto:

= Responsive
= Resilient
= FElastic

= Message-driven

We have shown how the need to stay responsive in the face of component failure
defines resilience, and likewise how the desire to withstand surges in the incoming
load elucidates the meaning of scalability. Throughout this discussion, you have seen
the common theme of message orientation as an enabler for meeting the other three
challenges.

In the next chapter, we will introduce the tools of the trade: event loops, Futures
and Promises, Reactive Extensions, and the Actor model. All these make use of the
functional programming paradigm, which we will look at first.

15 Although terminology offers many interesting side notes: for example, a client is someone who obeys (from
the Latin cluere), whereas server derives from slave (from the Latin servus)—so a client-server relationship is
somewhat strange when interpreted literally.

An example of naming that can easily prompt out-of-context interpretation is a hypothetical method name

like harvest _dead_children(). In the interest of reducing nontechnical arguments about code, it is best
to avoid such terms.



3.1

Tools of the trade

The previous chapter explained why you need to be Reactive. Now we will turn our
attention to the question of how you can achieve this goal. In this chapter, you will
learn:

= The earliest Reactive approaches
= Important functional programming techniques
= Strengths and weaknesses of the existing Reactive tools and libraries

Early Reactive solutions

Over the past 30 years, people have designed many tools and paradigms to help
build Reactive applications. One of the oldest and most notable is the Erlang pro-
gramming language (www.erlang.org), created by Joe Armstrong and his team at
Ericsson in the mid-1980s. Erlang was the first language that brought Actors,
described later in this chapter, into mainstream popularity.

Armstrong and his team faced a daunting challenge: to build a language that
would support the creation of distributed applications that are nearly impervious to
failure. Over time, Erlang evolved in the Ericsson laboratory, culminating with its
use in the late 1990s to build the AXD 301 telephone switch, which reportedly
achieved “nine nines” of uptime—availability 99.9999999% of the time. Consider
exactly what that means. For a single application running on a single machine, that
would be roughly 3 seconds of downtime in 100 years!

100 years
* 365 days/year
* 24 hours/day
* 60 minutes/day
* 60 seconds/minute
= 3,153,600,000 seconds

39
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3,153,600,000 seconds
* 0.000000001 expected downtime
= 3.1536 seconds of downtime in 100 years

Of course, such long-lasting, near-perfect uptime is purely theoretical; modern com-
puters haven’t even been around 100 years. The study upon which this claim was
based was performed by British Telecom in 2002-2003 and involved 14 nodes and a
calculation based on 5 node-years of study.! Such approximations of downtime
depend as much on the hardware as on the application itself, because unreliable com-
puters put an upper limit on the availability of even the most resilient software. But
such theoretical uptime illustrates the extraordinary fault tolerance possible in a Reac-
tive application. Amazingly, no other language or platform has made claims compara-
ble to Erlang’s.

Erlang employs a dynamic type system and ubiquitous pattern matching to capture
the dynamic nature of Actor systems, and it copies message data for every message it
passes between Actors. The data has to be copied as shown in figure 3.1 because there
is no shared heap space between two Actor processes in the BEAM VM, the virtual
machine on which Erlang runs. Data sent between Actors must be copied into the
receiving Actor process’s heap prior to sending the message, to guarantee isolation of
Actors and to prevent concurrent access to the data.

Although these features provide additional safety, ensuring that any Erlang Actor
can receive any message and no data can be shared, they lower the application’s
potential throughput. On the other hand, garbage collection can be performed inde-
pendently for all process heaps? and thus completes more quickly and with predict-
able latency.

All this copying would not be necessary if the Actors all shared the same heap.
Then, two Actors could share a pointer to the same message. For this to work, though,
one critical condition must be met: the data cannot be allowed to change. Functional
programming addresses this challenge.

Sending process heap Receiving process heap
Data to Data
———————————————— - = .
send 1 1 received
I I
|
Msg. | Msg. data
Figure 3.1 In Erlang, data
Sending T Receiving in a sending Actor’s heap is
actor transferred via a message
to the heap of a receiving
Actor.

! Mats Cronqvist, “The Nine Nines,” 2012, www.erlang-factory.com/upload/presentations/243/ErlangFactory

SFBay2010-MatsCronqvist.pdf.

2 One exception are binary strings longer than 64 bytes, which are stored in a separate heap and managed by

reference counting.
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Functional programming

The concepts of functional programming have been around for a very long time, but
only recently have they gained favor in mainstream programming languages. Why did
functional programming disappear from the mainstream for so long, and why is its
popularity surging now?

The period between 1995 and 2008 was essentially the Dark Ages of functional pro-
gramming, as languages such as C, C++, and Java grew in usage, and the imperative,
object-oriented programming style became the most popular way to write applications
and solve problems. The advent of multiple cores opened up new opportunities for
parallelization, but imperative programming constructs with side effects can be diffi-
cult to reason about in such an environment. Imagine a C or C++ developer who
already has the burden of managing their own memory usage in a single-threaded
application. In a multicore world, they must now manage memory across multiple
threads while also trying to figure out who can access shared mutable memory at what
time. This makes a job that was hard to do and verify in the first place into something
that is daunting for even the most senior C/C++ developers.

This has led to a veritable Renaissance in functional programming. Many lan-
guages now include constructs from functional programming, because these better
support reasoning about problems in concurrent and parallelized applications. Code
written in a functional style makes it easier for developers to reason about what the
application is doing at any given point in time.

The core concepts of functional programming have been around for many years:
they were first defined in the lambda calculus by Alonzo Church in the 1930s.> The
essence of functional programming is the insight that programs can be written in
terms of pure mathematical functions: that is, functions that return the same value
every time they are passed the same inputs and that cause no side effects. Writing code
in functional programming is analogous to composing functions in mathematics.
With tools for functional programming now at our disposal, it is truly a wonderful
time to be a programmer again, because we can solve problems with languages that
support the functional, the side-effecting, or both paradigms simultaneously.

Next, we will examine some core concepts of functional programming that go
beyond pure function composition: immutability, referential transparency, side
effects, and functions as first-class citizens.

Immutability

A variable is said to have mutable state when it can refer to different values at different
times. In an otherwise purely functional program, mutable state is called impure and is
considered dangerous. Mutability is represented by any variable or field that is not sta-
ble or final and can be changed or updated while the application is running; some

¥ Alonzo Church, “The Calculi of Lambda-Conversion,” Annals of Mathematical Studies 6, Princeton University
Press (1941).



42

Mutable
because the
content of
the buffer is
not stable

CHAPTER 3 Tools of the trade

examples are shown in listing 3.1. When you use a final, immutable variable, you can
reason more easily about what value it will have at a given time because you know that
nothing can possibly change it after it is defined. This applies to data structures as well
as to simple variables: any action performed on an immutable data structure results in
the creation of a new data structure, which holds the result of the change. The origi-
nal data structure remains unchanged. Therefore, any other part of the program that
continues to use the original data structure does not see the change.

By using immutability throughout an application, you can limit the places where
mutation is possible to a very small section of code. So, the possibility of contention,
where multiple threads attempt to access the same resource at the same time and
some are forced to wait their turn, is limited in scope to a small region. Contention is
one of the biggest drains on performance in code that runs on multiple CPU cores; it
should be avoided where possible.

The astute reader will notice the tension between funneling all changes through a
single point and trying to avoid contention. The key to solving this apparent paradox
is that having all code that performs mutation within a small scope makes contention
easier to manage. With full oversight of the problem, you can tune the behavior: for
example, by dividing a complex state representation into several mutable variables
that can usually be updated independently—hence, without contention.

Listing 3.1 Unsafe, mutable message class, which may hide unexpected behavior

so the compiler can

public class Unsafe { C ar
enforce immutability.

private Date timestamp;
private final StringBuffer message;

import java.util.Date; Fields should be final

Mutable because the

public Unsafe(Date timestamp, StringBuffer message) { content of the buffer
this.timestamp = timestamp; is not stable
this.message = message;

}

public synchronized Date getTimestamp () {
return timestamp;
1

public synchronized void setTimestamp (Date timestamp) { <+
this.timestamp = timestamp;
}

Mutable because the timestamp can be

public StringBuffer getMessage() ({ changed via the setter. Synchronizing
return message; both the getter and setter adds

} thread safety but does nothing

} to relieve contention between

threads accessing the object.

It is better to enforce immutability using the compiler rather than convention. This
implies passing values to the constructor rather than calling setters, and using lan-
guage features such as final in Java and val in Scala. Sometimes that is not possible,
such as when an API requires an object to be created before all of its member values



Getters but
no setters

Functional programming 43

are known. In those situations, you may have to resort to initialization flags to prevent

values from being set more than once or after the object is already in use.

Immutable data structures like the one shown in listing 3.2 ensure that the values

returned by an object do not change. It does little good to ensure that the variable

holding a Date is not reassigned if its content can be changed. The problem is not

thread safety. The problem is that mutable state makes it far more difficult to reason

about what the code is doing. There are several alternatives:

The first choice is to use an intrinsically immutable data structure. Some lan-
guages provide extensive libraries of immutable collection implementations, or
you might incorporate a third-party library.

You can write a wrapper class to block access to the mutating methods. Ensure
that no references remain to the backing mutable data structure once it is ini-
tialized. They can inadvertently defeat the purpose of the wrapper.

Copy-on-read semantics creates and returns a complete copy of the data structure
every time it is read from the object. This ensures that readers do not have
access to the original object, but it can be expensive. As with immutable wrap-
pers, you must ensure that no outside references remain to the still-writable
data structure within the object.

Copy-on-write semantics creates and returns a complete copy of the data structure
whenever it is modified and ensures that users of the object cannot modify it
through references they received from accessor methods. This prevents callers
from changing the object’s underlying, mutable data structure, and it leaves
previously acquired reader references unchanged.

The data structure can block use of the mutators once the data structure is ini-
tialized. This typically requires adding a flag to mark the data structure as read-
only after it has been initialized.

Listing 3.2 Immutable message class that behaves predictably and is easier to reason about

import java.util.Date; All fields are final Itis good
) and contain stable practice to
public class Immutable { data structures. declare the
private final Date timestamp; parameters
private final String message; final, too.

public Immutable (final Date timestamp, final String message) {

}

this.timestamp = new Date(timestamp.getTime()) ;

this.message = message; Ensures that the
timestamp cannot
be changed by

public Date getTimestamp () other code

}

return new Date (timestamp.getTime()) ;

public String getMessage ()

H

}

return message;
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Java does not make everything immutable by default, but liberal use of the final key-
word is helpful. In Scala, case classes provide immutability by default as well as addi-
tional, very convenient features such as correct equality and hash-code functions:

Even with case classes,
you must take care that
the fields hold immutable
data structures—using
case class Message (timestamp: Date, message: String) q‘ltheDaufsseﬂxrstI

break this.

import java.util.Date

3.2.2 Referential transparency

An expression is said to be referentially transparent if replacing it with a single value (a
constant) has no impact on the execution of the program.* So, evaluating a referen-
tially transparent expression—that is, performing an operation on some data—has no
impact on that data, and no side effects can occur. For example, the act of adding,
removing, or updating a value in an immutable list results in a new list being created
with the changed values; any part of the program still observing the original list sees
no change.

Consider Java’s java.lang.StringBuffer class. If you call the reverse method on
a StringBuffer, you will get a reference to a StringBuffer with the values reversed.
But the original StringBuffer reference refers to the same instance and therefore
now also has changed its value:
final StringBuffer original = new StringBuffer (“foo”);

final StringBuffer reversed = myStringBuffer.reverse() ;
System.out.println(String.format (

"original '%s', new value '%s'",
original,
reversed)) ; <+—— Result: original 'oof', new value 'oof'

This is an example of referential opacity: the value of the expression myStringBuffer
.reverse () changes when it is evaluated. It cannot be replaced by its result without
altering the way the program executes. The java.lang.StringBuilder class has the
same problem.

Note, however, that a function call can be referentially transparent even if the
function modifies internal state, as long as the function call can be replaced with its
result without affecting the program’s output. For example, if an operation is likely to
be performed multiple times, internally caching the result the first time can speed up
execution without violating referential transparency. An example of this approach is
shown in the next listing.

4 http://en.wikipedia.org/wiki/Referential _transparency_(computer_science)
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Listing 3.3 Referential transparency: allowing substitution of precomputed values

public class Rooter { X
private final double value; MutaMeﬁerorcachng
private Double root = null; acomPUted value

public Rooter (double value)
this.value = value;
1

public double getvValue() ({
return value;
1

public double getRoot () {

if (root == null) {
root = Math.sgrt (value) ; .
} Mutability is never
observable outside
return root; .

Side effects

Side effects are actions that break the referential transparency of later method calls by
changing their environment such that the same inputs now lead to different results.
Examples are modifying some system property, writing log output to the console, and
sending data over a network. Purefunctions have no side effects. Some functional pro-
gramming languages such as Haskell enforce rules about where side effects can exist
and when they can take place—a great help when reasoning about the correctness of
code.

Side effects matter because they limit how an object can be used. Consider the fol-
lowing class.

Listing 3.4 Limiting usability with side effects

import java.io.Serializable;
public class SideEffecting implements Serializable, Cloneable
private int count;

public SideEffecting(int start) ({
this.count = start;
1

public int next() ({
this.count += Math.incrementExact (this.count) ;
return this.count;
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Every call to next () will return a different value. Consequently, the result of some-
thing like the example in listing 3.5 can give you a very unpleasant experience:

final int next = se.next();
if (logger.isDebugEnabled()) { Probabh|neant{o '
logger.debug ("Next is " ++ se.next ()); reference the variable!

}

return next;

Even worse, something like new SideEffecting(Integer.MAX VALUE - 2) will cause
the side effect after a few calls to become an ArithmeticException.

Sometimes side effects are more subtle. Suppose the object needs to be passed
remotely. If it is immutable and without side effects, it can be serialized and reconsti-
tuted on the remote system, which then will have its own identical and unchanging
copy. If there are side effects, the two copies will diverge from each other. This is espe-
cially problematic when the original system was not envisioned to have distributed
operations. You may blithely assume that updates are being applied to the one and
only instance of an object, without realizing the trouble that will cause when scalability
requirements lead to copies of the object being kept on multiple servers.

Functions as first-class citizens

In a language where functions are first-class citizens, a function is a value just like an
Integer or a String and can be passed as an argument to another function or
method. The idea of doing so is to make code more composable: a function that takes
a function as an argument can compose the calculation performed by its argument
with calculations of its own, as illustrated by the call to .map in the following snippet:

final List<Integer> numbers = Arrays.asList(l, 2, 3);
final List<Integer> numbersPlusOne =
numbers.stream()
.map (number -> number + 1)
.collect (Collectors.toList()) ;

Passes a function that
increments its argument by 1

Many languages that are otherwise not supportive of functional programming have
functions as first-class citizens, including JavaScript and Java 8. In the previous exam-
ple, the function passed as an argument is a lambda expression. It has no name and exists
only within the context of its call site. Languages that support functions as first-class cit-
izens also allow you to assign this function to a named variable as a function value and
then refer to it from wherever you see fit. In Python, you could do this like so:

>>> def addOne (x) :
return x + 1

>>> myFunction = addOne
>>> myFunction(3)
4
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Responsiveness to users

Beyond functional programming, to build Reactive applications you also need to use
tools that give you responsiveness. This is not responsive web design,’ as it is known in
the user-experience world, where a front end is said to be “responsive” if it resizes
itself appropriately for the user’s viewing device. Responsiveness in Reactive applica-
tions means being able to quickly respond to user requests in the face of failure that
can occur anywhere inside or outside the application. The performance trade-offs of
Reactive applications are defined by the axiom that you can choose any two of the fol-
lowing three characteristics:

= High throughput
= Low latency, but also smooth and not jittery

= Small footprint

These will all be defined further along in this section.

Prioritizing the three performance characteristics

When you make architecture choices for a Reactive application, you are in essence giv-
ing priority to two of those three characteristics and choosing to sacrifice the remain-
ing characteristic where necessary. This is not a law or theorem, but more of a guiding
principle that is likely to be true in most cases. To get a very fast application with
smooth, low latency, you typically have to give it more resources (footprint). An exam-
ple of this is a high-performance messaging library written in Java, known as the Disrup-
tor (http://Ilmax-exchange.github.io/disruptor). To get its tremendous throughput
and smooth latency, the Disruptor has to preallocate all the memory it will ever use for
its internal ring buffer, in order to prevent allocations at runtime that could lead to
stop-the-world garbage collections and compaction pauses in the Java virtual machine.
The Disruptor gains throughput by pinning itself to a specific execution core, thereby
avoiding the cost of context switches® between threads being swapped in and out on
that core. This is another aspect of application footprint: there is now one fewer exe-
cution core available for use by other threads on that computer.

The Storm framework (https://github.com/nathanmarz/storm), created by
Nathan Marz and released in 2011 to much acclaim, provides capabilities for distrib-
uted processing of streaming data. Storm was created at Marz’s startup, BackType,
which was purchased by Twitter and became the basis for its real-time analytics appli-
cations. But the implementation was not particularly fast, because it was built using
Clojure and pure functional programming constructs. When Marz released version
0.7 in 2012, he used the Disruptor to increase throughput by as much as three times,
at the cost of footprint. This trade-off matters to those who choose to deploy an appli-
cation that uses Storm, particularly in the cloud, where one core on the VM must be

5 http://en.wikipedia.org/wiki/Responsive_web_design
6 http://en.wikipedia.org/wiki/Context_switch
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devoted solely to the Disruptor to maintain its speed. Note that the number of cores
available to an application in a virtual environment is not an absolute value. As Doug
Lea,” the author of many concurrency libraries on the JVM, such as the ForkJoinPool
and CompletableFuture, has said, “Ask your hypervisor how much memory you have,
or how many cores you have. It’ll lie. Every time. It’s designed to lie. You paid them
money so it would lie.”® Developers have to take these variables into account when
considering footprint in a cloud deployment.

Some platforms have constraints that limit their ability to make these trade-offs.
For example, a mobile application typically cannot give up footprint to increase
throughput and make latency smoother, because a mobile platform typically has very
limited resources. Imagine the cost of pinning a core on a mobile phone, both in
terms of reduced resource availability for other applications and the phone’s operat-
ing system. A mobile phone has limited memory as well as constraints on power usage:
you don’t want to drain the battery so quickly that no one would want to use your
application. So, mobile applications typically attempt to minimize footprint while
increasing throughput at the expense of latency, because users are more willing to
accept latency on a mobile platform. Anyone who has used an application from a
phone has experienced slowness due to network issues or packet loss.

Existing support for Reactive design

Now that we have reviewed the basic concepts needed to understand and evaluate
tools and language constructs for implementing Reactive design, it is time to look at
the leading examples. Many languages have innovated in the area of dividing work
and making it asynchronous.

For each concept or implementation described in this section, we will provide an
evaluation of how well it meets the tenets of the Reactive Manifesto. Note that
although all are asynchronous and nonblocking in and of themselves, it is still up to
you to ensure that the code you write remains asynchronous and nonblocking as well,
in order to remain Reactive.

Green threads

Some languages do not include builtin constructs for running multiple threads
within the same operating system process. In these cases, it is still possible to imple-
ment asynchronous behavior via green threads: threads scheduled by the user process
rather than the operating system.’

Green threads can be very efficient but are restricted to a single physical machine.
It is impossible, without the aid of delimited portable continuations,'’ to share the

7 http://en.wikipedia.org/wiki/Doug_Lea

8 Doug Lea, “Engineering Concurrent Library Components” (talk, Emerging Technologies Conference, 2013),
http://chariotsolutions.com/screencast/ phillyetescreencast-7-dougleaengineering-concurrentlibrary-components.

9 http://en.wikipedia.org/wiki/Green_threads

10 http://en.wikipedia.org/wiki/Delimited_continuation
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processing of a thread across multiple physical machines. Delimited portable continu-
ations allow you to mark points in logic where the execution stack can be wrapped up
and exported either locally or to another machine. These continuations can then be
treated as functions. This is a powerful idea, implemented in a Scheme library called
Termite (https://code.google.com/p/termite). But green threads and continuations
do not provide for resilience, because there is currently no way to supervise their exe-
cution; they are therefore lacking with respect to fault tolerance.

Waldo et al. note'! that it is not a good idea to try to make logic that executes in a
distributed context appear to be local. This postulate applies to green threads as well.
If we take “local” to mean local to the thread, and “distributed/remote” to mean on
another thread and thus asynchronous, you would not want “distributed/remote” to
appear “local” because this would obscure the difference between synchronous and
asynchronous operations. It would be hard to tell which operations can block the pro-
gram’s progress and which cannot!

REACTIVE EVALUATION OF GREEN THREADS

Green threads are asynchronous and nonblocking, but they do not support message
passing. They do not scale up to use multiple cores on a machine by themselves,
although if the runtime supports it, it is possible to have more than one in a process,
or multiple processes can be run. They do not scale outward across nodes in a net-
work. They also do not provide any mechanisms for fault tolerance, so it is up to devel-
opers who use them to write their own constructs to handle any failure that may occur.

Event loops

When a language or platform does not support multiple threads in one process, you
can still get asynchronous behavior by making green threads that share an event loop.
This loop provides a mechanism for sharing a single execution thread among several
logical threads at the same time. The idea is that although only a single thread can
execute at a given moment, the application should not block on any operation and
should instead make each thread yield until such time as the external work it needs,
such as calling a data store, is completed. At that time, the application can invoke a
callback to perform a predefined behavior. This is very powerful: Node.js
(http://nodejs.org), for example, uses a single-threaded JavaScript runtime to per-
form considerably more work because it doesn’t have to wait for every operation to
complete before handling other work.

Event loops are most typically implemented with callbacks. This would be okay if
only a single callback could be referenced ata time, butas an application’s functionality
grows, this typically is not the case. The terms callback hell and pyramid of doomhave been
coined to represent the interwoven spaghetti code that often results from popular tools
like Node.js. Furthermore, event loops based on a single-threaded process are viable

! Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall: “A Note on Distributed Computing,” Sun Microsystems
Laboratories, 1994, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628.
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only for uses that are I/O-bound or when the use case is specific to handling input and
output. Trying to use an event loop for CPU-bound operations will defeat the advantage
of this approach.

Here is a simple example of a Node.js application. Note that running this server
and using Google’s Chrome browser to send requests to the address 127.0.0.1:8888
may result in a doubling of the counter value on each request. Chrome has a known

issue with sending an additional request for favicon. ico with every request:'?
var http = require('http'); Sets up the server, with a
var counter = 0; callback function applied to
http.createServer (function (req, res) ({ respond to each request

counter += 1;

res.writeHead (200, {'Content-Type': 'text/plain'}); Informs the user
res.end('Response: ' + counter + ' via callback\n'); where the server
}).listen(8888, '127.0.0.1'); is reachable

console.log('Server up on 127.0.0.1:8888, send requests!');

REACTIVE EVALUATION OF EVENT LOOPS

The suitability of an event loop for a Reactive application depends on the implemen-
tation. As deployed via Node.js in JavaScript, event loops are similar to green threads
in that they are asynchronous and nonblocking but do not support message passing.
They do not scale up to use multiple cores on a machine by themselves, although if
the runtime supports it, it is possible to have more than one in a process, or multiple
processes can be run. They do not scale outward across nodes in a network. They also
do not provide any mechanisms for fault tolerance, so it is up to developers to write
their own constructs to handle any failure that may occur.

But there are alternative implementations, such as Vert.x (http://vertx.io), which
runs on the JVM and has a feel similar to Node.js but supports multiple languages.
Vert.x is a compelling solution because it provides a distributed approach to the event-
loop model, using a distributed event bus to push messages between nodes. In a JVM
deployment, it does not need to use green threads because it can use a pool of threads
for multiple purposes. In this respect, Vert.x is asynchronous and nonblocking and
does support message passing. It also scales up to use multiple cores, as well as scales
out to use multiple nodes in a network. Vert.x does not have a supervision strategy for
fault tolerance, but it is an excellent alternative to an event loop, particularly because
it supports JavaScript just as Node.js does.

Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a mathematical abstraction of multiple
processes, or threads in a single process, that communicate via message passing.'? You

12 Chrome issue report: https://code.google.com/p/chromium/issues/detail?id=39402.
% C.A.R. Hoare, “Communicating Sequential Processes,” Communications of the ACM 21, no. 8 (1978): 666-677.
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can define work to be performed concurrently in separate processes or threads, which
then pass messages between them to share information.

What makes CSP unique is that the two processes or threads do not have to know
anything about one another, so they are nicely decoupled from the standpoint of
sender and receiver but still coupled with respect to the value being passed. Rather
than assuming that messages accumulate in queues until read, CSP uses rendezvous mes-
saging: for a message to be passed, the sender and receiver must reach a point where
the sender is ready to send and the receiver is ready to receive. Consequently, receipt
of a message always synchronizes both processes. This is fundamentally different from
Actors, which will be discussed in section 3.4.6. This also limits the two processes or
threads in how distributed they can be, depending on how CSP is implemented. For
example, CSP on the JVM as implemented by Clojure’s core.async library cannot be
distributed across multiple JVM instances, even on the same machine. Neither can
Go’s channels, also known as goroutines.

Because CSP is defined formally and mathematically, it is theoretically provable
whether a deadlock can or cannot occur inside of it, via a method called process analy-
sis. Being able to statically verify the correctness of concurrency logic is a powerful
idea. Note, however, that neither Clojure’s core.async nor Go’s channels have this
capability; but if it is practical to implement, it would be very useful.

Because no process or thread in a CSP-based application has to know about
another, there is a form of location transparency: to write the code for one process or
thread, you do not need to know about any other process or thread with which it will
communicate. But the most popular implementations of CSP to date do not support
communication between different nodes on a network, so they cannot support true
location transparency. They also have difficulties with fault tolerance, because failure
between two processes or threads cannot be managed easily. Instead, the logic in each
process or thread must have the ability to manage any failure that could occur when
communicating with the other side. Another potential downside is that nontrivial use
of CSP can be difficult to reason about, because every process/thread can potentially
interact with every other process/thread at each step.

Here is a simple example of two communicating processes in Go. Interestingly, a Go
function can create a channel and put values onto it as well as consume them, in effect
stashing values off to the side for use later. In this example, one function produces mes-
sages and puts them onto the channel, and a second function consumes them:
package main

Imports required
language libraries

import (
"fmt"
"time"

)

func main() { o
iterations := 10 Creates a communication

myChannel := make(chan int) channel for integer values
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Starts asynchronous execution

go producer (myChannel, iterations)
4 of producer and consumer

go consumer (myChannel, iterations)

time.Sleep (500 * time.Millisecond)

}

func producer (myChannel chan int, iterations int) {

for i := 1; i <= iterations; i++ {
fmt.Println("Sending: ", i)
myChannel <- i <+ Sends a message to the channel

}

func consumer (myChannel chan int, iterations int) {

for 1 := 1; i <= iterations; i++ {
recval := <-myChannel <+ Receives a message from the channel
fmt.Println("Received: ", recVal)

REACTIVE EVALUATION OF CSP

CSP is asynchronous and nonblocking and supports message passing in rendezvous
fashion. It scales up to use multiple cores on a machine, but none of the current
implementations scale outward across nodes. CSP does not provide any mechanisms
for fault tolerance, so it is up to developers to write their own constructs to handle any
failure that may occur.

Futures and promises

A Future is a read-only handle to a value or failure that may become available at some
point in time; a Promise is the corresponding write-once handle that allows the value
to be provided. Note that these definitions are not universally established; the termi-
nology chosen here is that used in C++, Java, and Scala.'* A function that returns its
result asynchronously constructs a Promise, sets the asynchronous processing in
motion, installs a completion callback that will eventually fulfill the Promise, and
returns the Future associated with the Promise to the caller. The caller can then attach
code to the Future, such as callbacks or transformations, to be executed when the
Future’s value is provided. Normally, a function that returns a Future does not expose
the underlying Promise to its caller.

All Future implementations provide a mechanism to turn a code block—for exam-
ple, a lambda expression—into a Future such that the code is dispatched to run on a
different thread, and its return value fulfills the Future’s Promise when it becomes
available. Futures therefore provide a simple way to make code asynchronous and
implement parallelism. Futures return either the result of their successful evaluation
or a representation of whatever error may have occurred during evaluation.

' See https://en.wikipedia.org/wiki/Futures_and_promises for an overview.
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Time
Customer request
Check cache
Not found! Cache
Check DB
Found! Dtata Figure 3.2 Sequential lookup:
store first, check the cache; then, if
Customer response the data are not found, retrieve
them from the database.

We turn now to an elegant example of Futures in practice: retrieval of data from mul-
tiple sources, where you prefer to access sources in parallel (simultaneously) rather
than sequentially. Imagine a service that needs to return customer information that
may be stored in a database somewhere far away but may also be cached in a store that
is closer for performance reasons. To retrieve the data, the program should check the
cache first to see whether it has the data needed to avoid an expensive database
lookup. If there is a cache miss—if the information is not found—the program must
look it up in the database.

In a sequential lookup shown in figure 3.2, the calling thread tries to retrieve the
data from the cache first. If the cache lookup fails, it then makes a call to the database
and returns its response—at the cost of two lookups that took place one after the other.
In a parallel lookup shown in figure 3.3, the calling thread sends requests to the cache
and the database simultaneously. If the cache responds with a found customer record
first, the response is sent back to the client immediately. When the database responds
later with the same record, it is ignored. But if the cache lookup fails, the calling
thread doesn’t have to make a subsequent database call, because that has already been
done. When the database responds, the response is sent to the client right away, theo-
retically sooner than if the client had made sequential calls.

Time
Customer request
Check DB
Check cache
1
1
X Cache DELE)
. store
Not found!
Figure 3.3 Parallel lookup: send
Found! requests to the cache and the

database simultaneously; the

Customer response
a result is the first value returned.
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The code for parallel lookup may look similar to the following listing, written in Java 8
to exploit its nonblocking CompletableFuture class.

Listing 3.5 Retrieving the result from the faster source

public class ParallelRetrievalExample {
final CacheRetriever cacheRetriever;
final DBRetriever dbRetriever;

ParallelRetrievalExample (CacheRetriever cacheRetriever,
DBRetriever dbRetriever) (
this.cacheRetriever = cacheRetriever;
this.dbRetriever = dbRetriever;

}

public Object retrieveCustomer (final long id) {
final CompletableFuture<Object> cacheFuture =
CompletableFuture.supplyAsync (() -> {
return cacheRetriever.getCustomer (id) ;

b
final CompletableFuture<Object> dbFuture =
CompletableFuture.supplyAsync (() -> {
return dbRetriever.getCustomer (id) ;

I3

return CompletableFuture.anyOf (
cacheFuture, dbFuture) ;

Performing these two operations sequentially would be expensive, and there is rarely an
opportunity to cache data beforehand without knowing what a client will ask for next.
Futures provide a handy way to perform both operations in parallel. Using Futures, you
can easily create two tasks to search the cache and the database virtually simultaneously,
letting whichever task completes first provide the response to the client.

Concurrent lookup thus marshals more resources (footprint) to reduce time from
request to response (latency). But concurrent lookups fail when neither the cache
lookup nor the database lookup returns soon enough to meet the nonfunctional
requirements of the client. So, to be Reactive, any Future implementation must have a
timeout mechanism to enable the service to communicate to a client that an opera-
tion is taking too long, and that the client will either need to make another attempt to
request the data or communicate upstream that there is a failure taking place within
the system. Without timeouts, the application cannot be responsive to a user about
what is happening and allow the user to decide what to do about it.

Futures are not nonblocking by definition and can vary by implementation. For
example, Java prior to version 8 had a Future implementation, but there was no way to
get the value out of the Future without blocking in some fashion. You could write a
loop that calls the isDone () method on one or more Future instances to see if they
were completed, or you could call the get () method, which would block until the
Future failed or completed successfully. Check that the Future implementation in the
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version of the language you are using is nonblocking; if it is not, consider alternatives
without this shortcoming.

Similar to event loops, Futures can be implemented with callbacks, allowing you to
predefine logic to be applied upon the completion of the Future. But, as with Nodejs,
callbacks can quickly turn ugly when more than one is applied at a time. Some lan-
guages that support functional programming allow you to map over a Future: this
defines behavior that occurs only when the Future successfully completes, but not if it
fails. By means of higher-order functions' such as map, these languages frequently
give you the ability to compose behavior that depends on successful completion
of many Futures into simple, elegant logic using syntactic sugar such as a for- or list-
comprehension.'® This is particularly useful when staging results from multiple
Futures into a single result, as in the next example.

Listing 3.6 Aggregating a single result from two futures in Scala

def getProductInventoryByPostalCode (

productSku: Long, The thread pool on
postalCode: String) : which the Futures
Future[ (Long, Map([Long, Longl)] = { will be executed
implicit val ec = ExecutionContext.fromExecutor (new ForkJoinPool ())
va:!. localInvent?ryFuture = Future ({ Creates both Futures
inventoryService.currentInventoryInWarehouse ( upﬁmnttostanthe
productSku, postalCode) queries in parallel

}

val overallInventoryFutureByWarehouse = Future {
inventoryService.currentInventoryOverallByWarehouse (

productSku)
} A for-comprehension in Scala:
for { eqllluvale;t tpl; nestedd function
local <- localInventoryFuture calls to flatMap and map

overall <- overalllInventoryFutureByWarehouse
} vield (local, overall) <—— Returns the combined result

}

Multiple Futures can “race” to fulfill a single Promise, where the first Future to com-
plete supplies the Promise’s value. Because a Promise’s value can be written only once,
you can be sure the Future that gets its value from that Promise will not change its
value even if other asynchronous tasks, completing later, try to rewrite it. Listing 3.6
demonstrates this technique with the .anyOf method of CompletableFuture: it
returns whichever Future finishes first. Notice that this Future’s value is not defined by
a code block within retrieveCustomer: a Promise can be fulfilled with a value pro-
vided by any event—even synchronously, if it is already available.

15 http://en.wikipedia.org/wiki/Higher-order_function
1% http://en.wikipedia.org/wiki/List_comprehension
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Some languages provide higher-level tools built on Futures and Promises, such as
first-class continuations and Dataflow. The beauty of these constructs is that they let
you write code that appears synchronous but is actually compiled into Futures. This is
possible because order can be maintained: each block of code can only be executed
after all code that it depends on has been evaluated. Despite the asynchronous nature
of Dataflow code, the logic is still deterministic (as long as it is free of side effects, as
explained in section 3.2.3). So, each time it is executed, it will behave the same way. If
an application were to enter a deadlock state in Dataflow code one time, it would have
to do so every time, because the evaluation order is always the same. An example of
this is the async-await construct in C# and Scala:

val resultFuture = async { Starts asynchronous retrieval
val localInventoryFuture = async {

inventoryService.currentInventoryInWarehouse (productSku, postalCode)

val overalllnventoryFutureByWarehouse = async {
inventoryService.currentInventoryOverallByWarehouse (productSku)

}

(await (localInventoryFuture), await (overallInventoryFutureByWarehouse)) <+
}

Suspends until both retrievals are done
and then provides a combined result

This code snippet shows an alternative way to implement the same functionality as the
for-comprehension syntax near the end of listing 3.6.

There is an emerging concept of a safe Future, where methods that can be executed
concurrently are annotated or marked in some way, merely giving the runtime the
option to optimize them for parallelization where no data is shared. This is a compel-
ling idea, but it is still subject to errors, such as when someone accidentally exposes
data to other methods in a method marked as safe. Also, it provides no oversight for
failure. Futures in general are a very narrow abstraction: they allow you to define a sin-
gle operation that will take place off-thread one time and needs to be treated as a sin-
gle unit of work. They do not handle resilience particularly well: you have to use Future
implementations that communicate what went wrong when failure occurs on their exe-
cution thread.

REACTIVE EVALUATION OF FUTURES AND PROMISES

Futures and Promises are asynchronous and nonblocking, but they do not support
message passing. They do scale up to use multiple cores on one machine. Current
implementations do not scale outward across nodes in a network. They do provide
mechanisms for fault tolerance when a single Future fails, and some implementations
aggregate failure across multiple Futures such that if one fails, all fail.
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Reactive Extensions

Reactive Extensions (Rx, https://rx.codeplex.com) is a library that originated in the
.NET world; it was originally devised and built by Erik Meijer and his team at Microsoft,
and it was ported to the JVM in a library called RxJava (http://github.com/ReactiveX
/RxJava).!” Recently this type of API has also seen widespread uptake among Java-
Script frameworks like React.js and Cycle.js. It combines two control-flow patterns:
Iterable and Observer.'® Both patterns involve somehow handling a potentially
unknown number of items or events. With an Iterable, you write a loop to get each
item individually and perform work on it—synchronously and always in control of
when the work is to occur. With an Observer, you register a callback to be invoked
each time a certain asynchronous event occurs.

The combined construct in Rx is called an Observable. With an Observable, you
write a looping construct that reacts to events that occur elsewhere. This is similar to
streaming semantics, where data are endlessly iterated over as they arrive for processing.
The library includes extensions for composing functions using standard operators
such as filter and accumulate, and even operators for performing time-sensitive func-
tions based on when events occur. Whereas Futures asynchronously return a single
value, Observables are abstractions over streams of data that can be handled in groups.
Observables can also tell a consumer when they are finished, much like an Iterator.

The design goal of Rx is not to cover all angles of a Reactive system with one
abstraction. It focuses only on passing data in a Reactive fashion through the internal
processing steps of a single component in a Reactive system. So, its failure-handling
model is restricted to propagating errors downstream (in the same direction as the
flow of data) and sending cancellation requests upstream, leaving the treatment of
failures to external components. RxJava contains the necessary utilities for back pres-
sure propagation across asynchronous boundaries.'? This enables it to distribute pro-
cessing across multiple threads, achieving vertical scalability by utilizing several CPU
cores. Failure handling and load management must be delegated to systems like Net-
flix’s Hystrix.

Observables are defined in relation to a source of some kind: a collection, a net-
work socket, and so on. A subscriber provides the handler functions that tell what to
do when a chunk of data is ready to be processed or when an error occurs. An RxJava
Observable to handle streams could look like this:

import rx.Observable;

public class RxJavaExample {
public void observe (Stringl[] strings) {
Observable.from(strings) .subscribe ((s) -> {
System.out.println("Received " + s);

17 See also ReactiveX (http://reactivex.io).
18 http://en.wikipedia.org/wiki/Observer_pattern
19" As defined by the Reactive Streams specification: see http://reactive-streams.org.
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A driver that produces the events consumed by that Observable might look like this:

package org.reactivedesignpatterns.chapter3.rxjava;

public class RxJavaExampleDriver {
final RxJavaExample rxJavaExample = new RxJavaExample() ;

public static void main(Stringl[] args) ({
String[] strings = { "a", "b", "c" };
rxJavaExample.observe (strings) ;

REACTIVE EVALUATION OF REACTIVE EXTENSIONS

Rx provides facilities to process streams of data in an asynchronous and nonblocking
fashion. The current implementations scale up to use multiple cores on a machine
but not outward across nodes in a network. Rx does not provide a mechanism for del-
egating failure handling, but it does include provisions to reliably tear down a failed
stream-processing pipeline via dedicated termination signals. RxJava in particular is a
useful building block for implementing components of a Reactive system.

The Actor model

The Actor model, first introduced by Carl Hewitt in 1973, is a model of concurrent
computation in which all communication occurs between entities called Actors, via
message passing on the sending side and mailbox queues on the receiving side.?’ The
Erlang programming language, one of the earliest to support Reactive application
development, uses Actors as its primary architectural construct. With the success of
the Akka toolkit on the JVM, Actors have had a surge in popularity of late.

INHERENTLY ASYNCHRONOUS

The definition of Reactive states that interactions should be message-driven, asynchro-
nous, and nonblocking. Actors meet all three of these criteria. Therefore, you do not
have to do anything extra to make program logic asynchronous besides creating mul-
tiple Actors and passing messages between them. You need only avoid using blocking
primitives for synchronization or communication within Actors, because these would
negate the benefits of the Actor model.

FAULT TOLERANCE VIA SUPERVISION

Most implementations of Actors support organization into supervisor hierarchies to
manage failure at varying levels of importance. When an exception occurs inside an
Actor, that Actor instance may be resumed, restarted, or stopped, even though the

20 Carl Hewitt, Peter Bishop, and Richard Steiger, “A Universal Modular ACTOR Formalism for Artificial Intel-
ligence,” Proceedings of the 3rd International Joint Conference on Artificial Intelligence (1973).
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failure occurred on a different asynchronous thread. Erlang’s Open Telecom Plat-
form (OTP, https://github.com/erlang/otp) defines a pattern for building supervi-
sion hierarchies for Actors, allowing a parent Actor to manage failure for all children
below it, possibly elevating some failures to an appropriate “grandparent” Actor.

This approach makes failure handling part of the application’s domain, just like
classes that represent application-specific data. When designing an Actor application,
you should take the time to think of all the ways the application could fail at all levels
of the supervisor hierarchy, and what each level should do about each kind of failure.
You should also consider how to handle failures that you cannot foresee, and allow the
application to respond to those as well. Even though you cannot anticipate the precise
cause of every failure, you can always safely assume that the component that failed is
now in an invalid state and needs to be discarded. This principle, called let it crash,
enables people to design thoughtful responses to failure scenarios beyond those they
can think of in advance. Without a supervision hierarchy, this kind of resilience would
not be feasible; at best you would have failure-handling code strewn about the logic of
the application. All of the aforementioned fault-tolerance patterns are described in
detail in chapter 12.

LOCATION TRANSPARENCY

Erlang and Akka provide proxies through which all Actor interactions must take
place: a PID in Erlang and an ActorRef in Akka. So, an individual Actor does not need
to know the physical location of the Actor to which it is sending a message—a feature
called location transparency, treated at length in chapter 5. This makes message-sending
code more declarative, because all the physical “how-to” details of how the message is
actually sent are dealt with behind the scenes. Location transparency enables you to
add even such sophisticated features as starting a new Actor and rerouting all mes-
sages to it if a receiving Actor goes down mid-conversation, without anyone needing to
alter the message-sending code.

A drawback of the Actor model is that producers and consumers of messages are
coupled to one another: the sender of a message must have a reference to the Actor
instance that it wants to send to. This reference is just as necessary as a recipient
address on a letter, without which the mail service would not know where to deliver it.
An Actor reference is much like a postal address in that it only tells where to transport
messages, not what the recipient looks like or what state they are in. A benefit of this
approach is that each Actor is somewhat decoupled from failures occurring in
another, because Actors have no access to each other except through these refer-
ences. A supervising Actor responsible for handling failures is also protected by this
isolating layer of message passing.

NO CONCURRENCY WITHIN ONE ACTOR

Because each Actor contains only a single thread of execution within itself, and no
thread can call into an Actor directly, there is no concurrency within an Actor
instance unless you intentionally introduce it by other means. Therefore, Actors can
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encapsulate mutable state and not worry about requiring locks to limit simultaneous
access to variables.

This greatly simplifies the logic inside Actors, but it does come at some cost. Actors
can be implemented in two ways: as heavyweight, thread-based Actors, each with a
dedicated thread assigned to it; or as lightweight, event-driven Actors that share a
thread pool and therefore consume less memory. Regardless of the implementation,
some concept of fairness has to be introduced, where you define how many messages
an Actor will handle before yielding the CPU. This must be done to prevent starvation:
no one Actor should use a thread and/or CPU core so long that other Actors cannot
do their own work. Even if a thread-based Actor is not sharing its thread with other
Actors, it is most likely sharing execution cores at the hardware level.

DIFFERENCES BETWEEN ERLANG AND AKKA

Given the two prevalent Actor libraries in existence, Erlang and Akka, how do you
choose which is more appropriate for a given application? This boils down to the
application’s requirements and the platforms on which implementations of Erlang
and Akka are available.

In the case of Erlang, the BEAM VM allows each Actor to be implemented as a dis-
tinct and isolated process. This is a fundamental reason for the remarkable fault toler-
ance of Erlang applications.

Erlang Actors use a pattern called Selective Receive, where an Actor receives a mes-
sage and determines whether it is able to handle that message at that time. If the
Actor cannot handle the message right then, it puts the message aside for the time
being and proceeds to the next message. This continues until the Actor receives a
message that its current receive block can handle, at which time it processes that mes-
sage and then attempts to retry all messages that were put aside. This is, in effect, a
memory leak, because if those messages are never handled, they continue to be set
aside and reviewed after every successfully handled message. Fortunately, because the
processes in the BEAM VM are isolated, a single Actor’s process can fail for exceeding
its available memory without bringing down the entire virtual machine.

On the JVM, there is no such luxury. An exact port of Erlang and OTP on the JVM
with Selective Receive would be a memory leak that would eventually, given enough
time, take down the entire JVM with an OutOfMemoryError, because all Actors share
the same heap. For this reason, Akka Actors have the ability to stash messages on
demand, not automatically. They also provide programmatic means to unstash and
replay those messages at leisure.

Listing 3.7 shows an example of an Akka Actor application with fault tolerance
built in. A parent Actor supervises two child Actors, which send a counter value back
and forth to each other, incrementing it each time. When a child receives a value
exceeding 1,000, it throws a CounterTooLargeException, causing the supervising par-
ent to restart the children, thus resetting their counters.
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Listing 3.7 An Actor example in Akka

package org.reactivedesignpatterns.chapter3.actor

import akka.actor.{Actor, ActorLogging, Props, ActorSystem, OneForOneStrategy}
import akka.actor.SupervisorStrategy.Restart
import akka.event.LoggingReceive

case object Start
case class CounterMessage (counterValue: Int)
case class CounterToolLargeException (

message: String) extends Exception (message)

class SupervisorActor extends Actor with ActorLogging {
override val supervisorStrategy = OneForOneStrategy () {
case _: CounterTooLargeException => Restart

}

val actor2 = context.actorOf (
Props [SecondActor], "second-actor")
val actorl = context.actorOf (
Props (new FirstActor (actor2)),
"first-actor")

def receive = {
case Start => actorl ! Start

class AbstractCounterActor extends Actor with ActorLogging {
var counterValue = 0

def receive = {
case  =>

}

def counterReceive: Receive = LoggingReceive {
case CounterMessage (i) if i <= 1000 =>
counterValue = 1
log.info(s"Counter value: S$counterValue")
sender ! CounterMessage (countervValue + 1)
case CounterMessage (i) =>
throw new CounterTooLargeException (
"Exceeded max value of counter!")

}

override def postRestart (reason: Throwable) = {
context.parent ! Start
}

}

class FirstActor (secondActor: ActorRef) extends
AbstractCounterActor {
override def receive = LoggingReceive {
case Start =>
context .become (counterReceive)
log.info ("Starting counter passing.")
secondActor ! CounterMessage (counterValue + 1)
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class SecondActor () extends AbstractCounterActor
override def receive = counterReceive

}

object Example extends App {
val system = ActorSystem("counter-supervision-example")
val supervisor = system.actorOf (Props [SupervisorActor])
supervisor ! Start

}

COMBINING ACTORS WITH OTHER CONSTRUCTS

The location transparency and supervision features of Actors make them a suitable
choice to build the distributed foundation of a Reactive application. But within the
context of a larger application, local orchestration often does not require the location
transparency, supervision, and resiliency of the complete Actor system. In those cases,
you will typically combine Actors with more lightweight Reactive constructs such as
Futures or Observables, depending on the API offered by libraries or other parts of
the system. Those choices sacrifice the full Actor characteristics in exchange for lower
memory cost and invocation overhead.

In those cases, is it important to remember the differences. Actors are explicit
about their message passing. Spawning and composing Futures from within an Actor
may lure you into accessing or modifying the Actor’s state from within a Future’s exe-
cution context. That breaks the single-threaded model and leads to concurrency bugs
that can be difficult to detect. Even when the state is carefully kept separate, you will
need to think about which thread pool executes the Futures’ callbacks or the Observ-
ables’ combinators.

REACTIVE EVALUATION OF ACTORS

Actors are asynchronous and nonblocking, and support message passing. They scale
up to use multiple cores on one machine, and they scale outward across nodes in both
the Erlang and Akka implementations. They provide supervision mechanisms, as well,
in support of fault tolerance. They meet all the requirements for building Reactive
applications. This does not mean Actors should be used for every purpose when build-
ing an application, but they can easily be used as a backbone, providing architectural
support to services that use other Reactive technologies.

Summary

We have now reviewed the essential concepts and constructs required to build Reac-
tive applications, providing fault tolerance and scalability to help you be responsive to
your users. In the following chapters, we will delve into the Reactive philosophy and
discuss how these and other concepts relate to it. At this point, you should have a clear
understanding of the following:

= The costs of building an application that is not Reactive
= What functional programming is and how it relates to Reactive applications
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The trade-offs involved in choosing between high throughput, low/smooth
latency, and small footprint
Pros and cons of all application toolkits that support the Reactive model

How the Actor model simultaneously addresses both fault tolerance and scalability






Part 2

The philosophy

mm a nutshell

art 1 took a comprehensive look at what it means for a system to be Reactive.
You saw how the requirement to always react to user input entails resilience and
scalability in order to retain responsiveness even during failures and varying load
conditions. Throughout our exploration of these desirable properties, you
encountered the need for the underlying implementation to be message-driven.

Part 2 complements the description of the four Reactive traits: it presents a
set of building blocks from which a Reactive architecture can be constructed.
Where part 1 described what we want to achieve and why, this part focuses on
how to do it. The guiding principles developed here, together with the tools of
the trade introduced in chapter 3, form the foundation on which the patterns in
part 3 are built.

We decided to present the material in a contiguous, cohesive fashion so that
it can serve as a compact reference when you are gauging the design of your own
patterns that you develop as you build Reactive applications. As a 360-degree
view of a fully reactive architecture, this part covers a lot of ground. You may
want to read chapter 4 and then skim the rest of this part, returning to it after
you have studied the corresponding patterns in part 3 of this book.

In this part, you will learn about the following:

= Enabling encapsulation and isolation with explicit asynchronous message
passing

= Improving compositionality and adding horizontal scalability with loca-
tion transparency
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= Structuring your system in hierarchical modules following divide et regna’

= How this hierarchy allows principled failure handling

= Achieving sufficiently consistent program semantics in a distributed system
= Avoiding nondeterminism where possible and adding it where necessary

= Guiding application design based on the topology of its message flows

1

Latin: literal translation is “divide and reign;” commonly translated “divide and conquer.”
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Message passing

The fundamental notion on which message passing is built is that of an event: the
fact that a certain condition has occurred (the event) is bundled together with con-
textual information—like who did what when and where—and is signaled by the
producer as a message. Interested parties are informed by the producer using a com-
mon transport mechanism and consume the message.

In this chapter, we will discuss in detail the main aspects of message passing:

= The difference between focusing on messages or events

= Whether to do it synchronously or asynchronously

= How messages can be transmitted without overwhelming the recipient and
with varying degrees of reliability

You will also see how message passing enables vertical scalability. Finally, we will dis-
cuss the correspondence between events and messages—or how to model one in
terms of the other.

Messages

In the real world, when you mail a letter to someone, you do not expect the con-
tents of the letter to change after it is sent. You expect the letter that arrives to be
the same as the one that was sent, and after it arrives you do not expect it to change
into a different letter. This is true regardless of whether the letter is sent around the
world and takes days or weeks to arrive, or is sent across town, or even is handed to
the recipient in person. Immutability is important.

In the first part of chapter 3, we touched on Erlang and an early implementa-
tion of the Actor model. In that model, Actors communicate by sending messages to
each other. Those messages are between processes, but that doesn’t always have to
be the case. Messages may be sent to other computers, to other processes in the
same computer, or even within the same process. You have to ensure that a message

67
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can be serialized for transmission, unless you know for sure that it will never leave the
current process. Ideally, you should never make that assumption. Message passing
often provides an excellent boundary to scale an application horizontally by moving
the receiver to a different process.

You can conceive of a simple method call as consisting of two messages: a message
containing all the input parameters and a return message containing the result. This
may seem a bit extreme, but languages going back more than three decades to
Smalltalk-80 have demonstrated that it is a useful approach.? If there is no return mes-
sage, the language may refer to it as a procedure or perhaps say that the method
returns a void value.

Vertical scalability

Imagine a busy post office in Manhattan back when computers and machines were not
yet capable of sorting letters. Multiple clerks might sort letters in parallel, speeding up
the process as shown in figure 4.1. The same idea applies to Reactive applications wher-
ever the order of requests is not crucial (see chapter 14 for specifics).

Figure 4.1 Two clerks sorting mail in parallel at a post office

? https://en.wikipedia.org/wiki/Smalltalk#Messages
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Imagine a piece of code that performs an expensive calculation (prime factorization,
graph search, XML transformation, or the like). If this code is accessible only by syn-
chronous method calls, the onus is on the caller to provide for parallel execution in
order to benefit from multiple CPUs—say, by using Futures to dispatch the method
calls onto a thread pool. One problem with this is that only the implementer of the
called code knows if it can be run in parallel without concurrency issues. A typical
problem occurs when the calculation stores and reuses auxiliary data structures within
its enclosing class or object without proper internal synchronization.

Message passing solves this problem by decoupling sender and receiver. The
implementation of the calculation can distribute incoming messages across several
execution units without the sender needing to know.

The beauty of this approach is that the semantics of message passing do not
depend on how a receiver will process a message. Scaling a computation vertically on
dozens of processor cores can be realized transparently, hidden from the calling code
as an implementation detail or a configuration option.

Event-based vs. message-based

There are two models for connecting data consumers with data producers: event-based
and message-based. Event-based systems provide a way to attach responses to specific
events. The system then becomes responsible for executing the correct response to an
event whenever that event occurs. Event-based systems are typically organized around
an event loop. Whenever something happens, the corresponding event is appended
to a queue. The event loop continually pulls events from this queue and executes the
callbacks that have been attached to them. Each callback is typically a small, anony-
mous procedure that responds to a specific event such as a mouse click. It may gener-
ate new events, which are then also appended to the queue and processed when their
turn comes. This model is employed by single-threaded runtimes like Node.js and by
the GUI toolkits for most graphical operating systems.

In contrast, message-based systems provide a way to send messages to specific
recipients. The anonymous callback is replaced by an active recipient that consumes
messages received from potentially anonymous producers. Whereas in an event-based
system, event producers are addressable so that callbacks can be registered with them,
in a message-based system the consumers are addressable so they can be given respon-
sibility for processing certain messages. Neither the message producer nor the messag-
ing system need concern itself with the correct response to a message; the current
configuration of consumers determines that. For example, when some part of a sys-
tem produces a log event, it does not worry about whether log events are being con-
sumed by the network, a database, or the file system, or whether log files are rotated
every 6 or 24 hours. The logger, which receives the log event, is responsible for doing
the right thing with it.
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Making the consumer responsible for processing its own incoming messages has
several advantages:

= It allows processing to proceed sequentially for individual consumers, enabling
stateful processing without the need for synchronization. This translates well at
the machine level because consumers will aggregate incoming events and pro-
cess them in one go, a strategy for which current hardware is highly optimized.

= Sequential processing enables the response to an event to depend on the cur-
rent state of the consumer. So, previous events can have an influence on the
consumer’s behavior. A callback-based scheme, in contrast, requires the con-
sumer to decide what its response will be when it subscribes to the event, not
when the event occurs.

= Consumers can choose to drop events or short-circuit processing during system
overload. More generally, explicit queueing allows the consumer to control the
flow of messages. We will explain more about flow control in section 4.5.

= Last but not least, it matches how humans work in that we also process requests
from our coworkers sequentially.

The last point may be surprising to you, but we find familiar mental images helpful for
visualizing how a component behaves. Take a moment to imagine an old-fashioned
post office, as shown in figure 4.2, where the clerk sorts letters from an incoming pile
into different boxes for delivery. The clerk picks up an envelope, inspects the address
label, and makes a decision. After throwing the letter into the right box, the clerk
turns back to the pile of unsorted mail and either picks up the next letter or notices
that the time is already past noon and takes a lunch break. With this picture in mind,
you already have an intuitive understanding of a message router. Now you only need
to dump that into code. This task is a lot easier than it would have been before this lit-
tle mental exercise.

The similarity between message passing and human interaction goes beyond
sequential processes. Instead of directly reading (and writing) each others’ thoughts,
we exchange messages: we talk, we write notes, we observe facial expressions, and so
on. We express the same principle in software design by forming encapsulated objects
that interact by passing messages. These objects are not the ones you know from lan-
guages like Java, C#, or C++, because communication in those languages is synchro-
nous and the receiver has no say in whether or when to handle the request. In the
anthropomorphic view, that corresponds to your boss calling you on the telephone
and insisting that you find out the answer to a question on the spot. We all know that
this kind of call should be the exception rather than the rule, lest no work get done.
We prefer to answer, “Yes, I will get back to you when I have the result”; or, even better,
the boss should send an email instead of making a disruptive telephone call, especially
if finding the answer may take some time. The “I will get back to you” approach corre-
sponds to a method that returns a Future. Sending email is equivalent to explicit mes-
sage passing.
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4) Check for lunch break

2) Determine
destination

1) Take envelope

3) File into drawers

Figure 4.2 A clerk in the back room of a post office sorts mail from an incoming pile into
addressee boxes.

Now that we have established that message passing is a useful abstraction, we need to
address two fundamental problems that arise while handling messages, whether in a
postal service or in a computer:

= Sometimes we must be able to guarantee the delivery of a certain very import-
ant letter.

= If messages are sent faster than they can be delivered, they will pile up some-
where, and eventually either the system will collapse or mail will be lost.

We will look at the issue of delivery guarantees later in this chapter. Next, we will take
a peek at how Reactive systems control the flow of messages to ensure that requests
can be handled in a timely fashion and without overwhelming the receiver.

Synchronous vs. asynchronous
The communication from producer to consumer can be realized in two ways:
= In synchronous communication, both parties need to be ready to communicate
at the same time.

= In asynchronous communication, the sender can send whether the recipient is
ready or not.

Figure 4.3 illustrates synchronous message passing at a post office. A customer, Jill, has
run out of postage stamps, so she needs to ask the clerk, James, for assistance. Luckily,
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i

Figure 4.3 A message that a customer is seeking assistance is passed to the clerk using a bell.

there is no queue in front of the counter, but James is nowhere to be seen. He is some-
where in the back, stowing away a parcel that he just accepted from the previous cus-
tomer. While James works, Jill is stuck at the counter waiting for him. She cannot go to
work or shop for groceries or do whatever else she wants to do next. If she waits too
long, she will give up on mailing the letter for now and try again later, perhaps at a dif-
ferent post office.

In real life, we deal gracefully with situations where a receiver is unavailable for too
long. In programming, the corresponding timeouts and their proper handling are
often considered only as an afterthought.

In contrast, asynchronous message passing means that Jill posts the letter by plac-
ing it in the mailbox. She can then immediately be on her way to her next task or
appointment. The clerk will empty the mailbox some time later and sort the letters
into their correct outboxes. This is much better for everyone involved: Jill does not
need to wait for the clerk to have time for her, and the clerk gets to do things in
batches, which is a much more efficient use of his time. Hence, we prefer this mode of
operation whenever we have a choice.

When there are multiple recipients, the superiority of asynchronous message pass-
ing is even clearer. It would be very inefficient to wait until all the recipients of a mes-
sage are ready to communicate at the same time, or even to pass the message
synchronously to one recipient at a time. In the human metaphor, the former would
mean the producer would have to arrange a full team meeting and notify everybody at
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the same time; the latter would mean walking around, patiently waiting at each recipi-
ent’s desk until they’re available. It would be far preferable to send an asynchronous
message instead—a letter in the old days, probably an email today. So, for conve-
nience, when we say message passing we will always mean asynchronous communication
between a producer and any number of consumers using messages.

A personal anecdote

The Actor toolkit Akka was built to express message passing from the very beginning;
this is what the Actor model is all about. But before version 2.0, this principle was
not pervasive throughout Akka. It was only present at the surface, in the user-level
API. Under the covers, we used locks for synchronization and called synchronously
into the supervisor’'s strategy when a supervised Actor failed. Consequently, remote
supervision was not possible with this architecture. In fact, everything concerning
remote Actor interactions was a little quirky and difficult to implement. Users began
to notice that the creation of an Actor was executed synchronously on the initiator’s
thread, leading to a recommendation to refrain from performing time-consuming
tasks in an Actor’s constructor and send an initialization message instead.

When the list of these and similar issues grew too long, we sat down and redesigned
the entire internal architecture of Akka to be based purely on asynchronous message
passing. Every feature that was not expressible under this rule was removed, and the
inner workings were made fully nonblocking. As a result, all the pieces of the puzzle
clicked into place: with the removal of tight coupling between the individual moving
parts, we were able to implement supervision, location transparency, and extreme
scalability at an affordable engineering price. The only downside is that certain parts—
for example, propagating failure up a supervisor hierarchy—do not tolerate message
loss, which now requires more effort to implement for remote communication.

To put this another way, asynchronous message passing means the recipient will even-
tually learn about a new incoming message and then consume it as soon as appropri-
ate. There are two ways in which the recipient can be informed: it can register a
callback describing what should happen in case of a certain event, or it can receive the
message in a mailbox (also called a queue) and decide on a case-by-case basis what to
do with it.

Flow control

Flow control is the process of adjusting the transmission rate of a stream of messages to
ensure that the receiver is not overwhelmed. Whenever this process informs the
sender that it must slow down, the sender is said to experience back pressure.

Direct method invocations, such as are common in languages from the C family, by
their nature include a specific kind of flow control: the sender of a request is blocked
by the receiver until processing is finished. When multiple senders compete for a
receiver’s resources, processing is commonly serialized through some form of syn-
chronization like locks or semaphores, which additionally blocks each sender until
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previous senders’ messages have been serviced. This implicit back pressure may sound
convenient at first, but as systems grow and nonfunctional requirements become
more important, it turns into an impediment. Instead of implementing the business
logic, you find yourself debugging performance bottlenecks.

Message passing gives you a wider range of options for flow control because it
includes the notion of queueing. For example, as discussed in chapter 2, if you use a
bounded queue, you have options for how to respond when the queue is full: you can
drop the newest message, the oldest message, or all the messages, according to what
best suits the requirements. A case where you might drop all messages would be a real-
time system aimed at displaying the latest data. You might include a small buffer to
smooth out processing or latency jitter, but moving new messages through the queue
quickly is more important than processing backlogged messages. Because the consum-
ing process reads from the message queue, it can make whatever decision is appropri-
ate when it finds itself backlogged.

Another option is that you can sort incoming messages into multiple queues based
on priorities and dequeue them according to specific bandwidth allocations. You can
also generate an immediate negative reply to a sender when dropping messages, if
desired. We will discuss these and other possibilities in chapter 15.

Two basic flow-control schemes are depicted in figure 4.4: the left clerk tries to
deliver sacks full of letters to the right clerk, who sorts them at a table. In negative
acknowledgment (NACK), the right clerk rejects a new delivery when the table is full. In
positive acknowledgment (ACK), the left clerk waits to be informed by the right clerk that
the right clerk has run out of letters to sort. There are many variations on this scheme,
some of which are presented in chapter 15. The subject lends itself well to human
metaphors like the one given here; feel free to let your mind roam and discover some
of them in everyday life.

In essence, message passing unbundles the implied flow control from common
object-oriented programming languages and allows customized solutions. This choice
does not come without a cost, of course: at the least, you need to think about which
flow-control semantics you want, and, hence, you must choose the granularity at
which to apply message passing and below which direct method calls and object-
oriented composition are preferable. To illustrate, imagine a service-oriented archi-
tecture with asynchronous interfaces. The services themselves might be implemented
in traditional synchronous style and communicate among each other via message
passing. When refactoring one of the service implementations, you might find it
appropriate to apply more fine-grained flow control within it, thus lowering the gran-
ularity level. This choice can be made differently depending on the service’s require-
ments as well as how the responsible development team likes to work.

With a basic understanding of how to avoid overloading a message-delivery system,
we can now turn our attention to the issue of how to ensure delivery of certain import-
ant messages.
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Delivery guarantees

Despite every postal clerk’s best efforts, sometimes a letter gets lost. The probability
may be low, but still it happens—several times per year. What happens then? The let-
ter might have contained birthday wishes, in which case it will hopefully be discovered
by the sender and receiver when they meet for the next time. Or it might have been
an invoice, in which case it will not be paid, and a reminder will be sent. The import-
ant theme to note here is that humans normally follow up on interactions, allowing
the detection of message loss. In some cases, there are unpleasant consequences when
a message is lost, but life goes on and we do not stop our entire society because one
letter was not delivered. In this section, we will show you how Reactive applications
work the same way, but we will start at the opposite end: with synchronous systems.

When we write down a method call, we can be pretty certain that it will be exe-
cuted when the program reaches the corresponding line; we are not used to losses
between lines. But strictly speaking, we need to take into account the possibility that
the process will terminate or the machine will die; or it could overflow the call stack
or otherwise raise a fatal signal. As you saw earlier, it is not difficult to think of a
method call as a message sent to an object, and with this formulation we could say
that even in a synchronous system, we have to address the possibility that a message—
a method invocation—can get lost. We could thus take the extreme standpoint that
there can never be an unbreakable guarantee that a request will be processed or
result in a response.

Very few people, however, would deem such a stance constructive, because we rea-
sonably accept limitations and exceptions to rules. We apply common sense and call
those who don’t pedantic. For example, human interaction usually proceeds under
the implicit assumption that neither party dies. Instead of dwelling on the rare cases,
we concern ourselves more with managing our inherent unreliability, making sure
communications were received, and reminding colleagues of important work items or
deadlines. But when transforming a process into a computer program, we expect it to
be completely reliable: to perform its function without fail. It is our nature to loathe
the hassle of countering irregularities, and we turn to machines to be rid of it. The sad
fact is that the machines we build may be faster and more reliable, but they are not
perfect, and we must therefore continue to worry about unforeseen failures.

Everyday life again provides a good model to borrow from. Whenever one person
requests a service from another, they have to deal with the possibility that there will be
no reply. The other person may be busy, or the request or reply may get lost along the
way—for example, if a letter (or email) is lost. In these cases, the person who made
the request needs to try again until they get a response or the request becomes irrele-
vant, as illustrated in figure 4.5. Analogous activity in the realm of computer program-
ming is obvious: a message sent from one object to another may be lost, or the
receiving object may be unable to handle the request because something it depends
on is currently unavailable—the disk may be full or a database may be down—and so
the sending object will need to either retry until the request is successful or give up.
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Did you talk to
Fred about the
next release?

Figure 4.5 The Retry pattern in daily life

With synchronous method calls, there is usually no way to recover from a “lost mes-
sage.” If a procedure doesn’t return, usually it is because of something catastrophic
like abnormal program continuation; there is no way for the caller to try to recover
and continue. Message passing makes it feasible to persist the request and retry it
whenever the failure condition is corrected. Even if an entire computing center goes
down because of a power outage, a program can continue after the power comes back
on as long as the needed messages were held in nonvolatile storage. As with flow con-
trol, you need to choose an appropriate granularity at which to apply message passing,
based on each application’s requirements.

With this in mind, it becomes natural to design an application based on reduced
message-delivery guarantees. Building in this knowledge from the beginning makes
the resulting application resilient against message loss, no matter whether it is caused
by network interruption, a back-end service outage, excessive load, or even program-
ming errors.

Implementing a runtime environment with very strong delivery guarantees is
expensive in that extra mechanisms need to be built in—for example, resending net-
work messages until receipt is confirmed—and these mechanisms degrade perfor-
mance and scalability even when no failures occur. The cost rises dramatically in a
distributed system, mostly because confirmations require network round trips having
latencies orders of magnitude larger than on a local system (for example, between two
cores on a single CPU). Providing weaker delivery guarantees allows you to implement
the common cases much more simply and quickly, and pay the price for stronger
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guarantees only where truly needed. Note the correspondence with how the postal
service charges for normal and registered mail.
The principal choices for delivery guarantees are as follows:

= At-most-once delivery—Each request is sent once and never retried. If it is lost or
the recipient fails to process it, there is no attempt to recover. Therefore, the
desired function may be invoked once or not at all. This is the most basic deliv-
ery guarantee. It has the lowest implementation overhead, because neither
sender nor receiver is required to maintain information on the state of their
communication.

= At-least-once delivery—Trying to guarantee that a request is processed requires
two additions to at-most-once semantics. First, the recipient must acknowledge
receipt or execution (depending on the requirements) by sending a confirma-
tion message. Second, the sender must retain the request in order to resend it if
the sender doesn’t receive the confirmation. Because a resend can be the result
of a lost confirmation, the recipient may receive the message more than once.
Given enough time and the assumption that communication will eventually suc-
ceed, the message will be received at least once.

= Exactly once delivery—If a request must be processed but must not be processed
twice, then, in addition to at-least-once semantics, the recipient must dedupli-
cate messages: that is, they must keep track of which requests have already been
processed. This is the most costly scheme because it requires both sender and
receiver to track communication state. If, in addition, requests must be pro-
cessed in the order they were sent, then throughput may be further limited by
the need to complete confirmation round trips for each request before pro-
ceeding with the next—unless flow-control requirements are compatible with
buffering on the receiver side.

Implementations of the Actor model usually provide at-most-once delivery out of the
box and allow the other two layers to be added on top for communication paths that
require them. Interestingly, local method calls also provide at-most-once delivery,
albeit with a tiny probability for nondelivery.

Consideration of flow-control and message-delivery guarantees is important
because message passing makes limitations of communication explicit and clearly
exposes inconvenient corner cases. In the next section, we will focus on the natural
match between messages and real-world events and how this promotes a simple consis-
tency across layers in an application.

Events as messages

In hard real-time systems, the foremost concern is keeping the maximal response time
to external events within strict limits—that is, to enforce a tight temporal coupling
between each event and its response. At the other end of the spectrum, a high-volume
storage system for archiving log messages needs high throughput much more than it



Events as messages 79

needs short latency: how long it takes to store a log message matters little as long as
the message eventually gets stored. Requirements for responding to events may vary
enormously, but interactions with computers always boil down to this: raising events
and responding to them.

Messages naturally represent events, and message passing naturally represents
event-driven interactions. An event propagating through a system can also be seen as a
message being forwarded along a chain of processing units. Representing events as
messages enables the trade-off between latency and throughput to be adjusted on a
case-by-case basis or even dynamically. This is useful in cases where response times
usually need to be short, but the system also needs to degrade gracefully when the
input load increases.

The reception and processing of network packets illustrates varying latency
requirements within one sequence of interactions, as shown in figure 4.6. First, the
network interface controller (NIC) informs the CPU of the availability of data using a
synchronous interrupt, which needs to be handled as quickly as possible. The operat-
ing system kernel takes the data from the NIC and determines the right process and
socket to transfer them to. From this point on, the latency requirements are more
relaxed, because the data are safe and sound in the machine’s memory—although of
course you would still like the user-space process responsible for replying to the
incoming request to be informed as quickly as possible. The availability of data on the
socket is then signaled—say, by waking up a selector—and the application requests
the data from the kernel.

Notice a fundamental pattern here:

Incoming packet
within one computer, data received over

the wire propagate as a series of events [ Network card ]
upward through successively higher soft-
ware layers. Each successfully received
packet eventually reaches the user-level [ 0S kernel J

New packet available (hardware interrupt)

Routes packet to right
process and socket

program in a representation that bears
. . . New data on socket
the same information (possibly com-
bined with other packets for efficiency). [ NIO selector ]
At the lowest level, interactions between
computers take the form of messages in
which a physical representation of data

propagates from one computer to

Socket readable

[ Socket handler ) Reads data

another; reception of each message is sig- New HTTP request

naled as an event. It is therefore natural
to model network I/O at all layers as a
stream of events, reified as a stream of
messages. We picked this example
because we recently reimplemented the

[ Web framework ]

Figure 4.6 Steps of a web request from packet
network I/O layer in Akka in this fashion, reception to calling the web framework
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but opportunities for exploiting the correspondence between messages sent at differ-
ent levels are ubiquitous. All the lowest-level inputs to a computer are event-based
(keyboard and mouse, camera and audio frames, and so on) and can be conveniently
passed around as messages. In this way, message passing is the most natural form of
communication between independent objects of any kind.

Synchronous message passing

Explicit message passing often provides a convenient way for isolated parts of an appli-
cation to communicate, or helps delineate source code components, even when there
is no need for asynchronous communication. But if asynchrony is not needed, using
asynchronous message passing to decouple components introduces an unnecessary
cost: the administrative runtime overhead of dispatching tasks for asynchronous exe-
cution as well as extra scheduling latency. In this case, synchronous message passing is
usually a wiser choice.

We mention this because synchronous message propagation is often useful for
stream processing. For example, fusing a series of transformations together keeps the
transformed data local to one CPU core and thereby makes better use of its associated
caches. Synchronous messaging thus serves a different purpose than decoupling parts
of a Reactive application, and our derivation of the necessity of asynchrony in section
4.4 does not apply.

Summary

In this chapter, we have discussed in detail the motivation for message passing, espe-
cially in contrast to synchronous communication. We have illuminated the difference
between addressable event sources in event-driven systems and addressable message
recipients in message-driven systems. We have examined the greater variety of forms
of flow control that message passing affords, and you have learned about the different
levels of message-delivery guarantees.

We briefly touched on the correspondence between events and messages, and you
have seen how message passing enables vertical scalability. In the following chapter, we
will show how location transparency complements this by enabling horizontal scalability.
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Location transparency

The previous chapter introduced message passing as a way to decouple collaborat-
ing objects. Making communication asynchronous and nonblocking instead of call-
ing synchronous methods enables the receiver to perform its work in a different
execution context, such as a different thread. But why stop at interactions within
one computer? Message passing works the same way in both local and remote inter-
actions. There is no fundamental difference between scheduling a task to run later
on the local machine and sending a network packet to a different host to trigger
execution there. In this chapter, we will explore the possibilities offered by this per-
spective as well as the consequences it has for quantitative aspects of performance
such as latency, throughput, and probability of message loss.

What is location transparency?

You may recall the example shown in figure 5.1 from section 1.1, where we dis-
cussed the tenets of the Reactive Manifesto using a hypothetical simplified view of
the Gmail application. If you were to start designing this system, you would split it
into services with various presumed dependencies between them; you would begin
mapping out the interfaces that support interservice communication; and you
would probably spend a thought or two on how the entire application will be
deployed on the available hardware (or what hardware is needed). You would then
implement the design by writing each of the services and codifying the drafted
dependencies and communication patterns—for example, using an asynchronous
HTTP client to talk with another service’s REST API or using a message broker.

Message passing in this example is clearly marked out within the program code,
using different syntax than for local interactions. Consequently the calling object
needs to be aware of the location of the receiving object, or at least it needs to know
that the receiver does not support normal method calls.
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Location transparency is the property that source code for sending a message looks the
same regardless of where the recipient will process it. Application components inter-
act with each other in a uniform fashion defined by explicit message passing. An
object that allows a message to be sent then becomes just a handle pointing to its des-
ignated recipient. This handle is mobile and can be passed around freely among net-
work nodes.

The fallacy of transparent remoting

Since the advent of ubiquitous computer networks, several attempts have been made
to unify the programming model for local and remote method invocations through
transparent remoting: making remote invocations appear the same as local ones.
CORBA, Java RMI, and DCOM were all introduced with this promise, and all of them
failed. The reason they failed lies in a mismatch between implied and actual guaran-
tees or execution semantics, as Waldo et al. have noted.!

The most obvious problem is partial failure. When calling a method, you expect
either a result or an exception, but if the method call is routed through a network to a
different computer, there are more things that can go wrong. The method may not be
called at all because the invocation could not be transmitted. Or, if the method is
invoked, the result may be lost. In both cases, there is no outcome to report. This is

! Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A Note on Distributed Computing,” Sun Micro-
systems Laboratories, 1994, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628.
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typically resolved by raising a timeout exception in the caller’s thread. This requires
that the calling code deal with the uncertainty of whether the desired function was
invoked.

Other problems arise from the performance expectations associated with a
method call. Traversing the network incurs an increase in latency of at least the time
of one round trip: the invocation needs to be sent to the recipient, and the result
needs to travel back to the sender. This is several orders of magnitude longer than the
overhead involved in executing a method locally. A local method call takes about a
nanosecond on current hardware; a remote call takes tens to hundreds of microsec-
onds in a local network and up to hundreds of milliseconds in a globally distributed
system. You need to take this latency into account in order to ensure that an
algorithm’s implementation fulfills its nonfunctional requirements. If an innocent-
looking method call takes a million times longer than you would naively expect, the
consequences can be devastating.

In addition to increased latency, remote invocations also suffer from much lower
throughput than their local counterparts. Passing huge in-memory datasets as argu-
ments to a local method may be slow due to the need to bring the relevant data into
CPU caches, but that is still much faster than serializing the data and sending them
over the network. The difference in throughput can easily exceed a factor of 1,000.

Therefore, giving remote interactions the same semantics as local ones is not desir-
able in theory, nor has it been successful in practice. Waldo et al. argue that the
inverse—changing local semantics to match the constraints of remote communica-
tion—would be too invasive and so should also not be done. They recommend clearly
delineating local and remote computing and choosing different representations in
the source code.

Explicit message passing to the rescue

You have seen that message passing models the semantics of remote communication
naturally: there is no preconceived expectation that messages will be transmitted
instantaneously or processed immediately. Replies are also messages, and messages
may be lost. Two components communicating with messages can thus be located on
the same machine or on different network hosts without changing any characteristic
quality of their interaction. The components’ inner workings may comprise any num-
ber of objects collaborating by synchronous local method calls, as long as message
passing is explicitly different, as explained above.

Location transparency does not aim to make remote interactions look like local
ones. Its goal, rather, is to unify the expression of message passing under a common
abstraction for both local and remote interaction. A concrete example of this is the
Actor model from chapter 3, where all communication between Actors is mediated
through stable placeholders—called ActorRefs in Akka or process IDs and registered names
in Erlang—whose only purpose is to offer a generic message-passing facility:

actorRef ! message
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This code snippet® sends the message given on the right to the Actor represented by
the reference on the left. Note that this operation does not call a method on the Actor
itself. Instead, the Actor reference is a facade that transfers the message—across the
network if necessary—to wherever the Actor is located. There, it is appended to the
Actor’s incoming message queue for later processing.

This is the crucial point where location transparency and transparent remoting dif-
fer. With location transparency, message passing is always explicit. Every instance of
message passing is potentially remote, yet the sender need not concern itself with
whether the Actor is local or remote, nor with the mechanics of sending the message,
nor with whether the message will be transmitted in nanoseconds or microseconds.
The sender also does not stop to wait for a response. It is satisfied when the message
has been passed to the Actor reference.

Contrast this with transparent remoting, where a local proxy object is created and
the desired method is called directly on it, hiding the fact that message passing hap-
pens underneath. Additional concrete problems arise with transparent remoting in
defining the semantics of methods that do not return a value: for example, should the
current thread block until the remote object has processed the call, or should it
return to its caller immediately?

By treating all message passing as potentially remote, you gain the freedom to relo-
cate components without having to change their code. You can write software once
and deploy it on different hardware setups by just changing where the parts are
instantiated. Akka, for example, allows remote deployment of Actors to be specified in
the configuration file. The operations team can therefore in principle determine the
hardware layout without regard for which partitioning the engineering team foresaw.
Of course, this depends on the assumption that all message passing was considered
potentially remote during implementation. It would be prudent for the development
and operations teams to consult with each other in order to have a common under-
standing of the deployment scenarios.

Optimization of local message passing

Local message passing can thus become merely an optimization of remote message
passing. Without changing the source code, local messages could be passed by refer-
ence, obviating the need to serialize and deserialize them, greatly reducing latency
and increasing throughput. Erlang, however, by default maintains full correspon-
dence between local and remote and does not apply this optimization: it serializes and
deserializes all message sends, including purely local ones. This further decouples dif-
ferent components from each other at the cost of performance.

The advantages of message passing as discussed so far—loose coupling, horizontal
scalability, and flow control—can of course be desirable for a purely local program. In

2 Readers unfamiliar with Scala may find the syntax actorRef ! message strange. The ! is the name of a
method defined on the trait ActorRef. Scala allows a call to a method with a single parameter to be simplified
by eliminating the . and the parentheses, so the code snippet is equivalent to actorRef. ! (message).
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this scenario, it does not make sense to go to great lengths to minimize the serialized
size of transmitted messages. Therefore, location transparency is a feature that you
can use to great effect on a higher level of abstraction while choosing not to apply it
within subprograms. It is possible to apply it at the service level in a service-oriented
architecture and lower the granularity into the implementation of a service if its
deployment likely will not fit on a single machine. We will discuss this notion further
in the following chapters.

Message loss

A message passed remotely is subject to many more ways of being lost than one passed
locally: network hardware may be faulty or overloaded, leading to packet loss, and so
on. Hence, remote message passing brings a higher probability of message loss. TCP
mitigates certain kinds of network errors, but it is not a panacea. For example, when
connections are dropped by active network components, TCP is powerless.

In addition, both locally and remotely, a sender may fail to receive a reply for rea-
sons other than message loss. Sometimes processing fails in unforeseen ways, resulting
in no reply being sent. You might be tempted to just write catch-all error handlers to
send back failure messages, but this still does not ensure a reply. If, say, the system
runs out of memory or the receiving object does not get scheduled on a CPU for a
long time, the catch-all will not be executed. Even if it is executed, it cannot tell
whether the original operation succeeded or failed. The error that triggered it might
be something trivial, such as a logger failing after the relevant operation succeeded.

When a message is lost or not processed, the only information the sender gets is
that no confirmation came back. It may be that the sender is not interested in a confir-
mation because the operation was not that important (debug logging, for example,
does not require confirmation), or the sender may need to react to the reception or
absence of the confirmation.

To illustrate the second case, we return to the example of the Gmail application.
When you hover your pointer over the sender of an email, a small contact card pops
up, showing that person’s connection to you in Google’s social network, a picture,
possibly alternative email addresses, and so on. To display this window, the web
browser sends a request to the Gmail front-end servers, which then dispatch requests
to the different internal services that look up and return the desired information, as
shown in figure 5.2 (this and the following figures use a slightly relaxed form of the
diagram syntax defined in appendix A: every arrow is assumed to be a message dis-
patch, with the sequence defined by the adjacent numbers as usual). The front-end
service stores contextual information about where to send the result. The front end
adds replies from the internal services to this context as they come in, and when the
information is complete, it sends the aggregated reply back to the original requester.
But what if one of the expected replies never arrives?

Absence of a message can be expressed by triggering a timeout of the kind “Send
me this reminder in 100 milliseconds.” The next step depends on which message is
received first. If the desired reply arrives before the timeout, processing continues



86

CHAPTER 5  Location transparency

Contacts

T

4

1
Browser Front end
6

3
Y

Aggregator

t

Figure 5.2 Request-and-reply chain when retrieving contact information

normally, and the timeout can be canceled if the system supports that. On the other
hand, if the timeout arrives before any suitable reply, then the recovery path needs to
be executed, possibly resending the original message, falling back to a backup system
or default value, or aborting the original request. This is depicted in figure 5.3.

There are different possible responses, depending on which reply is missing. As
long as the social network’s status can be retrieved, it makes sense to send a partially
successful reply, perhaps missing the part that would normally contain alternate email
addresses. But the request will have to be answered with an overall failure if the social
network is unavailable. Patterns like this are described in section 15.5.

As we discussed in section 2.1.3 under the topic of bounded latency, timeouts have
the disadvantage that they need to be set long enough to allow for slow responses, in
order not to trigger too often. When a back-end service stops responding, it makes
sense to fail requests early and only send out a message every few seconds to check
whether the service has come back up. This is called the Circuit Breaker pattern and is
discussed in chapter 12.

It may seem superfluous to use these patterns even for local message passing; you
may think that a good local optimization would be to assume successful delivery of all
messages. As you have just seen, though, processing faults can contribute to the same
failure symptoms. So, a happy result of writing your application under the assumption
of remote communication—and by applying location transparency—is that you make
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Figure 5.3 Request-and-reply chain with timeout
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it more resilient at the same time. As with message passing, the benefits result from
being explicit about failure-recovery mechanisms instead of relying on implicit and
incomplete hidden guarantees.

Horizontal scalability

You have seen that message passing decouples caller and callee, turning them into
sender and receiver. This enables vertical scalability because the receiver is now free to
use different processing resources than those of the sender, a feat made possible by
not executing both on the same call stack. Location transparency adds horizontal scal-
ability to message passing: you can improve performance by adding more computers
to the network.

Location-transparent message passing enables the receiver to be placed anywhere
on a reachable computer network without the sender needing to know where. For
example, in Akka, an ActorRef could refer to a single Actor on the local node, but it
could also dispatch the messages sent through it to a set of Actors spread out over a
compute grid. The method to send messages is the same in both cases.

In the example of the Gmail application, consider the translation service: normally
you see email as the author sent it, but if the application determines that the language
is foreign to you, it offers you a link to have the text translated. The translation ser-
vice, which performs this expensive transformation, can be run on as many computers
as needed to fulfill its throughput requirements. On a system with location transpar-
ency, as depicted in figure 5.4, people can add and remove translation servers as
needed, without altering the front-end code that invokes the service. You can test the
translation service on your notebook with a local installation; the staging test-bed can
(and should) contain several remote nodes to test this deployment scenario; and, in
production, the operations team is free to scale the hardware up and down as much as
they need to react to load spikes.

Figure 5.4 Scaling out to multiple translation services

Location transparency makes testing simpler

The previous point deserves separate discussion from a different perspective. Hori-
zontal scalability not only enables you to expand a service outward to run on more
computers but also allows you to run the entire system on a single computer when
desirable. This is useful during functional testing and local exploration during devel-
opment, and continuous integration testing becomes much simpler if the service
under test can be wired to local communication partners or even stubs of them. You
have probably written similar code that connects to an ephemeral local database for
the purpose of testing—using, for example, classical dependency injection by config-
uring the database’s URI.
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Depending on the concrete implementation, stubbing out a service can be done with-
out involving mocking frameworks or writing a lot of boilerplate code. For example,
Akka comes with a TestKit, which contains a generic TestProbe for mocking an Actor-
Ref. Because there is only one method to simulate—sending a message—this is all you
need to replace a back-end service with a stub that replies with success or failure
according to the test plan.

In our Gmail example, the front-end services talk to several other services in order
to perform their function. In order to test them in isolation, you can replace, for
example, the storage back end for people’s contact images with one that knows about
a certain John Doe and can be configured not to reply or to reply with a failure when
required. Such a test setup is diagrammed in figure 5.5. This aspect of testing is dis-
cussed in depth in chapter 11.

Dynamic composition

In a service-oriented architecture, wiring is usually done using a dependency-injection
framework that provides the exact location of each dependency. A location typically is
a combination of a protocol, an address (for example, host name and port), and some
protocol-specific details such as a path name. Dependency resolution first determines
the location for a resource and then creates a proxy object to represent it in the con-
text into which it is injected. This process is performed during start-up, and the wiring
usually stays the same throughout the lifecycle of the application or service.

Sending a message is typically mediated through some kind of handle, such as a
database connection handle. Location-transparent handles can themselves be sent
through the network and used by their recipients, because in the end such handles are
nothing but addresses or descriptors of the objects they refer to. Location-transparent
handles are therefore similar to the proxy objects created by dependency-injection
frameworks, except that a location-transparent handle can be used on any node in the
network, not just the machine it was created on. This enables another form of depen-
dency injection: one service can include references to other services in a request or
reply so that the receiver uses them as dynamic wiring.

In the example Gmail application, this technique can be used by the authentica-
tion service. When a request comes in, the front end dispatches the query to this ser-
vice to authenticate the requester and retrieve authorization information. In addition
to verifying the user’s access token, the authentication service can inject references to
other services into the request before handing it on to the contacts service, as shown
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1 Authentication 3 ConiEes Figure 5.6 Dynamic dependency
Authorization , injection allows the

L7 AN )2 authentication module to
it NN 4 give the contacts module
Admin DB User DB access to either the user or admin
database.

in figure 5.6. In this example, authorization to access either the admin or the user
database is passed along in the form of a service reference that the contacts module
will use while processing the user request. This same scheme could also be used to
offer different storage back ends or translation services with different capabilities for
different subscription levels. The overall service mix available to a user can be custom-
ized in this way without having to introduce all parts everywhere or having to carry
authorization information around throughout the entire system.

This concept is not new in the context of Actor systems, where the capability to
access a certain service is modeled by the possession of a reference to the Actor pro-
viding it. Handing out this capability means passing that reference to another Actor,
which can then use the service on its own; we say that an introduction has been made
between the two Actors.

Another use for this technique is to fall back to secondary services when the primary
ones are unavailable—rewiring dependencies at runtime as sketched in figure 5.7. This
is useful not only on the server side: Imagine a client of a blog-management service that
runs on a mobile device. The user interface needs to communicate with the back end
to retrieve the data to display and to persist changes the user wants to make. When no
connection is available, the Ul can instead talk to local stubs of the various services, serv-
ing cached data or queueing actions for later transmission where appropriate. Location
transparency enables the UI code to be written without regard for this difference in any
way.? All the fallback logic can be confined to a single service that connects the Ul to
cither the real or a fake back end.

Fallback

|

Server connector

Figure 5.7 In a web client, the Ul can
switch between online and offline modes
by using different service references.

Offline mode

* In the interest of keeping the user apprised of all important status information, it will typically be advisable to
indicate offline operation whenever this mode has an influence on the semantics or performance of opera-
tions. Offline status should be indicated clearly and unambiguously, but also unobtrusively—unlike, say, a
modal dialog.
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Summary

In this chapter, you have seen how explicit message passing enables you to view local
messages as a special case of fully distributed remote messaging—in contrast to trans-
parent remoting, which aims to make remote interactions look like local ones. We dis-
cussed how differences in latency, throughput, and message-loss probability affect
your ability to treat local and remote interactions in a unified way.

You have also seen the benefits of location-transparent messaging: it extends the
vertical scalability afforded by message passing to scalability along the horizontal axis;
it eases testing of software components; and it allows software components to be com-
posed dynamically. In the next chapter, we will look more deeply into what a compo-
nent is and how you can break a larger task into independent, smaller ones.
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The previous chapter presumed that programs typically consist of multiple parts
that are segregated in some way. Different areas of functionality may be developed
by separate teams, modules are accessed via interfaces and packaged such that they
can be replaced, and so on. Over the past few decades, much effort has been spent
on syntax and semantics for defining modules in programming languages and on
libraries and the infrastructure needed to deploy them. The important question is,
how do we go about dividing up a problem in order to successfully solve it?

Rewinding the clock more than 2,000 years, we find one of the earliest practi-
tioners of the governance maxim divide et regna: Julius Caesar. The idea is simple:
when faced with a number of enemies, create discord and divide them. This will
allow you to vanquish them one by one, even though they would easily have
defeated you if they had stood united. This strategy was used by the Roman Empire
both internally and externally: the key was to purposefully treat different oppo-
nents differently, handing out favors and punishment asymmetrically. And this
treatment was probably applied recursively, with senators and prefects learning
from Caesar’s success.'

We do not have the problem of leading a huge empire, nor is fomenting discord
one of our methods, but we can still learn from this old Latin saying. We can break
a large programming problem down into a manageable handful of subproblems,
and then do the same to the subproblems. Thus, we can gradually narrow the scope
of what we are working on, drilling progressively deeper into the details of how to
implement each particular piece.

' The authors have no direct evidence for this, but it sounds implausible to propose the opposite.
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Hierarchical problem decomposition

Imagine that you are building the Gmail application from scratch. You begin with the
diffuse intuition that the task is an entangled mess of ad hoc requirements. One way
to proceed would be to start from experience or with educated guesses about which
technology components will play a role and postulate certain modules based on them:
you will need modules for authentication and authorization, for rendering and notifi-
cations, and for monitoring and analytics, as well as appropriate storage for all these.
You explore and perhaps build proofs of concept, improving your understanding and
letting the modules—and their siblings whose necessity you discover—gradually take
shape. Bite by bite, you take apart the big task, assigning requirements and features to
each module. Many small things end up in utils or misc packages. Ultimately, you
end up with hundreds of components that hopefully will work together peacefully to
allow users to read their email.

Although possibly not far from the reality of many projects, this approach is not
ideal. Breaking down a problem into a lot of smaller problems incurs the overhead of
making the individual solutions coexist in the final product. This turns the initial,
frighteningly complex problem into an army of smaller problems that may over-
whelm you.

Defining the hierarchy

Staying with the example of building Gmail, you might split the responsibilities at the
top layer into sign-on, profile, contacts, and mail. Within the contacts module, you
must maintain the list of contacts for every user, providing facilities for addition,
removal, and editing. You also need query facilities: for example, to support autocom-
pletion while the user is typing recipient addresses in an email (low latency but possi-
bly out of date) and for refined searches (higher latency but fully up to date and
complete). The low-latency search function needs to cache an optimized view of the
contacts data, which will need to be refreshed from the master list when it changes.
The cache and the refreshing service could be separate modules that communicate
with one another.

The important difference between this design and the initial one is that you not
only break the overall task down into manageable units—you will probably arrive at
the same granularity in the end—but also define a hierarchy among the modules. At
the bottom of the hierarchy are the nitty-gritty implementation details. Moving up the
hierarchy, the components become more and more abstract, approaching the logical
high-level functionality that you aim to implement. The relation between a module
and its direct descendants is tighter than just a dependency: the low-latency search
function, for example, clearly depends on the cache and the refreshing service, but it
also provides the scope within which these two modules work—it defines the boundar-
ies of the problem space they solve.

This allows you to focus on a specific problem and solve it well, without trying to
generalize prematurely, a practice that is often futile or even destructive. Of course,
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generalization will eventually happen—most likely at the lower levels of the hierar-
chy—but it will be a natural process of recognizing that the same (or a very similar)
problem has already been solved, and therefore you can reuse the previous solution.
Intuitively, you already have experience with this kind of generalization. It is common
to reuse low-level libraries, such as collections frameworks. The concept of a list, map,
or set is useful across any number of applications. At the next level up, some reuse
remains likely. A low-level cache with a refreshing service might be reused in many
places. Continuing up the hierarchy, there might be reuse of an interface to an LDAP
server to acquire contact information, but it would be more limited. The higher in the
hierarchy a module is situated, the more likely it is to be specific to a concrete use
case. It is unlikely that the mail module in Gmail will be reused as is in a different
application. If you need mail in another context, you are probably better off copying
and adapting. Most of the descendant modules will probably be reusable, because
they provide more narrowly scoped parts of the solution.

To recapitulate: we can break the task of “building Gmail” into a set of high-level
features, such as mail and contacts, defining a module for each one. These modules
collaborate to provide the Gmail function, and that is also their only purpose. The
contacts module provides a clearly scoped part of the functionality, which is split up
across lower-level modules such as autocomplete, which again collaborate to provide
the overall contacts function. This hierarchy is depicted in figure 6.1.

Storage

( Search H Full search J
[ Contacts H Pop-up card J [Autocomplete)—( Fuzzy index ]
Sign-on J ( Editing J
[ Gmail
Profile ] ( Listing ]
[ Mail H Composing J

Filters

Figure 6.1 Partially decomposed
module hierarchy of our hypothetical

Storage Gmail implementation

i
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Dependencies vs. descendant modules

In the hierarchical decomposition process, we glossed over one aspect that deserves
elaboration: because the mail component in the Gmail example must work with con-
tact information, does its module hierarchy contain that functionality? So far, we have
only talked about the piecewise narrowing of problem scope. If that is all you do, parts
of the contacts functionality will appear in several places: the module that displays
lists of emails will need access to contact details; the module for composing an email
will need access to at least the low-latency contact search; and the same goes for the
filter-rule editor.

It does not make sense to replicate the same functionality in multiple places. We
would like to solve each problem only once, in source code as well as in deployment
and operations. Notice that none of the modules we mentioned owns the contacts
functionality. It is not a core concern of any of them. Ownership is an important notion
when it comes to decomposition. In this case, the question is, who owns which part of
the problem space? There should be only one module that is responsible for any given
functionality, possibly with multiple concrete implementations; all other modules that
need to access that functionality have a dependency on the module that owns it.

We hinted at this distinction earlier when we said that the relationship between a
module and its descendants is tighter than just a dependency. Descendant modules
cater to a bounded subset of the problem space owned by their parent, each owning its
smaller piece in turn. Functionality that lies outside this bound is incorporated by refer-
ence, and some other module is responsible for providing it, as illustrated in figure 6.2.

[ Search H FuIIsearchJ
( Contacts H Pop-up card J<-, (Autocomplete]—( Fuzzy index J

| I

! I
I

Sign-on } ( Editing ] ' Dependency X

I

( Gmail X !
I

Profile } ( Listing } ! |

I

I

] , Dependency !

Mail Composing f-------=- !

Filters

Figure 6.2 Partial module
hierarchy showing inter-module
dependencies

i

Storage
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Avoiding the matrix

The organization of the development team can be at cross-purposes with establishing
a good hierarchical decomposition of the software. A common way to organize people
is by skill. Put all the front-end JavaScript experts into one group, the server develop-
ers in another, and the structured-database developers in a third, have yet another
group focus on bulk storage, and so on. Conway’s Law—“Any organization that
designs a system will inevitably produce a design whose structure is a copy of the orga-
nization’s communication structure”*—tells us that the result in the Gmail example
would be a front-end module, an application module, and a database module. Within
each module, each team would likely define its own submodules for contacts, sign-on,
profile, and mail, as shown in figure 6.3.

This is not the same as having a contacts module with submodules for the front
end, application, and database. The difference is that in the skill-oriented decomposi-
tion, there are small, horizontal dependencies between the modules at each level
rather than just at the top level of the hierarchy. These dependencies are especially

pernicious because they do not usually appear to be a major problem while the first
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Figure 6.3 The matrix creates an unwanted extra set of dependencies.

2 Paraphrase of Melvin Conway, “How Do Committees Invent?” Datamation (April 1968), www.melconway.com
/Home/pdf/committees.pdf.
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version is being built. Early in the lifecycle of a piece of software, nearly every submod-
ule typically needs to be changed in every release; so whether a given module is
deployed as part of the latest whole application release or as part of the latest contacts
release makes no difference. Later, horizontal dependencies become problematic.
They force a release focused on a single technology, such as upgrading the database
version, to affect every module at the same level in the hierarchy. At the same time,
every major feature release affects every module along a vertical axis.

6.3  Building your own big corporation

A metaphor that often works well for picturing and speaking about hierarchical prob-
lem decomposition is that of a big corporation. At the top, management defines the
overall goal and direction (CEO, Chief Architect, and so on). Then there are depart-
ments that handle different, very high-level aspects of the goal. Each department is
structured into various subgroups of different granularity, until at the bottom we
reach the small teams that carry out very specific, narrowly scoped tasks. The ideas
behind this structure are similar to the responsibility-oriented problem decomposi-
tion described previously: without proper segregation of the responsibilities of the
departments, their members would constantly step on each other’s toes while doing
their work.

As you work through this hierarchy, think ahead to something that will be consid-
ered more in the next chapter: handling failures. If an individual in the hierarchy fails
to do their job, the next person up in the hierarchy must handle it. Responsibility
flows toward the person in charge, not in lazy circles among coworkers!

If you think now, “Well, that all sounds nice in theory, but my own experience has
been that this is exactly how corporations do not work,” the good news is that when
applying these techniques to a programming problem, you get to choose the structure
and define the relationships between the parts of the hierarchy you create—you get
the chance to create your own BigCorp and do it right!® You get the chance to not
repeat the management mistakes of the past. “Matrix management” schemes were
popular from the late 1970s to the early 1980s, and they did not work well. The title of
an article published in the aftermath of the fad provides some insight: Matrix Manage-
ment: Not a Structure, a Frame of Mind.*

A hierarchical decomposition of responsibilities is shown in figure 6.4, on the
example of our venerable Gmail application. Naming the modules according to the
role they play within the overall organization of the application helps establish a com-
mon vocabulary among the teams and stakeholders involved in development.

* You will probably discover that things are not as easy as you think they should be, which is equally instructive.
4 Christopher A. Bartlett and Sumantra Ghoshal, “Matrix Management: Not a Structure, a Frame of Mind,” Har-
vard Business Review (July-August 1990).
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Dir. Filters
C. Cinderello
Dir. Storage
Ch. Grenier
VP Mail Dir. Composing
E. V. Lopez K. Schreiber
VP Auth Dir. Listings
O. A. Tolken M. Lignée
VP Profile Dir. Pop-up card
E. Hemlig J. Bufén
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I. Pince S. Rigoroso
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Figure 6.4 The BigCorp view of our hypothetical Gmail application (all names are purely fictional,
and any similarities to real persons are entirely unintentional).

CEO
G. Maele

Advantages of specification and testing

The process of breaking down a complex task as sketched in the previous sections is
iterative, both in the sense of working your way from the root to the leaves of the hier-
archy as well as gradually refining your ability to anticipate the decision process. If you
find that a component is difficult to specify, meaning its function requires a complex
description or is too vague, then you need to step back and possibly retrace your steps
to correct a mistake that was made earlier. The guiding principle is that the responsi-
bilities of every module should be clear. A simple measure of that clarity is how con-
cise the complete specification of each module is.

A distinct scope and small rule set also make it easier to verify a module’s imple-
mentation: meaningful tests can only be written for properties that are definitive and
clearly described. In this sense, the acronym TDD should be taken to mean festability-
driven design instead of its usual expansion, test-driven development. Not only should the
focus on testing indirectly lead to better design, but problem decomposition accord-
ing to divide et regna should focus directly on producing modules that are easy to test.

In addition to helping with the design process, recursive division of responsibility
helps concentrate communication between different parts of the application into
pieces that can be replaced as a whole for the purpose of testing. When testing (parts
of) the mail component of the hypothetical Gmail service, the internal structure of
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the contacts module will not be of interest, so it can be stubbed out as a whole. When
testing contacts, you can apply the same technique to its submodules by stubbing out
both the low-latency and the refined-search modules. The hierarchical structure
enables tests to focus only on specific levels of granularity or abstraction, replacing sib-
lings, descendants, and ancestors in the hierarchy with test stubs.

This is different from hardwiring a special database handle into the application for
test, staging, or production mode: the database handle itself is only an implementa-
tion detail of whatever module uses the database for storage—for example, call it
UserModule. You only need to select a database server from your test bed when testing
UserModule; for all other testing, you create an implementation of UserModule that
does not use a database at all and contains hardcoded test data instead. This allows
everyone who does not develop UserModule itself to write and execute tests on their
personal computer without having to install the complete test bed.

Horizontal and vertical scalability

What have you achieved so far? If you apply what you’ve seen in this chapter, you
obtain modules with clearly segregated responsibilities and simple, well-specified
interaction protocols. These protocols lend themselves to communication via pure
message passing, regardless of whether the collaborating modules are executed within
the same (virtual) machine or on different network hosts. The ability to test in isola-
tion is at the same time a testament to the distributability of the components.

The Gmail example encapsulates the low-latency search module in a way that makes
it possible to run any number of replicas of it, and so you are free to scale it up or down
to handle whatever load users generate. When more instances are needed, they can be
deployed to the available computing infrastructure and start populating their special-
purpose caches. When ready, they will be called upon to service autocomplete requests
from users. This works by having a request router set up as part of the overall low-latency
search service. Whenever a new instance comes up, it registers itself with this router.
Because all requests are independent of each other, it does not matter which instance
performs the job as long as the result is returned within the allotted time.

In this example, depicted in figure 6.5, the size of the deployment directly trans-
lates into the end users’ observed latency. Having one instance of the search module
running for each user will reduce latency to the minimum possible, given the net-
work’s transfer times and the search algorithm. Reducing the number of instances will
eventually lead to congestion, resulting in added latency due to search requests queu-
ing up on the router or on the worker instances. This will in turn reduce the frequency
of search requests generated per user (assuming that the client-side code refrains from
sending a new request while the old one has not yet answered or timed out).

Thus, you can choose deployment size so that the search latency is as good as it
needs to be, but no better.” This is important because running one instance per user is

5 Remember that search latency needs to be formulated in terms of, for example, the 99th percentile, not the
average, as explained in chapter 2.
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Fuzzy index Figure 6.5 Scalable deployment of the
low-latency search service is monitored and
scaled up/down by the search supervisor.

obviously ridiculously wasteful. Reducing the number of instances as much as you can
is in your best business interest.

Front end II

—J

Summary

By taking inspiration from ancient Roman emperors, we have derived a method of
splitting an enormous task into a handful of smaller ones and repeating this process
with each subtask until we are left with the components that collaboratively make up
our entire application. Focusing on responsibility boundaries allows us to distinguish
between who uses a component versus who owns it. We illustrated this procedure with
the example of how a big corporation is structured.

On this journey, you have seen that such a hierarchical component structure bene-
fits the specification and hence the testing of components. We also noted that compo-
nents with segregated responsibilities naturally form units for scaling application
deployment vertically as well as horizontally. We will study another benefit of this
structure in the next chapter when we talk about failure handling.
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Principled failure handling

You have seen that resilience requires distributing and compartmentalizing sys-
tems. Distribution is the only way to avoid being knocked out by a single failure, be
that hardware, software, or human; and compartmentalization isolates the distrib-
uted units from each other such that the failure of one of them does not spread to
the others. The conclusion was that in order to restore proper function after a fail-
ure, you need to delegate the responsibility of reacting to this event to a supervisor.

The importance of ownership appeared already within the decomposition of a
system according to divide et regna, expressed as the difference between a descen-
dant module and a dependency. Descendants own a piece of the parent’s function-
ality, but foreign functions are incorporated only by reference. The resulting
hierarchy gives the supervision structure for the modules.

Ownership means commitment

In the previous chapter, you saw an analogy between a system hierarchy and a cor-
porate organization. Imagine yourself for the moment to be a customer in a store
belonging to one of these organizations. If you are talking to a sales clerk about buy-
ing a shirt and that person tells you that they do not like their job and wanders off
midconversation, it is not your responsibility to resolve the situation. It is the respon-
sibility of the store manager to handle it. This seems obvious and perhaps even
humorous, but consider the situation with software. It is not at all uncommon for
software to tell callers about internal problems it is having, by throwing exceptions.

This does not make much sense.

The caller is rarely in a position to do something useful about the failure. If the
failing module has been properly encapsulated, the caller must be completely
insulated from the implementation details, but those implementation details are
often exposed in the exception. For example, suppose a simple lookup function is

100
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implemented using a database query. The caller might implement some handling for
a SQLException to cover the more common database failures. Now, suppose the
database-based lookup function is replaced by a microservice making HTTP calls:
depending on how the exceptions were declared, the complete system may or may
not compile. It has certainly broken backward compatibility with existing callers. The
system may appear to work as long as the new implementation is running correctly,
but whatever was put in place to handle database exceptions most likely is completely
unprepared to handle network exceptions due to HTTP failures.'

It is worth remembering that validation errors are part of the normal operation
protocol between modules, but failures are those cases in which the normal protocol
cannot be executed any longer and the supervision channel is needed. Validation
goes to the user of a service, whereas failure is handled by the owner of the service. The
sales clerk asking what size and style of shirt you want is validation. The sales clerk who
wanders off midconversation is a failure condition.

If a certain piece of the problem is owned by a module, that means this module
needs to solve that part and provide the corresponding functionality. No other mod-
ule will do so in its stead. Dependent modules will rely on this fact and will not operate
correctly or to their full feature set when the module that is supposed to offer these
functions is not operational. In other words, ownership of a part of the problem
implies a commitment to provide the solution, because the rest of the application will
depend on this.

Every function of an application is implemented by a module that owns it; and,
according to the hierarchical decomposition performed in the previous chapter, this
module has a chain of ancestors reaching all the way up to the top level. That one cor-
responds to the high-level overall mission statement for the full system design as well
as its top-most implementation module, which is typically an application bundle or a
deployment configuration manager for large distributed applications.

This ancestor chain is necessary because we know that failures will happen, and by
Jfailures we mean incidents where a module cannot perform its function any longer
(for example, because the hardware it was running on stopped working). In the exam-
ple of the Gmail contacts service, the low-latency search module can be deployed on
several network nodes, and if one of them fails, then the capacity of the system will be
reduced unintentionally. The search service is the next owner in the ancestor chain,
the supervisor. It is responsible for monitoring the health of its descendant modules
and initiating the start of new ones in case of failure. Only when that does not work—
for whatever reason—does it signal this problem to its own supervisor. This process is
illustrated in figure 7.1.

The rationale for this setup is that other parts of the application will depend on
the search service and all the services it offers for public consumption; therefore, this

' The FreeBSD fortune command may sometimes respond with “Steinbach’s Guideline for Systems Program-

ming: Never test for an error condition you don’t know how to handle.” This turns out to be better advice
than it might seem at first glance.



102

7.2

CHAPTER 7  Principled failure handling

Search «————— 3. Supervisor starts new
low-latency search instance

4 —— — 2.Supervisor is informed

g Y g Y g Y
Low-latency Low-latency Low-latency | ———— |. Module fails
o J A J o J
4 Y 4 N\ 4 Y
Fuzzy index Fuzzy index Fuzzy index
. J . J . J

Figure 7.1 A failure is detected and handled within the search part of the contacts module’s
hierarchy. The search supervisor creates a new instance of the low-latency search that has
previously failed—for whatever reason.

module needs to ensure that its submodules function properly at all times. Responsi-
bility is delegated downward in the hierarchy to rest close to the point where each
function is implemented. The unpredictable nature of failure makes it necessary to
delegate failure-handling upward when lower-level modules cannot cope with a given
situation. This works exactly as in an idealized (properly working) corporate struc-
ture, assuming that failure is treated as an expected fact of life and not swept under
the carpet, and is in contrast to the traditional method of throwing exceptions back to
the calling module. Even on small systems, expecting the caller to handle faults cre-
ates problems with system cohesion. This is greatly compounded when the system is
distributed and location of the failing module may not be known to the caller.

Ownership implies lifecycle control

The scheme of failure handling developed in the previous section implies that a mod-
ule will need to create all submodules that it owns. The reason is that the ability to
re-create them in case of a failure depends on more than just the spiritual ownership
of the problem space: the supervisor must literally own the lifecycle of its submodules.
That is its responsibility. Imagine some other module creating the low-latency search
module and then handing it out to contacts as a dependency, by reference. The
contacts module would have to ask that other module to create a new low-latency
search when it needed one, because that other module might not realize that the old
instance had failed. Replacing a failed instance includes clearing out all associated
state, such as removing it from routing tables and in general dropping all references
to it so the runtime can then reclaim the memory and other resources that the failed
module occupied.
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The actor system often provides a default Actors should be prepared
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Figure 7.2 The lifecycle of each actor is bounded by the lifecycle of its supervisor. The
supervisor is therefore responsible for creating supervised actors and for terminating
them if necessary.

This has an interesting consequence in that the lifecycle of descendant modules is
strictly bounded by its supervisor’s lifecycle: the supervisor creates it, and without a
supervisor it cannot continue to exist. Figure 7.2 illustrates this bounding. An actor
system, BBC1, is required to have an actor available to fulfill a particular role. As with
our sales clerk previously, actors do not last forever in the role. When Hartnell leaves,
he is replaced successively by Troughton, Pertwee, and Baker. In each case, the actor
may have spawned further actors to accomplish additional tasks. When the actor is ter-
minated, its spawned actors are terminated as well. There is no mechanism to hand
off actors from one supervisor to the next. Attempting to do so would require a level
of coordination that would impose severe design limitations on the actor system in the
best of circumstances. In addition, there would be risks even if the hand-off were suc-
cessful, because the reason the parent actor is being shut down is that something is
irreparably wrong. It would not be safe to assume that all child actors are healthy and
that the problem is limited to the parent.

Dependencies are not restricted in this fashion. In traditional dependency injec-
tion, it is customary to create the dependencies first such that they are available when
dependent modules are started up. Similarly, they are terminated only after all depen-
dents have stopped using them. That can create dependencies that are untenable. If
the customer depends on the sales clerk, the sales clerk cannot be replaced until the
customer activity is complete. That is convenient in theory but could put the system in
an unstable state if the sales clerk fails in the midst of a customer interaction. With
dynamic composition, as described in chapter 5 on location transparency, this cou-
pling becomes optional. Dependencies can come and go at arbitrary points in time,
changing the wiring between modules at runtime.

Considering the lifecycle relationship between modules therefore also helps in
developing and validating the hierarchical decomposition of an application. Owner-
ship implies a lifecycle bound, whereas inclusion by reference allows independent life-
cycles. The latter requires location transparency in order to enable references to
dependencies to be acquired dynamically.
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Resilience on all levels

The way you deal with failure is inherently hierarchical; this is true in our society as well
as in programming. The most common way to express failure in a computer program
is to raise an exception, which is then propagated up the call stack by the runtime and
delivered to the innermost enclosing exception handler that declares itself responsi-
ble. The same principle is expressed in pure functional programming by the return
type of a called function in that it models either a successful result or an error condi-
tion (or a list thereof, especially for functions that validate input to the program). In
both cases, the responsibility of handling failure is delegated upward; but in contrast to
the Reactive approach described in this chapter, these techniques conflate the usage
hierarchy with supervision—the user of a service gets to handle its failures as well.

The principled approach to handling failure described in this chapter adds one
more facet to the module hierarchy: every module is a unit of resilience. This is
enabled by the encapsulation afforded by message passing and by the flexibility inher-
ent in location transparency. A module can fail and be restored to proper function
without its dependents needing to take action. The supervisor will handle this for
everyone else’s benefit.

This is true at all levels of the application hierarchy, although obviously the
amount of work to be done during a restart depends on the fraction of the application
that has failed. Therefore, it is important to isolate failure as early as possible, keeping
the units small and the cost of recovery low, which will be discussed in detail as the
Error Kernel pattern in section 12.2. Even in those cases where more drastic action is
needed, the restart of the complete contacts service of the example Gmail applica-
tion will leave most of the mail functionality intact (searching, viewing, and sorting
mail does not depend critically on it; only convenience may suffer). Consequently,
resilience can be achieved at all levels of granularity, and a Reactive design will natu-
rally lend itself well to this goal.

Summary

In this chapter, we used the hierarchical component structure to determine a princi-
pled way of handling failure. The parent component is responsible for the functional-
ity of its descendants, so it is logical to delegate the handling of such failures that
cannot be dealt with locally to that same parent. This pattern allows the construction
of software that is robust even in unforeseen cases, and it is the cornerstone for imple-
menting resilience.

The next chapter investigates another aspect of building distributed components:
consistency comes at a price. Once again, we will split the problem into a hierarchy of
independent components.



Delimated consistency

One possible definition of a distributed system is a system whose parts can fail inde-
pendently.! Reactive design is distributed by its very nature: you want to model com-
ponents that are isolated from each other and interact only via location-transparent
message passing in order to create a resilient supervisor hierarchy. This means the
resulting application layout will suffer the consequences of being distributed. In a
stateless system, the consequences relate primarily to failure handling, and recovery
is handled as described in the previous chapter. When the system has state, it is not
so simple. Even when each part of the system works perfectly, time is a factor. As you
learned in chapter 2, a consequence of being distributed is that strong consistency
cannot be guaranteed. In this chapter, you will learn about delimited consistency,
which is the next-best alternative.

This can be illustrated by the example of the mail functionality of our example
Gmail application. Because the number of users is expected to be huge, you will
have to split the storage of all mail across many different computers located in mul-
tiple data centers distributed across the world. Assuming that a person’s folders can
be split across multiple computers, the act of moving an email from one folder to
another may imply that it moves between computers. It will be either copied first to
the destination and then deleted at the origin, or placed in transient storage,
deleted at the origin, and then copied to the destination.

In either case, the overall count of emails for that person should stay constant
throughout the process; but if you count the emails by asking the computers
involved in their storage, you may see the email “in flight” and count it either twice

' A more humorous one by Leslie Lamport is as follows: “A distributed system is one in which the failure of

a computer you didn’t even know existed can render your own computer unusable.” (Email message, May
28, 1987, http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system. txt.)
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or not at all. Ensuring that the count is consistent would entail excluding the act of
counting while the transfer was in progress. The cost of strong consistency is therefore
that otherwise independent components of the distributed system need to coordinate
their actions by way of additional communication, which means taking more time and
using more network bandwidth. This observation is not specific to the Gmail example
but holds true in general for the problem of having multiple distributed parties agree
on something. This is also called distributed consensus.

Encapsulated modules to the rescue

Fortunately, these consequences are not as severe as they may seem at first. Pat Hel-
land,? a pioneer and long-time contributor to the research on strong consistency,
argues that once a system’s scale grows to a critical size, it can no longer be strongly
consistent. The cost of coordinating a single global order of all changes that occur
within it would be forbiddingly high, and adding more (distributed) resources at that
point will only diminish the system’s capacity instead of increasing it. Instead, we will
be constructing systems from small building blocks—entities>—that are internally con-
sistent but interact in an eventually consistent fashion.

The dataset contained within such an entity can be treated in a fully consistent
fashion, applying changes such that they occur—or at least appear to occur—in one
specific order. This is possible because each entity lives within a distinct scope of serializ-
ability, which means the entity itself is not distributed and the datasets of different enti-
ties cannot overlap. The behavior of such a system is strongly consistent—
transactional—only for operations that do not span multiple entities.

Helland goes on to postulate that we will develop platforms that manage the com-
plexity of distributing and interacting with these independent entities, allowing the
expression of business logic in a fashion that does not need to concern itself with the
deployment details as long as it obeys the transaction bounds. The entities he talks
about are very similar to the encapsulated modules developed in this book so far. The
difference is mainly that he focuses on managing the data stored within a system,
whereas we have concerned ourselves foremost with decomposing the functionality
offered by a complex application. In the end, both are the same: as viewed by a user,
the only thing that matters is that the obtained responses reflect the correct state of
the service at the time of the request, where state is nothing more than the dataset the
service maintains internally. A system that supports Reactive application design is
therefore a natural substrate for fulfilling Pat Helland’s prediction.

? See his paper “Life Beyond Distributed Transactions,” CIDR (2007), http://www.ics.uci.edu/~cs223/papers/
cidr07p15.pdf.

In the context of domain-driven design, these would be called aggregate roots; the different uses of the word

entity are owed to its intrinsic generality.
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Grouping data and behavior
according to transaction boundaries

The example problem of storing a person’s email folders in a distributed fashion can
be solved by applying the strategy outlined in the previous section. If you want to
ensure that emails can be moved without leading to inconsistent counts, then each
person’s complete email dataset must be managed by one entity. The example appli-
cation decomposition would have a module for this purpose and would instantiate it
once for every person using the system. This does not mean all mail would be literally
stored within that instance. It only means all access to a person’s email content would
be via this dedicated instance.

In effect, this acts like a locking mechanism that serializes access, with the obvious
restriction that an individual person’s email cannot be scaled out to multiple manag-
ers in order to support higher transaction rates. This is fine, because a human is many
orders of magnitude slower than a computer when it comes to processing email, so
you will not run into performance problems by limiting scalability in this direction.
What is more important is that this enables you to distribute the management of all
users’ mailboxes across any number of machines, because each instance is indepen-
dent of all others. The consequence is that it is not possible to move emails between
different people’s accounts while maintaining the overall email count, but that is not a
supported feature anyway.

To formalize what we just discussed, the trick is to slice the behavior and accompa-
nying dataset in such a way that each slice offers the desired features in isolation and
no transactions are necessary that span multiple slices. This technique is applied and
discussed in great detail in the literature on domain-driven design (DDD).*

Modeling workflows across transactional boundaries

The way in which the dataset is sliced accommodates performing a certain set of oper-
ations in a strongly consistent manner but precludes this quality of behavior for all
other conceivable operations. In most cases, there will be operations that are desirable
but not supported. Slicing the data in another way is not an option, because that
would break more important use cases. In this situation, the design must fall back to
an eventually consistent way of performing those other operations, meaning that
although it keeps the atomicity of the transaction, it abandons complete consistency
and isolation.

To illustrate this, consider the case of moving an email from Alice’s mailbox to that
of another person named Bob, possibly stored in a data center on another continent.
Although this operation cannot occur such that both the source and destination mail-
boxes execute this operation at the same time, it can ensure that the email eventually
will be present only in Bob’s mailbox. You can facilitate this by creating an instance of

1 See, for example, Eric Evans, Domain-Driven Design, Addison-Wesley (2003); or Vaughn Vernon, Implementing
Domain-Driven Design, Addison-Wesley (2013).
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Saga: move email from Alice to Bob

-1 - Bob

J

Figure 8.1 A sketch of the Saga pattern for moving an email from Alice’s account to Bob’s
account, not including the cases for handling timeouts when communicating with the two
accounts

a module that represents the transfer procedure. This module will communicate with
the mailbox instances for Alice and Bob to remove the email from one and store it in
the other. This so-called Saga pattern is known in the transactional database world as a
mitigation strategy for long-running transactions. It is shown in figure 8.1 and dis-
cussed in detail in chapter 14.

Just as the mailbox modules will persist their state to survive failures, the Saga
module also can be persistent. This ensures that even if the transfer is interrupted by
a service outage, it will eventually complete when the mailboxes for Alice and Bob
are back online.

Unit of failure = unit of consistency

Coming back to the initial definition of a distributed system at the beginning of this
chapter, distributed entities are characterized by their ability to fail independently.
Therefore, the main concern of grouping data according to transactional boundaries
is to ensure that everything that must be consistent is not distributed. A consistent
unit must not fail partially; if one part of it fails, then the entire unit must fail.
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In the example of the transfer of an email between Alice’s and Bob’s mailboxes,
the Saga that performs this task is one such unit. If one part of it fails, then the whole
transfer must fail; otherwise, the email could be duplicated or vanish completely. This
does not preclude the different subtasks being performed by submodules of the Saga,
but it requires that if one of the submodules fails, the Saga must fail as a whole.

Pat Helland’s entities and our units of consistency therefore match up with the mod-
ules of the supervisor hierarchy developed earlier in this chapter. This is another help-
ful property that can guide and validate the hierarchical decomposition of a system.

Segregating responsibilities

We have postulated that the process of breaking a problem into smaller pieces repeats
iteratively until the remaining parts are bite-sized and can be efficiently specified,
implemented, and tested. But what exactly is the right size? The criteria so far are as
follows:

= A module does one job and does it well.

= The scope of a module is bounded by the responsibility of its parent.

= Module boundaries define the possible granularity of horizontal scaling by
replication.

= Modules encapsulate failure, and their hierarchy defines supervision.

= The lifecycle of a module is bounded by that of its parent.

= Module boundaries coincide with transaction boundaries.

You have seen along the way that these criteria go hand in hand and are interrelated;
abiding by one of them is likely to satisfy the others as well. You have a choice as to
how big to make your modules. During the process of implementing and testing
them—or, with experience, even during the design process—you may find that you
did not choose wisely.

In the case of a too-fine-grained split, you will notice the need to use messaging
patterns like Saga excessively often, or have difficulty achieving the consistency guar-
antees you require. The cure is relatively simple. The act of combining the responsi-
bilities of two modules means you compose their implementations, which is unlikely
to lead to new conflicts because the modules previously were completely independent
and isolated from each other.

If the split is too coarse, you will suffer from complicated interplay of different con-
cerns within a module. Supervision strategies will be difficult to identify or will inhibit
necessary scalability. This defect is not as simple to repair, because separating out dif-
ferent parts of the behavior entails introducing new transaction boundaries between
them. If the different parts become descendant modules, this may not have grave con-
sequences because the parent module can still act as the entry point that serializes
operations. If the issue that prompted the split was insufficient scalability, then this
will not work because the implied synchronization cost by way of going through a sin-
gle funnel was precisely the problem.



110

CHAPTER 8 Delimited consistency

Segregating the responsibilities of such an object will necessarily require that some
operations be relegated to eventually consistent behavior. One possibility that often
applies is to separate the mutating operations (the commands) from the read opera-
tions (the queries). Greg Young coined the term Command and Query Responsibility Segre-
gation (CQRS) describing this split, which allows the write side of a dataset to be scaled
and optimized independently from its read side. The write side will be the only place
where modifications to the data are permitted, allowing the read side to act as a proxy
that only passively caches the information that can be queried.

Changes are propagated between modules by way of events, which are immutable
facts that describe state changes that have already occurred. In contrast, the com-
mands that are accepted at the write side merely express the intent that a change shall
happen.

COMPARING CQRS TO A DATABASE VIEW Relational databases have the concept
of a view, which is similar to the query side of CQRS. The difference lies in
when the query is executed. Database implementations typically force the
administrator to decide ahead of time. A traditional, pure implementation
always defers execution until the data is requested, which can cause a signifi-
cant performance impact on reads. In response to that, some implementa-
tions allow the result of the query to be stored physically in a snapshot. This
typically moves the cost of updating the query result to the time the data is
written, so the write operations are delayed until all the snapshots are also
updated. CQRS sacrifices consistency guarantees in exchange for more flexi-
bility about when the updates appear in the query results.

In the Gmail example, you might implement the module that generates the overview
of all folders and their unread email counts such that it accesses the stored folder data
whenever it is asked for a summary to be displayed in the user’s browser. The storage
module will have to perform several functions:

= Ingest new email as it arrives from the filtering module
= Listall emails in a folder

= Offer access to the raw data and metadata for individual emails

The state of an email—for example, whether it has been read or not—will reside natu-
rally with the message itself, in the raw email object storage. One initial design may be
to store the folders to which it belongs together with each message; consequently you
obtain one fully consistent dataset for each user into which all emails are stored. This
dataset is then queried in order to get the overview of read and unread message
counts per folder. The corresponding query must traverse the metadata of all stored
emails and tally them according to folder name and status.

Doing that is costly, because the most frequent operation—checking for new
email—will need to touch all the metadata, including old emails that were read long
ago. An additional downside is that ingesting new email will suffer from this merely
observer function, because both kinds of activities typically will be executed by the
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Figure 8.2 Per-user storage segregated into command and query responsibilities. New
emails are written to the storage, informing the read view about changes to the metadata.
Summary queries can be answered by the read view, whereas raw email contents are
retrieved directly from shared binary storage.

storage module one after the other in order to avoid internal concurrency and
thereby nondeterminism.

This design can be improved by separating the responsibilities for updating and
querying the email storage, as shown in figure 8.2. Changes to the storage contents—
such as the arrival of new email, adding and removing folder membership from mes-
sages, and removing the “unread” flag—are performed by the write side, which per-
sists these changes into the binary object storage. Additionally, the write side informs
the read view about relevant metadata changes so that this view can keep itself up to
date about the read and unread email counts in each folder. This allows overview que-
ries to be answered efficiently without having to traverse the metadata storage. In case
of a failure, the read view can always be regenerated by performing this traversal once.
The view itself does not need to be persistent.

Persisting isolated scopes of consistency

The topic of achieving persistence in systems designed for scalability is discussed in
detail in chapter 17, but the application design described in this chapter has implica-
tions for the storage layer that deserve further elaboration. In a traditional database-
centric application, all data are held in a globally consistent fashion in a transactional
data store. This is necessary because all parts of the application have access to the
entire dataset, and transactions can span various parts of it. Effort is required to define
and tune the transactions at the application level as well as to make the engine effi-
cient at executing these complex tasks at the database level.

With encapsulated modules that each fully own their datasets, these constraints are
solved during the design phase. You would need one database per module instance,
and each database would support modifications only from a single client. Almost all
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the complexity of a traditional database would go unused with such a use case because
there would be no transactions to schedule or conflicts to resolve.

Coming back to CQRS, we note that there is logically only one flow of data from the
active instances to the storage engine: The application module sends information
about its state changes in order to persist them. The only information it needs from
the storage is confirmation of successful execution of this task, upon which the mod-
ule can acknowledge reception of the data to its clients and continue processing its
tasks. This reduces the storage engine’s requirements to just act as an append-only
log of the changes—evenis—that the application modules generate. This scheme is
called event sourcing because the persisted events are the source of truth from which
application state can be recovered as needed.

An implementation with this focus is much simpler and more efficient than using
a transactional database, because it does not need to support mutual exclusion of con-
current updates or any form of altering persisted data. In addition, streaming consec-
utive writes is the operation for which all current storage technologies achieve the
highest possible throughput. Logging a stream of events for each module has the
additional advantage that these streams contain useful information that can be con-
sumed by other modules: for example, updating a dedicated read view onto the data
or providing monitoring and alerting functionality, as discussed in chapter 17.

Summary

In this chapter, you saw that strong consistency is not achievable across a distributed
system. It is limited to smaller scopes and to units that fail as a whole. This has led to
adding a new facet of the component structure: the recommendation that you con-
sider the business domain of the application in order to determine bounded contexts
that are fully decoupled from each other. The terminology here is taken from
domain-driven design.

The driving force behind this search for a replacement for traditional transaction-
ality and serializability stems from the nondeterminism that is inherent in distributed
systems. The next chapter places this finding into the larger context of the full range
from logic programming and deterministic dataflow to full-on nondeterminism expe-
rienced with threads and locks.



9.1

Nondeterminism by need

This chapter is the most abstract part of this book, and it is not required for initial
understanding of the later chapters. You are welcome to skip ahead to chapter 10,
as long as you promise to come back here at a later time.

In chapter 3, we introduced functional programming as one of the tools of the
Reactive trade. The second part of this book has up to this point been concerned
with splitting a problem into encapsulated modules that interact only via asynchro-
nous message passing, an act that is fundamentally impure: sending a message to
an external object implies that the state change of that other object cannot be mod-
eled within the sender. It is necessarily a side effect. That is not incidental; it is the
sole reason to compartmentalize.!

It seems at first sight that the design we have chosen is fundamentally at odds
with one of the core paradigms that we advertise. But this contradiction is not real,
as you will see now, during a journey that could be titled “The Gradual Expulsion
from Paradise.”

Logic programming and declarative data flow

Ideally, we would want to specify input data and the characteristics of the solution,
and the programming language would do the rest for us. An example is to specify
that, given a list of values, we demand in return a list that contains the same ele-
ments, but in ascending order; for this, we would say that the nth element should
always be greater than the (n—1)th element. The interpreter for our program
would then figure out a sorting algorithm and apply it to any input we supplied to

' Tracking the sending of a message as an effect can of course be done, but the gain is small. It would have
to be done in close proximity to the place it originates, and the modules in our hierarchical decomposition
are intended to be small.
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the resulting program—but it would first tell us that the input list could not contain
duplicate elements. Having such a programming language would free us from the
concerns of how the inputs were combined and processed; the computer would auto-
matically figure out the correct algorithm and perform it. This process would be fully
deterministic as far as the formulated desired characteristics were concerned.

Research in this direction led to the discipline of logic programming and the cre-
ation of programming languages like Prolog and Datalog in the 1980s. Although not
quite as advanced as the aforementioned ideal—which does sound too good to be
true in the sense of “do what I mean”—these languages allow us to state the rules of a
domain and ask the compiler to prove additional theorems that then correspond to
the solution for a given problem. Logic programming so far has not had significant
influence on mainstream software development, foremost due to its disadvantages
with respect to runtime performance in comparison with imperative languages that
are much farther removed from paradise.

A'step toward the mainstream takes us to pure functional programming, expressing
programs and algorithms with functions and immutable values, where a function is an
example of such a value. This way of programming is close to mathematics in that func-
tions describe transformations that can be composed with other functions without hav-
ing to specify the input values up front—a program can first calculate which sequence
of functions to apply and then feed the inputs to them. Compared with logic program-
ming, we trade decent runtime performance for the duty of figuring out the correct
algorithms ourselves. Instead of generating the algorithm for us, the compiler can at
best verify that the algorithm we provided has the desired properties. This verification
requires the use of a type system that is powerful enough to encode the characteristics
we want. In this camp, we find a large number of languages to choose from, including
Haskell, Coq, Agda, and, recently, Idris. Many of the code samples in this book are writ-
ten in the Scala language, which can express pure functional programs but incorpo-
rates support for mutability and object orientation as well.

Programming in a pure functional style means the evaluation of every expression
always yields the same result when given the same inputs. There are no side effects.
This enables the compiler to schedule evaluation on an as-needed basis instead of
doing it strictly in the order given in the source code, including the possibility of par-
allel execution. The necessary precondition for this is that all values are immutable—
nothing can change after it has been created. This has the very beneficial conse-
quence that values can be freely shared among concurrently executing threads with-
out any need for synchronization.

A close cousin of the functional paradigm is dataflow programming. The differ-
ence is that the former focuses on functions and their composition, whereas the latter
concentrates on the movement of data through a network (more precisely, a directed
acyclic graph) of connected computations. Every node of this network is a single-
assignment variable that is calculated once all inputs of its defining expressions have
been determined. Therefore, the result of injecting data into the processing network
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is always fully deterministic, even though all computations within it conceptually run
in parallel. Dataflow programming is, for example, part of the Oz language,? but it
can also be embedded in a language like Scala using composable Futures, as shown in
chapter 3.

9.2 Functional reactive programming

A hybrid between the application of (pure) functions and the description of a process-
ing network is functional reactive programming (FRP), which focuses on the propagation
and transformation of change: for example, from measurements that arrive from a
sensor to a GUI element on the human operator’s screen. In its pure form, FRP is close
to dataflow programming in that it determines the changes to all input signals of a
given transformation before evaluating it. This restricts implementations to run effec-
tively single-threaded in order to avoid the problem of glitches, which refers to the phe-
nomenon that the output of an element fluctuates during the propagation of an
update throughout the network.

Recently, the term FRP has also been used for implementations that are not glitch-
free, such as Rx.NET, RxJava, and various JavaScript frameworks like React, Knockout,
Backbone, and so on. These concentrate on the efficient propagation of events and
convenient wiring of the processing network, compromising on mathematical purity.
As an example, consider the following functions:

f(x) =x+1

g(x) =x -1
h(x) = £(x) - g(x)

In mathematical terms, h (x) would always be exactly 2, because we can substitute the
definitions of the other two functions into its body and witness that the only variable
input cancels out. Written in the aforementioned frameworks, the result would be 2
most of the time, but the values 1 and 3 would also be emitted from time to time
(unless you took care to manually synchronize the two update streams for f and g).

This deviation from fully deterministic behavior is not random coincidence, and it
is also not due to defects in these frameworks. It is a consequence of allowing the con-
current execution of effectful code, meaning code that manipulates the state of the
universe surrounding the program. Both aspects—concurrency and effects—are
essential to achieve good performance on today’s hardware, making nondeterminism
a necessary evil. Another angle on this is presented in languages like Bloom?® that
employ the CALM? correspondence to identify those parts of a program that require
explicit coordination, expressing the rest as so-called disorderly programming.

See http://mozart.github.io/mozartvl/doc-1.4.0/tutorial /node8.html for more details on dataflow concur-
rency.
See www.bloom-lang.net/features for an overview.

Consistency and logical monotonicity. For a formal treatment, see Ameloot et al., “Relational Transducers for
Declarative Networking,” Journal of the ACM 60, no. 2 (2010), http://arxiv.org/pdf/1012.2858v1.pdf.
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Glitch-free applications can be written using frameworks that are not glitch-free.
The only problematic operations are those that merge streams of updates that come
from a common source and should therefore show a certain correlation. Processing
networks that do not contain such operations will not suffer from nondeterminism.

9.3 Sharing nothing simplifies concurrency

When concurrency as well as stateful behavior are required, there is no escape from
nondeterminism. This is obvious when considering the distributed execution of com-
ponents that communicate via asynchronous message passing: the order in which
messages from Alice and Bob reach Charlie is undefined unless Alice and Bob expend
considerable effort to synchronize their communication.” The answer to Bob’s ques-
tion, “Have you heard from Alice yet?” would thus vary unpredictably among different
executions of this scenario.

In the same way that distribution entails concurrency, the opposite is also true.
Concurrency means two threads of execution can make progress at the same time,
independent of each other. In a non-ideal world, this means both threads can also fail
independently, making them distributed by definition.

Therefore, whenever a system comprises concurrent or distributed components,
there will be nondeterminism in the interaction between these components. Nonde-
terminism has a significant cost in terms of the ability to reason about the behavior of
the program, and consequently we spend considerable effort on ensuring that all pos-
sible outcomes have been accounted for. In order to keep this overhead limited to
what is required, we want to bound the nondeterminism we allow in a program to that
which is caused by the distributed nature of its components, meaning that we only
consider the unpredictability in the messaging sequence between encapsulated mod-
ules and forbid any direct coupling between them.

In this sense, the term shared-nothing concurrency means the internal mutable state
of each module is safely stowed away inside it and not shared directly with other mod-
ules. An example of what is forbidden is sending a reference to a mutable object (for
example, a Java array) from one module to another while also keeping a reference. If
both modules subsequently modify the object from within their transaction boundary,
their logic will be confused by the additional coupling that has nothing to do with
message passing.

The strategies to deal with nondeterminism can be classified into two groups:

= We can reject those orderings of events that are problematic, introducing

explicit synchronization to reduce the effect of nondeterminism to a level at
which it no longer changes the program’s characteristics.

® For example, Alice could wait until Bob has heard back from Charlie—and told her so—before sending her
message.
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= Alternatively, we can restrict the program to use of operations that are commu-
tative, which means the order in which they are executed has no influence on

the final result of the distributed computation.®

The former involves a runtime cost for coordination, whereas the latter involves a
development cost for restricting the exchanged dataset to be expressible efficiently in
a conflict-free representation.

Shared-state concurrency

The final step of the journey away from paradise brings us into the world of threads
and locks and atomic CPU instructions, and it can be argued whether this corresponds
to the necessary evil (that is, the here and now) or places us directly in Hell. The back-
ground for this scenario is that current computers are based on the Von Neumann
architecture, with the extension that multiple independent execution units share the
same memory. The way data are transferred between CPU cores is therefore by read-
ing to and writing from this shared memory instead of sending messages directly, with
the consequence that all cores need to carefully coordinate their accesses.

Programming with threads and synchronization primitives maps directly to this
architecture,” and it is your duty to embed the correct level of coordination in your
program because the CPU would otherwise operate in its fastest possible and most
reckless mode. The resulting code contains a tightly interwoven web of business logic
and low-level synchronization, because memory accesses are so ubiquitous.

The problem with this code is that synchronization protocols do not compose well:
if Alice knows how to conduct a conversation with Bob without getting confused, and
Bob knows how to converse with Charlie, that does not mean the same way of talking
with each other will allow a shared group conversation among all three of them. We
also know from social experience that getting a larger group of people to agree on
something is disproportionately more difficult than achieving agreement between just
two persons.

So, what should we do?

Along the journey from paradise toward the netherworld, we have gradually lost the
ability to predict the behavior of our programs. Toward the end, it became nearly
impossible to validate a design by reasoning about the way it is built up from simpler
parts because the interplay between the building blocks entangles their internal
behavior. This leads to the necessity of performing extensive testing and hopefully
exhaustive verification scenarios for programs that are constructed directly upon
threads and locks.

® These are called conflict-free replicated data types (CRDT). See Shapiro et al., INRIA (2011), http://citeseerx.ist
.psu.edu/viewdoc/download?doi=10.1.1.231.4257&rep=rep1&type=pdf.

7 We are glossing over the fact that threads are an illusion provided by the operating system to allow more con-
current executions than the number of available CPU cores.
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Threads and low-level synchronization primitives are important tools for situations
where performance requirements or the nature of the problem (such as writing a low-
level device driver) force us to exercise precise control over how the CPU instructions
are carried out. This situation is one that most programmers will rarely find them-
selves in. We can in almost all cases rely on someone else to have solved that level of
the problem for us. An example is the implementation of an Actor framework that
uses low-level features to provide users with a higher level of abstraction.

Retracing our steps, we see that going from shared-state concurrency to shared-
nothing concurrency eliminates an entire class of problems from the application
domain. We no longer need to concern ourselves with the way CPUs synchronize their
actions, because we write encapsulated components that only send immutable mes-
sages that can be shared without issues. Freed from this concern, we can concentrate
on the essence of distributed programming for solving our business problems, and
this is where we want to be in case distribution is necessary.

The next step backward removes the need for concurrency and distribution,
enabling the resulting program to shed all nondeterminism and greatly enhance the
power of reasoning about the composition of a larger application from simple pieces.
This is desirable because it eliminates yet another class of defects from the application
domain. We no longer need to worry about having to manually ensure that things run
in the correct sequence. With FRP or dataflow, we reason only about how data are
transformed, not how the machine executes this transformation. Pure functional pro-
gramming allows us to compose the application of calculations much in the same way
we would write them down mathematically—time no longer plays a role.®

Absent an efficient and proven implementation of logic programming, this last
step brought us to the place we want to be: a fully deterministic, reasonable program-
ming model. The tools to program in this way are widely available, so we should use
them wherever we can.

The dividing line between concurrent nondeterminism and reasonable determin-
ism is established by the need for distribution. A distributed system can never be fully
deterministic because of the possibility of partial failure. Employing a distributed solu-
tion must always be weighed against the associated cost; and apart from the distrib-
uted parts of a program, we should always strive to stay as close to functional and
declarative programming with immutable values as is feasible.

In chapters 4-8, we have detailed the reasons why and when distribution is neces-
sary and useful; the desire to stay nondistributed as long as possible does not change
this reasoning. The contribution of this chapter is to present a weight on the opposite
side of resilience, scalability, and responsibility segregation. You will have to place

8 Roland’s favorite analogy is cooking: “I know in principle how to cook all parts of a meal, and in practice I can
also do it one part at a time (for example, concentrating on the meat until it is finished), but as soon as I try
to do several things at once, I start making mistakes. It would be nice if time could be eliminated from this
process, because that would allow me to do one thing after the other without the hassle of switching my focus
repeatedly. This is much like the difference between explicit concurrency and declarative programming.”
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both on the scales and balance them well for each design you develop. For further
reading on this topic, we recommend the literature detailing the design of the Oz lan-
guage, in particular Peter van Roy’s paper “Convergence in Language Design.™

9.6 Summary

This chapter has taken you all the way from pure, deterministic programming
approaches via shared-nothing concurrency to threads and locks. You have seen that
all these tools have a place in your tool belt and that you should be careful to stay as
close to the initially mentioned paradigms as you can. Only employ nondeterministic
mechanisms where needed, whether for scalability or resilience. In the next chapter,
we will complete part 2 of this book by coming back to where we set out from in chap-
ter 1: considering how messages flow through applications.

¢ Peter van Roy, “Convergence in Language Design: A Case of Lightning Striking Four Times in the Same
Place,” Proceedings of the Sth International Conference on Functional and Logic Programming (2006): 2-12,
https://mozart.github.io/publications.
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Message flow

Now that you have established a hierarchy of encapsulated modules that represent
an application, you need to orchestrate them and realize the solution. The key
point developed throughout the previous chapters is that modules communicate
only asynchronously by passing messages. They do not directly share mutable state.
You have seen many advantages of this approach along the way, enabling scalability
and resilience, especially in concert with location transparency. The alternative,
shared-state concurrency, is hard to get right.

There is one further advantage: basing a distributed design exclusively on mes-
sages allows you to model and visualize the business processes within your applica-
tion as message flows. This helps avoid limitations to scalability or resilience early in
the planning process.

Pushing data forward

The fastest way for a message to travel from Alice via Bob to Charlie is if every sta-
tion along the path sends the message onward as soon as the station receives it. The
only delays in this process are due to the transmission of the message between the
stations and the processing of the message within each station.

As obvious as this statement is, it is instructive to consider the overhead added
by other schemes. Alice could, for example, place the message in shared storage
and tell Bob about it. Bob would then retrieve the message from storage, possibly
writing it back with some added information, and then tell Charlie about it, who
would also look at the shared storage. In addition to the two message sends, you
would have to perform three or four interactions with a shared storage facility.
Sharing mutable data between distributed entities is not the path to happiness.

Alice also might be concerned about whether Bob currently has time to deal
with the message, and might ask him for permission to send it. Bob would reply
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when ready, Alice would send the message, and then the same procedure would be
repeated between Bob and Charlie. Each of the two initial message sends would be
accompanied by two more messages that conveyed readiness: first, that of the sender
to send more; and then, that of the recipient to receive it.

Patterns like these are well established for purposes of persistence (such as dura-
ble message queues) or flow control (as we will discuss in depth in chapter 16), and
they have their uses; but when it comes to designing the flow of messages through a
Reactive application, it is important to keep the paths short and the messages flowing
in one direction as much as possible, always toward the logical destination of the
data. You will frequently need to communicate successful reception back to the
sender, but that data stream can be kept lean by employing batching to send cumula-
tive acknowledgments.

The previous examples were simplistic, but the same principle applies more
broadly. Coming back to the Gmail implementation, incoming emails that are sent to
the system’s users need to be transmitted from the SMTP module of the mail part of
the application into the per-user storage. On their way, they need to pass through the
module that applies user-defined filters to sort each email into the folder it belongs to.

As soon as emails are in per-user storage, they are visible to the user in folder list-
ings and so on; but in order to support a search function across the entire dataset
owned by a user, there needs to be an index that is kept up to date at all times. This
index could periodically sync up with the current state of the mailbox storage and
incorporate new emails, but that would be as inefficient as Bob periodically asking
Alice whether there has been a new message since the last one. Keeping the data flow-
ing forward means, in this case, that a copy of the email will be sent to the indexing
service after the email has been classified by the filter module, which updates the
index in real time. The full process is illustrated in figure 10.1.

In this fashion, the number of messages that are exchanged is kept to a minimum,
and data are treated while they are “hot,” which signifies both their relevance to the
user as well as their being in active memory in the computers involved. The alternative
of polling every few minutes would be to ask the storage service for an overview of its
data and thereby force it to keep the data in memory or read the data back in after a
resource shortage or outage.

SMTP Virus Filter Per-use Listings
server scanner module storage module

o o o O e —
Full-text Search
index module

e — B e —

Figure 10.1 Data flows forward from the source (the SMTP server module) toward the destination,
feeding to the indexing service in parallel to storing the raw data.
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Modeling the processes of your domain

Programming with messages exchanged between autonomous modules also lends
itself well to the use of ubiquitous language as practiced in domain-driven design. Cus-
tomers of the software development process, who can be users or product owners, will
be most comfortable describing what they want in terms that they understand. This
can be exploited for mutual benefit by turning the common language of the problem
domain into modules and messages of the application architecture, giving concrete
and rigorous definitions. The resulting model will be comprehensible for customers
and developers alike, and it will serve as a fixed point for communicating about the
emerging product during the development process.

We hinted at the reason behind this utility in section 2.6.2: anthropomorphic met-
aphors help humans visualize and choreograph processes. It is an act we enjoy, and
this creates a fertile ground for finding ways of moving abstract business requirements
into the realm of intuitive treatment. This is the reason we talk about Alice, Bob, and
Charlie instead of nodes A, B, and C; in the latter case, we would struggle to try to
keep our reasoning technical, whereas in the former case we can freely apply the
wealth of social experience we have accumulated. It is not surprising that we find
good analogies for distributed computing in our society: we are the prototypical dis-
tributed system!

Intuition is widely applicable in this process: when two facts need to be combined
to perform a certain task, then you know there must be one person who knows both
and combines them. This corresponds to the delimited consistency rule. Hierarchical
treatment of failure is based on how our society works, and message passing expresses
exactly how we communicate. You should use these helpers wherever you can.

Identifying resilience limitations

When laying out message flows within an application according to the business pro-
cesses you want to model, you will see explicitly who needs to communicate with
whom, or which module will need to exchange messages with what other module. You
have also created the hierarchical decomposition of the overall problem and thus
obtained the supervision hierarchy, and this will tell you which message flows are
more or less likely to be interrupted by failure.

When sending to a module that is far down in the hierarchy and performing work
that is intrinsically risky, such as using an external resource, you must foresee commu-
nication procedures for reestablishing the message flow after the supervisor has
restarted the module. As shown in figure 10.2, in some cases it can be better to send
messages via the supervisor from the start so the clients that are the senders of the
messages need not reacquire a reference to the freshly started target module so often.
They still will need to have recovery procedures in place to implement proper com-
partmentalization and isolation, but invoking those less frequently will further reduce
the effect of a failure.
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The client keeps a direct Supervisor Messages up and down the
reference to an actor that is i supervisor hierarchy should

expected to fail only rarely. /—/ be kept to a minimum.

Client Compute  |—»| -

The supervisor acts as a proxy
/ router. Sending messages down the

Proxy hierarchy is preferable to forcing the
Actors that write to disk are client to reestablish connections to
more prone to failure and so are an unreliable actor.
isolated from their clients by a
supervisor acting as a proxy. = H@

Figure 10.2 Messages may be sent directly to an actor or to a supervisor acting as a
router if the actor itself performs risky operations such as 1/0.

Messages may be sent directly to an actor or to a supervisor acting as a router if the
actor itself performs risky operations such as I/0.

For this reason, you will see some message flows that are directed from a module to
its descendant; but in most cases the supervisor is only involved as a proxy, and the
real client is not part of the same supervision subtree. In general, most message flows
are horizontal, and supervision is performed on the vertical axis, coming back to the
notion that usually the userand the owner of a service are not the same.

Estimating rates and deployment scale

Focusing on message flows and sketching them out across the application layout
allows you to make some educated guesses or apply input rates from previous experi-
ence or measurement. As messages flow through the system and are copied, merged,
split up, and disseminated, you can trace the associated rate information to obtain an
impression of the load the application modules will experience.

When the first prototypes of the most critical modules are ready for testing, you
can begin evaluating their performance and use Little’s formula to estimate the neces-
sary deployment size, as detailed in section 2.1.2. You can validate your assumption as
to which modules need to be scaled out for performance reasons and where you can
consolidate pieces that were split up erroneously.

The ability to perform these predictions and assessments stems from the fact that
you have defined messages as concrete units of work that can be counted, buffered,
spread out, and so on. You benefit from being explicit about message passing in the
design. If you were to hide the distributed nature of the program behind synchronous
RPC, this planning tool would be lost, and you would be more concerned about trying
to anticipate the size of the thread pools needed in your processes. That is more diffi-
cult to do because it requires understanding both the domain and the characteristics
of the system where the application will be deployed, which may vary over the life of
the system and across the different development, test, and production systems.
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Planning for flow control

Closely related to the estimation process is that you need to foresee bulkheads
between different parts of your application. When input message rates exceed the lim-
its you planned for, or when the dynamic scaling of the application is not fast enough
to cope with a sudden spike in traffic, you must have measures in place to contain the
overflow and protect the other parts of the system.

With a clear picture of how increased message rates are propagated within the
application, you can determine at which points requests will be rejected (presumably
close to the entrance of the application) and where you need to store messages on disk
so that they are processed after the spike has passed or more capacity has been provi-
sioned. These mechanisms will need to be activated at runtime when their time comes,
and this process should be fully automatic. Human responses are typically too slow,
especially on Sunday morning at 3:00 a.m. You need to propagate the congestion infor-
mation upstream to enable the sender of a message stream to act on it and refrain
from overwhelming the recipient. Patterns for implementing this are discussed in
chapter 15; of particular interest are Reactive Streams (www.reactive-streams.org) as a
generic mechanism for mediating back pressure in a distributed setting.

Summary

In this and the previous chapters in part 2 of the book, we have discussed the driving
principles behind a Reactive application design. The central concept is to decompose
the overall business problem in a hierarchical fashion according to divide et regna into
fully encapsulated modules that communicate only by asynchronous, nonblocking,
location-transparent message passing. The modularization process is guided and vali-
dated by the following rules:

= A modules does one job and does it well.

= The responsibility of a module is bounded by the responsibility of its parent.

= Module boundaries define the possible granularity of horizontal scaling by
replication.

= Modules encapsulate failure, and their hierarchy defines supervision.

= The lifecycle of a module is bounded by that of its parent.

= Module boundaries coincide with transaction boundaries.

We illuminated different paradigms ranging from logic programming to shared-state
concurrency and concluded that you should prefer a functional, declarative style
within these modules and consider the cost of distribution and concurrency when
choosing the granularity of your modules. You saw the advantages of explicitly model-
ing message flows within the system for the purposes of keeping communication paths
and latencies short, modeling business processes using ubiquitous language, estimat-
ing rates and identifying resilience limitations, and planning how to perform flow
control.
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Patterns

¢ have spent a fair amount of time so far discussing the what and why of
being Reactive. Now it is time to focus on the how. In part 3, we will present pat-
terns of development that will help you implement Reactive applications. We will
begin by discussing how to test to ensure that your application is Reactive so you
can build forward with confidence that you are meeting the Reactive contract,
from the smallest components to an entire cross—data center deployment. Then
we will delve into specific patterns for building Reactive systems across all dimen-
sions of Reactive concepts.

In this part, you will learn about the following:

= Testing Reactive systems, with a specific emphasis on asynchronous testing

= Layering internal and external fault tolerance into your application

= Managing the resources used by your Reactive application

= Managing the flow of messages and data within and between your applica-
tions

= Managing state and persist data in Reactive systems

We will present the individual patterns by first introducing their essence in one
short paragraph (for easy reference when you revisit them), followed by infor-
mation about where the pattern emerged, and then details of an example where
the pattern is applied to a concrete problem. Each pattern is then summarized
with the concerns it addresses, its quintessential features, and its scope of appli-
cability.

Part 2 discussed the building blocks on which a Reactive system can be built.
It may be worthwhile to frequently recall that background while reading for-
ward—in our experience, it is usually the second approach to a topic that brings
the “eureka!” moments.
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Testing reactive
applications

Now that we have covered the philosophy, we need to discuss how to verify that the
Reactive applications you build are elastic, resilient, and responsive. Testing is cov-
ered first because of the importance of proving Reactive capabilities. Just as test-
driven design (TDD) allows you to ensure that you are writing logic that meets your
requirements from the outset, you must focus on putting into place the infrastruc-
ture required to verify elasticity, resilience, and responsiveness.

What we will not cover is how to test your business logic—countless good
resources are available on that topic. We will assume that you have picked a meth-
odology and matching tools for verifying the local and synchronous parts of your
application and will focus instead on the aspect of distribution that is inherent to
Reactive systems.

How to test

Testing applications is the foremost effort developers can undertake to ensure that
code is written to meet all its requirements without defects. Here, a truly Reactive
application has several dimensions beyond merely fulfilling the specifications for
the logic to be implemented, guided by the principles of responsiveness, elasticity,
and resilience. In this book, where patterns are outlined to enable Reactive applica-
tions, testing is integral to each pattern described so that you can verify that your
application is Reactive. In this chapter, we lay the foundations for this by covering
common techniques and principles.

Before delving into patterns of testing, we must define a vocabulary. For anyone
who has worked for a mature development organization, testing as a means to

127



128

CHAPTER 11  Testing reactive applications

reduce risk is ingrained. Consulting firms are also well known for having stringent
testing methodologies, in order to reduce the risk of a lawsuit from clients who have
expectations about the level of quality for software being delivered. Every test plan is
reviewed and approved by each level of the project leadership, from team leads
through architects and project management, with the ultimate responsibility residing
with the partner or organizational stakeholder to ensure that accountability exists for
any improper behavior that may occur. As a result, many levels of functional tests have
been identified and codified into standards for successful delivery.

ERRORS VS. FAILURES In this chapter—in particular, when we touch on resil-
ience—it will be helpful to recall the distinction between errors and failures, as
defined by the glossary' of the Reactive Manifesto:

A failure is an unexpected event within a service that prevents it from continuing to
Junction normally. A failure will generally prevent responses to the current, and possibly
all following, client requests. This is in contrast with an error, which is an expected and
coded-for condition—for example an error discovered during input validation—that will
be communicated to the client as part of the normal processing of the message. Failures are
unexpected and will require inlervention before the system can resume al the same level of
operation. This does not mean that failures are always fatal, rather that some capacity of
the system will be reduced following a failure. Errors are an expected part of normal
operations, are dealt with immediately and the system will continue to operate at the same
capacity following an error.

NOTE Examples of failures are hardware malfunctions, processes terminat-
ing due to fatal resource exhaustion, and program defects that result in cor-
rupted internal state.

11.1.1 Unit tests

Unit tests are the best known of all the kinds of tests: an independent unit of source
code, such as a class or function, is tested rigorously to ensure that every line and con-
dition in the logic meets the specification outlined by the design or product owner.
Depending on how the code is structured, this can be easy or difficult—monolithic
functions or methods inside such a source unit can be difficult to test due to all the
varying conditions that can exist in these units.

It is best to structure code into individual, atomic units of work that perform only
one action. When this is done, writing unit tests for these units is simple—what are the
expected inputs that should successfully result in a value against which assertions can
be made, and what are the expected inputs that should not succeed and result in an
exception or error?

Because unit tests focus on whether the right response is delivered for a given set
of inputs, this level of testing typically does not involve testing for Reactive properties.

1

www.reactivemanifesto.org/glossary#Failure
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Component tests

Component tests are also generally familiar to anyone who writes tests: they test a ser-
vice’s application programming interface (API). Inputs are passed to each public
interface exposed by the API, and, for several variations of correct input data, it is veri-
fied that the service returns a valid response.

Error conditions are tested by passing invalid data into each API and checking that
the appropriate validation error is returned from the service. Validation errors should
be an important design consideration for any public API, in order to convey an explicit
error for any input that is deemed invalid for the service to handle appropriately.

Concurrency should also be explored at this level, where a service that should be
able to handle multiple requests simultaneously returns the correct value for each cli-
ent. This can be difficult to test for systems that are synchronous in nature, because
concurrency in this case can involve locking schemes; it can be difficult for the person
writing the test to create a setup to prove that multiple requests are being handled at
the same time.

At this level, you also start testing the responsiveness of a service, to see whether it
can reliably keep its service-level agreement (SLA) under nominal conditions. And, for
a component that acts as a supervisor for another, you will also encounter aspects of
resilience: does the supervisor react correctly to unexpected failures in its subordinates?

String tests

Now we diverge from the ordinary practices of testing, where you need to verify that
requests into one service or microservice that depends on other such services or
microservices can return the appropriate values. It is important to avoid getting
bogged down in the low-level details of functionality that has already been tested at
the unit- and component-test levels.

At this level, you also begin to consider failure scenarios in addition to the nominal
and error cases: how should a service react to the inability of its dependencies to per-
form their functions? In addition, it is important to verify that SLAs are kept when
dependent services take longer to respond than usual, both when they meet and when
they do not meet their respective SLAs.

Integration tests

Typically, systems you build do not exist in a vacuum; prior to this level of testing,
dependencies on external components are stubbed out or mocked so that you do not
require access to these systems to prove that everything else in the system meets your
requirements. But when you reach the level of integration testing, you should ensure
that such interactions are proven to work and handle nominal as well as erroneous
input as expected.

At this level, you also test for resilience by injecting failures: for example, by shut-
ting off services to see how their communication partners and supervisors react. You
also need to verify that SLAs are kept under nominal as well as failure scenarios and
under varying degrees of external load.
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User-acceptance tests

This final level of testing is not always explicitly executed. Most notable exceptions
include situations where the consequences of failing to meet the requirements are
severe (for example, space missions, high-volume financial processing, and military
applications). The purpose is to prove that the overall implementation meets the proj-
ect goals set by the client paying for the system to be built. But such testing can be
applicable for organizations who treat the product owner as a client and the delivery
team as the consulting firm. User-acceptance testing is the level at which the check-
writer defines proofs that the system meets their needs, in isolation from those tests
implemented by the consulting firm. This provides independent validation that the
application, with all its various components and services, fulfills the ultimate goal of
the project.

This level of testing may sound unnecessary for projects where an external contrac-
tor or firm has been hired to build the implementation, but we argue otherwise. One
of the great benefits of test tooling such as behavior-driven development (BDD)? is to
provide a domain-specificlanguage (DSL)? for testing that even nontechnical team
members can read or even implement. Using tools like well-known implementations
and variants of Cucumber (https://cucumber.io)—such as Cuke4Duke
(https://github.com/cucumber/cuke4duke), Specs2 (http://etorreborre.github.io/
specs2), and ScalaTest (www.scalatest.org)—provides business-process leaders on
teams with the capability to write and verify tests.

Black-box vs. white-box tests

When testing a component, you must decide whether the test will have access to the
component’s internal details. Such details include being able to send commands that
are not part of the public interface or to query the internal state that is normally
encapsulated and hidden. Testing without access to these is called black-box
testing because the component is viewed as a box that hides its inner workings in dark-
ness. The opposite is termed white-box testing because all details are laid bare, like in a
laboratory clean room where all internals can be inspected.

A Reactive system is defined by its responses to external stimulus, which means test-
ing for the Reactive properties of your applications or components will primarily be
black-box testing, even if you prefer to use white-box testing within the unit tests for
the business logic itself. As an example, you might have a minute specification that is
very precise about how the incoming data are to be processed, and the algorithm is
implemented such that intermediate results can be inspected along the way. The unit
tests for this part of the application will be tightly coupled to the implementation
itself; and for any change made to the internals, there is a good chance that some test
cases will be invalidated.

2 http://en.wikipedia.org/wiki/Behavior-driven_development
® http://en.wikipedia.org/wiki/Domain-specific_language
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This piece of code will form the heart of your application, but it is not the only
part: data need to be ingested for processing, the algorithm must be executed, and
results need to be emitted, and all these aspects require communication and are gov-
erned by Reactive principles. You will hence write other tests that verify that the core
algorithm is executed when appropriate and with the right inputs and that the output
arrives at the desired place after the allotted time in order to keep the SLA for the ser-
vice you are implementing. All these aspects do not depend on the internal details of
the core algorithm; they operate without regard to its inner workings. This has the
added benefit that the higher-level tests for responsiveness, elasticity, and resilience
will have a higher probability of staying relevant and correct while the core code is
being refactored, bugs are fixed, or new features are added.

Test environment

An important consideration for writing tests is that they must be executed on hard-
ware that is at least somewhat representative of that on which it will ultimately be
deployed, particularly for systems where latency and throughput must be validated (to
be discussed in section 11.7). This may provide some insight into how well a compo-
nent or an algorithm may perform, particularly if the task is CPU-intensive, relative to
another implementation tested on the same platform.

Many popular benchmarks in the development community are run on laptops:
machines with limited resources with respect to number of cores, size of caches and
memory, disk subsystems that do not perform data replication, and operating systems
that do not match intended production deployments. A laptop is typically constructed
with different design goals than a server-class machine, leading to different perfor-
mance characteristics where some activities may be performed faster and others slower
than on the final hardware. Although the laptop may have capabilities that exceed a
specific server-class machine (for example, a solid-state drive as opposed to a hard disk
for storage) and that make it perform better in certain situations, it likely will not rep-
resent the performance to be expected when the application reaches production. Bas-
ing decisions on the results of tests executed in such an environment may lead to poor
decisions being made about how to improve the performance of an application.

It is an expensive proposition to ask all companies, particularly those with limited
financial resources such as startups, to consider mirroring their production environ-
ment for testing purposes. But the cost of not doing so can be enormous if an organi-
zation makes a poor choice based on meaningless findings derived from a
development environment.

Note that deployment in the cloud can make testing more difficult as well. Hyper-
visors do not necessarily report accurately about the resources they make available in a
multitenancy environment, particularly with respect to the number of cores available
to applications at any given time. This can make for highly dynamic and unpredict-
able performance in production. Imagine trying to size thread pools in a very specific
way for smaller instances in the cloud where you are not expecting access to more
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than four virtual CPUs, but there is no guarantee you will receive that at any given
moment. If you must verify specific performance via throughput and/or latency, dedi-
cated hardware is a considerably better option.

Testing asynchronously

The most prominent difficulty that arises when testing Reactive systems is that the per-
vasive use of asynchronous message passing requires a different way of formulating test
cases. Consider testing a translation function that can turn Swedish text into English.

Listing 11.1 Testing a purely synchronous translation function

val input = "Hur mar du?"
val output = "How are you?"
translate (input) should be (output)

This example uses ScalaTest syntax. The first two lines define the expected input and
output strings, and the third line invokes the translation function with the input and
asserts that this should result in the expected output. The underlying assumption is
that the translate () function computes its value synchronously and that it is done
when the function call returns.

A translation service that can be replicated and scaled out will not have the possi-
bility of directly returning the value: it must be able to asynchronously send the input
string to the processing resources. This could be modeled by returning a Future® for
the result string that will eventually hold the desired value:

val input = "Hur mar du?"
val output = "How are you?"
val future = translate (input)

// what now?

The only thing you can assert at this point is that the function does indeed return a
Future, but probably there will not yet be a value available within it, so you cannot
continue with the test procedure.

Another presentation of the translation service might use Actor messaging, which
means the request is sent as a one-way message and the reply is expected to be sent as
another one-way message at a later point in time. In order to receive this reply, there
needs to be a suitable recipient:

val input = "Hur mdr du?"
val output = "How are you?"
val probe = TestProbe () <G AnAkkautﬂRy

translationService ! Translate (input, probe.ref)
// when can we continue?

* Recall that a Future is a handle to a value that may be delivered asynchronously at a later time. The code that
supplies the value will fulfill the corresponding Promise with it, enabling code that holds a reference to the
Future to react to the value using callbacks or transformations. Flip back to chapter 2 to refresh yourself on
the details if necessary.
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TestProbe is an object that contains a message queue to which messages can be sent
via the corresponding ActorRef. You use it as the return address in the message to the
translation service Actor. Eventually the service will reply, and the message with the
expected output string should arrive within the probe; but again, you cannot proceed
with the test procedure at this point because you do not know when exactly that will
be the case.

Providing blocking message receivers

NOTE The methods used to implement the solutions that follow typically are
not recommended for regular use because of their thread-blocking nature,
but bear with us: even for testing, we will present nicely nonblocking solutions
later. Using classical test frameworks can require you to fall back to what is
discussed here, and it is educational to consider the progression presented in
this section.

One solution to the dilemma is to suspend the test procedure until the translation ser-
vice has performed its work and then inspect the received value. In case of the Future,
you can poll its status in a loop:

while (!future.isCompleted) Thread.sleep(50)

This will check every 50 ms whether the Future has received its value or was com-
pleted with an error, not letting the test continue before one or the other occurs. The
syntax used is that of scala.concurrent.Future; in other implementations, the name
of the status query method could be isDone() (java.util.concurrent.Future),
isPending () (JavaScript Q), or inspect () (JavaScript when), to name a few examples.
In a real test procedure, the number of loop iterations must be bounded:

var 1 = 20
while (!future.isCompleted && i > 0) {
o=

Thread.sleep(50)

if (i == 0) fail("translation was not received in time")

This will wait only for up to roughly 1 second and fail the test if the Future is not com-
pleted within that time window. Otherwise, message loss or a programming error
could lead to the Future never receiving a value; then the test procedure would hang
and never yield a result.

Most Future implementations include methods that support awaiting a result syn-
chronously. A selection is shown in table 11.1.
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Table 11.1 Methods for synchronously awaiting a Future result

Language Synchronous implementation
Java future.get (1, TimeUnit.SECONDS);
Scala Await.result (future, 1.second)
C++ std: :chrono::milliseconds span(1000) ;

future.wait_ for (span) ;

These methods can be used in tests to retain the same test procedure as for the verifi-
cation of the synchronous translation service.

Listing 11.2 Awaiting the result blocks synchronously on the translation

val input = "Hur mar du?"
val output = "How are you?"
val result = Await.result (translate(input), 1.second)

result should be (output)

With this formulation, you can take an existing test suite for the translation service
and mechanically replace all invocations that used to return a strict value so that they
synchronously await the value using the returned Future. Because the test procedure
is typically executed on its own dedicated thread, this should not interfere with the
implementation of the service on its own.

It must be stressed that this technique is likely to fail if applied outside of testing
and in production code. The reason is that the caller of the translation service will
then no longer be an isolated external test procedure; it will most likely be another
service that may use the same asynchronous execution resources. If enough calls are
made concurrently in this thread-blocking fashion, then all threads of the underlying
pool will be consumed, idly waiting for responses, and the desired computation will
not be executed because no thread will be available to pick it up. Timeouts or dead-
lock will ensue.

Coming back to the test procedures, we still have one open question: how does this
work for the case of one-way messaging as in the Actor example? You used a
TestProbe as the return address for the reply. Such a probe is equivalent to an Actor
without processing capabilities of its own, which provides utilities for synchronously
awaiting messages. The test procedure would in this case look like the following.

Listing 11.3 Expecting replies with a TestProbe

val input = "Hur mar du?"

val output = "How are you?"

val probe = TestProbe ()

translationService ! Translate (input, probe.ref)
probe.expectMsg (1l.second, output)
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The expectMsg () method will wait up to 1 second for a new message to arrive and, if
that happens, compare it to the expected object—the output string, in this case. If
nothing or the wrong message is received, then the test procedure will fail with an
assertion error.

The crux of choosing timeouts

Most synchronous test procedures verify that a certain sequence of actions results in a
given sequence of results: set up the translation service, invoke it, and compare the
returned value to the expected one. This means the aspect of time does not play a role
in these tests: the test result will not depend on whether running the test is a matter of
milliseconds or takes a few hours. The basic assumption is that all processing occurs in
the context of the test procedure, literally beneath its frame of control. Therefore, it is
enough to react to returned values or thrown exceptions. There will always be a
result—infinite loops will be noticed eventually by the human observer.

In an asynchronous system, this assumption no longer holds: it is possible that the
execution of the module under test occurs far removed from the test procedure, and
replies may not only arrive late, they can also be lost. The latter can be due to pro-
gramming errors (not sending a reply message, not fulfilling a Promise in some edge
case, and so on), or it can be due to failures like message loss on the network or
resource exhaustion—if an asynchronous task cannot be enqueued to be run, then its
result will never be computed.

For this reason, it is unwise to wait indefinitely for replies during test procedures,
because you do not want the entire test run to grind to a halt halfway through just
because of one lost message. You need to place an upper bound on waiting times, fail
tests that violate it, and move on.

This upper bound should be long enough to allow natural fluctuations in execu-
tion times without leading to sporadic test failures; such flakiness would waste
resources during development in order to investigate each test failure as to whether it
was legitimate or bad luck. Typical sources of bad luck include garbage-collection
pauses, network hiccups, and temporary system overload, and all of these can cause a
message send that normally takes microseconds to be delayed by up to several seconds.

On the other hand, the upper bound needs to be as low as possible, because it
defines the time it takes to give up and move on. You do not want to wait for a verifica-
tion run to take several hours when one hour would suffice.

SCALING TIMEOUTS FOR DIFFERENT TEST ENVIRONMENTS

Choosing the right timeouts is therefore a compromise between worst-case test execu-
tion time and false positive error probability. On current notebook computers, it is
realistic to expect asynchronous scheduling to occur on the scale of tens of millisec-
onds. Normally, it happens much faster; but if you are, for example, executing a large
test suite with thousands of tests on the JVM, you need to take into account that the
garbage collector will occasionally run for a few milliseconds, and you do not want
that to lead to test failures because it is expected behavior for a development system.
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If you develop a test suite this way and then let it be run on a continuous integra-
tion server in the cloud, you will discover that it fails miserably. The server will likely
share the underlying hardware with other servers through virtualization, and it may
also perform several test runs simultaneously. These and other effects of not having
exclusive access to hardware resources lead to greater variations in the execution tim-
ing and thereby force you to relax your expectations as to when processing should
occur and replies should be received.

Toward this end, many asynchronous testing tools as well as the test suites them-
selves contain provisions to adapt the given timeouts to different runtime environ-
ments. In its simplest form, this means scaling by a constant factor or adding a
constant amount to account for the expected variance.

NOTE Adapting timeouts to different runtime environments is realized in the
ScalaTest framework by mixing in the trait ScaledTimeSpans and overriding
the method spanScaleFactor (). Another example is the Akka test suite,
which allows the external configuration of a scaling factor that is applied to
durations used in TestProbe.expectMsg() and friends (the configuration
key is akka.test.timefactor).

TESTING SERVICE TIMINGS
Another issue can arise with testing asynchronous services: due to the inherent free-
dom of when to reply to a request, we can imagine services that reply only after a cer-
tain time has passed or that trigger the periodic execution of some action. All such
use cases can be modeled as external services that arrange for messages to be sent at
the right times so that other services can depend on them for their scheduling needs.
The difference between testing the timing behavior of a service versus using time-
outs for verifying its correctness is illustrated in figure 11.1. If you want to assert that

Action Usual Outliers Permissible failure
o scheduled execution times rate governed by SLA
£
£ ! | |
ke | | Time
Premature execution Belated execution
forbidden forbidden

@ Computation Outliers due to GC pauses, Test timeout
§ initiated scheduling, resource conflicts \
©
g \ : |
] |
o ' .
o ‘ Time
£
3 Usual execution Prolonged execution
[ ’

times on warm system due to startup effects

Figure 11.1 Testing a system for correctness and testing it for its
timing properties are significantly different activities.
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the correct answer is received, you choose a timeout that bounds the maximal waiting
time such that normally the test succeeds even if the execution is delayed much lon-
ger than would be expected during production use. Testing a service for its timing
shifts the aspect of time from a largely ignored bystander role into the center of focus:
you now need to put more stringent limits on what to accept as valid behavior, and you
may need to establish lower bounds as well.

How do you implement a test suite for a scheduler? As an example, the following
listing formulates a test case for a scheduler service that is implemented as an Actor,
using again a TestProbe as the communication partner that is controlled by the test
procedure.

Listing 11.4 Using a TestProbe to receive the response from the scheduler

val probe = TestProbe ()

val start = Timestamp.now
scheduler ! Schedule (probe.ref, "tick", 1.second)
probe.expectMsg (2.seconds, "tick") <+—— Checks that it arrives

val stop = Timestamp.now

val duration = stop - start
assert (duration > 950.millis, "tick came in early")
assert (duration < 1050.millis, "tick came in late")

Here, verification proceeds in two steps. First, you verify that the scheduled message
does indeed arrive, using a relaxed time constraint with reasoning similar to that of
the timing-agnostic tests discussed in the previous section. Second, you note the time
that elapsed between sending the request and receiving the scheduled message and
assert that this time interval matches the requested schedule.

The second part is subject to all the timing variations due to external influences
earlier, which poses a problem. You cannot evade the issues by relaxing the verifica-
tion constraints this time, because that would defeat the purpose of the test. This
leaves only one way forward: you need to run these timing-sensitive tests in an environ-
ment that does not suffer from additional variances. Instead of including them with
all the other test suites that you run on the continuous integration servers, you may
choose to execute them only on reliable and fast developer machines, which work
much better in this regard.

But this is also problematic in that a scheduler that passes these local tests under
ideal circumstances may fail to meet its requirements when deployed in production.
Therefore, such services need to be tested in an environment that closely matches the
intended production environment, in terms of both the hardware platforms used and
the kind of processes running simultaneously and their resource configurations. It
makes a difference if the timing-sensitive service commands independent resources or
shares a thread pool with other computation.
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TESTING SERVICE-LEVEL AGREEMENTS

In chapter 1, we discussed the importance of establishing reliable upper bounds for
service response times in order to conclude whether the service is currently working.
In other words, each service needs to abide by its SLA in addition to performing the
correct function. The test procedures you have seen so far only concentrate on verify-
ing that a given sequence of actions produces the right sequence of results, where in
certain cases the result timing may be constrained as well. To verify the SLA, itis neces-
sary to test aspects like the 95th percentile of the request latency: for example, assert-
ing that it must be less than 1 ms. These tests are inherently statistical in nature,
necessitating additions to your set of testing tools.

Formulating test cases concerned with latency percentiles for a given request type
means you need to perform such requests repeatedly and keep track of the time elaps-
ing between each matching request-response pair. The simplest way to do this is to
sequentially perform one request after the other, as shown in the following example,
which tests 200 samples and discards the slowest 5%.

Listing 11.5 Determining 95th percentile latency

val probe = TestProbe ()

val echo = echoService ("keepSLA") <—— Obtains a service ActorRef
val N = 200

val timings = for (i <- 1 to N) yield { Generates strings
val string = s"test$i" test1, test2, ... testN
val start = Timestamp.now
echo ! Request (string, probe.ref)

probe.expectMsg (100.millis, s"test run $i", Response(string))

val stop = Timestamp.now .
P P Includes a hint about
stop - start

} which step failed, in
case of a timeout

val sorted = timings.sorted
val ninetyfifthPercentile = sorted.dropRight (N * 5 / 100).last Discards the

0
ninetyfifthPercentile should be < 1.millisecond top 5%

This test procedure takes note of the response latency for each request in a normal
collection, which is sorted in order to extract the 95th percentile (by dropping the
highest 5% and then looking at the largest element). This shows that no histogram-
ming package or statistics software is necessary to perform this kind of test, so there is
no excuse for skimping on their use. To learn more about the performance character-
istics and dynamic behavior of the software you write, though, it is reccommended that
you visualize the distribution of request latencies; this can be done for regular test
runs or in dedicated experiments, and statistics tools will help in this regard.

In the previous listing, requests are fired one by one, so the service will not experi-
ence any load during this procedure. The obtained latency values will therefore
reflect the performance under ideal conditions; it is likely that under nominal pro-
duction conditions, the timings will be worse. In order to simulate a higher incoming
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request rate—corresponding to multiple simultaneous uses of the same service
instance—you need to parallelize the test procedure, as shown in figure 11.2. The eas-
iest way to do this is to use Futures.

Listing 11.6 Generating the test samples in parallel with the Ask pattern

val echo = echoService ("keepSLAfuture")
val N = 10000
val timingFutures = for (i <- 1 to N) yield {

val string = s"test$Si"
val start = Timestamp.now
(echo ? (Request(string, ))) collect { <—— Using the Ask pattern
case Response( string”) => Timestamp.now - start
val futureOfTimings = Future.sequence (timingFutures)

val timings = Await.result (futureOfTimings, 5.seconds)
val sorted = timings.sorted
val ninetyfifthPercentile = sorted.dropRight (N * 5 / 100).last Discards the

ninetyfifthPercentile should be < 100.milliseconds top 5%
This time, you use the ? operator to turn the one-way Actor message send into a
request-response operation: this method internally creates an ActorRef that is cou-
pled to a Promise and uses the passed-in function to construct the message to be sent.
Scala’s function-literal syntax makes this convenient using the underscore short-
hand—you can mark the “hole” into which the ActorRef will be placed. The first mes-
sage sent to this ActorRef will fulfill the Promise, and the corresponding Future is
returned from the ? method (pronounced “ask”).

You then transform this Future using the .collect combinator: if it is the
expected response, you replace that with the elapsed time. It is essential to remember
that Future combinators execute when the Future is completed, in the future. Hence,
taking a timestamp in the collect transformation serves as the second look to the
watch, whereas the result of the first look was obtained from the test procedure’s con-
text and stored in the start timestamp that you then later reference from the Future

transformation.
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The for-comprehension returns a sequence of all Futures, which you can turn into a
single Future holding a sequence of time measurements by using the Future
.sequence () operation. Synchronously awaiting the value for this combined Future lets
you then continue in the same fashion as for the sequentially requesting test procedure.

If you execute this parallel test, you will notice that the timings for the service are
markedly changed for the worse. This is because you very rapidly fire a burst of
requests that pile up in the EchoService’s request queue and then are processed one
after the other. On my machine, I had to increase the threshold for the 95th percen-
tile to 100 ms; otherwise, I experienced spurious test failures.

Just as the fully sequential version exercised an unrealistic scenario, the fully paral-
lel one tests a rather special case as well. A more realistic test would be to limit the
number of outstanding requests to a given number at all times: for example, keeping
500 in flight. Formulating this with Futures will be tedious and complex;® in this case,
it is preferable to call on another message-passing component for help. The following
example uses an Actor to control the test sequence.

Listing 11.7 Using a custom Actor to bound the number of parallel test samples

val echo = echoService ("keepSLAparallel™")

val probe = TestProbe ()

val N = 10000

val maxParallelism = 500

val controller = system.actorOf (Props[ParallelSLATester],
"keepSLAparallelController")

controller ! TestSLA(echo, N, maxParallelism, probe.ref)

val result = probe.expectMsgType [SLAResponse]

val sorted = result.timings.sorted

val ninetyfifthPercentile = sorted.dropRight (N * 5 / 100).last Discards the

ninetyfifthPercentile should be < 2.milliseconds top 5%
You can find the code for the Actor in the accompanying source code archives. The
idea is to send the first maxParallelism requests when starting the test and then send
one more for each received response until all requests have been sent. For each
request that is sent, a timestamp is stored together with the unique request string;
when the corresponding response is received, the current time is used to calculate this
request’s response latency. When all responses have been received, a list of all laten-
cies is sent back to the test procedure in an SLAResponse message. From there on, the
calculation of the 95th percentile proceeds as usual.

REFINING PARALLEL MEASUREMENTS Looking at the code in the source
archive, you will notice listing 11.7 is slightly simplified: instead of directing
the responses to the ParallelSLATester, a dedicated Actor is used, which
timestamps the responses before sending them on to the ParallelSLATester.

® Assuming that the responses can arrive in a different order than the order in which you sent the correspond-
ing requests. This assumption is necessary to make for a service that can be scaled by replication.
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The reason is that otherwise the timings might be distorted, because the
ParallelSLATester might still be busy sending requests when a response
arrives, leading to an artificially prolonged time measurement.

Another interesting aspect is the thread pool configuration. You are wel-
come to play with the parallelism-max setting to find out when the results
are stable across multiple test runs and when they become optimal; for a dis-
cussion, see the comments in the source code archives.

11.3.3 Asserting the absence of a message

All verification you have done so far concerned messages that were expected to arrive,
but it is equally important to verify that certain messages are not sent. When compo-
nents interact with protocols that are not purely request-response pairs, this need
arises frequently:

= After cancelling a repeating scheduled task
= After unsubscribing from a publish-subscribe topic
= After having received a dataset that was transferred via multiple messages

Depending on whether the messaging infrastructure maintains the ordering for mes-
sages traveling from sender to recipient, you can either expect the incoming message
stream to cease immediately after having confirmation that the other side will stop, or
allow for some additional time during which stragglers may still arrive. The absence of
amessage can only be asserted by letting a certain amount of time elapse and verifying
that indeed nothing is received during this time.

Listing 11.8 Verifying that no additional messages are received

val probe = TestProbe ()

scheduler ! ScheduleRepeatedly (probe.ref, 1l.second, "tick")

val token = expectMsgType [SchedulerToken]

probe.expectMsg (1500.millis, "tick")

scheduler ! CancelSchedule (token, probe.ref)

probe.expectMsg (100.millis, ScheduleCanceled) Now you don’t expect
probe.expectNoMsg (2.seconds) QAAJ any more ticks.

Looking at the expected message timings and summing them up, this procedure
should take a bit more than 3 seconds: 1 for the first tick to arrive, some milliseconds
for the communication with the scheduler service, and 2 more seconds during which
you do nothing. Verifications like this increase the time needed to run the entire test
suite, usually even more than most tests that spend their time more actively. It is there-
fore desirable to reduce occurrences of this pattern as much as possible.

One way to achieve this is to rely on message-ordering guarantees where available.
Imagine a service implementing data ingestion and parsing: you send it a request that
points it to an accessible location—a file or a web resource—and you get back a series
of data records followed by an end-of-file (EOF) marker. Each instance of this service
processes requests in a purely sequential fashion, finishing one response series before
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picking up the next work item. This makes the service easier to write, and scaling it
out will be trivial by running multiple instances in parallel; the only externally visible
effect is that requests need to contain a correlation ID, because multiple series can be
in flight at the same time. The following test procedure demonstrates the interface.

Listing 11.9 Matching responses to requests with a correlation ID

val probe = TestProbe () Includes a correlation
ingestService ! Retrieve(url, "myID", probe.ref) ID in the message
val replies = probe.receiveWhile (1.second)
case r @ Record("myID", _) => r QT Matches only responses with
) the correct correlation ID

probe.expectMsg (0.seconds, EOF)

j EOF is not handled and

will terminate the loop

Instead of following this with an expectNoMsg () call to verify that nothing arrives
after the EOF message, you might append a second query. During testing, you can
ensure that only one instance is active for this service, which means as soon as you
receive the elements of the second response series, you can be sure the first one is
properly terminated.

Providing synchronous execution engines

The role of timeouts in tests that are not timing-sensitive is only to bound the waiting
time for a response that is expected. If you could arrange for the service under test to
be executed synchronously instead of asynchronously, then this waiting time would be
zero: if the response is not ready when the method returns, then it also will not
become available at a later time, because no asynchronous processing facilities are
there to enable this.

Such configurability of the execution mechanism is not always available: synchro-
nous execution can be successful only if the computation does not require intrinsic
parallelism. It works best for processes that are deterministic, as discussed in chapter 9.
If a computation is composed from Futures in a fully nonblocking fashion, then this
criterion is satisfied. Depending on the platform that is used, there may be several ways
to remove asynchrony during tests. Some implementations, like Scala’s Future, are
built on the notion of an ExecutionContext that describes how the execution is real-
ized for all tasks involved in the processing and chaining of Futures. In this case, the
only preparation necessary is to allow the service to be configured with an Execution-
Context from the outside, either when it is constructed or for each single request.
Then the test procedure can pass a context that implements a synchronous event loop.
Revisiting the translation service, this might look like the following.
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Listing 11.10 Forcing synchronous execution: safe only for nonblocking processes

val input = "Hur mar du?"

val output = "How are you?"

val ec = SynchronousEventLoop

val future = translate(input, ec)
future.value.get should be (Success (output))

For implementations that do not allow the execution mechanism to be configured in
this fashion, you can achieve the same effect by making the result container configu-
rable. Instead of fixing the return type of the translate method to be a Future, you can
abstract over this aspect and allow any composable container to be passed in.® Future
composition uses methods like map/flatMap/filter (Scala Future), then (JavaScript),
and thenAccept (Java CompletionStage). The only source code change needed is to
configure the service to use a specific factory for creating Futures so that you can inject
one that performs computations synchronously.

When it comes to other message-based components, chances are not as good that
you can find a way to make an asynchronous implementation synchronous during
tests. One example is the Akka implementation of the Actor model, which allows the
execution of each Actor to be configured by way of selecting a suitable dispatcher.
For test purposes, there exists a CallingThreadDispatcher that processes each mes-
sage directly within the context that uses the tell operator. If all Actors that contrib-
ute to the function of a given service are using only this dispatcher, then sending a
request will synchronously execute the entire processing chain such that possible
replies are already delivered when the tell operator invocation returns. You can use
this as follows.

Listing 11.11 Processing messages on the calling thread with CallingThreadDispatcher

val translationService = system.actorOf (
Props [TranslationServiceActor] .withDispatcher ( Uses a calling
"akka.test.calling-thread-dispatcher")) thread dispatcher
val input = "Hur mar du?"
val output = "How are you?"

val probe = TestProbe ()
translationService ! Translate (input, probe.ref)
probe.expectMsg (0.seconds, output) <+—— Asserts immediately

The important change is that the Props describing the translation service Actor are
configured with a dispatcher setting instead of leaving the decision to the Actor-
System. This needs to be done for each Actor that participates in this test case, meaning

% In other words, you abstract over the particular kind of monad that is used to sequence and compose the com-
putation, allowing the test procedure to substitute the Future monad for the identity monad. In dynamically
typed languages, it is sufficient to create the monad’s unit () and bind () functions, whereas in statically
typed languages extra care needs to be taken to express the higher-kinded type signature of the resulting
translate () method
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if the translation service creates more Actors internally, it must be set up to propagate
the dispatcher configuration setting to these (and they to their child Actors, and so on;
see the source code archives for details). Note that this also requires several other
assumptions:

= The translation service cannot use the system’s scheduler, because that would
invoke the Actors asynchronously, potentially leading to the output not being
transmitted to the probe when you expect it to be.

= The same holds for interactions with remote systems, because those are by
nature asynchronous.

= Failures and restarts would in this case also lead to asynchronous behavior,
because the translation service’s supervisor is the system guardian that cannot
be configured to run on the CallingThreadDispatcher.

= None of the Actors involved are allowed to perform blocking operations that
might depend on other Actors running on the CallingThreadDispatcher,
because that would lead to deadlocks.

The list of assumptions could be continued with minor ones, but it should be clear
that the nature of the Actor model is at odds with synchronous communication: it
relies on asynchrony and unbounded concurrency. For simple tests—especially those
that verify a single Actor—it can be beneficial to go this route, whereas higher-level
integration tests involving the interplay of multiple Actors usually require asynchro-
nous execution.

So far, we have discussed two widely used messaging abstractions, Futures and
Actors, and each of them provides the necessary facilities to do synchronous testing if
needed. Due to the ubiquity of this form of verification, you will likely continue to see
this support in all widespread asynchronous messaging abstractions, although there
are already environments that are heavily biased against synchronous waiting—for
example, event-based systems like JavaScript—and that will drive the transition toward
fully asynchronous testing. We will embark on this spiritual journey in the following
sections.

11.3.5 Asynchronous assertions

The first step toward asynchronous testing is the ability to formulate an assertion that
will hold at a future point in time. In a sense, you have seen a special case of this
already in the form of TestProbe.expectMsg (). This method asserts that within a
time interval from now on, a message will be received that has the given characteris-
tics. A generalization of this mechanism is to allow arbitrary assertions to be used.
ScalaTest offers this through its eventually construct. Using this, you can rewrite the
translation service test case as follows.
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Listing 11.12 Moving the timeout parameters to an external configuration

val input = "Hur mar du?"
val output = "How are you?"
val future = translate (input)
eventually {
future.value.get should be (Success (output))
}

This uses an implicitly supplied PatienceConfiguration that describes the time
parameters of how frequently and for how long the enclosed verification is attempted
before test failure is signaled. With this helper, the test procedure remains fully syn-
chronous, but you obtain more freedom in expressing the conditions under which it
will proceed.

11.3.6 Fully asynchronous tests

We have found ways to express test cases for Reactive systems within the framework of
traditional synchronous verification procedures, and most systems to date are tested
in this fashion. But it feels wrong to apply a different set of tools and principles in the
production and verification code bases: there is an impedance mismatch between
these two that should be avoidable.

The first step toward fixing this was taken when you devised an Actor to verify the
response latency characteristics of EchoService. ParallelSLATester is a fully Reac-
tive component that you developed to test a characteristic of another Reactive compo-
nent. The only incongruous piece in that test was the synchronous procedure used to
start the test and await the result. What you would like to write instead is the following.

Listing 11.13 Handling responses asynchronously to create fully Reactive tests

val echo = echoService()
val N = 10000
val maxParallelism = 500

val controller = system.actorOf (Props[ParallelSLATester],
"keepSLAparallelController")
val future = controller ? TestSLA(echo, N, maxParallelism, )

for (SLAResponse (timings, outstanding) <- future) yield {

val sorted = result.timings.sorted
val ninetyfifthPercentile = sorted.dropRight (N * 5 / 100).last Discards the

0
ninetyfifthPercentile should be < 2.milliseconds top 5%

}

Here, you initiate the test by sending the TestSLA command to the Actor, using the
Ask pattern to get back a Future for the later reply. You then transform that Future to
perform the calculation and verification of the latency profile, resulting in a Future
that will either be successful or fail, depending on the outcome of the assertion in the
next-to-last line. In traditional testing frameworks, this Future will not be inspected,
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making this approach futile. An asynchronous testing framework, on the other hand,
will react to the completion of this Future in order to determine whether the test was
successful.

Combining such a test framework with the async/await extension available for .Net
languages or Scala makes it straightforward and easily readable to write fully asynchro-
nous test cases. The running example of the translation service would look like this.

Listing 11.14 Using async and await to improve readability of asynchronous tests

async {
val input = "Hur mar du?"
val output = "How are you?"

await (translate (input) .withTimeout (5.seconds)) should be (output)

}

This has exactly the same structure as the initial synchronous version in listing 11.1,
marking out the asynchronous piece with await () and wrapping the entire case in an
async{} block. The advantage over the intermediate version that used the blocking
Await.result () construct in listing 11.2 is that the testing framework can execute
many such test cases concurrently, reducing the overall time needed for running the
entire test suite. This also means you can relax the timing constraints, because a miss-
ing reply will not bind as many resources as in the synchronous case. The Future for
the next step of the test procedure will not be set in motion; the 5 seconds in this
example will also not tick so heavily on the wall clock, because other test cases can
make progress while this one is waiting.

As mentioned earlier, JavaScript is an environment that is heavily biased toward
asynchronous processing; blocking test procedures as are common in other languages
are not feasible in this model. As an example, you can implement the translation ser-
vice test using Mocha and Chai assertions for Promises.

Listing 11.15 Testing the translation service in JavaScript

describe ('Translator', function() {
describe ('#translate() ', function() {
it ('should yield the correct result',6 function() {
return tr.translate ('Hur mar du?')
.should.eventually.equal ('How are you?') ;

The Mocha test runner executes several test cases in parallel, each returning a Promise
as in this case. The timeouts after which tests are assumed to be failed if they did not
report back can be configured at each level (globally, per test suite, or per test case).
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TESTING SERVICE-LEVEL AGREEMENTS

With test cases being written in an asynchronous fashion, you can revisit the latency
percentile verification from another angle. The framework could allow the user to
describe the desired response characteristics in addition to the test code and then
automatically verify those by running the code multiple times in parallel. Doing so
sequentially would be prohibitively expensive in many cases—you would not volun-
tarily have tested 10,000 iterations of the EchoService in the sequential version in list-
ing 11.5—and, as discussed, it also would not be a realistic measurement. Going back
to the SLA test of the echo service in listing 11.7, the test framework would replace the
custom ParallelSLATester Actor that was used to communicate with the service
under test.

Listing 11.16 Using a request-response factory to generate test traffic

async {
val echo = echoService ()
val gauge = new LatencyTestSupport (system)
val latenciesFuture =

gauge .measure (count = 10000, maxParallelism = 500) { i =>
val message = s'"tests$Si"
SingleResult ( (echo ? (Request (message, _))), Response (message))
}
val latencies = await (latenciesFuture, 20.seconds)

latencies.failureCount should be (0)
latencies.quantile (0.99) should be < 10.milliseconds

This is possible because the interaction between the test and the service is of a specific
kind: you are performing a load test for a request-response protocol. In this case, you
only need a factory for request-response pairs that you can use to generate the traffic
as needed, and the shape of the traffic is controlled by the parameters to the
measure () method. The asynchronous result of this measurement is an object that
contains the actual collections of results and errors that the 10,000 individual tests
produced. These data can then easily be analyzed in order to assert that the latency
profile fulfills the service-level requirements.

11.3.7 Asserting the absence of asynchronous errors

The last consideration when testing asynchronous components is that not all interac-
tions with them will occur with the test procedure. Imagine a protocol adapter that is
mediating between two components that have not been developed together and
therefore do not understand the same message formats. In the running example with
the translation service, you may at first have a version of the API that is based on text
string serialization (version 1).
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Listing 11.17 Simple translation API

case class TranslateVl (query: String, replyTo: ActorRef)

The languages to be used for input and output are encoded within the query string,
and the reply that is sent to the replyTo address will be just a String. This works for a
proof of concept, but later you may want to replace the protocol with a more strictly
typed, intuitive version (version 2).

Listing 11.18 Adding stricter types to the translation API

case class TranslateV2 (phrase: String,
inputLanguage: String,
outputLanguage: String,
replyTo: ActorRef)

sealed trait TranslationResponseV2
case class TranslationV2 (inputPhrase: String,
outputPhrase: String,
inputLanguage: Language,
outputLanguage: Language)
case class TranslationErrorV2 (inputPhrase: String,
inputLanguage: Language,
outputLanguage: Language,
errorMessage: String)

This redesign allows more advanced features like automatic detection of the input
language to be implemented. Unfortunately, other teams have progressed with imple-
menting a translator using the version 1 protocol already. Let us assume that the deci-
sion is made to bridge between this and new clients by adding an adapter that accepts
requests made with version 2 of the protocol and serves the replies that are provided
by a translation service speaking the version 1 protocol in the background.

For this adapter, you will typically write integration tests, making sure that given a
functioning version 1 back end, the adapter correctly implements version 2 of the pro-
tocol. To save maintenance effort, you will also write dedicated tests that concentrate
on the transformation of requests and replies; this will save time when debugging fail-
ures, because you can more easily associate them with either the adapter or the back-
end service. A test procedure could look like this.

Listing 11.19 Testing the translation version adapter

val vl = TestProbe ()

val v2 = system.actorOf (TranslationService.propsV2 (vl.ref)) .

val client = TestProbe () <FJ|nmamsa
request to

v2 | TranslateV2 ("Hur m&r du?", "sv", "en", client.ref) the adapter

val reqgl = vl.expectMsgType [TranslateVl]

N Verifies that the adapter asks
reql.query should be("sv:en:Hur mdr du?")

the V1 service back end
reql.replyTo ! "How are you?" <+ |nitiates a reply
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client.expectMsg (TranslationV2 ("Hur mar du?", 3
Verifies that the adapter

"How are you?", "sv'", "en")) transforms it correctly

v2 | TranslateV2 ("Hur &r laget?", "sv", "en", client.ref) Repeatsﬁw

val reg2 = vl.expectMsgType [TranslateVil] <F41 translation errors
reg2.query should be("sv:en:Hur ar laget?") <

reqg2.replyTo ! "error:cannot parse input 'Hur ar laget?'"

client.expectMsg (TranslationErrorV2 ("Hur ar laget?", "sv", "en",

"cannot parse input 'Hur ar laget?'")) L. .
P P d Implicitly verifies that no other

v1.expectNoMsg (3.seconds) communication happened

Here the test procedure drives both the client side and the back-end side, stubbing
each of them out as a TestProbe. The only active component that is executed nor-
mally is the protocol adapter. This allows you to not only formulate assertions about
how the clientside protocol is implemented, but also control the internal interac-
tions. One such assertion is shown in the last line, where you require the adapter to
not make gratuitous requests to the service it is wrapping. Another benefit is that you
can inspect the queries that are sent—see both occurrences of the TranslateVl
type—and fail early and with a clear error message if those are incorrect. In an inte-
gration test, you would see only overall failures in this case.

This approach works well for such a one-to-one adapter, but it can become tedious
or brittle for components that converse more intensely or more diversely with differ-
ent back ends. There is a middle ground between integration testing and fully con-
trolled interactions: you can stub out the back-end services such that they are still
executed autonomously, but in addition to their normal function, they keep the test
procedure apprised of unexpected behavior of the component under test. To keep
things simple, we will demonstrate this on the translation service adapter again.

Listing 11.20 Mocking error behavior

case object ExpectNominal
case object ExpectError
case class Unexpected(msg: Any)

class MockVl (reporter: ActorRef) extends Actor {
def receive = initial

override def unhandled(msg: Any) = {
reporter ! Unexpected (msg)

}

val initial: Receive = {
case ExpectNominal => context.become (expectingNominal)
case ExpectError => context.become (expectingError)

}

val expectingNominal: Receive = ({
case TranslateVl("sv:en:Hur mar du?", replyTo) =>
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replyTo ! "How are you?"
context.become (initial)

}

val expectingError: Receive = {
case TranslateVl (other, replyTo) =>
replyTo ! s"error:cannot parse input 'Sother'"
context .become (initial)

This mock of the version 1 back end will provide the expected responses during a test,
but it will do so only at the appropriate points in time: the test procedure has to
explicitly unlock each of the steps by sending either an ExpectNominal or an Expect-
Error message. Using this, the test procedure changes to the following.

Listing 11.21 Testing for correct error handling

val asyncErrors = TestProbe ()

val vl = system.actorOf (mockVliprops (asyncErrors.ref))
val v2 = system.actorOf (propsV2(vl)) .
val client = TestProbe () QJ Initiates a request
to the adapter
vl ! ExpectNominal
v2 ! TranslateV2 ("Hur mar du?", "sv", "en", client.ref) Certifies that
the adapter
client.expectMsg (TranslationVv2 ("Hur mar du?", "How are you?", transforms it
"y, venh)) correctly
asyncErrors.expectNoMsg (0.seconds) <+—— Nonblocking check for async errors
vl ! ExpectError
v2 | TranslateV2 ("Hur ar laget?", "sv", "en", client.ref)
client.expectMsg(TranslationErrorV2 ("Hur a&r laget?", "sv", "en",
"cannot parse input 'sv:en:Hur ar laget?'"))
asyncErrors.expectNoMsg (1.second) <—— Final check for async errors

The test procedure in this case still drives both the client side and the back end, but
the latter is more autonomous and allows the test to be written more concisely. The
first verification of the absence of asynchronous errors is performed such that it does
not introduce additional latency; its purpose is only to aid in debugging test failures in
case an asynchronous error from the nominal test step does not subsequently lead to
directly visible test failures but instead only bubbles up in the last line of the test.

Testing nondeterministic systems

The previous section introduced the difficulties that arise from the asynchronous
nature of Reactive systems. This had several interesting consequences even though the
process that you were testing was fully deterministic: given a certain stimulus, the com-
ponent will eventually respond with the correct answer—the translation of a given
phrase should always yield the same result. In chapter 8, we discussed that in distributed
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systems, determinism cannot always be achieved: the main reasons are unreliable
means of communication and inherent concurrency. Because distribution is integral to
Reactive system design, you nevertheless need to be able to test components that
exhibit genuine nondeterminism. Such tests are harder to express because the order of
execution is not specified as a sequential progression of logic, and for a single test pro-
cedure, different outcomes or state transitions are possible and permissible.

The trouble with execution schedules

Anyone who has written tests that are based on a particular event occurring within a
specified time has likely seen spurious failures, where a test succeeds most of the time
but fails on occasion. What if the execution is correct but the timings are different
because of varying insertion orders into queues, or different values being returned
based on what was requested in what order?

It is imperative that application developers define all the correct behaviors that
can occur based on varying execution schedules. This can be difficult, because it
implies that the variance is finite and knowable; and the larger a system is, and with
greater numbers of interactions, the more difficult this can be with respect to preci-
sion. An example of a tool that supports this kind of functionality is Apache JMeter
(http://jmeter.apache.org), where you can use logical controllers to fire requests in
varying orders and timings to see whether the responses received match expectations
for system behavior. Logical controllers have other useful features as well, including
request modification, request repeating, and more. By executing tests with tools such
as JMeter, you can root out more logical inconsistencies in your Reactive application
than if you always rely on tests being executed in one order and one timing.

Testing distributed components

With distributed systems, which Reactive applications are by definition, some more
difficult problems must be considered. Foremost is the idea that a distributed interac-
tion can succeed in one dimension while failing in another. For example, imagine a
distributed system where data must be updated across four nodes, but suppose some-
thing goes awry on one of the servers and it never responds with a successful update
response before a timeout occurs. These are known as partial failures,” where latency
can increase and throughput can fall because interactions between the many services
that make up the application are unable to complete all tasks (see figure 11.3).

What is particularly tricky about these kinds of failure is that it is unlikely that you
can consider all the ways in which a Reactive application may fail partially and derive
appropriate behavior for each case. Instead, you should consider what the application
should do when something occurs that you did not expect. We discuss this in much
more detail in chapter 12.

7 http://en.wikipedia.org/wiki/Fault_tolerance
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Figure 11.3 lllustration of a partial failure occurring when an interaction
relies on three services and one interaction cannot be completed successfully

Mocking Actors

In order to show that a test passes or fails based on external interactions, a popular
testing methodology is to mock or stub an external dependency. That means when a
class to be tested is constructed, the external services on which it depends are passed
into the constructor of the class so they are available at the time they are to be used.
But mocking and stubbing a dependence class are two different approaches, each
with its own tradeoffs.

Mocks

Mocks are the concept of using an external library or framework to represent a fake
instance of a class so that you can make assertions about whether a valid response can
be properly handled. For example, imagine a class to be tested that would attempt to
persist the data from the class into a database. For unit tests, you would not want to
test that interaction to the database, only that the class gives the appropriate result
based on whether the attempt to perform that interaction was successful.

To create such tests, many mocking frameworks have sprung up in the past decade
that allow you to create a “mock” instance of the class, where calls to the mocking
framework instance can be preconfigured to return a specific value for that test.
Examples of such frameworks on the Java platform include EasyMock, JMock,
Mockito, and ScalaMock. For each test, a mock instance is created and set up with the
expected result to a particular interface; and when the call is made, that value is
returned and permits you to make assertions that such behavior led to an appropriate
result.

StUBS

Many developers consider the idea of using mocking frameworks to be an antipattern,
where mocks do not represent an appropriate response mechanism for testing how
such interactions take place. These developers instead prefer to use stubs, or test-only
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implementations of the interface that provide positive or negative responses for each
interface based on the kind of response expected. This is considered less brittle at the
time refactoring to an interface takes place, because the response from the stubbed
method call is better defined.

There is a further consideration with respect to stubs: many developers complain
that creating stubs for an interface is painful because it means they have to provide
implementations of each public interface even when they are not used for a particular
test, because the implementation of the interface specific to the test still requires each
method in the interface to have defined behavior, even if that behavior is to do noth-
ing. But developers such as Robert Martin have argued that using mocking frame-
works is a “smell test” for APIs that have begun to exceed the single responsibility
principle:® if the interface is painful to implement as a test stub because so many
interfaces have to be implemented, then the class interface is trying to do too much
and is exceeding the best practice rules for how each class should be defined with
respect to the number of things it can do.

These kinds of arguments are best left to development teams to define, because it
is easy to find edge cases that exceed such rules of thumb. As an extreme example, if
you have an interface with 100 public interfaces, you will have to provide an imple-
mentation of all of them in order to construct a stub for a single test, and this is diffi-
cult to do. It is even more difficult to maintain as the API changes during
development. If your interfaces are small and represent atomic, granular responsibili-
ties, writing stubs is much simpler and allows for more expressive interpretations of
how those dependencies can respond based on certain inputs, particularly when the
interactions between the calling class under test and the dependency become more
complex.

REVERSE ONION TESTING PATTERN

A key concept for building effective tests for all applications is to create tests for the
entire application from the inside and work outward. This kind of testing is called the
Reverse Onion pattern, where the approach is likened to peeling the layers of an onion
inversely: putting them back from the center out. This blends directly into the strategy
of testing that was discussed in the beginning of the chapter. In taking this approach,
the most minute expressions and functions are tested first, moving outward to services
in isolation and then to the interactions themselves.

11.4.4 Distributed components

Contextual handlers such as Akka TestKit’s TestProbe are extremely handy for writing
Reverse Onion tests. Constructs like these allow you to differentiate between the
responses for each request. Each test must have the ability to provide implementa-
tions, whether by mocks or stubs, of the Actors/classes on which they depend, so that
you can enforce and verify the behavior you expect based on their responses. Once

8 http://en.wikipedia.org/wiki/Single_responsibility_principle
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you have built tests with these characteristics, you can effectively test partial failure
from the responses you get based on each failed interaction with each of those depen-
dencies for an Actor/class. If you are making a call to three services and you want to
test the behavior of the class when two of the three succeed and the third fails, you can
do so by stubbing out behavior where the two successful stubs return expected values
and the third returns an error (or never returns at all).

Testing elasticity

For many developers, the concept of testing load or volume is well known. But for
Reactive applications, the focus changes from that traditional approach to being able
to verify that your application deployment is elastic within the confines of your avail-
able infrastructure. Just like everything else in application development, your system
needs bounds in time and space, and the space limitation should be the maximum
number of nodes you can spin up before you begin applying back pressure. In some
cases, you may be running on top of a platform as a service (PaaS) where you “spill
over” into public infrastructure like AWS or Rackspace images. But for many compa-
nies, that is not an option.

To test and verify elasticity, you first have to know the bounds of throughput per
node and the amount of infrastructure you will be deploying to. This should ideally
come from the nonfunctional requirements of your application from the outset of the
project; but if you have a clear idea of what your existing application’s throughput
profile looks like, you can start from there.

Assuming each node can handle 1,000 requests per second, and you have 10 nodes
on which you can deploy, you want to test that traffic below a certain threshold only
results in the minimum number of servers running that you specify. Tools such as Mara-
thon with Mesos are run through Docker instances that you can query to see whether
nodes are up or down, and Marathon has a REST API through which you can make other
assertions about the status of the cluster. To provide load to the system, several useful free
utilities do the job exceptionally well, such as Bees With Machine Guns (https://github
.com/newsapps/beeswithmachineguns) and Gatling (http://gatling.io).

Testing resilience

Application resilience is a term that needs to be deconstructed. Failure can occur at
many levels, and each of them needs to be tested to ensure that an application can be
Reactive to virtually anything that can happen. The Reactive Manifesto states that
“Resilience is achieved by replication, containment, isolation, and delegation.” This
means you need to be able to break down the varying ways that an application can fail,
from the micro to the macro level, and test that it can withstand all the things that can
go wrong. In every case, a request must be handled and responded to regardless of
what happened after it was received.
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11.6.1 Application resilience

First are the application concerns, where you must focus on behaviors specific to how
the application was coded. These are the areas with which most developers are
already familiar and usually involve testing that an exception was received or what the
application did as a result of injecting some data or functionality that should fail. In a
Reactive application, you should expect that exceptions or failures (as described in
section 2.4.3) are not seen by the sender of a message, but communicated through
other messages that elevate the failure to being domain events.

This is an important point. Failure has traditionally been regarded as separate
from the domain of the application and is typically handled as a tactical issue that
must be prevented or communicated outside the realm of the domain for which the
application was built. By making failure messages first-class citizens of the application
domain, you have the ability to handle failure in a much more strategic fashion. You
can create two domains about the application—a domain of success and a domain of
failure—and treat each appropriately with staged failure handling.

As an example, imagine an error retrieving valid data from an external source such
as a database, where the call to retrieve the data succeeded but the data returned was
not valid. This can be handled at one level of the application specific to that request,
and either whatever valid data was retrieved is returned to the message sender, or a
message connoting that the data was invalid is returned. But if the connection to the
external source is lost, that is a broader domain event than the individual request for
the data and should be handled by a higher-level component, such as whomever pro-
vided the connection that was used in the first place, so that it can begin the process of
reestablishing the connection that was lost.

Application resilience comes in two forms: external and internal. External resilience
is handled through validation, where data passed into the application is checked to
ensure that it meets the requirement of the API; if not, a notification is passed back to
the sender (for example, a telephone country code that does not exist in a database of
known numbers against which it is checked). Internal resilience includes those errors
that occur within the application’s handling of that request once it has been validated.

EXECUTION RESILIENCE

As discussed in previous chapters, the most important aspect of execution resilience is
supervision of the thread or process where failure can occur. Without it, there is no
way for you to discern what happened to a thread or process that failed, and you may
not have any way of knowing that a failure occurred at all. Once supervision is in
place, you have the capability to handle failure, but you may not necessarily have the
ability to test that you are doing the right thing as a result.

To get around this issue, developers sometimes expose internal state for the super-
vised functionality just so they can effectively test whether that state was unharmed or
somehow affected by the supervisor’s management of it. For example, an Actor that is
resumed would see no change in its internal state, but an Actor that was restarted
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would see its internal state return to the initial values it should have after
construction. But this has a couple of problems:

= How do you test an Actor that should be stopped based on a specific kind of
failure?

= Is it a good idea to expose state that otherwise would not be exposed just for
verification purposes? (This would represent a white-box test, by the way.)

To overcome these problems, a couple of patterns can be implemented that give you
the ability to determine what failure has occurred or interact with a child Actor that
has testspecific supervision implemented. These are patterns that sound similar but
have different semantics.

It can be difficult to avoid implementing non-test-specific details in your tests. For
example, if a test class attempts to create an Actor directly from the ActorSystem as a
child Actor to the user guardian, you will not have control over how the supervision of
errors that occur inside that Actor are handled. This may also be different than the
expected behavior that is planned for the application and will lead to invalid unit test
behavior. Instead, a StepParent can be a test-only supervisor that creates an instance
of the Actor to be tested and delivers it back to the test client, which can then interact
with the instance in any way it likes. The StepParent merely exists to provide supervi-
sion external to the test class so that the test class is not the parent. Assuming you have
a basic Actor that you would like to test and that can throw an Exception, it can look
as simple as the following.

Listing 11.22 Basic Actor to test

class MyActor extends Actor {
def receive = {
case _ => throw new NullPointerException

}

With that basic implementation, you can now create a StepParent strictly for the pur-
pose of testing that will create an instance of that Actor from its own context, thus
removing the test class from trying to fulfill that responsibility.

Listing 11.23 Providing a test context for the Actor under test

class StepParent extends Actor {
override val supervisorStrategy = OneForOneStrategy () {
case thr => Restart
}
def receive = {
case p: Props =>
sender ! context.actorOf (p, "child")
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Now you can create a test that uses StepParent to create an Actor to be tested and
begin to test whatever behavior you want without having the supervision semantics in
the test.

Listing 11.24 Testing the Actor in the context of StepParent

class StepParentSpec extends WordSpec
with Matchers with BeforeAndAfterAll ({
implicit val system = ActorSystem()

"An actor that throws an exception" must {
"Be created by a supervisor" in {
val testProbe = TestProbe ()
val parent = system.actorOf (Props[StepParent], "stepParent")
parent.tell (Props [MyActor], testProbe.ref)
val child = testProbe.expectMsgType [ActorRef]
.. // Test whatever we want in the actor

}
}

override def afterAll(): Unit = {
system.shutdown ()

}
}

A FailureParent looks similar, except that it also reports any failures it receives back
to the testing class. Assuming that you are going to test the same MyActor, a Failure-
Parent will receive whomever it is supposed to report the failures back to as a con-
structor argument and, on receipt of a failure, report it to that entity before
performing whatever supervision work it intends to do.

Listing 11.25 Reporting failures back to a designated Actor

class FailureParent (failures: ActorRef) extends Actor ({
val props = Props [MyFailureParentActor]
val child = context.actorOf (props, "child")

override val supervisorStrategy = OneForOneStrategy () {
case f => failures ! f; Stop

}

def receive = {
case msg => child forward msg

}
}

Now, you can create a test that uses FailureParent to create the Actor to be tested
and begin to test whatever behavior you want without having the supervision seman-
tics in the test.
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Listing 11.26 Removing supervision from the test

case object TestFailureParentMessage

class FailureParentSpec extends WordSpec
with Matchers with BeforeAndAfterAll ({
implicit val system = ActorSystem()

"Using a FailureParent" must {

"Result in failures being collected and returned" in
val failures = TestProbe ()
val failureParent = system.actorOf (
val props = Props (new FailureParent (failures.ref))
val failureParent = system.actorOf (props)
failureParent ! TestFailureParentMessage
failures.expectMsgType [NullPointerException]

}
}

override def afterAll(): Unit = {
system.shutdown ()

}
}

API RESILIENCE

The previous examples of using StepParent and FailureParent are also a form of API
resilience, where the messages being sent between Actors are the APL In this way, you
can think of Actors as being atomic examples of microservices. When requests are
made of the service via its API, any data passed in must be validated to ensure that it
meets the contract of what the service expects. Once proven to be valid, the service
can perform the work required to fulfill the request.

When building your own APIs, consider the impact of passing in a mechanism for
failure so that you can verify through tests that the behavior of the service is correct.
These can be called domain-specific failure injectors.” This can be done either by provid-
ing a constructor dependency that will simulate or produce the failure, or by passing it
as part of the individual request. It may be entirely useful to create a class whose sole
purpose is to randomize various kinds of failure so that they are tested at different
times or in different execution orders to prove more thoroughly that the failure is
appropriately handled. The Akka team has done this with their FailureInjector-
TransportAdapter class for internal testing.

Infrastructure resilience

Proving that your application is resilient is a great first step, but it is not enough.
Applications depend on the infrastructure on which they run, and they have no con-
trol over failures that can take place outside of themselves. Therefore, it is also import-
ant that anyone who is serious about implementing a Reactive application also build

? http://en.wikipedia.org/wiki/Fault_injection
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or use a framework to help them test the application’s ability to cope with infrastruc-
ture failures that happen around it.

Some may use the term partition and mean only from the network perspective, but
that is not necessarily true. Partitions happen any time a system has increased latency
in response to any reason, including stop-the-world garbage collection, database
latency, infinite looping, and so on.

NETWORK RESILIENCE (LAN AND WAN)

One of the most notorious kinds of infrastructure failures is a network pan‘ition,lo where
a network is incapable of routing between two or more subnetworks for various rea-
sons. Networks can, and do, fail. Routers can go down just like any other computer,
and occasionally paths provided by routing tables that are periodically revised and
optimized cannot be resolved. It is best to assume that this will happen to your appli-
cation and have a protocol for application management in the face of such an event.

CLUSTER RESILIENCE

In the case of a network partition, it is entirely plausible that two or more nodes in a
clustered application will not be able to reach each other, and each will assume leader-
ship of a new subcluster that cannot be rejoined or merged. This is called the split-
brain problem.”! The optimistic approach is to allow the two or more subclusters to con-
tinue as normal, but if there is any state to be shared between them, this can be diffi-
cult to maintain as far as updates that occur in each being resolved to the correct final
answer if and when they rejoin. The pessimistic approach is to assume that all is lost,
shut down both subclusters, and attempt to restart the application entirely, so that
consistency is maintained.

Some cluster-management tools attempt to take a middling approach, where any
subcluster with a majority of nodes (greater than 50% of known nodes) will automati-
cally attempt to become the leader of a cluster that stays in operation. Any subcluster
with less than 50% of known nodes will then automatically shut down. In theory, this
sounds reasonable, but cluster splits can be unreasonable occurrences. It is entirely
likely that such a split in the cluster will result in multiple subclusters with less than
50% of known nodes in all of them, and that they will all shut down as a result. The
operations teams that manage distributed systems in production have to be always on
guard for such events and, again, have a protocol in place for handling them.

NODE AND MACHINE RESILIENCE

Nodes, or instances, are processes running on a machine that represent one instance
of an application currently able to perform work. If there is only one node in the
entire application, it is not a distributed application and represents a single point of fail-
ure(SPOF). If there is more than one node, possibly running on the same physical
machine or across several of them, it is a distributed application. If all nodes are run-
ning on just one machine, this represents another SPOF, because any failure to the

10 http://en.wikipedia.org/wiki/Network_partition
' http://en.wikipedia.org/wiki/Split-brain_(computing)
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machine will take down the entire application. To make an application provably Reac-
tive, you must be able to test that the removal of any node or machine at runtime does
not affect your ability to withstand your application’s expected traffic.

DATA-CENTER RESILIENCE

Similar to the other infrastructural concepts, deploying an application to a single data
center is an SPOF and not a Reactive approach. Instead, deployment to multiple data
centers is a requirement to ensure that any major outage in one leaves your applica-
tion with the capacity to handle all requests in others.

Testing resilience in production

Netflix has created a suite of tools to help it test the robustness of its applications
while running in production, called the Simian Army.? Netflix has had major outages
happen in production and prefers to continue testing its application’s resiliency at the
node and machine level even in production. This gives the company tremendous con-
fidence that it can continue to service its customers even in the face of significant
failures.

To test node resilience, Netflix uses Chaos Monkey, which randomly disables produc-
tion instances when executed. Note that this tool is only executed with operations
engineers in attendance who closely monitor for any outages that could occur as a
result of the outages the tool induces. As a result of success with this tool, Netflix
created a legion of other such tools to check for latency, security credential expira-
tion, unused resources, and more.

To check resilience of an entire AWS availability zone, which is an isolation barrier
within a deployment region, Netflix uses the Chaos Gorilla. This simulates a failure
of an entire availability zone and checks whether the application is able to transition
work to instances in other availability zones without downtime. To test data center
resilience, Netflix uses the Chaos Kong tool, because the company currently uses
multiple AWS regions for the United States alone.

Whether or not you use existing tools, such as those from Netflix, or build your own,
it is critical that you test your application’s resilience in the face of myriad infrastruc-
ture failures to ensure that your users continue to get the responses they expect.
Focus on applying these tools for any application that is critical to the success of your
business.

a. http://techblog.netflix.com/2011/07/netflix-simian-army.html

11.7 Testing responsiveness

When testing elasticity and resilience, the focus is primarily on the number of requests
your application can handle at any given time and with any given conditions. But
responsiveness is mostly about latency, or the time it takes to handle each request. As
discussed in previous chapters, one of the biggest mistakes developers make is tracking
latency by a metric defined qualitatively, typically by average. But average is a terrible
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way of tracking latency, because it does not accurately reflect the variance in latency
that your application is likely to experience.

Instead, a latency target profile must be created for the application in order for the
designers to understand how to assemble the system. For varying throughputs, the
expectation must be defined from the outset of what latency is acceptable at specific
percentiles. Such a profile might look like the example given in table 11.2.

Table 11.2 Example of expected latency percentiles in relation to external load

Request/s 99.99% 99.999%
1,000 10 ms 10 ms 20 ms 50 ms
5,000 20 ms 20 ms 50 ms 100 ms
20,000 50 ms 50 ms 100 ms 250 ms

What is critical about this profile is that it clearly shows the expectation of how well
the application should be able to respond to increased load without failing. You need
to create tests that will verify that the response time is mapped appropriately against
each percentile for each level of throughput, and this must be part of the continuous
integration process to ensure that commits do not impact latency too negatively.
There are free tools, such as HdrHistogram (https://github.com/HdrHistogram/
HdrHistogram), which can help with the collection of this data and display it in a
meaningful way.

Summary

Testing to prove the ability to respond to varying loads, events, and failures is a critical
component to building a Reactive application. Allow the tests to guide the design by
making choices based on the results you see. At this point, you should have a clear
understanding of the following:

= Testing must begin at the outset of the project and continue throughout every
phase of its lifecycle.

= Testing must be functional and nonfunctional to prove that an application is
Reactive.

= You must write tests from the inside of the application outward to cover all
interactions and verify correctness.

= FElasticity is tested externally, whereas resilience is tested in both infrastructure
and internal components of the application.
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Fault tolerance
and recovery patierns

In this chapter, you will learn how to incorporate the possibility of failure into the
design of your application. We will demonstrate the patterns on the concrete use
case of building a resilient computation engine that allows batch job submissions
and their execution on elastically provisioned hardware resources. We will build on
what you learned in chapters 6 and 7, so you may want to revisit them.

We will start by considering a single component and its failure and recovery
strategies and then build up more-complex systems by means of hierarchical com-
position as well as client-server relationships. In particular, we will discuss the fol-
lowing patterns:

= The Simple Component pattern (a.k.a. the single responsibility principle)

= The Error Kernel pattern

= The Let-It-Crash pattern

= The Circuit Breaker pattern

The Simple Component pattern
A component shall do only one thing, but do it in full.

This pattern applies wherever a system performs multiple functions or the func-
tions it performs are so complex that they need to be broken into different compo-
nents. An example is a text editor that includes spell checking: these are two
separate functions (editing can be done without spell checking, and spelling can
also be checked on the finished text and does not require editing capabilities), but
on the other hand, neither of these functions is trivial.
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The Simple Component pattern derives from the single responsibility principle that
was formulated by Tom DeMarco in his 1979 book Structured Analysis and System Specifi-
cation (Prentice Hall). In its abstract form, it demands to “maximize cohesion and
minimize coupling.” Applied to object-oriented software design, it is usually stated as
follows: “A class should have only one reason to change.”!?

From the discussion of divide el regna in chapter 6, you know that in order to break
a large problem into a set of smaller ones, you can find help and orientation by look-
ing at the responsibilities the resulting components will have. Applying the process of
responsibility division recursively allows you to reach any desired granularity and

results in a component hierarchy that you can then implement.

The problem setting

As an example, consider a service that offers computing capacity in a batch-like fash-
ion: a user submits a job to be processed, stating the job’s resource requirements and
including an executable description of the data sources and the computation that is
to be performed. The service has to watch over the resources it manages, implement
quotas for the resource consumption of its clients, and schedule jobs in a fair fashion.
It also has to persistently queue the jobs that it accepts such that clients can rely on
their eventual execution.

The task: Your mission is to sketch the components that make up the full batch ser-
vice, noting for each one its exact responsibility. Start from the top level, and work
your way down until you reach components that are concrete and small enough that
you could task teams with implementing them.

Applying the pattern
One separation you can immediately conclude
. . . . . \
is that the service implementation will be @ ——=
d £ . hat d h & —_—— | Coordination —| Execution
made up of two parts: one that does the coor- 5——
dination and that the clients communicate —

with, and another that is responsible for execu-  Figyre 12.1  Initial component separation
tion of the jobs; this is shown in figure 12.1. In
order to make the entire service elastic, the coordinating part will tap into an external
pool of resources and dynamically spin up or down executor instances. You can see
that coordination will be a complex task, and therefore you want to break it up further.
Following the flow of a single job request through this system, you start with the
job-submission interface that is offered to clients. This part of the system needs to
present a network endpoint that clients can contact; it needs to implement a network
protocol for this purpose; and it will interact with the rest of the system on behalf of
the clients. You could break up responsibility along even finer lines, but for now let us
consider this aspect of representing clients within the client as one responsibility; the
client interface will thus be the second dedicated component.

2 Robert Martin, “Principles of OOD,” May 11, 2005, http://mng.bz/(JIk.
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Once a job has been accepted and the client has been informed by way of an
acknowledgment message, the system must ensure that eventually the job will be exe-
cuted. This can only be achieved by storing the incoming jobs on some persistent
medium, and you might be tempted to place this storage within the client interface
component. But you can already anticipate that other parts of the system will have to
access these jobs—for example, to start their execution. Thus, in addition to repre-
senting the clients, this component would assume responsibility for making job
descriptions accessible to the rest of the system, which is in violation of the single
responsibility principle.

Another temptation might be to share the responsibility for the handling of job
descriptions between the interested parties—at least the client interface and the job
executor, as you may surmise—but that would also greatly complicate each of these
components, because they would have to coordinate their actions, running counter to
the Simple Component pattern’s goal. It is much simpler to keep one responsibility
within one component and avoid the communication and coordination overhead that
comes with distributing it across multiple components. In addition to these runtime
concerns, you also need to consider the implementation: sharing the responsibility
means one component needs to know about the inner workings of the other, and
their development needs to be tightly coordinated as well. Those are the reasons
behind the second part of do only one thing, but do it in full.

This leads you to identify the storage of job descriptions as another segregated
responsibility of the system and thereby as the third dedicated component. A valid
interjection at this point is that the client interface component may well benefit from
persisting incoming jobs within its own responsibility. This would allow shorter
response times for job-submission acknowledgment and also make the client interface
component independent from the storage component in case of temporary unavail-
ability. But such a persistent queue would only have the purpose of eventually deliver-
ing accepted jobs to the storage component, which then would take responsibility for
them. Therefore, these notions are not in conflict with each other, and you may
implement both if system requirements demand it.

Taking stock, you have now identified client interface, storage, and execution as
three dedicated components with non-overlapping responsibilities. What remains to
be done is to figure out which jobs to run in what order: this part is called job scheduling.
The current state of the system’s decomposition is shown in figure 12.2; now you will
apply this pattern recursively until the problem is broken into simple components.

Probably the most complex task in the entire service is to figure out the execution
schedule for the accepted jobs, in particular when prioritization or fairness is to be
implemented between different clients that share a common pool of resources—the
corresponding allocation of computing shares is usually a matter of intense discussion
between competing parties.'”” The scheduling algorithm will need to have access to job
descriptions in order to extract scheduling requirements (maximum running time,

13 The authors have some experience with such allocation between different groups of scientists competing for
data analysis resources in order to extract the insights they need for academic publications.
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possible expiry deadline, which kind of resources are needed, and so on), so this is
another client of the storage component.

It takes a lot of effort—both for the implementation and at runtime—to plan the
execution order of those jobs that are accepted for execution, and this task is inde-
pendent of deciding which jobs to accept. Therefore, it will be beneficial to separate
the responsibility of job validation into its own component. This also has the advan-
tage of removing rejected tasks before they become a burden for the scheduling algo-
rithm. The responsibility for job scheduling now comprises two subcomponents, yet
should be represented consistently to the rest of the system as a single component: for
example, executors need to be able to retrieve the next job to run at any given time,
independent of whether a scheduling run is in progress. For this reason, you place the
external interactions in a Job Scheduling component whose validation and planning
responsibilities are delegated to subcomponents. The resulting split of responsibilities
for the entire system is shown in figure 12.3.

Job scheduling

U

Client

. Execution
interface Validation || Planning

Clients
|
|

\

Figure 12.3 The resulting

Storage component separation

The pattern, revisited

The goal of the Simple Component pattern is to implement the single responsibility
principle. You did that by considering the responsibilities of the overall system at the
highest level—client interface, storage, scheduling, and execution—and separating
these into dedicated components, keeping an eye on their anticipated communica-
tion needs. You then dove into the scheduling component and repeated the process,
finding that there are sizable, non-overlapping subresponsibilities that you split out
into their own subcomponents. This left the overall scheduling responsibility in a par-
ent component, because you anticipate coordination tasks that will be needed inde-
pendently of the subcomponents’ functions.



166

12.1.4

12.2

CHAPTER 12  Fault tolerance and recovery patterns

By this process, you arrived at segregated components that can be treated inde-
pendently during the further development of the system. Each of these has one
clearly defined purpose, and each core responsibility of the system lies with exactly
one component. Although the overall system and the internals of any component
may be complex, the single responsibility principle yields the simplest division of
components to further define—it frees you from always having to consider the entire
picture when working on smaller pieces. This is its quintessential feature: it addresses
the concern of system complexity. Additionally, following the Simple Component pat-
tern simplifies the treatment of failures, a capability you will exploit in the following
two patterns.

Applicability

Simple Component is the most basic pattern to follow, and it is universally applicable.
Its application may lead you to a finer-grained division of responsibility or to the reali-
zation that you are dealing with only a single component—the important part is that
afterward you know why you chose your system structure as you did. It helps with all
later phases of design and implementation if you document and remember this,
because when questions come up later about where to place certain functionality in
detail, you can let yourself be guided by the simple question, “What is its purpose?”
The answer will directly point you toward one of the responsibilities you identified, or
it will send you back to the drawing board if you forgot to consider it.

It is important to remember that this pattern is meant to be applied in a recursive
fashion, making sure that none of the identified responsibilities remain too complex or
high-level. One word of warning, though: once you start dividing up components hier-
archically, it is easy to get carried away and go too far—the goal is simple components
that have a real responsibility, not trivial components without a valid reason to exist.

The Error Kernel pattern

In a supervision hierarchy, keep important application state or functionality near the root
while delegating risky operations towards the leaves.

This pattern builds on the Simple Component pattern and is applicable wherever
components with different failure probability and reliability requirements are com-
bined into a larger system or application—some functions of the system must never go
down, whereas others are necessarily exposed to failure. Applying the Simple Compo-
nent pattern will frequently leave you in this position, so it pays to familiarize yourself
well with the Error Kernel pattern.

This pattern has been established in Erlang programs for decades'* and was one of
the main inspirations for Jonas Bonér to implement an Actor framework—Akka—on
the JVM. The name Akka was originally conceived as a palindrome of Actor Kernel,
referring to this core design pattern.

" The legendary reliability of the Ericsson AXD301 is attributed in part to this design pattern. Its success popu-
larized both the pattern and the Erlang language and runtime that were used in its implementation.
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12.2.1 The problem setting

From the discussion of hierarchical failure handling in chapter 7, you know that each
component of a Reactive system is supervised by another component that is responsi-
ble for its lifecycle management. This implies that if the supervisor component fails,
all of its subordinates will be affected by the subsequent restart, resetting everything to
a known good state and potentially losing intermediate updates. If the recovery of
important pieces of state data is expensive, then such a failure will lead to extensive
service downtimes, a condition that Reactive systems aim to minimize.

The task: Consider each of the six components identified in the previous example
as a failure domain, and ask yourself which component should be responsible for
reacting to its failures as well as which components will be directly affected by them.
Summarize your findings by drawing the supervision hierarchy for the resulting sys-
tem architecture.

12.2.2 Applying the pattern

Because recovering from a component’s failure implies the loss and subsequent
re-creation of its state, you will look for opportunities to separate likely points of fail-
ure from the places where important and expensive data are kept. The same applies
to pieces that provide services that will be highly available: these should not be
obstructed by frequent failure or long recovery times. In the example, you can iden-
tify the following disparate responsibilities:

= Communication with clients (accepting jobs and delivering their results)
= Persistent storage of job descriptions and their status

= Overall job-scheduling responsibility

= Validation of jobs against quotas or authorization requirements

= Job-schedule planning

= Job execution

Each of these responsibilities benefits from being decoupled from the rest. For exam-
ple, communication with clients should not be obstructed by a failure of the job-
scheduling logic, just as client-induced failures should not affect the currently run-
ning jobs. The same reasoning applies to the other pieces analogously. This is another
reason, in addition to the single responsibility principle, for considering them as ded-
icated components, as shown again in figure 12.4.

Job scheduling
Client | |

I

Execution

interface

Clients

\

Validation Planning

Storage

Figure 12.4 The six components drawn as separate failure domains
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The next step is to consider the failure domains in the system and ask yourself how
each of them should recover and how costly that process will be. Toward this end, you
can follow the path by which a job travels through the system.

Jobs enter the service through the communication component, which speaks an
appropriate protocol with the clients, maintaining protocol state and validating
inputs. The state that is kept is short-lived, tied to the communication sessions that are
currently open with clients. When this component fails, affected clients will have to
reestablish a session and possibly send commands or queries again, but your compo-
nent does not need to take responsibility for these activities. In this sense, it is effec-
tively stateless—the state that it does keep is ephemeral and local. Recovery of such
components is trivially accomplished by terminating the old and starting the new run-
time instance.

Once a job has been received from a client, it will need to be persisted, a responsi-
bility that you placed with the storage component. This component will have to allow
all other components to query the list of jobs, selecting them by current status or cli-
ent account and holding all necessary meta-information. Apart from caches for more
efficient operation, this component does not hold any runtime state: its function is
only to operate a persistent storage medium, and therefore it can easily be restarted in
case of failure. This assumes that the responsibility for providing persistence will be
split out into a subcomponent—which today is a likely approach—that you would
have to consider as well. If the contents of the persistent storage become corrupted,
then it is a business decision whether to implement (partial) automatic resolution of
these cases or leave it to the operations personnel; automatic recovery would presum-
ably interfere with normal operation of the storage medium and would therefore fall
into the storage component’s responsibility.

The next stop of a job’s journey through the batch service is the scheduling com-
ponent. At the top level, this component is responsible for applying quotas and
resource request validation as well as providing the executor component with a queue
of jobs to pick up. The latter is crucial for the operation of the overall batch service:
without it, the executors would be idle and the system would fail to perform its core
function. For this reason, you place this function at the
top of the scheduling component’s priorities and corre-

Job scheduling

spondingly at the root of its subcomponent hierarchy, as

shown in figure 12.5. /Parent of\
While applying the Simple Component pattern, you

identified two subresponsibilities of the scheduling compo- Validation Planning

nent. The first is to validate jobs against policy rules like

. 15 . .y .
per-client quotas™ or general compatibility with the cur- Figure 12.5 Job-scheduling

rently available resource set—it would not do to accept a  subcomponent hierarchy

!5 For example, you may want to limit the maximal number of jobs queued by one client—both in order to pro-
tect the scheduling algorithm and to enforce administrative limits.
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job that needs 20 executor units when only 15 can be provisioned. Those jobs that pass
validation form the input to the second subcomponent that performs job-schedule
planning for all currently outstanding and accepted jobs. Both of these responsibilities
are task-based: they are started periodically and then either complete successfully or
fail. Failure modes include hardware failures as well as not terminating within a reason-
able time frame. In order to compartmentalize possible failures, these tasks should not
directly modify the persistent state of jobs or the planned schedule but instead report
back to their parent component, which then takes action, be that notifying clients (via
the clientinterface component) of jobs that failed their submission criteria or updating
the internal queue of jobs to be picked next.

Although restarting the subcomponents proved to be trivial, restarting the parent
scheduling component is more complex—it will need to initiate one successful sched-
ule planning run before it can reliably resume performing its duties. Therefore, you
keep the important data and the vital functionality at the root and delegate the poten-
tially risky tasks to the leaves. Here again, note that the Error Kernel pattern confirms
and reinforces the results of the Simple Component pattern: you will frequently find
that the boundaries of responsibilities and failure domains coincide and that their
hierarchies match as well.

Once ajob has reached the head of the scheduler’s priority queue, it will be picked
up for execution as soon as computing resources become available. You have so far
considered execution to be an atomic component, but upon considering possible exe-
cution failures, you come to the conclusion that you will have to divide its function:
the executor needs to keep track of which job is currently running where, and it will
also have to monitor the health and progress of all worker nodes. The worker nodes
are those components that on receiving a job description will interpret the contained
information, contact data sources, and run the analysis code that was specified by the
client. Clearly, the failure of each worker will be contained to that node and not
spread to other workers or the overall executor, which implies that the execution
manager supervises all worker nodes, as shown in figure 12.6.

If the system is elastic, the executor will also use the external resource-provision
mechanism to create new worker nodes or shut down unused ones. The execution
manager is also in the position of deciding whether to enlarge or shrink the worker
pool, because it naturally monitors the job throughput and can easily be informed
about the current job-queue depth—another approach

would be to let the scheduler decide the desired pool size. Execution

In any case, the executor holds the responsibility of starting,

restarting, or stopping worker nodes because it is the only / \

component that knows when it is safe or required to do so. : Resource
Analogous to the client interface component, the same Worker intz:f(:ce

reasoning infers that communication with the external
resource-provision mechanism should be isolated from the  Figure 12.6 Execution
other activities of the execution manager. A communication  subcomponent hierarchy
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failure in that regard should not keep jobs from being assigned to already-running
executor instances or job-completion notifications from being processed.

The execution of the job is the main purpose of the entire service, but the journey
of a job through the components is not yet complete. After the assigned worker node
has informed the manager about the completion status, this result needs to be sent
back to the storage component in order to be persisted. If the job’s nature was such
that it must not be run twice, then the fact that the execution was about to start must
also have been persisted in this fashion; in this case, a restart of the execution man-
ager will need to include a check of which jobs were already started but not yet com-
pleted prior to the crash, and corresponding failure results will have to be generated.
In addition to persisting the final job status, the client will need to be informed about
the job’s result, which completes the entire process.

Now that you have illuminated the functions and relationships of the different
components, you recognize that you have omitted one in the earlier list of responsibil-
ities: the service itself needs to be orchestrated, composed from its parts, supervised,
and coordinated. You need one top-level component that creates the others and
arranges for jobs and other messages to be passed between them. In essence, it is this
component’s function to oversee the message flow and thereby the business process of
the service. This component will be top-level because of its integrating function,
which is needed at all times, even though it may be completely stateless by itself. The
complete resulting hierarchy is shown in figure 12.7.

Batch job service

S\

Client interface Storage Job scheduling Execution
Validati Planni ! Resource
alidation annin
g Worker ~ pool
interface

Figure 12.7 The hierarchical decomposition of the batch job service

The pattern, revisited

The essence of the previous example can be summarized in the following strategy:
after applying the Simple Component pattern, pull important state or functionality
toward the top of the component hierarchy, and push activities that carry a higher risk
for failure downward towards the leaves. It is expected that responsibility boundaries
coincide with failure domains and that narrower subresponsibilities will naturally fall
toward the leaves of the hierarchy. This process may lead you to introduce new super-
vising components that tie together the functionality of components that are otherwise
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siblings in the hierarchy, or it may guide you toward a more fine-grained component
structure in order to simplify failure handling or decouple and isolate critical func-
tions to keep them out of harm’s way. The quintessential function of the Error Kernel
pattern is to integrate the operational constraints of the system into its responsibility-
based problem decomposition.

Applicability
The Error Kernel pattern is applicable if any of the following are true:

= Your system consists of components that have different reliability requirements.

= You expect components to have significantly different failure probabilities and
failure severities.

= The system has important functionality that it must provide as reliably as possi-
ble while also having components that are exposed to failure.

= Important information that is kept in one part of the system is expensive to
re-create, whereas other parts are expected to fail frequently.

The Error Kernel pattern is not applicable if the following are true:

= No hierarchical supervision scheme is used.
= The system already uses the Simple Component pattern, so it does not have
multiple failure probabilities.

= All components are either stateless or tolerant to data loss.

We will discuss the second kind of scenarios in more depth in the next chapter when
we present the Active—Active Replication pattern.

The Let-It-Crash pattern
Prefer a_full component restart to internal failure handling.

In chapter 7, we discussed principled failure handling, noting that the internal recovery
mechanisms of each component are limited because they are not sufficiently separated
from the failing parts—everything within a component can be affected by a failure.
This is especially true for hardware failures that take down the component as a whole,
but it is also true for corrupted state that is the result of some programming error only
observable in rare circumstances. For this reason, it is necessary to delegate failure
handling to a supervisor instead of attempting to solve it within the component.

This principle is also called crash-only software:'® the idea is that transient but rare
failures are often costly to diagnose and fix, making it preferable to recover a working
system by rebooting parts of it. This hierarchical restart-based failure handling makes

1 Both of the following articles are by George Candea and Armando Fox: “Recursive Restartability: Turning the
Reboot Sledgehammer into a Scalpel,” USENIX HotOS VIII, 2001, http://dslab.epfl.ch/pubs/recursive_
restartability.pdf; and “Crash-Only Software,” USENIX HotOS IX, 2003, https://www.usenix.org/legacy/
events/hotos03/tech/full_papers/candea/candea.pdf.
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it possible to greatly simplify the failure model and at the same time leads to a more
robust system that even has a chance to survive failures that were entirely unforeseen.

The problem setting

We will demonstrate this design philosophy using the example of the worker nodes
that perform the bulk of the work in the batch service whose component hierarchy
was developed in the previous two patterns. Each of these is presumably deployed on
its own hardware—virtualized or not—that it does not share with other components;
ideally, there is no common failure mode between different worker nodes other than
a computing center outage.

The problem you are trying to solve is that the workers’ code may contain pro-
gramming errors that rarely manifest—but when they do, they will impede the ability
to process batch jobs. Examples of this kind are very slow resource leaks that can go
undetected for a long time but will eventually kill the machine; such a leak could
result from open files, retained memory, background threads, and so on, and it may
not occur every time but could be caused by a rare coincidence of circumstances.
Another example is a security vulnerability that allows the executed batch job to inten-
tionally corrupt the state of the worker node in order to subvert its function and per-
form unauthorized actions within the service’s private network—such subversion
often is not completely invisible and leads to spurious failures that should not be
papered over.

The task: Your mission is to consider the components you have identified for the
batch service and describe how a crash and restart would affect each of them and
which implementation constraints arise from the let-it-crash philosophy.

Applying the pattern

The Let-It-Crash pattern by itself is simple: whenever a component—for example, a
worker node—is detected to be faulty, no attempt is made to repair the damage.
Instead of doctoring its internal state, you restart it completely, releasing all of its
resources and starting it up again from scratch. If you obtained the worker nodes by
asking an infrastructure service to provision them, you can go back to the most basic
state imaginable: you decommission the old worker node and provision an entirely
new one. This way, no corruption or accumulated failure condition can have survived
in the fresh instance, because you begin from a known good state again.

Applying this approach to the client interface nodes means all currently active cli-
ent connections will be severed for the failed node, leading to connection-abort errors
in the clients. Upon detecting such an abort condition, the client should try to recon-
nect, which is your first conclusion. The second follows immediately when considering
that the new connection should not be routed to the failed node; this usually means
changing the load balancer configuration to remove the failed node. Then, a new
node needs to be brought online and added to the load balancer to restore the same
processing capacity as before. With these measures, you can confidently crash and
restart a client interface node at any given point in time. You do not need to consider
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the internal communication, because no other components depend on this one: the
client interface has only dependencies, no dependents. The consequence of this is that
new client requests that a fresh node receives will refer to the storage or scheduling
components as the sources of truth—the client interface can be “stateless.”!”

For the storage component, a node failure means the stored data are invalid or
lost—the consequence of either possibility is that the data cannot be relied on any
longer, so these states are fundamentally equivalent. Because the purpose of the com-
ponent is to store data permanently, you will have to distribute storage components as
per the discussion in section 2.4. We will cover data replication in the next chapter;
for now, it suffices to assume that there will be other storage nodes that hold copies of
the data. After stopping the failed node, you will therefore need to start a new one
that synchronizes itself with the other replicas, taking on the share of responsibility
that the failed node had. If the new node uses the previous node’s permanent storage
device, then recovery can be speeded up by synchronizing only those updates that
occurred after the failure. It should be noted that failure is not the same as shutting
down and starting up again: the storage devices will keep the data across the shut-
down, and the system will start up normally afterward—this can even be done in many
cases of infrastructure outages (such as network or power failures).

In the case of the scheduling component, a crash and restart means repopulating
the internal state from persistent job storage and resuming operations. This is trivial
for an aborted planning run or a failure during job validation, and it can also be han-
dled easily for the top-level scheduling component: you used the Error Kernel pattern
to keep this piece of software simple so you could assume that a restart cycle takes a
sufficiently short time to be deemed an acceptable downtime, unless specific require-
ments force you to use replication here as well.

The execution component works similarly in that the worker nodes can crash and
be restarted as discussed, where the supervisor makes sure the affected batch job is
started again on another available node (or on the newly provisioned one). For the
resource pool interface, you can tolerate a short downtime while it is restarted,
because its services are rarely needed; and when they are needed, reaction times will
be of the order of many seconds or even minutes.

The pattern, revisited

We have looked at each of the components in the system’s supervision hierarchy and
considered the consequences of a failure and subsequent restart. In some cases, you
encounter implementation constraints like having to update the requestrouting
infrastructure so that the failed node is no longer considered and the replacement is
taken into account once it is ready. In other cases, you approach the formulation of
SLAs by saying that a short downtime may be acceptable: in a real system, you would

17 This word has become so widely (mis)used that it does not stand on its own any longer. The authors’ view is
that a truly stateless service that does not contain any mutable internal state does not exist (it would not be a
component with a purpose to exist), and a more meaningful interpretation is to equate statelessness with the
absence of persistent mutable state.
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quantify this both in the failure frequency (for example, by way of the mean time
between failures [MTBF]'®) and the extent of the outage (also called the mean time to
repair [MTTR]'"?).

This pattern can also be turned around so that components are “crashed” inten-
tionally on a regular basis instead of waiting for failures to occur—this could be
termed the Pacemaker pattern. Deliberately inducing failures has been standard operat-
ing procedure for a long time in high-availability scenarios, to verify that failover
mechanisms are effective and perform according to specification. The concept has
been popularized in recent years by the Chaos Monkey employed by Netflix?’ to estab-
lish and maintain the resilience of the company’s infrastructure. The chaotic nature
of this approach manifests in that single nodes are killed at random without prior
selection or human consideration. The idea is that in this way, failure modes are exer-
cised that could potentially be missed in human enumeration of all possible cases. On
a higher level, entire data centers and geographic regions are taken offline in a more
prepared manner to verify global resource reallocation—this is done on the live pro-
duction system because no simulation environment could practically emulate the load
and client dynamics of such a large-scale application.

Another way to look at this is to consider the definition of availability: it is the frac-
tion of time during which the system is not in a failure state and thus able to process
requests, which in mathematical terms is (MTBF — MTTR) / MTBF. This can be
increased either by making MTBF larger—which corresponds to less frequent but pos-
sibly extensive failures—or by making MTTR smaller. In the latter case, the maximum
consecutive downtime period is smaller and the system operates more smoothly,
which is the goal of the Let-It-Crash pattern.

Implementation considerations

Although this pattern is deeply ingrained in Reactive application design already, it is
nevertheless documented here to take note of its important consequences on the
design of components and their interaction:

= FEach component must tolerate a crash and restart at any point in time, just as a
power outage can happen without warning. This means all persistent state must
be managed such that the service can resume processing requests with all neces-
sary information and ideally without having to worry about state corruption.

= FEach component must be strongly encapsulated so that failures are fully con-
tained and cannot spread. The practical realization depends on the failure
model for the hierarchy level under consideration; the options range from

18 https://en.wikipedia.org/wiki/Mean_time_between_failures

19 https://en.wikipedia.org/wiki/Mean_time_to_repair

20 At the time of writing, the largest streaming video provider in the United States. Chaos Monkey is part of the
Simian Army project that is available as open source software at https://github.com/Netflix/SimianArmy.
The approach is described in detail at http://techblog.netflix.com/2012/07/chaos-monkey-released-into-
wild.html.
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shared-memory message passing over separate OS processes to separate hard-
ware in possibly different geographic regions.

= All interactions between components must tolerate that peers can crash. This
means ubiquitous use of timeouts and circuit breakers (described later in this
chapter).

= All resources a component uses must be automatically reclaimable by perform-
ing a restart. In an Actor system, this means resources are freed by each Actor
on termination or that they are leased from their parent; for an OS process, it
means the kernel will release all open file handles, network sockets, and so on
when the process exits; for a virtual machine, it means the infrastructure
resource manager will release all allocated memory (also persistent filesystems)
and CPU resources, to be reused by a different virtual machine image.

= All requests sent to a component must be as self-describing as is practical so that
processing can resume with as little recovery cost as possible after a restart.

12.3.5 Corollary: the Heartbeat pattern

The Let-It-Crash pattern describes how failures are dealt with. The other side of this
coin is that failures must first be detected before they can be acted on. In particularly
catastrophic cases like hardware failures, the supervising component can only detect
that something is wrong by observing the absence of expected behavior. This obvi-
ously requires that some behavior can be expected, which means supervisor and sub-
ordinate must communicate with each other on a regular basis. In cases where there
would not otherwise be a reason for such interchange, the supervisor needs to send
dummy requests whose sole purpose is to see whether the subordinate is still working
properly. Due to their regular and vital nature, these are called heartbeats. The result-
ing pattern’s diagram is shown in figure 12.8.
One caveat of using dedicated heartbeat
messages is that the subordinate may have

failed in a way that allows heartbeats to be pro- Supervisor

!

cessed, but nothing else will be answered prop-

erly. In order to guard against such unforeseen N
failures, health monitoring should be imple- @ O 8 ack
mented by monitoring the service quality (fail- :

ure rate, response latency, and so on) during :

normal operation where appropriate—sending Subordinate

such statistics to the supervisor on a regular

basis can be used as a heartbeat signal at the Figure 12.8 The supervisor starts the
subordinate, and then it performs periodic
health checks by exchanging messages
with the subordinate until no satisfactory
for example, by monitoring the state of circuit  answer is returned.

breakers, as discussed in section 12.4).

same time if it is done by the subordinate (as
opposed to being done by the infrastructure:
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12.3.6 Corollary: the Proactive Failure Signal pattern

Applying the Heartbeat pattern to all failure modes
. . Supervisor
results in a high level of robustness, but there are [ ]

classes of failures where patiently waiting for the

heartbeat of the suspected component takes longer

U
NN

than necessary: the component can diagnose some @ C

failures itself. A prominent example is that all excep- E

tions that are thrown from an Actor implementation

are treated as failures—exceptions that are handled Subordinate
inside the Actor usually pertain to error conditions

resulting from the use of libraries that use excep- Figure 12.9 The supervisor starts
the subordinate and reacts to its
failure signals as they occur.

tions for this purpose. All uncaught exceptions can
be sent by the infrastructure (the Actor library) to
the supervisor in a message signaling the failure so that the supervisor can act on
them immediately. Wherever this is possible, it should be viewed as an optimization of
the supervisor’s response time. The messaging pattern between supervisor and subor-
dinate is depicted in figure 12.9 using the conventions established in appendix A.

Depending on the failure model, it can also be adequate to rely entirely on such
measures. This is equivalent to saying that, for example, an Actor is assumed to not
have failed until it has sent a failure signal. Monitoring the health of every single Actor
in a system is typically forbiddingly expensive, and relying on these failure signals
achieves sufficient robustness at the lower levels of the component hierarchy.

Itis not uncommon to combine this pattern and the Heartbeat pattern to cover all
bases. Where the infrastructure supports lifecycle monitoring—for example, see the
DeathWatch?! feature of Akka Actors—there is an additional way in which the supervi-
sor can learn of the subordinate’s troubles: if

the subordinate has stopped itself while the
supervisor still expected it to do something l Supervisor l
(or if the component is not expected to ever ! 2

stop while the application is running), then

the resulting termination notification can be
taken as a failure signal as well. The full com-
munication diagram for such a relationship is
shown in figure 12.10.

or

© ¢

Subordinate
It is important to note that these patterns

are not speciﬁc to Akka or the Actor model; Figure 12.10 The supervisor first starts the
subordinate, and then it performs periodic
health checks by exchanging messages with
it (step 1) until either no answer is returned
An application based on RxJava would, for or a failure signal is received (step 2).

we use these implementations only to give
concrete examples of their implementation.

2l See http://doc.akka.io/docs/akka/2.4.1/general/supervision.html#What_Lifecycle_Monitoring_Means and
http://doc.akka.io/docs/akka/2.4.1/scala/actors.html#Lifecycle_Monitoring_aka_DeathWatch.
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example, use the Hystrix library for health monitoring, allowing components to be
restarted as needed. Another example is that the deployment of components as
microservices on Amazon EC2 could use the AWS API to learn of some nodes’ termina-
tion and react in the same fashion as just described for the DeathWatch feature.

The Circuit Breaker pattern
Protect services by breaking the connection to their users during prolonged failure conditions.

In previous sections, we discussed how to segregate a system into a hierarchy of com-
ponents and subcomponents for the purpose of isolating responsibilities and encapsu-
lating failure domains. This pattern describes how to safely connect different parts of
the system so that failures do not spread uncontrollably across them. Its origin lies in
electrical engineering: in order to protect electrical circuits from each other and
introduce decoupled failure domains, a technique was established of breaking the
connection when the transmitted power exceeds a given threshold.

Translated to a Reactive application, this means the flow of requests from one com-
ponent to the next may be broken up deliberately when the recipient is overloaded or
otherwise failing. Doing so serves two purposes: first, the recipient gets some breath-
ing room to recover from possible load-induced failures; and second, the sender
decides that requests will fail instead of wasting time with waiting for negative replies.

Although circuit breakers have been used in electrical engineering since the
1920s, the use of this principle has been popularized in software design only recently:
for example, by Michael Nygard’s book Release It! (Pragmatic Programmers, 2007).

The problem setting

The batch job execution facility designed in the previous three sections will serve you
yet again. We already hinted at one situation that would do well to include a circuit
breaker: when the service is offered to external clients who submit jobs at their own rate
and schedule, and jobs are not naturally bounded by the capacity of the batch system.

To visualize what this means, we will consider a single client that contacts the batch
service to submit a single job. The client will get multiple status updates as the submit-
ted job progresses through the system:

= Upon having received and persisted the job description

= Upon having accepted the job for execution, or upon rejecting it due to policy
violations

= Upon starting execution

= Upon finishing execution

The first of these steps is very important: it assures the client that there will be further
updates about this job because it has been admitted into the system and will at least be
examined. Providing this guarantee is costly—it involves storing the job description in
nonvolatile and replicated memory—and therefore a client could easily generate more
jobs per second than the system can safely ingest. In this case, the client interface
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would overload the storage subsystem: this would have a ripple effect for the job-
scheduling and execution components, which would experience degraded perfor-
mance when accessing job descriptions for their purposes. The system might still work
in this state, but its performance characteristics would be quite different from normal
operation; it would be in “overload mode.”

The task: Your mission is to sketch the use of circuit breakers between the client
interface component and the storage component to both ensure that clients cannot
willfully overload the storage and ensure that the client interface gives timely
responses even when the storage component is unreachable or has failed.

Applying the pattern

When implementing the client interface module, you will have to write one piece of
code that sends requests to the storage subsystem. If you make sure all such requests
take this single route, you will have an easy time reacting to the problematic scenarios
outlined earlier. You need to keep track of the response latency for all requests that
are made. When you observe that this latency rises consistently above the agreed limit,
then you can switch into “emergency mode”: instead of trying new requests, you will
answer all subsequent ones immediately with negative replies. You will fabricate the
negative replies on behalf of the storage subsystem, because it cannot do even that
within the allowed time window under the current conditions.

In addition, you should monitor the failure rate of replies that come back from the
storage subsystem. It does not make much sense to keep sending more storage
requests when all of them will be answered negatively anyway; instead of wasting net-
work bandwidth, you should again switch into emergency mode, fabricating the nega-
tive replies. An example implementation of this scheme in Akka would look like the
following listing.

Listing 12.1 Using a circuit breaker to give a failed component time to recover

Makes an asynchronous request
to the storage subsystem
private object StorageFailed extends RuntimeException
private def sendToStorage (job: Job): Future[StorageStatus] = {
val f: Future[StorageStatus] =

f.map { Maps storage failures
case StorageStatus.Failed => throw StorageFailed | to Future failures to

case other —> other alert the breaker

}
}

private val breaker = CircuitBreaker (

system.scheduler, <+— Used for scheduling timeouts
5, <+ Number of failures in a row
300.millis, <+ Timeout for each service call

30.seconds, <+ Time before trying to close after tripping
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def persist(job: Job): Future[StorageStatus] =
breaker
.withCircuitBreaker (sendToStorage (job))
.recover {

case StorageFailed => StorageStatus.Failed
case _: TimeoutException => StorageStatus.Unknown
case _: CircuitBreakerOpenException => StorageStatus.Failed

The other piece of client interface code will call the persist method and get back a
Future representing the storage subsystem’s reply, but the remote service invocation
will be performed only if the circuit breaker is in the closed state. Negative replies (of
type StorageStatus.Failed) and timeouts will be counted by the breaker: if it sees
five failures in a row, it will transition into the open state in which it immediately pro-
vides a response consisting of a CircuitBreakerOpenException. After 30 seconds,
exactly one request will be let through to the storage subsystem, and if that comes
back successfully and in time, the breaker will flip back into the closed state.
What you have done so far is
illustrated in figure 12.11: the cli- Circuit breaker
ent interface will reply to external

| 1
. . . . . | i !
clients within its allotted time, but : Fa"rres !
in case of a storage-subsystem over- F—=—0 -~ —o0—»—

i P Client ! 2 |

load. or failure, these ?ephes will b.e tortace : | Storage
fabricated and negative for all cli- i \
ents. Although this approach pro- !

tects the system from attacks, it .1s Figure 12.11 A circuit breaker between the client
not the best you can do. Just as in  interface and the storage subsystem

electrical engineering, you need to

break circuits at more than one level—what you have built so far is the main circuit
breaker for the entire apartment building, but you are lacking the power-distribution
boards that limit the damage each individual tenant can do.

There is one difference between these per-client circuit breakers and the main
one: they do not react primarily to trouble downstream, but rather enforce a maxi-
mum current that can flow through them. In computer systems, this is called rate limit-
ing. Instead of tracking the call latencies, you must remember the times of previous
requests and reject new requests that violate a stated limit such as “no more than 100
requests in any 2-second interval.” Writing such a facility in Scala is straightforward.

Listing 12.2 Protecting a component by using a rate limiter

import scala.concurrent.duration.FiniteDuration
import scala.concurrent.duration.Deadline
import scala.concurrent.Future

case object RateLimitExceeded extends RuntimeException

class RateLimiter (requests: Int, period: FiniteDuration) ({
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private val startTimes = {
val onePeriodAgo = Deadline.now - period
Array.fill (requests) (onePeriodAgo)

} Index of the next slot to be used,
keeping track of when the last job was

private var position = 0 enqueued in it to enforce the rate limit
private def enqueue(time: Deadline) = {

startTimes (position) = time

position += 1

if (position == requests) position = 0
}
def call[T] (block: => Future[T]): Future[T] = {

val now = Deadline.now <—— Obtains the current timestamp

if ((now - startTimes (position)) < period) {
Future.failed (RateLimitExceeded)

} else {
engueue (now)
block
}
1
1
FPECOOCRCCOC GO Failures
o Vo | Rate | L, —0 --—o0—»—
o mer Q
[ Neg. reply | [Neg. reply | Neg. reply Storage
Per-client breakers

Figure 12.12 Complete circuit breaker setup between the client interface and the
storage subsystem

Now you can combine both kinds of circuit breakers to obtain the full picture shown
in figure 12.12. Clients are identified by their authentication credentials, so you can
assign one CircuitBreaker for each user independent of how many network connec-
tions they use. For each client, you maintain a RateLimiter that protects the client
interface from being flooded with requests. On the outgoing side, toward the storage
component, you use one shared CircuitBreaker to guard against the remote subsys-
tem’s failures. The per-client code could look like the following.

Listing 12.3 Circuit breaker: limiting requests from a client

private val limiter = new RateLimiter (100, 2.seconds)

def persistForThisClient (job: Job): Future[StorageStatus] =

limiter
.call (persist (job)) This is assumed to not be
.recover { invoked concurrently as it

case RateLimitExceeded => StorageStatus.Failed is for a single client.

}
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ADVANCED USAGE

Itis common practice to gate a client that repeatedly violates its rate limit: gating
informs the client that it has made too many requests beyond the allowed rate and will
be blocked temporarily. This is an incentive to the writers of client code to properly
limit the service calls on their end instead of always sending at full speed—that is an
efficient tactic for achieving maximum throughput. In order to do that, you only need
to add another circuit breaker, as shown next.

Listing 12.4 Gating a client

private val limiter = new RateLimiter (100, 2.seconds)
private val breaker = CircuitBreaker (system.scheduler,
10, Duration.Zero, 10.seconds)

def persistForThisClient (job: Job): Future[StorageStatus] =
breaker
.withCircuitBreaker (limiter.call (persist (job)))
.recover ({
case RateLimitExceeded => StorageStatus.Failed
case _: CircuitBreakerOpenException => StorageStatus.Gated

In order to trip the circuit breaker, the client will have to send 10 requests while being
above the rate limit; assuming regular request spacing, this means the client needs to
submit at a rate that is at least 10% higher than allowed. In this case, it will be blocked
from service for the next 10 seconds, and it will be informed by way of receiving a
Gated status reply. Duration. Zero in listing 12.4 has the function of turning off the
timeout tracking for individual requests; this is not needed here because it will be per-
formed by the persist call.

The pattern, revisited

You have decoupled the client interface and the storage subsystem by introducing pre-
determined breaking points on the path from one to the other. Thereby, you have
protected the storage from being overloaded in general (the main circuit breaker)
and you have protected the client interface’s function from single misbehaving clients
(the rate-limiting per-client circuit breakers). Being overloaded is a condition that you
should strive to avoid when possible because running at 100% capacity is in most cases
less efficient than leaving a little headroom. The reason is that at full capacity, more
time is wasted competing for the available resources (CPU time, memory bandwidth,
caches, 10 channels) than it is when requests can travel through the system mostly
unhindered by congestion.

The second problem we have considered here is that the client interface cannot
acknowledge reception of a job description before it receives the successful reply from
the storage subsystem. If this reply does not arrive within the allotted time, then the
response to the client will be delayed for longer than the SLA allows—the service will
violate its latency bound. This means during time periods when the storage subsystem
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fails to answer promptly, the client interface will have to come to its own conclusions;
if it cannot ask another (nonlocal) component, then it must locally determine the
appropriate response to its own clients. You have also used the circuit breaker to pro-
tect the client interface from failures of the storage subsystem, fabricating negative
responses in case no others are readily available.

In addition, you have seen that the circuit breaker you installed for overload pro-
tection handles the situation where the storage subsystem does not answer successfully
or in time—the reaction is independent of the underlying reason. This makes the system
more resilient compared to handling every single error case separately. And this is what is meant
by bulkheading failure domains to achieve compartmentalization and encapsulation.

Applicability

This pattern is applicable wherever two decoupled components communicate and
where failures—foreseen or unexpected—will not travel upstream to infect and slow
other components, or where overload conditions will not travel downstream to induce
failure. Decoupling has a cost in that all calls pass through another tracking step, and
timeouts need to be scheduled. Hence, it should not be applied at too fine a level of
granularity; it is most useful between different components in a system. This applies
especially to services that are reached via network connections (such as authentication
providers and persistent storage), where the circuit breaker also reacts appropriately
to network failures by concluding that the remote service is not currently reachable.

Another important aspect of using circuit breakers is that monitoring their state
reveals interesting insight into the runtime behavior and performance of a service.
When circuit breakers trip while protecting a given service, operations personnel will
usually want to be alerted in order to look into the outage.

NOTE A circuit breaker is a means to fail fast—it must not be used to post-
pone requests and send them later. The problem with such a scheme is that
when the circuit breaker closes, the deferred requests will likely overload the
target system. This phenomenon is called a thundering herd, and it can create
feedback loops that lead to a system oscillating between being unavailable
and being overloaded.

Summary

In this chapter, we have covered a lot of ground on the design and implementation of
resilient systems:

= We described simple components that obey the single responsibility principle.

= You saw the application of hierarchical failure handling in practice while imple-
menting the Error Kernel pattern.

= We noted the implications of relying on component restarts to recover from
failure, in our discussion of the Let-It-Crash pattern.
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= You learned how to decouple components from each other using the Circuit
Breaker pattern for either side’s protection.

In the next chapter, we will dive into stateful replication patterns in order to imple-
ment components that are impervious to outages at varying degrees of downtime and
implementation complexity. Although these patterns are also related to fault toler-
ance and recovery, they warrant a chapter of their own.



Replication patierns

The previous chapter introduced powerful architectural and implementation pat-
terns for breaking down a larger system into simple components that are isolated
from each other while encapsulating failures. One aspect that we did not cover is
how to distribute the functionality of a component such that it can withstand hard-
ware and infrastructure outages without loss of availability. This topic is large
enough by itself to be treated in a separate chapter. In particular, in this chapter
you will learn about the following:

= The Active—Passive Replication pattern, for cases where explicit failover is
acceptable or desirable

= Three different Multiple-Master Replication patterns that allow clients to
contact any replica of their choosing

= The Active-Active Replication pattern, which specializes in zero downtime
for a selected class of failures

NOTE This chapter presents some deep treatment of replication with its
pitfalls and limitations. Unfortunately, for this topic, the devil is in the
details, and some surprising semantics result from seemingly insignificant
properties of the underlying implementation. Therefore, it may be ade-
quate to only skim this chapter upon reading this book for the first time
and come back to it when necessary or when your experience with building
Reactive systems inspires a wish to deepen your knowledge of these aspects.

13.1 The Active-Passive Replication pattern

Keep multiple copies of the service running in different locations, but only accept
modifications to the state in one location at any given time.

184
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This pattern is also sometimes referred to as failover or master—slave replication. You have
already seen one particular form of failover: the ability to restart a component means
that after a failure, a new instance is created and takes over functionality, like passing
the baton from one runner to the next. For a stateful service, the new instance
accesses the same persistent storage location as the previously failed one, recovering
the state before the crash and continuing from there. This works only as long as the
persistent storage is intact; if that fails, then restarting is not possible—the service will
forget all of its previous state and start from scratch. Imagine your web shop forgetting
about all registered users—that would be a catastrophe!

We use the term active—passive replication to more precisely denote that in order to
be able to recover even when one service instance fails completely—including loss of
its persistent storage—you distribute its functionality and its full dataset across several
physical locations. The need for such measures was discussed in section 2.4: replica-
tion means not putting all of your eggs in one basket.

Replicating and thereby distributing a piece of functionality requires a certain
amount of coordination, in particular considering operations that change the per-
sistent state. The goal of active—passive replication is to ensure that at any given time,
only one of the replicas has the right to perform modifications. This allows individual
modifications to be made without requiring consensus about them, as long as there is
consensus about what the currently active party is, just as electing a mayor serves the
purpose of simplifying the process of coordination within a city.

The problem setting

In the batch service example, the most important component used by all the other
components is the storage module. Restarting this component after a failure allows it
to recover from many issues, but you must take care to protect its data from being lost.
This means storing the data in multiple places and allowing the other components to
retrieve the data from any of them.

In order to visualize what this means, we will consider an incoming request that
arrives at the client interface. Because the storage component is now spread across
multiple locations, the client interface will need to know multiple addresses in order
to talk to it. Assume that there is a service registry via which all components can obtain
the addresses of their communication partners. When the storage component starts
up, it will register all of its locations and their addresses in the registry, where the cli-
ent interface can retrieve them. This allows new replicas to be added and old ones to
be replaced at runtime. A static list of addresses might be sufficient in some cases, but
it is in general desirable to be able to change addresses, especially in a cloud comput-
ing environment.

Which replica is the active one will change over time. There are several options for
routing requests to it:

= The storage component can inform its clients via the service registry regarding
which address belongs to the currently active replica. This simplifies the
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implementation of the client but also leads to additional lag for picking up a
change of replica after a failure.

= The internal consensus mechanism for electing the active replica can be made
accessible to the clients, allowing them to follow changes by listening in on the
election protocol. This provides timely updates but couples the implementation
of client and service by requiring them to share a larger protocol.

= All replicas can offer the service of forwarding requests to the currently active
replica. This frees clients from having to track replica changes closely while
avoiding downtime or close coupling. A possible downside of this approach is
that requests sent via different replicas may arrive with substantially different
delays, thereby making the ordering of request processing less deterministic.

The task: Your mission is to implement active—passive replication for a key-value store
(represented by an in-memory map) using Akka Cluster, with the location of the
active replica being managed by the Cluster Singleton feature. An important property
of the implementation is that once the service replies with a confirmation, the request
must have been processed and its results persisted to disk such that after a subsequent
failure, the new active replica will behave correctly.

Applying the pattern

Basing this illustration on Akka Cluster allows us to focus on the replication logic and
delegate the election of the active replica to the Cluster Singleton feature that is
offered by this library. A cluster singleton is an actor that is spawned on the oldest clus-
ter member with a given role. The Akka implementation ensures that there cannot be
conflicting information about which member is the oldest within the same cluster,
which means there cannot be two instances of the cluster singleton running simulta-
neously. This guarantee relies on the proper configuration of the cluster: during a
network partition, each of the isolated parts will have to decide whether to continue
operation or shut itself down; and if the rules are formulated such that two parts can
continue running, then a singleton will be elected within each of these parts. Where
this is not desired, a strict quorum must be employed that is larger than half the total
number of nodes in the cluster—with the consequence that during a three-way split,
the entire cluster may shut down. Further discussion of these topics can be found in
chapter 17; for now, it is sufficient to know that the Cluster Singleton mechanism
ensures that there will be only one active replica running at any time.

As a first step, you implement the actor that controls the active replica. This actor
will be instantiated by the Cluster Singleton mechanism as a cluster-wide singleton, as
just explained. Its role is to accept and answer requests from clients as well as to dissem-
inate updates to all passive replicas. To keep things simple, you will implement a generic
key—value store that associates JSON values and uses text strings as keys. This will save
you the trouble of defining the required data types for your batch service operation—
which is not central to the application of this pattern, in any case. The full source code
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for this example can be found at www.manning.com/books/reactive-design-patterns
and in the book’s GitHub repository at https://github.com/ReactiveDesignPatterns.

Before we begin, here are the protocol messages by which clients interact with the
replicated storage:

case class Put (key: String, value: JsValue, replyTo: ActorRef)
case class PutConfirmed(key: String, value: JsValue)

case class PutRejected(key: String, value: JsValue)

case class Get (key: String, replyTo: ActorRef)

case class GetResult (key: String, value: Option[JsValuel)

In response to a Put command, you expect either a confirmation or rejection reply,
whereas the result of a Get command will always indicate the currently bound value
for the given key (which may optionally be empty). A command may be rejected in
case of replication failures or service overload, as you will see later. The type JsValue
represents an arbitrary JSON value in the play-json library, but the choice of serializa-
tion library is not essential here.

When the singleton actor starts up, it must first contact a passive replica to obtain
the current starting state. It is most efficient to ask the replica within the same actor
system (that is, on the same network host), because doing so avoids serializing the
entire data store and sending it over the network. In the following implementation,
the address of the local replica is provided to the actor via its constructor.

Listing 13.1 Singleton taking over as the active replica

class Active(localReplica: ActorRef,
replicationFactor: Int,
maxQueueSize: Int)

extends Actor with Stash with ActorLogging { Data store, held in

memory for the sake of a
private var theStore: Map([String, JsValue] = _ simple example
private var segNr: Iterator[Int] =

- Sequence-number generator
log.info("taking over from local replica") for Replicate requests
localReplica ! TakeOver (self)
Asks for InitialData to be

provided by the local
storage replica

def receive = {

case InitialState(m, s) =>
log.info("took over at sequence {}", s)
theStore = m
segNr = Iterator from s
context .become (running)
unstashAll ()

case _ => stash()

}

val running: Receive = ... <+ Behavior of the running state

While the actor is waiting for the initial state message, it needs to ignore all incoming
requests. Instead of dropping them or making up fake replies, you stash them within
the actor, to be answered as soon as you have the necessary data. Akka directly supports
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this usage by mixing in the Stash trait. In the running state, the actor will use the data
store and the sequence-number generator, but it will need several more data structures
to organize its behavior, as follows.

Listing 13.2 Active replica disseminating replication requests

class Active(localReplica: ActorRef,
replicationFactor: Int,
maxQueueSize: Int)

extends Actor with Stash with ActorLogging { Initialization as

shown in listing 13.1

rivate val MaxOutstanding = maxQueueSize / 2 .
P d Queue of outstanding

private val toReplicate = Queue.empty[Replicate] items to be replicated
Ordered private var replicating = TreeMap.empty[Int, (Replicate, Int)]
collection val timer = system.scheduler.schedule (
of ongoing 1.second, 1.second, self, Tick) (context.dispatcher) Recurring timer to
replication override def postStop() = timer.cancel () resend outstanding
requests replication requests

val running: Receive = {
case p @ Put (key, value, replyTo) =>

if (toReplicate.size < MaxOutstanding) ({
toReplicate.enqueue (Replicate (segNr.next, key, value, replyTo))
replicate ()

} else {
replyTo ! PutRejected(key, value)

}

case Get (key, replyTo) =>
replyTo ! GetResult (key, theStore get key)

case Tick =>
replicating.valuesIterator foreach {
case (replicate, count) => disseminate (replicate)

case Replicated(confirm)

=>
replicating.get (confirm) match

case None => < Already removed
case Some((rep, 1)) =>
replicating -= confirm

theStore += rep.key -> rep.value
rep.replyTo ! PutConfirmed(rep.key, rep.value)

case Some((rep, n)) =>
replicating += confirm -> (rep, n - 1) Helper method that
} . dispatches further
replicate() replication requests
1 when appropriate
private def replicate(): Unit =
if (replicating.size < MaxOutstanding && toReplicate.nonEmpty) {
val r = toReplicate.dequeue ()

replicating += r.seq -> (r, replicationFactor)
disseminate (r)

}
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private def disseminate(r: Replicate): Unit = { Sends a replication
val req = r.copy(replyTo = self) request to all replicas,
val members = Cluster (context.system) .state.members including local
members.foreach(m => replicaOn (m.address) ! req)

}

private def replicaOn(addr: Address): ActorSelection =
context.actorSelection (localReplica.path.toStringWithAddress (addr))

The actor keeps a queue of items to be replicated, called toReplicate, plus a queue
of replication requests that are currently in flight. The latter—replicating—is imple-
mented as an ordered map because you need direct access to its elements as replica-
tion requests complete. Whenever the actor receives a Put request, it checks whether
there is still room in the queue of items to be replicated. If the queue is full, the client
is immediately informed that the request is rejected; otherwise, a new Replicate
object is enqueued that describes the update to be performed, and then the
replicate() method is invoked. This method transfers updates from the
toReplicate queue to the replicating queue if there is space. The purpose of this
setup is to place a limit on the number of currently outstanding replication requests
so that clients can be informed when the replication mechanism cannot keep up with
the update load.

When an update is moved to the replicating queue, the disseminate function is
called. Here, you implement the core piece of the algorithm: every update that is
accepted by the active replica is sent to all passive replicas for persistent storage.
Because you are using Akka Cluster, you can obtain a list of addresses for all replicas
from the Cluster Extension, using the local replica ActorRef as a pattern into which
each remote address is inserted in turn. The replicate function stores the update
together with a required replication count into the replicating queue, indexed by
the update’s sequence number. The update will stay in the queue until enough con-
firmations have been received in the form of Replicated messages, as can be seen in
the definition of the running behavior in listing 13.1. Only when this count is
reached is the update applied to the local storage and the confirmation sent back to
the original client.

Update requests as well as confirmations may be lost on the way between network
nodes. Therefore, the active replica schedules a periodic reminder upon which it will
resend all updates that are currently in the replicating queue. This ensures that, even-
tually, all updates are received by enough passive replicas. It is not necessary for all
replicas to receive the updates from the active one, as you will see when we look at the
implementation of a passive replica. The reason for this design choice is that burden-
ing the active replica with all the concerns of successful replication will make its imple-
mentation more complex and increase the latency for responding to requests.

Before we focus on the passive replica implementation, you need to enable it to
persist data on disk and read the data back. For the purpose of this example, you use
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the following simple file storage. It should be obvious that this is not suitable for pro-
duction systems; we will discuss persistence patterns in chapter 17.

Listing 13.3 Implementing persistence by writing a JSON file to the local disk

import play.api.libs.json.{ JsValue, Json }
import java.io.File

Extremely simple model of
import sbt.IO

a versioned key—value store
object Persistence {
case class Database(seqg: Int, kv: Map[String, JsValue])

Uses the Play object Database { implicit val format = Json.format [Database] }

framework’s def persist(name: String, seq: Int, kv: Map[String, JsValuel): Unit = {
. _ISPN val bytes = Json.stringify(Json.toJdson (Database (seq, kv)))

serialization

val current = new File(s"./theDataBase-$name.json")
val next = new File(s"./theDataBase-Sname.json.new")
——> IO.write(next, bytes)

IO0.move (next, current) <
}
def readPersisted(name: String): Database = {
val file = new File(s"theDataBase-Sname.json")
if (file.exists()) Json.parse(IO.read(file)) .as[Database]
else Database (0, Map.empty)
}
}
First writes to a separate file to avoid leaving ...and then renames it in place of the current file to
behind incomplete data during a crash... atomically replace the old version with the new one.

The following listing assumes an import of the Persistence object so that you can use
the persist and readPersisted methods where needed.

Listing 13.4 Passive replicas tracking whether they are up to date

class Passive (askAroundCount: Int,
askAroundInterval: FiniteDuration,
maxLag: Int) extends Actor with ActorLogging {
private val applied = Queue.empty[Replicate]

val selfAddress = Cluster (context.system) .selfAddress
val name = selfAddress.toString.replaceAll ("[:/]", " ") Constructs a name
- identifying this
def receive = readPersisted(name) match { replica for data
case Database (s, kv) => storage
log.info("started at sequence {}", s)

upToDate (kv, s + 1)

}

def upToDate (theStore: Map[String, JsValue]l,
expectedSeq: Int): Receive = {

case TakeOver (active) =>
log.info("active replica starting at sequence {}", expectedSeq)
active ! InitialState (theStore, expectedSeq)
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case Replicate(s, , _, replyTo) if s - expectedSeq < 0 =>
replyTo ! Replicated(s)

case r: Replicate if r.seqg == expectedSeq =>
val nextStore = theStore + (r.key -> r.value)
persist (name, expectedSeq, nextStore)
r.replyTo | Replicated(r.seq)
applied.enqueue (r)
context .become (upToDate (nextStore, expectedSeq + 1))

case r: Replicate =>
if (r.seq - expectedSeqg > maxLag)
fallBehind (expectedSeq, TreeMap(r.seq -> r))
else
missingSomeUpdates (theStore, expectedSeq, Set.empty,
TreeMap (r.seq -> 1))

) T Implementation of fallBehind and
missingSomeUpdates elided for now

The passive replica serves two purposes: it ensures the persistent storage of all incoming
updates, and it maintains the current state of the full database so the active replica can
be initialized when required. When the passive replica starts up, it first reads the per-
sistent state of the database into memory, including the sequence number of the latest
applied update. As long as all updates are received in the correct order, only the third
case of the up-to-date behavior will be invoked, applying the updates to the local store,
persisting it, confirming successful replication, and changing behavior to expect the
update with the following sequence number. Updates that are retransmitted by the
active replica will have a sequence number that is less than the expected one and there-
fore will only be confirmed because they have already been applied. A TakeOver request
from a newly initializing active replica can in this state be answered immediately.

But what happens when messages are lost? In addition to ordinary message loss,
this could also be due to a replica being restarted: between the last successful per-
sistence before the restart and the initialization afterward, any number of additional
updates may have been sent by the active replica that were never delivered to this
instance because it was inactive. Such losses can only be detected upon receiving a
subsequent update. The size of the gap in updates can be determined by comparing
the expected sequence number with the one contained in the update; if it is too
large—as determined by the maxLag parameter—you consider this replica as having
fallen behind; otherwise, it is merely missing some updates. The difference between
these two lies in how you recover from the situation, as shown next.

Listing 13.5 Passive replica requesting a full update when it falls too far behind

class Passive (askAroundCount: Int,
askAroundInterval: FiniteDuration,
maxLag: Int) extends Actor with ActorLogging {
private val applied = Queue.empty[Replicate]
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private var awaitingInitialState = Option.empty[ActorRef]

/] ... <—— Initialization elided
private var tickTask = Option.empty[Cancellable]
def scheduleTick() = {

tickTask foreach (_.cancel())

tickTask = Some (context.system.scheduler.scheduleOnce (
askAroundInterval, self, DoConsolidate) (context.dispatcher))

}

def caughtUp (theStore: Map[String, JsValue], expectedSeq: Int) ({

awaitingInitialState foreach (_ ! InitialState(theStore, expectedSeq))

awaitingInitialState = None
context .become (upToDate (theStore, expectedSeq))

}

def upToDate (theStore: Map[String, JsValue],
expectedSeq: Int): Receive = ({
/7. <—— Cases shown previously elided
case GetFull (replyTo) =>
log.info("sending full info to {}", replyTo)
replyTo ! InitialState (theStore, expectedSeq)

}

def fallBehind (expectedSeq: Int, waiting: TreeMap[Int, Replicate]) {
askAroundFullState ()
scheduleTick ()
var waiting = waiting
context .become {
case Replicate(s, _, _, replyTo) if s < expectedSeq =>
replyTo ! Replicated(s)

case r: Replicate =>
waiting += (r.seq -> r)

case TakeOver (active) =>
log.info("delaying active replica take-over until upToDate")
awaitingInitialState = Some (active)

case InitialState(m, s) if s > expectedSeq =>
log.info ("received newer state at sequence {} (was at {})",
s, expectedSeq)
persist (name, s, m)
waiting.to(s) .valuesIterator foreach (r =>
r.replyTo ! Replicated(r.seq))
val nextWaiting = waiting.from(expectedSeq)
consolidate(m, s + 1, Set.empty, nextWaiting)

case DoConsolidate =>
askAroundFullState ()
scheduleTick ()
1
1

private val random = new Random

private def getMembers (n: Int): Seq[Address] = {
val members = Cluster (context.system).state.members
random.shuffle (members.map (_.address) .toSeq) .take (n)
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}

private def askAroundFullState(): Unit = {
log.info("asking for full data")
getMembers (1) . foreach(addr => replicaOn(addr) ! GetFull (self))

}
private def replicaOn(addr: Address): ActorSelection =
context.actorSelection (self.path.toStringWithAddress (addr))

When falling behind, you first ask a randomly selected replica for a full dump of the
database and schedule a timer. Then you change behavior into a waiting state in
which new updates are accumulated for later application, very old updates are imme-
diately confirmed, and requests to take over are deferred. This state can only be left
once an initial-state message has been received; at this point, you persist this newer
state of the database, confirm all accumulated updates whose sequence number is
smaller than the now-expected one, and try to apply all remaining updates by calling
the consolidate function that is shown next.

Listing 13.6 Consolidation: applying updates that were held previously

private val matches = (p: (Int, Int)) => p. 1 == p._ 2

private def consolidate(theStore: Map[String, JsValuel,
expectedSeq: Int,
askedFor: Set[Int],
waiting: TreeMap[Int, Replicate]): Unit =
val prefix =
waiting.keysIterator
.zip(Iterator from expectedSeq)

.takeWhile (matches) Calculates the length of the

.size directly applicable queue prefix

val nextStore =
waiting.valuesIterator

.take (prefix)

.foldLeft (theStore) { (store, replicate) =>
persist (name, replicate.seq, theStore)
replicate.replyTo ! Replicated(replicate.seq)
applied.enqueue (replicate)
store + (replicate.key -> replicate.value)

}

val nextWaiting = waiting.drop (prefix)

val nextExpectedSeq = expectedSeq + prefix Capsthesheof

applied.drop (Math.max (0, applied.size - maxLag)) the applied buffer
if (nextWaiting.nonEmpty) { Checks whether you
if (nextWaiting.lastKey - nextExpectedSeq > maxLag) fell behind too much
fallBehind (nextExpectedSeq, nextWaiting)
else
missingSomeUpdates (nextStore, nextExpectedSeq, askedFor,
nextWaiting)

} else caughtUp (nextStore, nextExpectedSeq)

}
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The waiting parameter contains the accumulated updates ordered by their sequence
number. You then take and apply as many sequential updates as you have. Because the
updates are stored in an ordered map, you can do this by matching sequence num-
bers in the map against a simple integer sequence until there is a mismatch (gap) in
the sequence. The length of that matching prefix is the number of updates to persist,
confirm, and drop from the waiting list. If the list is now empty—which means all
accumulated updates had consecutive sequence numbers—you conclude that you
have caught up with the active replica and switch back into up-to-date mode. Other-
wise, you again determine whether the knowledge gap that remains is too large or
whether remaining holes can be filled individually. The latter is done by the behavior
that is shown next.

Listing 13.7 Determining whether holes in updates can be filled individually

class Passive (askAroundCount: Int,
askAroundInterval: FiniteDuration,
maxLag: Int) extends Actor with ActorLogging {
private val applied = Queue.empty[Replicate]
private var awaitingInitialState = Option.empty[ActorRef]

/] ... <—— Initialization elided

def upToDate (theStore: Map[String, JsValue],
expectedSeq: Int): Receive = {
// cases shown previously elided
case GetSingle(s, replyTo) =>
log.info("GetSingle from {}", replyTo)
if (applied.nonEmpty &&
applied.head.seq <= s && applied.last.seq >= s) ({
replyTo ! applied.find( .seq == s).get
} else if (s < expectedSeq) ({
replyTo ! InitialState(theStore, expectedSeq)
}

}

def missingSomeUpdates (theStore: Map[String, JsValue],
expectedSeq: Int,
prevOutstanding: Set[Int],
waiting: TreeMap[Int, Replicatel]): Unit = {
val askFor =
(expectedSeq to waiting.lastKey) .iterator
.filterNot (seq =>
waiting.contains (seq) || prevOutstanding.contains (seq))
.toList
askFor foreach askAround
if (prevOutstanding.isEmpty) scheduleTick ()
val outstanding = prevOutstanding ++ askFor

context.become {
case Replicate(s, _, _, replyTo) if s < expectedSeq =>
replyTo ! Replicated(s)

case r: Replicate =>
consolidate (theStore, expectedSeq, outstanding - r.seq,
waiting + (r.seq -> 1))
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case TakeOver (active) =>
log.info("delaying active replica take-over until upToDate")
awaitingInitialState = Some (active)

case GetSingle(s, replyTo) =>
if (applied.nonEmpty &&
applied.head.seq <= s && applied.last.seq >= s) {
replyTo ! applied.find(_ .seq == s).get
} else if (s < expectedSeq) ({
replyTo ! InitialState(theStore, expectedSeq)

}

case GetFull (replyTo) =>
log.info("sending full info to {}", replyTo)
replyTo ! InitialState (theStore, expectedSeq)

case DoConsolidate =>
outstanding foreach askAround
scheduleTick ()

}
}

/] <+—— Other helpers elided

private def askAround(seq: Int): Unit = {
log.info("asking around for sequence number {}", seq)
getMembers (askAroundCount) . foreach (addr => replicaOn(addr) ! GetSingle (se
q, self))

Here, you finally use the queue of applied updates that you previously maintained.
When you conclude that you are missing some updates, you enter this state knowing
the next expected consecutive sequence number and a collection of future updates
that cannot yet be applied. You use this knowledge to first create a list of sequence
numbers that you are missing—you have to ask the other replicas in order to obtain
the corresponding updates. Again, you schedule a timer to ask, in case some updates
are not received; to avoid asking for the same update repeatedly, you must maintain a
list of outstanding sequence numbers that you already asked for. Asking is done by
sending a GetSingle request to a configurable number of passive replicas. In this
state, you install a behavior that will confirm known updates, defer initialization
requests from an active replica, reply to requests for a full database dump, and, when-
ever possible, answer requests for specific updates from other replicas that are in the
same situation. When a replication request is received, it may be either a new one
from the active replica or one that you asked for. In any case, you merge this update
into the waiting list and use the consolidate function to process all applicable
updates and possibly switch back to up-to-date mode.

This concludes the implementation of both the active and passive replicas. In order to
use them, you need to start a passive replica on every cluster node in addition to starting
the Cluster Singleton manager. Client requests can be sent to the active replica by using the
Cluster Singleton Proxy helper, an actor that keeps track of the current singleton location
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by listening to the cluster-membership change events. The full source code, including a
runnable demo application, can be found at www.manning.com/books/reactive-design-
patterns or https://github.com/ReactiveDesignPatterns.

The pattern, revisited
The implementation of this pattern consists of four parts:

= A cluster membership service that allows discovery and enumeration of all
replica locations

= A Cluster Singleton mechanism that ensures that only one active replica is run-
ning at all times

= The active replica that accepts requests from clients, broadcasts updates to all
passive replicas, and answers them after successful replication

= A number of passive replicas that persist state updates and help each other
recover from message loss

For the first two, this example uses the facilities provided by Akka Cluster, because the
implementation of a full cluster solution is complex and not usually done from
scratch. Many other implementations can be used for this purpose; the only import-
ant qualities are listed here. The implementation of both types of replica is more
likely to be customized and tailored to a specific purpose. We demonstrated the pat-
tern with a use case that exhibits the minimal set of operations representative of a
wide range of applications: the Get request stands for operations that do not modify
the replicated state and that can therefore be executed immediately on the active
replica, whereas the Put request characterizes operations whose effects must be repli-
cated such that they are retained across failures.

The performance of this replication scheme is very good as long as no failures
occur, because the active replica does not need to perform coordination tasks; all read
requests can be served without requiring further communication, and write requests
only need to be confirmed by a large enough subset of all replicas. This allows write
performance to be balanced with reliability, in that a larger replication factor reduces
the probability of data loss and a smaller replication factor reduces the impact of slow
responses from some replicas—by requiring N responses, you are satisfied by the N
currently fastest replicas.

During failures, you will see two different modes of performance degradation. If a
network node hosting a passive replica fails, then there will be increased network traf-
fic after its restart in order to catch up with the latest state. If the network host run-
ning the active replica fails, there will be a period during which no active replica will
be running: it takes a while for the cluster to determine that the node has failed and
to disseminate the knowledge that a new singleton needs to be instantiated. These
coordination tasks need to be performed carefully in order to be reasonably certain
that the old singleton cannot interfere with future operations even if its node later
becomes reachable again after a network partition. For typical cloud deployments,
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this process takes on the order of seconds; it is limited by fluctuations in network
transmission latency and reliability.

While discussing failure modes, we must also consider edge cases that can lead to
incorrect behavior. Imagine that the active replica fails after sending out an update,
and the next elected active replica does not receive this message. In order to notice
that some information was lost, the new active replica would need to receive an
update with a higher sequence number—but with the presented algorithm, that will
never happen. Therefore, when it accepts the first update after the failover, the new
active replica will unknowingly reuse a sequence number that some other replicas
have seen for a different update. This can be avoided by requiring all known replicas
to confirm the highest-known sequence number after a failover, which of course adds
to the downtime.

Another problem is to determine when to erase and when to retain the persistent
storage after a restart. The safest option is to delete and repopulate the database in
order to not introduce conflicting updates after a network partition that separated
the active replica from the surviving part of the cluster. On the other hand, this will
lead to a significant increase in network usage that is unnecessary in most cases, and
it would be fatal if the entire cluster were shut down and restarted. This problem can
be solved by maintaining an epoch counter that is increased for every failover so a
replica can detect that it has outdated information after a restart—for this, the active
replica will include its epoch and its starting sequence number in the replication pro-
tocol messages.

Depending on the use case, you must make a trade-off among reliable operation,
performance, and implementation complexity. Note that it is impossible to imple-
ment a solution that works perfectly for all imaginable failure scenarios.

Applicability

Because active—passive replication requires consensus regarding the active replica,
this scheme may lead to periods of unavailability during widespread outages or net-
work partitions. This is unavoidable because the inability to establish a quorum with
the currently reachable cluster members may mean there is a quorum among those
that are unreachable—but electing two active replicas at the same time must be
avoided in order to retain consistency for clients. Therefore, active—passive replication
is not suitable where perfect availability is required.

Multiple-Master Replication patterns

Keep multiple copies of a service running in different locations, accept modifications
everywhere, and disseminate all modifications among them.

With active—passive replication, the basic mode of operation is to have a relatively sta-
ble active replica that processes read and write requests without further coordination,
keeping the nominal case as simple and efficient as possible, while requiring special
action during failover. This means clients have to send their requests to the currently
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active replica, with uncertainty resulting in case of failure. Because the selection of the
active replica is done until further notice instead of per request, the client will not
know what happened in case of a failure: has the request been disseminated or not?

Allowing requests to be accepted at all replicas means the client can participate in
the replication and thereby obtain more precise feedback about the execution of its
requests. The collocation of the client and the replica does not necessarily mean both
are running in the process; placing them in the same failure domain makes their com-
munication more reliable and their shared failure model simpler, even if this just
means running both on the same computer or even in the same computing center.
The further distributed a system becomes, the more prominent are the problems
inherent to distribution, exacerbated by increased communication latency and
reduced transmission reliability.

There are several strategies for accepting requests at multiple active replicas, which
differ mainly in how they handle requests that arrive during a network partition. In
this section, we will look at three classes of strategies:

= The most consistent results are achieved by establishing consensus about the
application of each single update at the cost of not processing requests while
dealing with failures.

= Availability can be increased by accepting potentially conflicting updates during
a partition and resolving the conflicts afterward, potentially discarding updates that
were accepted at either side.

= Perfect availability without data losses can be achieved by restricting the data
model such that concurrent updates are conflict-free by definition.

Consensus-based replication

Given a group of people, we have a basic understanding of what consensus means:
within the group, all members agree on a proposal and acknowledge that this agree-
ment is unanimous. From personal experience, we know that reaching consensus is a
process that can take quite a bit of time and effort for coordination, especially if the
matter starts out as being contentious—in other words, if initially there are multiple
competing proposals, and the group must decide which single one to support.

' means roughly the same thing, but of
course the definition is more precise: given a cluster of Nnodes and a set of proposals

In computer science, the term consensus

P; to P, every nonfailing node will eventually decide on a single proposal P, without the
possibility to revoke that decision. All nonfailing nodes will decide on the same P,. In
the example of a key—value store, this means one node proposes to update a key’s value,
and, after the consensus protocol is finished, there will be a consistent cluster-wide deci-
sion about whether the update was performed—or in which order, relative to other
updates. During this process, some cluster nodes may fail; and if the number of failing
nodes is less than the failure-tolerance threshold of the algorithm, then consensus can

1

See, for example, https://en.wikipedia.org/wiki/Consensus_(computer_science) for an overview.
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be reached. Otherwise, consensus is impossible; this is equivalent to requiring a quo-
rum for Senate decisions in order to prevent an absent majority from reverting the deci-
sion in the next meeting.?

A distributed key-value store can be built by using the consensus algorithm to
agree on a replicated log. Any incoming updates are put into numbered rows of a vir-
tual ledger; and, because all nodes eventually agree about which update is in which
row, all nodes can apply the updates to their own local storage in the same order,
resulting in the same state once everything is said and done. Another way to look at
this is that every node runs its own copy of a replicated state machine; based on the
consensus algorithm, all individual state machines make the same transitions in the
same order, as long as not too many of them fail along the way.

APPLYING THE PATTERN

There are several consensus algorithms and even more implementations to choose
from. In this section, we use an existing example from the CKite project,” in which a
key—value store is written as simply as the following listing.

Listing 13.8 Using CKite to implement a key-value store

class KVStore extends StateMachine {

private var map = Map[String, String] ()
private var lastIndex: Long = 0

def applyWrite = {
case (index, Put(key: String, value: String)) => {
map.put (key, value) ;
lastIndex = index
value

}
}

def applyRead = {
case Get (key) => map.get (key)
}

def getLastAppliedIndex: Long = lastIndex

def restoreSnapshot (byteBuffer: ByteBuffer) =
map =
Serializer.deserialize[Map[String, String]] (byteBuffer.array())

def takeSnapshot (): ByteBuffer =
ByteBuffer.wrap(Serializer.serialize (map))

2 Incidentally, a similar analogy is used in the original description of the PAXOS consensus algorithms by Leslie
Lamport in “The Part-Time Parliament,” ACM Transactions on Computer Systems16, no. 2 (May 1998): 133-169,
http://research.microsoft.com/en-us/um/people/lamport/pubs/lamport-paxos.pdf.

3 See https://github.com/pablosmedina/ckite for the implementation of the library and http://mng.bz/
dLYZ for the full sample source code.
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This class describes only the handling of Get and Put requests once they have been
agreed on by the consensus algorithm, which is why this implementation is completely
free from this concern. Applying a Put request means updating the Map that stores the
key-value bindings and returning the written value, whereas applying a Get request
will only return the currently bound value (or None if there is none).

Because applying all writes since the beginning of time can be a time-consuming
process, there is also support for storing a snapshot of the current state, noting the last
applied request’s index in the log file. This is done by the takeSnapshot () function,
which is called by the CKite library at configurable intervals. Its inverse—the
restoreSnapshot () function—turns the serialized snapshot back into a Map, in case
the KVStore is restarted after a failure or maintenance downtime.

CKite uses the Raft consensus protocol (https://raft.github.io). In order to use the
KVStore class, you need to instantiate it as a replicated state machine, as follows.

Listing 13.9 Instantiating KvStore as a replicated state machine

object KVStoreBootstrap extends App {
val ckite =
CKiteBuilder ()

.stateMachine (new KVStore())
.rpc (FinagleThriftRpc)
.build

ckite.start ()

HttpServer (ckite) .start ()

}

The HttpServer class starts an HttpService in which HTTP requests are mapped into
requests to the key—value store, supporting consistent reads (which are applied via the
distributed log), local reads that just return the currently applied updates at the local
node (which may be missing updates that are currently in flight), and writes (as dis-
cussed). The API for this library is straightforward in this regard:

val consistentRead = ckite.read (Get (key))
val possiblyStaleRead = ckite.readLocal (Get (key))
val write = ckite.write (Put (key, value))

THE PATTERN, REVISITED
Writing your own consensus algorithm is almost never a good idea. There are so many
pitfalls and edge cases to be considered that using one of the sound, proven ones is a
very good default. Due to the nature of separating a replicated log from the state
machine that processes the log entries, it is easy to get started with existing solutions,
as demonstrated by the minimal amount of code necessary to implement the KVStore
example. The only parts that need to be written are the generation of the requests to
be replicated and the state machine that processes them at all replica locations.

The advantage of consensus-based replication is that it is guaranteed to result in all
replicas agreeing on the sequence of events and thereby on the state of the replicated
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data. It is therefore straightforward to reason about the correctness of the distributed
program, in the sense that it will not get into an inconsistent state.

The price for this peace of mind is that in order to avoid mistakes, the algorithm
must be conservative: it cannot boldly make progress in the face of arbitrary failures
like network partitions and node crashes. Requiring a majority of the nodes to agree
on an update before progressing to the next one not only takes time but also can fail
altogether during network partitions, such as a three-way split where none of the parts
represents a majority.

Replication with conflict detection and resolution

If you want to change your replication scheme such that it can continue to operate
during a transient network partition, then you will have to make some compromises.
Obviously, it is impossible to reach consensus without communication, so if all cluster
nodes are to make progress in accepting and processing requests at all times, conflict-
ing actions may be performed.

Consider the example of the storage component within your batch service that
stores the execution status of some computing job. When the job is submitted, it is
recorded as “new”; then it becomes “scheduled,” “executing,” and finally “finished”
(ignoring failures and retries for the sake of simplicity here). But another possibility is
that the client that submitted the job decides to cancel its execution because the com-
putation is no longer needed, perhaps because parameters have changed and a new job
has been submitted. The client will attempt to change the job status to “canceled,” with
further possible consequences, depending on the current job status—it may be taken
out of the scheduled queue, or it may need to be aborted if it is currently executing.

Assuming that you want to make the storage component as highly available as pos-
sible, you may let it accept job-status updates even during a network partition that sep-
arates the storage cluster into two halves and renders it unable to successfully apply a
consensus protocol until communication is restored. If the client interface sends the
write of the “canceled” status to one half while the execution service starts running
the job and therefore sets the “executing” status on the other half, then the two parts
of the storage component have accepted conflicting information. When the network
partition is repaired and communication is possible again, the replication protocol
will need to figure out that this has occurred and react accordingly.

APPLYING THE PATTERN

The most prominent tool for detecting whether cluster nodes have performed con-
flicting updates is called a version vector.* With this, each replica can keep track of who
updated the job status since the last successful replication, by incrementing a counter:

4 In particular, you do not need a vector clock: see Carlos Baquero, “Version Vectors Are Not Vector Clocks,”
HASIab, July 8, 2011, https://haslab.wordpress.com/2011/07/08/version-vectors-are-not-vector-clocks for a
discussion (in short: you only need to track whether updates were performed by a replica, not how many were
performed). See also Nuno Preguica et al., “Dotted Version Vectors,” November 2010, http://arxiv.org
/abs/1011.5808 for a description.
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= The status starts out as “scheduled” with an empty version vector on both nodes
A and B.

= When the client interface updates the status on node A, the replica will register
it as “canceled” with a version vector of <A:1> (all nodes that are not mentioned
are assumed to have version zero).

= When the executor updates the status on node B, it will be registered as “exe-
cuting” with the version vector <B:1>.

= When replicas A and B compare notes after the partition has been repaired, the
status will be both “canceled” and “executing,” with version vectors <A:1> and
<B:1>; and because neither fully includes the other, a conflict will be detected.

The conflict will then have to be resolved one way or another. A SQL database will
decide based on a fixed or configurable policy: for example, storing a timestamp
together with each value and picking the latest update. In this case, there is nothing to
code, because the conflict resolution happens within the database; the user code can
be written just like in the nonreplicated case.

Another possibility is implemented by the Riak database (http://mdocs.basho
.com/riak/latest/theory/concepts/Replication), which presents both values to any
client that subsequently reads the key affected by the conflict, requiring the client to
figure out how to proceed and bring the data store back into a consistent state by issu-
ing an explicit write request with the merged value; this is called read repair. An exam-
ple of how this is done is part of the Riak documentation.”

In the batch service example, you could employ domain-specific knowledge
within your implementation of the storage component: after a partition was repaired,
all replicas would exchange version information for all intermediately changed keys.
When this conflict was noticed, it would be clear that the client wished to abort the
now-executing job—the repair procedure would automatically change the job status
to “canceled” (with a version vector of <A:1,B:1> to document that this included both
updates) and ask the executor to terminate the execution of this job. One possibility
for implementing this scheme would be to use a data store like Riak and perform
read repair at the application level together with the separately stored knowledge
about which keys were written to during the partition.

THE PATTERN, REVISITED
We have introduced conflict detection and resolution at the level of a key-value store
or database where the concern of state replication is encapsulated by an existing solu-
tion in the form of a relational database management system or other data store. In
this case, the pattern consists of recording all actions as changes to the stored data
such that the storage product can detect and handle conflicts that arise from accept-
ing updates during network partitions or other times of partial system unavailability.
When using server-side conflict resolution (as is done by popular SQL database
products), the application code is freed from this concern at the cost of potentially

5 See http://docs.basho.com/riak/latest/dev/using/conflict-resolution/.
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losing updates during the repair process—choosing the most recent update means
discarding all others. Client-side conflict resolution allows tailored reactions that may
benefit from domain-specific knowledge; but, on the other hand, it makes applica-
tion code more complex to write, because all read accesses to a data store managed
in this fashion must be able to deal with receiving multiple equally valid answers to a
single query.

Conflict-free replicated data types

In the previous section, you achieved perfect availability of the batch service’s storage
component—where perfect means “it works as long as one replica is reachable”—at the
cost of either losing updates or having to care about manual conflict resolution. You
can improve on this even further, but unfortunately at another cost: it is not possible
to avoid conflicts while maintaining perfect availability without restricting the data
types that can be expressed.

As an example, consider a counter that should be replicated. Conflict freedom
would be achieved by making sure an increment registered at any replica would even-
tually be visible (effective) at all replicas independent of other concurrent incre-
ments. Clearly it is not enough to replicate the counter value: if an increment of 3 is
accepted by node A, whereas an increment of 5 is accepted at node B, then the value
after replication will either signal a conflict or miss one of the updates, as discussed in
the previous section. Therefore, you split the counter into individual per-node sub-
counters, where each node only ever modifies its own subcounter. Reading the
counter then means summing up all the per-node subcounters.® In this fashion, both
increments of 3 and 5 will be effective, because the per-node values cannot see con-
flicting updates. And after the replication is complete, the total sum will have been
incremented by 8.

With this example, it becomes clear that it is possible to create a data structure that
fulfills the goal, but the necessary steps in the implementation of this replicated
counter are tailored to this particular use case and cannot be used in general—in par-
ticular, it relies upon the fact that summing all subcounters correctly expresses the
overall counter behavior. This is possible for a wide range of data types, including sets
and maps, but it fails wherever global invariants cannot be translated to local ones.
For a set, it is easy to avoid duplicates because duplicate checking can be done on
each insertion, but constructing a counter whose value must stay within a given range
requires coordination again.

The data types we are talking about here are called conflict-free replicated data types
(CRDTs)” and are currently being introduced in a number of distributed systems

® An implementation in the context of Akka Distributed Data can be studied at http://mng.bz/rf2V. This type
of counter can only grow, hence its name: GCounter.

7

See M. Shapiro et al., “A Comprehensive Study of Convergent and Commutative Replicated Data Types,”

2011, https://hal.inria.fr/inria-00555588 for an overview; and C. Baquero, “Specification of Convergent Abstract
Data Types for Autonomous Mobile Computing,” 1997, http://haslab.uminho.pt/cbm/publications/
specification-convergent-abstract-data-types-autonomous-mobile-computing for early ground work.
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libraries and data stores. In order to define such a data type, you need to formulate a
rule about how to merge two of its values into a new resulting value. Instead of detect-
ing and handling conflicts, such a data type knows how to merge concurrent updates
so that no conflict occurs.

The most important properties of the merge function are that it is symmetric and
monotonic: it must not matter whether you merge valuel with value2 or value2 with
valuel; and after having merged two values into a third one, future merges must not
ever go back to a previous state (example: if vl and v2 were merged to v2, then any
merge of v2 with another value must not ever result in vl—you can picture this as the
values following some order and merging only ever goes forward in this order, never
backward).

APPLYING THE PATTERN

Coming back to the example of updating the status of a batch job, we will now demon-
strate how a CRDT works. First, you define all possible status values and their merge
order, as shown in figure 13.1—such a graphical representation is the easiest way to
get started when designing a CRDT with a small number of values. When merging two
statuses, there are three cases:

= If both statuses are the same, then obviously you just pick that status.

= If one of them is reachable from the other by walking in the direction of the
arrows, then you pick the one toward which the arrows are pointing; as an
example, merging “new” and “executing” will result in “executing.”

= If that is not the case, then you need to find a new status that is reachable from
both by walking in the direction of the arrows, but you want to find the closest
such status (otherwise, “finished” would always be a solution, but not a useful
one). There is only one example in this graph, which is merging “executing”
and “canceled,” in which case you choose “aborted”—choosing “finished”
would technically be possible and consistent, but that choice would lose infor-
mation (you want to retain both pieces of knowledge that are represented by
“executing” and “canceled”).

The next step is to cast this logic into code. This example prepares the use of the
resulting status representation with the Akka Distributed Data module that takes care

[ New )—»[ Scheduled J—»[ Executing J—»( Finished ]

NN

Figure 13.1 Batch job status values as CRDTs with their merge
ordering indicated by state progression arrows: walking in the direction
of the arrows goes from predecessor to successor in the merge order.
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of the replication and merging of CRDT values. All that is needed is the merge func-
tion, which is the only abstract method on the ReplicatedData interface.

Listing 13.10 Code representation of the graph in figure 13.1

final case class Status(val name: String) (_pred: => Set[Status],
_succ: => Set[Status])
extends ReplicatedData

type T = Status

def merge(that: Status): Status = mergeStatus(this, that) Merges another

status with this

lazy val predecessors = _pred Arrows into and
status

lazy val successors = _succ out of this status

}

val New: Status =

Status ("new") (Set.empty, Set (Scheduled, Canceled))
val Scheduled: Status =

Status ("scheduled") (Set (New), Set (Executing, Canceled))
val Executing: Status =

Status ("executing") (Set (Scheduled), Set (Aborted, Finished))
val Finished: Status =

Status ("finished") (Set (Executing, Aborted), Set.empty)
val Canceled: Status =

Status ("canceled") (Set (New, Scheduled), Set (Aborted))
val Aborted: Status =

Status ("aborted") (Set (Canceled, Executing), Set(Finished))

This is a trivial transcription of the graph from figure 13.1, where each node in the sta-
tus graph is represented by a Scala object with two sets of nodes describing the incom-
ing and outgoing arrows, respectively: an arrow always goes from predecessor to
successor (for example, Scheduled is a successor of New, and New is a predecessor of
Scheduled). We could have chosen a more compact representation where each arrow
is encoded only once: for example, if we had provided only the successor information,
then after construction of all statuses, a second pass would have filled in the predeces-
sor sets automatically. Here, we opted to be more explicit and save the code for the
post-processing step. Now it is time to look at the merge logic in the following listing.

Listing 13.11 Merging two statuses to produce a third, merged status

def mergeStatus(left: Status, right: Status): Status = {

Keep the left Status in hand and determine whether it is a
predecessor of the candidate, moving on to the candidate’s
successor if not successful. The list of exclusions is used to
avoid performing already determined unsuccessful comparisons
again.
/
def innerLoop (candidate: Status, exclude: Set[Status]): Status =
if (isSuccessor (candidate, left, exclude)) {

candidate
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} else {
val nextExclude = exclude + candidate
val branches =
candidate.successors.map (succ => innerLoop (succ, nextExclude))
branches.reduce ((1, r) =>
if (isSuccessor(l, r, nextExclude)) r else 1)

}

def isSuccessor (candidate: Status, fixed: Status,

exclude: Set[Status]): Boolean =
if (candidate == fixed) true
else {
val toSearch = candidate.predecessors -- exclude

toSearch.exists (pred => isSuccessor (pred, fixed, exclude))

}

innerLoop (right, Set.empty)

}

In this algorithm, you merge two statuses, one called left and one called right. You
keep the left value constant during the entire process and consider right a candi-
date that you may need to move in the direction of the arrows. As an illustration, con-
sider merging New and Canceled:

= If New is taken as the left argument, then you will enter the inner loop with
Canceled as the candidate, and the first conditional will call isSuccessor, with
the first two arguments being Canceled and New. These are not equal, so the
else branch of isSuccessor will search all predecessors of Canceled (New and
Scheduled) to determine whether one of them is a successor of New; this now
satisfies the condition of candidate == fixed, so isSuccessor returns true
and the candidate in innerLoop (Canceled) will be returned as the merge
result.

= If New is taken as the right argument, then the first isSuccessor call will yield
false. You enter the other branch in which both successors of the candidate
New will be examined; trying Scheduled will be equally fruitless, escalating to
Executing and Canceled as its successors. Abbreviating the story a little, you
will eventually find that the merge result for the Executing candidate will be
Aborted, whereas for Canceled it is Canceled itself. These branches are then
reduced into a single value by pairwise comparison and picking the predeces-
sor, which is Canceled in the case of trying Scheduled just now. Returning to
the outermost loop invocation, you thus twice get the same result of Canceled
for the two branches, which is also the end result.

This procedure is somewhat complicated by the fact that you have allowed the two sta-
tuses of Executing and Canceled to be unrelated to each other, necessitating the abil-
ity to find a common descendant. We will come back to why this is needed in the
example, but first we will look at how this CRDT is used by a hypothetical (and vastly
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oversimplified) client interface. In order to instantiate the CRDT, you need to define a
key that identifies it across the cluster:

object StorageComponent extends Key[ORMap [Status]] ("StorageComponent")

You need to associate a Status with each batch job, and the most fitting predefined
CRDT for this purpose is an observed-remove map (ORMap). The name stems from the
fact that only keys whose presence has previously been observed can be removed from
the map. Removal is a difficult operation because you have seen that CRDTs need a
monotonic, forward-moving merge function—removing a key at one node and repli-
cating the new map would mean only that the other nodes would add it right back
during merges, because that is the mechanism by which the key is spread across the
cluster initially.®

One thing to note here is that CRDTs can be composed as shown earlier: the
ORMap uses Strings as keys (this is fixed by the Akka Distributed Data implementa-
tion) and some other CRDTs as values. Instead of using the custom Status type, you
could use an observed-remove set (ORSet) of PNCounters if you needed sets of counters to
begin with, just to name one possibility. This makes it possible to create container data
types with well-behaved replication semantics that are reusable in different contexts.
Within the client interface—represented as a vastly oversimplified actor in the follow-
ing listing—you can use the status map by referencing the StorageComponent key.

Listing 13.12 Using Akka Distributed Data to disseminate state changes

class ClientInterface

extends Actor with ActorLogging {
val replicator = DistributedData (context.system) .replicator
implicit val cluster = Cluster (context.system)

def receive = {
case Submit (job) =>
log.info ("submitting job {}", job)
replicator !
Replicator.Update (StorageComponent, ORMap.empty [Status],
Replicator.WriteMajority (5.seconds))
(map => map + (job -> New))

case Cancel (job) =>
log.info("cancelling job {}", job)
replicator !
Replicator.Update (StorageComponent, ORMap.empty [Status],
Replicator.WriteMajority (5.seconds))
(map => map + (job -> Canceled))

case r: Replicator.UpdateResponse[_ ] =>
log.info("received update result: {}", r)

8 For details of how this is implemented, see Annette Bieniusa et al., “An Optimized Conflict-Free Replicated
Set,” October 2012, https://hal.inria.fr/hal-00738680.
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case PrintStatus =>
replicator ! Replicator.Get (StorageComponent,
Replicator.ReadMajority (5.seconds))

case g: Replicator.GetSuccess[ ] =>
log.info("overall status: {}", g.get (StorageComponent))

The Replicator is the actor provided by the Akka Distributed Data module that is
responsible for running the replication protocol between cluster nodes. Most generic
CRDTs like ORMap need to identify the originator of a given update, and for that the
Cluster extension is implicitly used—here it is needed by both function literals that
modify the map during the handing of Submit and Cancel requests.

With the Update command, you include the StorageComponent key, the initial
value (if the CRDT was not referenced before), and a replication-factor setting. This
setting determines the point at which the confirmation of a successful update will be
sent back to the ClientInterface actor: you choose to wait until the majority of clus-
ter nodes have been notified, but you could just as well demand that all nodes have
been updated, or you could be satisfied once the local node has the new value and
starts to disseminate it. The latter is the least reliable but is perfectly available (assum-
ing that a local failure implies that the ClientInterface is affected as well); waiting
for all nodes is most reliable for retaining the stored data but can easily fail at storage.
Using the majority is a good compromise that works well in many situations—just as
for legislative purposes.

The modifications performed by the client interface do not care about the previ-
ous job status. They create a New entry or overwrite an existing one with Canceled.
The executor component demonstrates more interesting usage, as shown next.

Listing 13.13 Introducing a request identifier for the job

class Executor extends Actor with ActorLogging {
val replicator = DistributedData (context.system).replicator
implicit val cluster = Cluster (context.system)

var lastState = Map.empty[String, Status]

replicator ! Replicator.Subscribe (StorageComponent, self)

def receive = {
case Execute(job) =>
log.info("executing job {}", job)
replicator !

Replicator.Update (StorageComponent, ORMap.empty[Status],
Replicator.WriteMajority (5.seconds),
Some (job) )
{ map =>
require (map.get (job) == Some (New) )
map + (job -> Executing)

}
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case Finish(job) =
log.info("job {} finished", job)
replicator !
Replicator.Update (StorageComponent, ORMap.empty[Status],
Replicator.WriteMajority (5.seconds))
(map => map + (job -> Finished))

>

case Replicator.UpdateSuccess (StorageComponent, Some (job)) =>
log.info ("starting job {}", job)

case r: Replicator.UpdateResponse[_] =>
log.info ("received update result: {}", r)
case ch: Replicator.Changed[ ] =>
val current = ch.get (StorageComponent) .entries
for {
(job, status) <- current.iterator
if (status == Aborted)
if (lastState.get(job) != Some (Aborted))

} log.info("aborting job {}", job)
lastState = current

When it is time to execute a batch job, the update request for the CRDT includes a
request identifier (Some (job)) that has so far been left out: this value will be included
in the success or failure message that the replicator sends back. The provided update
function now checks a precondition: that the currently known status of the given
batch job is still New. Otherwise, the update will be aborted with an exception. Only
upon receiving the UpdateSuccess message with this job name will the actual execu-
tion begin; otherwise, a ModifyFailure will be logged (which is a subtype of Update-
Response).

Finally, the executor should abort batch jobs that were canceled after being
started. This is implemented by subscribing to change events from the replicator for
the StorageComponent CRDT. Whenever there is a change, the replicator will take
note of it; and as soon as the (configurable) notification interval elapses, a
Replicator.Changed message will be sent with the current state of the CRDT. The
executor keeps track of the previously received state and can therefore determine
which jobs have newly become Aborted. In this example, you log this; in a real imple-
mentation, the Worker instance(s) for this job would be asked to terminate. The full
example, including the necessary cluster setup, can be found in the source code
archives for this chapter.

THE PATTERN, REVISITED

Conflictfree replication allows perfect availability but requires the problem to be cast
in terms of special data types (CRDTs). The first step is to determine which semantics
are needed. In this case, you needed a tailor-made data type, but a number of generi-
cally useful ones are readily available. Once the data type has been defined, a replica-
tion mechanism must be used or developed that will disseminate all state changes and
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invoke the merge function wherever necessary. This could be a library, as in the exam-
ple shown in listing 13.12, or an off-the-shelf data store based on CRDTs.

Although it is easy to get started like this, note that this solution cannot offer
strong consistency: updates can occur truly concurrently across the entire system,
making the value history of a given key nonlinearizable (which means different clients
can see conflicting value histories that are eventually reconciled). This may present a
challenge in environments that are most familiar with and used to transactional
behavior of a central authority—the centrality of this approach is precisely the limita-
tion in terms of resilience and elasticity that conflict-free replication overcomes, at the
cost of offering at most eventual consistency.

13.3 The Active-Active Replication pattern

Keep multiple copies of a service running in different locations, and perform all
modifications at all of them.

In the previous patterns, you achieved resilience for the storage subsystem of the
example batch job processing facility by replicating it across different locations (data
centers, availability zones, and so on). You saw that you can achieve strong consistency
only when implementing a failover mechanism; both CRDT-based replication and con-
flict detection avoid this at the cost of not guaranteeing full consistency. One property
of failover is that it takes some time: first, you need to detect that there is trouble, and
then, you must establish consensus about how to fix it—for example, by switching to
another replica. Both activities require communication and therefore cannot be com-
pleted instantaneously. Where this is not tolerable, you need a different strategy, but
because there is no magic bullet, you must expect different restrictions.

Instead of failing over as a consequence of detecting problems, you can assume
that failures occur and therefore hedge your bets: rather than contacting only one
replica, always perform the desired operation on all of them. If a replica does not
respond correctly, then you conclude that it has failed and refrain from contacting it
again. A new replica will be added based on monitoring and supervision.

In computer science, the first description of active—active replication was offered by
Leslie Lamport,’ who proposed that distributed state machines can be synchronized by
using the fact that time passes in a sufficiently similar fashion for all of them. His
description yields a more generic framework for replication than is presented in this
section. The definition of active-active replication used here'’ is inspired by the space
industry, where, for example, measurements are performed using multiple sensors at
all times and hardware-based voting mechanisms select the prevalent observation
among them, discarding minority deviations by presuming them to be the result of fail-
ures. As an example, the main bus voltage of a satellite may be monitored by a regulator

9 Leslie Lamport, “Using Time Instead of Timeout for Fault-Tolerant Distributed Systems,” ACM Transactions
on Programming Languages and Systems 6, no. 2 (April 1984): 254-280.

1% Note that database vendors sometimes use active—active replication to mean conflict detection and resolution as
described in the previous section.
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that decides whether to drain the batteries or charge them with excess power coming
from the solar panels; making the wrong decision in this regard will ultimately destroy
the satellite, and therefore three such regulators are taken together and their signals
are fed into a majority voting circuit to obtain the final decision.

The drawback of this scheme is that you must assume that the inputs to all replicas
are the same, so that the responses will also be the same; all replicas internally go
through the same state changes together. In contrast to the concrete bus voltage that is
measured in the satellite example—the one source of truth—having multiple clients
contact three replicas of a stateful service means there must be a central point that
ensures that requests are delivered to all replicas in the same order. This will either be
asingle choke point (concerning both failures and throughput) or require costly coor-
dination again. But instead of theorizing, we will look at a concrete example.

The problem setting

Again, you will apply this replication scheme to the key-value store that represents the
storage component of the batch job service. The two involved subcomponents—a
coordinator and a replica—are represented as vastly simplified Actors, concentrating
on the basic working principle. The idea behind the pattern is that all replicas go
through the same state changes in lockstep without coordinating their actions and
while running fully asynchronously. Because coordination is necessary nevertheless,
you need to control the requests that are sent to the replicas by introducing a middle-
man that also acts as bookkeeper and supervisor.

Applying the pattern

The starting point for implementing this solution is the replicas, which, due to the
lack of coordination, can be kept simple.

Listing 13.14 Starting active-active replication with an uncoordinated implementation

private case class SeqgCommand(seq: Int, cmd: Command,
replyTo: ActorRef)
private case class SegResult(seq: Int, res: Result,
replica: ActorRef, replyTo: ActorRef)

private case class SendInitialData(toReplica: ActorRef)
private case class InitialData(map: Map[String, JsValue])

class Replica extends Actor with Stash {
var map = Map.empty[String, JsValuel]

def receive = {
case InitialData(m) =>
map = m
context.become (initialized)
unstashall ()

case _ => stash()
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def initialized: Receive = {
case SegCommand (seqg, cmd, replyTo) => Tracking of sequence numbers
// QJ and resends is elided here.
cmd match {
case Put (key, value, r) =>

map += key -> value
replyTo ! SeqResult (seq, PutConfirmed (key, value), self, r)
case Get(key, r) =>
replyTo ! SegResult (seq, GetResult (key, map get key), self, r)
}

case SendInitialData(toReplica) => toReplica ! InitialData (map)

}

First, you define sequenced command and result wrappers for the communication
between the coordinator and the replicas as well as initialization messages to be sent
between replicas. The replica starts out in a mode where it waits for a message con-
taining the initial state to begin from—you must be able to bring new replicas online
in the running system. Once the initialization data have been received, the replica
switches to its initialized behavior and replays all previously stashed commands. In
addition to Put and Get requests, it also understands a command to send the current
contents of the key-value store to another replica in order to initialize that replica.

As noted, in the code, we have left out all sequence-number tracking and resend
logic (the same is true in the coordinator actor discussed in listing 13.15) in order to
concentrate on the essence of this pattern. Because we already solved reliable delivery
of updates for active—passive replication, we consider this part of the problem solved;
please refer back to section 13.1. In contrast to having the replicas exchange missing
updates among each other, you, in this case, establish the resend protocol only
between the coordinator and each replica individually.

Assuming that all replicas perform their duties if they are fed the same requests in
the same order, you now need to fulfill that condition: it is the responsibility of the
coordinator to broadcast the commands, handle and aggregate the replies, and man-
age possible failures and inconsistencies. In order to nicely formulate this, you need
to create an appropriate data type that represents the coordinator’s knowledge about
the processing status of a single client request, as follows.

Listing 13.15 Encapsulating knowledge about the status of a single client request

private sealed trait ReplyState {
def deadline: Deadline
def missing: Set [ActorRef]
def add(res: SegResult): ReplyState
def isFinished: Boolean = missing.isEmpty

}

private case class Unknown (deadline: Deadline, replies: Set[SegResult],
missing: Set [ActorRef], quorum: Int)
extends ReplyState {
override def add(res: SegResult): ReplyState = {
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val nextReplies = replies + res
val nextMissing = missing - res.replica
if (nextReplies.size >= quorum) {
val answer =
replies.toSeq
.groupBy (_.res)
.collectFirst { case (k, s) if s.size >= quorum => s.head }
if (answer.isDefined) {
val right = answer.get
val wrong =
replies.collect ({
case SeqgResult(_, res, replica, _) if res != right =>
replica
}

Known (deadline, right, wrong, nextMissing)
} else if (nextMissing.isEmpty) {
Known. fromUnknown (deadline, nextReplies)
} else Unknown(deadline, nextReplies, nextMissing, quorum)
} else Unknown (deadline, nextReplies, nextMissing, quorum)

}
}

private case class Known(deadline: Deadline, reply: SegResult,
wrong: Set [ActorRef], missing: Set [ActorRef])
extends ReplyState {
override def add(res: SegResult): ReplyState =
val nextWrong =
if (res.res == reply.res) wrong else wrong + res.replica
Known (deadline, reply, nextWrong, missing - res.replica)
}
}

private object Known {
def fromUnknown (deadline: Deadline,

replies: Set[SegResult]): Known = {
val counts = replies.groupBy( .res)
val biggest = counts.iterator.map( . 2.size).max Did not reach
val winners = counts.collectFirst { consuwusqpthh
case (res, win) if win.size == biggest => win one: use a simple
}.get majority
val losers = (replies -- winners) .map(_.replica)

Known (deadline, winners.head, losers, Set.empty)

ReplyState tracks when the time limit for a client response expires; whether the reply
value is already known; which replica’s response deviated from the prevalent one; and
which replica’s response is still outstanding. When a new request is made, you begin
with an Unknown reply state containing an empty set of replies and a set of missing
replica ActorRefs that contains all current replicas. As responses from replicas are
received, your knowledge grows, as represented by the add () function: the response is
added to the set of replies, and as soon as the required quorum of replicas has
responded with a consistent answer, ReplyState switches to Known (taking note of the
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replica ActorRefs from which the wrong answer was received). If, after receiving the
last expected response, no answer has reached a quorum, one of the answers must be
selected in order to make progress; in this case, you use a simple majority as imple-
mented in the fromUnknown function. Within the Known state, you still keep track of
arriving responses so that corrupted replicas can be detected. Before we dive into this
aspect, the following listing shows the overall structure of the Coordinator.

Listing 13.16 Managing replicas as child actors

class Coordinator (N: Int) extends Actor (
private var replicas = (1 to N).map(_ => newReplica()).toSet
private val segNr = Iterator from 0
private var replies = TreeMap.empty[Int, ReplyStatel]
private var nextReply = 0

override def supervisorStrategy = SupervisorStrategy.stoppingStrategy

private def newReplica(): ActorRef =
context.watch (context.actorOf (Replica.props))

context.setReceiveTimeout (1.second) Schedules timeout messages

def receive = ({ for quiescent periods
case cmd: Command =>
val ¢ = SegCommand (segNr.next, cmd, self)
replicas foreach (_ ! c)
replies += c.seq -> Unknown(5 seconds fromNow, Set.empty,
replicas, (replicas.size + 1) / 2)

case res: SegResult if replies.contains(res.seq) &&
replicas.contains (res.replica) =>
val prevState = replies(res.seq)
val nextState = prevState.add(res)
replies += res.seqg -> nextState

case Terminated(ref) =>
replaceReplica(ref, terminate = false)

case ReceiveTimeout =>
}: Receive) andThen { _ =»>

doTimeouts ()

sendReplies ()

evictFinished() Definitions of doTimeouts,

sendReplies, and
/] ... evictFinished withheld

In this simplified code, Coordinator directly creates the replicas as child actors; a real
implementation would typically request the infrastructure to provision and start
replica nodes that would then register themselves with Coordinator once Replica is
running on them. Coordinator also registers for lifecycle monitoring of all replicas
using context.watch(), in order to be able to react to permanent failures that are
detected by the infrastructure—in the case of Akka, this service is implicitly provided
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by the Cluster module. Another thing to
note is that, in this example, Coordinator )
is the parent actor of the replicas and Command | | Result

. . SeqgResult
therefore also their supervisor. Because

. ) Coordinator
failures escalated to Coordinator usually

imply that messages have been lost, and  SeqCommand
this simplified example assumes reliable
delivery, you install a supervisor strategy [ Replica ] [ Replica ] ( Replica ]
that will terminate any failing child actor; [ [ [

this will eventually lead to the reception DI |
of a Terminated message, upon which a Figure 13.2 Flow of messages in the Active-
new replica will replace the previously ter-  Active Replication pattern

minated one.

The flow of messages through the coordinator is depicted in figure 13.2. Whereas
the external client sends commands and expects returned results, looping the requests
through the replicas requires some additional information; hence, the messages are
wrapped as SeqCommand and SeqResult, respectively. The name signifies that these are
properly sequenced, although, as discussed, we omit the implementation of reliable
delivery that would normally be based on the contained sequence numbers. The only
sequencing aspect modeled is that the external client sees the results in the same order
in which their corresponding commands were delivered; this is the reason for the
nextReply variable that is used by the following implementation of sendReplies ().

Listing 13.17 Sending replies in sequence

@tailrec private def sendReplies(): Unit =
replies.get (nextReply) match {
case Some(k @ Known(_, reply, _, _)) =>

reply.replyTo ! regly.res
nextReply += 1

sendReplies ()
case _ =>
} evictFinis_hgd_ sengR_ePIies Cgrrlnland
v v v

Unknown

If the next repl nt h ”

! the ”e t reply to be se t' as a Evicted P L

known” value, then you send it back Known

to the client and move on to the next SeqResult

one. This method is called after every doTimeouts

handled message in order to flush

. . Figure 13.3 The movement of replies through the
replies to the clients whenever they

status tracking within the coordinator: new entries
are ready. The overall flow of replies are generated whenever a command is received, and
through the coordinator’s response- they move from “unknown” to “known” status either
by receiving SeqResult messages or due to timeout.
Consecutive “known” results are sent back to the
TreeMap indexed bY command  external client, and replies where no more replica
sequence) is shown in ﬁgure 13.3. responses are expected are evicted from the queue.

tracking queue (implemented by a
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You have seen the handling of SeqResult messages already in the coordinator’s behav-
ior definition, leaving the following doTimeouts () function as the other possibility
through which an “unknown” reply status can be transformed into a “known” reply.

Listing 13.18 Upon timeout, forcing “missing” replies to “known” replies

private def doTimeouts(): Unit = {
val now = Deadline.now
val expired = replies.iterator.takeWhile(_ . 2.deadline <= now)

for ((seq, state) <- expired) (
state match {
case Unknown (deadline, received, _, _) =>
val forced = Known.fromUnknown (deadline, received)
replies += seq -> forced
case Known (deadline, reply, wrong, missing) =>
replies += seqg -> Known(deadline, reply, wrong, Set.empty)

Because sequence numbers are allocated in strictly ascending order and all com-
mands have the same timeout, replies will also time out in the same order. Therefore,
you can obtain all currently expired replies by computing the prefix of the replies
queue for which the expiry deadline lies in the past. You turn each of these entries
into a “known” one for which no more responses are expected—even wrong replies
that come in late are discarded. Notice the corrupted replicas during one of the sub-
sequent requests. If no result has been determined yet for a command, you again use
the fromUnknown function to select a result with simple majority, noting which replicas
responded with a different answer (which is wrong by definition). The last remaining
step is similar to a debriefing: for every command that you responded to, you must
check for deviating responses and replace their originating replicas immediately.

Listing 13.19 Terminating and replacing replicas that did not finish

@tailrec private def evictFinished(): Unit =
replies.headOption match {
case Some((seq, k @ Known(_, _, wrong, _))) if k.isFinished =>
wrong foreach (replaceReplica(_, terminate = true))
replies -= seq
evictFinished ()
case _ =>

}

private def replaceReplica(r: ActorRef, terminate: Boolean): Unit =
if (replicas contains r) {
replicas -= r
if (terminate) r ! PoisonPill
val replica = newReplicaf()
replicas.head ! SendInitialData (replica)
replicas += replica
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The evictFinished function checks whether the reply status of the oldest queued
command is complete (no more responses are expected). If so, it initiates the replace-
ment of all faulty replicas and removes the status from the queue, repeating this pro-
cess until the queue is empty or an unfinished reply status is encountered. Replacing a
replica would normally mean asking the infrastructure to terminate the correspond-
ing machine and provision a new one, but in this simplified example you just termi-
nate the child actor and create a new one.

In order to get the new replica up to speed, you need to provide it with the current
replicated state. One simple possibility is to ask one of the remaining replicas to trans-
fer its current state to the new replica. Because this message will be delivered after all
currently outstanding commands and before any subsequent commands, this state will
be exactly the one needed by the new replica to be included in the replica set for new
commands right away—the stashing and replay of these commands within the
Replica actor has exactly the correct semantics. In a real implementation, there
would need to be a timeout-and-resend mechanism for this initialization, to cover
cases where the replica that is supposed to transfer its state fails before it can complete
the transmission. It is important to note that the faulty replica is excluded from being
used as the source of the initialization data, just as the new replica is.

The pattern, revisited

The Active—Active Replication pattern emerged from a conversation with some soft-
ware architects working at a financial institution. It solves a specific problem: how can
you keep a service running in fault-tolerant fashion with fully replicated state while
not suffering from costly consensus overhead and avoiding any downtime during fail-
ure—not even allowing a handful of milliseconds for failure detection and failover?

The solution consists of two parts: the replicas execute commands and generate
results without regard to each other, and the coordinator ensures that all replicas
receive the same sequence of commands. Faulty replicas are detected by comparing
the responses received to each individual command and flagging deviations. In the
example implementation, this was the only criterion; a variation might be to also
replace replicas that are consistently failing to meet their deadlines.

Aside effect of this pattern is that external responses can be generated as soon as
there is agreement about what that response will be, which means requiring only
three out of five replicas would shorten the usually long tail of the latency distribu-
tion. Assuming that slow responses are not correlated between the replicas (that is,
they are not caused by the specific properties of the command or otherwise related),
then the probability of more than two replicas exceeding their 99th percentile latency
is only 0.001%, which naively means the individual 99th percentile is the cluster’s
99.999th percentile."!

"' This is of course too optimistic, because outliers in the latency distribution are usually caused by something
that might well be correlated between machines. For example, garbage collection pauses for JVMs that were
started at the same time, and executing the same program with the same inputs will tend to occur roughly at
the same time as well.
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13.3.4 The relation to virtual synchrony

This pattern is similar in some aspects to the virtual synchrony'* work done by Ken Bir-
man et al. in the 1980s. The goal of both is to allow replicated distributed processes to
run as if synchronized and to make the same state transitions in the same order.
Although our example restricts and simplifies the solution by requiring a central entry
point—the coordinator—the virtual synchrony model postulates no such choke point.
As we discussed in section 13.2, this would normally require a consensus protocol to
be used to ensure that transitions occur only once all replicas have acknowledged that
they will make the transition. Unfortunately, this approach is doomed to fail, as
proven by Fischer, Lynch, and Paterson in what is usually referred to as the FLP"
result. The practical probability for this kind of failure is vanishingly small, but it is
enough to question the endeavor of trying to provide perfect ordering guarantees in a
distributed system.

Virtual synchrony avoids this limitation by noticing that, in most cases, the order-
ing of processing two requests from different sources is not important: if the effects of
two requests A and B are commutative, then it does not matter whether they are
applied in the order A, B or B, A, because the state of the replica will be identical in
the end. This is similar to how CRDTs achieve perfect availability without conflicts:
impossibility laws do not matter if the available data types and operations are
restricted in a way that conflicts cannot arise.

Taking a step back and considering daily life, we usually think in terms of cause
and effect: I (Roland) observe that my wife’s coffee mug is empty, fill it with coffee,
and tell her about it, expecting that when she looks at the mug, she will be pleased
because it is now full. By waiting to tell her until after my refill, I make sure the laws of
physics—in particular, causality—will ensure the desired outcome (barring catastro-
phes). This kind of thinking is so ingrained that we like to think about everything in
this fashion, including distributed systems. When using a transactional database, cau-
sality is ensured by the serializability of all transactions: they happen as if one were
executed after the other, every transaction seeing the complete results of all previ-
ously executed transactions. Although this works great as a programming abstraction,
it is stronger than needed; causality does not imply that things happen in one univer-
sal order. In fact, the laws of special relativity clearly describe which events can be caus-
ally related and which cannot—events that happen at remote locations are truly
concurrent if you cannot fly from one to the other even at the speed of light.

This fact may serve to motivate the finding that causal consistency is the best you
can implement in a distributed system.'* Virtual synchrony achieves greater resilience

'2 https:// en.wikipedia.org/wiki/Virtual_synchrony. See Ken Birman, “A History of the Virtual Synchrony Rep-
lication Model,” https://www.cs.cornell.edu/ken/history.pdf for an introduction and historical discussion.

3 Michael Fischer, Nancy Lynch, and Michael Paterson, “Impossibility of Distributed Consensus with One
Faulty Process,” ACM, April 1985, http://dl.acm.org/citation.cfm?id=214121.

" Wyatt Lloyd et al., “Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS,”
SOSP ’11, ACM 2011, http://dl.acm.org/citation.cfm?id=2043593.
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and less coordination overhead than consensus-based replication by allowing mes-
sages that are not causally related to be delivered to the replicas in random order. In
this way, it can achieve performance similar to the active—active replication described
in this section, at the cost of carefully translating the desired program such that it
relies only on causal ordering. If the program cannot be written in this fashion
because, for example, some effects are not commutative, then at least for these opera-
tions the coordination cost of establishing consensus must be paid. In this sense, the
coordinator represents a trade-off that introduces a single choke point in exchange
for being able to run arbitrary algorithms in a replicated fashion without the need for
adaptation.

Summary

In this chapter, we discussed various replication patterns that allow you to distribute
systems in space so as to not put all of your eggs in one basket. When it comes to repli-
cation, you are presented with a choice: do you favor consistency, reliability, or avail-
ability? The answer depends on the requirements of the use case at hand and is rarely
black and white—there is a continuous range between these extremes, and most pat-
terns are tunable. The following list can be used for orientation:

= Active—passive replication is relatively simple to use, based on an existing cluster-
singleton implementation. It is fast during normal operation, suffers downtime
during fail-overs, and offers good consistency due to having a single active
replica.

= Consensus-based replication enables greater resilience by allowing updates to be
accepted by any replica. But in return for offering perfect consistency, it suffers
from high coordination overhead and, consequently, low throughput. Prefer-
ring consistency entails unavailability during severe failures.

= Replication based on conflict detection and resolution allows the system to stay avail-
able during severe failure conditions, but this can lead to data losses or require
manual conflict resolution.

= Conflict-free replicated data types are formulated such that conflicts cannot arise by
construction. Therefore, this scheme can achieve perfect availability even
during severe failures; the data types are restricted, requiring special adaptation
of the program code as well as designing it for an eventual consistency model.

= Active—active replication addresses the concern of avoiding downtime during fail-
ures while maintaining a generic programming model. The cost is that all
requests must be sent through a single choke point in order to guarantee con-
sistent behavior of all replicas—alternatively, the program can be recast in
terms of causal consistency to achieve high performance and high availability
by employing virtual synchrony.

This summary is of course grossly simplified. Please refer back to the individual sec-
tions for a more complete discussion of the limitations of each approach.



Resource-management
palterns

One concern that most systems share is that you need to manage or represent
resources: file storage space, computation power, access to databases or web APIs,
physical devices like printers and card readers, and many more. A component that
you create may provide such a resource to the rest of the system on its own, or you
may need to incorporate external resources. In this chapter, we will discuss patterns
for dealing with resources in Reactive applications. In particular, we will look at the
following:

= The Resource Encapsulation pattern
= The Resource Loan pattern

= The Complex Command pattern

= The Resource Pool pattern

= Patterns for managed blocking

In the previous two chapters, we introduced the example of the batch job service, a
system that allows clients to submit computation jobs in order to have them exe-
cuted by a fleet of elastically provisioned worker nodes. We focused on the hierar-
chical decomposition and failure handling of such a system. Now we will take a
closer look at the provisioning and management of the worker nodes, which are
the primary resources managed by the batch job service.
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The Resource Encapsulation pattern
A resource and its lifecycle are responsibilities that must be owned by one component.

From the Simple Component pattern, you know that every component does only one
thing, but does it in full; in other words, each component is fully responsible for the
functionality it provides to the rest of the system. If we regard that functionality as a
resource that is used by other components—inside or outside the system—then it is
clear that resource, responsibility, and component exactly coincide. These three terms all
denote the same boundary: in this view, resource encapsulation and the single respon-
sibility principle are the same. The same reasoning can be applied when considering
other resources, in particular those used to provide a component’s function. These
are not implemented but merely are managed or represented: the essence of the
Resource Encapsulation pattern is that you must identify that component into whose
responsibility each resource falls, and place it there. The resource becomes part of
that component’s responsibility. Sometimes this will lead you to identify the manage-
ment of an external resource as a notable responsibility that needs to be broken out
into its own simple component.

This pattern is closely related to the principles of hierarchical decomposition
(chapter 6) and delimited consistency (chapter 8). You may wish to refresh your mem-
ory on these topics before diving in.

The problem setting

Recall the architecture of the batch job service: the client interface offers the overall
functionality to external clients and represents them internally; the job-scheduling
component decides which of the submitted jobs to execute in which order; the execu-
tion component takes care of running the scheduled jobs; and beneath all these, the
storage component allows the rest of the system to keep track of job-status changes.
Within the execution component, you have identified two responsibilities: interaction
with the data center infrastructure, and the individual worker nodes that are provi-
sioned by that infrastructure.

The task: Each worker node is a resource that must be managed by the execution
component. You take over ownership and thereby responsibility by receiving worker
nodes from the infrastructure. The infrastructure itself is another resource that you
represent within the system. Your mission is to implement the provisioning of a
worker node in the context of the execution component supervisor.

Applying the pattern

You will apply this pattern by considering the process the execution component will
use to manage the lifecycle of a worker node. After we introduce the main manage-
ment processes, you will see which pieces belong together and where they should best
be placed.

When the need arises to add a node to the computation cluster, the infrastructure will
need to be informed. There are many different ways to implement this: for example, by
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using a resource-negotiation framework like Mesos, by directly interacting with a cloud
provider like Amazon EC2 or Google Compute Engine, or by using a custom mecha-
nism accessible by a network protocol (such as an HTTP API). Although all these need
to send requests across the network, they often present their client interface in the
form of a library that can conveniently be used from your programming language of
choice. When the execution component starts up, it will need to initialize interaction
with the infrastructure provider, typically by reading access keys and network addresses
from its deployment configuration.

An extremely simplified example of how a new worker node could be created is
shown in the following listing using the Amazon Web Services (AWS) API for EC2' with
the Java language binding.

Listing 14.1 Amazon EC2 instance used as a worker node

public Instance startInstance (AWSCredentials credentials) ({
AmazonEC2Client amazonEC2Client = new AmazonEC2Client (credentials) ;

RunInstancesRequest runInstancesRequest =
new RunInstancesRequest ()
.withImageId ("my-image-id-for-a-worker")
.withInstanceType ("ml.small")
.withMinCount (1)
.withMaxCount (1) ;

Asks for the creation of
exactly one new node

RunInstancesResult runInstancesResult =
amazonEC2Client.runInstances (runInstancesRequest) ;

Reservation reservation = runInstancesResult.getReservation() ;

List<Instance> instances = reservation.getInstances() ;

t inst .get (0) ; . . R .
} return instances.get (0) There will be exactly one instance in this list. Otherwise,

runinstances() would have thrown an exception.

Having the instance descriptor, you can obtain the private network address of this new
worker node and start interacting with it. What that interaction looks like depends on
the intercomponent communication fabric you are using, which could be as simple as
an HTTP APL.? Before we go there, we need to consider the possibility that AWS may
become unreachable or fail for some reason. The client library signals this by throw-
ing an AmazonClientException that you will need to handle, possibly by retrying the
operation, switching into a degraded mode, or escalating the failure. As discussed in
section 12.4, you should also monitor the reliability of the cloud infrastructure using a
circuit breaker to avoid making a large number of pointless requests within a short
time. All this is made easier by lifting the functionality into a Future so that you can
describe these aspects in an event-driven fashion, as shown next.

I See “Amazon Elastic Compute Cloud Documentation” at http://aws.amazon.com/documentation/ec2.

2 We expect the development of higher-level service definition frameworks in the near future that will abstract
over the precise communication mechanism and offer a consistent code representation of service interaction
in a fully location-transparent fashion.
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Listing 14.2 Lifting the EC2 node into a Future to simplify failure recovery

import scala.PartialFunction;

import scala.concurrent.ExecutionContext;

import scala.concurrent.Future;

import akka.dispatch.Futures; Using Scala’s Future and
import akka.japi.pf.PFBuilder; Akka’s CircuitBreaker
import akka.pattern.CircuitBreaker;

private ExecutionContext exeCtx;
private CircuitBreaker circuitBreaker;

public Future<Instance> startInstanceAsync (AWSCredentials credentials) {
Future<Instance> f = circuitBreaker.callWithCircuitBreaker (() ->
Futures.future(() -> startInstance(credentials), exeCtx));

PartialFunction<Throwable, Future<Instance>> recovery =
new PFBuilder<Throwable, Future<Instances>>()
.match (AmazonClientException.class,
ex -> ex.isRetryable(),
ex -> startInstanceAsync (credentials))
.build () ;

Defines the
recovery strategy

Some AWS calls can
safely be retried.

return f.recoverWith(recovery, exeCtx); The circuit breaker will take care of
} recurring failures, and any unmatched
exceptions will not be recovered.
Decorates the Future with recovery

In this fashion, you wrap up the task of instantiating a new worker node such that all
failures are registered—tripping the circuit breaker when necessary—and failures that
are expected to routinely be fixed by trying again lead to retries. The assumption here
is that such failures are complete (no partial success has already changed the system
state) and transient. Refinements of this scheme may implement a backoff strategy
that schedules retries for progressively delayed points in time instead of trying again
immediately. It is easy to see that this would be incorporated by using a scheduler call
(for example, using akka.pattern.after?), wrapping startInstanceAsync () in the
recovery strategy—of course, you do not block a thread from the ExecutionContext’s
thread pool by using Thread.sleep ().

The attentive reader will have noticed that the code listings use the synchronous
version of AmazonEC2Client even though there is an asynchronous version as well:
AmazonEC2AsyncClient provides a runInstancesAsync () method that accepts a com-
pletion callback as its second parameter (the returned java.util.concurrent
.Future is not useful for event-driven programming, as discussed in chapter 3). You
can use the callback to supply the value for a Promise and thereby obtain a Scala
Future in an event-driven fashion.

3 See http://doc.akka.io/japi/akka/current/akka/pattern/Patterns.html for the Java documentation.
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Listing 14.3 Bridging client methods to execute an Amazon async client

public Future<RunInstancesResult> runInstancesAsync (
RunInstancesRequest request,
AmazonEC2Async client) {

Promise<RunInstancesResult> promise = Futures.promise() ;
client.runInstancesAsync (request,
new AsyncHandler<RunInstancesRequest, RunInstancesResults>() {
@Override

public void onSuccess (RunInstancesRequest request,
RunInstancesResult result)
promise.success (result) ;

}

@Override
public void onError (Exception exception) {
promise.failure (exception) ;

}
1)

return promise.future() ;

Unfortunately, the AWS library implements the asynchronous version in terms of the
same blocking HTTP network library that also powers the synchronous version (based
on the Apache HTTP client library)—it just runs the code on a separate thread pool.
You could configure that thread pool to be the same ExecutionContext you use to run
your Scala Futures by supplying it as a constructor argument when instantiating
AmazonEC2AsyncClient. That would not be a net win, however, because instead of just
wrapping the synchronous call in a Future, you would have to bridge all client methods
in the fashion shown in listing 14.3—an overhead of 15-20 lines per API method. The
execution mechanics would be the same, but adapting the different asynchronous API
styles would involve significant extra programming effort (and, hence, more opportu-
nity for errors). We will take a deeper look at situations like this in section 14.5 when we
discuss patterns for managed blocking.

Now that you have started the worker node, you need to also manage the rest of its
lifecycle: the execution component needs to keep track of which workers are available,
monitor their health by performing regular status checks, and shut them down when
they are no longer needed. Performing health checks typically means making service
calls that query performance indicators that the service is monitoring internally. The
fact that a response is received signals general availability, and the measured quantities
can be factored into future decisions about whether to scale the number of worker
nodes up or down. The measured quantities can also be indicative of specific prob-
lems, such as unusually high memory consumption, that require dedicated reactions
(for example, an operator alert or automatic reboot after a diagnostic memory dump).

This brings you to the final step of a worker node’s lifecycle: the execution compo-
nent needs to instruct the infrastructure to shut down a node. Completing the AWS
example, this would be done as follows.
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Listing 14.4 Terminating the EC2 instances

public Future<TerminateInstancesResult> terminateInstancesAsync (
AmazonEC2Client client, Instance... instances) {
List<String> ids = Arrays.stream(instances)
.map (i -> i.getInstanceId())
.collect (Collectors.toList()) ;
TerminateInstancesRequest request = new TerminateInstancesRequest (ids) ;

Future<TerminateInstancesResult> f =
circuitBreaker.callWithCircuitBreaker (
() -> Futures.future(() -> client.terminateInstances (request),
executionContext)

)

PartialFunction<Throwable, Future<TerminateInstancesResults>> recovery =
new PFBuilder<Throwable, Future<TerminateInstancesResults>>()
.match (AmazonClientException.class,
ex -> ex.isRetryable(),
ex -> terminateInstancesAsync(client, instances))
.build();
return f.recoverWith (recovery, executionContext) ;

Of course, you will want to use the same circuit breaker and ExecutionContext as for
the runInstancesAsync () implementation in listing 14.4, because it is the same infra-
structure service that you are addressing—it is not reasonable to assume that creating
and terminating machine instances are independent operations such that one keeps
working while the other is systematically unavailable (as in failing to respond, not
denying invalid input). Therefore, you place the responsibility for communicating
with the infrastructure service in its own execution subcomponent (called the
resource pool interface in section 12.3). Although AmazonEC2Client offers a rich and
detailed API (we glossed over the creation of security groups, configuration of avail-
ability zones and key pairs, and so on), the resource pool need only offer high-level
operations like creating and terminating worker nodes. You present only a tailored
view of the externally provided capabilities to the components in your system, and you
do so via a single component dedicated to this purpose.

This has another important benefit: you not only have encapsulated the responsi-
bility for dealing with the vicissitudes of the external service’s availability, but you can
also switch to a completely different infrastructure service provider by replacing this
one internal representation. The execution component does not need to know
whether the worker nodes are running on Amazon’s Elastic Compute Cloud or Goo-
gle’s Compute Engine (or whatever computing infrastructure is in vogue at the time
you are reading this), as long as it can communicate with the services the worker
nodes provide.

Another aspect of this placement of responsibility is that this is the natural—and
only—location where you can implement service-call quota management: if the infra-
structure API imposed limits on how frequently you could make requests, then you
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would keep track of the requests that passed through this access path. This would
allow you to delay requests in order to avoid a temporary excess that could lead to
punitively degraded service—to our knowledge this is not true for AWS, but for other
web APIs, such limitations and enforcement are common. Instead of running into a
quota on the external service, you would degrade the internally represented service
such that the external service was not burdened with too many requests.

To recapitulate, we have considered the management actions that the execution
component needs to perform in order to provision and retire worker nodes, and you
have placed the responsibility for representing the infrastructure provider that per-
forms these functions in a dedicated resource pool interface subcomponent.
Although the mechanism for conveying the requests and responses between the exe-
cution component and its worker nodes will change depending on which service
frameworks are available over time, the remaining aspect that we need to discuss in
the context of the Resource Encapsulation pattern is how to model knowledge about
and management of the worker nodes within the execution component.

Each worker node will gather its own performance metrics and react to the failures
it can address, but ultimately the execution component is responsible for the cur-
rently running workers: it has taken this responsibility by asking the resource pool to
provision the workers. Some classes of failures—such as fatal resource exhaustion in
terms of CPU cycles or memory—cannot be dealt with from within, and the supervis-
ing component needs to keep track of its subordinates and dispose of those that have
failed terminally or are otherwise inaccessible. Another way to look at this is that a
worker node provides its own service to the rest of the system and is also coupled to a
resource that must be managed in addition to the service that the resource powers.
This is true in all cases where the supervising component assumes this kind of respon-
sibility by effecting the creation of or by asking for the transfer of ownership of such a
resource. As a demonstration of managing a worker node’s underlying resource, the
following listing sketches an actor that takes this responsibility.

Listing 14.5 Execution component communicating with an actor as if it were a worker node

class WorkerNode extends AbstractActor (
private final Cancellable checkTimer;

public WorkerNode (InetAddress address, FiniteDuration checkInterval) {
checkTimer = getContext () .system() .scheduler ()
.schedule (checkInterval, checkInterval,
self (), DoHealthCheck.instance,
getContext () .dispatcher (), self());

List<WorkerNodeMessage> msgs = new ArrayList<>();
receive (ReceiveBuilder
.match (WorkerNodeMessage.class, msgs::add)
.match (DoHealthCheck.class, dhc -> { ... }) <— Performs a check
.match (Shutdown.class, s ->
msgs.stream() . forEach (msg -> {
WorkerCommandFailed failMsg =
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new WorkerCommandFailed ("shutting down", msg.id()) ;

3]

Asks the resource = msg.replyTo() .tell (failMsg, self()));

this instance

14.1.3

.match (WorkerNodeReady.class, wnr -> {
getContext () .become (initialized()) ;
3

.build());

Start forwarding
messages to the worker

}

private PartialFunction<Object, BoxedUnit> initialized() {

VATV
}
) Forwards commands,
@Ove:lfrlde . and deals with responses
public void postStop () { from worker node

checkTimer.cancel () ;

}
}

In the spirit of delimited consistency, as discussed in chapter 8, you bundle all aspects
of interaction with the worker node in this representation so that the forwarding of
messages to and from the worker node can take into account the worker’s lifecycle
changes and current health status. With this encapsulation, the execution component
creates a WorkerNode actor for every worker node it asks the resource pool to create;
then, it only needs to communicate with that actor as it if were the worker node itself.
This proxy hides the periodic health check processing as well as the fact that after the
instance has been created, it will take a certain amount of time for the worker’s ser-
vices to start up and signal their readiness to accept commands.

When implementing the WorkerNode class, you need to ask the resource pool to
shut down the represented instance. In a full-fledged implementation, you might want
to add more features that need to interact with the resource pool: for example, moni-
toring the instances via the cloud infrastructure provider’s facilities (in listing 14.5,
that would be Amazon CloudWatch). This is another reason to place the responsibility
for all such interactions in a dedicated subcomponent: otherwise, you would duplicate
this code in several places and thereby lose the ability to monitor the availability of the
cloud infrastructure service consistently in a single location. Note that this is meant in
alogical sense and not necessarily in a physical one: the resource pool interface could
well be replicated for fault tolerance, in which case you would not care about synchro-
nizing the state it maintains because losing the circuit breaker’s status in the course of
a component crash would not have a large or lasting negative effect.

The pattern, revisited

We have examined the interactions between the execution component and the infra-
structure service that provisions the worker nodes, and you have placed all aspects of
this interaction in a dedicated resource pool interface subcomponent. It is this com-
ponent’s responsibility to represent the resource pool to the rest of the system, allow-
ing consistent treatment of the infrastructure provider’s availability and limitations.
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This encapsulation is also in accordance with the principle of abstracting over the
concrete implementation of a potentially exchangeable resource; in this case, you sim-
plify the adaptation to a different cloud infrastructure provider.

The second aspect we have illuminated is that worker nodes are based on dynami-
cally provisioned resources that need to be owned by their supervising component.
Therefore, you have placed the responsibility of monitoring the worker node and
communicating with it in a WorkerNode subcomponent of the execution component,
sketched as an actor for illustration. Although communication with the services pro-
vided by a worker node is taken care of by the service fabric or framework, there is a
remaining responsibility that cannot be satisfied from within the worker node because
it is about the management of the node’s underlying resources.

The Resource Encapsulation pattern is used in two cases: to represent an external
resource and to manage a supervised resource—both in terms of its lifecycle and its
function, in accordance with the Simple Component pattern and the principle of
delimited consistency. One aspect we glossed over is the precise relation of the Worker-
Node subcomponents to their execution component parent: should a WorkerNode
supervisor be its own component, or should it be bundled with the execution compo-
nent? Both approaches are certainly possible: the code modularity offered by object-
oriented programming can express the necessary encapsulation of concerns just as well
as deploying a WorkerNode service instance on the hardware resources that the execu-
tion component is using. Spinning up a separate node would again require you to estab-
lish a supervision scheme and therefore not solve the problem.* The way the decision
is made will depend on the case at hand. Influential factors are as follows:

= Complexity of the resource-management task
= Runtime overhead of service separation for the chosen service framework
= Development effort of adding another asynchronous messaging boundary

In many cases, it will be preferable to run the management subcomponents within
their parent’s context (that is, to encapsulate this aspect in a separate class or function
library). When using an actor-based framework, it is typically a good middle ground to
separate resource management into its own actor, making it look and behave like a
separate component while sharing most of the runtime context and avoiding large
runtime overhead.

14.1.4 Applicability

The Resource Encapsulation pattern is an architectural pattern that mainly informs the
design of the component hierarchy and the placement of implementation details in code
modules—either reinforcing the previously established hierarchical decomposition or

* Note that this depends on the service framework used, though, in that automatic resource cleanup in combi-
nation with health monitoring may already be provided—meaning this pattern is incorporated at the frame-
work level.
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leading to its refinement. The concrete expression in code depends on the nature of
the resource that is being managed or represented. The pattern is applicable wherever
resources are integrated into a system, in particular when these resources have a life-
cycle that needs to be managed or represented.

In some cases, the nature of resources used by the system is not immediately visi-
ble: in this section’s example, a beginner’s mistake might be to leave the worker node
instances to their own devices after creation, having them shut themselves down when
no longer needed. This works well most of the time, but failure cases with lingering
but defunct instances will manifest in the form of surprisingly large infrastructure
costs, at which point it will become obvious that reliable lifecycle management is
required.

The Resource Loan pattern
Give a client exclusive transient access to a scarce resource without transferring ownership.

A variant of the Resource Loan pattern is widely used in non-Reactive systems, the most
prominent example being that of a database connection pool. Database access is repre-
sented by a connection object via which arbitrary operations can be performed. The cre-
ation of connections is expensive, and their number is limited; therefore, a connection
is not owned by client code butis taken from a pool before performing an operation and
put back afterward. The connection pool is responsible for managing the lifecycle of its
connections, and client code obtains temporary permission to use them. Failures in this
scenario are communicated to the client, but their effect on the connection in question
is handled by the pool—the pool owns and supervises the connections.

In a Reactive system, you strive to minimize contention as well as the need for coor-
dination: hence, the classic database connection pool usually only features as an inter-
nal implementation detail of a component whose data storage is realized by means of
a relational database. But you will frequently encounter the use of scarce resources in
your systems, and the same philosophy that drives the connection pool abstraction is
useful in Reactive system design as well.

The problem setting

Toward the end of the discussion of the Resource Encapsulation pattern, we touched
on the possibility of separating the ownership and the use of a resource: not being
responsible for supervision aspects frees the user from having to perform monitoring
tasks or recovery actions. In the example of the execution component of the batch job
service, it may seem extraneous that the WorkerNode subcomponent needs to watch
over the physical instance provisioned via the resource pool interface. Would it not be
nicer if the resource pool were not merely a messaging facade for talking to a cloud
provider but also took responsibility for the lifecycle management of the instances it
provisions?
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The task: Your mission is to change the relationship between the resource pool
interface component and the execution component such that the resource pool will
retain ownership of the worker nodes it provides, and the execution supervisor can
concentrate on managing the batch jobs.

Applying the pattern

Before we look at this in more detail, we need to establish some terminology. The
word loan is often used in a financial context: a lendergives a certain sum to a
borrower, who is expected to pay it back later, usually with interest. More generally, this
term applies to any asset that can be transferred, with the important notions that own-
ership of the asset remains with the lender throughout the process and the transfer is
temporary and will eventually be reversed. Renting an apartment falls in this category:
the landlord lets you live in their property and expects you to vacate it when the lease
ends; meanwhile, the landlord stays responsible for the general upkeep of the build-
ing and everything that was rented with it. This example also illustrates the exclusivity
of the arrangement, given that an apartment can only be rented to one tenant at a
time. Therefore, the resource (the apartment, in this case) is also scarce: it cannot be
copied or inhabited by multiple tenants independently at the same time. This
resource comes at a per-instance cost.

To answer the question of having the resource pool take responsibility for the life-
cycle of the instances it provisions, we will consider the worker nodes provisioned by
the resource pool interface to be like apartments that the execution component wants
to use. It will place a worker in each apartment; the worker will then process batch
jobs. A worker node is a potential home for a batch-job process. In this scenario, apart-
ments are provided by the cloud infrastructure, but this is the most basic, empty apart-
ment you can think of—there is nothing interesting in it until someone moves in. The
worker node components in the structure of the batch job service correspond to peo-
ple who need a apartment to live in. Once a worker has moved into an apartment, the
execution component can send work items to their address and receive replies from
them—business-level information can flow. The missing piece is a kind of concierge
who looks after the apartments rented for workers and checks regularly with the prop-
erty and with the worker to see that everything is in order. This allows the execution
component (the work provider) to concentrate entirely on conversations about the
work that is to be done; monitoring of the workforce is done by the concierge. The
concierge is responsible for ending the lease when a worker moves out, solving the
problem of possibly leaking resources.

Switching back from the anthropomorphic metaphor to computer programming,
when the execution component asks the resource pool interface for a new worker
node, the resource pool uses the cloud infrastructure to provision a new machine
instance: for example, using the AWS EC2 API, as shown in the previous pattern discus-
sion. But instead of just returning the instance identifier and network address to the
execution component, the resource pool now assumes responsibility for the worker
node: it needs to begin monitoring the service by performing regular health checks.



The Resource Loan pattern 231

The execution component only receives the network address at which the new worker
node service is being provided, and it assumes that the resource pool keeps this node
in good working condition—or terminates it and provides a new one.

In order to do that, the resource pool must know about the kind of service that is
being provided by the worker node: it must be able to ask for the relevant set of per-
formance metrics, and it must understand their meaning to assess a worker node’s fit-
ness. The resource pool interface thus assumes more responsibility than before, and is
also more tightly coupled to the function of the resources it provides. Instead of a
more-or-less generic representation of the cloud infrastructure API, the pool becomes
more specific, tailored to the needs of the batch job service; in return, you achieve a
better separation of concerns between the lender and the borrower. The relationship
in the previous pattern was that of a manufacturer (the author of WorkerNode) and a
buyer (who instantiates a WorkerNode), and the latter’s obligation to perform main-
tenance led to a coupling that you can, in this case, avoid. In source code, this means
you will have WorkerNode representations in the execution component as well as in
the resource pool interface component, but these take care of different aspects that
were previously mixed within one class.

Listing 14.6 Separating management of the resource from management of tasks

class WorkerNodeForExecution extends AbstractActor Representation used

public WorkerNodeForExecution (InetAddress address) { in the execution
List<WorkerNodeMessage> msgs = new ArrayList<s(); component
receive (ReceiveBuilder
.match (WorkerNodeMessage.class, msgs::add)
.match (Shutdown.class, s -> {
msgs.stream() . forEach (msg -> {
WorkerCommandFailed failMsg =
new WorkerCommandFailed ("shutting down", msg.id()) ;
. msg.replyTo() .tell (failMsg, self())); Asks the resource
Start forwardlng } ) POO' to shut down
messages LD .match (WorkerNodeReady.class, wnr -> { this instance
to the worker getContext () .become (initialized()) ;

3]

.build()) ;
1
private PartialFunction<Object, BoxedUnits> initialized() {
* *
) A : Forwards commands, and deals
with responses from worker node

}

class WorkerNodeForResourcePool extends AbstractActor {

. ) . Representation used
private final Cancellable checkTimer;

in the resource pool

public WorkerNodeForResourcePool (InetAddress address, interface
FiniteDuration checkInterval) {
checkTimer = getContext () .system() .scheduler ()

.schedule (checkInterval, checkInterval,
self (), DoHealthCheck.instance,
getContext () .dispatcher (), self());
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receive (ReceiveBuilder

.match (DoHealthCheck.class, dhc -> { /* ... */ })
.match (Shutdown.class, s -> { /* ... */ }) < Cleans u
.build()) ; P

this resource

}

@Override

public void postStop () {
checkTimer.cancel () ;

}

}

The pattern, revisited

While applying this pattern, you segregate the responsibilities of resource mainte-
nance and use: the execution component asks for the service of a new worker node
and gets that back in response without the additional burden that comes with a trans-
fer of ownership. The resource that is loaned in this fashion is still exclusively available
to the borrower; the execution component can keep usage statistics, knowing the only
jobs that will be processed by the worker node are those the execution component
sent. There is no competition for this resource among different borrowers for the
duration of the loan.

The price of this simplification of the borrower is that the lender must take over
the responsibilities the borrower has shed, requiring the lender to know more about
the resource it is loaning. One important point is that this additional knowledge
should be kept minimal; otherwise, you violate the Simple Component pattern and
entangle the functionalities of lender and borrower more than necessary. This is par-
ticularly relevant when different kinds of borrowers enter the picture: the purpose of
separating the lender, borrower, and loaned resource is to keep their responsibilities
segregated and as loosely coupled as is practical. The lender should not know more
about the capabilities of the resource than it needs to perform the necessary health
checks; the concrete use of the resource by the borrower is irrelevant for this purpose.

As a counterexample, suppose that instead of loaning the resource, the resource
pool interface completely encapsulated and hid the worker nodes, forcing the execu-
tion component to go through it for every request the execution component wanted
to make. We will discuss this angle in detail later in this chapter, as the Resource Pool
pattern. This would entail enabling the resource pool interface to speak the language
of a worker node in addition to its own. By loaning the resource, the borrower may
use it in any way necessary, but unbeknownst to the lender, who is freed from the bur-
den of having to understand this interaction. Consider the following possible conver-
sation for a job execution:

1 Execution sends job description to Worker Node.

2 Worker Node acknowledges receipt and starts sending regular execution metrics.

3 Execution may ask for intermediate results on behalf of end user (for example,
for a live log file viewer).
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4 Worker Node replies with intermediate results when asked.
5 Worker Node signals job completion when done.
6 Execution acknowledges receipt and relieves Worker Node from this job.

The individual messages that are exchanged are small building blocks from which this
interchange is built. The purpose of the Resource Loan pattern is to allow the lender
to be largely unaware of this protocol, which is only shared by the borrower and the
resource, as shown in figure 14.1.

Loan /,{ Lender

- Figure 14.1 The relationship between lender,
Ownership  borrower, and resource in the Resource Loan

RN pattern. The goal is to facilitate efficient
Transient ™~ .l PEEEEe l exchange between borrower and resource while
exclusive access placing the burden of ownership with the lender.
Applicability

This pattern is applicable wherever a resource needs to be used by a component
whose genuine responsibility does not a priori include the monitoring and lifecycle
management of that resource. If the aspects of provisioning, monitoring, and disposal
can be factored out into their own component, then the resource user is effectively
freed from the details of these concerns: it is not forced to take on these incidental
responsibilities.

When deciding this question, it is important to require the resulting resource man-
ager component to be nontrivial. Factoring out the management of a trivial resource
only leads to additional runtime and design overhead; every component that is split
out should be considered to have a basic cost that needs to be offset by the benefits of
the achieved decoupling and isolation.

Implementation considerations

In the example, the execution component is in full control of the worker nodes, and
the questions of how long to use them and when to shut them down are decided at its
sole discretion. This will need to change if you assume that the underlying computing
resource is scarce and may need to be vacated in response to external events (for
example, when the per-minute runtime cost rises above a certain threshold). The exe-
cution component will in this case only formulate the desired number of worker
nodes, and the decision about how many are provisioned will be made by the resource
pool interface. We can also envision worker nodes being reallocated to different exe-
cution components for separate compute clusters.

This scenario requires that the resource lender retain the power to forcefully take
back resources when needed. If it handed the borrower a direct reference to the
loaned resource, the borrower could hold on to that reference and keep using it after
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the loan was withdrawn. The solution is to hand out a proxy instead of the resource.
This is easily possible in a setting where service references are location transparent,
because the borrower does not care or know about the precise routing of requests to
the resource. The proxy must be able to forward requests and responses between the
borrower and the resource, and it also must obey a deactivation command from the
lender, after which it rejects all requests from the borrower. In this fashion, the lender
can cut the resource loose from the borrower as required and decommission or real-
locate the resource without interference from unruly borrowers.

Another consideration is that a resource that has been loaned to another service
instance should be returned when the borrower terminates. Otherwise, the lender
may not notice that the resource is no longer being used—it may stay around, healthy
and fully functional, for a long time. Failing to recognize this situation amounts to a
resource leak.

Variant: using the Resource Loan pattern for partial exposure

The mechanics for handing out a subcomponent to an external client can also be
used to expose part of a component’s functionality or data. Imagine a component that
holds a large, multidimensional array of floating-point numbers resulting from the
analysis of a huge amount of data. Clients may be interested in particular slices of the
array but are not allowed to make changes. Using the Resource Loan pattern, the
component can offer a protocol for obtaining a handle to a particularly shaped slice
of the data for read-only access. The client invokes methods on this handle to obtain
particular values, wrapped in a Future. This allows the implementation to decide how
many of the referenced values to ship to the client immediately and how to retrieve
the rest when the client eventually asks for them—imagine a slice big enough to cause
considerable network usage if it were transferred up front.

By using the Resource Loan pattern, the component that manages the multidi-
mensional array knows exactly how many read-only handles are currently active, and it
can invalidate them when needed. For example, only a limited number of snapshots
can be kept in memory—with clients having handles to them—and when further
changes need to be made, the oldest snapshot will be retired to free up its space.

The Complex Command pattern

Send compound instructions to the resource to avoid excessive network usage.

You have encapsulated the resources your system uses in components that manage,
represent, and directly implement their functionality. This allows you to confine
responsibility not only for code-modularity reasons (chapter 6) but also for vertical
and horizontal scalability (chapters 4 and 5) and principled failure handling (chapter
7). The price of all these advantages is that you introduce a boundary between the
resource and the rest of the system that can only be crossed by asynchronous messag-
ing. The Resource Loan pattern may help to move a resource as close as possible to its
users, but this barrier will remain, leading to increased latency and, usually, decreased
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communication bandwidth. The core of the Complex Command pattern lies in send-
ing the behavior to the resource in order to save time and network bandwidth in case
of loquacious interchanges between resource and users; the user of the resource is
only interested in the comparatively small result.

This pattern has been used for this purpose for a long time. We will approach it by
way of a common example. Consider a large dataset, so large that it cannot possibly fit
into the working memory of a single machine. The data will be stored on a cluster of
machines, each having only a small fraction of the data—this is known as big data. This
dataset is a resource that will be used by other parts of the system. Other components
that interact with these data will send queries that have to be dispatched to the right
cluster nodes according to where the data are located. If the data store only allowed
the retrieval of individual data elements and left it to the clients to analyze them, then
any summarizing operation would involve the transfer of a huge amount of data; the
resulting increase in network usage and the correspondingly high response latency
would be exacerbated by more-complex analyses requiring frequent back and forth
between the client and the data source. Therefore, big data systems work by having
the user send the computation job to the cluster instead of having the computation
interrogate the cluster from the outside.

Another way to think of this pattern is to picture the client and the resource (the
large dataset) as two nations that are about to negotiate a contract. To facilitate an effi-
cient exchange, an ambassador (the batch job) is sent from one nation to the other.
Negotiations may take many days, but in the end the ambassador comes home with
the result.

The problem setting

We can generalize this problem as follows: a client wants to extract a result from a
resource, a value that is relatively small compared to the quantity of data that need to
be moved in the course of the loquacious exchange required to obtain that value. The
computation process is more intimately coupled with the data than with the client
component that initiates it; the client is not genuinely interested in how the data are
processed, as long as it gets the result. The resource, on the other hand, only holds
the data and does not know the process by which the client’s requested result can be
extracted. Therefore, the process description needs to be sent from the client to the
resource; the client needs to be provided with this description by the programmer,
who presumably knows both the need and the structure of the data.

This is precisely what a batch job service is all about. You need to amend your men-
tal picture slightly: the graphical overview has not changed from section 12.2, but we
repeat it in figure 14.2 as a refresher. The worker nodes are no longer stateless ser-
vices that can be provisioned and decommissioned dynamically; instead, there is a
fixed set of worker nodes in the big data cluster, and each persistently holds the parti-
tion of data it has been entrusted with. The execution component will take care of
sending jobs to the correct worker nodes according to the data the jobs need, which
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Batch job service
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Figure 14.2 The component hierarchy of the batch job service as derived in section 12.2

in turn will have an influence on how scheduling decisions are made. These conse-
quences—although interesting—are highly dependent on the particular example
chosen. More illuminating in terms of the generic pattern is the question of what con-
stitutes a batch job and how it is executed by a worker node. You will see in this section
that there is more than one answer.

Applying the pattern

We will start by considering the essential pieces that need to be conveyed. In order to
route the job to the correct nodes, you need to know which data will be needed; the
dataset descriptor will thus need to be part of the batch job definition. The Scheduler
component will have to inspect this information and factor it into its decisions, which
is to say it only needs to read and understand this part. The execution component, on
the other hand, must split the job into pieces according to the partitioning of the
data: in addition to reading and understanding the dataset descriptor, it will need to
be able to create copies of the overall batch job that act on subsets of the data, to be
executed by the individual worker nodes.

Another approach would be to always send the full job description and have the
worker node ignore all parts of the dataset that it does not have, but this would be
problematic if the distribution of data changed or data partitions were replicated for
fault tolerance: without making the data selection consistently at one location, it
would be difficult or impossible to guarantee that, in the end, every requested data
element was processed exactly once. Sending the narrowed-down selection to the
worker nodes gives them unambiguous instructions and allows them to signal that
some of the requested data are no longer available at their location.

This leads you to the conclusion that a batch job must be a data structure that can
be constructed not only by the client but also by the batch service’s components. The
first part of the data that it contains is a dataset descriptor that several batch service
components will need to understand and possibly split up.

The second piece of information that must be conveyed is the processing logic that
acts on the selected data. For this purpose, the batch job must describe how this logic
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consumes the elements of the dataset and how the resulting value is produced in the
process. The last piece is then a recipe for combining the partial results from the indi-
vidual worker nodes into the overall result that is shipped back to the external client.

USING THE PLATFORM’S SERIALIZATION CAPABILITIES

Neglecting all incidental information such as client authentication, authorization,
quota, priority management, and so on, the essential structure of a batch job is cap-
tured in the following class definitions: the batch job has a selector to identify data to
process, some processing logic to create partial results, and merge logic to combine
the partial results.

Listing 14.7 The essence of a batch job

public interface ProcessingLogic {
public PartialResult process (Stream<DataElement> input) ;

}

public interface MergeLogic {
public Result merge (Collection<PartialResult> partialResults);

}

public class BatchJdob {
public final String dataSelector;
public final ProcessingLogic processingLogic;
public final Mergelogic mergelLogic;

public BatchJob (String dataSelector,
ProcessinglLogic processingLogic,
MergeLogic mergeLogic) {
this.dataSelector = dataSelector;
this.processinglLogic = processinglLogic;
this.mergelogic = mergelogic;

}

public BatchJob withDataSelector (String selector) {
return new BatchJob (selector, processinglogic, mergelogic) ;

}
}

The data selector is assumed to have a String-based syntax for the sake of simplicity—
describing datasets is not the primary focus of this pattern—and a copy constructor is
provided by way of the withDataSelector () method so that the execution compo-
nent can derive jobs that act on subsets of the data.

The more interesting piece that we will now examine in greater detail is the logic
that is conveyed, represented here as two interfaces for which the client will need to
provide implementations. ProcessingLogic describes how to compute a partial result
from a dataset that is represented as a stream® of elements: you potentially are dealing
with big data that do not fit into memory all at once, so passing the full
Collection<DataElement> into the processing logic could easily lead to fatal working-

> See https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html.
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memory exhaustion (an OutOfMemoryError in Java). MergeLogic then takes the par-
tial results and combines them into the overall result that the client wants; here, you
expect the involved amount of data to be relatively small—even thousands of partial
results should not take up a large amount of memory, because you are working under
the assumption that the result value is much smaller than the analyzed dataset.

In order to send a BatchJob message from the client to the batch job service, you
need to serialize this Java object. In listing 14.7, you could add extends Serializable
in a few places and add some serialVersionUID values, with the result that the Java
Runtime Environment (JRE) would be able to turn a BatchJob object into a sequence
of bytes that could be transferred. On the other end—within the batch job service—
you would need to reverse that process, but here you hit a snag: the JRE can only dese-
rialize classes whose definition it already knows about. The serialized representation
contains only the class names of the objects that are referenced and the serialized form
of the primitive values they contain (integers, characters, arrays); the bytecode that
describes the behavior of the objects is missing.

In order to transfer that, you will have to add the corresponding vocabulary to the
protocol between the batch service and its clients. They will have to upload the
JAR® files in conjunction with the job so that the necessary class definitions can be
made known wherever a BatchJob message needs to be interpreted. This can be a
tedious and brittle undertaking where any forgotten class or wrong library version
leads to fatal JVM errors that make it impossible to run the job. Also, note that this
approach ties both clients and service together in their choice of runtime environ-
ment: in listing 14.7, both parties need to use compatible versions of the Java Runtime
in order to successfully transfer and run the bytecode as well as the serialized objects.
Using the batch job service from a client written in JavaScript, Ruby, Haskell, and so
on would not be possible.

USING ANOTHER LANGUAGE AS A BEHAVIOR TRANSFER FORMAT

Another way to look at this is that the batch job service defines a language choice that
is implicit to its client interface protocol. Batch jobs must be formulated such that the
service can understand and execute them. You can turn this around to exercise greater
freedom in this regard: if the service—still written in Java—were to accept the process-
ing logic in another language, preferably one that is widely used and optimized for
being shipped and run in a variety of environments; then, you could sidestep the tight
code coupling you faced when transferring Java classes directly. There are several
options in this regard, including JavaScript, due to its ubiquity and ease of interpreta-
tion; and Python, due to its popularity for data analytics purposes. The Java 8 Runtime
includes a JavaScript engine that you can readily use to demonstrate this approach.

% Java archive: basically, compressed files containing the machine-readable class definitions of a library, orga-
nized in class files.
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Listing 14.8 Executing processing logic by invoking the Nashorn JavaScript engine

public class PartSuccess implements PartialResult ({
public final int value;
public PartSuccess (int value) { this.value = value; }

}

public class PartFailure implements PartialResult ({
public final Throwable failure;
public PartFailure (Throwable failure) { this.failure = failure; }

}

public class BatchJobds {
public final String dataSelector;
public final String processinglogic;
public final String mergelogic;

public BatchdobJS (String dataSelector,
String processingLogic,
String mergeLogic) {
this.dataSelector = dataSelector;
this.processinglLogic = processingLogic; <— JavaScript
this.mergelogic = mergelogic;

}

public BatchJobJdS withDataSelector (String selector) {
return new BatchJobJS (selector, processinglLogic, mergelogic) ;

}
}

public class WorkerdS {

public PartialResult runJob (BatchdobdS job) {
ScriptEngine engine = new ScriptEngineManager ()
.getEngineByName ("nashorn") ;
Invocable invocable = (Invocable) engine; Evaluates
try { the JavaScript
engine.eval (job.processinglLogic) ;
final Stream<DataElement> input = provideData (job.dataSelector) ;

Invokes the :
JavaScript PartialResult result =
function (PartialResult) invocable.invokeFunction ("process", input) ;

return result;
} catch (Exception e) {
return new PartFailure (e) ;

}

private Stream<DataElement> provideData (String selector) ({

[ .. %/ .
} Fetches data from persistent

) storage in streaming fashion

The processing logic is passed as a trivially serializable String containing a JavaScript
text that defines a process () function when it is evaluated. This function is then
invoked with the stream of data elements and expects a Result back. A simple exam-
ple of a processing logic script could look like this:
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var PartSuccess = Java.type
'com.reactivedesignpatterns.chapterl3.ComplexCommand.PartSuccess') ;

var process = function (input) {
var value = input.count () ; <+— Java 8 stream
return new PartSuccess (value) ;

}

This code is available in the source code archives at www.manning.com/books/reactive-
design-patterns and on GitHub if you want to play around with embedding JavaScript
parts in your Java applications.

One concern you will likely encounter with this technique is that the submitted
logic may be implemented using other libraries that simplify the job. Consider, for
example, the DataElement that contains an image to be analyzed. Assuming that the
analysis job is written by someone who likes the hypothetical image-manipulation
library Gimp JS, the job script will need this library to be present when the job is exe-
cuted. This could be achieved by providing this library in the execution environment
as part of the batch service’s contract, or the library’s code could be included with the
job script. The former approach saves resources, and the latter gives you more free-
dom in terms of which version of which library to use.

To recapitulate, we have explored two ways of transferring behavior—the process-
ing logic—from client to batch service, one tied to the Java language and Runtime
and one in terms of a different language. The latter is used as a behavior-exchange
format that may be foreign to both parties but has the advantage of being easily trans-
ferable and interpretable. What we have not considered so far are the security implica-
tions of letting clients submit arbitrary processing instructions to your big data
cluster—although they are meant to only analyze heaps of data, they are capable of
calling any public method in the JRE, including file system access, and so on.

In order to secure your cluster, you could implement filters that inspect the sub-
mitted code (hairy to get right in terms of not rejecting too many legitimate jobs); you
could restrict the script interpreter (hairy in terms of not rejecting all malicious jobs);
or you could use a behavior-exchange format that can only express those operations
that you want to expose to clients. Only the last option can deliver in terms of security
and safety, but the price is high because most readily available languages are intended
for general purpose use and are therefore too powerful.

USING A DOMAIN-SPECIFIC LANGUAGE

NOTE This section describes techniques that are very powerful but require
deeper knowledge and greater skill than is available to beginners. If you do
not fully understand how the presented solutions work, you can still keep
their features in mind as an inspiration for what is possible.

Pursuing the first two options mentioned at the end of the previous section is specific
to the example chosen and leads you to acquire an intimate knowledge of JavaScript.
The third option is of more general value. To go down this path, you need to devise a
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domain-specific language (DSL). As Debasish Ghosh discusses in DSLs in Action (Man-
ning, 2011), there are two basic forms of such languages:

= Internal DSL—Embedded and expressed in the syntax of a host language
= [External DSL—Stands on its own

Designing an external DSL involves creating its grammar, implementing a correspond-
ing parser in the language from which the DSL will be used, and, typically, also creating
some tooling to validate or otherwise automatically process documents in this lan-
guage. The advantage of an external DSL is that it is not encumbered by the syntactic
rules of a host language: it can be designed with complete freedom. Imagine a big data
language that describes the stepwise treatment of the input, as follows.

Listing 14.9 External DSL using different syntax than the host language

FOREACH Car (_, _, year, price) Gives names to the

SELECT year ? 1950 && year < 1960 data records’ fields

MEDIAN OF price as needed

REMEMBER AS p

FOREACH Car (make, model, _, price) <+ In the second iteration

SELECT price > p
DISTINCT VALUES OF (make, model)
RETURN AS RESULT

Evaluating this script would iterate over the dataset twice: first to find the median
price for cars from the 1950s and then to collect all pairs of make and model that cost
more than the median. The code shown would be the serialized form of the program;
by restricting the allowed commands, you can exercise tight control over what client
code can do. The worker node parses such scripts into a syntax tree and either inter-
prets it directly or compiles it into an executable program for the platform it is run-
ning on—in the Java example, this would typically mean emitting bytecode that
corresponds to the process described in the DSL. The latter is needed only when the
DSL includes constructs like loops, conditionals, and recursions that lead to a high vol-
ume of interpreted expressions; in this example, interpretation of the given state-
ments would consume a negligibly small amount of CPU cycles compared to the actual
computation being carried out over a large dataset.”

If complete freedom of expression is not of primary importance, an internal DSL
may be a better fit—constructing and maintaining a parser and interpreter for a cus-
tom language adds considerable development effort and organizational overhead, not
to mention that designing a language that is reasonably self-consistent is a talent not
every engineer is gifted with. As an example of an internal stream-processing DSL,
consider the Akka Streams library: the user first creates a Graph—an immutable, reus-
able blueprint for the intended processing topology—and then materializes that to be
executed, typically by way of a group of Actors. You can separate these two steps so

7 The only part that would need to be interpreted for each data element is the formula used to select cars by
year. Everything else lends itself to being offered as a prepackaged compound operation.
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that the Graph is created at the client, serialized, submitted to the batch service, and
finally deserialized and executed on the worker node. Defining a Graph correspond-
ing to the external DSL in listing 14.9 could look like this.

Listing 14.10 Internal DSL

RunnableGraph<Future<Long>> p =

Source.<DataElement>empty () Represents the
.filter (new InRange ("year", 1950, 1960)) P
. . ) real data source
.toMat (Sink.fold (0L, new Median<Longs> ("price")),

Keep.<BoxedUnit, Longs>right()) ;

Source.<DataElement>empty ()

.map (new Inject<Long>(p, "p")) Restricted vocabulary
.filter (new Filter ("price > p")) for simple expressions
.to(Sink.fold(Collections.emptySet (),

new DistinctValues<Pair<String, String>>("make", "model")));

Normally, the map, filter, and fold operations will accept any function literal
(lambda expression) that you provide, and syntactically that would be valid here as
well. Using arbitrary code would bring you back to the problem of having to transfer
the user’s bytecode to the batch service, though, which is why this example provides a
restricted vocabulary that is guaranteed to be known by the batch service’s worker
nodes. The operations you offer can be compound ones like the median calculation
here: you place this element in a data sink that folds the incoming elements with the
provided function, starting at the initial value (0L). Behind the scenes, the Graph lay-
out is recorded with the objects you provide so that you can inspect the Graph in order
to serialize it—when you encounter the Median object in the position of a folding
function, you know you can transfer this behavior to the worker node. The only infor-
mation you serialize in addition to the operation name is the field name for which the
median is to be calculated. You can see a sketch of the necessary class definitions in
the source archives.

The same principle applies to the filtering steps, where you may have prepackaged
operations like InRange that are configured with a field name, a minimal, and a maxi-
mal permissible value. You can also combine this approach with an external DSL, as
shown in the case of the generic Filter operation in listing 14.10; implementing a
parser and an interpreter for simple mathematical expressions is not as complex as
for a full-featured language and is general enough to be reusable across projects.

The approach shown here works best if the Akka Streams library is present on both
ends, which saves you the effort of creating the basic Graph DSL infrastructure and the
stream-processing engine. You just have to provide the specific operations to be sup-
ported. If more flexibility is needed, then the serialization format chosen for these
Graphs® can serve as an external DSL for client implementations that are not based on
the JVM or want to use a different code representation for the processing logic.

8 Akka Streams does not offer serialization of Graphs at the time of writing (version 1.0).
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The pattern, revisited

We started from the premise of sending the behavior to the resource in order to save
time and network bandwidth in the case of loquacious interchanges between the two.
The resource user is only interested in a comparatively small result. Exploring the pos-
sibilities, we found several solutions to this problem:

= If the user and the resource are programmed for the same execution environ-
ment, you can write the behavior directly in the same language as the user code
and send it to the resource. Depending on the choice of execution environ-
ment, this can incur considerable incidental complexity—in the case of Java
classes, you would, for example, need to identify all required bytecode, transfer
it, and load it at the receiving end. Note that the choice will be hard to revert
later, because the implied behavior-exchange format is coupled tightly to the
runtime environment.

= To overcome the limitations of directly using the host language, you can choose
a different language as your behavior-transfer format, picking one that is opti-
mized for being transferred to remote systems and executed there. We looked
at JavaScript as an ubiquitous example of this kind that has also been supported
directly by the JRE since version 8.

= If security is a concern, then both previous solutions suffer from being too
expressive and giving the user too much power. The resource would execute
foreign behaviors that can do absolutely anything on its behalf. The best way to
secure this process is to restrict what users can express by creating a DSL. This
can be external, with full freedom in its design but correspondingly high cost;
internal, reusing a host language; or even another internal DSL, as shown with
the Akka Streams library.

In the example, a second piece of information needs to be conveyed from the user to
the resource: the dataset the batch job will process. This is not a general characteristic
of this pattern; the behavior that is sent to the resource may well have the power to
select the target of its operations. Such routing information is typically relevant only
within the implementation of the resource; in the case of a DSL-based behavior descrip-
tion, it is usually possible to extract the needed selectors from the serialized behavior.

Applicability

The Complex Command pattern provides decoupling of user and resource: the
resource can be implemented to support only primitive operations, whereas the user
can still send complex command sequences to avoid sending large results and
requests over the network in the course of a single process. The price is the definition
and implementation of a behavior transfer language. This has a high cost in terms of
development effort, independent of whether you use the host language and make it
fit for network transfer, choose a different language, or create a DSL—particular care
is needed to secure the solution against malicious users where required.
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The applicability of this pattern is therefore limited by the balance between the
value of the achieved decoupling and network bandwidth reduction in the context of
the project requirements at hand. If the cost outweighs the benefits, then you need to
pick one:

= Provide only primitive operations to make the resource implementation inde-
pendent of its usage, at the cost of more network round trips.

= Implement compound operations that are needed by the clients within the pro-
tocol of the resource, to obviate the need for a flexible behavior-transport
mechanism.

The first option values code modularity over network usage, and the second does the
reverse.

The Resource Pool pattern

Hide an elastic pool of resources behind their owner.

So far, we have discussed the modeling and operation of a single resource as well as its
interaction with its clients. The astute reader will have noticed that something is miss-
ing from the full picture: the core principles of Reactive system design demand repli-
cation. Recalling the discussion from chapter 2, you know that resilience cannot be
achieved without distributing the solution across all failure axes—software, hardware,
human—and you know that elasticity requires the ability to distribute the processing
load across a number of resources that are dynamically adjusted to the incoming
demand.

In chapter 13, you learned about different ways to replicate a component. The
effort put into this mechanism depends greatly on how much the component’s state
needs to be synchronized between replicas. This pattern focuses on the management
and external presentation of the replicas. In keeping with the reasoning presented in
chapters 4 and 5, it relies heavily on asynchronous message passing and location trans-
parency to achieve scalability.

The problem setting

The example that readily offers itself is the batch job service you have been building
and enhancing in the previous chapters. Although the overall system implements a
more complicated resource pool, with sophisticated scheduling of complex com-
mands (batch jobs), the execution component offers a simple, pure example of a
resource pool: after the Scheduler component has decided the order in which
upcoming jobs will be run, the execution component picks them up and assigns them
to worker nodes as they become available—either by finishing their previous work or
by being provisioned in response to rising demand.

Instead of investigating the details of how the relationship between the Scheduler
component, the execution component, and the worker nodes is represented in code,
we will focus on the messaging patterns that arise between these components: in par-
ticular, lifecycle events for worker nodes and the execution component. This will illu-
minate their relationship in a fashion that is more easily applied to other use cases.
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14.4.2 Applying the pattern

The part of the batch job service that we are looking at is the logic in the execution
component that distributes incoming batch jobs to available worker nodes. The jobs
have previously been pulled from the schedule that is published by the Scheduler
component. The basic process assumed so far is shown in figure 14.3, using the con-
ventions for diagramming Reactive systems that are established in appendix A.

Figure 14.3 The client represents the
source of the batch jobs, which is the part
of the execution component that has pulled
the jobs from the published schedule. The
pool is the subcomponent that creates,
owns, and supervises the worker nodes.
Ignoring the fact that multiple workers may
collaborate on one job, the basic flow sends
the job to the worker and conveys the result
back to the client.

Using this messaging topology, the pool stays in control of all aspects of the workers’
lifecycle: it sends the jobs, gets back the results, creates and terminates workers—the
pool always knows the current status of a worker node. Creating a new worker typically
happens in response to work being available; the process is depicted in figure 14.4.

1
N ]

Result

Figure 14.4 Compared to the previous
process, you insert steps 2 and 3 to
create the worker (using the
infrastructure service as discussed for
the Resource Encapsulation pattern)
and await its readiness.

Although this message flow represents the working principle, it should not be taken
too literally: the job that triggers the creation of the new worker node may be handed
to a different worker than the one being created, especially if it takes a long time to
provision the worker node. The new worker then gets the next job dispatched after it
signals readiness to the pool; in this sense, readiness is the same as sending back a
result for the implied job of being started up.

During periods of reduced processing load, the pool will notice that worker nodes
are idle. Because the pool knows how much work it distributes and which fraction of
nodes are idle, it is also in a good position to decide when to shut down a node. The
corresponding message flow diagram is shown in figure 14.5.
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Client

Figure 14.5 After the worker has finished
processing a job, the pool sends the
termination signal and refrains from
sending further jobs to that worker. There
can be a sizable delay between messages
4 and 5 to implement an idle timeout.

The final aspect of the worker’s lifecycle is how to handle failures. The pool should
monitor all worker nodes by performing periodic health checks’ and possibly also ask-
ing for progress updates. When a worker fails while processing a job, the pool either
sends this failure back to the execution component to be recorded and relayed to the
external client or retries the job by giving it to another worker. The recovery process
for the failed worker depends on the requirements of the use case. The preferable
approach is described in the Let-It-Crash pattern: decommission the worker and all of
its resources, and provision a fresh one. When a worker fails while idle, only the recov-
ery process needs to be performed.

The message flows you have seen so far all assume that the worker node receives a
job in a single message and replies with a result that again fits in a single message. This
covers a broad range of services but nowhere near all of them, notable exceptions
being streaming services that provide a response that is a priori not bounded, and ser-
vices where the purpose is the transmission at a given rate so the external client can
process the data as they arrive without having to buffer them. Another exception dis-
cussed with the Resource Loan pattern is that the external client may reserve a worker
and engage in an ongoing conversation with it to perform a complex task.

Accommodating these usage patterns requires a slight reinterpretation of the basic
message flow, as shown in figure 14.6. Variants of this flow send all messages between
worker and external client (step 5) via the intermediary that represents the client for
the pool, or do not signal completion from the worker and instead have the external
client convey this signal via the same route taken by the job description. The former
allows tighter control over which protocols are permitted between external client and
worker, whereas the latter gives the pool more detailed information about when work-
ers are finishing their jobs.

The important notion is that you retain the same processes for the creation and
termination of worker nodes by keeping the same basic message-flow structure
between pool and worker. The pool initiates the work, and the worker eventually
replies with a completion notification.

9 This functionality may be included in the services framework that is being used.
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2 Figure 14.6 In response to the job-request
Pool message, the pool will allocate a worker
L node and inform that node about the work to
T be done. Concurrently, a message
containing the worker’s identity is sent to
the external client. The order of these two
messages is not important, which is why
they share sequence number 3 in the figure.
The external client can engage directly with
the worker until the job is finished; the
worker then signals to the pool and thereby
becomes eligible for further work.

External
client

14.4.3 The pattern, revisited

To recapitulate, we have illuminated the relationship between a resource pool and the
individual resources it owns by sketching their primary message flows. A resource pool
is free to allocate resources or dynamically adjust their number because it is in full
control of the resources, their lifecycle, and their use. How the resources are used
depends on the pattern applied by external clients:

= The basic model is that a request is sent to the pool and a resource is allocated
for the duration of this request only.

= To transfer a large volume of data or messages in the course of processing a sin-
gle request, the resource can be loaned to the external client for direct exclu-
sive access. All aspects of the Resource Loan pattern apply, including the
possibility to employ proxies to enforce usage limitations.

= If the purpose of a loquacious exchange is only the extraction of a relatively
small result value, the Complex Command pattern can be used to avoid the
overhead of loaning the resource to the external client.

Another consideration is that the basic message flow we discussed involves a full
round trip between resource and pool to signal the completion of a request and
obtain the next one. This is the most precise, predictable model, and it makes sense
where the time to process a request is much larger than the network round-trip time.
Under different circumstances, it will be beneficial to use a buffering strategy, where
the pool keeps multiple requests in flight toward a single resource and the resource
processes them one by one. The results that the resource sends back allow the pool to
keep track of how many requests are currently outstanding and limit that number.

A drawback of the queuing solution is that sending a request to a resource that is
not currently free means processing may be deferred unpredictably. An SLA violation
for one request then has a negative impact on some of the following requests as well.
Queueing also means that, in case of a failure, multiple requests may need to be dis-
patched to be retried (if appropriate).

In the introduction to this pattern, we cited elasticity as well as resilience as motiva-
tions for replicating a resource; so far we have only considered the former. The latter
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is more troublesome due to the ownership and supervision relationship between the
pool and its resources: if the pool fails, then the resources are orphaned. There are
two ways to deal with this: you can replicate the pool, including its resources—run-
ning complete setups in different data centers, for example; or you can replicate only
the pool manager and transfer ownership of resources in order to realize a failover
between them. Ownership transfer can only be initiated by the current owner if it is

10 and

still functioning; otherwise, each resource must monitor the pool it belongs to
offer itself to a new owner upon receiving a failure notification for its parent.! To rep-
licate the pool manager, any of the replication schemes discussed in the previous

chapter can be used, chosen according to the requirements of the use case at hand.

Implementation considerations

This pattern may be implemented by the services framework: deployment of a
resource includes replication factors or performance metrics for dynamic scaling, and
looking up that resource results in a resource pool proxy that is interposed between
client and resource implicitly. This works without central coordination of the pool
proxies generated at the lookup site if the resource either is stateless (just offers com-
putation functions) or uses multiple-master replication. In these cases, there can be
one proxy per dependent service instance, removing any single point of failure. A
potential difficulty with this is that it assumes the resources handle incoming requests
from multiple sources. This can be challenging in the context of applying the
Resource Loan pattern or the Complex Command pattern, because requests may be
delayed in a less controlled fashion than if a central authority distributes them.

Patterns for managed blocking
Blocking a resource requires consideration and ownership.

In the example code for how the execution component in the batch job service provi-
sions new worker nodes, you have already encountered the situation that an API you
are using is designed to block its calling thread. In the case of the AWS API, there are
ways around that, but this is not always the case. Many libraries or frameworks that you
may want to or have to use do not offer the option of event-driven interaction. Java
Database Connectivity (JDBC)'? is a well-known example that comes to mind. In order
to use these APIs in a Reactive system component, you need to take special care to
properly manage the resources that are implicitly seized, most notably the threads
required for their execution.

1% This should typically be implemented by the services framework in a generic fashion.

! Readers fluent in Akka will notice that reparenting is not supported for Actors, but we are talking about a pool
of resource components in general and not Actors that encapsulate resources. The service abstraction we are
referring to here is a higher-level construct than the Actor model.

12 Java Database Connectivity (http://docs.oracle.com/javase/8/docs/technotes/guides/jdbc), part of the Java
platform, is a generic access layer for relational databases by which applications are decoupled from the spe-
cific database implementation that is used. Itis a standard mechanism to provide data sources through depen-
dency injection in application containers, usually driven by external deployment configuration files.
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The problem setting

Consider a component that manages knowledge in a fashion that translates well into a
relational database model—this may be a booking ledger, user and group manage-
ment, the classic pet shop, and so on. In the batch service example, this may occur in
the authentication and authorization service that the Client Interface component
uses to decide whether a given request is legitimate. You could write this component
from scratch, modeling every domain object as a persistent actor, or you can reuse the
enormous power that is conveniently available through off-the-shelf database manage-
ment systems. In the absence of good reasons to the contrary, it is preferable to reuse
existing working solutions, so you will use a JDBC driver in your implementation based
on Java and Akka actors.

The problem you are facing is that executing a database query may take an arbi-
trary amount of time: the database may be overloaded or failing, the query may not be
fully optimized due to a lack of indices, or it might be a very complex query over a
large dataset to begin with. If you execute a slow query in an Actor that runs on a
shared thread pool, that thread will effectively be unavailable to the pool—and
thereby to all other actors—until the result set has been communicated back. Other
actors on the same thread pool may have scheduled timers that may be processed only
with a large delay unless enough other threads are available. The bigger the thread
pool, the more such blocking actions it can tolerate at the same time; but threads are
a finite resource on the JVM, and that translates into a limited tolerance for such
blockers.

Applying the pattern

The source of the problem is that a shared resource—the thread pool—is being used
in a fashion that is violating the cooperative contract of the group of users. Actors are
expected to process messages quickly and then give other actors a chance to run: this
is the basis for their efficient thread-sharing mechanism. Making a resource unavail-
able to others by seizing it means the Actor that blocks the thread claims exclusive
ownership, at least for the duration of the database query in this example. You have
seen for the Resource Loan pattern that the owner can grant exclusive access to
another component, but that must always happen explicitly: you must ask the owner
for permission.

A thread pool usually does not have a mechanism for signaling that a given thread
is being blocked exclusively for the currently running task.'® If you cannot ask the
owner of a shared thread for permission, the logical conclusion is that you need to
own a thread on which you can run the database query. This can be done by creating
a private thread pool that is managed by the actor: now you can submit the blocking
JDBC calls as tasks to this pool.

13 An exception is the ForkJoinPool, which can be informed using ForkJoinPool .managedBlock () (see
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool. ManagedBlocker.html).
But in this case, management of the additionally created threads is also limited.
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Listing 14.11 Maintaining a private ExecutorService

public enum AccessRights {
READ JOB_STATUS, SUBMIT_ JOB;
public static final AccessRights[] EMPTY = new AccessRights[] {};

}

public class CheckAccess {
public final String username;
public final String credentials;
public final AccessRights[] rights;
public final ActorRef replyTo;

public CheckAccess (String username, String credentials,
AccessRights[] rights, ActorRef replyTo) ({

this.username = username;
this.credentials = credentials;
this.rights = rights;
this.replyTo = replyTo;

}

}

public class CheckAccessResult {
public final String username;
public final String credentials;
public final AccessRights[] rights;

public CheckAccessResult (CheckAccess ca, AccessRights[] rights)
this.username = ca.username;
this.credentials = ca.credentials;
this.rights = rights;
1
}

public class AccessService extends AbstractActor {
private ExecutorService pool;

public AccessService (DataSource db, int poolSize, int gueueSize)
pool = new ThreadPoolExecutor (0, poolSize, 60, SECONDS,
new LinkedBlockingDeque<s> (queueSize)) ;

final ActorRef self = self();
receive (ReceiveBuilder
.match (CheckAccess.class, ca -> {
try {
pool.execute (() -> checkAccess(db, ca, self));
} catch (RejectedExecutionException e)
ca.replyTo.tell (new CheckAccessResult (ca, AccessRights.EMPTY),
self) ;
h
.build()) ;

}

@Override
public void postStop () {
pool.shutdownNow () ;

}
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private static void checkAccess (DataSource db, CheckAccess ca, ActorRef self) {
try (Connection conn = db.getConnection()) {
final Statement stmt = conn.createStatement () ;
final ResultSet result = stmt.executeQuery ("<get access rights>");
final List<AccessRights> rights = new LinkedList<>();
while (result.next()) ({
rights.add (AccessRights.valueOf (result.getString(0))) ;
1

final AccessRights[] ar = rights.toArray (AccessRights.EMPTY) ;
ca.replyTo.tell (new CheckAccessResult (ca, ar), self);

} catch (Exception e) {
ca.replyTo.tell (new CheckAccessResult (ca, AccessRights.EMPTY), self);

}
1 The Connection is implicitly closed
here as part of the try statement.

One peculiarity of JDBC connections is that in order to fully utilize the computation
power of a database server, you typically need to create multiple connections so the
server can work on several queries in parallel. For this reason, you create a thread
pool of the desired poolSize—one thread per database connection—and submit
tasks to it as they come in without keeping track of the number of running queries.
When the incoming load increases, there will be a point at which all threads in the
pool are constantly active; because the number of threads equals the number of data-
base connections, all of those will be active as well. At this point, new requests will start
queuing up. In this example, you do not manage this queue explicitly in the actor but
instead configure the thread pool with a queue of limited capacity. Tasks that cannot
be executed right away because all threads are busy will be held in this queue until
threads finish their current work and ask for more. If a task is submitted while the
queue is full, its execution will be rejected; you use this mechanism to implement the
bounded queuing behavior that is necessary to fulfill the responsiveness of Reactive
components, as discussed in chapter 2.

Because the required bounded queue is already implemented by the thread pool,
you are free in this example to send the response back to the client directly from the
database query task: no interaction with the AccessService is needed on the way
back. If you need to keep this actor in the loop, you will send the database result to the
actor and have it send the final response to the original client. A reason for doing this
might be that you need to explicitly manage the internal request queue—for prioriti-
zation, ability to cancel, or some such—or that the database result is only one of sev-
eral inputs that are needed to compose the final response. Having the queries as well
as responses go through the actor in general allow it to comprehensively manage all
aspects of this process: the only way to manage a unit effectively is to have exactly one
person responsible and keep that person fully informed.

The pattern, revisited

In the example, you have performed multiple steps:
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1 You noticed that the use case required a resource that was not immediately
obvious. Resources are often represented by objects in the programming lan-
guage that are explicitly passed around or configured, but there are implicit
resources that are always assumed and rarely considered explicitly—like threads
or working memory—because they are usually shared such that the system
works well in most scenarios, by convention. Whenever you run into one of the
corner cases, you will need to make these resources explicit in your system
design.

2 Having recognized the resources that you need to perform a certain function,
you modeled them explicitly: in the example, these are the thread pool and the
database connection pool. The thread pool is configured with a given number
of threads and a maximal submission queue length in order to place an upper
bound on the amount of auxiliary resources that are used by it. The same goes
for the database connection pool, whose configuration we left out of the exam-
ple code.

3 In keeping with resource encapsulation, you placed the management of these
resources in one component, represented by an actor. The lifecycle of the
resources is contained within the lifecycle of the actor. The thread pool is created
when starting and shut down when stopping. The database connections are man-
aged individually on a per-request basis, taking care to obtain them such that they
are released independently of how the processing ends. This is inspired by Let-
It-Crash thinking in that shutting down the thread pool will release all associated
resources, including the currently used database connections.

4 The last step implements the Simple Component pattern, in that the responsi-
bility of the component you are developing is to provide authorization informa-
tion for users based on their credentials. Toward this end, you need resources
and the logic that uses them, all bundled up in one component that does only
its job but does it in full.

Although many APIs are widely employed that make implicit use of hidden resources
like the calling thread, you will see this pattern used to manage the blocking of
threads: hence, the name. The term managed blocking first became known to us when it
was used in the ForkJoinPool developed for Java 7, although it was mentioned in the
NET ecosystem several years earlier. ForkJoinPool is not intended as a generic execu-
tor but rather as a targeted tool to help the parallelization of tasks that operate on
large collections of data, splitting up work among the available CPUs and joining the
partial results together. Managed blocking support is needed to keep the CPUs busy
while certain threads are stalled, waiting for I/O (from network or disk). Therefore,
entering a managed-blocking section will, roughly speaking, spawn a new worker
thread that continues the number crunching while the current thread becomes tem-
porarily inactive.

You can generalize this pattern such that it is more widely applicable by considering
any kind of resource that needs to be blocked as well as allowing for tailored management
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strategies of the blocked resource. An example could be the explicit management of a
segregated memory region that is split off from the main application heap in order to
both place an upper bound on its size and explicitly control the access to this
resource—using normal heap memory is unconstrained for all components in the
same process and means one misbehaving party can hamper the function of all of
them. Another angle is that managed blocking is similar to the Resource Loan pattern
in the case of resources that are already encapsulated as Reactive components.

Applicability

The first step of this pattern—investigating the use of hidden resources in ways that
violate their sharing contract—should always be applied. Failure to recognize such a
case will lead to scalability issues or application failures through resource exhaustion
(such as OutOfMemoryError), as we have frequently encountered in consulting
engagements.

On the other hand, it is important not to get carried away and claim exclusive own-
ership of resources at a too fine-grained level or in cases that could live with having
only shared access. This is particularly visible in the case of thread pools: the actor
model is successful in utilizing the machine’s resources due to sharing the core
pieces—CPUs and memory—in an event-driven activation scheme. Giving one thread
to each actor would seem to give each of them exclusive access to a computing
resource; but not only does this incur orders of magnitude more overhead per actor,
but it also leads to significant contention on the underlying CPUs, with all threads
fighting for their chance to run.

Recognizing the use of resources is as important as learning to qualify the cases in
which exclusion is needed and where sharing is appropriate—and under which rules.
Unfortunately, there is no simple rule to decide this.

Summary

This chapter was devoted entirely to the modeling and management of resources. Just
as that term is generic, the patterns described also apply flexibly in a wide range of
cases:

= Each resource should be owned by one component that is fully responsible for
its lifecycle. Ownership is exclusive—there can be only one owner—but
resources may be used by a wide variety of clients inside or outside the Reactive
system you are building, sometimes needing more direct access than is possible
by always having the owner as an intermediary.

= The Resource Loan pattern helps by bringing the resource as close to its client as
possible. It allows the distance to be reduced to only one asynchronous message-
passing boundary for the purpose of transient exclusive access, in order to per-
form a complex operation.
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= The Complex Command pattern turns this around by packaging the client’s
part of a loquacious exchange such that it can be sent to the resource, like send-
ing an ambassador to a foreign country.

= The Resource Pool pattern tackles the concern of implementing elasticity and
resilience by hiding the individually owned resources behind their manager.
The resulting increase in distance between clients and resources can be miti-
gated by combining this pattern with the previous two.

= We considered resource use in the implementation of components, especially
those that use libraries and frameworks that implicitly utilize resources that are
otherwise shared in Reactive systems, and looked at an example of managing
the blocking of threads in an otherwise event-driven system.



15.1

Message flow paiterns

In this chapter, we will explore some of the most basic patterns of communication
that occur between Reactive components: specifically, we will talk about how mes-
sages flow between them. We discussed the theoretical background in chapter 10,
noting that the design of communication paths within a system is crucial to its suc-
cess—the same holds for real-world organizations as well as Reactive applications.
Most of the patterns we will encounter are extremely generic, starting with the
Request—-Response pattern. They can be applied in a variety of cases and come in
many forms. The examples are therefore less specific than in other chapters, but we
will use the front-end facade of a larger service as a problem setting. You can think
of this as a more detailed look at the client interface component of the batch job
service, our running example. The particular patterns we will cover are as follows:

= The Request-Response pattern

= The Self-Contained Message pattern
= The Ask pattern

= The Forward Flow pattern

= The Aggregator pattern

= The Saga pattern

= The Business Handshake pattern

The Request-Response pattern

Include a return address in the message to receive a response.

This is the most basic interaction pattern we know; it is the foundational building
block for all natural communication, deeply ingrained in human training. A parent
will say something to their infant child, who will initially gesture or make
some sounds in response; later, the child will articulate words and sentences.

255
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Request-response is the way you learn how to speak, and it underlies all sophisticated
forms of communication that you develop later. Although the response can be non-
verbal (in particular, facial expressions, but also the deliberate absence thereof), in
most cases you require a response before successfully concluding a conversation. The
response can be a piece of information that you asked for or an acknowledgment of
receipt for a command that was given.

In all these cases, there is one commonality that you need to make explicit when
translating this basic means of communication into a programming pattern: the pro-
cess begins with two participants A and B, where A knows how to address B; when
receiving requests, B will need to learn or deduce how to address A in order to send
back a response. Captured in a diagram, this looks like figure 15.1.

1

2

Figure 15.1 Process A sends a message to process B, including its
own address (as symbolized by the dashed line), so that in step 2, the
response can be conveyed in the opposite direction.

In real life, the inclusion of the sender address is implicit: when someone starts talking
to you, you turn your head in the direction of the sound to identify its source, which
provides all the information you need in order to respond. This scheme has intuitively
been built into numerous commonly used computer protocols, a selection of which
we will explore in this section.

The problem setting

Consider two components A and B, where A knows the address of B but not vice versa.
This is the prototypical initial condition of a client-server setup, where the client is
required to take the first step—the server cannot know which clients require its ser-
vices at any given time. In the running example, you might be looking at the client
interface component of the batch job service: in particular, the relationship between
an external client and an entry point into the service. The client submits a request to
initiate an action (such as starting a batch job), query for information (like a list of all
currently running jobs), or both. The service will carry out the desired action or
retrieve the requested information and then reply.

The task: Your mission is to implement a request-response exchange between two
processes over a User Datagram Protocol (UDP)! network (or any other datagram-
oriented transport mechanism of your choosing).

! Whereas TCP transports streams of bytes (also called octets) across the network, leaving the encoding of mes-
sages to the layers above it, UDP transports delimited datagrams of up to a maximum size of about 64 KB; see
also https://en.wikipedia.org/wiki/User_Datagram_Protocol.
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15.1.2 Applying the pattern

We will start with process B (called Server), which will receive a request and send
back a response. The procedure is defined by the operating system and therefore fol-
lows roughly the same path in most programming languages: a socket needs to be
opened and bound to a UDP port; then, a datagram needs to be received from this
socket; and finally, a datagram needs to be sent via this socket. This basic process is
shown in Java in the following listing.

Listing 15.1 Server responding to the address that originated the request

public class Server ({
static public final int SERVER_PORT = 8888;

static public void main(String[] args) throws IOException {

try (final DatagramSocket socket = Binds a socket for
new DatagramSocket (SERVER PORT)) { receiving packets

final bytel[] buffer = new byte[1500];
final DatagramPacket packetl =
new DatagramPacket (buffer, buffer.length) ;

socket.receive (packetl) ; <—— Receives one packet

final SocketAddress sender = packetl.getSocketAddress() ; Extracts

System.out.println("server: received " + the return
new String(packetl.getDatal())) ; address

System.out.println("server: sender was " + sender);

final byte[] response = "got it!".getBytes();

final DatagramPacket packet2 =

new DatagramPacket (response, response.length, sender);
socket .send (packet2) ; <— Sends a response

If you run this program, nothing will happen—the process will patiently wait at the
socket .receive () call for a UDP packet to arrive. In order to send this packet, you
need to write the mirror image of this process, Client (process A), which will first
send a packet and then receive one.

Listing 15.2 Client sending a request and then blocking until the server responds

public class Client ({
static public void main(String[] args) throws IOException {

try (final DatagramSocket socket = new DatagramSocket ()) { Gets a local
final byte[] request = "hello".getBytes(); socket with a
final SocketAddress serverAddress = randon1pon

new InetSocketAddress("localhost", Server.SERVER_PORT) ;
final DatagramPacket packetl =
new DatagramPacket (request, request.length, serverAddress) ;

socket.send (packetl) ; Sends a message

to the server
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final bytel[] buffer = new byte[1500];
final DatagramPacket packet2 =
new DatagramPacket (buffer, buffer.length);
socket.receive (packet2) ; <—— Waits to receive one packet

final SocketAddress sender = packet2.getSocketAddress() ;
System.out.println("client: received " +

new String(packet2.getData())) ;
System.out.println("client: sender was " + sender);

Running this process sets the exchange in motion. You will see that the server receives
a packet:

server: received hello
server: sender was /127.0.0.1:55589

And the client receives a packet as well:

client: received got it!
client: sender was /127.0.0.1:8888
Why does this work? The crucial piece to this message exchange is that a UDP packet
traveling over a network carries not only the IP address and port of its intended
receiver, but also the IP address and port of the socket it was sent from. This “return
address” is extracted in the server’s code using the getSocketAddress () method of
DatagramPacket. After logging the information to the console, you inject it into the
second packet in order to describe its intended destination—you copy the return
address from the received request letter onto the envelope of the response letter.

The other crucial precondition for success is that the client knows beforehand how
to reach the server. Although this is intuitive and barely feels worthy of mention, it is
essential. In summary:

= The client sends the request in a UDP datagram to the server using an already-
known destination address.

= The server sends the response in a UDP datagram to the client using the address
information contained in the previously received request datagram.

Common instances of the pattern

The Request-Response pattern may be built into a protocol. The client sends a
request, and it is assumed that a response will be returned to the same client. The pat-
tern then can be used to provide the illusion of synchronous behavior: a function
makes a call and returns the result to the caller. Believing the illusion is at your peril,
because there is no guarantee that the response will ever arrive. Alternatively, the pat-
tern may be implemented using two explicit asynchronous messages.
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HTTP

The most commonly—in fact, ubiquitously—used implementation of the request-
response pattern is HTTP, which has the pattern built in. This protocol builds on a
stream transport layer that conveys requests as streams of bytes from client to server
and responses in the opposite direction; this transport layer is almost exclusively pro-
vided in the form of TCP over IPv4 or IPv6 at the time of writing, with the option of
adding encryption by sandwiching Transport Layer Security (TLS)? between HTTP
and TCP.

An HTTP connection is established from the client to the server, and these roles
also determine the roles within the conversation: the client sends requests and the
server sends responses, exactly one for each request. This model is popular because it
fits the majority of use cases: the client wants the server to do something. In the exam-
ple problem setting, you might formulate the following request:

GET /request?msg=hello HTTP/1.1

Host: client-interface.our.application.domain

Accept: application/json

The server might then respond with a message like this (the uninteresting part is
replaced with an ellipsis):

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 22

{"response":"got it!"}

There is a wealth of literature about how to structure the contents of these requests
and responses, with representational state transfer (REST)® resource representation
being a popular pattern, but we are currently more interested in how HTTP imple-
ments the Request—-Response pattern. While applying the pattern to a simple UDP
exchange, you have seen that the client’s address needs to be conveyed to the server
in order to allow the response to be communicated. This is easy because UDP already
caters to this need: the sending port’s address is included in the network packet by
which the datagram travels over the network. TCP also includes the sender as well as
the receiver address in all network packets that make up a connection. This allows it
to transport bytes not only from client to server but also in the opposite direction, and
that is exactly how the HTTP response is sent back to the HTTP client.

ACTORS
In the Actor model, the only defined means of communication is by way of sending
single messages: no connections, responses, or similar are defined. Using the Akka

2 The successor to the Secure Socket Layer (SSL) that was the first widely used encryption layer on top of TCP
until its deprecation in 2015 (see https://tools.ietf.org/html/rfc7568).
? See also https://en.wikipedia.org/wiki/Representational_state_transfer.
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implementation of this model, you might solve the task posed initially in the following
fashion.

Listing 15.3 Untyped Akka Actors modeling request-response

object RequestResponseActors {

case class Request (msg: String)
case class Response (msg: String)

class Responder extends Actor {
def receive = {
case Request (msg) =>
println(s"got request: Smsg")
sender () ! Response ("got it!")

}
}

class Requester (responder: ActorRef) extends Actor {
responder ! Request ("hello")

def receive = {
case Response (msg) =>
println(s"got response: Smsg")
context.system.terminate ()

}
}

def main(args: Array[Stringl): Unit = {
val sys = ActorSystem("RegRes")
val responder = sys.actorOf (Props[Responder], "responder")
val requester = sys.actorOf (Props (new Requester (responder)), "requester")

}

You first define the message types for the request and the response, and you formulate
a Responder actor that, given a request, replies with a response, printing a message to
the console so you can see that something happens. Then you define a second actor—
Requester—that is instantiated with the ActorRef of a responder. This requester
actor first sends a request and then reacts to the reception of a response by printing a
message to the console and shutting down the entire process. The main program
starts up first a responder and then an associated requester. When you run this pro-
gram, you will see the expected output:

got request: hello
got response: got it!

This formulation of the Request—Response pattern is enabled by an Akka-specific fea-
ture: when sending the request message, the requester’s own ActorRef is implicitly
picked up by the ! (tell) operator, and the Request message is placed in an Akka-
internal envelope that also carries this sender ActorRef. This is how the
sender () method can access the return address within the Responder actor to send
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back the response. The envelopes used behind the scenes are an implementation
detail that has been introduced specifically because request-response is such a widely
used communication pattern.

Looking at the Akka Typed module—which was introduced about six years after
the initial untyped Actor implementation—you can see that the sender () feature is
no longer present. The reasons behind this change are manifold, and a full discussion
is out of scope for this book, but the main reason can be summarized by saying that it
was proven infeasible to maintain this feature while also providing fully type-checked
Actor messaging.

Without the sender () feature, the return address needs to be explicitly included
in the message that is sent. As an illustration, the following listing describes the same
Actor program as listing 15.3, but with fully typed Actors and ActorRefs.

Listing 15.4 Including the response explicitly in the request message

object RequestResponseTypedActors {

case class Request (msg: String, replyTo: ActorRef [Response])
case class Response (msg: String)

val responder: Behavior [Request] =
Static {
case Request (msg, replyTo) =>
println(s"got request: Smsg")
replyTo ! Response ("got it!")

}

def requester (responder: ActorRef [Request]): Behavior [Response] =
SelfAware { self =»>
responder ! Request ("hello", self)
Total
case Response (msg) =>
println(s"got response: $msg")
Stopped
}
}

def main(args: Array[String]l): Unit = {
ActorSystem("RegResTyped", Props (ContextAware[Unit] { ctx =>

val res = ctx.spawn (Props (responder), "responder")
val reqg = ctx.watch(ctx.spawn (Props (requester (res)), "requester"))
Full {

case Sig(ctx, Terminated( reqg™)) => Stopped

1)
}

You start again with the definition of the two message types, this time including the
return address as the replyTo field in the request. Also note that you do not need to
include a return address in the Response message type, because the client already
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knows how to contact the server if it needs to do so again—unconditionally capturing
a return address is a waste of effort.

The Responder actor is described by way of its behavior, which is to react to the
receipt of requests by logging them and sending a response; this is a static actor that
does not change its behavior. The Requester actor needs to be instantiated with the
ActorRef of a responder—now precisely typed, in contrast to the untyped actor exam-
ple, where any message was permissible—and the first thing it does after being started
is send a request. The return address must be extracted from the context in which the
behavior is executed, and that is done using the SelfAware behavior decorator. In
good object-oriented tradition,* you call the actor’s ActorRef self and use it when
constructing the Request to be sent to the responder. Afterward, the requester begins
a behavior in which it reacts to the reception of a Response message by logging it and
terminating itself.

The main program consists only of creating an ActorSystem whose guardianActor
creates first a responder and then an associated requester. The latter’s lifecycle is mon-
itored using the watch command; when termination is signaled, the entire system
shuts down.

AMQP

In the previous examples, the Request—Response pattern is supported at least to some
degree directly within the communication mechanism. Advanced Message Queueing
Protocol (AMQP)® can serve as an example of a message transport that does not
natively support this pattern: messages are conveyed by being placed in queues, and
neither the sender nor the recipient has an address of their own. The recipient is just
the one that pulls messages out of a given queue. This means in order to send back a
response, the original sender also needs to have a queue on which it can receive mes-
sages. Once that is established, you can apply the Request-Response pattern by
including the address of this queue in the request message. The response will then be
delivered to this queue, from which the requester can retrieve it.

Examples of how to perform such a request-response exchange are part of the
RabbitMQ tutorials;® we show the JavaScript version here due to its conciseness. It
begins again with the responder, which reacts to requests by logging them and send-
ing back a response.

Listing 15.5 Request-response based on a one-way messaging protocol

var amgp = require('amgplib/callback api') ;

amgp.connect ('amgp://localhost', function(err, conn) {
conn.createChannel (function (err, ch) {
var q = 'rpc_queue';

4 Referring to the Smalltalk language created by Alan Kay et al., father of object orientation.
5 See also https://www.amqp.org.
b In particular, rpc_server.js and rpc_client.js in the directory http://mng.bz/m8Oh.
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ch.assertQueue (q, {durable: false});
ch.prefetch(1) ;
ch.consume (g, function reply (msg) {
console.log("got request: %$s", msg.content.toString()) ;
ch.sendToQueue (msg.properties.replyTo,
new Buffer('got it!'),
{correlationId: msg.properties.correlationId}) ;

ch.ack (msg) ;
I3

1)
i

The responder first establishes a connection with the local AMQP message broker, and
then it creates a channel named rpc_queue and installs a message handler that will
send back responses. One new aspect in comparison to the previous implementations
is that the queues used for communication may not be used exclusively by a single
requester and responder. Therefore, each request comes with a correlation ID that is
carried over to the associated response. You can see how this is used by looking at the
requester’s implementation, shown next.

Listing 15.6 Listening for a response with the same correlation ID as the original request

var uuid = require('node-uuid') ;

amgp . connect ('amgp://localhost', function(err, conn) {
conn.createChannel (function(err, ch) {
ch.assertQueue ('responses', {}, function(err, q) {

var corr = uuid.vl();

ch.consume (g.queue, function (msg) {

if (msg.properties.correlationId == corr)
console.log('got response: %s', msg.content.toString()) ;
setTimeout (function() { conn.close(); process.exit (0) }, 500);

}

}, {noAck: true});

ch.sendToQueue ('rpc_gqueue',
new Buffer('hello'),
{ correlationId: corr, replyTo: g.queue });

The requester uses a queue named responses from which it expects to receive the
reply. It installs a message handler that first verifies the correlation ID and, if it
matches, logs the response and terminates. Once the handler is in place, the request
is sent to rpc_queue.

The pattern, revisited

The Request-Response pattern is deeply ingrained in human nature, and it is also natively
supported by many popular network protocols and higher-level message-transport
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mechanisms. Therefore, it is easy to miss the two important properties that make it
work:

= The requester sends the request to the responder using an already-known desti-
nation address.

= The responder sends the response to the requester using the address informa-
tion contained in the corresponding request.

The basis on which this pattern is founded is that addressing information can be con-
veyed in a location-transparent fashion: the requester’s address is still valid and usable
after being transported to the responder. You will think about this most often when
you are trying to figure out why a particular response was not delivered to the
requester.

Another consideration that will frequently come up when using this pattern is that
between long-lived participants, requests and responses need to be matched up reli-
ably: the requester must be able to correlate a received response with the correspond-
ing request. Although this is in some cases implicit by virtue of using a dedicated
communication channel (such as HTTP), it is crucial when both participants are
addressable on their own, as seen in the AMQP example in listings 15.5 and 15.6.
Including a unique identifier like a universally unique identifier (UUID)” achieves this
and also allows the request to be resent without risking a duplication of its effects: the
recipient can use the UUID to determine whether it has already performed the
requested action if it keeps track of these identifiers.

15.1.5 Applicability

This pattern is applied ubiquitously, and rightfully so—for most requests you formu-
late, a response is needed in order to conclude that the request has been received or
acted on. There are a few things to keep in mind, though:

= As in real life, computers need to be able to give up on waiting for a response
after some time; otherwise, a communication error can bring the application to
a halt. Thus, you need to consider a timeout duration appropriate for each
such exchange.

= When the target component is unavailable—overloaded, failed, or otherwise—
you should back off and give it some time to recover. Fortunately, request-
response is precisely what CircuitBreakers need in order to fulfill their func-
tion; see chapter 12.

= When receiving the response, you need to remember the context of the corre-
sponding request so that you can resume and complete the overall process that
called for the request-response cycle. We will discuss this aspect further in the
following patterns.

7 See also RFC 4122 (https://tools.ietf.org/html/rfc4122).
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The Self-Contained Message pattern

Each message will contain all information needed to process a request as well as to
understand ils response.

We touched on this at the end of the previous section: when sending a request, you
need to remember what you want to do with the response that will eventually come
back. In other words, you need to manage the state of the larger operation that this
exchange is a part of while the request and response travel between components. This
state management can be done entirely by the requester—storing contextual informa-
tion—or it can be pushed out of it by having the entire context travel with the request
and response across the network. In practice, this responsibility is usually shared, leav-
ing part of the state in the requester and having part of it travel with the message. The
point of this pattern is that you should strive to include sufficient information in the
message so the state that is relevant to the current request is fully represented—
removing and relocating relevant information should be considered a premature opti-
mization until proven otherwise.

The problem setting

Imagine a service that acts as an email gateway, providing other components of the sys-
tem with the functionality of sending email notifications to customers. A protocol is
defined for transporting email across computer networks: the Simple Mail Transfer
Protocol (SMTP).® This is one of the oldest protocols used on the internet, built on
top of TCP and designed to be human readable. An example session for sending an
email from Alice to Bob might look like this (with C being the client and S being the
server):

220 mailhost.example.com ESMTP Postfix
HELO alice-workstation.example.com

250 Hello alice-workstation.example.com
MAIL FROM:<alice@example.com>

250 Ok

RCPT TO:<bob@example.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>
From: "Alice" <alice@example.com>

To: "Bob" <bob@example.com>

Date: Fri, 23 October 2015 10:34:12 +0200
Subject: lunch

Hi Bob,
sorry, I cannot make it, something else came up.

Regards, Alice

oo Qn QN

8 See also https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol.
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S: 250 Ok, queued as 4567876345
: QUIT
S: 221 Bye

(@]

In the course of this session, 13 messages are exchanged between client and server,
with both sides tracking the progressing state of the session.

The task: Your mission is to sketch the data types and protocol sequence for trans-
mitting an email to the email gateway service such that the client receives an accep-
tance confirmation from the service and the session state between client and service is
minimized.

Applying the pattern
You need to transmit information both ways between client and server, and the mini-

mal protocol shape for such an interaction is the Request-Response pattern discussed
previously. The information you need to send to the service is as follows:

= Sender email address
= Recipient(s) email address(es)
= Email body

= Correlation ID so the client can recognize a subsequent confirmation

The service will then reply with, at the very least, a status code and the correlation ID.
The following listing sketches the request and response data types using the Scala lan-
guage, due to its convenient case class feature.

Listing 15.7 Encapsulated information needed for multiple SMTP exchanges

case class SendEmail (sender: String, recipients: List [String],
body: String, correlationID: UUID,
replyTo: ActorRef [SendEmailResult])

case class SendEmailResult (correlationID: UUID, status: StatusCode,
explanation: Option[String])

The inclusion of the email addresses of sender and recipients would probably be rep-
resented using a more specific class than a plain String that ensures a valid address
syntax, but we leave out such details in order to concentrate on the data exchange.
Does this protocol fulfill the requirements? The client transmits all information
the service needs in a single message: the sequence of protocol steps performed by
SMTP is collapsed into a single request-response cycle. This enables the email gateway
service to begin the further processing of the email immediately after having received
the single request message. This means the gateway does not need to maintain any ses-
sion state pertaining to this exchange beyond the processing of this single message; it
only needs to send the response, and the session is completed. Depending on the reli-
ability guarantees the gateway provides, the response may have to be deferred until
the intention of sending an email has been recorded in persistent storage—or even
until after the email has been relayed to the target mail system—in which case, the
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return address and correlation ID must be retained until finished. But this extension
of the session lifetime is not dictated by the protocol; it is inherent in those stronger
guarantees. From the client’s perspective, this approach also achieves all that is
needed: sending the email takes just one message, and the client then retains the cor-
relation ID in order to continue its own processing as soon as the email has been sent.

If this simple approach fulfills all of your requirements, a question presents itself:
why is the SMTP exchange so much more complex? Back in the 1970s, it took a very
long time to send data across a network connection; the protocol therefore performs
the exchange in many small steps, allowing the server to reject an email as early as
needed (for example, after the sender or recipient address has been transmitted—the
latter is done in case the target address does not exist). Today, sending a few kilobytes
of text between continents is not a concern, but you still may want to avoid sending a
very large email body—possibly including large file attachments—in a single request
message. The reason might be so you could handle rejection without sending a poten-
tially large number of useless bytes, but it is also important to consider resource usage
in terms of how much bandwidth is taken up during the process. Receiving a large
message at its own pace is the recipient’s prerogative, and the line-based exclusive TCP
connection handling used for SMTP allows this to be done naturally.

You do not need to change the shape of the protocol beyond request-response,
though, in order to give the recipient some control over whether and how to consume
the email body. The only feature required is that the bulk data transfer happens out of
band: for example, if the framework supports sending parts of the message as on-
demand streams.

Listing 15.8 Separating the body so it can be delivered on demand

case class SendEmail (sender: String, recipients: List[String],
correlationID: UUID, replyTo: ActorRef [SendEmailResult])
(body: Source[String]) extends StreamedRequest {
override def payload = body

}

This sketch hints at a hypothetical microservice framework that would handle the
streaming of the designated message parts transparently, serializing only the data ele-
ments in the first argument list (up to replyTo) eagerly in the request message and
transferring the payload data on demand. Another way to achieve this is to include in
the message the location (for example, by way of a URL such as http://example
.com/emails/12) where the email body can be obtained; then, the gateway service can
contact that location on its own if and when it needs to.

Listing 15.9 Enabling the body to be pulled by the recipient

case class SendEmail (sender: String, recipients: List[String],
bodyLocation: URL, correlationID: UUID,
replyTo: ActorRef [SendEmailResult])
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15.2.3 The pattern, revisited

In the previous section, you collapsed a 13-step protocol session into 2 steps: sending
one message in either direction is the minimum you can do while still allowing the cli-
ent to ascertain that the email has in fact been relayed to the gateway service. As a vari-
ation, we considered how you can split out one part—the transmission of the email
body—into a separate subprotocol that is transparently handled by the used frame-
work or into a secondary conversation between the service and another endpoint. The
variation does not complicate the client-service conversation in principle.

The advantages of this change are manifold. We started with the postulated desire
of minimizing the session state that needs to be maintained between client and service
throughout the conversation. This is an important aspect in that the service can now
become stateless in this sense: it can react to the request with a response while not
retaining any more information about the client, and the conversation does not need
to continue. If the service wants to recognize subsequently re-sent requests, it only
needs to store the UUID; it does not need to track the individual clients.

A possibly even greater advantage is that removing the need to store conversa-
tional state makes it possible to distribute the processing of the requests in space or
time: a SendMail message can be enqueued, serialized to disk, replayed, and routed to
one of many email gateway service instances; it can even be automatically retried by
the framework if the correspondence with its SendEmailResult is suitably repre-
sented, and so on. Shortening the conversation to its minimum affords you a lot of
freedom in how you handle and possibly transform the message.

This goes hand in hand with easier recovery procedures. Because the request con-
tains everything needed to process it, it also is fully sufficient to reprocess it after a fail-
ure. In contrast, a lengthy, stateful conversation would have to be reestablished—and,
in most cases, begun by the client—which calls for specific recovery procedures to be
in place among all participants.

15.2.4 Applicability

This pattern is universally applicable in the sense of striving to keep the conversation
protocols as simple as feasible. You may not always be able to reduce the interaction to
a single request-response pair, but when that is possible, it greatly increases your free-
dom in handling the protocol. Where multiple steps are necessary to achieve the
desired goal, it still is preferable to keep the messages that are exchanged as complete
and self-contained as can be afforded, because relying on implicitly shared session
state complicates the implementation of all communication partners and makes their
communication more brittle.

The main reason for not applying this pattern is that the amount of state is larger
than can reasonably be transmitted.
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15.3 The Ask pattern
Delegate the handling of a response to a dedicated ephemeral component.
This pattern can be arrived at by two trains of thought:

= In a purely message-driven system such as the Actor model, it frequently occurs
that after performing a request-response cycle with another Actor, the current
business process needs to continue with further steps. Toward this end, the
Actor could keep a map of correlation IDs and associated continuation informa-
tion (such as the details of the ongoing business transaction started by an ear-
lier received message), or it could spawn an ephemeral child Actor, give its
address as the return address for the response, and thereby delegate the contin-
uation of the process. The latter is the approach described in Gul Agha’s the-
sis:? it is the Actor way of thinking. Because this pattern occurs frequently, it
may receive special support from libraries or frameworks.

= Traditional RPC systems are exclusively based on the premise of request-
response calls, pretending the same semantics as a local procedure call. Their
synchronous presentation results in distributed systems coupled in undesirable
ways, as discussed throughout the first part of this book. In order to decouple
caller and callee, the locally returned type is changed from a strict result value
to a Future—a container for a result value that may arrive later. The continua-
tion of the caller’s business process then needs to be lifted into the Future as
well, using transformation combinators to perform the successive steps. This
Future is an ephemeral component whose purpose is the reception of the even-
tual response and the initiation of follow-up actions, exactly like the child Actor
in the previous bullet point.

15.3.1 The problem setting

Recall the previous section’s example: a client exchanges a request-response pair with
an email gateway service in order to send an email. This happens in the course of
another business transaction: perhaps an account-verification process during which
the account holder is sent a link via which the process will continue. After the email has
been sent on its way, you may want to update the website, saying that the user should
check their in-box and offering a link to send the email again in case it was lost.

The task: Your mission is to implement an Actor that, upon receiving a
StartVerificationProcess command, contacts the email gateway service (repre-
sented by an ActorRef) to send the verification link. After receiving the response,
the Actor should respond to the command received previously with a Verification-
ProcessStarted or VerificationProcessFailed message, depending on the out-
come of the email request.

9 Gul Agha, “ACTORS: A Model of Concurrent Computation in Distributed Systems,” 1985, https://dspace
.mit.edu/handle/1721.1/6952.



270 CHAPTER 15 Message flow patterns

15.3.2 Applying the pattern

The following listing sets the stage by defining the message types you will need in addi-
tion to the SendEmail protocol defined in the previous section.

Listing 15.10 Simple protocol to request starting the verification process

case class StartVerificationProcess (userEmail: String,
replyTo: ActorRef [VerificationProcessResponse])

sealed trait VerificationProcessResponse

case class VerificationProcessStarted(userEmail: String)
extends VerificationProcessResponse

case class VerificationProcessFailed(userEmail: String)
extends VerificationProcessResponse

The Actor can then be written in Akka Typed, as shown next.

Listing 15.11 An anonymous child actor forwards results

def withChildActor (emailGateway: ActorRef [SendEmail]) :
Behavior [StartVerificationProcess] =
ContextAware { ctx: ActorContext [StartVerificationProcess] =>
val log = Logging(ctx.system.eventStream, "VerificationProcessManager")

Static {
case StartVerificationProcess (userEmail, replyTo) =>
val corrID = UUID.randomUUID ()
val childRef = ctx.spawnAnonymous (Props (FullTotal [SendEmailResult]
case Sig(ctx, PreStart) =>
ctx.setReceiveTimeout (5.seconds)

Same
case Sig(_, ReceiveTimeout) =>
log.warning ("verification process initiation timed out for {}",
userEmail)
replyTo ! VerificationProcessFailed (userEmail)
Stopped
case Msg(_, SendEmailResult(“corrID”, StatusCode.OK, _)) =>
log.debug ("successfully started the verification process for {}",
userEmail)
replyTo ! VerificationProcessStarted (userEmail)
Stopped
case Msg(_, SendEmailResult( corrID”, StatusCode.Failed, expl)) =>

log.info("failed to start the verification process for {}: {}",
userEmail, expl)

replyTo ! VerificationProcessFailed (userEmail)

Stopped

case Msg(_, SendEmailResult (wrongID, _, _)) =>
log.error ("received wrong SendEmailResult for corrID {}", corrID)
Same

)
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val request = SendEmail ("verification@example.com", List (userEmail),
constructBody (userEmail, corrID), corrID,
childActor)

emailGateway ! request

Given the ActorRef representing the email gateway service, you construct a behavior
that will keep serving StartVerificationProcess messages; hence, it uses the
Static behavior constructor. You extract the enclosing ActorContext (the type
ascription is given merely for clarity) because you will need to use it to create child
Actors as well as to emit logging information. For every command you receive, you
create a new UUID that serves as an identifier for the email sent subsequently. Then
you create an anonymous'’ Actor whose ActorRef is used as the return address for the
SendEmail request you finally send to the email gateway service.

The created child Actor uses the FullTotal behavior constructor because it will
need to receive a system notification: the receive-timeout feature is used to abort the
process if the email gateway does not respond within the allotted time. If a response is
received before this timeout expires, you distinguish three cases:

= A successful result with the correct correlation ID leads to a successful response
to the original request.

= A failure result with the correct correlation ID is translated to a failure response.

= A response with a nonmatching correlation ID is logged and ignored."!

In all cases leading to a response sent to the original client, the child Actor terminates
itself after the response has been sent—the purpose of this ephemeral component is
fulfilled, and there is nothing left to be done.

This pattern is so widely applicable that Akka provides special support for it: when
expecting a request-response conversation, the response message can be captured in a
Future where it is then further processed. The example can be reformulated as follows.

Listing 15.12 Future produced by the Ask pattern and mapped

def withAskPattern(emailGateway: ActorRef [SendEmail]) :
Behavior [StartVerificationProcess] =
ContextAware { ctx =>
val log = Logging(ctx.system.eventStream, "VerificationProcessManager")
implicit val timeout = Timeout (5.seconds)
import ctx.executionContext

1% That is, unnamed—the library will compute a unique name for it.

! Receiving the nonmatching response will reset the receive timeout, though. We do not correct for this poten-
tial lengthening of the response timeout in this case in order to not complicate the example too much; it
could well be argued that a wrongly dispatched response should be a rare occurrence, if it happens at all.
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Static {
case StartVerificationProcess (userEmail, replyTo) =>
val corrID = UUID.randomUUID () The ask operator
val response: Future[SendEmailResult] = produces a Future.

The Future is

emailGateway ? (SendEmail("",
then mapped

List (userEmail), constructBody (userEmail, corrID),

based on corrID, ))
the result. -
response.map {
case SendEmailResult (“corrID”, StatusCode.OK, ) =>
log.debug ("successfully started the verification process for {}",
userEmail)

VerificationProcessStarted (userEmail)

case SendEmailResult (“corrID™, StatusCode.Failed, explanation) =>
log.info("failed to start the verification process for {}: {}",
userEmail, explanation)
VerificationProcessFailed (userEmail)

case SendEmailResult (wrongID, _, ) =>
log.error ("received wrong SendEmailResult for corrID {}", corrID)
VerificationProcessFailed (userEmail)

}.recover {

case _: AskTimeoutException =>
log.warning ("verification process initiation timed out for {}",
userEmail)

VerificationProcessFailed (userEmail)
} .foreach (result => replyTo ! result)

The execution of Future transformations requires the designation of an execution
context: you use the actor’s dispatcher to perform these tasks. The handling of the
response timeout is an inherent feature of the AskPattern support implemented in
AkKka; it is configured via the implicitly declared timeout value. Use of the pattern
implementation proceeds via the ? operator that is made available by importing
akka.typed.AskPattern. . This operator takes as its argument not the message but a
function that injects the internally created PromiseActorRef into the message. Under
the hood, a lightweight, ephemeral actor is created, just as in the previous implemen-
tation, but this actor’s sole purpose is to place any received message into the Future
that the ? operator returns.

It comes as no surprise that you need to handle all the same cases when interpret-
ing the contents of the Future, although the timeout surfaces not as a Receive-
Timeout signal but as a failed Future. One difference is that a Future can only be com-
pleted exactly once; therefore, the reception of a response with the wrong correlation
ID can no longer be ignored. The asker will have to abort the process instead.
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15.3.3 The pattern, revisited

Implementing this process without the Ask pattern might have looked like the following.

Listing 15.13 Implementing the Ask pattern without using built-in support

def withoutAskPattern (emailGateway: ActorRef [SendEmail]) :
Behavior [StartVerificationProcess] =
ContextAware [MyCommands] { ctx =>
val log = Logging(ctx.system.eventStream, "VerificationProcessManager")
var statusMap = Map.empty [UUID,
(String, ActorRef [VerificationProcessResponsel])]
val adapter = ctx.spawnAdapter ((s: SendEmailResult) =>
MyEmailResult (s.correlationID, s.status, s.explanation))

Static {
case StartVerificationProcess (userEmail, replyTo) =>
val corrID = UUID.randomUUID ()
val request = SendEmail ("verification@example.com", List (userEmail),

constructBody (userEmail, corrID), corrID, adapter)
emailGateway ! request
statusMap += corrID -> (userEmail, replyTo)
ctx.schedule (5.seconds, ctx.self, MyEmailResult (corrID,
StatusCode.Failed, "timeout"))

case MyEmailResult (corrID, status, expl) =>
statusMap.get (corrID) match {
case None =>
log.error ("received result for unknown corrID {}", corrID)

case Some ((userEmail, replyTo)) =>
status match {
case StatusCode.OK =>

log.debug ("successfully started verification process for {}",
userEmail)
replyTo ! VerificationProcessStarted(userEmail)

case StatusCode.Failed =>
log.info("failed to start verification process for {}: {}",
userEmail, expl)
replyTo ! VerificationProcessFailed(userEmail)

}

statusMap -= corrID

}
}

} .narrow[StartVerificationProcess]

In comparison to the solutions given in listing 15.12, this has several disadvantages:

= The Actor needs to incorporate the foreign protocol of the email gateway (in
particular, the SendEmailResult message type) into its own repertoire of mes-
sages. Toward this end, Akka Typed provides the facility of spawning an adapter
ActorRef that turns SendEmailResult messages into MyEmailResult objects;
such an adapter is used in listing 15.13 as the return address for the
SendEmail request.
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= The Actor needs to explicitly maintain the sum of the status information for all
currently open transactions. You implement this in listing 15.13 by maintaining
a mapping from correlation IDs to the eventually needed parameters—the user’s
email and the original requester’s ActorRef, in this case. Maintaining this map-
ping requires more discipline than with the Ask pattern in that you need to take
care to properly remove stale state when transactions end; this cleanup is conve-
niently bundled with the ephemeral actor’s lifecycle when using the Ask pattern.

= Handling timeouts requires notification of this Actor while retaining enough
identifying information. In this example, it needs to track the correlation ID of
each transaction. In the example case, this can be trivially mapped to a failed
SendEmailResult, but in general this may necessitate the addition of yet
another message type to the Actor’s internal protocol.

= The Actor needs to respond to more messages than it would otherwise need,
opening up the possibility of wrong messages being sent to this exposed service
more easily and with greater reach than would be the case if handling these other
types of messages were delegated to ephemeral endpoints as with the Ask pattern.

In listing 15.13, the sketched verification-management service confers with only one
other service, and handling the associated status information amounts to roughly the
same number of lines as when using the Ask pattern. If you imagine a service that
needs to communicate with several other services as well, it becomes clear that consis-
tent management of all associated state will pile up—it will become intertwined in non-
trivial ways and be more difficult to evolve and maintain. Using the Ask pattern, on the
other hand, allows you to separate out the subconversations that occur while process-
ing a larger business transaction; it helps you to decouple the handling of session state
by segregating it for each conversation and delegating it to a subcomponent.

15.3.4 Applicability

The Ask pattern is applicable wherever a request-response cycle needs to be per-
formed before continuing with the further processing of an enclosing business trans-
action. This holds only for non-ephemeral components, though: if the enclosing
transaction is already handled by a dedicated ephemeral component, then usually no
complexity overhead is incurred by keeping the state management for the request-
response cycle within that component.

One consequence of using the Ask pattern is that the parent component is not
automatically aware of the progress of the subconversation; it must be informed
explicitly if it needs to stay in the loop. This can be relevant if the number of concur-
rently outstanding requests needs to be limited, whether in order to protect the target
service from being overwhelmed with a sudden onslaught of requests or in order to
not overwhelm local computing and network resources with too many concurrent
conversations. Using the Ask pattern indiscriminately can easily be equivalent to
employing an unbounded queue, with all the negative effects on response latency that
are discussed in section 2.1.3, plus ample opportunity to exhaust all available memory.
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The Forward Flow pattern
Let the information and the messages flow directly toward their destination where possible.

This pattern sounds intuitive, maybe even trivial: why would you deliberately send
messages via detours when that is not required? The answer is that this rarely occurs
consciously; it is the result of applying a convenient, well-known pattern overeagerly.
The pattern in question is your good friend the Request-Response pattern, with or
without the Ask pattern’s sugar coating. Overusing this pattern leads to unnecessary
consumption of network bandwidth and increased response latency; thinking about
forward flow lets you recognize these cases and improve your service quality.

The problem setting

Imagine a message router that dispatches incoming file streaming requests to a pool
of service instances that host these files. They could be video files that are sent to cli-
ents for streaming display on users’ screens.

The task: Your mission is to sketch the sequence of messages sent among client,
router, and file server such that the router does not become a bottleneck in the
streaming video dissemination process.

Applying the pattern

Starting from naive request-response communication, you might foresee that the cli-
ent sends to the router, the router embodies the client from the perspective of the
file server, and thus responses flow via the router back to the client. This is shown in
figure 15.2.

In this scheme, the router must be able to forward all the streams coming from the
file servers back to all the clients, meaning its network interface’s bandwidth will place
an upper limit on how many bytes per second can be streamed by the entire system.
Network links are becoming faster and faster, but if this streaming service is intended
to serve customers on the internet, then it will reach its limit fairly soon. Therefore,
you must think a bit more about the meaning of request and response in this scenario:
the client sends a request, and the logical destination is the file server, not the router.
The response is a video stream whose source is the file server and whose destination is
the client. Although you need the router as an intermediary for the request—balanc-
ing the load across a pool of replicated file servers hosting the particular video file

2
O
Router 3 File server
-
E{ Video

Figure 15.2 Flow of messages when nesting the Ask pattern: all responses
travel via the intermediate router component.
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Figure 15.3 Flow of messages when applying

forward flow: although the request needs to pass
through the router for load balancing, the (large)
response does not need to take the same route. It
can travel back directly from file server to client.

File server

that is requested—you do not need to involve it in handling the response. The result-
ing message-flow diagram is shown in figure 15.3.

Here, the requests flow toward their destination via the shortest possible path, and
the responses also do not waste any time on their way back. Because the file servers
communicate directly with the clients, you are free to scale up the available comput-
ing and network resources without limit.

The pattern, revisited

We have analyzed the initial draft of applying the Request—Response pattern individu-
ally for each step along a request’s path and found that responses profit from not tak-
ing the same path; instead, they may take a more direct route. By cutting out the
middleman, you gain the freedom to scale the available response bandwidth without
being limited by what a single router can provide.

The same applies to a file-upload service in reverse: the uploaded data streams go
directly to the file servers, but the response may be routed via another service to
update the file catalog or otherwise perform accounting tasks. Sending the volumi-
nous data streams via the accounting system would require that the system be scaled
such that it can handle the resulting load, but this is a purely incidental concern
because the accounting system is not interested in the data bytes.

Another aspect is that removing intermediate hops from a message’s path reduces
the time it takes for the message to reach its final destination. Every time it is
enqueued and dispatched again, there is a latency cost.

Applicability

Using forward flow to optimize the overall resource consumption or response-latency
time requires participating services to allow for these shortcuts. Either they need to
know about each other—as demonstrated by the router that is intimately aware of the
file server pool—or the message protocol needs to include the possibility to specify
the target route a message will take so that the middleman can remain ignorant of its
location within the message flow. Applying this pattern hence involves an assessment
of how big the gains in service quality are in relation to the additional complexity or
coupling the pattern introduces. In the example of the video-streaming service, it is
evident that the performance requirements of the system dictate this approach; but in
other cases, it may not be as clear. As with all optimizations, the application must be
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predicated on having measured the performance of the simpler alternative solution
and found the results to be inadequate.

The Aggregator pattern

Create an ephemeral component if multiple service responses are needed to compule a service
call’s result.

We have introduced the Ask pattern for the case of requiring a request-response cycle
before a service call can be answered. There are cases, though, where a larger number
of these cycles need to be completed, and none of the requests depend on the
responses of the others—in other words, the request-response cycles can be made in
parallel. Disregarding this opportunity for parallelism means prolonging the time
until the overall response can be sent back to the client, thus leaving an opportunity
for latency reduction unused.

The problem setting

Imagine a personalized front page for a news site. In order to render the page, you
need multiple inputs:

= Theme the user has configured to be used for styling the site
= News items to be displayed as per the user’s topic selection
= Top news items that are displayed to all users

Each of these inputs is provided by a different service by way of a request-response
protocol.

The task: Your mission is to formulate an Actor that, upon receiving a
GetFrontPage request, creates an ephemeral component that retrieves the three
inputs in parallel and, when ready, sends their composition back to the original
requester.

Applying the pattern

Using the Ask pattern, you can decompose the task into two steps: first, you initiate
three ask operations, one for each of the needed inputs; and then, you combine their
result using Future combinators. In other words, you use a Future’s facilities as the
ephemeral component that oversees this entire process. The full code is available with
the book’s downloads; we omit the message definitions here because they are trivial
and intuitive. The code looks like the following listing.

Listing 15.14 Using a for-comprehension to aggregate the result of three Future expressions

def futureFrontPage (themes: ActorRef [GetTheme],
personalNews: ActorRef [GetPersonalNews],
topNews: ActorRef [GetTopNews]): Behavior [GetFrontPage] =
ContextAware { ctx =>
import ctx.executionContext
implicit val timeout = Timeout (1.second)
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Static {
case GetFrontPage (user, replyTo) =>
val cssFuture = B

(themes ? (GetTheme (user,
_: ActorRef [ThemeResult])))
.map (_.css)
.recover {
case _: AskTimeoutException => "default.css"

}

val personalNewsFuture = R Creates a Future

for each section
(personalNews ? (GetPersonalNews (user,

_: ActorRef [PersonalNewsResult])))
.map (_.news)
.recover {

case _: AskTimeoutException => Nil
}
val topNewsFuture = B
(topNews ? (GetTopNews (_: ActorRef [TopNewsResult])))

.map (_.news)
.recover {
case _: AskTimeoutException => Nil

}

for {

css <- cssFuture Uses a combinator

personalNews <- personalNewsFuture to produce a single result
topNews <- topNewsFuture

I
val topSet = topNews.toSet
val allNews = topNews ::: personalNews.filterNot (topSet.contains)
replyTo ! FrontPageResult (user, css, allNews)

This code defines an actor that, for each GetFrontPage request, creates three Futures,
each based on the Ask pattern with a value transformation for extracting the desired
piece of information and a recovery step that defines the replacement value to be used
in case of a timeout. We present here only the aspects that are directly relevant; in a
complete program, you would of course take care to install circuit breakers as appro-
priate and also ensure that you limit the total number of outstanding ask requests in
order to prevent unbounded resource usage. As the second step, the actor uses a for-
comprehension to tie together the three individual Futures in order to compute the
full result that is finally sent back to the return address provided with the initial request.

Another way to implement the same process would be to create an ephemeral
child Actor instead of using Future combinators, as shown next.

Listing 15.15 Using a child Actor in place of Future combinators

private def pf(p: PartialFunction[AnyRef, Unit]): p.type = p
def frontPage (themes: ActorRef [GetTheme], HdPe’t°FV9d
personalNews: ActorRef [GetPersonalNews], type ascription
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topNews: ActorRef [GetTopNews]) : Behavior [GetFrontPage] =
ContextAware { ctx =>
Static {
case GetFrontPage (user, replyTo) => <%4J Spawns an ephemeral
val childRef = ctx.spawnAnonymous (Props { child Actor

val builder = new FrontPageResultBuilder (user)
Partial [AnyRef] (

pf {
case ThemeResult (css) => builder.addCsSS (css)
case PersonalNewsResult (news) => builder.addPersonalNews (news)
case TopNewsResult (news) => builder.addTopNews (news)
case ReceiveTimeout => builder.timeout ()
} andThen { =>

if (builder.isComplete) {
replyTo ! builder.result
Stopped
} else Same
3]
3]
DWectresponses themes ! GetTheme (user, childRef)
to the child Actor | personalNews ! GetPersonalNews (user, childRef)
topNews ! GetTopNews (childRef)
ctx.schedule (1.second, childRef, ReceiveTimeout)

Ensures that the child
times out if it does not
receive a complete set
} of responses

The structure of the ephemeral child Actor consists of two aspects: first, any new piece
of information is incorporated into the current set of knowledge as managed by a
mutable builder (shown in listing 15.15), and then the builder is queried as to
whether the answer is now complete, in which case the process is completed by send-
ing the result back to the original requester. The process is set in motion by sending
the three requests to their respective providers while giving the child Actor’s refer-
ence as the return address.

Listing 15.16 Using a builder to express the domain more directly

class FrontPageResultBuilder (user: String) {
private var css: Option[String] = None
private var personalNews: Option[List[String]] = None
private var topNews: Option[List [String]] = None

def addCSS(css: String): Unit = this.css = Option(css)
def addPersonalNews (news: List[String]l): Unit =

this.personalNews = Option (news)
def addTopNews (news: List[String]l): Unit = this.topNews = Option (news)
def timeout(): Unit = {
if (css.isEmpty) css = Some ("default.css")
if (personalNews.isEmpty) personalNews = Some (Nil)

if (topNews.isEmpty) topNews = Some (Nil)

}

def isComplete: Boolean =
css.isDefined && personalNews.isDefined && topNews.isDefined
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def result: FrontPageResult = {
val topSet = topNews.get.toSet
val allNews = topNews.get ::: personalNews.get.filterNot (topSet.contains)
FrontPageResult (user, css.get, allNews)

}
}

This builder adds more lines of code to the weight of the program than the Future-
based solution requires, but it also lets you express the domain of your problem
natively and unencumbered: the Ask pattern and its underlying Future API place the
focus on the eventual availability or failure of each single value, making it more diffi-
cult to formulate actions or reactions that affect multiple aspects at once. An example
appears in listing 15.16’s timeout handling: the Actor-based approach allows the more
natural formulation of an overall timeout that is handled in one place only, whereas
AskTimeoutException’s recovery logic must be repeated for each of the three individ-
ual Futures.

Another use case that illustrates this point is a mechanism that can override the
front page’s contents and style in case of special events. In the Actor-based implemen-
tation, this could be done by sending a request to a fourth service; for a given reply,
you could override fields of the builder as appropriate, completing the result right
away. This can be implemented by adding a single line to the message-reception cases.
In the Future-based approach, you would need to formulate these as two competing
operations, because adding a fourth input to the current scheme would require you to
wait for the irrelevant responses to the other three requests in case of an override. The
resulting code becomes less readable, as shown in the following listing.

Listing 15.17 Adding a fourth service, making the code less readable

val cssFuture =

val personalNewsFuture =
val topNewsFuture =

val overrideFuture =

(overrides ? (GetOverride(_: ActorRef [OverrideResult])))
.recover {
case _: AskTimeoutException => NoOverride
}
for {

css <- cssFuture
personalNews <- personalNewsFuture
topNews <- topNewsFuture

ovr <- overrideFuture Sends the normal result
} ovr match { only when NoOverrides
case NoOverride => were returned
val topSet = topNews.toSet
val allNews = topNews ::: personalNews.filterNot (topSet.contains)
replyTo ! FrontPageResult (user, css, allNews)

case other =>
} Nothing to do here
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for {
ovr <- overrideFuture
} ovr match {

case NoOverride => .
Sends the override result only

case Override(css, news) => N
when Override was returned

replyTo ! FrontPageResult (user, css, news)

Although this is not a major change in terms of lines added, it makes it more difficult
to reason about the behavior of this code. In particular, an important hidden con-
straint is only expressed in the annotations: the execution is bifurcated, and only the
careful treatment of OverrideResult ensures that the overall result is deterministic.

The pattern, revisited

You extended the Ask pattern to include more than one request-response pair in the
calculation of an overall result. While doing so, you found Future combinators to
express this in a straightforward way as long as all individual results can be treated
independently—as soon as the aggregation process involves decisions that affect the
aggregation logic, it becomes preferable to create an explicit ephemeral component
that bundles this process. The reason is that Futures are limited in that they do not
have a name or an identity that can be spoken to after their creation; their input value
is fixed as soon as the combinator that produces them has been invoked. This is their
greatest strength, but it can also be a weakness.

In contrast, the ephemeral component that the Aggregator pattern gives rise to—
modeled as an Actor in listing 15.15—can easily express any process of arriving at the
aggregation result, independent of which inputs are needed and which scope they
affect. This is an advantage particularly in cases where the aggregation process condi-
tionally chooses different computations to be applied based on some of the inputs it
collects.

Applicability

The Aggregator pattern is applicable wherever a combination of multiple Ask pattern
results is desired and where straightforward Future combinators cannot adequately or
concisely express the aggregation process. Whenever you find yourself using multiple
layers of Futures or using nondeterministic “racy” combinators like Future
.firstCompletedoOf (), you should sketch out the equivalent process with Actors (or
other named, addressable components) and see whether the logic can be simplified.
One concern that frequently drives this is the need for complex, layered handling of
timeouts or other partial failures.
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The Saga pattern

Divide long-lived, distributed transactions into quick local ones with compensating actions
Jfor recovery.

In other words: Create an ephemeral component to manage the execution of a sequence of
actions distributed across mulliple components.

The term saga was coined by Hector Garcia-Molina.'? His paper describes a scheme
for breaking up long-lived business transactions in order to shorten the time period
during which databases need to hold locks—these locks are needed to ensure atomic-
ity and consistency of the transaction, the downside of which is that other transactions
touching the same data cannot proceed concurrently.

In a distributed system, you need to break up transactions involving multiple par-
ticipants for other reasons: obtaining a shared lock is an expensive operation that can
even be impossible in the face of certain failures like network partitions. As we dis-
cussed in chapter 8, the key to scalability and loose coupling is to consider each com-
ponent an island of delimited consistency. But how do you model business transactions
that require inputs from multiple components while also effecting modifications to
multiple components? It turns out the research topic of sagas provides an effective,
robust solution for many use cases.

NOTE This section gives only a brief overview; a full book could be written on
this topic alone. A very similar concept is the process managerin the CQRS liter-
ature'>—the main difference is that a sagafocuses on transactional aspects
(atomicity and consistency), whereas a process manageris primarily seen as fac-
toring out the description of a particular process from the components that
participate in it.

The problem setting

The prototypical example of a business transaction that affects more than one consis-
tent entity (or aggregatein domain-driven design [DDD] terms) is a money transfer
from one bank account to another. Questions of this kind arise immediately when
scaling out the application state managed previously by a single RDBMS instance onto
a distributed cluster of machines, whether for elasticity or resilience reasons. The
code of the nondistributed system would tie the update to both accounts in a single
transaction, relying on the RDBMS to uphold the guarantees of atomicity, consistency,
isolation, and durability. In the distributed system, there is no such mechanism,
requiring the use of the Saga pattern.

The task: Your mission is to sketch the conversation between an ephemeral saga
component and the two bank account components in order to perform a money

12 Hector Garcia-Molina, “Sagas,” ACM, 1987 (http://dl.acm.org/citation.cfm?id=38742).
13 See “CQRS Journey” (July 2012) on MSDN, reference 6: “A Saga on Sagas,” https://msdn.microsoft.com/en-us
/library/jj591569.aspx.
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transfer, considering that individual steps can fail permanently (for example, because
the source account does not have sufficient funds or the destination account is closed
after the process begins). Unreliable communication will be considered in the follow-
ing pattern. You may then also implement the saga component in code: for example,
as a persistent actor.

Applying the pattern
When designing a communication protocol between multiple parties, one natural
analogy is to envision a conversation among a group of people. Here, you want to
describe how Sam—the saga—confers with Alice and Bob to transfer part of Alice’s
budget to Bob. The analogy works best if the essential properties of the process are
represented: in this case, handing over the money in cash would not be possible,
because that kind of fully synchronous process is not how distributed systems work.
Therefore, you will reallocate $10,000 of budget between them.

Before we consider various failure scenarios, we will sketch the nominal successful
case, which might go like the following:

Sam: “Alice, please reduce your budget by $10,000 if possible.”
Alice: “OK. I've done so.”

Sam: “Bob, please increase your budget by $10,000.”

Bob: “Thanks, Sam; it’s done.”

Sam: “Thanks everyone; transfer finished!”

There is no need for Alice and Bob to talk to each other, because Sam coordinates the
transfer. Given this scenario, we might as well have let both subconversations occur in
parallel to each other. Now we will consider some failure modes—for example, if Alice
does not have sufficient budget:

Sam: “Alice, please reduce your budget by $10,000 if possible.”
Alice: “Sorry, Sam, my budget is too low already.”
Sam: “Listen up, everyone—this transfer is aborted!”

This case is simple. The first step of the process fails in a nontransient fashion, so no
harm is done and an abort is immediately possible. A more complicated case occurs if
Bob is unable to receive the increased budget amount:

Sam: “Alice, please reduce your budget by $10,000 if possible.”
Alice: “OK. I've done so.”
Sam: “Bob, please increase your budget by $10,000.”
Bob: “Sorry, Sam, my project was just canceled—I no longer have a budget.”
Sam: “Alice, please increase your budget by $10,000.””
Alice: “Thanks, Sam; it’s done.”
Sam: “Listen up, everyone—this transfer is aborted!”
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In this case, the second step that Sam wants to perform cannot be carried out. At this
point, Alice has already reduced her budget, so logically Sam holds $10,000 in his
hands—but he has no budget to manage for himself. The solution for this dilemma is
that Sam gives the $10,000 back to Alice. This is called a compensating transaction. Using
this trick, we can also make the entire transfer opportunistically parallel and still
remain correct:

Sam: “Alice, please reduce your budget by $10,000 if possible. Bob, please increase
your budget by $10,000.”
Bob: “Thanks, Sam. It’s done.””
Alice: “Sorry, Sam, my budget is too low already.”
Sam: “Bob, please reduce your budget by $10,000.”
Bob: “OK. I've done so.”
Sam: “Listen up, everyone—this transfer is aborted!”

Of course, we have assumed here that the compensating transactions always succeed;
but what if that is not the case? What if in the last example Bob had already—and sur-
prisingly quickly—spent the $10,000 while Sam was waiting for Alice to respond? In
this case, the system would be in an inconsistent state that Sam could not fix without
external help. The moral of this gedankenexperiment is that computers and algo-
rithms cannot be held responsible for dealing with all possible corner cases, especially
when it comes to distributed systems where the convenient simplifications of a fully
sequential local execution cannot be applied. In such cases, inconsistencies must be
recognized as possible system states and signaled upward: for example, to be decided
by the humans who operate the system. For further reading on this topic, please see
Pat Helland’s “Memories, Guesses, and Apologies.”"*

The pattern, revisited

Given two accounts—symbolized by Alice and Bob—we have introduced another pro-
cess: a saga whose role was played by Sam in order to orchestrate the transfer of budget
from one account to the other. Getting Alice and Bob to agree directly on this transfer
would be a costly process during which both would be unavailable for other requests,
because those could invalidate the current state of the consensus-building conversa-
tion; this would be the analogous solution using a distributed transaction in the ACID
sense (a transaction like the ones we are used to from relational database management
systems [RDBMSs]). Instead, we have placed the responsibility for leaving the system in
a consistent state with the new external process that runs this process.

You have seen that in order to do this, you have to not only describe the individual
transactions that are done on each account but also provide compensating transac-
tions that come into play if the saga needs to be aborted. This is the same as perform-
ing a transaction rollback on a RDBMS; but because you are no longer dealing with a

Y MSDN blog, 2007, http://blogs.msdn.com/b/pathelland/archive,/2007/05/15/memories-guesses-and-
apologies.aspx.
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single realm of consistency, the system can no longer automatically deduce what con-
stitutes a rollback. Hector Garcia-Molina notes that writing the compensating transac-
tions is not a black art, though; it is usually of the same difficulty as encoding the
transactions.

One property of compensating transactions that we have glossed over so far
requires a bit of formalism: where transaction 77 takes the component from state S, to
state S;, the compensating transaction Cj takes it from S; back to Sy. We are applying
these transactions within the consistency boundaries of several different compo-
nents—Alice and Bob, in the earlier example—and within one of these components
an execution of a sequence of transactions 77..7, would take that component from
state Sy to S,. Because transactions do not, in general, commute with each other, tak-
ing the system back from state S, to Sywould require the application of the compen-
sating transactions C,..C;: the compensating transactions would be applied in reverse
order, and this order matters. We have played with the thought of parallelizing parts
of the two subconversations (Sam-Alice and Sam-Bob), but you must always be careful
to maintain a deterministic and thus reversible order for all transactions that are per-
formed with Alice and Bob individually. For an in-depth discussion of compensation
semantics, please refer to Garcia-Molina’s “Sagas” paper.

At the beginning of this pattern’s description, we mentioned the term process
manager from CQRS terminology. This term refers to another property of the pattern
we have described: in order to carry out the budget transfer, neither Alice nor Bob
needed to know how it worked; they only needed to be able to manage their own bud-
get and respond to requests to reduce or increase it. This is an important benefit in
that it allows the description of complex business processes to be decoupled from the
implementation of the affected components both at runtime and during develop-
ment. The process manager is the single place that holds all knowledge about this
business process: if changes are required, they are made only to this software module.

In Reactive systems, the need to factor out this process into its own ephemeral com-
ponent arises from both sides: we need to model workflows that affect multiple compo-
nents while maintaining eventual consistency, and we need to factor out cross-
component activities such that we do not strongly couple the development or execu-
tion of these components. The “Sagas” paper was not written with distributed systems
in mind, but it does offer a solution to both these problems. It also predates the CQRS
terminology by nearly two decades; and because we like the concise and metaphorical
name of the proposed abstraction, we call this pattern the Saga pattern.

Coming back to the example, Sam has one quality we have not yet discussed: when
you model a process this way, you expect that the transfer will eventually be finished or
aborted, no matter what happens. You do not expect Sam to be distracted and forget
about the whole thing. Not only would that be pushing the analogy too far, but it is
also a property that you do not wish your computer systems to have—you want them
to be reliable. In computer terms, the state the saga manages must be persistent. If the
machine that runs the saga fails, you need the ability to restart the process elsewhere
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and have it resume its operations. Only then can you be sure the process will eventu-
ally complete, assuming that you keep providing computing resources.

The Aggregator pattern describes a simple form of a workflow—the retrieval of
information from multiple sources and its subsequent conversion into an overall
result—whereas the Saga pattern allows arbitrary processes to be formulated. The
Aggregator pattern is a simple, special case, whereas the Saga pattern describes service
composition in general.

Applicability

The astute reader will have grown increasingly impatient, waiting for the discussion of
the elephant in the room: if this pattern is presented as a solution in place of distrib-
uted transactions, then how do we reconcile this with the fact that sagas are not iso-
lated from each other? Going back to the example, you could easily imagine another
process that tallies all allocated budgets across the company by interrogating all proj-
ect leads, including Alice and Bob: if this tally process asks during the transfer such
that Alice has already reduced her budget but Bob has not yet increased his, the tally
will come up $10,000 short because the money is “in flight.” Running the tallying pro-
cess during a quiescent period when no transfers are ongoing would lead to the cor-
rect result, but otherwise there would always be a risk of errors.

In some systems this is not acceptable. These systems cannot tolerate being distrib-
uted in the sense of splitting them into multiple autonomous, decoupled compo-
nents. Sagas cannot be used to fix this problem in general.

The Saga pattern is applicable wherever a business process needs to be modeled
that involves multiple independent components: in other words, wherever a business
transaction spans multiple regions of delimited consistency. In these cases, the pattern
offers atomicity (the ability to roll back by applying compensating transactions) and
eventual consistency (in the sense that application-level consistency is restored by issuing
apologies; see Pat Helland’s aforementioned blog article), but it does not offer isolation.

The Business Handshake pattern
(a.k.a. Reliable Delivery pattern)

Include identifying and/or sequencing information in the message, and keep retrying until
confirmation is received.

While discussing the previous pattern, we made the implicit assumption that commu-
nication between the saga and the affected components is reliable. We pictured a
group of people standing in the same office and discussing the process without exter-
nal disturbances. This is a useful way to begin, because it allows you to focus on the
essential parts of a conversation; but we know that life does not always work like that—
in particular in distributed systems, where messages can be lost or delayed due to
unforeseeable, inexorable subsystem failures.

Fortunately, we can treat the two concerns on separate levels: imagining that the
conversation occurs in a busy, noisy office does not invalidate the basic structure of
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the business process we are modeling. All that is needed is to deliver every message
more carefully, transmitting it again if it is overshadowed by some other event. This
second level is what the Business Handshake pattern is all about.

The problem setting

In the previous example, we assumed that Sam—the saga—conveyed the message
“Please reduce your budget by $10,000 if possible” to Alice, who replied with either an
affirmative or a negative response. In a setting where communication becomes unreli-
able, it may happen that either the message to Alice or the response is not heard—in
technical terms, it is lost. If this happens, the process will be stuck, because without
further provisions, Sam will wait indefinitely to hear back from Alice. In real life,
impatience and social conventions would solve this conflict, but computers are dumb
and cannot figure this out without help.

The task: Your mission is to describe the process of conveying the request and
response in a reliable fashion, considering that every single message could be lost
undetectably. You should write this down from the perspectives of both Sam and Alice,
using your message-driven communication tool kit of choice, but without exploiting
the potential reliable-delivery guarantees of such a tool kit.

Applying the pattern

As a general working principle, we will again begin from a real-world example. Imag-
ine Sam and Alice sitting at their desks, several meters apart, in a noisy office—so
noisy that both need to shout to have a chance of hearing what the other is saying.
Sam shouts, “Please reduce your budget if possible!” and then listens intently for
Alice’s response. If none is forthcoming, Alice may not have heard, so Sam shouts
again until a reaction comes back from Alice. Alice, on the other hand, sits there
working on other things until she hears Sam shouting; she has no clue how often Sam
may have shouted previously. Having heard the request, Alice brings up the budget
spreadsheet, takes out $10,000 for Sam, and then shouts that she has done so. From
Alice’s perspective, everything is finished—but Sam may not have heard her reply, in
which case he’ll shout again. In fact, he has to keep shouting until Alice responds
again so he has another chance to hear the response. When Alice hears Sam make the
same request again, she will naturally shout back, “Hey, I already did that!” After some
time, Sam will finally hear her, and the exchange will be complete.

Implementing this using Actors looks like the following listing (the full source
code can be found with the book’s downloads).

Listing 15.18 Implementing the exchange using Actors

case class ChangeBudget (amount: BigDecimal, replyTo: ActorRef)
case object ChangeBudgetDone
case class CannotChangeBudget (reason: String)

class Sam(alice: ActorRef, bob: ActorRef, amount: BigDecimal) extends Actor {
def receive = talkToAlice()
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def talkToAlice(): Receive = {
alice ! ChangeBudget (-amount, self)
context.setReceiveTimeout (1.second)

{

case ChangeBudgetDone => context.become (talkToBob () )
case CannotChangeBudget (reason) => context.stop(self)
case ReceiveTimeout => alice ! ChangeBudget (-amount, self)
}
}
def talkToBob(): Receive = ... <—— Analog to the previous code

}

class Alice extends Actor
var budget: BigDecimal = 10

You need to keep track of
what has already been done.
Here each “Sam” issues only
var alreadyDone: Set [ActorRef] = Set.empty one request (being a Saga).

def receive = {
case ChangeBudget (amount, replyTo) if alreadyDone (replyTo) =>
replyTo ! ChangeBudgetDone

case ChangeBudget (amount, replyTo) if amount + budget > 0 =>
budget += amount
alreadyDone += replyTo
context .watch (replyTo)
replyTo ! ChangeBudgetDone

case ChangeBudget (_ , replyTo) =>
replyTo ! CannotChangeBudget ("insufficient budget™")

case Terminated(saga) =>
alreadyDone -= saga

First, note that Sam includes identifying information with the ChangeBudget command
in the form of his own ActorRef—this is a token that is guaranteed to be unique, and
it identifies exactly one budget change for Alice because Sam is a short-lived saga. Sec-
ond, note how Sam keeps resending the same command using the Receive-
Timeout mechanism until the reply from Alice has been received. If the budget reduc-
tion fails, the saga terminates; otherwise, it continues by talking with Bob in the same
fashion it did with Alice.

On the receiving end, you see that Alice validates the incoming command: if you
have already seen a command with the same return address, then there is nothing to
be done apart from confirming that it has already been done, whereas in the case of
insufficient funds, you must send a negative response. But if the command is new and
valid, you execute its effect—changing the budget—and reply to the requester that you
have done so. In addition, you must keep track of what you have done. Here, you store
the return address in a set so that you can later recognize it in case of a retransmitted
command. This set would grow indefinitely over time unless you clean it up; for this,
you use the DeathWatch mechanism. When the saga ends, its Actor is terminated, and
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you can remove the reference from the set because there cannot be any more retrans-
missions with this return address.

What we have sketched so far is the volatile in-memory version of performing the
business handshake. If the execution must be reliable across machine failures and
restarts, you have to make Sam and Alice persistent. The following listing shows how
this changes Sam.

Listing 15.19 Adding persistence to the budget messages

Due to an implementation restriction, Therefore, you start the process
“deliver” does not work from here. from the preStart lifecycle hook.

case class AliceConfirmedChange (deliveryId: Long)
case class AliceDeniedChange (deliveryId: Long)

class PersistentSam(alice: ActorPath, bob: ActorPath, amount: BigDecimal
override val persistencelId: String)
extends PersistentActor with AtLeastOnceDelivery {

-———> def receiveCommand = Actor.emptyBehavior

override def preStart(): Unit = context.become (talkToAlice()) R
def talkToAlice() = {
var deliveryId: Long = 0 <

deliver (alice) (id => { deliveryId = id
ChangeBudget (-amount, self, persistenceId) })

{

case ChangeBudgetDone =>

persist (AliceConfirmedChange (deliveryId)) { ev => I““eaquh“h@the
confirmDelivery (ev.deliveryId) d.el'very ID travel
context .become (talkToBob () ) with the me.ssage,
} you keep it here

because there can
be only this one
message on its way.

case CannotChangeBudget (reason) =>
persist (AliceDeniedChange (deliveryId)) { ev =>
confirmbDelivery (ev.deliveryId)
context.stop(self)

}
}
}

def talkToBob () = ... < Analog to the previous code

def receiveRecover = {
case AliceConfirmedChange (deliveryId) =>
confirmbelivery (deliveryId)
context .become (talkToBob () )
case AliceDeniedChange (deliveryId) =>
confirmbelivery (deliveryId)
context.stop (self)
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This Actor is very similar to the Sam actor presented in listing 15.18, but instead of
sending to Alice and Bob via their ActorRef, you now can only use their ActorPath—
the difference is that the latter stays valid across machine restarts whereas the former
does not. PersistentSam also needs to store its state changes by emitting events to its
persistent journal, identified by the persistenceId. The AtLeastOnceDelivery mixin
provides the deliver() and confirmDelivery() methods that implement the per-
sistent version of the retransmission scheme previously based on the Receive-
Timeout mechanism: delivery is retried periodically until the confirmation is regis-
tered. During recovery, all previously persisted events from the journal are replayed,
and the persistent actor goes through the same state transitions and delivers and con-
firms the same messages it previously did. Thus, after recovery it will have reached the
same state as before the (forceful) restart.

One noteworthy detail is that the state progression toward talking to Bob is
effected only after having successfully persisted Alice’s confirmation, as shown in list-
ing 15.20. If the machine crashes after that message is delivered but before it is written
to persistent storage, the effect is as if the message were lost on the way—which is
exactly the right semantics, because the confirmation must reach Sam’s memory and
not only his ears.

Listing 15.20 The persistent version of Alice

case class BudgetChanged (amount: BigDecimal, persistenceId: String)
case object CleanupDoneList
case class ChangeDone (persistencelId: String)

class PersistentAlice extends PersistentActor with ActorLogging ({
def persistenceId: String = "Alice"

implicit val mat = ActorMaterializer ()
import context.dispatcher

var alreadyDone: Set[String] = Set.empty
var budget: BigDecimal = 10

val cleanupTimer =
context.system.scheduler.schedule (1.hour, 1.hour, self, CleanupDoneList)

def receiveCommand = {
case ChangeBudget (amount, replyTo, id) if alreadyDone (id) =>
replyTo ! ChangeBudgetDone

case ChangeBudget (amount, replyTo, id) if amount + budget > 0 =>
persist (BudgetChanged (amount, id)) { ev =»>
budget += ev.amount
alreadyDone += ev.persistenceld
replyTo ! ChangeBudgetDone

}

case ChangeBudget( , replyTo, ) =>
replyTo ! CannotChangeBudget ("insufficient budget")

case CleanupDonelList =>
val journal = PersistenceQuery (context.system)
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.readJournalFor [LeveldbReadJournal] (LeveldbReadJournal.Identifier)
for (persistenceId <- alreadyDone) ({
val stream = journal
.currentEventsByPersistenceld (persistenceId)
.map (_.event)
.collect ({
case AliceConfirmedChange( ) => ChangeDone (persistenceId)
}
stream.runWith (Sink.head) .pipeTo (self)

}

case ChangeDone (id) =>
persist (ChangeDone (id)) { ev =>
alreadyDone -= ev.persistenceld
}
}
def receiveRecover = {
case BudgetChanged (amount, id) =>

budget += amount

alreadyDone += id
case ChangeDone (id) =>

alreadyDone -= id

}

override def postStop(): Unit = cleanupTimer.cancel ()

}

The main difference between the persistent and the transient versions of Alice lies in
how you recognize commands that have already been executed. Here, you again
use the uniqueness of the requesting saga’s name: in this case, you use the
persistencelId that is included in the message for this purpose. Triggering
the cleanup of the set of known identities by using DeathWatch is not the correct
answer here, because sagas can be restarted after a crash: reception of the
Terminated notification does not signal the completion of the saga but rather that its
current actor ceased to exist—which might be caused by a machine failure or network
outage. Instead, you use the events that the saga persists. Once per hour, Alice asks the
journal for all currently stored events for all sagas it knows: every saga that has per-
sisted an AliceConfirmedChange event clearly will not retransmit that command, so
you can safely remember that this saga’s change is finished and remove its identity
from the stored set.

This example uses a specific event that Alice knows Sam persists. This may be too
close a coupling between the code modules of the saga and the account entity; instead
it may be preferable to emit a known, well-documented event at the end of the saga’s
lifecycle so that all affected components can hook their cleanup actions to that event.
This minimizes the shared knowledge that the teams developing either module must
have, and it simplifies writing tests that mock out the saga from the affected compo-
nent’s viewpoint.
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The pattern, revisited

The reliable execution of transactions across components and thereby across consis-
tency boundaries requires four things:

= The requester must keep resending the request until a matching response is
received.

= The requester must include identifying information with the request.

= The recipient must use the identifying information to prevent multiple execu-
tions of the same request.

= The recipient must always respond, even for retransmitted requests.

We call this the Business Handshake pattern because it is crucial that the response
implies successful processing of the request. This is what enables the pattern to ensure
exactly-once execution of the desired effects. It would not be enough to merely con-
firm the delivery of the request to the recipient; this would not allow the conclusion
that the recipient also performed the requested work. The distinction is naturally
clear in cases where a response carries desired information as part of the business pro-
cess, but the same applies to requests that just result in a state change for the recipient
and where the requester does not need any resulting values in order to continue. For
this reason, reliable communication cannot be delegated to a transport mechanism or
middleware software product—you must foresee the necessary confirmations on the
business level in order to achieve reliable processing.

The example uses a saga as the source of the requests. This makes it necessary to
track the individual identities of commands (by using the uniqueness of the saga’s
identity), which presents a burden in that cleaning up the memory of what has been
done can be nontrivial. If the sender and recipient of reliable communication are
both long-lived, and the exchange spans a large number of messages, it is more effi-
cient to use sequence numbers, instead. With this simplification, a single counter is
sufficient within the sender and recipient to track the number of the next message (in
the sender) and the youngest message’s number that has successfully been received
(in the recipient). The recipient then expects the sequence number to increase
monotonically and contiguously, enabling the recipient to detect missing messages
and thereby maintain the correct order of processing even when messages are retrans-
mitted out of order.

Applicability

The Business Handshake pattern is applicable wherever requests must be conveyed
and processed reliably. In situations where commands must not be lost even across
machine failures, you need to use the persistent form of the pattern; if losses due to
unforeseen failures can be tolerated, you can use the nonpersistent form. It is import-
ant to note that persistent storage is a costly operation that significantly reduces the
throughput between two components.
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One noteworthy aspect is that this pattern can be applied between two compo-
nents that are communicating via intermediaries: if handling of requests and/or
responses along the path between the business handshake partners is idempotent,
then the intermediaries can forgo the use of expensive persistence mechanisms and
instead rely on at-least-once delivery that the exchange between the handshake part-
ners gives them.

Summary

In this chapter, you learned the elementary building blocks for modeling information
flows in Reactive systems:

= We familiarized you with the superficially trivial pattern of request and
response, taking note of the benefits of complete and self-contained messages.

= We presented the Ask pattern as a shrink-wrapped request-response pair, in
contrast with the performance advantages of forward message flow.

= For more-complex relations between components, we explored the Aggregator
and Saga patterns. The latter provides a way to distribute systems that would
otherwise be difficult to separate due to transaction boundaries.

= We added reliability to peer-to-peer communications using the Business Hand-
shake pattern.

Many other specialized patterns are relevant to building message-driven applications.
For further reading, we recommend Vaughn Vernon’s Reactive Messaging Patterns with
the Actor Model (Addison-Wesley, 2015) and Enterprise Integration Patterns by Gregor
Hohpe and Bobby Woolf (Addison-Wesley, 2003).
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Flow control patierns

In the previous chapters, you learned how to decompose systems into smaller
pieces and how these pieces communicate to solve greater tasks. One aspect we
have left out so far is that in addition to who interacts with whom, you must also
consider the timeliness of communication. In order for your system to be resilient
to varying loads, you need mechanisms that prevent components from failing
uncontrollably due to overwhelming request rates. This chapter therefore intro-
duces four basic patterns:

= The Pull pattern propagates back pressure from consumers to producers.

= The Managed Queue pattern makes back pressure measurable and action-
able.

= The Drop pattern protects components under severe overload conditions.

= The Throttling pattern helps you avoid overload conditions where possible.

There are many variations on these patterns and a lot of applicable theory to be
studied (in particular, control theory and queueing theory), but a treatment of
these fields of research is outside the scope of this book. We hope you will be
inspired by the basics presented in this chapter and refer to the scientific literature
for in-depth coverage.

The Pull pattern
Have the consumer ask the producer for batches of data.

One challenge in Reactive systems is how to balance the relationship between produc-
ers and consumers of messages—be they requests that need processing or facts on
their way to persistent storage. The difficulty lies in the dynamic nature of the prob-
lems that may arise from incorrect implementations: only under realistic input load
can you observe whether a fast producer might overwhelm a resource-constrained
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consumer. Often, your load test environments are based on business forecasts that may
be exceeded in real usage.

The formulation of the Pull pattern presented here is the result of Roland’s
involvement in the Reactive Streams initiative,' where the resulting behavior is also
characterized as dynamic push—pull, an aspect that we will discuss later.

The problem setting

As an illustration of a case that clearly needs flow control, suppose you want to com-
pute the alternating harmonic series:

1-1/2+1/3-1/4 ... (converges toward the natural logarithm of 2)

Generating the input for the terms that are to be computed is as simple as emitting
the series of all natural numbers, but the more costly operation is to invert each of
these with high precision and then sum them with the correct signs. For the sake of
simplicity, you will keep the number generation and summation within one manager
actor and distribute the sign-correct inversion across a number of worker actors.
These worker actors are child actors of the manager: the number generator controls
the entire process and terminates when the desired precision has been reached.

The task: Your mission is to implement both the manager and the worker actors
such that each worker signals demand for work in batches of 10 whenever the number
of outstanding work items is less than 5.

Applying the pattern

We will first consider the worker actor, because in this pattern it is the active party. The
worker starts the process by asking for the first batch of inputs, and when it has pro-
cessed enough of them, it keeps the process going by asking for more. Multiple work-
ers can ask the manager for inputs independently, a fact that you will use to scale out
the processing across multiple CPU cores. A worker has to manage two concerns: keep-
ing track of how much work it has already asked for and how much it has received so
far, and performing the actual computation, as illustrated in the following listing.

Listing 16.1 Processing expensive calculations in a worker that pulls inputs

class Worker (manager: ActorRef) extends Actor {
val mc = new MathContext (1000, RoundingMode.HALF EVEN)

val plus = BigDecimal (1, mc) Sets up precision

and bases for

val minus = BigDecimal (-1, mc) . .
inversion
var requested = 0
) Keeps track of the
def request(): Unit = diff betw:
if (requested < 5) { ffierence between

requested and

manager ! WorkRequest (self, 10) performed work

requested += 10

}

See www.reactive-streams.org (version 1.0.0, published April 30, 2015).
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request () <+ Kicks off the processing

def receive = {
case Job(id, data, replyTo) =>

requested -= 1
request ()
val sign = if ((data & 1) == 1) plus else minus
val result = sign / data .
replyTo ! JobResult (id, result) PeﬂbHHStheexpenqve
} calculation after having
) asked for more work

The numbers used here are obviously tunable to the problem and resources at hand.
It is important to note that you do not implement a stop—wait scheme in which the
worker pulls, then waits for the data, then computes, then replies, and then pulls
again. Instead, the worker is more proactive in requesting an entire batch of inputs in
one go and then renews the request when the number of outstanding work items
becomes low again. In this way, the worker’s mailbox never grows beyond 14 items
(requesting 10 when 4 are outstanding, and then miraculously not receiving any CPU
time until those arrive—this is the worst-case scenario). It also ensures that if the
worker outperforms the manager, there will always be outstanding demand signaled
such that the manager can send new work immediately.

The manager shown in listing 16.2 needs to implement the other side of the Pull
pattern, sending a number of work items according to each request it gets from one of
the workers. The important part is that both need to agree on the notion of how
much work is outstanding—requests for work must eventually be satisfied, lest the sys-
tem get stuck with the worker waiting for work and the manager waiting for demand.
In this example, the implementation can trivially ensure this property by always satisfy-
ing every work request immediately and in full.

Listing 16.2 Supplying a worker with tasks as it asks for them

class Manager extends Actor { Defines a stream of
val workStream: Iterator[Job] = 1,00Q00010b5
Iterator from 1 map (x => Job(x, x, self)) take 1000000

val mc = new MathContext (1000, RoundingMode.HALF_ EVEN)

(4$> val aggregator = (x: BigDecimal, y: BigDecimal) => X + y

var approximation = BigDecimal (0, mc) Keeps track of jobs
that were sent but

var outstandingWork = 0 not completed

(1 to 8) foreach (_ => context.actorOf (Props (new Worker (self))))

def receive = {

case WorkRequest (worker, items) =>
workStream.take (items) .foreach { job =>
worker ! job
outstandingWork += 1
1
case JobResult (id, result) =>
(

approximation = aggregator (approximation, result)
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outstandingWork -= 1
if (outstandingWork == 0 && workStream.isEmpty) {
println("final result: " + approximation)

context.system.terminate ()

}

The manager only starts the workers. From then on, it is passively driven by their
requests for work and their computation results. Once the stream of work items has
been processed completely, the manager terminates the application after printing the
final approximation result to the console.

The pattern, revisited

We have illustrated the case of an arbitrarily fast producer and slow consumers by dis-
tributing a computation over a group of worker actors. Were you to implement the
manager such that it distributed all work items at once, you would find a few problems:

= Given enough work items (or larger ones than in this simple example), the sys-
tem would run out of memory early in the process, because the work items
would accumulate in the workers’ mailboxes.

= An even distribution decided up front would result in uneven execution, with
some actors finishing their share later than others. CPU utilization would be
lower than desired during that time period.

= If a worker failed, all of its allocated work items would be lost—the manager
would need to send them again to some other worker. With the current
scheme, the amount of memory to store the currently outstanding computation
jobs is strictly limited, whereas with up-front distribution, it might exceed avail-
able resource limits.

You avoid these issues by giving the workers control over how much work they are will-
ing to buffer in their mailbox, while at the same time giving the manager control over
how much work it is willing to hand out for concurrent execution.

One very important aspect in this scheme is that work is requested in batches and
proactively. Not only does this save on messaging cost by bundling multiple requests
into a single message, but it also allows the system to adapt to the relative speed of pro-
ducer and consumer:

= When the producer is faster than the consumer, the producer will eventually
run out of demand. The system runs in “pull” mode, with the consumer pulling
work items from the producer with each request it makes.

= When the producer is slower than the consumer, the consumer will always have
demand outstanding. The system runs in “push” mode, where the producer
never needs to wait for a work request from the consumer.

= Under changing load characteristics (by way of deployment changes or variable
usage patterns), the mechanism automatically switches between the previous
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two modes without any further need for coordination—it behaves as a dynamic
push—pull system.

The other notable aspect of this pattern is that it enables the composition of flow-
control relationships across a chain of related components. Via the presence or
absence of demand for work, the consumer tells the producer about its momentary
processing capacity. In situations where the producer is merely an intermediary, it can
employ the Pull pattern to retrieve the work items from their source. This implements
a nonblocking, asynchronous channel over which back pressure can be transmitted
along a data-processing chain. For this reason, this scheme has been adopted by the
Reactive Streams standard.

Applicability

This pattern is well suited for scenarios where an elastic worker pool processes incom-
ing requests that are self-contained and do not depend on local state that is main-
tained on each worker node. If requests need to be processed by a specific node in
order to be treated correctly, the Pull pattern may still be used, but then it needs to be
established between the manager and each worker individually: sending a request to
the wrong worker just because it has processing capacity available would not lead to
the correct result.

The Managed Queue pattern
Manage an explicit input queue, and react to its fill level.

One of the conclusions drawn from analyzing the Pull pattern is that it can be used to
mediate back pressure across multiple processing steps in a chain of components.
Transmitting back pressure means halting the entire pipeline when a consumer is
momentarily overwhelmed, which may, for example, be caused by unfair scheduling
or other execution artifacts, leading to avoidable inefficiencies in the system.

This kind of friction can lead to “stuttering” behavior in a processing engine,
where short bursts of messages alternate with periods of inactivity during which back
pressure signals travel through the system. These bursts can be smoothed out by
employing buffers that allow the data to keep flowing even during short back pressure
situations. These buffers are queues that temporarily hold messages while remember-
ing their ordering. We call them managed queues because their use extends beyond this
direct benefit: queues can be used to monitor and steer the performance of a messag-
ing system. Buffering and managed queues are even more important at the boundar-
ies of a system that employs back pressure: if data or requests are ingested from a
source that cannot be slowed down, you need to mediate between the bounded inter-
nal capacity and the potentially unbounded influx.

The problem setting

In the example of the Pull pattern, you implemented a manager that had the formula
for creating all required work items. Now, you will consider the manager to be just a
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mediator, with the source of the work items outside of its control: the manager will
receive work requests while maintaining the Pull pattern with its workers. In order to
smooth out the behavior in the case of momentary lack of requests from the workers,
you will install a buffer within the manager.

The task: Your mission is to adapt the worker and manager actors from the Pull pat-
tern example such that the numbers to be inverted are generated externally. The
manager will keep a buffer of no more than 1,000 work items, responding with a rejec-
tion message to work items that are received while the buffer is full.

Applying the pattern

The main part you need to change is the manager actor. Instead of generating work
items on demand, it now needs to hold two queues: one for work items while all work-
ers are busy and one for workers’ requests when no work items are available. An exam-
ple is shown next.

Listing 16.3 Managing a work queue to react to overload

class Manager extends Actor {
var workQueue = Queue.empty[Job]
var requestQueue = Queue.empty [WorkRequest]

(1 to 8) foreach (_ => context.actorOf (Props (new Worker (self))))
def receive = {
case job @ Job(id, _, replyTo) => If there are no requests,
if (requestQueue.isEmpty) { the work queue will
if (workQueue.size < 1000) workQueue :+= job grow, leading to
else replyTo ! JobRejected (id) rejection when full.
} else {
val WorkRequest (worker, items) = requestQueue.head
worker ! job
if (items > 1) worker ! DummyWork (items - 1)

requestQueue = requestQueue.drop (1)

}
case wr @ WorkRequest (worker, items) => Work requests that cannot

if (workQueue.isEmpty) { be satisfied immediately
requestQueue :+= wWr are queued for later.

} else {
workQueue.iterator.take (items) .foreach(job => worker ! job)
val sent = Math.min (workQueue.size, items)
if (sent < items) worker ! DummyWork (items - sent)
workQueue = workQueue.drop (items)

Because you would like to use workers in round-robin fashion in this example, a case
arises that requires an adaptation of the protocol between manager and worker: when
satisfying a queued work request from a received job, you need to follow up the
Job message with a DummyWork message that tells the worker that the remaining
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requested work items will not be sent. This leads to the worker sending a new request
very soon and simplifies the manager’s state management. You do so because the
interesting point lies not with the management of the requestQueue but with the
workQueue: this queue holds the current knowledge of the manager with respect to its
workers’ load situation. This queue will grow while the external producer outpaces
the pool of workers, and it will shrink while workers catch up with the external
requests. The fill level of this queue can thus be used as a signal to steer the worker
pool’s size, or it can be used to determine whether this part of the system is over-
loaded—you implement the latter in this example.

The worker actor does not need to change much, compared to the Pull pattern; it
only needs to handle the DummyWork message type:

class Worker (manager: ActorRef) extends Actor ({

def receive = {
case DummyWork (count) =>
requested -= count
request ()

16.2.3 The pattern, revisited

You have used the Pull pattern between the manager and its workers and made the
back pressure visible by observing the fill level of a queue that is filled with external
requests and emptied based on the workers’ demands. This measurement of the dif-
ference between requested and performed work can be used in many ways:

= We have demonstrated the simplest form, which is to use the queue as a
smoothing buffer and reject additional requests while the queue is full. This
implements service responsiveness while placing an upper bound on the size of
the work queue.

= You could spin up a new worker once a given high—-water mark was reached,
adapting the worker pool elastically to the current service usage. Spinning
down extraneous workers could be done by observing the size of the
requestQueue as well.

= Rather than observe the momentary fill level of the queue, you could instead
monitor its rate of change, taking sustained growth as a signal to enlarge the
pool and sustained decrease as a signal to shrink it again.

This list is not exhaustive. There is an entire field of research called conirol
theory? around the issue of how to steer process characteristics based on continuous
measurements and reference values.

2 See, for example, https://en.wikipedia.org/wiki/Control_theory.
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16.2.4 Applicability

16.3

16.3.1

Using managed queues instead of using implicit queues as discussed in section 2.1.3 is
always desirable, but it does not need to be done at every step in a processing chain.
Within domains that mediate back pressure (for example, by using the Pull pattern),
buffers often have the primary function of smoothing out bursts. Observable or intel-
ligent queues are used predominantly at the boundaries of such a system, where the
system interacts with other parts that do not participate in the back pressure mecha-
nism. Note that back pressure represents a form of coupling, and as such its scope
must be justified by the requirements of the subsystem it is applied to.

Applying intelligent queues is fun and invites forays into advanced control-theory
concepts, feedback loops, self-tuning systems, and so on. Although this can be a stimu-
lating learning experience, it also makes the system more complex and presents a bar-
rier for newcomers to understand why and how it works. Another consideration is that
the theoretical equations that describe the system’s behavior become ever more com-
plex the more numerous the active elements are within it, so going overboard with
this pattern will defeat its purpose and likely lead to more erratic system behavior and
suboptimal throughput and latency characteristics. Typical symptoms of having too
much “intelligence” built into the system are oscillations in the decisions of the regu-
latory elements, which lead to potentially fatal oscillations in the system’s behavior—
scaling up and down too quickly and too frequently and sometimes hitting hard
resource limits or failing completely.

The Drop pattern
Dropping requests is preferable to failing uncontrollably.

Imagine a system that is exposed to uncontrollable user input (for example, a site on
the internet). Any deployment will be finite in both its processing capability and its buff-
ering capacity, and if user input exceeds the former for long enough, the latter will be
used up and something will need to fail. If this is not foreseen explicitly, then an auto-
matic out-of-memory killer will make a decision that is likely to be less satisfactory than
a planned load-shedding mechanism—and shedding load means dropping requests.

This is more of a philosophy than an implementation pattern. Network protocols,
operating systems, programming platforms, and libraries will all drop packets, mes-
sages, or requests when overloaded; they do so in order to protect the system so that it
can recover when load decreases. In the same spirit, authors of Reactive systems need
to be comfortable with the notion of sometimes deliberately losing messages.

The problem setting

We will revisit the example from the Managed Queue pattern, where the source of
requests is situated outside of your control. When work items are sent to the manager
faster than workers can process them, the queue will grow, and eventually
JobRejected messages will be sent back. But even this can only happen at a certain
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maximum rate; when jobs are sent at a higher rate, the manager’s mailbox will begin
to grow, and it will do so until the system runs out of memory.

The task: Your mission is to adapt the manager actor such that it accepts all work
items into its queue up to a queue size of 1,000 and drops work items without sending
back a response when the incoming rate exceeds the workers’ capacity by more than a
factor of 8.

Applying the pattern

The modification you are seeking to make will require two levels of rejection: past a
queue size of 1,000, you will send back rejections; but you still need to keep track of
the incoming rate in order to stop sending rejections when the incoming rate is more
than 8 times the worker pool’s capacity. But how can you do that?

If you keep the scheme from the Managed Queue pattern of not enqueueing work
when the queue size has reached 1,000, then you will need to introduce another data
structure that maintains the rate information: you will need to track WorkRequest
messages in order to know how fast workers can process their work items, and you will
need to track rejections to measure the excess rate of incoming work items. The data
structure will need current timestamps for every piece of information that is fed into
it, and it will need to know the current time when asking for a decision about whether
to drop an item. All this is possible to implement, but doing so has a cost both at
development time and at runtime—Ilooking at the clock does not come free, plus the
data structure will consume space and require CPU time to remain up to date.

Looking back at the manager actor, you see a data structure whose usage you can
change slightly to provide the required information: the queue can always tell you about
its length, and you can make it so the queue length reflects the excess rate. The key to
this trick is that for a slowly changing incoming rate, the queue fill level will stabilize if
there is a point at which ingress and egress are balanced: when workers pull items out at
the same rate items enter the queue, both will even out. To make this work, you must
decouple the incoming work-item rate from the enqueueing rate—you assume the
worker pool’s capacity to be constant, so the
enqueueing rate is all you can work with.

The solution to this riddle to keep enqueue- 1]
ing in general, but for every item, you roll the
dice to decide whether it gets in. The probabil-
ity of being enqueued must decrease with grow-
ing queue size, as shown in figure 16.1: a longer
queue results in fewer items getting in. The
ratio between the two is the probability for the 1000
dice roll, and at the same time it matches the

ratio of excess rate to worker-pool rate. Figure 16.1 The probability of enqueueing
incoming work items into the managed

. queue decreases once the nominal size has
ment to understand how and why this works.  peen reached.

Queue size

It is instructive to conduct a thought experi-
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Assume that the system starts with an empty queue and a rate mismatch of a factor of
10. The queue will quickly become full (reach 1,000 elements), at which point rejec-
tions will be generated. But the queue will continue to grow—only more slowly, due to
the probabilistic enqueueing. Once the queue size is so big that the enqueueing prob-
ability drops to 10%, the enqueueing rate will match the dequeueing rate, and the size
of the queue will remain stable until either the external work-item rate or the worker-
pool capacity changes.

In terms of code, not much is needed to implement this scheme, as you can see
here:

val queueThreshold = 1000
val dropThreshold = 1384
def random = ThreadLocalRandom.current

def shallEnqueue (atSize: Int) =

(atSize < gqueueThreshold) || ({
val dropFactor = (atSize - queueThreshold) >> 6
random.nextInt (dropFactor + 2) == 0

}

You use this logic to handle incoming Job messages:

case job @ Job(id, _, replyTo) =>
if (requestQueue.isEmpty) {
val atSize = workQueue.size
if (shallEnqueue (atSize)) workQueue :+= job
else if (atSize < dropThreshold) replyTo ! JobRejected(id)
} else

This means you will enqueue a certain fraction of incoming jobs even when the queue
size is greater than 1,000, and the probability of enqueueing a given job decreases
with growing queue size. At size 1,000, dropFactor is 0, and the probability of picking
a zero from nextInt (2) is 50%. At size 1,064, dropFactor is 1, and the probability
decreases to 33%—and so on, until at the drop threshold of 1,384, the probability is
1/8. dropThreshold is therefore chosen such that the desired cutoff point for rejec-
tion messages is implemented.

The pattern, revisited

The example includes two modes of overload reactions: either you send back an
incomplete response (degraded functionality), or you do not reply at all. You imple-
ment the metric for selecting one of these modes based on the work-item queue the
manager maintains. For this, you need to allow the queue to grow past its logical
capacity bound, where the excess is regulated to be proportional to the rate mismatch
between producers and consumers of work items—by choosing a different formula
for dropFactor, you could make this relation quadratic, exponential, or whatever is
required.
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The important piece here is that providing degraded functionality only works up
to a given point, and the service should foresee a mechanism that kicks in once this
point is reached. Providing no functionality at all—dropping requests—is cheaper than
providing degraded functionality, and under severe overload conditions this is all the
service can do to retain control over its resources.

One notable side effect of the chosen implementation technique is that during an
intense burst, you now enqueue a certain fraction of work items, whereas the strictly
bounded queue as implemented in the Managed Queue pattern example would
reject the entire burst (assuming that the burst occurs faster than consumption by the
workers).

EXTENSION TO IMPLICIT QUEUES
We have so far only regarded the behavior of the explicit queue maintained by the
manager actor. This actor, however, has only finite computing resources at its disposal,
and even the calculations for deciding whether to drop a message have a certain cost.
If the incoming rate is higher than the manager actor can decide about, its mailbox
will grow: over time, it will eat up the JVM heap and lead to fatal termination through
an OoutOfMemoryError. This can only be avoided by limiting the implicit queues—the
manager’s mailbox, in this case—in addition to the explicit queues.

Because you are dealing with an aspect that is implicitly handled by the framework
(Akka, in this example), you do not need to write much code to implement this. You
only need to instruct Akka to install a bounded mailbox for the manager actor:

val managerProps = Props (new Manager) .withMailbox ("bounded-mailbox")

When this description is used to create the manager actor, Akka will look in its config-
uration for a section describing the bounded mailbox. The following settings config-
ure a mailbox that is bounded to 1,000 messages:

bounded-mailbox {

mailbox-type = "akka.dispatch.BoundedMailbox"
mailbox-capacity = 1000
mailbox-push-timeout-time = 0s

}

This has an important drawback: this mailbox drops not only Job messages from
external sources but also WorkRequest messages from the worker actors. In order to
make those cope with such losses, you must implement a resending mechanism
(which would be needed in any case, if the workers were deployed remotely), but this
will not fix a more severe issue. For example, if the external rate is 10 times as high as
what can be processed, then only 1 in 10 work requests will make it back, leading to
workers idling because they cannot tell the manager about their demand as quickly as
they need to.

This demonstrates that dropping at a lower level will always be less precise than
dropping at the level that has all the necessary information, but it is the nature of
overload situations that this knowledge can be too costly to maintain. The bounded
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Figure 16.2 Placing an actor with a
bounded mailbox in front of the
manager actor requires that the
manager uses a hon-message-based
back channel to signal that it has
back channel received a given message. In this

[ Worker J _________ [ Worker } fashion, the incoming queue can

remain strictly bounded.

Covert local

mailbox in Akka is well suited for actors that do not need to communicate with other
actors in the course of handling their main input, but it has weaknesses for manager-
like scenarios.

To protect the manager actor with a bounded mailbox, you have to keep that mail-
box separate from the one used to communicate with worker actors. Because every
actor can have only one mailbox, this means installing another actor, as shown in fig-
ure 16.2.

The IncomingQueue actor will be configured to use the bounded mailbox, which
protects it from extremely fast producers. Under high load, this actor will constantly
be running, pulling work items out of its mailbox and sending them on to the man-
ager actor. If this happens without feedback, the manager can still experience
unbounded growth of its own mailbox, but you cannot use actor messages to imple-
ment the feedback mechanism. In this case, it is appropriate to consider the deploy-
ment to be local—only in this case is it practically possible to run into the envisioned
overload scenario—and therefore the manager can communicate with the incoming
queue also using shared memory. A simple design is shown in the following listing:

private case class WorkEnvelope (job: Job) {
@volatile var consumed = false

}

private class IncomingQueue (manager: ActorRef) extends Actor {
var workQueue = Queue.empty[WorkEnvelope]

def receive = {
case job: Job =>
workQueue = workQueue.dropWhile (_.consumed)

if (workQueue.size < 1000) ({
val envelope = WorkEnvelope (job)
workQueue :+= envelope
manager ! envelope

}
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The only thing the manager has to do is set the consumed flag to true upon receipt of
a WorkEnvelope. Further improvements that are omitted for the sake of simplicity
include cleaning out the incoming queue periodically, in case there are long pauses in
the incoming request stream during which work items would be unduly retained in
memory. The full code for this example can be found with the book’s downloads in
the file DropPatternWithProtection.scala.

Although this extension seems specific to Akka, it is generic. In any OS and service
platform, there will be implicit queues that transport requests from the network to local
processes as well as within these processes—these could be message queues, thread
pool task queues, threads that are queued for execution, and so on. Some of these
queues are configurable, but changing their configuration will have indiscriminate
effects on all kinds of messages passing through them; we noted earlier that the neces-
sary knowledge exists at a higher level, but that higher level may need protection from
lower levels that can only make coarse-grained decisions. The workarounds differ; the
Akka example given in this section is tailored to this particular case, but the need to
apply such custom solutions will arise wherever you push a platform to its limits.

Applicability

During system overload, some kind of failure is bound to happen. Determining what
kind it will be is a business decision: should the system protect itself by foregoing
responsiveness, or should it come to a crawling but uncontrolled halt when resources
are exhausted? The intuitive answer is the former, whereas typical engineering prac-
tice implements the latter—not deliberately, but due to neglect resulting from other
aspects of the application design having higher priority. This pattern is always applica-
ble, if only in the sense that not shedding load by dropping requests should be a well-
understood and deliberate decision.

The Throttling pattern

Throttle your own output rate according to conlracts with other services.

We have discussed how each component can mediate, measure, and react to back
pressure in order to avoid uncontrollable overload situations. With these means at
your disposal, it is not just fair but obligatory that you respect the ingestion limits of
other components. In situations where you outpace consumers of your outputs, you
can slow to match their rate, and you can even ensure that you do not violate a prear-
ranged rate agreement.

In section 12.4.2, you saw that a circuit breaker can be designed such that it rejects
requests that would otherwise lead to a request rate that is too high. With the Pull pat-
tern, you can turn this around and not generate requests more quickly than they are
allowed to be sent.
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The problem setting

Borrowing from the Pull pattern example, suppose you have a source of work items
from which you can request work. We will demonstrate the Throttling pattern by com-
bining this source with the worker-pool implementation from the Managed Queue
pattern example. The goal is to transfer work items at a rate the pool can handle so
that, under normal conditions, no jobs are rejected by the managed queue.

The task: Your mission is to implement a CalculatorClient actor that pulls work
from the work source and forwards it to the worker-pool manager such that the aver-
age rate of forwarded messages does not exceed a configurable limit. Bonus points are
awarded for allowing short bursts of configurable size in order to increase efficiency.

Applying the pattern

A commonly used rate-limiting algorithm is called token bucket.? It is usually employed
to reject or delay network traffic that exceeds a certain bandwidth allocation. The
mechanism is simple:

= A bucket of fixed size is continually filled with tokens at a given rate. Tokens in
excess of the bucket size are discarded.

= When a network packet arrives, a number of tokens corresponding to the
packet’s size should be removed from the bucket. If this is possible, then the
packet travels on; if not, then the packet is not allowed through.

Depending on the size of the bucket, a burst of packets might be admitted after a
period of inactivity; but when the bucket is empty, packets will either be dropped or
delayed until enough tokens are available.

You will have to adapt this algorithm slightly in order to use it for your purposes.
First, each work item carries the same weight in this example, so you require just one
token per message. Second, messages do not just arrive at the actor: you must request
them from the work source. Because you do not wish to drop or delay messages—
where the latter would imply buffering that you want to avoid where possible—you
must not request more work items from the source than you can permit through
based on the current fill level of the token bucket. In the worst case, you must assume
that all work items arrive before the bucket gains another token. Using the
Worker actor from listing 16.1 (the Pull pattern example) as a basis, you arrive at the
following implementation.

Listing 16.4 Pulling work according to a specified rate using a token bucket

class CalculatorClient (workSource: ActorRef, calculator: ActorRef,
ratePerSecond: Long, bucketSize: Int,
batchSize: Int) extends Actor ({
/*

* first part: the token bucket implementation

% See, for example, https://en.wikipedia.org/wiki/Token_bucket.
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*/
def now() = System.nanoTime ()
val nanoSecondsBetweenTokens = 1000000000L / ratePerSecond

var tokenBucket = bucketSize

var lastTokenTime = now()
def refillBucket (time: Long): Unit = { Calculates new
val accrued = (time - tokens since last
lastTokenTime) * ratePerSecond / 1000000000L time, rounding down

if (tokenBucket + accrued >= bucketSize) ({
tokenBucket = bucketSize
lastTokenTime = time

Caps the token bucket
at its maximum size

} else { Only advances the
tokenBucket += accrued.toInt time to the last
lastTokenTime += accrued * nanoSecondsBetweenTokens hnegertoken,to

} pick up a fractional

} part next time
def consumeToken (time: Long): Unit = {

// always refill first since we do it upon activity and not scheduled
refillBucket (time)

tokenBucket -= 1
}
/*
* gsecond part: managing the pull pattern’s demand
*/

var requested = 0
def request (time: Long): Unit =
if (tokenBucket - requested >= batchSize)
sendRequest (time, batchSize)
} else if (requested == 0) {
if (tokenBucket > 0) {
sendRequest (time, tokenBucket)
} else {
val timeForNextToken =
lastTokenTime + nanoSecondsBetweenTokens - time
context.system.scheduler.scheduleOnce (timeForNextToken.nanos,
workSource, WorkRequest (self, 1)) (context.dispatcher)
requested = 1
}
1
def sendRequest (time: Long, items: Int): Unit = {
workSource ! WorkRequest (self, items)
requested += items

}

request (lastTokenTime) <+ Kicks off the process

/*
* third part: using the above for rate-regulated message forwarding

*/

def receive = {
case job: Job =>
val time = now()

consumeToken (time)
requested -= 1
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request (time)
calculator ! job

The code for the actor is organized into three parts: the first manages the token
bucket, the second derives the work requests to be sent from the currently outstand-
ing work items and the bucket fill level, and the third forwards received work items
while keeping the token bucket updated and requesting more work when
appropriate. There are some subtleties in writing such code, pertaining to time granu-
larity caused by the execution of the actor at discrete times that you cannot control
precisely:

= The scheduler typically does not have nanosecond-level resolution, so you must
foresee that the scheduled WorkRequest is delivered later than intended.

= The actor may run more frequently than the token bucket’s refill rate, which
requires you to deal with fractional tokens. You avoid this by not advancing the
last update time when you encounter such cases.

= Because you do not wish to involve the imprecise scheduler more than neces-
sary, you run the token-bucket algorithm triggered by work-item activity. Hence,
you must always bring the token bucket up to date before performing other
operations.

With these considerations, you arrive at an efficient and precise implementation that
will ensure that the average forwarded message rate will be at most
ratePerSecond (slower if the source cannot deliver quickly enough), with momentary
bursts that are limited to the bucket size and with best-effort request batching for pull-
ing items out of the source.

The full source code for this example is available with the book’s downloads.
Notice that the example application does not begin the process by creating a
CalculatorClient actor: instead, it first performs 100,000 calculations on the worker
pool using Akka Streams. Akka Streams uses the Pull pattern internally and imple-
ments strict back pressure based on it, ensuring with the chosen combinators that no
more than 1,000 calculations are outstanding at any given time. This means the
worker pool will not reject a single request while exercising all code paths sufficiently
to trigger the JVM just-in-time compilation; afterward, a rate of 50,000 per second will
not be a problem on today’s portable hardware. Without this warm-up, you would see
rejections caused by the worker pool being too slow as well as measurable interrup-
tions caused by just-in-time compilation.

The pattern, revisited

You have used a rate-tracking mechanism—the token bucket—to steer the demand
that you used for the Pull pattern. The resulting work-item rate then is bounded by the
token bucket’s configuration, allowing you to ensure that you do not send more work
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to another component than was agreed on beforehand. Although a managed queue
lets a service protect itself to a degree (see also the discussion of the Drop pattern and
its limitations), the Throttling pattern implements service collaboration where the
user also protects the service by promising to not exceed a given rate. This can be used
restrictively to make rejections unlikely under nominal conditions, or it can be used
more liberally to avoid having to call on the Drop pattern. But neither the Managed
Queue pattern nor the Drop pattern is replaced by the Throttling pattern; it is import-
ant to consider overload protection from both the consumer and producer sides.

Summary

In this chapter, we considered that communication happens at a certain rate. You
learned about different ways in which this rate can be regulated and acted on:

= The Pull pattern matches the rates of producer and consumer such that the
slower party sets the pace. It works without explicitly measuring time or rates.

= The Managed Queue pattern decouples the incoming and outgoing rates with
a configurable leeway—the queue size—and makes the rate difference between
producer and consumer measurable and actionable.

= The Drop pattern provides an escalation for the Managed Queue pattern when
the rate mismatch is too big to be handled by degrading the service functional-
ity.

= The Throttling pattern regulates a message stream’s speed according to config-
ured rate and burstiness parameters; it is the only presented pattern that explic-
itly deals with time.



State management
and persistence patierns

The previous chapter introduced the concepts of message rate, load, and time; pre-
viously, we had only considered the timeless relationship between different compo-
nents. This chapter adds another orthogonal dimension to complete the picture: it
is the purpose of almost all components to maintain state, and we have not yet dis-
cussed how this should be done. The patterns presented are closely related to each
other and form a cohesive unit:

= The Domain Object pattern decouples business logic from communication
machinery.

= The Sharding pattern allows you to store any number of domain objects on
an elastic cluster.

= The Event-Sourcing pattern unifies change notifications and persistence by
declaring the event log to be the sole source of truth.

= The Event Stream pattern uses this source of truth to derive and disseminate
information.

This chapter can only serve as a basic introduction to these patterns. We hope it
inspires you to delve into the rich literature and online resources on domain-driven
design, event sourcing, and command-query responsibility separation (see the foot-
notes throughout the chapter for pointers).
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The Domain Object pattern
Separate the business domain logic from communication and state managemendt.

In chapter 6, we discussed the principle of divide and conquer; and in section 12.1, you
learned how to apply this in the form of the Simple Component pattern. The result-
ing components have a clearly defined responsibility: they do one thing and do it in
full. Often, this involves maintaining state that persists between invocations of these
components. Although it may be intuitive to identify a component with its state—for
example, by saying that a shopping cart in its entirety is implemented by an actor—
this has notable downsides:

= The business logic becomes entangled with the communication protocols and
with execution concerns.

= The only available mode of testing this component is through asynchronous
integration tests—the implemented business behavior is accessible only via the
externally defined protocols.

The Domain Object pattern describes how to maintain a clear boundary and separa-
tion between the different concerns of business logic, state management, and
communication. This pattern is intuitively understandable without additional knowl-
edge, but we highly recommended that you study domain-driven design,' because it
provides more in-depth techniques for defining the ubiquitous language used within
each bounded context. Bounded contexts typically correspond to components in your
hierarchical system decomposition, and the ubiquitous language is the natural lan-
guage in which domain experts describe the business function of the component.

The problem setting

In this chapter, we will use the example of implementing a shopping cart component.
Although there may be a variety of facets to be covered in a real-world implementa-
tion, it is sufficient for the demonstration of the important aspects of these patterns to
be able to associate an owner, add and remove items, and query the list of items in the
shopping cart.

The task: Your mission is to implement a domain model for the shopping cart that
contains only the business information and offers synchronous methods for perform-
ing business operations. Then, you will implement an actor that encapsulates a
domain model instance and exposes the business operations as part of its communica-
tion protocol.

I See, for example, Eric Evans, Domain-Driven Design (Addison-Wesley, 2003); or Vaughn Vernon, Implementing
Domain-Driven Design (Addison-Wesley, 2013).
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17.1.2 Applying the pattern

You will begin by defining how the shopping cart will be referenced and how it will ref-
erence its contained items and its owner:

case class ItemRef (id: URI)

case class CustomerRef (id: URI)

case class ShoppingCartRef (id: URI)

You use URIs to identify each of these objects and wrap them in named classes so that
you can distinguish their purpose with their static type to avoid programming errors.
With these preparations, a minimalistic shopping cart looks like the following listing.

Listing 17.1 A minimalistic shopping cart definition

case class ShoppingCart (items: Map[ItemRef, Int],
owner: Option[CustomerRef]) ({
def setOwner (customer: CustomerRef): ShoppingCart = {
require (owner.isEmpty, "owner cannot be overwritten")
copy (owner = Some (customer) )

}

def addItem(item: ItemRef, count: Int): ShoppingCart = {
require (count > 0,
s"count must be positive (trying to add $item with count $count)")
val currentCount = items.get (item) .getOrElse (0)
copy (items = items.updated(item, currentCount + count))

}

def removeltem(item: ItemRef, count: Int): ShoppingCart = {

require (count > 0,
s"count must be positive (trying to remove $item with count S$count)")

val currentCount = items.get (item) .getOrElse (0)
val newCount = currentCount - count
if (newCount <= 0) copy(items = items - item)
else copy(items = items.updated(item, newCount))

}

}

object ShoppingCart {
val empty = ShoppingCart (Map.empty, None)

}

A shopping cart starts out empty, with no owner; through its class methods, it can
obtain an owner and be filled with items. You can completely unit-test this class with
synchronous and deterministic test cases, which should make you happy. It is also
straightforward to discuss this class with the person in charge of the website’s commer-
cial function, even if that person is not a programming expert. In fact, this class
should be written not by a distributed systems expert but by a software engineer who is
fluent in business rules and processes.

Next, you will define the interface between this domain class and the message-
driven execution engine that will manage and run it. This includes commands and
their resulting events as well as queries and their results, as shown in the next listing.
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Listing 17.2 Messages for communication with a shopping cart object

trait ShoppingCartMessage {
def shoppingCart: ShoppingCartRef

}

sealed trait Command extends ShoppingCartMessage
case class SetOwner (shoppingCart: ShoppingCartRef, owner: CustomerRef)
extends Command
case class AddItem(shoppingCart: ShoppingCartRef, item: ItemRef, count: Int)
extends Command
case class Removeltem(shoppingCart: ShoppingCartRef, item: ItemRef, count: Int)
extends Command

sealed trait Query extends ShoppingCartMessage
case class GetItems (shoppingCart: ShoppingCartRef) extends Query

sealed trait Event extends ShoppingCartMessage

case class OwnerChanged (shoppingCart: ShoppingCartRef, owner: CustomerRef)
extends Event

case class ItemAdded (shoppingCart: ShoppingCartRef, item: ItemRef, count: Int)
extends Event

case class ItemRemoved (shoppingCart: ShoppingCartRef, item: ItemRef, count: Int)
extends Event

sealed trait Result extends ShoppingCartMessage
case class GetItemsResult (shoppingCart: ShoppingCartRef, items: Map[ItemRef, Int])
4 extends Result

A command is a message that expresses the intent to make a modification; if successful, it
results in an event, which is an immutable fact about the past. A query, on the other hand,
is a message that expresses the desire to obtain information and that may be answered
by a result that describes an aspect of the domain object at the point in time when the
query was processed. With these business-level definitions, you are ready to declare an
actor and its communication protocol, which allows clients to perform commands
and queries, as in the following listing.

Listing 17.3 A shopping cart manager actor

case class ManagerCommand (cmd: Command, id: Long, replyTo: ActorRef)
case class ManagerEvent (id: Long, event: Event)

case class ManagerQuery(cmd: Query, id: Long, replyTo: ActorRef)
case class ManagerResult (id: Long, result: Result)

case class ManagerRejection(id: Long, reason: String)

class Manager (var shoppingCart: ShoppingCart) extends Actor ({
/*
* this is the usual constructor, the above allows priming with
* previously persisted state.

*/
def this() = this(ShoppingCart.empty)
def receive = {
case ManagerCommand (cmd, id, replyTo) =>

try {
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val event = cmd match {
case SetOwner (cart, owner) =>
shoppingCart = shoppingCart.setOwner (owner)
OwnerChanged (cart, owner)
case AddItem(cart, item, count) =>
shoppingCart = shoppingCart.addItem(item, count)
ItemAdded (cart, item, count)
case Removeltem(cart, item, count) =>
shoppingCart = shoppingCart.removeItem(item, count)
ItemRemoved (cart, item, count)
}
replyTo ! ManagerEvent (id, event)
} catch {
case ex: IllegalArgumentException =>
replyTo ! ManagerRejection(id, ex.getMessage)

}

case ManagerQuery(cmd, id, replyTo) =>
try {
val result = cmd match {
case GetItems(cart) =>

GetItemsResult (cart, shoppingCart.items)

}

replyTo ! ManagerResult (id, result)
} catch {
case ex: IllegalArgumentException =>
replyTo ! ManagerRejection(id, ex.getMessage)

The pattern here is regular: for every command, you determine the appropriate event
and send it back as a response. The same goes for queries and results. Validation errors
will be raised by the ShoppingCart domain object as I1legalArgumentExceptions and
turned into ManagerRejection messages. This is a case where catching exceptions
within an actor is appropriate: this actor manages the domain object and handles a spe-
cific part of failures emanating from it.

The state management you implement here is that the actor maintains a reference
to the current snapshot of the shopping cart’s state. In addition to keeping it in mem-
ory, you could also write it to a database upon every change or dump it to a file; the
plethora of ways to do this are not shown here because they are not necessary for
demonstrating the point that the actor controls this aspect as well as the external com-
munication. The full source code is available with this book’s downloads, including an
example conversation between a client and this manager actor.

The pattern, revisited

You have disentangled the domain logic from the state management and communica-
tion aspects by starting out from the domain expert’s view. First, you defined what a
shopping cart contains and which operations it offers, and you codified this as a class.
Then, you defined message representations for all commands and queries as well as
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their corresponding events and results. Only as the last step did you create a message-
driven component that serves as a shell for the domain object and mediates between
the messages and the methods offered by the domain object.

One noteworthy, deliberate aspect is a clear separation of domain object, com-
mands, events, queries, and results on the one hand and the actor’s protocol on the
other. The former reference only domain concepts, whereas the latter references what
is needed for communication (the ActorRef type, in this Akka-based example, as well
as message IDs that could be used for deduplication). Having to include message-
related types in source files that define domain objects is a signal that the concerns
have not been separated cleanly.

The Sharding pattern

Scale out the management of a large number of domain objects by grouping them into shards
based on unique and stable object properties.

The Domain Object pattern gives you the ability to wrap the domain’s state in small
components that can, in principle, be distributed easily across a cluster of network
nodes in order to provide the resources for representing even very large domains that
cannot be held in memory by a single machine. The difficulty then becomes how to
address the individual domain objects without having to maintain a directory that lists
every object’s location—such a directory could easily reach a size that is impractical to
hold in memory.

The Sharding pattern places an upper bound on the size of the directory by group-
ing the domain objects into a configurable number of shards—the domain is frac-
tured algorithmically into pieces of manageable size. The term algorithmically means
the association between objects and shards is determined by a fixed formula that can
be evaluated whenever an object needs to be located.

The problem setting

Coming back to this chapter’s running example, suppose you need to store a huge
number of shopping carts—imagine writing the back end for a huge retail website on
the internet, with millions of customers creating billions of shopping carts every day.
Rather than manually creating the manager actors, you need to employ a sharding
strategy that can effectively and efficiently distribute this dataset over an elastic cluster
of machines.

The task: Your mission is to change the minimalistic Domain Actor pattern example
in the book’s downloads such that the manager actors are created on a cluster of
nodes according to a sharding algorithm based on 256 shards.

17.2.2 Applying the pattern

Because you are already using Akka, you can concentrate on the essence of the prob-
lem by using the akka-cluster-sharding module, which implements low-level shard-
ing mechanics. An overview of how these mechanics work is given in figure 17.1.
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Figure 17.1 Sharding requires that a ShardRegion is started on all participating
nodes and registers itself with the ShardCoordinator. When a message is to be
sent from a client to one of the managed domain objects—called an entity here—it will
be sent via the local ShardRegion, which will consult the coordinator cluster
singleton as to where the shard that contains the domain object should be located. The
shard will be created on demand if it does not yet exist. The shard is maintained by an
actor situated between the region and the entities (not shown here for the sake of
simplicity). The allocation of shards to regions is replicated in memory among all nodes
using the Data Replication module (see section 13.2.3 on CRDTs).

The only remaining pieces needed to enlist the sharding module’s support are as
follows:

= A recipe for how to create entities when they are first referenced
= A formula that extracts the unique entity ID from a command or query
= A formula that extracts the shard number from a command or query

The first will be a Props object, and the latter two will be functions. The shard
extraction guides the message to the correct shard region, and the shard actor then
uses the entity ID to find the correct domain object manager among its child actors.
You group these two functions together with an identifier for the shopping cart shard-
ing system, as follows.

Listing 17.4 Defining sharding algorithms for a shopping cart

object ShardSupport
val extractEntityId: ShardRegion.ExtractEntityId = {

case mc @ ManagerCommand(cmd, _, _) =>
cmd.shoppingCart.id.toString -> mc Identifies entities by
case mc @ ManagerQuery (query, _, _) => the shopping cart ID;
guery.shoppingCart.id.toString -> mc commands that do not

} match are dropped
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val extractShardId: ShardRegion.ExtractShardId =
case ManagerCommand (cmd, , ) => .
. LT according to the
toHex (cmd.shoppingCart.id.hashCode & 255) smallest 8 bits of the
case ManagerQuery (query, _, _) => ID’s hash code
toHex (query.shoppingCart.id.hashCode & 255)
}

private def toHex(b: Int) =
new java.lang.StringBuilder (2)
.append (hexDigits (b >> 4))
.append (hexDigits (b & 15))

Shard entities

.toString
private val hexDigits = "0123456789ABCDEF"
val RegionName = "ShoppingCart"

With this preparation, you can start the cluster nodes and try it, as shown next.

Listing 17.5 Starting up a cluster to host the shards

val sysl = ActorSystem("ShardingExample", nodelConfig.withFallback (clusterConfig))
val seed = Cluster (sysl).selfAddress

def startNode (sys: ActorSystem): Unit = {
Cluster(sys) .join (seed)
ClusterSharding (sys) .start (
typeName = ShardSupport.RegionName,
entityProps = Props (new Manager),
settings = ClusterShardingSettings(sysl),
extractEntityId = ShardSupport.extractEntityId,
extractShardId = ShardSupport.extractShardId)

}
startNode (sys1)

val sys2 = ActorSystem("ShardingExample", clusterConfig)
startNode (sys2)

From this point on, you can talk to the sharded shopping carts via the shard region,
which acts as a local mediator that sends commands to the correct node:

val shardRegion = ClusterSharding(sysl) .shardRegion (ShardSupport.RegionName)

For the other configuration settings that are necessary to enable clustering and shard-
ing, please refer to the full source code available with the book’s downloads.

The pattern, revisited

You have used Akka’s Cluster Sharding support to partition shopping carts across an
elastic cluster—the underlying mechanics allocate shards to network nodes in a fash-
ion that maintains an approximately balanced placement of shards, even when cluster
nodes are added or removed. In order to use this module, you had to provide a recipe
for creating a domain object manager actor and two functions: one for extracting the
target shard ID from a command or query message and one for extracting the domain
object’s unique ID, which is used to locate it within its shard.
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Implementing the basic mechanics of clustering and sharding is a complex
endeavor that is best left to supporting frameworks or tool kits. Akka is not the only
one supporting this pattern natively: another example on the .NET platform is Micro-
soft’s Orleans framework.?

Important caveat

One important restriction of this scheme in Akka is that in the case of elastic shard
reallocations, the existing actors will be terminated on their old home node and re-
created at their new home node. If the actor only keeps its state in memory (as
demonstrated in the examples so far), then its state is lost after such a transition—
which usually is not desired.

Orleans avoids this caveat by automatically making all Grains (the Orleans concept
corresponding to Actors) persistent by default, taking snapshots of their state after
every processed message. A better solution is to consider persistence explicitly, as we
will do in the following section; Orleans also allows this behavior to be customized in
the same fashion.

The Event-Sourcing pattern

Perform state changes only by applying events. Make them durable by storing the events

in a log.

Looking at the Domain Object pattern example, you can see that all state changes the
manager actor performs are coupled to an event that is sent back to the client that
requested this change. Because these events contain the full history of how the state of
the domain object evolved, you may as well use it for the purpose of making the state
changes persistent—this, in turn, makes the state of the domain object persistent.
This pattern was described in 2005 by Martin Fowler® and picked up by Microsoft
Research,” and it has shaped the design of the Akka Persistence module.’

The problem setting

You want your domain objects to retain their state across system failures as well as clus-
ter shard-rebalancing events, and toward this end you must make them persistent. As
noted earlier, you could do this by always updating a database row or a file, but these
solutions involve more coordination than is needed. The state changes for different
domain objects are managed by different shell components and are naturally serial-
ized—when you persist these changes, you could conceptually write to one separate
database per object, because there are no consistency constraints to be upheld
between them.

See http://dotnet.github.io/orleans and http://research.microsoft.com/en-us/projects/orleans.
See http://martinfowler.com/eaaDev/EventSourcing.html.
See https://msdn.microsoft.com/en-us/library/dn589792.aspx and https://msdn.microsoft.com/en-us/

library/jj591559.aspx.

o

See http://doc.akka.io/docs/akka/2.4.1/scala/persistence.html.
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Instead of transforming the state-changing events into updates of a single storage
location, you can turn things around and make the events themselves the source of
truth for your persistent domain objects—hence, the name event-sourcing. The source
of truth needs to be persistent, and because events are generated in strictly sequential
order, you merely need an append-only log data structure to fulfill this requirement.

The task: Your mission is to transform the manager actor from the Domain Object
pattern into a PersistentActor whose state is restored upon restart.

Applying the pattern

You saw the PersistentActor trait in action in section 15.7.2 when you implemented
at-least-once delivery to attempt to keep this promise even across system failures. With
the preparations from the previous sections, it is straightforward to recognize the
events you need to make persistent and how to apply them. First, you need to lift the
association between events and domain-object methods from the manager actor into
the business domain—this is where they belong, because both the object and the
events are part of the same business domain. Therefore, the domain object should
know how the relevant domain events affect its state, as shown in the following listing.

Listing 17.6 Adding the domain events to the business logic

case class ShoppingCart (items: Map[ItemRef, Int], owner: Option[CustomerRef])

{

def applyEvent (event: Event): ShoppingCart = event match {

case OwnerChanged(_ , owner) => setOwner (owner)
case ItemAdded( , item, count) => addItem(item, count)
case ItemRemoved( , item, count) => removeltem(item, count)

}
}

With this in place, you can formulate the persistent object manager actor in terms of
commands, events, queries, results, and one in-memory snapshot of the current
domain object state. This ensemble is shown in the next listing.

Listing 17.7 Persisting an event-sourced domain object

class PersistentObjectManager extends PersistentActor {

override def persistenceId = context.self.path.name s
The actor’s name

var shoppingCart = ShoppingCart.empty will match the
extracted entity ID:
def receiveCommand = { the shopping cart ID.
case ManagerCommand (cmd, id, replyTo) =>
try {
val event = cmd match {
case SetOwner (cart, owner) => OwnerChanged (cart, owner)
case AddItem(cart, item, count) => ItemAdded (cart, item, count)

case Removeltem(cart, item, count) => ItemRemoved(cart, item, count)

}
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// perform the update here to treat validation errors immediately
shoppingCart = shoppingCart.applyEvent (event)
persist (event) { _ =>
replyTo ! ManagerEvent (id, event)
}
} catch {
case ex: IllegalArgumentException =>
replyTo | ManagerRejection(id, ex.getMessage)

}

case ManagerQuery(cmd, id, replyTo) =>

try {
val result = cmd match {
case GetItems (cart) => GetItemsResult (cart, shoppingCart.items)

}

replyTo ! ManagerResult (id, result)
} catch {
case ex: IllegalArgumentException =>
replyTo ! ManagerRejection(id, ex.getMessage)

}

def receiveRecover = {
case e: Event => shoppingCart = shoppingCart.applyEvent (e)
}

Instead of invoking business operations directly on the ShoppingCart object, you per-
form a mapping from commands to events and ask the shopping cart to apply the
events to itself. In case of validation errors, this will still result in an I1legalArgument-
Exception that you turn into a rejection message; otherwise, you first persist the event
before replying to the client that you have performed the change—this scheme
interoperates smoothly with the Reliable Delivery pattern presented in section 15.7.

The biggest change is that instead of defining a single receive behavior, you
declare the live behavior as receiveCommand and add a receiveRecover behavior as
well. This second behavior is not invoked for actor messages: it only receives the per-
sisted events as they are read from the event log (also called a journal) right after the
actor is created and before it processes its first message. The only thing you need to do
here is apply the events to the shopping cart snapshot to get it up to date. The full
source code is available in the book’s downloads, together with an example applica-
tion that demonstrates the persistent nature of this actor.

The pattern, revisited

You have taken the events the domain object manager sent in its replies to clients and
repurposed them as representations of the state changes the domain object goes
through. In the case we discussed, every command corresponds to exactly one event;
but sometimes, in addition to confirmation events being sent back to clients, internal
state changes occur as well—these will have to be lifted into events and persisted like
the others.
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It is important to note that the events that describe state changes of domain
objects are part of the business domain as well: they have business meaning outside
the technical context of the program code. With this in mind, it may be appropriate
to choose a smaller granularity for the events than would be the case by following the
derivation from the Domain Object pattern followed here—this path is more useful as
a learning guide and should not be taken to be a definition. Please refer to the event-
sourcing literature for an in-depth treatment of how to design and evolve events.

Applicability

This pattern is applicable where the durability of an object’s state history is practical
and potentially interesting (you will hear more about this last part in the following sec-
tion). A shopping cart may see some fluctuation before checkout, payment, and deliv-
ery, but the total number of events within it should not exceed hundreds—these
correspond to manual user actions, after all. The state of a token bucket filter within a
network router, on the other hand, changes constantly, goes back and forth through
the same states, and may, most important, see trillions of changes within relatively
short periods of time; it is therefore not likely to be practically persistable, let alone by
using event sourcing.

For domain objects that may accumulate state over a longer time period, and
where the event reply during recovery may eventually take longer than is affordable,
there is a workaround, but it should be used with care. From time to time, the domain
object’s snapshot state may be persisted together with the event sequence number it is
based on; then, recovery can start from this snapshot instead of having to go back to
the beginning of time. The problem with this approach is that changes to the domain
logic (bug fixes) can easily invalidate the snapshots, which fact must be recognized
and considered. The underlying issue is that although the events have meaning in the
business domain, the snapshot does not—it is just a projection of the implementation
details of the domain object logic.

Event sourcing generally is not applicable in cases where it would be desirable to
delete events from the log. Not only is the entire concept built on the notion of repre-
senting immutable facts, but this desire usually arises when the persisted state does not
have meaning in the business domain—for example, when using a PersistentActor
as a durable message queue. There are much more performant solutions to this prob-
lem that are also easier to use: see, for example, Kafka (http://kafka.apache.org) and
other distributed queues.

The Event Stream pattern

Publish the events emitted by a component so that the rest of the system can derive knowledge
Jrom them.

The events that a component stores in its log represent the sum of all the knowledge it
has ever possessed. This is a treasure trove for the rest of the system to delve into:
although the shopping cart system is only interested in maintaining the current state of
customer activity, other concerns are tangential to it, such as tracking the popularity of
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various products. This secondary concern does not need to be updated in a guaran-
teed fashion in real time; it does not matter if it lags behind the most current informa-
tion by a few seconds (individual humans usually would not be able to notice even a
delay of hours in this information). Therefore, it would be an unnecessary burden to
have the shopping cart component provide this summary information, and it would
also violate the Simple Component pattern by introducing a second responsibility.

The first dedicated event log that specializes in supporting use cases like this is
Greg Young’s Event Store.’ Akka offers the Persistence Query module’ as a generic
implementation framework for this pattern.

The problem setting

You have previously implemented a PersistentObjectManager actor that uses event
sourcing to persist its state. The events are written by Akka Persistence into the config-
ured event log (also called a journal). Now you want to use this information to feed
another component, whose function will be to keep track of the popularity of differ-
ent items put into shopping carts. You want to keep this information updated and
make it available to the rest of the system via a query protocol.

The task: Your mission is to implement an actor that uses a persistence query to
obtain and analyze the AddItem events of all shopping carts, keeping up-to-date status
information available for other components to query. You will need to add tagging for
the events as they are sent to the journal, to enable the query.

Applying the pattern

By default, the events persisted by Akka Persistence journals are only categorized in
terms of their persistenceld for later playback during recovery. All other queries
may need further preparation, because keeping additional information has an extra
cost—for example, database table indexes or duplication into secondary logs. There-
fore, you must add the categorization along other axes in the form of an event
adapter, as shown next.

Listing 17.8 Tagging events while writing to the journal

class ShoppingCartTagging (system: ExtendedActorSystem)
extends WriteEventAdapter {
def manifest (event: Any): String = "" // no additional manifest needed

def toJournal (event: Any): Any =
event match {
case s: ShoppingCartMessage => Tagged (event, Set ("shoppingCart"))
case other => other

6 See https://geteventstore.com and Greg’s presentation at React 2014 in London: https://www.youtube.com/
watch?v=DWhQggR13u8.
7 See http://doc.akka.io/docs/akka/2.4.1/scala/persistence-query.html.



324

CHAPTER 17  State management and persistence patterns

The tags are simple strings, and every event can have zero or more of them. You use
this facility to mark all ShoppingCartMessage types—this will be useful for further
experiments that look into correlations between addition and removal of the same
item relating to the same shopping cart, an exercise that will be left for you. With this
preparation, you can write the popularity-tracking actor.

Listing 17.9 An actor listening to the event stream

object TopProductListener
private class IntHolder (var value: Int)
}

class TopProductListener extends Actor with ActorLogging {
import TopProductListener.
implicit val materializer = ActorMaterializer()

val readJournal =
PersistenceQuery (context.system)
.readdJournalFor [LeveldbReadJournal] (LeveldbReadJournal.Identifier)

readJournal.eventsByTag ("shoppingCart", 0)
.collect { case EventEnvelope( , _, _, add: ItemAdded) => add }
.groupedWithin (100000, 1.second)
.addAttributes (Attributes.asyncBoundary)
.runForeach { seq: Seg[ItemAdded] =>
val histogram = seq.foldLeft (Map.empty[ItemRef, IntHolder]) {

(map, event) =>
map.get (event.item) match {
case Some (holder) => { holder.value += event.count; map |}

case None => map.updated(event.item, new IntHolder (event.count))

}
}

self ! TopProducts (0, histogram.map(p => (p._1, p._2.value)))

}
Transforms into a truly
var topProducts = Map.empty[ItemRef, Int] immutable map before

def receive = { sending to the actor

case GetTopProducts (id, replyTo) =>
replyTo ! TopProducts (id, topProducts)

case TopProducts(_ , products) =>
topProducts = products
log.info("new {}", products)

First, you obtain a read-journal interface for the journal implementation you are using
in this example—the LevelDb journal is simple to use for small trials that are purely
local, but it does not support clustering or replication and is unsuitable for production
use. You then construct a source of events using the eventsByTag query, selecting all
previously tagged events starting at the journal’s beginning (marked by the zero argu-
ment). The resulting Akka Stream is then transformed to select only the ItemAdded
events and group them in intervals spanning at most 1 second or 100,000 events,
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whichever occurs first. Then, you mark the grouped source you have constructed up to
this point as having an asynchronous boundary around it—you want to inform Akka
Streams that it should run these steps in an actor that is separate from what follows,
because you do not want the analysis process to influence the time-based grouping.
The last step is to create a histogram that assigns the addition frequency to each type of
item. To avoid creating a lot of garbage objects in the process, you use an immutable
map to hold mutable counters that are then updated in the foldLeft operation.

The resulting histograms are then sent to the actor wrapped in a
TopProducts message at least once per second. The actor will store this information
and allow others to retrieve it with a GetTopProducts inquiry. The book’s downloads
include the full source, including a shopping cart simulator that creates enough activ-
ity to see this in action.

The pattern, revisited

You have added a common categorization for all shopping cart events to the
persistence-journal configuration and used this from another actor that consumes the
events to derive a secondary view from the data. This secondary view does not hold the
same information; it removes the individual, fine-grained structure and introduces a
time-based analysis into it—you have transformed one representation of information
into a related but decoupled second representation of information.

In the example code above, the derived information is computed live, initially
catching up from the beginning of the journal; but there are other approaches: you
could make TopProductListener persistent, storing up to the offset at which the jour-
nal has already been analyzed and restarting at that point. You could also persist the
computation results, aggregating the product-popularity history for yet another step
of analysis by another component.

Another use case for this pattern is to use the events emitted by the authoritative
source—the shopping cart’s business logic—to maintain another representation: for
example, in a relational database, allowing extensive, flexible querying capabilities.
This could also be described in other terms: the normal form of the data is kept in the
place that accepts updates, whereas the information is asynchronously distributed to
other places that hold the same data in denormalized form, optimized for retrieval and
not updates. This explains why the Event Stream pattern is central to the idea of CQRS.

Event streams may also transport information across different components and
thereby into foreign bounded contexts where a different business domain defines the
ubiquitous language. In this case, the events need to be translated from one language
to the other by a component at the boundary. This component will usually live within
the bounded context that consumes the stream, in order to free the source of data
from having to know all of its consumers.

Applicability

An important property of event streams is that they do not represent the current state
of an object of the system: they only consist of immutable facts about the past that
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have already been committed to persistent storage. The components that emit these
events may have progressed to newer states that will only be reflected later in the event
stream. The delay between event emission and stream dissemination is a matter of
journal-implementation quality, but the fact that there is a significant delay is inherent
to this architecture and cannot be avoided.

This implies that all operations that must interact with the authoritative, current
data must be done on the original domain objects and cannot be decoupled by the
Event Stream pattern. For a more in-depth discussion, please refer back to chapter 8
on delimited consistency.

For all cases where time delay and consistency restrictions are not an issue, it is
preferable to rely on this pattern instead of tightly coupling the source of changes
with its consumers. The Event Stream pattern provides the reliable dissemination of
information across the entire system, allowing all consumers to choose their desired
reliability by maintaining read offsets and persisting their state where needed. The
biggest benefit is that this places the source of truth firmly in a single place—the jour-
nal—and removes doubt as to the location from which different pieces of information
may be derived.

Summary

With this chapter, we conclude the third and final part of this book. The patterns in
the chapter provide guidance about how to structure the state management in Reac-
tive systems and should be used in unison:

= The Domain Object pattern decouples the business domain representation from
message-driven execution and allows domain experts to describe, specify, and test
logic without having to care about distributed system concerns or asynchrony.

= The Sharding pattern allows the efficient storage of an arbitrary number of
domain objects, given a cluster with sufficient resources.

= The Event-Sourcing pattern turns the destructive update of persistent state into
a nondestructive accumulation of information by recognizing that the full his-
tory of an object’s state is represented by the change events it emits.

= The Event Stream pattern uses these persisted change events to implement reli-
able and scalable dissemination of information throughout the entire system
without burdening the originating domain objects with this task. The emitted
events can be distributed by the supporting infrastructure and consumed by any
number of interested clients to derive new information from their combination
or to maintain denormalized views onto the data that are optimized for queries.
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Diagramming
Reactive systems

The central aspect of designing Reactive systems is considering the message flows
that occur within them. This appendix establishes a graphical notation that is used
to depict message flows throughout the book.

In table A.1, a number (like 1 or 2) always represents an ordering constraint: if
a component does something in response to an incoming event with number N,
then the number on the outgoing event(s) must be greater than N. These usually
are not single natural numbers but a variant of vector clocks.

Table A.1 Message-flow diagram components

Description Diagram representation
Primordial component—A component that was created before the
depicted message flow starts.

Transient component—A component that is created (and usually 7 N
also destroyed) after the depicted message flow starts. 1 Name

Primordial creation—A parent—child relationship. The component on C) »
the left initiates the creation of the component on the right.
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Table A.1 Message-flow diagram components (continued)

Description Diagram representation

Creation with supervision—A parent—child relationship with supervi-
sion. In addition to the above, the child component’s failures are
handled by the parent.

Creation during the flow—~A parent—child relationship that begins
with the creation of the child during the processing flow of the dia-
gram (may be combined with supervision, as well, by adding the S).

Termination command—A termination command to a component,
usually sent by its parent.

Message—A message sent from the component on the left to the
component on the right. There are several variants of this where
only the central piece is depicted in the following rows, but the
arrows are implied for all of them.

Message description—A message dispatch that is annotated with a
description of the message’s contents. This variant is available for

; - . . Description
all kinds of message depictions shown in the following rows.

Reference inclusion—A message that includes the address of a
component. The sender of this message must be in possession of
this address when this message is sent.

Causality tracking number—A message with its causality tracking
number.

Aoty e

Recurring message—A recurring message send that begins at the 1*
indicated number.

Scheduled message—A message that is entered into the scheduler | 1 2
at number 1 and scheduled to be sent at number 2. The second
number must always be greater than the first.

Termination notification—A message generated by the system to 1
inform a component that another component has terminated (or is
declared as such, in the case of a network partition).

Sequence of messages—A sequence of multiple messages sent 1
one after the other, summarized with the same number.

Failure notification—A failure message sent from a component to 1
its supervisor.
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appendix B
An lustrated example

This appendix demonstrates a hands-on approach to Reactive system design, illus-
trating the tenets of the Manifesto through concrete examples. We encounter these
while solving issues that come up when building applications that are scalable to a
global user base. Globally distributed interaction is also at the heart of the example
problem we will tackle here: you will build an app with which users can share their
location in real time and in which they can watch others move on a map. An exten-
sion to this core function is that users can exchange text messages with other users
in their vicinity.
To be more precise, the location of each individual is used for two purposes:
= Each user can share their location with a set of other users who can track it
on a map.
= FEach user can share their location in anonymized form so that aggregated
data can be displayed to all users (such as, “37 users per hour moving west-
ward on highway 50 through Dodge City, Kansas”).

Geographic partitioning

How do you construct such an application? One thing is clear: most of the informa-
tion processing will be local, as in pertaining to some specific place on Earth.
Therefore, you need to divide the Earth into regions, starting perhaps with one
region per continent (plus some for the oceans). The granularity of countries
within each continent varies greatly, so for simplicity you will continue by cutting
each continent along lines of latitude and longitude. The result is 16 tiles, 4 by 4, as
shown in figure B.1.
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Figure B.1 The North American continent, divided recursively into 4-by-4 tiles

Continue this process recursively, as shown in the figure, quadrupling the resolution
in longitude and latitude at each step until it is fine enough—say, less than one mile in
either direction.! Now you have a way to associate every possible location on Earth
with a map region. For example, consider Dodge City, Kansas:

It is in North America ...
. in tile number 11 (at level 1)
.. within that in subtile number 14 (at level 2)
.. within that in subtile number 9 (at level 3)
. and so on

When someone shares their location, the lowest-level map tile containing that loca-
tion must be informed that there is a user positioned within it. Other users looking at
the same map tile can register for (anonymized) updates about what happens in that

! There are more-refined ways to partition a map, but this is a sufficiently simple approach that allows you to
concentrate on the essence of the program. For further study, please refer to information about R-trees or

other literature.
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little map area. The influx of position updates for each of these lowest-level map tiles
is given by how many users are logged in to the application in that geographic area,
and the outflux conversely is given by how many users are watching that precise map
tile. Therefore, no matter how many users may eventually be using this application,
you can regulate the amount of information processing per map tile by choosing the
granularity—which means choosing the number of levels in your partitioning.

The first important point about implementing a Reactive application is thus to
identify the minimal unit of processing that can operate independently. You can exe-
cute the bookkeeping functions of where people are moving within a map tile sepa-
rately from the bookkeeping of all other map tiles, possibly on different computers or
even in different data centers—each catering to one continent, for example. You can
adapt the processing capacity of the overall system to the load by growing or shrinking
the number of these processing units: merging two or more into one is not a problem,
because they were independent to begin with, so the only limit is given by how fine
you can make this split. The result is a system that can be scaled up and down elasti-
cally and can thereby react to varying load.

But we are getting ahead of ourselves, because the current design is not yet com-
plete. Users will always—knowingly or not—push applications to their limits, and in
this case a simple exploit will ruin your calculations: zoom out on the map tile you are
watching, and your interest will cover a large number of map tiles, resulting in a corre-
spondingly large rate of position updates being requested and sent. This will over-
whelm the curious user’s client with too much data; and if too many users do this,
your expectations about the outflux of data from a map tile will be exceeded. Both of
these factors cause more communication bandwidth to be used than you planned for,
and the consequence will be system overload and failure.

Planning the flow of information

In a Reactive application, each part—each independent unit of processing—reacts to
the information it receives. Therefore, it is very important to consider which informa-
tion flows where and how large each of these flows is. The principle data flows for the
example application are shown in figure B.2.

In the example application, you could define that each user sends one position
update every 5 seconds while the app is running on their mobile device—phone, tab-
let, or watch. You can ascertain that by writing the client app yourself or by enforcing
this limit in the API that the application offers to the author of client apps. Each posi-
tion update will amount to roughly 100 bytes, give or take (10 bytes each for time-
stamp, latitude, and longitude; 40 bytes for lower-level protocol overhead, such as
TCP/IPv4; plus additional space for encryption, authentication, and integrity data).
Factoring in some overhead for congestion avoidance and message scheduling
between multiple clients, you will assume that each client’s position-update stream
costs roughly 50 bytes per second on average.
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Figure B.2 Data are flowing from the clients that submit their position updates through a
front end that handles the client connections into the map tiles and on to those clients that
are watching the map.

Step 1: Accepting the data

The position updates need to be sent via the internet to a publicly addressable and
accessible endpoint; we call this the front-end node. The current lingua franca for such
purposes is HTTP, in which case you need to offer a web service that clients contact in
order to transmit their data; the choice of protocol may vary in the future, but the fact
remains that you need to plan the capacity of this data-ingestion endpoint according
to the number of users you expect. The functionality in terms of the processing the
endpoint provides is merely to validate incoming data according to protocol defini-
tions, authenticate clients, and verify the integrity of their submitted data. The end-
point does not care about the details of the position; for those purposes, it will
forward the sanitized data to the map tile it belongs to.

Common networks today operate at 100—1,000 Mbps. This example conservatively
assumes an available bandwidth of 50 Mbps, half of which you will allocate to the
reception of position updates; you can therefore arrive at a capacity of 500,000 clients
that can be handled by one front-end node. For the sake of simplicity, also assume that
this node’s computing resources are sufficient to handle the validation of the corre-
sponding rate of data packets that need to validated, authenticated, and verified—oth-
erwise, you would reduce the nominal capacity per node accordingly.

Given these numbers, it is clear that one node will probably suffice for the initial
deployment from a data-rate perspective; you will want to have two in any case, for
fault tolerance. Serving the entire world’s population of 7.5 billion people would
hypothetically require 14,000 active network nodes for data ingestion, preferably dis-
tributed among data centers spread across the planet and with a healthy percentage
of spares for redundancy. The important point is that each of these nodes operates
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fully independently of all the others: no communication or coordination is necessary
between them in order to unwrap, check, and route position updates, which enables
you to do this simple back-of-an-envelope estimation of what you need to grow this
part of the system to a given scale.

Step 2: Getting the data to their geographical home

The function of the front-end node is to accept and sanitize the incoming data and
then send it on to the map tile it belongs to. The rough estimate of the data rates
likely applies to the sanitized data as well; you will trade data integrity and authentica-
tion data for client IDs and associated data. Those were implicit to the client’s network
connection with the front-end node, but now they need to be explicitly incorporated
in the data packet on the network connection between the front-end node and each
map tile for which it receives updates.

Hosting a map tile on a single network node translates to the ability to handle
500,000 clients within that map area. Therefore, the tiles need to be small enough
that this limit is never violated. If all map tiles are the same size—that is, if the same
level of partitioning is used throughout the entire map—then some tiles will be much
more frequented than others. Densely populated areas like Manhattan, San Francisco,
and Tokyo will be close to the limit, whereas most of the tiles covering the Pacific
Ocean will rarely have anyone move on them. You can account for this asymmetry by
collocating a number of low-rate map tiles on the same processing node while keep-
ing high-rate tiles on their own nodes.

Recall that it is crucial for the front-end nodes to be able to perform their work
independently of each other, in order to be able to adjust the system capacity by add-
ing or removing nodes; you will see another reason for this when we discuss how to
react to failures within the system. But how can you achieve consensus about which
map tile is hosted by which internal network node? The answer is that you make the
routing process simple and deterministic by having a map tile-allocation service dis-
seminate a data structure that describes the placement of all tiles. This data structure
can be optimized and compressed by using the hierarchical structure of the map par-
titioning. Another consideration is that once this application has grown beyond a sin-
gle data center, you can route clients to the correct data center that hosts the
geographic region in which they are currently located, at which point each front-end
node only needs to know the location of tiles for which its data center is responsible.

An interesting question at this point is how you react to changes in your applica-
tion deployment: when a node dies or is manually replaced, or when map tiles are
reshuffled to adapt to changed user habits, how is this communicated to the front-end
nodes? And what happens to updates that are sent to the “wrong” node? The straight-
forward answer is that during such a change, there will be a time window during
which position updates pertaining to certain map tiles will be lost. As long as you can
reasonably expect this outage to be temporary and on the order of a few seconds long,
then chances are, nobody will notice; one or two missing location updates will not
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have a major effect on the aggregated statistics of a map tile (or can be compensated
for), and not seeing a friend’s position move on a map for a few seconds once in a
blue moon is unlikely to be of consequence.

Step 3: Relocating the data for efficient querying

You have now ensured that the influx of each map tile will not exceed a certain thresh-
old that is given by the capabilities of the processing hardware. The issue that sparked
this foray into data-rate planning was that the outflux is not limited, because clients
can zoom out and thereby request and consume more data than they produce and
submit.

When you visualize the map that will show the movement of all the anonymized
users within its area, what do you expect to see when you zoom out? You certainly can-
not follow each individual and track their course once there are more than a handful
of them in the region you are looking at. And when you zoom out to view all of
Europe, the best you can hope for is aggregate information about population density
or average velocity—you will not be able to discern individual positions.

In the same way you designed the information flow for data ingestion, you can
look at data extraction. Looking at a map of Europe is an easy case, because it does
not require much data: the large-scale averages and aggregate numbers do not
change quickly. The largest data demand will be given by users who are being tracked
individually while being closely zoomed in. Assume that you allow up to 30 users to be
shown individually before switching to an aggregated view, and further assume that
you can limit the data consumption of the aggregate view to be equivalent to those 30
tracked points. One update will have to contain a timestamp and up to 30 tuples of
identifier, latitude, and longitude. These can presumably be compressed because they
are in a small map region, perhaps amounting to 15 bytes for each 3-tuple. Including
some overall status information, you arrive at roughly 500 bytes for a single update,
which means about 100 bytes per second on average for 1 update every 5 seconds.

Calculating again with an available network bandwidth of 50 Mbps, where half is
allocated to client-facing traffic, this yields a capacity of serving 200,000 map views
from a single front-end node (subtracting 20% overhead).? These front-end nodes are
also answering requests from clients, but they are of a different kind than the nodes
responsible for data ingestion. When a user logs in to the app, their mobile device will
begin sending position updates to the ingestion nodes; and every time the user
changes the map view on their device, a request will be sent to the front-end nodes,
registering for the updates to be displayed on the screen. This naturally decouples the
two activities and allows a user to view a far-away map region without additional head-
aches for implementers.

2 Sending from one host to a multitude of others requires less overhead than having a multitude of clients send
to a single host. See also the TCP incast problem (www.pdl.cmu.edu/Incast).
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At this point, the big question is, where do these map-view front-end nodes get
their data? You have so far only provided the position updates to the lowest-level map
tiles, and requesting their updates in order to calculate aggregate values will not work:
serving 200,000 views could mean having to listen to the updates of millions of map
tiles, corresponding to hundreds of terabytes per second.

There is only one solution to this dilemma: you must filter and preprocess the data
at their source. Each lowest-level map tile knows the precise location and movement
of all users within its geographic region, and it is easy to calculate their number, aver-
age movement speed and direction, center of gravity, and other interesting quantities.
These summary data are then sent every 5 seconds to the map tile one level up that
contains this tile.

As a concrete example, consider that the lowest level is seven partition steps below
the North American continent. The center of Dodge City, Kansas, on level 7 calculates
the summary information and sends it to the encompassing level-6 map tile, which
also receives such summaries from the 15 other level-7 neighbors it contains. The
good thing about aggregate quantities such as user count, center of gravity, and so on
is that they can be merged with one another to aggregate at higher and higher granu-
larity (summing up the users, calculating the weighted center of gravity of the individ-
ual centers, and so on). The level-6 map tile performs this aggregation every 5 seconds
and sends its summary up to its encompassing level-5 parent, and this process is
repeated all the way up to the top level.

The data rate needed for this transfer is fixed to the size of the summary data
packet: once every 5 seconds for each sender, and 16 times that amount for each
recipient. You can assume that each data packet should fit within 100 bytes. In many
cases, these data do not even need to travel across the network, because sparsely popu-
lated map areas are collocated on the same processing node, and the summary levels
can be collocated with the lowest-level map tiles as well.

When a map view front-end node needs to access the summary information at level
4 to display a map spanning approximately 100 by 100 miles, it will request the sum-
mary information from the roughly 16 level-4 map tiles covering the viewport. Know-
ing that network bandwidth will likely be the most limiting factor for these view front-
end nodes, you can optimize their use internally by redirecting external clients
between them such that one front-end node handles many similar requests—for the
same approximate geographic region at the same summary level. That way, a node can
satisfy multiple clients from the same internal data stream. This is shown in figure B.3.

The one piece that still needs consideration is how to handle the fully zoomed-in
case: when a user points their map at Big Ben to see all the tourists milling about in
the center of London, care must be taken to not send all the data from that highly fre-
quented map tile to the front-end node, because that could potentially take up all the
available bandwidth by itself. We said earlier that a map should display only summary
information as soon as the number of individual data points exceeds 30. In this case,
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Figure B.3 The flow of data from data ingestion on the left to the map
views on the right, with summary data traveling upward in the
hierarchical map tile structure
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the calculation of this summary must happen on the network node that hosts the Big
Ben map tile: the request from the front-end node will contain the coordinates of the
desired viewport, and the map tile can determine whether to calculate aggregate
information or send the updates of up to 30 individual user positions, depending on
how many people are moving within the map area in question.

One aspect of this flow diagram deserves mention: it takes a little while for each
new piece of information to make its way up to the top. In this example, which has 7
levels, it takes on average about 18 seconds (7 times an average delay of 2.5 seconds).
This should not be a problem, though, because the summary information changes
much more slowly, the higher up you get in the hierarchy.

Taking stock

What have you achieved so far? You have designed the flow of information through an
application as shown in figure B.4. You have avoided the introduction of a single bot-
tleneck through which the data must pass: all parts of the design can be scaled individ-
ually. The front ends for data ingestion and map views can be adapted to user activity,
and the map data are modeled as a hierarchy of map tiles whose granularity can be
chosen by picking the number of partition steps. The processing of the data passing
through the map tiles can be deployed onto a number of network nodes as needed, in
terms of processing and network resources. In the simplest scenario, everything can
run on a single computer—but at the same time, the design supports deployment in a
dozen data centers and on thousands of nodes.
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Figure B.4 The flows of position updates and summary information through the application,
from position updates generated on the left through the map tile hierarchy toward the map
views on the right

What if something fails?

Now that you have a good overview of the parts of the application and the data flows
within it, you should consider how failures will affect it. This is not a black art—on the
contrary. You can follow a simple procedure: consider every node in your processing
network and every data flow link, one by one, and determine what happens if it fails.
In order to do this, you need a failure model. A good starting point for a network-
based system is the following:

= Network links can drop arbitrary bursts of messages (which includes the case
where “the link was down for three hours”).

= Processing nodes can stop responding and never recover (for example, by way
of a hardware failure).

= Processing nodes can intermittently fail to respond (for example, due to tempo-
rary overload).

= Processing nodes can experience arbitrary delays (for example, due to garbage
collection pauses, as for the JVM).

More possibilities of what can go wrong should be considered, and you will need to
assess your system requirements carefully to decide what else to include. Other
choices are that network links may corrupt data packets; data packets may experience
arbitrary delay; processing nodes may respond with erroneous data, or they may exe-
cute malicious code and perform arbitrary actions. You also need to consider the
effect of executing multiple parts of the application on the same hardware, because
this means hardware failure or resource exhaustion can affect all these parts simulta-
neously. The more vital the function of your application is for your organization, the
more detailed the considered failure model should be. For this example case, you will
stick to the simple list from the previous bullet points.
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A client fails

Mobile devices can fail for a host of reasons ranging from their destruction, to empty
batteries, to a software crash. Users are used to dealing with those (replacing the
phone, charging it, or restarting the phone or an app), and they do not expect things
to work while their device has failed. Therefore, you only need to concern yourself
with the effects of a failure on the internal processes of your application.

First, the stream of position updates will cease. When this happens, we might want
to generate a visible representation for others who were seeing this user on their map,
perhaps changing the color of the marker or making it translucent. The lowest-level
map tile will be responsible for tracking whether the users that move within it are alive.

Second, the map view for the client will no longer be able to send updates, net-
work buffers will fill up, and socket writes will eventually time out. Therefore, you
must protect the map view front ends from becoming clogged with defunct client reg-
istrations. This is commonly done by including a heartbeat signal in the protocol and
closing the connection when the heartbeats stop coming in.

A client network link fails

From the perspective of the application, it does not matter why position updates
cease: the failure of the mobile device or its software is indistinguishable from a failed
network connection. The consequences are thus the same as discussed in the previous
section.

From the perspective of the client, on the other hand, in general it is not distin-
guishable whether the front-end node it was connected to failed or the network link is
at fault: both will look largely the same. Hence, the remedy is also the same as dis-
cussed in the next section.

A data-ingestion front-end node fails

The role of such a node is to sanitize and forward position updates, so a failure means
the client will eventually run into trouble sending data to it. In the same way the map
view monitors the health of its client using heartbeats, you can also solve this situation:
the client will reconnect to a different front-end node if something goes amiss, regard-
less of whether the failure is temporary or fatal. This is typically realized by placing a
network load balancer in front of the pool of real web service endpoint nodes, a strat-
egy that is possible only because it does not matter exactly which node a client sends
its updates through into the system: the gateways are all equally suited.

In any case, the mobile app should let the user know that there is trouble with the
connection. This is much better than having the user figure it out via missing activ-
ity—that way, you can clearly distinguish between problems local to the app and prob-
lems with network communication.

The other action that must be taken upon the failure of a front-end node is to
properly dispose of it (stopping the application, taking down the machine) and spin
up a new instance that starts from a known good configuration. The precise kind of
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failure is irrelevant: the overall system returns to a fully fault-tolerant state by doing
the most robust, simplest thing possible. Consequently, whatever went wrong is con-
tained within the removed node and cannot spread to the others. The recovery must
be initiated by a separate service that cannot be infected with the failure; this is called
a supervisor service. The supervisor monitors its subordinates for proper function and,
as described, takes corrective action when necessary.

A network link from data ingestion to map tile fails

This situation has no negative impact on the overall function of the application. Its
effect is the same as if the connected clients stop sending position updates to the
affected map tile. Therefore, depending on which communication protocol is used
for this network link, both parties should monitor the health of their connection and
release all associated resources if the connection becomes stale.

The simplicity of this problem and of its solution is due to the fact that neither
side—front-end node nor map tile—depends on the other for correct function. Data
flow in only one direction from one to the other, and if data stop flowing, both sides
know how to deal with the situation. This is called loose coupling, and it is essential for
achieving robust failure handling.

A map tile-processing node fails

Because this is the heart of the application, we will consider the different failure
modes more carefully:

= Hardware failure—In case of a node crash, all map tiles that were hosted by this
node will be failed with it. The front-end nodes will eventually notice and stop
sending updates, but you need to recover from this situation. The front ends
cannot be responsible for that, because it would involve coordination of who
performs the necessary steps. Therefore, you install a supervisor service that
monitors all map tile nodes and spins up a new instance in case of a crash. We
discussed earlier that this service will then update the routing knowledge of all
front-end nodes so they begin sending updates to the new destination.

= Temporary overload—If a map tile sees more traffic than was planned for, it will
need to be moved to a separate processing node; otherwise, it will take
resources from all of its collocated neighbors, and the overload will spread and
turn into a node failure. This scenario must also be handled by the supervisor
service, which for this purpose needs to gather usage statistics and, if necessary,
rebalance the map tiles across the available nodes. If the load is increasing in all
parts of the system, then this supervisor should also be able to request that new
nodes be brought online so the additional load can be handled. Conversely,
once load drops significantly, the supervisor should reallocate map tiles to free
up and release redundant nodes.

= Permanent overload—It is also possible that the partitioning of your map is not
adequate and a single map tile is hit consistently by too many requests. Because
you cannot split or reallocate this map tile, such a failure will need to raise an
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alert when it is detected, and the system configuration must be adapted manu-
ally to correct the mistake.

= Processing delays—In some cases, the inability to process new data lasts only a few
seconds (for example, while the JVM is performing a major garbage collection
cycle). In such cases, no specific recovery mechanism is necessary beyond possi-
bly dropping some updates that are outdated by the time the machine comes
back to life. There is a point, of course, where such an interruption is mistaken
for a node crash; you will have to configure the supervisor service to tolerate
pauses up to a given duration and take corrective measures once that is
exceeded.

As in the case of a front-end node failure, you need a supervisor service that keeps an
eye on all the deployed processing nodes and can heal the system in case of failure by
using its global view and, if necessary, disposing of faulty instances and creating fresh
ones. The supervisor does not become a bottleneck in the system because you keep it
outside of the main information flows of the application.

A summary map tile fails

These processing units are very similar in function to the lowest-level map tiles. They
are part of the same information routing infrastructure, so you supervise them in the
same fashion.

A network link between map files fails

This case is similar to front-end nodes being unable to forward position updates to
map tiles—data will not arrive while the failure lasts. You need network monitoring in
place so the operations crew is notified and will fix the issue; other than that, you have
to throw away data as they grow stale. This last part is important to avoid the so-called
thundering herd problem when network connectivity is restored: if all data are buffered
and then sent at once, the destination will likely be overloaded as a result. Fortunately
you do not need to buffer data for long periods of time in this part of the application,
because all you are modeling is a live view on a map with no historic information; lost
updates are a fact of life.

A map view front-end node fails

In this case, you can act in the same fashion as for the data-ingestion front-end nodes:
you have clients reconnect through a load balancer as soon as they determine some-
thing is wrong, and you have a supervisor service that disposes of nodes and provisions
new ones when needed. The latter actions can also occur in response to changes in
load; this way, monitoring by the supervisor enables the system to elastically scale up
and down.

There is one more consideration in this situation: map view updates are sent by the
map tiles according to the front ends’ registrations. If a front end becomes unavail-
able and is replaced, then map tiles need to stop sending data their way as soon as pos-
sible, because the new client registrations that replace the failed ones will soon take
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up their share of the planned bandwidth again. Therefore, map tiles need to pay
attention to their connections with map views and drop updates when they cannot be
transmitted in a timely fashion.

Failure-handling summary

As we systematically walked along all data flows and considered the consequences of
node and communication failures, we encountered two main needs:

= Communication partners frequently are required to monitor the availability of
their interlocutors. Where no steady stream of messages is readily available, traf-
fic can be generated using a heartbeat mechanism.

= Processing nodes must be monitored by supervising services in order to detect
failures and load problems (both over- and under-utilization) and take correc-
tive action.

Figure B.5 shows the complete deployment structure of the example application with
the added supervisors. It also notes that the service supervising the map tiles must
inform both types of front-end nodes about the current mapping where each map tile
is hosted.
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Figure B.5 Deployment structure of the application, with supervisor services and their
relationship: the map tiles’ supervisor informs the front-end supervisors about where position
updates and map view registrations should go.

What have you learned from this example?

We have modeled an application that can serve any number of clients, allowing them
to share their location and see how others are moving on a map. The design is such
that you can easily scale its capacity from trying it on a development notebook—run-
ning all parts locally—to, hypothetically, supporting use by all humans on Earth.
Doing so would require considerable resources, and their operation would require a
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large effort, but from the technical side, the application is prepared. You have
achieved that by considering foremost the information that will be processed by the
application and the main flows of data that are necessary.

The most important characteristic is that data always flow forward from their
source (position updates of mobile devices) via processing stages (map tiles) toward
their final destination (the map displayed on mobile devices). The processing nodes
on this path of information are loosely coupled in that failures of one are dealt with the
same way as communication outages.

You build resilience into a design by considering the major parts of the application
to be isolated from each other, communicating only over networks. If multiple parts
are running on the same machine, a failure of the machine—or resource exhaustion
caused by one part—will make all of them fail simultaneously. It is especially import-
ant for achieving fault tolerance that the services tasked with repairing the system
after failures—the supervisors—are isolated from other parts and are running on
their own resources.

In this way, you have experienced all the main tenets of the Reactive Manifesto:

= The application is responsive due to resource planning and map partitioning.

= The application is resilient because you built in mechanisms to repair failed
components and connect to properly functioning ones.

= The application is elastic because it monitors the load experienced by the differ-
ent parts and can redistribute the load when it changes, a feat that is possible
due to the lack of global bottlenecks and processing units that can work inde-
pendently of each other.

= All of this is enabled by message-driven communication between the parts of the
application.

Where do you go from here?

The attentive reader will have noticed that not all functionality has been implemented
for the example application. We have detailed how to implement the second require-
ment of sharing anonymized position updates, but we left out the first requirement
that a user should be able to share their location with a set of other users. It will be a
good exercise to apply the same reasoning in this case, designing additional parts of
the application that keep data in a user-centric fashion rather than the map-centric
one you have built so far. Modifications of the trust relationship between users will
have to be processed more reliably than position updates, but they will also be vastly
less frequent.
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Main text

Organisations working in disparate domains are independently discovering pat-
terns for building software that look the same. These systems are more robust,
more resilient, more flexible and better positioned to meet modern demands.

These changes are happening because application requirements have changed
dramatically in recent years. Only a few years ago a large application had tens of
servers, seconds of response time, hours of offline maintenance and gigabytes of
data. Today applications are deployed on everything from mobile devices to cloud-
based clusters running thousands of multi-core processors. Users expect millisec-
ond response times and 100% uptime. Data is measured in Petabytes. Today’s
demands are simply not met by yesterday’s software architectures.

We believe that a coherent approach to systems architecture is needed, and we
believe that all necessary aspects are already recognised individually: we want sys-
tems that are Responsive, Resilient, Elastic and Message Driven. We call these Reac-
tive Systems.

Systems built as Reactive Systems are more flexible, loosely-coupled and scalable
(see section C.2.15). This makes them easier to develop and amenable to change.
They are significantly more tolerant of failure (see section C.2.7) and when failure
does occur they meet it with elegance rather than disaster. Reactive Systems are
highly responsive, giving users (see section C.2.17) effective interactive feedback.

Reactive Systems are:

343
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= Responsive: The system (see section C.2.16) responds in a timely manner if at all
possible. Responsiveness is the cornerstone of usability and utility, but more
than that, responsiveness means that problems may be detected quickly and
dealt with effectively. Responsive systems focus on providing rapid and consis-
tent response times, establishing reliable upper bounds so they deliver a consis-
tent quality of service. This consistent behaviour in turn simplifies error
handling, builds end user confidence, and encourages further interaction.

= Resilient: The system stays responsive in the face of failure (see section C.2.7).
This applies not only to highly-available, mission critical systems—any system that
is not resilient will be unresponsive after a failure. Resilience is achieved by repli-
cation (see section C.2.13), containment, isolation (see section C.2.8) and dele-
gation (see section C.2.5). Failures are contained within each component (see
section C.2.4), isolating components from each other and thereby ensuring that
parts of the system can fail and recover without compromising the system as a
whole. Recovery of each component is delegated to another (external) compo-
nent and high-availability is ensured by replication where necessary. The client of
a component is not burdened with handling its failures.

= Llastic: The system stays responsive under varying workload. Reactive Systems
can react to changes in the input rate by increasing or decreasing the resources
(see section C.2.14) allocated to service these inputs. This implies designs that
have no contention points or central bottlenecks, resulting in the ability to
shard or replicate components and distribute inputs among them. Reactive Sys-
tems support predictive, as well as Reactive, scaling algorithms by providing rel-
evant live performance measures. They achieve elasticity (see section C.2.6) in a
cost-effective way on commodity hardware and software platforms.

= Message Driven: Reactive Systems rely on asynchronous (see section C.2.1) message-
passing (see section C.2.10) to establish a boundary between components that
ensures loose coupling, isolation, and location transparency (see section C.2.9).
This boundary also provides the means to delegate failures (see section C.2.7) as
messages. Employing explicit message-passing enables load management, elasticity,
and flow control by shaping and monitoring the message queues in the system and
applying back-pressure (see section C.2.2) when necessary. Location transparent
messaging as a means of communication makes it possible for the management of
failure to work with the same constructs and semantics across a cluster or within a
single host. Non-blocking (see section C.2.11) communication allows recipients to
only consume resources (see section C.2.14) while active, leading to less system
overhead.

Large systems are composed of smaller ones and therefore depend on the Reactive
properties of their constituents. This means that Reactive Systems apply design princi-
ples so these properties apply at all levels of scale, making them composable. The larg-
est systems in the world rely upon architectures based on these properties and serve
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the needs of billions of people daily. It is time to apply these design principles con-
sciously from the start instead of rediscovering them each time.

Glossary

Asynchronous

The Oxford Dictionary defines asynchronous as “not existing or occurring at the same
time.” In the context of this manifesto we mean that the processing of a request
occurs at an arbitrary point in time, sometime after it has been transmitted from cli-
ent to service. The client cannot directly observe, or synchronize with, the execution
that occurs within the service. This is the antonym of synchronous processing which
implies that the client only resumes its own execution once the service has processed
the request.

Back-Pressure

When one component (see section C.2.4) is struggling to keep-up, the system (see
section C.2.16) as a whole needs to respond in a sensible way. It is unacceptable for
the component under stress to fail catastrophically or to drop messages in an uncon-
trolled fashion. Since it can’t cope and it can’t fail it should communicate the fact
that it is under stress to upstream components and so get them to reduce the load.
This back-pressure is an important feedback mechanism that allows systems to grace-
fully respond to load rather than collapse under it. The back-pressure may cascade all
the way up to the user, at which point responsiveness may degrade, but this mecha-
nism will ensure that the system is resilient under load, and will provide information
that may allow the system itself to apply other resources to help distribute the load,
see Elasticity (section C.2.6).

Batching

Current computers are optimized for the repeated execution of the same task:
instruction caches and branch prediction increase the number of instructions that
can be processed per second while keeping the clock frequency unchanged. This
means that giving different tasks to the same CPU core in rapid succession will not
benefit from the full performance that could otherwise be achieved: if possible we
should structure the program such that its execution alternates less frequently
between different tasks. This can mean processing a set of data elements in batches, or
it can mean performing different processing steps on dedicated hardware threads.

The same reasoning applies to the use of external resources (see section C.2.14)
that need synchronization and coordination. The I/O bandwidth offered by persistent
storage devices can improve dramatically when issuing commands from a single
thread (and thereby CPU core) instead of contending for bandwidth from all cores.
Using a single entry point has the added advantage that operations can be reordered
to better suit the optimal access patterns of the device (current storage devices per-
form better for linear than random access).
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Additionally, batching provides the opportunity to share out the cost of expensive
operations such as I/O or expensive computations. For example, packing multiple
data items into the same network packet or disk block to increase efficiency and
reduce utilisation.

Component

What we are describing is a modular software architecture, which is a very old idea,
see for example Parnas (1972).! We are using the term “component” due to its prox-
imity with compartment, which implies that each component is self-contained, encap-
sulated and isolated (see section C.2.8) from other components. This notion applies
foremost to the runtime characteristics of the system, but it will typically also be
reflected in the source code’s module structure as well. While different components
might make use of the same software modules to perform common tasks, the pro-
gram code that defines the top-level behavior of each component is then a module of
its own. Component boundaries are often closely aligned with Bounded Contexts? in
the problem domain. This means that the system design tends to reflect the problem
domain and so is easy to evolve, while retaining isolation. Message protocols (see sec-
tion C.2.12) provide a natural mapping and communications layer between Bounded
Contexts (components).

Delegation

Delegating a task asynchronously (see section C.2.1) to another component (see sec-
tion C.2.4) means that the execution of the task will take place in the context of that
other component. This delegated context could entail running in a different error
handling context, on a different thread, in a different process, or on a different net-
work node, to name a few possibilities. The purpose of delegation is to hand over the
processing responsibility of a task to another component so that the delegating com-
ponent can perform other processing or optionally observe the progress of the dele-
gated task in case additional action is required such as handling failure or reporting
progress.

Elasticity (in contrast to Scalability)

Elasticity means that the throughput of a system scales up or down automatically to
meet varying demand as resource is proportionally added or removed. The system
needs to be scalable (see section C.2.15) to allow it to benefit from the dynamic addi-
tion, or removal, of resources at runtime. Elasticity therefore builds upon scalability
and expands on it by adding the notion of automatic resource (see section C.2.14)
management.

! https://www.cs.umd.edu/ class/spring2003/cmsc838p/Design/ criteria.pdf
2 http://martinfowler.com/bliki/BoundedContext.html
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Failure (in contrast to Error)

A failure is an unexpected event within a service that prevents it from continuing to
function normally. A failure will generally prevent responses to the current, and possi-
bly all following, client requests. This is in contrast with an error, which is an expected
and coded-for condition—for example an error discovered during input validation,
that will be communicated to the client as part of the normal processing of the mes-
sage. Failures are unexpected and will require intervention before the system (see sec-
tion C.2.16) can resume at the same level of operation. This does not mean that
failures are always fatal, rather that some capacity of the system will be reduced follow-
ing a failure. Errors are an expected part of normal operations, are dealt with immedi-
ately and the system will continue to operate at the same capacity following an error.

Examples of failures are hardware malfunction, processes terminating due to fatal
resource exhaustion, program defects that result in corrupted internal state.

Isolation (and Containment)

Isolation can be defined in terms of decoupling, both in time and space. Decoupling
in time means that the sender and receiver can have independent life-cycles—they do
not need to be present at the same time for communication to be possible. It is
enabled by adding asynchronous (see section C.2.1) boundaries between the compo-
nents (see section C.2.4), communicating through message-passing (see section
C.2.10). Decoupling in space (defined as Location Transparency, see section C.2.9)
means that the sender and receiver do not have to run in the same process, but wher-
ever the operations division or the runtime itself decides is most efficient—which
might change during an application’s lifetime.

True isolation goes beyond the notion of encapsulation found in most object-
oriented languages and gives us compartmentalization and containment of:

= State and behavior: it enables share-nothing designs and minimizes contention
and coherence cost (as defined in the Universal Scalability Law;’®

= Failures: it allows failures (see section C.2.7) to be captured, signalled and man-
aged at a fine-grained level instead of letting them cascade to other compo-
nents.

Strong isolation between components is built on communication over well-defined
protocols (see section C.2.12) and enables loose coupling, leading to systems that are
easier to understand, extend, test and evolve.

Location Transparency

Elastic (see section C.2.6) systems need to be adaptive and continuously react to
changes in demand, they need to gracefully and efficiently increase and decrease
scale. One key insight that simplifies this problem immensely is to realize that we are

* http://www.perfdynamics.com/Manifesto/USLscalability.html
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all doing distributed computing. This is true whether we are running our systems on a
single node (with multiple independent CPUs communicating over the QPI link) or
on a cluster of nodes (with independent machines communicating over the network).
Embracing this fact means that there is no conceptual difference between scaling ver-
tically on multi-core or horizontally on the cluster.

If all of our components (see section C.2.4) support mobility, and local communi-
cation is just an optimization, then we do not have to define a static system topology
and deployment model upfront. We can leave this decision to the operations person-
nel and the runtime, which can adapt and optimize the system depending on how it
is used.

This decoupling in space (see the definition for Isolation, section C.2.8), enabled
through asynchronous (see section C.2.1) message-passing (see section C.2.10), and
decoupling of the runtime instances from their references is what we call Location
Transparency. Location Transparency is often mistaken for “transparent distributed
computing”, while it is actually the opposite: we embrace the network and all its con-
straints—like partial failure, network splits, dropped messages, and its asynchronous
and message-based nature—by making them first class in the programming model,
instead of trying to emulate in-process method dispatch on the network (a la RPC, XA
etc.). Our view of Location Transparency is in perfect agreement with A Note On Dis-
tributed Computing* by Waldo et al.

Message-Driven (in contrast to Event-Driven)

A message is an item of data that is sent to a specific destination. An event is a signal
emitted by a component (see section C.2.4) upon reaching a given state. In a message-
driven system addressable recipients await the arrival of messages and react to them,
otherwise lying dormant. In an event-driven system notification listeners are attached
to the sources of events such that they are invoked when the event is emitted. This
means that an event-driven system focuses on addressable event sources while a mes-
sage-driven system concentrates on addressable recipients. A message can contain an
encoded event as its payload.

Resilience is more difficult to achieve in an event-driven system due to the short-
lived nature of event consumption chains: when processing is set in motion and listen-
ers are attached in order to react to and transform the result, these listeners typically
handle success or failure (see section C.2.7) directly and in the sense of reporting
back to the original client. Responding to the failure of a component in order to
restore its proper function, on the other hand, requires a treatment of these failures
that is not tied to ephemeral client requests, but that responds to the overall compo-
nent health state.

* http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628
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Non-Blocking

In concurrent programming an algorithm is considered non-blocking if threads com-
peting for a resource do not have their execution indefinitely postponed by mutual
exclusion protecting that resource. In practice this usually manifests as an API that
allows access to the resource (see section C.2.14) if it is available otherwise it immedi-
ately returns informing the caller that the resource is not currently available or that
the operation has been initiated and not yet completed. A non-blocking API to a
resource allows the caller the option to do other work rather than be blocked waiting
on the resource to become available. This may be complemented by allowing the cli-
ent of the resource to register for getting notified when the resource is available or
the operation has completed.

Protocol

A protocol defines the treatment and etiquette for the exchange or transmission of
messages between components (see section C.2.4). Protocols are formulated as rela-
tions between the participants to the exchange, the accumulated state of the protocol
and the allowed set of messages to be sent. This means that a protocol describes which
messages a participant may send to another participant at any given point in time.
Protocols can be classified by the shape of the exchange, some common classes are
request-reply, repeated request-reply (as in HTTP), publish-subscribe, and stream
(both push and pull).

In comparison to local programming interfaces a protocol is more generic since it
can include more than two participants and it foresees a progression of the state of
the message exchange; an interface only specifies one interaction at a time between
the caller and the receiver.

It should be noted that a protocol as defined here just specifies which messages
may be sent, but not how they are sent: encoding, decoding (i.e., codecs), and trans-
port mechanisms are implementation details that are transparent to the components’
use of the protocol.

Replication

Executing a component (see section C.2.4) simultaneously in different places is
referred to as replication. This can mean executing on different threads or thread
pools, processes, network nodes, or computing centers. Replication offers scalability
(see section C.2.15), where the incoming workload is distributed across multiple
instances of a component, or resilience, where the incoming workload is replicated to
multiple instances which process the same requests in parallel. These approaches can
be mixed, for example by ensuring that all transactions pertaining to a certain user of
the component will be executed by two instances while the total number of instances
varies with the incoming load, (see Elasticity, section C.2.6).
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Resource

Everything that a component (see section C.2.4) relies upon to perform its function is
a resource that must be provisioned according to the component’s needs. This
includes CPU allocation, main memory and persistent storage as well as network band-
width, main memory bandwidth, CPU caches, inter-socket CPU links, reliable timer
and task scheduling services, other input and output devices, external services like
databases or network file systems etc. The elasticity (see section C.2.6) and resilience
of all these resources must be considered, since the lack of a required resource will
prevent the component from functioning when required.

Scalability

The ability of a system (see section C.2.16) to make use of more computing resources
(see section C.2.14) in order to increase its performance is measured by the ratio of
throughput gain to resource increase. A perfectly scalable system is characterized by
both numbers being proportional: a twofold allocation of resources will double the
throughput. Scalability is typically limited by the introduction of bottlenecks or syn-
chronization points within the system, leading to constrained scalability, see Amdahl’s
Law and Gunther’s Universal Scalability Model.®

System

A system provides services to its users (see section C.2.17) or clients. Systems can be
large or small, in which case they comprise many or just a few component (see section
C.2.4). All components of a system collaborate to provide these services. In many cases
the components are in a client-server relationship within the same system (consider
for example front-end components relying upon back-end components). A system
shares a common resilience model, by which we mean that failure (see section C.2.7)
of a component is handled within the system, delegated (see section C.2.5) from one
component to the other. It is useful to view groups of components within a system as
subsystems if they are isolated (see section C.28) from the rest of the system in their
function, resources (see section C.2.14) or failure modes.

User

We use this term informally to refer to any consumer of a service, be that a human or
another service.

5 http://blogs.msdn.com/b/ddperf/archive/2009/04/29 /parallel-scalability-isn-t-child-s-play-part-2-amdahl-
s-law-vs-gunther-s-law.aspx
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